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Preface

The multidisciplinary STEAM-H series (Science, Technology, Engineering, Agri-
culture, Mathematics, and Health) brings together leading researchers to present
their work in the perspective to advance their specific fields and in a way to generate
a genuine interdisciplinary interaction transcending disciplinary boundaries. All
chapters therein were carefully edited and peer-reviewed; they are reasonably self-
contained and pedagogically exposed for a multidisciplinary readership.

Contributions are by invitation only and reflect the most recent advances
delivered in a high standard, self-contained way. The goals of the series are as
follows:

1. To enhance multidisciplinary understanding between the disciplines by showing
how some new advances in a particular discipline can be of interest to the other
discipline, or how different disciplines contribute to a better understanding of a
relevant issue at the interface of mathematics and the sciences.

2. To promote the spirit of inquiry so characteristic of mathematics for the advances
of the natural, physical, and behavioral sciences by featuring leading experts and
outstanding presenters.

3. To encourage diversity in the readers’ background and expertise, while at
the same time structurally fostering genuine interdisciplinary interactions and
networking.

Current disciplinary boundaries do not encourage effective interactions between
scientists; researchers from different fields usually occupy different buildings,
publish in journals specific to their field, and attend different scientific meetings.
Existing scientific meetings usually fall into either small gatherings specializing on
specific questions, targeting specific and small group of scientists already aware of
each other’s work and potentially collaborating, or large meetings covering a wide
field and targeting a diverse group of scientists but usually not allowing specific
interactions to develop due to their large size and a crowded program. Traditional
departmental seminars are becoming so technical as to be largely inaccessible to
anyone who did not coauthor the research being presented. Here contributors focus
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vi Preface

on how to make their work intelligible and accessible to a diverse audience, which
in the process enforces mastery of their own field of expertise.

This volume, as the previous ones, strongly advocates multidisciplinarity with
the goal to generate new interdisciplinary approaches, instruments, and models
including new knowledge, transcending scientific boundaries to adopt a more
holistic approach. For instance, it should be acknowledged, following Nobel
laureate and president of the UK’s Royal Society of Chemistry, Professor Sir Harry
Kroto, “that the traditional chemistry, physics, biology departmentalised univer-
sity infrastructures—which are now clearly out-of-date and a serious hindrance
to progress—must be replaced by new ones which actively foster the synergy
inherent in multidisciplinarity.” The National Institutes of Health and the Howard
Hughes Medical Institute have strongly recommended that undergraduate biology
education should incorporate mathematics, physics, chemistry, computer science,
and engineering until “interdisciplinary thinking and work become second nature.”
Young physicists and chemists are encouraged to think about the opportunities
waiting for them at the interface with the life sciences. Mathematics is playing
an ever more important role in the physical and life sciences, engineering, and
technology, blurring the boundaries between scientific disciplines.

The series is to be a reference of choice for established interdisciplinary scientists
and mathematicians and a source of inspiration for a broad spectrum of researchers
and research students, graduates, and postdoctoral fellows; the shared emphasis of
these carefully selected and refereed contributed chapters is on important methods,
research directions, and applications of analysis including within and beyond
mathematics. As such, the volume promotes mathematical sciences, physical and
life sciences, engineering, and technology education, as well as interdisciplinary,
industrial, and academic genuine cooperation.

Toward such goals, the following chapters are featured in the current volume.
The chapter “Impedance of Pistons on a Two-Layer Medium with Inviscid

Homogeneous Flow” by Scott Hassan uses an integral transform technique to
develop a general solution for the impedance of two-dimensional pistons acting on
a two-layer medium.

In the chapter “Acoustics of a Mixed Porosity Felt Airfoil,” Aren Hellum presents
experimental results to understand the relationship between wing porosity and noise
reduction as a function of flow Reynolds number.

In the chapter “Generalizing the Butterfly Structure of the FFT,” John Polcari
develops the underlying structure of the fast Fourier transform (FFT) well described
by a pattern of “butterfly” operations in a more general context of a decomposition
applicable to any arbitrary complex unitary matrix.

The chapter “Development of an Aft Boundary Condition for a Horizontally
Towed Flexible Cylinder” by Anthony A. Ruffa uses the method of characteristics
to develop an aft boundary condition for the linear transverse dynamics of a towed
neutrally buoyant flexible cylinder, extending a previous approach to more general
numerical methods.

In the chapter “Tracking with Deterministic Batch Trackers,” Steven
Schoenecker develops two deterministic non-Bayesian batch trackers—the
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Maximum Likelihood Probabilistic Data Association Tracker (ML-PDA) and the
Maximum Likelihood Probabilistic Multi-Hypothesis Tracker (ML-PMHT), assum-
ing a target with some unknown deterministic motion corrupted by measurement
noise.

In chapter “Moving Horizons Estimation for Wheelchair Trajectory Repeata-
bility in the Home” by Steven B. Skaar shows an advantage of Moving Horizons
Estimation in contrast with the previously tested Extended Kalman Filter in the
context of achieving a useful form of teach/repeat for wheelchairs of severely
disabled veterans within their homes.

In the chapter “Exact Solutions to the Spline Equations,” Anthony A. Ruffa
and Bourama Toni develop the exact solutions to the cubic spline equations for
the case of equal knot spacing, exhibiting an oscillatory response in the region of
a discontinuity as a consequence of the row structure of the resulting tridiagonal
Toeplitz system.

The chapter “Distributed Membership Games for Planning Sensor Networks” by
Thomas Wettergen and Michael Traweek investigates the management of sensor
networks organized into distinct groups that share data to improve performance, in
particular, for systems where changes in individual sensors’ group membership may
improve performance.

In chapter “Statistical Models of Inertial Sensors and Integral Error Bounds,”
[Richard] Vaccaro and Ahmed Zaki consider the random components that are useful
for modeling modern tactical grade MEMS sensors with the purpose of deriving
formulas for bounding errors in the first and second integrals of the sensor output
from the additive noise and random drift components that corrupt a sensor signal.

The chapter “Developing Efficient Random Flight Searches in Bounded
Domains” by Thomas Wettergren develops a new method for computing the
parameters defining an efficient random flight for searchers that are constrained to
search in a bounded domain, using concepts from observations of animal foraging
behavior to define a random search plan that provides an optimally efficient search
in terms of coverage relative to the constraints of random motion in the bounded
domain.

The book as a whole certainly enhances the overall objective of the series, that is,
to foster the readership interest and enthusiasm in the STEAM-H disciplines (Sci-
ence, Technology, Engineering, Agriculture, Mathematics, and Health), stimulate
graduate and undergraduate research, and generate collaboration among researchers
on a genuine interdisciplinary basis.

The STEAM-H series is hosted at Howard University, Washington DC, USA, an
area that is socially, economically, intellectually very dynamic and home to some of
the most important research centers in the USA. This series, by now well established
and published by Springer, a world-renowned publisher, is expected to become a
national and international reference in interdisciplinary education and research.

Newport, RI, USA Anthony A. Ruffa
Washington, DC, USA Bourama Toni
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Impedance of Pistons on a Two-Layer
Medium with Inviscid Homogeneous
Flow

Scott E. Hassan

1 Introduction

Predicting the impedance associated with a piston in a rigid baffle, acting on a
two-layer medium with flow, is a fundamental problem in the area of acoustic
transduction associated with high speed flows.

Much of the previous work has addressed various aspects of pistons in rigid
infinite baffles acting directly on a semi-infinite quiescent fluid. The radiation
impedance associated with fluid loaded circular pistons has been developed exten-
sively using approaches involving surface integrals of Green’s functions [1], integral
transforms [2], or time domain techniques [3]. General calculation methodologies
with specific application to a rectangular aperture in a rigid baffle were addressed
by Pierce et al. [4].

Previous work related to the response of rigid pistons on viscoelastic or a
layered viscoelastic medium are limited to computing the impedances for a layered
medium without flow. An integral equation approach was developed by Luco [5,
6] and solved numerically for a circular piston on a layered viscoelastic medium.
Hassan [7] developed an integral transform method to solve for the self and mutual
impedances of pistons on a two-layer medium without flow. It was found that the low
frequency piston impedance is significantly influenced as a result of shear properties
of the viscoelastic medium.

The problem of a piston, in a rigid baffle, acting directly on a moving homo-
geneous fluid medium has been addressed by Ffowcs Williams and Lovely [8],
Leppington and Levine [9], and Levine [10] for a vibrating strip.

S. E. Hassan (�)
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2 S. E. Hassan

Numerical and experimental methods to evaluate the acoustic impedance of rect-
angular panels in a rigid baffle with uniform subsonic mean flow were considered
by Chang and Leehey [11]. They noted significant discrepancies between numerical
and experimental results for the modal radiation reactance. Transient and harmonic
fluid loading on vibrating plates in a uniform flow field was addressed by Li and
Stepanishen [12]. They noted an unexpected behavior at low frequencies where the
reactance was found to be very large. This was attributed to the nonzero limiting
value of the impulse responses for nonzero Mach numbers.

In the present paper, integral transform methods are used to develop a general
solution for the impedance of pistons acting on a two-layer medium consisting of
a semi-infinite acoustic fluid with homogeneous flow, on a viscoelastic solid in a
rigid infinite baffle. The theory is presented in Sect. 2 where the stresses in the
solid are determined using the theory of linear elasticity and the pressures in the
fluid are assumed to be governed by the convected wave equation. The special case
of a piston of length L is considered in detail. Results for the piston impedance
for various viscoelastic layer thicknesses and mean flow velocities are presented in
Sect. 3 along with limiting classical solutions.

2 Theory

In this section, integral transform techniques are utilized to develop an expression
for the impedance of a piston. The impedance is expressed as an integral containing
the product of transformed aperture functions and the spectral impedance of a
general multi-layer medium. The governing differential equations of motion are then
developed for the two layers consisting of a viscoelastic solid and inviscid fluid with
homogeneous subsonic flow. The equations of linear elasticity are used to describe
the response of the isotropic viscoelastic medium, and the convected acoustic wave
equation is used to describe the response of the fluid. These equations are coupled
by applying boundary conditions at the fluid/solid interface and rigid baffle resulting
in a system of linear equations for the unknown coefficients to the displacement
potential functions. These coefficients are used to evaluate the stresses acting on the
rigid baffle and the associated spectral impedance of the two-layer medium.

2.1 Formulation of Impedance Expressions

Consider the inhomogeneous two-layer medium depicted in Fig. 1. A semi-infinite
acoustic fluid volume, Vf, with homogeneous subsonic mean flow is above an
isotropic viscoelastic solid volume, Vs, of thickness h. The lower surface of the
viscoelastic solid is on a rigid infinite planar baffle at z = 0. The piston described
by σ is vibrating with a harmonic (ejωt) uniform velocity. As a result of the piston
motion normal to the baffle, a net normal force is exerted on the surface σ.
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Fig. 1 Piston acting on a two-layer medium in a rigid infinite planar baffle

The radiation impedance, z(ω), is defined as the total normal force acting on the
piston normalized by the complex normal velocity of the piston, V(ω). It follows
that:

z (ω) = F (ω)

V (ω)
(1)

where F(ω) is the complex normal component of force obtained by integration of
the normal stress component on z = 0 over the surface σ. The general expression
for the impedance can also be written as:

z (ω) = [
R (ω) + jX (ω)

]
(2)

where R and X are the resistive and reactive components of the complex impedance.
In the subsequent development, explicit dependence on ejωt is suppressed for
convenience.

The solution to the problem of interest is pursued via the use of the following
Fourier transform pair:

b̂ (kx) =
∞∫

−∞
b (x) e−jkxxdx, (3a)

b (x) = 1

2π

∞∫

−∞
b̂ (kx) ejkxxdkx, (3b)

where b(x) is any field variable of interest and the hat indicates a transformed
quantity.
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The complex impedance in Eq. (1) can be expressed as an integral of the spectral
impedance weighted by a transformed aperture function [7]. It follows that:

z = 1

2π

∞∫

−∞
Ẑ (kx)

∣∣
∣Ŝ (kx)

∣∣
∣
2
dkx (4)

where Ẑ (kx) is the spectral impedance relating the transformed normal stress to the
transformed normal velocity. This quantity is expressed as:

Ẑ (kx) = − τ̂zz (kx, z)

v̂ (kx, z)

∣∣∣
∣
z=0

(5)

where τ̂zz (kx, z) and v̂ (kx, z) are the transformed normal stress and velocity,
respectively.

The S(x) is the real-valued aperture function for surface σ, and Ŝ (kx) is the
transformed aperture function. It is noted that expressions similar to Eq. (4) have
also been used for the classical fluid-loaded rectangular piston on a planar infinite
rigid baffle [13].

2.2 Aperture Functions

The transformed aperture functions in Eq. (4) act as wavenumber filters to the
spectral impedance associated with the two-layer medium. The filter characteristics
are a function of the aperture geometric parameters and the weighting function.
For the present study, the transformed aperture function is associated with the
region over which the normal stress on the piston is integrated. For the case of
a rigid piston on a planar infinite baffle acting on a linear acoustic fluid, a unit
weighting over the aperture is implied. This results in a discontinuous aperture
function and an associated discontinuous velocity boundary condition. The velocity
field in the viscoelastic solid is continuous and therefore requires a continuous
aperture function. Continuous aperture functions have been considered by Tjotta
and Tjotta [14] for the study of acoustic fields due a piston with non-uniform
velocity distribution. The piecewise linear aperture function used for the present
study provides the simplest transition in the small peripheral region, between a
uniform normal piston velocity and a rigid baffle. Additionally, for small δ, results
from the present study can be compared to classical baffled piston impedance
functions.
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It follows that the aperture function S(x) can be defined for the special case
of a piston of length L with a continuous weighting. This aperture function is
expressed as:

S (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1; |x| ≤ L
2(

1 + L
2δ

)
− x

δ
; L

2 ≤ x ≤
(

L
2 + δ

)

(
1 + L

2δ

)
+ x

δ
; −

(
L
2 + δ

)
≤ x ≤ −L

2

0; otherwise

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)

The parameter δ in Eq. (6) controls the width of the peripheral region of the
piston where the weighting function varies linearly from unity to zero. It is typical
that δ/L � 1 and is selected at δ/L = 0.02 for the present study. The transformed
aperture function is found by substituting Eq. (6) into Eq. (3a):

Ŝ (kx) = 2

δk2
x

{
cos

(
kxL

2

)
− cos

(
kxL

2
+ kxδ

)}
. (7)

The transformed aperture function for a rigid piston of length L is obtained from
Eq. (7) as a limiting case where δ → 0. It follows that:

Ŝ (kx) = L
sin (kxL/2)

kxL/2
. (8)

2.3 Impedance Expressions for the Pistons

The impedance of a piston acting on the two-layer medium is obtained by
substituting Eq. (7) into Eq. (4) resulting in the following:

z = 2

πδ2

∞∫

−∞
Ẑ (kx)

{cos (kxL/2) − cos (kxL/2 + kxδ)}2

k4
x

dkx (9)

The classical piston impedance expression is obtained from Eq. (9) as a limiting
case where δ → 0. It follows that:

z = L2

2π

∞∫

−∞
Ẑ (kx)

{
sin (kxL/2)

kxL/2

}2

dkx (10)
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Analytical solutions to the classical piston impedance functions associated with
an acoustic fluid, obtained using integral transform methods, can be found in
standard texts [2, 13].

2.4 Equations of Motion for the Viscoelastic Solid

The irrotational (φ) and rotational (ψ) displacement potentials for the viscoelastic
solid satisfy the following reduced wave equations:

∇2φ (x) + k2
dφ (x) = 0, (11)

∇2ψ (x) + k2
s ψ (x) = 0, (12)

where ∇2 is the Laplacian operator in the cartesian coordinate system with x = (x, z)
and the complex dilatational and shear wavenumbers are indicated by the subscripts.
The dilatation and shear wave speeds are defined in a standard manner using
complex Lamé coefficients, μ and λ to account for dissipation in the viscoelastic
medium. Substituting Eqs. (11) and (12) into Eq. (3a) results in the following set of
transformed equations for the displacement potentials:

∂2φ̂ (kx, z)

∂z2
+ γ2

dφ̂ (kx, z) = 0 (13)

∂2ψ̂ (kx, z)

∂z2 + γ2
s ψ̂ (kx, z) = 0 (14)

The solution to the above equations can be expressed as:

φ̂ (kx, z) = Â1 (kx) sin (γdz) + B̂1 (kx) cos (γdz) (15)

ψ̂ (kx, z) = Â2 (kx) sin (γsz) + B̂2 (kx) cos (γsz) (16)

The transformed displacements in the viscoelastic medium are found using
a standard approach [15] that involves expressing the displacements as a linear
combination of a scalar and vector potential. It follows that:

ûx (kx, z) = jkx

[
Â1 (kx) sin (γdz) + B̂1 (kx) cos (γdz)

]
−

γs

[
Â2 (kx) cos (γsz) − B̂2 (kx) sin (γsz)

] (17)
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ûz (kx, z) = γd

[
Â1 (kx) cos (γdz) − B̂1 (kx) sin (γdz)

]
+

jkx

[
Â2 (kx) sin (γsz) + B̂2 (kx) cos (γsz)

] (18)

The transformed stresses are now obtained using the standard linear constitutive
and strain–displacement relationships [15] for the plane strain problem of interest.
The final result is

τ̂zz (kx, z) = − (
λk2

d + 2μγ2
d

) [
Â1 (kx) sin (γdz) + B̂1 (kx) cos (γdz)

]
+

2jμkxγs

[
Â2 (kx) cos (γsz) − B̂2 (kx) sin (γsz)

] (19)

τ̂xz (kx, z) = 2jμkxγd

[
Â1 (kx) cos (γdz) − B̂1 (kx) sin (γdz)

]
−

μ
(
2γ2

s − k2
s

) [
Â2 (kx) sin (γsz) + B̂2 (kx) cos (γsz)

] (20)

2.5 Equations of Motion for the Fluid

The following development assumes an inviscid and irrotational acoustic fluid with
a homogeneous flow velocity, U. The pressure in the fluid with a bulk modulus of
λ0 = ρ0c0

2 and signed Mach number, M = U/c0, is obtained from the convected
wave equation:

(
1 − M2

) ∂2p (x)

∂x2 + ∂2p (x)

∂z2 − 2jMk0
∂p (x)

∂x
+ k2

0p (x) = 0 (21)

Substituting Eq. (21) into of Eq. (3a) results in the transformed convected wave
equation for the acoustic pressure in the fluid:

∂2p̂ (kx, z)

∂z2 +
[
(k0 − Mkx)

2 − k2
x

]
p̂ (kx, z) = 0 (22)

The solution to Eq. (22) is obtained by retaining only the outgoing waves (+z
direction). It follows that:

p̂ (kx, z) = Ĉ (kx) e−jkz(z−h) (23)

where the real part of the exponent in Eq. (23) is restricted to negative values. It
follows that:

kz =
{ [

(k0 − Mkx)
2 − k2

x

]1/2
, (k0 − Mkx)

2 ≥ k2
x

− j
[
k2

x − (k0 − Mkx)
2]1/2

, (k0 − Mkx)
2 < k2

x

(24)
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The z-component of transformed displacements in the fluid can be obtained from
the following expression:

ûf
z (kx, z) = −jkzĈ (kx)

λ0(k0 − Mkx)
2

e−jkz(z−h) (25)

where the superscript f is used to denote a variable in the fluid volume Vf. The stress
tensor for the acoustic fluid is diagonal and the transformed stresses and pressure
can, respectively, be expressed as:

τ̂f
zz (kx, z) = −p̂ (kx, z) (26)

2.6 Coupled Equations

A coupled system of linear equations for the unknown constants can now be
obtained by imposing boundary conditions on the viscoelastic solid at z = 0 and
requiring compatibility of the stresses and displacements in the viscoelastic solid
and fluid on the interface at z = h.

The transformed boundary conditions on z = 0 include zero transverse displace-
ment and an imposed velocity distribution. It follows from Eqs. (17) and (18) that
these boundary conditions are expressed as:

ûx (kx, z)
∣∣
z=0 = 0 (27)

jωûz (kx, z)
∣∣
z=0 = v̂ (kx, z)

∣∣
z=0 (28)

where v̂ (kx, z) is the transformed normal velocity. For the case of a piston acting
directly on the fluid, the spectral impedance is obtained by substituting Eqs. (25)
and (26) into Eq. (5) resulting in:

Ẑf (kx) = ρ0c0

(
1 − M

kx

k0

)2

/

√(
1 − M

kx

k0

)2

−
(

kx

k0

)2

(29)

The transformed compatibility conditions on z = h can be expressed as

ûf
z (kx, z)

∣
∣∣
z=h

= ûz (kx, z)
∣∣
z=h (30)
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−jωûf
z (kx, z)

∣∣∣
z=h

Ẑf (kx) = τ̂zz (kx, z)
∣∣
z=h (31)

τ̂xz (kx, z)
∣∣
z=h = 0 (32)

The unknown Ĉ (kx) in Eq. (26) can be expressed as a function of Â1 (kx),
B̂1 (kx), Â2 (kx), and B̂2 (kx) by substituting Eqs. (18) and (25) into Eq. (30) and
simplifying. Substituting Eqs. (17)–(20), and (30) into Eqs. (27), (28), (31), and
(32) and simplifying results in the following set of linear equations for the complex
unknowns:

⎡

⎢⎢
⎣

t11 0 0 t14

t21 t22 t23 t24

0 t32 t33 0
t41 t42 t43 t44

⎤

⎥⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Â1 (kx)

B̂1 (kx)

Â2 (kx)

B̂2 (kx)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

v̂ (kx)

0
0
0

⎫
⎪⎪⎬

⎪⎪⎭
(33)

where the tij are given in Appendix 1. The determinant of the coefficient matrix in
Eq. (34) can be expressed as:

|�| = [t21t14 − t24t11] [t43t32 − t42t33] + [t23t32 − t22t33] [t44t11 − t41t14] (34)

The solution to Eq. (34) is obtained in closed form using standard methods. After
some simplification, the transformed impedance in Eq. (5) can be expressed as:

Ẑ (kx) = ρω2γs

[
t24t41 − t21t44

|�|
]

(35)

The expression for impedance can now be found by substituting Eq. (35) into Eq.
(9) with the following final result:

z = 2ρω2

πδ2

∞∫

−∞
γs

[
t24t41 − t21t44

|�|
] {cos (kxL/2) − cos (kxL/2 + kxδ)}2

k4
x

dkx (36)

The author is not aware of suitable closed form analytical or approximate
methods for the general solution of Eq. (36). For the present study, the integral
in Eq. (36) is solved using direct numerical integration.
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3 Numerical Results and Discussion

Numerical results are presented in this section for the impedance of a piston acting
on a viscoelastic solid that is under an inviscid homogeneous flow as shown in
Fig. 1. Mechanical, physical, and geometric properties of the fluid and viscoelastic
solid are listed in Table 1. The solid properties are representative of a typical
polyurethane encapsulation material (CONAP EN-7 at 20 ◦C and 50 kHz). The fre-
quency dependence of the viscoelastic solid mechanical properties is not accounted
for in the present study. It is common for encapsulation materials to be chosen based
on matching the plane dilatational wave characteristic impedance with the fluid.
The ratio of characteristic plane wave impedances for the two layers is expressed as
Rm = |ρcd/ρ0c0|. For the present study, this ratio is calculated using the properties
given in Table 1 as Rm = 1.143.

The spectral impedance of the moving fluid medium is presented first, followed
by the spectral impedance of the two-layer medium including flow. Results for the
impedance of a piston acting directly on a moving homogeneous medium are then
presented and compared with the analytical solution. Next, results for the impedance
of a piston on a two-layer medium with inviscid homogeneous flow are presented
and discussed.

3.1 Spectral Impedance

The real and imaginary components of the normalized fluid spectral impedance are
obtained from Eq. (29) and shown in Figs. 2 and 3, respectively, as a function of
the normalized wavenumber. The region of acoustic radiation occurs at normalized
wavenumbers from 1/(M−1) to 1/(M+1). Within this region, the fluid spectral
impedance is real as indicated in Fig. 2. Outside this range, the spectral impedance
is imaginary and positive indicating a mass-type reactance as shown in Fig. 3. The
reactive spectral impedance of the moving medium has a zero that occurs for waves
propagating in a direction opposite to the flow and at a normalized wavenumber of
1/M. The reactive impedance for large wavenumber and M = 0 decreases as 1/kx.
This is in contrast to the moving medium where the reactive impedance increases
linearly with wavenumber.

Table 1 Material properties Property Value

ρ0 1000 kg/m3

c0 1500 m/s
ρ 1050 kg/m3

λ 2.44×109 N/m2

μ 1.80×108(1+j0.150) N/m2

L 0.005 m
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Fig. 2 Normalized real component of the fluid spectral impedance

Fig. 3 Normalized imaginary component of the fluid spectral impedance
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Fig. 4 Normalized spectral impedance magnitude for h/L = 0.2 and k0L = 0.5 resistance

The magnitude of the normalized spectral impedance for the two-layer medium,
obtained from Eq. (35) at a normalized frequency of k0L = 0.5, is shown in Fig. 4.
The spectral impedance at low and intermediate wavenumbers exhibits a strong
Mach number dependence. In particular, the nulls are shifted in both amplitude and
wavenumber. The local maxima occurs near the shifted acoustic wavenumbers at
1/(M−1) and 1/(M+1). In the high wavenumber region it is evident that the spectral
impedances all asymptotically approach the value of a viscoelastic half-space. This
asymptotic behavior is a result of the viscoelastic solid containing only evanescent
waves when kx > kd and kx > ks. Furthermore, the spectral impedance increases
linearly with kx in the high wavenumber region. This behavior is important when
considering the convergence of the integral in Eqs. (9) and (36).

3.2 Impedance of Piston Acting Directly on Moving Medium

The radiation impedance of a piston acting directly on a moving medium is shown
in Fig. 5. This result is a special case where Eq. (10) is solved using direct numerical
integration with the fluid spectral impedance obtained from Eq. (29). The numerical
results are noted to be in excellent agreement with the analytical solution [10] for
the real component of the impedance. As the Mach number is increased, the peak
in the radiation resistance is shifted to lower frequencies. It is further noted that
the imaginary component of radiation impedance obtained from Eq. (10) does not
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Fig. 5 Radiation resistance of piston acting directly on a moving medium. Direct numerical
integration (lines) and analytical solution [10] (symbols)

converge for M > 0 as a result of the integration kernel rolling off as 1/kx. This
can be attributed to the boundary condition on the flow above the piston and rigid
baffle that results in a Dirac delta functions at x = ±L/2. As a result of the flow, the
upstream edge gives rise to a line source and the downstream edge gives rise to a
line sink.

3.3 Impedance of Piston on a Two-Layer Medium
with Homogeneous Flow

Real and imaginary components of the piston impedance with viscoelastic layer
thickness h/L = 0.2 and aperture function parameter δ/L = 0.02 for various Mach
numbers are shown in Figs. 6 and 7, respectively. Also shown are classical results
for the case with M = 0 and h/L = 0 which corresponds to the case of a piston
acting directly on a non-moving fluid. From these results it is clearly evident that the
moving fluid medium significantly influences the resistive and reactive components
of the impedance at the lower frequencies. In particular, the results show that the low
frequency reactive impedance shifts from negative (mass-like) to positive (spring-
like) as the Mach number is increased. Additionally, the M = 0.5 case exhibits
a significant deviation from the lower flow velocities. The low frequency reactive
impedance at M = 0 is due to the shear stiffness of the viscoelastic medium and the
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Fig. 6 Normalized resistance of a piston with h/L = 0.2 and δ/L = 0.02

Fig. 7 Normalized reactance of a piston with h/L = 0.2 and δ/L = 0.02
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Fig. 8 Normalized resistance of a piston with h/L = 0.5 and δ/L = 0.02

resistance is due to the associated shear loss factor. This also occurs for the case of
a moving medium, but is limited to the lower Mach numbers. The high frequency
results approach but are not equal to the classical piston. The differences being due
to the complex shear modulus and loss factor associated with the viscoelastic layer.

A similar set of results for the case with h/L = 0.5 and aperture function
parameter δ/L = 0.02 for various Mach numbers are shown in Figs. 8 and 9. In
a qualitative sense, these results exhibit a behavior similar to the h/L = 0.2 results.
The increase in layer thickness results in the first peak in the resistance to occur at a
lower frequency. This is clearly evident in Figs. 10 and 11 that exhibit the influence
of layer thickness at M = 0.5. It is also clear that the low frequency shifting from a
stiffness reactance to a mass reactance is a function of both the layer thickness and
flow velocity, but does not occur for a zero flow velocity.

Collectively, the results presented in this section illustrate the significant influ-
ence of both flow velocity and viscoelastic layer thickness on the resistance and
reactance of a baffled piston. These results are of relevance to both the transmission
and reception of acoustic waves in a moving medium. The design of electro-acoustic
transduction systems requires accurate estimates of the piston radiation impedance.
From a sound transmission perspective, the large variations in impedance would
influence impedance matching and the typical goal of maximum acoustic power
transfer from piston to the moving fluid medium. This effect is clearly evident in
Figs. 6–11 which exhibits a strong dependence of impedance on frequency, Mach
number, and layer thickness. When acting as part of an acoustic receiver system, it is
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Fig. 9 Normalized reactance of a piston with h/L = 0.5 and δ/L = 0.02

Fig. 10 Normalized resistance of a piston with M = 0.5 and δ/L = 0.02
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Fig. 11 Normalized reactance of a piston with M = 0.5 and δ/L = 0.02

clear from the asymmetry in wavenumber response shown in Fig. 4 that the upstream
and downstream response of any transducer would be significantly influence by the
Mach number in addition to layer thickness. Furthermore, the high wavenumber
(non-propagating) nulls shown in Fig. 4 may also have significance to the design of
devices and structures for self-noise suppression.

4 Summary

An approach to solve for the impedance of a piston in a rigid baffle acting on a
two-layer semi-infinite medium with flow has been developed. The basic approach
utilizes integral transform methods applied to the differential equations for the
displacement potentials in the viscoelastic solid and convected wave equation for
the fluid pressures. The general results are compared with limiting cases where
closed form solutions are available. The presented results clearly show that the
influence of Mach number and viscoelastic layer thickness on the resistive and
reactive components of the impedance is most dominant in the low-mid frequency
range. This basic approach can be readily extended to both circular and rectangular
pistons.

Acknowledgments This work was supported by funds from the In-house Laboratory Independent
Research Program at the Naval Undersea Warfare Center Division, Newport, Rhode Island.
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Appendix 1

Elements of the coefficient matrix in Eq. (34):

t11 = jωγd,

t12 = 0,

t13 = 0,

t14 = −ωkx,

t21 = − (
λk2

d + 2μγ2
d

)
sin (γdh) + jωγd

k0
Ẑf cos (γdh) ,

t22 = − (
λk2

d + 2μγ2
d

)
cos (γdh) − jωγd

k0
Ẑf sin (γdh) ,

t23 = 2μjkxγs cos (γsh) − ωkx
k0

Ẑf sin (γsh) ,

t24 = −2μjkxγs sin (γsh) − ωkx
k0

Ẑf cos (γsh) ,

t31 = 0,

t32 = jkx,

t33 = −γs,

t34 = 0,

t41 = 2μjkxγd cos (γdh) ,

t42 = −2μjkxγd sin (γdh) ,

t43 = μ
(
2γ2

s − k2
s

)
sin (γsh) ,

t44 = μ
(
2γ2

s − k2
s

)
cos (γsh) .
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Acoustics of a Mixed Porosity Felt Airfoil

Aren M. Hellum

1 Introduction

Lifting surfaces such as wings, hydrofoils, and propulsor blades produce noise in
operation. This noise has several potential sources, including stall, shed vortices,
and trailing edge scattering [1, 2]. Although the porous wings of owls have been
shown [3, 4] to reduce the noise produced in flight, it is not clear at present what
mechanisms are operating to produce this noise reduction. It is therefore worth
investigating the form of solution favored by owls, the “mixed porosity” wing, in
which some fraction of the lifting area is porous and the rest is impermeable.

The potential acoustic benefits of porous foils can be estimated from existing
literature. Geyer et al. [5] measured sound reduction of 5–15 dB for airfoils made
entirely of porous material. A 1973 patent awarded to Hayden and Chanaud [6]
describes measurements using a porous foil in air, finding an 8–18 dB improvement
over a reference solid foil. That patent also describes a number of mixed porosity
arrangements, but does not specify a preferred arrangement. The patent literature on
this topic is extensive [7–9], but typically lacks quantitative claims. The literature
also contains other sources pertaining to porous lifting surfaces which are concerned
primarily with cooling high-temperature turbine blades [10] or mitigating shock
waves [11, 12]. Theoretical work on a poroelastic boundary layer [13] found less
effect than the experimental works, finding a maximum improvement of 6 dB for a
rigid, porous edge and up to 12 dB for a poroelastic edge.
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Porous materials can be parameterized in several ways. The inviscid model
developed in [13] incorporates the bending wavenumber and density ratio between
the fluid and foil. This model indicated that the flexible trailing edge of an owl’s
wing was responsible for most of that animal’s ability to reduce trailing edge noise.
Hayden and Chanaud [6] use the specific acoustic impedance of the porous material
relative to the surrounding medium. The pressure drop of air through a unit thickness
of the material (resistivity) has also been used to describe the porous material
[5]. Resistivity is fluid- as well as material-dependent. Various “low-level” porous
material identifiers such as the nominal size of pores, fibers, and particles have also
been employed [14, 15]. These parameterizations are not readily comparable, so the
present work uses a strong-performing material from previous studies in order to
examine mixed porosity arrangements.

