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A.2.1 Barbălat’s Lemma 535
A.2.2 LaSalle–Yoshizawa’s Theorem 536
A.2.3 Matrosov’s Theorem 536
A.2.4 UGAS when Backstepping with Integral Action 537

B Numerical Methods 541
B.1 Discretization of Continuous-Time Systems 541

B.1.1 Linear State-Space Models 541
B.1.2 Nonlinear State-Space Models 543

B.2 Numerical Integration Methods 544
B.2.1 Euler’s Method 545
B.2.2 Adams–Bashford’s Second-Order Method 546
B.2.3 Runge–Kutta Second-Order Method 547
B.2.4 Runge–Kutta Fourth-Order Method 547

B.3 Numerical Differentiation 547

References 549

Index 567



About the Author

Professor Thor I. Fossen received an MSc degree in Marine Technology in 1987 from the Norwegian
University of Science and Technology (NTNU) and a PhD in Engineering Cybernetics from NTNU in
1991. In the period 1989–1990 he pursued postgraduate studies in aerodynamics and flight control as a
Fulbright Scholar at the University of Washington, Seattle. His expertise is in the fields of hydrodynamics,
naval architecture, robotics, marine and flight control systems, guidance systems, navigation systems and
nonlinear control theory. In 1993 he was appointed as a Professor of Guidance and Control at NTNU.
He is one of the founders of the company Marine Cybernetics where he was the Vice President R&D
in the period 2002-2007. He is the author of Guidance and Control of Ocean Vehicles (John Wiley &
Sons, Ltd, 1994) and co-author of New Directions in Nonlinear Observer Design (Springer Verlag, 1999)
and Parametric Resonance in Dynamical Systems (Springer Verlag, 2011). Professor Fossen has been
instrumental in the development of several industrial autopilot, path-following and dynamic positioning
(DP) systems. He has also experience in nonlinear state estimators for marine craft and automotive
systems as well as strapdown GNSS/INS navigation systems. He has been involved in the design of the
SeaLaunch trim and heel correction systems. He received the Automatica Prize Paper Award in 2002
for a concept for weather optimal positioning control of marine craft. He is currently head of automatic
control at the Centre for Ships and Ocean Structures (CESOS), Norwegian Centre of Excellence, and a
Professor of Guidance and Control in the Department of Engineering Cybernetics, NTNU.



Preface

The main motivation for writing this book was to collect new results on hydrodynamic modeling, guid-
ance, navigation and control of marine craft that have been developed since I published my first book:

Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. John Wiley & Sons, Ltd. Chichester,
UK. ISBN 0-471-94113-1.

The Wiley book from 1994 was the first attempt to bring hydrodynamic modeling and control system
design into a unified notation for modeling, simulation and control. My first book also contains state-of-
the-art control design methods for ships and underwater vehicles up to 1994. In the period 1994–2002
a great deal of work was done on nonlinear control of marine craft. This work resulted in many useful
results and lecture notes, which have been collected and published in a second book entitled Marine
Control Systems: Guidance, Navigation and Control of Ships and Underwater Vehicles. The 1st edition
was published in 2002 and it was used as the main textbook in my course on Guidance and Control at
the Norwegian University of Science and Technology (NTNU). Instead of making a 2nd edition of the
book, I decided to write the Handbook of Marine Craft Hydrodynamics and Motion Control and merge
the most important results from my previous two books with recent results.

Part I of the book covers both maneuvering and seakeeping theory and it is explained in detail how the
equations of motion can be derived for both cases using both frequency- and time-domain formulations.
This includes transformations from the frequency to the time domain and the explanation of fluid-
memory effects. A great effort has been made in the development of kinematic equations for effective
representation of the equations of motion in seakeeping, body, inertial and geographical coordinates.
This is very confusing in the existing literature on hydrodynamics and the need to explain this properly
motivated me to find a unifying notation for marine and mechanical systems. This was done in the period
2002–2010 and it is inspired by the elegant formulation used in robotics where systems are represented in
a vectorial notation. The new results on maneuvering and seakeeping are joint work with Professor Tristan
Perez, University of Newcastle, Australia. The work with Professor Perez has resulted in several joint
publications and I am grateful to him for numerous interesting discussions on hydrodynamic modeling
and control. He should also be thanked for proofreading parts of the manuscript.

Part II of the book covers guidance systems, navigation systems, state estimators and control of marine
craft. This second part of the book focuses on state-of-the-art methods for feedback control such as PID
control design for linear and nonlinear systems as well as control allocation methods. A chapter with more
advanced topics, such as optimal control theory, backstepping, feedback linearization and sliding-mode
control, is included for the advanced reader. Case studies and applications are treated at the end of each
chapter. The control systems based on PID and optimal control theory are designed with a complexity
similar to those used in many industrial systems. The more advanced methods using nonlinear theory are
included so the user can compare linear and nonlinear design techniques before a final implementation is
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made. Many references to existing systems are included so control system vendors can easily find articles
describing state-of-the art design methods for marine craft.

The arrangement of the subject matter in major parts can be seen from the following diagram:

Most of the results in the book have been developed at the Department of Engineering Cybernetics
and the Centre of Ships and Ocean Structures, NTNU, in close cooperation with my former doctoral
students, Ola-Erik Fjellstad, Trygve Lauvdal, Jann Peter Strand, Jan Fredrik Hansen, Bjørnar Vik,
Svein P. Berge, Mehrdad P. Fard, Karl-Petter Lindegaard, Ole Morten Aamo, Roger Skjetne, Ivar-Andre
Flakstad Ihle, Andrew Ross, Gullik A. Jensen and Morten Breivik, in the period 1991–2010. We have
been a productive team, and have written hundreds of international publications in this period. Our joint
efforts have resulted in several patents and industrial implementations. Morten Breivik has contributed
with many important results on guidance systems (Chapter 10) and he should also be thanked for
proofreading parts of the manuscript. Bjarne Stenberg should be thanked for creating the artistic front
and back covers of the book and many other graphical illustrations. Finally, Stewart Clark, Senior
Consultant, NTNU, should be thanked for his assistance with the English language. The book project has
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1
Introduction

The subject of this book is motion control and hydrodynamics of marine craft. The term marine craft
includes ships, high-speed craft, semi-submersibles, floating rigs, submarines, remotely operated and
autonomous underwater vehicles, torpedoes, and other propelled and powered structures, for instance
a floating air field. Offshore operations involve the use of many marine craft, as shown in Figure 1.1.
Vehicles that do not travel on land (ocean and flight vehicles) are usually called craft, such as watercraft,
sailcraft, aircraft, hovercraft and spacecraft. The term vessel can be defined as follows:

Vessel: “hollow structure made to float upon the waterfor purposes of transportation and navigation;
especially, one that is larger than a rowboat.”

The words vessel, ship and boat are often used interchangeably. In Encyclopedia Britannica, a ship and
a boat are distinguished by their size through the following definition:

Ship: “any large floating vessel capable of crossingopen waters, as opposed to a boat, which
is generally a smaller craft. The term formerly was applied to sailing vessels having three or
more masts; in modern times it usually denotes a vessel of more than 500 tons of displacement.
Submersible ships are generally called boats regardless of their size.”

Similar definitions are given for submerged vehicles:

Submarine: “any naval vessel that is capable of propelling itself beneath the water as well as on
the water’s surface. This is a unique capability among warships, and submarines are quite different
in design and appearance from surface ships.”

Underwater Vehicle: “small vehicle that is capable of propelling itself beneath the water surface
as well as on the water’s surface. This includes unmanned underwater vehicles (UUV), remotely
operated vehicles (ROV), autonomous underwater vehicles (AUV) and underwater robotic vehicles
(URV). Underwater vehicles are used both commercially and by the navy.”

From a hydrodynamic point of view, marine craft can be classified according to their maximum operating
speed. For this purpose it is common to use the Froude number:

Fn := U√
gL

(1.1)
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4 Introduction

where U is the craft speed, L is the overall submerged length of the craft and g is the acceleration of
gravity. The pressure carrying the craft can be divided into hydrostatic and hydrodynamic pressure. The
corresponding forces are:

• Buoyancy force due to the hydrostatic pressure (proportional to the displacement of the ship).
• Hydrodynamic force due to the hydrodynamic pressure (approximately proportional to the square of

the relative speed to the water).

For a marine craft sailing at constant speed U, the following classifications can be made (Faltinsen, 2005):

Displacement Vessels (Fn < 0.4): The buoyancy force (restoring terms) dominates relative to the
hydrodynamic forces (added mass and damping).

Semi-displacement Vessel (0.4−0.5 < Fn < 1.0−1.2): The buoyancy force is not dominant at the
maximum operating speed for a high-speed submerged hull type of craft.

Planing Vessel (Fn > 1.0−1.2): The hydrodynamic force mainly carries the weight. There will be
strong flow separation and the aerodynamic lift and drag forces start playing a role.

In this book only displacement vessels are covered; see Figure 1.2.
The Froude number has influence on the hydrodynamic analysis. For displacement vessels, the waves

radiated by different parts of the hull do not influence other parts of the hull. For semi-displacement
vessels, waves generated at the bow influence the hydrodynamic pressure along the hull towards
the stern. These characteristics give rise to different modeling hypotheses, which lead to different
hydrodynamic theories.

For displacement ships it is widely accepted to use two- and three-dimensional potential theory pro-
grams to compute the potential coefficients and wave loads; see Section 5.1. For semi-displacement

Figure 1.1 Marine craft in operation. Illustration Bjarne Stenberg/Department of Marine Technology,
NTNU.
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Figure 1.2 Displacement vessel.

vessels and planing vessels it is important to include the lift and drag forces in the computations
(Faltinsen, 2005).

Degrees of Freedom and Motion of a Marine Craft

In maneuvering, a marine craft experiences motion in 6 degrees of freedom (DOFs); see Section 9.4.
The DOFs are the set of independent displacements and rotations that specify completely the displaced
position and orientation of the craft. The motion in the horizontal plane is referred to as surge (longi-
tudinal motion, usually superimposed on the steady propulsive motion) and sway (sideways motion).
Yaw (rotation about the vertical axis) describes the heading of the craft. The remaining three DOFs
are roll (rotation about the longitudinal axis), pitch (rotation about the transverse axis) and heave
(vertical motion); see Figure 1.3.

Figure 1.3 Motion in 6 degrees of freedom (DOF).
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Roll motion is probably the most influential DOF with regards to human performance, since it pro-
duces the highest accelerations and, hence, is the principal villain in seasickness. Similarly, pitching
and heaving feel uncomfortable to people. When designing ship autopilots, yaw is the primary mode
for feedback control. Stationkeeping of a marine craft implies stabilization of the surge, sway and
yaw motions.

When designing feedback control systems for marine craft, reduced-order models are often used since
most craft do not have actuation in all DOF. This is usually done by decoupling the motions of the craft
according to:

1 DOF models can be used to design forward speed controllers (surge), heading autopilots (yaw) and
roll damping systems (roll).

3 DOF models are usually:
• Horizontal plane models (surge, sway and yaw) for ships, semi-submersibles and underwater vehicles

that are used in dynamic positioning systems, trajectory-tracking control systems and path-following
systems. For slender bodies such as submarines, it is also common to assume that the motions can
be decoupled into longitudinal and lateral motions.

• Longitudinal models (surge, heave and pitch) for forward speed, diving and pitch control.
• Lateral models (sway, roll and yaw) for turning and heading control.

4 DOF models (surge, sway, roll and yaw) are usually formed by adding the roll equation to the 3 DOF
horizontal plane model. These models are used in maneuvering situations where it is important to
include the rolling motion, usually in order to reduce roll by active control of fins, rudders or stabilizing
liquid tanks.

6 DOF models (surge, sway, heave, roll, pitch and yaw) are fully coupled equations of motion used for
simulation and prediction of coupled vehicle motions. These models can also be used in advanced
control systems for underwater vehicles that are actuated in all DOF.

1.1 Classification of Models
The models in this book can be used for prediction, real-time simulation and controller-observer de-
sign. The complexity and number of differential equations needed for the various purposes will vary.
Consequently, one can distinguish between three types of models (see Figure 1.4):

Simulation Model: This model is the most accurate description of a system, for instance a 6 DOF
high-fidelity model for simulation of coupled motions in the time domain. It includes the marine
craft dynamics, propulsion system, measurement system and the environmental forces due to wind,
waves and ocean currents. It also includes other features not used for control and observer design
that have a direct impact on model accuracy. The simulation model should be able to reconstruct
the time responses of the real system and it should also be possible to trigger failure modes to sim-
ulate events such as accidents and erroneous signals. Simulation models where the fluid-memory
effects are included due to frequency-dependent added mass and potential damping typically consist
of 50–200 ordinary differential equations (ODEs) while a maneuvering model can be represented in
6 DOF with 12 ODEs for generalized position and velocity. In addition, some states are needed to
describe the environmental forces and actuators, but still the number of states will be less than 50 for a
marine craft.

Control Design Model: The controller model is a reduced-order or simplified version of the simu-
lation model that is used to design the motion control system. In its simplest form, this model is
used to compute a set of constant gains for a proportional, integral, derivative (PID) controller. More
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Figure 1.4 Models used in guidance, navigation and control.

sophisticated control systems use a dynamic model to generate feedforward and feedback signals.
This is referred to as model-based control. The number of ODEs used in conventional model-based
ship control systems is usually less than 20. A PID controller typically requires two states: one for
the integrator and one for the low-pass filter used to limit noise amplification. Consequently, setpoint
regulation in 6 DOF can be implemented by using 12 ODEs. However, trajectory-tracking controllers
require additional states for feedforward as well as filtering so higher-order control laws are not
uncommon.

Observer Design Model: The observer model will in general be different from the model used in the
controller since the purpose is to capture the additional dynamics associated with the sensors and navi-
gation systems as well as disturbances. It is a simplified version of the simulation model where attention
is given to accurate modeling of measurement noise, failure situations including dead-reckoning
capabilities, filtering and motion prediction. For marine craft, the model-based observer often includes
a disturbance model where the goal is to estimate wave, wind and ocean current forces by treating
these as colored noise. For marine craft the number of ODEs in the state estimator will typically be 20
for a dynamic positioning (DP) system while a basic heading autopilot is implemented with less than
five states.

1.2 The Classical Models in Naval Architecture
The motions of a marine craft exposed to wind, waves and ocean currents takes place in 6 DOF. The
equations of motion can be derived using the Newton–Euler or Lagrange equations. The equations of
motion are used to simulate ships, high-speed craft, underwater vehicles and floating structures operating
under or on the water surface, as shown in Figure 1.5. In Section 3.3 it is shown that a rigid body with
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Figure 1.5 Ship and semi-submersibles operating offshore. Illustration Bjarne Stenberg/MARINTEK.

constant mass m and center of gravity (xg, yg, zg) relative to a fixed point on the hull can be described
by the following coupled differential equations:

m
[
u̇ − vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)

]= X

m
[
v̇ − wp + ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp + ṙ)

]= Y

m
[
ẇ − uq + vp − zg(p2 + q2) + xg(rp − q̇) + yg(rq + ṗ)

]= Z

Ixṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+ m
[
yg(ẇ − uq + vp) − zg(v̇ − wp + ur)

]= K

Iyq̇ + (Ix − Iz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx + (qp − ṙ)Iyz

+ m
[
zg(u̇ − vr + wq) − xg(ẇ − uq + vp)

]= M

Izṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+ m
[
xg(v̇ − wp + ur) − yg(u̇ − vr + wq)

]= N

(1.2)

where X, Y, Z, K, M and N denote the external forces and moments. This model is the basis for time-
domain simulation of marine craft. The external forces and moments acting on a marine craft are usually
modeled by using:

Maneuvering Theory: The study of a ship moving at constant positive speed U in calm water within the
framework of maneuvering theory is based on the assumption that the maneuvering (hydrodynamic)
coefficients are frequency independent (no wave excitation). The maneuvering model will in its simplest
representation be linear while nonlinear representations can be derived using methods such as cross-
flow drag, quadratic damping or Taylor-series expansions; see Chapter 6.

Seakeeping Theory: The motions of ships at zero or constant speed in waves can be analyzed using
seakeeping theory where the hydrodynamic coefficients and wave forces are computed as a function of
the wave excitation frequency using the hull geometry and mass distribution. The seakeeping models
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are usually derived within a linear framework (Chapter 5) while the extension to nonlinear theory is
an important field of research.

For underwater vehicles operating below the wave-affected zone, the wave excitation frequency will not
affect the hydrodynamic mass and damping coefficients. Consequently, it is common to model underwater
vehicles with constant hydrodynamic coefficients similar to a maneuvering ship.

1.2.1 Maneuvering Theory

Maneuvering theory assumes that the ship is moving in restricted calm water, that is in sheltered waters
or in a harbor. Hence, the maneuvering model is derived for a ship moving at positive speed U under
a zero-frequency wave excitation assumption such that added mass and damping can be represented by
using hydrodynamic derivatives (constant parameters). The zero-frequency assumption is only valid for
surge, sway and yaw since the natural periods of a PD-controlled ship will be in the range of 100–150 s.
For 150 s the natural frequency is close to zero, that is

ωn = 2π

T
≈ 0.04 rad/s (1.3)

This clearly gives support for the zero-frequency assumption. The natural frequencies in heave, roll and
pitch are much higher so it is recommended to use the zero-frequency potential coefficients in these
modes. For instance, a ship with a roll period of 10 s will have a natural frequency of 0.628 rad/s which
clearly violates the zero-frequency assumption. This means that hydrodynamic added mass and potential
damping should be evaluated at a frequency of 0.628 rad/s in roll if a pure rolling motion is considered.
As a consequence of this, it is common to formulate the ship maneuvering model (1.2) as a coupled
surge–sway–yaw model and thus neglect heave, roll and pitch motions:

m
[
u̇ − vr − xgr

2 − ygṙ
]= X

m
[
v̇ + ur − ygr

2 + xgṙ
]= Y

Izṙ + m
[
xg(v̇ + ur) − yg(u̇ − vr)

]= N

(1.4)

The rigid-body kinetics (1.4) can be expressed in vectorial form according to (Fossen, 1994)

MRBν̇ + CRB(ν)ν = τRB (1.5)

τRB = τhyd + τhs︸ ︷︷ ︸
hydrodynamic and
hydrostatic forces

+ τwind + τwave︸ ︷︷ ︸
environmental forces

+ τcontrol (1.6)

where MRB is the rigid-body inertia matrix, CRB(ν) is a matrix of rigid-body Coriolis and centripetal
forces and τRB is a vector of generalized forces.

The generalized velocity is

ν = [u, v, w, p, q, r]� (1.7)

where the first three components (u, v, w) are the linear velocities in surge, sway and heave and (p, q, r)
are the angular velocities in roll, pitch and yaw. The generalized force acting on the craft is

τi = [Xi, Yi, Zi, Ki, Mi, Ni]
�, i ∈ {hyd, hs, wind, wave, control} (1.8)
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where the subscripts stand for:

• Hydrodynamic added mass, potential damping due to wave radiation and viscous damping
• Hydrostatic forces (spring stiffness)
• Wind forces
• Wave forces (first and second order)
• Control and propulsion forces

This model is motivated by Newton’s second law: F = ma, where F represents force, m is the mass
and a is the acceleration. The Coriolis and centripetal term is due to the rotation of the body-fixed
reference frame with respect to the inertial reference frame. The model (1.5) is used in most text-
books on hydrodynamics and the generalized hydrodynamic force τhyd can be represented by linear or
nonlinear theory:

Linearized Models: In the linear 6 DOF case there will be a total of 36 mass and 36 damping elements
proportional to velocity and acceleration. In addition to this, there will be restoring forces, propulsion
forces and environmental forces. If the generalized hydrodynamic force τhyd is written in component
form using the SNAME (1950) notation, the linear added mass and damping forces become:

X1 = Xuu + Xvv + Xww + Xpp + Xqq + Xrr (1.9)

+ Xu̇u̇ + Xv̇v̇ + Xẇẇ + Xṗṗ + Xq̇q̇ + Xṙṙ

...

N1 = Nuu + Nvv + Nww + Npp + Nqq + Nrr (1.10)

+ Nu̇u̇ + Nv̇v̇ + Nẇẇ + Nṗṗ + Nq̇q̇ + Nṙṙ

where Xu, Xv, ..., Nr are the linear damping coefficients and Xu̇, Xv̇, ..., Nṙ represent hydrodynamic
added mass.

Nonlinear Models: Application of nonlinear theory implies that many elements must be included in
addition to the 36 linear elements. This is usually done by one of the following methods:
1. Truncated Taylor-series expansions using odd terms (first and third order) which are fitted to

experimental data, for instance (Abkowitz, 1964):

X1 = Xu̇u̇ + Xuu + Xuuuu
3 + Xv̇v̇ + Xvv + Xvvvv

3 + · · · (1.11)

...

N1 = Nu̇u̇ + Nuu + Nuuuu
3 + Nv̇v̇ + Nvv + Nvvvv

3 + · · · (1.12)

In this approach added mass is assumed to be linear and damping is modeled by a third order odd
function. Alternatively, second-order modulus terms can be used (Fedyaevsky and Sobolev, 1963),
for instance:

X1 = Xu̇u̇ + Xuu + X|u|u|u|u + Xv̇v̇ + Xvv + X|v|v|v|v + · · · (1.13)

...

N1 = Nu̇u̇ + Nuu + N|u|u|u|u + Nv̇v̇ + Nvv + N|v|v|v|v + · · · (1.14)
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This is motivated by the square law damping terms in fluid dynamics and aerodynamics. When
applying Taylor-series expansions in model-based control design, the system (1.5) becomes
relatively complicated due to the large number of hydrodynamic coefficients on the right-hand
side needed to represent the hydrodynamic forces. This approach is quite common when deriving
maneuvering models and many of the coefficients are difficult to determine with sufficient
accuracy since the model can be overparametrized. Taylor-series expansions are frequently
used in commercial planar motion mechanism (PMM) tests where the purpose is to derive the
maneuvering coefficients experimentally.

2. First principles where hydrodynamic effects such as lift and drag are modeled using well
established models. This results in physically sound Lagrangian models that preserve energy
properties. Models based on first principles usually require a much smaller number of parameters
than models based on third order Taylor-series expansions.

1.2.2 Seakeeping Theory

As explained above, maneuvering refers to the study of ship motion in the absence of wave excitation
(calm water). Seakeeping, on the other hand, is the study of motion when there is wave excitation and
the craft keeps its heading ψ and its speed U constant (which includes the case of zero speed). This
introduces a dissipative force (Cummins, 1962) known as fluid-memory effects. Although both areas are
concerned with the same issues, study of motion, stability and control, the separation allows different
assumptions to be made that simplify the study in each case. Seakeeping analysis is used in capability
analysis and operability calculations to obtain operability diagrams according to the adopted criteria.

The seakeeping theory is formulated using seakeeping axes {s} where the state vector
ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]� represents perturbations with respect to a fixed equilibrium state; see
Figure 1.6. These perturbations can be related to motions in the body frame {b} and North-East-Down

Figure 1.6 Coordinate systems used in seakeeping analysis.
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frame {n} by using kinematic transformations; see Section 5.2.The governing model is formulated in the
time domain using the Cummins equation in the following form (see Section 5.4):

[MRB + A(∞)]ξ̈ + Btotal(∞)ξ̇ +
∫ t

0

K(t − τ)ξ̇(τ)dτ + Cξ = τwind + τwave + δτ (1.15)

where δτ is the perturbed control input due to propulsion and control surfaces, A(∞) is the infinite-
frequency added mass matrix, Btotal(∞) = B(∞) + BV (∞) is the infinite-frequency damping matrix
containing potential and viscous damping terms, C is the spring stiffness matrix and K(t) is a time-
varying matrix of retardation functions given by

K(t) = 2

π

∫ ∞

0

[Btotal(ω) − Btotal(∞)] cos(ωt)dω (1.16)

The frequency-domain representation of (1.15) is (Newman, 1977; Faltinsen, 1990)(−ω2[MRB + A(ω)] − jωBtotal(ω) + C
)

ξ( jω) = τwind( jω) + τwave( jω) + δτ( jω) (1.17)

where ξ( jω) is a complex vector with components:

ξi(t) = ξ̄i cos(ωt + εi) ⇒ ξi( jω) = ξ̄i exp( jεi) (1.18)

Similarly, the external signals τwind( jω), τwave( jω) and δτ( jω) are complex vectors.
Naval architects often write the seakeeping model as a pseudo-differential equation:

[MRB + A(ω)]ξ̈ + Btotal(ω)ξ̇ + Cξ = τwind + τwave + δτ (1.19)

mixing time and frequency. Unfortunately this is deeply rooted in the literature of hydrodynamics even
though it is not correct to mix time and frequency in one single equation. Consequently, it is recommended
to use the time- and frequency-domain representations (1.15) and (1.17). Computer simulations are done
under the assumptions of linear theory and harmonic motions such that the resulting response is linear
in the time domain. This approach dates back to Cummins (1962) and the necessary derivations are
described in Chapter 5.

1.2.3 Unified Theory

A unified theory for maneuvering and seakeeping is useful since it allows for time-domain simulation
of a marine craft in a seaway. This is usually done by using the seakeeping representation (1.19) as
described in Chapter 5. The next step is to assume linear superposition such that wave-induced forces can
be added for different speeds U and sea states. A similar assumption is used to add nonlinear damping and
restoring forces so that the resulting model is a unified nonlinear model combining the most important
terms from both maneuvering and seakeeping. Care must be taken with respect to “double counting.” This
refers to the problem that hydrodynamic effects can be modeled twice when merging the results from
two theories.

1.3 Fossen’s Robot-Like Vectorial Model for Marine Craft
In order to exploit the physical properties of the maneuvering and seakeeping models, the equations of
motion are represented in a vectorial setting which dates back to Fossen (1991). The vectorial model is
expressed in {b} and {n} so appropriate kinematic transformations between the reference frames {b}, {n}
and {s} must be derived. This is done in Chapters 2 and 5. The vectorial model is well suited for computer
implementation and control systems design.
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Component Form

The classical model (1.2) is often combined with expressions such as (1.9)–(1.10) or (1.11)–(1.14) to
describe the hydrodynamic forces. This often results in complicated models with hundreds of elements.
In most textbooks the resulting equations of motion are on component form. The following introduces
a compact notation using matrices and vectors that will simplify the representation of the equations of
motion considerably.

Vectorial Representation

In order to exploit the physical properties of the models, the equations of motion are represented in
a vectorial setting. It is often beneficial to exploit physical system properties to reduce the number of
coefficients needed for control. This is the main motivation for developing a vectorial representation of
the equations of motion. In Fossen (1991) the robot model (Craig, 1989; Sciavicco and Siciliano, 1996)

M(q)q̈ + C(q, q̇)q = τ (1.20)

was used as motivation to derive a compact marine craft model in 6 DOFs using a vectorial setting. In
the robot model q is a vector of joint angles, τ is the torque, while M and C denote the system inertia
and Coriolis matrices, respectively. It is found that similar quantities can be identified for marine craft
and aircraft. In Fossen (1991) a complete 6 DOF vectorial setting for marine craft was derived based on
these ideas. These results were further refined by Sagatun and Fossen (1991), Fossen (1994) and Fossen
and Fjellstad (1995). The 6 DOF models considered in this book use the following representation:

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (1.21)

where

η = [x, y, z, φ, θ, ψ]� (1.22)

ν = [u, v, w, p, q, r]� (1.23)

are vectors of velocities and position/Euler angles, respectively. In fact ν and η are generalized velocities
and positions used to describe motions in 6 DOF. Similarly, τ is a vector of forces and moments or
the generalized forces in 6 DOF. The model matrices M, C(ν) and D(ν) denote inertia, Coriolis and
damping, respectively, while g(η) is a vector of generalized gravitational and buoyancy forces. Static
restoring forces and moments due to ballast systems and water tanks are collected in the term g0.

Component Form versus Vectorial Representation

When designing control systems, there are clear advantages using the vectorial model (1.21) instead of
(1.5)–(1.6) and the component forms of the Taylor-series expansions (1.11)–(1.14). The main reasons are
that system properties such as symmetry, skew-symmetry and positiveness of matrices can be incorporated
into the stability analysis. In addition, these properties are related to passivity of the hydrodynamic and
rigid-body models (Berge and Fossen, 2000). The system properties represent physical properties of
the system, which should be exploited when designing controllers and observers for marine craft. As
a consequence, Equation (1.21) is chosen as the foundation for this textbook and the previous book
Guidance and Control of Ocean Vehicles (Fossen, 1994). Equation (1.21) has also been adopted by the
international community as a “standard model” for marine control systems design (controller and observer
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design models) while the “classical model” (1.5)–(1.6) is mostly used in hydrodynamic modeling where
isolated effects often are studied in more detail.

It should be noted that the classical model with hydrodynamic forces in component form and the
vectorial model (1.21) are equivalent. Therefore it is possible to combine the best of both approaches, that
is hydrodynamic component-based modeling and control design models based on vectors and matrices.
However, it is much easier to construct multiple input multiple output (MIMO) controllers and observers
when using the vectorial representation, since the model properties and model reduction follow from
the basic matrix properties. This also applies to system analysis since there are many tools for MIMO
systems. Finally, it should be pointed out that the vectorial models are beneficial from a computational
point of view and in order to perform algebraic manipulations. Readability is also significantly improved
thanks to the compact notation.



2
Kinematics

The study of dynamics can be divided into two parts: kinematics, which treats only geometrical aspects
of motion, and kinetics, which is the analysis of the forces causing the motion. In this chapter kinematics
with application to local and terrestrial navigation is discussed. Kinetics is dealt with in Chapters 3–8.

The interested reader is advised to consult Britting (1971), Maybeck (1979), Savage (1990), Forssell
(1991), Lin (1992), Hofmann-Wellenhof et al. (1994), Parkinson and Spilker (1995), Titterton and Weston
(1997), and Farrell and Barth (1998) for a discussion of navigation kinematics and kinematics in general.
The development of the kinematic equations of motion are also found in Kane et al. (1983) and Hughes
(1986). Both of these references use spacecraft systems for illustration. An alternative derivation of the
Euler angle representation in the context of ship steering is given by Abkowitz (1964). A more recent
discussion of quaternions is found in Chou (1992). An analogy to robot manipulators is given by Craig
(1989) or Sciavicco and Siciliano (1996), while a more detailed discussion of kinematics is found in
Goldstein (1980) and Egeland and Gravdahl (2002).

6 DOF Marine Craft Equations of Motion

The overall goal of Chapters 2–8 is to show that the marine craft equations of motion can be written in a
vectorial setting according to Fossen (1991):

η̇ = J�(η)ν (2.1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (2.2)

where the different matrices and vectors and their properties will be defined in the forthcoming sections.
This model representation is used as a foundation for model-based control design and stability analysis
in Part II.

Motion Variables

For marine craft moving in six degrees of freedom (DOFs), six independent coordinates are necessary to
determine the position and orientation. The first three coordinates, and their time derivatives, correspond
to the position and translational motion along the x, y and z axes, while the last three coordinates and their

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
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Figure 2.1 The 6 DOF velocities u, v, w, p, q and r in the body-fixed reference frame {b} = (xb, yb, zb).

time derivatives are used to describe orientation and rotational motion. For marine craft, the six different
motion components are conveniently defined as surge, sway, heave, roll, pitch and yaw (see Figure 2.1
and Table 2.1).

2.1 Reference Frames
When analyzing the motion of marine craft in 6 DOF, it is convenient to define two Earth-centered
coordinate frames as indicated in Figure 2.2. In addition several geographic reference frames are needed.

Earth-Centered Reference Frames

ECI: The Earth-centered inertial (ECI) frame {i} = (xi, yi, zi) is an inertial frame for terrestrial naviga-
tion, that is a nonaccelerating reference frame in which Newton’s laws of motion apply. This includes
inertial navigation systems. The origin of {i} is located at the center oi of the Earth with axes as shown
in Figure 2.2.

ECEF: The Earth-centered Earth-fixed (ECEF) reference frame {e} = (xe, ye, ze) has its origin oe fixed
to the center of the Earth but the axes rotate relative to the inertial frame ECI, which is fixed in space.
The angular rate of rotation is ωe = 7.2921 × 10−5 rad/s. For marine craft moving at relatively low
speed, the Earth rotation can be neglected and hence {e} can be considered to be inertial. Drifting ships,
however, should not neglect the Earth rotation. The coordinate system {e} is usually used for global

Table 2.1 The notation of SNAME (1950) for marine vessels

Forces and Linear and Positions and
DOF moments angular velocities Euler angles

1 motions in the x direction (surge) X u x

2 motions in the y direction (sway) Y v y

3 motions in the z direction (heave) Z w z

4 rotation about the x axis (roll, heel) K p φ

5 rotation about the y axis (pitch, trim) M q θ

6 rotation about the z axis (yaw) N r ψ
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Figure 2.2 The Earth-centered Earth-fixed (ECEF) frame xeyeze is rotating with angular rate ωe with
respect to an Earth-centered inertial (ECI) frame xiyizi fixed in space.

guidance, navigation and control, for instance to describe the motion and location of ships in transit
between different continents.

Geographic Reference Frames

NED: The North-East-Down (NED) coordinate system {n} = (xn, yn, zn) with origin on is defined rel-
ative to the Earth’s reference ellipsoid (World Geodetic System, 1984). This is the coordinate system
we refer to in our everyday life. It is usually defined as the tangent plane on the surface of the Earth
moving with the craft, but with axes pointing in different directions than the body-fixed axes of the
craft. For this system the x axis points towards true North, the y axis points towards East while the
z axis points downwards normal to the Earth’s surface. The location of {n} relative to {e} is determined
by using two angles l and μ denoting the longitude and latitude, respectively.

For marine craft operating in a local area, approximately constant longitude and latitude, an Earth-
fixed tangent plane on the surface is used for navigation. This is usually referred to as flat Earth
navigation and it will for simplicity be denoted by {n}. For flat Earth navigation one can assume that
{n} is inertial such that Newton’s laws still apply.

BODY: The body-fixed reference frame {b} = (xb, yb, zb) with origin ob is a moving coordinate frame
that is fixed to the craft. The position and orientation of the craft are described relative to the inertial
reference frame (approximated by {e} or {n} for marine craft) while the linear and angular velocities of
the craft should be expressed in the body-fixed coordinate system. The origin ob is usually chosen to
coincide with a point midships in the water line. This point will be referred to as CO (see Figure 2.3).
For marine craft, the body axes xb, yb and zb are chosen to coincide with the principal axes of inertia,
and they are usually defined as (see Figure 2.3):
• xb - longitudinal axis (directed from aft to fore)
• yb - transversal axis (directed to starboard)
• zb - normal axis (directed from top to bottom)
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Figure 2.3 Body-fixed reference points.

In addition to the body-fixed coordinate system {b}, it is convenient to define other body-fixed coordinate
systems when performing hydrodynamic computations. This includes a system using flow axes (see
Section 2.4) and the seakeeping reference frame {s} (see Section 5.2).

Body-Fixed Reference Points

The following reference points are defined with respect to CO:

CG - center of gravity
CB - center of buoyancy
CF - center of flotation (located a distance LCF from CO in the x-direction)

The center of flotation is the centroid of the water plane area Awp in calm water. The craft will roll
and pitch about this point. Consequently, this point can be used to compute the pitch and roll periods.
The eigenvalues of the 6 DOF linear equations of motion are independent of the reference point but the
decoupled equations will produce incorrect results if they are formulated in a point different from CF
(see Section 4.3).

6 DOF Vectorial Notation

We will use the notation �u to refer to a coordinate free vector, that is a directed line segment. When a
vector is described relative to a coordinate system {n}, the following notation will be used:

�u = un
1 �n1 + un

2 �n2 + un
3 �n3 (2.3)

where �ni (i = 1, 2, 3) are the unit vectors that define {n}, un
i are the measures of �u along �ni and un

i �ni are
the components of �u in {n}. We will also use the coordinate form un of �u in {n} which is represented by
a column vector in R3:

un = [un
1, u

n
2, u

n
3]� (2.4)
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For marine craft the following notation will be adopted for vectors in the coordinate systems {b}, {e}
and {n}:

ve
b/n = linear velocity of the point ob with respect to {n} expressed in {e}

ωb
n/e = angular velocity of {n} with respect to {e} expressed in {b}
f n

b = force with line of action through the point ob expressed in {n}
mn

b = moment about the point ob expressed in {n}
�nb = Euler angles between {n} and {b}

The different quantities in Table 2.1, as defined by SNAME (1950), can now be conveniently expressed
in a vectorial setting according to:

ECEF position pe
b/e =

⎡
⎣ x

y

z

⎤
⎦ ∈ R3 Longitude and latitude �en =

[
l

μ

]
∈ S2

NED position pn
b/n=

⎡
⎣N

E

D

⎤
⎦ ∈ R3 Attitude (Euler angles) �nb =

⎡
⎣φ

θ

ψ

⎤
⎦ ∈ S3

Body-fixed
linear velocity

vb
b/n =

⎡
⎣ u

v

w

⎤
⎦ ∈ R3 Body-fixed

angular velocity
ωb

b/n=

⎡
⎣p

q

r

⎤
⎦ ∈ R3

Body-fixed force f b
b =

⎡
⎣X

Y

Z

⎤
⎦ ∈ R3 Body-fixed moment mb

b =

⎡
⎣K

M

N

⎤
⎦ ∈ R3

where R3 is the Euclidean space of dimension three and S2 denotes a torus of dimension two (shape of a
donut), implying that there are two angles defined on the interval [0, 2π] . In the three-dimensional (3-D)
case the set S3 is a sphere. Hence, the general motion of a marine craft in 6 DOF with ob as coordinate
origin is described by the following vectors:

η =
[

pn
b/n (or pe

b/n)

�nb

]
, ν =

[
vb

b/n

ωb
b/n

]
, τ =

[
f b

b

mb
b

]
(2.5)

where η ∈ R3 × S3 denotes the position and orientation vector where the position vector pn
b/n ∈ R3 is

the distance from NED to BODY expressed in NED coordinates, �nb ∈ S3 is a vector of Euler angles,
ν ∈ R6 denotes the linear and angular velocity vectors that are decomposed in the body-fixed reference
frame and τ ∈ R6 is used to describe the forces and moments acting on the craft in the body-fixed frame.

In many applications, such as flat Earth navigation, the position vector pn
b/n ∈ R3 from NED to BODY

is expressed in NED coordinates. For global navigation it is convenient to express the position of the
BODY origin ob with respect to ECEF, that is pe

b/e ∈ R3. The orientation of the marine craft with respect
to NED will be represented by means of the Euler angles �nb or the quaternions q ∈ R4. In the next
sections, the kinematic equations relating the BODY, NED and ECEF reference frames will be presented.



20 Kinematics

2.2 Transformations between BODY and NED
The rotation matrix R between two frames a and b is denoted as Ra

b, and it is an element in SO(3), that
is the special orthogonal group of order 3:

SO(3) = {R|R ∈ R3×3, R is orthogonal and det R = 1
}

(2.6)

The group SO(3) is a subset of all orthogonal matrices of order 3, that is SO(3) ⊂ O(3) where O(3) is
defined as

O(3) := {R|R ∈ R3×3, RR� = R�R = I
}

(2.7)

Rotation matrices are useful when deriving the kinematic equations of motion for a marine craft. As
a consequence of (2.6) and (2.7), the following properties can be stated:

Property 2.1 (Rotation Matrix)
A rotation matrix R ∈ SO(3) satisfies

RR� = R�R = I, det R = 1

which implies that R is orthogonal. Consequently, the inverse rotation matrix is given by R−1 = R�.

In this book, the following notation is adopted when transforming a vector from one coordinate frame
to another:

(2.8)

Here νfrom ∈ R3 denotes a velocity vector that can be transformed to a new reference frame by applying
the rotation matrix Rto

from. The result is the vector νto ∈ R3.

A frequently used rotation matrix in guidance, navigation and control is the rotation matrix Rn
b between

{n} and {b}. When deriving the expression for Rn
b we will make use of the following matrix properties:

Definition 2.1 (Skew-Symmetry of a Matrix)
A matrix S ∈ SS(n), that is the set of skew-symmetric matrices of order n, is said to be skew-
symmetrical if

S = −S�

This implies that the off-diagonal elements of S satisfy sij = −sji for i /= j while the diagonal elements
are zero.

Definition 2.2 (Cross-Product Operator)
The vector cross-product × is defined by

λ × a := S(λ)a (2.9)

where S ∈ SS(3) is defined as

S(λ) = −S�(λ) =

⎡
⎣ 0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

⎤
⎦ , λ =

⎡
⎣ λ1

λ2

λ3

⎤
⎦ (2.10)
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Matlab
The cross-product operator is included in the MSS toolbox as Smtrx.m. Hence, the cross-product
b = S(λ)a can be computed as

S = Smtrx(lambda)

b = S*a

Definition 2.3 (Simple Rotation)
The motion of a rigid body or reference frame B relative to a rigid body or reference frame A
is called a simple rotation of B in A if there exists a line L, called an axis of rotation, whose orientation
relative to both A and B remains unaltered throughout the motion.

Based on this definition, Euler stated the following theorem for rotation of two rigid bodies or reference
frames (Euler, 1776).

Theorem 2.1 (Euler’s Theorem on Rotation)
Every change in the relative orientation of two rigid bodies or reference frames {A} and {B}
can be produced by means of a simple rotation of {B} in {A}.

Let vb
b/n be a vector fixed in BODY and vn

b/n be a vector fixed in NED. Hence, the vector vn
b/n can

be expressed in terms of the vector vb
b/n, the unit vector λ = [λ1, λ2, λ3]�, ‖ λ‖ = 1, parallel to the

axis of rotation and β the angle NED is rotated. This rotation is described by (see Hughes, 1986, Kane
et al., 1983)

vn
b/n = Rn

bv
b
b/n, Rn

b := Rλ,β (2.11)

Here, Rλ,β is the rotation matrix corresponding to a rotation β about the λ axis:

Rλ,β = I3×3 + sin(β)S(λ) + [1 − cos(β)] S2(λ) (2.12)

where I3×3 is the identity matrix and S(λ) is the skew-symmetric matrix according to Definition 2.2.
Consequently, S2(λ) = λλ� − I3×3 since λ is a unit vector.

Expanding (2.12) yields the following expressions for the matrix elements:

R11 = [1 − cos(β)] λ2
1 + cos(β)

R22 = [1 − cos(β)] λ2
2 + cos(β)

R33 = [1 − cos(β)] λ2
3 + cos(β)

R12 = [1 − cos(β)] λ1λ2 − λ3 sin(β)

R21 = [1 − cos(β)] λ2λ1 + λ3 sin(β)

R23 = [1 − cos(β)] λ2λ3 − λ1 sin(β)

R32 = [1 − cos(β)] λ3λ2 + λ1 sin(β)

R31 = [1 − cos(β)] λ3λ1 − λ2 sin(β)

R13 = [1 − cos(β)] λ1λ3 + λ2 sin(β)

(2.13)
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2.2.1 Euler Angle Transformation

The Euler angles, roll (φ), pitch (θ) and yaw (ψ), can now be used to decompose the body-fixed velocity
vector vb

b/n in the NED reference frame. Let Rn
b(�nb) : S3 → SO(3) denote the Euler angle rotation

matrix with argument �nb = [φ, θ, ψ]�. Hence,

vn
b/n = Rn

b(�nb)vb
b/n (2.14)

Principal Rotations

The principal rotation matrices (one axis rotations) can be obtained by setting λ = [1, 0, 0]�,
λ = [0, 1, 0]� and λ = [0, 0, 1]� corresponding to the x, y and z axes, and β = φ, β = θ and β = ψ,

respectively, in the formula for Rλ,β given by (2.12). This yields

Rx,φ =

⎡
⎣ 1 0 0

0 cφ −sφ

0 sφ cφ

⎤
⎦ , Ry,θ =

⎡
⎣ cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤
⎦ , Rz,ψ =

⎡
⎣ cψ −sψ 0

sψ cψ 0

0 0 1

⎤
⎦ (2.15)

where s · = sin(·) and c · = cos(·).

Linear Velocity Transformation

It is customary to describe Rn
b(�nb) by three principal rotations about the z, y and x axes (zyx convention).

Note that the order in which these rotations is carried out is not arbitrary. In guidance, navigation and
control applications it is common to use the zyx convention from {n} to {b} specified in terms of the Euler
angles φ, θ and ψ for the rotations. This matrix is denoted Rb

n(�nb) = Rn
b(�nb)�. The matrix transpose

implies that the same result is obtained by transforming a vector from {b} to {n}, that is by reversing the
order of the transformation. This rotation sequence is mathematically equivalent to

Rn
b(�nb) := Rz,ψRy,θRx,φ (2.16)

and the inverse transformation is then written (zyx convention)

Rn
b(�nb)−1 = Rb

n(�nb) = R�
x,φR

�
y,θR

�
z,ψ (2.17)

where we have used the result of Property 2.1. This can also be seen by studying Figure 2.4.
Let x3y3z3 be the coordinate system obtained by translating the NED coordinate system xnynzn parallel

to itself until its origin coincides with the origin of the body-fixed coordinate system. The coordinate
system x3y3z3 is rotated a yaw angle ψ about the z3 axis. This yields the coordinate system x2y2z2. The
coordinate system x2y2z2 is rotated a pitch angle θ about the y2 axis. This yields the coordinate system
x1y1z1. Finally, the coordinate system x1y1z1 is rotated a roll angle φ about the x1 axis. This yields the
body-fixed coordinate system xbybzb.

Expanding (2.16) yields

Rn
b(�nb) =

⎡
⎣ cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

⎤
⎦ (2.18)
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Figure 2.4 Euler angle rotation sequence (zyx convention). The submarine is rotated from {n} to {b}
by using three principal rotations.

Matlab
The rotation matrix Rn

b(�nb) is implemented in the MSS toolbox as

R = Rzyx(phi,theta,psi)

For small angles δφ, δθ and δψ the expression (2.18) simplifies to

Rn
b(δ�nb) ≈ I3×3 + S(δ�nb) =

⎡
⎣ 1 −δψ δθ

δψ 1 −δφ

−δθ δφ 1

⎤
⎦ (2.19)

which is quite useful when applying linear theory.
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The body-fixed velocity vector vb
b/n can be expressed in {n} as

ṗn
b/n = Rn

b(�nb)vb
b/n (2.20)

where ṗn
b/n is the NED velocity vector. Expanding (2.20) yields

Ṅ = u cos(ψ) cos(θ) + v[cos(ψ) sin(θ) sin(φ) − sin(ψ) cos(φ)]

+w [sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ)] (2.21)

Ė = u sin(ψ)cos(θ) + v[cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ)]

+w[sin(θ) sin(ψ) cos(φ) − cos(ψ) sin(φ)] (2.22)

Ḋ = −u sin(θ) + v cos(θ) sin(φ) + w cos(θ) cos(φ) (2.23)

The inverse velocity transformation is obtained by Definition 2.1 as

vb
b/n = Rn

b(�nb)−1ṗn
b/n = Rn

b(�nb)�ṗn
b/n (2.24)

Example 2.1 (Numerical Computation of Position Trajectory)
The flight path or position trajectory pn

b/n of the craft relative to the NED coordinate system is
found by numerical integration of (2.20), for instance by using Euler integration:

pn
b/n(k + 1) = pn

b/n(k) + hRn
b(�nb(k))vb

b/n(k) (2.25)

where h > 0 is the sampling time and k is the sample index.

Angular Velocity Transformation

The body-fixed angular velocity vector ωb
b/n = [p, q, r]� and the Euler rate vector �̇nb = [φ̇, θ̇, ψ̇]� are

related through a transformation matrix T �(�nb) according to

�̇nb = T �(�nb)ωb
b/n (2.26)

It should be noted that the angular body velocity vector ωb
b/n = [p, q, r]� cannot be integrated directly

to obtain actual angular coordinates. This is due to the fact that
∫ t

0
ωb

b/n(τ)dτ does not have any imme-
diate physical interpretation; however, the vector �nb = [φ, θ, ψ]� does represent proper generalized
coordinates. The transformation matrix T �(�nb) can be derived in several ways, for instance:

ωb
b/n =

⎡
⎣ φ̇

0

0

⎤
⎦+ R�

x,φ

⎡
⎣ 0

θ̇

0

⎤
⎦+ R�

x,φR
�
y,θ

⎡
⎣ 0

0

ψ̇

⎤
⎦ := T −1

� (�nb)�̇nb (2.27)
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This relationship is verified by inspection of Figure 2.4. Expanding (2.27) yields

T −1
� (�nb) =

⎡
⎣ 1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

⎤
⎦ =⇒ T �(�nb) =

⎡
⎣ 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤
⎦ (2.28)

where s · = sin(·), c · = cos(·) and t · = tan(·). Expanding (2.26) yields the Euler angle attitude equations
in component form:

φ̇ = p + q sin(φ) tan(θ) + r cos(φ) tan(θ) (2.29)

θ̇ = q cos(φ) − r sin(φ) (2.30)

ψ̇ = q
sin(φ)

cos(θ)
+ r

cos(φ)

cos(θ)
, θ /= ± 90◦ (2.31)

Notice that T �(�nb) is undefined for a pitch angle of θ = ± 90◦ and that T �(�nb) does not satisfy
Property 2.1. Consequently, T −1

� (�nb) /= T �
�(�nb). For surface vessels this is not a problem whereas both

underwater vehicles and aircraft may operate close to this singularity. In this case, the kinematic equations
can be described by two Euler angle representations with different singularities and the singular point
can be avoided by switching between them. Another possibility is to use a quaternion representation; see
Section 2.2.2.

For small angles δφ, δθ and δψ the transformation matrix T �(�nb) simplifies to

T �(δ�nb) ≈

⎡
⎣ 1 0 δθ

0 1 −δφ

0 δφ 1

⎤
⎦ (2.32)

The differential equation for the rotation matrix is given by Theorem 2.2.

Theorem 2.2 (Rotation Matrix Differential Equation)
The differential equation for the rotation matrix between the BODY and NED reference frames is

Ṙn
b = Rn

bS(ωb
b/n) (2.33)

where

S(ωb
b/n) =

⎡
⎣ 0 −r q

r 0 −p

−q p 0

⎤
⎦ (2.34)

This can be written in component form as nine differential equations:⎡
⎣ Ṙ11 Ṙ12 Ṙ13

Ṙ21 Ṙ22 Ṙ23

Ṙ31 Ṙ23 Ṙ33

⎤
⎦ =

⎡
⎣R12r − R13q −R11r + R13p R11q − R12p

R22r − R23q −R21r + R23p R21q − R22p

R23r − R33q −R31r + R33p R31q − R23p

⎤
⎦ (2.35)
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Proof. For a small time increment �t the rotation matrix Rn
b satisfies

Rn
b(t + �t) ≈ Rn

b(t)Rn
b(�t) (2.36)

since sin(�t) ≈ �t and cos(�t) ≈ 1. Assume that after time t + �t there has been an infinitesimal
increment �β in the rotation angle. From (2.12) we have

Rn
b(�t) = I3×3 + sin(�β) S(λ) + [1 − cos(�β)] S2(λ)

≈ I3×3 + �β S(λ) (2.37)

From (2.36), it follows that

Rn
b(t + �t) = Rn

b(t) [I3×3 + �β S(λ)] (2.38)

Defining the vector �βb := �βλ, the time derivative of Rn
b is found as

Ṙn
b(t) = lim

�t→0

Rn
b(t + �t) − Rn

b(t)

�t

= lim
�t→0

Rn
b(t) �β S(λ)

�t

= lim
�t→0

Rn
b(t)S(�βb)

�t

= Rn
b(t)S(ωb

b/n) (2.39)

where ωb
b/n = lim�t→0(�βb/�t).

6 DOF Kinematic Equations

Summarizing the results from this section, the 6 DOF kinematic equations can be expressed in vector
form as

η̇ = J�(η)ν

�[
ṗn

b/n

�̇nb

]
=
[

Rn
b(�nb) 03×3

03×3 T �(�nb)

][
vb

b/n

ωb
b/n

] (2.40)

where η ∈ R3 × S3 and ν ∈ R6.

Matlab
The transformation matrix J�(η) and its diagonal elements J11(η) = Rn

b(�nb) and J22(η) =
T �(�nb) can be computed by using the MSS toolbox command:

[J,J11,J22] = eulerang(phi,theta,psi)
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The differential equations are then found by

p dot = J1*v

theta dot = J2*w nb

Alternatively, (2.40) can be written in component form as

Ṅ = u cos(ψ) cos(θ) + v[cos(ψ) sin(θ) sin(φ) − sin(ψ) cos(φ)]

+w [sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ)] (2.41)

Ė = u sin(ψ)cos(θ) + v[cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ)]

+w[sin(θ) sin(ψ) cos(φ) − cos(ψ) sin(φ)] (2.42)

Ḋ = −u sin(θ) + v cos(θ) sin(φ) + w cos(θ) cos(φ) (2.43)

φ̇ = p + q sin(φ) tan(θ) + r cos(φ) tan(θ) (2.44)

θ̇ = q cos(φ) − r sin(φ) (2.45)

ψ̇ = q
sin(φ)

cos(θ)
+ r

cos(φ)

cos(θ)
, θ /= ± 90◦ (2.46)

3 DOF Model for Surface Vessels

A frequently used simplification of (2.40) is the 3 DOF (surge, sway and yaw) representation for ma-
rine craft. This is based on the assumption that φ and θ are small, which is a good approximation
for most conventional ships, underwater vehicles and rigs. Hence, Rn

b(�nb) = Rz,ψRy,θRx,φ ≈ Rz,ψ and
T �(�nb) ≈ I3×3. Neglecting the elements corresponding to heave, roll and pitch finally yields:

η̇ = R(ψ)ν (2.47)

where R(ψ) := Rz,ψ with ν = [u, v, r]� and η = [N, E, ψ]�.

2.2.2 Unit Quaternions

An alternative to the Euler angle representation is a four-parameter method based on unit quaternions or
Euler parameters. The main motivation for using four parameters is to avoid the representation singularity
of the Euler angles.

A quaternion q is defined as a complex number (Chou, 1992) with one real part η and three imaginary
parts given by the vector

ε = [ε1, ε2, ε3]� (2.48)

A unit quaternion satisfies q�q = 1. The set Q of unit quaternions is therefore defined as

Q := {q|q�q = 1, q = [η, ε�]�, ε ∈ R3 and η ∈ R} (2.49)

The motion of the body-fixed reference frame relative to the inertial frame will now be expressed in terms
of unit quaternions.
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Unit Quaternions

From (2.12) it is seen that

Rβ,λ = I3×3 + sin(β)S(λ) + [1 − cos(β)]S2(λ) (2.50)

The real and imaginary parts of the unit quaternions are defined as (Chou, 1992)

η := cos

(
β

2

)
(2.51)

ε = [ε1, ε2, ε3]� := λ sin

(
β

2

)
(2.52)

where λ = [λ1, λ2, λ3]� is a unit vector satisfying

λ = ± ε√
ε�ε

if
√

ε�ε /= 0 (2.53)

Consequently, the unit quaternions can be expressed in the form

q =

⎡
⎢⎢⎣

η

ε1

ε2

ε3

⎤
⎥⎥⎦ =

[
cos
(

β

2

)
λ sin

(
β

2

)
]

∈ Q, 0 ≤ β ≤ 2π (2.54)

This parametrization implies that the unit quaternions satisfy the constraint q�q = 1, that is

η2 + ε2
1 + ε2

2 + ε2
3 = 1 (2.55)

From (2.50) with (2.51) and (2.52), the following coordinate transformation matrix for the unit quaternions
is obtained:

Rn
b(q) := Rη,ε = I3×3 + 2ηS(ε) + 2S2(ε) (2.56)

Linear Velocity Transformation

The transformation relating the linear velocity vector in an inertial reference frame to a velocity in the
body-fixed reference frame can now be expressed as

ṗn
b/n = Rn

b(q)vb
b/n (2.57)
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where

Rn
b(q) =

⎡
⎣ 1 − 2(ε2

2 + ε2
3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1 − 2(ε2
1 + ε2

3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1 − 2(ε2
1 + ε2

2)

⎤
⎦ (2.58)

Expanding (2.57) yields

Ṅ = u(1 − 2ε2
2 − 2ε2

3) + 2v(ε1ε2 − ε3η) + 2w(ε1ε3 + ε2η) (2.59)

Ė = 2u(ε1ε2 + ε3η) + v(1 − 2ε2
1 − 2ε2

3) + 2w(ε2ε3 − ε1η) (2.60)

Ḋ = 2u(ε1ε3 − ε2η) + 2v(ε2ε3 + ε1η) + w(1 − 2ε2
1 − 2ε2

2) (2.61)

As for the Euler angle representation, Property 2.1 implies that the inverse transformation matrix satisfies
Rn

b(q)−1 = Rn
b(q)�.

Matlab
The quaternion rotation matrix is easily computed by using the MSS toolbox commands

q = [eta,eps1,eps2,eps3]

R = Rquat(q)

Notice that q�q = 1 must be true for Rquat.m to return a solution. One way to ensure this is to use
the transformation

q = euler2q(phi,theta,psi)

transforming the three Euler angles φ, θ and ψ to the unit quaternion vector q; see Section 2.2.3 for
details.

Angular Velocity Transformation

The angular velocity transformation can be derived by substituting the expressions for Rij from (2.58)
into the differential equation Ṙn

b = Rn
bS(ωb

b/n); see Theorem 2.2. Some calculations yield

q̇ = T q(q)ωb
b/n (2.62)

where

T q(q) = 1

2

⎡
⎢⎢⎣

−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

⎤
⎥⎥⎦ , T �

q (q)T q(q) = 1

4
I3×3 (2.63)
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Hence,

η̇ = −1

2
(ε1p + ε2q + ε3r) (2.64)

ε̇1 = 1

2
(ηp − ε3q + ε2r) (2.65)

ε̇2 = 1

2
(ε3p + ηq − ε1r) (2.66)

ε̇3 = 1

2
(−ε2p + ε1q + ηr) (2.67)

An alternative formulation is the vector representation (Kane et al., 1983)

q̇ =
[

η̇

ε̇

]
= 1

2

[ −ε�

ηI3×3 + S(ε)

]
ωb

b/n (2.68)

6 DOF Kinematic Equations

Consequently, the 6 DOF kinematic equations of motion can be expressed by seven differential equations
for η = [N, E, D, η, ε1, ε2, ε3]� (recall that only six differential equations are needed when using the
Euler angle representation):

η̇ = Jq(η)ν

�[
ṗn

b/n

q̇

]
=
[

Rn
b(q) 03×3

04×3 T q(q)

][
vb

b/n

ωb
b/n

] (2.69)

where η ∈ R7 and ν ∈ R6, and Jq(η) ∈ R7×6 is a nonquadratic transformation matrix. Equation (2.69)
in component form is given by (2.59)–(2.61) and (2.64)–(2.67).

Matlab
The transformation matrix Jq(η) and its elements J11 = Rn

b(q) and J22 = T q(q) can be computed
directly in the MSS toolbox by using the following commands:

q = [eta,eps1,eps2,eps3]’

[J,J11,J22] = quatern(q)

The corresponding differential equations are

p dot = J11*v

q dot = J22*w bn
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Implementation Considerations: Unit Quaternion Normalization

When integrating (2.62), a normalization procedure is necessary to ensure that the constraint

q�q = ε2
1 + ε2

2 + ε2
3 + η2 = 1 (2.70)

is satisfied in the presence of measurement noise and numerical round-off errors. For this purpose, the
following discrete-time algorithm can be applied.

Algorithm 2.1 (Discrete-Time Normalization of the Unit Quaternions)

1. k = 0. Compute initial values of q(k = 0).
2. For simplicity, Euler integration implies that

q(k + 1) = q(k) + hT q(q(k))ωb
b/n(k) (2.71)

where h is the sampling time.
3. Normalization:

q(k + 1) = q(k + 1)

‖q(k + 1)‖ = q(k + 1)√
q�(k + 1)q(k + 1)

4. Let k = k + 1 and return to Step 2.

A continuous time algorithm for unit quaternion normalization can be implemented by noting that

d

dt

(
q�q
) = 2q�T q(q)ωb

b/n = 0 (2.72)

This shows that if q is initialized as a unit vector, then it will remain a unit vector. Since integration of
the quaternion vector q from the differential equation (2.62) will introduce numerical errors that will
cause the length of q to deviate from unity, a nonlinear feedback or normalization term is suggested. In
Simulink this is done by replacing the kinematic differential equation (2.62) with

q̇ = T q(q)ωb
b/n + γ

2
(1 − q�q)q (2.73)

where γ ≥ 0 (typically 100) is a design parameter reflecting the convergence rate of the normalization.
This results in

d

dt

(
q�q
) = 2q�T q(q)ωb

b/n︸ ︷︷ ︸
0 since q(0) is a unit vector

+ γ(1 − q�q)q�q = γ(1 − q�q)q�q (2.74)

Observe that q�q will decrease if q�q > 1 while it increases for q�q < 1. When q�q = 1 the usual
kinematic differential equations are recovered. A change of coordinates x = 1 − q�q, ẋ = −d/dt(q�q)
yields

ẋ = −γx(1 − x) (2.75)
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Linearization about x = 0 gives ẋ = −γx. Consequently, the normalization algorithm converges with a
time constant T = γ−1.

2.2.3 Quaternions from Euler Angles

If the Euler angles �nb = [φ, θ, ψ]� are known and therefore the expression for the rotation matrix
Rn

b(�nb) = {Rij}, a singularity free extraction procedure can be used to compute the corresponding unit
quaternions (Shepperd, 1978).

Algorithm 2.2 (Quaternions From Euler Angles)

1. Given the Euler angles φ, θ and ψ. Let the transformation matrix Rn
b according to (2.18) be written

Rn
b(�nb) :=

⎡
⎣R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦

2. The trace of Rn
b(�nb) is computed as

R44 = tr(Rn
b) = R11 + R22 + R33

3. Let 1 ≤ i ≤ 4 be the index corresponding to

Rii = max(R11, R22, R33, R44)

4. Compute pi corresponding to Index i of Step 3 according to

pi =
∣∣∣√1 + 2Rii − R44

∣∣∣
where the sign ascribed to pi can be chosen to be either positive or negative.

5. Compute the other three pi-values from

p4p1 = R32 − R23 p2p3 = R32 + R23

p4p2 = R13 − R31 p3p1 = R13 + R31

p4p3 = R21 − R12 p1p2 = R21 + R12

by simply dividing the three equations containing the component pi with the known value of pi (from
Step 4) on both sides.

6. Compute the Euler parameters q = [η, ε1, ε2, ε3]� according to

εj = pj/2 (j = 1, 2, 3)

η = p4/2

Matlab
Algorithm 2.2 is implemented in the MSS toolbox as euler2q.m. This algorithm can also
be used to compute the initial values of the Euler parameters corresponding to Step 1 of
Algorithm 2.1.
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Example 2.2 (Euler Angles to Unit Quaternions)
Consider a marine craft with orientation φ = 10.0◦, θ = −20.0◦ and ψ = 30.0◦. The unit
quaternions are computed in Matlab by using the commands

phi=10*(pi/180), theta=-20*(pi/180), psi=30*(pi/180)

q = euler2q(phi,theta,psi)

q = [0.9437, 0.1277, -0.1449, 0.2685]

% normalization test

norm(q) =

1.0000

2.2.4 Euler Angles from Quaternions

The relationship between the Euler angles φ, θ and ψ (zyx convention) and the unit quaternions
qi (i = 1, . . . , 4) can be established by requiring that the rotation matrices of the two kinematic rep-
resentations are equal:

Rn
b(�nb) := Rn

b(q) (2.76)

Let the elements of Rn
b(q) be denoted by Rij where the superscripts i and j denote the ith row and

jth column. Writing expression (2.76) in component form yields a system of nine equations with three
unknowns (φ, θ and ψ) given by

⎡
⎣ cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

⎤
⎦ =

⎡
⎣R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ (2.77)

Algorithm 2.3 (Euler Angles from Quaternions)
One solution to (2.77) is

φ = atan2(R32, R33) (2.78)

θ = − sin−1(R31) = − tan−1

(
R31√

1 − R2
31

)
; θ /= ± 90◦ (2.79)

ψ = atan2(R21, R11) (2.80)

In Algorithm 2.3 atan2(y, x) is the four-quadrant arctangent of the real parts of the elements of x and
y satisfying

−π ≤ atan2(y, x) ≤ π (2.81)

Precautions must be taken against computational errors in the vicinity of θ = ±90◦.
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Matlab
The MSS toolbox script

[phi,theta,psi] = q2euler(q)

is based on Algorithm 2.3. A singularity test is included in order to avoid θ = ±90◦.

Example 2.3 (Unit Quaternions to Euler Angles)
Consider the marine vessel in Example 2.2 where the Euler angles where converted into
unit quaternions. The inverse transformation q2euler.m results in

q =[0.9437,0.1277,-0.1449,0.2685]’

[phi,theta,psi] = q2euler(q/norm(q))

phi = 0.1746

theta = -0.3491

psi = 0.5235

corresponding to φ = 10.0◦, θ = −20.0◦ and ψ = 30.0◦.

2.3 Transformations between ECEF and NED
Wide area or terrestrial guidance and navigation implies that the position should be related to the Earth
center instead of a local frame on the Earth’s surface. This can be done by using the results from the
previous sections.

2.3.1 Longitude and Latitude Transformations

The transformation between the ECEF and NED velocity vectors is

ṗe
b/e = Re

n(�en)ṗn
b/e = Re

n(�en)Rn
b(�nb)vb

b/e (2.82)

where �en = [l, μ]� ∈ S2 is a vector formed by longitude l and latitude μ (see Figure 2.5) and Re
n(�en):

S2 → SO(3) is a rotation matrix between ECEF and NED. This is found by performing two principal
rotations: (1) a rotation l about the z axis and (2) a rotation (−μ − π/2) about the y axis. This gives

Re
n(�en) = Rz,lRy,−μ− π

2
(2.83)

=

⎡
⎣ cos(l) − sin(l) 0

sin(l) cos(l) 0

0 0 1

⎤
⎦
⎡
⎣ cos (−μ− π

2 ) 0 sin (−μ− π

2 )

0 1 0

− sin (−μ− π

2 ) 0 cos (−μ− π

2 )

⎤
⎦

Using the trigonometric formulae cos(−μ − π

2 ) = − sin(μ) and sin(−μ − π

2 ) = − cos(μ) yields

Re
n(�en) =

⎡
⎣− cos(l) sin(μ) − sin(l) − cos(l) cos(μ)

− sin(l) sin(μ) cos(l) − sin(l) cos(μ)

cos(μ) 0 − sin(μ)

⎤
⎦ (2.84)
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Figure 2.5 Definitions of longitude l and latitude μ and the NED reference frame on the surface of the
Earth. The D axis points in the normal direction to the Earth’s surface.

Hence, the ECEF positions pe
b/e = [x, y, z]� can be found by integration of (2.82). This equation can

also be used when designing a global waypoint tracking control system for ships.

Matlab
The rotation matrix Re

n(�en) is computed using the MSS toolbox command

R = Rll(l,mu)

Flat Earth Navigation

For local flat Earth navigation it can be assumed that the NED tangent plane is fixed on the surface of
the Earth, that is l and and μ are constants, by assuming that the operating radius of the vessel is limited.
This suggests that the NED position vector

ṗn
b/n = Rn

b(�nb)vb
b/n (2.85)

is used for control design. When designing dynamic positioning (DP) systems for offshore vessels
this is particularly useful. The ECEF coordinates for flat Earth navigation are found by requiring that
�en = constant, such that

Re
n(�en) = Ro = constant (2.86)

ṗe
b/e = RoR

n
b(�nb)vb

b/e (2.87)
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Figure 2.6 Definitions of the ellipsoidal parameters.

When designing global waypoint tracking control systems for ships, “flat Earth” is not a good approxi-
mation since (l, μ) will vary largely for ships in transit between the different continents. Hence, the more
general expression (2.82) should be used for global navigation.

2.3.2 Longitude and Latitude from ECEF Coordinates

The measurements of satellite navigation systems (GPS, GLONASS and Gallileo) are given in the Carte-
sian ECEF frame, but there are measurements that do not make much sense to the user. The presentation
of terrestrial position data pe

b/e = [x, y, z]� is therefore made in terms of the ellipsoidal parameters
longitude l, latitude μ and height h.

Figure 2.6 shows the definitions of parameters needed for the transformations. The reference ellipsoid
used for satellite navigation systems, WGS-84, is found by rotating an ellipse around the polar axis.
Because of symmetry about the polar axis, it is only necessary to look at the meridian plane (latitude)
equations. The origin of the ellipsoid coincides with the mass center of the Earth. The most important
parameters of the WGS-84 ellipsoid are listed in Table 2.2.

In Figure 2.6, μ is the geodetic latitude, h is the ellipsoidal height and N is the radius of curvature in
the prime vertical. N is calculated by

N = r2
e√

r2
e cos2(μ) + r2

p sin2(μ)
(2.88)

where the equatorial and polar earth radii, re and rp, are the semi-axes of the ellipsoid.

Table 2.2 WGS-84 parameters

Parameters Comments

re = 6 378 137 m Equatorial radius of ellipsoid (semi-major axis)
rp = 6 356 752 m Polar axis radius of ellipsoid (semi-minor axis)
ωe = 7.292115 × 10−5 rad/s Angular velocity of the Earth
e = 0.0818 Eccentricity of ellipsoid



Transformations between ECEF and NED 37

Longitude l is easily computed as

l = atan
(

y

x

)
(2.89)

while latitude μ and height h are implicitly computed by

tan(μ) = z

p

(
1 − e2 N

N + h

)−1

(2.90)

h = p

cos(μ)
− N (2.91)

where e is the eccentricity of the Earth given by

e =
√

1 −
(

rp

re

)2

(2.92)

Since these two equations are implicit, they can be solved iteratively by using Algorithm 2.4 (Hofmann-
Wellenhof et al., 1994).

Algorithm 2.4 (Transformation of ( x, y, z ) to ( l, μ, h ))

1. Compute p =
√

x2 + y2.

2. Compute the approximate value μ(0) from

tan(μ(0)) = z

p
(1 − e2)−1

3. Compute an approximate value N from

N = r2
e√

r2
e cos2(μ(0)) + r2

p sin2(μ(0))

4. Compute the ellipsoidal height by

h = p

cos(μ(0))
− N(0)

5. Compute an improved value for the latitude by

tan(μ) = z

p

(
1 − e2 N(0)

N(0) + h

)−1

6. Check for another iteration step: if |μ − μ(0)| < tol, where tol is a small number, then the iteration is
complete. Otherwise set μ(0) = μ and continue with Step 3.
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Matlab
Algorithm 2.4 is programmed in the MSS toolbox as a function

[l,mu,h] = ecef2llh(x,y,z)

Several other algorithms can be used for this purpose; see Farrell and Barth (1998) and references therein.
An approximate solution can also be found in Hofmann-Wellenhof et al. (1994) and an exact explicit
solution is given by Zhu (1993).

Height Transformation

The WGS-84 ellipsoid is a global ellipsoid, which is only an approximation of the mean sea level of
the Earth. It can deviate from the real mean sea level by as much as 100 meters at certain locations.
The Earth’s geoid, on the other hand, is defined physically and its center is coincident with the center
of the Earth. It is an equipotential surface so that it has the same gravitational magnitude all over the
surface, and the gravity vector is always perpendicular to the geoid.

The geoid is the surface chosen as a zero level reference. The ellipsoidal height h in Figure 2.7 must
therefore be transformed to the orthometric height H in Figure 2.7 through the relation

h ≈ H + M

where M is called the geoidal height. The angle εd is small enough for the above approximation to be
sufficiently accurate for all practical purposes. The angle εd is known as the deflection of the vertical,
and does not exceed 30 arcseconds in most of the world. In fact the largest deflection encountered over
the entire earth is in the order of 1 arcminutes (Britting, 1971). The geoidal height M is found through a
datum transformation (Hofmann-Wellenhof et al., 1994).

2.3.3 ECEF Coordinates from Longitude and Latitude

The transformation from �en = [l, μ]� for given heights h to pe
b/e = [x, y, z]� is given by (Heiskanen

and Moritz, 1967)

⎡
⎣ x

y

z

⎤
⎦ =

⎡
⎢⎣

(N + h) cos(μ) cos(l)

(N + h) cos(μ) sin(l)(
r2
p

r2
e
N + h

)
sin(μ)

⎤
⎥⎦ (2.93)

For a ship h is the vertical distance from the sea level to the coordinate origin of {b}.

Figure 2.7 Illustration of ellipsoidal and orthonometric heights h and H where εd is the deflection of
gravity and M is the geoidal height (undulation).
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Matlab
The transformation from �en = [l, μ]� to pe

b/e = [x, y, z]�, Equation (2.93), is programmed in the
MSS toolbox function

[x,y,z]=llh2ecef(l,mu,h)

Example 2.4 (ECEF Coordinates from l and μ)
Assume that l = 10.3◦, μ = 63.0◦ and h = 0 m. Hence, the ECEF coordinates are computed to be⎡

⎣ x

y

z

⎤
⎦ =

⎡
⎣ 2 856 552 m

519 123 m

5 659 978 m

⎤
⎦

using the MSS Matlab command

[x,y,z]=llh2ecef(10.3*(pi/180),63.0*(pi/180),0)

2.4 Transformations between BODY and FLOW
Flow axes are often used to express hydrodynamic data. The FLOW axes are found by rotating the BODY
axis system such that resulting x axis is parallel to the freestream flow. Moreover, in FLOW axes, the x

axis points directly into the relative flow while the z axis remains in the reference plane, but rotates so that
it remains perpendicular to the x axis. The y axis completes the right-handed system. The transformation
is outlined in Section 2.4.2.

The main reason for the FLOW axis system is that it is more convenient for calculating hydrodynamic
forces. For instance, lift is, by definition, perpendicular to the relative flow, while drag is parallel. With
FLOW axes, both lift and drag resolve into a force that is parallel to one of the axes.

2.4.1 Definitions of Course, Heading and Sideslip Angles

The relationship between the angular variables course, heading and sideslip is important for maneuvering
of a marine craft in the horizontal plane (3 DOF). The terms course and heading are used interchangeably
in much of the literature on guidance, navigation and control of marine craft, and this leads to confusion.
Consequently, definitions utilizing a consistent symbolic notation will now be established.

The speed of a marine craft moving in the horizontal plane is

U =
√

u2 + v2 (2.94)

In the presence of ocean currents, the relative speed becomes

Ur =
√

(u − uc)2 + (v − vc)2 (2.95)

where the velocity components of the current are uc and vc.
The relationship between the angular variables is shown in Figure 2.8. The following definitions for

motions in the horizontal plane are adopted from Breivik and Fossen (2004b):

Definition 2.4 (Course Angle χ )
The angle from the xn axis of {n} to the velocity vector of the craft, positive rotation about the
zn axis of {n} by the right-hand screw convention.
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Definition 2.5 (Heading (Yaw) Angle ψ)
The angle from the xn axis of {n} to the xb axis of {b}, positive rotation about the zn axis of {n}
by the right-hand screw convention.

Definition 2.6 (Sideslip (Drift) Angle β)
The angle from the xb axis of {b} to the velocity vector of the vehicle, positive rotation about the
zb axis of {b} by the right-hand screw convention.

By these definitions, it is apparent that the course angle satisfies

χ = ψ + β (2.96)

where

β = sin−1
(

v

U

)
β small⇒ β ≈ v

U
(2.97)

This relationship is easily verified from Figure 2.8. The sideslip angle can be extended to include the
effect of ocean currents by letting

βr = sin−1
(

vr

Ur

)
βr small⇒ βr ≈ vr

Ur

(2.98)

where vr = v − vc is the relative sway velocity.

Remark 2.1
In SNAME (1950) and Lewis (1989) the sideslip angle for marine craft is defined according to:

βSNAME := −β

Note that the sideslip definition in this section follows the sign convention used by the aircraft community,
for instance as in Nelson (1998) and Stevens and Lewis (1992). This definition is more intuitive from a
guidance point of view, as shown in Figure 2.8.

Figure 2.8 The geometrical relationship χ = ψ + β between course χ, heading angle ψ and sideslip
angle β.



Transformations between BODY and FLOW 41

Example 2.5 (Sideslip Angle: No Ocean Currents)
Consider a marine craft moving at U = 10 m/s under the assumption of no ocean currents and
zero sway velocity (v = 0). Hence, the sideslip angle is

β = sin−1
(

v

U

)
= 0 (2.99)

For this case the heading angle equals the course angle, that is

χ ≡ ψ (2.100)

Example 2.6 (Sideslip Angle: Ocean Currents)
Consider a marine craft at rest and exposed for an ocean current uc = vc = 0.5 m/s. Since
u = v = 0 it follows that Ur =

√
u2

c + v2
c and

βr = sin−1

(
−vc√
u2

c + v2
c

)
= −0.36 (2.101)

corresponding to −20.7◦. In this case the heading and the course angles satisfy

χ = ψ − 20.7◦ (2.102)

2.4.2 Sideslip and Angle of Attack

The transformation from FLOW to BODY axes is defined by two principal rotations. First, the flow axes
are rotated by a negative sideslip angle −β about the z axis and the new coordinate system is called
stability axes. Second, the stability axes are rotated by a positive angle α about the new y axis. This angle
α is called the angle of attack.

The names stability and wind axes are commonly used in aerodynamics to model lift and drag forces,
which both are nonlinear functions of α, β and U. This convention has been adopted by the marine
community and SNAME to describe lift and drag forces on submerged vehicles (SNAME, 1950). For
marine craft, wind axes correspond to flow axes.

Stability and flow axes are also used in path following. For instance, a ship equipped with a single
rudder and a main propeller can follow a path even though only two controls are available by simply
steering the vessel to the path using the rudder. The speed is controlled by an independent propeller
feedback loop (Fossen et al., 2003a). This means that we control the xy coordinates and yaw angle ψ of
the ship (3 DOF). When doing this, it is optimal to have a zero sideslip angle when there are no ocean
currents, wave and wind loads. If the environmental forces are nonzero, it is optimal to have a nonzero
sideslip angle, as shown in Figure 2.9 (Breivik and Fossen, 2005a). This is referred to as weathervaning.

Figure 2.9 Illustration of stability and flow axes in terms of the angle of attack α and the sideslip angle β.
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However, it is extremely difficult to track the desired path given by x and y, and at the same time maintain
a constant heading angle ψ unless three controls are available for feedback since this is an underactuated
control problem.

The transformation between BODY, STABILITY and FLOW axes can be mathematically
expressed as

vstab = Ry,αv
b (2.103)

vflow = Rz,−βv
stab (2.104)

where

Ry,α =

⎡
⎣ cos(α) 0 sin(α)

0 1 0

−sin(α) 0 cos(α)

⎤
⎦ (2.105)

Rz,−β = R�
z,β =

⎡
⎣ cos(β) sin(β) 0

− sin(β) cos(β) 0

0 0 1

⎤
⎦ (2.106)

The transformation matrix from BODY to FLOW axes then becomes

Rflow
b = Rz,−βRy,α

=

⎡
⎣ cos(β) cos(α) sin(β) cos(β) sin(α)

− sin(β) cos(α) cos(β) − sin(β) sin(α)

− sin(α) 0 cos(α)

⎤
⎦ (2.107)

The velocity transformation

vflow = Rflow
b vb (2.108)

can now be rewritten as

vb = (Rflow
b )�vflow (2.109)

�⎡
⎣ u

v

w

⎤
⎦ = R�

y,αR
�
z,−β

⎡
⎣U

0

0

⎤
⎦ (2.110)

Writing this expression in component form yields

u = U cos(α) cos(β) (2.111)

v = U sin(β) (2.112)

w = U sin(α) cos(β) (2.113)



Transformations between BODY and FLOW 43

For a marine craft moving at constant forward speed U > 0, the angle of attack and sideslip angle become

α = tan−1
(

w

u

)
(2.114)

β = sin−1
(

v

U

)
(2.115)

For small angles of α and β (linear theory), it follows that

u ≈ U, v ≈ βU, w ≈ αU (2.116)

and

α ≈ w

U
, β ≈ v

U
(2.117)

Time differentiation of (2.112) under the assumption that U and the ocean current in {n} are constant
gives the sway rate

v̇ = U cos(β)β̇ (2.118)

Consequently, the sideslip rate for U > 0 becomes

β̇ = 1

U cos(β)
v̇ (2.119)

This relationship is exploited when designing path-following control systems (see Section 10.4).

Extension to Ocean Currents

For a marine craft exposed to ocean currents, the concept of relative velocities is introduced; see
Section 8.3. Let the current velocities expressed in {b} be denoted uc, vc and wc. The relative veloc-
ities are

ur = u − uc (2.120)

vr = v − vc (2.121)

wr = w − wc (2.122)

such that the relative speed becomes

Ur =
√

u2
r + v2

r + w2
r (2.123)

Angle of attack and sideslip angle as given by (2.111)–(2.113) are modified in terms of the relative
velocities according to

ur = Ur cos(αr) cos(βr) (2.124)

vr = Ur sin(βr) (2.125)

wr = Ur sin(αr) cos(βr) (2.126)
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such that

αr = tan−1
(

wr

ur

)
(2.127)

βr = sin−1
(

vr

Ur

)
(2.128)

For small angles αr and βr , it is seen that

ur ≈ Ur, vr ≈ βrUr, wr ≈ αrUr (2.129)

such that

αr ≈ w − wc

Ur

, βr ≈ v − vc

Ur

(2.130)

State-Space Transformation

The state-space model of a marine craft can be transformed to FLOW axes using a transformation matrix
depending on speed. Let

ν = [u, v, w, p, q, r]� (2.131)

and

νflow = [U, β, α, p, q, r]� (2.132)

The latter representation is often more intuitive to use from a hydrodynamic point of view, while control
engineers prefer the former. Both representations are, however, equivalent since there exists a nonlinear
transformation between (u, v, w) and (U, β, α), given by (2.111)–(2.113). For small angles, the following
approximative transformation:

νflow = T (U)ν (2.133)

with

T (U) = diag

{
1,

1

U
,

1

U
, 1, 1, 1

}
(2.134)

can be used. If we assume that U = constant such that Ṫ (U) = 0, the linear model

Mν̇ + Nν = τ (2.135)

transforms to FLOW axes according to

T (U)MT (U)−1ν̇flow + T (U)NT (U)−1νflow = T (U)τ (2.136)



3
Rigid-Body Kinetics

In order to derive the marine craft equations of motion, it is necessary to study the motion of rigid bodies,
hydrodynamics and hydrostatics. The overall goal of Chapter 3 is to show that the rigid-body kinetics
can be expressed in a vectorial setting according to (Fossen, 1991)

MRBν̇ + CRB(ν)ν = τRB (3.1)

where MRB is the rigid-body mass matrix, CRB is the rigid-body Coriolis and centripetal matrix due to
the rotation of {b} about the inertial frame {n}, ν = [u, v, w, p, q, r]� is the generalized velocity vector
expressed in {b} and τRB = [X, Y, Z, K, M, N]� is a generalized vector of external forces and moments
expressed in {b}.

The rigid-body equations of motion will be derived using the Newton–Euler formulation and vectorial
mechanics. In this context it is convenient to define the vectors without reference to a coordinate frame
(coordinate free vector). The velocity of the origin ob with respect to {n} is a vector �vb/n that is defined
by its magnitude and the direction. The vector �vb/n decomposed in the inertial reference frame is denoted
as vi

b/n, which is also referred to as a coordinate vector (see Section 2.1).
The equations of motion will be represented in two body-fixed reference points:

CO - origin ob of {b}
CG - center of gravity

These points coincide if the vector �rg = �0 (see Figure 3.1). The point CO is usually specified by the
control engineer and it is the reference point used to design the guidance, navigation and control systems.
For marine craft, it is common to locate this point on the centerline midships. It is advantageous to use
a fixed reference point CO for controller–observer design since CG will depend on the load condition
(see Section 4.3).

3.1 Newton–Euler Equations of Motion about CG
The Newton–Euler formulation is based on Newton’s second law, which relates mass m, acceleration
�̇vg/i and force �fg according to

m �̇vg/i = �f g (3.2)

where �vg/i is the velocity of the CG with respect to the inertial frame {i}.
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Figure 3.1 Definition of the volume element dV and the coordinate origins CO and CG.

If no force is acting (�fg = �0), then the rigid body is moving with constant speed (�vg/i = constant) or
the body is at rest (�vg/i = �0)–a result known as Newton’s first law. Newton’s laws were published in 1687
by Isaac Newton (1643–1727) in Philosophia Naturalis Principia Mathematica.

Euler’s First and Second Axioms

Leonhard Euler (1707–1783) showed in his Novi Commentarii Academiae Scientarium Imperialis
Petropolitane that Newton’s second law can be expressed in terms of conservation of both linear
momentum �pg and angular momentum �hg. These results are known as Euler’s first and second
axioms, respectively:

id

dt
�pg = �fg �pg = m�vg/i (3.3)

id

dt
�hg = �mg

�hg = Ig �ωb/i (3.4)

where �fg and �mg are the forces and moments acting on the body’s CG, �ωb/i is the angular velocity
of {b} with respect to {i}, and Ig is the inertia dyadic about the body’s CG (to be defined later). Time
differentiation in the inertial frame {i} is denoted by id/dt. The application of these equations is often
referred to as vectorial mechanics since both conservation laws are expressed in terms of vectors.

When deriving the equations of motion it will be assumed: (1) that the craft is rigid and (2) that the
NED frame {n} is inertial; see Section 2.1. The first assumption eliminates the consideration of forces
acting between individual elements of mass while the second eliminates forces due to the Earth’s motion
relative to a star-fixed inertial reference system. Consequently,

�vg/i ≈ �vg/n (3.5)

�ωb/i ≈ �ωb/n (3.6)
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Time differentiation of a vector �a in a moving reference frame {b} satisfies

id

dt
�a =

bd

dt
�a + �ωb/i × �a (3.7)

where time differentiation in {b} is denoted as

�̇a :=
bd

dt
�a (3.8)

For guidance and navigation applications in space it is usual to use a star-fixed reference frame or a
reference frame rotating with the Earth. Marine craft are, on the other hand, usually related to {n}. This
is a good assumption since the forces on marine craft due to the Earth’s rotation:

ωe/i = 7.2921 × 10−5 rad/s (3.9)

are quite small compared to the hydrodynamic forces. The Earth’s rotation should, however, not be
neglected in global navigation or if the equations of motion of a drifting ship are analyzed.

3.1.1 Translational Motion about CG

From Figure 3.1 it follows that

�rg/i = �rb/i + �rg (3.10)

where �rg is the distance vector from CO (origin ob) to CG. Consequently, the assumption that {n} is
inertial implies that (3.10) can be rewritten as

�rg/n = �rb/n + �rg (3.11)

Time differentiation of �rg/n in a moving reference frame {b} using (3.7) gives

�vg/n = �vb/n +
(

bd

dt
�rg + �ωb/n × �rg

)
(3.12)

For a rigid body, CG satisfies

bd

dt
�rg = �0 (3.13)

such that

�vg/n = �vb/n + �ωb/n × �rg (3.14)
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From Euler’s first axiom (3.3) it follows that

�fg =
id

dt
(m�vg/i)

=
id

dt
(m�vg/n)

=
bd

dt
(m�vg/n) + m�ωb/n × �vg/n

= m(�̇vg/n + �ωb/n × �vg/n) (3.15)

Finally, the vectors can be expressed in {b} such that the translational motion in CG becomes

m[v̇b
g/n + S(ωb

b/n)vb
g/n] = f b

g (3.16)

where the cross-product is written in matrix form using the skew-symmetric matrix (2.10), that is
S(ωb

b/n)vb
g/n = ωb

b/n × vb
g/n.