The lack of consensus regarding the parameterization of porous lifting surfaces
reflects a similar confusion about the mechanisms at work, but it is generally held
that porous materials weaken the “noise scattering” mechanism at the trailing edge.
As the boundary layer convects past the trailing edge, the pressure field goes from
being supported by the foil surface to being unsupported in the wake, “scattering”
half of its energy in the process [8]. The porous area fraction and porous material
parameters which can beneficially interact with the noise scattering mechanism are
not clear based on the present literature.

In this work, measurements taken for three porous area fractions are presented.
The test apparatus was designed to preserve the elastic qualities of the foil while
varying the porous area fraction, in order to isolate the effect of the latter variable.
The noise reduction produced by the fully porous arrangement is shown to match the
most applicable published data. The noise reduction produced by the mixed porosity
arrangement is found to be similar to the fully porous arrangement at low Reynolds
numbers over the frequency range measured. The noise reduction produced by the
mixed and fully porous foils does not match over the entire frequency range at higher
Reynolds numbers. These trends in noise reduction and possible explanations for the
effect are discussed.

2 Results

The present data were acquired in the 48′′ acoustic wind tunnel (Fig. 1a) at the
Naval Undersea Warfare Center in Newport, Rhode Island (NUWC). The test item
used was made of dense felt, laser cut into a NACA0012 airfoil shape with an
11.5′′ chord. The porous section’s 24′′ span was constructed from ¾′′ sections
(Fig. 1b). The alignment shafts were used to support the foil during the test. The
porous section is shown in 100% and 54% porous configurations in Fig. 1c, d. The
remainder of the 53′′ span is made of 3D printed ABS plastic (blue in Fig. 1a, c
and d); this span ensures that the airfoil tips are not in the flow. Additional details
regarding the setup, data acquisition, and processing are provided in Sect. 5.
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Fig. 1 (a) Installed test item in the 0% porous area configuration. The full-chord fairing is the
central black section. The four-element microphone array is at right. A spandex cover (white)
which was stretched over the length of the test item during all tests has been removed and is at the
bottom of the foil. (b) Felt section during construction; alignment shafts are at right of image. (c)
Test item in 100% porous area fraction configuration during construction. The darker color at right
is unremoved char layer (Sect. 5). (d) Test item in 54% porous area fraction configuration. The
porous trailing edge is outlined
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The unscaled spectrum associated with each porous area fraction is shown in
Fig. 2 over a range of Reynolds numbers. These data were taken over the range
U∞ = 18.4–30.5 m/s. The chord Reynolds number U∞Lc/ν is indicated in each plot
to indicate the tunnel speed. The elevated noise produced by the 100% porous foil at
high frequencies has been noted in previous studies; this phenomenon is investigated
further in Sect. 3.

These data also indicate that—as expected—the frequency and amplitude of the
sound produced by the foils are functions of the free-stream velocity. A scaled and
unscaled version of the baseline (0% porosity) curves is shown in Fig. 3a, where the
relationships [16]

SPLscaled = SPL − 10log10U
5∞ dB, Std = f (0.12c)

U∞

are used to scale the ordinate [16] and abscissa, respectively. The latter scaling is
a Strouhal number based on the maximum thickness of the foil where the constant
0.12 reflects the thickness to chord ratio of the foil shape being tested (NACA0012).

This scaling scheme is a simplification of that used in [1], in which the
trailing-edge boundary layer thickness is used as the characteristic length. A purely
geometric scheme was preferred for the present work because of the significant
difference between the trailing edge boundary layers developed over solid and foils
(Fig. 3b).

The noise reduction produced by a porous arrangement is defined as

Noise reduction = SPLporous − SPLnonporous

The noise reduction for each foil is shown in Fig. 4. The noise reduction of the
100% porous foil (Fig. 4a) demonstrates a weak trend in Reynolds number whereby
the peak noise reduction moves from Std ≈ 6 to Std ≈ 4.5 as the speed increases.
Each tested speed reduces noise by at least 9 dB over at least one-third octave band,
with higher values of noise reduction at higher speeds. The trend for the 54% porous
foil (Fig. 4b) is cleaner. Noise reduction is largest at the lowest speeds and decreases
to a minimum near Rec ≈ 5 × 105 before rebounding slightly. It is possible that if
each foil were tested at higher speeds, this rebound would continue, but this could
not be tested because of speed limitations imposed by the foil construction (Sect. 5).

An alternate view of the noise reduction produced by each porous arrangement
is provided in Fig. 5, in which the two arrangements are compared directly. It
is interesting that at the lowest Reynolds numbers, the noise reduction of the
54% porous foil essentially tracks that of the 100% porous foil over the entire
frequency range. At higher speeds, the two porous arrangements clearly diverge.
This transition is investigated further in Sect. 3.
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Fig. 2 Measured spectra for 0% porous foil, 54% porous foil, and 100% porous foil
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Fig. 3 (a) Comparison of scaled and unscaled coordinates, 0% porous baseline foil. Left axes:
Scaled sound pressure levels vs. thickness-based Strouhal number Std . Right axes: Unscaled sound
pressure levels vs. frequency, in kHz. (b) Wake at 3.2 mm downstream of trailing edge, obtained via
hotwire anemometry. These surveys were acquired behind 100% porous and 0% porous sections
at the highest and lowest Rec used in the present test. Further details of this survey are provided in
Sect. 5

3 Discussion

3.1 Comparison with Published Results

The present data are compared with the previously published data of Geyer et al.
[5] and Herr et al. [14] in Fig. 6. These studies employed a similar wool felt in
their material survey. Relevant parameters of each study are provided in Table 1.
The published studies tested multiple porous materials at multiple speeds; only the
combination being compared is listed. The published works used a separate rigid
airfoil or insert as an impermeable baseline while the present data covered the felt
foil with a thin plastic membrane to approximately preserve the elastic qualities of
the foil.

The similarity between the two 100% porous curves is striking in light of the
differences in apparatus employed in the present and the Geyer et al. studies.
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Fig. 4 Noise reduction produced by porous foils relative to non-porous foil. (a) 100% porous area
fraction. (b) 54% porous area fraction

Because the present study used a non-rigid impermeable baseline, this similarity
indicates that the elasticity of the foil is a secondary factor contributing to noise
reduction [13]. The noise reduction measured for the 54% porous foil is more similar
to that measured by Herr at 10% porous area fraction than it is to the 100% porous
foil from the present study. The fact that the partially porous foils show similar levels
of noise reduction at very different porous area fractions is interesting, and a refined
version of the present study is planned to investigate this further.
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Fig. 5 Noise reduction
produced by each porous
arrangement at all tested Rec.
The height of the shaded
region indicates 0 to +9 dB
of noise reduction for each set
of curves

3.2 Elevated High-Frequency Noise, Physical Model

Each study indicates that increased noise is produced by porous foils at high
frequencies; data reflecting this do not appear in Geyer’s figures but it is indicated in
that work’s text. One theory proposed to explain this phenomenon [5, 14] attributes
this elevated noise to the difference in surface roughness between the porous and
reference surfaces. This explanation is unsatisfactory based on the present study,
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Fig. 6 Noise reduction data from the present study, Geyer et al. [5], and Herr et al. [14]. Present
data were collected at Rec = 5.94 × 105. The percentage indicates porous area fraction and the
length measurement indicates the pore size

Table 1 Relevant parameters of the present study and published porous airfoil studies using
similar materials

Study
Porous
material Shape

Thickness
(mm)

Area
fraction Rec Array

Present Dense
felt

NACA0012 35 100%,
54%

5.9 × 105 Line, 4
element

Geyer [5] Dense
felt

SD7003 20 100% 1.0 × 106 Planar, 56
element

Herr [14] Sintered
fiber felt

“DLR-F16
model”

37 10% 1.3 × 106 Planar, 96
element

wherein a fabric cover was placed over the foil to preserve the surface roughness
between porosity conditions (Sect. 5).

Because the elasticity and the surface roughness of the foil was conserved
between porous and non-porous runs, the following argument based on percolation
through the porous medium is proposed. The pressure field characteristic of a fluid
convecting past a non-porous surface is fully supported by the surface. This is
commonly described in terms of “image” vortices mirroring the flow field inside the
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Fig. 7 Scanning electron
microscope image of wool
felt used in the present study

solid wall [17]. It is this pressure support which is scattered acoustically, leading
to the amplification of sound at the trailing edge [18, 19]. In contrast, pressure
variations near a porous surface induce flows within the medium which percolate
through the porous surface. These percolating flows are subjected to breakup by the
porous medium, producing high frequency sound.

Features of the porous medium and the boundary layer can be used to compute
a characteristic frequency of this high frequency sound. At Rec = 5.94 × 105,
flat-plate turbulent boundary layer relationships [20] indicate a wall shear stress
of τw = 2.16 Pa at the trailing edge. This yields a friction velocity uτ = √

τw/ρ =
1.34 m/s, which characterizes the velocities in the viscous sublayer region of the
boundary layer, nearest the foil’s surface. Per Fig. 7 and similar work in [14],
we choose a nominal length scale for the pores to be �pore ≈ 100 μm. These
scales yield a characteristic percolation frequency fperc = uτ �pore = 13.4 kHz, or
Std = 15.4 at Rec = 5.94 × 105. This is a reasonable order-of-magnitude estimate
of the frequency at which the porous foil begins to produce increased noise, visible
in Figs. 4 and 6.

3.3 Noise Reduction Trend with Reynolds Number

The noise-reducing qualities of the 100% porous and 54% porous foils do not react
the same way to increasing Reynolds number. This is demonstrated clearly in Figs.
4 and 5. The Reynolds number range used in this study indicates the possible role
of turbulent transition [21]. Arguing against this hypothesis is that some care was
taken to trip the flow (Sect. 5), and tufting was performed which indicated that the
foil was not experiencing laminar separation [22]. It may be that despite the scaling
relevance of trailing edge flow scales on acoustics [1], leading edge porosity is more
important to the development of a “quiet” boundary layer. A refined version of the
present study is planned to investigate this point.
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4 Concluding Remarks

The present data indicate that a foil with 100% porous chord fraction is capable of
reducing noise over a significant band of frequencies over the tested velocity range.
The same foil, faired to produce a 54% porous chord fraction, performs similarly at
low speeds, but is less effective at higher Reynolds numbers.

When the elasticity of the trailing edge is preserved between impermeable and
porous foils, substantial noise reduction is still realized, indicating that the role of
this property is likely to be secondary.

Increased high frequency noise is produced by porous foils despite the care
taken to preserve the boundary layer roughness. A plausible physical model for
this increased high frequency noise based on fluid percolation through the porous
medium is presented.

5 Methods

5.1 Data Acquisition and Processing

A line array of four Bruel and Kjaer microphones (Fig. 1a) was used to acquire the
acoustic data at 60 kHz over 30 s. Spacing between the microphones was 2′′(5.1 cm).
This line array was affixed parallel to the trailing edge. The array was placed as close
as possible to the trailing edge in the chord-normal direction without obstructing the
developing shear layer produced by the jet. This distance is just over 24′′ (61 cm).
The center of this array corresponded with the center of the porous span of the foil.
No beamforming was used to separate the noise produced by the porous sections of
the span from that produced by the impermeable sections.

A background noise file was acquired at the beginning and end of each data
session with the wind tunnel turned off. The average of these background spectra
was subtracted from each data file. The spectra were produced using MATLAB’s
pwelch (Power Spectral Density, Welch’s method) routine. The averaging window
was a 512 point Hanning window with 50% overlap. The spectral data presented
here have been averaged over one-third octave bands, with fctr = 1 kHz.

5.2 Foil Construction

The 11.5′′ chord foil cross sections were produced using a laser cutter. Each
spanwise slice is ¾′′ thick. The cutting procedure produces a burned layer on the
surface of the foil which is removed by sanding. This dark, burned layer covers
the surface of each foil slice in Fig. 1b and is shown partially removed in Fig. 1c,
where the darker section on the far right side of the porous section is unremoved
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in the latter image. The thickness of the felt trailing edge could not be built to the
specified fineness of the NACA0012 shape following the laser cutting and sanding
procedures. A thickness of ≈1 mm with some spanwise variation was measured,
comparable to that obtained in prior studies [5].

A Kevlar thread was passed through the felt cross-sections 1′′ upstream of the
trailing edge. It was affixed to a tension-producing windlass, for the purpose of
strengthening the trailing edge at high angles of attack. Figure 1b shows this thread
being put in place during the construction of the porous section. No additional
strength was found to be necessary during trials and the thread was removed prior
to data collection.

A Spandex cover was placed over the faired foil in order to preserve the surface
roughness between tests. This cover is the white fabric at the bottom of the span in
Fig. 1a, having been removed to show the faired section of span. The seam of this
cover was placed at the leading edge of the foil to introduce a mild corrugation
at the leading edge. It was found that running with the cover in place removed
the aeroacoustic resonance that was apparent at some speeds. This is taken as an
indication that the boundary layer was sufficiently tripped at the trailing edge of the
foil. Originally, a Kevlar thread was stretched over the entire span of the foil just
ahead of the ¼-chord position as a trip. This was found to yield similar results, but
some combinations of flow speed and tension would produce a resonant buzz which
polluted the acoustic data. The maximum speeds used in the test were constrained
by the tendency of this cover to flap.

The fairing was made of thin polyethylene, black and clear in Fig. 1a, d,
respectively. After some experimentation, standard home garbage bags were found
to be sufficient for this purpose. In the 0% porous configuration, the fairing was
stretched taut around the foil. The free edge was secured with packing tape on the
side of the foil opposite from the microphone array. A heat gun was then used to
shrink the fairing around the foil to tighten it, with care taken not to create wrinkles
in the surface. At high speeds, the fairing has a tendency to “puff” slightly because of
aerodynamic loading, separating it from the felt surface. A stronger material would
reduce this tendency and may allow the test to be run at higher speeds. For the
present test, a thin fairing was selected in order to better preserve the elastic qualities
of the trailing edge.

In the 54% porous configuration, the free edges of the fairing could not be firmly
attached to the felt surface of the foil, so an alternate method was used. A seam was
created in the free edge of the fairing and a Kevlar thread was run through this seam.
This thread was placed under tension and secured. The heat gun was then used to
shrink the fairing as in the 0% porous case. This tensioning creates the curved rear
edge of the fairing which is visible in Fig. 1d. Stitches were then placed through the
Spandex cover, fairing, and airfoil with a tapestry needle to tack the Kevlar thread to
the surface. Three evenly spaced stitches in the spanwise direction were found to be
sufficient to keep the fairing from flapping. A fairing condition, once removed from
the foil, could not be reliably repeated. Because the foil elasticity was not found to
substantially affect the foil’s acoustics, an improved apparatus has been designed
for future tests.
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5.3 Hotwire Anemometry

Hotwire anemometry was used to conduct a survey of the wake immediately behind
the solid and porous sections of the foil’s span, at a distance of 3.2 mm. The direction
of survey was in the chord-normal direction, taken with a spacing of 1 mm. A point
was also acquired at a distance of 100 mm from the chord to measure the free-stream
velocity. Each data point is an average of 5 s of data acquired at 1 kHz. The survey
was conducted using a single-wire DANTEC probe, with its axis oriented parallel
to the trailing edge. Use of this probe means that the velocity being measured is a
combination of the streamwise (u) and chord-normal components (v) of velocity,
yielding the “cooling velocity” Q = √

u2 + v2.
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Generalizing the Butterfly Structure
of the FFT

John Polcari

1 Introduction

The structure of the various forms of the fast Fourier transform (FFT) is typically
described in terms of “butterfly” patterns [1], each involving only an individual pair
of inputs or intermediate results. Here, the structure underlying the FFT is found to
hold in a more general context applicable to any arbitrary radix-2 (i.e., 2N × 2N)
complex unitary matrix. This is accomplished by identifying a decomposition of the
matrix that leads to an equivalent generalized butterfly structure for which the FFT
is then a special case. This procedure, known as multi-layer decomposition (MLD),
effectively defines the underlying set of 2 × 2 complex Givens rotation matrices
(each defined by a rotation angle and a separate phase angle) necessary to construct
the original matrix. It is then possible to interpret each individual Givens rotation
as a butterfly, permitting direct translation into the generalized butterfly structure
shown in Fig. 1.

The critical mathematical insight leading to the generalized butterfly structure
is that a radix-2 unitary matrix can always be factored using singular value
decomposition (SVD) into a form where the central component takes the form of
a layer of 2N − 1 complex Givens rotations, while the left and right components
are a total of four half size unitary matrices. In the process, the close conceptual
relationship between MLD and SVD techniques is exposed. Recursive use of the
same factorization on the components then ultimately results in Fig. 1.
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Fig. 1 Flow graph of fully decomposed eight element unitary transformation

Following some preliminary developments on standardized complex Givens
rotations in Sect. 2, the central layer factorization is developed in Sect. 3. Section 4
then extends this procedure to provide the full MLD, while Sect. 5 provides details
of the available MLD MATLAB code set. These sections are intended to provide
an orderly introduction to MLD techniques; the reader is referred to [2] for a fully
rigorous mathematical development of the approach.

While the flow graph in Fig. 1 is not inherently “fast” (effectively requiring the
same operation count as required by a brute force matrix multiply), it is modestly
more memory efficient, requiring storage of only one half the number of real values
otherwise required. In addition, the composite matrix is always guaranteed to be
unitary for any choice of rotation and phase parameters. Section 6 investigates the
numerical symmetries that permit the generalized butterfly structure to collapse into
the computationally efficient FFT.

Currently, MLD is more of a mathematical curiosity than a mainstream compu-
tational technique, and one that is not really even particularly widely recognized.
A primary motivation for this chapter is to increase exposure to this elegant set
of computational mathematics, in the belief that it may provide a key to a range of
future advanced applications. In the summary found in Sect. 7, a number of different
possible directions for future investigation and application are highlighted. Some of
the proposed uses include:

• Design of “fast” approximate transformations, including speed/accuracy trade-
offs.

• Re-orthogonalization of discretely sampled forms of continuous unitary func-
tions.
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• Synthetic unitary matrix multiplication and manipulation.
• Decimation-based approaches to SVD computation.

The analysis in this development is cast strictly in terms of radix-2 matrices, with
the implication that other size matrices would be augmented by identity extension
to fill them out to the required size. While the author conjectures that equivalent
results for other choices of radix exist (as known to exist for the FFT), no effort is
made here to explore that particular issue.

2 The Standardized Complex Givens Rotation

We begin by considering the required form of a 2 × 2 complex unitary matrix,
as doing so exposes the standardized complex Givens rotation that is the essential
building block encountered throughout this paper. Any arbitrary 2 × 2 unitary
matrix may be written as

U =
[ |a| ejψa |b| ejϕb

|c| ejϕc |d| ejψd

]
. (1)

However, it is useful to rewrite this in a phase normalized form by factoring out the
phases of the main diagonal terms, so that

U =
[ |a| ejψa |b| ejϕb

|c| ejϕc |d| ejψd

]
=
[ |a| |b| ej(ϕb−ψd)

|c| ej(ϕc−ψa) |d|
] [

ejψa 0
0 ejψd

]
. (2)

The properties of a unitary matrix [3] then produce the scalar equation sets

U U
+ = I ⇒

⎧
⎪⎪⎨

⎪⎪⎩

|a|2 + |b|2 = 1
|a| |c| e−j(ϕc−ψa) + |b| |d| ej(ϕb−ψd) = 0
|a| |c| ej(ϕc−ψa) + |b| |d| e−j(ϕb−ψd) = 0

|c|2 + |d|2 = 1

(3)

and

U
+

U = I ⇒

⎧
⎪⎪⎨

⎪⎪⎩

|a|2 + |c|2 = 1
|a| |b| ej(ϕb−ψd) + |c| |d| e−j(ϕc−ψa) = 0
|a| |b| e−j(ϕb−ψd) + |c| |d| ej(ϕc−ψa) = 0

|b|2 + |d|2 = 1

(4)
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which, in turn, easily reduce to the amplitude requirement that

|a| = |d| = cos θ and |b| = |c| = sin θ (5)

and the phase requirement that

ej(ϕb−ψd) + e−j(ϕc−ψa) = 0 ⇒ ϕc − ψa = φ and ϕb − ψd = π − φ. (6)

As a result, any 2 × 2 phase normalized unitary matrix must take the form

� (θ, φ) =
[

cos θ −e−jφ sin θ

ejφ sin θ cos θ

]
. (7)

This matrix form may be interpreted as the complex extension of a 2 × 2 Givens
rotation, the original real form of which is defined in [4]. Interpreted as a flow graph,
it takes on the basic butterfly structure shown in Fig. 2.

Note that this differs in some details from the typical butterfly encountered in
the flow graph associated with most FFTs; for example, the operation represented
in Fig. 3 (reproduced from ([1], Fig. 6.6)), may be written as

B =
[

1 1
1 −1

]
= � (π/4, 0)

(√
2

[
1 0
0 −1

])
. (8)

Fig. 2 Flow graph of
individual complex Givens
rotation butterfly

Fig. 3 Flow graph of a
two-point fast Fourier
transform
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Hence, it may also be interpreted as a Givens rotation, but one cast in a form
that is de-normalized in both amplitude and phase. While this de-normalization
can certainly be useful in the absolute minimization of computational operations,
it adds more confusion than insight when considering the underlying computational
structure; hence, the standard butterfly structure is assumed to represent a standard
complex Givens rotation, with the understanding that subsequent de-normalization
is always possible should it lead to improved computational efficiency.

3 Unitary Matrix Central Layer Factorization

The critical mathematical insight leading to the generalized butterfly structure is that
a 2M × 2M unitary matrix can be factored into a form where the central component
takes the form of a layer of M standard complex Givens rotations, while the left
and right components are a total of four smaller M × M unitary matrices. In this
section, a factorization of this type that applies to any arbitrary unitary matrix is
derived. Interestingly, the procedure used is a matrix dual of that used to identify
the essential Givens rotation structure in the previous section. In the process, the
intimate mathematical relationship between butterfly structures and the SVD is also
exposed.

Let U be a complex 2M × 2M unitary matrix, so that it possesses the property

U
+

U = U U
+ = I. (9)

For reference, the generalized rotation represented by the unitary matrix operator
X = U x may be expressed in terms of the flow graph representation shown in
Fig. 4.
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Fig. 4 Flow graph of arbitrary eight element unitary transformation
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To begin the factorization, define the block matrix form of U as

U =
[

UT L −UT R

UBL UBR

]
, (10)

where the minus sign in front of UT R is included for notational convenience. None
of the component blocks are unitary in and of themselves, but, since U is unitary,
both

[
UT L −UT R

UBL UBR

][
U

+
T L U

+
BL

− U
+
T R U

+
BR

]

=
[

I 0
0 I

]
⇒

UT LU
+
T L + UT RU

+
T R = I

UT LU
+
BL − UT RU

+
BR = 0

UBLU
+
T L − UBRU

+
T R = 0

UBLU
+
BL + UBRU

+
BR = I

(11)

and

[
U

+
T L U

+
BL

− U
+
T R U

+
BR

][
UT L −UT R

UBL UBR

]
=
[

I 0
0 I

]
⇒

U
+
T LUT L + U

+
BLUBL = I

U
+
BLUBR − U

+
T LUT R = 0

U
+
BRUBL − U

+
T RUT L = 0

U
+
T RUT R + U

+
BRUBR = I

(12)

must hold. Now consider the SVD of each block, which is (presciently) labeled as

UT L = YT �CZ
+
L UT R = YT R�T RZ

+
T R

UBL = YBL�BLZ
+
BL UBR = YB�BRZ

+
R.

(13)

Here the Yi and Zi are all M × M unitary singular vector matrices, while
the �i are M × M real non-negative diagonal singular value matrices. Replacing
the component blocks in the first equation of (11) by their respective SVD
representations yields

YT �
2
CY

+
T + YT R�

2
T RY

+
T R = I ⇒ �

2
C + Y

+
T YT R�

2
T RY

+
T RYT = I. (14)

As both �
2
C and I are diagonal, the second result in (14) requires that

Y
+
T YT R = �T ⇒ YT R = YT �T , (15)

where �T is necessarily diagonal. Further, since both YT and YT R are unitary, �T

must also be unitary, it must then take on the form of an M × M diagonal matrix
with unit magnitude complex phasors arrayed down the diagonal, that is
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�T =
⎡

⎢
⎣

ejφT 0 · · · 0
...

. . .
...

0 · · · ejφT (M−1)

⎤

⎥
⎦ . (16)

As a consequence, (14) then reduces to

�
2
C + �

2
T R = I. (17)

Repeating this analysis on the last equation in (11) and the first and last equations
in (12) leads to the requirements that

YT R = YT �T ZBL = ZL�L

YBL = YB�B ZT R = ZR�R

(18)

and

�
2
C + �

2
T R = I

�
2
BL + �

2
BR = I

�
2
C + �

2
BL = I

�
2
T R + �

2
BR = I

, (19)

which, since all the various singular values are non-negative, further implies that

�BR = �C and �T R = �BL = �S with �
2
C + �

2
S = I. (20)

Note that the final result in (20) requires all the singular values in both �C and
�S to not exceed unity, and, assuming that the singular values in �C are arranged
in the conventional order of decreasing magnitude, those in �S must be arranged in
the opposite order of increasing magnitude.

Define the additional diagonal phase matrices

� = �B�
+
L and �T R = �T �

+
R ; (21)

as the various diagonal matrices all commute, the set of block SVDs then reduce to

UT L = YT �CZ
+
L UT R = YT �S�T RZ

+
R

UBL = YB�S� Z
+
L UBR = YB�CZ

+
R.

(22)

Substituting these results into the second equation in (11) yields1

YT �C�
+
�SY

+
B − YT �S�T R�CY

+
B = 0 ⇒ �T R = �

+
, (23)

1The other three middle equations in (11) and (12) lead to results that duplicate those of (23).
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Then the original unitary matrix may be written in factored form as

U=
[

YT �CZ
+
L −YT �S�

+
Z

+
R

YB�S� Z
+
L YB�CZ

+
R

]

=
[

YT 0
0 YB

][
�C −�S�

+

�S� �C

][
ZL 0
0 ZR

]+
,

(24)

and the desired factorization has been achieved.
Now consider the required form of the central component matrix. As mentioned

previously, none of the singular values in either �C or �S can exceed unity; it is
then convenient to parameterize �C in terms of the angle set

�C =
⎡

⎢
⎣

cos θ0 · · · 0
...

. . .
...

0 · · · cos θM−1

⎤

⎥
⎦ ⇒ �S =

⎡

⎢
⎣

sin θ0 · · · 0
...

. . .
...

0 · · · sin θM−1

⎤

⎥
⎦ . (25)

As a result
[

�C −�S�
+

�S� �C

]

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

cos θ0 · · · 0 −e−jφ0 sin θ0 · · · 0
...

. . .
...

...
. . .

...

0 · · · cos θM−1 0 · · · −e−jφM−1 sin θM−1

ejφ0 sin θ0 · · · 0 cos θ0 · · · 0
...

. . .
...

...
. . .

...

0 · · · ejφM−1 sin θM−1 0 · · · cos θM−1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

(26)

and extracting the row/column pair (i, M + i) yields the standard form of a 2 × 2
complex Givens rotation matrix

� (θi, φi) =
[

cos θi −e−jφi sin θi

ejφi sin θi cos θi

]
. (27)

Expressing these results in the vernacular of a flow graph, the computational
operator has been converted from the full unitary matrix shown in Fig. 4 to the
hybrid structure shown in Fig. 5, where the center layer is now constructed of M
parallel individual butterfly operations from Fig. 2.
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Fig. 5 Flow graph of single layer decomposed eight element unitary transformation

4 Full Unitary Matrix Decomposition

Extending these results to provide a complete butterfly representation of any radix-2
unitary matrix is quite simple; the above factorization is now recursively employed
to expose the central layers of each of the four unitary matrices comprising the left
and right components, as shown in Fig. 6.

This procedure may be continued until the unitary matrices are reduced to 2 × 2
size. Then, as previously shown in (2), each of these 2 × 2 matrices may be
represented as one more Givens rotation multiplied by a diagonal matrix consisting
of two residual complex phase scalars along the diagonal. It turns out that all the
phase residuals can be collected into a single set of 2N phase adjustments that may
be implemented at any point in the flow graph. While formal proof of this result is
mathematically tedious (involving much cumbersome notation to precisely track the
associated phase accounting), the basic concept is quite simple. The realization that

[
ejψ0 0

0 ejψ1

]
� (θ, φ) = � (θ, φ + ψ1 − ψ0)

[
ejψ0 0

0 ejψ1

]
(28)

provides a method for propagating the phase residuals across the various flow graph
layers to the point of collection, where they may be accumulated into composite
phase adjustments. This leads to the generalized butterfly structure shown in Fig. 7,
where, by convention, the composite adjustments are located at the beginning of the
graph.
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Fig. 7 Flow graph of fully decomposed eight element unitary transformation

The fully generalized butterfly structure is comprised of this initial phase layer
followed by 2N − 1 butterfly layers, each made up of 2N − 1 Givens butterflies
operating in parallel. The stride of each layer (that is, the distance between the
elements connected by each individual butterfly) varies from layer to layer, in
keeping with the pattern

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, · · ·
1, 2, 1, 2N−1, 1, 2, 1, · · ·
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, (29)

A useful geometric interpretation of this result is that it defines the precise
sequence of individual planar coordinate rotations needed to implement the general
2N dimensional coordinate rotation defined by the unitary matrix. It may also be
considered the equivalent polar representation of a unitary matrix.
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Note that the butterfly structure for the conjugate transpose matrix may be found
simply by reversing the layer order and then negating each Givens rotation angle θ .
This places phase adjustment as the final rather than initial layer, but, if desired, it
can then be propagated back to the beginning by repeated use of (28).

A few comparisons of computational and storage efficiency are insightful. As
might be anticipated, the fully generalized butterfly structure is not inherently “fast.”
Each of the (2N − 1)2N − 1 butterflies requires two complex multiplies (for inner
branch scaling), two real-complex multiplies (for outer branch scaling), and two
complex adds (for output sums), or, equivalently, 12 real multiplies and 6 real adds.
In addition, each of the 2N initial phase adjustments requires 1 complex multiply, or,
equivalently, 4 real multiplies and 2 real adds. Hence, for the standard normalized
butterfly structure

Real Multiplies = 12
(
2N−1

) (
2N − 1

) + 4
(
2N

) = 22N+2 + 22N+1 − 2N+1

Real Adds = 6
(
2N−1

) (
2N − 1

) + 2
(
2N

) = 22N+1 + 22N − 2N

(30)

By comparison, brute force matrix-vector multiplication by the original complex
U matrix requires only 22N + 2 real multiplies but 22N + 2 − 2N + 1 real adds. By
amplitude de-normalization of the butterflies, the need for any outer branch scaling
can be eliminated, with the scaling effects then being combined with the phase
adjustments at no additional computational cost. This reduces real multiplication
count to precisely match that of the brute force approach, while retaining the modest
advantage in real addition count.

While the fully general butterfly structure provides at best marginal improve-
ments in computational efficiency, it does provide some efficiencies in memory
storage. The Givens rotation angles and phase angles together with the phase
adjustment angles provide a total of only 22N real values, compared to original
matrix, which requires storage of the same number of complex values (or twice
as many real values).

5 Practical Generalized Butterfly Decomposition Codes

A set of MATLAB routines implementing the MLD algorithm can be found in [5].
This code provides three functional capabilities:

• It decomposes an arbitrary unitary matrix into its component butterflies, returning
the 2N phase adjustments in the initial layer and the rotation/phase angle pair for
the 2N − 1 individual butterflies in each of the 2N − 1 layers of the flow graph;

• It recreates the matrix from the flow graph specification; and
• It applies the flow graph to any specified set of length 2N input column vectors.
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The code set is written to provide accuracy and robustness at the potential
expense of some computational speed. The critical practical issue involves the
details of creating a normalized SVD result. While standard SVD routines are well
designed in terms of their singular value outputs, their singular vector outputs are
typically not carefully normalized. The following example, drawn from the standard
MATLAB SVD routine, illustrates the point. For the arbitrarily chosen matrix

A =
[

3-2j 5 + 3j

1 + 5j 4 + j

]
,

the SVD routine returns an SVD of

UX�XV
+
X =

[
-0.726-0.158j -0.096-0.662j

-0.479-0.467j -0.299 + 0.681j

] [
7.998 0

0 5.102

] [
-0.585 0.811
-0.811 -0.585

]+
.

Now let T be the unitary matrix

T = 1√
2

[
1 1
1 −1

]
; (31)

if the SVD routine were carefully normalized, then the SVD of the product Y = T X
would be

UY �Y V
+
Y =

(
T UX

)
�XV

+
X ⇒

UY = T UX

�Y = �X

VY = VX

. (32)

However, in reality

UY =
[

0.852 + 0.442j −0.280 + 0.013j

0.175 − 0.218j 0.144 − 0.949j

]
with

T UX =
[ −0.852 − 0.442j −0.280 + 0.013j

− 0.175 + 0.218j 0.144 − 0.949j

]
,

while

VY =
[ −0.585 0.811

− 0.811 −0.585

]
with VX =

[
0.585 0.811
0.811 −0.585

]
.

If one is focused primarily upon the singular values, the differences in the above
results are essentially trivial; however, consistent singular vector normalization turns
out to be a centerpiece of designing a practical MLD algorithm. From a code
perspective, the implementation of such normalization turns out to be much more
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tedious than might be anticipated, adding significant notational load while shedding
little useful insight. Proper handling of normalization for zero or near-zero singular
values is particularly tedious. In the interest of brevity, this subject is not discussed
here in further detail; a full discussion of SVD ambiguities may be found in [6, Sect.
4] and the specifics of the normalization process in [2, Sects. 4, 5, and Appendix C].

Three principal routines are provided in the multi-layer decomposition (MLD)
package. Any radix-2 unitary matrix U may be decomposed by calling the routine

MLD = mld (U) .

Here, MLD is a MATLAB structure with three fields:

• R_N_L is the array of Givens rotation angles expressed in radians, one for each
of the butterflies in each layer.

• P_N_L is the array of complex Givens phase angles expressed in radians, again
one for each of the butterflies in each layer.

• Q_2N is the vector of initial complex phase adjustments expressed in radians,
one for each input element.

The matrix may by reconstructed from the MLD structure by calling the routine

U = assemblemld (MLD) .

Finally, the matrix may be applied to a set of length 2N input vectors using the
flow graph formulation by calling the routine

Xo2NM = applymld (Xi2NM, setupxmld (MLD)) .

Here, Xi_2N_M and Xo_2N_M are, respectively, the input and output vector
sets (the second dimension providing the option of multiple sets of vectors to be
evaluated in parallel), with the setup_xmld() utility expanding the MLD structure to
a form more convenient for the computation of the butterfly flow graph. The package
also contains several additional subsidiary routines, for a total of ten code files.

As typical for methods that preserve orthogonality, the error characteristics of the
MLD package are quite good. Table 1 provides the accuracies achieved in the matrix
reconstruction resulting from these routines for various sizes of randomly selected
unitary matrix.

Table 1 Accuracies
achieved in multi-layer
decomposition reconstruction

Matrix size Average relative accuracy

4 × 4 6.1 × 10−16

16 × 16 3.5 × 10−15

64 × 64 1.0 × 10−14

256 × 256 2.1 × 10−14

1024 × 1024 4.5 × 10−14
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6 Recovering the FFT

We now consider how the traditional FFT emerges from this more generalized form
of butterfly flow graph. In doing so, some important insights emerge regarding
symmetries that lead to more general forms of computationally fast transformation.
The FFT of length 2N is traditionally taken to be a particular computational
implementation of the analysis (time to frequency) discrete Fourier transform [1,
Eq. (3.4)]

X(k) =
2N−1∑

n=0

x(n)e−j
(
2πnk/2N

)
, (33)

where the two length 2N vectors x = [x(n)] and X = [X(k)] represent data series in
the time and frequency domains, respectively. The time domain results are assumed
to be arranged in the traditional bit-reversed order, so that, for an eight element FFT
(which is used here for illustration purposes), the time vector is defined as

xbr = [x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7)]T . (34)

To obtain a unitary matrix formulation, it is convenient to adopt a symmetric
form of normalization, so that both the FFT (analysis transform) and the inverse
FFT (synthesis transform) carry scaling factors of 1/2N/2. Then the eight element
analysis transform may be written in matrix-vector form as

X = FAxbr , (35)

where

FA = 1√
8

⎡

⎢
⎣

fA00 · · · fA07
...

. . .
...

fA70 · · · fA77

⎤

⎥
⎦ with fAkn = e−j2π(k br(n)/8). (36)

This matrix is necessarily unitary, as the equivalent synthesis transform is

x = FSXbr = F
+
AXbr , (37)

and recovery of the original temporal data then requires

FSFA = F
+
AFA = I. (38)

The use of MLD on this matrix leads to the Givens butterfly structure and initial
phase adjustments shown in Table 2. As is apparent, the Givens rotations associated
with all the butterflies in layers 3 and 5–7 reduce to identity matrices, so that those
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Table 2 Multi-layer decomposition butterfly parameters and initial phase adjustments for eight
element decimation-in-time FFT

Butterfly rotation angle θ (radians)

Layer 1 2 3 4 5 6 7
Butterfly 1 π /4 π /4 0 π /4 0 0 0
Butterfly 2 π /4 π /4 0 π /4 0 0 0
Butterfly 3 π /4 π /4 0 π /4 0 0 0
Butterfly 4 π /4 π /4 0 π /4 0 0 0
Butterfly phase angle φ (radians)

Layer 1 2 3 4 5 6 7
Butterfly 1 0 0 0 0 0 0 0
Butterfly 2 −π /2 0 0 0 0 0 0
Butterfly 3 −π /4 −π /2 0 0 0 0 0
Butterfly 4 −3π /4 −π /2 0 0 0 0 0
Initial phase adjustment ψ (radians)

Element 0 4 2 6 1 5 3 7
ψ 0 π π −π /2 π −π /4 −π /2 −π /4

layers effectively become simple pass-through operations. As a result, the flow
graph collapses to the traditional FFT butterfly pattern illustrated in Fig. 8. Note

that the 1/
√

8 =
(

1/
√

2
)3

scaling factor represents precisely the de-normalization

factor arising from each of the three layers of remaining butterflies.
Two observations regarding computational complexity reduction are germane.

First, the reduction of the Givens rotation angle to any multiple of π /2 converts
the butterfly to a pass-through or element-reversal operation. Similarly, reduction of
the Givens rotation angle to any odd multiple of π /4 converts the butterfly to a sum-
difference operation, with larger or smaller computational load reduction depending
upon the specific value of the associated phase angle.

A less obvious approach for reducing computational complexity involves iden-
tification of the particular symmetry characteristics of the FFT that permit layer
elimination. If the central layer in the unitary matrix consists of a set of matched
Given rotations (that is, all possessing identical rotation angles), (24) takes on the
form

U =
[

αYT Z
+
L −√

1 − α2YT �
+

Z
+
R√

1 − α2YB�Z
+
L αYBZ

+
R

]

=
[

YT Z
+
L 0

0 YBZ
+
R

][
αI −√

1 − α2ZL�
+

Z
+
R√

1 − α2ZR� Z
+
L αI

]

=
[

αI −√
1 − α2YT �

+
Y

+
B√

1 − α2YB� Y
+
T αI

][
ZLY

+
T 0

0 ZRY
+
B

]+
.

(39)

Then, if either
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Fig. 8 Collapsed flow graph of eight element decimation-in-time FFT

ZR� Z
+
L = �

′ ⇒ ZR = �
′
ZL�

+

or YB� Y
+
T = �

′ ⇒ YB = �
′
YT �

+
, (40)

the decomposition reduces to a degenerate one-sided form, and the butterflies
generated by the off-side unitary matrix in the general result all reduce to pass-
through operations. This is how the FFT transform first collapses layers 5–7 into
layers 1–3 and then subsequently collapses layer 3 into layer 1.

A more subtle technique for reducing computational complexity involves the
choice of input and output order. While it is difficult to identify any general
methodology for making such a choice, judicious choice of input and/or output
ordering significantly impacts the structure of associated butterfly flow graph. This
is evidenced by the fact that bit reversing the order of either the inputs or the outputs
in the FFT provides a fast transformation, while either eliminating the bit reversal or
bit reversing both inputs and outputs eliminates the symmetries necessary to permit
collapse of the flow graph.

7 Summary

Currently, MLD is more of a mathematical curiosity than a mainstream computa-
tional technique. However, the author believes that it may provide a key to a range
of future advanced applications. Some of these future possibilities are considered
here.
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MLD provides a concise method for representing a unitary matrix in terms of its
underlying independent parameters. This can be extremely useful when dealing with
the effects of unitary matrices in an analytic context, where the implied relationships
between the different matrix elements (which are very difficult to state directly)
become important. The unitary matrix representation developed in [7], which is
a central innovation enabling derivation of the principal results in [6], is a good
example of the utility of such structural understanding; MLD can potentially fill a
similar role.

An obvious application involves the development of various forms of “designer”
fast transforms. MLD can expose other unitary matrices possessing a hidden fast
computational structure. Perhaps more interesting, by imposition of the same kind of
symmetry rules that lead to the FFT, it enables the possibility of starting with from a
unitary matrix that is not inherently fast, and then developing an approximation that
is both unitary and computationally efficient. Indeed, it should be possible to directly
control trades between accuracy of the approximation and speed of computation in
unique and useful ways.

An analysis of existing wavelet transforms with MLD will likely yield additional
insight into their underlying structure, and may very well provide avenues for
further advancement and generalization of this ubiquitously employed class of
computational methods.

A related insight involves possible approaches for recapturing the orthogonality
of discretely sampled variants of continuous orthogonal function sets. To the
author’s knowledge, there is no known general method of discretely sampling a
set of continuous orthogonal functions that is guaranteed to arrive at a discretely
sampled orthogonal transformation. Further, the ability to actually achieve this
is very limited; only the Fourier transform (and possibly a few select wavelet
transformations) is known to support this exactly. Proper use of an extended
form of MLD (including a central scaling layer to address non-unitary matrices)
opens the possibility of recovering discrete orthogonal transformations that closely
approximate existing continuous transformations.

Two more visionary possibilities also arise. The fact that the product of two
unitary matrices remains unitary implies that there must be some way to collapse
the sequential concatenation of two such generalized butterfly structures from Fig. 1
(the flow graph of the product) back down to a single equivalent (the flow graph of
the resulting unitary matrix). The actual computational rules for accomplishing this
are currently unknown to the author, but their explicit delineation could lead to a
mathematics for synthetic manipulation and multiplication of matrices, potentially
with computational and/or storage advantages over standard matrix multiplication
rules. Such results can usefully be thought of as developing the methods for
manipulating matrices when stated in generalized polar form.

Equivalently, it is possible that MLD holds the key to the development of a
method for calculating the SVD that is based around matrix decimation constructs.
While it is not guaranteed that such an algorithm exists, it is reasonably clear that,
if it exists, it must exploit the inherent structure of the two singular vector matrices
that is exposed by MLD.
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Development of an Aft Boundary
Condition for a Horizontally Towed
Flexible Cylinder

Anthony A. Ruffa

1 Introduction

In the linear regime, the transverse displacements along a neutrally buoyant flexible
cylinder with a tow point at x = 0 are governed by the following equation [1]:

[
T (x) − ρ0πa2

AU2
] ∂2Y

∂x2 − 2ρ0πa2
AU

∂2Y

∂x∂t
− 2ρ0πa2

A

∂2Y

∂t2

= ρ0πaAUcN

∂Y

∂t
+ ρ0πaAU2cN

∂Y

∂x
.

(1)

Here, Y is the transverse displacement, x is the distance along the cylinder axis,
T (x) = ρ0πaAU2cT (L − x) is the tension, ρ0 is the density of water, cT and cN

are the tangential and normal hydrodynamic drag coefficients, respectively, U is
the steady-state tow speed, aA is the cylinder radius, and L is the cylinder length.
Equation (1) neglects bending terms. This approximation is valid along the entire
towed cylinder, except for a small region near x = L, i.e., the free end (where the
tension approaches zero).

The numerical solution of (1) is straightforward, except for the aft boundary
condition. There are numerous approaches in the literature, e.g., specifying a zero
tension and other conditions at the free end [2], assuming that the cylinder is straight
in a region near the free end [3], or imposing a zero bending moment at the free end
(along with an equation developed from the transverse momentum balance), and
employing the method of matched asymptotic expansions [4].

A. A. Ruffa (�)
Naval Undersea Warfare Center, Newport, RI, USA
e-mail: anthony.ruffa@navy.mil

© This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2018
A. A. Ruffa, B. Toni (eds.), Advanced Research in Naval Engineering,
STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics
& Health, https://doi.org/10.1007/978-3-319-95117-1_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95117-1_4&domain=pdf
mailto:anthony.ruffa@navy.mil
https://doi.org/10.1007/978-3-319-95117-1_4


54 A. A. Ruffa

Kuo and Ruffa [5] avoid the boundary condition at the free end altogether by
using a method of characteristics approach that supports a boundary condition at
the critical point (i.e., where the tension and the hydrodynamic forces balance). The
critical point is located significantly upstream of the free end, and the boundary
condition makes use of the slopes of the two characteristics at that point. That
approach avoids the region where the bending terms become important, and it
removes the problem of modeling the instabilities that have been observed in the
region near the free end [6]. However, the method of characteristics has not been
widely adopted for this problem. Here, that boundary condition is extended to more
general numerical methods, e.g., the finite difference method. Extending it to the
finite element method is not presented here but would involve a similar approach.

2 First-Order Numerical Implementation

In a method of characteristics solution, one of the characteristic curves (or charac-
teristics) approaches zero at a critical point [5] located at x = xc where

xc = L − aA

cT

. (2)

Kuo and Ruffa [5] developed an aft boundary condition on the cylinder at x =
xc instead of at the actual free end. The finite difference approximation to (1) for
0 ≤ x ≤ xc discretizes the continuous cylinder into n − 1 sections via n finite
difference nodes. Assuming a harmonic time dependence, i.e., Y (x, t) = y(x)eiωt

(where ω = 2πf and f is the frequency), the resulting equation at node j (where
2 ≤ j ≤ n − 1) is as follows:

[
T (xj ) − ρ0πa2

AU2
] yj+1 − 2yj + yj−1

�x2

− 2iωρ0πa2
AU

yj+1 − yj−1

2�x
+ 2ω2ρ0πa2

Ayj

= iωρ0πaAUcNyj + ρ0πaAU2cN

yj+1 − yj−1

2�x
. (3)

Here, xj = (j − 1)�x, �x = xc/(n − 1), and T (xj ) = ρ0πaAU2cT (L − xj ).
The boundary condition at j = 1 (i.e., at x = 0) is y1 = 1. The boundary condition
at j = n (i.e., at x = xc) is developed using the method of characteristics. The
characteristics Fa and Fb corresponding to (1) are as follows [5]:

dx

dt
= (Fa, Fb) = U

2
±
[

T

2m
− U2

4

]1/2

. (4)
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At x = xc, T = mU2, so that Fa = U and Fb = 0 in (4). Along the
characteristics, (1) reduces to

dU ′ − [(Fa, Fb) − U ] d�′ + 1

2m
F ′

ydt = 0. (5)

where

U ′ = −∂Y

∂t
; (6)

�′ = −∂Y

∂x
; (7)

m = πρ0a
2
A; (8)

and

F ′
y = ρ0πcNaAU

[
U ′ + U�′] . (9)

Figure 1 illustrates the characteristics Fa and Fb on the finite difference grid in
the x − t plane at x = xc.

Fig. 1 The finite difference grid in the x − t plane illustrating the characteristics Fa and Fb at
x = xc
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Since Fb is vertical in the x − t plane at x = xc, (5) leads to an equation for
U(xc, t), which effectively supports a boundary condition at x = xc. Setting the
time step to �t = �x/Fa(n) ensures that Fa will intersect a finite difference node at
x = xc−1 = (n− 1)�x. The equation at x = xc along Fa can then be approximated
as follows:

U ′(xc, t1 + �t) − U ′(xc−1, t1) + cNU�t

2aA

[
U ′(xc, t1 + �t) + U�′(xc, t1 + �t)

]

= 0. (10)

Applying a harmonic time dependence (i.e., U ′(x, t) = u′(x)eiωt and �′(x, t) =
φ′(x)eiωt ) leads to:

u′(xc) − u′(xc−1)e
−iω�t + cNU�t

2aA

[
u′(xc) + Uφ′(xc)

] = 0. (11)

Evaluating the temporal derivatives in (5) analytically along Fb leads to

iωu′(xc) + iωUφ′(xc) + cNU

2aA

[
Uφ′(xc) + u′(xc)

] = 0, (12)

or

u′(xc) + Uφ′(xc) = 0. (13)

Finally, substituting (13) into (11) leads to:

u′(xc)e
iω�t − u′(xc−1) = 0. (14)

From (6), it follows that

y(xc)e
iω�t − y(xc−1) = 0. (15)

Equation (13) indicates that F ′
y = 0 and dy = 0 along the characteristic Fa

intersecting the finite difference grid at x = xc. Equation (15) is the boundary
condition used at x = xc. The results are shown in Fig. 2 for the following
parameters: U = 10 knots, cT = 0.0025, cN = cT /2, L = 100 m, aA = 1.5 in., and
f = 0.1 Hz.
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Fig. 2 The magnitude of the displacement vector y. Here, L = 100 m and xc = 84.76 m. The
remainder of the cylinder (i.e., xc ≤ x ≤ L) is not modeled

3 Second-Order Numerical Implementation

The derivative estimated along Fa in (10) is not consistent with a second-order finite
difference scheme, which requires three points along each characteristic (Fig. 3) to
estimate the derivative. Ensuring that Fa intersects finite difference nodes at x =
xc−1 and x = xc−2 requires two different discretization lengths, i.e., h1 and h2,
where

h1 ∼= �t
√

1 + Fa(n)2; (16)

and

h2 ∼= �t
√

1 + Fa(n − 1)2. (17)

A backward difference formula with unequal spacing [7] can approximate the
second-order derivative along the characteristic Fa , i.e.,

dU ′

ds
= 2h1 + h2

h1(h1 + h2)
U ′(xc, t1 + 2�t) − h1 + h2

h1h2
U ′(xc−1, t1 + �t)

+ h1

(h1 + h2)h2
U ′(xc−2, t1). (18)
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Fig. 3 The numerical grid in the x − t plane showing the characteristics Fa and Fb at x = xc.
Note that xc − xc−1 �= xc−1 − xc−2 because of the variation of Fa as a function of x

Applying a harmonic time dependence and noting that F ′
y = 0 at x = xc as

before (so that dy = 0 along Fa) leads to the boundary condition, i.e.,

2h1 + h2

h1(h1 + h2)
y(xc)e

2iω�t − h1 + h2

h1h2
y(xc−1)e

iω�t + h1

(h1 + h2)h2
y(xc−2) = 0.

(19)
For the second-order finite difference approximation scheme, �x1 = h2/�t =

η1 over the entire solution domain, except between xc−1 and xc, where �x2 =
h1/�t = η2. As a result, there are two sets of finite difference equations: Eq. (3) for
2 ≤ j ≤ n − 2, and for j = n − 1, the equation is given below:

2
[
T (xj ) − ρ0πa2

AU2
] η2yj+1 − (η1 + η2)yj + η1yj−1

η1η2(η1 + η2)
+ 2ω2ρ0πa2

Ayj

− iωρ0πaAUcNyj − ρ0πaAU (2iωaA + UcN)

×
[

η2
2yj+1 + (η2

1 − η2
2)yj − η2

1yj−1

η1η2(η1 + η2)

]

= 0. (20)

Figure 4 shows the result using (19) as a boundary condition, and Fig. 5 shows
the magnitude of the difference between the first- and second-order approximations,
indicating that the first-order truncation error along Fa is small. The variation in Fa

is small at x ≈ xc, i.e., Fa(n)/Fa(n − 1) ∼= 0.9986.
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Fig. 4 The magnitude of the displacement vector y for the second-order solution
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Fig. 5 The magnitude of the difference in the displacement vectors for the first-order and second-
order solutions
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4 Conclusions

The method of characteristics applied at the critical point on a towed flexible
cylinder led to an aft boundary condition for a finite difference approach. The
boundary condition consisted of the equation dy = 0 (where y is the magnitude of
the transverse displacement) along the nonzero characteristic intersecting the finite
difference grid at x = xc. That boundary condition can also be applied to finite
element approaches, and even to the nonlinear evolution of a towed system during
more general maneuvers. For example, Schram and Reyle [8] used the method of
characteristics to simulate the three-dimensional motion of a cable-body system.
This approach can support an aft boundary condition at the critical point, even when
the remainder of the system is modeled with finite differences or finite elements.
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Tracking with Deterministic Batch
Trackers

Steven Schoenecker

1 Deterministic Batch Trackers

In this chapter, we develop two deterministic batch trackers—the Maximum
Likelihood Probabilistic Data Association (ML-PDA) tracker and the Maximum
Likelihood Probabilistic Multi-Hypothesis Tracker (ML-PMHT). Both are non-
Bayesian trackers that assume a target (that is to be tracked) has some unknown
deterministic motion that is corrupted by measurement noise. In contrast, in the
Bayesian model, the truth itself is assumed to contain uncertainty (i.e., process
noise). Additionally, ML-PDA and ML-PMHT are usually implemented as batch
trackers, where a set of scans or updates over some period of time is processed
concurrently. In contrast, an iterative/recursive tracker contains probabilistic knowl-
edge of the current state (in the form of a prior probability distribution), and then
automatically updates this knowledge with every new scan.

For deterministic trackers, the underlying truth can be “parameterized” mathe-
matically. For instance, for a given batch of data that covers a relatively short span
of time, it is often assumed that if a target is present, it is moving in a straight line.
Such a straight line can be parameterized by position and velocity at the start of the
batch; given this target state, and the time elapsed since the start of the batch, the
target position can be calculated for any point in the batch.

In theory, a batch could cover a very extended amount of time; however, this
would require the motion parameterization for the target to be accurate over that
length of time. In reality, this is not often done, because it is difficult to parameterize
a target’s motion for extended periods (for instance, targets maneuver). In reality,
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batch lengths tend to be relatively short (seconds or minutes, depending on the target
type). This way, parameterizing the target motion during that short period of time
can be done to a reasonable accuracy with a simple target motion parameterization
(again, usually a straight line, although other parameterizations do exist).

1.1 Maximum Likelihood Probabilistic Data Association
(ML-PDA) tracker

We first present a tracker/estimator that is relatively “common” in the literature,
the Maximum Likelihood Probabilistic Data Association (ML-PDA) tracker. This
algorithm was initially developed in [1] for a passive sonar application. In [2] it was
modified to work for an electro-optical sensor tracking an aircraft. Finally, in [3, 4],
and [5] it was extended to a work in a multistatic active sonar framework. As with all
maximum likelihood (ML) techniques, a log-likelihood ratio (LLR) is formulated,
and the state that yields the maximum log-likelihood value is considered as the
potential target state. The ML-PDA LLR is constructed by making assumptions
about a single target with deterministic, parameterizable motion in the presence of
clutter. The assumptions are [6]

• A single target is present in each frame with known detection probability Pd .
Detections are independent across frames.

• There are zero or one measurements per frame from the target.
• The kinematics of the target are deterministic. The motion is usually parameter-

ized as a straight line, although any other parameterization is valid.
• False detections are uniformly distributed in the search volume.
• The number of false detections is Poisson distributed with known clutter density.
• Amplitudes of target and false detections are Rayleigh distributed. The parameter

of each Rayleigh distribution is known.
• Target measurements are corrupted with zero-mean Gaussian noise.
• Measurements at different times, conditioned on the parameterized state, are

independent.

Using these assumptions, the LLR for ML-PDA is constructed by first defining
the following mutually exclusive and exhaustive events:

ε0 The target is not detected; all measurements are clutter-originated.

εj (j = 1, . . . , mi) The target is detected and the detection is from the j th measurement;

all other measurements are clutter-originated.

Using these events, the likelihood ratio (LR) for a scan of data φ[Z(i), x] is
written as

φ[Z(i), x] = p[Z(i),mi, ε|x]
p[Z(i),mi, ε0|x] (1)
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The numerator is the joint (mixed) probability density function/probability mass
function (PDF/PMF) of all the measurements in the ith frame, the number of
measurements, and the set of all events ε. The numerator can be expanded in the
following manner using the total probability theorem:

p[Z(i),mi, ε|x] = p[Z(i),mi |ε0]p(ε0) +
mi∑

j=1

p[Z(i)|mi, εj , x]p(mi, εj |x) (2)

For the first term on the right-hand side in this expression, the conditioning on x has
been dropped since this term accounts for all measurements being clutter-originated
and thus is not dependent on the target state. The probability of event ε0 occurring
is just the probability of the target not being detected; this is simply given by

p(ε0) = 1 − Pd (3)

The joint PDF/PMF of the measurements in the ith scan and the number of
measurements, conditioned on ε0, can be simply re-written as

p[Z(i),mi |ε0] = p[Z(i)|mi, ε0]p(mi |ε0) (4)

The PDF of the measurements conditioned on the number of measurements mi and
the event they are all clutter-originated can be written by considering two of the ML-
PDA assumptions—clutter measurements are uniformly distributed in the search
volume, and amplitudes of false detections are Rayleigh distributed.

p[Z(i)|mi, ε0] = 1

V mi

mi∏

j=1

pτ
c (aj ) (5)

The notation pτ
c (aj ) denotes a thresholded Rayleigh distribution for clutter

measurements—this (as well as the target amplitude distribution) will be discussed
shortly.

The probability mass function (PMF) for the number of measurements con-
ditioned on the event that all measurements are clutter-originated is determined
from another of the ML-PDA assumptions—namely that the number of clutter
measurements is Poisson distributed. This PMF is expressed as

p(mi |ε0) = e−λV (λV )mi

mi ! (6)

Here, λ is the clutter density, so the product λV is the expected number of clutter
measurements. Taking the product of (3), (5), and (6) gives

p[Z(i),mi, |ε0] = (1 − Pd)
1

V mi

mi∏

j=1

pτ
c (aj )

e−λV (λV )mi

mi ! (7)
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Now, turning to the second term in the right-hand side of (2), the joint PDF for a
batch of measurements conditioned on mi measurements, event εj , and x is written
as

p[Z(i)|mi, εj , x] = 1

V mi−1

mi∏

k=1,k �=j

pτ
c (ak)p[z(j)|x]pτ

t (aj ) (8)

Here, p[z(j)|x] is a target-centered Gaussian (another one of the ML-PDA assump-
tions), and pτ

t (aj ) is a thresholded Rayleigh target amplitude distribution. Note that
for this event (εj ), the j th measurement is from the target and the other mi − 1
measurements are from clutter. The joint PMF of the number of measurements and
event εj conditioned on x can be simplified to

p(mi, εj |x) = p(mi |εj )p(εj ) (9)

This simplification is possible since this joint PMF is independent of x. The PMF
for mi again follows a Poisson distribution

p(mi |εj ) = e−λV (λV )mi−1

(mi − 1)! (10)

Note that this Poisson distribution is slightly different than that of the clutter-only
case for event ε0 (6), since for all other events, one of the measurements is target-
originated.

The PMF for εj , the probability of the target being detected due to measurement
j is

p(εj ) = Pd

1

mi

(11)

The term 1/mi is due to the assumption that any of the mi measurements are equally
likely to be the measurement originating from the target. Thus, the summation term
in (2) can be written as

mi∑

j=1

p[Z(i)|mi, εj , x]p(mi, εj |x) =

mi∑

j=1

Pd

V mi−1

e−λV (λV )mi−1

(mi − 1)!
1

mi

mi∏

k=1,k �=j

pτ
c (ak)p[z(j)|x]pτ

t (aj )

(12)
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Defining the amplitude likelihood ratio as

ρa(aj ) = pτ
t (aj )

pτ
c (aj )

(13)

and multiplying the top and bottom of (12) by pτ
c (aj ) allows for the following

simplification:

mi∑

j=1

p[Z(i)|mi, εj , x]p(mi, εj |x) =

mi∑

j=1

Pd

V mi−1

e−λV (λV )mi−1

(mi − 1)!
1

mi

mi∏

k=1

pτ
c (ak)p[z(j)|x]ρa(aj )

(14)

Combining (7) and (14), recognizing that the denominator in (1) is just (7) without
the term 1 − Pd , and simplifying gives the expression for the ML-PDA LR for a
single scan of data:

φ[Z(i), x] = 1 − Pd + Pd

λ

mi∑

j=1

p[z(j)|x]ρa(aj ) (15)

The ML-PDA algorithm is a batch tracker; assuming there are Nw scans, and taking
the logarithm to produce the log-likelihood ratio produces the final result:

�(x, Z) =
Nw∑

i=1

log

⎧
⎨

⎩
1 − Pd + Pd

λ

mi∑

j=1

p[z(j)|x]ρa(aj )

⎫
⎬

⎭
(16)

Finally, the constant Nw log(1 − Pd) is sometimes subtracted from (16) to produce
a modified ML-PDA LLR

�mod(x, Z) =
Nw∑

i=1

log

⎧
⎨

⎩
1 + Pd

λ(1 − Pd)

mi∑

j=1

p[z(j)|x]ρa(aj )

⎫
⎬

⎭
(17)

It is possible to do this because ML-PDA is a maximum-likelihood technique;
subtracting off a constant from the entire function will not change the location of
the target state x that produces the maximum likelihood value, i.e.,

x̂ = arg max
x

�(x, Z) (18)



66 S. Schoenecker

The formulation in (17) has the advantage of having the floor of the LLR remain at
zero regardless of the batch length.

Finally, we note that it is possible to generate the ML-PDA LLR by assuming
that the number of measurements in a scan (mi) is given. (In the above derivation,
this was not assumed.) However, if this is assumed, then it is not necessary to invoke
the Poisson PMF in the above derivation. The final result in this case turns out to be
exactly the same as that presented in (17).

1.2 ML-PMHT

We now develop the LLR for the second deterministic batch tracker presented
in this chapter, the Maximum Likelihood Probabilistic Multi-Hypothesis Tracker
(ML-PMHT). This algorithm is not as common in the literature, but it has definite
advantages over ML-PDA. First, it is very easy to formulate the ML-PMHT LLR
for multiple targets. It is in theory possible to formulate the ML-PDA LLR for an
arbitrary number of targets as well, but for any more than two or three targets,
this becomes extremely combinatorically complex. Additionally, it is possible to
compute the Crámer-Rao Lower Bound (CRLB) for ML-PMHT real time; it is not
possible to do this for ML-PDA. This (in addition to the fact that ML-PMHT can
be shown to be an efficient estimator) allows this CRLB to be used to approximate
the state covariance on the estimates the algorithm produces. These two conditions
make the ML-PMHT more appealing than ML-PDA.

The ML-PMHT algorithm was initially developed in [7] and subsequently
expanded in [8, 9], and [10]. The assumptions used to develop its LLR are very
similar to those of ML-PDA, with the following major difference: whereas ML-
PDA assumes that only zero or one measurement could be target-originated in a
single scan, the ML-PMHT algorithm assumes that any number of measurement in
a scan (up to all of them) can originate from the target. Because of this, the ML-
PMHT LLR is much easier to develop.

To this end, define the event set for a single measurement:

ε0 The measurement is clutter-originated.
ε1 The measurement is target-originated.

The LR φ1[z(j), x] for a single measurement can be written as

φ1[z(j), x] = p[z(j), ε|x]
p[z(j)|ε0, x] (19)

Again, according to the total probability theorem, this can be expanded to

φ1[z(j), x] = p[z(j)|ε0]p(ε0) + p[z(j)|ε1, x]p(ε1)

p[z(j)|ε0] (20)
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Note that again we have dropped the conditioning on x where the parameters in
question and x are independent. In the numerator, the first term can be written as

p[z(j)|ε0]p(ε0) = π0

V
pτ

c (aj ) (21)

where π0 is defined as the probability of a measurement originating from clutter.
The second term is written as

p[z(j)|ε1, x]p(ε1) = π1p[z(j)|x]pτ
t (aj ) (22)

where π1 is defined as the probability of a measurement originating from the target
(i.e., p(ε1)). Putting these together and adding the denominator results in

φ1[x, z(j)] =
π0
V

pτ
c (aj ) + π1p[z(j)|x]pτ

t (aj )

1
V

pτ
c (aj )

(23)

Simplifying, and taking advantage of the fact that multiple measurements in a scan
are allowed to be target originated leads to the LR for a batch of measurements

φ(x, Z) =
Nw∏

i=1

mi∏

j=1

{
π0 + V π1p[z(j)|x]ρa(aj )

}
(24)

Taking the logarithm simply turns the products into sums

�(x, Z) =
Nw∑

i=1

mi∑

j=1

log
{
π0 + V π1p[z(j)|x]ρa(aj )

}
(25)

Finally, again subtracting out a constant (in this case
∑Nw

i=1

∑mi

j=1 log(π0)) so the
floor of the LLR is zero leaves the expression in the final form:

�mod(x, Z) =
Nw∑

i=1

mi∑

j=1

log

{
1 + π1V

π0
p[z(j)|x]ρa(aj )

}
(26)

Again, ML-PMHT is a maximum likelihood technique; the state vector x that
maximizes �mod(x, Z) over a batch of measurements is selected as the most likely
target solution.
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2 Amplitude Ratio

In this section we briefly discuss two common amplitude ratio models for ρa(aj )

that are found in the literature. The first is a “Gaussian fluctuating model”—
this comes about by assuming that the distribution of both the target-generated
amplitudes and the clutter-generated amplitudes end up being Rayleigh distributed
(this model was part of the “original” ML-PDA assumptions). Under the second
scenario, the clutter is assumed to be “heavier-tailed.” Such heavy-tailed clutter can
be described by various different probability density functions; we briefly describe
one, the K-distribution, that is popular in the literature.

First, it is assumed there exists some real, continuous-valued, continuous-time,
band-limited signal s(t) that is received by an active sonar system. Such a system
will typically calculate the analytic signal sa(t) by applying a Hilbert transform to
s(t). This “removes” the negative frequency component (in the process giving sa(t)

an imaginary part) and then calculating a basebanded signal sbb(t) by demodulating
out the carrier frequency fc (the center frequency of the real band-limited signal
s(t)).1 At this point, the complex basebanded signal is sampled via analog-to-digital
conversion; this sampled signal is denoted s[j ] (again, note that s[j ] has both real
and imaginary parts). It can be written as

s[j ] = a[j ]eiθ (27)

The amplitude a[j ] of s[j ] is just calculated as

a[j ] =
(
s[j ]s[j ]H

) 1
2

(28)

The intensity of ζ [j ] is just the square of the amplitude

ζ [j ] = s[j ]s[j ]H (29)

The remainder of this chapter will explore the distributions typically used in tracking
algorithms for a[j ] and ζ [j ] when produced by a target or by clutter.