3.1.2 Rotational Motion about CG

The rotational dynamics (attitude dynamics) follows a similar approach. From Euler’s second axiom
(3.4), it is seen that

�mg =
id

dt
(Ig �ωb/i)

=
id

dt
(Ig �ωb/n)

=
bd

dt
(Ig �ωb/n) + �ωb/n × (Ig �ωb/n)

= Ig �̇ωb/n − (Ig �ωb/n) × �ωb/n (3.17)

From this it follows that

Igω̇
b
b/n − S(Igω

b
b/n)ωb

b/n = mb
g (3.18)

since S(Igω
b
b/n)ωb

b/n = (Igω
b
b/n) × ωb

b/n. This expression is also referred to as Euler’s equations.

Definition 3.1 (Inertia Matrix)
The inertia matrix Ig ∈ R3×3 about CG is defined as

Ig :=

⎡
⎣ Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

⎤
⎦ , Ig = I�

g > 0 (3.19)
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where Ix, Iy and Iz are the moments of inertia about the xb, yb and zb axes, and Ixy = Iyx, Ixz = Izx and
Iyz = Izy are the products of inertia defined as

Ix = ∫
V

(y2 + z2) ρmdV ; Ixy = ∫
V

xy ρmdV = ∫
V

yx ρmdV = Iyx

Iy = ∫
V

(x2 + z2) ρmdV ; Ixz = ∫
V

xz ρmdV = ∫
V

zx ρmdV = Izx

Iz = ∫
V

(x2 + y2) ρmdV ; Iyz = ∫
V

yz ρmdV = ∫
V

zy ρmdV = Izy

3.1.3 Equations of Motion about CG

The Newton–Euler equations (3.16) and (3.18) can be represented in matrix form according to

MCG
RB

[
v̇b

g/n

ω̇b
b/n

]
+ CCG

RB

[
vb

g/n

ωb
b/n

]
=

[
f b

g

mb
g

]
(3.20)

or [
mI3×3 03×3

03×3 Ig

]
︸ ︷︷ ︸

MCG
RB

[
v̇b

g/n

ω̇b
b/n

]
+

[
mS(ωb

b/n) 03×3

03×3 −S(Igω
b
b/n)

]
︸ ︷︷ ︸

CCG
RB

[
vb

g/n

ωb
b/n

]
=

[
f b

g

mb
g

]
(3.21)

3.2 Newton–Euler Equations of Motion about CO
For marine craft it is desirable to derive the equations of motion for an arbitrary origin CO to take
advantage of the craft’s geometric properties. Since the hydrodynamic forces and moments often are
computed in CO, Newton’s laws will be formulated in CO as well.

In order to do this, we will start with the equations of motion about CG and transform these expres-
sions to CO using a coordinate transformation. The needed coordinate transformation is derived from
(3.14). Moreover,

vb
g/n = vb

b/n + ωb
b/n × rb

g

= vb
b/n − rb

g × ωb
b/n

= vb
b/n + S�(rb

g)ωb
b/n (3.22)

From this it follows that [
vb

g/n

ωb
b/n

]
= H(rb

g)

[
vb

b/n

ωb
b/n

]
(3.23)

where rb
g = [xg, yg, zg]� and H(rb

g) ∈ R3×3 is a transformation matrix:

H(rb
g) :=

[
I3×3 S�(rb

g)

03×3 I3×3

]
, H�(rb

g) =
[

I3×3 03×3

S(rb
g) I3×3

]
(3.24)

Notice that angular velocity is unchanged during this transformation. The next step is to transform (3.20)
from CG to CO using (3.23). This gives

H�(rb
g)MCG

RBH(rb
g)

[
v̇b

b/n

ω̇b
b/n

]
+ H�(rb

g)CCG
RBH(rb

g)

[
vb

b/n

ωb
b/n

]
= H�(rb

g)

[
f b

g

mb
g

]
(3.25)
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We now define two new matrices in CO according to

MCO
RB := H�(rb

g)MCG
RBH(rb

g) (3.26)

CCO
RB := H�(rb

g)CCG
RBH(rb

g) (3.27)

Expanding these expressions gives

MCO
RB =

[
mI3×3 −mS(rb

g)

mS(rb
g) Ig − mS2(rb

g)

]
(3.28)

CCO
RB =

[
mS(ωb

b/n) −mS(ωb
b/n)S(rb

g)

mS(rb
g)S(ωb

b/n) −S
(

(Ig − mS2(rb
g)
)

ωb
b/n)

]
(3.29)

where we have used the fact that

mS(rb
g)S(ωb

b/n)S�(rb
g)ωb

b/n − S(Igω
b
b/n)ωb

b/n ≡ S
(

(Ig − mS2(rb
g)
)

ωb
b/n)ωb

b/n (3.30)

3.2.1 Translational Motion about CO

From the first row in (3.25) with matrices (3.28) and (3.29) it is seen that the translational motion about
CO satisfies

m[v̇b
b/n + S�(rb

g)ω̇b
b/n + S(ωb

b/n)vb
b/n + S(ωb

b/n)S�(rb
g)ωb

b/n] = f b
g (3.31)

Since the translational motion is independent of the attack point of the external force f b
g = f b

b it
follows that

m[v̇b
b/n + S(ω̇b

b/n)rb
g + S(ωb

b/n)vb
b/n + S2(ωb

b/n)rb
g] = f b

b (3.32)

where we have exploited the fact that S�(a)b = −S(a)b = S(b)a. An alternative representation of (3.32)
using vector cross-products is

m[v̇b
b/n + ω̇b

b/n × rb
g + ωb

b/n × vb
b/n + ωb

b/n × (ωb
b/n × rb

g)] = f b
b (3.33)

3.2.2 Rotational Motion about CO

In order to express the rotational motion (attitude dynamics) about CO we will make use of the
parallel-axes theorem that transforms the inertia matrix to an arbitrarily point.

Theorem 3.1 (Parallel-Axes Theorem or Huygens–Steiner Theorem)
The inertia matrix Ib = I�

b ∈ R3×3 about an arbitrary origin ob is given by

Ib = Ig − mS2(rb
g) = Ig − m

(
rb

g(rb
g)� − (rb

g)�rb
g I3×3

)
(3.34)

where Ig = I�
g ∈ R3×3 is the inertia matrix about the body’s center of gravity.
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Proof. See Egeland and Gravdahl (2002).

The lower-right elements in (3.28) and (3.29) can be reformulated by using the parallel-axes theorem.
For instance,

Ig + mS(rb
g)S�(rb

g) = Ig − mS2(rb
g)

= Ib (3.35)

while the quadratic term in (3.29) satisfies (follows from the Jacobi identity)

S(rb
g)S(ωb

b/n)S�(rb
g)ωb

b/n = −S(ωb
b/n)S2(rb

g)ωb
b/n (3.36)

such that

mS(rb
g)S(ωb

b/n)S�(rb
g)ωb

b/n + S(ωb
b/n)Igω

b
b/n = S(ωb

b/n)Ibω
b
b/n (3.37)

Consequently, the rotational motion about CO is given by the last row in (3.25):

Ibω̇
b
b/n + S(ωb

b/n)Ibω
b
b/n + mS(rb

g)v̇b
b/n + mS(rb

g)S(ωb
b/n)vb

b/n = mb
b (3.38)

where the moment about CO is

mb
b = mb

g + rb
g × f b

g

= mb
g + S(rb

g)f b
g (3.39)

Equation (3.38) can be written in cross-product form as

Ibω̇
b
b/n + ωb

b/n × Ibω
b
b/n + mrb

g × (v̇b
b/n + ωb

b/n × vb
b/n) = mb

b (3.40)

3.3 Rigid-Body Equations of Motion
In the previous sections it was shown how the rigid-body kinetics can be derived by applying Newtonian
mechanics. In this section, useful properties of the equations of motion are discussed and it is also
demonstrated how these properties considerably simplify the representation of the nonlinear equations
of motion.

3.3.1 Nonlinear 6 DOF Rigid-Body Equations of Motion

Equations (3.33) and (3.40) are usually written in component form according to the SNAME (1950)
notation by defining:

f b
b = [X, Y, Z]� - force through ob expressed in {b}

mb
b = [K, M, N]� - moment about ob expressed in {b}

vb
b/n = [u, v, w]� - linear velocity of ob relative on expressed in {b}

ωb
b/n = [p, q, r]� - angular velocity of {b} relative to {n} expressed in {b}

rb
g = [xg, yg, zg]� - vector from ob to CG expressed in {b}
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Applying this notation, (3.33) and (3.40) become

m
[
u̇ − vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)

] = X

m
[
v̇ − wp + ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp + ṙ)

] = Y

m
[
ẇ − uq + vp − zg(p2 + q2) + xg(rp − q̇) + yg(rq + ṗ)

] = Z

Ixṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+m
[
yg(ẇ − uq + vp) − zg(v̇ − wp + ur)

] = K

Iyq̇ + (Ix − Iz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx + (qp − ṙ)Iyz

+m
[
zg(u̇ − vr + wq) − xg(ẇ − uq + vp)

] = M

Izṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+m
[
xg(v̇ − wp + ur) − yg(u̇ − vr + wq)

] = N

(3.41)

The first three equations represent the translational motion, while the last three equations represent the
rotational motion.

Vectorial Representation

The rigid-body kinetics (3.41) can be expressed in a vectorial setting as (Fossen, 1991)

MRBν̇ + CRB(ν)ν = τRB (3.42)

where ν = [u, v, w, p, q, r]� is the generalized velocity vector expressed in {b} and
τRB = [X, Y, Z, K, M, N]� is a generalized vector of external forces and moments.

Property 3.1 (Rigid-Body System Inertia Matrix MRB)
The representation of the rigid-body system inertia matrix MRB is unique and satisfies

MRB = M�
RB > 0, ṀRB = 06×6 (3.43)

where

MRB =
[

mI3×3 −mS(rb
g)

mS(rb
g) Ib

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.44)
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Here, I3×3 is the identity matrix, Ib = I�
b > 0 is the inertia matrix according to Definition 3.1 and S(rb

g)
is a skew-symmetric matrix according to Definition 2.2.

Matlab
The rigid-body system inertia matrix MRB can be computed in Matlab as

r g = [10 0 1]’ % location of the CG with respect to CO
nu = [10 0 1 0 0 1]’ % velocity vector
I g = 10000*eye(3) % inertia tensor
m = 1000; % mass

% rigid-body system inertia matrix
MRB = [ m*eye(3) -m*Smtrx(r g)

m*Smtrx(r g) I g ]

which produces the numerical result

MRB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1000 0 0 0 1000 0

0 1000 0 −1000 0 10000

0 0 1000 0 −10000 0

0 −1000 0 10000 0 0

1000 0 −10000 0 10000 0

0 10000 0 0 0 10000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The matrix CRB in (3.42) represents the Coriolis vector term ωb
b/n × vb

b/n and the centripetal vector
term ωb

b/n × (ωb
b/n × rb

g). Contrary to the representation of MRB, it is possible to find a large number of
representations for the matrix CRB.

Theorem 3.2 (Coriolis–Centripetal Matrix from System Inertia Matrix)
Let M be a 6 × 6 system inertia matrix defined as

M = M� =
[

M11 M12

M21 M22

]
> 0 (3.45)

where M21 = M�
12. Then the Coriolis–centripetal matrix can always be parameterized such that

C(ν) = −C�(ν) by choosing (Sagatun and Fossen, 1991)

C(ν) =
[

03×3 −S(M11ν1 + M12ν2)

−S(M11ν1 + M12ν2) −S(M21ν1 + M22ν2)

]
(3.46)

where ν1 := vb
b/n = [u, v, w]�, ν2 := ωb

b/n = [p, q, r]� and S is the cross-product operator according
to Definition 2.2.
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Proof. The kinetic energy T is written in the quadratic form:

T = 1

2
ν�Mν, M = M� > 0 (3.47)

Expanding this expression yields

T = 1

2

(
ν�

1 M11ν1 + ν�
1 M12ν2 + ν�

2 M21ν1 + ν�
2 M22ν2

)
(3.48)

where M12 = M�
21 and M21 = M�

12. This gives

∂T

∂ν1
= M11ν1 + M12ν2 (3.49)

∂T

∂ν2
= M21ν1 + M22ν2 (3.50)

Using Kirchhoff’s equations (Kirchhoff, 1869):

d

dt

(
∂T

∂ν1

)
+ S(ν2)

∂T

∂ν1
= τ1 (3.51)

d

dt

(
∂T

∂ν2

)
+ S(ν2)

∂T

∂ν2
+ S(ν1)

∂T

∂ν1
= τ2 (3.52)

where S is the skew-symmetric cross-product operator in Definition 2.2, it is seen that there are some
terms dependent on acceleration, that is (d/dt)(∂T/∂ν1) and (d/dt)(∂T/∂ν2). The remaining terms are due
to Coriolis–centripetal forces. Consequently,

C(ν)ν :=
[

S(ν2) ∂T

∂ν1

S(ν2) ∂T

∂ν2
+ S(ν1) ∂T

∂ν1

]
=

[
03×3 −S( ∂T

∂ν1
)

−S( ∂T

∂ν1
) −S( ∂T

∂ν2
)

][
ν1

ν2

]
(3.53)

which after substitution of (3.49) and (3.50) gives (3.46); see Sagatun and Fossen (1991) for the original
proof of this theorem.

We next state some useful properties of the Coriolis and centripetal matrix CRB(ν).

Property 3.2 (Rigid-Body Coriolis and Centripetal Matrix CRB)
According to Theorem 3.2 the rigid-body Coriolis and centripetal matrix CRB(ν) can always be
represented such that CRB(ν) is skew-symmetric. Moreover,

CRB(ν) = −C�
RB(ν), ∀ν ∈ R6 (3.54)

The skew-symmetric property is very useful when designing a nonlinear motion control system since
the quadratic form ν�CRB(ν)ν ≡ 0. This is exploited in energy-based designs where Lyapunov func-
tions play a key role. The same property is also used in nonlinear observer design. There exist several
parametrizations that satisfy Property 3.2. Two of them are presented below:

1. Lagrangian parametrization: Application of Theorem 3.2 with M = MRB yields the following
expression:
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CRB(ν) =
[

03×3 −mS(ν1) − mS(S(ν2)rb
g)

−mS(ν1) − mS(S(ν2)rb
g) mS(S(ν1)rb

g) − S(Ibν2)

]
(3.55)

which can be rewritten according to (Fossen and Fjellstad, 1995)

CRB(ν) =
[

03×3 −mS(ν1) − mS(ν2)S(rb
g)

−mS(ν1) + mS(rb
g)S(ν2) −S(Ibν2)

]
(3.56)

In order to ensure that CRB(ν) = −C�
RB(ν), it is necessary to use S(ν1)ν1 = 0 and include S(ν1)

in C
{21}
RB .

2. Velocity-independent parametrizations: By using the cross-product property S(ν1)ν2 = −S(ν2)ν1,
it is possible to move S(ν1)ν2 from C

{12}
RB to C

{11}
RB in (3.55). This gives an expression for CRB(ν) that is

independent of linear velocity ν1 (Fossen and Fjellstad, 1995):

CRB(ν) =
[

mS(ν2) −mS(ν2)S(rb
g)

mS(rb
g)S(ν2) −S(Ibν2)

]
(3.57)

Notice that this expression is similar to (3.29) which was derived using Newton–Euler equations.

Remark 3.1.
Expression (3.57) is useful when ocean currents enter the equations of motion. The main reason for this
is that CRB(ν) does not depend on linear velocity ν1 (uses only angular velocity ν2 and lever arm rb

g).
This can be further exploited when considering a marine craft exposed to irrotational ocean currents.
According to Property 8.1 in Section 8.3:

MRBν̇ + CRB(ν)ν ≡ MRBν̇r + CRB(νr)νr (3.58)

if the relative velocity vector νr = ν − νc is defined such that only linear current velocities are used:

ν := [uc, vc, wc, 0, 0, 0]� (3.59)

Since the ocean current (3.59) is assumed to be irrotational, Equation (3.58) can be proven using
parametrization (3.57). The details are outlined in Section 8.3.
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Component Form

To illustrate the complexity of 6 DOF modeling, the rigid-body Coriolis and centripetal terms in expression
(3.55) are expanded according to give (Fossen, 1991)

CRB(ν) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

−m(ygq + zgr) m(ygp + w) m(zgp − v)

m(xgq − w) −m(zgr + xgp) m(zgq + u)

m(xgr + v) m(ygr − u) −m(xgp + ygq)

(3.60)

m(ygq + zgr) −m(xgq − w) −m(xgr + v)

−m(ygp + w) m(zgr + xgp) −m(ygr − u)

−m(zgp − v) −m(zgq + u) m(xgp + ygq)

0 −Iyzq − Ixzp + Izr Iyzr + Ixyp − Iyq

Iyzq + Ixzp − Izr 0 −Ixzr − Ixyq + Ixp

−Iyzr − Ixyp + Iyq Ixzr + Ixyq − Ixp 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Matlab
Theorem 3.2 is implemented in the Matlab MSS toolbox in the function m2c.m.The following
example demonstrates how CRB(ν) can be computed numerically using the command

% rigid-body system inertia matrix

MRB = [1000*eye(3) zeros(3,3)

zeros(3,3) 10000*eye(3)];

% rigid-body Coriolis and centripetal matrix

nu = [10 1 1 1 2 3]’

CRB = m2c(MRB,nu)

which produces the numerical result

CRB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1000 −1000

0 0 0 −1000 0 10000

0 0 0 1000 −10000 0

0 1000 −1000 0 30000 −20000

−1000 0 10000 −30000 0 10000

1000 −10000 0 20000 −10000 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3.3.2 Linearized 6 DOF Rigid-Body Equations of Motion

The rigid-body equations of motion (3.42) can be linearized about ν0 = [U, 0, 0, 0, 0, 0]� for a marine
craft moving at forward speed U. This gives
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MRBν̇ + C∗
RBν = τRB (3.61)

where

C∗
RB = MRBLU (3.62)

and L is a selection matrix

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.63)

The linearized Coriolis and centripetal forces are recognized as

f c = C∗
RBν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

mUr

−mUq

−mygUq − mzgUr

mxgUq

mxgUr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.64)

Simplified 6 DOF Rigid-Body Equations of Motion

The rigid-body equations of motion can be simplified by choosing the origin of the body-fixed coordinate
system according to the following criteria:

1. Origin CO coincides with the CG: This implies that rb
g = [0, 0, 0]�, Ib = Ig (see Theorem 3.1),

and

MRB =
[

mI3×3 03×3

03×3 Ig

]
(3.65)

A further simplification is obtained when the body axes (xb, yb, zb) coincide with the principal axes of
inertia. This implies that Ig = diag{Icg

x , Icg
y , Icg

z }.
2. Translation of the origin CO such that Ib becomes diagonal: It is often convenient to let the body

axes coincide with the principal axes of inertia or the longitudinal, lateral and normal symmetry axes
of the craft. The origin of the body-fixed coordinate system can then be chosen such that the inertia
matrix of the body-fixed coordinate system will be diagonal, that is Ib = diag{Ix, Iy, Iz}, by applying
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the parallel-axes theorem; see Theorem 3.1. Expanding (3.34) with Ib = diag{Ix, Iy, Iz} and Ig as a
full matrix yields the following set of equations:

Ix = Icg
x + m(y2

g + z2
g)

Iy = Icg
y + m(x2

g + z2
g) (3.66)

Iz = Icg
z + m(x2

g + y2
g)

where xg, yg and zg must be chosen such that

mIcg
yzx

2
g = −Icg

xyI
cg
xz

mIcg
xzy

2
g = −Icg

xyI
cg
yz (3.67)

mIcg
xyz

2
g = −Icg

xz I
cg
yz

are satisfied. For this case, (3.41) reduces to

m
[
u̇ − vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)

] = X

m
[
v̇ − wp + ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp + ṙ)

] = Y

m
[
ẇ − uq + vp − zg(p2 + q2) + xg(rp − q̇) + yg(rq + ṗ)

] = Z

Ixṗ + (Iz − Iy)qr + m
[
yg(ẇ − uq + vp) − zg(v̇ − wp + ur)

] = K

Iyq̇ + (Ix − Iz)rp + m
[
zg(u̇ − vr + wq) − xg(ẇ − uq + vp)

] = M

Izṙ + (Iy − Ix)pq + m
[
xg(v̇ − wp + ur) − yg(u̇ − vr + wq)

] = N

(3.68)



4
Hydrostatics

Archimedes (287–212 BC) derived the basic laws of fluid statics that are the fundamentals of hydrostatics
today. In hydrostatic terminology, the gravitational and buoyancy forces are called restoring forces and
are equivalent to the spring forces in a mass–damper–spring system. In the derivation of the restoring
forces and moments it will be distinguished between submersibles and surface vessels:

• Section 4.1: underwater vehicles (ROVs, AUVs and submarines).
• Section 4.2: surface vessels (ships, semi-submersibles, structures and high-speed craft).

For a floating or submerged vessel, the restoring forces are determined by the volume of the displaced
fluid, the location of the center of buoyancy (CB), the area of the water plane and its associated moments.
The forthcoming sections show how these quantities determine the heaving, rolling and pitching motions
of a marine craft.

4.1 Restoring Forces for Underwater Vehicles
Consider the submarine in Figure 4.1 where the gravitational force f b

g acts through the CG defined by
the vector rb

g := [xg, yg, zg]�with respect to CO. Similarly, the buoyancy force f b
b acts through the CB

defined by the vector rb
b := [xb, yb, zb]�(see Section 2.1). Both vectors are referred to the body-fixed

reference point CO.

4.1.1 Hydrostatics of Submerged Vehicles

Let m be the mass of the vehicle including water in free floating space, ∇ the volume of fluid displaced
by the vehicle, g the acceleration of gravity (positive downwards) and ρ the water density. According to
the SNAME (1950) notation, the submerged weight of the body and buoyancy force are written as

W = mg, B = ρg∇ (4.1)

These forces act in the vertical plane of {n}. Hence,

f n
g =

⎡
⎣ 0

0

W

⎤
⎦ and f n

b = −

⎡
⎣ 0

0

B

⎤
⎦ (4.2)
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Figure 4.1 Gravitational and buoyancy forces acting on the center of gravity (CG) and center of
buoyancy (CB) of a submarine.

Notice that the z axis is taken to be positive downwards such that gravity is positive and buoyancy is
negative. By applying the results from Section 2.2.1, the weight and buoyancy force can be expressed in
{b} by

f b
g = Rn

b(�nb)−1f n
g (4.3)

f b
b = Rn

b(�nb)−1f n
b (4.4)

where Rn
b(�nb) is the Euler angle coordinate transformation matrix defined in Section 2.2.1. According

to (2.2), the sign of the restoring forces and moments f b
i and mb

i = rb
i × f b

i , i ∈ {g, b}, must be changed
when moving these terms to the left-hand side of (2.2) that is the vector g(η). Consequently, the restoring
force and moment vector expressed in {b} is

g(η) = −
[

f b
g + f b

b

rb
g × f b

g + rb
b × f b

b

]

= −
[

Rn
b(�nb)−1

(
f n

g + f n
b

)
rb

g × Rn
b(�nb)−1f n

g + rb
b × Rn

b(�nb)−1f n
b

]
(4.5)

Expanding this expression yields

g(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(W − B) sin(θ)

− (W − B) cos(θ) sin(φ)

− (W − B) cos(θ) cos(φ)

− (ygW − ybB) cos(θ) cos(φ) + (zgW − zbB) cos(θ) sin(φ)

(zgW − zbB) sin(θ) + (xgW − xbB) cos(θ) cos(φ)

− (xgW − xbB) cos(θ) sin(φ) − (ygW − ybB) sin(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)
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Matlab
The restoring forces g(η) can be computed by using the MSS toolbox commands:

r g = [0, 0, 0] % location of CG with respect to CO

r b = [0, 0, -10] % location of CB with respect to CO

m = 1000 % mass

g = 9.81 % acceleration of gravity

W = m*g; % weight

B = W; % buoyancy

% pitch and roll angles

theta = 10*(180/pi); phi = 30*(pi/180)

% g-vector

g = gvect(W,B,theta,phi,r g,r b)

The numerical result is:

g = 104 · [0, 0, 0, 1.8324, 9.0997, 0]�

Equation (4.6) is the Euler angle representation of the hydrostatic forces and moments. An alternative
representation can be found by applying unit quaternions. Then Rn

b(q) replaces Rn
b(�nb) in (4.3); see

Section 2.2.2.
A neutrally buoyant underwater vehicle will satisfy

W = B (4.7)

It is convenient to design underwater vehicles with B > W (positive buoyancy) such that the vehicle
will surface automatically in the case of an emergency situation, for instance power failure. In this case,
the magnitude of B should only be slightly larger than W. If the vehicle is designed such that B � W,

too much control energy is needed to keep the vehicle submerged. Hence, a trade-off between positive
buoyancy and controllability must be made.

Example 4.1 (Neutrally Buoyant Underwater Vehicles)
Let the distance between the CG and the CB be defined by the vector:1

BG := [BGx, BGy, BGz]
� = [xg − xb, yg − yb, zg − zb]� (4.8)

For neutrally buoyant vehicles W = B, (4.6) therefore simplifies to

g(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−BGyW cos(θ) cos(φ) + BGzW cos(θ) sin(φ)

BGzW sin(θ) + BGxW cos(θ) cos(φ)

−BGxW cos(θ) sin(φ) − BGyW sin(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

1 In hydrostatics it is common to denote the distance between two points A and B as AB.
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An even simpler representation is obtained for vehicles where the CG and CB are located vertically on
the z axis, that is xb = xg and yg = yb. This yields

g(η) = [
0, 0, 0, BGzW cos(θ)sin(φ), BGzW sin(θ), 0

]�
(4.10)

4.2 Restoring Forces for Surface Vessels
Formula (4.6) should only be used for completely submerged vehicles. Static stability considerations
due to restoring forces are usually referred to as metacentric stability in the hydrostatic literature. A
metacentric stable vessel will resist inclinations away from its steady-state or equilibrium points in
heave, roll and pitch.

For surface vessels, the restoring forces will depend on the vessel’s metacentric height, the location of the
CG and the CB, as well as the shape and size of the water plane. LetAwp denote the water plane area and

GMT = transverse metacentric height (m)
GML = longitudinal metacentric height (m)

(4.11)

The metacentric height GMi, where i ∈ {T, L} , is the distance between the metacenter Mi and the CG,
as shown in Figures 4.2 and 4.3.

Definition 4.1 (Metacenter)
The theoretical point at which an imaginary vertical line through the CB intersects another
imaginary vertical line through a new CB created when the body is displaced, or tilted, in the water (see
Figure 4.2).

4.2.1 Hydrostatics of Floating Vessels

For a floating vessel at rest, Archimedes stated that buoyancy and weight are in balance:

mg = ρg∇ (4.12)

Figure 4.2 Transverse metacentric stability. Notice that mg = ρg∇. A similar figure can be drawn to
illustrate lateral metacentric stability by simply replacing MT and φ with ML and θ.
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Let z denote the displacement in heave and let z = 0 denote the equilibrium position corresponding to the
nominal displaced water volume ∇. Hence, the hydrostatic force in heave will be the difference between
the gravitational and the buoyancy forces:

Z = mg − ρg [∇ + δ∇(z)]

= −ρgδ∇(z) (4.13)

where the change in displaced water δ∇(z) is due to variations in heave position z. This can be written

δ∇(z) =
∫ z

0

Awp(ζ)dζ (4.14)

where Awp(ζ) is the water plane area of the vessel as a function of the heave position. For conventional
rigs and ships, however, it is common to assume that Awp(ζ) ≈ Awp(0) is constant for small perturbations
in z. Hence, the restoring force Z will be linear in z, that is

Z ≈ − ρgAwp(0)︸ ︷︷ ︸
Zz

z (4.15)

Recall that if a floating vessel is forced downwards by an external force such that z > 0, the buoyancy
force becomes larger than the constant gravitational force since the submerged volume ∇ increases by
δ∇ to ∇ + δ∇. This is physically equivalent to a spring with stiffness Zz = −ρgAwp(0) and position z.

The restoring force expressed in {b}, δf b
r , can therefore be written

δf b
r = Rn

b(�nb)−1δf n
r

= Rn
b(�nb)−1

⎡
⎣ 0

0

−ρg
∫ z

0
Awp(ζ)dζ

⎤
⎦

= −ρg

⎡
⎣ − sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

⎤
⎦∫ z

0

Awp(ζ)dζ (4.16)

From Figure 4.2 it is seen that the moment arms in roll and pitch can be related to the moment arms
GMT sin(φ) and GML sin(θ) in roll and pitch, and a z-direction force pair with magnitude W = B = ρg∇.
Hence,

rb
r =

⎡
⎣−GML sin(θ)

GMT sin(φ)

0

⎤
⎦ (4.17)

f b
r = Rn

b(�nb)−1

⎡
⎣ 0

0

−ρg∇

⎤
⎦ = −ρg∇

⎡
⎣ − sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

⎤
⎦ (4.18)
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Neglecting the moment contribution due to δf b
r (only considering f b

r ) implies that the restoring
moment becomes

mb
r = rb

r × f b
r

= −ρg∇

⎡
⎢⎣

GMT sin(φ) cos(θ) cos(φ)

GML sin(θ) cos(θ) cos(φ)

(−GML cos(θ)+GMT ) sin(φ) sin(θ)

⎤
⎥⎦ (4.19)

The assumption that rb
r × δf b

r = 0 (no moments due to heave) is a good assumption since this term is
small compared to rb

r × f b
r . The restoring forces and moments are finally written

g(η) = −
[

δf b
r

mb
r

]
(4.20)

or in component form:

g(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρg
∫ z

0
Awp(ζ)dζ sin(θ)

ρg
∫ z

0
Awp(ζ)dζ cos(θ) sin(φ)

ρg
∫ z

0
Awp(ζ)dζ cos(θ) cos(φ)

ρg∇GMT sin(φ) cos(θ) cos(φ)

ρg∇GML sin(θ) cos(θ) cos(φ)

ρg∇(−GML cos θ + GMT ) sin(φ) sin(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

4.2.2 Linear (Small Angle) Theory for Boxed-Shaped Vessels

For surface vessels it is convenient to use a linear approximation:

g(η) ≈ Gη (4.22)

that can be derived by assuming that φ, θ and z are small. Moreover, assuming that∫ z

0

Awp(ζ)dζ ≈ Awp(0)z

and

sin(θ) ≈ θ, cos(θ) ≈ 1

sin(φ) ≈ φ, cos(φ) ≈ 1

implies that (4.21) can be written:

g(η) ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ρgAwp(0) zθ

ρgAwp(0) zφ

ρgAwp(0) z

ρg∇GMT φ

ρg∇GML θ

ρg∇(−GML + GMT ) φθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ρgAwp(0)z

ρg∇GMT φ

ρg∇GMLθ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.23)
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Hence,

G = diag{0, 0, ρgAwp(0), ρg∇GMT , ρg∇GML, 0} (4.24)

which can be used in a linearized model:

Mν̇ + Nν + Gη + go = τ + τwind + τwave (4.25)

The restoring force matrix (4.24) is based on the assumption of yz symmetry (fore–aft symmetry). In the
asymmetrical case G takes the form

G = G� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −Zz 0 −Zθ 0

0 0 0 −Kφ 0 0

0 0 −Mz 0 −Mθ 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (4.26)

where the elements in G are computed in CF (see Section 2.1). Sometimes it is convenient to compute
the data in CO and transform these to CF using (7.249) and (7.250). The coefficients in (4.26) are related
to Awp, ∇, CG and CB according to

−Zz = ρgAwp(0) (4.27)

−Zθ = ρg

∫∫
Awp

xdA (4.28)

−Mz = −Zθ (4.29)

−Kφ = ρg∇(zg − zb) + ρg

∫∫
Awp

y2dA = ρg∇GMT (4.30)

−Mθ = ρg∇(zg − zb) + ρg

∫∫
Awp

x2dA = ρg∇GML (4.31)

Notice that the integrals for the water plane area moments are defined about CF.

4.2.3 Computation of Metacenter Height for Surface Vessels

The metacenter height can be computed by using basic hydrostatics:

GMT = BMT − BG, GML = BML − BG (4.32)
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Figure 4.3 Metacenter M, center of gravity G and center of buoyancy B for a submerged and a floating
vessel. K is the keel line.

This relationship is seen directly from Figure 4.3, where MT and ML denote the transverse and longi-
tudinal metacenters (intersections between the vertical lines through B and B1 when φ and θ approaches
zero). The symbol K is used to denote the keel line. For small inclinations (φ and θ are small) the
transverse and longitudinal radii of curvature can be approximated by

BMT = IT

∇ , BML = IL

∇ (4.33)

where the moments of area about the water plane are defined as

IL :=
∫∫

Awp

x2dA, IT :=
∫∫

Awp

y2dA (4.34)

The integrals are computed about the CF or the centroid of the water plane Awp. CF is located a distance
LCF in the x direction along the centerline.

For conventional ships an upper bound on these integrals can be found by considering a rectangular
water plane area Awp = BL where B and L are the beam and length of the hull, respectively. This
implies that

IL <
1

12
L3B, IT <

1

12
B3L (4.35)

These formulae can be used as a first estimate when simulating the vessel dynamics.
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Example 4.2 (Computation of GM Values)
Consider a floating barge with length 100 m and width 8 m. The draft is 5 m while CG is
located 3 m above the keel line (KG = 3.0 m). Since KB = 2.5 m, it follows that

BG = KG − KB = 3 − 2.5 = 0.5 m (4.36)

Hence,

IT = 1

12
B3L = 1

12
83 × 100 = 4 266.7 m4 (4.37)

IL = 1

12
L3B = 1

12
1003 × 8 = 666 666.7 m4 (4.38)

The volume displacement is

∇ = 100 × 8 × 5 = 4 000 m3 (4.39)

Consequently,

BMT = IT

∇ = 2.08 m (4.40)

BML = IL

∇ = 166.7 m (4.41)

Finally,

GMT = BMT − BG = 2.08 − 0.5 = 1.58 m (4.42)

GML = BML − BG = 166.7 − 0.5 = 166.2 m (4.43)

The corresponding metacentric heights are

KMT = KG + GMT = 3 + 1.58 = 4.58 m (4.44)

KML = KG + GML = 3 + 166.2 = 169.2 m (4.45)

Definition 4.2 (Metacenter Stability)
A floating vessel is said to be transverse metacentrically stable if

GMT ≥ GMT,min > 0 (4.46)

and longitudinal metacentrically stable if

GML ≥ GML,min > 0 (4.47)

The longitudinal stability requirement (4.47) is easy to satisfy for ships since the pitching motion is
quite limited. The transverse requirement, however, is an important design criterion used to predescribe
sufficient stability in roll to avoid the craft rolling around. For most ships GMT,min > 0.5 m while GML,min

usually is much larger (more than 100 m).
If the transverse metacentric height GMT is large, the spring is stiff in roll and it is quite uncomfortable

for passengers onboard the vessel. However, the stability margin and robustness to large transverse waves
are good in this case. Consequently, a trade-off between stability and comfort should be made. Another
point to consider is that all ships have varying load conditions. This implies that the pitch and roll periods
will vary with the loads since GMT varies with the load. This is the topic for the next section.
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4.3 Load Conditions and Natural Periods
The chosen load condition or weight distribution will determine the heave, roll and pitch periods of a
marine craft. In a linear system, the natural periods will be independent of the coordinate origin if they are
computed using the 6 DOF coupled equations of motion. This is due to the fact that the eigenvalues of a
linear system do not change when applying a similarity transformation. However, it is not straightforward
to use the linear equations of motion since the potential coefficients depend on the wave frequency. In
Section 6.2, the zero-frequency added mass and potential damping coefficients were used in surge, sway
and yaw while for heave, roll and pitch the natural frequencies were used. In the 6 DOF coupled case a
frequency-dependent modal analysis can be used to compute the natural frequencies.

4.3.1 Decoupled Computation of Natural Periods

Consider the linear decoupled heave, roll and pitch equations:

[m + A33(ωheave)] ż + B33(ωheave)w + C33z = 0 (4.48)

[Ix + A44(ωroll)] ṗ + B44(ωroll)p + C44φ = 0 (4.49)[
Iy + A55(ωpitch)

]
q̇ + B55(ωpitch)q + C55θ = 0 (4.50)

where the potential coefficients Aii and Bii (i = 3, 4, 5), spring stiffness Cii (i = 3, 4, 5) and moments
of inertia Ix and Iy are computed in the CF, which is the vessel rotation point for a pure rolling or
pitching motion. In the coupled case, the point of rotation as well as the rotation axes will change. If CF
is unknown, a good approximation is to use the midships origin CO. This will only affect the pitching
frequency, which is not very sensitive to small translations along the x axis. If the natural frequencies
are computed in a point far from CF using the decoupled equations (4.48)–(4.50), the results can be
erroneous since the eigenvalues of the decoupled equations depend on the coordinate origin as opposed
to the 6 DOF coupled system.

From (4.48)–(4.50) it follows that the natural frequencies and periods of heave, roll and pitch in the
CF are given by the implicit equations:

ωheave =
√

C33

m + A33(ωheave)
, Theave = 2π

ωheave
(4.51)

ωroll =
√

C44

Ix + A44(ωroll)
, Troll = 2π

ωroll
(4.52)

ωpitch =
√

C55

Iy + A55(ωpitch)
, Tpitch = 2π

ωpitch
(4.53)

which can be solved using the Newton–Raphson method:

ωn+1 = ωn − f (ωn)

f ′(ωn)
(4.54)
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where

f (ωn) = ωn −
√

C

M + A(ωn)
(4.55)

f ′(ωn) = 1 + A

2[M + A(ωn)]

√
C

M + A(ωn)
(4.56)

with obvious choices of M, A and C. This is implemented in the MSS toolbox as:

Matlab
1 DOF decoupled analysis for the tanker model:

w n = natfrequency(vessel,dof,w 0,speed,LCF)

vessel = MSS vessel data (computed in CO)

dof = degree of freedom (3,4,5), use -1 for 6 DOF analysis

w 0 = initial natural frequency (typical 0.5)

speed = speed index 1,2,3...

LCF = (optionally) longitudinal distance to CF from CO

Natural periods:

load tanker

T heave = 2*pi/natfrequency(vessel,3,0.5,1)

T roll = 2*pi/natfrequency(vessel,4,0.5,1)

T pitch = 2*pi/natfrequency(vessel,5,0.5,1)

This gives Theave = 9.68 s, Troll = 12.84 s and Tpitch = 9.14 s.

4.3.2 Computation of Natural Periods in a 6 DOF Coupled System

A 6 DOF coupled analysis of the frequency-dependent data can be done by using modal analysis. The
coupled system can be transformed to six decoupled systems and the natural frequencies can be computed
for each of them. This involves solving a generalized eigenvalue problem at each frequency.

Consider the linear seakeeping model:

[MRB + A(ω)]ξ̈ + [B(ω) + BV (ω) + Kd]ξ̇ + [C + Kp]ξ = 0 (4.57)

where Kp and Kd are optional positive definite matrices due to feedback control, A(ω) and B(ω) are
frequency-dependent added mass and potential damping (see Section 5.3) while BV (ω) denotes additional
viscous damping. Let

M(ω) = MRB + A(ω) (4.58)

D(ω) = B(ω) + BV (ω) + Kd (4.59)

G = C + Kp (4.60)

where M(ω) = M(ω)� > 0 and D(ω) = D(ω)� > 0 such that

M(ω)ξ̈ + D(ω)ξ̇ + Gξ = 0 (4.61)
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For surface vessels, the restoring matrix takes the following form (see Section 4.2):

G = G� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Kp11 0 0 0 0 0

0 Kp22 0 0 0 0

0 0 C33 0 C35 0

0 0 0 C44 0 0

0 0 C53 0 C55 0

0 0 0 0 0 Kp66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.62)

Notice that Kp11, Kp22 and Kp66 must be positive to guarantee that G > 0. Assume that the floating vessel
under PD control carries out oscillations in 6 DOF:

ξ = a cos(ωt) (4.63)

where a = [a1, . . . , a6]� is a vector of amplitudes. Then,[
G − ω2M(ω) − jωD(ω)

]
a = 0 (4.64)

The natural frequencies can be computed for the undamped system D(ω) = 0 by solving[
G − ω2M(ω)

]
a = 0 (4.65)

The natural frequencies of a marine craft are usually shifted less than 1.0 % when damping is added.
Hence, the undamped system (4.65) gives an accurate estimate of the frequencies of oscillation.

Equation (4.65) represents a frequency-dependent generalized eigenvalue problem:

Gxi = λiM(ω)xi (i = 1, ..., 6) (4.66)

where xi is the eigenvector and λi = ω2 are the eigenvalues. This is recognized as an algebraic equation:

|G − λiM(ω)| = 0 (4.67)

where λi is an eigenvalue satisfying (see Figure 4.4):

Figure 4.4 For 6 DOF coupled generalized eigenvalues.
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λi = ω2 (4.68)

The characteristic equation of (4.67) is of sixth order:

λ6 + a5λ
5 + a4λ

4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0 (4.69)

Let the solutions of the eigenvalue problem (4.67) as a function of ω be denoted λ∗
i (ω). Then we can use

the Newton–Raphson method:

ωi,k+1 = ωi,k − fi(ωi,k)

f ′
i (ωi,k)

(i = 1, . . . , 6, k = 1, . . . , n) (4.70)

where k denotes the number of iterations, i is the DOF considered and

fi(ωi,k) = λ∗
i (ωi,k) − ω2

i,k (4.71)

to satisfy the constraint (4.68). After solving fi(ωi,k) = 0 for all DOFs to obtain ωi,n, the natural periods
in 6 DOF follow from

Ti = 2π

ωi,n

(4.72)

The presented algorithm in Section 4.3.2 is implemented in the MSS toolbox and the 6 DOF results
for the MSS tanker model are obtained by considering:

Matlab
6 DOF coupled analysis for the MSS tanker model:

dof = -1 % use -1 for 6 DOF analysis

load tanker

T = 2*pi./natfrequency(vessel,dof,0.5,1)

This gives Theave = 9.83 s, Troll = 12.45 s and Tpitch = 8.95 s, which is quite close to the numbers
obtained in the decoupled analysis in Section 4.3.1.

4.3.3 Natural Period as a Function of Load Condition

The roll and pitch periods will depend strongly on the load condition while heave is less affected. Consider
the restoring terms (see Section 4.2.1)

C33 = ρgAwp(0) (4.73)

C44 = ρg∇GMT (4.74)

C55 = ρg∇GML (4.75)

for a floating vessel. It is noticed that Awp(z) = Awp(0) = constant for a box-shaped vessel while C44 and
C55 varies with GMT and GML as well as ∇. Hence,
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Theave = 2π

√
m + A33(ωheave)

ρgAwp(0)
(4.76)

Troll = 2π

√
Ix + A44(ωroll)

ρg∇GMT

(4.77)

Tpitch = 2π

√
Ix + A55(ωpitch)

ρg∇GML

(4.78)

To illustrate the sensitivity to variation in metacentric height one can parametrize the moments of inertia
according to

Ix = mR2
44 (4.79)

Iy = mR2
55 (4.80)

where R44 and R55 are the radii of gyration. For offshore vessels R44 ≈ 0.35B while tankers have
R44 ≈ 0.37B. Semi-submersibles have two or more pontoons so 0.40B is not uncommon for these
vessels. In pitch and yaw it is common to use R55 = R66 ≈ 0.25Lpp for smaller vessels while tankers use
R55 = R66 ≈ 0.27Lpp.

Define κ as the ratio

κ := A44(ωroll)

Ix

, κ > 0 (4.81)

Typical values are 0.1–0.3 for ships and 1.0 or more for semi-submersibles. This implies that

Ix + A44(ωroll) = (1 + κ)mR2
44 (4.82)

The radius of gyration R44 is proportional with B. Let us define

R44 := aB (4.83)

where a ≈ 0.35–0.40. Then the roll period (4.77) can be expressed as

Troll = cB√
GMT

(4.84)

with

c = 2πa
√

(1 + κ)√
g

(4.85)

where the c value for small cargo and passenger vessels is typically 0.77, supply vessel 0.80–0.82, large
cargo vessels 0.85 and tankers and FPSOs 0.85–0.90. Semi-submersibles have large c values and 1.2 is
not uncommon.
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Figure 4.5 Roll period Troll as a function of GMT for given R44.

Matlab
The load condition data can be plotted using the MSS toolbox command:

loadcond(vessel)

The roll period as a function of GMT for the MSS Hydro tanker example is shown in Figure 4.5. It is
seen that Troll is reduced if GMT is increased and vice versa.

Many ships are equipped liquid tanks such as ballast and anti-roll tanks. A partially filled tank is known
as a slack tank and in these tanks the liquid can move and endanger the ship’s stability. The reduction of
metacentric height caused by the liquids in slack tanks is known as the free-surface effect. The mass of the
liquid or the location of the tanks have no role; it is only the moment of inertia of the surface that affects
stability. The effective metacentric height corrected for slack tanks filled with sea water is (Brian, 2003)

GMT,eff = GMT − FSC (4.86)

where the free-surface correction (FSC) is

FSC =
N∑

r=1

ρ

m
ir (4.87)

where ir is the moment of inertia of the water surface. For a rectangular tank with length l in the x direction
and width b in the y direction, the moment of inertia of the surface about an axis through the centroid is

ir = lb3

12
(4.88)
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A similar reduction in GMT is observed if a payload with mass mp is lifted up and suspended at the
end of a rope of length h. Then the effective metacentric height becomes

GMT,eff = GMT − h
mp

m
(4.89)

Consequently, it is important to notice that a reduction in GMT due to slack tanks or lift operations
increases the roll period/passenger comfort to the cost of a less stable ship. These effects are also observed
in pitch, but pitch is much less affected since GML � GMT .

4.4 Ballast Systems
In addition to the metacentric restoring forces g(η) described in Section 4.1, the equilibrium point can
be changed by pretrimming, for instance by pumping water between the ballast tanks of the vessel. The
vessel can only be trimmed in heave, pitch and roll where restoring forces are present.

Let the equilibrium point be

z = zd, φ = φd and θ = θd

where zd, φd and θd are the desired states. The equilibrium states corresponding to these values are found
by considering the steady-state solution of

Mν̇ + C(ν)ν + D(ν)ν + g(η) + go = τ + τwind + τwave︸ ︷︷ ︸
w

(4.90)

which under assumption of zero acceleration/speed (ν̇ = ν = 0) and no control forces (τ = 0) reduces to

g(ηd) + go = w (4.91)

where ηd = [−, −, zd, φd, θd, −]�; that is only three states are used for pretrimming.
The forces and moments go due to the ballast tanks are computed using hydrostatic analyses. Consider

a marine craft with n ballast tanks of volumes Vi ≤ Vi,max (i = 1, . . . , n). For each ballast tank the water
volume is

Vi(hi) =
∫ hi

o

Ai(h)dh ≈ Aihi (Ai(h) = constant) (4.92)

where Ai(h) is the area of the ballast tank at height h. Hence, the volume of the water column in each
ballast tank can be computed by measuring the water heights hi. Next, assume that the ballast tanks are
located at

rb
i = [xi, yi, zi]

� (i = 1, . . . , n) (4.93)

where rb
i is the vector from the coordinate origin CO to the geometric center of tank i. The gravitational

forces Wi in heave are summed up according to (see Figure 4.6)

Zballast =
n∑

i=1

Wi

= ρg

n∑
i=1

Vi (4.94)
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Figure 4.6 Semi-submersible ballast tanks. Illustration by Bjarne Stenberg.

The moments due to the ballast heave force ρgVi are then found from

mi = ri × f i

=

⎡
⎣ xi

yi

zi

⎤
⎦ ×

⎡
⎣ 0

0

ρgVi

⎤
⎦

=

⎡
⎣ yiρgVi

−xiρgVi

0

⎤
⎦ (4.95)

implying that the roll and pitch moments due to ballast are

Kballast = ρg

n∑
i=1

yiVi (4.96)

Mballast = −ρg

n∑
i=1

xiVi (4.97)

Finally, this gives

go =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−Zballast

−Kballast

−Mballast

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= ρg

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−∑n

i=1 Vi

−∑n

i=1 yiVi∑n

i=1 xiVi

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.98)
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Metacentric Height Correction

Since ballast tanks are partially filled tanks of liquids, the restoring roll moment in g(η), formula (4.30),
will be affected. The formulae for the free-surface correction (4.86)–(4.87) can, however, be applied to
correct the transverse metacentric height GMT in roll.

4.4.1 Conditions for Manual Pretrimming

Distribution of water between the ballast tanks can be done manually by pumping water until the desired
water levels hi in each tank are reached or automatically by using feedback control. For manual operation,
the steady-state relationships between water levels hi and the desired pretrimming values zd , φd and θd

are needed. Trimming is usually done under the assumptions that φd and θd are small such that linear
theory can be applied:

g(ηd) ≈ Gηd (4.99)

Since we are only concerned with the heave, roll and pitch modes it is convenient to use the 3 DOF
reduced-order system:

G{3,4,5} =

⎡
⎣ −Zz 0 −Zθ

0 −Kφ 0

−Mz 0 −Mθ

⎤
⎦

g{3,4,5}
o = ρg

⎡
⎣ −∑n

i=1 Vi

−∑n

i=1 yiVi∑n

i=1 xiVi

⎤
⎦

η
{3,4,5}
d = [zd, φd, θd]�

w{3,4,5} = [w3, w4, w5]�

The key assumption for open-loop pretrimming is that w{3,4,5} = [w3, w4, w5]� = 0, that is no distur-
bances in heave, roll and pitch. From (4.91) and (4.26) it follows that

G{3,4,5}η{3,4,5}
d + g{3,4,5}

o = 0 (4.100)

�
⎡
⎣ −Zz 0 −Zθ

0 −Kφ 0

−Mz 0 −Mθ

⎤
⎦

⎡
⎣ zd

φd

θd

⎤
⎦ + ρg

⎡
⎣ −∑n

i=1 Vi

−∑n

i=1 yiVi∑n

i=1 xiVi

⎤
⎦ = 0
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This can be rewritten as

Hυ = y (4.101)

�

ρg

⎡
⎣ 1 · · · 1 1

y1 · · · yn−1 yn

−x1 · · · −xn−1 −xn

⎤
⎦

⎡
⎢⎢⎢⎢⎣

V1

V2

...

Vn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣−Zzzd − Zθθd

−Kφφd

−Mzzd − Mθθd

⎤
⎦ (4.102)

where υ is a vector of tank volumes:

υ = [V1, V2, . . . , Vn]� (4.103)

The tank volumes are computed from (4.101) by using the Moore–Penrose pseudo-inverse:

υ = H †y

= H�(HH�)−1y (4.104)

where it is assumed that n ≥ 3 and that HH� has full rank. Finally, the desired water heights can be
computed from

Vi(hi) =
∫ hi

o

Ai(h)dh (4.105)

⇓ (Ai(h) = Ai)

hi = Vi

Ai

(4.106)

Example 4.3 (Semi-Submersible Ballast Control)
Consider the semi-submersible shown in Figure 4.7 with four ballast tanks located at
rb

1 = [−x, −y], rb
2 = [x, −y], rb

3 = [x, y] and rb
4 = [−x, y]. In addition, yz symmetry implies that

Zθ = Mz = 0 while the diagonal elements in G{3,4,5} are nonzero. Consequently,

H = ρg

⎡
⎣ 1 1 1 1

−y −y y y

x −x −x x

⎤
⎦

y =

⎡
⎣ −Zzzd

−Kφφd

−Mθθd

⎤
⎦ = ρg

⎡
⎣ Awp(0)zd

∇GMT φd

∇GMLθd

⎤
⎦

The right pseudo-inverse of H is

H † = H�(HH�)−1 = 1

4ρg

⎡
⎢⎢⎢⎣

1 − 1
y

1
x

1 − 1
y

− 1
x

1 1
y

− 1
x

1 1
y

1
x

⎤
⎥⎥⎥⎦
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Figure 4.7 Semi-submersible with four ballast tanks. Vi (m3) is the water volume in leg i = 1, . . . , 4
and pj (m3/s) is the volume flow for water pump j = 1, . . . , 3. Illustration by Bjarne Stenberg.

which finally gives the water volumes Vi corresponding to the desired values zd, φd and θd:

υ =

⎡
⎢⎢⎣

V1

V2

V3

V4

⎤
⎥⎥⎦ = 1

4ρg

⎡
⎢⎢⎢⎣

1 − 1
y

1
x

1 − 1
y

− 1
x

1 1
y

− 1
x

1 1
y

1
x

⎤
⎥⎥⎥⎦

⎡
⎣ ρgAwp(0)zd

ρg∇GMT φd

ρg∇GMLθd

⎤
⎦

4.4.2 Automatic Pretrimming using Feedback from z, φ and θ

In the manual pretrimming case it was assumed that w{3,4,5} = 0. This assumption can be removed by
using feedback from z, φ and θ. The closed-loop dynamics of a PID-controlled water pump can be
described by a first-order model with amplitude saturation:

Tjṗj + pj = sat(pdj
) (4.107)

where Tj (s) is a positive time constant, pj is the volumetric flow rate m3/s produced by pump
j = 1, . . . , m and pdj

is the pump setpoint. As shown in Figure 4.7, one separate water pump can be used
to pump water in each direction. This implies that the water pump capacity is different for positive and
negative flow directions. Moreover,

sat(pdj
) =

⎧⎨
⎩

p+
j,max pj > p+

j,max

pdj
p−

j,max ≤ pdj
≤ p+

j,max

p−
j,max pdj

< p−
j,max

(4.108)

The pump time constant Tj is found from a step response, as shown in Figure 4.8.
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Figure 4.8 The time constant Tj for pump j is found by commanding a step pdj
= pj,max as shown in

the plot.

The volume flow V̇i to tank i is given by linear combinations of flows corresponding to the
pumps/pipelines supporting tank i. For the semi-submersible shown in Figure 4.7, we obtain

V̇1 = −p1 (4.109)

V̇2 = −p3 (4.110)

V̇3 = p2 + p3 (4.111)

V̇4 = p1 − p2 (4.112)

More generally, the water flow model can be written

T ṗ + p = sat(pd) (4.113)

υ̇ = Lp (4.114)

where sat(pd) = [sat(pd1 ), . . . , sat(pdm
)]�, p = [p1, . . . , pm]� and υ = [V1, . . . , Vn]� (m ≥ n). The

mapping from the water volume vector υ to η{3,4,5} is given by the steady-state condition (see Figure 4.9)

G{3,4,5}η{3,4,5} = g{3,4,5}
o (υ) + w{3,4,5} (4.115)

Example 4.4 (Semi-Submersible Ballast Control, Continued)
Consider the semi-submersible in Example 4.3. The water flow model corresponding to Figure 4.7
becomes

υ =

⎡
⎢⎢⎣

V1

V2

V3

V4

⎤
⎥⎥⎦ , p =

⎡
⎣p1

p2

p3

⎤
⎦ , L =

⎡
⎢⎢⎣

−1 0 0

0 0 −1

0 1 1

1 −1 0

⎤
⎥⎥⎦ (4.116)
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Figure 4.9 Ballast control system using feedback from z, φ and θ.

reflecting that there are three pumps and four water volumes connected through the configuration
matrix L.

A feedback control system for automatic trimming is presented in Figure 4.9. The ballast controllers
can be chosen to be of PID type, for instance:

pd = Hpid(s)G{3,4,5} (η
{3,4,5}
d − η{3,4,5}) (4.117)

where η
{3,4,5}
d = [zd, φd, θd]� and

Hpid(s) = diag{h1,pid(s), h2,pid(s), . . . , hm,pid(s)} (4.118)

is a diagonal transfer matrix containing m PID controllers. Integral action in the controllers is needed to
compensate for nonzero environmental disturbances w{3,4,5}.



5
Seakeeping Theory

The study of ship dynamics has traditionally been covered by two main theories: maneuvering and
seakeeping. Maneuvering refers to the study of ship motion in the absence of wave excitation (calm
water). The maneuvering equations of motion are derived in Chapter 6 under the assumption that the
hydrodynamic potential coefficients and radiation-induced forces are frequency independent. Seakeeping,
on the other hand, refers to the study of motion of marine craft on constant course and speed when there
is wave excitation. This includes the trivial case of zero speed. In seakeeping analysis, a dissipative
force (Cummins, 1962) known as fluid memory effects is introduced. Although both areas are concerned
with the same issues, study of motion, stability and control, the separation allows us to make different
assumptions that simplify the study in each case. A chief distinguishing characteristic of these theories
is the use of different coordinates and reference systems to express the equations of motion.

In maneuvering theory, the equations of motion are described relative to {b}, which is fixed to the
marine craft, whereas in seakeeping the motion is described relative to a coordinate system {s} fixed to an
equilibrium virtual craft that moves at a constant speed and heading corresponding to the average motion
of the actual craft. Most hydrodynamic programs compute radiation and wave excitation forces in {s}.

This chapter presents the seakeeping theory in equilibrium axes {s} and shows how the time-domain
solution known as the Cummins equation can be transformed to body-fixed axes {b}. The radiation-
induced forces and moment are represented as impulse response functions and state-space models. This
is done within a linear framework so viscous damping must be added in the time domain under the
assumption of linear superposition. The main results are the {b}-frame seakeeping equations of motion
in the following form:

η̇ = J�(η)ν (5.1)

MRBν̇ + C∗
RBν + MAν̇r + C∗

Aνr + Dνr + μ + Gη + go = τ + τwind + τwave (5.2)

where μ is an additional term representing the fluid memory effects. This model is valid in the body-fixed
reference frame and describes a maneuvering ship in a seaway. When designing model-based control
systems or simulating marine craft motions it is important to have good estimates of the inertia, damping
and restoring coefficients. In Chapter 3, formulae for computation of the rigid-body matrices MRB and

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
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C∗
RB were given while the restoring and ballast forces Gη + g0 were derived in Chapter 4. In this chapter,

we will derive formulae for hydrodynamic added mass MA, linear Coriolis–centripetal forces C∗
A due

to the rotation of the seakeeping reference frame {s} about {n} and linear potential damping DP . Linear
viscous damping DV will be added manually to obtain a more accurate model.

The terms in (5.2) can be grouped according to:

Inertia forces: MRBν̇ + C∗
RBν + MAν̇r + C∗

Aνr

Damping forces: +(DP + DV )νr + μ

Restoring forces: +Gη + go

Wind and wave forces: = τwind + τwave

Propulsion forces: +τ

The matrices MA, CA and DP , the fluid memory function μ as well as transfer functions for τwave can
be computed using hydrodynamics programs. This requires postprocessing of hydrodynamic data and
methods for this are discussed later in this chapter. The environmental forces, τwave and τwind, are treated
separately in Chapter 8.

Different principles for the computation of the hydrodynamic coefficients can be used. The main
tool is potential theory where it is assumed that the flow is constant, irrotational and incompressible
such that time becomes unimportant. Hence, the discrepancies between real and idealized flow must be
compensated by adding dissipative forces, for instance viscous damping.

5.1 Hydrodynamic Concepts and Potential Theory
In order to describe most fluid flow phenomena associated with the waves and the motion of ships in
waves, we need to know the velocity of the fluid and the pressure at different locations. The velocity of
the fluid at the location x = [x1, x2, x3]T is given by the fluid flow velocity vector:

v(x, t) = [v1(x, t), v2(x, t), v3(x, t)]� (5.3)

For the flow velocities involved in ship motion, the fluid can be considered incompressible, that is of con-
stant density ρ. Under this assumption, the net volume rate at a volume V enclosed by a closed surface S is∫∫

S

v · n ds =
∫∫∫

V

div(v) dV = 0 (5.4)

Since (5.4) should be valid for all the regions V in the fluid, then by assuming that ∇ · v is continuous
we obtain

div(v) = ∇ · v = ∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
= 0 (5.5)

which is the continuity equation for incompressible flows.
The conservation of momentum in the flow is described by the Navier–Stokes equations; see, for

example, Acheson (1990):

ρ

(
∂v

∂t
+ v · ∇v

)
= ρ F − ∇p + μ∇2v (5.6)

where F = [0, 0, −g]� are accelerations due to volumetric forces, from which only gravity is considered,
p = p(x, t) is the pressure and μ is the viscosity coefficient of the fluid.
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To describe the real flow of ships, it is then necessary to solve the Navier–Stokes equations (5.6) together
with the continuity equation (5.5). These form a system of nonlinear partial differential equations, which
unfortunately do not have analytical solutions and the numerical solutions are still far from being feasible
with current computing power.

If viscosity is neglected, the fluid is said to be an ideal fluid. This is a common assumption that is
made to calculate ship flows because viscosity often matters only in a thin layer close to the ship hull.
By disregarding the last term in (5.6), the Euler equations of fluid motion are obtained:

ρ

(
∂v

∂t
+ v · ∇v

)
= ρ F − ∇p (5.7)

A further simplification of the flow description is obtained by assuming that the flow is irrotational:

curl(v) = ∇ × v = 0 (5.8)

The term potential flow is used to describe irrotational flows of inviscid-incompressible fluids. Under
this assumption, there exists a scalar function �(t, x, y, z) called potential such that

v = ∇� (5.9)

Hence, if the potential is known the velocities can be calculated as

v1 = ∂�

∂x
, v2 = ∂�

∂y
, v3 = ∂�

∂z
(5.10)

Using the potential �, the continuity equation (5.5) reverts to the Laplace equation of the potential:

∇2� = ∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0 (5.11)

The potential can then be obtained by solving the Laplace equation (5.11) subject to appropriate boundary
conditions, that is by solving a boundary value problem.

The pressure in the fluid can be obtained by integrating the Euler equation of fluid motion (5.7). This
results in the Bernoulli equation:

p

ρ
+ ∂�

∂t
+ 1

2
(∇�)2 + gz = C (5.12)

By setting the constant C = p0/ρ, the relative pressure can be computed from

p − p0 = −ρgz − ρ
∂�

∂t
− 1

2
ρ(∇�)2 (5.13)

For simplicity, the atmospheric pressure p0 is often considered zero.
To summarize, potential theory makes two assumptions:

1. Inviscid fluid (no viscosity)
2. Irrotational flow

The assumption of irrotational flow leads to the description of the fluid velocity vector as the gradient
of a potential function, which has no physical meaning. However, this is a large simplification because
the potential is scalar while the velocity is a vector quantity. The potential satisfies the Laplace equation
(5.11), which needs to be solved subject to appropriate boundary conditions (on the free surface, sea
floor and ship hull). This is another large simplification because the Laplace equation is linear; therefore,
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superposition holds and the problem can also be solved in the frequency domain, which is the basis of
most hydrodynamic programs. Once we have the potential and thus the velocities, the pressure can be
computed using Bernoulli’s equation. Then, by integrating the pressure over the surface of the hull, the
hydrodynamic forces are obtained.

For most problems related to ship motion in waves, potential theory is sufficient to obtain results
with appropriate accuracy for engineering purposes. However, because of the simplifying assumptions
in some cases we need to complement the results by adding the effects of viscosity. This is important, for
example, when considering maneuvering and propeller–rudder–hull interactions. For further discussions
on the topics presented in this section, see Newman (1977), Faltinsen (1990), Acheson (1990), Journée
and Massie (2001) and Bertram (2004).

5.1.1 Numerical Approaches and Hydrodynamic Codes

In order to evaluate the potentials a boundary value problem needs to be solved. There are different
approaches to do this, which lead to different formulations.

Strip Theory (2-D Potential Theory)

In some problems, the motion of the fluid can be approximated as two-dimensional (2-D). This is char-
acteristic for slender bodies. In this case a good estimate of the hydrodynamic forces can be obtained
by applying strip theory (Newman, 1977; Faltinsen, 1990; Journée and Massie, 2001). The 2-D theory
theory takes into account the fact that variation of the flow in the cross-directional plane is much larger
than the variation in the longitudinal direction of the ship. The principle of strip theory involves dividing
the submerged part of the craft into a finite number of strips. Hence, 2-D hydrodynamic coefficients for
added mass can be computed for each strip and then summed over the length of the body to yield the
3-D coefficients. The 2-D hydrodynamic coefficients can be calculated from boundary element methods
or via conformal mapping and analytical expressions. This principle is also used to compute viscous
quadratic damping from 2-D drag coefficients, as explained in Section 6.4.

Several strip theory programs can be used to compute hydrodynamic added mass MA, potential damp-
ing Dp and the hydrostatic matrix G. Commonly used 2-D programs are Octopus Office by Amarcon
Inc. (Journée and Adegeest, 2003) and ShipX (Veres) by MARINTEK (Fathi, 2004) . These programs can
be used at both zero speed and forward speed and they calculate frequency-dependent added mass and
potential damping coefficients, restoring terms, first- and second-order wave load transfer functions (am-
plitudes and phases) between the marine craft and the waves for given wave directions and frequencies
as well as other hydrodynamic data. Processing of the data is explained later in this chapter.

In this context it will be shown how frequency-dependent added mass and damping can be used to
derive the equations of motion where these effects are included as fluid memory effects using retardation
functions. In order to compute the retardation functions, asymptotic values for zero and infinite added
mass must be used.

Panel Methods (3-D Potential Theory)

For potential flows, the integrals over the fluid domain can be transformed to integrals over the boundaries
of the fluid domain. This allows the application of panel or boundary element methods to solve the 3-D
potential theory problem. Panel methods divide the surface of the ship and the surrounding water into
discrete elements (panels). On each of these elements, a distribution of sources and sinks is defined that
fulfil the Laplace equation. The problem then amounts to finding the strength of these distributions and
identifying the potential.

Computer codes based on this approach provide suitable performance for offshore applications at zero-
forward speed in either the frequency or time domain. A commercial program such as WAMIT (WAMIT
Inc., 2010) has become the de facto industry standard among oil and engineering companies. This program
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computes frequency-dependent added mass MA, potential damping coefficients DP , restoring terms G,
and first- and second-order wave load transfer functions (amplitudes and phases) between the marine craft
and the waves for given wave directions and frequencies, and much more. One special feature of WAMIT is
that the program solves a boundary value problem for zero and infinite added mass. These boundary values
are particularly useful when computing the retardation functions describing the fluid memory effects.

Semi-Empirical Methods

An alternative and less accurate approach to hydrodynamic programs is to use semi-empirical methods to
compute the added mass derivatives; see, for instance, Imlay (1961), Humphreys and Watkinson (1978)
and Triantafyllou and Amzallag (1984).

5.2 Seakeeping and Maneuvering Kinematics
This section derives the kinematics needed to transform the equations of motion from the seakeeping
reference frame {s} to the body-fixed reference frame {b} and the NED reference frame {n}. This is based
on Perez and Fossen (2007).

5.2.1 Seakeeping Reference Frame

In seakeeping theory the study of ship motion is performed under the assumption that it can be described
as the superposition of an equilibrium state of motion plus perturbations. The equilibrium is determined
by a constant heading angle ψ and speed U, and the perturbations are zero-mean oscillatory components
induced by first-order wave excitations. Note that the case of zero forward speed U = 0 is also contem-
plated as an equilibrium of motion. Due to this, the motion is often described using an equilibrium or
seakeeping reference frame.

Seakeeping Frame: The seakeeping reference frame {s} = (xs, ys, zs) is not fixed to the marine craft;
it is fixed to the equilibrium state. Hence, in the absence of wave excitation, the {s}-frame origin os

coincides with the location of the {b}-frame origin ob (also denoted as CO) which is a fixed point in
the ship. Under the action of the waves, the hull is disturbed from its equilibrium and the point os

oscillates, with respect to its equilibrium position. This is illustrated in Figure 5.1.

Figure 5.1 The seakeeping coordinate system {s} and distance vectors to {b} and {n}.
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The {s} frame is considered inertial and therefore it is nonaccelerating and fixed in orientation with
respect to the {n} frame (or must vary very slowly). This assumption implies that the {s}-frame equations
of motion are linear. The equilibrium state is defined by a constant heading and speed:

vn
s/n = [U cos(ψ̄), U sin(ψ̄), 0]� (5.14)

ωn
s/n = [0, 0, 0]� (5.15)

�ns = [0, 0, ψ̄]� (5.16)

where U = ||vn
s/n|| is the average forward speed and ψ̄ is the equilibrium heading. Hence, the velocity

of {s} with respect to {n} expressed in {s} is

vs
s/n = Rs

n(�ns)v
n
s/n = [U, 0, 0]� (5.17)

The equilibrium heading ψ̄ can be computed by averaging the gyro compass measurements ψ over a
fixed period (moving horizon) of time.

Seakeeping (Perturbation) Coordinates

The seakeeping or perturbation coordinates are defined as (Perez and Fossen, 2007)

δη :=
[

r s
b/s

�sb

]
(5.18)

δν :=
[

vb
b/s

ωb
b/s

]
(5.19)

In hydrodynamic textbooks it is common to denote the perturbation coordinates by

ξ := δη (5.20)

where

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]T (5.21)

The first three coordinates (ξ1, ξ2, ξ3) are the surge, sway and heave perturbations and

�sb = [ξ4, ξ5, ξ6]� = [δφ, δφ, δψ]� (5.22)

are the roll, pitch and yaw perturbations (Euler angles).

5.2.2 Transformation between BODY and SEAKEEPING

From the definition of {s} and the coordinates δη and δν it follows that

δη̇ = J�(δη)δν (5.23)
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where J�(δη) is the transformation matrix between {b} and {s}:

J�(δη) =
[

Rs
b(�sb) 03×3

03×3 T �(�sb)

]
(5.24)

This expression is similar to the transformation between {b} and {n}. This is an expected result since
both {n} and{s} are assumed inertial while {b} rotates about the inertial frame. In addition to position
and attitude it is necessary to derive the relationship between the perturbed velocities and accelerations
(δν, δν̇) and (ν, ν̇). To obtain these expressions consider the distance vector; see Figure 5.1:

�rb/n = �rs/n + �rb/s (5.25)

which can be expressed in {n} as

rn
b/n = rn

s/n + Rn
s (�ns)r

s
b/s (5.26)

Time differentiation gives

ṙn
b/n = ṙn

s/n + Rn
s (�ns)ṙ

s
b/s (5.27)

where

Rn
s (�ns) = Rz,ψ̄ =

⎡
⎣ cos (ψ̄) − sin (ψ̄) 0

sin (ψ̄) cos (ψ̄) 0

0 0 1

⎤
⎦ , Ṙn

s (�ns) = 0 (5.28)

Note that the time derivative of Rn
s (�ns) is zero because {s} does not rotate with respect to {n}. The

expression for ṙn
b/n can be rewritten as

ṙn
b/n = ṙn

s/n + Rn
b(�nb)Rb

s (�bs)ṙ
s
b/s

= ṙn
s/n + Rn

b(�nb)vb
b/s (5.29)

Both sides of (5.29) can be mulitplied by Rb
n(�bn) to obtain

vb
b/n = Rb

n(�bn)vn
s/n + vb

b/s (5.30)

For notational simplicity, the linear and angular velocity vectors are grouped according to

ν =
[

ν1

ν2

]
=

[
[u, v, w]�

[p, q, r]�

]
(5.31)

δν =
[

δν1

δν2

]
=

[
[δu, δv, δw]�

[δp, δq, δr]�

]
(5.32)

Then it follows from (5.30) that

ν1 = ν̄1 + δν1 (5.33)

where

ν̄1 := Rb
n(�bn)

⎡
⎣U cos (ψ)

U sin (ψ)

0

⎤
⎦ = Rb

s (�bs)

⎡
⎣U

0

0

⎤
⎦ (5.34)



88 Seakeeping Theory

To obtain the angular velocity transformation, we make use of

�ωb/n = �ωs/n + �ωb/s = �ωb/s (5.35)

since �ωs/n = �0. Moreover, {s} does not rotate with respect to {n}. This leads to

ωb
b/n = ωb

b/s (5.36)

or

ν2 = δν2 (5.37)

The Euler angle transformation matrices Rs
b(�sb) and T �(�sb) for �sb = [δφ, δθ, δψ]� are similar to

those used in Section 2.2. Moreover,

Rs
b(�sb) =

⎡
⎣ cδψcδθ −sδψcδφ + cδψsδθsδφ sδψsδφ + cδψcφsδθ

sδψcδθ cδψcδφ + sδφsδθsδψ −cδψsδψ + sδθsδψcδφ

−sδθ cδθsδφ cδθcδφ

⎤
⎦ (5.38)

T �(�sb) =

⎡
⎣ 1 sδφtδθ cδφtδθ

0 cδφ −sδφ

0 sδφ/cδθ cδφ/cδθ

⎤
⎦ , cδθ /= 0 (5.39)

Computing ν̄1 under the assumption of small angles gives

ν̄1 = Rs
b(�sb)�

⎡
⎣U

0

0

⎤
⎦

= U

⎡
⎣ cδψcδθ

−sδψcδφ + cδψsδθsδφ

sδψsδφ + cδψcφsδθ

⎤
⎦

≈ U

⎡
⎣ 1

−δψ

δθ

⎤
⎦ (5.40)

Finally,

ν = ν̄ + δν (5.41)

where

ν̄ ≈ U [1, −δψ, δθ, 0, 0, 0]� (5.42)
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This can written as

ν ≈ U(e1 − Lδη) + δν (5.43)

e1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, L :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.44)

The expressions for acceleration follows from

ν̇ = ˙̄ν + δν̇ (5.45)

The key here is ˙̄ν1 given by (5.40). Moreover,

˙̄ν1 = U

⎡
⎣ 1

−δr

δq

⎤
⎦ = ULδν (5.46)

The final expression then becomes

ν̇ = −ULδν + δν̇ (5.47)

The linear transformations needed to transform a system from seakeeping coordinates (δη, δν) to
body-fixed coordinates (η, ν) are

δν ≈ ν + U(Lδη − e1) (5.48)

δν̇ ≈ ν̇ + ULν (5.49)

The Euler angles are related through the following equation:

�nb = �ns + �sb (5.50)

which gives

⎡
⎣ φ

θ

ψ

⎤
⎦ =

⎡
⎣ 0

0

ψ̄

⎤
⎦ +

⎡
⎣ δφ

δθ

δψ

⎤
⎦ (5.51)
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5.3 The Classical Frequency-Domain Model
Frequency-dependent hydrodynamic forces can be determined experimentally or computed using poten-
tial theory programs or seakeeping codes. This section describes the transformations needed to obtain
what is called the frequency-domain model and a method known as forced oscillations, which can be
used to obtain frequency-dependent added mass and damping experimentally.

The seakeeping equations of motion are considered to be inertial. Hence, the rigid-body kinetics in
terms of perturbed coordinates δη and δν becomes (see Section 3.3)

δη̇ = J�(δη)δν (5.52)

MRBδη̈ + CRB(δν)δη̇ = δτRB (5.53)

Linear theory suggests that second-order terms can be neglected. Consequently, the rigid-body kinetics
in seakeeping coordinates ξ = δη and ξ̇ = δν reduces to

MRB ξ̈ = δτRB

= τhyd + τhs + τexc (5.54)

The rigid-body kinetics is forced by the term δτRB which can be used to model hydrodynamic forces
τhyd, hydrostatic forces τhs and other external forces τexc. Cummins (1962) showed that the radiation-
induced hydrodynamic forces in an ideal fluid can be related to frequency-dependent added mass A(ω)
and potential damping B(ω) according to

τhyd = −Āξ̇ −
∫ t

0

K̄(t − τ)ξ̇(τ)dτ (5.55)

where Ā = A(∞) is the constant infinite-frequency added mass matrix and K̄(t) is a matrix of retardation
functions given by

K(t) = 2

π

∫ ∞

0

B(ω) cos(ωt)dω (5.56)

If linear restoring forces τhs = −Cξ are included in the model, this results in the time-domain model:

(MRB + A(∞))ξ̈ +
∫ t

0

K̄(t − τ)ξ̇(τ)dτ + Cξ = τexc (5.57)

This is a vector integro-differential equation formulated in the time domain even though the potential
coefficients are frequency dependent. In order to understand this, we will consider a floating body forced
to oscillate at a given frequency.

5.3.1 Potential Coefficients and the Concept of Forced Oscillations

Consider the motions of a floating or submerged body given by

MRB ξ̈ = τhyd + τhs + f cos(ωt) (5.58)
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where τhyd and τhs denote the hydrodynamic and hydrostatic forces due to the surrounding water.
The vector:

f = [f1, . . . , f6]� (5.59)

contains the excitation force amplitudes. In an experimental setup with a restrained scale model, it is then
possible to vary the wave excitation frequency ω and the amplitudes fi of the excitation force. Hence,
by measuring the position and attitude vector ξ, the response of the second-order system (5.58) can be
fitted to a linear model:

[MRB + A(ω)]ξ̈ + B(ω)ξ̇ + Cξ = f cos(ωt) (5.60)

for each frequency ω where the hydrodynamic and hydrostatic forces are recognized as a frequency-
dependent mass–damper–spring system:

τhyd + τhs = −A(ω)ξ̈ − B(ω)ξ̇︸ ︷︷ ︸
radiation force

− Cξ︸︷︷︸
restoring force

(5.61)

The radiation force is due to the energy carried away by generated surface waves and it is formed by two
components, hydrodynamic inertia forces A(ω)ξ̈ and damping forces B(ω)ξ̇, where the matrices:

• A(ω) added mass
• B(ω) potential damping

are recognized as the potential coefficient matrices. If the experiment is repeated for several frequencies
ωi > 0 (i = 1, . . . N), added mass A(ωi) and damping B(ωi) can be computed at different frequencies.
Added mass and damping for a conventional ship is plotted as a function of ω in Figures 5.2 and 5.3.

Figure 5.2 Longitudinal added mass and potential damping coefficients as a function of frequency.
Exponential decaying viscous damping is included for B11(ω).
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Figure 5.2 (Continued )

The matrices A(ω), B(ω) and C in (5.61) represent a hydrodynamic mass–damper–spring system
which varies with the frequency of the forced oscillation. The added mass matrix A(ω) should not be
understood as additional mass due to a finite amount of water that is dragged with the vessel. A more
precise definition is:

Definition 5.1 (Added Mass)
Hydrodynamic added mass can be seen as a virtual mass added to a system because an accelerating or
decelerating body must move some volume of the surrounding fluid as it moves through it. Moreover, the
object and fluid cannot occupy the same physical space simultaneously.
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5.3.2 Frequency-Domain Seakeeping Models

Equation (5.57) can be transformed to the frequency domain (Newman, 1977; Faltinsen, 1990):

(−ω2[MRB + A(ω)] − jωB(ω) + C
)

ξ( jω) = τexc( jω) (5.62)

where

ξi(t) = ξ̄i cos(ωt + εi) ⇒ ξi( jω) = ξ̄i exp( jεi) (5.63)

τexc,i(t) = τ̄i cos(ωt + εi) ⇒ τexc,i( jω) = τ̄exc,i exp( jεi) (5.64)

are the complex response and excitation variables, respectively. The model (5.60) is rooted deeply in
the literature of hydrodynamics and the abuse of notation of this false time-domain model has been
discussed eloquently in the literature. This is in fact not a time-domain model but rather a different way of

Figure 5.3 Lateral added mass and potential damping coefficients as a function of frequency. Expo-
nential decaying viscous damping is included for B22(ω) and B66(ω) while viscous IKEDA damping is
included in B44(ω).
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Figure 5.3 (Continued )

writing (5.62), which is the frequency response function. The corresponding time-domain model is given
by (5.57).

The potential coefficients A(ω) and B(ω) are usually computed using a seakeeping program but the
frequency response will not be accurate unless viscous damping is included. The viscous matrix BV (ω)
is an optional matrix that can be used to model viscous damping such as skin friction, surge resistance
and viscous roll damping. Consequently, the total linear damper becomes

Btotal(ω) = B(ω) + BV (ω) (5.65)

The pressure supporting a marine craft can be separated into hydrostatic and hydrodynamic forces. The
hydrostatic pressure gives the buoyancy force, which is proportional to the displaced volume. Thus, the
hydrostatic force, Cξ, represents the restoring forces due to gravity buoyancy that tend to bring the marine
craft back to its upright equilibrium position. The wave excitation forces, τwave, arise due to changes in
pressure due to waves. These have one component that varies linearly with the wave elevation and another
that varies nonlinearly. The linear forces are oscillatory forces with a zero mean; these forces are called
first-order wave forces – Froude–Krylov and diffraction forces. The energy of these forces is distributed
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at the same frequencies as the wave elevation seen from the moving ship (encounter frequencies). The
nonlinear components give rise to nonoscillatory forces – mean wave drift forces – and also oscillatory
forces, which have energy at frequencies that are both lower and higher than the range of first-order wave
forces. The components at lower frequencies are called second-order slow wave drift forces, and together
with the mean wave drift and the first-order wave forces constitute the main disturbances for ship motion
control. The high-frequency forces are usually of no concern for ship motion control, but can produce
oscillation in the structure of the vessel; this effect is known as springing. For further details on wave
loads see Faltinsen (1990, 2005).

If wave and wind forces are included the resulting frequency-domain model becomes

(−ω2[MRB + A(ω)] − jωBtotal(ω) + C
)

ξ( jω) = τwave( jω) + τwind( jω) + δτ( jω) (5.66)

Linear Frequency-Dependent Viscous Damping

The linear frequency-dependent forces BV (ω) will give an additional contribution to the potential damping
matrix B(ω), as shown in the plots for B11(ω), B22(ω), B44(ω) and B66(ω) in Figures 5.2 and 5.3. When
running seakeeping codes it is important to include the external viscous damping matrix in order to obtain
good estimates of the response amplitude operators (RAOs), which are used to compute the motions due
to first- and second-order wave forces.

Bailey et al. (1998) suggest using ramps in surge, sway and yaw to describe the viscous part of the
damping forces. However, in the framework of linear theory exponential functions are well suited for
this purpose. For instance, Ross et al. (2006) propose a diagonal matrix:

BV (ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1e−αω + NITTC(A1) 0 0 0 0 0

0 β2e−αω 0 0 0 0

0 0 0 0 0 0

0 0 0 βIKEDA(ω) 0 0

0 0 0 0 0 0

0 0 0 0 0 β6e−αω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.67)

where α > 0 is the exponential rate, βi > 0 (i = 1, 2, 6) are linear viscous skin friction coefficients
describing the horizontal motions, NITTC(A1) is equivalent linear surge resistance depending on the surge
velocity amplitude A1 and βIKEDA(ω) is frequency-dependent roll damping based on the theory of Ikeda
et al. (1976). Other models for viscous roll damping can also be used.

One useful property of the exponential function βie−αω is that linear skin friction only affects low-
frequency motions. It is also possible to add a frequency-independent linear damper Dii = βiξ̇i directly
to the equations of motion in the time domain and obtain the same effect as solving the frequency-domain
equation with Bii(ω) = βie−αω (Ross and Fossen, 2005).

Equivalent Linearization Method and Describing Functions

The surge resistance NITTC(A1) can be found by equivalent linearization of the quadratic damping (6.86).
Equivalent linearization is a Fourier-series approximation where the work done over one period T is the
same for the nonlinear and linear terms. This is similar to a sinusoidal-input describing function that is
frequently used in control engineering. Consider a sinusoidal input

u = A sin(ωt) (5.68)
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For static linearities, displaying no dependence upon the derivatives, the describing function for the
particular odd polynomial nonlinearity

y = c1x + c2x|x| + c3x
3
3 (5.69)

is (Gelb and Vander Velde, 1968)

N(A) = c1 + 8A

3π
c2 + 3A2

4
c3 (5.70)

Consequently, the amplitude-dependent linear mapping

y = N(A)u (5.71)

approximates the nonlinear polynomial (5.69) if the input is a harmonic function. This result is very
useful for marine craft since it allows for linear approximation of nonlinear dissipative forces under
the assumption of regular waves. For instance, the quadratic damping in surge due to the ITTC surge
resistance formulation results in an expression (see Section 6.4.2)

X = −X|u|u|u|u
≈ NITTC(A1)u (5.72)

where the surge velocity u = A1 cos(ωt) is assumed to be harmonic. Then it follows from (5.70) that

NITTC(A1) = −8A1

3π
X|u|u (5.73)

Viscous damping can also be added in sway and yaw using a similar approach. The diagonal terms from
the cross-flow drag analysis (see Section 6.4.3) result in similar terms depending on the sway and yaw
amplitudes A2 and A6. Moreover,

Y = NY, crossflow(A2)v, NY, crossflow(A2) = −8A2

3π
Y|v|v (5.74)

N = NN, crossflow(A6)r, NN, crossflow(A6) = −8A6

3π
N|r|r (5.75)

For a ship moving at high speed, the amplitudes A2 and A6 will be much smaller than A1. Hence, it is
common to neglect these terms in seakeeping analysis.

5.4 Time-Domain Models including Fluid Memory Effects
The time-domain models are useful both for simulation and control systems design. In particular it is
convenient to add nonlinear terms directly in the time domain to describe coupled maneuvers at high
speed. Fluid memory effects and wave force terms are kept from the seakeeping theory. Hence, this can
be seen as a unified approach where seakeeping and maneuvering theory are combined. The basis for the
time-domain transformations are the famous papers by Cummins (1962) and Ogilvie (1964), and recent
results by Fossen (2005) and Perez and Fossen (2007).

5.4.1 Cummins Equation in SEAKEEPING Coordinates

Cummins (1962) considered the behavior of the fluid and the ship in the time domain ab initio. He
made the assumption of linearity and considered impulses in the components of motion. This resulted
in a boundary value problem in which the potential was separated into two parts: one valid during the
duration of the impulses and the other valid after the impulses are extinguished. By expressing the pressure
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as a function of these potentials and integrating it over the wetted surface of the marine craft, he obtained
a vector integro-differential equation, which is known as the Cummins equation; see (5.55) in Section
5.3. If we add viscous damping, restoring forces, wave-induced forces and wind forces, the time-domain
seakeeping model becomes

(
MRB + Ā

)
ξ̈ +

∫ t

−∞
K̄(t − τ)ξ̇(τ)dτ + C̄ξ = τwind + τwave + δτ (5.76)

In this expression, δτ is the perturbed control input, Ā and C̄ are constant matrices to be determined and
K̄(t) is a matrix of retardation functions given by

K̄(t) = 2

π

∫ ∞

0

Btotal(ω) cos(ωt)dω (5.77)

Equation (5.76) is a time-domain equation that reveals the structure of the linear equations of motion
in {s} and it is valid for any excitation, provided the linear assumption is not violated; that is the forces
produce small displacements from a state of equilibrium. The terms proportional to the accelerations
due to the change in momentum of the fluid have constant coefficients. Moreover, Ā is constant and
independent of the frequency of motion as well as forward speed.

Due to the motion of the ship, waves are generated in the free surface. These waves will, in principle,
persist at all subsequent times, affecting the motion of the ship. This is known as fluid memory effects,
and they are captured by the convolution integral in (5.76). The convolution integral is a function of ξ̇ and
the retardation functions K̄(t). These functions depend on the hull geometry and the forward speed. This
effect appears due to the free surface. For sinusoidal motions, these integrals have components in phase
with the motion and 90 degrees out of phase. The latter components contribute to damping, whereas the
components in phase with the motion can be added as a frequency-dependent added mass.