2.1 Fluctuating Gaussian Model

The fluctuating Gaussian model, sometimes called a Swerling I model [11, 12],
comes about by assuming that the measurement-originating mechanism (i.e., either
the target or a clutter generator) consists of multiple, similarly sized objects. Their

1There are several different ways of actually computing sbb(t); however, they will all produce a
complex signal with a spectrum centered at f = 0.
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size is similar enough that all the scatterers are assumed to have relatively equal
contributions to s(t), and there are enough of them that the Central Limit Theorem
can be applied. Because of this, the assumption is made that envelope of s[j ] has
a complex zero-mean Gaussian distribution [13]. If s[j ] is target originated (or
“signal”), the real and imaginary components will each have variance σ 2

t /2. If s[j ]
is clutter-originated (or “noise”), the variance of the components will be σ 2

c /2. Since
the Gaussian distribution is closed under addition, the signal-plus-noise distribution
will be zero-mean complex Gaussian as well; the real and imaginary components
will have variance σ 2/2 = σ 2

t /2+σ 2
c /2. From this, it is straightforward to derive the

PDF for intensity and amplitude. The real and imaginary Gaussian components are
assumed to be independent; the intensity ζ is then seen to be the sum of the square
of two zero-mean Gaussians; this is easily shown to be an exponential distribution
with mean value σ 2

fζ (ζ ) = 1

σ 2 e
− ζ

σ2 ζ ≥ 0 (30)

The amplitude A is just the square root of the intensity; it is again easily shown
that the square root of an exponential random variable with mean σ 2 has a Rayleigh
distribution given by

fa(a) = 2a

σ 2 e
− a2

σ2 a ≥ 0 (31)

From these expressions, it is easy to calculate the amplitude likelihood ratio.
Without loss of generalization, it can be assumed that the noise power (the intensity)
has been normalized, so the variance for the signal-plus-noise case can be expressed
as

σ 2 = σ 2
c + σ 2

t

σ 2
c

= 1 + σ 2
t

σ 2
c

� 1 + d (32)

where d is the signal-to-noise ratio, or the deflection coefficient. The noise-only case
by definition has σ 2 = 1; the PDF of the intensity in this case is

fζ (ζ ) = e−ζ ζ ≥ 0 (33)

The PDF of the amplitude for the noise-only case is

fa(a) = 2ae−a2
a ≥ 0 (34)

From these expressions the amplitude likelihood ratio ρa(a) (or equivalently if
operating with intensity, ρζ (ζ )) can be calculated.

ρζ (ζ ) = ρa(a) = fζ (ζ |signal plus noise)

fζ (ζ |noise)
= fa(a|signal plus noise)

fa(a|noise)
(35)
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A typical active sonar system will threshold the matched-filter output; the intensity
PDFs given by (30) and (33) now become

fζ (ζ |signal plus noise) = 1

Pd

1

1 + d
e− ζ

1+d ζ ≥ τζ (36)

and

fζ (ζ |noise) = 1

Pf a

e−ζ ζ ≥ τζ (37)

where Pd and Pf a are the right-tailed integrals (starting at the threshold intensity
τζ ) of (30) and (33), respectively. Combining (35), (36), and (37) gives a final
expression for ρa(aj ) for a fluctuating Gaussian/Swerling I model:

ρζ (ζ ) = Pf a

Pd

1

1 + d
exp

(
τζ d

1 + d

)
exp

(
ζd

1 + d

)
ζ ≥ τζ (38)

If we are operating in amplitude space, then τI is replaced with τ 2
a , and ζ is replaced

with a2

ρa(a) = Pf a

Pd

1

1 + d
exp

(
τ 2
a d

1 + d

)
exp

(
a2d

1 + d

)
a ≥ τa (39)

2.2 Heavy-Tailed Clutter

The fluctuating Gaussian amplitude model developed above describes the signal-
plus-noise and the noise-only amplitude distributions with a Rayleigh PDF, or
the signal-plus-noise and the noise-only intensity distributions with an exponential
PDF. These are “light-tailed” distributions; they come from the assumption that
the mechanism producing the scattering for both clutter and target consists of
many similar scatterers. The mathematical effect of this light-tailed assumption
is that high-amplitude measurements are probabilistically much more likely to be
target-originated; this model basically discounts the chance that any high-amplitude
measurements are clutter-originated. Work in recent years has started to explore
more heavy-tailed distributions to describe active sonar clutter (which makes it
possible for high-amplitude measurements to be clutter-originated). Distributions
explored include the Weibull distribution, the Generalized Pareto distribution, and
the K-distribution [14]. Here, we briefly discuss the last of these, the K-distribution,
since this has a realistic physical explanation for heavy-tailed clutter [15–19], and
[20].

If instead of the clutter being due to many similar scatters, where the Central
Limit Theorem can be invoked, consider clutter to be originated from a fewer
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number of larger scatterers. The following argument is very similar to that found
in [21]. Consider the I and Q components (i.e., the real and imaginary components)
of s[j ]. In the fluctuating Gaussian/Swerling I model, each of these was modeled
as a zero-mean Gaussian. Let xr denote the in-phase (I) amplitude of s[j ] and xi

denote the quadrature (Q) component of the signal (we can ignore the phase of the
signal without loss of generality). These components can be modeled as

xr = √
vu1

xi = √
vu2 (40)

Here, u1 and u2 are zero-mean Gaussian RVs with variance σ 2/2. If v is a constant,
then the quantity

ζ = x2
r + x2

i = v(u2
1 + u2

2) (41)

is seen to be an exponential RV with expected value vσ 2. This is precisely the
intensity produced by the fluctuating Gaussian model in the previous section.
However, to account for the fact that there are fewer scatters (which will lead to
higher variability in ζ ) let the quantity v itself be a random variable. The quantity
w = (u2

1 + u2
2) is an exponential random variable with mean σ 2. Now make the

assumption that v is Gamma distributed with mean and variance equal to 1/σ 2 (in
terms of shape and scale parameters, the shape parameter α = 1/σ 2 and the scale
parameter β = 1). In this case, where

ζ = vw (42)

this product can be shown to have a K-intensity distribution, which is given by

pζ (ζ ) = 2

λ�(α)

(
ζ

λ

)(α−1)/2

Kα−1

(

2

√
ζ

λ

)

ζ > 0 (43)

The parameter α now becomes the K-distribution shape parameter, λ = 1/α, and
Kν is the Basset function (a modified Bessel function of the second kind) [22]. The
parameter α for this distribution determines the “heaviness” of the tail; the smaller
the value of α, the heavier the tail (i.e., the more the probability mass is spread
out to the right). Although not apparent from this expression, the expected value
for K-distributed intensity is 1 (which is necessary to model noise that has been
normalized). Note that this PDF describes K-distributed intensity; K-distributed
amplitude is given by

pa(a) = 4√
λ�(α)

(
a√
λ

)α

Kα−1

(
2a√

λ

)
a > 0 (44)
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The expressions in (44) and (43) describe K-distributed clutter amplitudes and
intensity, respectively. Unlike the fluctuating Gaussian case, where it was possible
to compute a closed-form expression for the signal-plus-noise case and as a result,
calculate a closed-form expression for ρa(a) or ρζ (ζ ), it is not possible to compute
an analytic expression for the signal-plus-noise case with the K-distribution. Instead,
a PDF for the signal-only model must be developed (e.g., a Rayleigh distribution for
the amplitude of a Swerling I target). Then, the PDF for the signal-plus-noise can
be numerically calculated by convolving the PDF of the signal amplitude with the
PDF of the clutter amplitude (44). (Alternatively, this could be done in the intensity
domain.) Then, the amplitude likelihood ratio ρa(a) can be computed by dividing
this expression by the clutter-only PDF.

3 Threshold Determination for ML-PMHT

The ML-PMHT tracker works by finding the state vector x̂ that, given a batch of
data, maximizes the ML-PMHT LLR. However, there is no guarantee that this
maximum point is actually caused by a target. The ML-PMHT LLR surface, for
either passive or active applications, is highly non-convex. To determine whether or
not the global maximum on the LLR is caused by the target or is caused by clutter, it
is necessary to statistically determine the peak point in the ML-PMHT that is caused
by clutter measurements only. Once this PDF is determined, it is possible to select
an acceptable false alarm rate and set a tracking threshold per the Neyman-Pearson
Lemma. Peak LLR values found above this threshold are accepted as targets; peak
LLR values below this level are rejected as clutter.

The PDF that statistically describes the peak point in the ML-PMHT LLR is
determined in stages. This involves two main subjects: random-variable transfor-
mations and extreme-value theory. To determine the PDF of the maximum value
of the ML-PMHT LLR, we assume only clutter measurements are present in the
ML-PMHT LLR given by (26). The first step in the process is to assume that the
ML-PMHT LLR for one measurement is just a random-variable transformation.
Then the entire ML-PMHT LLR (again, given by (26)) can be thought of as another
RV; if there are M clutter measurements in a batch; the PDF that describes all the
possible LLR values for the batch of measurements is just the single-measurement
PDF convolved with itself M − 1 times (this is possible because one of the ML-
PMHT assumptions is that all measurements, conditioned on the target state x, are
independent). Finally, we are interested in the PDF of the peak value in the LLR
that is caused by clutter measurements; for this, we turn to extreme-value theory.

The approach described below is for ML-PMHT. It is theoretically possible to do
this as well for ML-PDA; however, the form of the ML-PDA LLR makes the random
variable transformations that would be necessary extremely difficult. In contrast, the
form of the ML-PMHT LLR makes these transformations analytically tractable.
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3.1 Single Measurement Random-Variable Transformation

To determine the threshold,2 start with the ML-PMHT assumption that clutter
measurements are uniformly distributed in the search volume. The PDF for a single
measurement z is then given by

pz(z) = 1

V
0 ≤ z ≤ V (45)

where V is the measurement search volume in one dimension. Now consider the
ML-PMHT LLR for a single, two-dimensional measurement (this would be time-
delay/range and azimuth for active sonar). The LLR for this case can be written as

�1(z1, z2) = log

(

1 + π1

π0

V√|2πR| exp

{

−1

2

[
(z1 − μ1)

2

σ 2
1

+ (z2 − μ2)
2

σ 2
2

]})

(46)
Here R is the measurement covariance matrix, z1 and z2 are the measurements
(time-delay and azimuthal), σ 2

1 and σ 2
2 are the time-delay and azimuthal measure-

ment covariances, and finally, μ1 and μ2 are the (unknown) expected target locations
in time-delay and bearing space.

The key here is to treat (46) as simply a random-variable transformation; i.e.,

w = �1(z1, z2) (47)

where z1 and z2 are uniform random variables, and w is a transformed random
variable. This transformation can be done in several steps using the standard one-
to-one random variable transformation technique: if X and Y are random variables,
and y = f (x), then

y = f −1(y)

∣
∣∣∣
dx

dy

∣
∣∣∣ (48)

This transformation is somewhat involved and must be done in stages; the step-by-
step derivation is presented in [23]. The final result, where a single (2-dimensional)
uniformly distributed measurement is transformed by the single-measurement ML-
PMHT LLR (46), is given by

pw(w) =
{

Cδ(w) w = 0
2π σ1σ2

V1V2

exp(w)
exp(w)−1 0 < w ≤ log(1 + K)

(49)

2This entire section is a summary of the work presented in [23].
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where δ is a Dirac delta function, C is a normalization constant that is scaled so that
the entire PDF integrates to 1, and

K = π1

π0

V1V2√|2πR| (50)

The expression in (49) is the PDF of a single clutter measurement transformed
by the ML-PMHT LLR; in this expression, the amplitude likelihood ratio ρa(a)

was assumed to be unity. It is possible to compute a closed-form expression in a
similar fashion for a non-unity value of ρa(a) for a fluctuating Gaussian model
where the amplitude likelihood ratio is given by (39). The derivation is similar to that
given above; the single-measurement transformed PDF (that includes the amplitude
likelihood ratio) is

pw(w) =

⎧
⎪⎪⎨

⎪⎪⎩

Cδ(w) w = 0

2πσ1σ2
V1V2

[
1 − eτζ

(
ew−1
K ′

) 1
Kσ

]
exp(w)

exp(w)−1

0 < w ≤ log
(
1 + K ′e−Kσ τζ

)
(51)

Here

K ′ = K

σ 2 eKσ τζ (52)

where σ 2 is the expected target intensity and Kσ is given by

Kσ = 1 − σ 2

σ 2
(53)

Example plots of both (49) and (51) are shown in Fig. 1. It is instructive to look at
the shape of these PDFs. The area under the blue curve in this figure can be roughly
approximated as 2.5 × 1e − 3 ≈ 0.003; the red curve, to first order, has about
the same area. In other words, PDFs are roughly 99.7% delta functions located at
w = 0. Because of this, even when adding many, many of these random variables
together, the Central Limit Theorem will not apply.

3.2 Batch Random-Variable Transformations

At this point, the expression in (49) (or in (51)) gives the PDF for a single clutter
measurement converted by the ML-PMHT LLR. As a tracker though, ML-PMHT
is typically implemented as a batch tracker; it will process Nw scans, and each
scan contains mi measurements. For simplicity, let M = ∑Nw

i=1 mi—here M is
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Fig. 1 Single measurement transformed PDFs, with and without amplitude likelihood ratio

the total number of measurements processed by the tracker. Since one of the ML-
PMHT assumptions is that the measurements, conditioned on the target state, are
independent, then the RVs that represent the single-measurement RV transformation
of a clutter measurement will be independent as well. Thus, the PDF for a batch
of measurements is simply computed by convolving (49) with itself M − 1 times.
An alternative approach (one that is slightly more difficult but is computationally
faster and more accurate for large values of M) is to take the characteristic function
of the single measurement PDF, exponentiate it by M , and then take the inverse
characteristic function.

3.3 Peak PDFs

The ML-PMHT batch PDF described in the previous section is used to compute
the peak PDF—the distribution that describes the maximum point in the LLR that is
caused by a batch of clutter measurements. To do this, extreme-value theory [24–29]
is used. Work in [30] shows that the peak point in the ML-PMHT LLR is well
described by a Gumbel distribution. This distribution takes the form of

f (x) = 1

β
exp

[
−
(

x − ν

β

)
− exp

(
−x − ν

β

)]
(54)



76 S. Schoenecker

In an actual ML-PMHT tracker implementation, a numerical global optimization
scheme is used to determine the peak point in the ML-PMHT LLR. In order to
determine the parameters in the Gumbel distribution given by (54), it is necessary
to model the effect of the numerical optimization used in the actual tracker
implementation. One conceptually simple way to find the maximum of the ML-
PMHT LLR would be to sample the LLR with a very finely spaced grid, consisting
of Mtot samples, and take the maximum from the sample set as the global maximum
value of the LLR. This is obviously not done in practice because Mtot becomes
prohibitively large, especially when the dimension of the state vector x is large.
However, it is possible to make some basic assumptions about the LLR surface
and determine a value for the number of samples Mtot that could be theoretically
required to get the same accuracy on the global maximum as the actual numerical
optimization scheme.

It turns out that a good approximation to this number is given for each
measurement dimension by the following expression:

Mtot = 1

2

√
maveV

σε

K

K + 1
+ 1 (55)

where mave is the average number of clutter measurements in a scan, and ε is the
assumed accuracy of the numerical optimization scheme.

With this “equivalent” value of Mtot , it is possible to compute the parameters
β and ν in the Gumbel distribution given by (54). Now, if F(x) is the cumulative
distribution function (CDF) being sampled (i.e., the integral of the ML-PMHT batch
PDF described in Sect. 3.2), then the parameters ν and β can be obtained with the
following [24]:

ν = F−1
(

1 − 1

Mtot

)
(56)

and

β = F−1
(

1 − 1

eMtot

)
− ν (57)

As the preceding equation indicates, in order to obtain the Gumbel distribution
parameters ν and β, it is necessary to obtain the CDF for the ML-PMHT batch PDF.
This CDF must be obtained and then inverted numerically since it has no convenient
closed-from expression. For numerical reasons, the most accurate way to do this is
to perform a cumulative numerical integration of the ML-PMHT batch PDF and
then approximate the right-hand side of this with the following relatively simple
closed-form expression:

Fapprox(x) = 1 − exp
[
−k(x − m)l

]
(58)
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The parameters k,m, and l are fit to the numerical CDF in the region F(x) > 0.95
using numerical optimization. With these values calculated, it is straightforward to
invert (58). Letting Fapprox(x) = φ and solving for x produces

x = m +
[
−1

k
log(1 − φ)

] 1
l

(59)

Now, combining (56), (57), and (59) gives a final expression for the Gumbel
distribution parameters

ν = m +
[

1

k
log(Mtot )

] 1
l

(60)

and

β =
[

1

k
+ 1

k
log(Mtot )

] 1
l −

[
1

k
log(Mtot )

] 1
l

(61)

With this, it is possible to write the Gumbel distribution that represents the peak
in the ML-PMHT LLR surface caused by clutter. Figure 2 is an example of this—
the green curve is a batch clutter PDF, and the magenta curve is the resultant peak
clutter PDF. Also shown is the calculated tracking threshold that would produce a
false track rate of PFT = 0.01.

4 Miscellaneous

In this section, we touch on three miscellaneous subjects that will be useful in
practical ML-PMHT implementations. They are (1) calculating the CRLB for
ML-PMHT; (2) a multitarget ML-PMHT implementation; (3) a maneuver-model
parameterization for both ML-PDA and ML-PMHT. These topics are only sum-
marily discussed; for detailed information on implementation issues the interested
reader should consult the provided references.

4.1 ML-PMHT Crámer-Rao Lower Bound

All tracking algorithms produce an estimate of the target state (this is, of course,
the point of such algorithms); however, not all algorithms provide an estimate of
the accuracy of the state estimate. In real-world applications, some idea of the
accuracy of an estimate is of critical importance. For instance, the Kalman filter
produces both a state estimate and a direct state covariance estimate. Unfortunately,
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Fig. 2 Two-dimensional ML-PMHT PDFs

neither ML-PDA nor ML-PMHT provide a direct covariance estimate. However,
both algorithms have been shown to be efficient estimators [31, 32]—that is, the
accuracy of their estimates meets their CRLB. Thus, the CRLB matrix can be used
as an estimate of the state covariance.

The form of the LLR for ML-PDA forces the computation of its CRLB to be a
very high-dimensional integral [31]—on the order of the number of measurements
in a scan. Thus, it needs to be computed off-line with Monte-Carlo integration,
which is not practical for a real-time tracker implementation. Fortunately, the form
of the LLR for ML-PMHT allows for many cancellations in the CRLB integral,
which makes it tractable in real time. (This is another significant advantage for ML-
PMHT over ML-PDA.)

The CRLB for the ML-PMHT can be calculated via the Fisher Information
Matrix (FIM). The FIM for one scan of data is given by [32]

Ji = DT
φ

mi∑

j=1

GT
j

∫

V

[π1p
τ
t (aj )]2

|2πRj | e
−ξT

j ξ j ξ j ξ
T
j

π0p
τ
c (aj )

V
+ π1p

τ
t (aj )√|2πRj |e

− 1
2 ξT

j ξj

dξ j daj

Gj

|Gj |Dφ (62)

Here φ is the state-to-measurement conversion, and Dφ is the Jacobian of φ. The
matrix Gj is the Cholesky decomposition of the inverse measurement covariance
matrix R−1

j such that GT
j G = R−1

j . The vector ξ is N × 1, where N is the
dimensionality of the measurements, and the differential dξ is also N -dimensional.
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The FIM for an entire batch is just the sum of the FIM calculations for each scan:

J =
Nw∑

i=1

Ji (63)

Finally, the state covariance is just approximated as the inverse of J, the Fisher
Information Matrix for the batch of data.

4.2 Multitarget ML-PMHT

It is very difficult to extend ML-PDA (or any other algorithm that assumes at most
one measurement in a scan can originate from a target) to multiple targets. The ML-
PDA LLR was developed for two targets in [33]; for any more targets than this,
developing the LLR becomes almost a futile exercise in combinatorics. However,
because the ML-PMHT algorithm allows for multiple measurements to originate
from a given target in a scan, it is exceedingly easy to formulate a multitarget version
for ML-PMHT [32]. For K targets with state vectors x1, . . . , xK , the multitarget
LLR is expressed as

�′(x, Z) =
Nw∑

i=1

mi∑

j=1

log

{
π0 + V

K∑

k=1

πkp[zj (i)|xk]ρjk(i)

}
(64)

where πk is the probability that a given measurement is from the kth target and∑K
k=0 πk = 1. The ease of formulating the LLR in this fashion is another major

advantages of ML-PMHT over ML-PDA.3 Details of this multitarget implementa-
tion are discussed in [32].

4.3 Maneuver-Model Parameterization

We finally present a parameterization that can be applied to ML-PDA or ML-PMHT
(or any deterministic batch tracker for that matter)—this parameterization allows
for a rapidly maneuvering target. The “typical” target parameterization used by a
batch tracker is a straight line. The length of the batch is a trade-off—it should be
long enough so that there is enough “integration” to allow target measurements to

3A common misconception is that (64) allows a measurement to originate from multiple targets
(i.e., a measurement can be shared between targets); this is not correct. Consider a single term of
the sum—this represents the likelihood ratio for a single measurement. It can either originate from
clutter or target 1 or target 2 . . . or target K .
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Fig. 3 Sliding window
implementation for
ML-PMHT in the case of a
moderately maneuvering
target. For the measurements
in each sliding batch (denoted
by blue squares), ML-PMHT
straight-line solutions are
shown. Reproduced with
permission from [34], ©2013
IEEE

Initial track

Update 1

Update 2

Update 3

Update 4

All Measurements Measurements in Sliding Batch Tracks

stand out from clutter measurements (i.e., long enough for the target measurements
to form a recognizable line), but it should be short enough that any reasonable
target path can be reasonably represented by a series of line segments. This is
illustrated in Fig. 3. In this figure, the motion of a slowly maneuvering target can
accurately be represented by a series of (overlapping) straight lines. The downfall to
this approach occurs with rapidly maneuvering targets. If a target changes course
very rapidly (i.e., quickly enough that the entire maneuver occurs between two
measurements), then it is unrealistic to model the motion in a batch as a straight
line. This situation is illustrated in Fig. 4. Here, the target maneuvers so rapidly
that a batch tracker with a straight-line parameterization will invariably track
off during the sudden target maneuvers. In order to enable ML-PMHT or ML-
PDA to track targets performing these more severe maneuvers, we now add two
components to the parameter vector, a maneuver time tm and a maneuver angle
(course change) θm. Now, the target motion in a batch can be represented as two
line segments—this new parameterization is shown in comparison to the previous
straight-line parameterization in Fig. 5. Details for exactly how this maneuver-
model parameterization is implemented into ML-PMHT and ML-PDA are presented
in detail in [34].
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Fig. 4 Sliding window
straight-line parameterization
for ML-PMHT cannot follow
sharply maneuvering target.
Track is lost on the target.
Reproduced with permission
from [34], ©2013 IEEE

Initial
track

Update 1

Update 2

Good track

Marginal track

Lost track

All Measurements Measurements in Sliding Batch Tracks

Fig. 5 Straight-line
parameterization vs.
maneuvering-model
parameterization. Reproduced
with permission from [34],
©2013 IEEE

5 Conclusion

In this chapter, we have presented two deterministic batch trackers—the Maximum
Likelihood Probabilistic Data Association (ML-PDA) tracker and the Maximum
Likelihood Probabilistic Multi-Hypothesis Tracker (ML-PMHT). The ML-PDA
algorithm has been in the literature for a longer period of time, but recent work
has shown that ML-PMHT has distinct advantages over ML-PDA.
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The log-likelihood ratios for each algorithm, including two different amplitude
likelihood models, were developed in detail. A method for determining tracking
thresholds for ML-PMHT was then developed. Finally, a method for computing
the CRLB for ML-PMHT was presented, a multitarget version of the ML-PMHT
LLR was shown, and a maneuver-model parameterization for rapidly maneuvering
targets was introduced. Together, this information should facilitate the implementa-
tion of the ML-PDA algorithm, and especially the ML-PMHT algorithm, or other
deterministic batch trackers.
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Moving Horizons Estimation for
Wheelchair Trajectory Repeatability
in the Home

Steven B. Skaar

1 Introduction

A portion of the wheel-chair-bound population experiences difficulty navigating
power wheelchairs through the home [1]. One move toward an autonomous chair,
suitable for in-home transportation from an approximately known starting pose to
a preselected new pose, began in the 1990s [2]. Using an adaptation of the “teach-
repeat” paradigm that was used with robotic arms in factories, the attempt was made
to automatically replicate in the home human-“taught” trajectories.

The idea as used in factories—for spot welding of auto frames, for example—
was that “workpieces,” the objects of the robot’s operation, such as car-frame
members to be joined, could be positioned or “fixtured,” copy after copy, in the
same three-dimensional locations in order to allow a robot to succeed in its purpose
by undergoing repetition of previously “taught” trajectories of the robotic arm’s
tool-bearing “end effector” [3]. The application of a similar approach to wheelchair
control is simplified—relative to the spot-welding application, for example—from
the fact that, typically, the taught and repeated trajectories would be two- rather than
three-dimensional, that is, the chair is constrained to remain on a relatively flat floor.
Also, the wheelchair application would not require the complementary, often-costly
active pre-fixturing of workpieces [4].

The problem introduced by the wheelchair application, however, lies with the
nonholonomic relationship [5] between rotation of the mobile robot’s directly
measurable/controllable wheels and the position/orientation of the transported body.
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This means that return of the wheels’ angles of rotation to that series associated
with the taught trajectory is, unlike the spot welding example of an industrial,
holonomic robot, no guarantee of return of the chair to its associated, desired
sequence of poses in the plane of the floor. Because the relationship between these
real-time-measurable internal angles and the pose of the chair—even in the absence
of wheel slip—is modeled at best differentially, the kind of control used in industry
of the robotic arm’s joint rotations is inadequate for controlling wheel rotation.
Lack of a priori integrability of the Pfaffian form [5] of the kinematic constraints
means there is a path-dependent/tracking-dependent component of the outcome
that has no counterpart in the industrial-robot case. With the further reality of
wheel slip, the proposition of teach/repeat becomes even more problematic because
even numerical integrals based on measured wheel rotations and the differential
kinematics generally lose accuracy with distance traveled.

The Extended Kalman Filter (EKF) [6], an algorithm that has been used to
apply “observations,” in order, for example, to correct and improve state estimates
of “inertial navigation” (which estimates are based on measured acceleration),
was initially employed for the wheelchair [2]. Just as inertial navigation uses
acceleration measurements that are related to time derivatives of 3D aircraft position
and orientation in space, so too the wheelchair’s measured wheel rotations are
related differentially to its evolving 2D position and orientation in the plane of the
floor. Both applications require, in order to avoid degradation of estimates with time
or distance traveled, that “observations,” which are related to the instantaneous state
via “observation equations,” alter the numerical integrals based upon differences
between expected and actual observations. State equations and observation equa-
tions in both the aerospace and wheelchair applications are generally nonlinear.

Observations used in the EKF are presumed to have random zero-mean error;
they are acquired over time, in order, optimally (in the linear limit), to improve state
estimates. This recursive “innovation” process offers the computational advantage
of not requiring retention of a batch of past observations. Past information is instead
retained approximately in the updated parameters of a Gaussian error-covariance
matrix of the estimated state. Some researchers, however, have found that, with
large nonlinearity in the state- and/or observation-equations, the alternative Moving
Horizons Estimator (MHE) [7] improves upon the EKF’s results, albeit at a com-
putational cost and the burden of retaining a batch of data within a moving window
of time (hence “Moving Horizons”) of the estimated state. The improvement is
due in part to imperfect data retention for the present, nonlinear case in the EKF’s
covariance matrix, or due to certain kinds of model error.

The present application, with its emphasis on “repeatability” rather than “accu-
racy,” adds another reason to apply the MHE; it has to do with application locally
of visual observations of physical fiducials (or “beacons” or “cues”) placed during
system set-up, as discussed in [2], on the walls of the home of the disabled user.
Accumulation of a local batch of observations that is distributed along the route
according to criteria developed herein can be enforced by reducing the chair’s speed,
if necessary, as required in the current tracking event. This accumulation should be
distributed in accordance with the local region of the reference path as it was using
a teaching event from which a similar batch is acquired.
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Just as with some holonomic, industrial-robot applications, “repeatability” of
taught poses can be sufficient for the task at hand (even if the more costly
objective, “accuracy,” is not good), so too, here, we seek high-precision trajectory
repeatability. The paper shows how MHE can bring this about even in a domestic
environment where there is considerable deviation from a nominal geometric model.
The present article compares issues of repeatability in the present, nonholonomic
case with the better-known literature pertaining to repeatability of holonomic,
industrial robots. The experimental run used to illustrate the system estimation and
control can be seen on-line: https://youtu.be/7Yrc3IuXBus.

2 Process Equations

Unlike accelerometer-driven state equations, it is not necessary to use time (t) as
the independent variable. In keeping with [2] we apply the kinematic variable α

given by

α = θ1 + θ2

2
(1)

where θ1 and θ2 are the forward wheel rotations of the two motor-driven wheels, in
radians, as measured using optical encoders, per Fig. 1.

If θ1 and θ2 are both positive through the path leading to the ith observation in
the short trajectory shown in Fig. 1, then the path length, si, shown in the figure, is,
according to the nominal forward kinematics, given by

s = Rα (2)

Fig. 1 Definition of angle-rotation coordinates; Camera 2 captures ith observation zi

https://youtu.be/7Yrc3IuXBus
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where, as indicated in Fig. 1, R is the radius of both of the two drive wheels. The
choice of independent variable, α = (θ1 + θ2)/2, was helpful in the EKF application
because of the process noise [6] of the differential-equation plant model: EKF adds
to each of the three kinematic state equations given below zero-mean white noise w:

dxP

dα
= R cosφP + wx (α) (3)

dyP

dα
= R sinφP + wy (α) (4)

dφP

dα
= R

b
u (α) + wφ (α) (5)

where two of the three states, xP, yP, are the in-plane coordinates of point P on the
chair, which is the midpoint between the two wheels as shown in Fig. 1, and where
φP is the in-plane orientation of the chair’s forward direction relative to the fixed
x-y frame. The initial condition “φA” shown in Fig. 1 is the initial (starting point
A) wheelchair orientation for the trajectory indicated. The “control variable” u is an
indication of steering at any path juncture; in terms of the two measurable wheel
rotations, θ1 and θ2:

u = Δθ2 − Δθ1

Δθ2 + Δθ1
(6)

in the infinitesimal limit where each incremental Δ becomes the differential d.
(In practice, u is evaluated using the small but finite Δθ1 and Δθ2 as measured
simultaneously by each wheel’s optical encoder.) The introduced control variable u
in the stochastic Eqs. (3)–(5) is related to the signed radius of curvature ρ of the path
at location s according to

u = R

ρ
(7)

The choice of the kinematic variable α rather than time t as the independent
variable ensures that, when the chair is at rest, EKF’s estimate uncertainty as
indicated by the state error-covariance matrix ceases to grow as time passes. Instead,
between observations, state covariances change only with advances in distance
traveled, s = Rα.

At the instant pictured in Fig. 1, one of several wall cues (see Fig. 2) is detected
by the onboard, calibrated “Camera 2.” The cue’s nominal coordinates relative to
the indicated reference frame are known. The observation’s single component, the
horizontal location of the cue in the indicated image, is denoted by zi. This is the ith
of a selected batch of n observations—z1, z2, . . . zi . . . zn—to be used in a form
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Fig. 2 Camera beneath seat acquires wall-cue image

of Moving Horizons Estimator (MHE). For purposes of the present discussion no
generality is lost in considering the use of the n observations to generate the estimate
of the initial state, xA, yA, φA, that minimizes:

J = J (xA, yA, φA) = 1
2

rTWr (8)

where W is a diagonally dominant, symmetric, positive-definite, nxn weighting
matrix and where the ith of n elements of the vector of residuals r is given by:

ri = zi − hi

(
xP i (xA, yA, φA) , yP i (xA, yA, φA) , φP i (xA, yA, φA) ; xQi, yQi

)

(9)

where the nonlinear functional form hi depends upon calibration parameters of the
onboard camera used for the ith observation (Camera 1 or Camera 2 in Fig. 1) as
well as the previously measured nominal in-plane position of the observed cue. The
two parameterizing values, xQi, yQi, are these measured coordinates in the x-y plane
of the floor of the particular fiducial or “cue” sampled for the ith observation. The
focal axes of the two cameras are parallel to the floor and mounted such that they
are at the same elevation above the floor as the center of the cues.

The dependency of the elements xPi, yPi, φPi on initial conditions xA, yA,
φA is nonlinear and requires numerical integration of the modeled nonholonomic
kinematics, that is, the deterministic part of Eqs. (3)–(5). This includes the domain
0 < α < si/R over which the batch of observations, including observation i, as well
as starting point A is acquired.
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Fig. 3 Series of the batch of n observations

The nonlinearity of this part of the observation equation requires iteration, as
indicated below, in order to minimize J with respect to initial conditions xA, yA, φA.
This would ordinarily necessitate separate numerical integration for each iteration
as estimated initial conditions converge sequentially with increments ΔxA, ΔyA,
ΔφA recalculated for each iteration. (A three-dimensional rigid-body counterpart to
our problem, such as with satellite-attitude estimation [8], the inspiration for [2],
would, for batch estimation, require repeated, iterative numerical integration of the
state equations together with a 3x3 state-transition matrix �(ti,tA) from which the
counterparts to ΔxA, ΔyA, ΔφA are iteratively determined.)

Because of the integrals of Eqs. (3)–(5) developed below, however, the initial
numerical integration is re-used as the batch algorithm undergoes iterative conver-
gence. This (together with affordable, very fast, computation hardware) makes the
MHE—computationally costly relative to EKF—practicable for the present real-
time application. It is worth noting that the recursive (not batch) EKF also requires
real-time numerical integration of the state equations. EKF also requires real-time
numerical integration of covariance estimates of a 3x3 error-covariance matrix [6],
which the present estimator does not. So, although EKF does not require retention
of the typical batch size, n, of twenty or so observations, it does require other
numerical/memory overhead not needed here.

Using the third of Eq. (1), φP can be integrated forward from φA through all of
the n points where observations are acquired, as seen in Fig. 3. Thus, from Eqs. (5)
and (6):

φP (α) = φA +
∫ α

0

R

b
u (λ) dλ ≈ φA +

m∑

j=1

R
(
Δθ2j − Δθ1j

)

2b
≡ φA + I (α)

(10)
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where Δθ1j and Δθ2j are the jth of m wheel rotation increments, in radians, of
wheels 1 and 2, simultaneously acquired. These come in typically very small
encoder-measured increments, under 1/100th of a radian, so m is a large integer
(much larger than the number n of camera/cue samples across the same horizon.)

The integral I(α) can be re-used in the iterative process to solve for the initial
conditions, xA, yA, φA, that minimize J(xA, yA, φA). The first correction, using

Gauss–Newton iteration, is determined from , the 3-element initial guess for xA,
yA, φA, according to [8]

(11)

where r and W are, respectively, n sample residuals and the nxn weighting matrix,
mentioned above; and where A is a 3-column, n-row matrix whose ith-row elements
are given by

(12)

(13)

(14)

Evaluation of these partial derivatives for the ith observation equation, hi, entails
the estimated position and orientation of the camera of the observation, and the
sensitivity of that estimated camera position/orientation to increments in the initial-
condition estimates given by ΔxA, ΔyA, ΔφA.

Consider the initial angular increment ΔφA, shown in Fig. 4a, associated with the
batch of samples indicated in Fig. 3. The corresponding planar, rigid-body rotation
of the odometry-based path allows for efficient evaluation of the partial derivative
of Eq. (14). In particular, the increment in the estimated angular position of the
vehicle at the juncture of the ith observation is the same everywhere across the
interval of the batch, while the increment in the vehicle wheel-midpoint position is
a simple, planar, rigid-body rotation of the entire path, such that, in the limit as ΔφA

approaches zero:

ΔxPi = −yrel ΔφA (15)

ΔyPi = xrel ΔφA (16)
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Fig. 4 (a) Response of ith observation to ΔφA. (b) Response of ith observation to ΔxA,ΔyA

where xrel = (xPi − xA) and yrel = (yPi − yA) for Pi, the position of the midpoint
between the wheels, at the moment of the ith observation within the batch.

Consider a corresponding increment, ΔxA, ΔyA, in the estimated position of
point A, as shown in Fig. 4b. If the entire path moves as a rigid body with this
increment, then the corresponding change in the estimate of the position of the
midpoint between the wheels at juncture i due to this move is

ΔxPi = ΔxA (17)

ΔyPi = ΔyA (18)
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Because each of the two cameras depicted in Fig. 1 move as a rigid body with
the vehicle, Eqs. (17) and (18) also describe sensitivity in the plane of the floor of
estimates of each camera’s focal point.

With known coordinates xQi, yQi of the cue detected in the ith observation, the
observation equation hi of Eq. (9) can be written, for the simple pinhole camera
model [2] used herein:

hi

(
xP i, yP i, φP i; xQi, yQi

)

= f N
(
xP i, yP i, φP i; xQi, yQi

)
/D

(
xP i, yP i, φP i; xQi, yQi

)
(19)

where f is the single intrinsic camera-calibration parameter, and where functions
N and D are parametrized by the aforementioned extrinsic camera-calibration
parameters. In light of Eqs. (17) and (18) the derivatives of Eqs. (12) and (13) can
be written:

= f (N ( )/D – N D ( )/D2) (20)

= f (N ( )/D – N D ( )/D2) (21)

where the subscripts of N and D denote partial derivatives of these length expres-
sions with respect to xPi or yPi.

Likewise, the estimate of the angular position of each camera increments, along
with the angular increment of the entire wheelchair base, as ΔφA. Evaluation of
Ai3 entails the response of the sample zi both to orientation change of the camera
consistent with ΔφA and to position change of the camera’s focal point as a
consequence of ΔφA, per Eqs. (15) and (16) above.

f (N /D – N D /D2)

(22)

where yrel xreldenote the estimated position of the camera’s focal point with respect
to the estimate of point A, referred to the room’s fixed y and x reference frames,
respectively.

Subsequent iterations through to convergence are computed quickly

(23)

using the same once-integrated path of Figs. 3, 4, and 5 and successively defined
changes in the in-plane coordinates and orientation of the initial condition at A. Each
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Fig. 5 Estimate of Camera 2’s focal-point position in the plane of the floor, using previously found
extrinsic calibration parameters, changes together with estimated initial-condition changes, 	xA,
	yA

repetition of Eq. (23) also requires recalculation, for each sample i in the batch, of
the vehicle coordinates at the wall-cue-sample path junctures:

new φPi = old φP i + ΔφA (24)

new xP i = old xP i + ΔxA − sin
(
ΔφA

) ∗ yrel − (
1 − cos

(
ΔφA

)) ∗ xrel (25)

new yP i = old yP i + ΔyA + sin
(
ΔφA

) ∗ xrel − (
1 − cos

(
ΔφA

)) ∗ yrel (26)

where xrel and yrel locate Pi relative to A, according to the outgoing estimates. The
functions sin (ΔφA) and cos(ΔφA) are computed once for all n observations, helping
make this calculation compatible with real time.

Point A though identified above with an “initial condition” could be defined as
any point along a path segment that includes the batch of samples; for purposes of
real-time trajectory tracking, it is considered to be the instantaneous location of P
on the vehicle at the moment when the iterative batch calculation is commenced.
Ongoing wheel-rotation samples are used to transition the converged estimate to the
current point; a PID control algorithm steers the vehicle toward a corresponding
reference-path juncture. The reference path, in turn, is determined as discussed
below based on the result of a similar exercise conducted over the course of a prior
teaching event, where a human pushes the chair through the path which is to be
repeated.
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Of primary practical interest is system repeatability: How closely and reliably
does the chair come to repeating the trajectory as taught? The remainder of the
present work is directed toward evaluation of the relationship between repeatability
and the choice and acquisition during tracking of the batch of samples used to create
estimates at various junctures throughout the trajectory of interest.

3 Repeatability

For holonomic, industrial, robotic arms, repeatability is often considered the most
critical system attribute; it is sometimes achieved everywhere across the extent
of the end effector and tool to within a few hundredths of a millimeter. For the
wheelchair, repeatability of the tracked path is similarly important since clearance
of the outermost portions of the vehicle/rider combination, with respect to stationary
walls and fixtures, can be tight, requiring, for example, repetition of the taught path
to within a few millimeters across the extent of the moving wheelchair.

Repeatability for the vehicle depends largely on the estimation process. Selection
of the batch of samples can be achieved in a way that promotes reliable repeatability
precision approaching the level of millimeters according to the analysis below.

Figure 6 is a graphical representation of the reference path of https://youtu.be/
7Yrc3IuXBus. This trajectory is used to illustrate the repeatability issues. Using
the same batch approach during teaching as is discussed below in the context of
tracking, best estimates of xP, yP, and φ are determined at each nodal point indicated
in Fig. 6. Each interval, or leg, between consecutive nodal points is approximated

Fig. 6 Reference path used in http://youtu.be/7Yrc3luXBus

https://youtu.be/7Yrc3IuXBus
https://youtu.be/7Yrc3IuXBus
http://youtu.be/7Yrc3luXBus
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with a straight line. A dimensionless coordinate ξ is defined to range from 0 to 1,
as the reference moves across the leg in the direction of the wheelchair movement.
The reference path at intermediate leg junctures interpolates linearly between nodes,
with ξ.

Because time t is not used as the independent variable, the reference path
advances by sequential leg advancement and by a changing ξ within a leg. At any
juncture, the current estimate of xP, yP, and φ is used to find ξ within the current leg
by identifying the intersection between the straight line of the leg and the estimated
wheelchair-axle line that passes through the current estimate of xP, yP. Whenever ξ

calculated in this way becomes greater than 1 the reference-path leg is advanced.
Target, or “reference” speed, R(dθ1/dt + dθ2/dt)/2, during tracking is set

separately, based in part on reference-path curvature. The steering, or “control,”
u = (dθ2/dt – dθ1/dt)/(dθ1/dt + dθ2/dt), is calculated based on a PID-like controller,
using both the reference path and the estimated, current xP–yP–φ sequence.
Together, these relations are used to calculate inputs to the two separate driving
motors [2].

Repeatability depends in part on the effectuality of this control scheme—in
particular the ability to track accurately the taught reference, or target, path. Herein,
however, we focus on a different aspect of repeatability, one that pertains to
estimation. In particular, one necessary condition for accurate repeatability can be
tested directly using historical runs such as that of https://youtu.be/7Yrc3IuXBus.

The necessary condition is as follows: Suppose that estimates of an instantaneous
xP, yP, and φ within a given tracking event are based upon a particular batch
of n observations—z1, z2, . . . zi . . . zn—acquired shortly before that point in
accordance with a proposed scheme for identifying the batch. Suppose further
that an additional, completely different batch of observations—z′

1, z′
2, . . . z′

i
. . . z′

n—from the same event, likewise selected in accordance with the proposed
moving-horizons sample-selection scheme, is separately used to estimate xP, yP, and
φ at the same juncture. To within any specified tracking accuracy, the two estimates
must be the same.

4 Observability

The ability of the algorithm to satisfy the necessary condition of generating the
same estimates with two distinct, qualifying batches of samples depends in part on
the “observability” question [6]. For example, even in the case of perfect kinematic
and observation modeling of the system, if even a very large number of elements of
z and z′ entail observation of just one particular cue, then the state is not observable.
(An infinite number of paths, encircling the observed cue, could account identically
well for the same observations.)

If Cues A through G of Fig. 7 were located at distances from the path far
greater than shown, observability of the state would suffer. Even if these many, well-
separated cues were to be detected with the same density per distance traveled as

https://youtu.be/7Yrc3IuXBus


Moving Horizons Estimation for Wheelchair Trajectory Repeatability in the Home 97

Fig. 7 First test portion of
trajectory

per the current maneuver, observability would approach zero in the limit as distances
approach infinity. Thus, other things being equal, observability is better if/as cues
are close to the passing vehicle.

Additionally, if just two cues are represented in the batch, but there is no
movement of the chair between samples, then, even though they may be located
close to the vehicle, the state is not observable. If two cues are detected and there
is some, but relatively little, movement of the base, then observability is poor.
Consider, for example, the trajectory segment shown in Fig. 7, and pose estimates
determined during a tracking event at the juncture denoted by X on the path. For
purposes of illustration, we restrict the samples applied to the estimates xP, yP, φ to
the final four, denoted here by—z1 z2 z3 z4—and entailing Cues C, E, and F only, as
indicated in the top half of Fig. 8. Each of the five estimates entails a different group
of samples of these three cues acquired during the same run. The five are contained
within a 0.1-inch-radius circle.

In the bottom half of the same figure are five estimates, also acquired during this
run, entailing just two of the three cues: C and E. Reduced observability is implied
by the larger, 0.4-inch region across which the four estimates are strewn.

The comparison of the top versus the bottom halves of Fig. 8 is predicted by
the 3x3 symmetric matrix ATWA, of Eq. (11), as follows: The eigenvalues of this
matrix, λ1 > λ2 > λ3, are positive and real, and relate to the condition number [9]
according to

κ = λ1/λ3 (27)

The projection of the three-dimensional eigenvalue ellipsoid into the x-y plane
reveals the least observable Cartesian direction. As expected, Fig. 8 shows, in both
cases, this worst direction to be perpendicular to the recent direction of travel up
to that point. The slight difference in direction shown by the two bold arrows in
the figure is reflected in the distribution of each of the two groups of five estimates
based on five varying batches of observations. The magnitudes of the two arrows
are inversely proportional to λ3, whose magnitude is also reflected in the extent of
distribution of the two sets of estimates. Because of the choice of units—radians for
orientation and inches for position—the eigenvector associated with λ1 is almost
completely perpendicular to the x-y plane, that is, it is associated with estimates of
vehicle orientation, φ. Thus λ2 and λ3, together with their respective eigenvectors,
are indicators of the direction and magnitude of variance of the best in-plane
direction (for estimates) and the worst in-plane direction.
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Fig. 8 Estimates of the state at the same point, applying different groups of samples of the same
wall-cue combinations all acquired during the same single run—(top) involving Cues C, E, and F,
and (bottom) involving only Cues C and E

5 Fixing a Through-the-Door Problem

The usefulness of the above analysis for batch selection during subsequent tracking
events can perhaps best be appreciated by relating anecdotally the experience with
the above trajectory: With a more or less ad-hoc selection and weighting of the
samples using the most-recent 20 observations—with the caveat that no more than
the most-recent 4 of these entailing any one particular cue would be applied—there
was one problematic portion of path: The final doorway re-entry into the bathroom,
shortly before “finish” in Fig. 6. Seemingly randomly, the vehicle would deviate
laterally and sometimes hit the side of the entry rather than pass through.

Figure 9 shows the distribution of cues in the vicinity of this portion of the
maneuver. As a test, a new, additional cue was added, “Cue 0,” to the local group of
prior cues, as shown in Fig. 9. The same index, κ, of matrix condition was calculated,
using data taken in a new run, across the interval shown in Fig. 9.
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Fig. 9 Introduction of Cue 0 into the problematic region of door entry; each spike to the right is a
cue observation. Note first cluster and second cluster of Cue-0 observations

Fig. 10 Effect on 10 x-y position-estimate trajectories of deleting earlier, vs retaining in batch,
“first-cluster” Cue-0 samples

Figure 9 also shows the series of observations of Cue 0 across the interval.
Each peak represents a new sample. The corresponding sequence of κ, based on
the aforementioned ad-hoc method for batch selection at any point along the path
segment, s, and equal weighting of 20 samples, is shown in Fig. 10.

The condition number abruptly rises after four samples of Cue 0 have been
acquired in the second grouping of Fig. 9; this is just prior to attempted entering
through the door.
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In order to interpret this peak, consider the large number of samples of Cue 12
that occurs between the two clusters of Cue-0 samples, as shown in Fig. 9. Off-line,
using various groups of two of these many Cue-12 samples, the estimates leading
up to the door were recalculated. Although other details of the batch were held
constant, as indicated in the lower left of Fig. 10, the spike in κ coincided with
an abrupt separation of the various estimates. The range of estimates at the same
juncture in the trajectory varies by almost 2 inches. This is consistent with the poor
repeatability that had been observed physically passing through the door.

For contrast, the identical 10 groups of Cue-12 (nonintersecting sets of 2)
samples were applied to 10 new estimates of the state across the same portion. This
time, the “old,” group of four samples of Cue 0, from the first cluster of samples
shown in Fig. 9, was retained. Earlier, older samples of other cues were dropped.
The κ series changed dramatically, as indicated in the center of Fig. 10; it did not
spike at all. In keeping with this result, the ten different estimates actually converged
further toward each other, rather than diverging. Whereas the variability in Cue-12
membership of the batch accounted for nearly two inches of variation among the
estimates absent the early Cue-0 participation, this same variability resulted in a
mere quarter of an inch range with the early cues included.

It is interesting that mean estimates of the two groups are significantly different—
by about 4 inches. Provided, with the inclusion and similar weighting of first-cluster
samples of Cue 0, the repeatability holds up when comparing the teaching-phase
estimates against repeat-phase estimates, this is not a deterrent. It is similar
to the distinction among industrial, holonomic robots between repeatability and
accuracy—where an order-of-magnitude difference, in favor of the former, is the
norm, but where success of the repeat operation depends upon realizing the tighter
repeat-phase precision.

6 Alternative Formulation

In addition to calculating, according to the equal-weighting case of Eqs. (11)–(22),
ATA, the least-squares code was used off-line to approximate, at any given juncture
s along the trajectory, via finite difference, the matrix B given by

(28)

(29)

(30)
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From Eq. (11), we see

B =
[
AT A

]−1
AT (31)

from which

BT = A
[
AT A

]−T
(32)

and, since ATA is symmetric,

[
BBT

]−1 = AT A (33)

Values of κ calculated using [BBT]−1 were in practice generally very close
(within 1%) of those calculated using ATA. The exception occurred when the vehicle
was making a relatively sharp turn, such as that shown in Fig. 9. It is in similar cases
where it is believed the EKF differs (unfavorably) from the MHE; and in these cases
the two sets of κ values can differ, as indicated in Fig. 11, by 50%. We use the
(generally more conservative, higher valued) case where κ is determined from finite
differencing.

The overall lesson is that a necessary condition for repeatability, for any given
formulation of wall-cue location, batch collection, and trajectory plan, is a low
condition number calculated off-line, based upon teaching-phase data, using the
finite-difference-based [BBT]−1.

Sufficient conditions for repeatability extend to the matters of control/tracking
accuracy, assurance of acquisition of requisite cue indications, and reasonably
confined wheel slip. One advantage of the wheeled device, as distinct from a
flying device, is that all three of these things can normally be ensured by way of
slowing the speed of the vehicle, which does not otherwise diminish the above
algorithms. Regarding the need for good tracking: dynamics-induced deviation from
the reference path, provided the estimates are accurate, is always “known” within
the program, and will almost always tend toward zero as speed is lowered where this
is detected. Likewise, wheel slip, unless external forces are present, is controlled by
slower speeds on curves and reduced acceleration, both of which can be controlled
automatically. Rolling slip is now well-detected during aircraft landing and with
autos as with anti-lock brakes.

If, during tracking, early efforts to detect a key cue in a key region of the repeated
path fail, then there is also the prospect of reducing speed in order to “try harder”
(e.g., apply transported lighting or switch to more sensitive cue-detection software.)
There is even the prospect of reversing direction along the path, briefly, and “trying
again.”

A remaining condition for sufficiency is a “reasonably” accurate model. This
would include geometric aspects of the chair and cameras, locally (regionally) con-
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Fig. 11 Alternate formulations of condition number for the interval shown in Fig. 9. Shown for
each of 2 batch formulations

sistent measurements/entries of cue locations, and well-calibrated intrinsic camera
parameters. Importantly, global consistency of the cue locations is unnecessary if,
locally, cue locations of proximate cues are accurate, one in relation to another. In
this last point, there is surprising insensitivity to a random corruption, corruption by
as much as an inch, of just one of the cues even in a local cluster of (say) 4 cues
used in the estimates within a region of a taught path. Depending upon a variety of
factors, the present algorithm compensates for entry inaccuracy due to the use of the
same corrupted location-entry for both teaching and tracking. The effect on tracking
tends to be undetectable even for an inch of geometric incompatibility with respect
to the other 3 cues.

7 Summary and Conclusions

The prospect of using teach/repeat for a nonholonomic wheelchair in a geometri-
cally imprecise, but permanent, setting is set forth in terms of achieving a high level
of repeatability. This repeatability criterion has a counterpart in industrial holonomic
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robots. An important necessary condition for this goal is shown herein using data
from an experimental, home system with high-precision requirements and wall
fiducials; it uses locally accurate (commensurate) pre-entered wall positions but
makes no effort to produce global accuracy. It is shown that, during a setup phase,
there is a good prospect of testing taught trajectories off-line principally by means
of condition-number calculation, in order to determine whether differing batches of
observations, drawn from the same run, will produce very nearly identical results of
the corresponding sequence of vehicle poses. This is a first step in the direction of
creating useful, real-world autonomy.

Earlier, EKF-based efforts toward this objective [2] suffered from inadequate
estimation reliability and accuracy. That is one reason why the approach was not
pursued beyond some trials at the Hines VA Hospital in Hines, IL. The other reason
had to do with optimism for Simultaneous Localization and Mapping (SLAM)
[10]. Developed vigorously by the robotics community, SLAM might have obviated
the need for the preplaced, otherwise-unnecessary wall cues as well as the need
for trajectory teaching episodes, during set-up, to connect between every pose-of-
departure/pose-of-arrival combination as may be needed by the severely disabled
veteran.

Faster computing, more precise and reliable estimation due to MHE per the
present approach (https://www.youtube.com/watch?v=mZ0cadG2ahM&feature=
youtu.be), and lack of emergence of SLAM, encourages further consideration of
teach/repeat.

Additional, currently unmet needs for autonomous vehicles might be developed
relatively easily and robustly using the same approach, particularly if/as ancillary
obstacle avoidance—exploiting proximity-sensor records from previous, obstacle-
free runs of the same trajectory—works well. While one urgent application may
be the severely disabled veteran, other wheelchair-bound users, including the blind,
could benefit. Nonredundant, comprehensive floor maintenance, to replace bounded
random motion, is also a good possibility. Also possible are surveillance and
delivery within a given building or vessel.
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Exact Solutions to the Spline Equations

Anthony A. Ruffa and Bourama Toni

1 Introduction

Spline curves are mathematically described by piecewise polynomials. They provide
an interface to design and control the shape of complex curves and surfaces.

In particular, cubic splines are a well-used tool1 for curve fitting for a given
sequence of data points called control points [1]. Indeed, cubic polynomials are
the lowest-degree polynomial to support an inflection, commonly present in most
complex curves; they are also well-behaved numerically, yielding usually smooth
curves. High-degree polynomials tend to exhibit greater sensitivity to the positions
of the control points. The process of cubic curve fitting consists of constructing a
complex curve with a high number of inflection points and several pieces of cubic
curves fk(x) = yk = ak + bkx + ckx

2 + dkx
3 on each segment [xk, xk+1] such that

1Applications are mostly in CAD (computer-assisted design), CAM (computer-assisted manufac-
turing), and computer graphics systems when an operator wants to draw a smooth curve through
data points not subject to error.
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they satisfy the so-called Cr−continuity, r = 0, 1, 2.2 That is, each curve passes
through its control points, the slopes and the curvatures match where the curves
join. Or, equivalently

1. fk(xk) = yk. fk(xk+1) = yk+1.

2. f ′
k(xk+1) = f ′

k+1(xk+1)

3. f ′′
k (xk+1) = f ′′

k+1(xk+1).

Note here that the second derivatives f ′′
k (x) = 2ck + 6dkx are linear functions.

Therefore, inflection points will appear if and only if the second derivative y′′
k

and y′′
k+1 have opposite sign leading to additional curvature conditions to avoid

unwanted inflection points, the so-called extraneous inflection points, indicating
a change of concavity where no such reversal exists in the actual physical problem
being modeled. As for the physical problem for design ship’s hull and automobile
body, the objective is to produce a smooth geometric outline connecting the knots
under specific curvature conditions. In other words, sometimes certain regions
require a positive second derivative when the cubic spline is generating a negative
one, creating an unwanted inflection point; and in such a case, the usual cubic spline
does not allow any correction, thus the need of a cubic spline endowed with a
parameter which can be varied to generate the curvature conditions leading to the
correct smooth geometric outline; this is provided by the so-called hyperbolic cubic
spline or cubic spline under tension described in Sect. 4; the tension factor acts as
a correcting parameter that can be changed appropriately to remove all unwanted
extraneous inflection points, source of undesirable oscillations in certain regions.
As such, the spline under tension represents better the early draftsman’s techniques.

It is common to give the slope at both ends of the curve leading to zero second
derivative, for the so-called natural cubic splines. However, cubic splines can
oscillate within segments in the region of a discontinuity, including discontinuity
in slopes. For the case of equal knot spacing, the cubic spline equations form a
symmetric tridiagonal Toeplitz system. Such systems have an exact solution [3],
which can support a more systematic investigation into the mechanisms governing
the oscillatory response.

Fitting a spline to a data set approximating a step function illustrates the
oscillatory response that can occur in the region of a discontinuity, and will be
the primary focus here. Splines under tension [2] attempt to simulate a spline as
a cable under tension, which also leads to a symmetric tridiagonal Toeplitz system
for the case of equal knot spacing. Here, the tension can be increased to attenuate
the oscillations over a shorter length scale.

This chapter is organized as follows. Section 2 develops the exact solution
for a cubic spline with equal knot spacing and computes a curve fit for a single
nonzero data point. The superposition of such solutions yields a curve fit for an
arbitrary data set (with an emphasis on data sets approximating a step function).

2Draftmen realize a smooth interpolation curve with a long flexible beam, a spline, constrained to
pass by all given points, outlining the deflection curve using heavy objects (the drawing dogs).
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Section 3 focuses on the effect of end conditions for the cubic spline. Section 4
focuses on splines under tension and their potential for mitigating oscillations.
The use of imaginary tension is also explored as an approach to remove the high-
amplitude oscillations in the region of a discontinuity (at the expense of introducing
low-amplitude oscillations throughout the entire curve fit). A “composite spline”
provides a means to confine the remaining oscillations to arbitrarily defined regions.
Finally, the conclusions are presented in Sect. 5.

2 Cubic Splines

We briefly recall the mathematical spline3 as follows:

Definition 1 Given a = x0 < x1 < . . . < tN = b, a function S is called a spline
of degree n ≥ 1 or n-spline with the respect the so-called knots xk if it satisfies the
following:

1. S is a polynomial of degree at most n over the interval [xk, xk+1],
2. S ∈ Cn−1[a, b] (smoothness condition)

Note that possessing continuous first- and higher-order derivative makes a piecewise
polynomial even smoother.

A natural cubic spline4 for n equally spaced knots having data values yk (for
1 ≤ k ≤ n) involves a curve fit Yk to each segment (which is assumed to have a unit
length) as follows [1]:

Yk(t) = ak + bkt + ckt
2 + dkt

3; (2.1)

where

0 ≤ t ≤ 1;

Yk(0) = ak = yk;Yk(1) = yk+1 = ak + bk + ck + dk

Y ′
k(0) = bk = Dk;Y ′

k(1) = Dk+1 = bk + 2ck + 3dk

3Most of the early studies on spline were done by I.J. Schoenberg (1903–1990), often referred to
as the father of splines.
4This is the curve generated by forcing a flexible elastic rod into the data points but letting the
slope at the ends be free to adjust to positions that minimizes the oscillatory behavior of the curve.
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Solving these four equations yields

ck = 3(yk+1 − yk) − 2Dk − Dk+1;

dk = 2(yk − yk+1) + Dk + Dk+1. (2.2)

Here, Dk is the first spatial derivative at knot k. The continuity of the first
derivative means that the resulting piecewise curve has no sharp corners, while the
continuity of the second derivative defines the radius of curvature at each point. The
process is called Hermite Interpolation. Imposing the requirement of continuous
first and second spatial derivatives at each knot, as well as a zero second derivative
at both endpoints leads first to

Dk−1 + 4Dk + Dk+1 = 3(yk+1 − yk−1), (2.3)

and ultimately to the following system of equations [1]:

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

2 1
1 4 1

1 4 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 4 1
1 4 1

1 2

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

D1

D2

D3
...

Dn−2

Dn−1

Dn

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

3(y2 − y1)

3(y3 − y1)

3(y4 − y2)
...

3(yn−1 − yn−3)

3(yn − yn−2)

3(yn − yn−1)

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

. (2.4)

Equation (2.4) represents a symmetric tridiagonal Toeplitz system and thus has
an exact solution [3]. The row structure is [1, 4, 1], except for the first and last rows.
The exact solution leads to the solution to Eq. (2.1).

As a shorthand, we denote (2.4) as AjkDk = Bj (omitting the summation
symbol). The solution is derived from the following lemma:

Lemma 1 The system of equations

AjkX
(m)
k = δjm (2.5)

where δjm is the Kronecker delta, admits a unique exact solution for each value of
m ∈ [1, n].
Proof First seeking solutions of the form eγ k [3] the Toeplitz row structure [1, 4, 1]
then leads to eγ k + 4eγ (k+1) + eγ (k+2) = 0, so that eγ = −2 ± √

3, or γ1,2 ∼=
±1.3170 + πi.
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Denoting α = Re(γ1), the following solutions can be developed:

E
(m)
k = eα(k−m) cos π(k − m); (2.6)

F
(m)
k = e−α(k−m) cos π(k − m) = 1

E
(m)
k

; (2.7)

Gk = e−αk cos πk; (2.8)

Hk = eα(k−n) cos πk. (2.9)

For 2 ≤ m ≤ n − 1, the solutions (2.6)–(2.9) can be superimposed as follows:

X̂
(m)
k = E

(m)
k + C

(m)
1 Gk + C

(m)
2 Hk; k < m; (2.10)

X̂
(m)
k = F

(m)
k + C

(m)
1 Gk + C

(m)
2 Hk; k ≥ m. (2.11)

The constants C
(m)
1 and C

(m)
2 result from the solution of the following equations:

C
(m)
1 (2G1 + G2) + C

(m)
2 (2H1 + H2) + (2E

(m)
1 + E

(m)
2 ) = 0; (2.12)

C
(m)
1 (Gn−1 + 2Gn) + C

(m)
2 (Hn−1 + 2Hn) + (F

(m)
n−1 + 2F (m)

n ) = 0. (2.13)

The solution to AjkX
(m)
k = δjm for 2 ≤ m ≤ n − 1 is then as follows:

X
(m)
k = X̂

(m)
k

C
(m)
3

; (2.14)

where

C
(m)
3 = X̂

(m)
m−1 + 4X̂(m)

m + X̂
(m)
m+1; 2 ≤ m ≤ n − 1. (2.15)

The endpoints correspond, respectively, to m = 1 and m = n as follows:
For m = 1, the solution is

X
(1)
k = F

(1)
k

C
(1)
3

, (2.16)
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where

C
(1)
3 = 2F

(1)
1 + F

(1)
2 . (2.17)

Finally, for m = n, the solution is

X
(n)
k = E

(n)
k

C
(n)
3

, (2.18)

where

C
(n)
3 = E

(n)
n−1 + 2E(n)

n . (2.19)

Hence, the claim.

We then prove

Theorem 1 The exact solution to Eq. (2.3), and hence the solution to Eq. (2.1),is
obtained as

Dk = 3
n−1∑

j=2

X
(j)
k · (yj+1 − yj−1) + 3X

(1)
k · (y2 − y1) + 3X

(n)
k · (yn − yn−1). (2.20)

where the term X
(m)
k , 1 ≤ m ≤ n, is given in the above lemma.

Proof The exact solution is derived from the superposition of the solutions to the n

systems AjkX
(m)
k = δjm, each weighted by the appropriate right-hand side (RHS)

vector term in (2.1), leading to the expression for Dk as claimed in the theorem.

Remark 1 From the expression of the solution

Dk = 3
n−1∑

j=2

X
(j)
k · (yj+1 − yj−1) + 3X

(1)
k · (y2 − y1) + 3X

(n)
k · (yn − yn−1), (2.21)

we note that for interior knots, X
(m)
k grows exponentially for k < m and decays

exponentially for k > m. The cos πk term in (2.6), (2.7), (2.8), and (2.9) results
from the [1, 4, 1] row structure of Ajk in (2.4).5 The solution X

(m)
k (Fig. 1) has

compact support, and every other term changes sign.

To illustrate, we take m = 100 and n = 200.

5The eigenvalues for [1, 4, 1] tridiagonal symmetric Toeplitz matrix are given by λk = 4 +
2 cos kπ

n+1 .
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Fig. 1 The solution to AjkX
(m)
k = δjm for m = 100 and n = 200

We consider next the cases of a data set that approximates, respectively, a
step function and a sine wave; however, most of the analysis henceforth is done
graphically, and illustrates how oscillations cancel out by superposition of solutions.

2.1 Approximating a Step Function

The RHS vector Bj for a data set that approximates a step function (Fig. 2) has
nonzero data points at two adjacent knots. The derivative vector Dk (Fig. 3) is
generated by superimposing the solutions for two systems, each with an RHS vector
having a single nonzero data point.

A curve fit of an n-knot data set without discontinuities can be broken down into
n systems, each representing a curve fit to a single nonzero data point. Figure 4
shows one such curve fit. When the n single-point curve fits are superimposed, the
oscillations cancel.

The cancellation effect also occurs in curve fits of data sets approximating step
functions. For example, the curve fits in Figs. 5 and 6 oscillate in the region of the
discontinuities; however, superimposing them (Fig. 7) yields a curve fit of a straight
line, and the oscillations cancel.