The Ogilvie (1964) Transformations

In order to relate the Cummins equation and the matrices Ā, C̄ and K̄ to the frequency-domain equation,
we will rely on a result from Ogilvie (1964). Assume that the floating vessel carries out harmonic
oscillations

ξ = cos(ωt)i, i = [1, 1, 1, 1, 1, 1]� (5.78)

Substituting (5.78) into the Cummins equation (5.76) yields

−ω2[MRB + Ā] cos(ωt) + ω

∫ t

−∞
K̄(τ) sin(ωt − ωτ)dτ + C̄ cos(ωt) = τwind + τwave + δτ

where we have replaced τ by t − τ in the integral. This gives

−ω2

{
[MRB + Ā] − 1

ω

∫ ∞

0

K̄(τ) sin(ωτ)dτ

}
cos(ωt)

−ω

{∫ ∞

0

K̄(τ) cos(ωτ)dτ

}
sin(ωt) + C̄ cos(ωt) = τwind + τwave + δτ (5.79)
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The frequency-domain model is written

−ω2 {[MRB + A(ω)} cos(ωt) − ω {Btotal(ω) sin(ωτ)dτ} sin(ωt) + C cos(ωt) = τwind + τwave + δτ

(5.80)

By comparing the terms in (5.79) and (5.80), it is seen that

A(ω) = Ā − 1

ω

∫ ∞

0

K̄(τ) sin(ωτ)dτ (5.81)

Btotal(ω) =
∫ ∞

0

K̄(τ) cos(ωτ)dτ (5.82)

C = C̄ (5.83)

Equation (5.81) must be valid for all ω. Hence, we choose to evaluate (5.81) at ω = ∞, implying that

Ā = A(∞) (5.84)

Equation (5.82) is rewritten using the inverse Fourier transform

K̄(t) = 2

π

∫ ∞

0

Btotal(ω) cos(ωt)dω (5.85)

This expression is recognized as a matrix of retardation functions. From a numerical point of view is it
better to integrate the difference

K(t) = 2

π

∫ ∞

0

[Btotal(ω) − Btotal(∞)] cos(ωt)dω (5.86)

than to use (5.85), since Btotal(ω) − Btotal(∞) will be exact zero at ω = ∞. Figure 5.4 shows a typical
retardation function that is converging to zero in 15–20 s. The tail will oscillate if (5.85) is used instead
of (5.86) in the numerical integration.

The relationship between K̄(t) and K(t) follows from

K̄(t) = 2

π

∫ ∞

0

[Btotal(ω) − Btotal(∞) + Btotal(∞)] cos(ωτ)dω

= K(t) + 2

π

∫ ∞

0

Btotal(∞) cos(ωτ)dω (5.87)

Then it follows that ∫ t

−∞
K̄(t − τ)ξ̇(τ)dτ =

∫ t

−∞
K(t − τ)ξ̇(τ)dτ + Btotal(∞)ξ̇

causal=
∫ t

0

K(t − τ)ξ̇(τ)dτ + Btotal(∞)ξ̇ (5.88)

We are now ready to state the main result.
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Figure 5.4 Typical plot of the retardation function K22(t) in sway.

Time-Domain Seakeeping Equations of Motion in {s}
The relationship between the time-domain equation (5.76) and the frequency-domain equation (5.66) is
established through (5.81)–(5.83) and (5.88). This gives

[MRB + A(∞)]ξ̈ + Btotal(∞)ξ̇ +
∫ t

0

K(t − τ)ξ̇(τ)dτ + Cξ = τwind + τwave + δτ (5.89)

where K(t − τ) is defined by (5.86). The equations of motion (5.89) describe the perturbed motion ξ of
a marine craft in 6 DOF using seakeeping coordinates. We will now transform this result to the rotating
frame {b}.

5.4.2 Linear Time-Domain Seakeeping Equations in BODY Coordinates

Two representations in {b} are available: one using zero-speed potential coefficients and one using speed-
dependent matrices. Motion control systems are usually formulated in {b}. Consequently, we need to
transform the time-domain representation of the Cummins equation (5.89) from {s} to {b}. When trans-
forming the equations of motion to the rotating frame {b}, Coriolis and centripetal forces between {s}
and {b} appear; see Figure 5.5. To illustrate this, consider

[MRB + A(∞)]ξ̈ + Btotal(∞)ξ̇ +
∫ t

0

K(t − τ)ξ̇(τ)dτ + Cξ = τwind + τwave + δτ (5.90)
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Figure 5.5 Coriolis matrices due to the rotation of the body-fixed frame {b} about the inertial
frame {s}.

which can be transformed from {s} to {b} by using the kinematic transformations (5.20) and (5.48)–(5.49)
derived in Section 5.2.2. This gives

[MRB + A(∞)][ν̇ + ULν] + Btotal(∞)[ν + U(Lδη − e1)]

+
∫ t

0

K(t − τ)δν(τ)dτ + Cδη = τwind + τwave + (τ − τ̄) (5.91)

The steady-state control force τ̄ needed to obtain the forward speed U when τwind = τwave = 0 and
δη = 0 is

τ̄ = Btotal(∞)Ue1 (5.92)

Hence, (5.91) can be rewritten as

[MRB + A(∞)][ν̇ + ULν] + Btotal(∞)[ν + ULδη] +
∫ t

0

K(t − τ)δν(τ)dτ + Cδη = τwind + τwave + τ

(5.93)

In this expression, the linearized Coriolis–centripetal forces due to rigid-body mass and hydrodynamic
added mass are recognized as MRBULν and A(∞)ULν, respectively.

When computing the damping and retardation functions, it is common to neglect the influence of δη

on the forward speed such that

δν ≈ v + U(Lδη − e1) ≈ v − Ue1 (5.94)

Hence, we can present the linear seakeeping equations expressed in the {b} frame.

Linear Equations of Motion using Zero-Speed Potential Coefficients

The kinematic equation between {b} and {n} is

η̇ = J�(η)ν (5.95)
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From (5.93)–(5.94) it follows that

Mν̇ + C∗
RBν + C∗

Aνr + Dνr +
∫ t

0

K(t − τ)[ν(τ) − Ue1]dτ + Gη = τwind + τwave + τ (5.96)

where ν has been replaced by the relative velocity νr to include ocean currents, M = MRB + MA and

MA = A(∞)

C∗
A = UA(∞)L

C∗
RB = UMRBL

D = Btotal(∞)

G = C

We have here exploited the fact that Cδη = Gη. Notice that C∗
RB and C∗

A are linearized Coriolis and
centripetal forces due to the rotation of {b} about {s}. At zero speed, these terms vanish.

Linear Equations of Motion using Speed-Dependent Potential Coefficients

Some potential theory programs compute the potential coefficients as functions of speed and frequency:

AU (ω, U) = A(ω) + α(ω, U) (5.97)

BU (ω, U) = B(ω) + β(ω, U) (5.98)

where α(ω, U) and β(ω, U) denote the speed-dependent terms. For these codes, β(ω, U) can include the
matrix C∗

A = UA(∞)L as well as other effects. A frequently used representation is

β(ω, U) = UA(∞)L︸ ︷︷ ︸
C∗

A

+ BITTC(ω, U) + BIKEDA(ω, U) + Btransom(ω, U) (5.99)

where the subscripts denote linearized ITTC resistance, IKEDA damping and transom stern effects. If
the speed-dependent matrices (5.97) and (5.98) are used instead of the zero-speed matrices in (5.96), the
equations of motion for each speed, U = constant, take the following form:

MU ν̇ + C∗
RBν + DUνr +

∫ t

0

KU (t − τ, U)[ν(τ) − Ue1]dτ + Gη = τwind + τwave + τ (5.100)
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where the matrix C∗
A is superfluous and

MU = MRB + AU (∞, U)

C∗
RB = UMRBL

DU = Btotal,U (∞, U)

G = C

and

KU (t, U) = 2

π

∫ ∞

0

[Btotal,U (ω, U) − Btotal,U (∞, U)] cos(ωt)dω (5.101)

The speed-dependent equations of motion (5.100) are computed at each speed U = constant while (5.96)
is valid for any U(t) provided that U(t) is slowly varying. It is advantageous to use (5.96) since only the
zero-speed potential coefficients A(ω) and B(ω) are needed in the implementation. This is based on the
assumption that the CA matrix is the only element in BU (ω, U). Moreover, it is assumed that

β(ω, U) := C∗
A

= UA(∞)L (5.102)

When using (5.96) instead of (5.100), it is necessary to add the remaining damping terms directly in the
time-domain equations, as explained in Section 5.4.3.

Properties of A, B and K

The following properties are useful when processing the hydrodynamic data:

• Asymptotic values for ω = 0:

B(0) = 0

• Asymptotic values for ω → ∞:

AU (∞, U) = 0

AU (∞, U) = A(∞)

These properties can be exploited when computing K(t) numerically since most seakeeping codes only
return values on an interval ω = [ωmin, ωmax].

Some useful properties of the retardation functions are:

• Asymptotic value for t = 0:

lim
t→0

K(t) /= 0 < ∞ (5.103)

• Asymptotic value for t → ∞:

lim
t→∞

K(t) = 0 (5.104)

A plot illustrating the retardation function in sway is shown in Figure 5.4.
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5.4.3 Nonlinear Unified Seakeeping and Maneuvering Model
with Fluid Memory Effects

Consider the seakeeping model (5.96) based on the zero-speed potential coefficients:

Mν̇ + C∗
RBν + C∗

Aνr + Dνr +
∫ t

0

K(t − τ)[ν(τ) − Ue1]dτ + Gη = τwind + τwave + τ (5.105)

For this model, the linearized Coriolis and centripetal matrices C∗
RB and C∗

A can be replaced by their
nonlinear counterparts CRB(ν) and CA(νr); see Section 6.3.1. In addition, the nonlinear damping D(νr)νr

or maneuvering coefficients can be added directly in the time domain.

Unified Seakeeping and Maneuvering Model

Some authors refer to (5.105) as a unified model when nonlinear maneuvering terms are included since
it merges the maneuvering and seakeeping theories (see Bailey et al., 1998; Fossen, 2005). This gives a
unified seakeeping and maneuvering model in the following form:

η̇ = J�(η)ν (5.106)

Mν̇r + CRB(ν)ν + CA(νr)νr + D(νr)νr + μ + Gη = τwind + τwave + τ (5.107)

The seakeeping fluid memory effects are captured in the term

μ :=
∫ t

0

K(t − τ) [ν(τ) − Ue1]︸ ︷︷ ︸
δν

dτ (5.108)

Constant and Irrotational Ocean Currents

The model (5.107) can be simplified if the ocean currents are assumed to be constant and irrotational in
{n} such that Property 8.1 is satisfied. Following the approach in Section 8.3 this gives

Mν̇r + C(νr)νr + D(νr)νr + μ + Gη = τwind + τwave + τ (5.109)

Example 5.1 (Zero-Speed Model for DP with Fluid Memory Effects)
For stationkeeping (U = 0 and r = 0), the model (5.109) reduces to

η̇ = J�(η)ν (5.110)

Mν̇r + Dνr + μ + Gη = τwind + τwave + τ (5.111)

under the assumptions that CRB(ν) = CA(νr) = 0 and D(νr) = D. This is similar to the result of Fossen
and Smogeli (2004).
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5.5 Case Study: Identification of Fluid Memory Effects
Kristiansen and Egeland (2003) and Kristiansen et al. (2005) have developed a state-space approximation
for μ using realization theory. Other methods such as the impulse response LS fitting can also be used
(see Yu and Falnes, 1995, 1998). The time-domain methods are usually used in conjunction with model
reduction in order to obtain a state-space model of smaller dimension suited for feedback control and
time-domain simulation. This often results in a state-space model (Ar, Br, Cr, Dr) where the Dr matrix is
nonzero (Perez and Fossen, 2008). This is nonphysical since potential damping should not amplify signals
at low frequencies. Hence, care must be taken when using time-domain methods. As a consequence of
this, frequency-domain identification methods are much more accurate and they do have the advantage
that a transfer function of correct relative degree can be chosen prior to the identification process. Hence,
model reduction in the time domain can be avoided since the estimated transfer function can be converted
into a (Ar, Br, Cr) state-space model exploiting the structural constraint Dr = 0 directly. A more detailed
discussion of the identification methods are found in Perez and Fossen (2008) while practical aspects are
reported in Perez and Fossen (2011).

5.5.1 Frequency-Domain Identification using the MSS FDI Toolbox

This section illustrates how the fluid memory effects can be approximated using frequency-domain
identification. The main tool for this is the MSS FDI toolbox (Perez and Fossen, 2009). When using the
frequency-domain approach, the property that the mapping

δν → μ (5.112)

Figure 5.6 Bode plot showing the identified transfer function h33(s) of an FPSO when A33(∞) is treated
as an unknown to be estimated.
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has relative degree one is exploited. Hence, the fluid memory effects μ can be approximated by a matrix
H(s) containing relative degree one transfer functions (see Figure 5.6):

hij(s) = prs
r + pr−1s

r−1 + · · · + p0

sn + qn−1sn−1 + · · · + q0
, r = n − 1, n ≥ 2 (5.113)

such that

μ = H(s)δν (5.114)

with

H(s) = Cr(sI − Ar)
−1Br (5.115)

Consequently, the corresponding state-space model is in the form

ẋ = Arx + Brδν

μ = Crx
(5.116)

Figure 5.7 FPSO identification results for h33(s) without using the infinite added mass A33(∞). The
left-hand-side plots show the complex coefficient and its estimate while added mass and damping are
plotted on the right-hand-side plots.
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The states x in (5.116) reflect the fact that once the marine craft changes the momentum of the fluid, this
will affect the forces in the future. In other words, the radiation forces at a particular time depend on the
history of the velocity of the marine craft up to the present time. The dimension of x and the matrices
Ar , Br and Cr depend on the order of the identified transfer functions (usually 2 to 20).

Matlab
The fluid memory transfer function (5.113) can be computed using the MSS toolbox, which includes
the FDI toolbox for frequency-domain identification (Perez and Fossen, 2009). The toolbox includes
two demo files for the cases where infinite added mass is unknown (2-D strip theory codes) or
computed by the hydrodynamic code, for instance the 3-D code by WAMIT.

Example 5.2 (Computation of Fluid Memory Effects)
Consider the FPSO data set in the MSS toolbox and assume that the infinite-frequency
added mass matrix is unknown. Hence, we can estimate the fluid transfer function h33(s) by using
the following Matlab code:

load fpso
Dof = [3,3]; %Use coupling 3-3 heave-heave
Nf = length(vessel.freqs);
W = vessel.freqs(1:Nf-1)’;
Ainf = vessel.A(Dof(1),Dof(2),Nf); % Ainf computed by WAMIT

A = reshape(vessel.A(Dof(1),Dof(2),1:Nf-1),1,length(W))’;
B = reshape(vessel.B(Dof(1),Dof(2),1:Nf-1),1,length(W))’;

The identification routine is called according to (see Perez and Fossen, 2009, for an explanation of
the options)

FDIopt.OrdMax = 20;
FDIopt.AinfFlag = 0;
FDIopt.Method = 2;
FDIopt.Iterations = 20;
FDIopt.PlotFlag = 0;
FDIopt.LogLin = 1;
FDIopt.wsFactor = 0.1;
FDIopt.wminFactor = 0.1;
FDIopt.wmaxFactor = 5;

[KradNum,KradDen,Ainf hat] = FDIRadMod(W,A,0,B,FDIopt,Dof)

giving a fourth-order transfer function:

h33(s) = 1.672e007 s3 + 2.286e007 s2 + 2.06e006 s

s4 + 1.233 s3 + 0.7295 s2 + 0.1955 s + 0.01639

of relative degree 1. The state-space model (5.116) is obtained by calling

[Ar ,Br ,Cr ,Dr] = tf2ss(KradNum,KradDen)
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Ar =

⎡
⎢⎢⎣

−1.2335 −0.7295 −0.1955 −0.0164

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎦

Br =

⎡
⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎦

Cr = [
1.672e007 2.286e007 2.06e006 0

]
Dr = 0

The identified transfer function h33(s) is plotted in Figure 5.6 while curve fitting of amplitude,
phase, added mass and potential damping are shown in Figure 5.7. The estimated transfer function
and potential coefficients are matching the experimental data with good accuracy. Notice that the
asymptotic behavior satisfies the properties of added mass A33(ω) and potential damping B33(ω)
as expected.



6
Maneuvering Theory

In Chapter 5 the 6 DOF seakeeping equations of motion for a ship in a seaway were presented. The
seakeeping model is based on linear theory and a potential theory program is used to compute the
frequency-dependent hydrodynamic forces for varying wave excitation frequencies. The time-domain
representation of the seakeeping model is very useful for accurate prediction of motions and sealoads
of floating structures offshore. The seakeeping theory can also be applied to displacement ships moving
at constant speed. Seakeeping time-domain models are limited to linear theory since it is necessary to
approximate the fluid memory effects by impulse responses or transfer functions.

An alternative to the seakeeping formalism is to use maneuvering theory to describe the motions of
marine craft in 3 DOF, that is surge, sway and yaw. Sometimes roll is augmented to the horizontal plane
model to describe more accurately the coupled lateral motions, that is sway–roll–yaw couplings while
surge is left decoupled; see Section 7.4. In maneuvering theory, frequency-dependent added mass and
potential damping are approximated by constant values and thus it is not necessary to compute the fluid-
memory effects. The main results of this chapter are based on the assumption that the hydrodynamic forces
and moments can be approximated at one frequency of oscillation such that the fluid-memory effects can
be neglected. The result is a nonlinear mass–damper–spring system with constant coefficients.

In the following sections, it is shown that the maneuvering equations of motion can be represented by
(Fossen, 1991, 1994)

Mν̇ + C(ν)ν + D(ν)ν + g(η) + go = τ + τwind + τwave (6.1)

In the case of irrotational ocean currents, the relative velocity vector

νr = ν − νc, νc = [uc, vc, wc, 0, 0, 0]�

contributes to the hydrodynamic terms such that

MRBν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamic forces

+ g(η) + go︸ ︷︷ ︸
hydrostatic forces

= τ + τwind + τwave (6.2)

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6
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The model (6.2) can be simplified if the ocean currents are assumed to be constant and irrotational in
{n} such that (see Section 8.3)

ν̇c =
[−S(ωb

b/n) 03×3

03×3 03×3

]
νc (6.3)

According to Property 8.1, it is then possible to represent the equations of motion by relative
velocities only:

Mν̇r + C(νr)νr + D(νr)νr + g(η) + go = τ + τwind + τwave (6.4)

where

M = MRB + MA - system inertia matrix (including added mass)
C(νr) = CRB(νr) + CA(νr) - Coriolis–centripetal matrix (including added mass)
D(νr) - damping matrix
g(η) - vector of gravitational/buoyancy forces and moments
go - vector used for pretrimming (ballast control)
τ - vector of control inputs
τwind - vector of wind forces
τwave - vector of wave-induced forces

The expressions for M, C(νr), D(νr), g(η) and go are derived in the forthcoming sections while
the environmental forces τwind and τwave are treated separately in Chapter 8. The maneuvering model
presented in this chapter is mainly intended for controller–observer design, prediction and computer
simulations in combination with system identification and parameter estimation. Application specific
models are presented in Chapter 7.

Hydrodynamic programs compute mass, inertia, potential damping and restoring forces while a more
detailed treatment of viscous dissipative forces (damping) are found in the extensive literature on hydro-
dynamics; see Faltinsen (1990, 2005), Newman (1977), Sarpkaya (1981) and Triantafyllou and Hover
(2002). Other useful references on marine craft modeling are Lewandowski (2004) and Perez (2005).

6.1 Rigid-Body Kinetics
Recall from Chapter 3 that the rigid-body kinetics can be expressed as

MRBν̇ + CRB(ν)ν = τRB (6.5)

where MRB = M�
RB > 0 is the rigid-body mass matrix and CRB(ν) = −C�

RB(ν) is the rigid-body Coriolis
and centripetal matrix due to the rotation of {b} about the inertial frame {n}. The horizontal motion of
a maneuvering ship or semi-submersible is given by the motion components in surge, sway and yaw.
Consequently, the state vectors are chosen as ν = [u, v, r]� and η = [N, E, ψ]�. It is also common to
assume that the craft has homogeneous mass distribution and xz-plane symmetry so that

Ixy = Iyz = 0 (6.6)



Potential Coefficients 111

Let the {b}-frame coordinate origin be set in the centerline of the craft in the point CO, such that yg = 0.
Under the previously stated assumptions, the matrices (3.44) and (3.60) associated with the rigid-body
kinetics reduce to

MRB =

⎡
⎣m 0 0

0 m mxg

0 mxg Iz

⎤
⎦ , CRB(ν) =

⎡
⎣ 0 −mr −mxgr

mr 0 0

mxgr 0 0

⎤
⎦ (6.7)

Notice that surge is decoupled from sway and yaw in MRB due to symmetry considerations of the system
inertia matrix (see Section 3.3).

The linear approximation to (6.5) about u = U = constant, v = 0 and r = 0 is

MRBν̇ + C∗
RBν = τRB (6.8)

where

C∗
RB =

⎡
⎣ 0 0 0

0 0 mU

0 0 mxgU

⎤
⎦ (6.9)

6.2 Potential Coefficients
Hydrodynamic potential theory programs can be used to compute the added mass and damping matrices
by integrating the pressure of the fluid over the wetted surface of the hull; see Section 5.1. These pro-
grams assume that viscous effects can be neglected. Consequently, it is necessary to add viscous forces
manually. The programs are also based on the assumptions that first- and second-order wave forces can be
linearly superimposed.

The potential coefficients are usually represented as frequency-dependent matrices for 6 DOF motions.
The matrices are:

• A(ω) added mass
• B(ω) potential damping

where ω is the wave excitation frequency of a sinusoidal (regular) wave generated by a wave maker or
the ocean. Figure 6.1 illustrates the components in sway.

Surface Vessels

In seakeeping analysis, the equations of motion are formulated as perturbations

ξ = δη = [δx, δy, δz, δφ, δθ, δψ]� (6.10)

about an inertial equilibrium frame (see Section 5.3). For a floating body at zero speed this is written as

[MRB + A(ω)]ξ̈ + B(ω)ξ̇ + Cξ = f cos(ωt) (6.11)

where C is the spring stiffness matrix due to Archimedes and the right-hand side of (6.11) is a vector of
forced oscillations with amplitudes:

f = [f1, . . . , f6]� (6.12)
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Figure 6.1 Added mass A22(ω) and potential damping B22(ω) in sway as a function of ω for a
large tanker.

Equation (6.11) is a pseudo-differential equation combining time and frequency (see Section 5.3.2). This
equation is not intended for computer simulations as discussed in Chapter 5 where a proper time-domain
representation is derived using the Cummins equation. The matrices A(ω), B(ω) and C can be treated as
a hydrodynamic mass–damper–spring system which varies with the frequency ω of the forced oscillation.
By exposing the craft to different oscillations it is possible to compute added mass and potential damping
for all the frequencies, as shown in Section 5.3.

Underwater Vehicles

For vehicles operating at water depths below the wave-affected zone, the hydrodynamic coefficients will
be independent of the wave excitation frequency. Consequently,

A(ω) = constant ∀ω (6.13)

B(ω) = 0 (6.14)

This means that if a seakeeping code is used to compute the potential coefficients, only one frequency is
needed to obtain an estimate of the added mass matrix. In addition, there will be no potential damping.
However, viscous damping BV (ω) will be present.
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Discussion

Equation (6.11) should not be used in computer simulations. As earlier mentioned, (6.11) is not an ordinary
differential equation since it combines time and frequency. As stressed in Chapter 5, the time-domain
seakeeping model should be represented by the Cummins equation, which is an integro-differential
equation (Cummins, 1962). For surface vessels it is common to solve the Cummins equation in the time
domain under the assumption of linear theory (see Section 5.4). This introduces fluid-memory effects,
which can be interpreted as filtered potential damping forces. These forces are retardation functions that
can be approximated by transfer functions and state-space models, as shown in Section 5.4. It is standard
to include the fluid-memory effects in seakeeping analysis while classical maneuvering theory neglects
the fluid-memory by relying on a zero-frequency assumption.

6.2.1 3 DOF Maneuvering Model

The classical maneuvering model makes use of the following assumption:

Definition 6.1 (Zero-Frequency Models for Surge, Sway and Yaw)
The horizontal motions (surge, sway and yaw) of a marine craft moving at forward speed can be described
by a zero-frequency model where:

MA = A{1,2,6}(0) =

⎡
⎣A11(0) 0 0

0 A22(0) A26(0)

0 A62(0) A66(0)

⎤
⎦ (6.15)

Dp = B{1,2,6}(0) = 0 (6.16)

are constant matrices.

Discussion
When applying a feedback control system to stabilize the motions in surge, sway and yaw, the natural
periods will be in the range of 100–200 s. This implies that the natural frequencies are in the range
of 0.03–0.10 rad/s, which is quite close to the zero wave excitation frequency. Also note that viscous
damping forces will dominate the potential damping terms at low frequency and that fluid memory effects
can be neglected at higher speeds.

Definition 6.1 is frequently applied when deriving maneuvering models for ships in a seaway. It is
convenient to represent the equations of motion without using frequency-dependent quantities since this
reduces model complexity.

6.2.2 6 DOF Coupled Motions

One limitation of Definition 6.1 is that it cannot be applied to heave, roll and pitch. These modes are
second-order mass–damper–spring systems where the dominating frequencies are the natural frequencies.
Hence, the constant frequency models in heave, roll and pitch should be formulated at their respective
natural frequencies and not at the zero frequency. This suggests the following definition:

Definition 6.2 (Natural Frequency Models for Heave, Roll and Pitch)
The natural frequencies for the decoupled motions in heave, roll and pitch are given by the
implicit equations
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ωheave =
√

C33

m + A33(ωheave)
(6.17)

ωroll =
√

C44

Ix + A44(ωroll)
(6.18)

ωpitch =
√

C55

Iy + A55(ωpitch)
(6.19)

where the potential coefficients Aii(ω) and Bii(ω) (i = 3, 4, 5) are computed in the center of flotation
(CF). The corresponding mass–damper–spring systems are

[m + A33(ωheave)]ż + B33(ωheave)w + C33z = 0 (6.20)

[Ix + A44(ωroll)]ṗ + B44(ωroll)p + C44φ = 0 (6.21)

[Iy + A55(ωpitch)]q̇ + B55(ωpitch)q + C55θ = 0 (6.22)

Equations (6.20)–(6.22) are decoupled damped oscillators. However, the natural frequencies (6.17)–
(6.19) can also be computed for the 6 DOF coupled model (6.11) by using a modal analysis; see
Section 4.3.2.

Consider the unforced 6 DOF linear seakeeping model

[MRB + A(ω)]ξ̈ + [B(ω) + Bv(ω)]ξ̇ + Cξ = 0 (6.23)

where viscous damping is included. Furthermore, assume that three constant matrices Ā, B̄ and B̄V exist
that approximate A(ω), B(ω) and BV (ω). This system can be transformed from seakeeping coordinates
{s} to body-fixed coordinates {b} using the approach in Section 5.4. The resulting model is a linear one:

[MRB + MA]ν̇ + [C∗
RB + C∗

A]ν + [DP + DV ]ν + Gη = 0 (6.24)

where

MA = Ā

C∗
A = UĀL

C∗
RB = UMRBL

DP = B̄

DV = B̄V

G = C

(6.25)

and L is the selection matrix (3.63).
The potential coefficients A(ω) and B(ω) can be computed using a hydrodynamic code. If we rely

on Definitions 6.1 and 6.2 to approximate MA, DP and DV it is necessary to assume that there are no
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couplings between the surge, heave–roll–pitch and the sway–yaw subsystems. Hence, added mass and
potential damping can be approximated by two constant matrices:

MA ≈

⎡
⎢⎢⎢⎢⎢⎣

A11(0) 0
0 A22(0)

...
0

A26(0)

...

A33(ωheave) 0 0
0 A44(ωroll) 0
0 0 A55(ωpitch)

...

0 A62(0) ... A66(0)

⎤
⎥⎥⎥⎥⎥⎦ (6.26)

Dp ≈

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0

...
0
0

...

B33(ωheave) 0 0
0 B44(ωroll) 0
0 0 B55(ωpitch)

...

0 0 ... 0

⎤
⎥⎥⎥⎥⎥⎦ (6.27)

The natural frequencies ωheave, ωroll and ωpitch can be computed using the methods in Sections 4.3.1–4.3.2.
The linear viscous damping terms are usually approximated by a diagonal matrix:

DV ≈ diag{B11v, B22v, B33v, B44v, B55v, B66v} (6.28)

where the elements Biiv (i = 1, ..., 6) can be computed from the time constants and natural periods of
the system (see Section 6.4).

6.3 Nonlinear Coriolis Forces due to Added Mass in a Rotating
Coordinate System

The model discussed in Section 6.2 was derived using linear theory. In order to extend this to nonlinear
maneuvering theory, the Coriolis and centripetal forces will be derived in a Lagrangian framework.
The Coriolis and centripetal matrix CA(ν) is a function of added mass MA and depends on which
reference frames are considered. Lagrangian theory considers the motion of a rotating frame {b} with
respect to {n}.

In seakeeping theory, the body frame {b} rotates about {s}. This results in a linear Coriolis and centripetal
matrix denoted by C∗

A (see Section 5.4.2). Both representations can be used depending on whether a linear
or nonlinear model is needed. The rotation of {b} about the inertial systems {n} and alternatively {s} are
illustrated in Figure 6.2.

6.3.1 Lagrangian Mechanics

In Section 3.1, it was shown that the rigid-body kinetics of a marine craft can be derived by applying
the Newtonian formulation. As for the rigid-body kinetics, it is advantageous to separate the added mass
forces and moments in terms that belong to the added mass matrix MA and a matrix of hydrodynamic
Coriolis and centripetal terms denoted CA(ν). To derive the expressions for these two matrices, an energy
approach based on Kirchhoff’s equations will now be presented. Detailed discussions of Newtonian and
Lagrangian mechanics are found in Goldstein (1980), Hughes (1986), Kane et al. (1983), Meirovitch
(1990) and Egeland and Gravdahl (2002).

The Lagrangian L is formed by using kinetic energy T and potential energy V , according to

L = T − V (6.29)
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Figure 6.2 Coriolis matrices due to the rotation of the body-fixed frame {b} about the inertial frames
{n} or {s}.

The Euler–Lagrange equation is

d

dt

(
∂L

∂η̇

)
− ∂L

∂η
= J−�

� (η)τ (6.30)

which in component form corresponds to a set of six second-order differential equations. From the above
formula it is seen that the Lagrangian mechanics describes the system dynamics in terms of energy.
Formula (6.30) is valid in any reference frame, inertial and body-fixed, as long as generalized coordinates
are used.

For a marine craft not subject to any motion constraints, the number of independent (generalized)
coordinates is equal to the number of DOF. For a marine craft moving in 6 DOF the generalized coordinates
in {n} can be chosen as

η = [N, E, D, φ, θ, ψ]� (6.31)

It should be noted that the alternative representation

η = [N, E, D, η, ε1, ε2, ε3]� (6.32)

using unit quaternions cannot be used in a Lagrangian approach since this representation is defined by
seven parameters. Hence, these parameters are not generalized coordinates. It is not straightforward to
formulate the equations of motion in {b} since

ν = [u, v, w, p, q, r]� (6.33)

cannot be integrated to yield a set of generalized coordinates in terms of position and orientation. In fact∫ t

0
νdτ has no immediate physical interpretation. Consequently, the Lagrange equation cannot be directly

used to formulate the equations of motion in {b}. However, this problem is circumvented by applying
Kirchhoff’s equations of motion, or the so-called quasi-Lagrangian approach; see Meirovitch and Kwak
(1989) for details.

6.3.2 Kirchhoff’s Equations in Vector Form

Consider a marine craft with linear velocity ν1 := [u, v, w]� and angular velocity ν2 := [p, q, r]� ex-
pressed in {b}. Hence, the force τ1 := [X, Y, Z]� and moment τ2 := [K, M, N]� are related to the kinetic
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Figure 6.3 Rigid-body and fluid kinetic energy (ocean surrounding the ship). Illustration by
Bjarne Stenberg.

energy (Kirchhoff, 1869)

T = 1

2
ν�Mν (6.34)

by the vector equations

d

dt

(
∂T

∂ν1

)
+ S(ν2)

∂T

∂ν1
= τ1 (6.35)

d

dt

(
∂T

∂ν2

)
+ S(ν2)

∂T

∂ν2
+ S(ν1)

∂T

∂ν1
= τ2 (6.36)

where S is the skew-symmetric cross-product operator in Definition 2.2. Kirchhoff’s equations will prove
to be very useful in the derivation of the expression for added inertia. Notice that Kirchhoff’s equations
do not include the gravitational forces.

6.3.3 Added Mass and Coriolis–Centripetal Forces due to the Rotation
of BODY Relative to NED

The matrix C∗
A in (6.25) represents linearized forces due to a rotation of {b} about the seakeeping frame

{s}. Instead of using {s} as the inertial frame, we will assume that {n} is the inertial frame and that {b}
rotates about {n}. The nonlinear Coriolis and centripetal matrix CA(ν) due to a rotation of {b} about
the inertial frame {n} can be derived using an energy formulation based on the constant matrix MA.

Since any motion of the marine craft will induce a motion in the otherwise stationary fluid, the fluid must
move aside and then close behind the craft in order to let the craft pass through the fluid. As a consequence,
the fluid motion possesses kinetic energy that it would lack otherwise (see Figure 6.3). The expression
for the fluid kinetic energy TA is written as a quadratic form (Lamb, 1932)

TA = 1

2
ν�MAν, ṀA = 0 (6.37)
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where MA = M�
A ≥ 0 is the 6 × 6 system inertia matrix of added mass terms:

MA = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.38)

The notation of SNAME (1950) for the hydrodynamic derivatives is used in this expression; for instance
the hydrodynamic added mass force Y along the y axis due to an acceleration u̇ in the x direction is
written as

Y = −Yu̇u̇, Yu̇ := ∂Y

∂u̇
(6.39)

This implies that {MA}21 = −Yu̇ in the example above.

Property 6.1 (Hydrodynamic System Inertia Matrix MA)
For a rigid body at rest or moving at forward speed U ≥ 0 in ideal fluid, the hydrodynamic
system inertia matrix MA is positive semi-definite:

MA = M�
A ≥ 0

Proof. Newman (1977) has shown this for zero speed. The results extend to forward speed by using the
approach presented in Chapter 5.

Remark 6.1
In a real fluid the 36 elements of MA may all be distinct but still MA ≥ 0. Experience has shown that the
numerical values of the added mass derivatives in a real fluid are usually in good agreement with those
obtained from ideal theory (see Wendel, 1956).

Remark 6.2
If experimental data are used, the inertia matrix can be symmetrized by using:

MA = 1

2

(
MA,exp + M�

A,exp

)
(6.40)

where MA,exp contains the experimentally data.

Added Mass Forces and Moments

Based on the kinetic energy TA of the fluid, it is straightforward to derive the added mass forces and
moments. Substituting (6.37) into (6.35)–(6.36) gives the following expressions for the added mass terms
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(Imlay, 1961):

XA = Xu̇u̇ + Xẇ(ẇ + uq) + Xq̇q̇ + Zẇwq + Zq̇q
2

+Xv̇v̇ + Xṗṗ + Xṙṙ − Yv̇vr − Yṗrp − Yṙr
2

−Xv̇ur − Yẇwr

+Yẇvq + Zṗpq − (Yq̇ − Zṙ)qr

YA = Xv̇u̇ + Yẇẇ + Yq̇q̇

+Yv̇v̇ + Yṗṗ + Yṙṙ + Xv̇vr − Yẇvp + Xṙr
2 + (Xṗ − Zṙ)rp − Zṗp

2

−Xẇ(up − wr) + Xu̇ur − Zẇwp

−Zq̇pq + Xq̇qr

ZA = Xẇ(u̇ − wq) + Zẇẇ + Zq̇q̇ − Xu̇uq − Xq̇q
2

+Yẇv̇ + Zṗṗ + Zṙṙ + Yv̇vp + Yṙrp + Yṗp
2

+Xv̇up + Yẇwp

−Xv̇vq − (Xṗ − Yq̇)pq − Xṙqr (6.41)

KA = Xṗu̇ + Zṗẇ + Kq̇q̇ − Xv̇wu + Xṙuq − Yẇw2 − (Yq̇ − Zṙ)wq + Mṙq
2

+Y
ṗ
v̇ + Kṗṗ + Kṙṙ + Yẇv2 − (Yq̇ − Zṙ)vr + Zṗvp − Mṙr

2 − Kq̇rp

+Xẇuv − (Yv̇ − Zẇ)vw − (Yṙ + Zq̇)wr − Yṗwp − Xq̇ur

+(Yṙ + Zq̇)vq + Kṙpq − (Mq̇ − Nṙ)qr

MA = Xq̇(u̇ + wq) + Zq̇(ẇ − uq) + Mq̇q̇ − Xẇ(u2 − w2) − (Zẇ − Xu̇)wu

+Yq̇v̇ + Kq̇ṗ + Mṙṙ + Yṗvr − Yṙvp − Kṙ(p
2 − r2) + (Kṗ − Nṙ)rp

−Yẇuv + Xv̇vw − (Xṙ + Zṗ)(up − wr) + (Xṗ − Zṙ)(wp + ur)

−Mṙpq + Kq̇qr

NA = Xṙu̇ + Zṙẇ + Mṙq̇ + Xv̇u
2 + Yẇwu − (Xṗ − Yq̇)uq − Zṗwq − Kq̇q

2

+Yṙv̇ + Kṙṗ + Nṙṙ − Xv̇v
2 − Xṙvr − (Xṗ − Yq̇)vp + Mṙrp + Kq̇p

2

−(Xu̇ − Yv̇)uv − Xẇvw + (Xq̇ + Yṗ)up + Yṙur + Zq̇wp

−(Xq̇ + Yṗ)vq − (Kṗ − Mq̇)pq − Kṙqr

Imlay (1961) arranged the equations in four lines with longitudinal components on the first line and
lateral components on the second. The third line consists of mixed terms involving u or w as one factor.
If one or both of these velocities are large enough to be treated as constants, the third line may be treated
as an additional term to the lateral equations of motion. The fourth line contains mixed terms that usually
can be neglected as second-order terms.

It should be noted that the off-diagonal elements of MA will be small compared to the diagonal elements
for most practical applications. A more detailed discussion on the different added mass derivatives can
be found in Humphreys and Watkinson (1978).



120 Maneuvering Theory

Property 6.2 (Hydrodynamic Coriolis–Centripetal Matrix CA(ν))
For a rigid body moving through an ideal fluid the hydrodynamic Coriolis and centripetal
matrix CA(ν) can always be parameterized such that it is skew-symmetric:

CA(ν) = −C�
A(ν), ∀ν ∈ R6 (6.42)

One parametrization satisfying (6.42) is

CA(ν) =
[

03×3 −S(A11ν1 + A12ν2)

−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

]
(6.43)

where Aij ∈ R3×3 is given by

MA =
[

A11 A12

A21 A22

]
(6.44)

Proof. Substituting MA for M in (3.46) in Theorem 3.2 directly proves (6.43).

Formula (6.43) can be written in component form according to

CA(ν) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.45)

where

a1 = Xu̇u + Xv̇v + Xẇw + Xṗp + Xq̇q + Xṙr

a2 = Yu̇u + Yv̇v + Yẇw + Yṗp + Yq̇q + Yṙr

a3 = Zu̇u + Zv̇v + Zẇw + Zṗp + Zq̇q + Zṙr

b1 = Ku̇u + Kv̇v + Kẇw + Kṗp + Kq̇q + Kṙr

b2 = Mu̇u + Mv̇v + Mẇw + Mṗp + Mq̇q + Mṙr

b3 = Nu̇u + Nv̇v + Nẇw + Nṗp + Nq̇q + Nṙr

(6.46)

Properties 6.2 and 8.1 imply that the marine craft dynamics can be represented in terms of nonlinear
Coriolis and centripetal forces using relative velocity:

Mν̇r + C(νr)νr + D(νr)νr + g(η) = τ + τwind + τwave (6.47)

where

M = MRB + MA (6.48)

C(νr) = CRB(νr) + CA(νr) (6.49)

while classical seakeeping theory uses linear matrices C∗
RB and C∗

A as explained in Section 6.2.
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Example 6.1 (Added Mass for Surface Vessels)
For surface ships such as tankers, cargo ships and cruise-liners it is common to decouple the
surge mode from the steering dynamics due to xz-plane symmetry. Similarly, the heave, pitch, and roll
modes are neglected under the assumption that these motion variables are small. Hence, νr = [ur, vr, r]�

implies that the added mass derivatives for a surface ship are

MA = M�
A = −

⎡
⎣Xu̇ 0 0

0 Yv̇ Yṙ

0 Yṙ Nṙ

⎤
⎦ (Nv̇ = Yṙ) (6.50)

CA(νr) = −C�
A(νr) =

⎡
⎣ 0 0 Yv̇vr + Yṙr

0 0 −Xu̇ur

−Yv̇vr − Yṙr Xu̇ur 0

⎤
⎦ (6.51)

The Coriolis and centripetal forces are recognized as

CA(ν)ν =

⎡
⎢⎢⎣

Yv̇vrr + Yṙr
2

−Xu̇urr

(Xu̇ − Yv̇)urvr︸ ︷︷ ︸
Munk moment

− Yṙurr

⎤
⎥⎥⎦ (6.52)

where the first term in the yaw moment is the nonlinear Munk moment, which is known to have
destabilizing effects.

Example 6.2 (Added Mass for Underwater Vehicles)
In general, the motion of an underwater vehicle moving in 6 DOF at high speed will be highly
nonlinear and coupled. However, in many AUV and ROV applications the vehicle will only be allowed
to move at low speed. If the vehicle also has three planes of symmetry, this suggests that the contribution
from the off-diagonal elements in the matrix MA can be neglected. Hence, the following simple
expressions for the matrices MA and CA are obtained:

MA = M�
A = −diag{Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ} (6.53)

CA(νr) = −C�
A(νr) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −Zẇwr Yv̇vr

0 0 0 Zẇwr 0 −Xu̇ur

0 0 0 −Yv̇vr Xu̇ur 0

0 −Zẇwr Yv̇vr 0 −Nṙr Mq̇q

Zẇwr 0 −Xu̇ur Nṙr 0 −Kṗp

−Yv̇vr Xu̇ur 0 −Mq̇q Kṗp 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.54)

The diagonal structure is often used since it is time consuming to determine the off-diagonal elements
from experiments as well as theory. In practice, the diagonal approximation is found to be quite good for
many applications. This is due to the fact that the off-diagonal elements of a positive inertia matrix will
be much smaller than their diagonal counterparts.
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6.4 Viscous Damping and Ocean Current Forces
Hydrodynamic damping for marine craft is mainly caused by:

Potential Damping: We recall from the beginning of Section 6.2 that added mass, damping and restoring
forces and moments are encountered when a body is forced to oscillate with the wave excitation
frequency in the absence of incident waves. The radiation-induced damping term is usually referred
to as linear frequency-dependent potential damping B(ω).

Skin Friction: Linear frequency-dependent skin friction Bv(ω) due to laminar boundary layer theory
is important when considering the low-frequency motion of marine craft (Faltinsen and Sortland,
1987). In addition to linear skin friction, there will be a high-frequency contribution due to a turbulent
boundary layer. This is usually referred to as a quadratic or nonlinear skin friction.

Wave Drift Damping: Wave drift damping can be interpreted as added resistance for surface vessels
advancing in waves. This type of damping is derived from second-order wave theory. Wave drift
damping is the most important damping contribution to surge for higher sea states. This is due to the
fact that the wave drift forces are proportional to the square of the significant wave height Hs. Wave
drift damping in sway and yaw is small relative to eddy-making damping (vortex shedding). A rule of
thumb is that second-order wave drift forces are less than 1 % of the first-order wave forces when the
significant wave height is equal to 1 m and 10 % when the significant wave height is equal to 10 m.

Damping Due to Vortex Shedding: D’Alambert’s paradox states that no hydrodynamic forces act on
a solid moving completely submerged with constant velocity in a nonviscous fluid. In a viscous fluid,
frictional forces are present such that the system is not conservative with respect to energy. This is
commonly referred to as interference drag. It arises due to the shedding of vortex sheets at sharp edges.
The viscous damping force due to vortex shedding can be modeled as

f (u) = −1

2
ρ CD(Rn) A|u|u (6.55)

where u is the velocity of the craft, A is the projected cross-sectional area under water, CD(Rn) is
the drag coefficient based on the representative area and ρ is the water density. This expression is
recognized as one of the terms in Morison’s equation (see Faltinsen, 1990). The drag coefficient
CD(Rn) is a function of the Reynolds number:

Rn = uD

ν
(6.56)

where D is the characteristic length of the body and ν is the kinematic viscosity coefficient
(ν = 1.56 × 10−6 for salt water at 5 ◦C with salinity 3.5 %).

Lifting Forces: Hydrodynamic lift forces arise from two physical mechanisms. The first is due to the
linear circulation of water around the hull. The second is a nonlinear effect, commonly called cross-
flow drag, which acts from a momentum transfer from the body to the fluid. This secondary effect is
closely linked to vortex shedding.

The different damping terms contribute to both linear and quadratic damping. However, it is in general
difficult to separate these effects. In many cases, it is convenient to write total hydrodynamic damping as

D(νr) = D + Dn(νr) (6.57)
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where D is the linear damping matrix due to potential damping and possible skin friction and Dn(νr) is
the nonlinear damping matrix due to quadratic damping and higher-order terms. Hydrodynamic damping
satisfies the following dissipative property:

Property 6.3 (Hydrodynamic Damping Matrix D(νr))
For a rigid body moving through an ideal fluid the hydrodynamic damping matrix,

D(νr) = 1

2

[
D(νr) + D(νr)�

] + 1

2

[
D(νr) − D(νr)�

]
(6.58)

will be real, nonsymmetric and strictly positive:

D(νr) > 0, ∀ ν ∈ R6 (6.59)

or

x�D(νr)x = 1

2
x� [

D(νr) + D(νr)�
]
x > 0 ∀ x /= 0 (6.60)

Some of the damping terms can be determined by using well-established methods from the literature
and experimental techniques.

6.4.1 Linear Viscous Damping

As shown in Section 6.2, the linear damping matrix in CO with decoupled surge dynamics can be written

D = DP + DV (6.61)

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 0 0 0

0 Yv 0 Yp 0 Yr

0 0 Zw 0 Zq 0

0 Kv 0 Kp 0 Kr

0 0 Mw 0 Mq 0

0 Nv 0 Np 0 Nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.62)

where the diagonal terms relate to seakeeping theory according to

−Xu = B11v (6.63)

−Yv = B22v (6.64)

−Zw = B33v + B33(ωheave) (6.65)

−Kp = B44v + B44(ωroll) (6.66)

−Mq = B55v + B55(ωpitch) (6.67)

−Nr = B66v (6.68)
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Consider a second-order test system stabilized by a PD controller:

mẍ + (d + Kd)ẋ + Kpx = 0 (6.69)

This system satisfies

2ζωn = d + Kd

m
, ω2

n = Kp

m
(6.70)

In the uncontrolled case Kp = Kd = 0. Hence, the time constant becomes

T = m

d
(6.71)

In closed loop, Kp and Kd are positive constants satisfying

1

T
+ Kd

m
= 2ζ

(
2π

Tn

)

= 4πζ

Tn

(6.72)

If Kd is specified as Kd/m = 1/T , the bandwidth of the closed-loop system is approximately doubled
and it follows that

2

T
= 4πζ

Tn

(6.73)

The relationship between the time constant T , relative damping ratio ζ and the natural period Tn under
feedback control is

T = Tn

8πζ
(6.74)

The corresponding feedback gains are Kp = mω2
n and Kd = m/T . This implies that a PD-controlled

ship in surge, sway and yaw with relative damping ratio ζ = 0.1 and natural periods in the range
100 s ≤ Tn ≤ 150 s has time constants in the range

39.8 s ≤ T ≤ 59.7 s (6.75)

From (6.71), it is seen that the linear viscous damping terms can be specified as three time constants
in surge, sway and yaw (Tsurge, Tsway, Tyaw) while additional damping can be added in heave, roll and
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pitch as (�ζheave, �ζroll, �ζpitch). Consequently, we can use the following formulae to estimate linear
viscous damping:

B11v = m + A11(0)

Tsurge
= 8πζsurge[m + A11(0)]

Tn,surge
(6.76)

B22v = m + A22(0)

Tsway
= 8πζsway[m + A22(0)]

Tn,sway
(6.77)

B33v = 2�ζheaveωheave[m + A33(ωheave)] (6.78)

B44v = 2�ζrollωroll[Ix + A44(ωroll)] (6.79)

B55v = 2�ζpitchωpitch[Iy + A55(ωpitch)] (6.80)

B66v = Iz + A66(0)

Tyaw
= 8πζyaw[Iz + A66(0)]

Tn,yaw
(6.81)

where typical values for Tsurge, Tsway and Tyaw are 100–250 s, �ζheave = �ζpitch = 0 while additional roll
damping �ζroll could be added to obtain a total roll damping of 0.05–0.10, which is quite common for
offshore supply vessels, tankers, semi-submersibles and container ships. For ships with anti-roll tanks a
relative damping factor of 0.4–0.6 at the resonance frequency ωroll is common.

6.4.2 Nonlinear Surge Damping

In surge, the viscous damping for ships may be modeled as (Lewis, 1989)

X = −1

2
ρS(1 + k)Cf (ur)|ur|ur (6.82)

Cf (ur) = 0.075

(log10 Rn − 2)2︸ ︷︷ ︸
CF

+ CR (6.83)

where ρ is the density of water, S is the wetted surface of the hull,

ur = u − uc

= u − Vc cos(βc − ψ) (6.84)

is the relative surge velocity (see Section 8.3), k is the form factor giving a viscous correction, CF is the flat
plate friction from the ITTC 1957 line and CR represents residual friction due to hull roughness, pressure
resistance, wave-making resistance and wave-breaking resistance. For ships in transit k is typically 0.1
whereas this value is much higher in DP, typically k = 0.25 (Hoerner, 1965). The friction coefficient
CF depends on the Reynolds number:

Rn = urLpp

ν
(6.85)

where ν = 1 × 10−6 m/s2 is the kinematic viscosity at 20 ◦C. For small values of (log10 Rn − 2) in the
expression for CF, a minimum value of Rn should be used in order to avoid the condition where CF

blows up at low speed.
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Figure 6.4 Modified resistance curve Cnew
f (ur) and Cf (ur) as a function of ur when CR = 0. The zero

speed value Cnew
f (0) = (Ax/S)CX where CX = 0.16 is the current coefficient.

For ships, a typically value is Rn,min = 106, which limits the friction coefficient to CF,max < 0.05 at lower
speeds (see Figure 6.4). The damping model in surge can also be written as

X = X|u|u|ur|ur (6.86)

X|u|u = −1

2
ρS(1 + k)Cf < 0 (6.87)

For low-speed maneuvering, this formula gives too little damping compared to the quadratic drag formula

X|u|u = 1

2
ρAxCx (6.88)

where CX > 0 is the current coefficient and Ax is the frontal project area (see Section 7.3.1). The current
coefficients are usually found from experiments using a model ship in up to 1.0 m/s currents. The
resistance and current coefficients (6.87) and (6.88) are related by

CX = S

Ax

Cf (6.89)
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One way to obtain sufficient damping at low speed is to modify the resistance curve according to

Cnew
f (ur) = Cf (umax

r ) +
(

Ax

S
CX − C(umax

r )

)
exp(−αu2

r ) (6.90)

where α > 0 (typically 1.0) and the maximum friction coefficient Cf (umax
r ) is computed for maximum rel-

ative velocity umax
r . The modified resistance curve Cnew

f (ur) is plotted together with Cf (ur) in Figure 6.4.
Notice that the resistance curve is increased at lower velocities due to the contribution of the cur-
rent coefficient CX. The second plot shows the current coefficient CX at zero speed together with
Cnew

X = 1/2ρAxC
new
f . The effect of the current coefficient vanishes at higher speeds thanks to the

exponentially decaying weight exp(−αu2
r ).

6.4.3 Cross-Flow Drag Principle

For relative current angles |βc − ψ| 
 0, where βc is the current direction, the cross-flow drag principle
may be applied to calculate the nonlinear damping force in sway and the yaw moment (Faltinsen, 1990):

Y = −1

2
ρ

∫ Lpp

2

− Lpp

2

T (x)C2D
d (x)|vr + xr|(vr + xr)dx (6.91)

N = −1

2
ρ

∫ Lpp

2

− Lpp

2

T (x)C2D
d (x)x|vr + xr|(vr + xr)dx (6.92)

where C2D
d (x) is the 2-D drag coefficient, T (x) is the draft and

vr = v − vc

= v − Vc sin(βc − ψ) (6.93)

is the relative sway velocity (see Section 8.3). This is a strip theory approach where each hull section
contributes to the integral. Drag coefficients for different hull forms are found in Hooft (1994). A constant
2-D current coefficient can also be estimated using Hoerner’s curve (see Figure 6.5).

Matlab
The 2-D drag coefficients C2D

d can be computed as a function of beam B and length T using Hoerner’s
curve. This is implemented in the Matlab MSS toolbox as

Cd=Hoerner(B,T)
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Figure 6.5 2-D cross-flow coefficient C2D
d as a function of B/2T (Hoerner, 1965).

A 3-D representation of (6.91)–(6.92) eliminating the integrals can be found by curve fitting formula
(6.91) and (6.92) to second-order modulus terms to obtain a maneuvering model similar to that of
Fedyaevsky and Sobolev (1963):

Y = Y|v|v|vr|vr + Y|v|r|vr|r + Yv|r|vr|r| + Y|r|r|r|r (6.94)

N = N|v|v|vr|vr + N|v|r|vr|r + Nv|r|vr|r| + N|r|r|r|r (6.95)

where Y|v|v, Y|v|r, Yv|r|, Y|r|r|r|r|, N|v|v, N|v|r, Nv|r|, and N|r|r are maneuvering coefficients defined using
the SNAME notation. In the next section, this approach will be used to derive maneuvering models in
3 DOF.

6.5 Maneuvering Equations
This section summarizes the linear and nonlinear maneuvering equations using the results in Sections
6.1–6.4. Application specific models for ships and underwater vehicles are presented in Chapter 7.

6.5.1 Hydrodynamic Mass–Damper–Spring System

In hydrodynamics it is common to assume that the hydrodynamic forces and moments on a rigid body
can be linearly superimposed (see Faltinsen, 1990, 2005). This results in a hydrodynamic mass–damper–
spring system that can be explained as:

Forces on the body when the body is forced to oscillate with the wave excitation frequency and
there are no incident waves
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The contribution to the hydrodynamic mass–damper–spring forces is as follows:

Hydrodynamic Mass–Damper

• Added mass MA due to the inertia of the surrounding fluid (see Section 6.2). The corresponding Coriolis
and centripetal matrix due to added mass is due to the rotation of {b} with respect to {n} and is denoted
CA(νr) (see Section 6.3).

• Radiation-induced potential damping DP due to the energy carried away by generated surface waves.
• Viscous damping caused by skin friction, wave drift damping, vortex shedding and lift/drag (see Section

6.4). The resulting hydrodynamic force is written as

τhyd = − MAν̇r − CA(νr)νr︸ ︷︷ ︸
added mass

− DPνr︸︷︷︸
potential damping

+τvisc (6.96)

where νr = ν − νc with νc = [u, vc, wc, 0, 0, 0]� is the relative velocity due to an irrotational constant
ocean current (see Section 8.3) and

τvisc = − DV νr︸ ︷︷ ︸
linear

viscous friction

− Dn(νr)νr︸ ︷︷ ︸
nonlinear

viscous damping

(6.97)

Hydrostatic Spring Stiffness

• Restoring forces due to Archimedes (weight and buoyancy); see Section 4.1:

τhs = −g(η) − go (6.98)

The potential coefficient matrices A(ω) and B(ω) can be computed using a hydrodynamic code while
approximate expressions for MA and DP as well as CA(νr) can be computed using (6.26) and (6.27),
which are based on Definitions 6.1 and 6.2. Fully coupled matrices MA and DP in 6 DOF can, however,
be computed using model experiments or curve fitting to experimental data. This results in constant
(frequency-independent) matrices in the following form:

MA = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ 0 0 0 0 0

0 Yv̇ 0 Yṗ 0 Yṙ

0 0 Zẇ 0 Zq̇ 0

0 Kv̇ 0 Kṗ 0 Kṙ

0 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 Nṗ 0 Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.99)

D = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 0 0 0

0 Yv 0 Yp 0 Yr

0 0 Zw 0 Zq 0

0 Kv 0 Kp 0 Kr

0 0 Mw 0 Mq 0

0 Nv 0 Np 0 Nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.100)

where the coefficients are called hydrodynamic derivatives. Again it is convenient to assume that the
surge motion is decoupled and that the marine craft is symmetric about the xz plane. This reduces the
number of parameters in the model.
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The total hydrodynamic damping matrix D(νr) is the sum of the linear part D and the nonlinear part
Dn(νr) such that

D(νr) := D + Dn(νr) (6.101)

If nonlinear damping is modeled using the ITTC resistance law in Section 6.4.2 and cross-flow drag
formulae in Section 6.4.3, the following expression is obtained:

Dn(νr) = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X|u|u |ur| 0 0 0 0 0

0 Y|v|v |vr| + Y|r|v |r| 0 0 0 Y|v|r |vr| + Y|r|r |r|
0 0 Z|w|w|wr| 0 0 0

0 0 0 K|p|p|p| 0 0

0 0 0 0 M|q|q|q| 0

0 N|v|v |vr| + N|r|v |r| 0 0 0 N|v|r |vr| + N|r|r |r|

∣∣∣∣∣∣∣∣∣∣∣∣∣
where we have included additional nonlinear damping terms on the diagonal in heave, roll and pitch.
In general, there will be coupling terms in all DOF. However, many of these are small so engineering
judgement must be used when deriving the model. Standard models for marine craft are discussed in
Chapter 7.

The resulting nonlinear hydrodynamic mass–damper–spring forces can be expressed by

τhyd = −MAν̇r − CA(νr)νr − D(νr)νr (6.102)

τhs = −g(η) − go (6.103)

6.5.2 Nonlinear Maneuvering Equations

The hydrodynamic forces (6.102) and (6.103) must be included in the equations of motion in order to
integrate acceleration ν̇ to velocity and position. Consider the rigid-body kinetics (6.5):

MRBν̇ + CRB(ν)ν = τRB (6.104)

where

τRB = τhyd + τhs + τwind + τwave + τ (6.105)

The vector τ represents the propulsion forces and moments. Substituting (6.102) and (6.103) into (6.105)
gives the nonlinear maneuvering equations:

MRBν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamic forces

+ g(η) + go︸ ︷︷ ︸
hydrostatic forces

= τ + τwind + τwave (6.106)
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A special case of (6.106) is obtained for ocean currents that are assumed to be constant and irrotational
in {n} such that (see Section 8.3)

ν̇c =
[−S(ωb

b/n) 03×3

03×3 03×3

]
νc (6.107)

According to Property 8.1, it is then possible to represent the equations of motion by relative velocities
according to

Mν̇r + C(νr)νr + D(νr)νr + g(η) + go = τ + τwind + τwave (6.108)

where

M = MRB + MA (6.109)

C(νr) = CRB(νr) + CA(νr) (6.110)

The assumption that the potential coefficients are constant (frequency independent) implies that

M = M� > 0, Ṁ = 0 (6.111)

which are very useful properties when designing energy-based control laws where the sum of kinetic and
potential energy is a natural Lyapunov function candidate.

Models for simulation and control of marine craft are treated in more detail in Chapter 7 where focus
is on tailor-made models for dynamic positioning, roll damping, ship maneuvering, path following and
autopilot design.

6.5.3 Linearized Maneuvering Equations

The linearized maneuvering equations in surge, sway and yaw is a special case of the nonlinear
model (6.106):

MRBν̇ + C∗
RBν︸ ︷︷ ︸

rigid-body forces

+ MAν̇r + C∗
Aνr + Dνr︸ ︷︷ ︸

hydrodynamic forces

= τ + τwind + τwave (6.112)

where restoring forces are neglected, nonlinear Coriolis and centripetal forces are linearized about the
cruise speed U and nonlinear damping is approximated by a linear damping matrix. If ocean currents are
neglected, Equation (6.112) reduces to

(MRB + MA)︸ ︷︷ ︸
M

ν̇ + (C∗
RB + C∗

A + D)︸ ︷︷ ︸
N

ν = τ + τwind + τwave (6.113)
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The expressions for C∗
RB and C∗

A are computed using the selection matrix L given by (3.63). This gives

C∗
RB = UMRBL

=

⎡
⎣ 0 0 0

0 0 mU

0 0 mxgU

⎤
⎦ (6.114)

C∗
A = UMAL

=

⎡
⎣ 0 0 0

0 0 −Yv̇U

0 0 −YṙU

⎤
⎦ (6.115)

such that

⎡
⎣m − Xu̇ 0 0

0 m − Yv̇ mxg − Yṙ

0 mxg − Nv̇ Iz − Nṙ

⎤
⎦

⎡
⎣ u̇

v̇

ṙ

⎤
⎦

+

⎡
⎣−Xu 0 0

0 −Yv (m − Yv̇)U − Yr

0 −Nv (mxg − Yṙ)U − Nr

⎤
⎦

⎡
⎣ u

v

r

⎤
⎦ =

⎡
⎣ τ1

τ2

τ6

⎤
⎦

Notice that surge is assumed to be decoupled from the sway–yaw subsystem.



7
Models for Ships, Offshore
Structures and Underwater
Vehicles

This chapter presents hydrodynamic models for ships, offshore structures and underwater vehicles. The
foundation for the models are the kinematic equations (Chapter 2), rigid-body kinetics (Chapter 3),
hydrostatics (Chapter 4), seakeeping theory (Chapter 5) and maneuvering theory (Chapter 6). Results
from these chapters are combined to obtain 1 DOF heading autopilot models, 3 DOF maneuvering and DP
models, 4 DOF maneuvering models that include roll and finally 6 DOF coupled models for advanced
maneuvers. The models are all expressed in a vectorial setting for effective computer simulation and
to simplify control design. Focus is made towards preservation of matrix properties such as symmetry,
skew-symmetry, positive definiteness and orthogonality, which are key elements in nonlinear control and
estimation theory.

7.1 Maneuvering Models (3 DOF)
The 3 DOF horizontal plane models for maneuvering are based on the rigid-body kinetics:

MRBν̇ + CRB(ν)ν = τRB (7.1)

where

τRB = τhyd + τhs + τwind + τwave + τ (7.2)

The hydrostatic forces τhs = 0 in the horizontal plane. From (6.102) under the assumption that ν̇c ≈ 0,
it follows that

τhyd = −MAν̇ − CA(νr)νr − D(νr)νr (7.3)

Combining (7.1), (7.2) and (7.3) gives

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6
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η̇ = J�(η)ν (7.4)

Mν̇ + CRB(ν)ν + N(νr)νr = τ + τwind + τwave (7.5)

where

N(νr) := CA(νr) + D(νr) (7.6)

Moreover, added mass Coriolis and centripetal terms together with hydrodynamic damping terms are
collected into the matrix N(νr). This is convenient since it is difficult to distinguish terms in CA(νr)
with similar terms in D(νr). Hence, only the sum of these terms is used in the model in order to avoid
overparametrization.

In the case of ocean currents it is possible to express (7.5) using only the relative velocity vector νr and
thus avoiding terms in ν. In order to do this, CRB(ν) must be parametrized independent of linear velocity,
for instance by using (3.57). Hence, it follows from Property 8.1 in Section 8.3 that (7.5) can be rewritten as

Mν̇r + C(νr)νr + D(νr)νr︸ ︷︷ ︸
N(νr )νr

= τ + τwind + τwave (7.7)

where

M = MA + MRB (7.8)

C(νr) = CA(νr) + CRB(νr) (7.9)

In this representation the generalized velocity νr is the only velocity vector while (7.5) uses both ν

and νr .

3 DOF System Matrices

Since the horizontal motion of a ship or semi-submersible is described by the motion components in
surge, sway and yaw, the state vectors are chosen as ν = [u, v, r]� and η = [N, E, ψ]� (see Figure 7.1).
This implies that the dynamics associated with the motion in heave, roll and pitch are neglected, that is
w = p = q = 0. For the horizontal motion of a vessel the kinematic equations of motion reduce from
the general 6 DOF expression (2.18) to one principal rotation about the z axis:

J�(η)
3 DOF= R(ψ) =

⎡
⎣ cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1

⎤
⎦ (7.10)

It is also common to assume that the craft has homogeneous mass distribution and xz-plane symmetry
such that

Ixy = Iyz = 0 (7.11)
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Figure 7.1 Displacement vessel where the horizontal plane model can be used for DP and maneuvering.

Let the {b}-frame coordinate origin be set in the centerline of the craft at the point CO, such that yg = 0.
Under the previously stated assumptions, matrices (3.44) and (3.60) associated with the rigid-body
kinetics reduce to

MRB =

⎡
⎣m 0 0

0 m mxg

0 mxg Iz

⎤
⎦ (7.12)

CRB(ν) =

⎡
⎣ 0 0 −m(xgr + v)

0 0 mu

m(xgr + v) −mu 0

⎤
⎦ (7.13)

Notice that surge is decoupled from sway and yaw in MRB due to symmetry considerations of the system
inertia matrix (see Section 3.3). It is assumed that the added mass matrix is computed in CO. This allows
for the following reduction of (6.38) and (6.45):

MA =

⎡
⎣−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Yṙ −Nṙ

⎤
⎦ (7.14)

CA(ν) =

⎡
⎣ 0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

⎤
⎦ (7.15)
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where M = M�, CRB(ν) = −C�
RB(ν) and CA(ν) = −CA(ν)�. Hence,

M =

⎡
⎣m − Xu̇ 0 0

0 m − Yv̇ mxg − Yṙ

0 mxg − Yṙ Iz − Nṙ

⎤
⎦ (7.16)

We will now derive the expressions for N(νr) in (7.6) as a function of CA(νr) and D(νr).

7.1.1 Nonlinear Maneuvering Models based on Surge Resistance
and Cross-Flow Drag

If we use the surge resistance and cross-flow drag models in Section 6.4, the N(νr) matrix in the maneu-
vering model (7.6) can be expanded as

N(νr)νr = CA(νr)νr + Dνr + d(νr) (7.17)

where νr = ν − νc is the relative velocity vector and

CA(νr) =

⎡
⎣ 0 0 Yv̇vr + Yṙr

0 0 −Xu̇ur

−Yv̇vr − Yṙr Xu̇ur 0

⎤
⎦ (7.18)

D =

⎡
⎣−Xu 0 0

0 −Yv −Yr

0 −Nv −Nr

⎤
⎦ (7.19)

d(νr) =

⎡
⎢⎢⎣

1
2 ρS(1 + k)Cnew

f (ur)|ur|ur

1
2 ρ
∫ Lpp/2

−Lpp/2
T (x)C2D

d (x)|vr + xr|(vr + xr) dx

1
2 ρ
∫ Lpp/2

−Lpp/2
T (x)C2D

d (x)x|vr + xr|(vr + xr) dx

⎤
⎥⎥⎦ (7.20)

The linear damper D in this expression is important for low-speed maneuvering and stationkeeping while
the term d(νr) dominates at higher speeds. Linear damping also guarantees that the velocity converges
exponentially to zero.

7.1.2 Nonlinear Maneuvering Models based on Second-order
Modulus Functions

The idea of using second-order modulus functions to describe the nonlinear dissipative terms in N(νr)
dates back to Fedyaevsky and Sobolev (1963). Within this framework, a simplified form of Norrbin’s
nonlinear model (Norrbin, 1970), which retains the most important terms for steering and propulsion
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loss assignment, has been proposed by Blanke (1981). This model corresponds to fitting the cross-flow
drag integrals (6.91) and (6.92) to second-order modulus functions:1

N(νr)νr = CA(νr)νr + D(νr)νr

=

⎡
⎣ Yv̇vrr + Y ṙr

2

−Xu̇urr

(Xu̇ − Yv̇)urvr − Yṙurr

⎤
⎦

⎛
⎝alternatively:

⎡
⎣ Xvrvrr + Xrrr

2

Yururr

Nuvurvr + Nururr

⎤
⎦
⎞
⎠

+

⎡
⎣ −X|u|u |ur| ur

−Y |v|v|vr|vr − Y|v|r|vr|r − Yv|r|vr|r| − Y |r|r|r|r|
−N |v|v|vr|vr − N|v|r|vr|r − Nv|r|vr|r| − N |r|r|r|r|

⎤
⎦

or

N(νr)νr =

⎡
⎣ −X|u|u |ur| ur + Yv̇vrr + Y ṙr

2

−Xu̇urr − Y |v|v|vr|vr − Y|v|r|vr|r − Yv|r|vr|r| − Y |r|r|r|r|
(Xu̇ − Yv̇)urvr − Yṙurr − N |v|v|vr|vr − N|v|r|vr|r − Nv|r|vr|r| − N |r|r|r|r|

⎤
⎦ (7.21)

From this expression it is seen that

CA(νr) =

⎡
⎣ 0 0 Yv̇vr + Yṙr

0 0 −Xu̇ur

−Yv̇vr − Yṙr Xu̇ur 0

⎤
⎦ (7.22)

D(νr) =

⎡
⎣−X|u|u |ur| 0 0

0 −Y |v|v |vr| −Y |r|v |r| −Y |v|r |vr| −Y |r|r |r|
0 −N |v|v |vr| −N |r|v |r| −N |v|r |vr| −N |r|r |r|

⎤
⎦ (7.23)

Recall that D(νr) = D + Dn(νr). However, linear potential damping and skin friction D are neglected
in (7.21) since the nonlinear quadratic terms Dn(νr) dominate at higher speeds (see Figure 7.2). This is
a good assumption for maneuvering while stationkeeping models should include a nonzero D.

Figure 7.2 shows the significance of the linear and quadratic terms for different ship speeds. It is
recommended to use different damping models depending on the regime of the control system. In many
cases, it is important to include both linear and quadratic damping, since only quadratic damping in the
model will cause oscillatory behavior at low speed. The main reason is that linear damping is needed
for exponential convergence to zero. For marine craft operating in waves, linear damping will always be
present due to potential damping and linear skin friction (Faltinsen and Sortland, 1987). For large ships
Blanke (1981) suggests simplifying (7.23) according to

Dn(νr) =

⎡
⎣−X|u|u |ur| 0 0

0 −Y |v|v |vr| −Y |v|r |vr|
0 −N |v|v |vr| −N |v|r |vr|

⎤
⎦ (7.24)

1 The CA terms can also be denoted as Xvrvrr, Xrrr
2, Yururr, Nuvurvr and Nururr. If these terms are experimentally

obtained, viscous effects will be included in addition to the potential coefficients Yv̇, Xu̇ and Yṙ.
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Figure 7.2 Linear and quadratic damping and their speeds regimes. Notice that the linear part goes to
zero for higher speeds.

This gives

N(νr) = CA(νr) + D(νr) (7.25)

=

⎡
⎣ −X|u|u |ur| 0 Yv̇vr + Yṙr

0 −Y |v|v |vr| −Xu̇ur−Y |v|r |vr|
−Yv̇vr − Yṙr Xu̇ur−N |v|v |vr| −N |v|r |vr|

⎤
⎦

7.1.3 Nonlinear Maneuvering Models based on Odd Functions

So far, we have discussed nonlinear maneuvering models based on first principles such as surge resistance
and cross-flow drag, which have been approximated by second-order modulus functions (see Fedyaevsky
and Sobolev, 1963; Norrbin, 1970). In many cases a more pragmatic approach is used for curve fitting of
experimental data (Clarke, 2003). This is typically done by using Taylor series of first- and second-order
terms (Abkowitz, 1964) to describe the nonlinear terms in N(νr).
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The Nonlinear Model of Abkowitz (1964)

One of the standard nonlinear ship models in the literature is that of Abkowitz (1964). Consider the
nonlinear rigid-body kinetics:

MRBν̇ + CRB(ν)ν = τRB (7.26)

with external forces and moment:

τRB = [X(x), Y (x), N(x)]� (7.27)

where

x = [u, v, r, u̇, v̇, ṙ, δ]� (7.28)

and δ is the rudder angle. Based on these equations, Abkowitz (1964) proposed a third-order truncated
Taylor-series expansion of the functions X(x), Y (x) and N(x) at

xo = [U, 0, 0, 0, 0, 0, 0]� (7.29)

This gives

X(x) ≈ X(x0) +
n∑

i=1

(
∂X(x)

∂xi

∣∣∣∣
x0

�xi + 1

2

∂2X(x)

(∂xi)2

∣∣∣∣
x0

�x2
i + 1

6

∂3X(x)

(∂xi)3

∣∣∣∣
x0

�x3
i

)

Y (x) ≈ Y (x0) +
n∑

i=1

(
∂Y (x)

∂xi

∣∣∣∣
x0

�xi + 1

2

∂2Y (x)

(∂xi)2

∣∣∣∣
x0

�x2
i + 1

6

∂3Y (x)

(∂xi)3

∣∣∣∣
x0

�x3
i

)

N(x) ≈ Z(x0) +
n∑

i=1

(
∂N(x)

∂xi

∣∣∣∣
x0

�xi + 1

2

∂2N(x)

(∂xi)2

∣∣∣∣
x0

�x2
i + 1

6

∂3N(x)

(∂xi)3

∣∣∣∣
x0

�x3
i

)

where �x = x − x0 = [�x1, �x2, . . . , �x7]�. Unfortunately, a third-order Taylor-series expansion re-
sults in a large number of terms. By applying some physical insight, the complexity of these expressions
can be reduced. Abkowitz (1964) makes the following assumptions:

1. Most ship maneuvers can be described by a 3rd-order truncated Taylor expansion about the
steady state condition u = u0.

2. Only 1st-order acceleration terms are considered.
3. Standard port/starboard symmetry simplifications except terms describing the constant force

and moment arising from single-screw propellers.
4. The coupling between the acceleration and velocity terms is negligible.

Simulations of standard ship maneuvers show that these assumptions are quite good. Applying these
assumptions to the expressions X(x), Y (x) and N(x) yields

X = X∗ + Xu̇u̇ + Xu�u + Xuu�u2 + Xuuu�u3 + Xvvv
2 + Xrrr

2 + Xδδδ
2

+ Xrvδrvδ + Xrδrδ + Xvδvδ + Xvvuv
2�u + Xrrur

2�u + Xδδuδ
2�u

+ Xrvurvu + Xrδurδ�u + Xvδuvδ�u
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Y = Y ∗ + Yu�u + Yuu�u2 + Yrr + Yvv + Yṙṙ + Yv̇v̇ + Yδδ + Yrrrr
3 + Yvvvv

3

+ Yδδδδ
3 + Yrrδr

2δ + Yδδrδ
2r + Yrrvr

2v + Yvvrv
2r + Yδδvδ

2v + Yvvδv
2δ + Yδvrδvr

+ Yvuv�u + Yvuuv�u2 + Yrur�u + Yruur�u2 + Yδuδ�u + Yδuuδ�u2

N = N∗ + Nu�u + Nuu�u2 + Nrr + Nvv + Nṙṙ + Nv̇v̇ + Nδδ + Nrrrr
3 + Nvvvv

3

+ Nδδδδ
3 + Nrrδr

2δ + Nδδrδ
2r + Nrrvr

2v + Nvvrv
2r + Nδδvδ

2v + Nvvδv
2δ

+ Nδvrδvr + Nvuv�u + Nvuuv�u2 + Nrur�u + Nruur�u2 + Nδuδ�u

+ Nδuuδ�u2 (7.30)

The hydrodynamic derivatives (7.30) are defined using the notation

F ∗ = F (x0), Fxi
= ∂F (x)

∂xi

∣∣∣∣
x0

Fxixj
= 1

2

∂2F (x)

∂xi∂xj

∣∣∣∣
x0

, Fxixjxk
= 1

6

∂3F (x)

∂xi∂xj∂xk

∣∣∣∣
x0

where F ∈ {X, Y, N}.

PMM Models

The hydrodynamic coefficients can be experimentally determined by using a planar-motion-mechanism
(PMM) system, which is a device for experimentally determining the hydrodynamic derivatives required
in the equations of motion. This includes coefficients usually classified into the three categories of static
stability, rotary stability and acceleration derivatives. The PMM device is capable of oscillating a ship (or
submarine) model while it is being towed in a testing tank. The forces are measured on the scale model
and fitted to odd functions based on Taylor-series expansions. The resulting model is usually referred to
as the PMM model and this model is scaled up to a full-scale ship by using Froude number similarity.
This ensures that the ratio between the inertial and gravitational forces is kept constant.

7.1.4 Linearized Maneuvering Models

For marine craft moving at constant (or at least slowly varying) forward speed,

U =
√

u2 + v2 ≈ u (7.31)

The 3 DOF maneuvering model of Section 7.1.1 can be decoupled in a forward speed (surge) model and
a sway–yaw subsystem for maneuvering.

Forward Speed Model (Surge Subsystem)

Starboard–port symmetry implies that surge is decoupled from sway and yaw. Hence, the surge equation
in Section 7.1.1 can be written in component form as
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(m − Xu̇)u̇ − Xuur − X|u|u |ur| ur = τ1 (7.32)

where τ1 is the sum of control and external forces in surge.

Linearized Maneuvering Model (Sway–Yaw Subsystem)

The linearized maneuvering model known as the potential theory representation can be written (Fossen,
1994, Clarke and Horn, 1997)

Mν̇ + N(uo)νr = bδ (7.33)

where νr = [vr, r]� and δ is the rudder angle. This is based on the assumptions that the cruise speed

u = uo ≈ constant (7.34)

and that vr and r are small. The ocean current force is included as a linear term N(uo)[vc, 0]�. The
potential theory representation is obtained by extracting the 2nd and 6th rows in CRB(ν) and CA(ν),
Equations (3.60) and (6.45), with u = uo, resulting in

C(ν)ν ≈
[

(m − Xu̇)uor

(m − Yv̇)uov + (mxg − Yṙ)uor − (m − Xu̇)uov

]

=
[

0 (m − Xu̇)uo

(Xu̇ − Yv̇)uo (mxg − Yṙ)uo

][
v

r

]
(7.35)

Linear damping in sway and yaw takes the following form:

D =
[ −Yv −Yr

−Nv −Nr

]
(7.36)

Assuming that the ship is controlled by a single rudder:

τ = bδ

=
[ −Yδ

−Nδ

]
δ (7.37)

and that N(uo) contains the speed-dependent terms from C(ν) and the linear damper D, finally gives

M =
[

m − Yv̇ mxg − Yṙ

mxg − Yṙ Iz − Nṙ

]
(7.38)
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N(uo) =
[ −Yv (m − Xu̇)uo − Yr

(Xu̇ − Yv̇)uo − Nv (mxg − Yṙ)uo − Nr

]
(7.39)

b =
[ −Yδ

−Nδ

]
(7.40)

Comment 7.1
Davidson and Schiff (1946) assumed that the hydrodynamic forces τRB are linear in δ, ν̇ and ν (linear
strip theory) such that

τRB = −
[

Yδ

Nδ

]
︸ ︷︷ ︸

b

δ +
[

Yv̇ Yṙ

Nv̇ Nṙ

]
︸ ︷︷ ︸

MA

ν̇ +
[

Yv Yr

Nv Nr

]
︸ ︷︷ ︸

D

νr (7.41)

This gives

N(uo) =
[ −Yv muo − Yr

−Nv mxguo − Nr

]
(7.42)

Notice that the Munk moment (Xu̇ − Yv̇)uov is missing in the yaw equation when compared to (7.39).
This is a destabilizing moment known from aerodynamics which tries to turn the craft; see Faltinsen
(1990, pp. 188–189). Also notice that the less important terms Xu̇uor and Yṙuor are removed from N

when compared to (7.39). All missing terms terms are due to the CA(ν) matrix, which is omitted in the
linear expression (7.41). Consequently, it is recommended to use (7.39), which includes the terms from
the CA(νr) matrix.

Hydrodynamic Derivatives

The hydrodynamic derivatives in (7.38) and (7.39) are related to the zero-speed potential coefficients
according to

−Yv̇ = A22(0) −Nv̇ = A62(0)

−Yṙ = A26(0) −Nṙ = A66(0)

−Yv = B22(0) + B22v −Nv = B62(0) + B62v

−Yr = B26(0) + B26v −Nr = B66(0) + B66v

(7.43)

where the subscript v for the B elements denotes the viscous contribution.

7.2 Autopilot Models for Heading Control (1 DOF)
Model-based heading controllers for marine craft are usually based on the model representation of Nomoto
et al. (1957).The Nomoto autopilot model can be derived from the linearized maneuvering model, as
explained below.

7.2.1 Second-Order Nomoto Model (Yaw Subsystem)

A linear autopilot model for heading control can be derived from the maneuvering model

Mν̇ + N(uo)ν = bδ (7.44)
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by choosing the yaw rate r as output:

r = c�ν, c� = [0, 1] (7.45)

Hence, application of the Laplace transformation yields

r

δ
(s) = K(1 + T3s)

(1 + T1s)(1 + T2s)
(7.46)

A similar expression is obtained for the sway motion:

v

δ
(s) = Kv(1 + Tvs)

(1 + T1s)(1 + T2s)
(7.47)

where Kv and Tv differ from K and T3 in the yaw equation.
Equation (7.46) is referred to as Nomoto’s second-order model (Nomoto et al., 1957).

7.2.2 First-Order Nomoto Model (Yaw Subsystem)

The first-order Nomoto model is obtained by defining the equivalent time constant:

T := T1 + T2 − T3 (7.48)

such that

r

δ
(s) = K

(1 + Ts)
(7.49)

Finally, ψ̇ = r yields

ψ

δ
(s) = K

s(1 + Ts)
(7.50)

which is the transfer function that is used in most commercial autopilot systems.

Time-Domain Representations of the First- and Second-Order Nomoto Models

The time-domain representation for Nomoto’s second-order model becomes

T1T2ψ
(3) + (T1 + T2)ψ̈ + ψ̇ = K(δ + T3δ̇) (7.51)

which can be approximated by

T ψ̈ + ψ̇ = Kδ (7.52)

The accuracy of the first-order Nomoto model when compared to the second-order model is illustrated
in Example 7.1 where a course stable cargo ship and a course unstable oil tanker are considered (see
Section 12.1.1).
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Matlab

function nomoto(T1,T2,T3,K)

% NOMOTO(T1,T2,T3,K) generates the Bode plots for

%

% K K (1+T3s)

% H1(s) = —————— H2(s) = ———————————————

% (1+Ts)s s(1+T1s)(1+T2s)

%

% Author: Thor I. Fossen

T = T1+T2-T3;

d1 = [T 1 0]; n1 = K;

d2 = [T1*T2 T1+T2 1 0]; n2 = K*[T3 1];

[mag1,phase1,w] = bode(n1,d1);

[mag2,phase2] = bode(n2,d2,w);

% shift ship phase with 360 deg for course unstable ship

if K < 0,

phase1 = phase1-360;

phase2 = phase2-360;

end

clf,subplot(211),semilogx(w,20*log10(mag1)),grid

xlabel(’Frequency [rad/s]’),title(’Gain [dB]’)

hold on,semilogx(w,20*log10(mag2),’–’),hold off

subplot(212),semilogx(w,phase1),grid

xlabel(’Frequency [rad/s]’),title(’Phase [deg]’)

hold on,semilogx(w,phase2,’–’),hold off

Example 7.1 (Frequency Response for Nomoto First- and Second-Order Models)
Consider a Mariner class cargo ship (Chislett and Strøm-Tejsen, 1965a) and a fully loaded tanker
(Dyne and Trägårdh, 1975) given by the parameters in Table 7.1. The Bode diagram is generated
by using the MSS toolbox commands:

T1=118; T2=7.8; T3=18.5; K=0.185;

nomoto(T1, T2, T3, K)

T1=-124.1; T2=16.4; T3=46.0; K=-0.019;

nomoto(T1, T2, T3, K)

It is seen from Figure 7.3 that the first-order approximation is quite accurate up to 0.1 rad/s for the
cargo ship and the tanker. A small deviation in the phase around 0.5 rad/s is observed. This is due
to the cancelation of the sway dynamics.
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Table 7.1 Parameters for a cargo ship and a fully loaded oil tanker

L(m) u0(m/s) ∇(dwt) K(1/s) T1(s) T2(s) T3(s)

Cargo ship 161 7.7 16622 0.185 118.0 7.8 18.5
Oil tanker 350 8.1 389100 −0.019 −124.1 16.4 46.0

Figure 7.3 First-order and second-order Nomoto transfer functions for a course-stable Mariner class
cargo ship and a course-unstable oil tanker.

7.2.3 Nonlinear Extensions of Nomoto’s Model

The linear Nomoto model can be extended to include nonlinear effects by adding a static nonlinearity to
describe the maneuvering characteristics.

Nonlinear Extension of Nomoto’s First-Order Model

In Norrbin (1963) the following first-order model was proposed:

T ṙ + HN (r) = Kδ (7.53)

HN (r) = n3r
3 + n2r

2 + n1r + n0 (7.54)

where HN (r) is a nonlinear function. For HN (r) = r, the linear model (7.52) is obtained.
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Nonlinear Extension of Nomoto’s Second-Order Model

Bech and Wagner Smith (1969) propose a second-order model:

T1T2r̈ + (T1 + T2)ṙ + KHB(r) = K(δ + T3δ̇) (7.55)

HB(r) = b3r
3 + b2r

2 + b1r + b0 (7.56)

where HB(r) can be found from Bech’s reverse spiral maneuver. The linear equivalent (7.51) is obtained
for HB(r) = r.

The linear and nonlinear maneuvering characteristics are shown in Figure 12.12 in Section 12.1.2.
They are generated by solving for r as a function of δ using the steady-state solutions of (7.53) or (7.55):

HN (r) = Kδ, HB(r) = δ (7.57)

The nonlinear maneuvering characteristics can also be generated from full-scale maneuvering tests. For
stable ships both the Bech and Dieudonne spiral tests can be applied, while the Bech spiral is the only
one avoiding the hysteresis effect for course-unstable ships; see Section 12.1.2 for details.

For a course-unstable ship, b1 < 0, whereas a course-stable ship satisfies b1 > 0. A single-screw
propeller or asymmetry in the hull will cause a nonzero value of b0. Similarly, symmetry in the hull
implies that b2 = 0. Since a constant rudder angle is required to compensate for constant steady-state
wind and current forces, the bias term b0 could conveniently be treated as an additional rudder off set.
This in turn implies that a large number of ships can be described by the polynomial

HB(r) = b3r
3 + b1r (7.58)

The coefficients bi (i = 0, . . . , 3) are related to those in Norrbin’s model ni (i = 0, . . . , 3) by

ni = bi

|b1| (7.59)

resulting in

HN (r) = n3r
3 + n1r (7.60)

This implies that n1 = 1 for a course-stable ship and n1 = −1 for a course-unstable ship.