2.2 Approximating a Sine Wave

The curve fit to an n-knot data set that approximates a sine wave (Fig. 8) can also be
solved as n separate cubic splines, each with only one nonzero data point. Figure 9
shows the curve fit to a single nonzero data point (at k = 50), which is identical
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Fig. 2 The RHS vector Bj for a data set approximating a step function, i.e., yk = 1 for 1 ≤ k ≤
100, and yk = 0 otherwise
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Fig. 3 The derivative vector Dk corresponding to a data set approximating a step function

to the curve fit in Fig. 4, except for differences in the magnitude and knot number.
When n such curve fits are superimposed, the oscillations cancel (Fig. 8). Figure 10
shows the superposition of n/2 such curve fits taken from the central region of the
data set. The oscillations cancel except at the edges. Superimposing the curve fit to
the remaining nonzero data points (Fig. 11) with that of Fig. 10 recovers the curve
fit of Fig. 8.
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Fig. 4 The curve fit for a single nonzero data point at k = 100
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Fig. 5 The curve fit corresponding to a data set approximating the step function defined by yk = 1
for 1 ≤ k ≤ 100 and yk = 0 otherwise

3 End Conditions

Endpoint constraints lead to different types of cubic splines, from the clamped spline
with specified first derivative boundary conditions, to parabolically terminated
spline with zero third derivative on the first and last segment, to curvature-adjusted
spline with the second derivative boundary conditions specified, to the natural cubic
spline with zero end second derivatives, which is our focus here. The relevant feature
of the resulting spline is the minimum of the oscillatory behavior they possess.



114 A. A. Ruffa and B. Toni

20 40 60 80 100 120 140 160 180 200
Knot Number

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
C

ur
ve

 F
it

Fig. 6 The curve fit corresponding to a data set approximating the step function defined by yk = 1
for 100 < k ≤ n and yk = 0 otherwise
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Fig. 7 The superposition of the curve fits from Figs. 5 and 6. Note that the oscillations cancel

For small values of n, the end conditions can affect the entire system [1].
However, for large values of n, the end conditions have little or no influence outside
of a small region. This can be inferred from the curve fit to a single nonzero data
point at the left boundary (Fig. 12), which has compact support.

A natural cubic spline (in which the second spatial derivative is set to zero at the
ends) is a common end condition. However, other end conditions are possible, e.g.,
the first spatial derivative at each end can be set to zero. The difference between
curve fits based on these two end conditions (Fig. 13) also has compact support.
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Fig. 8 The curve fit for a data set approximating a sine wave (n = 200)
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Fig. 9 The curve fit for one nonzero data point taken from the sine wave data set

4 Splines Under Tension

The standard cubic splines oftentimes exhibit unwanted (extraneous) inflection
points, with no correcting parameter to realize a smooth geometric outline. The
interpolation cubic curve has generally at most one inflection point on each interval
[xk, xk+1]. Schweikert unwanted inflection points are defined as follows:

Definition 2 Let the second difference at xk be given by

dk = (yk+1 − yk) − (yk − yk−1) = yk+1 − 2yk + yk−1. (4.1)
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Fig. 10 The curve fit for 100 nonzero data points taken from the central region of the sine wave
data set
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Fig. 11 The curve fit for the remaining nonzero data points taken from the sine wave data set.
Superimposing this curve fit with that in Fig. 10 recovers the curve fit in Fig. 8

An inflection point, if any, is extraneous if dk and dk+1 have the same sign.

Schweikert, who first introduced the splines under tension to eliminate these
extraneous inflection points, proved in [4]:

Theorem 2 The interpolation cubic spline has no extraneous inflection points if
and only y′′

k and di have the same sign.
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Fig. 12 The curve fit to a single nonzero data point at the first knot
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Fig. 13 The difference in curve fits for a data set approximating a sine wave, in the first case
approximated by a natural cubic spline, and in the second case approximated by a cubic spline in
which the first spatial derivative at each endpoint is set to zero

These additional curvature conditions are not always met by the standard cubic
splines, prompting the need of a different type of interpolation curve, the spline
under tension, also called hyperbolic cubic spline, in which a tension factor is added
as a mathematically expediency (parameter) to be varied appropriately to remove all
oscillations usually linked to extraneous inflection points.

Splines under tension [2] attempt to minimize the oscillations in the region of
a discontinuity. For the case of equal knot spacing, splines under tension form
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a symmetric tridiagonal Toeplitz system. An exact solution can be developed
following a similar approach to that for cubic splines. Over the interval [xk, xk+1],
the spline-under-tension curve fit f (x) is expressed as the linear combination

f (x) = c1 + c2 + c3 sinh σx + c4 cosh σx

of the functions 1, x, sinh σx, cosh σx and, under the smoothness conditions, as
follows [2]:

f (x) = f ′′(xk)
sinh σ(xk+1 − x)

σ 2 sinh(σh)
+ (ykσ

2 − f ′′(xk))(xk+1 − x)

σ 2h

+f ′′(xk+1)
sinh σ(x − xk)

σ 2 sinh(σh)
+ (yk+1σ

2 − f ′′(xk+1))(x − xk)

σ 2h
.

(4.2)

Here, σ is the tension and h is the distance between knots (h = 1 for the examples
considered here). The system of equations for 2 ≤ k ≤ n − 1 is as follows [2]:

(
1

σ 2h
− 1

σ sinh σh

)
f ′′(xk−1) + 2

(
cosh σh

σ sinh σh
− 1

σ 2h

)
f ′′(xk)

+
(

1

σ 2h
− 1

σ sinh σh

)
f ′′(xk+1) = yk+1 − 2yi + yk−1

h
.

(4.3)

Remark 2 Let η = σ cosh σ−sinh σ
sinh σ−σ

, the usual requirements for slopes and curvatures
yield

Dk−1 + 2ηDk + Dk+1 = (η + 1)(yk+1 − yk−1) (4.4)

We also have η → 2 for σ → 0. Moreover, on each interval [xi, xi+1] f ′′
i is not

linear anymore and given by

f ′′
i (x) = y′′

i

sinh σ(xk+1 − x)

sinh σ
+ y′′

i+1
sinh σ(x − xi)

sinh σ
(4.5)

The corresponding row structure is obtained as [1, 2η, 1] approaching [1, 4, 1] as
the tension approaches zero.

For k = 1 and k = n, the equations are f ′′(x1) = 0 and f ′′(xn) = 0, respectively.
Equations (4.2) and (4.3), along with the equations at the endpoints, represent a
symmetric tridiagonal Toeplitz system with f ′′(xk) as the unknown.

The ratio r of the diagonal term and the off-diagonal term (Fig. 14) approaches
4 as σ → 0, so that the row structure [1, r, 1] approaches that of the cubic spline
system, i.e., [1, 4, 1]. The solutions take the form e±α(k−m) cos π(k−m). Increasing
σ increases r and by extension, α, so that the oscillations decay over a shorter length
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Fig. 14 The ratio r of the diagonal term and the off-diagonal term as a function of tension
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Fig. 15 A curve fit to the step function with a spline under tension for σ = 10. Note that the
oscillations decay over a shorter length scale in the region of the step discontinuity relative to
Fig. 5

scale (e.g., see Fig. 15). For example, when σ = 1, α ∼= 1.3727, but when σ = 10,
α ∼= 2.8882. Figure 16 shows the curve fit to a single nonzero data point for σ = 10.

4.1 Splines Under Imaginary Tension

Equations (4.2) and (4.3) are unchanged when σ is replaced with −σ , indicating
that σ acts differently on a spline than tension does on a cable. Another difference
becomes evident when the tension becomes imaginary (since imaginary cable
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Fig. 16 A curve fit to a single data nonzero data point with a spline under tension for σ = 10.
Note that the oscillations decay over a shorter length scale relative to Fig. 4

tension is impossible). Imaginary values for σ do not lead to imaginary terms in
(4.2) or (4.3), and they can generate a non-oscillatory solution for values of σ

resulting in a row structure [1, r, 1], in which r < 0.
Figure 17 shows the ratio of the diagonal to the off-diagonal terms as a function of

the scaled imaginary tension, i.e., σ̂ = Im(σ )/2π . Although r < 0 for some values
of σ , the solutions are not damped, since r ≥ −2. Furthermore, a limiting process
must be performed to obtain a system having a row structure of [1,−2, 1] for σ →
2πi. In practice, good results can be obtained for σ = 1.9999πi, which leads to the
row structure [1, r, 1], where r = −2+9.87×10−8. Assuming solutions of the form
eγ k leads to eγ k+reγ (k+1)+eγ (k+2) = 0, so that γ = −1.11×10−16±3.14×10−4i.
The solution for a single nonzero RHS term (Fig. 18) does not have compact support,
and the end conditions affect the entire system, regardless of n.

Figure 19 shows the spline fit to the step function. The oscillatory behavior in the
region of the discontinuity is absent; however, a low-amplitude oscillation (on the
order of 10−3) spans the entire curve fit.

Since these splines oscillate in different regions, a “composite spline” (i.e.,
a cubic spline for regions without discontinuities, and a spline under imaginary
tension for the region surrounding a discontinuity) has the potential to confine the
remaining oscillations to a specified region.

The two systems can be joined at knot k = p by ensuring that the first and second
spatial derivatives are continuous. A cubic spline for 1 ≤ k ≤ p and a spline under
tension for p ≤ k ≤ n lead to the following equations (the equations are similar
when the cubic spline and spline under tension reverse positions):

2D1 + D2 = 3(y2 − y1); k = 1; (4.6)
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Fig. 17 The ratio of the diagonal term and the off-diagonal term as a function of the scaled
imaginary tension σ̂ = Im(σ )/2π
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Fig. 18 The response, i.e., f ′′(x), to a single nonzero RHS term at k = 100 for σ = 1.9999πi

Dk+1 + 4Dk + Dk−1 = 3(yk+1 − yk−1); 2 ≤ k ≤ p − 1; (4.7)

(
1

σ 2h
− 1

σ sinh σh

)
f ′′(xk−1) + 2

(
cosh σh

σ sinh σh
− 1

σ 2h

)
f ′′(xk)

+
(

1

σ 2h
− 1

σ sinh σh

)
f ′′(xk+1) = yk+1 − 2yi + yk−1

h
;p + 2 ≤ k ≤ n − 1;

(4.8)
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Fig. 19 The spline under tension curve fit for σ = 1.9999πi for the step function defined by
yk = 1 for 1 ≤ k ≤ 100 and yk = 0 otherwise. Note that the oscillations in the region of the
discontinuity are absent, and an oscillation with an amplitude on the order of 10−3 spans the entire
curve fit

f ′′(xn) = 0; k = n; (4.9)

−f ′′(xp) + 4Dp + 2Dp−1 = 6(yp − yp−1); k = p; (4.10)

Dp = f ′′(xp)

(
cosh σh

σ sinh σh
− 1

σ 2h

)
+ f ′′(xp+1)

( −1

σ sinh σh
+ 1

σ 2h

)

+
(

yp+1 − yp

h

)
; k = p. (4.11)

Figure 20 shows a composite spline for p = 100, with a discontinuity located
five knots to the right of the joint. The oscillation amplitude to the left of the
discontinuity approaches zero, and to the right, it is on the order of 10−4.

The cubic spline curve fit ends at knot 100, and the spline under tension curve fit
begins at knot 101. When the systems are joined, knots 100 and 101 have the same
coordinates and data values. Thus, even though both sections contain 100 knots, the
entire system spans only 199 knots.

Splines under imaginary tension can be inserted as many times as needed into
regions involving discontinuities. Figure 21 shows a three-section composite spline.
Here, the oscillations are confined to segments within five knots on either side of the
discontinuity. However, in this case, their amplitude has increased to approximately
0.017. In Fig. 22, the oscillations are confined to segments within 15 knots on
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Fig. 20 A “composite spline” consisting of a cubic spine and a spline under imaginary tension
joined at p = 100. The oscillation amplitude for k > p is on the order of 10−4
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Fig. 21 A “composite spline” consisting of three sections, in which the oscillations are confined
to segments within five knots on either side of the discontinuity

either side of the discontinuity, with an amplitude of approximately 0.005, so it
appears that the oscillation amplitude for a three-section composite spline may be
a linear function of the number of segments in the confined region. The underlying
mechanisms that decrease the oscillation amplitude for a composite spline with two
sections, but increase the amplitude for three sections, are not understood.
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Fig. 22 A “composite spline” consisting of three sections, in which the oscillations are confined
to segments within 15 knots on either side of the discontinuity

5 Conclusions

The cubic spline equations form a symmetric tridiagonal Toeplitz system with
row structure [1, 4, 1]. This generates an oscillatory response for a curve fit of
a single nonzero data point. The oscillations cancel for curve fits that do not
involve discontinuities. Splines under tension also form a symmetric tridiagonal
Toeplitz system characterized by an oscillatory response as a consequence of the
row structure [1, r, 1], where r ≥ 4. Increasing the tension causes the oscillations
to decay over a shorter length scale in the region of a discontinuity. Certain values
of imaginary tension can lead to a row structure that approaches [1,−2, 1], which
removes the oscillations in the region of a discontinuity. However, it also introduces
a low-amplitude oscillation that spans the entire curve fit. A composite spline (i.e.,
a spline under tension in the region surrounding a discontinuity, and a cubic spline
elsewhere) can confine the oscillations to an arbitrary region. Further work may be
required to fully understand how the confinement process affects their amplitude.
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Distributed Membership Games
for Planning Sensor Networks

Thomas A. Wettergren and C. Michael Traweek

1 Introduction

Sensor networks are becoming prevalent in a number of monitoring applications
[7]. The use of sensor networks for various forms of distributed monitoring of
large environments has led to many questions about managing the individual nodes
that comprise the system. We concern ourselves with a problem of management of
sensor networks with limited central authority. In particular, we develop distributed
solutions to the problem of allocating subsets of sensors to individual clusters (or
groups) in a distributed sensor field. The subdivision of a sensor field into these
individual clusters is beneficial in that it reduces overall sensor field communication
requirements. An obvious limiting case is to have each sensor be its own cluster.
Such a subdivision is often undesirable in that it causes the sensor field to have
excessive false alarms, in that groups of sensors in a cluster can jointly process
information to reduce the impact of individual sensors creating a false alarm. On the
other hand, to have one single monolithic cluster, while desirable from a false alarm
perspective, is usually a communication liability due to the amount of information
transfer required between the sensors to maintain a dense network connectivity.
In the underwater environment, this network-level communication’s capability is
especially expensive to maintain, and thus is a critical design consideration. The
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trade-off of these performance characteristics is a goal in sensor network field-level
design.

The trade-off to balance objectives through the formation of sensor network
cluster complexity (i.e., the determination of which sensors are grouped with
which others via communications for joint decision-making) is accomplished as
a design optimization problem before sensors are deployed. However, when the
environmental characteristics that affect sensor performance are unknown (or highly
uncertain), the use of in situ sensor adjustments is critical to developing good
system-level performance trade-offs. Whether the adaptation mechanism of the
sensors is physical (i.e., moving to a new location to join a different cluster) or
purely informational (i.e., communicating with sensors in a different cluster), the
mathematical control problem of online determination of cluster membership is the
same. The adaptive nature of this online cluster membership determination leads
to a group decision process. We develop rules for this group decision process in a
manner that does not require negotiation between the agents (sensors) as a group
membership game.

Games can be used in two ways to examine this type of sensor network control
problem. In particular, a simulation game engine can be developed and employed
to develop probabilistic representations of expected sensor performance under a
variety of actions by both the sensor network and the monitored environment
(including the target). That type of game can help to overcome the limit of the
impossibly large to physically obtain amount of data required to observe all of
the action/consequence permutations between the agents and the target. The second
type of game that is useful here is the group membership game for the determination
of appropriate rules for individual sensors to follow in order to develop a group
strategy that leads to the proper allocation of clusters. It is this second type of
decision-making game that is the focus of this chapter.

There have been a number of previous studies that show the benefits of groups in
sensing [5]. In many sensor networks, groups are employed to improve performance
by creating opportunities for data aggregation and improved scalability. We consider
groups in the context of a membership game, which is a tool the biological
community has developed to examine the rules by which animals join in and
separate from groups [4]. In this biological context, it has been shown that the
collective behavior of groups (as opposed to individuals) may be beneficial even
in search problems [17], which provides a close link to the sensor network problem.
Perhaps one of the reasons why group membership games have not been used much
is the difficulties in assessing their stability. In particular, in order for a game strategy
to be useful in practice, it must guarantee stability. The biological community has
observed evolutionarily stable group joining strategies in some biological studies
[15].

We use the successes that the biological community has had in observing stable
group membership games as an inspiration to develop group membership games for
sensor network problems. There have been other studies on game theory for sensor
networks [18], yet most of that work has focused on the routing of information
between sensors. We instead focus on the allocation of sensors within the network,
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which is effectively a resource allocation problem (with the resources existing in an
information space). There is a significant literature on resource allocation problems
with multiple agents [6] and we use those results to guide our focus on group
affiliation and group allocation games. While these are effectively coverage games
[1], we limit ourselves to a special category of coverage so that we can develop
performance guarantees. While others have taken a control systems approach to
the analysis of group games in multiagent systems [16], we limit our analysis to
games where the strategy space is limited to membership decisions only. Finally,
we recognize that others have developed similar games in sensor networks [11], but
have not considered the group aspect.

In the sequel, we develop a model for performance of sensor networks that are
organized into coordinated clusters (or groups). We then introduce our basic game
theory formulation for the strategy space consisting of group membership decisions
for individual sensors within the network. Given that framework, we then develop
a group affiliation game that can be used to self-assign sensors to groups that are
short of ideal capacity. Finally, we develop a group allocation game that has a
stable strategy for individual sensors to distribute themselves into groups as a self-
organization principle.

2 Sensor Network Model

The type of network model we consider is for a group of N total sensors {s1, . . . , sn},
that are allocated into G groups, or clusters, of the form cg ⊂ {s1, . . . , sn}. The g-th
sensor group, cg , is a group in that it consists of sensors that share their information
through some form of fusion (ranging from simple track-before-detect to complete
fusion of raw signature data). Groups may be formed through physical proximity
or through directed information sharing. However, in either case the sensor network
has the opportunity to evolve through individual sensors making group membership
decisions. For combinations due to physical proximity, the group membership
decision may be executed through a motion path to relocate the sensor; whereas
for other combinations due to directed information sharing, the group membership
decision is typically executed in communication networking.

Let the performance of a sensor be given by the sensor search ability, defined
as a probability of that sensor detecting any objects of interest that are within a
group that the sensor is currently connected to. Specifically, for a sensor sn this is
represented as the following conditional joint probability:

Pr(detect | sn ∈ cg, object ∈ cg) = pn(cg, an) (1)

where an is the set of groups cg for which sensor sn belongs. This formulation
allows an individual sensor to potentially belong to multiple groups and also implies
pn(cg, an) = 0 for cg /∈ an and pn(cg, an) > 0 for cg ∈ an.
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Let v(cg) be the prior likelihood that the object of interest exists in the region
covered by group cg . Then, the probability of finding an object of interest in a
specific group is given by

p(cg) = v(cg)

[

1 −
N∏

n=1

(1 − pn(cg, an))

]

. (2)

Assuming that the group detections are independent of one another (i.e., the
likelihood of the object being detected in one group has no bearing on the likelihood
of the object being detected in any other group), the probability of finding the object
of interest can be written as

W = Pr(detect) =
G∑

g=1

p(cg) (3)

Maximizing the function W within resource constraints is the principal goal of the
search or monitoring operation.

We note that for the situation of a single object located somewhere within a
domain D that is completely covered by the groups, we have ∪gcg = D and ∩gcg =
0, along with

∑
g v(cg) = 1. This special limited situation is the single hidden object

in a known domain, known as the Bayesian search problem [10].

3 Game Formulation for Sensor Grouping

The game problems we consider are for games in which each individual sensor
decides which group(s) to participate within. In this way, the individual sensors
can utilize their own in situ observations of their achievable performance in order
to self-organize into a best configuration. If certain game equilibrium conditions
are met, then such a game can lead to an optimal configuration of groups for the
sensor network. In this context, optimality is guaranteed in a local sense; however,
some stronger forms of optimality may be found with limited guarantees. It is
important to note that this game formulation allows the network to configure itself in
a completely decentralized manner, needing no involvement by a central authority
for anything other than setting some contextual problem parameters for each sensor.

In this chapter, we are concerned with games in strategic form, whereby the
players in the game simultaneously choose their actions (in contrast to games
in extensive form, whereby players take turns). Such games are appropriate to
multiagent systems such as a distributed sensor network, since there is no reason
to wait for turn-taking. A strategic game is defined by a tuple of the form
〈N , (Ai )i∈N , (ui)i∈N )〉 (following the notation of Bauso [3]). In this definition
of a game, the set of players is given by N = {1, 2, . . . , N}, the set of available
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actions for player i is given by Ai , and the payoff to player i is given by the payoff
function ui . The specific actions taken by player i are given by the action set ai ∈ Ai

and generally correspond to the set of decisions made by the player. For a group
game, the payoff function for a specific player ui = ui(a1, a2, . . . , aN) depends
upon the moves made by all of the players.

The specific form of strategic game under consideration is a group membership
game [9] in that the decisions/plays made by the agents are to determine their
membership (or lack thereof) with respect to the groups involved. As a multiplayer
game, this problem has the following components. The players in the game are
referred to as agents who are involved in a process of making repeated decisions
to improve the system welfare. This notion of system welfare implies a benefit
shared by all when the goal of the group operation is achieved; in this sense, it
is a purely non-adversarial game. Yet the game is noncooperative in that the players
make decisions independently and without negotiation. There is a value function
associated with each decision that can be made by the agents. This determines the
expected benefit of some decision relative to others independent of the agents. The
individual agents each have a perception of their contribution to system welfare
(based on their actions), and that is known as their utility. There is a group welfare
which is an achieved benefit that is created by a group of agents who share
membership in some subgroup of the whole. We make an assumption that the
individual agents within a group can all perceive the group welfare of that particular
group.

We consider a group N of N players who are representative of the physical
sensors {s1, s2, . . . , sN } that are available for the group membership game. Let the
action set an be the set of sensor groups cg that sensor sn participates within. This
action set corresponds to the moves in the game that are taken by the sensor, where
a move corresponds to joining a specific sensor group. The game’s value function is
the search object’s prior likelihood v(cg) of being in the domain of group cg . Note
that this selection of value function prescribes a natural sense of value to specific
groups, whereby groups with higher value are those in which it is more likely to
find the object of interest.

The group welfare of an individual group is the probability that the search effort
applied by that group is successful in the goal of finding the hidden object. Thus, the
group welfare is given by the probability p(cg) in Eq. (2). The total system welfare
is the total probability of detecting the hidden object, given by the summation of
the group welfares over all of the groups, as in Eq. (3). Thus, the payoff un for
an individual player (agent) can be described by the perceived contribution of the
individual to the overall group welfare. In that context, the individual utility that is
perceived by agent sn is given by

un(A) =
∑

cg∈an

p(cg)

Mg

(4)
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where Mg = ∑
n Ian(cg) is the number of agents in group cg , and A = {a1, . . . , aN }

is the set of actions of all of the agents. This utility (or payoff) for an individual
has the benefit that it becomes the group welfare of Eq. (2) when individuals are
restricted to a single group and the individual utilities are summed over all agents
in that group. Similarly, the utility leads to the system welfare of Eq. (3) when it
is applied to all of the agents and all individual utilities are summed. Thus, it is an
appropriate payoff function for a game model of systems that consider either the
group or system welfare as a performance metric.

4 The Group Affiliation Game

The first game problem we consider is one where the sensors decide to affiliate with
groups (or not) based on a local benefit of staying where they are or joining the
group. This type of strategy allows for robust changes to sizes of groups that are
near to one another, but as a practical matter it presumes that sensors are already
deployed with a notion of overall group composition. Thus, we assume that there
exists a set N of N sensors {s1, . . . , sN } that have been deployed into G groups
{c1, . . . , cG} according to some a priori information. We assume that this initial
deployment was made in a meaningful way, such that it is near to the optimal initial
separation into groups.

As the network evolves over time, there are often opportunities for sensors to
reconsider their particular membership due to changes in overall sensor network
composition, changes in the environmental performance of sensor nodes, or changes
in the network’s goals. For example, as time evolves and the overall field is
potentially degraded, the addition of new sensors provides an opportunity for
improvement, and allowing the individual sensors to make their own decisions
for group membership allows for appropriate sizing of groups (since a sensor will
be less likely to join a group that is already overpopulated). Furthermore, as the
environment changes over time, there may be opportunities to improve performance
by a sensor changing its membership from one group that is now overpopulated
to another that is underpopulated. This is a game with an evolutionary strategy
for selecting membership that we refer to as the group affiliation game. As the
game evolves with individual agents making group membership decisions, we hope
to achieve a convergence to a fixed overall group topology. This can be shown if
evolutionary stability holds for the strategy space of the game.

We examine a simplified version of this game, where individual agents make
decisions to join or not join the existing groups based upon the benefit of the agent
in the group relative to the agent staying alone (i.e., a group of itself). In this way, we
develop a rule for maximal reasonable group sizes based upon the relative benefits of
differing group values. The overall game can be decomposed into a set of repeated
plays of this very simple decision over all of the agents. This game ignores the
concept of individual agent utility (as given by Eq. (4)) and instead focuses on
simple assessments of group performance with and without the agent in question.
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Let us assume that there is an existing group cg that contains Ng agents.
Furthermore, assume that an individual agent is not in a group (or more specifically,
it is in a group of size one). Let that agent’s individual group be denoted as c0. We
model an arbitrary agent’s performance in group cg by:

pg = pn(cg, an) ∀ {sn : cg ∈ an} (5)

The model of Eq. (5) implies that all agents are identical and anonymous. Further-
more, assume that an arbitrary agent’s performance in group c0 is given by:

p0 = pn(c0, an) ∀ {sn : c0 ∈ an} (6)

For c0 to be an individual agent group, we require the additional implied constraint
{c0 ∈ an ⇒ c0 /∈ am ∀m �= n}. We consider the added benefit that is achieved by
the agent in question when making the choice to join either cg or c0.

If the agent decides to join group cg , the group welfare (as given by Eq. (2)) for
group cg is increased by an amount given by:

�p(cg) = v(cg)
[
1 − (1 − pg)

g+1
]

− v(cg)
[
1 − (1 − pg)

g
]

= v(cg)pg(1 − pg)
g (7)

which is equivalent to the change in the total system welfare for such a decision.
However, if the agent decides to “join” its own group of c0, the group welfare for
group c0 is increased (increased relative to not having the agent there) by an amount
given by:

�p(c0) = v(c0) [1 − (1 − p0)] − 0 = v(c0)p0 (8)

which is again equivalent to the change in the total system welfare for such a
decision.

We view this simple decision as a repeated two-player game (where the two
players are the group and the joining individual) and seek to find if an evolutionary
stable joining strategy exists. Let the payoff function ui for the agent in question
be given by the change to group welfare that is created by the agent’s decision on
group membership. In the two-player game strategy space, there are four potential
outcomes based on whether the individual stays alone (action 0) or tries to join
the group (action 1) and whether the group desires the individual (action 1) or
refuses the individual (action 0). For such a game, the strategy space consists of four
outcomes J (0, 0), J (0, 1), J (1, 0), and J (1, 1), where J (i, j) is for the individual
performing the strategy with action i and the group performing the strategy with
action j . Since we only consider membership when both the group and individual
select it, we have J (1, 1) = �p(cg) and J (0, 0) = J (0, 1) = J (1, 0) = �p(c0).
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It is clear from this simple game that the pure strategy of the individual joining
decision (action 1 for the individual) is an evolutionary stable strategy [20] when
the following condition holds true:

J (1, 1) > J (0, 1) (9)

Furthermore, we note that the corresponding pure strategy for the group is evo-
lutionarily stable when a similar condition (J (1, 1) > J (1, 0)) holds true. Thus,
group membership (which requires both the individual and group to choose a joining
decision) is a stable strategy when the condition �p(cg) > �p(c0) holds true, which
is given by

g < g∗ = log(p0/pg) + log(v(cg)/v(c0))

log(1 − pg)
(10)

This requirement provides a stable maximum size for a given group, beyond which
individuals should choose other alternatives. Numerical examples of this decision-
theoretic group membership rule are given by the curves shown in Figs. 1 and 2.
These curves (and the associated calculation of g∗ as per Eq. (10)) can be utilized
by groups and individuals as a rule for deciding when to connect to a group of
sensors during periods of replenishment or reconfiguration. In this way, the game
provides an opportunity for the system to adapt without supervisory control. We
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100
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pg

g*

v(cg)=4v(c0)
v(cg)=2v(c0)
v(cg)=v(c0)

Fig. 1 Maximum desirable size g∗ for a sensor group based on Eq. (10) from the group affiliation
game. This case is for values where the sensor detection performance is the same in the group as
on its own (p0 = pg). Note that there is no benefit to being in the group when v(cg) = v(c0) for
this case
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Fig. 2 Maximum desirable size g∗ for a sensor group based on Eq. (10) from the group affiliation
game. This case is for values where the sensor detection performance is better in the group than on
its own (p0 = pg/2)

note that our affiliation game framework is similar to that in [2], but distinct in that
their formulation uses a free entry game where individuals can join groups without
concern of the group’s desire for membership.

While this simple repeated membership game analysis is useful for determining
optimal sizes of groups, it has two limitations: (1) the decisions are limited to a
trivial alternative when not joining the group, and (2) the decisions have no reliance
on the overall number of agents. To avoid these problems, we next consider the
analysis of the game with the individual agent utility of Eq. (4).

5 The Group Allocation Game

While the group affiliation game provides guidance on when a sensor should affiliate
itself with a particular group, it does not consider the overall size of the network.
Thus, it is most appropriate to be used only as an adaptation rule for an already
functioning network. When applied as a strategy for a sensor network to self-
organize, the affiliation game will lead to either a few well-filled groups and other
nearly empty groups (in the case when there are small numbers of available sensors)
or cycling of sensor between groups as all groups reach their g∗-level and “extra”
sensors cannot find a place to fit. It is clear that a different game that accounts for
the overall number of available sensors is required if a game formulation is to be
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used for initial self-organization of network groups. The game that we develop for
such a problem is the group allocation game.

Whereas the group affiliation game uses principles of behavioral ecology games,
the group allocation game uses principles of economic games. In particular, we use
a particular type of distributed welfare game [12] to divide a shared set of available
resources among individual players in a manner that distributes the welfare so as to
achieve improved overall system performance. The distributed welfare game that we
consider defines the resources to be shared as the groups {c1, . . . , cG} that individual
sensors can be members of. The players of the game are the sensors {s1, . . . , sN },
and the welfare to be distributed is the overall system welfare W , given by the joint
probability of detection in Eq. (3).

Within distributed welfare games, an important subcategory of game is a social
utility system. In this type of game, the players behave noncooperatively in that they
do not directly try to maximize the overall system welfare but rather are only trying
to maximize their own utility. While that may not seem to benefit the whole, the
particular feature of a social utility system is that it has an individual utility that is
measured in such a way so that both a Nash equilibrium for the system exists and
that equilibrium has a value of system welfare that is at least one-half of the welfare
of the optimum. The first of these conclusions implies that all players only need to
follow a strategy to maximize their own utility and that is all that is required for the
system to achieve equilibrium. The second conclusion implies that the equilibrium
that is achieved will be within one-half of the value of overall system welfare that
would be achieved with an optimal solution from a complete centralized control
of the entire system. Thus, the social utility system is an important category of
distributed welfare game for potential use with distributed sensing problems, as it
reduces the need for central oversight.

In order for a distributed welfare game to be a social utility system, there are
three conditions that must be met [19]. The first condition is that the system welfare
must be a submodular function with respect to the players. This condition provides
a diminishing return for the addition of more players to the game. The second
condition is that the utility of an individual player must be greater than or equal
to the change in social welfare that occurs if the player was removed from the game.
This condition is known as the Vickery utility in economics, and it provides a lower
bound on individual utility that is similar to that found in auction systems. The third
condition is that the sum of the individual player utilities must be no greater than the
total system welfare. This condition guarantees that individual utility is reflective of
a benefit toward total group reward.

Consider a sensor network with sensors that can only belong to one group cg

at a time. We now demonstrate that a distributed welfare game consisting of such
sensors that follow the utility function of Eq. (4) with the system welfare of Eq. (3)
is a social utility system. We first consider the condition of submodularity of the
system welfare function.
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The sensor joint probability of detection of Eq. (3) is submodular for agents that
are identical and anonymous, as shown by the following. The welfare function W(S)

for a set of players S is submodular if for any player sets S0 ⊆ S1 ⊆ S, we have

W(S0 ∪ sn) − W(S0) ≥ W(S1 ∪ sn) − W(S1) (11)

for any sn ∈ S. Without loss of generality, let pg = pn(cg, sn) for any sensor
sn in group cg (via the identical and anonymous assumption), and let S0 contain
N0 sensors and S1 contain N1 ≥ N0 sensors. Recognizing that all welfare is a
simple sum of welfare over each group, we analyze the relation for an arbitrary
group g. In particular, for a given group g we have for individual group welfare Wg

the following:

Wg(S0 ∪ sn) − Wg(S0) = vg

⎡

⎣1 −
N0+1∏

n=1

(1 − pg)

⎤

⎦ − vg

⎡

⎣1 −
N0∏

n=1

(1 − pg)

⎤

⎦

= vg

[
(1 − pg)

N0 − (1 − pg)
N0+1

]

= vgpg(1 − pg)
N0 (12)

and in a similar way, we have

Wg(S1 ∪ sn) − Wg(S1) = vgpg(1 − pg)
N1 (13)

where we have used vg = v(cg) for ease of exposition. Now, it is simple to show

�Wg ≡ [
Wg(S0 ∪ sn) − Wg(S0)

] − [
Wg(S1 ∪ sn) − Wg(S1)

]

= vgpg(1 − pg)
N0

[
1 − (1 − pg)

N1−N0
]

≥ 0 (14)

for N1 ≥ N0, where the inequality is guaranteed since every term in the product is
greater than or equal to zero. Since �Wg ≥ 0 for all groups g, and the total system
welfare is the simple sum of individual group welfares Wg , we have that

�W = �

G∑

g=1

Wg =
G∑

g=1

�Wg ≥ 0 (15)

which implies W(S0∪sn)−W(S0) ≥ W(S1∪sn)−W(S1). Thus, the submodularity
condition of Eq. (11) holds for the sensor group membership game system welfare
function.