7.2.4 Pivot Point (Yaw Rotation Point)

When turning a ship it is important to know at which point the ship turns about. This rotation point or
pivot point in yaw is defined as follows:

Definition 7.1 (Pivot Point)
A ship’s pivot point xp is a point on the centerline measured from the CG about which the ship
turns. Consequently, it has no sideways movement (Tzeng, 1998a):

vp/n = vg/n + xpr ≡ 0 (7.61)
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and vg/n is the sway velocity of CG with respect to {n}. The pivot point will scribe the ship’s
turning circle.

It is possible to compute the pivot point for a turning ship online by measuring the velocity vg/n(t) in
the CG and the turning rate r(t). From (7.61) it follows that

xp(t) = −vg/n(t)

r(t)
, r(t) /= 0 (7.62)

This expression is not defined for a zero yaw rate corresponding to a straight-line motion. This means
that the pivot point is located at infinity when moving on a straight line or in a pure sway motion.

It is well known to the pilots that the pivot point of a turning ship is located at about 1/5 to 1/4 ship
length aft of bow (Tzeng, 1998a). The location of the pivot point of a rudder controlled ship is related to
the ratio of the sway-rudder and yaw-rudder gain coefficients. This can be explained by considering the
linearized maneuvering equations in the steady state. From (7.46) and (7.47) we have

v

r
= Kv(1 + Tvs)

K(1 + T3s)

s=0= Kv

K
(7.63)

Consequently, the steady-state location of the pivot point is given by

xp(s,s) = −Kv

K
(7.64)

This expression can also be related to the hydrodynamic derivatives according to

xp(s,s) = −NrYδ − (Yr − mu0)Nδ

YvNδ − NvYδ

(7.65)

Notice that xp(s,s) depends on the forward speed u0. The nondimensional form becomes (see
Section 7.2.5)

x′
p(s,s) = xp(s,s)

Lpp

= −N ′
rY

′
δ − (Y ′

r − m′u′
0)N ′

δ

Y ′
vN

′
δ − N ′

vY
′
δ

(7.66)

Example 7.2 (Pivot Point for the Mariner Class Vessel)
Consider the Mariner Class vessel (Chislett and Strøm-Tejsen, 1965b) where the nondimensional
linear maneuvering coefficients for u0 = 7.175 m/s (15 knots) are given as

Y ′
v = −1160 × 10−5 N ′

v = −264 × 10−5

Y ′
r − m′u′

0 = −499 × 10−5 N ′
r = −166 × 10−5

Y ′
δ = 278 × 10−5 N ′

δ = −139 × 10−5
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Figure 7.4 Location of the pivot point for the Mariner Class vessel.

The Mariner Class vessel is programmed in the MSS toolbox file mariner.m. The nondimensional pivot
point is computed from (7.66). This gives

x′
p(s,s) = 0.4923 (7.67)

or

xp(s,s) = 0.4923Lpp (7.68)

where Lpp = 160.93 m is the length between the perpendiculars AP and FP. The overall length is
Loa = 171.8 m. The pivot point xp(s,s) is located ahead of the CG. Since the CG is located at
xg = −0.023Lpp and the bow is approximately 0.03Lpp fore of FP, the pivot point is 0.06Lpp aft of
the bow (see Figure 7.4).

7.2.5 Nondimensional Maneuvering and Autopilot Models

When designing course autopilots it is often convenient to normalize the ship steering equations of motion
such that the model parameters can be treated as constants with respect to the instantaneous speed U

defined by

U =
√

u2 + v2 =
√

(u0 + �u)2 + �v2 (7.69)

where u0 is the service speed and �u and �v are small perturbations in the surge and sway velocities,
respectively. Hence,

U ≈ u0 (7.70)

During course-changing maneuvers the instantaneous speed will decrease due to increased resistance
during the turn.

The most commonly used normalization forms for marine craft are the prime system of SNAME (1950)
and the bis system of Norrbin (1970).

Prime System: This system uses the craft’s instantaneous speed U, the length L = Lpp (the length
between the fore and aft perpendiculars), the time unit L/U and the mass unit 1/2ρL3 or 1/2ρL2T

as normalization variables. The latter is inspired by wing theory, where the reference area A = LT is
used instead of A = L2. The prime system cannot be used for low-speed applications such as dynamic
ship positioning, since normalization of the velocities u, v and w implies dividing by the cruise speed
U, which can be zero for a dynamically positioned ship. As a consequence, the prime system is mostly
used in ship maneuvering.

Bis System: This system can be used for zero-speed as well as high-speed applications since division
of speed U is avoided. The bis system is based on the use of the length L = Lpp, with the time unit



Autopilot Models for Heading Control (1 DOF) 149

Table 7.2 Normalization variables used for the prime and bis systems

Unit Prime system I Prime system II Bis system
Length L L L

Mass 1
2 ρL3 1

2 ρL2T μρ∇
Inertia moment 1

2 ρL5 1
2 ρL4T μρ∇L2

Time L

U

L

U

√
L/g

Reference area L2 LT μ 2∇
L

Position L L L

Angle 1 1 1
Linear velocity U U

√
Lg

Angular velocity U

L

U

L

√
g/L

Linear acceleration U2

L

U2

L
g

Angular acceleration U2

L2
U2

L2
g

L

Force 1
2 ρU2L2 1

2 ρU2LT μρg∇
Moment 1

2 ρU2L3 1
2 ρU2L2T μρg∇L

√
L/g such that speed becomes

√
Lg > 0. In addition, the body mass density ratio μ = m/ρ∇, where

m is the mass unit and ∇ is the hull contour displacement, is applied. The density ratio μ takes the
following values:

μ < 1 Underwater vehicles (ROVs, AUVs and submarines)
μ = 1 Floating ships/rigs and neutrally buoyant underwater vehicles
μ > 1 Heavy torpedoes (typically μ = 1.3–1.5)

The normalization variables for the prime and bis systems are given in Table 7.2. The nondimensional
quantities will be distinguished from those with dimension by applying the notation (·)′ for the prime
system and (·)′′ for the bis system.

Example 7.3 (Normalization of Parameters)
The hydrodynamic coefficient Yr can be made nondimensional by using the prime and bis sys-
tems. First, let us determine the dimension of Yr. Consider

Y︸︷︷︸
[N=kgm/s2]

= Yr︸︷︷︸
[unknown]

r︸︷︷︸
[rad/s]

Hence, the unknown dimension must be kg m/s since rad is a nondimensional unit. The nondimensional
values Y ′

r and Y ′′
r are found by using kg, m and s from Table 7.2. Consequently,

Y ′
r = Yr[

1
2 ρL3
]

[L]

[L/U]

= 1
1
2 ρL3U

Yr (7.71)

Y ′′
r = Yr

[μρ∇][L]√
L/g

= 1

μρ∇√
Lg

Yr (7.72)

For a floating ship, Y ′′
r can be further simplified since μ = 1 and m = ρ∇. Hence,

Y ′′
r = 1

m
√

Lg
Yr (7.73)
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Example 7.4 (Normalization of States and Parameters)
Consider the linear maneuvering model (7.33). Normalization according to the prime
system suggests

M ′ν̇′ + N ′(u′
0)ν′ = b′δ′ (7.74)

where ν′ = [v′, r′]� and

M ′ =
[

m′ − Y ′
v̇ m′x′

g − Y ′
ṙ

m′x′
g − N ′

v̇ I ′
z − N ′

ṙ

]
, b′ =

[ −Y ′
δ

−N ′
δ

]
, N ′(u′

0) =
[ −Y ′

v m′u′
0 − Y ′

r

−N ′
v m′x′

gu
′
0 − N ′

r

]
where

u′
0 = u0

U
≈ 1, for �u ≈ 0 and �v ≈ 0 (7.75)

The nondimensional velocities and control input can be transformed to its dimensional values by

v = Uv′, r = U

L
r′, δ = δ′ (7.76)

6 DOF Normalization Procedure

A systematic procedure for 6 DOF normalization is found by defining a transformation matrix:

T = diag

{
1, 1, 1,

1

L
,

1

L
,

1

L

}
(7.77)

T −1 = diag{1, 1, 1, L, L, L} (7.78)

Consider the nondimensional MIMO model (see Example 7.4)

M ′ν̇′ + N ′ν′ + G′η′ = τ ′ (7.79)

When designing marine craft simulators and gain-scheduled controllers it is convenient to perform the
numerical integration in real time using dimensional time. Consequently, it is convenient to use the
nondimensional hydrodynamic coefficients as input to the simulator or controller, while the states ν, η

and input τ should have their physical dimensions. For the prime system this is obtained by applying the
following transformation to (7.79):

M ′
(

L

U2
T −1ν̇

)
+ N ′

(
1

U
T −1ν

)
+ G′

(
1

L
T −1η

)
= 1

1
2 ρU2L2

Tτ (7.80)

such that

(TM ′T −1)ν̇ +
(

U

L

)
(TN ′T −1)ν +

(
U

L

)2

(TG′T −1)η = 1
1
2 ρL3

T 2τ (7.81)

Hence,

M = ρL3

2
T −2(TM ′T −1),

N = ρL2U

2
T −2(TN ′T −1),

G = ρLU2

2
T −2(TG′T −1)
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Table 7.3 6 DOF normalization variables

Prime system Bis system

Acceleration ν̇ = U2

L
T ν̇′ ν̇ = g T ν̇′′

Velocity ν = U Tν′ ν = √
Lg Tν′′

Position/attitude η = L Tη′ η = L Tη′′

Control forces/moments τ = 1
2 ρU2L2 T −1τ ′ τ = μρg∇ T −1τ ′′

Notice that ν, η and the input vector τ now have physical dimensions while M ′, N ′ and G′ are nondi-
mensional. Similarly, bis system scaling with μ = 1 gives

(TM ′′T −1)ν̇ +
√

g

L
(TN ′′T −1)ν + g

L
(TG′′T −1)η = 1

m
T 2τ (7.82)

Hence,

M = mT −2(TM ′′T −1),

N = m

√
g

L
T −2(TN ′′T −1),

G = m
g

L
T −2(TG′′T −1)

The 6 DOF normalization procedure is summarized in Table 7.3. The following example demonstrates
this for a linearized maneuvering model.

Example 7.5 (Normalization of Parameters while keeping the Actual States)
Consider the model in Example 7.4:

M ′ν̇′ + N ′(u′
0)ν′ = b′δ′ (7.83)

Transforming the states ν′ and control input δ′ in (7.80) to dimensional quantities yields

(TM ′T −1)ν̇ + U

L
(TN ′(u′

0)T −1)ν = U2

L
Tb′δ (7.84)

where

T = diag{1, 1/L} (7.85)

Notice that δ = δ′. Expanding (7.84) yields[
m′

11 Lm′
12

1
L
m′

21 m′
22

][
v̇

ṙ

]
+ U

L

[
n′

11 Ln′
12

1
L
n′

21 n′
22

][
v

r

]
= U2

L

[
b′

1
1
L

b′
2

]
δ (7.86)

where m′
ij , d ′

ij and b′
i are defined according to prime systems I or II in Table 7.2.

Example 7.6 (Normalization Procedure for the Nomoto Time and Gain Constants)
The gain and time constants in Nomoto’s first- and second-order models can be made invariant
with respect to L and U by using

K′ = (L/U) K, T ′ = (U/L) T (7.87)
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This suggests that the first-order ship dynamics can be expressed as

(L/U) T ′ ṙ + r = (U/L) K′ δ (7.88)

or

ṙ = −
(

U

L

) 1

T ′ r +
(

U

L

)2 K′

T ′ δ (7.89)

This representation is quite useful since the nondimensional gain and time constants will typically be in
the range 0.5 < K′ < 2 and 0.5 < T ′ < 2 for most ships. An extension to Nomoto’s second-order model
is obtained by writing

(L/U)2 T ′
1 T ′

2 ψ(3) + (L/U) (T ′
1 + T ′

2) ψ̈ + ψ̇ = (U/L) K′ δ + K′ T ′
3 δ̇ (7.90)

where the nondimensional time constants T ′
i are defined as T ′

i = Ti (U/L) for (i = 1, 2, 3) and the nondi-
mensional gain constant is K′ = (L/U) K.

7.3 DP Models (3 DOF)
Models for dynamic positioning (DP) are derived under the assumption of low speed. The DP models are
valid for stationkeeping and low-speed maneuvering up to approximately 2 m/s, as indicated by the speed
regions shown in Figure 7.2. This section presents a nonlinear DP model based on current coefficients
and linear exponential damping that can be used for accurate simulation and prediction. In addition to
this, a linearized model intended for controller–observer design is derived.

Consider the nonlinear model:

η̇ = R(ψ)ν (7.91)

Mν̇ + CRB(ν)ν + N(νr)νr = τ + τwind + τwave (7.92)

where

N(νr)νr := CA(νr)νr + D(νr)νr (7.93)

The state vectors are ν = [u, v, r]� and η = [N, E, ψ]�. This implies that the dynamics associated with
the motion in heave, roll and pitch are neglected, that is w = p = q = 0.

The rotation, mass and Coriolis–centripetal matrices for DP are

R(ψ) =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦ (7.94)

M =

⎡
⎣m − Xu̇ 0 0

0 m − Yv̇ mxg − Yṙ

0 mxg − Yṙ Iz − Nṙ

⎤
⎦ (7.95)
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CRB(ν) =

⎡
⎣ 0 0 −m(xgr + v)

0 0 mu

m(xgr + v) −mu 0

⎤
⎦ (7.96)

Notice that surge is decoupled from sway and yaw is due to symmetry considerations of the system inertia
matrix (Section 3.3). It is assumed that the added mass matrix is computed in CO. The expression for
N(νr) will depend on how the dissipative forces are modeled. This is the topic for the next sections.

7.3.1 Nonlinear DP Model using Current Coefficients

For low-speed applications such as DP, ocean currents and damping can be modeled by three current
coefficients CX, CY and CN . These can be experimentally obtained using scale models in wind tunnels.
The resulting forces are measured on the model, which is restrained from moving (U = 0). The current
coefficients can also be related to the surge resistance, cross-flow drag and the Munk moment used in
maneuvering theory. For a ship moving at forward speed U > 0, quadratic damping will be embedded in
the current coefficients if relative speed is used.

Zero-Speed Representation

In many textbooks and papers, for instance Blendermann (1994), wind and current coefficients are defined
in {b} relative to the bow using a counter clockwise rotation γc (see Figure 7.5). The current forces on a

Figure 7.5 Current speed Vc, current direction βc and current angle of attack γc relative to the bow.
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Figure 7.6 Experimental current coefficients CX, CY and CN for a tanker. Notice that γc is a counter
clockwise rotation and the angle of attack γc = 0◦ for a current in the bow.

marine craft at rest (U = 0) can be expressed in terms of the area-based current coefficients CX(γc), CY (γc)
and CN (γc) as

Xcurrent = 1

2
ρAFcCX(γc)V

2
c (7.97)

Ycurrent = 1

2
ρALcCY (γc)V

2
c (7.98)

Ncurrent = 1

2
ρALcLoaCN (γc)V

2
c (7.99)

where Vc is the speed of the ocean current. The frontal and lateral projected currents areas are denoted AFc

and ALc, respectively, while Loa is the length overall and ρ is the density of water. Typical experimental
current coefficients are shown in Figure 7.6.

Forward Speed Representation

Equations (7.97)–(7.99) only add zero-speed current forces (no damping) to the equations of motion
since they only depend on the current speed Vc. For a ship moving at relative forward speed, Ur > 0,
current forces and quadratic damping in surge and sway are given by
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Xcurrent = 1

2
ρAFcCX(γrc)V

2
rc (7.100)

Ycurrent = 1

2
ρALcCY (γrc)V

2
rc (7.101)

Ncurrent = 1

2
ρALcLoaCN (γrc)V

2
rc (7.102)

These expressions are functions of the relative speed Vrc and direction γrc:

Vrc =
√

u2
rc + v2

rc =
√

(u − uc)2 + (v − vc)2 (7.103)

γrc = −atan2(vrc, urc) (7.104)

where

uc = Vc cos(βc − ψ) (7.105)

vc = Vc sin(βc − ψ) (7.106)

are the current velocities (see Section 8.3).

Ocean Current Angle of Attack

From Figure 7.5, it is seen that the angles assosiated with an ocean current in the horizontal plane for a
marine craft at rest satisfy

γc = ψ − βc − π (7.107)

where βc is the direction of the ocean current and γc is specified relative to the bow. Hence, the velocity
components (7.105) and (7.106) can be written

uc = −Vc cos(γc) (7.108)

vc = Vc sin(γc) (7.109)

The current goes in the geographic direction βc in {n} and its magnitude is

Vc =
√

u2
c + v2

c (7.110)

Notice that for zero speed the expressions (7.103) and (7.104) become

Vrc =
√

(u − uc)2 + (v − vc)2 u=v=0= Vc (7.111)

tan(γrc) = − v − vc

u − vc

u=v=0= − vc

uc

= tan(γc) (7.112)
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This means that the angles γrc and γc as well as the speeds Vrc and Vc in general are different for U > 0.
Consequently, the geometrical relationship (7.107) shown in Figure 7.5 only holds for U = 0.

Relationship Between Current Coefficients and Surge Resistance/Cross-Flow Drag

The current coefficients can be related to the surge resistance (6.86) and cross-flow drag (6.94)–(6.95)
coefficients by assuming low speed such that u ≈ 0 and v ≈ 0. This is a good assumption for DP. From
(7.108)–(7.109) it follows that the quadratic terms are

ur |ur| ≈ −uc |−uc|
= V 2

c cos(γc)| cos(γc)| (7.113)

vr |vr| ≈ −vc |−vc|
= −V 2

c sin(γc)| sin(γc)| (7.114)

urvr ≈ ucvc

= −1

2
V 2

c sin(2γc) (7.115)

The next step is to neglect terms in r (no rotations during stationkeeping) in (6.94)–(6.95) and require
that CX, CY and CN in (7.97)–(7.99) satisfy

Xcurrent = 1

2
ρAFcCX(γc)V

2
c := X|u|u |ur| ur (7.116)

Ycurrent = 1

2
ρALcCY (γc)V

2
c := Y|v|v|vr|vr (7.117)

Ncurrent = 1

2
ρALcLoaCN (γc)V

2
c := N|v|v|vr|vr − (Xu̇ − Yv̇)urvr︸ ︷︷ ︸

Munk moment

(7.118)

for u = v = r = 0. Notice that the Munk moment (Yv̇ − Xu̇)urvr in the yaw equation is included in the
expression for Ncurrent (see Section 7.1.4). The other terms are recognized as diagonal quadratic damping
terms in D(νr).

This gives the following analytical expressions for the area-based current coefficients:

CX(γc) = −2

(−X|u|u
ρAFc

)
cos(γc)| cos(γc)| (7.119)

CY (γc) = 2

(−Y|v|v|
ρALc

)
sin(γc)| sin(γc)| (7.120)

CN (γc) = 2

ρALcLoa

(−N|v|v sin(γc)| sin(γc)| + 1

2
(Xu̇ − Yv̇)︸ ︷︷ ︸

A22−A11

sin(2γc)) (7.121)

These results are similar to Faltinsen (1990, pp. 187–188). The trigonometric functions in (7.119)–(7.121)
will be quite close to the shape of the experimental current coefficients shown in Figure 7.6. For tankers,
the current coefficients can be computed using the formulae of Leite et al. (1998) whereas the ITTC and
cross-flow drag principles are commonly used for other hull forms.
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The nonlinear DP model based on current coefficients takes the following form:

η̇ = R(ψ)ν (7.122)

Mν̇ + CRB(ν)ν + D exp(−αVrc)νr + d(Vrc, γrc) = τ + τwind + τwave (7.123)

d(Vrc, γcr) =

⎡
⎣ − 1

2 ρAFcCX(γrc)V 2
rc

− 1
2 ρALcCY (γrc)V 2

rc

− 1
2 ρALcLoaCN (γrc)V 2

rc − N|r|rr|r

⎤
⎦ (7.124)

where −N|r|r > 0 is an optional quadratic damping coefficient used to counteract the destabilizing Munk
moment in yaw since the current coefficients do not include nonlinear damping in yaw. The model also
includes an optional linear damping matrix:

D =

⎡
⎣−Xu 0 0

0 −Yv −Yr

0 −Nv −Nr

⎤
⎦ (7.125)

to ensure exponential convergence at low relative speed Vr. This is done by tuning α > 0. At higher
speeds Vrc � 0 and the nonlinear term d(Vrc, γrc) dominates over the linear term, which vanishes at
higher speeds.

It is also possible to eliminate ν in (7.123) by using Property 8.1 in Section 8.3. The key assumption
is that CRB(ν) must be parametrized according to (3.57). Hence, it follows that

Mν̇r + CRB(νr)νr + D exp(−αVrc)νr + d(Vrc, γrc) = τ + τwind + τwave (7.126)

where νr is the state vector.

7.3.2 Linearized DP Model

As shown in Section 6.4, linear damping is a good assumption for low-speed applications. Similarly, the
quadratic velocity terms given by C(νr)νr and d(Vrc, γrc) can be neglected when designing DP control
systems if the ocean currents (drift) are properly compensated for by using integral action. One way to
do this is to treat the ocean currents as a slowly varying bias vector b expressed in {n}. Hence, the relative
velocity vector νr is superfluous. The linear model is usually expressed in vessel parallel coordinates
(see Section 7.5.3):

ηp = R�(ψ)η (7.127)

such that

η̇p = ν (7.128)

Mν̇ + Dν = R�(ψ)b + τ + τwind + τwave (7.129)

ḃ = 0 (7.130)
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where

τ = Bu (7.131)

This model is intended for controller–observer design, where feedback suppresses errors due to the model
uncertainty. The control matrix B describes the thruster configuration while u is the control input vector.
Notice that the currents are assumed constant in {n} and therefore transformed to {b} by R�(ψ)b. The
position reference signals y = η are transformed to vessel parallel coordinates ηp at each time step using
(7.127). This removes the kinematic nonlinearity.

7.4 Maneuvering Models including Roll (4 DOF)
The maneuvering models presented in Section 7.1 only describe the horizontal motions (surge, sway
and yaw). These models are intended for the design and simulation of DP systems, heading autopilots,
trajectory-tracking and path-following control systems. Many vessels, however, are equipped with actu-
ators that can reduce the rolling motion. This could be anti-rolling tanks, rudders and fin stabilizers (see
Part II). In order to design a control system for roll damping, it is necessary to add the roll equation to the
horizontal plane model. Inclusion of roll means that the restoring moment due to buoyancy and gravity
must be included. The resulting model is a 4 DOF maneuvering model that includes roll (surge, sway,
roll and yaw).

The speed equation (7.32) can be decoupled from the sway, roll and yaw modes. The resulting model
takes the form

Mν̇ + N(uo)ν + Gη = τ (7.132)

where uo = constant, ν = [v, p, r]� and η = [E, φ, ψ]� are the states while τ is the control vector. For
a ship with homogeneous mass distribution and xz-plane symmetry, Ixy = Iyz = 0 and yg = 0.

From the general expressions (3.44) and (6.38) in Sections 3.3 and 6.3.1, respectively, we get (with
nonzero Ixz)

M =

⎡
⎣ m − Yv̇ −mzg − Yṗ mxg − Yṙ

−mzg − Kv̇ Ix − Kṗ −Ixz − Kṙ

mxg − Nv̇ −Ixz − Nṗ Iz − Nṙ

⎤
⎦ (7.133)

The expression for N(uo) is obtained by linearization of C(ν) and D(ν) about u = u0 which gives

N(uo) =

⎡
⎣ −Yv −Yp mu0 − Yr

−Kv −Kp −mzgu0 − Kr

−Nv −Np mxgu0 − Nr

⎤
⎦ (7.134)

Recall from Section 4.1 that the linear restoring forces and moments for a surface vessel can be written

G = diag{0, WGMT , 0} (7.135)

where W = mg is the weight and GMT is the transverse metacenter height.
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In addition to these equations, the kinematic equations (assuming q = θ = 0)

φ̇ = p (7.136)

ψ̇ = cos(φ)r ≈ r (7.137)

must be augmented to the system model. The general kinematic expressions are found in Section 2.2.1.

State-Space Model

The linearized model (7.132) together with (7.136)–(7.137) can be written in state-space form by defining
the state vector as x := [v, p, r, φ, ψ]�. The elements associated with the matrices A and B are given by

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 0

a21 a22 a23 a24 0

a31 a32 a33 a34 0

0 1 0 0 0

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x +

⎡
⎢⎢⎢⎢⎢⎣

b11 b12 · · · b1r

b21 b22 · · · b2r

b31 b32 · · · b3r

0 0 · · · 0

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u (7.138)

where the elements aij are found from

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ = −M−1N(uo) (7.139)

⎡
⎣ ∗ a14 ∗

∗ a24 ∗
∗ a34 ∗

⎤
⎦ = −M−1G (7.140)

while the elements bij depend on what type of actuators are in use. Finally, the roll and yaw outputs are
chosen as

φ = [0, 0, 0, 1, 0]︸ ︷︷ ︸
c�

roll

x (7.141)

ψ = [0, 0, 0, 0, 1]︸ ︷︷ ︸
c�

yaw

x (7.142)
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Decompositions in Roll and Sway–Yaw Subsystems

To simplify the system for further analysis, the state vector is reorganized such that state variables
associated with the steering and roll dynamics are separated. Consequently, (7.138) is rewritten as⎡

⎢⎢⎢⎣
v̇

ṙ

ψ̇

ṗ

φ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a13 0 a12 a14

a31 a33 0 a32 a34

0 1 0 0 0
a21 a23 0 a22 a24

0 0 0 1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

v

r

ψ

p

φ

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

b11 b12 · · · b1r

b31 b32 · · · b3r

0 0 · · · 0
b21 b22 · · · b2r

0 0 · · · 0

⎤
⎥⎥⎥⎦u (7.143)

Let [
ẋψ

ẋφ

]
=
[

Aψψ Aψφ

Aφψ Aφφ

][
xψ

xφ

]
+
[

Bψ

Bφ

]
u (7.144)

where xψ = [v, r, ψ]� and xφ = [p, φ]�.

If the coupling matrices are small, that is Aψφ = Aφψ = 0, the following subsystems:[
ṗ

φ̇

]
=
[

a22 a24

1 0

][
p

φ

]
+
[

b21 b22 · · · b2r

0 0 · · · 0

]
u (7.145)

and ⎡
⎣ v̇

ṙ

ψ̇

⎤
⎦ =

⎡
⎣ a11 a13 0

a31 a33 0

0 1 0

⎤
⎦
⎡
⎣ v

r

ψ

⎤
⎦+

⎡
⎣ b11 b12 · · · b1r

b31 b32 · · · b3r

0 0 · · · 0

⎤
⎦u (7.146)

will describe the ship dynamics. The last expression is recognized as the second-order Nomoto model
(7.46) with r control inputs.

Transfer Functions for Steering and Rudder-Roll Damping

The linearized model (7.143) is useful for frequency analysis of rudder-roll damping (RRD) systems. For
simplicity consider a ship with one rudder u = δ and b = [b11, b21, b31, 0, 0]�. For the state-space model
(7.143) the transfer functions φ(s)/δ(s) = c�

roll(sI − A)−1b and ψ(s)/δ(s) = c�
yaw(sI − A)−1b become

φ

δ
(s) = b2s

2 + b1s + b0

s4 + a3s3 + a2s2 + a1s + a0
≈ Kroll ω2

roll (1 + T 5s)

(1 + T 4s)(s
2 + 2ζωrolls + ω2

roll)︸ ︷︷ ︸
no coupling between roll and sway–yaw

(7.147)

ψ

δ
(s) = c3s

3 + c2s
2 + c1s + c0

s(s4 + a3s3 + a2s2 + a1s + a0)
≈ Kyaw (1 + T 3s)

s(1 + T 1s)(1 + T 2s)︸ ︷︷ ︸
no coupling between roll and sway–yaw

(7.148)

where the decoupled models (7.145) and (7.146) have been applied. In most cases, this approximation
is only rough so care should be taken. In Figure 7.7 it is seen that the phase of the roll transfer function
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Figure 7.7 Transfer functions for the roll and sway–yaw subsystems corresponding to the Son and
Nomoto container ship.

is inaccurate for the decoupled model. This can be improved by using a model reduction via a balanced
state-space realization (see modred.m and ssbal.m in Matlab).

Also, parametric investigations show that cross-couplings between steering and roll might give robust
performance problems of RRD control systems (Blanke and Christensen, 1993). This is also documented
in Blanke (1996), who has identified the ship parameters for several loading conditions during sea trials
with a series of ships. The results clearly reveal changes in the dynamics between the different ships in
the series, indicating that there is a robustness problem due to changes in load conditions and rudder
shape. Nonlinear effects also give rise to the same problem. Identification of ship steering-roll models
are discussed by Blanke and Tiano (1997). The interested reader is also advised to consult Van der Klugt
(1987) for a discussion of decoupled linear models for RRD, while nonlinear models are presented in
Section 7.4.1.

Example 7.7 (Roll and Sway–Yaw Transfer Functions)
The roll and yaw transfer functions corresponding to the model of Son and Nomoto (1981) are
plotted in Figure 7.7 using the MSS toolbox file ExRRD1.m. The plots show both the full state-space
model (7.138) and the decoupled models (7.145)–(7.146). The model considered is a container ship of
length L = 175 m and with a displacement volume of 21 222 m3. The ship is moving at service speed
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u0 = 7.0 m/s. The model of Son and Nomoto (1981) is based on a third-order Taylor-series expansion
(see Section 7.1.3) of the hydrodynamic forces including higher-order restoring terms replacing (7.135).
The nonlinear model is included in the MSS toolbox under the file name container.m while a linearized
version of this model is found in Lcontainer.m. The nonlinear model is described more closely in the
next section. The numerical values for the transfer functions are

φ

δ
(s) = 0.0032(s − 0.036)(s + 0.077)

(s + 0.026)(s + 0.116)(s2 + 0.136s + 0.036)

≈ 0.083(1 + 49.1s)

(1 + 31.5s)(s2 + 0.134s + 0.033)
(7.149)

and

ψ

δ
(s) = 0.0024(s + 0.0436)(s2 + 0.162s + 0.035)

s(s + 0.0261)(s + 0.116)(s2 + 0.136s + 0.036)

≈ 0.032(1 + 16.9s)

s(1 + 24.0s)(1 + 9.2s)
(7.150)

corresponding to

ωroll = 0.189 rad/s (7.151)

ζ = 0.36 (7.152)

It is seen that the amplitudes of the roll and yaw models are quite close. However, the decoupled model
in roll does not describe the phase with sufficient accuracy, so stability problems could be an issue when
designing a model-based RRD. The main reason for this is that one pole–zero pair is omitted in the
decoupled roll model. Since this is a right-half-plane zero,

z = 0.036 rad/s (7.153)

the pole–zero pair gives an additional phase lag of −180 degrees, as observed in the plot of
the full model. This will of course result in serious stability problems when trying to damp the
roll motion.

In practice it will be difficult to design an RRD for this system since the controller should reduce
the energy at the peak frequency ωroll = 0.189 rad/s which is much higher than the right-half-plane
zero z = 0.036 rad/s. This is a nonminimum phase property which cannot be changed with feed-
back (recall that only poles and not zeros can be moved using feedback control). The nonminimum
phase characteristic is observed as an inverse response in roll when a step input is applied (see
Figure 7.8).

The plots in Figure 7.8 are generated by simulating the nonlinear model of Son and Nomoto
(see ExRRD3.m). The nonminimum phase behavior due to the right-half-plane zero is discussed in
more detail by Fossen and Lauvdal (1994), where both linear and nonlinear analyses of the models
of Son and Nomoto are considered. The nonlinear equivalent to a right-half-plane zero is unstable
zero dynamics.
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Figure 7.8 Roll angle 10φ̇ and yaw angle ψ versus time for a 10 degree rudder step in 50 s. Notice the
inverse response in roll and speed reduction during turning.

7.4.1 The Nonlinear Model of Son and Nomoto

A nonlinear model including roll for a high-speed container ship has been proposed by Son and Nomoto
(1981, 1982):

(m + mx)u̇ − (m + my)vr = X + τ1 (7.154)

(m + my)v̇ + (m + mx)ur + myαyṙ − mylyṗ = Y + τ2 (7.155)

(Ix + Jx)ṗ − mylyv̇ − mxlxur = K − WGMT φ + τ4 (7.156)

(Iz + Jz)ṙ + myαyv̇ = N − xgY + τ6 (7.157)

where mx = A11(0), my = A22(0), Jx = A44(ωroll) and Jz = A66(0) denote the added mass and added
moments of inertia. The control inputs are recognized as τ = [τ1, τ2, τ4, τ6]�. The added mass x
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coordinates of mx and my are denoted by αx and αy, while lx and ly are the added mass z coordinates of
mx and my, respectively.

The terms on the right-hand side of (7.154)–(7.157) are defined in terms of a third-order Taylor series
expansion where small coefficients are neglected. The remaining terms are

X = X(u) + (1 − t)T + Xvrvr + Xvvv
2 + Xrrr

2 + Xφφφ
2 + Xδ sin δ + Xext (7.158)

Y = Yvv + Yrr + Yφφ + Ypp + Yvvvv
3 + Yrrrr

3 + Yvvrv
2r + Yvrrvr

2

+Yvvφv
2φ + Yvφφvφ

2 + Yrrφr
2φ + Yrφφrφ

2 + Yδ cos δ + Yext (7.159)

K = Kvv + Krr + Kφφ + Kpp + Kvvvv
3 + Krrrr

3 + Kvvrv
2r + Kvrrvr

2

+Kvvφv
2φ + Kvφφvφ

2 + Krrφr
2φ + Krφφrφ

2 + Kδ cos δ + Kext (7.160)

N = Nvv + Nrr + Nφφ + Npp + Nvvvv
3 + Nrrrr

3 + Nvvrv
2r + Nvrrvr

2

+Nvvφv
2φ + Nvφφvφ

2 + Nrrφr
2φ + Nrφφrφ

2 + Nδ cos δ + Next (7.161)

where X(u) is usually modeled as quadratic drag X(u) = X|u|u|u|u and the subscript ext denotes external
forces and moments due to wind, waves and ocean currents.

Matlab
The models of Son and Nomoto (1981) are implemented in the MSS toolbox as

[xdot,U] = container(x,ui)

The linearized model for U = U0 is accessed as

[xdot,U] = Lcontainer(x,ui,U0)

where x=[u v r x y psi p phi delta]’and ui=[delta c n c]’. In the linear case only
one input, delta c, is used since the forward speed UO is constant. For the nonlinear model,
propeller rpm, n c, should be positive.

7.4.2 The Nonlinear Model of Blanke and Christensen

An alternative model formulation describing the steering and roll motions of ships has been proposed by
Blanke and Christensen (1993). This model is written as

Mν̇ + CRB(ν)ν + Gη = τhyd + τwind + τwave + τ (7.162)

where ν = [v, p, r]�, τhyd = [Y, K, N]� and

M =

⎡
⎣ m − Yv̇ −mzg − Yṗ mxg − Yṙ

−mzg − Kv̇ Ix − Kṗ 0

mxg − Nv̇ 0 Iz − Nṙ

⎤
⎦ (7.163)
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CRB(ν) =

⎡
⎣ 0 0 mu

0 0 0

−mu 0 0

⎤
⎦ (7.164)

G =

⎡
⎣ 0 0 0

0 −Kφ 0

0 0 0

⎤
⎦ (7.165)

The hydrodynamic forces in τhyd include both damping and hydrodynamic Coriolis and centripetal terms:

Y = Y|u|v|u|v + Yurur + Yv|v||v|v + Yv|r|v|r| + Y|v|r|v|r
+Yφ|uv|φ|uv| + Yφ|ur|φ|ur| + Yφuuφu2 + Yext (7.166)

K = K|u|v|u|v + Kurur + Kv|v||v|v + Kv|r|v|r| + K|v|r|v|r
+Kφ|uv|φ|uv| + Kφ|ur|φ|ur| + Kφuuφu2 + K|u|p|u|p
+Kp|p|p|p| + Kpp + Kφφφφ

3 + Kext (7.167)

N = N|u|v|u|v + N|u|r|u|r + Nr|r||r|r + Nv|r|v|r| + N|v|r|v|r
+Nφ|uv|φ|uv| + Nφ|ur|φ|ur| + Npp + N|p|p|p|p + N|u|p|u|p
+Nφu|u|φ|u|u| + Next (7.168)

where the forces and moments associated with the roll motion are assumed to involve the square terms of
the surge speed u2 and |u|u. The terms Yext, Kext and Next consist of possible contributions from external
disturbances while control inputs such as rudders, propellers and bow thrusters are included in τ.

7.4.3 Nonlinear Model Based on Low-Aspect Ratio Wing Theory

In Ross (2008), the ship is modeled as a low-aspect ratio wing. This approach is well suited to derive a
physical model structure that can best describe the nonlinear damping forces acting on a marine craft.
The parameters of the model must, however, be found by curve fitting the simulated response to time
series, for instance by using system identification. In this approach, the lift and drag are derived from
two coefficients: namely the lift and drag coefficients, respectively. The resulting expressions are

XLD = XL
uuu

2 + XL
uuuu

3 + XL
vvv

2 + XL
rrr

2 + XL
rvrv + XL

uvvuv2

+XL
rvurvu + XL

urrur2 + XL
vvφφv

2φ2 + XL
vrφφvrφ

2 + XL
rrφφr

2φ2︸ ︷︷ ︸
�XLD

(7.169)

YLD = YL
uvuv + YL

urur + YL
uuru

2r + YL
uuvu

2v + YL
vvvv

3 + YL
rrrr

3

+YL
rrvr

2v + YL
vvrv

2r + YL
uvφφuvφ2 + YL

urφφurφ2︸ ︷︷ ︸
�YLD

(7.170)

KLD = YLDzcp

= KL
uvuv + KL

urur + KL
uuru

2r + KL
uuvu

2v + KL
vvvv

3

+KL
rrrr

3 + KL
rrvr

2v + KL
vvrv

2r + KL
uvφφuvφ2 + KL

urφφurφ2 (7.171)
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NLD = YLDxcp

= NL
uvuv + NL

urur + NL
uuru

2r + NL
uuvu

2v + NL
vvvv

3

+NL
rrrr

3 + NL
rrvr

2v + NL
vvrv

2r + NL
uvφφuvφ2 + NL

urφφurφ2 (7.172)

where (xcp, zcp) defines the location of the center of pressure. The roll angle influence on lift and drag is
modeled by

�XLD = XL
vvφφv

2φ2 + XL
vrφφvrφ

2 + XL
rrφφr

2φ2 (7.173)

�YLD = YL
uvφφuvφ2 + YL

urφφurφ2 (7.174)

In addition to this, viscous roll damping is modeled by a third-order dissipative odd function:

K = −Kpp − Kpppp
3 (7.175)

The lift and drag forces are forces that arise from circulatory effects. However, since the ship hull is
being treated as a low-aspect ratio wing, it is necessary to include an additional nonlinear lift component,
with an associated induced drag term. The additional nonlinear lift forces are recognized as the cross-flow
drag terms:

Y = Y|v|v|v|v + Y|v|r|v|r + Yv|r|v|r| + Y|r|r|r|r| (7.176)

K = K|v|v|v|v + K|v|r|v|r + Kv|r|v|r| + K|r|r|r|r| (7.177)

N = N|v|v|v|v + N|v|r|v|r + Nv|r|v|r| + N|r|r|r|r| (7.178)

which were derived in Section 6.4.3.
The resulting damping matrix is

D (ν) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−XL
uuu − XL

uuuu
2

−XL
rvurv

−XL
vvv − XL

rvr

−XL
uvvuv − XL

vvφφvφ
2

−XL
vrφφrφ

2

−YL
uvφφvφ

2−YL
urφφrφ

2
−YL

uvu − YL
uuvu

2−YL
vvvv

2

−YL
rrvr

2−Y |v|v |v| −Yv|r| |r|

−KL
uvφφvφ

2−KL
urφφrφ

2
−KL

uvu − KL
uuvu

2−KL
vvvv

2

−KL
rrvr

2−K|v|v |v| −Kv|r| |r|

−NL
uvφφvφ

2−NL
urφφrφ

2
−NL

uvu − NL
uuvu

2−NL
vvvv

2

−NL
rrvr

2−N |v|v |v| −Nv|r| |r|

0 −XL
rrr − XL

urrur − XL
rrφφrφ

2

0
−YL

uru − YL
uuru

2−YL
rrrr

2

−YL
vvrv

2−Y |v|r |v| −Y |r|r |r|

−Kp−Kpppp
2

−KL
uru − KL

uuru
2−KL

rrrr
2

−KL
vvrv

2−K|v|r |v| −K|r|r |r|

0
−NL

uru − NL
uuru

2−NL
rrrr

2

−NL
vvrv

2−N |v|r |v| −N |r|r |r|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.179)

The 4 DOF equations of motion are

Mν̇ + CRB(ν)ν + CA(ν)ν + D(ν)ν + Gη = τ + τwind + τwave (7.180)
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where

M =

⎡
⎢⎢⎣

m − Xu̇ 0 0 0

0 m − Yv̇ −mzg−Yṗ mxg−Y ṙ

0 −mzg−Kv̇ Ix−Kṗ 0

0 mxg−Nv̇ 0 Iz−Nṙ

⎤
⎥⎥⎦ (7.181)

CRB(ν) =

⎡
⎢⎢⎣

0 0 mzgr −m(xgr + v)

0 0 0 mu

−mzgr 0 0 0

m(xgr + v) −mu 0 0

⎤
⎥⎥⎦ (7.182)

CA(ν) =

⎡
⎢⎢⎣

0 0 0 Yv̇v

0 0 0 −Xu̇u

0 0 0 Yv̇v

−Yv̇v Xu̇u −Yv̇v 0

⎤
⎥⎥⎦ (7.183)

G =

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 −Kφ 0

0 0 0 0

⎤
⎥⎥⎦ (7.184)

7.5 Equations of Motion (6 DOF)
Ship models are usually reduced-order models for control of the horizontal plane motions (surge, sway
and yaw) in combination with roll if roll damping is an issue. Semi-submersible control systems are also
designed for the stabilization of the horizontal plane motions, but for these types of vessels it is also
of interest to simulate the heave, roll and pitch motions during critical operations such as drilling. The
rolling and pitching of a semi-submersible can also be stabilized by using the thrusters located on the
pontoons since these have large moment arms that produce restoring moments. The 3 and 4 DOF models
in the previous sections are intended for model-based control and observer design (see Section 1.1).

In this section we will discuss 6 DOF models, which are useful for prediction, simulation and control
of marine craft performing coupled motions. A 6 DOF model is usually implemented in a computer to
describe all dynamics effects as accurately as possible. This is referred to as the simulation model; see
Figure 1.4 in Section 1.1. The simulation model should be able to reconstruct the time responses of the
physical system. Model-based controllers and observers, however, can be designed using reduced-order
or simplified models. For marine craft with actuation in all DOFs, such as underwater vehicles, a model-
based controller and observer design requires a 6 DOF model, while ship and semi-submersible control
systems can be designed using a 3 or 4 DOF model.

7.5.1 Nonlinear 6 DOF Vector Representations in BODY and NED

When designing feedback control systems it can be advantageous to formulate the equations of mo-
tion in both the {b} and {n} frames in order to exploit physical properties of the model. This section
includes nonlinear transformations that can be used to represent the equations of motion in different
reference frames.
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Equations of Motion Expressed in BODY

Consider the nonlinear equations of motion expressed in {b} with νc = 0:

η̇ = J k(η)ν (7.185)

Mν̇ + C(ν)ν + D(ν)ν + g(η) + go = τ + τwind + τwave (7.186)

where

M = MRB + MA (7.187)

C(ν) = CRB(ν) + CA(ν) (7.188)

D(ν) = D + Dn(ν) (7.189)

The expressions for η and J k(η) depend on the kinematic representation. Three different choices for J k(η)
will be presented where the subscript k ∈ {�, q, r} denotes the Euler angle, quaternion and rotation matrix
representation, respectively.

Equations of Motion Expressed in NED

The equations of motion (7.186) when transformed to {n} take the following form:

M∗(η)η̈ + C∗(ν, η)η̇ + D∗(ν, η)η̇ + g∗(η) + g∗
o(η) = τ∗ + τ∗

wind + τ∗
wave (7.190)

where the expressions for M∗, C∗(ν, η), D∗(ν, η), g∗(η), g∗
o(η), τ∗, τ∗

wind, τ
∗
wave and the associated kine-

matic transformations depend on how attitude is represented. Three different choices are outlined below:

1. Positions and Euler Angles (k = �): The Euler angle representation (2.40) is based on the three
parameters φ, θ and ψ. This gives

J�(η) :=
[

Rn
b(�nb) 03×3

03×3 T �(�nb)

]
, J−1

� (η) =
[

Rn
b(�nb)� 03×3

03×3 T −1
� (�nb)

]
(7.191)

where η := [N, E, D, φ, θ, ψ]�. The representation singularity at θ /= ± π/2 in the expression for T �

implies that the inverse matrix J−1
� (η) does not exist at this value. The transformation is as follows:

η̇ = J�(η)ν ⇐⇒ ν = J−1
� (η)η̇

η̈ = J�(η)ν̇ + J̇�(η)ν ⇐⇒ ν̇ = J−1
� (η)[η̈ − J̇�(η)J−1

� (η)η̇]
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and

M∗(η) = J−�
� (η)MJ−1

� (η)

C∗(ν, η) = J−�
� (η)[C(ν) − MJ−1

� (η)J̇�(η)]J−1
� (η)

D∗(ν, η) = J−�
� (η)D(ν)J−1

� (η)

g∗(η) + g∗
o(η) = J−�

� (η)[g(η) + go]

τ∗ + τ∗
wind + τ∗

wave = J−�
� (η)(τ + τwind + τwave) (7.192)

2. Positions and Quaternions (k = q): The quaternion representation (2.69) avoids the singular points
θ /= ± π/2 by using four parameters (unit quaternions) η, ε1, ε2 and ε3 to represent attitude:

Jq(η) :=
[

Rn
b(q) 03×3

04×3 T q(q)

]
, J †

q(η) =
[

Rn
b(q)� 03×4

04×3 4T �
q (q)

]
(7.193)

Notice that pseudo-inverse J †
q(η) is computed using the left Moore–Penrose pseudo-inverse and by

exploiting the property T �
q (q)T q(q) = 1/4I3×3. Moreover, the left inverse of T q(q) is

T †
q(q) = (T �

q (q)T q(q)
)−1

T �
q (q)

= 4T �
q (q) (7.194)

For this case, η := [N, E, D, η, ε1, ε1, ε1]� and

η̇ = Jq(η)ν ⇐⇒ ν = J †
q(η)η̇

η̈ = Jq(η)ν̇ + J̇q(η)ν ⇐⇒ ν̇ = J †
q(η)[η̈ − J̇q(η)J †

q(η)η̇]

and

M∗(η) = J †
q(η)�MJ †

q(η)

C∗(ν, η) = J †
q(η)�[C(ν) − MJ †

q(η)J̇q(η)]J †
q(η)

D∗(ν, η) = J †
q(η)�D(ν)J †

q(η)

g∗(η) + g∗
o(η) = J †

q(η)�[g(η) + go]

τ∗ + τ∗
wind + τ∗

wave = J †
q(η)�(τ + τwind + τwave) (7.195)

3. Positions and Angular Rates (k = r): A singularity free three-parameter transformation based on
the rotation matrix Rn

b(�nb) and its inverse Rn
b(�nb)−1 = Rn

b(�nb)� is

J r(η) :=
[

Rn
b(�nb) 03×3

03×3 Rn
b(�nb)

]
, J−1

r (η) = J�
r (η) (7.196)

where the last three states are angular rates expressed in {n}. This gives

η̇ = J r(η)ν ⇐⇒ ν = J�
r (η)η̇

η̈ = J r(η)ν̇ + J̇ r(η)ν ⇐⇒ ν̇ = J�
r (η)
[
η̈ − J̇ r(η)J�

r (η)η̇
]
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and

M∗(η) = J r(η)MJ�
r (η)

C∗(ν, η) = J r(η)[C(ν) − MJ r(η)J̇ r(η)]J�
r (η)

D∗(ν, η) = J r(η)D(ν)J�
r (η)

g∗(η) + g∗
o(η) = J r(η)[g(η) + go]

τ∗ + τ∗
wind + τ∗

wave = J r(η)(τ + τwind + τwave) (7.197)

The following properties hold for the body-fixed vector representation:

Property 7.1 (System Inertia Matrix M)
For a rigid body the system inertia matrix is positive definite and constant, that is

M = M� > 0, Ṁ = 0

where M is defined as

M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m − Xu̇ −Xv̇ −Xẇ

−Xv̇ m − Yv̇ −Yẇ

−Xẇ −Yẇ m − Zẇ

−Xṗ −mzg−Yṗ myg−Zṗ

mzg−Xq̇ −Yq̇ −mxg−Zq̇

−myg−Xṙ mxg−Y ṙ −Zṙ

−Xṗ mzg−Xq̇ −myg−Xṙ

−mzg−Yṗ −Yq̇ mxg−Y ṙ

myg−Zṗ −mxg−Zq̇ −Zṙ

Ix−Kṗ −Ixy−Kq̇ −Izx−Kṙ

−Ixy−Kq̇ Iy−Mq̇ −Iyz−Mṙ

−Izx−Kṙ −Iyz−Mṙ Iz−Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Property 7.2 (Coriolis and Centripetal Matrix C)
For a rigid body moving through an ideal fluid the Coriolis and centripetal matrix C(ν) can
always be parameterized such that it is skew-symmetric, that is

C(ν) = −C�(ν), ∀ν ∈ R6

Proof. C(ν) is skew-symmetric under the assumptions that the matrices CRB(ν) and CA(ν) are skew-
symmetric.

For the vector representation in {n} it is straightforward to show that:

1. M∗(η) = M∗(η)� > 0
2. s�[Ṁ

∗
(η) − 2C∗(ν, η)]s = 0

3. D∗(ν, η) > 0
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since M = M� > 0 and Ṁ = 0. It should be noted that C∗(ν, η) will not be skew-symmetrical although
C(ν) is skew-symmetrical.

Example 7.8 (Lyapunov Analysis exploiting MIMO Model Properties)
Consider the following model:

η̇ = J k(η)ν (7.198)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (7.199)

where J k(η) can be represented by J�(η), Jq(η) or J r(η). The obvious Lyapunov function candidate is
based on kinetic and potential energy:

V = 1

2
ν�Mν + 1

2
η�Kpη (7.200)

where Kp = K�
p > 0 is a constant gain matrix. Since M = M� > 0 and Ṁ = 0, it follows that

V̇ = ν�Mν̇ + η�Kpη̇

= ν�Mν̇ + η�KpJ k(η)ν

= ν�[Mν̇ + J�
k (η)Kpη] (7.201)

Substituting (7.199) into the expression for V̇ gives

V̇ = ν�[τ − C(ν)ν − D(ν)ν − g(η) + J�
k (η)Kpη] (7.202)

Since ν�C(ν)ν ≡ 0 and ν�D(ν)ν > 0, we can choose the control law of PD type according to

τ = g(η) − Kdν − J�
k (η)Kpη (7.203)

with Kd > 0 such that

V̇ = −ν�[Kd + D(ν)]ν

≤ 0 (7.204)

Consequently, GAS follows from Krasowskii–LaSalle’s theorem if J k(η) is nonsingular (see
Appendix A.1).

7.5.2 Symmetry Considerations of the System Inertia Matrix

We have seen that the 6 DOF nonlinear equations of motion, in their most general representation, require
that a large number of hydrodynamic derivatives are known. From a practical point of view this is an
unsatisfactory situation. However, the number of unknown parameters can be drastically reduced by
using body symmetry conditions.

In general MA and MRB will be a full matrices in CO. Let

M = MRB + MA, M = M� > 0

From the definitions of MA and MRB it is straightforward to verify the following cases (notice that
mij = mji):
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(i) xy plane of symmetry (bottom/top symmetry):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 0 0 0 m16

m21 m22 0 0 0 m26

0 0 m33 m34 m35 0

0 0 m43 m44 m45 0

0 0 m53 m54 m55 0

m61 m62 0 0 0 m66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(ii) xz plane of symmetry (port/starboard symmetry):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11 0 m13 0 m15 0

0 m22 0 m24 0 m26

m31 0 m33 0 m35 0

0 m42 0 m44 0 m46

m51 0 m53 0 m55 0

0 m62 0 m64 0 m66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(iii) yz plane of symmetry (fore/aft symmetry):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11 0 0 0 m15 m16

0 m22 m23 m24 0 0

0 m32 m33 m34 0 0

0 m42 m43 m44 0 0

m51 0 0 0 m55 m56

m61 0 0 0 m65 m66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(iv) xz and yz planes of symmetry (port/starboard and fore/aft symmetries):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11 0 0 0 m15 0

0 m22 0 m24 0 0

0 0 m33 0 0 0

0 m42 0 m44 0 0

m51 0 0 0 m55 0

0 0 0 0 0 m66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

More generally, the resulting inertia matrix for a body with ij and jk planes of symmetry is formed
by the intersection Mij∩jk = Mij ∩ Mjk.

(v) xz, yz and xy planes of symmetry (port/starboard, fore/aft and bottom/top symmetries):

M = diag{m11, m22, m33, m44, m55, m66}
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7.5.3 Linearized Equations of Motion (Vessel Parallel Coordinates)

The following assumption will be applied when deriving the linearized equations of motion:

Assumption 7.1 (Small Roll and Pitch Angles)
The roll and pitch angles

φ, θ are small (7.205)

These are good assumptions for marine craft where the pitch and roll motions are limited, that is highly
metacentric stable craft.

Vessel Parallel Coordinate System

When deriving the linearized equations of motion it is convenient to introduce a vessel parallel coordinate
system obtained by rotating the body axes an angle ψ about the z axis at each time step. Assumption 7.1
implies that

η̇ = J�(η)ν
φ=θ=0≈ P(ψ)ν (7.206)

where

P(ψ) =
[

R(ψ) 03×3

03×3 I3×3

]
(7.207)

and R(ψ) = Rz,ψ is the rotation matrix in yaw.

Definition 7.2 (Vessel Parallel Coordinate System)
The vessel parallel (VP) coordinate system is defined as

ηp := P�(ψ)η (7.208)

where ηp is the NED position and attitude vector expressed in {b} and P(ψ) is given by (7.207). Notice
that P�(ψ)P(ψ) = I6×6.

Low-Speed Applications (Stationkeeping)

It is convenient to express the kinematic equations of motion in VP coordinates when using linear theory.
From Definition 7.2 it is seen that

η̇p = Ṗ�(ψ)η + P�(ψ)η̇

= Ṗ�(ψ)P(ψ)ηp + P�(ψ)P(ψ)ν

= rSηp + ν (7.209)



174 Models for Ships, Offshore Structures and Underwater Vehicles

where r = ψ̇ and

S =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (7.210)

For low-speed applications r ≈ 0. Hence, (7.209) reduces to six pure integrators:

η̇p ≈ ν (7.211)

This model is useful since it is linear in ν. In fact, this is the main idea for using VP coordinates in ship
and rig control designs.

The gravitational and buoyancy forces can also be expressed in terms of VP coordinates. For small
angles φ and θ it is seen that (see Section 4.1)

g(η)
φ=θ=0≈ P�(ψ)Gη = P�(ψ)GP(ψ)︸ ︷︷ ︸

G

ηp = Gηp (7.212)

Notice that this formula confirms that the restoring forces of a leveled floating vessel (φ = θ = 0) are
independent of the yaw angle ψ. This is illustrated by the following two examples:

Neutrally Buoyant Submersible: For a neutrally buoyant submersible (W = B) with xg = xb and
yg = yb, Assumption 7.1 implies that (see (4.10))

G = diag{0, 0, 0, 0, (zg − zb)W, (zg − zb)W, 0} (7.213)

which is independent of the yaw angle ψ. Hence, (7.213) satisfies (7.212).
Surface Vessel: For a surface vessel, G is defined by (4.26). Thanks to the special structure of

G =

⎡
⎢⎢⎢⎢⎢⎣

02×2 02×3

0

0

03×2 G{3,4,5} 0

0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , G{3,4,5} =

⎡
⎣ −Zz 0 −Zθ

0 −Kφ 0

−Mz 0 −Mθ

⎤
⎦ (7.214)

it is again seen that P�(ψ)GP(ψ) ≡ G.

Assumption 7.1 for low-speed applications ν ≈ 0 implies that the nonlinear Coriolis, centripetal,
damping, restoring and buoyancy forces and moments can be linearized about ν = 0 and φ = θ = 0.
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Since C(0) = 0 and Dn(0) = 0 it makes sense to approximate

Mν̇ + C(ν)ν︸ ︷︷ ︸
0

+ [D + Dn(ν)]ν︸ ︷︷ ︸
Dν

+ g(η)︸︷︷︸
Gηp

+ go = τ + τwind + τwave︸ ︷︷ ︸
w

(7.215)

which for go = 0 gives

η̇p = ν (7.216)

Mν̇ + Dν + Gηp = τ + w (7.217)

This is a linear time-invariant (LTI) state-space model

ẋ = Ax + Bu + Ew (7.218)

where x = [η�
p , ν�]�, u = τ and

A =
[

0 I

−M−1G −M−1D

]
, B =

[
0

M−1

]
, E =

[
0

M−1

]
(7.219)

The model (7.216)–(7.217) is the foundation for DP and PM control systems design (see Figure 7.9).
A linear optimal controller based on (7.216)–(7.217) is presented in Section 13.1.6 while optimal state
estimation is discussed in Section 11.3.6.

Notice that the NED positions are computed from ηp by using:

η = P(ψ)ηp (7.220)

Hence, the control system can be based on feedback from the states (ηp, ν) while η is presented to the
human operator using (7.220).

Marine Craft in Transit (Cruise Condition)

For marine craft in transit the cruise speed is assumed to satisfy

u = uo (7.221)

Figure 7.9 Transformation of desired position ηd and measured position η in a feedback control system
using vessel parallel coordinates.
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This suggests that

N(uo) = ∂

∂ν
{C(ν)ν + D(ν)ν}|ν=νo

(7.222)

where νo = [uo, 0, 0, 0, 0, 0]�. Defining �ν := ν − νo yields

η̇p = �ν + νo (7.223)

M�ν̇ + N(uo)�ν + Gηp = τ + w (7.224)

This corresponds to a linear parameter-varying (LPV) model

ẋ = A(uo)x + Bu + Ew + Fνo (7.225)

where x = [η�
p , �ν�]�, u = τ and

A(uo) =
[

0 I

−M−1G −M−1N(uo)

]
, B =

[
0

M−1

]
(7.226)

E =
[

0

M−1

]
, F =

[
I

0

]
(7.227)

The matrix A(uo) depends on the forward speed uo. This suggests that the control law for transit (ma-
neuvering) should be gain scheduled with respect to the forward speed uo. Notice that stationkeeping
resulted in an LTI model while maneuvering implies that an LPV model must be used.

7.5.4 Transforming the Equations of Motion to a Different Point

When deriving the nonlinear equations of motion it is convenient to transform inertia, damping, gravita-
tional and buoyancy forces between different points in {b} to exploit structural properties of the model.
For instance, the rigid-body translational and rotational parts of the system inertia matrix is decoupled
if the coordinate system is located in the CG while it is common to express hydrodynamic added mass
and damping in CF or a common reference point CO (see Section 2.1). This means that it is common
to solve the equations of motion in three points: CG, CF and CO, all in {b}. The main tool for this is
the system transformation matrix, which transforms the generalized velocities, accelerations and forces
between two points in the same reference frame.

System Transformation Matrix

The system transformation matrix is derived from (3.14) for an arbitrarily point P according to

vb
p/n = vb

b/n + ωb
b/n × rb

p/n

= vb
b/n − S

(
rb

p

)
ωb

b/n

= vb
b/n + S�(rb

p

)
ωb

b/n (7.228)
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Figure 7.10 Definitions of vectors and coordinate systems.

where rb
p = [xp, yp, zp]� is the vector from CO to P expressed in {b} (see Figure 7.10). For notational

simplicity, we will define rb
p := rb

p/b and rb
g := rb

cg/b.

Definition 7.3 (System Transformation Matrix)
The system transformation matrix

H(rb
p) =
[

I3×3 S�(rb
p

)
03×3 I3×3

]
, H−1

(
rb

p

) =
[

I3×3 S
(
rb

p

)
03×3 I3×3

]
(7.229)

transforms the linear and angular velocity vectors between the two points CO and P in the {b} frame:[
vb

p/n

ωb
b/n

]
= H
(
rb

p

) [ vb
b/n

ωb
b/n

]
(7.230)

�
νp = H

(
rb

p

)
ν (7.231)

Similarly, the generalized force vector τ can be transformed from CO to an arbitrary point P by[
f b

b

mb
b

]
=
[

f b
p

rb
p × f b

p + mb
p

]
=
[

I3×3 03×3

S
(
rb

p

)
I3×3

][
f b

p

mb
p

]
(7.232)

�
τ = H� (rb

p

)
τp (7.233)

Matlab
The system transformation matrix is implemented in the MSS toolbox as

function H = Hmtrx(r)

% H = HMTRX(r) % 6x6 system transformation matrix

S = Smtrx(r);

H = [eye(3) S’

zeros(3,3) eye(3) ];
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Definition 7.3 implies that the nonlinear equations of motion can be represented at an arbitrary defined
point P by using the transformation matrix H(rb

p). Consider the nonlinear equations of motion expressed
in {b} with coordinate origin CO:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (7.234)

This expression can be transformed to a point P in {b} by

H−� (rb
p

)
MH−1

(
rb

p

)︸ ︷︷ ︸
Mp

ν̇p + H−�(rb
p

)
C(ν)H−1

(
rb

p

)︸ ︷︷ ︸
Cp(ν)

νp

+ H−�(rb
p

)
D(ν)H−1

(
rb

p

)︸ ︷︷ ︸
Dp(ν)

νp + H−�(rb
p

)
g(η)︸ ︷︷ ︸

gp(η)

= H−�(rb
p

)
τ︸ ︷︷ ︸

τp

(7.235)

where

Mp = H−� (rb
p

)
MH−1

(
rb

p

)
(7.236)

Cp(ν) = H−� (rb
p

)
C(ν)H−1

(
rb

p

)
(7.237)

Dp(ν) = H−� (rb
p

)
D(ν)H−1

(
rb

p

)
(7.238)

gp(η) = H−� (rb
p

)
g(η) (7.239)

From this it follows that

M = H� (rb
p

)
MpH

(
rb

p

)
(7.240)

C(ν) = H� (rb
p

)
Cp(ν)H

(
rb

p

)
(7.241)

D(ν) = H� (rb
p

)
Dp(ν)H

(
rb

p

)
(7.242)

g(η) = H� (rb
p

)
gp(η) (7.243)

These expressions can be used to specify the inertia, damping and restoring forces in different reference
frames in order to exploit different physical properties.
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Transformation of the System Inertia Matrix

It is convenient to specify the rigid-body system inertia matrix (3.44) with respect to the CG such that

M
cg

RB =
[

mI3×3 03×3

03×3 Ig

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Icg
x −Icg

xy −Icg
zx

0 0 0 −Icg
xy Icg

y −Icg
yz

0 0 0 −Icg
zx −Icg

yz Icg
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.244)

The expression for M
cg

RB is uniquely defined by seven parameters: {m, Icg
x , Icg

y , Icg
z , −Icg

xy , −Icg
zx , −Icg

yz }. It
can be transformed to the coordinate origin CO in {b} by specifying the vector rb

p = rb
g = [xg, yg, zg]�

such that the points P and CG coincide. Accordingly, (7.240) implies that

MRB = H� (rb
g

)
M

cg

RBH
(
rb

g

) =

⎡
⎢⎣ mI3×3 −mS

(
rb

g

)
mS
(
rb

g

)
Ig − mS2

(
rb

g

)︸ ︷︷ ︸
Ib

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Izx

mzg 0 −mxg −Ixy Iy −Iyz

−myg mxg 0 −Izx −Iyz Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.245)

which is recognized as (3.44).

Matlab
The 6 × 6 rigid-body system inertia matrix MRB about an arbitrarily point ob can be computed by
using the following Matlab commands:

r g = [x g y g z g]’ % location of the CG w.r.t. to CO

I g = [ Ix -Ixy -Ixz % 3x3 inertia matrix about CG

-Ixy Iy -Iyz

-Ixz -Iyz Iz ]

MRB CG = [ m*eye(3) zeros(3,3)

zeros(3,3) I g ]

MRB = Hmtrx(r g)’*MRB CG*Hmtrx(r g)

Transformation of the Added Mass System Inertia Matrix

Hydrodynamic seakeeping programs usually compute hydrodynamic added mass in CO or CG depending
on the user specifications. Let us assume that the data have been computed in CG and that you want to
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transform the result to CO, which is the point where the equations of motion are integrated numerically.
The system inertia matrix M

cg

A is transformed to CO by choosing rb
p = rb

g in (7.240). Consequently,

MA = H� (rb
g

)
M

cg

A H
(
rb

g

)
Next, let us assume that MA is a diagonal matrix described by six parameters according to

MA = −diag{Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ} (7.246)

This is often the best estimate you have unless you are using a hydrodynamic software program that
computes a full M

cg

A matrix (see Chapter 5). If you want to solve the equations of motion in CG instead
of CO, the matrix MA can be transformed to CG by using

M
cg

A = H−� (rb
g

)
MAH−1

(
rb

g

)
Transformation of the Coriolis–Centrifugal Matrix

The Coriolis–centrifugal matrices are derived directly from MRB and MA by using the result in Theorem
3.2 or numerically in Matlab:

Matlab
The 6 × 6 Coriolis–centrifugal matrix can be computed in Matlab by using the MSS toolbox
commands:

CA = m2c(MA,nu)

CRB = m2c(MRB,nu)

Computation of the Restoring Forces and Moments

For underwater vehicles the gravitational and buoyancy forces (4.6) can be expressed in CG as

gcg(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(W − B) sin(θ)

−(W − B) cos(θ) sin(φ)

−(W − B) cos(θ) cos(φ)

ybB cos(θ) cos(φ) − zbB cos(θ) sin(φ)

−zbB sin(θ) − xbB cos(θ) cos(φ)

xbB cos(θ) sin(φ) + ybB sin(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.247)

where xb, yb and zb are the coordinates of CB with respect to CG. This expression can be transformed
from CG to CO by

g(η) = H� (rb
g

)
gcg(η) (7.248)

Matlab
The restoring forces and moments are generated in the MSS toolbox according to

g CG = gvect(W,B,theta,phi,[0,0,0]’,[xb,yb,zb]’)

g = Hmtrx(r g)’*g CG
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For floating vessels the expression (4.21) can be transformed from CF to CO. In practice, it is common
to assume that small angle (linear) theory holds. Hence,

Gcf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −Zz 0 0 0

0 0 0 −Kφ 0 0

0 0 0 0 −Mθ 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.249)

Since rf = [LCF, 0, 0]�, that is CF is located a distance LCF from CO, the restoring matrix in
CO becomes

G = H� (rb
f

)
Gcf H

(
rb

f

)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −Zz 0 LCF · Zz 0

0 0 0 −Kφ 0 0

0 0 LCF · Zz 0 −Mθ 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.250)

Matlab
The 6 × 6 system spring stiffness matrixG is computed by using the MSS toolbox function Gmtrx.m:

A wp = 1000 % water plane area

nabla = 10000 % displacement

GMT = 1 % transverse metacentric heights

GML = 2 % lateral metacentric heights

r g = [1 0 10]’ % location of CG w.r.t. CO

% Spring stiffness matrix

G = Gmtrx(nabla,A wp,GMT,GML,r g)

This produces the numerical result

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 10055250 0 −10055250 0

0 0 0 100552500 0 0

0 0 −10055250 0 211160250 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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7.5.5 6 DOF Models for AUVs and ROVs

As shown in the previous sections, the 6 DOF nonlinear equations of motion can be written

η̇ = J�(η)ν (7.251)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (7.252)

Note that:

MA = A(ω) = constant (7.253)

B(ω) = 0 (7.254)

for underwater vehicles operating below the wave-affected zone. The system inertia matrix
M = MRB + MA for an underwater vehicle follows the symmetry considerations in Section 7.5.2. If
we consider a starboard–port symmetrical marine craft with yg = Ixy = Iyz = 0, this gives

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m − Xu̇ 0 −Xẇ

0 m − Yv̇ 0

−Xẇ 0 m − Zẇ

0 −mzg−Yṗ 0

mzg−Xq̇ 0 −mxg−Zq̇

0 mxg−Y ṙ 0

0 mzg−Xq̇ 0

−mzg−Yṗ 0 mxg−Y ṙ

0 −mxg−Zq̇ 0

Ix−Kṗ 0 −Izx−Kṙ

0 Iy−Mq̇ 0

−Izx−Kṙ 0 Iz−Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Consequently, it is straightforward to compute the Coriolis and centripetal matrix C(ν) using the results
in Section 3.3 when the structure of M has been determined. In general, the damping of an underwater
vehicle moving in 6 DOF at high speed will be highly nonlinear and coupled. This could be described
mathematically as

Dn(ν)ν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

|ν|�Dn1ν

|ν|�Dn2ν

|ν|�Dn3ν

|ν|�Dn4ν

|ν|�Dn5ν

|ν|�Dn6ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.255)

where |ν| = [|u| , |v| , |w| , |p| , |q| , |r|]� and Dni (i = 1, . . . , 6) are 6 × 6 matrices. Nevertheless, one
rough approximation could be to use quadratic drag in surge and the cross-flow drag in sway and yaw
(see Section 6.4.3). Alternatively, if the vehicle is performing a noncoupled motion, it makes sense to
assume a diagonal structure of D(ν) such that

D(ν) = − diag{Xu, Yv, Zw, Kp, Mq, Nr} (7.256)

− diag{X|u|u|u|, Y|vv||v|, Z|w|w|w|, K|p|p|p|, M|q|q|q|, N|r|r|r|}
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Alternatively, the current coefficient representation in Section 7.3.1 can be used to model the damping.
This can be done by replacing Dn(ν)ν with 6 DOF current coefficients:

d(Vrc, γcr) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 ρAFc

CX(γrc)V 2
rc

− 1
2 ρALc

CY (γrc)V 2
rc

− 1
2 ρAFc

CZ(γrc)V 2
rc

− 1
2 ρALc

HLc
CK(γrc)V 2

rc

− 1
2 ρAFc

HFc
CM(γrc)V 2

rc

− 1
2 ρALc

LoaCN (γrc)V 2
rc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3DOF≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 ρAFc

CX(γrc)V 2
rc

− 1
2 ρALc

CY (γrc)V 2
rc

0

0

0

− 1
2 ρALc

LoaCN (γrc)V 2
rc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.257)

where CX, CY , CZ, CK, CM and CN are the current coefficients and HFc
and HLc

are the centroids above
the water line of the frontal and lateral projected areas AFc

and ALc
. The 6 DOF model can also be divided

into submodels, as shown in the next section.

7.5.6 Longitudinal and Lateral Models for Submarines

The 6 DOF equations of motion can in many cases be divided into two noninteracting (or lightly inter-
acting) subsystems:

• Longitudinal subsystem: states u, w, q and θ
• Lateral subsystem: states v, p, r, φ and ψ

This decomposition is good for slender symmetrical bodies (large length/width ratio) or so-called
“flying vehicles”, as shown in Figure 7.11; typical applications are aircraft, missiles and submarines
(Gertler and Hagen, 1967; Feldman, 1979; Tinker, 1982). This can also be seen from the expression of
the system inertia matrix in the case of starboard–port symmetry (see Section 7.5.2):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11 0 m13 0 m15 0

0 m22 0 m24 0 m26

m31 0 m33 0 m35 0

0 m42 0 m44 0 m46

m51 0 m53 0 m55 0

0 m62 0 m64 0 m66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.258)

Figure 7.11 Slender body submarine (large length/width ratio).
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which clearly confirms that the two subsystems

M long =

⎡
⎣m11 m13 m15

m31 m33 m35

m51 m53 m55

⎤
⎦ , M lat =

⎡
⎣m22 m24 m26

m42 m44 m46

m62 m64 m66

⎤
⎦ (7.259)

are decoupled.

Longitudinal Subsystem

Under the assumption that the lateral states v, p, r, φ are small, the longitudinal kinematics for surge,
heave and pitch are, see (2.18) and (2.28),[

Ḋ

θ̇

]
=
[

cos(θ) 0

0 1

][
w

q

]
+
[− sin(θ)

0

]
u (7.260)

For simplicity, it is assumed that higher-order damping can be neglected, that is Dn(ν) = 0. Coriolis is,
however, modeled by assuming that u � 0 and that second-order terms in v, w, p, q and r are small.
Hence, from (3.60) it is seen that

CRB(ν)ν =

⎡
⎢⎢⎢⎣

m(ygq + zgr)p − m(xgq − w)q − m(xgr + v)r

−m(zgp − v)p − m(zgq + u)q + m(xgp + ygq)r

m(xgq − w)u − m(zgr + xgp)v + m(zgq + u)w

+(Iyzq + Ixzp − Izr)p + (−Ixzr − Ixyq + Ixp)r

⎤
⎥⎥⎥⎦

such that

CRB(ν)ν ≈

⎡
⎣ 0 0 0

0 0 −mu

0 0 mxgu

⎤
⎦
⎡
⎣ u

w

q

⎤
⎦ (7.261)

Notice that CRB(ν) /= −C�
RB(ν) for the decoupled model. Assuming a diagonal MA as in Example 6.2,

the corresponding added mass terms are

CA(ν)ν =

⎡
⎣ −Zẇwq + Yv̇vr

−Yv̇vp + Xu̇uq

(Zẇ−Xu̇)uw + (Nṙ−Kṗ)pr

⎤
⎦ ≈

⎡
⎣ 0 0 0

0 0 Xu̇u

0 (Zẇ−Xu̇)u 0

⎤
⎦
⎡
⎣ u

w

q

⎤
⎦ (7.262)

According to (7.5) and (4.6) with W = B and xg = xb, the dynamics becomes

⎡
⎣ m − Xu̇ −Xẇ mzg − Xq̇

−Xẇ m − Zẇ −mxg − Zq̇

mzg − Xq̇ −mxg − Zq̇ Iy − Mq̇

⎤
⎦
⎡
⎣ u̇

ẇ

q̇

⎤
⎦ +

⎡
⎣ −Xu −Xw −Xq

−Zu −Zw −Zq

−Mu −Mw −Mq

⎤
⎦
⎡
⎣ u

w

q

⎤
⎦

+

⎡
⎣ 0 0 0

0 0 −(m − Xu̇)u

0 (Zẇ − Xu̇)u mxgu

⎤
⎦
⎡
⎣ u

w

q

⎤
⎦+

⎡
⎣ 0

0

W BGz sin(θ)

⎤
⎦ =

⎡
⎣ τ1

τ3

τ5

⎤
⎦

(7.263)
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This model is the basis for forward speed control (state u) and depth/diving autopilot design (states
w, q, θ). If the forward speed is stabilized by a forward speed controller such that

u = uo = constant (7.264)

forward speed can be eliminated from the longitudinal equations of motion such that[
m − Zẇ −mxg−Zq̇

−mxg−Zq̇ Iy−Mq̇

][
ẇ

q̇

]
+
[ −Zw −Zq

−Mw −Mq

][
w

q

]
+
[

0 −(m − Xu̇)uo

(Zẇ−Xu̇)uo mxguo

][
w

q

]

+
[

0

W BGz sin (θ)

]
=
[

τ3

τ5

]

Moreover, if ẇ = w = 0 (constant depth) and θ is small such that sin(θ) ≈ θ, the linear pitch
dynamics becomes

(Iy − Mq̇)θ̈ − Mqθ̇ + W BGzθ = τ5 (7.265)

The natural frequency and period are recognized as

ωpitch =
√

W BGz

Iy − Mq̇

(7.266)

Tpitch = 2π

ωpitch
(7.267)

Lateral Subsystem

Under the assumption that the longitudinal states u, w, p, r, φ and θ are small, the lateral kinematics, see
(7.5) and (2.28), reduce to

φ̇ = p (7.268)

ψ̇ = r (7.269)

Again it is assumed that higher-order velocity terms can be neglected so that Dn(ν) = 0 and that the
Coriolis terms in u = uo are the most important, see (3.60),

CRB(ν)ν =

⎡
⎢⎢⎢⎢⎢⎣

−m(ygp + w)p + m(zgr + xgp)q − m(ygr − u)r

−m(ygq + zgr)u + m(ygp + w)v + m(zgp − v)w

m(xgr + v)u + m(ygr − u)v − m(xgp + ygq)w

+(−Iyzq − Ixzp + Izr)q + (Iyzr + Ixyp − Iyq)r

+(−Iyzr − Ixyp + Iyq)p + (Ixzr + Ixyq − Ixp)q

⎤
⎥⎥⎥⎥⎥⎦
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Hence,

CRB(ν)ν ≈

⎡
⎣ 0 0 muo

0 0 0

0 0 mxguo

⎤
⎦
⎡
⎣ v

p

r

⎤
⎦ (7.270)

Under the assumption of a diagonal MA structure as in Example 6.2, the corresponding added mass
terms are

CA(ν)ν =

⎡
⎣ Zẇwp − Xu̇ur

(Yv̇−Zẇ)vw + (Mq̇−Nṙ)qr

(Xu̇−Yv̇)uv + (Kṗ−Mq̇)pq

⎤
⎦ ≈

⎡
⎣ 0 0 −Xu̇u

0 0 0

(Xu̇−Yv̇)u 0 0

⎤
⎦
⎡
⎣ v

p

r

⎤
⎦ (7.271)

Next, assume that W = B, xg = xb and yg = yb. Then (7.5) and (4.6) reduce to

⎡
⎣ m − Yv̇ −mzg − Yṗ mxg − Yṙ

−mzg − Yṗ Ix − Kṗ −Izx − Kṙ

mxg − Yṙ −Izx − Kṙ Iz − Nṙ

⎤
⎦
⎡
⎣ v̇

ṗ

ṙ

⎤
⎦+

⎡
⎣ −Yv −Yp −Yr

−Mv −Mp −Mr

−Nv −Np −Nr

⎤
⎦
⎡
⎣ v

p

r

⎤
⎦

+

⎡
⎣ 0 0 (m − Xu̇)u

0 0 0

(Xu̇ − Yv̇)u 0 mxgu

⎤
⎦
⎡
⎣ v

p

r

⎤
⎦+

⎡
⎣ 0

W BGz sin (φ)

0

⎤
⎦ =

⎡
⎣ τ2

τ4

τ6

⎤
⎦

(7.272)

For vehicles where ṗ and p are small (small roll motions) and the speed is u = uo, this reduces to

[
m − Yv̇ mxg−Y ṙ

mxg−Y ṙ Iz−Nṙ

][
v̇

ṙ

]
+
[ −Yv −Yr

−Nv −Nr

][
v

r

]
+
[

0 (m − Xu̇)uo

(Xu̇−Yv̇)uo mxguo

][
v

r

]
=
[

τ2

τ6

]
which is the sway–yaw maneuvering model (see Section 7.1.4). The decoupled linear roll equation under
the assumption of a small φ is

(Ix − Kṗ)φ̈ − Kpφ̇ + W BGzφ = τ4 (7.273)

From this it follows that the natural frequency and period are

ωroll =
√

W BGz

Ix − Kṗ

(7.274)

Troll = 2π

ωroll
(7.275)



8
Environmental Forces
and Moments

In Chapters 2–7 nonlinear models for marine craft in 6 DOF were derived. In this chapter, models for
environmental forces and moments are presented. These include models for:

• Wind
• Waves
• Ocean currents

The purpose of the chapter is to present models for simulation, testing and verification of feedback
control systems. Complementary textbooks on hydrodynamic modeling are Faltinsen (1990), Newman
(1977) and Sarpkaya (1981).

Superposition of Wind and Wave Disturbances

For control system design it is common to assume the principle of superposition when considering wind
and wave disturbances. For most marine control applications this is a good approximation. In general,
the environmental forces will be highly nonlinear and both additive and multiplicative to the dynamic
equations of motion. An accurate description of the environmental forces and moments are important in
vessel simulators that are produced for human operators.

In Chapter 6 it was shown that the nonlinear dynamic equations of motion can be written

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τwind + τwave︸ ︷︷ ︸
w

+ τ (8.1)

The principle of superposition suggests that the generalized wind- and wave-induced forces are added to
the right-hand side of (8.1) by defining

w := τwind + τwave (8.2)

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6
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where τwind ∈ R6 and τwave ∈ R6 represent the generalized forces due to wind and waves. Computer-
effective models for the simulation of generalized wind and wave forces are presented in Sections 8.1
and 8.2.

Equations of Relative Motion for Simulation of Ocean Currents

The forces on a marine craft due to ocean currents can be implemented by replacing the generalized
velocity vector in the hydrodynamic terms with relative velocities:

νr = ν − νc (8.3)

where νc ∈ R6 is the velocity of the ocean current expressed in {b}. The equations of motion including
ocean currents become

MRBν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body terms

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamic terms

+ g(η) + go︸ ︷︷ ︸
hydrostatic terms

= τ + w (8.4)

Notice that the rigid-body kinetics is independent of the ocean current. A frequently used simplification
is to assume that the ocean currents are irrotational and constant in {n}. In Section 8.3 it is shown that
this assumption implies that (8.4) can be transformed to

Mν̇r + C(νr)νr + D(νr)νr + g(η) + g0 = τwind + τwave + τ (8.5)

where all mass, Coriolis–centripetal and damping terms are functions of the relative acceleration and
velocity vectors only. The matrices M and C(νr) in this model become

M = MRB + MA (8.6)

C(νr) = CRB(νr) + CA(νr) (8.7)

In the linear case, Equation (8.5) reduces to

Mν̇r + Nνr + Gη + go = τ + w (8.8)

Models for simulation of ocean currents in terms of νc are presented in Section 8.3.

8.1 Wind Forces and Moments
Wind is defined as the movement of air relative to the surface of the Earth. Mathematical models of wind
forces and moments are used in motion control systems to improve the performance and robustness of
the system in extreme conditions. Models for this are presented in the forthcoming sections.

8.1.1 Wind Forces and Moments on Marine Craft at Rest

Let Vw and γw denote the wind speed and angle of attack, respectively (see Figure 8.1). The wind forces
and moments acting on a marine craft are computed using a similar approach to that of the current
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Figure 8.1 Wind speed Vw, wind direction βw and wind angle of attack γw relative to the bow.

coefficients defined in Section 7.3.1. For zero speed it is common to write

Xwind = qCX(γw)AFw (8.9)

Ywind = qCY (γw)ALw (8.10)

Zwind = qCZ(γw)AFw (8.11)

Kwind = qCK(γw)ALwHLw
(8.12)

Mwind = qCM(γw)AFwHFw
(8.13)

Nwind = qCN (γw)ALwLoa (8.14)

where HFw
and HLw

are the centroids above the water line of the frontal and lateral projected areas AFw

and ALw
, respectively, and

γw = ψ − βw − π (8.15)

where βw is the wind direction (going to) in {n} (see Figure 8.1).
The dynamic pressure of the apparent wind is

q = 1

2
ρaV

2
w (8.16)

where ρa is the air density (see Table 8.1).
The mean velocity profile satisfies a boundary-layer profile (Bretschneider, 1969):

Vw(h) = V10(h/10)α (8.17)
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Table 8.1 Air density as a function of temperature

◦C Air density, ρ (kg/m3)

−10 1.342
−5 1.317

0 1.292
5 1.269

10 1.247
15 1.225
20 1.204
25 1.184
30 1.165

where V10 is the wind velocity 10 m above the sea surface, h is the height above the sea surface and
α = 1/7. The nondimensional wind coefficients CX, CY , CZ, CK, CM and CN are usually computed using
h = 10 m as reference height. To convert the nondimensional wind coefficients to a different reference
height, the ratio between the dynamic pressures at the two heights are used:

1
2 ρaVw(h1)2

1
2 ρaVw(h2)2

= Vw(h1)2

Vw(h2)2
=

[
V10(h1/10)α

]2[
V10(h2/10)α

]2 =
(

h1

h2

)2α

(8.18)

Consequently, the nondimensional wind coefficients at height h1 can be converted to height h2 by mul-
tiplying with (

h1

h2

)2α

(8.19)

For surface ships it is common to assume that Zwind = Mwind = 0 while the roll moment Kwind is used
for ships and ocean structures where large rolling angles are an issue. For semi-submersibles both Kwind

and Mwind are needed in addition to the horizontal motion components Xwind, Ywind and Nwind.
The wind speed is usually specified in terms of Beaufort numbers, as shown in Table 8.2.

Table 8.2 Definition of Beaufort numbers (Price and Bishop, 1974)

Beaufort number Description of wind Wind speed (knots)

0 Calm 0–1
1 Light air 2–3
2 Light breeze 4–7
3 Gentle breeze 8–11
4 Moderate breeze 12–16
5 Fresh breeze 17–21
6 Strong breeze 22–27
7 Moderate gale 28–33
8 Fresh gale 34–40
9 Strong gale 41–48

10 Whole gale 49–56
11 Storm 57–65
12 Hurricane More than 65
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Wind Coefficient Approximation for Symmetrical Ships

For ships that are symmetrical with respect to the xz and yz planes, the wind coefficients for horizontal
plane motions can be approximated by

CX(γw) ≈ −cx cos(γw) (8.20)

CY (γw) ≈ cy sin(γw) (8.21)

CN (γw) ≈ cn sin(2γw) (8.22)

which are convenient formulae for computer simulations. Experiments with ships indicate that
cx ∈ {0.50, 0.90}, cy ∈ {0.70, 0.95} and cn ∈ {0.05, 0.20}. However, these values should be used
with care.

8.1.2 Wind Forces and Moments on Moving Marine Craft

For a ship moving at a forward speed, (8.9)–(8.14) should be redefined in terms of relative wind speed
Vrw and angle of attack γrw according to

τwind = 1

2
ρaV

2
rw

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CX(γrw)AFw

CY (γrw)ALw

CZ(γrw)AFw

CK(γrw)ALwHLw

CM(γrw)AFwHFw

CN (γrw)ALwLoa

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.23)

with

Vrw =
√

u2
rw + v2

rw (8.24)

γrw = −atan2(vrw, urw) (8.25)

The relative velocities are

urw = u − uw (8.26)

vrw = v − vw (8.27)

while the components of Vw in the x and y directions are (see Figure 8.1)

uw = Vw cos(βw − ψ) (8.28)

vw = Vw sin(βw − ψ) (8.29)

The wind speed Vw and its direction βw can be measured by an anemometer and a weathervane,
respectively. Anemometer is derived from the Greek word anemos, meaning wind. Anemometers can be
divided into two classes: those that measure the wind’s speed and those that measure the wind’s pressure.
If the pressure is measured, a formula relating pressure with speed must be applied.
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The wind measurements should be low-pass filtered since only the mean wind forces and moments
can be compensated for by the propulsion system. In fact, since the inertia of the craft is so large, it is
unnecessary for the control system to compensate for wind gust. In order to implement wind feedforward
compensation for a DP vessel using (8.23), only the wind coefficients CX, CY and CN are needed.
They can be experimentally obtained by using a scale model located in a wind tunnel or computed
numerically. Different models for computation of the wind coefficients for varying hull geometries will
now be discussed.