The second and the third condition for social utility we consider concurrently.
In particular, we note that for this system (with sensors restricted to a single group
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at a time) the utility formulation of Eq. (4) is equivalent to distributing the share
of system welfare equally to each individual in the group. To see this, we consider
a group cg with Ng sensors. For such a group, we have the sum of the individual
utilities given by

Ng∑

n=1

un =
Ng∑

n=1

p(cg)

Ng

= p(cg)

Ng∑

n=1

1

Ng

= p(cg) (16)

which shows that the sum of utilities that is given by this form of utility is equivalent
to the system welfare (and thus is no greater than the system welfare), demonstrating
the third condition. The second condition for this case is a consequence of the third
in that the change in system welfare for the removal of each individual must be equal
to their utility if the utilities are the same and their sum equals the total system
welfare. Since this condition holds within a group and the individual’s effect on
system welfare is limited to only that group, it also holds for the entire system. Thus,
all conditions are met and a system of sensors restricted to single groups with utility
of Eq. (4) and system welfare of Eq. (3) is a social utility system. As such, we can be
guaranteed that a system that follows the game’s rules will obtain a Nash equilibrium
in an evolutionarily stable manner, and furthermore, that equilibrium solution will
have a system welfare within a guaranteed bound of the optimal solution that could
be obtained through optimization of centralized control.

We next demonstrate how a system of sensors can make group membership
decisions in order to maximize their utility of Eq. (4). In particular, these sensors
need to maximize their utility based upon their assumption about other sensors.
One popular way to do this is to use the notion of fictitious play [14]. In a group
game employing fictitious play, an individual player informs themselves of the
potential actions of the other players by an examination of their past actions. In
particular, each player uses the empirical distribution of other players’ actions as
a model of their strategy for the game. Obviously, such a game requires detailed
examination of the behavior of others which may not be always available (i.e., we
may be able to observe others staying in, joining, or leaving the group we are in, but
not other groups). In such cases, extensions to fictitious play such as joint strategy
fictitious play [8] and joint strategy fictitious play with inertia [13] can be used to
create approximate representations of the other players’ strategies in an efficient
manner.

To illustrate the performance of the social utility system for the group allocation
game, we performed numerical simulation experiments for a group of sensors
self-organizing into appropriate sensing groups. We consider a set of N = 12
identical and anonymous sensors that are to be allocated within G = 4 groups for
conducting distributed monitoring in a domain D ⊂ R

2. Let |cg| be the cardinality
associated with group cg . We assume that the groups have been predefined due to
environmental considerations within the domain, and the prior likelihood of finding
the object(s) of interest within each group is given by {v(1), v(2), v(3), v(4)} =
{0.4, 0.4, 0.1, 0.1}. Thus, we have two groups (c1 and c2) which are likely to
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contain our object of interest and two groups (c3 and c4) which are much less
likely but may still contain the object. Note that

∑
g v(cg) = 1 so this example

meets the special conditions of the Bayesian search problem as described in Sect. 2.
We also assume that the probability of detecting an object in a given group, when
the sensor is in the group and the object is in the group, is given (as in Eq. (1))
by {pn(1, 1), pn(2, 2), pn(3, 3), pn(4, 4)} = {0.8, 0.4, 0.8, 0.8}. We assume that
sensors can only belong to one group and can only detect the object that is in that
group, so pn(i, j) = 0 ∀i �= j , and since all sensors are identical and anonymous,
pn(i, i) = pm(i, i) ∀n,m. Note that the detection probabilities show that one of
the groups (group c2) has a detection performance that is significantly degraded
from the other groups, which is representative of environmental obstructions and/or
limited clarity in view.

Simulations were run with the N = 12 sensors all starting in group c1 (such that
|c1| = 12, and |ci | = 0 for i = 2, 3, 4), and executed a simulation of 100 steps
of a group decision process. At each step, each sensor (chosen in random order)
individually considers the group that it is in and makes a decision to either stay in
that group or join another group. The sensor makes this decision by maximizing its
expected change in utility, with utility given by Eq. (4). The expected performance
of other sensors is given by a frequency of occurrence of joining/staying of past
performance of each sensor in the group. Based on this, the sensor decides which
group to join (or to stay in the current group) for the next iteration. We also add
in an error with probability pε that represents an individual sensor probability of
not observing other groups. When that occurs, the given sensor is forced to stay in
its current group regardless of potential utility. This can account for a number of
intermittent errors that may occur in practice. For these simulations, we use pε =
0.05 for a 5% chance of error in any given sensor decision.

In Fig. 3, we illustrate the results of one of these simulation runs. In the figure,
we show 12 separate plots, one for each of the 12 sensors. Note that the sensors
make intermittent changes to their group membership and that other sensors respond
later to those changes. At the end of the 100 iterations, the sensors have reached a
configuration with the following memberships:

|c1| = 5, |c2| = 5, |c3| = 1, |c4| = 1.

This configuration is consistent with the first two groups having much higher prior
likelihoods v(cg) than the latter two groups. Thus, the group allocation game was
successful in creating a self-organized distribution of group memberships with
no central oversight. In Fig. 4, we plot the resulting system welfare W (given
by Eq. (3)) for this simulation run. Note that even though the individual sensors
demonstrate intermittent switching between groups, the overall performance in the
system welfare stays relatively near the optimum after a very brief initial increase.
Also, note that the allocation at the end is not the true system optimum, as there
are some group combinations (such as the one near time step 83) that give slightly
better performance. However, we note that this only illustrates that this particular
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Fig. 3 Group memberships for each of the 12 simulated sensors over 100 time steps. The vertical
axis of each plot represents that group number for that sensor at each time step
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Fig. 4 The total system welfare as given by Eq. (3) for the simulation run with group memberships
as shown in Fig. 3

system has multiple Nash equilibria, and the evolutionary joining strategy is only
guaranteed to reach one of them, not a particular one.

In Fig. 5, we illustrate the results of another simulation run. In this simulation,
the sensors all start in group c1 as in the previous simulation; however, at the end
of iteration 50, we remove two of the sensors from the simulation. This corresponds
to a malfunction and/or battery drainage for those sensors. One of the expected
benefits of the self-organization property of the group allocation game is to adapt to
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Fig. 5 Group memberships for each of the 12 simulated sensors over 100 time steps, with a
removal of the last 2 sensors (two rightmost plots on bottom row) after 50 time steps. The vertical
axis of each plot represents the group number for that sensor at each time step

unexpected changes in the availability of players. At the end of the 100 iterations,
the sensors have reached a configuration with the following memberships:

|c1| = 4, |c2| = 4, |c3| = 1, |c4| = 1.

While being a modification from the configuration with the full 12 sensors, this
10-sensor configuration is still consistent with the first two groups having much
higher prior likelihoods v(cg) than the latter two groups. Thus, the group allocation
game was successful in adapting the memberships in a self-organized manner with
no central oversight. In Fig. 6, we plot the resulting system welfare W (given by
Eq. (3)) for this simulation run. In this plot, the immediate performance degradation
due to the loss of two sensors at iteration 50 is clear. However, the system is able to
quickly adapt and the sensors regroup into modified memberships to regain much
of the lost performance and achieve a stable equilibrium with the new number of
available sensors.

6 Conclusion

We have developed two forms of group membership games for sensor networks
comprised of a fixed number of groups. In the group affiliation game, we use game
theory to develop rules for joining based on a maximal perceived group size. In
the group allocation game, we form a social utility system of distributed welfare
games to provide rules for joining that lead to self-organization. Both of these games
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Fig. 6 The total system welfare as given by Eq. (3) for the simulation run with group memberships
as shown in Fig. 5

illustrate the ability of game theory to be applied to group membership such that
sensor network systems can perform optimal adaptation with no central oversight.
Furthermore, these particular games require no negotiation between sensors and are
therefore applicable in situations with limited communications between sensors.
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Statistical Models of Inertial Sensors
and Integral Error Bounds

Richard J. Vaccaro and Ahmed S. Zaki

1 Introduction

Inertial sensors such as gyroscopes and accelerometers are important components
of inertial measurement units (IMUs). Inertial sensors provide an output that is
proportional to angular velocity or linear acceleration. The output signal is corrupted
by additive noise plus a random drift component. This drift component, also called
bias, is modeled using different types of random processes. This chapter considers
the random components that are useful for modeling modern tactical-graded MEMS
sensors. Other important issues related to sensor performance such as scale-factor
errors, quantization effects, and temperature effects are not considered in this
chapter. See [1] for a description of these effects. The additive noise and random
drift components that corrupt a sensor signal contribute to errors in the first and
second integrals of the sensor output. The purpose of this chapter is to derive
formulas for bounding these errors. The chapter is organized as follows.

Section 2 introduces the mathematical models describing the random compo-
nents of a sensor signal. These components include additive white noise, integrated
white noise (random walk), and integrated filtered white noise (called Gauss–
Markov components). All of these components are needed to model modern MEMS
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sensors. This section also introduces Allan variance, a well-known statistic for
characterizing the behavior of inertial sensors.

In Sect. 3, formulas are derived for bounding the errors in the first and second
integrals of a sensor output. These errors are caused by the random noise and drift
components in the sensor signal. The error bound on the first integral is shown to
be a simple function of the sensor’s Allan variance, which may be estimated from a
sensor calibration signal (sensor output in the absence of motion). The error bound
on the second integral is obtained by numerically integrating the first-integral bound.
In order to perform the numerical integration, the integrand, which is a function of
the Allan variance, must be evaluated at a dense grid of points. Given a sensor
calibration signal, the Allan variance is not easily estimated on a dense grid of
points. One way to proceed is to estimate the parameters of a mathematical model
for a sensor’s random components, and use this model to evaluate the sensor’s Allan
variance on a dense grid of points.

Section 4 deals with estimating the parameters of a sensor model by least-
squares and weighted least-squares curve fitting to a set of calculated Allan variance
points. Section 5 provides a summary and describes future work. An Appendix
provides MATLAB programs for simulating a calibration signal, for calculating
Allan variance, and for estimating sensor parameters.

2 Mathematical Models and Allan Variance

The output signal, y(t), of a sensor in the absence of motion will be referred to as a
calibration signal, and can be described by the following equation:

y(t) = b(t) + n(t) (1)

where b(t) is the bias (random drift), and n(t) is observation noise, which is assumed
to be white noise with spectral density R. The bias term will be modeled with one or
more components. The first bias component, b0(t), is a random process consisting
of the integral of a white-noise process w0(t) with spectral density Q0. The integral
creates a nonstationary random process whose variance grows with time, which is a
good model for the drift of a sensor. This bias component is modeled as follows:

ḃ0(t) = w0(t), E[w0(t1)w0(t2)] = Q0δ(t1 − t2). (2)

It has been observed that, prior to the year 2000, many tactical grade MEMS sensors
were well-modeled by (1) and (2), with b(t) = b0(t) [2–4]. However, improvements
in MEMS technology have resulted in the need to use additional components to
adequately model sensor drift. These additional components are so-called Gauss–
Markov (GM) random processes. The ith GM component consists of white noise
with spectral density Qi passed through a single-pole filter with stable pole located
at −αi , and is characterized by the parameters (αi,Qi). The mathematical model
for the ith GM component is
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Table 1 Typical units for spectral densities Qi, i = 0, 1, · · · , C and R for rate gyros and
accelerometers

Spectral density Rate gyro Accelerometer

R deg2/h m2/h3

Qi deg2/h3 m2/h5

ḃi (t) = −αibi(t) + wi(t), E[wi(t1)wi(t2)] = Qiδ(t1 − t2). (3)

For rate gyros, the additive noise component is referred to as the angle random walk
(ARW) and the bias component b0(t) is referred to as the rate random walk (RRW).
The complete model for a sensor calibration signal is given by (1) with the bias term
given by combining (2) and (3) to obtain

b(t) = b0(t) +
C∑

i=1

bi(t). (4)

All of the white-noise processes, n(t) and wi(t), i = 0, · · · , C, are assumed to be
zero mean and statistically independent. The parameters that are needed to describe
the statistical behavior of a sensor calibration signal consisting of additive noise
and multiple drift components are the following: [R,Q0, (α1,Q1), · · · (αC,QC)].
Typical units for Qi and R are shown in Table 1.

2.1 Allan Variance

Allan variance, denoted a(τ), is computed for different values of a smoothing
parameter, τ [1, 5]. In order to compute the Allan variance associated with a record
of calibration data, the signal is averaged over length-τ intervals. The resulting
average values are denoted ȳk , where

ȳk = 1

τ

∫ kτ

(k−1)τ

y(λ)dλ. (5)

The definition of Allan variance is [1]

a(τ) = 1

2
E[(ȳk+1 − ȳk)

2] (6)

where E[·] denotes expected value. Note that the quantity that is being squared
in this equation is a zero-mean random variable, and so the expected value is the
variance of (ȳk+1 − ȳk). In the previous two equations, k is an arbitrary positive
integer. The definition of Allan variance is independent of k because the expected
value in (6) is the same for any value of k. Thus, given a finite amount of calibration
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data obtained over an interval of time of length D, the following estimator for the
variance in (6) may be used to obtain an estimate of the Allan variance:

â(τ ) = 1

2(Nτ − 1)

Nτ −1∑

k=1

(ȳk+1 − ȳk)
2, (7)

where Nτ is the largest integer that is smaller than D/τ .

2.2 Single Drift Component

Consider the case in which the sensor calibration signal is modeled by (1) and (2);
that is, by additive noise and a single drift component. In this case, the expected
value in (6) may be evaluated to obtain [1]

a(τ) = R

τ
+ Q0τ

3
. (8)

The first term in this equation is the Allan variance of the noise term n(t), while
the second term is the Allan variance of the drift component b0(t). Because the
noise processes are assumed to be statistically independent, the Allan variance
of a composite process is equal to the sum of Allan variances of the individual
components. On a log–log plot, a(τ) given by (8) has the shape shown in Fig. 1.
An Allan variance plot of a signal consisting only of additive noise and the random
drift term b0(t) has a well-defined minimum. The numerical values of R and Q0
determine the location of the minimum but the shape of the plot near the minimum
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Fig. 1 The theoretical Allan variance (solid curve) for a sensor whose calibration signal consists
of additive noise and a single drift component. The Allan variances of the individual components
are shown with dashed lines. The spectral densities are R = 2.65 × 10−2 and Q0 = 4.31 × 10−1

using the gyro units from Table 1
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Fig. 2 The theoretical Allan variance of a sensor (solid curve) as well as Allan variance estimates
(circles) from 48 h. The vertical bars are centered on the theoretical curve, and range plus or minus
two standard deviations, given by the square root of the variance formula, Eq. (9). The vertical bars
do not appear to be centered due to the logarithmic scale on the vertical axis. The spectral densities
in this simulation are Q0 = 4.31 × 10−1 and R = 2.65 × 10−2

is independent of the values of R and Q0. In particular, the plot reaches twice its
minimum value at the endpoints of an approximately decade-long interval centered
at the minimizing value of τ .

Notice from Fig. 1 that, for values of τ more than one decade below the
minimizing value of τ , the Allan variance plot is identical with the line due to the
noise term, which depends only on R. For values of τ more than one decade above
the minimum, the Allan variance plot is identical with the line due to the drift term,
which depends only on Q0.

The variance of a(τ), denoted v(τ), has been computed in [2] to be

v(τ) = 3D − 4τ

τ(D − τ)2 R2 + (9D − 10τ)τ 3

36(D − τ)2 Q2
0. (9)

The square root of (9) gives the standard deviation of the Allan variance for any
value of τ . The standard deviation is a measure of the variation in Allan variance
points computed from a signal of finite duration D. A typical result is shown in
Fig. 2, where the theoretical Allan variance is shown, along with estimates computed
from a signal of duration D = 48 h. The vertical lines through each computed value
are plus or minus two standard deviations. It can be seen that the standard deviations
of the computed Allan variance points are small for values of τ to the left of the
minimum, and increase rapidly for values of τ to the right of the minimum.

This observation motivates a simple way to estimate the values of R and Q0
from an Allan variance plot; namely, estimate R by fitting a line with slope -1 on
a log–log plot for small values of τ , and estimate Q0 by fitting a line with slope 1
for large values of τ . This procedure gives reasonable estimates for R but may give
erroneous estimates for Q0. The reason is that the Allan variance points for large
values of τ , calculated from a finite amount of calibration data, may be far from the
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theoretical line (see Fig. 2). Even in this simple case with a single drift component,
it is necessary to use a statistical approach to accurately estimate Q0 [2, 6].

2.3 Multiple Drift Components

Consider the Allan variance plot in Fig. 3. This plot does not have the same well-
defined minimum as that in Fig. 1, whose width is a decade in τ (see discussion
at the beginning of Sect. 2.2). For the curve in Fig. 3, the width of the interval over
which the Allan variance reaches twice its minimum value is more than two decades
in τ . The presence of this broad minimum is typical of modern MEMS sensors and
indicates the need for additional drift components to model the calibration signal.

The additional components that are needed to model the “flat spot” on the
Allan variance plot may all be chosen to be Gauss–Markov (GM) processes with
appropriate parameters. The Allan variance plot for a single GM component is
shown in Fig. 4. The peak of this plot may be used to “push up” the minimum of
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Fig. 3 A theoretical Allan variance plot of a sensor whose statistical model requires more than a
single drift component
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Fig. 4 The theoretical Allan variance of a single GM component described by the parameters
α1 = 31.6 and Q1 = 21.6 (see (3))



Statistical Models of Inertial Sensors and Integral Error Bounds 149

Table 2 Parameters for the
sensor calibration signal
whose Allan variance is
shown in Fig. 3. See (1)–(3)

Signal component Parameter(s)

n(t) R = 2.7 × 10−3 deg2/h

b0(t) Q0 = 4.3 × 10−1 deg2/h3

b1(t) a1 = 31, Q1 = 22 deg2/h3

b2(t) a2 = 3.6, Q2 = 5.8 deg2/h3
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Fig. 5 The theoretical Allan variance plot (solid line) for a sensor whose calibration signal is
described by the parameters in Table 2. The dashed lines show the Allan variances of the additive
noise and the individual drift components b0(t), b1(t), and b2(t)

an Allan variance plot such as that shown in Fig. 1 to create a broad, flat minimum.
The Allan variance of a single GM component with parameters (αi,Qi) (see (2)) is
given by [1]:

a(τ) = Qi

a2
i τ

[
1 − 1

2aiτ
(3 − 4e−aiτ + e−2aiτ )

]
. (10)

By analyzing (10), the following results are obtained for the Allan variance of a
single GM component.

Peak center occurs at τ ≈ 1.9

ai

, Peak height ≈ 0.19
Qi

ai

. (11)

The parameters for the sensor calibration signal whose Allan variance is shown in
Fig. 3 are given in Table 2. Figure 5 shows the Allan variance plot for this sensor
along with the theoretical Allan variance plots of the additive noise and individual
drift components.

It is useful to develop guidelines for choosing the number and approximate
parameters of the GM components needed to match a computed Allan variance
plot for a given sensor. These guidelines are useful because the parameters of a
sensor model are estimated by minimizing a cost function that measures how well a
hypothesized model fits a set of Allan variance points computed from a calibration
signal (see Sect. 4). The minimization starts with initial guesses of the parameter
values, which are obtained using the following guidelines.
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To describe the guideline for choosing the number of GM components, let W be
the width in decades of the interval [τ1, τ2] over which the given Allan variance plot
reaches twice its minimum value. The number of GM components is then chosen
to be the smallest integer greater than W-1. This guideline reflects the fact that the
width of the Allan variance peak for a GM component is about a decade, as is the
width of the Allan variance minimum for the signal n(t) + b0(t).

The consideration for choosing the initial guesses of the GM parameters is to
uniformly space the GM peaks along the W -interval defined above, with the peak
heights set equal to the Allan variance given by the minimum of the sensor’s Allan
variance plot. To space the peak locations of the C GM components uniformly on a
logarithmic scale from τ1 to τ2, we first calculate the spacing

x = 1

C + 1
(log10(τ2) − log10(τ1)). (12)

The τ values of the peak centers, p1, · · · , pC are then given by:

pk = τ110kx, k = 1, · · · , C. (13)

As an example, consider the Allan variance plot shown in Fig. 3. It is seen that
W is the interval from τ1 = 4 × 10−2 to τ2 = 5.5, which is a little more than two
decades. Thus, we choose the number of GM components to be C = 2. Using (12)
and (13), we compute the peak centers to be p1 = 0.207 and p2 = 1.07. Figure 6
shows the Allan variance plot for this sensor with τ1, τ2, p1, and p2 identified on
the plot. The minimum of the Allan variance plot in Fig. 3 is about 0.45. Thus, using
(11) we have the following initial values for the GM parameters:
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Fig. 6 Allan variance plot for the signal parameters given in Table 2. The vertical lines indicate τ1
and τ2, the endpoints of the interval W over which the Allan variance reaches twice its maximum
value. The stars indicate the values of p1 and p2, which are initial values for the peak centers of
two Gauss–Markov processes. See Eqs. (11)–(13)
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a1 = 1.9
p1

= 9.2

a2 = 1.9
p2

= 1.8

Q1 = 0.45a1
0.19

= 21.8

Q2 = 0.45a2
0.19

= 4.26

(14)

3 Integral Error Bounds

One of the principal uses of rate gyros is to provide an estimate of angular position
obtained by integrating the gyro output signal. The presence of additive noise
and bias terms in the gyro signal causes errors in the estimated position. It is
useful to have a bound on the position error as a function of time. Similarly, with
accelerometers, it is useful to have bounds on the first and second integrals of an
accelerometer signal.

Bounds on the integral of a sensor output may be obtained by direct calculation
as follows. For each component of a sensor calibration signal, obtain an expression
for the integral of this component, and compute the variance of the integrated signal
as a function of time. A statistical bound on the magnitude of the integrated signal is
then given by some multiple of the square root of the variance (standard deviation).

Statistical bounds on the first and second integrals of the n(t) and b0(t)

components were calculated using the direct method in [2, 7]. However, direct
calculation for a Gauss–Markov component is tedious. Instead, we derive in the
following subsection a relationship between Allan variance and a statistical bound
on the integral of a sensor calibration signal.

3.1 Bound on Single Integral

The definition of Allan variance given in (6) is independent of k. Thus, we can
choose k = 1 to obtain

a(τ) = 1

2
E[(ȳ2 − ȳ1)

2]. (15)

Note that ȳ1 and ȳ2 (see (5)) may be written as

ȳ1 = 1

τ
X, ȳ2 = 1

τ
Y. (16)
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where

X =
∫ τ

0
y(λ)dλ, Y =

∫ 2τ

τ

y(λ)dλ (17)

are zero-mean random variables. Then, (15) becomes

a(τ) = 1

2τ 2
E[(Y − X)2] = 1

2τ 2
var(Y − X). (18)

Under the assumption that each component of a sensor calibration signal is derived
from an independent white-noise process, the random variables are uncorrelated and
the variance of Y − X is equal to var(X) + var(Y ). Furthermore, because X and Y

are both obtained from length-τ intervals of data, var(X) = var(Y ). Thus, (18) may
be rewritten as

a(τ) = 1

2τ 2 · 2var(X) = 1

τ 2 var(θ(τ )) (19)

where θ(τ ) is the integral of y(t) from 0 to τ . From (19), we have

var(θ(t)) = t2a(t), (20)

where a(t) is a(τ), the Allan variance of y(t), with τ replaced by t .
A useful bound on the magnitude of an integrated calibration signal is given by

some multiple, m, times the standard deviation of θ(t). Such a bound will be called
the “mσ” bound. Using (20), this bound on the first integral of a calibration signal is

B1(t) = m
√

t2a(t), (21)

where m is chosen to achieve a desired (small) value for the probability that the
integrated sensor output will exceed this bound. For example, if the noise terms in
the calibration signal model have a Gaussian distribution at each point in time, then
(21) with m = 4 gives the 4σ bound. The probability that the integrated signal
exceeds this bound is less than 6.3 × 10−5, which is the area under a Gaussian
probability density function for points exceeding four standard deviations.

For a calibration signal consisting of additive noise and three bias components,
the Allan variance a(τ) is obtained by summing (8) and (10). Changing τ to t and
using (21) gives the bound

B1(t) = 4
√

Rt + Q0t3/3 + G(t) (22)
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Fig. 7 Error bound B1(t) (solid curve) from (22) with m = 4. Dashed curves are for the individual
GM process as well as the combined ARW/RRW component

where G(t) is the contribution of all of the Gauss–Markov terms.

G(t) =
C∑

i=1

Qi

ai

[
t

ai

− 1

2
(3 − 4e−ai t + e−2ai t )

]
. (23)

Figure 7 shows the integral bound (22) with m = 4 for the calibration signal
corresponding to the parameters in Table 2. In addition to the overall bound,
individual bounds are also shown for the following components: n(t)+b0(t), G1(t),
and G2(t). For the first hour, all three of these components contribute significantly
to the overall bound. For times greater than 2 h, the contribution of n(t) + b0(t)

begins to dominate, due to b0(t).
It is important to note that the integral bound given in (21) is a function only

of the Allan variance. Thus, if the Allan variance is estimated for some value of
the smoothing interval τ , that Allan variance point may be used to obtain a bound
on the integrated sensor output at time t = τ . In other words, the integral bound
may be obtained directly from computed Allan variance points without the need to
estimate the statistical parameters of the sensor. However, the benefit of estimating
the parameters is that they may be used to obtain a bound on the double integral of
the sensor output, as is shown next.

3.2 Bound on Double Integral

If a bound on the double integral of a sensor calibration signal is required, then it
is necessary to estimate the statistical parameters [R,Q0, (α1,Q1), · · · , (αC,QC)]
shown in (22) and (23). The bound B2(t) on the second integral of a calibration
signal is simply the integral of the first-integral bound:

B2(t) =
∫ t

0
B1(λ)dλ. (24)
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Fig. 8 Bounds on the first integral (top graph) and second integral (bottom graph) for the sensor
whose parameters are given in Table 2. In both graphs, the outer dashed lines are the 4σ (m = 4)

bound and the inner dashed lines are the 3σ bounds. The solid lines are the first and second integrals
of 1000 simulated calibration signals

After the model parameters are estimated, the first-integral bound can be evaluated
on a dense grid of time points and the integral in (24) may be evaluated numerically
using (22) and (23). Figure 8 shows the first- and second-integral bounds for the
sensor whose parameters are given in Table 2, as well as the first and second
integrals of 1000 simulated calibration signals.

4 Estimating the Parameters of a Sensor Model

The integral bounds given in the previous section are a function of the parameters
describing the noise and drift components of the sensor. These parameters may be
estimated by first computing the Allan variance from a finite record of calibration
data, and then fitting a model to the experimental Allan variance points. One way
to do this is by a simple least-squares fit. Let τ be a vector of τ values. Let â(τ )

be the corresponding vector of computed Allan variance points, and let a(τ ; θ) be
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Fig. 9 Allan variance for the sensor whose parameters are given in Table 2. The solid line is the
theoretical Allan variance. Experimental Allan variance points were computed from a calibration
signal of duration D = 48 h. Model parameters obtained by a least-squares fit to the experimental
Allan variance points were used to construct the dashed line. The vertical lines indicate plus or
minus two standard deviations for each computed Allan variance point

the vector of theoretical Allan variance points given by the sum of (8) and (10) for
some values of the model parameters θ = [R,Q0, (a1,Q1), · · · , (aC,QC)]. The
least-squares estimate of the parameter vector is

θ̂LS = arg min
θ

(â(τ ) − a(τ ; θ))T (â(τ ) − a(τ ; θ)). (25)

A method to obtain initial values of the parameters in θ is described in Sect. 2. When
the minimization has been performed, the estimated parameters in θ̂LS may be used
in (8) and (10) to calculate a modeled Allan variance for any value of τ .

Note that, from a statistical point of view, θ̂LS is not the best estimator of θ .
Indeed, [6] has shown that θ̂LS is not, in general, a consistent estimator of θ .
Nevertheless, for values of τ at which the calculated Allan variance has small
standard deviation, the least-squares fit will be close to the theoretical Allan
variance. See, for example, Fig. 9 for values of τ less than 2 h.

A better estimate of theta, θ̂WLS is obtained by a weighted least-squares fit, and
was derived in [8, 9] and given the name Generalized Method of Wavelet Moments
(GMWM). This estimator is

θ̂WLS = arg min
θ

(â(τ ) − a(τ ; θ))T W−1(â(τ ) − a(τ ; θ)) (26)

where W is a diagonal matrix whose diagonal elements are the variances of the
computed Allan variance points. A formula for estimating these variances from a
single calibration signal is given in [8] and [10].

The performance of the weighted least-squares estimator, for a single calibration
signal, is shown in Fig. 10, which is identical to Fig. 9 except that the modeled Allan
variance is computed using θ̂WLS . Comparing Fig. 10 with Fig. 9, it can be seen that
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Fig. 10 Allan variance for the sensor whose parameters are given in Table 2. The solid line is the
theoretical Allan variance. Experimental Allan variance points were computed from a calibration
signal of duration D = 48 h. Model parameters obtained by a least-squares fit to the experimental
Allan variance points were used to construct the dashed line. The vertical lines indicate plus or
minus two standard deviations for each computed Allan variance point

both modeled curves are close to the true Allan variance for values of τ less than
2 h. The two modeled curves differ from each other only for the largest values of τ ,
where the dashed line from the least-squares parameters (Fig. 9) curves downward,
while the dashed line for the weighted least-squares parameters (Fig. 10) curves
upward.

Table 3 shows the parameter values given by the least-squares and weighted least-
squares estimators for a single calibration signal. It can be seen that the two sets of
parameters are quite different from each other, and that the least-squares estimate
of the parameter Q0 is a negative number, which is not physically meaningful. This
reflects the fact that the weighted least-squares estimator is the superior estimator.

From the point of view of integral error bounds, however, it is the numerical
value of the Allan variance that matters, not the particular parameter values used in
the model. If the integral error bounds are needed only over a small interval of time,
say less than 2 h, then these bounds are a function of the modeled Allan variance
for τ < 2. For the example given in this section, the least-squares and weighted
least-squares give nearly identical modeled Allan variance for τ < 2 h. Thus, both
methods give nearly identical integral error bounds up to 2 h.

Figure 11 shows the integral error bounds obtained from least-squares parameter
estimates from 1000 calibration signals along with (dark lines) the error bounds
computed from the true parameter values. Plots of the integral error bounds obtained
from the weighted least-squares parameter estimates look identical to Fig. 11. This
figure indicates that the error bounds computed from parameter estimates obtained
from a calibration signal are random variables at each moment in time, whose means
are the theoretical error bounds, and whose variances grow with time.
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Table 3 Parameter values
given by the least-squares and
weighted least-squares
estimators ((25) and (26),
respectively) computed from
a calibration signal of 48-h
duration

Parameter True value LS WLS

R 2.7 × 10−3 2.7 × 10−3 2.7 × 10−3

Q0 4.3 × 10−1 −3.5 × 10−1 3.3 × 10−1

a1 3.1 × 101 2.7 × 101 4.6 × 101

Q1 2.2 × 101 1.9 × 101 4.0 × 101

a2 3.6 × 100 1.75 × 100 2.5 × 100

Q2 5.8 × 100 3.0 × 10−1 1.9 × 100

The models were fit to the same experimental Allan
variance points shown in Figs. 9 and 10

Fig. 11 3σ bounds on the first integral (top graph) and second integral (bottom graph) for the
sensor whose parameter values are given in Table 2. In both graphs, the dark curve is the bound
computed using the true parameter values and the dotted curves are the bounds computed from
least-squares parameter estimates obtained from 1000 different calibration signals. The 1000 dotted
curves appear as vertical lines

5 Summary and Future Work

The main contribution of this chapter is the derivation of a statistical bound on
the magnitude of an integrated calibration signal. This bound, given by (21), is a
simple function of the Allan variance of a sensor. Thus, the bound may be computed
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directly from experimental Allan variance points without the need to estimate model
parameters. The resulting bound is useful when the variance of the calculated Allan
variance points is small.

In order to compute the bound on the second integral, the first-integral bound
must be evaluated on a dense grid of points for accurate numerical integration. A
straightforward way to do this is to estimate parameters for a model of the sensor
calibration signal and evaluate the theoretical Allan variance of the model on a dense
grid of points. This was demonstrated in Sect. 4.

An area of future work has to do with obtaining integral error bounds from a
single calibration signal even when the variance of the calculated Allan variance
points is not small. It was seen in Fig. 11 that the first-integral bound computed
from a calibration signal is a random variable whose mean is the theoretical bound
and whose variance is related to the variance of the estimated Allan variance. This
can also be seen from (21) by replacing a(t) with an estimate â(t) obtained from a
calibration signal. The variance of â(t) could be used to find the variance of B1(t),
which could then be used to find a first-integral bound from a single calibration
signal that would be valid for the complete range of calculated Allan variance points.