8.1.3 Wind Coefficients Based on Flow over a Helmholtz–Kirchhoff Plate

Blendermann (1994) applies a simple load concept to compute the wind coefficients. This is based on the
Helmholtz–Kirchhoff plate theory. The load functions are parametrized in terms of four primary wind load
parameters: longitudinal and transverse resistance CDl and CDt , respectively, the cross-force parameter
δ and the rolling moment factor κ. Numerical values for different vessels are given in Table 8.3.

The longitudinal resistance coefficient CDlAF
(γw) in Table 8.3 is scaled according to

CDl = CDlAF
(γw)

AFw

ALw

(8.30)

where values for two angles γw ∈ {0, π} are given. The value CDlAF
(0) corresponds to head wind

while CDlAF
(π) should be used for tail wind. By using these two values in the regions |γw| ≤ π/2

and |γw| > π/2, respectively, a nonsymmetrical wind load function for surge can be computed. More-
over, this gives different wind loads for head and tail winds, as shown in Figure 8.2. Alternatively, a
symmetrical wind profile is obtained by using CDlAF

(0) or the mean of CDlAF
(0) and CDlAF

(π).
Let the mean height of the area ALw

be denoted by

HM = ALw

Loa

(8.31)

Table 8.3 Coefficients of lateral and longitudinal resistance, cross-force and rolling moment
(Blendermann, 1994)

Type of vessel CDt CDlAF
(0) CDlAF

(π) δ κ

1. Car carrier 0.95 0.55 0.60 0.80 1.2
2. Cargo vessel, loaded 0.85 0.65 0.55 0.40 1.7
3. Cargo vessel, container on deck 0.85 0.55 0.50 0.40 1.4
4. Container ship, loaded 0.90 0.55 0.55 0.40 1.4
5. Destroyer 0.85 0.60 0.65 0.65 1.1
6. Diving support vessel 0.90 0.60 0.80 0.55 1.7
7. Drilling vessel 1.00 0.70–1.00 0.75–1.10 0.10 1.7
8. Ferry 0.90 0.45 0.50 0.80 1.1
9. Fishing vessel 0.95 0.70 0.70 0.40 1.1

10. Liquefied natural gas tanker 0.70 0.60 0.65 0.50 1.1
11. Offshore supply vessel 0.90 0.55 0.80 0.55 1.2
12. Passenger liner 0.90 0.40 0.40 0.80 1.2
13. Research vessel 0.85 0.55 0.65 0.60 1.4
14. Speed boat 0.90 0.55 0.60 0.60 1.1
15. Tanker, loaded 0.70 0.90 0.55 0.40 3.1
16. Tanker, in ballast 0.70 0.75 0.55 0.40 2.2
17. Tender 0.85 0.55 0.55 0.65 1.1
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Figure 8.2 Wind coefficients for the research vessel in Table 8.3 (vessel 13). CX is generated using
CDlAF

(0) and CDlAF
(π) for |γw| ≤ π/2 and |γw| > π/2, respectively.

and let the coordinates (sL, sH ) = (sL, HLw
) describe the centroid of the transverse project area ALw

with
respect to the main section and above the water line. Based on these quantities, Blendermann (1994)
gives the following expressions for the wind coefficients:

CX(γw) = − CDl

ALw

AFw︸ ︷︷ ︸
CDlAF

cos(γw)

1 − δ

2

(
1 − CDl

CDt

)
sin2(2γw)

(8.32)

CY (γw) = CDt

sin(γw)

1 − δ

2

(
1 − CDl

CDt

)
sin2(2γw)

(8.33)

CK(γw) = κCY (γw) (8.34)

CN (γw) =
[

sL

Loa

− 0.18
(
γw − π

2

)]
CY (γw) (8.35)
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where the expression for CK(γw) has been modified to comply with (8.12). Notice that in Blendermann
(1994)

CBlendermann
K (γw) = sH

HM

CK(γw) (8.36)

where sH = HLw
. The numerical values for several vessel types are given in Table 8.3.

Consider the research vessel in Table 8.3 with AFw
= 160.7 m2, ALw

= 434.8 m2, sL = 1.48 m,
sH = 5.10 m, Loa = 55.0 m, Lpp = 48.0 m and B = 12.5 m. For this vessel, the wind coefficients are
computed in Matlab according to:

Matlab
The wind coefficients are plotted in Figure 8.2 using the MSS toolbox example file
ExWindForce.m.The data sets of Blendermann (1994) are programmed in the Matlab function
blendermann94.m:

[w wind,CX,CY,CK,CN] = ...

blendermann94(gamma r,V r,AFw,ALw,sH,sL,Loa,vessel no)

This function computes the nonsymmetrical version of CX

8.1.4 Wind Coefficients for Merchant Ships

Isherwood (1972) has derived a set of wind coefficients by using multiple regression techniques to fit
experimental data of merchant ships. The wind coefficients are parametrized in terms of the following
eight parameters:

Loa – length overall
B – beam

ALw
– lateral projected area

ATw
– transverse projected area

ASS – lateral projected area of superstructure
S – length of perimeter of lateral projection of model excluding water line and slender bodies such

as masts and ventilators
C – distance from bow of centroid of lateral projected area
M – number of distinct groups of masts or king posts seen in lateral projection; king posts close

against the bridge front are not included

From regression analyses it was concluded that the measured data were best fitted to the following
three equations:

CX = −
(

A0 + A1
2AL

L2
+ A2

2AT

B2
+ A3

L

B
+ A4

S

L
+ A5

C

L
+ A6M

)

CY = B0 + B1
2AL

L2
+ B2

2AT

B2
+ B3

L

B
+ B4

S

L
+ B5

C

L
+ B6

ASS

AL

CN = C0 + C1
2AL

L2
+ C2

2AT

B2
+ C3

L

B
+ C4

S

L
+ C5

C

L
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where Ai and Bi (i = 0, . . . , 6) and Cj (j = 0, . . . , 5) are tabulated in Table 8.4, together with the
residual standard errors (S.E.). The signs of CX have been corrected to match the definition of γw in
Figure 8.1.

Matlab
The wind coefficients are plotted in Figure 8.3 using the MSS toolbox example file
ExWindForce.m. Isherwood (1972) are programmed in the Matlab function isherwood72.m:

[w wind,CX,CY,CN]= isherwood72(gamma r,V r,Loa,B,AFw,ALw,A SS,S,C,M)

8.1.5 Wind Coefficients for Very Large Crude Carriers

Wind loads on very large crude carriers (VLCCs) in the range 150 000 to 500 000 dwt can be computed by
applying the results of OCIMF (1977). In this work the wind coefficients are scaled using the conversion
factor 1/7.6 instead of 1/2. In addition, the signs in sway and yaw must be corrected such that

Xwind = 1

7.6
COCIMF

X (γw)ρaV
2
wAFw

(8.37)

Ywind = − 1

7.6
COCIMF

Y (γw)ρaV
2
wALw

(8.38)

Nwind = − 1

7.6
COCIMF

N (γw)ρaV
2
wALw

Loa (8.39)

where the wind coefficients COCIMF
X , COCIMF

Y and COCIMF
N correspond to the plots given in OCIMF (1977);

see Figures 8.4–8.6.

8.1.6 Wind Coefficients for Large Tankers and Medium-Sized Ships

For wind resistance on large tankers in the 100 000 to 500 000 dwt class the reader is advised to consult
Van Berlekom et al. (1974). Medium-sized ships of the order 600 to 50 000 dwt are discussed by
Wagner (1967).

A detailed analysis of wind resistance using semi-empirical loading functions is given by Blendermann
(1986). The data sets for seven ships are included in the report.

8.1.7 Wind Coefficients for Moored Ships and Floating Structures

Wind loads on moored ships are discussed by De Kat and Wichers (1991) while an excellent reference
for huge pontoon-type floating structures is Kitamura et al. (1997).
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Table 8.4 Wind force parameters in surge, sway and yaw (Isherwood, 1972)

γw (deg) A0 A1 A2 A3 A4 A5 A6 S.E.

0 2.152 −5.00 0.243 −0.164 − − − 0.086
10 1.714 −3.33 0.145 −0.121 − − − 0.104
20 1.818 −3.97 0.211 −0.143 − − 0.033 0.096
30 1.965 −4.81 0.243 −0.154 − − 0.041 0.117
40 2.333 −5.99 0.247 −0.190 − − 0.042 0.115
50 1.726 −6.54 0.189 −0.173 0.348 − 0.048 0.109
60 0.913 −4.68 − −0.104 0.482 − 0.052 0.082
70 0.457 −2.88 − −0.068 0.346 − 0.043 0.077
80 0.341 −0.91 − −0.031 − − 0.032 0.090
90 0.355 − − − −0.247 − 0.018 0.094

100 0.601 − − − −0.372 − −0.020 0.096
110 0.651 1.29 − − −0.582 − −0.031 0.090
120 0.564 2.54 − − −0.748 − −0.024 0.100
130 −0.142 3.58 − 0.047 −0.700 − −0.028 0.105
140 −0.677 3.64 − 0.069 −0.529 − −0.032 0.123
150 −0.723 3.14 − 0.064 −0.475 − −0.032 0.128
160 −2.148 2.56 − 0.081 − 1.27 −0.027 0.123
170 −2.707 3.97 −0.175 0.126 − 1.81 − 0.115
180 −2.529 3.76 −0.174 0.128 − 1.55 − 0.112

Mean S.E. 0.103

γw (deg) B0 B1 B2 B3 B4 B5 B6 S.E.

10 0.096 0.22 − − − − − 0.015
20 0.176 0.71 − − − − − 0.023
30 0.225 1.38 − 0.023 − −0.29 − 0.030
40 0.329 1.82 − 0.043 − −0.59 − 0.054
50 1.164 1.26 0.121 − −0.242 −0.95 − 0.055
60 1.163 0.96 0.101 − −0.177 −0.88 − 0.049
70 0.916 0.53 0.069 − − −0.65 − 0.047
80 0.844 0.55 0.082 − − −0.54 − 0.046
90 0.889 − 0.138 − − −0.66 − 0.051

100 0.799 − 0.155 − − −0.55 − 0.050
110 0.797 − 0.151 − − −0.55 − 0.049
120 0.996 − 0.184 − −0.212 −0.66 0.34 0.047
130 1.014 − 0.191 − −0.280 −0.69 0.44 0.051
140 0.784 − 0.166 − −0.209 −0.53 0.38 0.060
150 0.536 − 0.176 −0.029 −0.163 − 0.27 0.055
160 0.251 − 0.106 −0.022 − − − 0.036
170 0.125 − 0.046 −0.012 − − − 0.022

Mean S.E. 0.044

γw (deg) C0 C1 C2 C3 C4 C5 S.E.

10 0.0596 0.061 − − − −0.074 0.0048
20 0.1106 0.204 − − − −0.170 0.0074
30 0.2258 0.245 − − − −0.380 0.0105
40 0.2017 0.457 − 0.0067 − −0.472 0.0137
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Table 8.4 (Continued )

γw (deg) C0 C1 C2 C3 C4 C5 S.E.

50 0.1759 0.573 − 0.0118 − −0.523 0.0149
60 0.1925 0.480 − 0.0115 − −0.546 0.0133
70 0.2133 0.315 − 0.0081 − −0.526 0.0125
80 0.1827 0.254 − 0.0053 − −0.443 0.0123
90 0.2627 − − − − −0.508 0.0141

100 0.2102 − −0.0195 − 0.0335 −0.492 0.0146
110 0.1567 − −0.0258 − 0.0497 −0.457 0.0163
120 0.0801 − −0.0311 − 0.0740 −0.396 0.0179
130 −0.0189 − −0.0488 0.0101 0.1128 −0.420 0.0166
140 0.0256 − −0.0422 0.0100 0.0889 −0.463 0.0162
150 0.0552 − −0.0381 0.0109 0.0689 −0.476 0.0141
160 0.0881 − −0.0306 0.0091 0.0366 −0.415 0.0105
170 0.0851 − −0.0122 0.0025 − −0.220 0.0057

Mean S.E. 0.0127

Figure 8.3 Wind coefficients for Loa = 100, B = 30, ALw = 900, AFw
= 300, ASS = 100, S = 100,

C = 50 and M = 2 using the formulae of Isherwood (1972).
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Figure 8.4 Longitudinal wind force coefficient COCIMF
X as a function of γw (OCIMF, 1977).

Figure 8.5 Lateral wind force coefficient COCIMF
Y as a function of γw (OCIMF, 1977).
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Figure 8.6 Wind moment coefficient COCIMF
N in yaw as a function of γw (OCIMF, 1977).

8.2 Wave Forces and Moments
A motion control system can be simulated under influence of wave-induced forces by separating the
first-order and second-order effects:

• First-order wave-induced forces: wave-frequency (WF) motion observed as zero-mean oscillatory
motions.

• Second-order wave-induced forces: wave drift forces observed as nonzero slowly varying
components.

When designing motion control systems, it is important to evaluate robustness and performance in the
presence of waves. Wave forces are observed as a mean slowly varying component and an oscillatory
component, which need to be compensated differently by a feedback control system. For instance, the
mean component can be removed by using integral action while the oscillatory component usually is
removed by using a cascaded notch and low-pass filter. This is usually referred to as wave filtering. This
section describes wave force models that can be used for prediction, observer-based wave filtering and
testing of feedback control systems in the presence of waves. Both methods based on response amplitude
operators (RAOs) and linear state-space models will be discussed. This includes:

1. Force RAOs
2. Motion RAOs
3. Linear state-space models (WF models)
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The first two methods require that the RAO tables are computed using a hydrodynamic program (see
Section 5.1) since the wave forces depend on the geometry of the craft. The last method is attractive due
to its simplicity but it is only intended for the testing of robustness and performance of control systems,
that is closed-loop analysis.

The resulting wave forces and moments are

τwave = τwave1 + τwave2 (8.40)

This is the sum of the first- and second-order wave-induced forces and moments τwave1 and
τwave2, respectively. The next sections explain how these transfer functions can be realized in a
time-domain simulator.

8.2.1 Sea State Descriptions

For marine craft the sea states in Table 8.5 can be characterized by the following wave
spectrum parameters:

• The significant wave height Hs (the mean wave height of the one-third highest waves, also denoted
as H1/3)

• One of the following wave periods:
– The average wave period, T1

– Average zero-crossing wave period, Tz

– Peak period, Tp (this is equivalent to the modal period, T0)

To relate the different periods to each other it is necessary to define the wave spectrum moments.

Table 8.5 Definition of sea state (SS) codes (Price and Bishop, 1974). Notice that the percentage
probability for SS codes 0, 1 and 2 is summarized

Percentage probability

Sea state Description Wave height World North Northern
code of sea observed (m) wide Atlantic North Atlantic
0 Calm (glassy) 0
1 Calm (rippled) 0–0.1 11.2486 8.3103 6.0616
2 Smooth (wavelets) 0.1–0.5
3 Slight 0.5–1.25 31.6851 28.1996 21.5683
4 Moderate 1.25–2.5 40.1944 42.0273 40.9915
5 Rough 2.5–4.0 12.8005 15.4435 21.2383
6 Very rough 4.0–6.0 3.0253 4.2938 7.0101
7 High 6.0–9.0 0.9263 1.4968 2.6931
8 Very high 9.0–14.0 0.1190 0.2263 0.4346
9 Phenomenal Over 14.0 0.0009 0.0016 0.0035
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Figure 8.7 Two peaked wave spectra S(ω) where one peak is due to swell and tidal waves and the other
peak is due to a developing sea.

Wave Spectrum Moments

A wave spectrum S(ω), see Figure 8.7, can be classified by means of wave spectrum moments:

mk :=
∫ ∞

0

ωk S(ω)dω (k = 0, . . . , N) (8.41)

For k = 0, this yields

m0 =
∫ ∞

0

S(ω)dω (8.42)

The instantaneous wave elevation is Gaussian distributed with zero mean and variance:

σ2 = m0 (8.43)

where σ is the root-mean-square (RMS) value of the spectrum.
The modal frequency (peak frequency) ω0 is found by requiring that(

dS(ω)

dω

)
ω=ω0

= 0 (8.44)

Hence, the modal period becomes

T0 = 2π

ω0
(8.45)

Consequently, the maximum value of S(ω) is

Smax = S(ω0) (8.46)
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Under the assumption that the wave height is Rayleigh distributed it can be shown that the significant
wave height satisfies (Price and Bishop, 1974)

Hs = 4σ = 4
√

m0 (8.47)

The average wave period is defined as

T1 := 2π
m0

m1
(8.48)

while the average zero-crossings period is defined as

Tz := 2π

√
m0

m2
(8.49)

8.2.2 Wave Spectra

The process of wave generation due to wind starts with small wavelets appearing on the water surface.
This increases the drag force, which in turn allows short waves to grow. These short waves continue to
grow until they finally break and their energy is dissipated. It is observed that a developing sea, or storm,
starts with high frequencies creating a spectrum with a peak at a relatively high frequency. A storm that has
lasted for a long time is said to create a fully developed sea. After the wind has stopped, a low-frequency
decaying sea or swell is formed. These long waves form a wave spectrum with a low peak frequency.

If the swell from one storm interacts with the waves from another storm, a wave spectrum with two peak
frequencies may be observed. In addition, tidal waves will generate a peak at a low frequency. Hence,
the resulting wave spectrum might be quite complicated in cases where the weather changes rapidly (see
Figure 8.7).

The state-of-the-art wave spectra will now be presented. These models are used to derive linear approxi-
mations and transfer functions for computer simulations, autopilot wave filtering and state reconstruction,
which are the topics in Part II.

Neumann Spectrum

The earliest spectral formulation is due to Neumann (1952) who proposed the one-parameter spectrum

S(ω) = Cω−6 exp
(−2g2ω−2V−2

)
(8.50)

where S(ω) in m/s2 is the wave elevation power spectral density function, C is an empirical constant,
V is the wind speed and g is the acceleration of gravity. Six years later Phillips (1958) showed that the
high-frequency part of the wave spectrum reached the asymptotic limit

lim
ω�1

S(ω) = α g2 ω−5 (8.51)

where α is a positive constant. This limiting function of Phillips is still used as the basis for most
spectral formulations.

Bretschneider Spectrum

The spectrum of Neumann was further extended to a two-parameter spectrum by Bretschneider (1959):

S(ω) = 1.25
ω4

0H
2
s

4
ω−5 exp

[−1.25 (ω0/ω)4
]

(8.52)

where ω0 is the modal or peak frequency of the spectrum and Hs is the significant wave height (mean
of the one-third highest waves). This spectrum was developed for the North Atlantic, for unidirectional
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seas, infinite depth, no swell and unlimited fetch. The significant wave height Hs is used to classify the
type of sea in terms of sea state codes 0, 1, ..., 9, as shown in Table 8.5.

Pierson–Moskowitz Spectrum

Pierson and Moskowitz (1963) have developed a two-parameter wave spectral formulation for fully
developed wind-generated seas from analyses of wave spectra in the North Atlantic Ocean:

S(ω) = Aω−5 exp
(−Bω−4

)
(8.53)

which is commonly known as the PM spectrum (Pierson–Moskowitz spectrum). The PM spectrum is
used as the basis for several spectral formulations but with different A and B values. In its original
formulation, the PM spectrum is only a one-parameter spectrum since only B changes with the sea state.
The parameters are

A = 8.1 × 10−3 g2 = constant (8.54)

B = 0.74

(
g

V19.4

)4

= 3.11

H2
s

(8.55)

where V19.4 is the wind speed at a height of 19.4 m over the sea surface.

Matlab
The Bretschneider and PM spectra are implemented in the MSS toolbox as wave spectra 1 and 2:

S=wavespec(1,[A,B],w,1)

S=wavespec(2,V20,w,1)

where A and B are the spectrum parameters, V20 is wind speed at 20 m height and w is the wave
frequency vector.

The relationship between V19.4 and Hs in (8.55) is based on the assumption that the waves can be
represented by Gaussian random processes and that S(ω) is narrow banded. From (8.55) it is seen that

Hs = 2.06

g2
V 2

19.4 (8.56)

This implies that the significant wave height is proportional to the square of the wind speed. This is
shown in Figure 8.8 where the sea state codes and Beaufort numbers are plotted against each other; see
Tables 8.2 and 8.5.
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Figure 8.8 Plot showing the relationship between significant wave height, wind speed, Beaufort
numbers and sea state codes.

The modal frequency (peak frequency) ω0 for the PM spectrum is found by requiring that(
dS(ω)

dω

)
ω=ω0

= 0 (8.57)

Solving for ω0 in (8.53) yields

ω0 = 4

√
4B

5
=⇒ T0 = 2π

4

√
5

4B
(8.58)

where T0 is the modal period. Consequently, the maximum value of S(ω) is

Smax = S(ω0) = 5A

4Bω0
exp (−5/4) (8.59)

Modified Pierson–Moskowitz (MPM) Spectrum

In order to predict the responses of marine craft in open sea, the International Ship and Offshore Structures
Congress (2nd ISSC, 1964), the International Towing Tank Conferences (12th ITTC, 1969, and 15th ITTC,
1978) have recommended the use of a modified version of the PM spectrum (see Figure 8.9) where

A = 4π3H2
s

T 4
z

, B = 16π3

T 4
z

(8.60)
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Figure 8.9 Plot showing the JONSWAP and modified Pierson–Moskowitz spectra for ω0 = 0.4 rad/s
and Hs = 3, 4, ..., 14 m.

This representation of the PM spectrum has two parameters Hs and Tz, or alternatively T0 and T1

given by

Tz = 0.710T0 = 0.921T1 (8.61)

Matlab
The modified PM spectrum is implemented in the MSS toolbox as wave spectra 3 to 5:

S = wavespec(3,[Hs,T0],w,1)

S = wavespec(4,[Hs,T1],w,1)

S = wavespec(5,[Hs,Tz],w,1)

where Hs is the significant wave height, T0,T1 and Tz are the peak, average and average zero-
crossing wave periods, respectively, while w is the wave frequency vector.

The modified PM spectrum should only be used for a fully developed sea with large (infinite) depth,
no swell and unlimited fetch. For nonfully developed seas the JONSWAP or Torsethaugen spectra
are recommended.
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JONSWAP Spectrum

In 1968 and 1969 an extensive measurement program was carried out in the North Sea, between the island
Sylt in Germany and Iceland. The measurement program is known as the Joint North Sea Wave Project
(JONSWAP) and the results from these investigations have been adopted as an ITTC standard by the
17th ITTC (1984). Since the JONSWAP spectrum (see Figure 8.9) is used to describe nonfully developed
seas, the spectral density function will be more peaked than those representing fully developed spectra.
The proposed spectral formulation is representative for wind-generated waves under the assumption of
finite water depth and limited fetch. The spectral density function is written

S(ω) = 155
H2

s

T 4
1

ω−5 exp

(−944

T 4
1

ω−4

)
γY (8.62)

where Hasselmann et al. (1973) suggest that γ = 3.3 and

Y = exp

[
−

(
0.191ωT1 − 1√

2σ

)2
]

(8.63)

where

σ =
{

0.07 for ω ≤ 5.24/T1

0.09 for ω > 5.24/T1
(8.64)

Alternative formulations can be derived in terms of the characteristic periods like T0 and Tz by using

T1 = 0.834 T0 = 1.073 Tz (8.65)

Matlab
The JONSWAP spectrum is included in the MSS toolbox as wave spectra 6 and 7:

S=wavespec(6,[V10,fetch],w,1)

S=wavespec(7,[Hs,w0,gamma],w,1)

where V10 is the wind speed at 10 m height, Hs is the significant wave height, w0 is peak frequency
and w is the wave frequency vector.

Torsethaugen Spectrum

The Torsethaugen spectrum is an empirical, two-peaked spectrum, which includes the effect of swell
(low-frequency peak) and newly developed waves (high-frequency peak). The spectrum was developed



Wave Forces and Moments 207

Figure 8.10 Torsethaugen spectrum: upper plot shows only one peak at ω0 = 0.63 rad/s representing
swell and developing sea while the lower plot shows low-frequency swell and newly developing sea with
peak frequency ω0 = 1.57 rad/s.

for Norsk Hydro (Torsethaugen, 1996), and standardized under the Norsok Standard (1999). The spectrum
was developed using curve fitting of experimental data from the North Sea.

Matlab
The Torsethaugen spectrum is included in the MSS toolbox as wave spectrum 7:

S = wavespec(7,[Hs,w0],w,1)

where Hs is the significant wave height, w0 is peak frequency and w is the wave frequency vector.

If the peak frequency ω0 is chosen to be less than approximately 0.6 rad/s, the Torsethaugen spectrum
reduces to a one-peak spectrum where swell dominates. For peak frequencies ω0 > 0.6 rad/s the two
characteristic peaks shown in Figure 8.10 clearly appear. This is due to the fact that developing waves
have energy at high frequencies compared to swell. This combined effect is very common in the North
Sea, and it makes DP and autopilot design a challenging task in terms of wave filtering.
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Figure 8.11 Comparison of different wave spectra.

Matlab
The different wave spectra when plotted for the same wave height and peak frequency are shown
in Figure 8.11. The plots are generated by using the wave demo option in the MSS toolbox:

gncdemo

8.2.3 Wave Amplitude Response Model

The relationship between the wave spectrum S(ωk) and the wave amplitude Ak for a wave component k

is (Faltinsen, 1990)

1

2
A2

k = S(ωk)�ω (8.66)

where �ω is a constant difference between the frequencies. Formula (8.66) can be used to compute
wave-induced responses in the time domain.
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Long-Crested Irregular Sea

The wave elevation of a long-crested irregular sea in the origin of {s} of the seakeeping reference frame
under the assumption of zero speed can be written as the sum of N harmonic components:

ξ =
N∑

k=1

Ak cos(ωk + εk)

=
N∑

k=1

√
2S(ωk)�ω cos(ωk + εk) (8.67)

where εk is the random phase angle of wave component number k. Since this expression repeats itself
after a time 2π/�ω a large number of wave components N are needed. However, a practical way to avoid
this is to choose ωk randomly in the interval[

ωk − �ω

2
, ωk + �ω

2

]
(8.68)

implying that good results can be obtained for N in the range 50–100.

Short-Crested Irregular Sea

The most likely situation encountered at sea is short-crested or confused waves. This is observed as
irregularities along the wave crest at right angles to the direction of the wind. The effect of short-
crestedness can be modeled by a 2-D wave spectrum:

S(ω, β) = S(ω)f (β) (8.69)

where β = 0 corresponds to the main wave propagation direction while a nonzero β value (see
Figure 8.12) will spread the energy at different directions. A commonly used spreading function is

f (β) =
{ 2

π
cos2(β), −π/2 ≤ β ≤ π/2

0, elsewhere
(8.70)

Figure 8.12 Definition of encounter angle β.
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Figure 8.13 Representation of the wave-induced forces as the product of two transfer functions.

Figure 8.14 Computational setup for first-order wave-induced positions based on motion RAOs.

Figure 8.15 Linear approximation for computation of wave-induced positions.

For this case (8.67) becomes

ξ =
N∑

k=1

M∑
i=1

√
2S(ωk, βi)�ω�β cos(ωk + εk) (8.71)

where βi is taken randomly in the interval[
βk − �β

2
, βk + �β

2

]
(8.72)

These equations effectively represent the first block in Figures 8.13–8.15.

Extension to Forward Speed using the Frequency of Encounter

For a marine craft moving at forward speed U, the peak frequency of the spectrum ω0 will be shifted
according to

ωe(U, ω0, β) =
∣∣∣∣ω0 − ω2

0

g
U cos(β)

∣∣∣∣ (8.73)
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where

ωe - encounter frequency (rad/s)
ωp - wave spectrum peak frequency (rad/s)
g - acceleration of gravity (m/s2)
U - total speed of ship (m/s)
β - the angle between the heading and the direction of the wave (rad)

The definition of the encounter angle β is shown in Figure 8.12. The expression for the wave elevation
(8.71) can be redefined in terms of the frequency of encounter for a ship moving at forward speed U > 0
and varying wave directions βi. Moreover,

ξ =
N∑

k=1

N∑
i=1

√
2S(ωk, βi)�ω�β cos(ωk − ω2

k

g
U cos(βi)︸ ︷︷ ︸

ωe(U,ωk,βi)

+ εk) (8.74)

This modification is particular useful for ship maneuvering.

8.2.4 Wave Force Response Amplitude Operators

Force RAOs can be computed for a particular craft using a hydrodynamic program where the hull
geometry is specified in an input file. These programs are usually based on potential theory, as described in
Section 5.1. Since the equations of motions of a moving craft are expressed in terms of Newton’s
second law

Mν̇ =
K∑

i=1

τi (8.75)

it is advantageous to represent the wave loads as generalized wave-induced forces

τ = τwave1 + τwave2 (8.76)

The wave force responses are computed for different sea states by using a wave spectrum S(ω) to
describe the wave amplitude components Ak as discussed in Section 8.2.3. The force RAO relates the
wave amplitudes to the wave-induced force, as shown in Figure 8.13. The necessary equations that
are needed to represent the force RAOs and compute the wave-induced forces in the time domain are
presented now. The Simulink code for this is included in the MSS Hydro toolbox.

Normalized Force RAOs

The first- and second-order wave forces for varying wave directions βi and wave frequencies ωk are
denoted τ̃

{dof}
wave1(ωk, βi) and τ̃

{dof}
wave2(ωk, βi) where dof ∈ {1, 2, 3, 4, 5, 6}. The normalized force RAOs are

complex variables (WAMIT Inc., 2010):

F
{dof}
wave1(ωk, βi) =

∣∣∣∣ τ̃
{dof}
wave1(ωk, βi)

ρgAk

∣∣∣∣ ej\ τ̃
{dof}
wave1(ωk,βi) (8.77)

F
{dof}
wave2(ωk, βi) =

∣∣∣∣ τ̃
{dof}
wave2(ωk, βi)

ρgA2
k

∣∣∣∣ ej\ τ̃
{dof}
wave2(ωk,βi) (8.78)
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The output from the hydrodynamic code is usually an ASCII file containing RAOs in table format. Let us
denote the imaginary and real parts of the force RAOs by two Matlab structures: Imwave1{dof}(k, i) and
Rewave1{dof}(k, i). The amplitudes and phases for different frequencies ωk and wave directions βi for the
first-order wave-induced forces can be computed according to the formulae

∣∣F {dof}
wave1(ωk, βi)

∣∣ =
√

Imwave1{dof}(k, i)2 + Rewave1{dof}(k, i)2 (8.79)

\F
{dof}
wave1(ωk, βi) = atan2 (Imwave1{dof}(k, i), Rewave1{dof}(k, i)) (8.80)

The amplitudes and phases for the second-order mean forces are

∣∣F {dof}
wave2(ωk, βi)

∣∣ = Rewave2{dof}(k, i) (8.81)

\F
{dof}
wave2(ωk, βi) = 0 (8.82)

Matlab
The motion RAOs are processed in the MSS Hydro Matlab toolbox by using m-file commands:

wamit2vessel % read and process WAMIT data

veres2vessel % read and process ShipX (Veres) data

The data are represented in the workspace as Matlab structures:

vessel.forceRAO.w(k) % frequencies

vessel.forceRAO.amp{dof}(k,i,speed no) % amplitudes

vessel.forceRAO.phase{dof}(k,i,speed no) % phases

where speed no=1 represents U = 0. For the mean drift forces only surge, sway and yaw are
considered (dof∈ {1, 2, 3} where the third component corresponds to yaw)

vessel.driftfrc.w(k) % frequencies

vessel.driftfrc.amp{dof}(k,i,speed no) % amplitudes

It is possible to plot the force RAOs using

plotTF

plotWD

Wave Forces (No Spreading Function)

Since the first- and second-order wave forces are represented in terms of the complex variables
F

{dof}
wave1(ωk, βi) and F

{dof}
wave2(ωk, βi), the responses for sinusoidal excitations can be computed using dif-

ferent wave spectra. When doing this, linear superposition is employed as illustrated in Figure 8.13. Let
the wave-induced forces in 6 DOF be denoted by vectors:

τwave1 = [
τ

{1}
wave1, η

{2}
wave1, η

{3}
wave1, η

{4}
wave1, η

{5}
wave1, η

{6}
wave1

]

(8.83)

τwave2 = [
τ

{1}
wave2, η

{2}
wave2, η

{3}
wave2, η

{4}
wave2, η

{5}
wave2, η

{6}
wave2

]

(8.84)
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For the no spreading case, the wave direction β = constant such that

τ
{dof}
wave1 =

N∑
k=1

ρg
∣∣F {dof}

wave1(ωk, β)
∣∣Ak cos

(
ωe(U, ωk, β)t + \F

{dof}
wave1(ωk, β) + εk

)
(8.85)

τ
{dof}
wave2 =

N∑
k=1

ρg
∣∣F {dof}

wave2(ωk, β)
∣∣A2

k cos (ωe(U, ωk, β)t + εk) (8.86)

where

ωe(U, ωk, β) = ωk − ω2
k

g
U cos(β) (8.87)

Wave Forces (Spreading Function)

The more general case, where the spreading function (8.70) is included, can be simulated by using varying
wave directions βi (i = 1, .., M) and

τ
{dof}
wave1 =

N∑
k=1

M∑
i=1

ρg
∣∣F {dof}

wave1(ωk, βi)
∣∣Ak cos

(
ωe(U, ωk, βi)t + \F

{dof}
wave1(ωk, βi) + εk

)
(8.88)

τ
{dof}
wave2 =

N∑
k=1

M∑
i=1

ρg
∣∣F {dof}

wave2(ωk, βi)
∣∣A2

k cos (ωe(U, ωk, βi)t + εk) (8.89)

where

ωe(U, ωk, βi) = ωk − ω2
k

g
U cos(βi) (8.90)

8.2.5 Motion Response Amplitude Operators

An alternative to the force RAO representation in Section 8.2.4 is to use motion RAOs for position,
velocity and acceleration to compute the wave-induced motions. For force RAOs the response will be
generalized forces as shown in Figure 8.13. However, in a linear system it is possible to move the forces
through the chain of integrators to obtain generalized position. The first-order wave-induced forces,
τwave1, are zero-mean oscillatory wave forces. Consider the linear system

[MRB + A(ω)]ξ̈ + B(ω)ξ̇ + Cξ = τwave1 (8.91)

By assuming harmonic motions

ξ = ξ̄ cos(ωt) = ξ̄ Re(ejωt) (8.92)

where ξ̄ is a vector of amplitudes, (8.91) can be written

−ω2[MRB + A(ω)]ξ̄ − jωB(ω)ξ̄ + Cξ̄ = τ̄wave1 (8.93)
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The responses can be evaluated as

ξ̄ = Hv( jω)τ̄wave1 (8.94)

where the force-to-motion transfer function

Hv( jω) = [−ω2[MRB + A(ω)] − jωB(ω) + C
]−1

(8.95)

is a low-pass filter representing the vessel dynamics. This expression confirms that the first-order
wave-induced position can be computed by low-pass filtering the generalized forces τwave1. Since the
wave-induced forces, τwave1, are computed using linear theory, the wave-induced positions, ξ̄, are linear
responses, which can be modeled by RAOs. Notice that the motion RAOs depend on the model matrices
MRB, A(ω), B(ω) and C while force RAOs are only dependent on the wave excitations.

Hydrodynamic programs compute both the motion and force RAOs. Let us denote the first-order
wave-induced positions in {n} by the vector

ηw = [
η{1}

w , η{2}
w , η{3}

w , η{4}
w , η{5}

w , η{6}
w

]

(8.96)

such that the total motion becomes

y = η + ηw (8.97)

The wave-induced positions are computed using a wave spectrum according to (see Figure 8.14)

η{dof}
w =

N∑
k=1

M∑
i=1

∣∣η{dof}
w (ωk, βi)

∣∣Ak cos
(
ωe(U, ωk, βi)t + \η{dof}

w (ωk, βi) + εk

)
(8.98)

where |η{dof}
w (ωk, βi)| and \η{dof}

w (ωk, βi) are the motion RAO amplitude and phase for frequency ωk

and wave direction βi. This expression does not contain the second-order wave-induced forces. Conse-
quently, wave drift forces must be added manually, for instance by using the wave drift force RAO to
compute τ

{dof}
wave2.

8.2.6 State-Space Models for Wave Responses

When simulating and testing feedback control systems it is useful to have a simple and effective way
of representing the wave forces. The force RAO representation discussed in Section 8.2.4 requires that
the ship geometry is known a priori and that the user has access to a hydrodynamic program for nu-
merical computation of RAO tables. This is also the case for the motion RAO approach discussed in
Section 8.2.5.

1. Linear Approximation for WF Position: An alternative approach is to represent the motion RAO
formulation in Figure 8.14 as a state-space model where the wave spectrum is approximated by a linear
filter. In addition to this, the response of the motion RAOs and the linear vessel dynamics in cascade
is modeled as constant tunable gains:

K = diag{K{1}, K{2}, K{3}, K{4}, K{5}, K{6}} (8.99)
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This means that the RAO vessel model is approximated as (see Figure 8.15)

H rao(s)Hv(s) ≈ K (8.100)

where H rao(s) is the wave amplitude-to-force transfer function and Hv(s) is the force-to-motion transfer
function (8.95). The fixed-gain approximation (8.100) produces good results in a closed-loop system
where the purpose is to test robustness and performance of a feedback control system in the presence
of waves. This is done by tuning of the gains until realistic results are obtained. For marine craft it is
common to use position test signals in the magnitude of ±1.0 m for surge, sway and heave and attitude
test signals of magnitude ±5.0–10.0 degrees in roll, pitch and yaw.

Since the WF model as well as motion RAO approach only models the first-order wave-induced
motions it is necessary to include second-order wave drift forces when testing integral action in a
feedback control system. The state observer must also be able to handle biased measurements.

If the fixed gain approximation (8.100) is applied, the generalized WF position vector ηw in
Figure 8.15 becomes

ηw = KH s(s)w(s) (8.101)

where H s(s) is a diagonal matrix containing linear approximations of the wave spectrum S(ω). This
idea dates back to Balchen et al. (1976) who observed that the motions of a marine craft could be
linearly superpositioned by adding two motion components: the wave-frequency (WF) motion ηw and
the marine craft low-frequency (LF) motion η. Moreover, the total motion can be represented as

η̇ = J�(η)ν (8.102)

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τwind + τwave2 + τ (8.103)

y = η + ηw (8.104)

Notice that the effect of τwave1 is included in ηw so this signal is not needed when integrating the second
equation, that is ν̇. The WF position for each degree of freedom becomes

η{dof}
w = K{dof}ξ{dof} (8.105)

ξ{dof}(s) = h{dof}(s) w{dof}(s) (8.106)

where h{dof }(s) is a linear approximation of the wave spectral density function S(ω) and w{dof}(s) is a
zero-mean Gaussian white noise process with unity power across the spectrum:

P {dof}
ww (ω) = 1.0 (8.107)

Hence, the power spectral density (PSD) function for ξ{dof}(s) can be computed as

P
{dof}
ξξ (ω) = |h{dof}( jω)|2 P {dof}

ww (ω) = |h{dof}( jω)|2 (8.108)

The ultimate goal is to design an approximation P
{dof}
ξξ (ω) to S(ω), for instance by means of nonlinear

regression, such that P
{dof}
ξξ (ω) reflects the energy distribution of S(ω) in the relevant frequency range.

Linear approximations that are well suited for this purpose are discussed later.
2. Linear Approximation for First-order Wave-Induced Forces: An alternative approach to (8.102)–

(8.104) is to approximate the first-order wave-induced forces by a linear filter such that
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η̇ = J�(η)ν (8.109)

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τwind + τwave1 + τwave2 + τ (8.110)

τwave1 ≈ KH s(s)w(s) (8.111)

In this case the wave amplitude-to-force transfer function is approximated by a constant tunable gain
K that must be chosen such that the amplitudes of the signals in η are of reasonable magnitude.

Second-Order Wave Transfer Function Approximation

A linear wave response approximation for H s(s) = diag{h{1}(s), . . . , h{6}(s)} is usually preferred by ship
control systems engineers, owing to its simplicity and applicability. The first applications were reported
by Balchen et al. (1976) who proposed modeling the WF motion of a dynamically positioned ship in
surge, sway and yaw by three harmonic oscillators without damping. Later Sælid et al. (1983) introduced
a damping term λ in the wave model to fit the shape of the PM spectrum better. In general, there will
be six transfer functions, one for each DOF. For notational simplicity, only one DOF is considered. The
wave spectrum can be approximated by a second-order system of relative degree one:

h(s) = Kws

s2 + 2λω0s + ω2
0

(8.112)

It is convenient to define the gain constant according to

Kw = 2λω0σ (8.113)

where σ is a constant describing the wave intensity, λ is a damping coefficient and ω0 is the dominating
wave frequency. Consequently, substituting s = jω yields the frequency response

h(jω) = j 2(λω0σ)ω

(ω2
0 − ω2) + j 2λω0ω

(8.114)

The magnitude of h( jω) becomes

|h( jω)| = 2(λω0σ)ω√
(ω2

0 − ω2)2 + 4(λω0ω)2
(8.115)

From (8.108), it is seen that

Pξξ(ω) = |h( jw)|2 = 4(λω0σ)2ω2

(ω2
0 − ω2)2 + 4(λω0ω)2

(8.116)

Determination of σ and λ

Since the maximum value of Pξξ(ω) and S(ω) are obtained for ω = ω0, it follows that

Pξξ(ω0) = S(ω0) (8.117)

�
σ2 = max

0<ω<∞
S(ω) (8.118)
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For the PM spectrum (8.53) this implies

σ =
√

A

ω5
0

exp

(
− B

ω4
0

)
(8.119)

while the term γY (ω0) must be included for the JONSWAP spectrum. The damping ratio λ can be computed
by requiring that the energy, that is the areas under Pξξ(ω) and S(ω) of the spectra, be equal.

An alternative approach is to use nonlinear least-squares (NLS) to compute λ such that Pξξ(ω) fits
S(ω) in a least-squares sense; see Figure 8.17. This is demonstrated in Example 8.1 using the Matlab
optimization toolbox.

Example 8.1 (Nonlinear Least-Squares Optimization of Linear Spectra)
Consider the Matlab script ExLinspec.m for computation of λ. The output of the nonlinear opti-
mization process gives the following λ values for the modified PM and JONSWAP spectra:

ω0= 0.5 ω0= 0.8 ω0= 1.1 ω0= 1.4 Recommended values
λ (MPM) 0.2565 0.2573 0.2588 0.2606 0.26
λ (JONSWAP) 0.1017 0.1017 0.1017 0.1017 0.10

The λ value for both these spectra are independent of the wave height Hs. For the Torsethaugen spectrum
the λ values vary with both Hs and ω0 as shown in Figure 8.16. The results of the curve-fitting procedure
for the three different spectra are shown in Figure 8.17. Since the Torsethaugen spectrum is a two- peaked
spectrum a second linear spectrum should be added to fit the swell peak at low frequencies.

Figure 8.16 Least-squares optimal λ values for the Torsethaugen spectrum for varying Hs and ω0 when
a linear spectrum is fitted to the high-frequency peak of the spectrum.
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Figure 8.17 Nonlinear least-squares fit of a linear spectrum to the PM, JONSWAP and Torsethaugen
spectra. Only one peak is approximated for the Torsethaugen spectrum.

Matlab
Power spectral density function:

function Pyy = Slin(lambda,w)

% Pyy = Slin(lambda,w) 2nd-order linear PSD function

% w = wave spectrum frequency (rad/s)

% lambda = relative damping factor

global sigma wo

Pyy = 4*(lambda*wo*sigma)∧2*w.∧2./((wo∧2-w.∧2).∧2 +...

4*(lambda*wo.*w).∧2)
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Matlab
Nonlinear least-squares:

% Matlab script for plotting of nonlinear least-squares fit,

% see ExLinspec.m

global sigma wo

wo = 1.2; To = 2*pi/wo; Hs = 10; wmax = 3;

w = (0.0001:0.01:wmax)’;

% Modified PM

subplot(311)

S = wavespec(3,[Hs,To],w,1); sigma = sqrt(max(S));

lambda = lsqcurvefit(’Slin’,0.1,w,S)

hold on; plot(w,Slin(lambda,w)); hold off;

legend(’Modified PM spectrum’,’Linear approximation’)

% JONSWAP

subplot(312)

S = wavespec(7,[Hs,wo,3.3],w,1); sigma = sqrt(max(S));

lambda = lsqcurvefit(’Slin’,0.1,w,S)

hold on; plot(w,Slin(lambda,w)); hold off;

legend(’Modified PM spectrum’,’Linear approximation’)

% Torsethaugen

subplot(313)

S = wavespec(8,[Hs,wo],w,1); sigma = sqrt(max(S));

lambda = lsqcurvefit(’Slin’,0.1,w,S)

hold on; plot(w,Slin(lambda,w)); hold off;

legend(’Modified PM spectrum’,’Linear approximation’)

State-Space Representations of Linear Wave Spectra

A linear state-space model can be obtained from (8.112) by transforming this expression to the time
domain by defining ẋw1 = xw2 and xw2 = yw as state variables. This implies that the state-space model
can be written

ẋw = Awxw + eww (8.120)

yw = c

wxw (8.121)

where w is a zero-mean white noise process. Writing this expression in component form yields
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[
ẋw1

ẋw2

]
=

[
0 1

−ω2
0 −2λω0

][
xw1

xw2

]
+

[
0

Kw

]
w (8.122)

yw = [
0 1

] [
xw1

xw2

]
(8.123)

Higher-Order Wave Transfer Function Approximations

An alternative wave transfer function based on five parameters has been proposed by Grimble et al.
(1980) and Fung and Grimble (1983). This model takes the form

h(s) = Kws2

s4 + a1s3 + a2s2 + a3s + a4
(8.124)

where ai (i = 1, . . . , 4) are four parameters. Consequently, four differential equations are required to
describe the wave model:⎡

⎢⎢⎣
ẋw1

ẋw2

ẋw3

ẋw4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−a4 −a3 −a2 −a1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xw1

xw2

xw3

xw4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0

0

0

Kw

⎤
⎥⎥⎦w (8.125)

yw = [
0 0 1 0

]
⎡
⎢⎢⎣

xw1

xw2

xw3

xw4

⎤
⎥⎥⎦ (8.126)

The number of parameters can be reduced by assuming that the denominator can be factorized
according to

h(s) = Kws2

(s2 + 2λω0s + ω2
0)2

(8.127)

Triantafyllou et al. (1983) have shown by applying a rational approximation to the Bretschneider spectrum
that a satisfactory approximation of the WF motion can be obtained by using the transfer function

h(s) = Kws2

(s2 + 2λω0s + ω2
0)3

(8.128)

which only has three unknown parameters λ, ω0 and Kw. The advantage of the higher order models to
the simple second-order system (8.112) is that they will represent a more precise approximation to the
wave spectrum response through a nonlinear least-squares curve-fitting procedure. The disadvantage, of
course, is higher model complexity and perhaps more parameters to determine.

Example 8.2 (Linear Model for First- and Second-order Wave-Induced Forces)
A marine control system can be tested under the influence of waves by separating the first- and
second-order wave-induced forces. For a surface vessel in 3 DOF (dof ∈ {1, 2, 6}) the wave forces and
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moment are

τwave = [Xwave, Ywave, Nwave]
 (8.129)

where Xwave, Ywave and Nwave are generated by using

Xwave = K{1}
w s

s2 + 2λ{1}ω{1}
e s + (

ω
{1}
e

)2 w1 + d1 (8.130)

Ywave = K{2}
w s

s2 + 2λ{2}ω{2}
e s + (

ω
{2}
e

)2 w2 + d2 (8.131)

Nwave = K{6}
w s

s2 + 2λ{6}ω{6}
e s + (

ω
{6}
e

)2 w3 + d3 (8.132)

where the wave drift forces di (i = 1, 2, 3) are modeled as slowly varying bias terms (Wiener processes):

ḋ1 = w4 (8.133)

ḋ2 = w5 (8.134)

ḋ3 = w6 (8.135)

Here wi (i = 1, 2, ..., 6) are Gaussian white noise processes. The amplitudes of Xwave, Ywave and Nwave

are adjusted by choosing the constants K{dof}
w while the the spectra are parametrized in terms of the pairs

λ{dof} and ω{dof}
e . Notice that the frequency of encounter ω{dof}

e should be used in the transfer functions for
a ship moving at forward speed U > 0. The wave spectrum parameters should be chosen to represent
the true sea state. A good approximation is to use the λ{dof} values in Example 8.1 while a typical wave
peak frequency ω

{dof}
0 needed to compute ω{dof}

e could be 0.8 rad/s. Alternatively, the sea state description
in Table 8.5 can be used to find an appropriate ω

{dof}
0 . Equations (8.133)–(8.135) should be modified

by using saturating elements to prevent di from exceeding a predescribed maximum physical limit, that
is |di| ≤ di,max.

8.3 Ocean Current Forces and Moments
Ocean currents are horizontal and vertical circulation systems of ocean waters produced by gravity, wind
friction and water density variation in different parts of the ocean. Besides wind-generated currents,
the heat exchange at the sea surface, together with salinity changes, develop an additional sea current
component, usually referred to as thermohaline currents. A world map showing the most major ocean
surface currents is found in Defant (1961).

The oceans are conveniently divided into two water spheres, the cold and warm water spheres. Since
the Earth is rotating, the Coriolis force will try to turn the major currents to the East in the northern
hemisphere and West in the southern hemisphere. Finally, the major ocean circulations will also have
a tidal component arising from planetary interactions like gravity. In coastal regions and fjords, tidal
components can reach very high speeds, in fact speeds of 2–3 m/s or more have been measured.

Equations of Motion including Ocean Currents

In order to simulate ocean currents and their effect on marine craft motion, the following model can
be applied:
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MRBν̇ + CRB(ν)ν + g(η) + g0︸ ︷︷ ︸
rigid-body and hydrostatic terms

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamic terms

= τwind + τwave + τ (8.136)

where νr = ν − νc is the relative velocity vector. The generalized ocean current velocity of an irrotational
fluid is

νc = [uc, vc, wc︸ ︷︷ ︸
vb
c

, 0, 0, 0]
 (8.137)

where uc, vc and wc are expressed in {b}. Moreover, vb
c = [uc, vc, wc]
. The ocean current velocity vectors

in {n} and {b} satisfy

vn
c = Rn

b(�nb)vb
c (8.138)

Definition 8.1 (Irrotational Constant Ocean Current)
An irrotational constant ocean current in {n} is defined by

v̇n
c = Ṙn

b(�nb)vb
c + Rn

b(�nb)v̇b
c := 0 (8.139)

where

Ṙn
b(�nb) = Rn

b(�nb)S(ωb
b/n) (8.140)

Consequently,

v̇b
c = −S(ωb

b/n)vb
c (8.141)

Property 8.1 (Irrotational Constant Ocean Currents)
If the Coriolis and centripetal matrix CRB(νr) is parametrized independent of linear velocity
ν1 = [u, v, w]
, for instance by using (3.57), and the ocean current is irrotational and constant
(Definition 8.1), the rigid-body kinetics satisfies (Hegrenæs, 2010)

MRBν̇ + CRB(ν)ν = MRBν̇r + CRB(νr)νr (8.142)

with

νr =
[

vb − vb
c

ωb
b/n

]
(8.143)

Proof. Since the Coriolis and centripetal matrix represented by (3.57) is independent of linear velocity
ν1 = [u, v, w]
, it follows that

CRB(νr) = CRB(ν) (8.144)

The property

MRBν̇c + CRB(νr)νc = 0 (8.145)
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is proven by expanding the matrices MRB and CRB(νr) and corresponding acceleration and velocity
vectors according to

[
mI3×3 −mS(rb

g)

mS(rb
g) Ib

][−S(ωb
b/n)vb

c

03×1

]
+

[
mS(ωb

b/n) −mS(ωb
b/n)S(rb

g)

mS(rb
g)S(ωb

b/n) −S(Ibω
b
b/n)

][
vb

c

03×1

]
= 0

Finally, it follows that

MRBν̇ + CRB(ν)ν = MRB[ν̇r + ν̇c] + CRB(νr)[νr + νc]

= MRBν̇r + CRB(νr)νr (8.146)

Equations of Relative Velocity

Property 8.1 can be used to simply the representation of the equations of motion (8.136). Moreover,

Mν̇r + C(νr)νr + D(νr)νr + g(η) + g0 = τwind + τwave + τ (8.147)

where

M = MRB + MA (8.148)

C(νr) = CRB(νr) + CA(νr) (8.149)

For DP vessels and ships moving on a straight-line path, ωb
b/n ≈ 0. Hence, the acceleration of the current

(8.141) is negligible such that

ν̇c ≈ 0 (8.150)

Under this assumption, the equations of motion (8.147) become

Mν̇ + C(νr)νr + D(νr)νr + g(η) + g0 = τwind + τwave + τ (8.151)

We will now turn our attention to simulation models for νc.

Current Speed and Direction

The ocean current speed is denoted by Vc while its direction relative to the moving craft is conveniently
expressed in terms of two angles: angle of attack αc and sideslip angle βc as shown in Figure 2.9 in
Section 2.4. For computer simulations the ocean current velocity can be generated by using a first-order
Gauss–Markov process:

V̇c + μVc = w (8.152)
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where w is Gaussian white noise and μ ≥ 0 is a constant. If μ = 0, this model reduces to a random walk,
corresponding to time integration of white noise. A saturating element is usually used in the integration
process to limit the current speed to

Vmin ≤ Vc(t) ≤ Vmax (8.153)

The direction of the current can be fixed by specifying constant values for αc and βc. Time-varying
directions can easily be simulated by associating dynamics to αc and βc.

8.3.1 3-D Irrotational Ocean Current Model

A 3-D ocean current model is obtained by transforming the current speed Vc from FLOW axes to
NED velocities:

vn
c = R


y,αc
R


z,−βc

⎡
⎣Vc

0

0

⎤
⎦ (8.154)

where the rotation matrices Ry,αc
and Rz,−βc

are defined in Section 2.4. Assuming that the fluid is
irrotational implies that

νc = [uc, vc, wc, 0, 0, 0]
 (8.155)

Expanding (8.154) yields

vn
c =

⎡
⎣Vc cos(αc) cos(βc)

Vc sin(βc)

Vc sin(αc) cos(βc)

⎤
⎦ (8.156)

which can be transformed to {b} using the Euler angle rotation matrix. Consequently,

⎡
⎣ uc

vc

wc

⎤
⎦ = Rn

b(�nb)
vn
c (8.157)

8.3.2 2-D Irrotational Ocean Current Model

For the 2-D case (motions in the horizontal plane), the 3-D equations (8.156) with αc = 0 reduce to

vn
c =

⎡
⎣Vc cos(βc)

Vc sin(βc)

0

⎤
⎦ (8.158)
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Hence, from (8.157) it follows that

uc = Vc cos(βc − ψ), vc = Vc sin(βc − ψ) (8.159)

Notice that

Vc =
√

u2
c + v2

c (8.160)

Example 8.3 (Maneuvering Model including Ocean Currents)
Consider a linearized maneuvering model in state-space form:

⎡
⎣m11 m12 0

m21 m22 0

0 0 1

⎤
⎦

⎡
⎣ v̇ − v̇c

ṙ

ψ̇

⎤
⎦ +

⎡
⎣ d11 d12 0

d21 d22 0

0 −1 0

⎤
⎦

⎡
⎣ v − vc

r

ψ

⎤
⎦ =

⎡
⎣ b1

b2

0

⎤
⎦ δ +

⎡
⎣ Ywind

Nwind

0

⎤
⎦ +

⎡
⎣ Ywave

Nwave

0

⎤
⎦

(8.161)

where v is the sway velocity, r is the yaw rate, ψ is the yaw angle, δ is the rudder angle and vc is the
transverse current velocity given by

vc = Vc sin(βc − ψ) (8.162)

Assume that the current speed is a Gauss–Markov process (8.152) and the direction βc = constant. The
ocean current acceleration in {b} becomes

v̇c = V̇c sin(βc − ψ) − Vcr cos(βc − ψ)

= −μVc sin(βc − ψ) + w sin(βc − ψ) − Vcr cos(βc − ψ) (8.163)

The resulting state-space model is

⎡
⎢⎢⎣

m11 m12 0 0

m21 m22 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

v̇

ṙ

ψ̇

V̇c

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

m11μVc sin(βc − ψ) + m11Vcr cos(βc − ψ) + d11Vc sin(βc − ψ) − d11v − d12r

m21μVc sin(βc − ψ) + m21Vcr cos(βc − ψ) + d21Vc sin(βc − ψ) − d21v − d22r

r

−μVc

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

b1

b2

0

0

⎤
⎥⎥⎦ δ +

⎡
⎢⎢⎣

Ywind

Nwind

0

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

Ywave

Nwave

0

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

−m11 sin(βc − ψ)

−m21 sin(βc − ψ)

0

1

⎤
⎥⎥⎦w

Notice that the state-space model is nonlinear in ψ, Vc and βc even though the ship model (8.161)
was linear.
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9
Introduction

Guidance, navigation and control (GNC) deals with the design of systems that automatically control or
remotely control devices or vehicles that are moving under water, on the surface or in space. While
Part I of the textbook is dedicated to modeling of marine craft in 6 degrees of freedom, Part II deals
with the design of model-based GNC systems. The theory and cases studies are organized as four
independent chapters:

Chapter 10: Guidance Systems: Systems for automatically guiding the path of a marine craft, usually
without direct or continuous human control.

Chapter 11: Sensor and Navigation Systems: Systems for determination of the craft’s position/
attitude, velocity and acceleration.

Chapter 12: Motion Control Systems: PID design methods for automatic control of position/attitude,
velocity and acceleration. This involves control systems for stabilization, trajectory-tracking and path-
following control of marine craft.

Chapter 13: Advanced Motion Control Systems: Design of advanced motion control systems using
optimal and nonlinear control theory.

In each chapter, theory and case studies are presented with focus on the following applications:

• Ship and underwater vehicle autopilots for course-keeping and turning control
• Waypoint tracking, trajectory-tracking and path-following control systems for marine craft
• Depth autopilots for underwater vehicles
• Yacht control systems
• Attitude control systems for underwater vehicles
• Dynamic positioning (DP) systems for marine craft
• Position mooring (PM) systems for floating vessels
• Fin and rudder-roll reduction systems
• Buoyancy control systems including trim and heel correction systems
• Propulsion and forward speed control systems

9.1 Historical Remarks
The history of model-based ship control starts with the invention of the gyrocompass in 1908, which
allowed for reliable automatic yaw angle feedback. The gyrocompass was the basic instrument in the
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first feedback control system for heading control and today these devices are known as autopilots. The
next breakthrough was the development of local positioning systems in the 1970s. Global coverage
using satellite navigation systems was first made available in 1994. Position control systems opened for
automatic systems for waypoint tracking, trajectory tracking and path following.

The development of local area ship positioning systems such as hydroacoustic reference systems
(SSBL, SBL, LBL), hyperbolic radio navigation systems (Decca, Loran-C, Omega), local electromagnetic
distance measuring (EDM) systems (Artemis, Autotape, Miniran, Mini-Ranger III, Syledis, Tellurometer,
Trident III, Trisponder) and taut wire in conjunction with new results in feedback control contributed to
the invention and design of the first dynamic positioning systems for ships and rigs in the late 1970s; see
Sections 12.2.10 and 13.1.6. The use of DP systems on a global basis in offshore applications was further
strengthened by commercialization of satellite navigation systems. In 1994 Navstar GPS was declared
fully operational (global coverage) even though the first satellite was launched in 1974 (Parkinson and
Spilker, 1995). GPS receivers are standard components in waypoint tracking control systems and ship
positioning systems worldwide. They are used commercially and by numerous naval forces. Today,
three Global Navigation Satellite Systems (GNSS) are commercially available: Navstar GPS (USA),
GLONASS (Russia) and GALILEO (European Union).

9.1.1 The Gyroscope and its Contributions to Ship Control

During the 1850s the French scientist J. B. L. Foucault conducted experiments with a wheel (rotor)
mounted in gimbal rings, that is a set of rings that permit it to turn freely in any direction. The name
gyroscope was adopted for this device. In the experiments Foucault noticed that the spinning wheel
maintained its original orientation in space regardless of the Earth’s rotation.

In Encyclopedia Britannica the following definition is given for a gyroscope:

Gyroscope: any device consisting of a rapidly spinning wheel set in a framework that permits it to
tilt freely in any direction–that is, to rotate about any axis. The momentum of such a wheel causes
it to retain its attitude when the framework is tilted; from this characteristic derive a number of
valuable applications. Gyroscopes are used in such instruments as compasses and automatic pilots
onboard ships and aircraft, in the steering mechanisms of torpedoes, in antiroll equipment on large
ships and in inertial guidance systems.

The first recorded construction of the gyroscope is usually credited to C. A. Bohnenberger in 1810,
while the first electrically driven gyroscope was demonstrated in 1890 by G. M. Hopkins (see Allensworth,
1999, Bennet, 1979). The development of the electrically driven gyroscope was motivated by the need for
more reliable navigation systems in steel ships and underwater warfare. A magnetic compass, as opposed
to a gyro compass, is highly sensitive to magnetic disturbances, which are commonly found in steel ships
and submarines equipped with electrical devices. In parallel works, Dr H. Anschutz of Germany and
Elmer Sperry of the USA both worked on the practical application of the gyroscope. In 1908 Anschutz
patented the first North-seeking gyrocompass, while Elmer Sperry was granted a patent for his ballistic
compass including vertical damping three years later.

The invention of the gyroscope was one of the key breakthroughs in automatic ship control since
it led to the development of the automatic pilot (Fossen, 2000a). Historic aspects in a motion control
perspective are discussed by Fossen (2000b) while Fossen and Perez (2009) discuss Kalman filtering for
positioning and heading control of ships and offshore rigs in conjunction with the 50th anniversary of
the Kalman–Bucy filter. The pioneering work of J. G. Balchen and coauthors on ship automation and
dynamic positioning is discussed in Breivik and Sand (2009).
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9.1.2 Autopilots

The autopilot or automatic pilot is a device for controlling an aircraft, marine craft or other vehicles
without constant human intervention. The earliest automatic pilots could do no more than maintain a
fixed heading and they are still used to relieve the pilot on smaller boats during routine cruising. For ships,
course-keeping capabilities were the first applications. Modern autopilots can, however, execute complex
maneuvers, such as turning and docking operations, or enable the control of inherently unstable vessels
such as submarines and some large oil tankers. Autopilots are used to steer surface ships, submarines,
torpedoes, missiles, rockets and spacecraft among others.

As mentioned earlier, the work on the gyrocompass was extended to ship steering and closed-loop
control by Elmer Sperry (1860–1930) who constructed the first automatic ship-steering mechanism
(see Allensworth, 1999; Bennet, 1979). This device, referred to as the Metal Mike, was a gyroscope-
guided autopilot (gyro pilot) or a mechanical helmsman. The first field trials of the Sperry standard
gyro pilot were conducted in 1922. Metal Mike emulated much of the behavior of a skilled pilot
or a helmsman, including compensating for varying sea states using feedback control and automatic
gain adjustments.

Nicholas Minorsky (1885–1970) presented a detailed analysis of a position feedback control system
where he formulated a three-term control law which is today known as proportional-integral-derivative
(PID) control (see Minorsky, 1922). Observing the way in which a helmsman steered a ship motivated
these three different behaviors. In Bennet (1979), there is an interesting analysis of the work of Sperry
and Minorsky and their contributions to autopilot design.

The autopilot systems of Sperry and Minorsky were both single-input single-output (SISO) con-
trol systems, where the heading (yaw angle) of the ship was measured by a gyrocompass. Today, this
signal is fed back to a computer, in which a PID control system (autopilot) is implemented in soft-
ware (see Section 12.2.6). The autopilot compares the pilot setpoint (desired heading) with the mea-
sured heading and computes the rudder command, which is then transmitted to the rudder servo for
corrective action.

More recently PID-type autopilots have been replaced by autopilots based on linear quadratic Gaussian
(LQG) and H∞-control design techniques. One of the advantageous features of these design tech-
niques is that they allow for frequency-dependent notch filtering of first-order wave-induced forces (see
Chapter 11). Frequency components around the peak frequency of the wave spectrum in yaw must be
prevented from entering the feedback loop in order to avoid wear and tear of the thruster and propeller
systems. The drawback of the PID controller in cascade with a deadband, notch and/or low-pass filter is
that additional phase lag and nonlinearities are introduced in the closed-loop system (see Section 11.1). A
model-based state estimator (Kalman filter) reduces these problems. Linear quadratic and H∞ autopilot
designs have been reported in the literature by a large number of authors; see Koyama (1967), Norrbin
(1972), Van Amerongen and Van Nauta Lemke (1978, 1980), Donha et al. (1998), Tzeng (1998b) and
Fossen (1994) and references therein, to mention only some.

In addition to LQG and H∞ control, other design techniques have been applied to ship autopilot
designs, for instance nonlinear control theory. Autopilot designs for nonlinear systems are treated in
detail in Section 13.3.

9.1.3 Dynamic Positioning and Position Mooring Systems

The great successes with PID-based autopilot systems and the development of local area positioning
systems suggest that three decoupled PID controllers could be used to control the horizontal motion of a
ship in surge, sway and yaw exclusively by means of thrusters and propellers. The idea was tested in the
1970s, and the invention was referred to as a dynamic positioning (DP) system. PID designs for DP are
presented in Section 12.2.10 while optimal DP is discussed in Section 13.1.6



232 Introduction

As for the autopilot systems, a challenging problem was to prevent first-order wave-induced forces
entering the feedback loop. Several techniques such as notch and low-pass filtering, and the use of
dead-band techniques, were tested for this purpose, but with varying levels of success.

In 1960–1961 the Kalman filter was published by Kalman (1960) and Kalman and Bucy (1961).
Two years later in 1963, the theory for the linear quadratic (LQ) optimal controller was available. This
motivated the application of LQG controllers in MIMO ship control such as DP since a state observer
(Kalman filter) could be used to estimate the wave frequency (WF) and the ship low-frequency (LF)
motions; see Section 11.3.6 and Figure 12.23 in Section 12.2.10. Another advantage of a MIMO control
strategy was that the interactions between the surge, sway and yaw modes could be dealt with. This is
not possible with three decoupled PID controllers.

The LQG design technique was first applied to DP by Balchen et al. (1976, 1980a, 1980b) and Grimble
et al. (1979, 1980a). Later Grimble and coauthors suggested to useH∞ andμ-optimal methods for filtering
and control (Katebi et al., 1997a). These methods have been further refined by Katebi et al. (1997b) where
the nonlinear thruster dynamics is included using describing functions.

After 1995, nonlinear PID control, passive observer design and observer backstepping designs have
been applied to DP by Fossen and coauthors with good results; see Grøvlen and Fossen (1996), Fossen
and Grøvlen (1998), Strand (1999) and references therein. An overview of DP systems is found in Strand
and Sørensen (2000) while extensions to PM systems are presented in Strand (1999). DP and PM systems
are discussed in more detail in Sections 12.2.10 and 13.1.6.

9.1.4 Waypoint Tracking and Path-Following Control Systems

The successful results with LQG controllers in ship autopilots and DP systems, and the availability of
global navigation systems such as GPS and GLONASS, resulted in a growing interest in waypoint tracking
and path-following control systems; see Holzhüter and Schultze (1996), Holzhüter (1997), Fossen et al.
(2003b), Skjetne et al. (2004), Breivik and Fossen (2009) and references therein. The transformation
of the waypoints to a feasible path or trajectory is in general a nonlinear optimization problem. This is
discussed in Chapter 10. Motion controllers can be designed using linear theory or by treating the control
problem as nonlinear; see Sections 12.2.7–12.2.9 and 13.3.12. Guidance systems for trajectory-tracking
and path-following control are discussed in Chapter 10, while maneuverability and autopilot systems are
discussed in Chapters 12–13.

9.2 The Principles of Guidance, Navigation and Control
A motion control system is usually constructed as three independent blocks denoted as the guidance,
navigation and control (GNC) systems. These systems interact with each other through data and signal
transmission as illustrated in Figure 9.1, where a conventional ship autopilot is shown. In more advanced
GNC systems, these blocks could be more tightly coupled and even represented by one block. Loose and
tight coupling is a trade-off between modularity and high performance. From an industrial point of view
it is attractive to have a loosely coupled system since this allows for software updates of single blocks.

In Figure 9.1 the guidance system makes use of the estimated alternatively measured positions and
velocities. This is referred to as a closed-loop guidance system while a guidance system that only uses
reference feedforward (no feedback) is an open-loop guidance system (see Figure 9.3).

Definitions of Guidance, Navigation and Control

In its most advanced form, the GNC blocks represent three interconnected subsystems, as shown in
Figure 9.1. The tasks of the subsystems are classified according to:
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Figure 9.1 GNC signal flow.

Guidance is the action or the system that continuously computes the reference (desired) position, velocity
and acceleration of a marine craft to be used by the motion control system. These data are usually
provided to the human operator and the navigation system (see Figure 9.2). The basic components of a
guidance system are motion sensors, external data such as weather data (wind speed and direction, wave
height and slope, current speed and direction) and a computer. The computer collects and processes
the information, and then feeds the results to the motion control system. In many cases, advanced
optimization techniques are used to compute the optimal trajectory or path for the marine craft to
follow. This might include sophisticated features such as fuel optimization, minimum time navigation,
weather routing, collision avoidance, formation control and synchronization.

Navigation is the science of directing a craft by determining its position/attitude, course and distance
traveled. In some cases velocity and acceleration are determined as well. This is usually done by using
a global navigation satellite system (GNSS) combined with motion sensors such as accelerometers and
gyros. The most advanced navigation system for marine applications is the inertial navigation system
(INS). Navigation is derived from the Latin navis, “ship”, and agere, “to drive”. It originally denoted
the art of ship driving, including steering and setting the sails. The skill is even more ancient than
the word itself, and it has evolved over the course of many centuries into a technological science that
encompasses the planning and execution of safe, timely and economical operation of ships, underwater
vehicles, aircraft and spacecraft.

Control, or more specifically motion control, is the action of determining the necessary control forces and
moments to be provided by the craft in order to satisfy a certain control objective. The desired control
objective is usually seen in conjunction with the guidance system. Examples of control objectives are
minimum energy, setpoint regulation, trajectory-tracking, path-following and maneuvering control.
Constructing the control algorithm involves the design of feedback and feedforward control laws. The
outputs from the navigation system, position, velocity and acceleration are used for feedback control
while feedforward control is implemented using signals available in the guidance system and other
external sensors.

An autopilot is a GNC system in its most basic form. A state-of-the-art autopilot system consists
of a reference model (guidance system), a gyrocompass/observer (navigation system) and an autopilot
(control system). This is illustrated in Figure 9.3.
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Figure 9.2 Human operator monitoring the navigation data. Illustration Bjarne Stenberg/Department
of Marine Technology, NTNU.

Figure 9.3 Autopilot GNC blocks where the reference model represent an open-loop guidance system.
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9.3 Setpoint Regulation,Trajectory-Tracking and Path-Following
Control

When designing motion control systems, the control objective must be well defined in order to satisfy
the requirement specifications for safe operation of the craft. In this context, it is important to distinguish
between the following three important control objectives:

Setpoint Regulation: The most basic guidance system is a constant input or setpoint provided by a
human operator. The corresponding controller will then be a regulator. Examples of setpoint regulation
are constant depth, trim, heel and speed control. It could also be regulation to zero, which is commonly
required in roll and pitch for instance.

Trajectory-Tracking Control: The position and velocity of the marine craft should track desired time-
varying position and velocity reference signals. The corresponding feedback controller is a trajectory-
tracking controller. Tracking control can be used for course-changing maneuvers, speed-changing and
attitude control. An advanced guidance system computes optimal time-varying trajectories from a
dynamic model for a predefined control objective. If a constant setpoint is used as input to a low-pass
filter (reference model) in an open-loop guidance system, the outputs of the filter will be smooth
time-varying reference trajectories for position, velocity and acceleration (PVA).

Path-Following Control: This is to follow a predefined path independent of time (no temporal con-
straints). Moreover, no restrictions are placed on the temporal propagation along the path. This is
typical for ships in transit between continents or underwater vehicles used to map the seabed.

As soon as the control objective is determined, a motion control system can be designed to satisfy the
requirements. Methods for this are presented in Chapters 12–13.

9.4 Control of Underactuated and Fully Actuated Craft
When designing motion control systems for marine craft, it is important to distinguish between:

• Underactuated marine craft
• Fully actuated marine craft

It is trivial to control a fully actuated marine craft while underactuation puts limitations on what control
objectives can be satisfied. More specifically, the control objective must be formulated such that the craft
can satisfy all requirements even if it is equipped with actuators that purely produce forces in some
directions. Unfortunately, most marine craft are underactuated since they cannot produce control forces
and moments in all DOFs.

Definition 9.1 (Degree-of-Freedom (DOF))
For a marine craft, DOF is the set of independent displacements and rotations that completely
specify the displaced position and orientation of the craft. A craft that can move freely in the 3-D space
has a maximum of 6 DOFs, three translational and three rotational components.

Consequently, a fully actuated marine craft operating in 6 DOF must be equipped with actuators that
can produce independent forces and moments in all directions. When simulating the motion of such a
craft, a total of 12 ordinary differential equations are needed since the order of the system is

Order = 2 × DOF (9.1)

In many cases this is not practical. For instance, a ship can be equipped with a single rudder and a
propeller. Hence, the motion control system cannot satisfy a 6 DOF control objective. It is still possible
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to control the ship if the control objective is path-following control for instance. The reason for this is that
two control inputs can be used to satisfy two control objectives even though the ship moves in 6 DOF.
More specifically:

Control systems for underactuated and fully actuated marine craft are designed by defining a
workspace in which the control objective is specified.

In order to investigate this, it is necessary to define the configuration space and workspace of a
marine craft.

9.4.1 Configuration Space

The configuration space of a marine craft is defined as:

Definition 9.2 (Configuration Space)
The n-dimensional configuration space is the space of possible positions and orientations that a
craft may attain, possibly subject to external constraints.

The configuration of a marine craft can be uniquely described by an n-dimensional vector of generalized
coordinates, that is the least number of coordinates needed to specify the state of the system.

If k geometric constraints exist,

hi(η) = 0, i = 1, .., k (9.2)

the possible motions of the craft are restricted to an (n − k)-dimensional submanifold.

Example 9.1 (6 DOF Motions)
For a marine craft operating in 6 DOF, the displacements and rotations are described by n = 6
generalized positions and velocities

η = [x, y, z, φ, θ, ψ]� ∈ R3 × S3 (9.3)

ν = [u, v, w, p, q, r]� ∈ R6 (9.4)

where the Euler angles φ, θ and ψ are defined on the interval S = [0, 2π]. Thus the order of the system
is 12. This is typically the case for underwater vehicles.

Example 9.2 (3 DOF Motions)
For a marine craft restricted to operate in the horizontal plane (surge, sway and yaw), n = 3
generalized positions and velocities

η = [x, y, ψ]� ∈ R2 × S (9.5)

ν = [u, v, r]� ∈ R3 (9.6)

are needed to describe the motions. Thus the order of the system is 6. This is typically the case for ships
and offshore rigs.

In this context, an underactuated marine craft is defined as:

Definition 9.3 (Underactuated Marine Craft)
A marine craft is underactuated if it has less control inputs than generalized coordinates (r < n).
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Definition 9.4 (Fully Actuated Marine Craft)
A marine craft is fully actuated if it has equal or more control inputs than generalized coordi-
nates (r ≥ n).

From this it follows that a marine craft that operates in n DOF has a configuration space of dimension
dim(η) = n. If the craft only has actuators in surge, sway and yaw, the craft is underactuated in the sense of
operation in 6 DOF while the design of a motion control system for the horizontal plane motion (dynamic
positioning) can be achieved using only three control inputs. Underwater vehicles that have actuators
that produce independent forces and moments in 6 DOF are fully actuated. Hence, it makes sense to look
at the number of actuators needed (see Figure 9.4) to control motions in a space of dimension m < n

instead of always formulating the control objective in n DOF. This suggests that the control objective
should be formulated in the workspace of the craft and not the configuration space when designing motion
control systems.

9.4.2 Workspace and Control Objectives

The workspace is defined as:

Definition 9.5 (Workspace)
The workspace is a reduced space of dimension m < n in which the control objective is defined.

The workspace of a conventional heading autopilot system is m = 1 since only the yaw motion is
controlled. Similarly, the workspace of a horizontal plane controller, for instance a DP system controlling
the motions in surge, sway and yaw, is m = 3.

Figure 9.4 Azimuth thrusters for actuation in surge, sway and yaw. Illustration by Bjarne Stenberg/
MARINTEK.
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Let n be the dimension of the configuration space, m the dimension of the workspace and r denote the
number of independently controlled actuators spanning different directions in the configuration space.
Hence, we can make the following statements:

• Full actuation means that independent control forces and moments are simultaneously available in all
directions. Moreover, all positions in the configuration space have actuation such that r = n.

• An underactuated marine craft has independent control forces and moments in only some DOF.
Moreover, r < n. Stabilizing and tracking controllers for underactuated craft are usually designed by
considering a workspace of dimension m < n satisfying m = r (fully actuated in the workspace but
not in the configuration space).

• Underactuated control is a technical term used in control theory to describe a motion control system
for a craft that is underactuated in the workspace (r < m). To design a control system that achieves
stabilization, trajectory-tracking and path-following control for this case is nontrivial. These types of
system are not considered in this textbook since they are not used in practice.

This means that it is straightforward to design motion control systems for marine craft in the workspace
as long as there is a workspace that is fully actuated and satisfies the control objective, that is m = r. One
obstacle is that the system must be internally stable when reducing the dimension of the configuration
space to a smaller space (workspace) intended for feedback control design. Space reduction implies
that the uncontrolled equations of motion will appear as k dynamic constraints that must have bounded
solutions in order to avoid the system blowing up.

Example 9.3 (Path-Following Control)
Consider an underactuated craft in the horizontal plane with actuation in surge and yaw (no ac-
tuation in sway). A path-following control system is usually designed by using feedback from the heading
angle ψ and surge velocity u. Then it is possible to control the speed of the craft along the path using a
speed controller and at the same time force the craft on to the path using a heading controller producing
rudder commands. The workspace of this system is m = 2 while the motions in surge, sway and yaw
corresponds to a configuration space of dimension three (n = 3). Consequently,

m < n (9.7)

but only two controls (r = 2) are needed to satisfy the path-following control objective. However, the
uncontrolled sway equation introduces a constraint representing the sway dynamics of the craft. This
equation must be stable in order for the overall system to be stable (Fossen et al., 2003b). A case study
illustrating this is presented in Section 13.3.12.

Example 9.4 (Dynamic Positioning)
Consider a fully actuated craft operating in the horizontal plane with actuation in surge, sway
and yaw (r = 3). A dynamic positioning system can be designed by using feedback from the position
(x, y) and the heading angle ψ. The dimension of the workspace is m = 3 and the dimension of the
configuration space is n = 3. Hence, m = n = r and it is straightforward to control (x, y, ψ); see
Section 12.2.10.

9.4.3 Weathervaning of Underactuated Craft in a Uniform Force Field

Marine craft are usually controlled in surge, sway and yaw by using three controls, that is full actuation.
However, unlike wheeled cars and other craft operating on the surface of the Earth, it is possible to stabilize
the positions of a marine craft by means of two controls. The main reason for this is that marine craft are
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Figure 9.5 Weathervaning of a tanker. The tanker is aligned in the force field such that the resulting
force is acting at the bow along the longitudinal axis.

exposed to drift forces generated by waves, wind and ocean currents. This means that the equations of
motion are forced.

For stationkeeping, it is common to assume that the drift forces are slowly varying such that the
resulting component due to wind, waves and ocean currents can be treated as a constant uniform force.
Hence, a marine craft can be modeled as a rigid body operating in a unified force field similar to a
pendulum in the gravity field, as explained in Section 13.3.10. This is an appealing idea in stationkeeping
since it is possible to align the craft in the force field such that the resulting environmental force is acting
at the bow along the longitudinal axis of the craft (see Figure 9.5). This clearly reduces drag for slender
bodies and torpedo-shaped vehicles. Another important observation is that it is possible to stabilize a
rigid body in a uniformed force field using only two controls (r = 2) even though the configuration space
of the craft is surge, sway and yaw, that is m = 3. This is done by using one control to compensate for
the drift force that acts along the longitudinal axis of the body. The other controller is designed to align
the craft to the force field. This concept is in fact similar to a weathervane which is aligned to the force
field created by the wind. Motion control systems can be designed to behave like a weathervane and are
used offshore for stationkeeping of supply vessels and tankers near floating structures in order to save
energy. The drawback is that stationkeeping using only two controls implies that the desired heading
cannot be specified arbitrarily. Simultaneous control of the motions in surge, sway and yaw to arbitrary
values requires three controls.
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Guidance Systems

This chapter describes methods for the design of guidance systems for marine craft (Siouris, 2004,
Yanushevsky, 2008). Guidance can be defined as (Shneydor, 1998): “The process for guiding the path
of an object towards a given point, which in general may be moving.” Draper (1971) states: “Guidance
depends upon fundamental principles and involves devices that are similar for vehicles moving on land,
on water, under water, in air, beyond the atmosphere within the gravitational field of Earth and in space
outside this field.” Thus, guidance represents a basic methodology concerned with the transient motion
behavior associated with the achievement of motion control objectives (see Breivik and Fossen, 2009).

In its simplest form, open-loop guidance systems for marine craft are used to generate a reference
trajectory for time-varying trajectory tracking or, alternatively, a path for time-invariant path following
(see Section 9.2). A motion control system will work in close interaction with the guidance system.

In the control literature, the different motion control scenarios are typically classified according to:

• Setpoint regulation (point stabilization) is a special case where the desired position and attitude are
chosen to be constant.

• Trajectory tracking, where the objective is to force the system output y(t) ∈ Rm to track a desired
output yd(t) ∈ Rm. The desired trajectory can be computed using reference models generated by
low-pass filters, optimization methods or by simply simulating the marine craft motion using an
adequate model of the craft. Feasible trajectories can be generated in the presence of both spatial and
temporal constraints.

• Path following is following a predefined path independent of time. No restrictions are placed on the
temporal propagation along the path. Spatial constraints can, however, be added to represent obstacles
and other positional constraints if they are known in advance.

Tracking control systems can also be designed for target tracking and path tracking. For instance, a
target-tracking system tracks the motion of a target that is either stationary (analogous to point stabiliza-
tion) or that moves such that only its instantaneous motion is known; that is no information about the
future target motion is available (Breivik and Fossen, 2009).

As shown in Figure 10.1, the guidance system can use joystick or keyboard inputs, external inputs
(weather data, for instance measured wind, wave and current speeds and directions), Earth topological
information (digital chart, radar and sonar data), obstacle and collision avoidance data, and finally the
state vector, which is available as output from the navigation and sensor systems. The required data are
further processed to generate a feasible trajectory for motion control. This can be done using ad hoc
techniques or sophisticated methods such as interpolation techniques, dynamic optimization or filtering
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Figure 10.1 In closed-loop guidance (dotted line) the states are fed back to the guidance system while
open-loop guidance only uses sensor and reference signal inputs.

techniques. A feasible trajectory means one that is consistent with the craft dynamics. For a linear system,
this implies that the eigenvalues of the desired states must be chosen such that the reference model is
slower than the craft dynamics.

For a ship or an underwater vehicle, the guidance and control system usually consists of the
following subsystems:

• Attitude control system
• Path-following control system

In its simplest form, the attitude control system is a heading autopilot, while roll and pitch are regulated
to zero or left uncontrolled. The main function of the attitude feedback control system is to maintain
the craft in a desired attitude on the ordered path by controlling the craft in roll, pitch and yaw. The
task of the path-following controller is to keep the craft on the predescribed path with some predefined
dynamics, for instance a speed control system by generating orders to the attitude control system. For
surface vessels it is common to use a heading controller in combination with a speed controller while
aircraft and underwater vehicles also need a height/depth controller. The principles and definitions of
guidance, navigation and control are further outlined in Section 9.2.

10.1 Target Tracking
Sometimes no information about the path is known in advance and there is no trajectory to track. Hence, if
the goal is to track a moving object, for which no future motion information is available, target-tracking
methods can be applied. Guidance laws for target tracking can be used in marine operations such as
underway replenishment (UNREP) operations and formation control. UNREP operations involve cargo
transfer between two or more cooperating craft in transit. The task of the so-called guide ship is to
maintain a steady course and speed while the approach ship moves up alongside the guide or target ship
to receive fuel, munitions and personnel (Skejic et al., 2009).

For surface vessels, the 2-D position of the target is denoted by pn
t = [Nt, Et]�. The control objective

of a target-tracking scenario can be formulated as (Breivik and Fossen, 2009)

lim
t→∞

[pn(t) − pn
t (t)] = 0 (10.1)
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Figure 10.2 Desired interceptor approach speed Ud = ‖vn
d‖ for the classical guidance principles: line-

of-sight LOS, pure pursuit (PP) and constant bearing (CB). The target speed is Ut = ‖vn
t ‖.

where pn ∈ R2 is the craft position. The target velocity is vn
t = ṗn

t ∈ R2. In the missile guidance com-
munity an object that is supposed to destroy another object is referred to as a missile, an interceptor or a
pursuer. Conversely, the threatened object is typically called a target or an evader. In the following, the
designations interceptor and target will be used.

An interceptor typically undergoes three phases during its operation:

1. Launch phase
2. Midcourse phase
3. Terminal phase

The greatest accuracy demand is associated with the terminal phase, where the interceptor guidance
system must compensate for the accumulated errors from the previous phases to achieve a smallest
possible final miss distance to the target. The remainder of this section is based on Breivik and Fossen
(2009) and Breivik (2010). The discussion is limited to three terminal guidance strategies, line-of-sight,
pure pursuit and constant bearing, which are illustrated in Figure 10.2.

Note that while the main objective of a guided missile is to hit and destroy a physical target in finite time.
the analogy is to hit or converge to a virtual target asymptotically. This is also referred to as asymptotic
interception given by (10.1).

10.1.1 Line-of-Sight Guidance

Line-of-sight (LOS) guidance is classified as a three-point guidance scheme since it involves a typically
stationary reference point in addition to the interceptor and the target. The LOS denotation stems from
the fact that the interceptor is supposed to achieve an intercept by constraining its motion along the LOS
vector between the reference point and the target. LOS guidance has typically been employed for surface-
to-air missiles, often mechanized by a ground station, which illuminates the target with a beam that the
guided missile is supposed to ride, also known as beam-rider guidance. The LOS guidance principle is
illustrated in Figure 10.2, where the interceptor velocity vn

a is pointed to LOS vector to obtain the desired
velocity vn

d . LOS guidance will be applied to track straight-line paths in section 10.3 while curved paths
are discussed in Section 10.4.
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10.1.2 Pure Pursuit Guidance

Pure pursuit (PP) guidance belongs to the two-point guidance schemes, where only the interceptor and
the target are considered in the engagement geometry. The interceptor aligns its velocity vn

a along the
LOS vector between the interceptor and the target by choosing the desired velocity as

vn
d = −κ

p̃n

‖ p̃n‖ (10.2)

where κ > 0. This strategy is equivalent to a predator chasing a prey in the animal world, and very
often results in a tail chase. PP guidance has typically been employed for air-to-surface missiles. The PP
guidance principle is represented in Figure 10.2 by a vector pointing directly at the target.

Deviated pursuit guidance is a variant of PP guidance, where the velocity of the interceptor is supposed
to lead the interceptor–target line of sight by a constant angle in the direction of the target movement.
An equivalent term is fixed-lead navigation.

10.1.3 Constant Bearing Guidance

Constant bearing (CB) guidance is also a two-point guidance scheme, with the same engagement geom-
etry as PP guidance. However, in a CB engagement, the interceptor is supposed to align the interceptor–
target velocity vn

a along the LOS vector between the interceptor and the target. This goal is equivalent to
reducing the LOS rotation rate to zero such that the interceptor perceives the target at a constant bearing,
closing in on a direct collision course. CB guidance is often referred to as parallel navigation and has
typically been employed for air-to-air missiles. Also, the CB rule has been used for centuries by mariners
to avoid collisions at sea, steering away from a situation where another craft approaches at a constant
bearing. Thus, guidance principles can just as well be applied to avoid collisions as to achieve them. The
CB guidance principle is indicated in Figure 10.2.

The most common method of implementing CB guidance is to make the rotation rate of the interceptor
velocity directly proportional to the rotation rate of the interceptor–target LOS, which is widely known
as proportional navigation (PN). However, CB guidance can also be implemented through the direct
velocity assignment as proposed by Breivik et al. (2006); see Breivik (2010) for details.

The CB desired velocity is given by

vn
d = vn

t + vn
a (10.3)

vn
a = −κ

p̃n

‖ p̃n‖ (10.4)

where vn
a = [Ṅa, Ėa]�is the approach velocity vector specified such that the desired approach speed

Ua =
∥∥vn

a

∥∥ is tangential to the LOS vector as shown in Figure 10.2 and

p̃n := pn − pn
t (10.5)

is the LOS vector between the interceptor and the target, ‖ p̃n‖ ≥ 0 is the Euclidean length of this
vector and

κ = Ua,max
‖ p̃n‖√

( p̃n)� p̃n + �2
p̃

(10.6)
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where Ua,max specifies the maximum approach speed toward the target and � p̃ > 0 affects the transient
interceptor–target rendezvous behavior. The CB guidance law (10.3) computes the velocity commands
needed to track the target.

Note that CB guidance becomes equal to PP guidance for a stationary target; that is the basic difference
between the two guidance schemes is whether the target velocity is used as a kinematic feedforward
or not.

Convergence and Stability Analyses

The convergence properties of (10.3)–(10.4) and (10.6) can be investigated by considering a Lyapunov
function candidate (LFC):

V = 1

2
( p̃n)� p̃n > 0, ∀ p̃n /= 0 (10.7)

Time differentiation of V along the trajectories of p̃n gives

V̇ = ( p̃n)� ṽn

= −κ
( p̃n)� p̃n

‖ p̃n‖

= −Ua,max
( p̃n)� p̃n√

( p̃n)� p̃n + �2
p̃

< 0, ∀ p̃n /= 0 (10.8)

The LFC (10.7) is positive definite and radially unbounded, while its derivative with respect to time
(10.8) is negative definite when adhering to U ≥ Ua,max > 0. Hence, by standard Lyapunov arguments
the origin p̃n = 0 is UGAS (see Appendix A.1). Finally, the Jacobian of the error dynamics p̃n at the
origin p̃n = 0 has strictly negative eigenvalues, which proves ULES.

Example 10.1 (UNREP Operation)
For ships equipped with a rudder and a main propeller, the rudder can be used to obtain a parallel course
with the guide ship (lateral alignment). We will consider a guide ship moving on a straight line and the
goal for the second ship is to approach this ship to carry out a UNREP operation. In Skejic et al. (2009)
the lookahead-based steering law of Breivik and Fossen (2009) in Section 10.3 is used to ensure that
the approach ship is able to assume a parallel course with the guide ship by adhering to the desired
course angle

χd = χt + χr (10.9)

where χt is the course angle of the guide ship. The heading of the approach ship is adjusted using the
steering law χr such that the lateral distance is adjusted as desired. The lateral distance and cross-track
error (s, e) are obtained by the following transformation:[

s

e

]
=

[
sd

ed

]
+ Rp(χt)

�(pn − pn
t ) (10.10)

where sd = 0 (interceptor on parallel course), ed = constant (distance between interceptor and
target) and

Rp(χt) =
[

cos(χt) − sin(χt)

sin(χt) cos(χt)

]
∈ SO(2) (10.11)
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Hence, the LOS steering law can be chosen as

χr = arctan(−e/�e) (10.12)

where the steering law tuning parameter �e > 0 represents the lookahead distance. This parameter is
given in meters and usually takes values between 1.5 and 2.5 of a ship length Lpp. Finally, the desired
heading angle for the approaching ship is input to the ship autopilot, suggesting that

ψd = χd − β (10.13)

where the sideslip (drift) angle is

β = arcsin
(

v

U

)
(10.14)

The speed command Ud =
√

u2
d + v2

d ≈ ud (assuming that ud � vd) is computed according to (10.3),
(10.4) and (10.6) such that

Ud = Ut − κ
s√

s2 + �2
s

(10.15)

where κ = Ua,max and

Ut =
√

u2
t + v2

t (10.16)

The speed tuning parameter �s > 0 specifies the rendezvous behavior towards the projection of the guide
ship on to the parallel course defined by ed , ensuring that the approach ship smoothly ramps down its
total speed to Ut as the along-course distance goes to zero.

10.2 Trajectory Tracking
Guidance systems designed for tracking a smooth time-varying trajectory yd(t) ∈ Rm are useful in many
applications. The desired speed and acceleration are obtained from time-differentiation of yd(t) one and
two times, respectively. This means that the signal yd(t) defines the desired position/attitude, velocity
and acceleration as a function of time t for a moving craft in 6 DOF. We will make use of the following
definition in the forthcoming:

Definition 10.1 (Trajectory Tracking)
A control system that forces the system output y(t) ∈ Rm to track a desired output yd(t) ∈ Rm

solves a trajectory tracking problem.

This definition is consistent with Athans and Falb (1966) and later with Hauser and Hindmann (1995),
Ortega et al. (1998), Encarnacao and Pascoal (2001) and Skjetne et al. (2002, 2004). In this section, meth-
ods for computation of the desired trajectory corresponding to a desired virtual target will be presented.
The following methods are discussed:

• Low-pass filters for the generation of position, velocity and acceleration (PVA) trajectories
• Time-domain simulation using an adequate model of the craft
• Optimization methods
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Within this framework, it is possible to generate feasible trajectories incorporating both spatial constraints
(obstacle avoidance and maximum velocity/acceleration) and temporal constraints (minimum time, on
time and maximum time problems)

Trajectory-Tracking Control

Trajectory-tracking control laws are classified according to the number of available actuators. This
can be illustrated by considering a marine craft in surge, sway and yaw. Tracking of a time-
varying reference trajectory ηd(t) = [Nd(t), Ed(t), ψd(t)]� is achieved by minimizing the tracking error,
e(t) := η(t) − ηd(t). Moreover,

e(t) :=

⎡
⎣N(t) − Nd(t)

E(t) − Ed(t)

ψ(t) − ψd(t)

⎤
⎦ (10.17)

Based on this interpretation, the following considerations can be made (see Section 9.3):

• Three or more controls: This is referred to as a fully actuated dynamic positioning (DP) system
and typical applications are crab wise motions (low-speed maneuvering) and stationkeeping, where
the goal is to drive e(t) ∈ R2 × S → 0. This is the standard configuration for offshore DP vessels.
Feedback control laws for fully actuated vessels are discussed in Chapter 12.

• Two controls and trajectory-tracking control: Trajectory tracking in 3 DOF, e(t) ∈ R2 × S, with
only two controls, u(t) ∈ R2, is an underactuated control problem, which cannot be solved using linear
theory. This problem has limited practical use. However, since all marine craft operate in a uniform
force field due to mean wind, waves and ocean currents, it is possible to steer the craft along a path
with a constant sideslip angle (given by the mean environmental force field) using only two controls,
that is turning and forward speed control. This is the classical approach used in path-following control
(see Section 12.2.8).

• Two controls and weather-optimal heading: If the ship is aligned up against the mean resulting
force due to wind, waves and ocean currents, a weathervaning controller can be designed such that
only two controls, u(t) ∈ R2, are needed to stabilize the ship positions. In this approach the heading
angle is allowed to vary automatically with the mean environmental forces (Pinkster, 1971, Pinkster
and Nienhuis, 1986, Fossen and Strand, 2001) (see Section 13.3.10).

• Two controls and path-following control: It is standard procedure to define a 2-D workspace (along-
track and cross-track errors) and minimize the cross-track error by means of an LOS path-following
controller; see Sections 10.3–10.4 and 12.2.8–12.2.9. Hence, it is possible to follow a path by using
only two controls (surge speed and yaw moment). For a conventional ship this is achieved by using
a rudder and a propeller only. Since the input and output vectors are of dimension two, the 6 DOF
system model must be internally stable.

• One control: It is impossible to design stationkeeping systems and trajectory-tracking control systems
in 3 DOF for a marine craft using only one control.

For underwater vehicles operating in 6 DOF it is also important to control the heave and sometimes
the pitch-roll motions in addition to the surge, sway and yaw motions. However, roll and pitch can be left
uncontrolled for metacentrically stable vehicles. For operation in 6 DOF, a fully actuated vehicle must
have six or more actuators producing independent forces and moments in all directions in order to track
a 6 DOF time-varying reference trajectory.
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Figure 10.3 Joystick control system used to generate reference signals. Illustration by Bjarne
Stenberg/SINTEF.

10.2.1 Reference Models for Trajectory Generation

In a practical system, it is highly advantageous to keep the software as simple as possible. As a result
of this, many industrial systems are designed using linear reference models for trajectory generation.
This corresponds to open-loop guidance as described in Section 9.2 since no feedback from the states is
required. The simplest form of a reference model is obtained by using a low-pass (LP) filter structure:

xd

r
(s) = hlp(s) (10.18)

where xd is the desired state and r denotes the reference signal usually specified by an operator (see
Figure 10.3). The choice of filter should reflect the dynamics of the craft such that a feasible trajectory is
constructed. For instance, it is important to take into account physical speed and acceleration limitations
of the craft as well as input saturation. This is a nontrivial task so a compromise between performance
and accurate tracking must be made by tuning the bandwidth of the reference model. It is important that
the bandwidth of the reference model is chosen lower than the bandwidth of the motion control system
in order to obtain satisfactory tracking performance and stability.

A frequently used method to generate a smooth reference trajectory xd ∈ Rn for tracking control
is to use a physically motivated model. For marine craft it is convenient to use reference models
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motivated by the dynamics of mass–damper–spring systems to generate the desired state trajectories,
for instance

hlp(s) = ω2
ni

s2 + 2ζiωni
s + ω2

ni

(10.19)

where ζi (i = 1, . . . , n) are the relative damping ratios and ωni
(i = 1, . . . , n) are the natural frequencies.

For a 6 DOF system, the desired states can be expressed by a MIMO mass–damper–spring system:

Md η̈d + Dd η̇d + Gdηd = Gdr (10.20)

where Md, Dd and Gd are positive design matrices specifying the desired dynamics of the system. The
model (10.20) can also be represented as a linear time invariant (LTI) system:

ẋd = Adxd + Bdr (10.21)

where xd := [η�
d , η̇�

d ]� ∈ R2n is the desired state vector, r ∈ Rr (r ≤ n) is a bounded reference vector
usually generated by a joystick or a keyboard. The state and input matrices are recognized as

Ad =
[

0 I

−M−1
d Gd −M−1

d Dd

]
, Bd =

[
0

M−1
d Gd

]
(10.22)

Velocity Reference Model

The velocity reference model should at least be of order two so as to obtain smooth reference signals
for the desired velocity νd and acceleration ν̇d . Let rb denote the operator input expressed in {b}. The
second-order LP filter (10.19) can be used for this purpose. Let

ν̈d + 2��ν̇d + �2νd = �2rb (10.23)

where νd is the desired velocity, ν̇d is the desired acceleration and ν̈d is interpreted as the desired
“jerk”. For this model, � > 0 and � > 0 are diagonal design matrices of relative damping ratios and
natural frequencies:

� = diag{ζ1, ζ2, . . . , ζn}
� = diag{ωn1 , ωn2 , . . . , ωnn

}

The state space representation is

Ad =
[

0 I

−�2 −2��

]
, Bd =

[
0

�2

]
(10.24)

Note that a step in the command rb will give a step in ν̈d while ν̇d and νd will be low-pass filtered and
therefore smooth signals in a tracking control system. We also notice that the steady-state velocity for a
constant reference signal rb is

lim
t→∞

νd(t) = rb (10.25)



250 Guidance Systems

Position and Attitude Reference Models

The position and attitude reference model ηd is typically chosen to be of third order for filtering the steps
in rn. This suggests that a first-order LP filter should be cascaded with a mass–damper–spring system.
Moreover, consider the transfer function:

ηdi

rn
i

(s) = ω2
ni

(1 + Tis)
(
s2 + 2ζiωni

s + ω2
ni

) (i = 1, . . . , n) (10.26)

where a first-order LP filter with time constant Ti = 1/ωni
> 0 has been added. This can also be written

ηdi

rn
i

(s) = ω3
ni

s3 + (2ζi + 1)ωni
s2 + (2ζi + 1)ω2

ni
s + ω3

ni

, (i = 1, . . . , n) (10.27)

or in a vectorial setting as

η
(3)
d + (2� + I)�η̈d + (2� + I)�2η̇d + �3ηd = �3rn (10.28)

The state-space representation is

Ad =

⎡
⎣ 0 I 0

0 0 I

−�3 −(2� + I)�2 −(2� + I)�

⎤
⎦ , Bd =

⎡
⎣ 0

0

�3

⎤
⎦ (10.29)

In the case of n critically damped systems, ζi = 1 (i = 1, . . . , n), we have � = I. Consequently,

η
(3)
d + 3�η̈d + 3�2η̇d + �3ηd = �3rn (10.30)

(
s + ωni

)3
ηdi

= ω3
ni
rn
i (i = 1, . . . , n) (10.31)

These reference models models also satisfy

lim
t→∞

ηd(t) = rn (10.32)

if rn = constant.

Saturating Elements

One drawback with a linear reference model is that the time constants in the model often yield a satisfactory
response for one operating point of the system while the response for other amplitudes of the operator
input ri results in completely different behavior. This is due to the exponential convergence of the signals
in a linear system. One way to circumvent this problem is to use amplitude gain scheduling so that
the reference model design parameters (ζi, ωi) are scheduled with respect to the magnitude of the input
signal ri.

The performance of the linear reference model can also be improved by including saturation elements
for velocity and acceleration according to

sat(x) =
{

sgn(x)xmax if |x| ≥ xmax

x else
(10.33)
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Figure 10.4 Reference model including saturating elements.

Hence, the saturation limits

νi ≤ νmax
i , ν̇i ≤ ν̇max

i (10.34)

should reflect the physical limitations of the craft as illustrated in Example 10.2.
These techniques have been used in model reference adaptive control (MRAC) by Van Amerongen

(1982, 1984) and adaptive control of underwater vehicles by Fjellstad et al. (1992). The position and
attitude reference model should therefore be modified as shown in Figure 10.4.

Nonlinear Damping

Nonlinear damping can also be included in the reference model to reduce the velocity for large amplitudes
or step inputs ri. This suggests the modified model:

η
(3)
d + (2� + I)�η̈d + (2� + I)�2η̇d + d(η̇d) + �3ηd = �3rn (10.35)

where the nonlinear function d(η̇d) = [d1(η̇d1 ), . . . , dn(η̇dn
)]� could be chosen as

di(η̇di
) =

∑
j

δij

∣∣η̇di

∣∣pj
η̇di

(i = 1, . . . , n) (10.36)

where δij > 0 are design parameters and pj > 0 are some integers. The effect of nonlinear damping is
demonstrated in Example 10.2.

Example 10.2 (Reference Model)
Consider the mass–damper–spring reference model:

η̇d = νd (10.37)

ν̇d + 2ζωnνd + δ |νd | νd + ω2
nηd = ω2

nr (10.38)

where ζ = ωn = 1. Figure 10.5 shows a comparison of responses using δ = 0, δ = 1 and a saturating
element, νmax = 1 for an operator step input r = 10. The Matlab example file ExRefMod.m in the MSS
toolbox was used to generate the plots.

10.2.2 Trajectory Generation using a Marine Craft Simulator

The reference models in Section 10.2.1 are attractive due to their simplicity. The cutoff frequency of the
reference model must never exceed the closed-loop bandwidth of the system in order to guarantee that
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Figure 10.5 Desired position and velocity for a step input r = 10.

the craft is able to track the desired states. This is difficult to verify in a practical system due to factors
such as nonlinearities, saturating elements and time delays. An alternative approach could be to generate
a time-varying reference trajectory using a closed-loop model of the craft, where the time constants,
relative damping ratios and natural frequencies are chosen to reflect physical limitations of the craft. For
instance, the dynamic model can be chosen as

η̇d = J�(ηd)νd (10.39)

Mν̇d + Nνd + g(ηd) = τ (10.40)

where the damping matrix is modeled as a diagonal matrix:

N = diag{n1, . . . , n6} > 0 (10.41)

The system inertia matrix M is included in the model to guarantee proper scaling of the control inputs τ.
Smooth reference trajectories (ηd(t), νd(t)) are then obtained by simulating the model under closed-loop
control, for instance by using a nonlinear PD controller (see Section 12.2):
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τ = g(ηd) − J�
�(ηd)

[
Kp(ηd − ηref ) + Kd η̇d

]
(10.42)

where ηref is the setpoint and (ηd, νd) represents the desired states. The control law (10.42) is in fact a
guidance controller since it is applied to the reference model. In addition to this, it is useful to include
saturation elements for velocity and acceleration to keep these quantities within their physical limits.

Example 10.3 (Generation of Reference Trajectories using a Marine Craft Simulator)
Consider a marine craft moving at forward speed U � 0 such that u ≈ U and v ≈ 0. The de-
sired reference trajectories can be modeled as

ẋd = ud cos(ψd) (10.43)

ẏd = ud sin(ψd) (10.44)

with the surge velocity given by

(m − Xu̇)u̇d + 1

2
ρCdA|ud |ud = τ (10.45)

where ud � 0 is the desired velocity, ρ is the density of water, Cd is the drag coefficient, A is the projected
cross-sectional area of the submerged hull in the x direction and (m − Xu̇) is the mass including the
hydrodynamic added mass. Notice that the ship is moving so fast that quadratic drag dominates and
linear damping due to skin friction can be neglected. The yaw dynamics is chosen as a first-order
Nomoto model:

ψ̇d = rd (10.46)

T ṙd + rd = Kδ (10.47)

where K and T are the design parameters. The guidance system has two inputs, thrust τ and rudder angle
δ. The guidance controllers for speed and yaw angle can be chosen of PI and PID types, respectively:

τ = −Kpτ(ud − uref ) − Kiτ

∫ t

0

(ud − uref )dτ (10.48)

δ = −Kpδ(ψd − ψref ) − Kiδ

∫ t

0

(ψd − ψref )dτ − Kdδrd (10.49)

where ψref is generated using an LOS algorithm (see Section 10.3):

ψref = atan2 (ylos − yd(t), xlos − xd(t)) (10.50)

Numerical integration of (10.43)–(10.47) with feedback (10.48)–(10.49) yields a smooth reference tra-
jectory (xd, yd, ψd) and speed assignment Ud .

10.2.3 Optimal Trajectory Generation

Optimization methods can be used for trajectory and path generation. This gives a systematic method for
inclusion of static and dynamic constraints. However, the challenge is that an optimization problem must
be solved online in order to generate a feasible time-varying trajectory. Implementation and solution of
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Figure 10.6 Optimal trajectory generation using an iterative solver to solve a minimum time or minimum
power optimization problem.

optimization problems can be done using linear programming (LP), quadratic programming (QP) and
nonlinear methods. All these methods require you to have a solver that can be implemented in your
program; see Figure 10.6. For testing and development, the different algorithms can be implemented
using the optimization toolbox in Matlab. The optimization problem can be formulated as minimum
power or minimum time, for instance

J = min
ηd ,νd

{power,time} (10.51)

subject to

|U| ≤ Umax (maximum speed)

|r| ≤ rmax (maximum turning rate)

|ui| ≤ ui,max (saturating limit of control ui)

|u̇i| ≤ u̇i,max (saturating limit of rate u̇i)

which represents the constraints imposed by the vehicle dynamics. It is also possible to add constraints
for obstacle avoidance and minimum fuel consumption.

10.3 Path Following for Straight-Line Paths
A trajectory describes the motion of a moving object through space as a function of time. The object
might be a craft, projectile or a satellite, for example. A trajectory can be described mathematically either
by the geometry of the path (see Section 10.4) or as the position of the object over time. Path following
is the task of following a predefined path independent of time; that is there are no temporal constraints.
This means that no restrictions are placed on the temporal propagation along the path. Spatial constraints,
however, can be added to represent obstacles and other positional constraints.

A frequently used method for path following is line-of-sight (LOS) guidance. A LOS vector from the
craft to the next waypoint or a point on the path between two waypoints can be used for both course and
heading control. If the craft is equipped with a heading autopilot the angle between the LOS vector and
the predescribed path can be used as a setpoint for the heading autopilot. This will force the craft to track
the path. Guidance laws composed of speed and LOS steering laws, which can be combined in various
ways to achieve different motion control objectives, are presented in the forthcoming section, which is
adapted from Breivik and Fossen (2004b, 2005b, 2009) and Breivik et al. (2008).
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10.3.1 Path Generation based on Waypoints

Systems for waypoint guidance are used both for ships and underwater vehicles. These systems consist of
a waypoint generator with a human interface. The selected waypoints are stored in a waypoint database
and used for generation of a trajectory or a path for the moving craft to follow. Both trajectory and
path-following control systems can be designed for this purpose. Sophisticated features such as weather
routing, obstacle avoidance and mission planning can be incorporated in the design of waypoint guidance
systems. Some of these features will be discussed in the forthcoming section.

Waypoint Representation

The route of a ship or an underwater vehicle is usually specified in terms of waypoints. Each waypoint
is defined using Cartesian coordinates (xk, yk, zk) for k = 1, . . . , n. The waypoint database therefore
consists of

wpt.pos = {(x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn)}
For surface craft, only two coordinates (xk, yk) are used. Additionally, other waypoint properties such as
speed and heading can be defined, that is

wpt.speed = {U0, U1, . . . , Un}
wpt.heading = {ψ0, ψ1, . . . , ψn}

For surface craft this means that the craft should pass through waypoint (xi, yi) at forward speed Ui

with heading angle ψi. The three states (xi, yi, ψi) are also called the pose. The heading angle is usually
unspecified during cross-tracking, whereas it is more important during a crab wise maneuver close to
offshore installations (dynamic positioning).

The waypoint database can be generated using many criteria. These are usually based on:

• Mission: The craft should move from some starting point (x0, y0, z0) to the terminal point (xn, yn, zn)
via the waypoints (xi, yi, zi).

• Environmental data: Information about wind, waves and ocean currents can be used for energy
optimal routing (or avoidance of bad weather for safety reasons).

• Geographical data: Information about shallow waters and islands should be included.
• Obstacles: Floating constructions and other obstacles must be avoided.
• Collision avoidance: Avoiding moving craft close to your own route by introducing safety margins.
• Feasibility: Each waypoint must be feasible, in that it must be possible to maneuver to the next

waypoint without exceeding the maximum speed and turning rate.

Online replanning can be used to update the waypoint database in case of time-varying conditions
such as changing weather or moving craft (collision avoidance). Optimality with regard to weather is
discussed in Section 10.4.1. This is referred to as weather routing.

Path Generation using Straight Lines and Circular Arcs

In practice it is common to represent the desired path using straight lines and circle arcs to connect the
waypoints, as shown in Figure 10.7. This is related to the famous result of Dubins (1957), which can be
summarized as:

The shortest path (minimum time) between two configurations (x, y, ψ) of a craft moving at constant
speed U is a path formed by straight lines and circular arc segments.

Since a craft and not a point mass is considered, the start and end configurations of the craft are specified in
terms of the positions (x, y), heading angle ψ and speed U. In addition, it is assumed that there are bounds
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Figure 10.7 Straight lines and inscribed circles used for waypoint guidance.

on the turning rate r or the radius. The so-called Dubins path can also be proven by using Pontryagin’s
maximum principle. Generation of Dubins paths including obstacle avoidance are discussed by Tsourdos
et al. (2010). Extensions to the case with turn rate and acceleration limits (convected Dubins path) are
made by Kostov and Degtiariova-Kostova (1993) and Scheuer and Laugier (1998). Path generation for
the case of uniform currents are discussed by McGee et al. (2006) and Techy and Woolsey (2009, 2010).
In the case of time-varying speed, a dynamic optimization problem including the marine craft surge
dynamics must be solved.

In this section, the discussion is limited to Dubins paths formed by straight lines and circles as shown
in Figure 10.7, where the inscribed circle between two straight lines describes the desired turn. The radius
of the inscribed circle is denoted R̄i (i = 1, . . . , n).

The drawback of this strategy, in comparison with a cubic interpolation strategy, for instance, is that
a jump in the desired yaw rate rd is experienced. This is due to the fact that the desired yaw rate along
the straight line is rd = 0 while it is rd = constant on the circle arc during steady turning. Hence, there
will be a jump in the desired yaw rate during transition from the straight line to the circle arc. This
produces a small offset during cross-tracking. If a smooth reference trajectory, for instance generated by
interpolation, is used, these drawbacks are overcome. However, it is convenient to use straight lines and
circle arcs due to their simplicity. Another consideration is that the human operator can specify a circle
with radius Ri about each waypoint (see Figure 10.7). These values are stored in the database as

wpt.radius = {R0, R1, . . . , Rn}
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Figure 10.8 Circle with radius R̄1 inscribed between the points (x0, y0), (x1, y2) and (x2, y2).

The point where the circle arc intersects the straight line represents the turning point of the ship. Hence,
the radius of the inscribed circle can be computed from Ri as

R̄i = Ri tan(αi) (i = 1, . . . , n) (10.52)

where αi is defined in Figure 10.8.

10.3.2 LOS Steering Laws

This section is based on Breivik and Fossen (2009) and Breivik (2010). For 2-D horizontal plane motions,
the speed of the craft is defined as

U(t) := ‖v(t)‖ =
√

ẋ(t)2 + ẏ(t)2 ≥ 0 (10.53)

while steering is related to the angle

χ(t) := atan2 (ẏ(t), ẋ(t)) ∈ S := [−π, π] (10.54)
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where atan2 (y, x) is the four-quadrant version of arctan(y/x) ∈ [−π/2, π/2]. Path following is ensured
by proper assignments to χ(t) (steering control) as long as U(t) > 0 (positive speed) since the scenario
only involves a spatial constraint.

Consider a straight-line path implicitly defined by two waypoints pn
k = [xk, yk]� ∈ R2 and

pn
k+1 = [xk+1, yk+1]� ∈ R2, respectively. Also, consider a path-fixed reference frame with origin in pn

k

whose x axis has been rotated by a positive angle:

αk := atan2 (yk+1 − yk, xk+1 − xk) ∈ S (10.55)

relative to the x axis. Hence, the coordinates of the craft in the path-fixed reference frame can be
computed by

ε(t) = Rp(αk)�(pn(t) − pn
k) (10.56)

where

Rp(αk) :=
[

cos(αk) − sin(αk)

sin(αk) cos(αk)

]
∈ SO(2) (10.57)

and ε(t) = [s(t), e(t)]� ∈ R2 with

s(t) = along-track distance (tangential to path)

e(t) = cross-track error (normal to path)

For path-following purposes, only the cross-track error is relevant since e(t) = 0 means that the craft has
converged to the straight line. Expanding (10.56), the along-track distance and cross-track error can be
explicitly stated by

s(t) = [x(t) − xk] cos(αk) + [y(t) − yk] sin(αk) (10.58)

e(t) = −[x(t) − xk] sin(αk) + [y(t) − yk] cos(αk) (10.59)

and the associated control objective for straight-line path following becomes

lim
t→∞

e(t) = 0 (10.60)

In order to ensure that e(t) → 0, both course and heading angle commands can be used.
Two different guidance principles can be used to steer along the LOS vector (Breivik and

Fossen, 2009):

• Enclosure-based steering
• Lookahead-based steering

and at the same time stabilize e(t) to the origin. The two steering methods essentially operate by the same
principle, but as will be made clear, the lookahead-based approach motivated by missile guidance has
several advantages over the enclosure-based approach.

Enclosure-Based Steering

Consider a circle with radius R > 0 enclosing pn = [x, y]�. If the circle radius is chosen sufficiently
large, the circle will intersect the straight line at two points. The enclosure-based strategy for driving e(t)
to zero is then to direct the velocity toward the intersection point pn

los = [xlos, ylos]� that corresponds to
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Figure 10.9 LOS guidance where the desired course angle χd (angle between xn and the desired velocity
vector) is chosen to point toward the LOS intersection point (xlos, ylos).

the desired direction of travel, which is implicitly defined by the sequence in which the waypoints are
ordered. Such a solution involves directly assigning χd as shown in Figure 10.9. Since

tan (χd(t)) = �y(t)

�x(t)
= ylos − y(t)

xlos − x(t)
(10.61)

the desired course angle can be computed as

χd(t) = atan2 (ylos − y(t), xlos − x(t)) (10.62)

In order to calculate the two unknowns in pn
los = [

xlos, ylos

]�
, the following two equations must be solved:

[xlos − x(t)]2 + [ylos − y(t)]2 = R2 (10.63)

tan(αk) = yk+1 − yk

xk+1 − xk

= ylos − yk

xlos − xk
= constant (10.64)

where (10.63) represents the Pythagoras theorem, while (10.64) states that the slope of the line between
the two waypoints is constant. LOS guidance has been applied to surface ships by McGookin et al.
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(2000b) and Fossen et al. (2003b). These equations are solved in the following, temporarily dropping the
time dependence of the variables for notational convenience.

Denote the difference between the x and y positions of the two waypoints as �x := xk+1 − xk and
�y := yk+1 − yk, respectively. The equations are first solved analytically assuming that |�x| > 0 and,
second, for the case �x = 0.

Case 1: For |�x| > 0, Equation (10.64) results in

ylos =
(

�y

�x

)
(xlos − xk) + yk (10.65)

when choosing to solve for ylos. For simplicity and brevity in the calculations that follow, denote

d :=
(

�y

�x

)
, e := xk, f := yk

Expanding (10.63) yields

x2
los − 2xxlos + x2 + y2

los − 2yylos + y2 = R2 (10.66)

where

y2
los =

[(
�y

�x

)
(xlos − xk) + yk

]2

= [dxlos + (f − de)]2

= (dxlos + g)2

= d2x2
los + 2dgxlos + g2 (10.67)

where

g := f − de = yk −
(

�y

�x

)
xk

has been used. Subsequently, consider

2yylos = 2y(dxlos + g) = 2dyxlos + 2gy (10.68)

such that (10.67) and (10.68) inserted into (10.66) gives:

(1 + d2)x2
los + 2(dg − dy − x)xlos + (x2 + y2 + g2 − 2gy − R2) = 0 (10.69)

which is a standard, analytically solvable second-order equation. Then, denote

a := 1 + d2

b := 2(dg − dy − x)

c := x2 + y2 + g2 − 2gy − R2

from which the solution of (10.69) becomes

xlos = −b ± √
b2 − 4ac

2a
(10.70)
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where if �x > 0, then xlos = −b + √
b2 − 4ac/2a, and if �x < 0, then xlos = −b − √

b2 − 4ac/2a.
Having calculated xlos, ylos is easily obtained from (10.65). Note that when �y = 0, ylos = yk (= yk+1).

Case 2: If �x = 0, only (10.63) is valid, which means that

ylos = y ±
√

r2 − (xlos − x)2 (10.71)

where xlos = xk (= xk+1). If �y > 0, then ylos = y +
√

R2 − (xlos − x)2, and if �y < 0, then

ylos = y −
√

R2 − (xlos − x)2. When �x = 0, �y = 0 is not an option.

Lookahead-Based Steering

For lookahead-based steering, the course angle assignment is separated into two parts:

χd(e) = χp + χr(e) (10.72)

where

χp = αk (10.73)

is the path-tangential angle (see Figure 10.9), while

χr(e) := arctan

(−e

�

)
(10.74)

is a velocity-path relative angle, which ensures that the velocity is directed toward a point on the path
that is located a lookahead distance �(t) > 0 ahead of the direct projection of pn(t) on to the path
(Papoulias, 1991).

As can be immediately noticed, this lookahead-based steering scheme is less computationally intensive
than the enclosure-based approach. It is also valid for all cross-track errors, whereas the enclosure-based
strategy requires R ≥ |e(t)|. Furthermore, Figure 10.10 shows that

e(t)2 + �(t)2 = R2 (10.75)

which means that the enclosure-based approach corresponds to a lookahead-based scheme with a
time variation

�(t) =
√

R2 − e(t)2 (10.76)

varying between 0 and R for |e(t)| = R and |e(t)| = 0, respectively.
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Figure 10.10 Circle of acceptance with constant radius R illustrating the geometric relationship e(t)2 +
�(t)2 = R2.

The steering law (10.74) can also be interpreted as a saturating control law:

χr(e) = arctan
(−Kpe

)
(10.77)

where Kp(t) = 1/�(t) > 0. Notice that the lookahead-based steering law is equivalent to a saturated
proportional control law, effectively mapping e ∈ R into χr(e) ∈ [−π/2, π/2].

As can be inferred from the geometry of Figure 10.10, a small lookahead distance implies aggressive
steering, which intuitively is confirmed by a correspondingly large proportional gain in the saturated
control interpretation. This interpretation also suggests the possibility of introducing integral action into
the steering law (10.74), such that

χr(e) = arctan

(
−Kpe − Ki

∫ t

0

e(τ)dτ

)
(10.78)

where Ki > 0 represents the integral gain. Integral action can be particularly useful for underactuated
craft that can only steer by attitude information, enabling them to follow straight-line paths while under
the influence of ocean currents and nonzero sideslip angles β, even without having access to velocity
information. Thus, considering horizontal path following along straight lines, the desired yaw angle can
be computed by

χd(e) = αk + χr(e) (10.79)

with χr(e) as in (10.78). In practice, to avoid overshoot and windup effects, care must be taken when using
integral action in the steering law. Specifically, the integral term should only be used when a steady-state
off-track condition is detected.
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Figure 10.11 LOS guidance principle where the sideslip angle β either can be chosen as zero and
compensated for by using integral action or nonzero by using velocity measurements.

Path-Following Controllers

Consider the LOS intersection point pn
los in Figure 10.9. Different principles for path following can be

applied depending on whether you have access to velocity measurements or not:

Method A (Body x axis and LOS vector aligned): Assume that the velocity is unknown and compute
the desired heading angle according to the enclosure-based steering law (10.62):

ψd(t) = atan2 (ylos − y(t), xlos − x(t)) (10.80)

such that the body x axis of the craft points in the direction of the LOS intersection point pn
los. In this

approach, the sideslip angle β is assumed to be unknown and the control objective is ψ → ψd (see
Figure 10.11). Consequently, a heading autopilot of PID type is

τ = −Kpψ̃ − Kd
˙̃ψ − Ki

∫ t

0

ψ̃(τ)dτ (10.81)

where ψ̃ = ψ − ψd can be used. The price to be paid is that the craft will behave like an object hanging
in a rope and the craft’s lateral distance to the path will depend on the magnitude of the environmental
forces and thus the sideslip angle β. This is due to the fact that ψ = χ only if β = 0. If such deviations
cannot be accepted, the speed and LOS vectors should be aligned using Method B (see Figure 10.12).

Method B (Velocity and LOS vectors aligned): Compute the desired course angle χd such that the
velocity vector is along the path (LOS vector) using the lookahead-based steering law:

χd(e) = χp + χr(e)

= αk + arctan
(−Kpe

)
(10.82)

The control objective χ → χd is satisfied by transforming the course angle command χd to a heading
angle command ψd by using (2.96). This requires knowledge of β since (see Figure 10.11)

ψd = χd − β (10.83)
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Figure 10.12 Body x-axis aligned with the LOS vector (Method A) or alternatively velocity and LOS
vectors aligned (Method B). Notice that Method A gives a lateral offset to the path.

Hence, the velocity and LOS vectors can be aligned using the heading controller (12.178) with the
following error signal:

ψ̃ = ψ − ψd

= ψ − χd + β (10.84)

as illustrated in Figure 10.11. If the velocities of the craft are measured, the sideslip angle can be
computed by

β = arcsin
(

v

U

)
(10.85)

Guidance laws of PI type, for instance (10.78), avoid velocity measurements by treating β as an
unknown slowly varying disturbance satisfying β̇ ≈ 0.

Circle of Acceptance for Surface Vessels

When moving along a piece wise linear path made up of n straight-line segments connected by n + 1
waypoints, a switching mechanism for selecting the next waypoint is needed. Waypoint (xk+1, yk+1) can
be selected on the basis of whether or not the craft lies within a circle of acceptance with radius Rk+1

around (xk+1, yk+1). Moreover, if the craft positions (x, y) at time t satisfy

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1 (10.86)

the next waypoint (xk+1, yk+1) should be selected. A guideline could be to choose Rk+1 equal to two ship
lengths, that is Rk+1 = 2Lpp.

Note that for the enclosure-based approach, such a switching criterion entails the additional (conserva-
tive) requirement r ≥ Rk+1. A perhaps more suitable switching criterion solely involves the along-track
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Figure 10.13 Remotely operated vehicle (ROV) performing offshore inspection and maintenance.
Illustration by Bjarne Stenberg/SINTEF.

distance s, such that if the total along-track distance between waypoints pn
k and pn

k+1 is denoted sk+1, a
switch is made when

sk+1 − s(t) ≤ Rk+1 (10.87)

which is similar to (12.189) but has the advantage that pn(t) does not need to enter the waypoint enclosing
circle for a switch to occur; that is no restrictions are put on the cross-track error. Thus, if no intrinsic
value is associated with visiting the waypoints and their only purpose is to implicitly define a piece-wise
linear path, there is no reason to apply the circle-of-acceptance switching criterion (12.189).

Extension to 3-D LOS Guidance for Underwater Vehicles

It is straightforward to generalize the concepts of LOS guidance to 3-D maneuvering. Also for this case,
the desired course angle χd can be chosen as (10.62) with the LOS intersection point given by (10.63) and
(10.64) under the assumption that the vehicle performs slow maneuvers in the vertical plane such that a
depth controller can easily achieve z = zd . This works quite well for vehicles moving at low speed since
it is not necessary to pitch the vehicle in order to move vertically; see Figure 10.13. A typical example is
a working ROV with a broad, flattened front (bluff body) moving vertically using a vertical thruster. The
circle of acceptance must, however, be replaced by a sphere of acceptance (Healey and Lienard, 1993):

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 + [zk+1 − z(t)]2 ≤ R2
k+1 (10.88)
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A more sophisticated approach will be to compute the azimuth and elevation angles needed to move in
3-D to the next waypoint (Breivik and Fossen, 2009). This approach is used for “ flying” vehicles equipped
with fins for diving and depth control. These vehicles move at a higher speed in order to produce lifting
forces (no vertical thrusters) and consequently they behave like an aircraft, where it is possible to control
the coupled surge, heave and pitch motions (longitudinal motions).

10.4 Path-Following for Curved Paths
This section relaxes the condition that the path consists of straight lines between waypoints. Instead, it is
assumed that the guidance systems can make use of a predefined parametrized path. The path-following
controller is a kinematic controller that generates the desired states for the motion control system using the
parametrization of the path. The drawback is that the path must be parametrized and known in advance.
In many cases this is not practical and a simpler path consisting of waypoints and straight lines must be
used. The solution for this is presented in Section 10.3. Section 10.4.1 discusses path generation while a
path-following controller for parametrized paths is derived in Section 10.4.2.

For a parametrized path, the following definitions are adopted from Skjetne et al. (2004):

Definition 10.2 (Parametrized Path)
A parametrized path is defined as a geometric curve ηd(�) ∈ Rq with q ≥ 1 parametrized by a
continuous path variable �.

For marine craft it is common to use a 3-D representation:

pn
d(�) = [xd(�), yd(�), zd(�)]� ∈ R3 (10.89)

where the first two coordinates describe the position in the horizontal plane and the last coordinate is the
depth. For surface vessels only xd and yd are needed while underwater vehicles use all three coordinates.
The first- and second-order derivatives of pn(�) with respect to � are denoted as p′ and p′′, respectively.

A frequently used solution of the path-following problem is to solve it as the geometric task of a
maneuvering problem, given by the following definition:

Definition 10.3 (Maneuvering Problem)
The maneuvering problem involves solving two tasks:

1. Geometric Task: Force the position pn(t) to converge to a desired path pn
d(�(t)),

lim
t→∞

[
pn (t) − pn

d (�(t))
] = 0 (10.90)

for any continuous function �(t).
2. Dynamic Task: Force the speed �̇ to converge to a desired speed Ud according to

lim
t→∞

[
�̇ (t) − Ud (�(t))√

(x′
d)2 + (y′

d)2

]
= 0 (10.91)

The dynamic task follows from

Ud (t) =
√

u̇2
d (t) + v̇2

d (t) =
√

x′
d(�)2 + y′

d(�)2�̇ (t) (10.92)

Definition 10.3 implies that the dynamics �(t) along the path can be specified independently of the
error dynamics. A special case of the maneuvering problem is

�̇(t) = 1, �(0) = 0 (10.93)
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which is recognized as the tracking problem since the solution of (10.93) is � = t. A solution to the
maneuvering problem for fully actuated craft is found in Skjetne et al. (2004).

10.4.1 Path Generation using Interpolation Methods

The path can be generated using spline or polynomial interpolation methods to generate a curve
(xd(�), yd(�)) through a set of N predefined waypoints. Notice that a trajectory (xd(t), yd(t)) is ob-
tained by choosing �̇ = k such that � = kt where k ∈ R.

Cubic Spline and Hermite Interpolation

In Matlab, several methods for interpolation are available.

Matlab
The different methods for interpolation are found by typing

help polyfun

Two useful methods for path generation are the cubic spline interpolant (spline.m) and the piece-
wise cubic Hermite interpolating polynomial (pchip.m).

The main difference between Hermite and cubic spline and interpolation is how the slopes at the end
points are handled. For simplicity let us consider the problem of trajectory generation. The cubic Hermite
interpolant ensures that the first-order derivatives (ẋd(t), ẏd(t)) are continuous. In addition, the slopes at
each endpoint are chosen in such a way that (xd(t), yd(t)) are shape preserving and respect monotonicity.

Cubic spline interpolation is usually done by requiring that the second-order derivatives (ẍd(t), ÿd(t))
at the endpoints of the polynomials are equal, which gives a smooth spline. Consequently, the cubic
spline will be more accurate than the Hermite interpolating polynomial if the data values are of a smooth
function. The cubic Hermite interpolant, on the contrary, has less oscillations if the data are nonsmooth.

The results of interpolating a set of predefined waypoints to a trajectory (xd(�), yd(�)) using the
cubic Hermite interpolant and cubic spline interpolation methods are shown in Figure 10.14. It is seen
that different behaviors are obtained due to the conditions on the first- and second-order derivatives at
the endpoints.

Polynomial Interpolation

Instead of using the Matlab functions pchip.m and spline.m a cubic spline can be interpolated through
a set of waypoints by considering the cubic polynomials

xd(�) = a3�
3 + a2�

2 + a1� + a0 (10.94)

yd(�) = b3�
3 + b2�

2 + b1� + b0 (10.95)

where (xd(�), yd(�)) are the position of the craft and where � is a path variable given by

�̇ = f (�, t) (10.96)
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Figure 10.14 Methods for waypoint interpolation; see ExSpline.m in the MSS toolbox.

The partial derivatives of xd(�) and yd(�) with respect to � are

x′
d(�) = dxd(�)

d�
= 3a3�

2 + 2a2� + a1 (10.97)

y′
d(�) = dyd(�)

d�
= 3b3�

2 + 2b2� + b1 (10.98)

Hence, the desired speed Ud(t) of the craft can be computed as

ẋd(t) = dxd(�)

d�
�̇(t) (10.99)

ẏd(t) = dyd(�)

d�
�̇(t) (10.100)

resulting in

Ud(t) =
√

ẋ2
d(t) + ẏ2

d(t)

=
√

x′
d(�)2 + y′

d(�)2 �̇(t) (10.101)
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Similarly, an expression for the acceleration U̇d(t) can be found.

Matlab
The script ExSpline.m generates the plots in Figure 10.14:

% ExSpline - Cubic Hermite and spline interpolation of waypoints

wpt.pos.x = [0 100 500 700 1000];

wpt.pos.y = [0 100 100 200 160];

wpt.time = [0 40 60 80 100];

t = 0:1:max(wpt.time); % time

x p = pchip(wpt.time,wpt.pos.x,t); % cubic Hermite interpolation

y p = pchip(wpt.time,wpt.pos.y,t);

x s = spline(wpt.time,wpt.pos.x,t); % spline interpolation

y s = spline(wpt.time,wpt.pos.y,t);

subplot(311), plot(wpt.time,wpt.pos.x,’o’,t,[x p; x s])

subplot(312), plot(wpt.time,wpt.pos.y,’o’,t,[y p; y s])

subplot(313), plot(wpt.pos.y,wpt.pos.x,’o’,y p,x p,y s,x s)

The unknown parameters a0,a1, a2, a3, b0, b1, b2, b3 in (10.94) and (10.95) can also be computed using
a cubic spline algorithm, as shown below.

Cubic Spline Algorithm for Path Generation

The path through the waypoints (xk−1, yk−1) and (xk, yk) must satisfy

xd(�k−1) = xk−1, xd(�k) = xk (10.102)

yd(�k−1) = yk−1, yd(�k) = yk (10.103)

where k = 1, . . . , n. In addition, smoothness is obtained by requiring that

lim
�→�−

k

x′
d(�k) = lim

�→�+
k

x′
d(�k) (10.104)

lim
�→�−

k

x′′
d(�k) = lim

�→�+
k

x′′
d(�k) (10.105)

For this problem, it is possible to add only two boundary conditions (velocity or acceleration) for the
x and y equations, respectively. Hence,

x′
d(�0) = x′

0, x′
d(�n) = x′

n (10.106)

y′
d(�0) = y′

0, y′
d(�n) = y′

n (10.107)
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or

x′′
d(�0) = x′′

0, x′′
d(�n) = x′′

n (10.108)

y′′
d (�0) = y′′

0 , y
′′
d(�n) = y′′

n (10.109)

The polynomial xd(�k) is given by the parameters ak = [a3k, a2k, a1k, a0k]�, resulting in 4(n − 1) un-
known parameters. The number of constraints are also 4(n − 1) if only velocity or acceleration constraints
are chosen at the end points. The unknown parameters for n waypoints are collected into a vector:

x = [a�
k , . . . , a�

n−1]� (10.110)

Hence, the cubic interpolation problem can be written as a linear equation:

y = A(�k−1, . . . , �k)x, k = 1, 2, . . . , n (10.111)

where

y = [xstart, x0, x1, x1, 0, 0, x2, x2, 0, 0, . . . , xn, xfinal]
� (10.112)

The start and end points can be specified in terms of velocity or acceleration constraints xstart ∈ {x′
0, x

′′
0}

and xfinal ∈ {x′
n, x

′′
n}, respectively. This gives

A(�k−1, . . . , �k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cstart 01×4 01×4 . . . 01×4

p(�0) 01×4 01×4 01×4

p(�1) 01×4 01×4 01×4

0 p(�1) 01×4 01×4

−v(�1) v(�1) 01×4 01×4

−a(�1) a(�1) 01×4 01×4

01×4 p(�2) 01×4 01×4

01×4 01×4 p(�2) 01×4

01×4 −v(�2) v(�2) 01×4

01×4 −a(�2) a(�2) 01×4

...
. . .

01×4 01×4 01×4 p(�n)

01×4 01×4 01×4 . . . cfinal

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.113)

where cstart ∈ {x′
d(�0), x′′

d(�0)}, cfinal ∈ {x′
d(�n), x′′

d(�n)} and

p(�k) = [�3
k , �2

k , �k, 1] (10.114)

v(�k) = p′(�k) = [3�2
k , 2�k, 1, 0] (10.115)

a(�k) = p′′(�k) = [6�k, 2, 0, 0] (10.116)
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Figure 10.15 Polynomials xd(�) and yd(�) and their first- and second-order derivatives.

Equation (10.111) can be solved for �k = 0, 1, . . . , n according to

x = A−1y (10.117)

The formulae for bk = [b3k, b2k, b1k, b0k]� are obtained in a similar manner.

Matlab
Formula (10.117) has been implemented in the script ExPathGen.m.and pva.m.The results are
for the following set of waypoints:

wpt.pos.x = [0 200 400 700 1000]

wpt.pos.y = [0 200 500 400 1200]

where � = 0, . . . , 4 are shown in Figures 10.15 and 10.16.
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Figure 10.16 The xy plot based on a cubic spline.

Transformation of Path to Reference Trajectories using Desired Speed Profiles

In Figure 10.16 it is seen that the solution between two successive waypoints

xd(�) = a3�
3 + a2�

2 + a1� + a0 (10.118)

yd(�) = b3�
3 + b2�

2 + b1� + b0 (10.119)

is indeed a time-independent path when xd(�) is plotted against yd(�) for increasing � values.
The path can be transformed to a time-varying trajectory by defining a speed profile. The speed

profile assigns dynamics to �(t) such that the desired path transforms to a time-dependent reference
trajectory at the same time as the desired speed and acceleration profiles are preserved. From (10.101) it is
seen that

�̇(t) = Ud(t)√
x′

d(�)2 + y′
d(�)2

, �(tk) = k (10.120)
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where �(tk) = k is the initial condition of the differential equation and Ud(t) is the desired speed profile.
Let Uref be the input to a first-order system:

T U̇d(t) + Ud(t) = Uref , T > 0 (10.121)

A smooth transition from the desired speed Ud(tk) at waypoint k to the next waypoint k + 1 can be made
by using

Uref = Ud(tk+1) (10.122)

This is illustrated in the following example.

Example 10.4 (Transformation of Path to Reference Trajectories)
Consider the first two waypoints in the example file ExPathGen.m:

(x0, y0) = (0, 0)

(x1, y1) = (200, 200)

The cubic polynomials satisfying (10.117) are

xd(�) = −29.89 �3 + 135.63 �2 + 94.25 �

yd(�) = 108.05 �3 − 2.30 �2 + 94.25 �

for � ∈ [0, 1]. Let the speed dynamics time constant be T = 10 s. Assume that the craft is initially at rest
(Ud(t0) = 0) and that the desired speed of waypoint number 1 is Uref = Ud(t1) = 5.0 m/s . The numerical
solutions of

�̇(t) = Ud(t)√
x′

d(�)2 + y′
d(�)2

(10.123)

T U̇d(t) + Ud(t) = Uref (10.124)

for waypoints 0 and 1 corresponding to �0(t0) = 0 and �1(t1) = 1 with t0 = 0 and t1 unknown, is
shown in Figure 10.17; see ExPathGen.m. It is seen that the desired speed of 5.0 m/s is reached in
approximately 67 s. Hence, the terminal time must be chosen as t1 ≥ 67 s (corresponding to �(t1) = 1)
in order to satisfy the desired speed dynamics. If t1 < 67 s there is not enough time to reach the desired
speed of waypoint 1 unless the time constant T is reduced. The time constant should reflect what is
physically possible for the craft. Notice that the path (xd(�), yd(�)) has been transformed to a time-
varying reference trajectory (xd(t), yd(t)) by assigning a speed profile (10.123) to be solved numerically
with the path planner (10.117). This gives design flexibility since the path can be generated off-line
using a waypoint database while speed is assigned to the path when the dynamics of the actual craft
is considered.

Nonlinear Constrained Optimization

Another solution to trajectory and path generation is to use nonlinear constrained optimization techniques.
These methods allow an object function to be specified where minimum time and energy are design goals.
In addition, the speed and acceleration constraints of the craft can be added. The drawback is that nonlinear
constraint optimization problems are much harder to solve numerically than the methods described
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Figure 10.17 Upper plot shows that the speedUd(t) reaches the desired value of 5.0 m/s in approximately
67 s. The lower plot shows that the path variable�(t) is incremented from 0 to 1 during the speed transition.

in the previous sections. The Matlab optimization toolbox will be used to demonstrate how this can
be done.

In general, trajectory-tracking and path-planning problems can be formulated as

J = min
x

{f (x)} (10.125)

subject to gk(x) ≤ 0 (k = 1, . . . , ng)

hj(x) = 0 (j = 1, . . . , nh)

xi,min ≤ xi ≤ xi,max (i = 1, . . . , nx)

where f (x) should be minimized with respect to the parameter vector x with gi(x) and hj(x) as non-
linear inequality and equality constraints, respectively. An attractive simplification is to use quadratic
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programming. Consequently,

J = min
x

{
1

2
x�Hx + f�x

}
(10.126)

subject to Ax ≤ b

xi,min ≤ xi ≤ xi,max (i = 1, . . . , nx)

For simplicity, consider two waypoints (xk, yk) and (xk+1, yk+1) satisfying

x(tk) = xk, y(tk) = yk (10.127)

x(tk+1) = xk+1, y(tk+1) = yk+1 (10.128)

Choosing the speed constraints as

ẋd(t) = Ud(t) cos(ψd(t)) (10.129)

ẏd(t) = Ud(t) sin(ψd(t)) (10.130)

where the angle ψd(t) is computed as ψd(tk) = atan2(yk+1 − yk, xk+1 − xk), that is with direction toward
the next waypoint. Hence,

ẋd(tk) = Uk cos(ψk) (10.131)

ẏd(tk) = Uk sin(ψk) (10.132)

For two waypoints this results in

y = A(tk, tk+1)x (10.133)

where

y = [xk, xk+1, yk, yk+1, Uk cos(ψk), Uk sin(ψk), Uk+1 cos(ψk+1), Uk+1 sin(ψk+1)]� (10.134)

and

A(tk, tk+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t3
k t2

k tk 1 0 0 0 0

t3
k+1 t2

k+1 tk+1 1 0 0 0 0

0 0 0 0 t3
k t2

k tk 1

0 0 0 0 t3
k+1 t2

k+1 tk+1 1

3t2
k 2tk 1 0 0 0 0 0

0 0 0 0 3t2
k 2tk 1 0

3t2
k+1 2tk+1 1 0 0 0 0 0

0 0 0 0 3t2
k+1 2tk+1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.135)

The criterion to minimize is

J = min
x

{
[A(tk, tk+1)x − y]�[A(tk, tk+1)x − y]

}
(10.136)
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for given pairs (tk, tk+1) of time. Expanding this expression yields

J̄ = 1

2

(
J − y�y

) = min
x

{
1

2
x�A�(tk, tk+1)A(tk, tk+1)x − y�A(tk, tk+1)x

}
(10.137)

implying that

H = A�(tk, tk+1)A(tk, tk+1) (10.138)

f = −y�A(tk, tk+1) (10.139)

In this expression, the starting time tk is given while the arrival time tk+1 is unknown. The cubic polyno-
mials (10.94)–(10.95) imply that there are eight additional unknown parameters to optimize:

x = [a3, a2, a1, a0, b3, b2, b1, b0]� (10.140)

giving a total of nine unknown parameters. In addition, linear constraints Ax ≤ b can be added. The
reference trajectory can be found using quadratic programming.

Matlab
Trajectory generation using the optimization toolbox is demonstrated in the following example:

Example 10.5 (Trajectory Generation using Quadratic Programming)
Consider two waypoints:

(x0, y0) = (10, 10)

(x1, y1) = (200, 100)

with the speed constraint

Ud(t) ≤ 10 m/s

in the MSS toolbox script

ExQuadProg

The desired waypoint speeds are U0(t0) = 0 m/s and U1(t1) = 5 m/s with t0 = 0 s. The arrival
time t1 is computed in a loop by solving the quadratic optimization problem (10.126) for each
time t1 = t0+ dt where dt is incremented by 1.0 s each time. This process is terminated when the
first solution Ud(t) ≤ 10 m/s is reached (this can be easily changed if other requirements are more
important). The optimal solution:

xd(t) = −0.0102 t3 + 0.5219 t2 − 4.28 × 10−12 t + 10.0

yd(t) = −0.0048 t3 + 0.2472 t2 − 1.04 × 10−12 t + 10.0

for t ∈ [t0, t1] is obtained after 29 loops (t1 = 29 s) using quadprog.m in the Matlab optimization
toolbox. The results are shown in Figure 10.18.



Path-Following for Curved Paths 277

Figure 10.18 The two upper plots show the cubic polynomials xd(t) and yd(t). In the third plot yd(t) is
plotted against xd(t) while the lower plot is speed Ud(t).

Weather Routing

A weather routing or voyage planning system (VPS) computes the most efficient route using meteoro-
logical and oceanographic data, information about the craft’s hull and propulsion system and shipping
economics to ensure that the craft reaches port on time. The data from this analysis can be waypoints
with optimal speed and heading information. The routing software of a modern weather routing system
includes features such as:

• Surface analysis and forecast models
• Sea state and wind wave models
• Upper air models
• Formation description of low-pressure systems
• Hurricanes and tropical weather models
• Ocean current models
• Vessel performance models
• Cargo condition, trim, draft and deck load
• Link to Internet sources for weather data
• Interface to a satellite system transmitting weather data
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Figure 10.19 Kinematic description of the Serret–Frenet frame.

• Optimization of routes based on a fixed estimated time of arrival (ETA)
• Routing of vessels around hazardous weather conditions

An optimal route is computed using a numerical optimization offline. This can be done by a computer
onboard the craft or by a company onshore transmitting the results to the craft electronically on a
24-hour basis. Several companies offer continuous voyage monitoring with status reports and performance
evaluations. This allows for replanning during changing weather conditions. Global weather information
is available from several forecast centers.

Some useful references for weather routing of ships are Calvert (1989), Hagiwara (1989), Padadakis
and Perakis (1990), Lo (1991), Barbier et al. (1994), Lo and McCord (1995), McCord and Smith (1995)
and Lo and McCord (1998).

10.4.2 Path-Following Kinematic Controller

The path-following controller is a kinematic controller that generates the desired states for the motion
control system. For a parametrized path in 2-D,

pn
d(�) =

[
xd(�)

yd(�)

]
∈ R2 (10.141)

the kinematic controller can be designed using a dynamic model of the craft by specifying a reference
frame that moves along the path; see Figure 10.19. This reference frame is usually chosen as the Serret–
Frenet frame (see Frenet, 1847, Serret, 1851). During path following, the craft speed is denoted U and
the kinematic controller is designed to: (i) regulate the distance e between the vehicle and the path to
zero and (ii) regulate the angle χSF between the craft speed vector and the tangent to the path to zero (see
Samson, 1992, Micaelli and Samson, 1993).

Definition 10.4 (Serret-Frenet Frame)
The virtual target defined by the projection of an actual craft on to a path-tangential reference frame
(Serret–Frenet frame {SF}) evolves according to (Lapierre and Soetanto, 2007)
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ṡ = U cos(χSF) − (1 − κe)ṡa (10.142)

ė = U sin(χSF) − κsṡa (10.143)

χ̇SF = r + β̇ − κṡa (10.144)

where U is the speed of the craft and (e, s) is the location on the path of {SF} relative to {b}. If s = 0, the
variable e represents the closest distance between the actual craft and the origin of {SF} tangential to
the path. Hence, s can be viewed as an extra controller design parameter for evolution along the path.
The arc length that the target has moved along the path is denoted sa while χSF is the angle between the
x axis of {SF} and the speed vector; see Figure 10.19. Finally, κ is the path curvature.

Proof: From Figure 10.19, it is seen that the distance vectors between {n}, {b} and {SF} satisfies

�rb/n = �rSF/n + �rb/SF (10.145)

Hence, the time differentiation of �rb/SF with {b} as the moving reference frame gives

id

dt
�rb/SF =

bd

dt
�rb/SF + �ωb/i × �rb/SF (10.146)

such that

�vb/n = �vSF/n +
(

bd

dt
�rb/SF + �ωSF/n × �rb/SF

)
(10.147)

Expressing this in {SF} gives

vSF
b/n = vSF

SF/n +
(

bd

dt
rSF

b/SF + ωSF
SF/n × rSF

b/SF

)
(10.148)

where rSF
b/SF = [s, e, 0]� and vSF

b/n = Rz,χSF [U, 0, 0]� is the velocity of the vehicle expressed in {SF }. From
this it follows that

Rz,χSF

⎡
⎣U

0

0

⎤
⎦ = vSF

SF/n +
(

bd

dt
(rSF

b/SF) + ωSF
SF/n × rSF

b/SF

)

=

⎡
⎣ ṡa

0

0

⎤
⎦ +

⎡
⎣ ṡ

ė

0

⎤
⎦ +

⎡
⎣ 0

0

κṡa

⎤
⎦ ×

⎡
⎣ s

e

0

⎤
⎦ (10.149)

Expanding this expression yields

U cos(χSF) = ṡ + (1 − κe)ṡa (10.150)

U sin(χSF) = ė + κsṡa (10.151)
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which proves (10.142) and (10.143). The rotation rate of the angle ψ − ψSF between {n} and {SF} (see
Figure 10.19) is (ψ̇ − ψ̇SF) = κṡa. Since χSF = ψSF + β, it follows that

χ̇SF = ψ̇ − κṡa + β̇

= r + β̇ − κṡa (10.152)

which proves (10.144).

Remark 10.1
If ṡ = s = 0, the {SF} equations become

ṡa = U cos(χSF)

1 − κe
(10.153)

ė = U sin(χSF) (10.154)

where the term 1 − κe in the denominator creates a singularity. Hence, the control law requires that the
initial position of the craft must be restricted to a tube around the path with radius less than 1/κmax.

A discussion on the limitation of this approach is found in Breivik and Fossen (2004a). The constraint
1 − κe /= 0 is, however, removed by using (10.142)–(10.143) where an additional controller parameter
s allows the origin of the {SF} frame to evolve along the path (Lapierre and Soetanto, 2007).

Remark 10.2
In Encarnacao et al. (2000), the ocean current velocities are included in the kinematic equations of
motion together with a state estimator to obtain the optimal sideslip angle during path following. This
section presents a different approach where the current velocities are modeled as physical forces, with
moments in the expression for β̇ representing the equation of motion in sway. Furthermore, the ocean
currents are compensated for by using integral action in the kinematic controller to reduce sensitivity to
model parameters.

Marine Craft Model for Kinematic Controller

For a conventional marine craft with no actuation in the transverse direction, the sway force can be
approximated by a maneuvering model (see Section 7.1.1):

(m − Yv̇)v̇ + mur = Y (ur, vr, r) (10.155)

where the hydrodynamic force is due to added mass and linear damping:

Y (ur, vr, r) = Xu̇urr + Yvvr + Yrr (10.156)

The relative velocities satisfy (see Section 2.4.2)

ur = u − uc (10.157)

vr = v − vc (10.158)

Since ocean currents are slowly varying and the craft speed is constant, the sway acceleration can be
approximated by time differentiation of

v = U sin(β) (10.159)

under the assumptions that U̇ = 0. This gives

v̇ = U cos(β)β̇ (10.160)
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Combining (10.155)–(10.156) and (10.160) gives

β̇ = 1

U cos(β)
v̇

= 1

(m − Yv̇)U cos(β)
[Xu̇urr + Yvvr + Yrr − mur] (10.161)

Consequently,

β̇ = 1

(m − Yv̇)U cos(β)
[(Yr − (m − Xu̇)U cos(β) − Xu̇uc)) r + YvU sin(β) − Yvvc] (10.162)

Kinematic Controller

The {SF} frame plays the role of the virtual target body axes and tracks the real craft. The error coordinates
for control design purposes become s, e and χ̃SF = χSF − χd which all should be driven to zero. The
desired approach angle can be chosen as a function of e (Micaelli and Samson, 1993):

χd(e) = −χa

e2ke−1

e2ke+1
(10.163)

where k > 0 and 0 < χa < π/2 satisfying eχd(e) ≤ 0 for all e.
An alternative approach is motivated by the LOS algorithm (10.74) (see Breivik and Fossen, 2004a,

and Børhaug and Pettersen, 2006):

χd(e) = arctan
(−e

�

)
(10.164)

where � > 0 is a constant parameter. Again notice that eχd(e) ≤ 0 for all e.

Theorem 10.1 (Kinematic Path-Following Controller)
A feedback linearization controller for (10.144) (Lapierre and Soetanto, 2007)

r = χ̇d − β̇ + κṡa − K1 χ̃SF (10.165)

ṡa = U cos(χSF) + K2s (10.166)

where the yaw rate r and path tangential speed Ud = ṡa are used as control variables, renders the
equilibrium point (s, e, χ̃SF) = (0, 0, 0) UGAS and ULES for K1 > 0 and K2 > 0.

Proof. Convergence and stability can be proven by noticing that the error dynamics forms a cascade of
two systems. For the first system:

˙̃χSF + K1 χ̃SF = 0 (10.167)
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Consequently, the angle χSF → χd . For the second system in the cascade, consider the Lyapunov
function candidate:

V = 1

2
(s2 + e2) > 0, s /= 0, e /= 0 (10.168)

The time derivative of V under the assumption that χSF = χd is

V̇ = s (U cos(χd) − (1 − κe)ṡa) + e (U sin(χd) − κsṡa)

= sU cos(χd) + eU sin(χd) − s (U cos(χd) + K2s)

= −K2s
2 + eU sin(χd)

Exploiting the fact that the desired course angle given by (10.164) satisfies

sin(χd) = −e√
e2 + �2

(10.169)

finally gives

V̇ = −K2s
2 − U√

e2 + �2
e2

< 0, s /= 0, e /= 0 (10.170)

for � > 0 and U > 0. Since the LFC is positive definite and radially unbounded, while its derivative
with respect to time is negative, standard Lyapunov arguments for cascaded systems proves that the
equilibrium point (s, e, χ̃SF) = (0, 0, 0) is UGAS. In addition, the Jacobian of the error dynamics about
the equilibrium point has strictly negative eigenvalues, which proves ULES.

Remark 10.3
A differential equation for the path variable � can be derived by considering the path curvature κ(�)
given by

κ(�) = |x′
dy

′′
d − y′

dx
′′
d |√(

x′
d

)2 + (
y′

d

)2
(10.171)

where xd = xd(�) and yd = yd(�). The arc length sa satisfies

ds2
a = dx2 + dy2 (10.172)

and by dividing by d�2, this can be rewritten as

d� = 1√
x′

d(�)2 + y′
d(�)2

dsa (10.173)
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Hence, from (10.166) it follows that

�̇ = U cos(χSF) + K2s√
x′

d(�)2 + y′
d(�)2

(10.174)

Implementation Aspects

When implementing the kinematic controller (10.165)–(10.166), an expression for β̇ must be com-
puted from the sway dynamics (10.162). This expression depends on the model parameters. Consider
the expression

r + β̇ = r + 1

(m − Yv̇)U cos(β)
[(Yr − (m − Xu̇)U cos(β) − Xu̇uc)) r + YvU sin(β) − Yvvc]

=
(

1 − (m − Xu̇)

(m − Yv̇)
+ Yr − Xu̇uc

(m − Yv̇)U cos(β)

)
r + Yv

(m − Yv̇)

(
tan(β) − vc

U cos(β)

)

≈
(

1 − (m − Xu̇)

(m − Yv̇)

)
r + Yv

(m − Yv̇)

(
tan(β) − vc

U cos(β)

)

= χ̇d + κṡa − K1 χ̃SF (10.175)

where the physical property

(m − Yv̇)U cos(β) � Yr − Xu̇uc (10.176)

has been exploited. Solving for r = rd gives the kinematic controller

rd =
(

1 − (m − Xu̇)

(m − Yv̇)

)−1 [
χ̇d + κUd − K1 χ̃SF − Yv

(m − Yv̇)

(
tan(β) − vc

U cos(β)

)]
(10.177)

Ud = U cos(χSF) + K2s (10.178)

where the desired yaw rate is denoted rd and the desired speed Ud = ṡa is the path-tangential speed. The
sideslip angle

β = arcsin
(

v

U

)
(10.179)

and current velocity vc must be measured or estimated in a state observer. Alternatively, β and vc can
be treated as slowly varying parameters, which can be compensated for by adding integral action. This
suggests that

rd =
[

1 − (m − Xu̇)

(m − Yv̇)

]−1 [
χ̇d + κUd − 2λ χ̃SF − λ2

∫ t

0

χ̃SF(τ)dτ

]
(10.180)
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where λ > 0 is a constant parameter used to tune the bandwidth of the error system:

˙̃χSF + 2λ χ̃SF + λ2

∫ t

0

χ̃SF(τ)dτ = Yv

(m − Yv̇)

(
tan(β) − vc

U cos(β)

)
(10.181)

For a marine craft at constant course, the integral term will balance the forcing term in the steady state
such that

λ2

∫ t

0

χ̃SF(τ)dτ = Yv

(m − Yv̇)

(
tan(β) − vc

U cos(β)

)
(10.182)

and χ̃SF → 0.



11
Sensor and Navigation Systems

Conventional ship and underwater vehicle control systems are implemented with a state estimator for
processing of the sensor and navigation data. The quality of the raw measurements are usually monitored
and handled by a signal processing unit or a program for quality check and wild-point removal. The
processed measurements are transmitted to the sensor and navigation computer which uses a state esti-
mator capable of noise filtering, prediction and reconstruction of unmeasured states. The most famous
algorithm is the Kalman filter which was introduced in the 1960s (Kalman, 1960; Kalman and Bucy,
1961). Later, other methods based on passivity and nonlinear theory have been developed.

Wave filtering is one of the most important issues to take into account when designing ship control
systems (Fossen, 1994; Fossen and Perez, 2009). Environmental forces due to waves, wind and ocean
currents are considered disturbances to the motion control system. These forces, which can be described
in stochastic terms, are conceptually separated into low-frequency (LF) and wave-frequency (WF)
components; see Figure 11.1.

Waves produce a pressure change on the hull surface, which in turn induces forces. These pressure-
induced forces have an oscillatory component that depends linearly on the wave elevation. Hence, these
forces have the same frequency as that of the waves and are therefore referred to as wave-frequency
forces. Wave forces also have a component that depends nonlinearly on the wave elevation (Newman,
1977; Faltinsen, 1990). Nonlinear wave forces are due to the quadratic dependence of the pressure on
the fluid-particle velocity induced by the passing of the waves. If, for example, two sinusoidal incident
waves have different frequencies, then their quadratic relationship gives pressure forces with frequencies
at both the sum and difference of the incident wave frequencies. They also contribute with zero-frequency
or mean forces. Hence, the nonlinear wave forces have a wider frequency range than the incident waves.
The mean wave forces cause the craft to drift. The forces with a frequency content at the difference
of the wave frequencies can have LF content, which can lead to resonance in the horizontal motion
of marine craft with mooring lines or under positioning control (Faltinsen, 1990). The high-frequency
wave-pressure-induced forces, which have a frequency content at the sum of the wave frequencies, are
normally too high to be considered in ship-motion control, but these forces can contribute to structural
vibration in the hull. For further details about wave loads and their effects on ship motion, see Newman
(1977) and Faltinsen (1990).

In low-to-medium sea states, the frequency of oscillations of the linear wave forces do not normally
affect the operational performance of the craft. Hence, controlling only LF motion avoids correcting the
motion for every single wave, which can result in unacceptable operational conditions for the propulsion
system due to power consumption and potential wear of the actuators. Operations that require the control
of only the LF motion include dynamic positioning, heading autopilots and thruster-assisted position

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6
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Figure 11.1 Separation of the total motion of a marine craft into LF and WF motion components.

mooring. Dynamic positioning refers to the use of the propulsion system to regulate the horizontal
position and heading of the craft. In thruster-assisted position mooring, the propulsion system is used to
reduce the mean loading on the mooring lines. Additional operations that require the control of only the
LF motion include slow maneuvers that arise, for example, from following underwater remotely operated
vehicles. Operations that require the control of only the WF motions include heave compensation for
deploying loads on the sea floor (Perez and Steinmann, 2007) as well as ride control of passenger vessels,
where reducing roll and pitch motion helps avoid motion sickness (Perez, 2005).

It is important that only the slowly varying forces are counteracted by the steering and propulsion
systems; the oscillatory motion due to the waves (first-order wave-induced forces) should be prevented
from entering the feedback loop. This is done by using wave filtering techniques (Balchen et al., 1976).
A wave filter is usually a model-based observer that separates the position and heading measurements
into LF and WF position and heading signals; see Figure 11.1.

Definition 11.1 (Wave Filtering)
Wave filtering can be defined as the reconstruction of the LF motion components from noisy
measurements of position, heading and in some cases velocity and acceleration by means of a state
observer or a filter.

Remark 11.1
If a state observer is applied, estimates of the WF motion components (first-order wave-induced
forces) can also be computed.
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Wave filtering is crucial in ship motion control systems since the WF part of the motion should not
be compensated for by the control system unless wave-induced vibration damping is an issue. This is
the case for high-speed craft. If the WF part of the motion enters the feedback loop, this will cause
unnecessary use of the actuators (thrust modulation) and reduce the tracking performance, which, again,
results in increased fuel consumption.

In this chapter, model-based wave filtering and observer design using linear wave response models are
discussed. This is one of the most important features of a high-precision ship control system. The best
commercial autopilot and DP systems all have some kind of wave filtering in order to reduce wear and
tear on the steering machine, as well as thrust modulation.

11.1 Low-Pass and Notch Filtering
Low-pass and notch filters can be used to reduce motions induced by ocean waves in the feedback loop.
This assumes that the filters can be implemented in series, as shown in Figure 11.2. For wave periods in
the interval 5 s < T0 < 20 s, the dominating wave frequency (modal frequency) f0 of a wave spectrum
will be in the range (see Section 8.2)

0.05 Hz < f0 < 0.2 Hz (11.1)

The circular frequency ω0 = 2πf0 corresponding to periods T0 > 5 s is

ω0 < 1.3 rad/s (11.2)

Waves within the frequency band (11.1) can be accurately described by first- and second-order wave
theory. The first-order wave forces produce large oscillations about a mean wave force, which can be
computed from second-order wave theory (see Figure 11.1). The mean wave (drift) force is slowly varying
and is usually compensated for by using integral action in the control law, while wave filtering must be
performed to remove first-order components from the feedback loop.

For instance, first-order wave forces aroundf0 = 0.1 Hz can be close to or outside the control bandwidth
of the marine craft depending of the craft considered. For a large oil tanker, the crossover frequency can
be as low as 0.01 rad/s, as shown in Figure 11.3, while smaller vessels such as cargo ships and the Mariner
class vessel are close to 0.05 rad/s.

A feedback control system will typically move the bandwidth of these vessels up to 0.1 rad/s, which
still is below the wave spectrum shown in Figure 11.3. However, the wave forces will be inside the
bandwidth of the servos and actuators of the craft. Hence, the wave forces must be filtered out before

Figure 11.2 LP and notch filters in series with the control system.
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Figure 11.3 Bode plots showing ψ/δ(s) for three different vessels and the JONSWAP wave spectrum
for ω0 = 0.5 rad/s and Hs = 5 m.

feedback is applied in order to avoid unnecessary control action. In other words, we do not want the
rudder and thruster actuators of the ship to compensate for the first-order WF motion. This is usually
referred to as wave filtering.

11.1.1 Low-Pass Filtering

For sea states where the WF motion is much higher than the bandwidth ωb of the controller, a low-pass
filter can be used to filter out the WF motions if ωb satisfies

ωb � ωe (11.3)

where

ωe =
∣∣∣∣ω0 − ω2

0

U

g
cos(β)

∣∣∣∣ (11.4)

is the frequency of encounter (see Figure 8.12). This is typically the case for large vessels such as
oil tankers. In the autopilot case, the design objective can be understood by considering the measure-
ment equation
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y(s) = hship(s)δ(s)︸ ︷︷ ︸
ψ(s)

+ hwave(s)w(s)︸ ︷︷ ︸
ψw(s)

(11.5)

where y(s) is the compass measurement, w(s) is a zero-mean Gaussian white noise process and δ(s) is
the rudder input. The signal ψ(s) represents the LF motion, while ψw(s) is the WF motion. Linear theory
suggests that, see (8.112) and (7.46),

hwave(s) = Kws

s2 + 2λω0s + ω2
0

(11.6)

hship(s) = K(1 + T3s)

s(1 + T1s)(1 + T2s)
(11.7)

Feedback directly from y will therefore include the WF motion. For a large tanker, proper wave filtering
can be obtained by using a low-pass filter to produce an estimate of ψ(s) such that

ψ̂(s) = hlp(s)y(s) (11.8)

Consequently, the feedback control law δ should be a function of ψ̂ and not y in order to avoid first-order
wave-induced rudder motions.

For instance, a first-order low-pass filter with time constant Tf can be designed according to

hlp(s) = 1

1 + Tf s
, ωb <

1

Tf

< ωe (11.9)

This filter will suppress forces over the frequency 1/Tf . This criterion is obviously hard to satisfy for
smaller craft since ωb can be close to or even larger than ωe.

Higher-order low-pass filters can be designed by using a Butterworth filter, for instance. The nth-order
Butterworth filter:

hlp(s) = 1

p(s)
(11.10)

is found by solving the Butterworth polynomial:

p(s)p(−s) = 1 + (s/jωf

)2n
(11.11)

for p(s). Here n denotes the order of the filter while ωf is the cutoff frequency. For n = 1, . . . , 4 the
solutions are

(n = 1) hlp(s) = 1

1 + s/ωf

(n = 2) hlp(s) = ω2
f

s2 + 2ζωf s + ω2
f

; ζ = sin(45◦)
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Figure 11.4 Bode plot showing the Butterworth filter for n = 1, . . . , 4 with cutoff frequency
ωf = 1.0 rad/s.

(n = 3) hlp(s) = ω2
f

s2 + 2ζωf s + ω2
f

· 1

1 + s/ωf

; ζ = sin(30◦)

(n = 4) hlp(s) =
2∏

i=1

ω2
f

s2 + 2ζiωf s + ω2
f

; ζ1 = sin(22.5◦), ζ2 = sin(67.5◦)

A higher-order low-pass filter implies better disturbance suppression of the price of additional phase lags
(see Figure 11.4).

11.1.2 Cascaded Low-Pass and Notch Filtering

For smaller craft the bandwidth of the controller ωb can be close to or within the range
ωmin < ωe < ωmax of the wave spectrum. This problem can be handled by using a low-pass filter in
cascade with a notch filter:

ψ̂(s) = hlp(s)hn(s)y(s) (11.12)
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Figure 11.5 Bode plot showing the notch filter for ζ ∈ {0.1, 0.5, 0.9} and ω0 = 0.63 rad/s in cascade
with a low-pass filter with time constant Tf = 0.1 s. The thick line represents three cascaded notch filters
at ω1 = 0.4 rad/s, ω2 = 0.63 rad/s and ω3 = 1.0 rad/s.

where

hn(s) = s2 + 2ζωns + ω2
n

(s + ωn)2
(11.13)

Here 0 < ζ < 1 is a design parameter used to control the magnitude of the notch while the notch frequency
ωn should be chosen equal to the peak frequency ω0 of the spectrum for a marine craft at zero speed
(dynamic positioning). The low-pass and notch filters are shown in Figure 11.5 for different values of ζ.

For a marine craft moving at forward speed U the optimal notch frequency will be

ωn = ωe (11.14)

This frequency can be computed online by using a frequency tracker or adaptive filtering techniques.
Since the estimate of ωn can be poor and one single-notch filter only covers a small part of the actual
frequency range of the wave spectrum, an alternative filter structure consisting of three cascaded notch
filters with fixed center frequencies has been suggested; see Grimble and Johnson (1989):

hn(s) =
3∏

i=1

s2 + 2ζωis + ω2
i

(s + ωi)2
(11.15)
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Figure 11.6 Block diagram showing the system model and the observer signal flow.

The center frequencies of the notch filters are typically chosen as ω1 = 0.4 rad/s, ω2 = 0.63 rad/s and
ω3 = 1.0 rad/s. This is shown in Figure 11.5. Notice that additional phase lag is introduced when using
a cascaded notch filter.

11.2 Fixed Gain Observer Design
The simplest state estimator is designed as a fixed gain observer where the ultimate goal of the observer
is to reconstruct the unmeasured state vector x̂ from the measurements u and y of a dynamical system
(see Figure 11.6). In order for this to succeed, the system must be observable.

11.2.1 Observability

Observability can be understood as a measure for how well internal states x of a system can be inferred
by knowledge of its external outputs u and y. The observability and controllability of a system are
mathematical duals. More specifically, a system is said to be observable if, for any possible sequence
of state and control vectors, the current state can be determined in finite time using only the outputs. In
other words, this means that from the outputs of the system it is possible to determine the behavior of
the entire system. If a system is not observable, this means that the current values of some of its states
cannot be determined through output sensors. This implies that their value is unknown to the controller
and, consequently, that it will be unable to fulfil the control specifications referred to these outputs.

For time-invariant linear systems, a convenient observability test is given by the following definition:

Definition 11.2 (Observability)
Consider the linear time-invariant system:

ẋ = Ax + Bu (11.16)

y = Hx (11.17)

The state and output matrix (A, H) must satisfy the observability condition to ensure that the state x can
be reconstructed from the output y and the input u. The observability condition requires that the matrix
(Gelb et al., 1988)

O = [H� | A�H� | · · · | (A�)n−1H�] (11.18)

must be of full column rank such that (at least) a left inverse exists.
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11.2.2 Luenberger Observer

Consider an observable linear time-invariant system:

ẋ = Ax + Bu + Ew (11.19)

y = Hx + v (11.20)

where w and v are zero-mean white noise terms. An observer copying the dynamics (11.19)–(11.20)
under the assumption that the zero-mean noise terms w and v can be neglected is

˙̂x = Ax̂ + Bu + γ(y, ŷ) (11.21)

ŷ = Hx̂ (11.22)

where γ(y, ŷ) is an injection term to be constructed such that x̂ → x as t → ∞. Note that the variables of
a state observer are commonly denoted by a “hat” to distinguish them from the variables of the equations
satisfied by the physical system.

The Luenberger observer is obtained by choosing the injection term γ as

γ(y, ŷ) = Kε, ε = y − ŷ = H x̃ (11.23)

where K = constant is a matrix of observer gains.
Assume that w = v = 0. Defining the estimation error as x̃ := x − x̂ implies that the difference

between (11.19) and (11.21) can be written

˙̃x = A x̃ − γ(y, ŷ) (11.24)

For the Luenberger observer, the error dynamics becomes

˙̃x = (A − KH) x̃ (11.25)

Asymptotical convergence of x̃ to zero can be obtained for a constant K if the system (A, H) is observable,
as explained in Section 11.2.1.

Matlab
If the observability matrix O is nonsingular, the poles of the error dynamics can be placed in the
left half-plane by using the Matlab function:

K = place(A′,H,p)′

where p=[p 1,...,p n]is a vector describing the desired locations of the observer error poles
(must be distinct). Notice that both K and A are transposed, since the dual problem of the regulator
problem is solved.
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Examples 11.1–11.2 in Section 11.2.3 demonstrate how the Luenberger observer can be used in ship
control when only compass measurements are available. Emphasis is placed on wave filtering and the
estimation of the yaw rate.

11.2.3 Case Study: Luenberger Observer for Heading Autopilots
using only Compass Measurements

An alternative to LP and notch filtering of wave-induced forces is to apply a state estimator (observer). A
state estimator can be designed to separate the LF components of the motion from the noisy measurements
by using a model of the ship and the WF motions. In fact, a model-based wave filter is well suited to
separate the LF and WF motions from each other, even for marine craft, where the control bandwidth is
close to or higher than the encounter frequency. It will now be shown how this can be done by considering
a ship autopilot for heading control. It is assumed that the heading angle ψ is measured using a gyro or
a magnetic compass while angular rate is left unmeasured, even though it is possible to use a gyro to
measure the yaw rate ψ̇.

Example 11.1 (Nomoto Ship Model Exposed to Wind, Waves and Ocean Currents)
Assume that a first-order Nomoto model describes the LF motion of the ship with sufficient
accuracy:

ψ̇ = r (11.26)

ṙ = − 1

T
r + K

T
(δ − b) + wr (11.27)

ḃ = − 1

Tb

b + wb (11.28)

where the rudder offset b is modeled as a first-order Markov process with Tb 	 T . In the limiting case,
that is Tb → ∞, this reduces to a Wiener process (ḃ = wb). The rudder bias model is needed to counteract
slowly varying moments on the ship due to wave drift forces, LF wind and ocean currents. Consequently,
the bias term b ensures that δ = b gives r = 0 and ψ = constant in the steady state. The linear wave
model (8.122)–(8.123) can be used to model the wave response:

ξ̇w = ψw (11.29)

ψ̇w = −ω2
0ξw − 2λω0ψw + Kwww (11.30)

The process noise terms wr, wb and ww are modeled as zero-mean Gaussian white noise processes. By
combining the ship and wave models, the compass measurement equation can be expressed by the sum

y = ψ + ψw + v (11.31)

where v represents zero-mean Gaussian measurement noise. Notice that neither the yaw rate r

nor the wave states ξw and ψw are measured. The resulting SISO state-space model for u = δ,
x = [ξw, ψw, ψ, r, b]� and w = [ww, wr, wb]� becomes

ẋ = Ax + bu + Ew (11.32)

y = h�x + v (11.33)
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where

A =

⎡
⎢⎢⎢⎣

0 1 0 0 0
−ω2

0 −2λω0 0 0 0
0 0 0 1 0
0 0 0 − 1

T
−K

T

0 0 0 0 − 1
Tb

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎢⎢⎣

0

0

0
K

T

0

⎤
⎥⎥⎥⎥⎥⎦ (11.34)

E =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
2λω0σ︸ ︷︷ ︸

Kw

0 0

0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , h� = [0, 1, 1, 0, 0] (11.35)

Matlab
The following example shows how the Luenberger observer gains of a ship autopilot system can be
computed in Matlab.

Example 11.2 (Luenberger Observer Gains)
It is straightforward to see that the autopilot model with WF, wind and ocean current model
(11.34)–(11.35) is observable from the input δ to the compass measurement y. Let K = 1,

T = 50, λ = 0.1, ω0 = 1 and Tb = 1000; then

K = 1; T=50; lambda = 0.1; wo =1; Tb = 1000;

A = [ 0 1 0 0 0

-wo*wo -2*lambda*wo 0 0 0

0 0 0 1 0

0 0 0 -1/T -K/T

0 0 0 0 -1/Tb ]

h = [0,1,1,0,0]’

n = rank(obsv(A,h’))

results in n = 5 corresponding to rank(O) = 5. Hence, the system is observable according to
Definition 11.2, implying that the states r, b, ψw and ξw can be reconstructed from a single mea-
surement y = ψ + ψw + v using a Luenberger observer:

˙̂x = Ax̂ + bu + k(y − ŷ) (11.36)

ŷ = h�x̂ (11.37)

The filter gains can be computed by using pole placement in Matlab, for instance:

k = place(A’,h,[p1,p2,p3,p4,p5])’

where p1,p2,p3,p4 and p5 are the desired closed-loop poles of the error dynamics (11.25).
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11.3 Kalman Filter Design
The Kalman filter is an efficient recursive filter that estimates the state of a linear or nonlinear dynamic
system from a series of noisy measurements. It is widely used in sensor and navigation systems since it
can reconstruct unmeasured states as well as remove white and colored noise from the state estimates. It
is also possible to include wild-point removal capabilities. In cases of temporarily loss of measurements,
the filter equations behave such as a predictor. As soon as new measurements are available, the predictor
is corrected and updated online to give the minimum variance estimate. This feature is particularly
useful when satellite signals are lost since the Kalman filter can predict the motion using only gyros and
accelerometers. Inertial navigation systems and observers for inertial measurement units are discussed
in Section 11.5.