Appendix

Program to Simulate Calibration Signal

% Script to compute calibration signal and compute
% and plot Allan variance
T=1/100/3600; % sampling interval (hours)
D=48; % duration of calibration signal (hours)
N=floor(D/T);
% Define parameters for sensor
Q=4.3047e-01;
R=2.6518e-02;
a1=3.0957e+01;
Q1=2.1572e+01;
a2=3.6367e+00;
Q2=5.7928e+00;
arw=randn(N,1)*sqrt(R/T);
rrw=randn(N,1)*sqrt(Q1/T);
rrw2=randn(N,1)*sqrt(Q2/T);
rrw3=randn(N,1)*sqrt(Q*T);
A=[1 -exp(-a1*T)];
B=(1-exp(-a1*T))/a1;
frrw=filter(B,A,rrw);
A2=[1 -exp(-a2*T)];
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B2=(1-exp(-a2*T))/a2;
frrw2=filter(B2,A2,rrw2);
y=arw+frrw+frrw2+cumsum(rrw3);
% Compute Allan variance
tau=logspace(-3,0.6,20)’; %smoothing lags in hours
m=floor(tau/(T)); %smoothing lags in samples
[avar]=compute_avar(y,m);
loglog(tau,avar)

Program to Compute Allan Variance

function avar=compute_avar(y,m)
% y is a calibration signal
% m is a vector of smoothing interval lengths
M=floor(length(y)./m);
jj=length(m);
avar=zeros(jj,1);
for j=1:jj

mm=m(j);
MM=M(j);
D=zeros(MM,1);
for i=1:MM;

D(i)=sum(y((i-1)*mm+1:i*mm))/mm;
end
v=diff(D).^2;
avar(j)=0.5*(mean(v));

end
end

Program to Estimate Sensor Parameters by Least Squares

function [R,Q,Q1,a1,Q2,a2]=LSfit(avar,tau,x0)
% this function fits a model of additive noise,
random walk,
% and two GM components. x0 is a vector of initial
guesses
% for each parameter that the function returns
% avar is a vector of Allan variance points computed
% at each value of tau, which is a vector of
smoothing intervals
options=optimset(’display’,’off’,’TolX’,1e-6,

’TolFun’,1e-6);
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x=fminsearch(@efun,x0,options,tau,avar);
R=x(1);
Q=x(2);
Q1=x(3);
a1=x(4);
Q2=x(5);
a2=x(6);
function f=efun(x,tau,avar)
R=x(1);
Q=x(2);
Q1=x(3);
a1=x(4);
Q2=x(5);
a2=x(6);
x1=R./tau;
x2=Q*tau/3;
x3=Q1/a1^2./tau.*(1-1/2/a1./tau.*(3-4*exp(-a1*tau)
+exp(-2*a1*tau)));
x4=Q2/a2^2./tau.*(1-1/2/a2./tau.*(3-4*exp(-a2*tau)
+exp(-2*a2*tau)));
%err=(log10(avar)-log10(x1+x2+x3+x4));
err=((avar)-(x1+x2+x3+x4));
f=sum(err.*err);
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Developing Efficient Random Flight
Searches in Bounded Domains

Thomas A. Wettergren

1 Introduction

The search for hidden objects is one of the most basic problems of behavioral
ecology, as it is a fundamental process in foraging for food sources. In that light,
there is certain biological interest in understanding the decision process that animals
use to achieve foraging success with the least effort possible [15, 16]. This is similar
to the desired decision paradigm for any entity performing search, which is why
the replication of foraging search in engineered systems has been an active area
of study [2, 3]. Foraging search is particularly attractive as a mechanism when
the search agent needs to behave independently, with no external (or supervisory)
control. In those cases, developing search strategies for an engineered system that
mimic the search process of a biological forager can be beneficial. Furthermore,
the mathematical investigation of foraging search provides insight into the process
that is being optimized by the forager, and the resulting optimal decision rule can
provide insight into engineering man-made systems for search.

When classic search theory was developed in the 1940s, it was employed for
manned assets that controlled their motion and attempted to maximize encounters
with objects of interest [8]. This type of search planning led to Koopman’s random
search formula, which shows that the probability of finding an object over search
time t is given by p(t) = 1 − exp(−SE · t). In this formulation, SE is the
incremental search effort applied over a unit time step, which is nominally given
by the fraction of the search space covered in a unit time step multiplied by the
searcher’s probability of detection. Koopman’s random search formula is used in
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most search planning activities, as it accounts for the probabilistic nature of the
search process. However, the use of this search formula implies parallel search
tracks that attempt to “cover” the search region, in what is formally known as
boustrophedon search or more colloquially known as mow-the-lawn search. Animal
foraging search, in contrast to this highly structured coverage search, does not try
to completely cover an area in finding prey, but instead seeks to find the prey as
quickly and efficiently as possible. For this reason, foraging search tends to focus
on a different modeling paradigm than the coverage search found in most of the
engineering search literature.

When dealing with multiple foragers trying to find prey in the same area, the
problem becomes one of dividing search effort given a scarce resource. This is
the mathematical structure under which most foraging studies are taken. There has
been a popular view in the mathematical ecology community that simple two-player
games are reasonable representations of behavior found in animal conflict [15].
When foraging for prey as a resource, this search for scarce resources has been
viewed as a game between foragers and the randomly hidden resources (prey) [10].
Andersson [1] has shown that animal populations can be mathematically analyzed
using computational optimization of the search parameters. In that context, the
search activity of foragers has been modeled as an optimization of the specific
parameters in a search game. Using this modeling paradigm, it is clear that an
optimal search can be conducted that is tailored to the amount of a priori information
available about both the disposition of the object of search as well as the expected
search capability of the searcher in various subdomains of the search region.

Using this idea of foraging as a search process that plays out as a game between
searchers and the prey, we formulate the search for hidden objects by a searcher who
performs with limited guidance as a foraging model. Another feature of ecological
search that we exploit is the use of random search as a search paradigm when there
is uncertainty in the environment and the performance of the searcher. Whereas
random walks may seem to be a natural choice for random exploration of a space, it
has been observed that Lévy flights are actually encountered regularly in nature as
a more common random search strategy [12, 18].

While most of the ecological search problems are effectively performed on an
unbounded domain (i.e., animals with free range to find prey), engineered systems
are typically employed to perform search in a specifically restricted domain. The
limited work that has been performed on flight searches in bounded domains [22]
has focused on observing the effect of the bounded domain on flights designed
without regard for domain size. In this work, we use the biological paradigm as
inspiration to optimally design a Lévy flight-based search for a searcher performing
search in a bounded domain. We specifically design a method for selecting the
parameters of an optimized foraging-style random search for objects and show
its effectiveness in bounded domains. We also include a strategy for modification
of these parameters for problems with multiple searchers in the same domain.
Numerical examples are included to show the performance of these searches
compared to nonrandom search strategies. We conclude with some guidance on
the types of engineering problems where this new random search theory could be
beneficially applied.
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2 Flight Models of Biological Foraging

Many species of animals perform a foraging process that unfolds as a random search
for prey [16]. While many engineered systems may look at search as a process of
following a prescribed pattern of motion in a domain, animals do not have that
luxury. This happens for multiple reasons. First, the animals do not have prior
guidance on the details of the search domain, they typically only have a feel for the
“patchiness” of the search domain, or the expected density of prey sites that can be
found. Because of this, there are no a priori planned paths for conducting a search.
Secondly, animals tend to have limited inertial navigation capability, which causes
a difficulty in following a prescribed path. Thirdly, the search performance of an
animal in a domain (i.e., their effective range for spotting prey) is often variable and
only known in real time. This causes a need for adaptivity throughout the plan. All of
these considerations lead to a natural consequence that animals perform randomized
search strategies while foraging. Since many of these considerations also exist for
engineered systems operating in difficult environmental conditions, it is of interest
to understand how to optimize the performance of these types of foraging strategies
for potential use in engineered systems that are designed to perform search.

The specific spatial search patterns that animals follow during their foraging
behaviors have been accurately modeled as a random flight process (a random walk
with variable step sizes) when the flight leg lengths follow a Lévy distribution
[19, 20]. This style of flight process has a number of short legs with intermittent
long legs, leading to searches that focus on a small area for a period of time and
then occasionally make a long step to get to a new area (randomly selected) for
search. The justification that has been developed for modeling with a Lévy flight is
that the Lévy flight model is a consequence of modeling the foraging interaction of
searchers and resources as a random search [12], and it has been further shown that a
deterministic random walk in an uncertain random environment provides Lévy-like
encounters [5]. While it may at first appear that a Brownian random walk would
provide better results when searching for random objects, it has been shown that the
“patchiness” of the expected resources (due to the environmental context) affects
the bias of the random walk towards the Lévy pattern becoming optimal [7]. In
particular, it has been shown that optimal random motion search strategies tend from
Brownian to Lévy when the resource spatial density is small (relative to the foragers
field of view) and the searchers move faster than the resources that they seek [4].
However, there is some recent evidence that in certain cases Brownian search can
beat Lévy search, even for sparse problems [11]. Furthermore, when target sites
are revisited shortly after initial contact, there has been some evidence [14] of a
transition from Lévy search to ballistic random walks.

The key observation that kicked off much of the work in Lévy search models
of biological foraging was that foragers followed random flights whose leg lengths
followed distributions that had “heavy tails” [18]. When these heavy-tailed distri-
butions are applied to select the leg lengths of a random flight model, the model
becomes one of the superdiffusive random flights. In a typical normal diffusion
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process (such as a Brownian flight), the mean square displacement of a particle
(e.g., the searcher in our search context) grows linearly with time. This leads to
a search rate that grows as

√
t (as it is proportional to the square root of the

mean square displacement). However, for a superdiffusive diffusion process (such
as a Lévy flight) the mean square displacement of a particle follows a superlinear
relationship with time (typically close to quadratic). Thus, for a search based upon
a superdiffusive random flight, the search rate grows as tα with α > 1/2, and as
the mean square displacement approaches a quadratic function of time the search
rate grows nearly linearly. This improvement in search rate is hypothesized as
the primary reason why biological systems apply superdiffusive random flight as
opposed to other diffusive processes. We note that a linear search rate is the best
rate that can be achieved by any fixed-speed searcher, thus the superdiffusive flight
is the best chance for a random flight to approach optimal search rates.

Since superdiffusive random flight is the overarching goal of a random searcher,
we propose to use a random flight model with leg lengths chosen from the following
distribution (similar to the model in [22]):

p(�) =
{

0, � < �0

c �−μ, � ≥ �0
(1)

with a value of c = (μ − 1)�
μ−1
0 to make it a valid probability density function.

This probability density function can be easily shown to be superdiffusive when
the exponent μ is in the range 1 < μ ≤ 3. As μ → 1, it approaches ballistic
behavior, and for μ > 3 it follows regular diffusion. Because of the desire to
maintain superdiffusive behavior, we consider values of μ ≈ 2. Equation (1) is
the leg length basis of our search paradigm. In practice, a searcher would randomly
(uniform random) select a search direction along with a leg length randomly chosen
from the distribution in Eq. (1). The search is then conducted in the chosen direction
for the chosen length. At the end of the leg, a new direction and a new leg length
are randomly chosen and the process repeats until the search concludes (either due
to finding the object or reaching the prescribed end-of-search time).

For the bounded domains that are of interest in this work, the resulting legs
are truncated whenever they reach the boundary of the domain. In that case, the
direction of the next leg is chosen to be random but limited to those directions that
point to the interior of the domain. In Fig. 1, we show an example of a random
superdiffusive Lévy-style flight performed in a bounded domain. The total length of
the search path in this example was chosen to match that of a 10-leg mow-the-lawn
search plan for the same domain. Note how the random flight leads to some portions
of the domain with significant overlap and other portions of the domain without
coverage. Because of these issues with random search, it is anticipated that random
search would only be a preferable paradigm in scenarios with sparse coverage (i.e.,
where only a fraction of the total domain is searched).
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Fig. 1 A long-duration Lévy
flight search performed in a
bounded domain. The total
search distance is equal to
that for a uniform
mow-the-lawn search plan for
a region of identical size

3 Optimizing Search Encounter Rates

The use of a Lévy flight for search, as opposed to a flight following other
distributions (such as a simple Brownian motion flight), is based upon a notion of
search encounter rate. In particular, when searching for objects, the amount of search
effort applied can be described by the amount of the search area that is accumulated
in the field of view of the searcher as the searcher moves along. Specifically, this
search effort is the integral of the searcher field of view over the motion path taken
by the searcher, normalized by the total search area. For any straight search leg from
time ti to ti+1, which is of speed v, this search effort SEi is given by:

SEi = SE(Li) = 2rdLi/A0 (2)

where rd is the radius of searcher detection (the field of view of the searcher), Li =
v(ti+1 − ti ) is the distance (length) transited by the search leg, and A0 is the size of
the total search area. In the absence of any variation in performance over the search
area (such as due to varying environmental conditions), the search effort is a simple
linear function of search leg length. Thus, we follow the notation in [12] to define
a search efficiency, η, as the ratio of the number of object detections to the total
search effort applied by a searcher. Since we can assume that the total distance is
the product of the total number of object detections M times the average distance
traveled between two successive detections 〈L〉, we have

η = MA0

2rdM〈L〉 = c

〈L〉 (3)

where c = A0/(2rd) is a scaling constant for the geometrical size of the specific
problem. From Eq. (3), it is clear that the maximization of search efficiency
η is identical to the minimization of 〈L〉, the distance traveled between two
successive detections. Thus, the goal of maximizing search efficiency becomes one
of minimizing the average travel distance between successive detections.
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Assume that we have reached some point in the search process where a detection
of an object has just been made. To then minimize the distance to the next detection,
we make the following two observations: (1) a long leg is beneficial only if oriented
in the direction of another object, and (2) a short leg is beneficial only for reorienting
the searcher away from a “bad” direction. Thus, it is clear that, on average, it is
optimal to pick the length of the search leg to match the expected distance to the
next object. This expected distance to the next object is given by the mean free path
between detection of objects λT , which in two dimensions for stationary objects is
given by:

λT = 1

2rdρ
(4)

where rd is the distance at which the searcher detects an object, and ρ is the density
of objects in the domain. Therefore, we arrive at the conclusion that the optimal
search strategy for maximization of search efficiency is to have the average search
leg length match the mean free path λT . Due to the boundedness of our search
domain, many of the longer search legs will become truncated, and thus the average
search leg length that is achieved is not merely an average of the leg distribution
function given by Eq. (1). In the next section, we derive an approximate analytic
expression for this average achieved search leg length and then match it to the mean
free path to obtain a rule for setting optimal search parameters for random search
flights in bounded domains.

We note that the search encounter rates of this section are only valid for sparse
target situations. In particular, it has been ecologically observed [17] that the prey
encounter rate and prey density are related by spatial issues leading to more density
dependency than a pure frequentist approach (as shown above) suggests. This effect
is most pronounced for non-sparse scenarios. Furthermore, it has been also shown
that this dependency, when it is a noticeable effect, can be described by an increase
in search rate over time [13]. We specifically limit our study to sparse scenarios, and
these issues that arise in non-sparse scenarios are a subject of future work.

3.1 Expected Search Leg Lengths

When applying a random flight model to a bounded domain, there is a forced
truncation of many of the longer length flight legs, which greatly impacts the
resulting distribution of coverage in the domain. To assess the impact, we model
the truncation by assuming that, when truncation occurs, the effective leg length is
truncated at some length given by the random variable ξ . Let us first analyze the
resulting performance for a fixed value of ξ (i.e., when the random variable follows
a delta function distribution).
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We begin with the following lemma for computing the expected value of a
random variable x that is sampled from a known distribution f (x) but then truncated
at some maximum value λ:

Lemma 1 Let x ∈ R
+ be a random variable with probability density function

f (x) : R
+ → [0, 1). Let y be another random variable defined through the

transformation y = g(x) where g(x) = min{x, λ} for a real parameter λ. Then,
the expected value of y is given by:

E[y] =
∫ λ

0
xf (x)dx + λ

∫ ∞

λ

f (x)dx (5)

Proof The expected value of a function g(x) of a continuous random variable x ∈
R

+ with probability density function f (x) is given by:

E[g(x)] =
∫ ∞

0
g(x)f (x)dx.

The range of integration can then be split into two parts for any real parameter
λ ∈ (0,∞) according to:

E[g(x)] =
∫ λ

0
g(x)f (x)dx +

∫ ∞

λ

g(x)f (x)dx.

Now, from the definition of g(x) it is clear that g(x) = x over the range of the first
integral and g(x) = λ over the range of the second integral. Therefore, we have

E[y] = E[g(x)] =
∫ λ

0
xf (x)dx +

∫ ∞

λ

λf (x)dx,

which is the resulting form in the lemma. ��
Now, the mean leg length E[�] for searches that follow leg length distribution

p(�), but are truncated at some fixed length � = ξ , is given (according to Lemma 1)
by:

E[�] =
∫ ξ

0
� p(�) d� +

∫ ∞

ξ

ξ p(�) d� (6)

By substituting in the distribution for p(�) from Eq. (1), this expression simplifies
to

E[�] = (μ − 1)�
μ−1
0

{∫ ξ

�0

�1−μ d� +
∫ ∞

ξ

ξ �−μ d�

}
(7)
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Taking the integrals (and recalling that μ > 1) leads to

E[�] =
(

μ − 1

2 − μ

)[
ξ2−μ − �

2−μ
0

�
1−μ
0

]

+ ξ

(
ξ

�0

)1−μ

(8)

which can be algebraically rearranged to yield

E[�] = �0

[(
1 − μ

2 − μ

)
+
(

1

2 − μ

) (
ξ

�0

) 2−μ
]

(9)

We note that the expression in Eq. (8) is similar to expressions found by
Viswanathan and colleagues [20], but their analysis uses a truncation based upon
the termination of legs due to detection events, not due to geometric bounds on the
search region. The expression in Eq. (9) is more useful for our purposes than that in
Eq. (8), as it demonstrates the deviation from linearity when viewing the mean leg
length as a function of the truncation value ξ .

For the practical problem of a bounded domain, we consider the length param-
eters to be truncated by random lengths due to the relation between the current
leg orientation and the domain geometry. For this, we replace the truncation length
value ξ with a random variable ξd ∈ R

+ with probability density function h(ξd)

whose mean value is given by E[ξd ] = ∫
ξdh(ξd) dξd = λd . We also define the

mean value of the resulting leg lengths to be given by 〈�〉, which is related to E[�]
by the following:

〈�〉 =
∫ ∞

0
E[�]h(ξd) dξd

=
(

1 − μ

2 − μ

)
�0 +

(
1

2 − μ

) ∫ ∞

0

(
ξd

�0

) 1−μ

ξd h(ξd) dξd . (10)

The mean leg length formula of Eq. (10) is valid for values of 1 < μ ≤ 3.
However, for the application of search design, we focus near the center of this range
where μ ≈ 2. By letting ε = 2 − μ for some −1 � ε � 1, we see that the integral
term in Eq. (10) can be approximated by:

∫ ∞

0

(
ξd

�0

) 1−μ

ξd h(ξd) dξd = �
μ−1
0

∫ ∞

0
ξε
d h(ξd) dξd

= �
μ−1
0

∫ ∞

0
(λd + (ξd − λd))ε h(ξd) dξd

≈ �
μ−1
0

∫ ∞

0
(λε

d + ελd(ξd − λd)) h(ξd) dξd
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≈ �
μ−1
0 λε

d

∫ ∞

0
h(ξd) dξd +

�
μ−1
0

∫ ∞

0
ελd(ξd − λd)) h(ξd) dξd

≈ �
μ−1
0 λε

d + O(ε) (11)

where the approximation is based on a small variance assumption on the truncation
length distribution, such that |ξd − λd | � λd . Replacing the value of ε = 2 −μ and
inserting the integral approximation of Eq. (11) into Eq. (10), we arrive at a mean
leg length formula for truncated flight searches of

〈�〉 ≈
(

1 − μ

2 − μ

)
�0 +

(
1

2 − μ

) (
λd

�0

) 1−μ

λd + O(|μ − 2|). (12)

Recalling that the mean leg length approximation formula is only valid for μ ≈ 2,
we perform another regular asymptotic expansion of the expression in Eq. (12) via
the substitution ε = μ − 2, leading to the following:

ε〈�〉 ≈ �0

(
λd

�0

)ε

− �0 (1 − ε) + εO(ε) (13)

A first-order asymptotic expansion for ε〈�〉 yields the following expression:

ε〈�〉 ≈ ε�0

[
1 + ln

(
λd

�0

)]
+ O(ε2) (14)

which yields an expression for the achieved mean leg length of

〈�〉 ≈ �0

[
1 + ln

(
λd

�0

)]
+ O(|μ − 2|) (15)

The expression in Eq. (15) shows that the mean leg length 〈�〉 is nearly linear in the
minimum leg length �0, and that it increases with the mean value of the truncation
length due to geometry (which is given by λd ).

To find an analytic form for the mean truncation length λd , we turn to the
literature on mean chord lengths in convex domains. In particular, the mean
truncation length λd can be found from the mean chord length in a convex region
Q ⊂ R

2 according to [6]:

λd = π |Q|
|∂Q| (16)
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where |Q| is the area of the domain Q and |∂Q| is the perimeter. Note that for a
circular domain of radius R this gives λd = πR/2, and for a rectangular domain of
length DL and width DW this gives λd = πDLDW/(2DL + 2DW) which yields
λd = πD/4 for a square with sides of length D. The particular definition of mean
chord length that is used to arrive at this formula for λd is for a set of random
lines that intersect the convex domain. As pointed out in [9], the value of mean
chord length has slight variations depending on the specific context under which the
chords are generated. However, computer simulations of a variety of random search
truncations in rectangular domains show the formula to hold well for the search
truncation length application.

A set of Monte Carlo computer simulations of random flights in a bounded
domain with truncations were performed to validate the formula given in Eq. (15)
along with the formula for truncation length given by Eq. (16). The results of the
computer simulations are shown in Fig. 2. We note that simulations show good
agreement with the analytic form except for very large values of �0 (when �0 >

0.75λd ). In those cases, the minimum leg length of the distribution, �0, is so close to
the mean truncation level, λd , that the effect of the distribution on the resulting legs
is dominated by the effect of the truncations, which leads to the analytic expression
underpredicting the simulated results. Fortunately, this is not a practical region of
the domain, as demonstrated in the next section.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6
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1
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Fig. 2 Comparison of the analytic form for 〈�〉 given by Eq. (15) and Monte Carlo simulations
of achieved lengths of truncated random search legs in a finite domain. The red dashed line is the
analytic solution and the blue solid line is the mean of the simulation runs. The blue dotted lines
show the mean plus/minus one standard deviation for the simulation results
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3.2 Setting Search Parameter Values

In the previous section, the mean leg length for random flights in a truncated domain
was determined and an analysis conducted showed that one can maximize detection
rate by matching the expected mean free path between targets with the mean leg
length. Next, we determine the parameter values for which that match holds true.
In particular, for a mean free path between target detections given by λT , the mean
free path and the mean leg length match (i.e., 〈�〉 = λT ) when the following holds
true (given by substituting 〈�〉 = λT into Eq. (15)):

�0

λT

=
[

1 + ln

(
λd

�0

)]−1

(17)

which is an optimal search rule for setting the value of lower leg lengths �0 based
on the domain size and expected target population.

The search leg parameter rule of Eq. (17) is difficult to implement in practical
problems, since it involves solving a transcendental equation to find the value of
�0. While a numerical solution may be practical for fixed individual situations, an
approximate analytic form is desirable. Recognizing that values of λT < λd are the
only values of practical interest, we let α = λT /λd and find an approximate form
for �0 under the range 0 ≤ α ≤ 1. From Eq. (17), we let ξ = �0/λd and arrive at

α = ξ − ξ ln(ξ). (18)

To develop a rule for setting �0 from Eq. (18), we must invert the equation into a
form ξ = f (α) (which becomes �0 = λdf (λT /λd) after substitution).

To form an analytically invertible approximation for Eq. (18), we develop a
functional form that is polynomial in ξ and meets four primary features of Eq. (18),
namely:

(1) α = 0 when ξ = 0,
(2) α = 1 when ξ = 1,
(3) dα/dξ > 0 for ξ ∈ [0, 1],
(4) d2α/dξ2 < 0 for ξ ∈ [0, 1].
A polynomial form that meets these features is given by:

α ≈ 1 − (1 − ξ)β (19)

for β > 1. Fitting integer values of β to the curve of α = α(ξ), we find that the
best integer match occurs for β = 3. A plot of the approximation of Eq. (18) using
Eq. (19) with a value of β = 3 is shown in Fig. 3.

This approximation in Eq. (19) (with β = 3) is analytically invertible and leads
to an approximation for �0 in terms of λd and α of the form

�0 ≈ λd

[
1 − (1 − α)1/3

]
(20)
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Fig. 3 Comparison of the
exact and approximate form
of α as a function of ξ . The
red dashed line is the exact
form of Eq. (18) and the blue
solid line is the
approximation from Eq. (19)
with a value of β = 3
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which in the physical parameters becomes

�0 ≈ λd

[

1 −
(

1 − λT

λd

)1/3
]

(21)

We note that in the limit of very large domains, in particular as λd � λT , this
approximation becomes

�0 ≈ λT

3
(22)

which shows the lower bound of the leg length distribution scales linearly with the
size of the expected mean free path between targets as the size of the domain gets
large, as expected. Equation (21) is the fundamental expression for the practical
sizing of leg length parameters when performing random flights in bounded
domains.

3.3 Effect of Multiple Searchers

We note that the addition of multiple random searchers now has the effect of merely
decreasing the mean free path between target detections, as the search problem is
known to have a duality between searcher and target frames of reference [21]. Thus,
the extension to N searchers is accomplished by recognizing that λT �→ λT /N .
In particular, for uniformly random objects distributed with density ρ in a two-
dimension domain, the N -searcher mean free path becomes

λT = 1

2Nrdρ
(23)
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which is the equivalent to increasing the individual searcher detection range by
a factor of N . This simple scaling only holds true for random non-collaborative
searchers seeking randomly located objects, although many practical situations can
be modeled in that way.

To see the effect of multiple searchers on the resulting search legs, we first
simulated a search for a single (N = 1) searcher with a search length of

∑
i Li =

Lmax using the optimized search parameters. In this simulation, we applied a search
of length Lmax = 10D over a square domain of size D × D with search range
rd = D/20. For this example, the resulting search effort of Eq. (2) for the total
search is given by:

SE =
∑

i

SEi = 2rdLmax = D2 (24)

This is the expected search coverage that would be achieved by such a searcher
performing nonoverlapping search of the same length in the same domain. We note
that SE = |Q| in this case, showing that this searcher is expending the same amount
of search effort that it would take to provide uniform 100% coverage of the domain
if a path with no overlap could be achieved. The resulting path of the optimal random
search of this searcher is given on the left of Fig. 4. On the right of Fig. 4, we show
a search of N = 4 multiple searchers of the same capability (i.e., rd = D/20) in
the same domain, but with a search length of Lmax = 2.5D. This was done so that
the total search effort of all four combined searchers matches that of the individual
searcher on the left. From these plots, it is clear that the multiple searchers have
shorter “long legs” but still provide roughly an equivalent amount of search coverage
as the individual searcher. Thus, a properly selected number of multiple independent
(non-coordinated) searchers can be used to take the place of a single searcher if a
reduction in individual total search length Lmax is desired.

Fig. 4 Example of a search flight with one searcher for a fixed search distance D0 (left) and an
example of four searchers in the same domain with fixed search distances of D0/4 with search
parameters accounting for the N = 4 searchers
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4 Numerical Examples

Summarizing the results of the previous sections, we have developed optimal search
rules based upon a specific class of superdiffusive random flights whose search leg
lengths are given by the probability distribution p(�) as shown in Eq. (1). For a set
of N searchers with detection range rd following these random flight rules inside
a bounded domain Q ⊂ R

2, where the targets are distributed with density ρ, the
optimal parameter for defining search leg lengths was shown to be given by:

�0 ≈ π |Q|
|∂Q|

[

1 −
(

1 − |∂Q|
2π |Q|Nrdρ

)1/3
]

(25)

which is found by substitution of Eqs. (16) and (23) into Eq. (21).
We first simulate the performance of a single (N = 1) searcher in a square

domain Q of size D × D. The objects of search are randomly distributed in the
domain at a density of ρ = 25/D2, and the searcher detects an object whenever it
comes within a distance rd = D/20 of the object. We simulate two types of search,
the first is a mow-the-lawn style search of total length Lmax = 2.5D and the second
is an optimized Lévy-style flight search of the same total search length. We note that
this search length yields an expected coverage of 0.25D2, corresponding to 25% of
the domain. Since the objects are randomly distributed, we expect that, on average,
the mow-the-lawn search plan should yield detection of 25% of the objects. We
ran 500 simulations of this scenario, where for each run a new set of search object
locations were distributed and a new random search plan was generated (note that
the mow-the-lawn plan, being a deterministic strategy, was the same for each run).
All searches were initiated from the lower-left corner of the domain, and a sample
showing four of the generated random search plans is shown in Fig. 5.

The resulting search effectiveness of the search approaches was measured by
the number of objects found in each search. An object is considered to be found
if the search path comes within a distance rd of the object at any time during the
search. To normalize, we record the percentage of objects that are found (number
of found objects divided by the total number of objects in the domain) and these
percentages were compiled into histograms for each of the search strategies. The
resulting search performance percentages are given in Fig. 6. From these histograms,
it is clear that the mow-the-lawn generally finds slightly less than 25% of the objects.
This is because the need to “turn around” between legs of the mow-the-lawn strategy
has some reduction in efficiency. Furthermore, due to the randomness of the object
deployments, there are some cases when more or less than 25% are found. On the
right side of the figure, it is clear that the optimal Lévy flight search achieves nearly
the same performance as the mow-the-lawn search. This shows that the optimality
achieved, while only guaranteed to be optimal among random flight strategies, still
achieves performance nearing that of the optimal planned deterministic search.

Given that the optimized Lévy flight search has shown comparable performance
to the structured mow-the-lawn search for a problem that is fairly sparse, we develop
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Fig. 5 Four examples of Lévy flight search paths generated for the numerical simulations
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Fig. 6 Histograms of number of simulation runs (out of 500) where the search successfully found
varying fractions of the total number of objects. The left histogram is for a structured mowing-the-
lawn search and the right histogram is for an optimized Lévy flight search

next a numerical example to assess the sparsity requirement. We consider again a
comparison of a mow-the-lawn search to an optimized Lévy flight search on the
same domain. Once again, we consider the scenario to consist of a domain Q that
is square of size D × D with objects placed randomly with density ρ = 25/D2 and
a detection range of rd = D/20. To vary the sparsity of the scenario, we consider
different search lengths ranging from L = 0.1 · Lmax to L = Lmax , where Lmax

corresponds to SE = |Q| (i.e., the search length of a complete coverage search). For
each search length, we run 100 scenarios with both the mow-the-lawn search plan
and the optimized Lévy flight search. Rather than compare raw numbers of objects
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Fig. 7 The search efficiency
η (as per Eq. (3)) for search
by mow-the-lawn search
planning (dashed red curve)
and for optimized bounded
Lévy flight search (solid blue
curve) over searches of
increasing total lengths. Each
point is an average of 100
simulations
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found, in this case we examine the resulting search efficiency, η, as given in Eq. (3).
Recall that search efficiency is the ratio of the number of object detections to the
total search effort applied by a searcher. Thus, it is a measure of the incremental
benefit gained by adding an increment of search length.

The results of the search efficiency simulations as a function of search length
are given in Fig. 7. These curves represent the average efficiency for each search
strategy taken over the 100 scenario runs. From this figure, there are a couple of
primary observations. First, for sparse search situations (small search length) the
random flight search is clearly more efficient than the mow-the-lawn strategy. We
note a small uptick in mow-the-lawn search for very short searches, this is due to
added efficiency when there is a single leg of mow-the-lawn and no turnarounds
are required. Second, as the search length increases, the random flight search
becomes less efficient while the mow-the-lawn search becomes more efficient, until
eventually the mow-the-lawn search efficiency surpasses that of the random search.
Thus, the mow-the-lawn search is desirable when there is sufficient search effort
applied; yet, if there is not much effort applied (or there is a desire for rapid finding
of objects, as in search-and-rescue), the optimized Lévy flight search is preferable.
This matches with the intuition from animal foraging scenarios that occurred in
unbounded domains, and thus by optimizing the random flight for the bounded
domain, we maintain the qualitative benefits seen in unbounded search.

5 Conclusion

We have developed a new method for computing the parameters defining an
optimally efficient random flight search for searchers operating in a bounded
domain. By building on the work of modeling the behavior of animal foraging,
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we have created a method to set parameters for searches based on the specifics
of the scenario. The search results have benefits for sparse search scenarios, and
have been shown to achieve performance efficiency that surpasses optimal coverage
search (i.e., mow-the-lawn) in sparse scenarios. This type of random search plan
has benefits in that it does not require the navigation precision of a planned path
search, and it also is readily adapted to scenario changes, as each leg is determined
independently of past legs. We also have shown how to apply the method to multiple
non-collaborative searchers operating in the same domain. The use of this approach
for search planning is particularly beneficial for searchers operating with limited
navigational accuracy, an example of which is unmanned vehicles operating in the
marine environment. In addition to their potential use as planning algorithms on
search platforms, these algorithms provide an optimal performance for a limiting
type of search that can be used to benchmark system performance.
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