Together with the linear quadratic regulator (LQR), the Kalman filter solves the linear quadratic
Gaussian (LQG) control problem; see Section 13.1. This section summarizes the most useful results for
the design of discrete-time and continuous-time Kalman filters for marine craft.

The key assumption when designing a Kalman filter is that the system model is observable. This is
necessary in order to obtain convergence of the estimated states x̂ to x. Moreover, if the system model
is observable (see Definition 11.2), the state vector x ∈Rn can be reconstructed recursively through the
measurement vector y ∈Rm and the control input vector u ∈Rp as shown in Figure 11.6.

11.3.1 Discrete-Time Kalman Filter

The discrete-time Kalman filter (Kalman, 1960) is defined in terms of the discretized system model:

x(k + 1) = �x(k) + �u(k) + �w(k) (11.38)

y(k) = Hx(k) + v(k) (11.39)

where

� = exp(Ah) ≈ I + Ah + 1

2
(Ah)2 + · · · + 1

N!
(Ah)N (11.40)

� = A−1(� − I)B, � = A−1(� − I)E (11.41)

and h is the sampling time.

Matlab
The discretized system matrices can be computed as

[PHI,DELTA]=c2d(A,B,h)

[PHI,GAMMA]=c2d(A,E,h)

where PHI=�, DELTA=� and GAMMA=�. Notice that Euler integration implies choosing N = 1
such that �(k) = I + Ah.
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Table 11.1 Discrete-time Kalman filter

Design matrices Q(k) = Q�(k) > 0, R(k) = R�(k) > 0 (usually constant)

x̄(0) = x0

Initial conditions P̄(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))�] = P0

Kalman gain matrix K(k) = P̄(k)H�(k) [H(k)P̄(k)H�(k) + R(k)]−1

State estimate update x̂(k) = x̄(k) + K(k) [y(k) − H(k)x̄(k)]
Error covariance update P̂(k) = [I − K(k)H(k)] P̄(k) [I − K(k)H(k)]�

+K(k)R(k)K�(k), P̂(k) = P̂(k)� > 0

State estimate propagation x̄(k + 1) = �(k)x̂(k) + �(k)u(k)
Error covariance propagation P̄(k + 1) = �(k)P̂(k)��(k) + �(k)Q(k)��(k)

The linear discrete-time Kalman filter algorithm is given in Table 11.1. This algorithm, however, requires
that the state estimation error covariance matrix P̂(k) = P̂(k)� > 0 is computed online. Since the matrix
is symmetrical, the number of differential equations will be n(n + 1)/2 for P(k) ∈ Rn×n. In addition,
there are n state estimates corresponding to x̂(k).

11.3.2 Continuous-Time Kalman Filter

Consider the linear continuous-time system:

ẋ = Ax + Bu + Ew (11.42)

where the process noise w is assumed to be a zero-mean Gaussian white noise process with covariance
matrix Q = Q� > 0. In the one-dimensional case Q corresponds to the squared standard deviation σ2.

Furthermore, let the measurement equation (sensor system) be represented by

y = Hx + v (11.43)

where the measurement noise v is assumed to be a zero-mean Gaussian white noise process with covari-
ance matrix R = R� > 0.

If the system (11.42)–(11.43) is observable (see Definition 11.2), the state vector x ∈Rn can be
reconstructed recursively through the measurement vector y ∈Rm and the control input vector u ∈Rp

(see Figure 11.6). The continuous-time KF algorithms are given in Table 11.2.

Table 11.2 Continuous-time Kalman filter

Design matrices Q(t) = Q�(t) > 0, R(t) = R�(t) > 0 (usually constant)

x̂(0) = x0

Initial conditions P(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))�] = P0

Kalman gain matrix propagation K(t) = P(t)H�(t)R−1(t)

State estimate propagation ˙̂x(t) = A(t)x̂(t) + B(t)u(t) + K(t)[y(t) − H(t)x̂(t)]
Error covariance propagation Ṗ(t) = A(t)P(t) + P(t)A�(t) + E(t)Q(t)E�(t)

−P(t)H�(t)R−1(t)H(t)P(t), P(t) = P�(t) > 0
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In the linear case it is computationally advantageous to use the steady-state solution of the KF. This
filter will in fact have the same structure as the fixed-gain observers of Section 11.2.3. The only difference
is the method for computation of the filter gain matrix.

Continuous-Time Steady-State Kalman Filter

A frequently used simplification of the continuous-time Kalman filter is the steady-state solution obtained
for the linear time-invariant (LTI) system:

ẋ = Ax + Bu + Ew (11.44)

y = Hx + v (11.45)

where w and v are zero-mean Gaussian white noise processes. The steady-state Kalman filter is given by

˙̂x = Ax̂ + Bu + K∞(y − Hx̂) (11.46)

K∞ = P∞H�R−1 (11.47)

where P∞ = P�
∞ > 0 is the positive definite solution of the algebraic matrix Riccati equation

AP∞ + P∞A� + EQE� − P∞H�R−1HP∞ = 0 (11.48)

11.3.3 Extended Kalman Filter

The Kalman filter can also be applied to nonlinear systems in the form

ẋ = f (x) + Bu + Ew (11.49)

y = Hx + v (11.50)

where f (x) is a nonlinear vector field. For this system, the state vector can be estimated using the
discrete-time extended Kalman filter (EKF) algorithm of Table 11.3.

The discrete-time quantities F(x̂(k), u(k)), �(k) and �(k) in Table 11.3 can be found by using forward
Euler integration, for instance. Moreover,

F(x̂(k), u(k)) ≈ x̂(k) + h[f (x̂(k)) + Bu(k)] (11.51)

�(k) ≈ I + h
∂f (x(k), u(k))

∂x(k)

∣∣∣∣
x(k)=x̂(k)

(11.52)

�(k) ≈ hE (11.53)
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Table 11.3 Discrete-time extended Kalman filter (EKF)

Design matrices Q(k) = Q�(k) > 0, R(k) = R�(k) > 0 (usually constant)

x̄(0) = x0

Initial conditions P̄(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))�] = P0

Kalman gain matrix K(k) = P̄(k)H�(k) [H(k)P̄(k)H�(k) + R(k)]−1

State estimate update x̂(k) = x̄(k) + K(k) [y(k) − H(k)x̄(k)]
Error covariance update P̂(k) = [I − K(k)H(k)] P̄(k) [I − K(k)H(k)]�

+K(k)R(k)K�(k), P̂(k) = P̂(k)� > 0

State estimate propagation x̄(k + 1) = F(x̂(k), u(k))
Error covariance propagation P̄(k + 1) = �(k)P̂(k)��(k) + �(k)Q(k)��(k)

where h > 0 is the sampling time. The EKF has been widely used in many applications. In Jouffroy and
Fossen (2010) it has been shown that the continuous-time EKF is incremental GES under the assumption
that the P matrix of the Riccati equation is uniformly positive definite and upper bounded, that is

pminI ≤ P(t) ≤ pmax I (11.54)

for two strictly positive constants pmin and pmax. This guarantees that the estimates converge exponentially
to the actual states.

11.3.4 Corrector–Predictor Representation for Nonlinear Observers

When implementing nonlinear observers, the corrector–predictor representation of the discrete-time
EKF can be used to handle effectively slow measurement rates, multiple measurement rates and dead-
reckoning. Consider the continuous-time nonlinear observer:

˙̂x = f (x̂, u) + γ(y, ŷ) (11.55)

with the linear injection term

γ(y, ŷ) = K(y − ŷ) (11.56)

The discrete-time corrector–predictor formulation for the nonlinear system model (11.55) in terms of
Euler integration becomes

Corrector x̂(k) = x̄(k) + Kd [y(k) − ȳ(k)]

Predictor x̄(k + 1) = x̄(k) + hf (x̂(k), u(k))
(11.57)

where Kd = hK and h is the sampling time. At each time tk a measurement y(k) is available, the corrector
updates the state x̄(k) to x̂(k). The updated state is used by the predictor to predict the states at time tk+1

based on the nonlinear system model ẋ = f (x, u).

Example 11.3 (Corrector–Predictor for Ship Navigation using Two Measurement Rates)
Consider a ship navigation system where the predictor runs at 100 Hz. The IMU and GPS mea-
surements, yIMU and yGPS, are received at 100 Hz (same as the sampling time) and 10 Hz, respectively.
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The corrector–predictor representation can be modified to handle two measurement frequencies by
modifying the gain Kd or the measurement vector y according to

h = 0.01

GPS = 10

x̄ = x0

sampling time

counter for GPS measurements

initial state vector

while estimating

Method A Method B

yIMU = measurement yIMU = measurement

yGPS = measurement

Kd = [hkIMU, 0]� Kd = [hkIMU, 10hkGPS]�

if GPS = 10 if GPS = 10

Kd = [hkIMU, 10hkGPS]� yGPS = measurement

GPS = 0 GPS = 0

end end

if dead-reckoning (no updates) if dead-reckoning (no updates)

Kd = [0, 0]� Kd = [0, 0]�

end end
y = [y�

IMU, y�
GPS]� y = [y�

IMU, y�
GPS]�

x̂ = x̄ + Kd [y − Hx̄] x̂ = x̄ + Kd [y − Hx̄]

u = control system (optionally) u = control system (optionally)

x̄ = x̄ + hf (x̂, u) x̄ = x̄ + hf (x̂, u)

GPS = GPS + 1 GPS = GPS + 1

end

Dead-reckoning refers to the case where there are no updates (signal loss) for a period of time. During
sensor failures, the best thing to do is to trust the model without any updates. Hence, the corrector is
bypassed by setting x̂(k) = x̄(k) and prediction is based on the system model only:

x̄(k + 1) = x̄(k) + hf (x̄(k), u(k)) (11.58)

Notice that observers with linear injection terms can use both methods while observers with nonlinear
injection terms only can use the second method.

11.3.5 Case Study: Kalman Filter for Heading Autopilots using only
Compass Measurements

This section explains how observers and wave filters for heading autopilots can be designed.

Heading Sensors

The main sensor components for a heading controlled marine craft are:

• Magnetic and/or gyroscopic compasses measuring ψ
• Yaw rate gyro measuring r
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In many commercial systems only the compass is used for feedback control since the yaw rate can be
estimated quite well by a state estimator.

A compass is the primary device for direction-finding on the surface of the Earth. Compasses may
operate on magnetic or gyroscopic principles or by determining the direction of the Sun or a star. The
discussions will be restricted to magnetic and gyroscopic compasses, since these are the primary devices
onboard commercial ships and rigs.

The magnetic compass is an old Chinese invention, which probably dates back to 100 AD. Knowledge
of the compass as a directional device came to western Europe sometime in the 12th century and it is
today a standard unit in all commercial and navy ships.

A magnetic compass is in fact an extremely simple device (as opposed to a gyroscopic compass).
It consists of a small, lightweight magnet balanced on a nearly frictionless pivot point. The magnet is
generally called a needle. The magnetic field inside the Earth has its south end at the North Pole and
opposite. Hence, the North end of the compass needle points towards the North Pole (opposite magnets
attract). The magnetic field of the Earth is, however, not perfectly aligned along the Earth’s rotational axis.
It is skewed slightly off center. This skew or bias is called the declination and it must be compensated for.
It is therefore common to indicate what the declination is on navigational maps. Sensitivity to magnetic
variations and declination cause problems in ship navigation. These problems were overcome after the
introduction of the gyroscopic compass.

The first recorded construction of the gyroscope is usually credited to C. A. Bohnenberger in
1810 while the first electrically driven gyroscope was demonstrated in 1890 by G. M. Hopkins (see
Allensworth, 1999; Bennet, 1979). A gyroscope is a disk mounted on a base in such a way that
the disk can spin freely on its x and y axes; that is the disk will remain in a fixed position in
whatever directions the base is moved. A properly mounted gyroscope will always turn to match
its plane of rotation with that of the Earth, just as a magnetic compass turns to match the Earth’s
magnetic field.

The large variations in the magnetic character of ships caused by electrical machinery and weapon
systems made the construction of accurate declination or deviation tables for the magnetic compass
very difficult. In parallel works, Dr H. Anschütz of Germany and Elmer Sperry of the USA worked
on a practical application of Hopkins’ gyroscope. In 1908 Anschütz patented the first North-seeking
gyrocompass, while Elmer Sperry was granted a patent for his ballistic compass, which includes vertical
damping, three years later.

In 1910, when the Anschütz gyro compass appeared, the problem with magnetic variations in ship
navigation was eliminated. However, this compass proved to be quite unsatisfactory during rolling of
the ship, since it produced an “intercardinal rolling error”. Therefore in 1912 Anschütz redesigned the
compass to overcome this defect. One year later, the Sperry compass entered the market and it became a
serious competitor with the Anschütz. Today gyroscopic compasses are produced by a large number of
companies for both commercial and navy ships.

System Model for Heading Autopilot Observer Design

As in the case of positioning, we consider the first-order wave-induced motion as an output disturbance.
Hence the measured yaw angle can be decomposed into

y = ψ + ψw + v (11.59)

where ψ is the response due to the control action and LF disturbance, ψw represents the first-order
wave-induced motion and v is zero-mean Gaussian white measurement noise introduced by the com-
pass. To estimate ψ and r from y, and at the same time obtain wave filtering, one can use a WF
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model to predict the wave motions ψw. The main tool for this is a linear time-invariant Kalman filter
based on

ξ̇w = ψw (11.60)

ψ̇w = −ω2
0 ξw − 2λω0 ψw + w1 (11.61)

where λ and ω0 are the relative damping ratio and peak frequency of the filter used to represent the
wave-induced yaw motion. The yaw dynamics of a marine craft is given by the Nomoto model (see
Section 7.2):

ψ̇ = r (11.62)

˙̂r = − 1

T
r + 1

m
(τwind + τN) + b + w2 (11.63)

ḃ = w3 (11.64)

where b is a bias term and w1, w2 and w3 are zero-mean Gaussian white noise processes. The constant
m = Iz − Nṙ is introduced for convenience such that the rudder angle δ generates a yaw moment τN

given by

τN = m
K

T
δ = Nδδ (11.65)

while τwind represents an optional term for wind feedforward. Notice that neither the yaw rate r nor the
wave states ξw and ψw are measured. The resulting state-space model is

ẋ = Ax + bu + Ew (11.66)

y = h�x + v (11.67)

where

x = [ξw, ψw, ψ, r, b]� (11.68)

u = τwind + τN (11.69)

w = [w1, w2, w3]� (11.70)

and

A =

⎡
⎢⎢⎢⎣

0 1 0 0 0
−ω2

0 −2λω0 0 0 0
0 0 0 1 0
0 0 0 −1/T 1
0 0 0 0 0

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

1/m

0

⎤
⎥⎥⎥⎥⎥⎦ (11.71)

E =

⎡
⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎦, h� = [0, 1, 1, 0, 0] (11.72)

In order to implement a Kalman filter for a heading autopilot, the system model can be used in a discrete-
or continuous-time filter, as presented in Sections 11.3.1–11.3.2. The main problem in the realization
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of the state estimator is that the parameters T, m, ω0 and λ are uncertain. The parameters T and m can
be estimated from tests performed in calm water while the parameters ω0 and λ of the first-order WF
model and the covariance of the driving noise w1 can be estimated from maneuvering trials or para-
meter estimation.

Holzhüter (1992) claims that the damping coefficient in the wave model can be chosen rather arbitrarily
as long as it is low (typically λ = 0.01–0.1), whereas the wave frequency ω0 can be treated as a tunable
or gain scheduled parameter. In some cases it can be advantageous to estimate ω0 online by applying a
frequency tracker or adaptive control theory (Strand and Fossen, 1999).

Matlab
The following example illustrates how the Kalman filter gains can be computed in Matlab for a ship
exposed to waves.

Example 11.4 (Continuous-Time Steady-State KF for Ship Autopilots)
For the ship-wave system (11.66)–(11.67), the SISO continuous-time state estimator takes
the form

˙̂x = Ax̂ + bu + k∞(y − h�x) (11.73)

where the Kalman filter gain is

k∞ = 1

r
P∞h (11.74)

The covariance matrix P∞ = P�
∞ > 0 is given by the ARE:

AP∞ + P∞A� + EQE� − 1

r
P∞hh�P∞ = 0 (11.75)

The KF gain k∞ is computed in Matlab as

R = r

Q = diag{q11,q22,q33}

[k,P] = lqe(A,E,h,Q,R)

where the tuning of the filter is done by choosing the four design parameters r, q11, q22 and
q33. The first of these, r, represents the compass covariance, which can be computed by logging a
time series psi= ψ(t) of the compass at a constant heading. Hence, the Matlab command

r=cov(psi)

gives a good estimate of the measurement noise. The disadvantage with the KF approach is that
information about the process noise w1, w2 and w3 represented by the weights q11,q22 and q33 are
necessary. These three quantities are usually found by trial and error. The variance of the process
and measurement noise will vary with each sea state, implying that several sets of KF gains must
be computed.

Example 11.5 (Kalman-Filter-Based Wave Filter for the Mariner Class Vessel)
To illustrate the performance of Kalman filter-based wave filtering, we consider the case study in Fossen
and Perez (2009) of an autopilot application taken from the Marine Systems Simulator (MSS, 2011). This
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Figure 11.7 Kalman filter performance for a heading autopilot designed for the Mariner class cargo
ship: (a) shows the true LF heading ψ and estimate ψ̂, (b) shows the true LF heading rate r and estimate
r̂ and (c) shows the WF component of the heading ψw and its estimate ψ̂w.

simulation package implemented in Matlab-Simulink provides models of marine craft and a library of
Simulink blocks for heading autopilot control system design. A Simulink block for Kalman filter-based
wave filtering is also included.

The marine craft considered is a 160 m Mariner class vessel with a nominal service speed of 15 knots,
or 7.7 m/s. The parameters of a complete and validated nonlinear model for the Mariner class vessel
are given in Fossen (1994). From the step tests performed on the nonlinear model, a first-order Nomoto
model is identified with the parameters K = 0.185 s−1 and T = 107.3 s. Based on the time constant, a
sampling period of 0.5 s is chosen for the implementation of the Kalman filter. The standard deviation
of the noise of the compass is 0.5 degrees. From a record of heading motion while the rudder is kept
constant, the parameters of the first-order wave-induced motion model are estimated, namely ζ = 0.1,
ω0 = 1.2 rad/s, and the standard deviation of the noise driving the filter is σw1 =

√
300 rad/s.

Figure 11.7 demonstrates the performance of the Kalman filter. The two upper plots show the true LF
heading angle and rate together with the Kalman filter estimates while the lower plot shows the first-order
wave-induced heading angle and its estimate.

11.3.6 Case Study: Kalman Filter for Dynamic Positioning Systems using
GNSS and Compass Measurements

Kalman filtering (or optimal state estimation in the sense of minimum variance) allows the user to estimate
the state x of a dynamic system from a noise-contaminated input–output pair (u, y). The interested reader
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is advised to consult Brown and Hwang (1998) or Gelb et al. (1988) for details on Kalman filter design.
Applications specific to the field of guidance and control can be found in Lin (1992).

Dynamic positioning (DP) systems have been commercially available for marine craft since the 1960s.
The first DP systems were designed using conventional PID controllers in cascade with low-pass and/or
notch filters to suppress the wave-induced motion components. From the middle of the 1970s more
advanced filtering techniques were available thanks to the Kalman filter (Kalman, 1960). This motivated
Balchen and coauthors to develop optimal wave filtering and state estimation; see Balchen et al. (1976,
1980a, 1980b). KF-based wave filtering has also been discussed by Grimble et al. (1980a, 1980b), Fung
and Grimble (1981, 1983), Fotakis et al. (1982), Sælid and Jenssen (1983), Sælid et al. (1983), Reid et al.
(1984), Holzhüter and Strauch (1987), Holzhüter (1992), Sørensen et al. (1995, 1996, 2000), Fossen and
Strand (2000) and Fossen and Perez (2009).

In this section, the Kalman filter is presented for DP applications. Both observers include wave
filtering, bias state estimation and reconstruction of the LF motion components, and estimates of the
nonmeasured body velocities are considered. Positioning feedback systems are described more closely
in Sections 12.2.10 and 13.1.6. Before observer design is discussed, a general introduction to navigation
systems is given.

Global Navigation Satellite Systems (GNSS)

Several Global Navigation Satellite Systems (GNSS) provide autonomous geospatial positioning with
global coverage. The United States NAVSTAR Global Positioning System (GPS) has been fully operative
since 1995 (see Hofmann-Wellenhof et al., 1994; Parkinson and Spilker, 1995). In addition to GPS,
the Russian GLObal’naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) has been restored; see
Kayton and Fried (1997) and Leick (1995), for instance. A more recent and more accurate system is the
European Union’s GALILEO positioning system, which will be complementary to GPS and GLONASS.
For this purpose, integrated GNSS receivers capable of combining signals from one or more systems
can be used. This also improves redundancy in marine control systems. The GNSS measurements are
usually used in a motion control system that operates in the three planar degrees of freedom, namely
surge (forward motion), sway (transverse motion) and yaw (rotation about the vertical axis, also called
heading). The position of the marine craft is normally measured by differential GNSS, while the heading
is measured by a gyrocompass. Additional types of sensors are usually available to ensure reliability of
the positioning system, namely inertial measurement units, hydro acoustic position sensors, taut wires
and laser sensors.

• Differential and Augmented GNSS: The main idea of a differential GNSS system is that a fixed receiver
located, for example, on shore with a known position is used to calculate the GNSS position errors.
The position errors are then transmitted to the GNSS receiver on board the ship and used as corrections
to the actual ship position. In a differential GNSS the horizontal positioning errors are squeezed down
to less than 1 m, which is the typical accuracy of a ship positioning system today (Hofmann-Wellenhof
et al., 1994).

• Carrier Differential GNSS: A GNSS receiver in lock is able to track the phase shift of the carrier
and output the fractional phase measurement at each epoch. However, the overall phase measurement
contains an unknown number of carrier cycles. This is called the integer ambiguity (N). This ambi-
guity exists because the receiver merely begins counting carrier cycles from the time a satellite signal
is placed in an active track. For GPS, the precision of the phase measurement is about 0.01 cycles
(≈ 0.01 × 19 cm = 1.9 mm), and if N is determined, it allows for highly accurate position measure-
ments. Ambiguity resolution is a very active research area, and there are several receivers known as
real-time kinematic (RTK) receivers on the market today that utilize carrier measurements to achieve
position accuracy in the order of a few centimeters. These position measurements are, however, not as
robust as GPS and DGPS.
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System Model for Dynamic Positioning Observer Design

In Section 7.3 it was shown that the 3 DOF nonlinear model for DP can be written as

η̇ = R(ψ)ν (11.76)

Mν̇ + CRB(ν)ν + D exp(−αVrc)νr + d(Vrc, γrc) = τ + τwind (11.77)

where η = [N, E, ψ]�, ν = [u, v, r]�and

d(Vrc, γcr) =

⎡
⎣ − 1

2 ρAFcCX(γrc)V 2
rc

− 1
2 ρALcCY (γrc)V 2

rc

− 1
2 ρALcLoaCN (γrc)V 2

rc − N|r|rr|r

⎤
⎦ (11.78)

This model is highly nonlinear but it is possible to use the extended KF to estimate the velocities and
ocean currents using only position and heading measurements. However, the model can be simplified. In
particular, CXc

(γrc), CYc
(γrc) and CNc

(γrc) are difficult to estimate with accuracy and extensive hydrody-
namic tests are expensive to perform. In such cases, it is common practice to simplify the observer model
in terms of a linear damping matrix and a bias term in the form (Fossen and Strand, 1999b)

D exp(−αVrc)νr + d(Vrc, γrc) ≈ Dν − R�(ψ)b (11.79)

where

D =

⎡
⎣d11 0 0

0 d22 d23

0 d32 d33

⎤
⎦ , b =

⎡
⎣b1

b2

b3

⎤
⎦ (11.80)

In this model, the effects of the ocean currents as well as unmodeled nonlinear dynamics are lumped into
a bias term b. The resulting DP model becomes

ξ̇ = Awξ + Eww1 (11.81)

η̇ = R(ψ)ν (11.82)

ḃ = w2 (alternatively ḃ = −T −1b + w2) (11.83)

Mν̇ = −Dν + R�(ψ)b + τ + τwind + w3 (11.84)

y = η + Cwξ + v (11.85)

where the output ηw = Cwξ represents three linear wave response models in surge, sway and yaw with
state vector ξ ∈ R6 and Aw ∈ R6×6, Ew ∈ R6×3 and Cw ∈ R3×6 are constant matrices of appropriate di-
mensions describing the sea state. The variables wi (i = 1, 2, 3) are zero-mean Gaussian noise vectors
representing model uncertainty. The measurement y is the sum of the LF and WF components corre-
sponding to the GNSS and compass measurements. The bias is usually modeled as a Wiener process
(random walk):

ḃ = w2 (11.86)

An alternative model is the first-order Markov model:

ḃ = −T −1b + w2 (11.87)

where T = diag{T1, T2, T3} ∈ R3×3 is a user-specified diagonal matrix of positive bias time constants.
These models can be used to describe slowly varying environmental forces and moments due to:
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• second-order wave drift forces
• ocean currents
• wind forces (alternatively implemented as wind feedforward)

The estimate of b will be nonphysical since it contains several components. Many DP operators call this
DP current since it is experienced as a drift force due to second-order wave drift forces, ocean currents
and unmodeled dynamics.

The model (11.81)–(11.85) is nonlinear since the kinematic transformation matrix R(ψ) depends on
the state ψ. This suggests that the DP observer must be based on the extended KF formulation. For a DP
system operating at constant heading or slow turning rates, the following assumption can be used:

Assumption (Constant Heading): The yaw rate is zero (r = 0) such that Ṙ(ψ) = 0.

Hence, the use of vessel parallel coordinates implies that (see Section 7.5.3)

ηp = R�(ψ)η (11.88)

bp = R�(ψ)b (11.89)

Consequently, the kinematics (11.76) can be approximated by a linear model:

η̇p = R�(ψ)η̇ + Ṙ�(ψ)η

= R�(ψ)R(ψ)ν + Ṙ�(ψ)η

= ν + Ṙ�(ψ)η

≈ ν (11.90)

If the heading angle is constant, the bias model in vessel parallel coordinates can be formulated as

ḃp = w2 (11.91)

Remark: Notice that if the heading angle is changed, bp needs time to converge to its new
value due to the dependency of the rotation matrix. In many commercial systems, the constant
heading assumption is removed by designing an EKF for the nonlinear model (11.76)–(11.77) which
includes the rotation matrix.

Linear DP Observer Model for Constant Heading

The resulting DP observer model in vessel parallel coordinates becomes

ξ̇ = Awξ + Eww1 (11.92)

η̇p = ν (11.93)

ḃp = w2 (alternatively ḃp = −T −1bp + w2) (11.94)

Mν̇ = −Dν + bp + τ + τwind + w3 (11.95)

y = ηp + Cwξ + v (11.96)
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The control forces usually have two components:

τ = −τ̂wind + Buu (11.97)

where τ̂wind is an estimate of the wind forces implemented by using feedforward compensation and
Buu represents actuator forces. The wind feedforward term, which is proportional to the square of the
measured wind velocity, depends on the craft’s projected area in the direction of the wind (see Section
8.1). The vector u is the command to the actuators, which are assumed to have a much faster dynamic
response than the craft; thus the coefficient Bu represents the mapping from the actuator command to the
force generated by the actuator. For example, if the command to a propeller is the rotation speed, then
the corresponding coefficient in Bu maps the speed to the generated thrust.

The resulting model for a DP observer design is the fifteenth-order state-space model:

ẋ = Ax + Bu + Ew (11.98)

y = Hx + v (11.99)

where x = [ξ�, η�
p , b�

p , ν�]� ∈ R15 is the state vector, u ∈ Rp (p ≥ 3) is the control vector,
w = [w�

1 , w�
2 , w�

3 ]� ∈ R9 represents the process noise vector and v ∈ R3 is a vector of measurement
noise. The system matrices are

A =

⎡
⎢⎣

Aw 06×3 06×3 06×3

03×6 03×3 03×3 I3×3

03×6 03×3 −T −1 03×3

03×6 03×3 M−1 −M−1D

⎤
⎥⎦, B =

⎡
⎢⎢⎢⎣

06×p

03×p

03×p

M−1Bu

⎤
⎥⎥⎥⎦ (11.100)

E =

⎡
⎢⎣

Ew 06×3 06×3

03×3 03×3 03×3

03×3 I3×3 03×3

03×3 03×3 M−1

⎤
⎥⎦ , H = [Cw I3×3 03×3 03×3

]
(11.101)

Continuous-Time Kalman Filter

The continuous-time filter equations for (11.98) and (11.99) are (see Table 11.2 in Section 11.2.3)

˙̂x = Ax̂ + Bu + PH�R
−1︸ ︷︷ ︸

K

(y − Hx̂) (11.102)

Ṗ = AP + PA� + EQE� − PH�R−1HP (11.103)

Notice that the covariance matrices Q = Q� ∈ R9×9 and R = R� ∈ R3×3 must be specified by the user.
The measurement covariance matrix can be chosen as

R = diag
{
σ2

v1, σ
2
v2, . . . , σ

2
vp

}
where the covariance σ2

vi of the measurement noise of the sensor i can be estimated by the
sample covariance from a data record taken while the craft is at port with no motion. The matrix Q

can also be chosen to be diagonal with positive tunable parameters. These are usually found by trial and
error. The estimation of the covariance Q of the state noise w in (11.98) is more complex since it depends
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on the sea state, the heading of the craft relative to the environmental forces and how uncertain the model
is. This covariance matrix is chosen to be block diagonal, that is

Q = diag{Q1, Q2, Q3} (11.104)

The matrix Q1 ∈ R3×3 is the covariance of the noise w1, which drives the noise filter representing linear
wave-induced motion, Q2 ∈ R3×3 is the covariance of the noise w2, which represents the uncertainty in
the equation of motion, and Q3 ∈ R3×3 is the covariance of the noise w3, which represents the uncertainty
in the bias term that models the rest of the environmental forces. The matrices Q2 and Q3 are usually
chosen to be diagonal. The entries of the matrix Q2 are taken as a fraction of the variance of the position
measurement noises. The entries of Q3 are high values. These choices provide a filter with an appropriate
balance of the uncertainty in various parts of the model. The covariance Q1 is estimated together with
the parameters of the WF motion model from data measured before and during the operation of the craft.

Discrete-Time Kalman Filter

Since the GNSS measurement frequency can be as low as 1–10 Hz it is advantageous to implement the
discrete-time version of the KF. The discrete-time system model is written as

x(k + 1) = �x(k) + �u(k) + �w(k) (11.105)

y(k) = Hx(k) + v(k) (11.106)

where

� = exp(Ah) (11.107)

� = A−1(� − I)B (11.108)

� = A−1(� − I)E (11.109)

Here h is the sampling time, and the equivalent discrete-time noises w(k) and v(k) are Gaussian and
white with zero mean. The discrete-time Kalman filter uses the corrector–predictor representation (see
Table 11.1 in Section 11.3.1):

Kalman Gain:

K(k) = P̄(k)H�(k) [H(k)P̄(k)H�(k) + R(k)]−1 (11.110)

Corrector:

P̂(k) = [I − K(k)H(k)]P̄(k)[I − K(k)H(k)]� + K(k)R(k)K�(k) (11.111)

x̂(k) = x̄(k) + K(k)[y(k) − H(k)x̄(k)] (11.112)

Predictor:

x̄(k + 1) = �(k)x̂(k) + �(k)u(k) (11.113)

P̄(k + 1) = �(k)P̂(k)��(k) + �(k)Q(k)��(k) (11.114)
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In order to implement a Kalman filter, the parameters of the model as well as the covariance of the
state measurement noises in the model are necessary. The mass and damping parameters of the model
can be initially estimated from hydrodynamic computations. Then, an update of the parameter estimates
can be obtained from data of tests performed in calm water (Fossen et al., 1996).

The parameters are re-estimated after significant changes in heading or at regular intervals of
20 minutes, which is the time period for which the sea state can be considered to be stationary. Since the
craft is in a positioning control mode, the total motion measured can be recorded and detrended to obtain
an estimate of the wave-induced motion vector η̂w(k), or, equivalently, a first-order high-pass filter can
be used (Holzhüter and Strauch, 1987). These data can then be used to estimate the parameters of the
wave-induced motion model, for which it is convenient to consider the directly parameterized innovations
form (Ljung, 1999)

ξ̂(k + 1) = Aw(θ)ξ̂(k) + Kw(θ)ε(k) (11.115)

η̂w(k) = Cw(θ)ξ̂(k) + ε(k) (11.116)

where θ is the vector of parameters to be estimated and ε(k) is the vector of innovations. The parameter
estimation problem can then be formulated as (Fossen and Perez, 2009)

θ̂ = arg min
θ

det
N∑

k=1

ε(k, θ)ε(k, θ)� (11.117)

with

ε(k, θ) = η̂w(k) − Cw(θ)ξ̂(k) (11.118)

ξ̂(k + 1) = Aw(θ)ξ̂(k) + Kw(θ)ε(k, θ) (11.119)

where ηw(k) is replaced by the estimate η̂w(k) obtained from detrending the measured data. Equations
(11.117)–(11.119) comprise a standard prediction error estimation problem whose solution is related to
the maximum likelihood estimate of the parameter vector θ (Harvey, 1989; Ljung, 1999).

Once the parameters of the mode are estimated, the covariance Q̂ε of the innovations can also be
estimated from the sample covariance of the predictions errors. Then, the Kalman filter can be imple-
mented with the innovation WF model and thus we can chose Q1 = Q̂ε. This choice entails no loss
of information.

An alternative to the procedure described above consists of fixing the damping ζ of the WF model to a
value in the range 0.01 to 0.1 as suggested in Holzhüter (1992) and estimate only the natural frequency
ω0 and noise covariance (Holzhüter and Strauch, 1987; Holzhüter, 1992). This estimation approach is
summarized in Fossen (1994), where recursive least squares is used for parameter estimation. A related
approach, also based on recursive least squares, is given in Perez (2005).

11.4 Nonlinear Passive Observer Designs
The drawback of the Kalman filter is that it is difficult and time-consuming to tune the state estimator,
which is a stochastic system with 15 states and 120 covariance equations. The main reason for this is that
the numerous covariance tuning parameters may be difficult to relate to physical quantities. This results
in an ad hoc tuning procedure for the process covariance matrix Q while the measurement covariance
matrix R usually is well defined in terms of sensor specifications.
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In the 1990s, vectorial observer backstepping was presented as an alternative design methodology for
DP state estimation (Fossen and Grøvlen, 1998). The motivation for this was to avoid vessel parallel
coordinates or linearization of the yaw kinematics in order to obtain a global stability result. Another mo-
tivating factor was to reduce the relatively time-consuming process of tuning the Kalman filter covariance
matrices online. In fact, vectorial observer backstepping resulted in a uniformly globally exponentially
stable (UGES) output feedback control system, which could be directly applied to stationkeeping of
ships and rigs. The work of Fossen and Grøvlen (1998) is, however, based on a simplified model of
the environmental forces, since it is assumed that the WF motion and bias states can be neglected in the
design. Aarset et al. (1998) have shown that these results can be extended to the general case by including
a dynamic model for wave filtering and bias state estimation. It is also possible to extend this result to
ships that are course-unstable (open-loop unstable in sway and yaw) thanks to the results by Robertson
and Johansson (1998) and Lindegaard and Fossen (2001b).

A drawback with observer backstepping and also Kalman filter-based design techniques is that a
relatively large number of parameters must be determined through experimental testing of the craft. This
motivated the research of a nonlinear passivity-based observer, since passivity arguments simplify the
tuning procedure significantly (Fossen and Strand, 1999b). Hence, the time needed for sea trials and
tuning can be drastically reduced. The nonlinear passive observer, as opposed to a linearized or extended
Kalman filter, guarantees global convergence of all estimation errors (including the bias terms) to zero.
Hence, only one set of observer gains is needed to cover the whole state space. In addition, the number
of observer tuning parameters is significantly reduced and the wave filter parameters are directly coupled
to the dominating wave frequency. Passivity implies that the phase of the error dynamics is limited by
90 degrees, which gives excellent stability properties. Passivity theory also proved to be a new tool
with respect to accurate tuning of the observer. The proposed nonlinear observer opens the way for new
controller designs that are more in line with the actual structure of the physical system, for instance by
using a nonlinear separation principle (Loria et al., 2000).

For extensions to adaptive wave filtering, see Strand and Fossen (1999), while extensions to position
mooring systems are found in Strand (1999).

11.4.1 Case Study: Passive Observer for Dynamic Positioning using
GNSS and Compass Measurements

The passive observer is based on Fossen and Strand (1999b) in which the Kalman filter zero yaw rate
assumption is removed. The following assumptions are, however, necessary to prove passivity:

Assumption P1: w = 0 and v = 0. The zero-mean Gaussian white noise terms are omitted in the anal-
ysis of the observer. If they are included in the Lyapunov function analysis the error dynamics will
be uniformly ultimated bounded (UUB) instead of uniform global asymptotical/exponential stable
(UGAS/UGES).

Assumption P2: R(y3) = R(ψ), implying that y3 = ψ + ψw ≈ ψ. This is a good assumption since the
magnitude of the wave-induced yaw disturbance ψw will normally be less than 5 degrees in extreme
weather situations (sea state codes 5–9) and less than 1 degree during normal operation of the ship
(sea state codes 0–4).

The following model properties of the inertia and damping matrices will be exploited in the
passivation design:

M = M� > 0, Ṁ = 0, D > 0
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System Model for Nonlinear Passive Observer

The application of Assumptions P1–P2 to (11.81)–(11.85) gives the following DP observer model:

ξ̇ = Awξ (11.120)

η̇ = R(y3)ν (11.121)

ḃ = −T −1b (alternatively ḃ = 0) (11.122)

Mν̇ = −Dν + R�(y3)b + τ + τwind (11.123)

y = η + Cwξ (11.124)

For notational simplicity (11.120), (11.121) and (11.124) are written in state-space form:

η̇0 = A0η0 + B0R(y3)ν (11.125)

y = C0η0 (11.126)

where η0 = [ξ�, η�]� and

A0 =
[

Aw 06×3

03×6 03×3

]
, B0 =

[
06×3

I3×3

]
, C0 = [Cw I3×3

]
(11.127)

Observer Equations

The observer equations can be chosen to copy the dynamics (11.120)–(11.124) resulting in 15 ODEs
with no covariance updates, as shown in Figure 11.8. Moreover,

Figure 11.8 Block diagram showing the nonlinear passive DP observer.
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˙̂
ξ = Awξ̂ + K1(ωo) ỹ (11.128)

˙̂η = R(y3)ν̂ + K2 ỹ (11.129)

˙̂
b = −T −1b̂ + K3 ỹ (alternatively ˙̂

b = K3 ỹ) (11.130)

M ˙̂ν = −Dν̂ + R�(y3)b̂ + τ + τwind + R�(y3)K4 ỹ (11.131)

ŷ = η̂ + Cwξ̂ (11.132)

where ỹ = y − ŷ is the estimation error and K1(ωo) ∈ R6×3 and K2,3,4 ∈ R3×3 are observer gain ma-
trices to be interpreted later. Notice that K1(ωo) is a function of the wave spectra peak frequencies
ωo = [ωo1, ωo2, ωo3]� in surge, sway and yaw.

The main difference in performance of the two bias state estimators (11.130) is that the first model
includes low-pass filtering (T > 0) instead of pure integration of the white noise term K3 ỹ. This results

in exponential stability while application of the model ˙̂
b = K3 ỹ only results in asymptotic stability.

Observer Estimation Errors

As for (11.125) and (11.126), the system (11.128), (11.129) and (11.132) is written in state-space form:

˙̂η0 = A0η̂0 + B0R(y3)ν̂ + K0(ωo) ỹ (11.133)

ŷ = C0η̂0 (11.134)

where η̂0 = [ξ̂�, η̂�]� and

K0(ωo) =
[

K1(ωo)

K2

]
(11.135)

The estimation errors are defined as ν̃ = ν − ν̂, b̃ = b − b̂ and η̃0 = η0 − η̂0. Hence, the error dynamics
can be written

˙̃η0 = [A0 − K0(ωo)C0] η̃0 + B0R(y3) ν̃ (11.136)

˙̃b = −T −1 b̃ − K3 ỹ (alternatively ˙̃b = −K3 ỹ) (11.137)

M ˙̃ν = −D ν̃ + R�(y3) b̃ − R�(y3)K4 ỹ (11.138)

In the Lyapunov analysis of the error dynamics (11.136)–(11.138), it is possible to prove UGES for
T > 0 (Fossen and Strand, 1999b) since V̇ (x, t) < 0 (negative definite). If the bias model ḃ = 0 is applied,
that is T → ∞, the Lyapunov analysis results in V̇ (x, t) ≤ 0 (negative semi-definite). Since the error
dynamics is nonautonomous and recall that y3 = y3(t) is time varying, Krasovskii–LaSalle’s theorem
cannot be applied to prove UGAS. However, it is possible to prove UGAS by using Matrosov’s theorem.
Technicalities with respect to the limiting case T → ∞ are omitted in this section, but the analysis for
T > 0 is given below.

The dynamics of the velocity estimation error (11.138) is rewritten as

M ˙̃ν = −D ν̃ − R�(y3) z̃ (11.139)



314 Sensor and Navigation Systems

Figure 11.9 Block diagram showing the dynamics of the position/bias and velocity estimation errors.

where

z̃ = K4 ỹ − b̃ (11.140)

By defining a new state vector

x̃ =
[

η̃0

b̃

]
(11.141)

Equations (11.136), (11.137) and (11.140) can be written in compact form as

˙̃x = A x̃ + BR(y3) ν̃ (11.142)

z̃ = Cx̃ (11.143)

where

A =
[

A0 − K0(ωo)C0 09×9

−K3C0 −T −1

]
, B =

[
B0

03×3

]
, C = [K4C0 −I3×3

]
(11.144)

In Figure 11.9 the error signals εz and εν are defined according to

εz := −R�(y3) z̃ (11.145)

εν := R(y3) ν̃ (11.146)

Thus, the observer error system can be viewed as two linear blocks H1 and H2, interconnected through
the bounded transformation matrix R(y3); that is

H1 :
{
M ˙̃ν = −D ν̃ + εz (11.147)

H2 :

{ ˙̃x = A x̃ + Bεν

z̃ = C x̃
(11.148)

Stability Analysis for the Passive Observer

Based on the physical properties of the ship dynamics, the following statement can be made:
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Proposition 11.1 (Strictly Passive Velocity Error Dynamics)
The mapping H1 is state strictly passive.

Proof. Let,

S1 = 1

2
ν̃

�
M ν̃ (11.149)

be a positive definite storage function. Time differentiation of S1 along the trajectories of ν̃ yields

Ṡ1 = −1

2
ν̃

� (
D + D�) ν̃ − z̃�R(y3) ν̃ (11.150)

Using the fact that εz = −R�(y3) z̃, yields

ε�
z ν̃ = Ṡ1 + 1

2
ν̃

� (
D + D�) ν̃ (11.151)

Hence, ∫ t

t0

ε�
z (τ) ν̃(τ) dτ ≥ α ν̃

�
ν̃ + β (11.152)

where α = 1
2 λmin(M) is a positive constant and

β = 1

2

∫ t

t0

ν̃
� (

D + D�) ν̃dτ ≥ 0 (11.153)

is the dissipated energy due to hydrodynamic damping. Thus, (11.152) proves that εz �→ ν̃ or the block
H1 is state strictly passive.

For definitions on passivity see, for instance, Sepulchre et al. (1997), Ortega et al. (1998) or Lozano
et al. (2000).

In order to show that the interconnected system in Figure 11.9 is passive, one of the blocks must be
passive while the other block must be strictly passive (Lozano et al., 2000). Since the mapping εz �→ ν̃

is strictly passive (block H1), post-multiplication with the bounded transformation matrix R(y3) and pre-
multiplication by its transpose will not affect the passivity properties. Hence, it only remains to show that
the the mapping εν �→ z̃ (block H2) is passive. This can be done by applying the Kalman–Yakubovich–
Popov (KYP) lemma.

Lemma 11.1 (Kalman–Yakubovich–Popov)
Let Z(s) = C(sI − A)−1B be an m × m transfer function matrix, where A is Hurwitz, (A, B) is
controllable and (A, C) is observable. Then Z(s) is strictly positive real (SPR) if and only if there exist
positive definite matrices P = P�and Q = Q� such that

PA + A�P = −Q (11.154)

B�P = C (11.155)

Proof. See Yakubovich (1973) or Khalil (2002).

Theorem 11.1 (Passive Observer Error Dynamics)
The interconnected system (11.147) and (11.148) is passive if the observer gain matrices Ki

(i = 1, . . , 4) are chosen such that (11.148) satisfies the KYP lemma.
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Proof. Since it is established that H1 is strictly passive and H2, which is given by the matrices (A, B,
C), can be made SPR by choosing the gain matrices Ki (i = 1, . . . , 4) according to the KYP lemma, the
interconnected system (11.147) and (11.148) is passive (Fossen and Strand, 1999b).

Determination of the Observer Gains

In practice it is easy to find a set of gain matrices Ki (i = 1, . . . , 4) satisfying the KYP lemma. Notice
that the mapping εν �→ z̃ (block H2) describes three decoupled systems in surge, sway and yaw. This
suggests that the observer gain matrices should have a diagonal structure:

K1(ωo) =
[

diag{K11(ωo1), K12(ωo2), K13(ωo3)}
diag{K14(ωo1), K15(ωo3), K16(ωo3)}

]
(11.156)

K2 = diag{K21, K22, K23} (11.157)

K3 = diag{K31, K32, K33} (11.158)

K4 = diag{K41, K42, K43} (11.159)

Consequently, three decoupled transfer functions can be found:

H(s) = diag{h1(s), h2(s), h3(s)} (11.160)

such that

z̃(s) = H(s)εν(s)

= H0(s)HB(s)εν(s) (11.161)

where

H0(s) = C0[sI + A0 − K0(ω0)C0]−1B0

HB(s) = K4 + (sI + T −1)−1K3

The diagonal structure of H(s) is illustrated in Figure 11.10. The transfer functions hoi(s) (i = 1, . . . , 3)
and hBi(s) (i = 1, . . . , 3) corresponding to H0(s) and HB(s), respectively, become

hoi(s) = s2 + 2λiωois + ω2
oi

s3 + (K1(i+3) + K2i + 2λiωoi)s2 + (ω2
oi + 2λiωoiK2i − K1iω

2
oi)s + ω2

oiK2i

(11.162)

hBi(s) = K4i

s +
(

1
Ti

+ K3i

K4i

)
s + 1

Ti

Ti	1≈ K4i

s + K3i

K4i

s + 1
Ti

(11.163)

where ωoi is the wave spectrum peak frequency, Ti is defined in (11.87) and λi is the relative damping
ratio of the wave spectrum. In order to obtain the desired notch effect (wave filtering) of the observer, the
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Figure 11.10 Bode plot showing the transfer function hi(s) in surge (i = 1) when 1/Ti � K3i/K4i <

ωoi < ωci; see ExPassiveObs.m in the MSS toolbox.

desired shape of hoi(s) is specified as

hdi(s) = s2 + 2λiωois + ω2
oi(

s2 + 2ζniωois + ω2
oi

)
(s + ωci)

(11.164)

where ζni > λi determines the notch and ωci > ωoi is the filter cutoff frequency. Typically ζni = 1.0 and
λi = 0.1. Equating (11.162) and (11.164) yields the following formulae for the filter gains in K1(ωo)
and K2:

K1i(ωoi) = −2(ζni − λi)
ωci

ωoi

(11.165)

K1(i+3)(ωoi) = 2ωoi(ζni − λi) (11.166)

K2i = ωci (11.167)

Notice that the filter gains can be gain-scheduled with respect to the dominating wave frequencies ωoi if
desired. In Figure 11.10 the transfer function hi(s) = hBi(s)hoi(s) is illustrated when all filter gains are
properly selected. It is important that the three decoupled transfer functions hi(s) all have a phase greater
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than −90◦ in order to meet the SPR requirement. It turns out that the KYP lemma and therefore the SPR
requirement can easily be satisfied if the following tuning rules for Ti, K3i and K4i are applied:

1/Ti � K3i/K4i < ωoi < ωci (i = 1, . . . , 3) (11.168)

Here ωoi (i = 1, . . . , 3) are the dominating wave frequencies and Ti 	 1 (i = 1, . . . , 3) are the bias time
constants used to specify the limited integral effect in the bias estimator.

Uniform Global Exponential Stability

The passivity analysis mainly serves as a tool to determine the observer gains. In order to ensure that all
estimation errors converge exponentially to zero the following theorem is applied.

Theorem 11.2 (Uniformly Globally Exponentially Stable Observer Error Dynamics)
Under Assumptions P1–P2 the nonlinear observer given by (11.128)–(11.132) is uniformly glob-
ally exponentially stable.

Proof. Consider the following Lyapunov function candidate:

V = ν̃
�
M ν̃ + x̃�P x̃ (11.169)

Differentiation of V along the trajectories of ν̃ and x̃ and application of Assumptions P1–P2 yields

V̇ = − ν̃
�(

D + D�)ν̃ + x̃� (PA + A�P
)

x̃ + 2 ν̃
�
R�(y3)B�P x̃ − 2 ν̃

�
R�(y3) z̃ (11.170)

Application of the KYP lemma, that is B�P x̃ = C x̃ = z̃, to (11.170) yields

V̇ = − ν̃
�(

D + D�)ν̃ − x̃�Q x̃ < 0, ∀ x̃ /= 0, ν̃ /= 0 (11.171)

Hence, ν̃ and x̃ = [ξ̃
�
, η̃

�
, b̃

�
]� converge exponentially to zero.

Computer Simulations and Experimental Results

A combination of computer simulations and full-scale experiments have been used to evaluate the per-
formance and robustness of the nonlinear passive observer.

Example 11.6 (Passive Nonlinear DP Observer)
The case studies are based on the following models of the ship–bias–wave system (Fossen and
Strand, 1999b):

M =

⎡
⎣ 5.3122 × 106 0 0

0 8.2831 × 106 0

0 0 3.7454 × 109

⎤
⎦ (11.172)

D =

⎡
⎣ 5.0242 × 104 0 0

0 2.7229 × 105 −4.3933 × 106

0 −4.3933 × 106 4.1894 × 108

⎤
⎦ (11.173)



Nonlinear Passive Observer Designs 319

with the coordinate system located in the CG. In the experiments the bias time constants were chosen as

T = diag{1000, 1000, 1000} (11.174)

The wave model parameters were chosen as λi = 0.1 and ωoi = 0.8976 rad/s, corresponding to a wave
period of 7.0 s in surge, sway and yaw. The notch filter parameters were chosen as ζni = 1.0 and
ωci = 1.2255ωoi = 1.1 rad/s. From (11.165)–(11.167) we get (see the MSS toolbox script
ExPassiveObs.m)

K1 =
[−diag{2.2059, 2.2059, 2.2059}

diag{1.6157, 1.6157, 1.6157}

]
(11.175)

K2 = diag{1.1, 1.1, 1.1} (11.176)

The loop transfer function hoi(s) = hBi(s)hoi(s) for

K3 = 0.1K4 (11.177)

K4 = diag{0.1, 0.1, 0.01} (11.178)

is plotted in Figure 11.10.

Both the simulation study and the full-scale experiment were performed with a measurement frequency
of 1 Hz. The simulation study was performed with nonzero noise terms v and w even though these terms
were assumed to be zero in the Lyapunov analysis. This was done to demonstrate the excellent performance
of the observer in the presence of stochastic noise.

The results of the computer simulations are shown in Figures 11.11–11.12. The plots illustrate that
all state estimates converge to their true values. In Figures 11.13–11.14 full-scale experimental results
with the same observer are reported. Again, excellent convergence and performance in surge, sway and
yaw are observed. In the full-scale experiment it was not possible to verify that the velocity estimates
converged to their true values; see the lower plots in Figure 11.14. The main reason for this was that
only GPS position measurements were available. However, simulation studies indicate that the velocity
estimates converge to their true values as well.

11.4.2 Case Study: Passive Observer for Heading Autopilots using only
Compass Measurements

The DP observer in Section 11.4.1 can be reduced to 1 DOF and used in autopilot designs. For this purpose,
the autopilot model in Section 11.3.5 is considered. In the 1 DOF case, the compass measurement is taken
as the sum of the LF and WF signals:

y = ψ + ψw (11.179)

The corresponding system model is

ξ̇w = ψw (11.180)

ψ̇w = −ω2
0 ξw − 2λω0 ψw (11.181)

ψ̇ = r (11.182)

˙̂r = − 1

T
r + 1

m
(τwind + τN) + b (11.183)

ḃ = − 1

Tb

b (11.184)
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Figure 11.11 Simulation study: LF and WF position, velocity, bias and their estimates in surge.

where λ and ω0 are the relative damping ratio and peak frequency of the wave spectrum, respectively.
The constant m = Iz − Nṙ is introduced for convenience such that the rudder angle δ generates a yaw
moment τN given by

τN = m
K

T
δ

= Nδδ (11.185)

while τwind represents an optional term for wind feedforward. Notice that neither the yaw rate r nor the
wave states ξw and ψw are measured. The resulting state-space model is

ẋ = Ax + bu (11.186)

y = h�x (11.187)

where x = [ξw, ψw, ψ, r, b]�, u = τwind + τN and

A =

⎡
⎢⎢⎢⎣

0 1 0 0 0
−ω2

0 −2λω0 0 0 0
0 0 0 1 0
0 0 0 −1/T 1
0 0 0 0 −1/T b

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

1/m

0

⎤
⎥⎥⎥⎥⎥⎦ (11.188)

h� = [0, 1, 1, 0, 0] (11.189)
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Figure 11.12 Simulation study: LF and WF position, velocity, bias and their estimates in sway and
yaw.
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Figure 11.13 Experimental data. Three upper plots: actual position (LF+WF) with estimates of the LF
and WF positions in surge, sway and yaw. Lower plots: estimates of the LF velocities.
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Figure 11.14 Experimental data: control inputs in surge, sway and yaw.

The passive observer copying the dynamics (11.186) and (11.187) is

˙̂x = Ax̂ + bu + k(y − h�x̂) (11.190)

y = h�x (11.191)

Expanding this expression gives

˙̂
ξw = ψ̂w + K1 ε (11.192)

˙̂
ψw = −ω2

0 ξ̂w − 2λω0ψ̂w + K2ε (11.193)

˙̂
ψ = r̂ + K3ε (11.194)

˙̂r = − 1

T
r̂ + 1

m
(τwind + τN) + b̂ + K4ε (11.195)

˙̂
b = − 1

Tb

b̂ + K5ε (11.196)

where ε = y − ŷ is the estimation error. The observer gains K1, K2, K3, K4 and K5 can be computed by
noticing that the observer error dynamics can be reformulated as two subsystems for yaw angle/rudder
bias and yaw rate. These systems form a passive interconnection if the observer gains are chosen
according to
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k =

⎡
⎢⎢⎢⎢⎢⎣

−2ω0(1 − λ)/ωc

2ω0(1 − λ)

ωc

K4

K5

⎤
⎥⎥⎥⎥⎥⎦ (11.197)

where ωc > ω0 is the filter cutoff frequency and the remaining gains must satisfy

0 < 1/Tb < K5/K4 < ω0 < ωc (11.198)

The design problem is now reduced to choosing K4 and K5 such that the ratio K5/K4 satisfies the passive
gain constraint (11.198).

Matlab
The passive wave filter can be simulated using the Simulink block:

passive autopilot wave filter 2

in the MSS toolbox (see Example 11.7).

A more detailed analysis of the passive observer is done in Section 11.4.1, which discusses applications
to ship positioning in 3 DOF.

Example 11.7 (Passive Wave Filtering)
Consider the Mariner class cargo ship with K = 0.185 s−1, T = T1 + T2 − T3 = 107.3 s and in-
put τN/m = (K/T )δ, where δ is the rudder angle (Chislett and Strøm-Tejsen, 1965a). The bias time
constant is chosen to be rather large, for instance Tb = 100 s. The wave response model is modeled by
a linear approximation to the JONSWAP spectrum with λ = 0.1 and ω0 = 1.2 rad/s (see Section 8.2.6).
Hence, (11.34)–(11.35) become

A =

⎡
⎢⎢⎢⎣

0 1 0 0 0
−1.44 −0.24 0 0 0

0 0 0 1 0
0 0 0 −0.0093 1
0 0 0 0 −0.01

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0.0017

0

⎤
⎥⎥⎥⎥⎥⎦ (11.199)

E =

⎡
⎢⎢⎢⎣

0 0 0
0.24 σ 0 0

0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎦ , h� = [0, 1, 1, 0, 0] (11.200)
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where σ > 0 reflects the sea state. Using passivity as a tool for filter design with cutoff frequency
ωc = 1.1 ω0 yields

k =

⎡
⎢⎢⎢⎢⎢⎣

K1

K2

K3

K4

K5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−2ω0(1 − λ)/ωc

2ω0(1 − λ)

ωc

K4

K5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−1.64

1.80 ω0

1.10 ω0

K4

K5

⎤
⎥⎥⎥⎥⎥⎦ (11.201)

This clearly shows that the gains should be adjusted with varying ω0. Choosing K4 = 0.1 and K5 = 0.01
such that K5/K4 = 0.1 yields the transfer functions shown later in Figure 11.16. Notice that the notch
effect at ω0 for h3(s) and h4(s) represents the state estimates ψ̂ and r̂. We also see that high-frequency
motion components above ωc are low-pass filtered. Finally, the transfer function h2(s) representing
reconstruction of the WF motion ψ̂w filters out signals on the outside of the wave response spectrum,
while signals close to ω0 pass through the filter with unity gain, that is 0 dB. The poles of the error
dynamics are

p1 = −0.7248 + 0.4388i

p2 = −0.7248 − 0.4388i

p3 = −2.1762

p4 = −0.1037

p5 = −0.0098

The time series for σ = 6.25 are shown in Figure 11.15.

Wave Filter Frequency Analysis

Consider the state estimator

˙̂x = Ax̂ + bu + k(y − h�x̂) (11.202)

It is then straightforward to show that

x̂(s) = (sI − A + kh�)−1(ky(s) + bu(s)) (11.203)

Assume that u(s) = 0 (no feedback) such that

h(s) = [h1, h2, h3, h4, h5]� = (sI − A + kh�)−1k (11.204)

The states of interest are

ψ̂w(s) = h2(s)y(s) (11.205)

ψ̂(s) = h3(s)y(s) (11.206)

r̂(s) = h4(s)y(s) (11.207)
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Figure 11.15 Time series showing the performance of the passive wave filter.

where h3(s) represents a notch filter with a low-pass filter in cascade:

h3(s) = hnotch(s) hlow pass(s) (11.208)

The filter h4(s) also possesses notch filtering in cascade with a second filter representing a limited
differentiator for generation of r̂(s) from y(s). Notice that h2(s) is close to 1 (0 dB) in a band around the
wave spectrum, while lower and higher frequencies are suppressed in order to reconstruct ψw(s) from
y(s). This can be seen from the Bode plot in Figure 11.16. These results have also been theoretically
verified by Grimble (1978). In this work Grimble showed that the stationary Kalman filter for the ship
positioning problem will be approximately equivalent to a notch filter in cascade with a second filter,
typically a low-pass filter.

When including the feedback term u(s) in the analysis, it is well known that application of an observer
is superior to notch and low-pass filtering in cascade, since the observer uses the input u(s) for prediction
in addition to filtering the measured output y(s). In fact, this input signal reduces the problems associated
with additional phase lag in the filtered signal, which is the main problem with most standard filters
(low-pass, high-pass and notch). Simulation results verifying these observations have been documented
by Grimble (1978).
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Figure 11.16 Bode plot showing the wave filter transfer functions and the JONSWAP spectrum.

11.4.3 Case Study: Passive Observer for Heading Autopilots using
both Compass and Rate Measurements

In this section the design of the previous section is modified to include a rate gyro in addition to the
compass. This is advantageous since the gyro can be integrated with the compass in an optimal manner,
resulting in less variance and better accuracy of the state estimates. One simple way to do this is to treat
the gyro measurements as an input to the system model by writing the yaw dynamics according to

ψ̇ = ugyro + b (11.209)

where b denotes the gyro bias and ugyro is the rate gyro measurement. The WF model is similar to
(11.180)–(11.181). This model will give proper wave filtering of the state ψ. However, the estimate of
r is not wave filtered, since this signal is taken directly from the gyro measurement ugyro. This can be
improved by filtering ugyro with a notch filter hnotch(s) and a low-pass filter hlp(s) to the cost of some
phase lag:

uf = hnotch(s) hlp(s) ugyro (11.210)

The observer equations become
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˙̂
ξw = ψ̂w + K1ε (11.211)

˙̂
ψw = −ω2

0 ξ̂w − 2λω0ψ̂w + K2ε (11.212)

˙̂
ψ = uf + b̂ + K3ε (11.213)

˙̂
b = − 1

Tb

b̂ + K4ε (11.214)

where ε = y − ψ̂ − ψ̂w and Tb 	 0. Notice that the gyro bias must be estimated online since it will vary
with temperature and possible scale factor/misalignment errors when mounted onboard the ship. This is
a slowly varying process so the gain K4 can be chosen quite small, reflecting a large bias time constant.
If passivity-based pole placement (11.197) is used, K1, K2 and K3 become

K1 = −2
ω0

ωc

(1 − λ), K2 = 2ω0(1 − λ), K3 = ωc (11.215)

Alternatively, the KF algorithm can be used to compute the gains.

Matlab
The observer with compass and rate measurements can be simulated using the Simulink block:

passive autopilot wave filter 1

in the MSS toolbox.

Other techniques for the integration of compass and rate measurements are described in
Lindegaard (2003).

11.5 Integration Filters for IMU and Global Navigation
Satellite Systems

An inertial measurement unit (IMU) can be integrated with a satellite navigation system in a state
observer to obtain estimates of generalized position and velocity in 6 DOFs. The measurements available
from a typical IMU are three-axes rate gyros, accelerometers and magnetometers. A stand alone IMU
solution, where acceleration measurements are integrated twice and gyro outputs are integrated once to
obtain positions and attitude, respectively, will drift due to sensor biases, misalignments and temperature
variations (see Figure 11.17). Hence, an estimator providing feedback and compensation of bias drift
terms is needed. The kinematic equations (strapdown equations) which are integrated numerically in
conjuncture with an IMU constitutes an inertial navigation system (INS). The INS drift can be removed
by GNSS/INS integration in a state observer. The 6 DOF solution for drift compensation requires that
the coupled observers for linear and angular velocity estimation are constructed while the special case
where only the 3 DOF rotation dynamics is considered is referred to as an attitude and heading reference
system (AHRS).
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Figure 11.17 The principle for integration of IMU sensor data. The position and quaternion outputs
will drift due to the bias terms.

The position and velocity accuracies will mainly depend on the GNSS quality while acceleration and
attitude depend on the quality of the accelerometers, gyros and magnetometers. If a low-cost IMU is used,
the position and attitude estimates will drift rapidly during GNSS shortages while a more expensive unit
will have better stand alone capabilities. Construction of integrated GNSS/INS navigation systems, their
performance and stand alone capabilities are described more closely in Farrell and Barth (1998), Titterton
and Weston (1997) and Grewal et al. (2001), to mention only some. Strapdown inertial navigation systems
are usually designed using the EKF. However, a nonlinear observer avoiding the Riccati equations is
presented by Vik and Fossen (2001).

The goal of this section is to present low-cost IMU/GNSS integration techniques for marine craft
navigation by neglecting the Earth rotation and assuming that the GNSS signals are available all the
time. Consequently, the North-East-Down reference frame {n} is assumed to be the inertial reference
frame even though the Earth is moving relatively to a star fixed reference frame. This is, indeed, a good
approximation for a marine craft navigating on the surface of the Earth. The solutions presented here are
not intended for INS stand alone applications or cases with GNSS failure.

IMU Measurements

Today inertial measurement technology is available for commercial users thanks to a significant reduction
in price during the last decades. As a consequence of this, low-cost inertial sensors can be integrated with
a satellite navigation system using a conventional Kalman filter or a nonlinear state observer; see Farrell
and Barth (1998), Titterton and Weston (1997), Grewal et al. (2001) and Vik and Fossen (2001). The key
components of the IMU are:

• Gyroscopes: The classic gyro is a spinning wheel that utilizes conservation of momentum to detect
rotation, and belongs naturally in a gimballed system. For strapdown applications, optical gyros such
as ring laser gyros (RLG) and fiber optic gyros (FOG) have been used for some time, and are also
expected to be the standard for high accuracy strapdown inertial systems for the foreseeable future.
For low and medium cost applications, gyros based on micro-electric-mechanical systems (MEMSs)
are expected to be dominant (Barbour and Schmidt, 1998).

• Accelerometers: There are several different types of accelerometer. Two of these are mechanical and
vibratory accelerometers. The mechanical accelerometer can be a pendulum, which in its simplest
form is based on Newton’s second law of motion:

F = ma
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A force F acting on a body of mass m causes the body to accelerate with respect to inertial space.
When the case of the instrument is subjected to an acceleration along its sensitive axis, the proof mass
tends to resist the change in movement due to its own inertia. As a result, the mass is displaced with
respect to the case. Under steady-state conditions the force acting on the mass will be balanced by
the tension of the spring. The extension of the spring then provides a measure of the force, which is
proportional to the acceleration.

The vibratory accelerometers are usually based on measurement of frequency shifts due to in-
creased or decreased tension in a string. The operation is similar to that of a violin. When a violin
string is tightened, the frequency goes up. Similarly, when the accelerometer proof mass attached to
a quartz beam is loaded, the frequency of the quartz beam increases. The difference in frequency is
measured, and is proportional to the applied acceleration. In addition to quartz technology, vibrating
beam accelerometers using silicon are also being developed.

The inertial sensors are mounted onboard the craft in a body-fixed coordinate system {m} located at
rb

m := rb
m/b = [xm, ym, zm]�with respect to the {b}-frame coordinate origin CO. This is referred to as a

strapdown system because the sensors are strapped to the craft and a lightweight digital computer is
used to perform computations. Thus the need for a mechanical gimbal system is eliminated. Instead of
transforming the IMU measurements to the coordinate origin of {b}, the state estimator is formulated in
{m} and the estimated states are transformed to {b} using the lever arm given by rb

m. The tool for this is
the transformation matrix in Section 7.5.4. The estimated velocity vector ν̂m = [(v̂b

m/n)�, (ω̂b
m/n)�]�can

be transformed to {b} to obtain ν̂ by using the following transformation:[
v̂b

b/n

ω̂b
b/n

]
= H−1(rb

m)

[
v̂b

m/n

ω̂b
m/n

]
(11.216)

�
ν̂ = H−1(rb

m)ν̂m (11.217)

where

H−1(rb
m) =

[
I3×3 S(rb

m)

03×3 I3×3

]
(11.218)

If the IMU is mounted close to the coordinate origin CO this transformation is not needed.
The measurements from the three-axis rate gyros, accelerometers and magnetometers are conveniently

expressed as (Mahony et al., 2008)

ab
imu = Rb

n(�)(v̇n
m/n + gn) + bb

acc + wb
acc (11.219)

ωb
imu = ωb

m/n + bb
gyro + wb

gyro (11.220)

mb
imu = Rb

n(�)mn + bb
mag + wb

mag (11.221)

where � = [φ, θ, ψ]� is a vector of Euler angles and Rb
n(�) is the rotation matrix between {n} and {b}

(see Section 2.2). Alternatively, the quaternion rotation matrix Rb
n(q) can be used. The accelerometer and

gyro biases are denoted as bb
acc and bb

gyro while bb
mag is the local magnetic disturbance. Additive zero-mean

sensor measurement noises are modeled by wb
acc, w

b
gyro and wb

mag.
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The IMU measurement model is only valid for low-speed applications such as a marine craft moving
on the surface of the Earth since it assumes that {n} is nonrotating. For terrestrial navigation the Earth
rotation will affect the results and it is necessary to express the velocities and accelerations in {i}. Inertial
navigation systems are also sensitive to scale factor and misalignments angles due to inaccurate mounting
of the IMU (Titterton and Weston, 1997). These effects can, however, be neglected for local area navigation
and low-speed applications. The following sections discuss effective methods for GNSS/INS integration.

Gravity

The gravity of Earth in {n} is modeled as a constant vector:

gn =

⎡
⎣ 0

0

g

⎤
⎦ (11.222)

Gravity increases from 9.789 m/s2 at the equator to 9.832 m/s2 at the poles. The nominal “average”
value at the surface of the Earth, known as standard gravity, is, by definition, g = 9.80665 m/s2.

Compass Heading and Roll-Pitch Angles from Magnetometers

The magnetic field of the Earth is similar to a simple bar magnet. The magnetic field is a magnetic dipole
that has its field lines originating at a point near the South Pole and terminating at a point near the North
Pole. The field lines vary in both strength and direction about the face of the Earth. At each location on
the Earth, the field lines intersect the Earth’s surface at a specific angle of inclination. Near the equator,
the field lines are approximately parallel to the Earth’s surface and thus the inclination angle in this
region is 0◦. As one travels North from the equator the field lines become progressively steeper. At the
magnetic pole, the field lines are directed almost straight down into the Earth and the inclination is 90◦.
Consequently, the inclination angle varies with latitude.

It is necessary to perform filtering and calibration of the magnetometer to remove the bias bb
mag and

noise wb
mag. The calibrated measurements are denoted

⎡
⎣mx

my

mz

⎤
⎦ = mb

imu − bb
mag (11.223)

The magnetic compass heading can be determined from the three magnetometer measurements if the tilt
angles of the device are known. If the magnetometer is sitting in a local horizontal plane leveled to the
surface of the Earth such that φ = θ = 0, the magnetic heading angle ψm is recognized as the direction
planar with the surface of the Earth satisfying

tan(ψm) = my

mx

(11.224)

One method to determine the roll and pitch angles is to use a tilt sensor. Alternatively, a gyro-
scope can be used to maintain a known inertial reference frame at all times. If the roll and pitch
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angles are known the magnetic readings mx, my and mz can be transformed to the horizontal plane
according to ⎡

⎣ hx

hy

hz

⎤
⎦ = Ry,θRx,φ

⎡
⎣mx

my

mz

⎤
⎦ (11.225)

or ⎡
⎣ hx

hy

hz

⎤
⎦ =

⎡
⎣ cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

⎤
⎦
⎡
⎣ 1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

⎤
⎦
⎡
⎣mx

my

mz

⎤
⎦ (11.226)

The horizontal components are

hx = mx cos(θ) + my sin(θ) sin(φ) + mz cos(φ) sin(θ) (11.227)

hy = my cos(φ) − mz sin(φ) (11.228)

The sign of the arguments hx and hy must be taken into account when computing the magnetic heading.
This is can be done by using the following mapping:

ψm =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

180◦ − 180◦
π

arctan
(

hy

hx

)
if hx < 0

− 180◦
π

arctan
(

hy

hx

)
if hx > 0, hy < 0

360◦ − 180◦
π

arctan
(

hy

hx

)
if hx > 0, hy > 0

90◦ if hx = 0, hy < 0

270◦ if hx = 0, hy > 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(11.229)

To determine true North heading ψ the appropriate declination angle which depends on the latitude must
be added or subtracted.

11.5.1 Integration Filter for Position and Linear Velocity

The expression for the linear acceleration in {n} is derived from the acceleration measurement equation
(11.219). Moreover,

v̇n
m/n = Rb

n(�)�[ab
imu − bb

acc − wb
acc] − gn (11.230)

Since the measurement noise E(wb
acc) = 0, the velocity observer will be designed under the assumption

that the term wb
acc can be neglected when analyzing the stability properties of the error dynamics.

Integration of IMU and GNSS Position Measurements

The state estimator will be formulated in {m}. The position of the IMU coordinate system {m}
with respect to the NED reference frame {n} expressed in {n} is denoted by pn

m/n. If the GNSS re-
ceiver is located at rb

gnss = [xgnss, ygnss, zgnss]� with respect to {m}, the GNSS position measurements
pn

gnss = [Ngnss, Egnss, Dgnss]� must be corrected for rotations � and lever arm rb
gnss according to

pn
m/n = pn

gnss − Rn
b(�)rb

gnss (11.231)
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If the GNSS receiver is located next to the IMU, rb
gnss = 0, the position measurements satisfies

pn
m/n = pn

gnss.
The translational dynamics including acceleration bias is (see Figure 11.17)

ṗn
m/n = vn

m/n (11.232)

v̇n
m/n = Rn

b(�)[ab
imu − bb

acc] − gn (11.233)

ḃb
acc = 0 (11.234)

y1 = pn
m/n (11.235)

where y1 is the GNSS measurement. A nonlinear design method for simultaneously linear and angular
velocity estimation has been proposed by Hua (2010) using GNSS/INS measurements. This method
discusses stability of accelerated vehicles where the linear and angular dynamics are coupled. The EKF
method discussed in Section 11.3.3 can also be used for this purpose. However, Kalman filtering requires
linearization of the rotation matrix and implementation of time-varying Riccati equations that suffer from
singularities. Hence, care must be taken when implementing the EKF. An alternative approach is to use a
nonlinear decoupled fixed-gain observer where it is assumed that the attitude signal � is available when
estimating the linear velocity v̂n

m/n. Algorithms for computation of � are presented in Section 11.5.2.
Consider the following nonlinear observer for linear velocity (see Figure 11.17):

˙̂pn
m/n = v̂n

m/n + K1 ỹ1 (11.236)

˙̂vn
m/n = Rn

b(�)[ab
imu − b̂b

acc] − gn + K2 ỹ1 (11.237)

˙̂
bb

acc = K3R
n
b(�)� ỹ1 (11.238)

ŷ1 = p̂n
m/n (11.239)

where ỹ1 = y1 − ŷ1 = pn
m/n − p̂n

m/n is the injection term. The linear velocity estimate v̂n
m/n expressed in

{n} is transformed to {b} using the rotation matrix

v̂b
m/n = Rb

n(�)v̂n
m/n (11.240)

The observer error dynamics becomes⎡
⎢⎣

˙̃pn
m/n

˙̃vn
m/n

˙̃bb
acc

⎤
⎥⎦=

⎡
⎣ −K1 I 0

−K2 0 −Rn
b(�)

−K3R
n
b(�)� 0 0

⎤
⎦
⎡
⎢⎣

p̃n
m/n

ṽn
m/n

b̃
b

acc

⎤
⎥⎦ (11.241)

�
ẋ = A(�)x (11.242)

The gains K1, K2 and K3 can be chosen such that x converges exponentially to zero. This is not straight-
forward since the matrix A(�) depends on the attitude vector � and thus becomes time varying.



334 Sensor and Navigation Systems

For marine craft a practical solution to this problem can be found by noticing that the angular rates
ωb

m/n = ωb
b/n = [p, q, r]� are quite small. This is the key assumption in order to apply the result of

Lindegaard and Fossen (2001a). Consider the transformation

x = T (�)z (11.243)

where T (�) is a transformation matrix

T (�) = diag{Rn
b(�), Rn

b(�), I} (11.244)

satisfying T (�)−1 = T (�)�. Hence,

ż = T (�)�ẋ + Ṫ (�)�x

= T (�)�A(�)x + Ṫ (�)�x

= T (�)�A(�)T (�)z + Ṫ (�)�T (�)z (11.245)

Stability of this system can be guaranteed under the assumption that Ṫ (�) is sufficiently small. This is
indeed satisfied if the angular rate vector ωb

m/n of the craft is small. Moreover,

Ṫ (�) = diag{Rn
b(�)S(ωb

m/n), Rn
b(�)S(ωb

m/n), 0}
≈ 0 (11.246)

if S(ωb
m/n) ≈ 0. This is a good assumption for a marine craft since ωb

m/n is quite small during rolling,
pitching and yawing. Hence, from a practical point of view it is sufficient to check stability of the system:

ż = T (�)�A(�)T (�)z (11.247)

A pole-placement algorithm can be derived by using the following property:

Property 11.1 (Commuting Matrices)
A matrix K ∈ R3×3 is said to commute with the rotation matrix Rn

b(�) if

KRn
b(�) = Rn

b(�)K (11.248)

Examples of K matrices satisfying Property 11.1 are linear combinations:

K = a1R
n
b(�) + a2I + a3kk� (11.249)

where

k = [0, 0, 1]� (11.250)

is the axis of rotation and ai (i = 1, . . . , 3) are scalars.

If the observer gain matrices Ki (i = 1, . . . , 3) are chosen to commute with the rotation matrix Rn
b(�),

Property 11.1 implies that the error dynamics (11.247) can be written

ż = Az (11.251)
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where A is a constant system matrix:

A =

⎡
⎣−K1 I 0

−K2 0 −I

−K3 0 0

⎤
⎦ (11.252)

Then it follows that

A = T (�)�A(�)T (�) (11.253)

One way to satisfy this is to choose the matrices Ki with the following diagonal structure:

Ki = diag{ki, ki, li}, i = 1, 2, 3 (11.254)

where surge and sway have the same gains ki > 0 and heave can be tuned independently by li > 0. This
clearly satisfies (11.249) since a1 = 0, a2 > 0 and a3 > 0. Hence, stability can be checked by computing
the eigenvalues of A since the eigenvalues of A and A(�) are equal for all �. A necessary condition for
exponential stability is that the eigenvalues of A lie in the left half-plane, that is A must be Hurwitz.

Integration of IMU and GNSS Position and Velocity Measurements

It is straightforward to modify the observer (11.236)–(11.239) to include GNSS velocity measurements,
y2 = vn

m/n. Moreover,

˙̂pn
m/n = v̂n

m/n + K11 ỹ1 + K21 ỹ2 (11.255)

˙̂vn
m/n = Rn

b(�)[ab
imu − b̂b

acc] − gn + K12 ỹ1 + K22 ỹ2 (11.256)

˙̂
bb

acc = K13R
n
b(�)� ỹ1 + K23R

n
b(�)� ỹ2 (11.257)

ŷ1 = p̂n
m/n (11.258)

ŷ2 = v̂n
m/n (11.259)

where ỹi = yi − ŷi (i = 1, 2) results in the error dynamics⎡
⎢⎣

˙̃pn
m/n

˙̃vn
m/n

˙̃bb
acc

⎤
⎥⎦ =

⎡
⎣ −K11 I − K21 0

−K12 −K22 −Rn
b(�)

−K13R
n
b(�)� −K23R

n
b(�)� 0

⎤
⎦
⎡
⎢⎣

p̃n
m/n

ṽn
m/n

b̃
b

acc

⎤
⎥⎦

�
ẋ = A(�)x (11.260)



336 Sensor and Navigation Systems

Choosing the gains Kij (i = 1, 2, 3, j = 1, 2) according to Property 11.1 such that they commute with
Rn

b(�) and assuming that the angular rate vector ωb
m/n is small, gives the following error dynamics:

ż = T �(�)AT (�)z

= Az (11.261)

where

A =

⎡
⎣−K11 I − K21 0

−K12 −K22 −I

−K13 −K23 0

⎤
⎦ (11.262)

Hence, exponential convergence of z to zero is guaranteed if the gains Kij are chosen such that A

is Hurwitz.

11.5.2 Accelerometer and Compass Aided Attitude Observer

A nonlinear attitude observer can be designed by integrating the gyro measurements ωimu to obtain an es-
timate of the quaternions q̂. The quaternion estimate is corrected by approximating q using accelerometer
and compass measurements (see Figure 11.18). The attitude observer in this section can be viewed as a
special case of Vik and Fossen (2001) where the Earth rotation is neglected. An attitude observer can also
be derived using the EKF algorithm. However, the nonlinear representation is highly advantageous from
an implementation point of view since it avoids numerical integration of a large number of the Kalman
filter Riccati equations.

Figure 11.18 Block diagram showing the nonlinear attitude observer with the IMU acceleration
mapping.
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Mapping from Linear Accelerations to Roll and Pitch Angles

Before designing the attitude observer, it is necessary to map the three-axis linear IMU accelerations
to roll and pitch angles. The principle for this is that the angle between the acceleration and gravity
vectors can be computed using trigonometry. This is a static mapping that suffers from inaccuracies
when performing high-acceleration maneuvers. For ships this works quite well but aircraft and other
highly maneuverable vehicles should use other methods. The static acceleration mapping, together with
a magnetometer, is used to construct a Euler angle measurement vector �, which again is used to compute
q as illustrated in Figure 11.18.

The IMU acceleration measurements

ab
imu = Rb

n(�)(v̇n
m/n + gn) + bb

acc + wb
acc (11.263)

can be transformed to roll and pitch angles by noticing that for three orthogonal accelerometers onboard
a craft at rest, v̇n

m/n = 0, the measurement equation is

ab
imu = Rb

n(�)gn + bb
acc + wb

acc (11.264)

The initial accelerometer biases bb
acc are usually removed by calibrating the accelerometer in a laboratory

for varying temperatures. This can be implemented as a look-up table in combination with a tempera-
ture sensor. It is also necessary to remove the dynamic drift and measurement noise wb

acc by low-pass
filtering the accelerometer measurements properly before the roll and pitch angles are computed. The
key assumption is to assume that the average acceleration with respect to the environment during some
period of time is zero, for instance 10–20 seconds. For aircraft this assumption does not hold since they
can generate significant accelerations lasting longer than the maximum time.

After calibration and filtering, this suggests that

ab
imu ≈ Rb

n(�)gn (11.265)

�⎡
⎣ ax

ay

az

⎤
⎦ ≈ Rb

n(�)

⎡
⎣ 0

0

g

⎤
⎦ =

⎡
⎣ −g sin(θ)

g cos(θ) sin(φ)

g cos(θ) cos(φ)

⎤
⎦ (11.266)

Taking the ratios

ay

az

≈ tan(φ),
ax

g
≈ − sin(θ),

a2
y + a2

z

g2
≈ cos2(θ) (11.267)

this gives

φ ≈ atan

(
ay

az

)
(11.268)

θ ≈ −atan

(
ax√

a2
y + a2

z

)
(11.269)

Notice that the transformation is singular for φ = ±90 degrees. When combined with a compass measur-
ing the heading ψ the attitude vector � = [φ, θ, ψ]� is completely determined. The Euler angles � can
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easily be transformed to unit quaternions q = [η, ε1, ε2, ε3]� by using Algorithm 2.2 in Section 2.2.3.
The quaternion representation is advantageous when implementing the attitude observer in a computer.

Attitude Observer

In Section 2.2.2 the unit quaternion differential equation was written

q̇ = T q(q)ωb
m/n (11.270)

with

T q(q) = 1

2

[ −ε�

ηI + S(ε)

]
(11.271)

From the gyro measurement equation (11.220) it follows that

ωb
m/n = ωb

imu − bb
gyro − wb

gyro (11.272)

Consequently,

q̇ = T q(q)
[
ωb

imu − bb
gyro − wb

gyro

]
(11.273)

ḃb
gyro = 0 (11.274)

where bb
gyro is the gyro bias. The nonlinear attitude observer of Salcudean (1991) has been extended to

include gyro bias estimation by Vik et al. (1999), Vik (2000) and Vik and Fossen (2001):

˙̂q = T q(q̂) Rn
b(q)�Rn

b(q̂)︸ ︷︷ ︸
R�( q̃)

[
ωb

imu − b̂b
gyro + Kp ε̃ sgn(η̃)

]
(11.275)

˙̂
bb

gyro = −1

2
Ki ε̃ sgn(η̃) (11.276)

where Kp = K�
p > 0 and Ki = K�

i > 0 are tunable gain matrices. The observer structure is shown in
Figure 11.18.

The quaternion estimation error is defined as

q̃ := q̂∗ ⊗ q (11.277)

where q = [η, ε1, ε2, ε3]� and q̂∗ = [η̂, −ε̂1, −ε̂2, −ε̂3]� is the conjugate of q̂ corresponding to multiply-
ing the vector ε̂ = [ε̂1, ε̂2, ε̂3]� with −1. The symbol ⊗ denotes the quaternion product, which is defined
as (Chou, 1992)

q1 ⊗ q2 :=
[

η1η2 − ε�
1 ε2

η2ε1 + η1ε2 + ε1 × ε2

]

=
[

η1 −ε�
1

ε1 η1I + S(ε1)

]
q2 (11.278)
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This yields

q̃ =
[

η̂η + ε̂�ε

−ηε̂ + η̂ε − S(ε̂)ε

]
(11.279)

Notice that q̃ /= q − q̂. After some tedious calculations, it can be shown that the observer error
dynamics becomes

˙̃q = −T ( q̃)
[

b̃b
gyro + Kp ε̃ sgn(η̃)

]
(11.280)

˙̃bb
gyro = 1

2
Ki ε̃ sgn(η̃) (11.281)

From (11.271) it is seen that the expression for ˙̃q can be written as

˙̃q = −1

2

[ − ε̃
�

η̃I + S( ε̃)

] [
b̃b

gyro + Kp ε̃ sgn(η̃)
]

(11.282)

or

˙̃η = 1

2
ε̃

� [
b̃b

gyro + Kp ε̃ sgn(η̃)
]

(11.283)

˙̃ε = −1

2

[
η̃I + S( ε̃)

] [
b̃b

gyro + Kp ε̃sgn(η̃)
]

(11.284)

Since the measurement noise E(wb
gyro) = 0, the term wb

gyro is neglected in the Lyapunov analysis. Consider

V = 1

2
( b̃b

gyro)�K−1
i b̃b

gyro + H(η̃) (11.285)

where different candidates for H(η̃) are found in Table 11.4 (Fjellstad and Fossen, 1994). Notice that the

function H(η̃) is Lipschitz. Hence, time differentiation of V along the trajectories of ˙̃bb
gyro and η̃ yields

V̇ = ( b̃b
gyro)�K−1

i
˙̃bb

gyro + ∂H(η̃)

∂ η̃
˙̃η (11.286)

Choosing H(η̃) = 1 − | η̃| such that ∂H(η̃)/∂ η̃ = −sgn(η̃) (see the first row in Table 11.4) yields

V̇ = 1

2
( b̃b

gyro)� ε̃ sgn(η̃) − sgn(η̃)
1

2
ε̃

� [
b̃b

gyro + Kp ε̃ sgn(η̃)
]

= −1

2
ε̃

�
Kp ε̃ ≤ 0 (11.287)

Thienel and Sanner (2003) have proven that the equilibrium points q̃ = [±1, 0, 0, 0]� of the attitude
observer error dynamics is asymptotically stable if the pair (A(t), C) is uniformly completely observable

Table 11.4 Alternative choices of attitude update laws

H( η̃) Update law Stable equation Unstable equation

1 − | η̃| −Kp ε̃ sgn(η̃) η̃ = ±1
1 − η̃ −Kp ε̃ η̃ = 1 η̃ = −1
1 + η̃ Kp ε̃ η̃ = −1 η̃ = 1
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for the system

ẋ = A(t)x (11.288)

where x = [ ε̃ �, ( b̃b
gyro)�]� and

A(t) =
[− 1

2 Kpsgn(η̃)
[
η̃I + S( ε̃)

] − 1
2

[
η̃I + S( ε̃)

]
1
2 sgn(η̃)I 0

]
(11.289)

Hence,

V̇ = −x�C�Cx

≤ 0 (11.290)

where

C =
[√

1

2
Ki, 0

]
(11.291)

This corresponds to a persistency of excitation (PE) argument ensuring exponential convergence of the
estimation error b̃b

gyro to zero. Global results cannot be obtained since this system has two equilibrium
points. This is a well-known topological limitation as described by Bhat and Bernstein (2000).

Vertical Reference Unit (VRU)

The special solution of the observer when only φ and θ are estimated (no compass measurement) is referred
to as a vertical reference unit (VRU). The performance of state-of-the-art VRUs has been evaluated by
Ingram et al. (1996).

A VRU is particularly useful if you want to transform the GNSS position and velocity measurements

pn
gnss = [Ngnss, Egnss, Dgnss]

� (11.292)

vn
gnss = [Ṅgnss, Ėgnss, Ḋgnss]

� (11.293)

for a GNSS receiver located at the position rb
gnss = [xgnss, ygnss, zgnss]� to the IMU coordinate system {m}.

The NED position pn
m/n and linear velocity vn

m/n of the craft are found as

pn
m/n = pn

gnss − Rn
b(�)rb

gnss (11.294)

vn
m/n = vn

gnss − Rn
b(�)S(ωb

b/n)rb
gnss (11.295)

since S(ωb
b/n) = S(ωb

m/n). The expression for the NED velocity (11.295) makes use of ṙb
gnss = 0; that is

the position of the GNSS receiver is constant when mounted onboard a rigid craft. Consequently,

vn
m/n = ṗn

m/n = ṗn
gnss − Ṙn

b(�)rb
gnss (11.296)

where ṗn
gnss = vn

gnss and Ṙn
b(�) = Rn

b(�)S(ωb
b/n); see Theorem 2.2 in Section 2.2.1.

11.5.3 Attitude Observer using Gravitational and Magnetic Field
Directions

The attitude observer developed in Section 11.5.2 suffers from the assumption that v̇n
m/n = 0 when

computing the roll and pitch angles from accelerometer measurements. Hence, inaccuracies propagate
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to q and thus the observer injection term. An alternative approach could be to use accelerometer and
magnetometer measurements directly to update the estimator. Mahony et al. (2008) have derived a
nonlinear attitude observer with an injection term that compares the directions of the measurement vectors
when transformed from the body-fixed frame to the inertial frame using true and estimated attitude.

Let vn
0i (i = 1, . . . , n) denote a set of n known inertial directions. This vector can be expressed in {b}

by using the quaternion rotation matrix

vb
i = Rb

n(q)vn
0i + wi (11.297)

where wi (i = 1, . . . , n) are zero-mean noise processes. Since only the direction of the measurement is
relevant to the observer, it is assumed that all measurements are normalized such that

∥∥vn
0i

∥∥ = 1. The
associated estimate of vb

i is computed as

v̂b
i = Rb

n(q̂)vn
0i (11.298)

where q̂ is the estimate of the quaternion vector. Hence, the difference between the two signals (11.297)
and (11.298) is zero if q̂ = q.

The attitude observer can be implemented using normalized acceleration and magnetometer measure-
ments according to

vb
1 = ab

imu∥∥ab
imu

∥∥ , vb
2 = mb

mag∥∥mb
mag

∥∥ (11.299)

where the acceleration ab
imu and magnetometer mb

mag measurements are given by (11.219) and
(11.221), respectively.

Explicit Complementary Filter with Bias Correction

The quaternion representation of the Mahony et al. (2008) attitude observer can be expressed as (see
Figure 11.19)

Figure 11.19 Nonlinear attitude observer-based directional measurements.
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ωb
mes = −vex

(
n∑

i=1

ki

2

(
vb

i (v̂b
i )� − v̂b

i (vb
i )�
))

(11.300)

˙̂q = T q(q̂)
[
ωb

imu − b̂b
gyro + Kpω

b
mes

]
(11.301)

˙̂
bb

gyro = −1

2
Kiω

b
mes (11.302)

where ki is a tunable gain and the operator vex: SO(3) → R
3 denotes the inverse of the cross-product

operator S(a). Moreover,

a × b = S(a)b (11.303)

vex(S(a)) = a (11.304)

Hence, the following expression corresponding to (11.300) can be derived:

vex
(
abT − ba�) =

⎡
⎣ a3b2 − a2b3

a1b3 − a3b1

a2b1 − a1b2

⎤
⎦ (11.305)

The estimate v̂b
1 corresponding to the accelerometer measurement is computed according to

v̂b
1 = Rb

n(q̂)vn
01

= Rb
n(q̂)

⎡
⎣ 0

0

1

⎤
⎦ (11.306)

where the known inertial direction of gravity vn
01 = gn/‖gn‖ is exploited.

The magnetometer measures three inertial components:

mb
mag = [mx, my, mz]

� (11.307)

when the sensor unit is mounted in a craft at rest to sense the components of the Earth’s magnetic field.
Consequently, the normalized magnetometer estimate in {b} becomes

v̂b
2 = Rb

n(q̂)vn
02

= Rb
n(q̂)

1√
m2

x + m2
y + m2

z

⎡
⎣mx

my

mz

⎤
⎦ (11.308)

Stability Analysis

The stability proof of Mahony et al. (2008) assumes that the reference vectors vn
0i are constant. This

has been relaxed by Grip et al. (2011) using the projection algorithm. From this work it is concluded
that the equilibrium point of the quaternion error dynamics is semi-global exponential stable for n ≥ 2
independent inertial directions vn

0i.
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Motion Control Systems

Motion control systems for marine craft have been an active field of research since the first mechanical
autopilot was constructed by Elmer Sperry in 1911. Modern control systems are based on a variety
of design techniques such as PID control, linear quadratic optimal and stochastic control, H∞ control
methods, fuzzy systems, neural networks and nonlinear control theory, to mention only some. In the first
part of the book, models for simulation of marine craft were presented. In this chapter, dynamic models
are used to design model-based control systems. The dynamic properties and limitation of the craft are
incorporated into the design process to obtain robust performance. Many of the presented design methods
have been successfully implemented and tested onboard ships, underwater vehicles and floating vessels.

Chapter 12 covers state-of-the-art PID control methods for setpoint regulation, trajectory-tracking
control and path-following control of marine craft. This includes autopilot design, stationkeeping, position
mooring systems, cross-tracking control systems and LOS control systems. In addition to this, control
allocation methods are discussed. Advance methods such as linear quadratic optimal control, sliding
mode control, state feedback linearization and integrator backstepping are discussed in Chapter 13.

Preview of the Chapter

This chapter starts with open-loop analysis and maneuverability (Section 12.1) followed by state-of-the-
art linear PID design methods (Section 12.2). Conventional PID control systems have their origin from
SISO linear systems theory. However, it is possible to generalize this to nonlinear MIMO systems by
using results from robotics (Fossen, 1991). This requires that the marine craft equations of motion are
expressed in a vectorial setting:

η̇ = J�(η)ν (12.1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + w (12.2)

For this model class, MIMO nonlinear PID control systems can be designed by exploiting the fact that
the mass matrix is positive definite and constant (M = M� > 0, Ṁ = 0), the Coriolis and centripetal
matrix C(ν) = −C�(ν) is skew-symmetrical and the damping matrix D(ν) > 0 is strictly positive.

12.1 Open-Loop Stability and Maneuverability
When designing a motion control system a compromise between stability and maneuverability must be
made. More specifically:

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6
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Figure 12.1 Maneuverability versus stability. Illustration by Bjarne Stenberg.

• Stability of an uncontrolled marine craft can be defined as the ability to return to an equilibrium point
after a disturbance, without any corrective action of the actuators.

• Maneuverability, on the other hand, is defined as the capability of the craft to carry out
specific maneuvers.

It is well known that a craft that is easy to maneuver, for instance a fighter aircraft or a high-speed
watercraft, can be marginally stable or even unstable in open loop. On the other hand, excessive stability
implies that the control effort will be excessive in a maneuvering situation whereas a marginally stable
ship is easy to maneuver. Consequently, a compromise between stability and maneuverability must be
made (see Figure 12.1).

12.1.1 Straight-Line, Directional and Positional Motion Stability

For marine craft it is common to distinguish between three types of stability, namely:

• Straight-line stability
• Directional or course stability
• Positional motion stability

This can be explained using open-loop and closed-loop stability analyzes. In order to understand the
different types of stability one can consider the following test system:

ẋ = u cos(ψ) − v sin(ψ)

≈ u0 cos(ψ) (12.3)
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ẏ = u sin(ψ) + v cos(ψ)

≈ u0 sin(ψ) (12.4)

ψ̇ = r (12.5)

T ṙ + r = Kδ + w (12.6)

where w is the external disturbances and u0 = constant is the cruise speed. The first two equations
represent the (x, y) position of the ship while the last two equations describe the yaw dynamics modeled
by Nomoto’s first-order model. For simplicity, it is assumed that the yaw motion of the craft is stabilized
by a PD-controlled rudder servo:

δ = −Kp(ψ − ψd) − Kdr (12.7)

where ψd = constant denotes the desired heading angle and Kp and Kd are two positive regulator gains.
Substituting the control law (12.7) into Nomoto’s first-order model (12.6) yields the closed-loop system

T︸︷︷︸
m

ψ̈ + (1 + KKd)︸ ︷︷ ︸
d

ψ̇ + KKp︸︷︷︸
k

ψ = KKpψd + w︸ ︷︷ ︸
f (t)

(12.8)

The closed-loop system represents a second-order mass–damper–spring system

mψ̈ + dψ̇ + kψ = f (t) (12.9)

with driving input

f (t) = kψd + w (12.10)

The eigenvalues λ1,2, the natural frequency ωn and the relative damping ratio ζ for the mass–damper–
spring system are

λ1,2 = −d ± √
d2 − 4km

2m
(12.11)

ωn =
√

k

m
(12.12)

ζ = d

2

1√
km

(12.13)

Matlab
The test system (12.8) is simulated in Matlab for varying model parameters using the MSS toolbox
script

StabDemo
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The simulation results and the stability analysis are presented on the next pages. This includes the
following cases:

• Instability
• Straight-line stability
• Directional stability
• Positional motion stability

Instability: For uncontrolled marine craft (Kp = Kd = 0) instability occurs when

λ1 = − d

m
= − 1

T
> 0

λ2 = 0

which simply states that T < 0. This is common for large tankers.
Straight-Line Stability: Consider an uncontrolled marine craft (Kp = Kd = 0) moving in a straight

path. If the new path is straight after a disturbance w in yaw the craft is said to have straight-line
stability. The direction of the new path will usually differ from the initial path because no restoring
forces are present (k = 0). This corresponds to

λ1 = − d

m
= − 1

T
< 0

λ2 = 0

Consequently, the requirement T > 0 implies straight-line stability for the uncontrolled craft (δ = 0).
Directional Stability (Stability on Course): Directional stability is a much stronger requirement than

straight-line stability (see Figure 12.2). Directional stability requires the final path to be parallel to the
initial path that is obtained for Kp > 0 ⇒ k > 0. Additional damping is added through Kd > 0. This
corresponds to PD control. A marine craft is said to be directionally stable if both eigenvalues have
negative real parts, that is

Re{λ1,2} < 0

The following two types of directional stability are observed:
No oscillations (d2 − 4km ≥ 0): This implies that both eigenvalues are negative and real, that is ζ ≥ 1

such that

λ1,2 = −d ± √
d2 − 4km

2m
=
(
−ζ ±
√

ζ2 − 1
)

ωn < 0

For a critically damped system ζ = 1.0, such that λ1,2 = −1/2(d/m) = −ωn.
Damped oscillator (d2 − 4km < 0): This corresponds to two imaginary eigenvalues λ1,2 with negative

real parts (ζ < 1), that is

λ1,2 = −d ± j
√

4km − dm

2m
=
(
−ζ ± j
√

1 − ζ2
)

ωn

Directional stability for a critically damped (ζ = 1.0) and underdamped craft (ζ = 0.1) is shown in
Figures 12.3–12.4. Notice the oscillations in both positions and yaw angle in Figure 12.4. Directional
stability requires feedback control since there are no restoring forces in yaw. However, in heave, roll
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Figure 12.2 Straight-line stability for a ship when an impulse w(t) is injected at t = 100 s.

and pitch where metacentric restoring forces are present (k > 0) no feedback is required to damp out
the oscillations.

Positional Motion Stability: Positional motion stability implies that the ship should return to its original
path after a disturbance (see Figure 12.5). This can be achieved by including integral action in the
controller. Hence, a PID controller can be designed to compensate for the unknown disturbance term
w while a PD controller will generally result in a steady-state offset.

Example 12.1 (Straight-Line Stability)
Consider the cargo ship and oil tanker of Example 7.1. Recall that the equivalent time constant in
Nomoto’s first-order model was defined as

T := T1 + T2 − T3

Hence, the uncontrolled cargo ship has an equivalent time constant

Tcargo ship = 118.0 + 7.8 − 18.5 = 107.3 s > 0

while the oil tanker has an equivalent time constant

Toil tanker = −124.1 + 16.4 − 46.0 = −153.7 s < 0

This implies that the cargo ship is straight-line stable while the oil tanker is unstable.
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Figure 12.3 Directional stability for a critically damped ship (ζ = 1.0) when an impulse w(t) is injected
at t = 100 s.

Criteria for Straight-Line Stability

Recall that a ship is said to be dynamically straight-line stable if it returns to a straight-line motion after a
disturbance in yaw without any corrective action from the rudder. Consequently, instability refers to the
case when the ship goes into a starboard or port turn without any rudder deflections. For Nomoto’s first-
order model straight-line motion was guaranteed for a positive time constant T . Similarly, it is possible
to derive a criterion for straight-line stability for the state-space model (7.33):

Mν̇ + N(u0)ν = bδ (12.14)

where ν = [v, r]�. Applications of Laplace’s transformation to the linear model (12.14) with
ν(0) = 0 yields

[Ms + N(u0)]ν(s) = bδ(s) (12.15)

Consequently,

ν(s) = [Ms + N(u0)]−1bδ(s) = adj(Ms + N(u0))

det(Ms + N(u0))
bδ(s) (12.16)
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Figure 12.4 Directional stability for an underdamped ship (ζ = 0.1) when an impulse w(t) is injected
at t = 100 s.

The characteristic equation is

det(Mσ + N(u0)) = Aσ2 + Bσ + C = 0 (12.17)

where

A = det(M)

B = n11m22 + n22m11 − n12m21 − n21m12

C = det(N(u0)) (12.18)

The two roots σ1,2 of (12.17), both of which must have negative real parts for open-loop stability, are

Re{σ1,2} = Re

{−B ± √
B2 − 4AC

2A

}
< 0 (12.19)
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Figure 12.5 Positional motion stability for a PID-controlled ship when an impulse w(t) is injected at
t = 100 s.

The quantities σ1,2 are often referred to as the control-fixed stability indices for straight-line stability.
Alternatively, the Routh stability criterion can be applied.

Theorem 12.1 (The Routh Stability Criterion)
Consider the characteristic equation

anλ
n + an−1λ

n−1 + an−2λ
n−2 + · · · + a0 = 0 (12.20)

To apply the Routh criterion, the Routh array shown in Table 12.1 must be constructed. The coefficients
ai are the coefficients of the characteristic equation (12.20) and bi, ci, di, . . . are defined as

b1 = (an−1an−2 − anan−3)/an−1 b2 = (an−1an−4 − anan−5)/an−1 . . .

c1 = (b1an−3 − an−1b2)/b1 c2 = (b1an−5 − an−1b3)/b1 . . .

d1 = (c1b2 − c2b1)/c1 . . .

Necessary and sufficient conditions for the system to be stable are:

1. All the coefficients of the characteristic equation must be nonzero and have the same sign.
2. All the coefficients of the first column of the Routh array must have the same sign.
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Table 12.1 Routh array

λn an an−2 an−4 ...

λn−1 an−1 an−3 an−5 ...
λn−2 b1 b2 b3 ...
λn−3 c1 c2 c3 ...
λn−4 d1 d2 d3 ...

... ...

If Condition 2 is violated, the number of sign changes will indicate how many roots of the characteristic
equation will have positive real parts. Hence, the system will be unstable.

Proof. See Routh (1877).

According to the Routh stability criterion, necessary and sufficient conditions for a ship given by (12.14)
with characteristic equation (12.17) to be stable are

A, B, C > 0 (12.21)

The first condition A = det(M) > 0 is automatically satisfied since the inertia matrix M is always positive
definite for a marine craft. Condition B > 0 implies that

n11m22 + n22m11 > n12m21 + n21m12 (12.22)

Consequently, the products of the diagonal elements of M and N(u0) must be larger than the products of
the off-diagonal elements. This is is satisfied for most ships. Consequently, condition (12.21) reduces to

C = det(N(u0)) > 0 (12.23)

This condition has also been verified by Abkowitz (1964), who stated the following theorem.

Theorem 12.2 (Straight-Line Stability (Abkowitz, 1964))
A ship is dynamically stable in straight-line motion if the hydrodynamic derivatives satisfy

det(N(u0)) = det

[−Yv mu0 − Yr

−Nv mxgu0 − Nr

]
(12.24)

= Yv(Nr − mxgu0) − Nv(Yr − mu0) > 0

Proof. This is seen as a consequence of (12.23) and (12.24).

It is interesting to notice that making C more positive will improve stability and thus reduce the ship’s
maneuverability, and the other way around. Straight-line stability implies that the new path of the ship
will be a straight line after a disturbance in yaw. The direction of the new path will usually differ from
the initial path. Contrary to this, unstable ships will go into a starboard or port turn without any rudder
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deflection. It should be noted that most modern large tankers are slightly unstable. For such ships, the
criterion (12.24) corresponds to one of the poles being in the right half-plane.

Straight-Line Stability in Terms of Time Constants

The criterion (12.21) can be related to Nomoto’s second-order model (7.46) by noticing that

T1T2 = A

C
> 0, T1 + T2 = B

C
> 0 (12.25)

Consequently, straight-line stability is guaranteed if T1 > 0 and T2 > 0. This can also be seen from

σ1,2 = − 1

T1,2
= Re

{−B±√
B2 − 4AC

2A

}
< 0 (12.26)

Criteria for Directional Stability

Dynamic stability on course, or directional stability, cannot be obtained without activating the rudder.
Usually a PID control system is used to generate the necessary rudder action to stabilize the ship. For
simplicity, consider a PD controller:

δ = −Kp(ψ − ψd) − Kdr (12.27)

which after substitution into Nomoto’s second-order model yields the closed-loop dynamics:

T1T2ψ
(3) + (T1 + T2 + T3KKd)ψ̈ + (1 + KKd + T3KKp)ψ̇ + KKpψ = KKpψd (12.28)

From this expression, the cubic characteristic equation

Aσ3 + Bσ2 + Cσ + D = 0 (12.29)

is recognized, where

A = T1T2 (12.30)

B = T1 + T2 + T3KKd (12.31)

C = 1 + KKd + T3KKp (12.32)

D = KKp (12.33)

The requirement for directional stability is

Re{σ1,2,3} < 0 (12.34)

This can be checked by forming the Routh array:

A C

B D

BC−AD

B
0

D

(12.35)



Open-Loop Stability and Maneuverability 353

Consequently, sufficient and necessary conditions for the ship to be dynamically stable on course are

A, B, C, D > 0 (12.36)

BC − AD > 0 (12.37)

This again implies that the controller gains Kp and Kd must be chosen such that the conditions (12.36)
and (12.37) are satisfied.

12.1.2 Maneuverability

Several ship maneuvers can be used to evaluate the robustness, performance and limitations of a ship. This
is usually done by defining a criterion in terms of a maneuvering index or by simply using a maneuvering
characteristic to compare the maneuverability of the test ship with previously obtained results from other
ships. A frequently used measure of maneuverability is the turning index of Norrbin (1965).

The Norrbin Measure of Maneuverability

Norrbin (1965) defines the turning index as

P := ψ′(t′ = 1)

δ′(t′ = 1)
(12.38)

where t′ = t(U/L) is the nondimensional time. P is a measure of turning ability or maneuverability since
it can be interpreted as the heading change per unit rudder angle in one ship length traveled at U = 1
m/s. An expression for P can be found by solving the ODE:

T ′ψ̈′ + ψ̇′ = K′δ′ (12.39)

with δ′ = constant. This results in

ψ′(t′) = K′[t′ − T ′ + T ′ exp(−(t′/T ′))]δ′(t′) (12.40)

A second-order Taylor expansion of exp(−t′/T ′) is

exp(−t′/T ′) = 1 − t′

T ′ + (t′)2

2(T ′)2
+ O(3) (12.41)

such that

ψ′(t′)
δ′(t′)

≈ K′
[
t′ − T ′ + T ′

(
1 − t′

T ′ + (t′)2

2(T ′)2

)]
= K

(t′)2

2T ′ (12.42)

ψ′(t′ = 1)

δ′(t′ = 1)
≈ K′
[

(t′)2

2T ′

]
t′=1

= K′

2T ′ (12.43)
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Consequently,

P ≈ 1

2

K′

T ′ (12.44)

The P number is a good measure of maneuverability for course-stable ships. Norrbin concludes that
P > 0.3 guarantees a reasonable standard of course-change quality for most ships while P > 0.2 seems
to be sufficient for large oil tankers. For poorly stable ships it is recommended to use P together
with another maneuverability index, for instance the slope dr′/dδ′ or the width of the r′–δ′ loop (see
Figure 12.12 later).

Maneuvering Characteristics

A maneuvering characteristic can be obtained by changing or keeping a predefined course and speed of
the ship in a systematic manner by means of active controls. For most surface vessels these controls are
rudders, fins, propellers and thrusters. However, since ship maneuverability depends on the water depth,
environmental forces, ship speed and hydrodynamic derivatives care must be taken when performing a
full-scale maneuvering test. A guide for sea trials describing how these maneuvers should be performed is
found in SNAME (1989). The following standard ship maneuvers have been proposed by the International
Towing Tank Conference (ITTC):

• Turning Circle: This trial is mainly used to calculate the ship’s steady turning radius and to check
how well the steering machine performs under course-changing maneuvers.

• Kempf’s Zigzag Maneuver: The zigzag test is a standard maneuver used to compare the maneu-
vering properties and control characteristic of a ship with those of other ships. Another feature is
that the experimental results of the test can be used to calculate the K and T values of Nomoto’s
first-order model.

• Pull-Out Maneuver: The pull-out maneuver can be used to check whether the ship is straight-line
stable or not. The maneuver can also be used to indicate the degree of stability.

• Dieudonné’s Spiral Maneuver: The spiral maneuver is also used to check straight-line stability. The
maneuver gives an indication of the range of validity of the linear theory.

• Bech’s Reverse Spiral Maneuver: The reverse spiral maneuver can be used for unstable ships to pro-
duce a nonlinear maneuvering characteristic. The results from the test indicate which rudder corrections
are required to stabilize an unstable ship.

• Stopping Trials: Crash stops and low-speed stopping trials can be used to determine the ship’s head
reach and maneuverability during emergency situations.

Turning Circle

This is probably the oldest maneuvering test. The test can be used as an indication on how well the
steering machine and rudder control performs during course-changing maneuvers. It is also used to
calculate standard measures of maneuverability such as tactical diameter, advance and transfer shown
in Figure 12.6; see Gertler and Hagen (1960) for a detailed description.
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Matlab
The turning circle for the Mariner class vessel is computed using the MSS toolbox script ExTurn-
Circle.m, where:

t final = 700; % final simulation time (sec)

t rudderexecute = 100; % time rudder is executed (sec)

h = 0.1; % sampling time (sec)

% Mariner class cargo ship, cruise speed U0 = 7.7 m/s

x = zeros(7,1); % x=[u v r x y psi delta]’ (initial values)

u i= -15*pi/180; % delta c=-delta R at time t = t rudderexecute

[t,u,v,r,x,y,psi,U] =...

turncircle(’mariner’, x, ui, t final, t rudderexecute, h);

The results are plotted in Figure 12.6. Similar results are obtained by replacing mariner.m with the
container ship, container.m; see ExTurnCircle.m.

The maneuvering characteristics for the Mariner class vessel were computed to be:

Rudder execute (x coordinate): 769 m
Steady turning radius: 711 m
Maximum transfer: 1 315 m
Maximum advance: 947 m
Transfer at 90 degrees heading: 534 m
Advance at 90 degrees heading: 943 m
Tactical diameter at 180 degrees heading: 1 311 m

The steady turning radius R is perhaps the most interesting quantity obtained from the turning trials.
In the maneuvering trial code of the 14th ITTC (1975) it is proposed to turn the ship over at maximum
speed and with a rudder angle of minimum 15◦ to obtain the turning circle. The rudder angle δ should
be held constant such that a constant rate of turn is reached (in practice a turning circle of 540◦ may
be necessary).

The output from a positioning system is used to calculate the tactical diameter, steady turning radius,
maximum advance and maximum transfer. A typical turning circle corresponding to a negative rudder
angle is shown in Figure 12.6.

For a constant rudder angle δ, the ship will move in a circle with constant turning radius R and speed
U in the steady state, that is ν̇ = 0. Solving (7.33) for the steady-state solution of ν = [v, r]� yields

N(u0)ν = bδ =⇒ ν = N−1(u0)bδ (12.45)

The equation for r in this expression becomes

r = (YvNδ − NvYδ)

Yv(Nr−mxgu0) − Nv(Yr − mu0)
δ (12.46)
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Figure 12.6 Turning circle, yaw rate and speed for the Mariner class vessel for a constant rudder angle
δR = −15 degrees applied at t = 100 s.
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The ship’s turning radius R is defined as

R := U

r
where U =

√
u2 + v2 (12.47)

Introducing the length L = Lpp of the ship, the following expression for the ratio (R/L) is obtained:(
R

L

)
=
(

U

L

)
C

(YvNδ − NvYδ)

1

δ
, δ /= 0 (12.48)

where

C = det(N(u0)) = Yv(Nr − mxgu0) − Nv(Yr − mu0) > 0 (stable ship)

is recognized as one of the stability derivatives in the straight-line stability criterion discussed in
Section 12.1.1. From (12.48) it is seen that increased stability (large C) implies that the turning ra-
dius will increase. Consequently, a highly stable ship requires more maneuvering effort than a marginally
stable one. The ratio (R/L) can also be written in terms of nondimensional quantities by

(
R

L

)
= Y ′

v(N ′
r − m′x′

g) − N ′
v(Y ′

r − m′)

Y ′
vN

′
δ − N ′

vY
′
δ

1

δ
, δ /= 0 (12.49)

This formula is independent of the ship speed. It should be noted that the formulae for the turning radius
are based on linear theory, which assumes that δ is small and accordingly that R is large.

Another feature of the turning test is that the Nomoto gain and time constants can be determined. This
is illustrated in the following example where a cargo ship is considered.

Example 12.2 (Determination of the Nomoto Gain and Time Constants)
The Nomoto gain and time constants can be computed from a turning test by using nonlinear
least-squares curve fitting, for instance. Solving the ODE:

T ṙ + r = Kδ (12.50)

for a step input δ = δ0 = constant yields

r(t) = exp(−t/T )r(0) + [1 − exp(−t/T )
]
Kδ0 (12.51)

where K and T are unknowns. The Matlab MSS toolbox script ExKT.m fits this model to a simulated
step response of the model mariner.m, which is a nonlinear model of the Mariner class vessel.

The results for a step δ0 = 5◦ and U = 7.7 m/s = 15 knots, are (see Figure 12.7)

K = 0.09 s−1 (12.52)

T = 22.6 s (12.53)

The Norrbin measure of maneuverability becomes

P = 1

2

K′

T ′ = 1

2

K

T

(
L

U

)2

= 1

2

(
0.09

22.6

)(
160.9

7.7

)2

= 0.87 (12.54)

which guarantees good maneuverability since P > 0.3. The turning circle is shown in Figure 12.6,
indicating that the steady-state turning radius is 711 m.
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Figure 12.7 Plot showing the estimated linear model and the nonlinear Mariner model for a step
δ = δ0 = 5 degrees.

Matlab

% ExKT Script for computation of Nomoto gain and time constants

% using nonlinear least squares. The rudder input is 5 deg at t=0

N = 2000; % number of samples

h = 0.1; % sample time

xout = zeros(N,2);

x = zeros(7,1);

delta R = 5*(pi/180); % rudder angle step input

for i=1:N,

xout(i,:) = [(i-1)*h ,x(3)];

xdot = mariner(x,delta R); % nonlinear Mariner model

x = euler2(xdot,x,h); % Euler integration

end

% time-series

tdata = xout(:,1);

rdata = xout(:,2)*180/pi;

% nonlinear least-squares parametrization: x(1)=1/T and x(2)=K

x0 = [0.01 0.1]’

F = inline(’exp(-tdata*x(1))*0 +...

x(2)*(1-exp(-tdata*x(1)))*5’,’x’,’tdata’)

x = lsqcurvefit(F,x0, tdata, rdata);

plot(tdata,rdata,’g’,tdata,exp(-tdata*x(1))*0 +...

x(2)*(1-exp(-tdata*x(1)))*5,’r’),grid
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title(’NLS fit of Mariner model for \delta = 5 (deg)’)

xlabel(’time (s)’)

legend(’Nonlinear model’,’Estimated 1st-order Nomoto model’)

Kempf’s Zigzag Maneuver

The zigzag test was first proposed by Kempf (1932). Comprehensive test results of 75 freighters are
published in Kempf (1944). The zigzag time response (see Figures 12.8–12.9) is obtained by moving
the rudder 20◦ to starboard from an initially straight course. The rudder setting is kept constant until the
heading is changed 20◦, and then the rudder is reversed 20◦ to port. Again, this rudder setting is maintained
until the ship’s heading has reached 20◦ in the opposite direction. This process continues until a total of
five rudder step responses have been completed. This test is usually referred to as a 20◦–20◦ maneuver;
the first angle refers to the actual rudder settings while the second angle denotes how much the heading
angle should change before the rudder is reversed.

The zigzag maneuver was standardized by the International Towing Tank Conference (ITTC) in 1963.
For larger ships, ITTC has recommended the use of a 10◦–10◦ or a 20◦–10◦ maneuver to reduce the time
and waterspace required.

Figure 12.8 A 20◦–20◦ maneuver for the Mariner class vessel.
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Figure 12.9 A 20◦–10◦ maneuver for the container ship.

The only apparatus required to perform the test is a compass and a stopwatch. Alternatively, a computer
interfaced for real-time logging of compass data can be used. The results from the zigzag maneuver can
be used to compare the maneuvering properties of different ships. Maneuvering trials are also used in
the design process since it is possible to test scale models in towing tanks to see how well they perform.
In addition, maneuvering characteristics can be computed using hull parameters and by performing
computer simulations based on seakeeping and maneuvering models.

Example 12.3 (Zigzag Maneuvering Trials)
Both the Mariner class vessel (mariner.m) and the container ship (container.m) are simulated
for a 20◦–20◦ and a 20◦–10◦ zigzag maneuver, respectively, by using the Matlab script ExZigZag.m.

The simulation results for the two vessels are shown in Figures 12.8–12.9.

Matlab
t final = 600; % final simulation time (sec)

t rudderexecute = 10; % time rudder is executed (sec)

h = 0.1; % sampling time (sec)
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% 20-20 zigzag maneuver for the Mariner class cargo ship

% cruise speed U0 = 7.7 m/s (see mariner.m)

x = zeros(7,1); % x = [ u v r x y psi delta ]’ (initial values)

ui = 0; % delta c = 0 for time t < t rudderexecute

[t,u,v,r,x,y,psi,U] =...

zigzag(’mariner’,x,ui,t final,t rudderexecute,h,[20,20]);

% 20-10 zigzag maneuver for a container ship

% cruise speed 8.0 m/s see container.m)

x = [8.0 0 0 0 0 0 0 0 0 70]’; % x = [ u v r x y psi delta n ]’

delta c = 0; % delta c = 0 for time t < t rudderexecute

n c = 80; % n c = propeller revolution in rpm

ui = [delta c, n c];

[t,u,v,r,x,y,psi,U] =...

zigzag(’container’,x,ui,t final,t rudderexecute,h,[20,10]);

Pull-Out Maneuver

In 1969 Roy Burcher proposed a simple test procedure to determine whether a ship is straight-line stable
or not. This test is referred to as the pull-out maneuver (12th ITTC, 1969). The pull-out maneuver involves
a pair of maneuvers in which a rudder angle of approximately 20◦ is applied and returned to zero after
steady turning has been attained. Both a port and a starboard turn should be performed.

During the test the ship’s rate of turn must be measured or at least calculated by numerical derivation
of the measured compass heading. If the ship is straight-line stable the rate of turn will decay to the same
value for both the starboard and port turns (see Figure 12.10). The ship is unstable if the steady rate of
turn from the port and starboard turns differ (see Figure 12.11). The difference between these two steady
rates of turn corresponds exactly to the height of Dieudonné’s spiral loop.

Example 12.4 (Pullout Maneuver for a Stable and an Unstable Ship)
Both the Mariner class vessel (mariner.m) and the Esso Osaka tanker (tanker.m) are simulated under a
pullout maneuver by using the Matlab script ExPullout.m.

Matlab:

delta c = 20*pi/180; % rudder angle for maneuver (rad)

h = 0.1; % sampling time (sec)

% Mariner class cargo ship, speed U0 = 7.7 m/s (see mariner.m)

x = zeros(7,1); % x = [ u v r x y psi delta ]’ (initial values)
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ui = delta c; % ui = delta c

[t,r1,r2] = pullout(’mariner’,x,ui,h);

% The Esso Osaka tanker (see tanker.m)

n = 80;

U = 8.23;

x = [ U 0 0 0 0 0 0 n ]’; % x = [ u v r x y psi delta n ]’

n c = 80; % n c = propeller revolution in rpm

depth = 200; % water depth

ui = [delta c, n c, depth];

[t,r1,r2] = pullout(’tanker’,x,ui,h);

The results are shown in Figures 12.10–12.11 where the curves meet for the stable ship (Mariner class
vessel) while there is an offset between the curves for the unstable model of the Esso Osaka tanker.

Figure 12.10 Pull-out maneuver for the Mariner class vessels. Notice that the positive and negative
curves meet for the stable ship.
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Figure 12.11 Pullout maneuver for the Esso Osaka tanker. Notice that the positive and negative curves
do not meet.

Dieudonné’s Spiral Maneuver

The direct spiral test was published first in 1949–1950 by the French scientist Jean Dieudonné. An
English translation is found in Dieudonné (1953). The direct spiral maneuver is used to check straight-
line stability. As seen from Figure 12.12, the maneuver also gives an indication of the degree of stability
and the range of validity of the linear theory.

To perform the test the ship should initially be held on a straight course. The rudder angle is then put to
25◦ starboard and held until a steady yawing rate is obtained. After this the rudder angle is decreased in
steps of 5◦ and again held until constant yawing rates are obtained for all the rudder angles. The procedure
is performed for all rudder angles between 25◦ starboard and 25◦ port. In the range around zero rudder
angle the step of 5◦ rudder should be reduced to obtain more precise values. The results are plotted in an
r–δ diagram, as shown in Figure 12.12. It should be noted that the spiral maneuver should be performed
in still air and calm water to obtain the best results.

For straight-line unstable ships it is recommended to use Bech’s reverse spiral maneuver.

Bech’s Reverse Spiral Maneuver

For stable ships both Dieudonné’s direct and Bech’s reverse spiral tests can be used. For unstable ships
within the limits indicated by the pull-out maneuver Bech’s reverse spiral should be applied. The reverse
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Figure 12.12 An r−δ diagram showing the Dieudonne and Bech spirals for both a stable and course-
unstable ship. Notice the hysteresis loop in the Dieudonne spiral for the unstable ship.

spiral test was first published by Mogens Bech in 1966 and later in 1968 (Bech, 1968). Since then the
reverse spiral test has been quite popular, because of the simplicity and reliability of the method. The
reverse spiral test is also less time-consuming than Dieudonné’s spiral test.

By observing that the ship steering characteristic is nonlinear outside a limited area, Bech (1968)
suggested that one describes the mean value of the required rudder deflection δss to steer the ship at a
constant rate of turn rss as a nonlinear function:

δss = HB(rss) (12.55)

where HB(rss) is a nonlinear function describing the maneuvering characteristic.
This can be understood by considering Nomoto’s second-order model:

T1T2r̈ + (T1 + T2)ṙ + KHB(r) = K(δ + T3δ̇) (12.56)

where the linear term r has been replaced with a function HB(r). Assuming that r = rss is constant in
the steady state, that is r̈ = ṙ = δ̇ = 0, directly gives (12.55). This implies that the r–δ curve will be a
single-valued (one-to-one) function of r for both the stable and unstable ship (see Figure 12.12). If the
conventional spiral test is applied to an unstable ship a hysteresis loop will be observed.
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The full-scale test is performed by measuring the necessary rudder action required to bring the ship
into a desired rate of turn. For an unstable ship this implies that the rudder angle will oscillate about
a mean rudder angle. The amplitude of the rudder oscillations should be kept to a minimum. After
some time a balance condition is reached and both the mean rudder angle and rate of turn can be
calculated. Care should be taken for large ships since they will require some more time to converge to their
“balance condition”.

12.2 PID Control and Acceleration Feedback
This section discusses PID control design for SISO and MIMO motion control systems. The presented
methods are used in many industrial systems. The PID control laws are also extended to include optional
acceleration feedback. This topic is also covered by Lindegaard (2003), where experimental results with
a model ship are used to document performance improvements due to acceleration feedback. Accelera-
tion feedback can be implemented in conjuncture with PID control without increasing the demand for
control energy.

12.2.1 Linear Mass–Damper–Spring Systems

Consider the following two equivalent systems:

mẍ + dẋ + kx = 0 (12.57)

ẍ + 2ζωnẋ + ω2
nx = 0 (12.58)

The step response is shown in Figure 12.13. From (12.57) and (12.58) it follows that

2ζωn = d

m
, ω2

n = k

m
(12.59)

For second-order systems it is convenient to introduce

ωn =
√

k

m
natural frequency (undamped oscillator corresponding to d = 0)

ζ = d

2mωn
relative damping ratio

Damped Oscillator

For the damped system d > 0, the frequency of the oscillation will be smaller than the natural frequency.
This can be explained by considering the eigenvalues of the mass–damper–spring system (12.58):

λ1,2 = − ζωn︸︷︷︸
a

±jω (12.60)

From Figure 12.14 it is seen that

a2 + ω2 = ω2
n, ζ = a

ωn

= cos(φ) (12.61)
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Matlab
The step responses in Figure 12.13 is computed using (see ExMDS.m):

wn = 1; % natural frequency

subplot(211)

t = 0:0.01:20;

z = 0.5; sys = tf([wn*wn],[1 2*z*wn wn*wn]); step(sys,t)

hold on

z = 1.0; sys = tf([wn*wn],[1 2*z*wn wn*wn]); step(sys,t)

z = 2.0; sys = tf([wn*wn],[1 2*z*wn wn*wn]); step(sys,t)

hold off

subplot(212)

t = 0:0.01:50;

z = 0.1; sys = tf([wn*wn],[1 2*z*wn wn*wn]); step(sys,t)

hold on

sys = tf([wn*wn],[1 0 wn*wn]); step(sys,t)

hold off

Figure 12.13 The upper plot shows a mass–damper–spring system for different relative damping ratios.
The lower plot shows the undamped oscillator together with a damped oscillator. The plots are generated
by ExMDS.m.
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Figure 12.14 Graphical illustration of natural frequency ωn, frequency of the damped system ω and
absolute damping factor a.

and

a = absolute damping factor

ω = frequency of oscillation (damped system)

The undamped oscillator is obtained by choosing a = 0. It is convenient to set

ω = rωn (12.62)

where r is a reduction factor denoting the ratio between the natural frequency ωn and the frequency ω

of the linearly damped system. For marine craft a reduction of 0.5% in the natural frequency is common
(Faltinsen, 1990). Hence,

r = 1 − 0.5

100
= 0.995 (12.63)

From (12.61) and (12.62) it is seen that

a2 + (rωn)2 = ω2
n (12.64)

⇓

a =
√

1 − r2︸ ︷︷ ︸
ζ

ωn (12.65)

For r = 0.995 we obtain ζ = 0.1, which is quite typical for a ship with bilge keels while the heave and
pitch motions usually are more damped, for instance ζ = 0.2. Next,

d

m
= 2ζωn

= 2ζ

√
k

m
(12.66)

which yields the following formula for linear damping:

d = 2ζ
√

km, ζ =
√

1 − r2 (12.67)



368 Motion Control Systems

This formula is quite useful to determine the linear damping in heave, roll and pitch of an uncontrolled
marine craft (open loop) since the mass m and spring (metacentric) coefficient k are easily obtained by
other methods (see Chapters 3–5). The frequency of oscillation is

ω =
√

k

m
−
(

d

2m

)2

(12.68)

which for d = 0 reduces to the natural frequency of the undamped oscillator:

ω
d=0=
√

k

m
= ωn (12.69)

Damping in surge, sway and yaw, however, cannot be determined by formula (12.67) since k = 0 in a
pure mass–damper system. Linear damping for such a system:

mẍ + dẋ = τ (12.70)

can be found by specifying the time constant T > 0. Let T = m/d such that (12.70) becomes

T ẍ + ẋ = 1

d
τ (12.71)

which yields the following design formula:

d = m

T
(12.72)

for the mass–damper system. Equations (12.67) and (12.72) will be referred to as the linear damping
formulae for a mass–damper–spring and a mass–damper system, respectively. A relationship between
the time constant T and the natural frequency ωn in a PD-controlled system can be derived by considering
(12.70) under feedback:

τ = −Kdẋ − Kpx (12.73)

This gives the closed-loop system

mẍ + (d + Kd)ẋ + Kpx = 0 (12.74)

and

2ζωn = d + Kd

m
(12.75)

ωn =
√

Kp

m
(12.76)
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In closed loop, Kp and Kd are positive constants and the natural period Tn = 2π/ωn satisfies

2ζωn = 2ζ
2π

Tn

= d + Kd

m

= 1

T
+ Kd

m
(12.77)

If Kd/m ≈ 1/T , corresponding to increasing 1/T to 2/T by feedback control, the following useful
relationship between the time constant and the natural period of a PD-controlled mass–damper system
is obtained:

T ≈ Tn

2πζ
(12.78)

Example 12.5 (Linear Damping in Roll and Pitch for Submarines)
Consider the linear pitch equation (7.265):

(Iy − Mq̇)θ̈ − Mqθ̇ + BGz W θ = τ5

Hence, the linear damping coefficient can be computed by using (12.67):

−Mq = 2
√

1 − r2

√
BGz W(Iy − Mq̇) > 0

where Mq̇, W and BGz are assumed to be known and r > 0 is a design parameter. For roll a similar
expression is obtained (see (7.273)):

−Kp = 2
√

1 − r2

√
BGz W(Ix − Kṗ) > 0

Example 12.6 (Linear Damping in Yaw for Ships and Underwater Vehicles)
Consider the Nomoto model (see Section 7.1.4):

(Iz − Nṙ)ṙ − Nrr = Nδδ (12.79)

Assume that the moment of inertia Iz − Nṙ is known. The linear damping coefficient Nr can be estimated
by specifying the time constant. If it is assumed that the closed-loop yawing motion has a natural period
Tn = 150 s and relative damping ratio ζ = 1.0 (critically damped), it is possible to compute an estimate
of the time constant in yaw using (12.78):

T ≈ 150 s

2π × 1.0
= 23.8 s (12.80)

and from (12.72) the unknown hydrodynamic derivative becomes

−Nr = Iz − Nṙ

T
(12.81)
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12.2.2 Acceleration Feedback

It is possible to extend the results of Section 12.2.1 to include acceleration feedback. Consider a mass–
damper–spring system:

mẍ + dẋ + kx = τ + w (12.82)

Let the control law be

τ = τPID − Kmẍ (12.83)

where Km > 0 is the acceleration feedback gain and τPID represents a conventional PID controller.
This yields

(m + Km)ẍ + dẋ + kx = τPID + w (12.84)

or equivalently

ẍ + d

m + Km

ẋ + k

m + Km

x = 1

m + Km

τPID + 1

m + Km

w (12.85)

From this expression it is noticed that besides increasing the mass from m to m + Km, acceleration
feedback also reduces the gain in front of the disturbance w from 1/m to 1/(m + Km). Hence, the system
is expected to be less sensitive to an external disturbance w if acceleration feedback is applied.

This design can be further improved by introducing a frequency-dependent virtual mass in the following
form (Sagatun et al., 2001):

τ = τPID − hm(s)ẍ (12.86)

If hm(s) is chosen as a low-pass filter:

hm(s) = Km

Tms + 1
(12.87)

with gain Km > 0 and time constant Tm > 0, it is seen that(
m + Km

Tms + 1

)
︸ ︷︷ ︸

mtotal(s)

ẍ + dẋ + kx = τPID + w (12.88)
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Figure 12.15 Total mass mtotal(s) as a function of frequency for m = Km = 1000 (60 dB) and
Tm = 1.0 s.

where the total mass of the system in closed loop is

mtotal(s) = m + Km

Tms + 1
= mTms + (m + Km)

Tms + 1
(12.89)

Hence, it can be concluded that the total mass is m + Km at low frequencies (s → 0) while at high
frequencies (s → ∞) the total mass m + Km reduces to m. This is shown in Figure 12.15.

The filter hm(s) can be chosen rather arbitrarily depending on the application. For instance, a low-pass
filter will remove high-frequency acceleration feedback components while a notch structure can be used
to remove first-order wave-induced forces. This is seen by letting

g(s) = 1

m + hm(s)
(12.90)

such that (12.88) takes the form

ẍ + g(s)dẋ + g(s)kx = g(s)τPID + g(s)w (12.91)

where g(s) is chosen such that the disturbance w is suppressed in a limited frequency band (low-pass,
high-pass and notch). It will next be shown how a PID controller can be designed independently of the
acceleration feedback loop.
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12.2.3 PID Control with Acceleration Feedback

Consider the controller:

τ = kxd︸︷︷︸
reference

feedforward

−
(

Kp x̃ + Kdẋ + Ki

∫ t

o

x̃(τ)dτ

)
︸ ︷︷ ︸

PID controller

− hm(s)ẍ︸ ︷︷ ︸
acceleration

feedback

(12.92)

with gains Kp > 0, Kd > 0 and Ki > 0 and tracking error x̃ = x − xd (see Figure 12.16).
For simplicity, assume that hm(s) = Km and Ki = 0. This gives

τ = kxd − (Kp x̃ + Kdẋ) − Kmẍ (12.93)

The closed-loop system becomes

(m + Km)ẍ + (d + Kd)ẋ + (k + Kp) x̃ = w (12.94)

such that

ωn =
√

k + Kp

m + Km

(12.95)

ζ = d + Kd

2(m + Km)ωn

(12.96)

Figure 12.16 Acceleration feedback (inner loop) and PID feedback (outer loop).
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Pole placement of the mass–damper–spring system suggests that Kp and Kd can be computed by speci-
fying ωn and ζ in (12.95) and (12.96). Solving for Kp and Kd, yields

Kp = (m + Km)ω2
n − k (12.97)

Kd = 2ζωn(m + Km) − d (12.98)

such that (12.94) becomes

ẍ + 2ζωnẋ + ω2
nx = ω2

nxd + 1

m + Km

w (12.99)

⇓ {m + Km � 1}
x

xd

(s) ≈ ω2
n

s2 + 2ζωns + ω2
n

(12.100)

This is a good approximation for m + Km � 1. An even better approach is to add integral action Ki > 0
to compensate for a large constant disturbance w. Let the PID controller be written as

τ = kxd︸︷︷︸
reference

feedforward

− Kp

(
1 + Tds + 1

Tis

)
x̃︸ ︷︷ ︸

PID

− Kmẍ︸︷︷︸
acceleration

feedback

(12.101)

where Td = Kd/Kp and Ti = Kp/Ki are the derivative and integral time constants, respectively. A rule-
of-thumb is to choose

1

Ti

≈ ωn

10
(12.102)

which states that the integrator is 10 times slower than the natural frequency ωn. This yields

Ki = ωn

10
Kp = ωn

10

[
(m + Km)ω2

n − k
]

(12.103)

The natural frequency ωn can be related to the system bandwidth ωb by using the following definition:

Definition 12.1 (Control Bandwidth)
The control bandwidth of a system y = h(s)u with negative unity feedback is defined as the fre-
quency ωb at which the loop transfer function l(s) = h(s) · 1 is

|l(jω)|ω=ωb
=

√
2

2

or equivalently

20 log |l(jω)|ω=ωb
= −3 dB
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Figure 12.17 Closed-loop feedback system.

From this definition it can be shown that the control bandwidth of a second-order system:

h(s) = ω2
n

s2 + 2ζωns + ω2
n

(12.104)

with negative unity feedback is (see Figure 12.17)

ωb = ωn

√
1 − 2ζ2 +

√
4ζ4 − 4ζ2 + 2 (12.105)

For a critically damped system, ζ = 1.0, this expression reduces to

ωb = ωn

√√
2 − 1 ≈ 0.64 ωn (12.106)

Table 12.2 summarizes the pole-placement algorithm.

Example 12.7 (Ship Autopilot Design)
Consider the Nomoto model (Nomoto et al., 1957):

T ψ̈ + ψ̇ = Kδ (12.107)

where ψ is the yaw angle and δ is the rudder angle (control input). From (12.82) it is seen that

m = T

K
, d = 1

K
, k = 0 (12.108)

Table 12.2 PID and acceleration feedback pole-placement algorithm

1. Specify the bandwidth ωb > 0 and the relative damping ratio ζ > 0
2. Compute the natural frequency: ωn = 1√

1−2ζ2+
√

4ζ4−4ζ2+2
ωb

3. Specify the gain: Km ≥ 0 (optionally acceleration feedback)
4. Compute the P gain: Kp = (m + Km)ω2

n − k

5. Compute the D gain: Kd = 2ζωn(m + Km) − d

6. Compute the I gain: Ki = ωn

10 Kp
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The PID and acceleration feedback controller gains are found by using pole placement in terms of the
design parameters Km, ωn and ζ, resulting in

Km ≥ 0

Kp = T + KKm

K
ω2

n > 0

Kd = T + KKm

K
2ζωn − 1

K
> 0

Ki = T + KKm

10K
ω3

n > 0

For Km = 0 (no angular acceleration feedback in yaw) this reduces to a conventional autopilot of PID
type with gains:

Kp = ω2
nT

K
> 0

Kd = 2ζωnT − 1

K
> 0

Ki = ω3
nT

10K
> 0

12.2.4 MIMO Nonlinear PID Control with Acceleration Feedback

The PID control concept can be generalized to nonlinear mechanical systems by exploiting the kinematic
equations of motion in the design. Consider the nonlinear model

η̇ = J�(η)ν (12.109)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + w (12.110)

where η and ν are assumed to be measured. Consider the control law

τ = g(η) − Hm(s)ν̇ + J�
�(η)τPID (12.111)

with acceleration feedback Hm(s)ν̇, gravity compensation g(η) and PID controller

τPID = −Kp η̃ − Kd η̇ − Ki

∫ t

0

η̃(τ)dτ (12.112)

For simplicity, assume that Ki = 0 and Hm(s) = Km (PD control with fixed gain acceleration feedback).
This yields the closed-loop system

Hν̇ + [C(ν) + D(ν) + K∗
d(η)]ν + J�

�(η)Kp η̃ = w (12.113)
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where η̃ = η − ηd ,

K∗
d(η) = J�

�(η)KdJ�(η) (12.114)

and

H = M + Km

In the stability analysis it is assumed that η̇d = 0 , that is regulation of η to ηd = constant. A Lyapunov
function candidate for this system is

V = 1

2
ν�Hν︸ ︷︷ ︸

kinetic

energy

+ 1

2
η̃

�
Kp η̃︸ ︷︷ ︸

potential

energy

(12.115)

where H = H� > 0 and Kp = K�
p > 0. Time differentiation of (12.115) along the trajectories of ν and

η̃ yields

V̇ = ν�Hν̇ + η̇�Kp η̃

= ν�(Hν̇ + J�
�(η)Kp η̃) (12.116)

since ˙̃η = η̇ − η̇d = η̇ and η̇� = ν�J�
�(η). Substituting (12.113) into (12.116) yields

V̇ = ν�(w − [C(ν) + D(ν) + K∗
d(η)]ν)

= ν�w − ν� [D(ν) + K∗
d(η)
]
ν (12.117)

since ν�C(ν)ν = 0 for all ν; see Property 7.2 in Section 7.5.
If w = 0, Krasovskii–LaSalle’s Theorem A.2 in Appendix A.1 can be used to prove that the system

(12.109)–(12.110) with nonlinear PD control (Ki = 0) is globally asymptotically stable (GAS) if J�(η)
is defined for all η (no representation singularity). Moreover, the trajectories will converge to the set 

found from

V̇ (x) = −ν� [D(ν) + K∗
d(η)
]
ν ≡ 0 (12.118)

which is true for ν = 0. Therefore,

 = {( η̃, ν) : ν = 0)
}

(12.119)

Now, ν ≡ 0 implies that Hν̇ = −J�
�(η)Kp η̃, which is nonzero as long as η̃ /= 0. Hence, the system cannot

get “stuck” at an equilibrium point value other than η̃ = 0. Since the equilibrium point ( η̃, ν) = (0, 0)
is the largest invariant set M in , the equilibrium point is GAS according to Theorem A.2.

In the case w /= 0 but ẇ = 0, the system trajectories will converge to a ball about the origin
( η̃, ν) = (0, 0). The radius of the ball depends on the magnitude of the disturbance w. This is referred to
as uniform ultimate boundedness (UUB).
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If integral action is included with Ki > 0 (PID control), it is possible to prove local asymptotic stability
(LAS) also for the case w /= 0. This result is well known from robotics (Arimoto and Miyazaki, 1984).
The bias term w can also be removed by using parameter adaptation (Fossen et al., 2001).

12.2.5 Case Study: Heading Autopilot for Ships and Underwater Vehicles

The principal blocks of a heading angle autopilot system, shown in Figure 12.18, are:

Control System: The feedback control system provides the necessary commands to track the desired
yaw angle ψd. The output is the yaw moment τN .

Control Allocation: This module distributes the output from the feedback control system, usually the
yaw moment τN , to the actuators (rudders and in some cases propellers and thrusters) in an optimal
manner (see Section 12.3). For single-screw ships the controller yaw moment τN will simply be a
function of the rudder command δc.

Reference Model: The autopilot reference model computes smooth trajectories ψd, rd and ṙd needed for
course-changing maneuvers. Course-keeping is the special case then ψd = constant and rd = ṙd = 0
(see Section 10.2.1).

Compass and Yaw Gyro: The compass measures the yaw angle ψ which is needed for feedback. In
some cases a yaw rate gyro is available for yaw rate feedback, that is feedback from r = ψ̇.

Observer/Wave Filter: In its simplest form the first-order wave-induced motion components ψw and
rw are filtered out from the measurements y1 = ψ + ψw and y2 = r + rw, and consequently prevented
from entering the feedback loop. This is known as wave filtering, where the output of the filter is the
LF motion components ψ and r. This is necessary to avoid excessive rudder action. In cases where y2

is not measured the wave filter must be constructed as a state observer so that r can be estimated from
the yaw angle measurement y1; see Sections 11.3.5, 11.4.2 and 11.4.3.

Wind Feedforward: In cases where a wind sensor is available for wind speed and direction, a wind
model can be used for wind feedforward. This is often advantageous since the integral action term in
the PID controller does not have to integrate up the wind disturbance term. However, an accurate model
of the wind force and moment as a function of ship speed and wind direction is needed to implement
wind feedforward.

The different autopilot blocks of Figure 12.18 needed to implement a PID control law based on the
Nomoto model will now be discussed.

Figure 12.18 Block diagram of a heading autopilot system.
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Autopilot Reference Model

A modern autopilot must have both course-keeping and turning capabilities. This can be obtained in one
design by using a reference model to compute the desired states ψd, rd and ṙd needed for turning, while

ψd = constant (12.120)

can be treated as a special case of turning. A simple third-order filter for this purpose was derived in
Section 10.2.1. Moreover,

ψd

ψr

(s) = ω3
n

(s + ωn)(s2 + 2ζωns + ω2
n)

(12.121)

where the reference ψr is the operator input, ζ is the relative damping ratio and ωn is the natural frequency.
Notice that

lim
t→∞

ψd(t) = ψr (12.122)

and that ψ̇d and ψ̈d are smooth and bounded for steps in ψr. This is the main motivation for choosing a
third-order model since a second-order model will result in steps in ψ̈d for steps in ψr .

In many cases it is advantageous to limit the desired yaw rate |rd | ≤ rmax during turning. This can be
done by including a saturating element in the reference model (see Van Amerongen, 1982, 1984). The
yaw acceleration ad = ψ̈d can also be limited such that |ad | ≤ amax by using a second saturating element.
The resulting state-space model including velocity and acceleration saturating elements becomes

ψ̇d = sat(rd) (12.123)

ṙd = sat(ad) (12.124)

ȧd = −(2ζ + 1)ωnsat(ad) − (2ζ + 1)ω2
nsat(rd) + ω3

n(ψr − ψd) (12.125)

The saturating element is defined as

sat(x) :=
{

sgn(x)xmax if |x| ≥ xmax

x else
(12.126)

The autopilot reference model has been simulated in Matlab with yaw rate limitation rmax = 1.0 deg/s,
acceleration limit amax = 0.5 deg/s2 and command ψr = 30 deg. The results are shown in Figure 12.19.
Notice that the unlimited (linear) case yields unsatisfactorily high values for rd.

The main motivation for using a rate-limiting element in the reference model is that the course-changing
maneuver will be described by three phases (positive turn):

I: Start of turn, acceleration (rd > 0 and 0 < ṙd ≤ amax)
II: Steady turning (rd = rmax and ṙd = 0)

III: End of turn, deceleration (rd > 0 and −amax ≤ ṙd < 0)
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Figure 12.19 The plots show the effect of including a rate limiter of rmax = 1 deg/s in a third-order
reference model for heading. Notice that rd becomes very high in the linear case whileψd looks satisfactory
in both cases.

For a negative turn the signs of the turning rate and acceleration must be changed. The three phases are
advantageous when performing a large change in course. The effect of a saturating element and nonlinear
damping in a reference model are also demonstrated in Example 10.2 in Section 10.2.1.

A more sophisticated method for generating heading reference signals could be to use optimization
techniques to compute the desired yaw angle, but then at the expense of a more complicated software
algorithm to be implemented in real time.

Conventional PID Control

The autopilot systems of Sperry and Minorsky were both SISO control systems where the heading angle of
the ship was measured by a gyro compass (see Section 9.1). Today, this signal is fed back to a computer in
which a PID control system (autopilot) is implemented in software. The autopilot compares the operator
setpoint (desired heading) with the measured heading and computes the rudder command, which is then
transmitted to the rudder servo for corrective action.

The main difference between the autopilot systems of Sperry and Minorsky and the modern autopilot
is the increased functionality that has been added with sophisticated features such as:
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• Wave filtering, which avoids first-order wave forces being fed back to the actuators (see Section 11.3.5).
• Adaptation to varying environmental conditions, shallow water effects and time-varying model pa-

rameters, for instance changes in mass and center of gravity.
• Wind feedforward for accurate and rapid course-changing maneuvers.
• Reference feedforward using a dynamic model, ψd, rd and ṙd , for course-changing maneuvers. Course-

keeping is obtained by using a constant reference signal, ψd = constant, as input to the reference model.

Full State Feedback Control

Consider the Nomoto model of Section 7.2 in the following form:

(Iz − Nṙ)ṙ − Nrr = τwind + τN (12.127)

where τwind is an optional input for wind feedforward and τN is the yaw moment generated by the
controller. The constants m = Iz − Nṙ , d = −Nr and

T = m

d
= Iz − Nṙ

−Nr

(12.128)

are introduced such that

ṙ + 1

T
r = 1

m
(τwind + τN) (12.129)

The yaw moment can be generated by a single rudder:

τN = Nδδ (12.130)

or several actuators ui(i = 1, . . . , r) satisfying

τN = b�u, u = [u1, . . . , ur]
� (12.131)

Assume that both ψ and r are measured by using a compass and a rate gyro. A PID controller for
heading control is (see Section 12.2.3)

τN(s) = −τ̂wind + τFF(s) −Kp

(
1 + Tds + 1

Tis

)
ψ̃(s)︸ ︷︷ ︸

τPID

(12.132)

where τN is the controller yaw moment, τFF is a feedforward term to be decided, ψ̃ = ψ − ψd is the
heading error and

Kp > 0 proportional gain constant

Td > 0 derivative time constant

Ti > 0 integral time constant

The wind feedforward term τ̂wind is an estimate of the wind moment τwind using wind coefficients and an
anemometer measuring wind speed Vw and direction βw. An estimate of the wind yaw moment can be
computed according to (see Section 8.1)
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τ̂wind = 1

2
ρaV

2
rwCN (γrw)ALwLoa (12.133)

where the relative wind speed and angle of attack are

Vrw =
√

u2
rw + v2

rw (12.134)

γrw = −atan2(vrw, urw) (12.135)

The relative velocities depend on the heading angle ψ, wind direction βw and wind speed Vw

according to

urw = u − uw = u − Vw cos(βw − ψ) (12.136)

vrw = v − vw = v − Vw sin(βw − ψ) (12.137)

When wind feedforward is implemented it is important that the wind measurements are low-pass
filtered to avoid rapid changes in heading command. Wind feedforward is an optional term since the
integrator in the PID control law can compensate for a slowly varying wind moment as well. The main
difference will be the response time. In general, wind feedforward will be much faster than integral action
since the integrator needs several minutes to remove a large wind component during the start-up of an
autopilot system. Integral action works fairly well during fixed heading (stationkeeping and transit) while
in a maneuvering situation large course deviations might be expected. Consequently, it is advantageous
to implement wind feedforward to reduce the loads on the integrator and obtain maximum performance
during start-up and in maneuvering situations. However, if the wind coefficients are poorly known, the
closed-loop system can be destabilized by the wind feedforward term so care must be taken.

A continuous-time representation of the controller (12.132) is

τN = −τ̂wind + τFF − Kpψ̃ − KpTd︸︷︷︸
Kd

r̃ − Kp

Ti︸︷︷︸
Ki

∫ t

0

ψ̃(τ)dτ (12.138)

where r̃ := r − rd and ψ̃ := ψ − ψd. The controller gains can be found by pole placement; see Table 12.2
in Section 12.2.3. By specifying the control bandwidth ωb, we get

ωn = 1√
1 − 2ζ2 +

√
4ζ4 − 4ζ2 + 2

ωb (12.139)
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Kp = mω2
n

Kd = m

(
2ζωn − 1

T

)
T�0≈ 2ζωnm

Ki = ωn

10
Kp

The relative damping ratio ζ is usually chosen in the range 0.8–1.0, which means that the only tunable
parameter is the control bandwidth ωb (typically 0.01 rad/s for large tankers and 0.1 rad/s for smaller
ships and underwater vehicles). This makes the system very easy to tune. However, it is important to
have a good estimate of m = Iz − Nṙ to obtain good performance.

Control Allocation

For a rudder-controlled craft, the input command is computed from (12.130), implying that

δ = 1

Nδ

τN (12.140)

In the case of several actuators, the generalized inverse can be used to compute u from (12.131) if the
scalar b�b /= 0 (see Section 12.3). This gives

u = b(b�b)−1τN (12.141)

Reference Feedforward

The feedforward term τFF in (12.132) is determined such that perfect tracking during course-changing
maneuvers is obtained. Using Nomoto’s first-order model (12.129) as a basis for feedforward control,
suggests that reference feedforward should be implemented according to

τFF = m

(
ṙd + 1

T
rd

)
(12.142)

Substituting (12.142) and (12.132) into (12.129), the error dynamics becomes

ë + 1

T
ė = 1

m
τPID (12.143)

where e = ψ − ψd . Since this system is linear, the closed-loop system can be analyzed in the frequency
plane by using Bode plots. Consider the transfer function

h(s) = e

τPID
(s) = T/m

s(Ts + 1)
(12.144)
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and let

hPID(s) = Kp

(
1 + Tds + 1

Tis

)

= Kp

TiTds
2 + Tds + 1

Tis
(12.145)

Hence, the loop transfer function becomes

l(s) = h(s)hPID(s)

= T

m

Kp

Ti

(TiTds
2 + Tis + 1)

s2(Ts + 1)
(12.146)

A frequently used approximation for (12.145) is found by assuming that Ti � Td such that Ti ≈ Ti + Td.

Hence,

hPID(s) = Kp

(
1 + Tds + 1

Tis

)

≈ Kp

1 + (Ti + Td)s + TdTis
2

Tis

= Kp

(1 + Tis)(1 + Tds)

Tis
(12.147)

Output Feedback using Only Compass Measurements

In many cases ships are only equipped with a gyrocompass for feedback control. If this is the case, the
rate can be estimated using an observer, as shown in Sections 11.3.5 and 11.4.2. This approach also gives
wave filtering. Alternatively, the D term in the controller must be replaced with a limited differentiator:

r(s) ≈ Tds

αTds + 1
ψ(s), 0 < α � 1 (12.148)

such that the high-frequency components of ψ(s) are filtered out. If we apply the low-pass filter

hLP(s) = 1

αTds + 1
(12.149)

to all terms in the PID controller, (12.147) takes the form

hPID(s) = Kp

(Tis + 1)(Tds + 1)

Tis(αTds + 1)

The controller can be implemented in the time domain as

τN = τFF − Kpψ̃LP − KpTd︸︷︷︸
Kd

r̃LP − Kp/Ti︸ ︷︷ ︸
Ki

∫ t

0

ψ̃LP(τ)dτ (12.150)
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with two filters:

ψ̃LP(s) = 1

αTds + 1
ψ̃(s), r̃LP(s) = Tds

αTds + 1
ψ̃(s) (12.151)

The parameter 0 < α < 1 is usually chosen as 0.1 while Ti = 10Td , such that

1

Ti

� 1

Td

� 1

αTd

(12.152)

12.2.6 Case Study: Heading Autopilot with Acceleration Feedback
for Ships and Underwater Vehicles

An autopilot system can be extended to exploit acceleration feedback by differentiating the output of a
yaw rate gyro rgyro according to

ṙ ≈ s

s + ωf

rgyro (12.153)

The filter frequency ωf must, however, be larger than the control bandwidth ωb. In most cases this is
easy to satisfy since ωf can be chosen as high as 10–50 Hz if an accurate yaw-rate gyro is applied. A
discrete-time representation of the filter (12.153) is found in Appendix B.3. This is particularly useful
for smaller marine craft, which are more vulnerable to environmental forces than large marine craft. The
main idea is to increase the moment of inertia by yaw rate feedback, such that external disturbances are
suppressed; see Section 12.2.3. Consider the controller

τN = −τ̂wind + τFF −Kpψ̃ − Kd r̃ − Ki

∫ t

0

ψ̃(τ)dτ︸ ︷︷ ︸
PID

−Kmṙ︸ ︷︷ ︸
acceleration

feedback

(12.154)

τFF = (m + Km)

(
ṙd + 1

T
rd

)
(12.155)

Notice that the term Km must be included in τFF correspondingly. Substituting these expressions into
(12.129) yields the closed-loop error dynamics

(m + Km) ë +
(

m

T
+ Kd

)
ė + Kpe + Ki

∫ t

0

e(τ)dτ = 0 (12.156)

Based on Table 12.2 in Section 12.2.3, this suggests the following pole-placement algorithm for a critically
damped system (ζ = 1) with bandwidth ωb:
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ωn = 1.56ωb (12.157)

Kp = (m + Km)ω2
n (12.158)

Kd = 2ζωn(m + Km) − m

T

T�0≈ 2ζωn(m + Km) (12.159)

Ki = ωn

10
Kp (12.160)

where the additional moment of inertia Km can be specified as a percentage (0–100 %) of the total moment
of inertia m according to

Km = α

100
m, α ∈ [0, 100] (12.161)

The only tunable parameter in addition to Km is the control bandwidth ωb and this makes the sys-
tem very easy to tune. However, it is important to have a good estimate of m = Iz − Nṙ to obtain
good performance.

A final implementation issue is the problem of first-order wave-induced forces. Using a wave fil-
ter for ψ, r and ṙ is recommended if all these signals are used in feedback. Wave filtering for sys-
tems using velocity and acceleration feedback is discussed by Lindegaard and Fossen (2001a) and
Lindegaard (2003).

12.2.7 Case Study: Linear Cross-Tracking System for Ships and
Underwater Vehicles

Often it is of primary importance to steer a ship, a submersible or a rig along a desired path with a
prescribed speed. The path is usually defined in terms of waypoints using the Cartesian coordinates
(xk, yk) ∈ R2. Waypoint guidance systems can be designed as trajectory-tracking controllers. In its sim-
plest form this involves the use of a classical autopilot system where the yaw angle command ψd is
generated such that the cross-track error is minimized. This can be done in a multivariable controller,
for instance of H∞ or LQG type, or by including an additional PID tracking error control-loop in the
autopilot. A waypoint trajectory-tracking system is usually designed such that the ship can move forward
with reference speed Ud at the same time as the path cross-track error is minimized. The desired path
can be generated using a route management system or by specifying the desired route by waypoints; see
Section 10.2. If weather data are available, the optimal route can be generated such that the effects of
wind and water resistance are minimized.

When designing a 3 DOF trajectory-tracking control system, the solution will depend on the number of
available actuators. For most craft only two controls are needed: thrust T for speed control and a rudder
δ for steering control.

Consider a path parametrized by two waypoints: pk = [xk, yk]� and pk+1 = [xk+1, yk+1]�, respec-
tively. Next, we introduce a path-fixed reference frame {p} = (xp, yp, zp) with origin on in pk, whose xp

axis has been rotated a positive angle:

αk := atan2 (yk+1 − yk, xk+1 − xk) (12.162)
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relative to the x axis of the inertial reference frame {n} = {x, y, z}. Recall from (10.56) that the along-track
distance and cross-track errors are

s(t) = (x(t) − xk) cos(αk) + (y(t) − yk) sin(αk) (12.163)

e(t) = −(x(t) − xk) sin(αk) + (y(t) − yk) cos(αk) (12.164)

Consequently, the error term e represents the deviation to the path in the y direction in NED coordinates.
Since the craft is moving along a straight line, the sway velocity v and yaw angle ψ will be small. The

cross-track error expressed in the path-fixed reference frame {p} is

e = yp (12.165)

and the kinematic equations reduce to

ẋp = u cos(ψ) − v sin(ψ)
v≈0 and ψ≈0≈ U (12.166)

ẏp = u sin(ψ) + v cos(ψ)
v≈0 and ψ≈0≈ Uψ (12.167)

Consequently, the craft is moving with approximately constant speed U = √
u2 + v2 ≈ u along the path.

A conventional cross-track controller is usually designed by using Nomoto’s model in the following form:

ẏp = Uψ (12.168)

ψ̇ = r (12.169)

T ṙ + r = Kδ + b (12.170)

ḃ = 0 (12.171)

where b is a bias term and δ is the control input. Consequently,

e(s) = hδ(s)δ(s) + hb(s)b(s) (12.172)

where

hδ(s) = e

δ
(s) = KU

s2(1 + Ts)
(12.173)

hb(s) = e

b
(s) = U

s2(1 + Ts)
(12.174)

This is a linear system and it is straightforward to design a PID controller:

δ = −Kpe − Kdė − Ki

∫ t

0

e(τ)dτ (12.175)
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for the regulation of e to zero. Integral action is needed in order to compensate for the bias term b

representing environmental forces and the rudder offset.

12.2.8 Case Study: LOS Path-Following Control for Ships and
Underwater Vehicles

A line-of-sight (LOS) path-following controller can be designed for conventional craft by representing
the desired path by waypoints, as described in Section 10.3. This is particularly useful for underwater
vehicles and surface vessels in transit operations where the user can specify the path by straight lines
using a digital chart. For curved paths, the approach of Section 12.2.9 can be used.

If the craft is equipped with a conventional heading autopilot, an outer feedback loop representing the
guidance system can be designed as shown in Figure 12.20. This is practical since a commercial autopilot
system can be treated as a black box where the outer-loop LOS algorithm computes heading commands
to the autopilot. For this purpose, the guidance laws of Section 10.3.2 can be used to steer along the LOS
vector which again forces the craft to track the path. When designing path-following control systems
both the desired heading and course angles can be used since

ψd = χd − β (12.176)

where the sideslip angle is given by

β = arcsin
(

v

U

)
(12.177)

Notice that β depends on the surge and sway velocities, implying that β must be computed using Doppler
or GNSS velocity measurements, for instance. Alternatively, a state estimator for β can be designed.

Figure 12.20 Conventional autopilot used in conjuncture with an LOS guidance algorithm in the outer
loop.
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The heading autopilot is usually a PID controller with feedforward (see Section 12.2.6):

τN = −τ̂wind + τFF − Kpψ̃ − Kd
˙̃ψ − Ki

∫ t

0

ψ̃(τ)dτ (12.178)

τFF = m

(
ṙd + 1

T
rd

)
(12.179)

where ψ̃ = ψ − ψd , and Kp > 0, Kd > 0 and Ki > 0 are the controller gains.

Body x axis aligned to the LOS vector: If the sideslip angle β is unknown, the body x axis of the craft
can be aligned with the LOS vector to the price of a tracking offset (see Section 10.3.2).

Enclosure-based steering: In this approach, the desired heading angle ψd is chosen as:

ψd = χd = atan2 (ylos − y, xlos − x) (12.180)

and the body x axis of the craft points in the direction of the LOS intersection point pn
los = [xlos, ylos]�,

as shown Figure 10.9.
Velocity and LOS vectors aligned: In order to align the velocity and LOS vectors, the desired course

angle χd must be specified such that the velocity vector points towards the intersection point plos. The
course angle command χd needed to accomplish this can be computed using one of the following
guidance algorithms (see Section 10.3.2):

Enclosure-based steering: The course angle is chosen as

χd = atan2 (ylos − y, xlos − x) (12.181)

and mapped into a heading command by

ψd = χd − β

= χd − arcsin
(

v

U

)
(12.182)

This approach requires velocity measurements.

Lookahead-based steering: The course angle command (Breivik and Fossen, 2009)

χd = χp + χr(e) (12.183)

is chosen as the sum of the path-tangential angle χp and the velocity-path relative angle χr(e) to
ensure that the velocity is directed toward a point on the path that is located a lookahead distance
� > 0 (Papoulias, 1991) ahead of the direct projection of pn on to the path. In this context

χp = αk (12.184)

χr(e) = arctan
(−Kpe
)

(12.185)

where χr is a proportional controller and e(t) is the cross-track error given by

e(t) = −[x(t) − xk] sin(αk) + [y(t) − yk] cos(αk) (12.186)
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Lookahead-based steering can be implemented in terms of the heading controller (12.178) by using
the transformation

ψd = χd − β

= χp + χr − β (12.187)

If the sideslip angle β is unknown, a PI controller

χr(e) = arctan

(
−Kpe − Ki

∫ t

0

e(τ)dτ

)
(12.188)

together with the approximation ψd ≈ χp + χr can be used to compensate for sideslip.

When moving along a piece wise linear path made up of n straight-line segments connected by n + 1
waypoints, a switching mechanism for selecting the next waypoint is needed. Waypoint (xk+1, yk+1) can
be selected on a basis of whether the craft lies within a circle of acceptance with radius Rk+1 around
(xk+1, yk+1). Moreover, if the craft positions (x, y) at time t satisfy

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1 (12.189)

the next waypoint (xk+1, yk+1) should be selected. This is described more closely in Section 10.3.2, which
also discusses extensions from 2-D to 3-D path-following control.

12.2.9 Case Study: Path-Following Control for Ships and Underwater
Vehicles using Serret-Frenet Coordinates

In Section 10.4.2 a guidance law for curved parametrized paths was presented. The guidance law assumes
that there exists a parametrized path

pn
d(�) =

[
xd(�)

yd(�)

]
(12.190)

as a function of the path variable �. The main idea is to use a kinematic controller to compute yaw
commands rd to a yaw rate feedback control system that turns the marine craft such that the predefined
path is followed. In 2-D this is a simple rotation about the vertical axis. The kinematic controller can be
designed using a dynamic model of the marine craft by specifying a reference frame that moves along
the path. This reference frame is usually chosen as the Serret–Frenet frame (see Frenet, 1847, Serret,
1851), as shown in Figure 10.19. The kinematic controller can be implemented in cascade with the yaw
rate controller, as illustrated in Figure 12.21.

We will look at the implementation aspects of the path-following controller by considering the yaw
dynamics of the marine craft in the following form:

(Iz − Nṙ)ṙ − Nrr = τN (12.191)

Figure 12.21 Cascaded kinematic and yaw rate controller for path-following control.
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where Iz − Nṙ > 0 and −Nr > 0 are constant parameters. The controller yaw moment τN can easily be
designed to regulate r to rd , for instance by using the following feedback control law:

τN = −Nrr − Kp(r − rd) (12.192)

where Kp > 0 is a design parameter and rd is the desired yaw rate generated by the kinematic controller.
In Section 10.4.2 it was shown that

rd =
(

1 − (m − Xu̇)

(m − Yv̇)

)−1(
χ̇d + κUd − K1 χ̃SF − Yv

(m − Yv̇)

(
tan(β) − vc

U cos(β)

))
(12.193)

where χ̃SF = χSF − χd renders the equilibrium point (s, e, χ̃SF) = (0, 0, 0) UGAS and ULES. Unfortu-
nately, this expression requires knowledge of the sideslip angle

β = arcsin
(

v

U

)
(12.194)

and the current velocity vc. One way to avoid this is to replace the term proportional to tan(β) with an
integral term. This of course is based on the assumption that the sideslip angle changes slowly. The PI
guidance law then takes the following form:

rd =
(

1 − (m − Xu̇)

(m − Yv̇)

)−1(
χ̇d + κUd − Kp χ̃SF − Ki

∫ t

0

χ̃SF(τ)dτ

)
(12.195)

where Kp = 2λ and Ki = λ2 are parametrized using λ > 0 as a design parameter and (see Section 10.4.2):

χd = arctan
(−e

�

)
(12.196)

Ud = U cos(χSF) + K2s (12.197)

The dynamic equations of the guidance law are

ṡ = U cos(χSF) − (1 − κe)Ud (12.198)

ė = U sin(χSF) − κUds (12.199)

χ̇SF = r + β̇ − κUd (12.200)

An alternative approach to integral action is to use a state estimator to estimate the ocean currents
(Encarnacao et al., 2000). Cascaded design techniques based on backstepping and Lyapunov analysis
are discussed by Lapierre and Soetanto (2007) and Børhaug and Pettersen (2006), while Breivik and
Fossen (2004a) present an alternative approach for Serret–Frenet path-following control where the path
curvature κ is superfluous.
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12.2.10 Case Study: Dynamic Positioning Control System for Ships
and Floating Structures

Control systems for stationkeeping and low-speed maneuvering are commonly known as dynamic
positioning (DP) systems. The Norwegian classification society DnV (1990) defines a DP vessel
according to:

Dynamically positioned vessel: a free-floating vessel which maintains its position (fixed location
or predetermined track) exclusively by means of thrusters.

It is, however, possible to exploit rudder forces in DP also by using the propeller to generate rudder lift
forces (Lindegaard and Fossen, 2003).

For ships that are anchored, additional spring forces are introduced into the control model. These
systems are referred to as position mooring (PM) systems (see Section 12.2.11). Optimality with respect
to changing weather conditions will be discussed in Section 13.3.10 using the concept of weather optimal
positioning control (WOPC).

DP and PM Systems

In the 1960s, systems for automatic control of the horizontal position, in addition to the heading, were
developed. Systems for the simultaneous control of the three horizontal motions (surge, sway and yaw)
are today commonly known as DP systems and are used in a wide range of marine operations such as
stationkeeping, drilling and offloading, as illustrated in Figure 12.22. More recently anchored positioning
systems or PM systems have been designed; see Section 12.2.11. For a free-floating vessel the thrusters
are the prime actuators for stationkeeping, while for a PM system the assistance of thrusters are only
complementary since most of the position-keeping is provided by a deployed anchor system. Different
DP applications are described more closely in Strand and Sørensen (2000).

DP systems have traditionally been a low-speed application, where the basic DP functionality is either
to keep a fixed position and heading or to move slowly from one location to another (marked positioning).
In addition, specialized tracking functions for cable and pipe-layers, and operations of ROVs have been
included. The traditional autopilot and waypoint-tracking functionalities have also been included in
modern DP systems. The trend today is that high-speed operation functionality merges with classical DP
functionality, resulting in a unified system for all speed ranges and types of operations.

The first DP systems were designed using conventional PID controllers in cascade with low-pass and/or
notch filters to suppress the wave-induced motion components. This was based on the assumption that
the interactions were negligible (Sargent and Cowgill, 1976, and Morgan, 1978). From the middle of the
1970s a new model-based control concept utilizing stochastic optimal control theory and Kalman filtering
techniques was employed with the DP problem by Balchen et al. (1976). The Kalman filter is used to
separate the LF and WF motion components such that only feedback from the LF motion components is
used (see Chapter 11). Later extensions and modifications of this work have been proposed by numerous
authors; see Balchen et al. (1980a, 1980b), Grimble et al. (1980a, 1980b), Fung and Grimble (1983),
Sælid et al. (1983) and more lately Fossen et al. (1996), Sørensen et al. (1996, 2000), Fossen and Grøvlen
(1998) and Fossen and Strand (1999a).

Roll and Pitch Damping in DP

Traditionally DP systems have been designed for 3 DOF low-speed trajectory-tracking control by means
of thrusters and propellers. However, extensions to 5 DOF control for the purpose of roll and pitch
damping of semi-submersibles has been proposed by Sørensen and Strand (1998). It is well known that
for marine structures with a small waterplane area and low metacentric height, which results in relatively
low hydrostatic restoration compared to the inertia forces, an unintentional coupling phenomenon between



392 Motion Control Systems

Figure 12.22 Dynamically positioned supply vessel used in offshore offloading. Illustration by Bjarne
Stenberg/Department of Marine Technology, NTNU.

the vertical and the horizontal planes through the thruster action can be invoked. Examples are found in
semi-submersibles and SWATHs, which typically have natural periods in roll and pitch in the range of
35–65 s. If the inherent vertical damping properties are small, the amplitudes of roll and pitch may be
emphasized by the thruster’s induction by up to 2◦–5◦ in the resonance range. These oscillations have
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caused discomfort to the vessel’s crew and have in some cases limited the operation. Hence, the motions
in both the horizontal and vertical planes should be considered in the controller design, as proposed in
Sørensen and Strand (2000).

Optimal Setpoint Chasing in DP for Drilling and Intervention Vessels

Further extension in the development of DP systems includes extended functionality adapted for the
particular marine operation considered. In Sørensen et al. (2001) a function for optimal setpoint chasing
in DP of drilling and intervention vessels is proposed in order to minimize riser angle offsets at the sea
bed and on the vessel.

Controller and Observer Models

For DP systems an LF controller model will be employed for feedback since dynamics at higher frequen-
cies are negligible in stationkeeping. Recall from Section 7.3.2 that

η̇p = ν (12.201)

Mν̇ + Dν = bp + τ + τwind + τwave (12.202)

where VP coordinates have been employed (see Section 7.5.3). The bias term is expressed in {b} using
the transformation bp = R(ψ)�b.

The North-East positions and heading measurements are related to ηp by

η = R(ψ)ηp (12.203)

In some cases additional measurements are available such as GNSS and Doppler log velocity ν as well
as anemometer measurements, which can be used to compute an estimate of the generalized wind forces
τwind. The bias b is treated as an unknown state due to wave drift, ocean currents and unmodeled dynamics.

DP Control System

The craft is exposed to waves, ocean currents and wind. The observer–controller must be robust and
compensate for environmental forces and unmodeled dynamics. These are the most important design
requirements in an industrial vessel control system since a full-state feedback controller will not work
in bad weather unless the environmental forces are included in the design specifications. In commercial
DP systems it is therefore necessary to include the following features:

• Integral action to compensate for slowly varying forces (bias term b) due to ocean currents, second-
order wave drift forces and unmodeled dynamics.

• Wind feedforward control to compensate for mean wind forces. Wind gust cannot be compensated for
since the actuators do not have the capacity for moving a large vessel in the frequency range of the
wind gust.

• Wave filtering to avoid where first-order wave-induced oscillations are fed back to the control system
as explained in Chapter 11. This is an important feature since the actuators cannot move a large vessel
fast enough to suppress the disturbances.

• State estimator for noise filtering and estimation of unmeasured states, for instance linear and angular
velocities. The main tool for this is the Kalman filter, alternatively nonlinear and passive observers as
described in Sections 11.3–11.4.

• Optimal allocation of thrust where the main goal is to compute optimal setpoints for thrusters, rudders
and other actuators based on the force and moment commands generated by the DP control system.
This is treated in detail in Section 12.3.
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Figure 12.23 Dynamic positioning system. The observer can be implemented as a Kalman filter or a
passive observer. Illustration by Bjarne Stenberg.

The different blocks in a closed-loop DP system is shown in Figure 12.23. The control system can be
designed as a MIMO nonlinear PID controller using the results in Section 12.2.4. Moreover,

τ = −τ̂wind + R�(η)τPID (12.204)

where τ̂wind is an estimate of the generalized wind forces and the PID controller is expressed in {n}
according to:

τPID = −Kp η̃ − Kd η̇ − Ki

∫ t

0

η̃(τ)dτ (12.205)

By combining (12.204) and (12.205), the DP control law becomes

τ = −τ̂wind − R�(η)Kp η̃ − R�(η)KdR(η)︸ ︷︷ ︸
K∗

d

ν − R�(η)Ki

∫ t

0

η̃(τ)dτ (12.206)

where

K∗
d := R�(η)KdR(η) (12.207)

It is common to chooseKd as a diagonal matrix and thusK∗
d = Kd . For the full-state feedback case, asymp-

totic stability follows using Lyapunov arguments (see Section 12.2.4). However, in order to implement
the nonlinear PID controller a state estimator and wave filter must be designed. This is straightforward for
the linearized DP model (12.201)–(12.203) where additional states for the WF motions can be augmented
and used directly in a Kalman filter (see Section 11.3.6). GAS and convergence of the nonlinear PID
controller (12.206) in combination with a linear Kalman filter cannot be guaranteed but the solution has
been used in many industrial systems with excellent performance and robustness. Hence, from a practical
point of view this is indeed a well-proven concept. An alternative approach could be to use linear vessel
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parallel coordinates and a separation principle to guarantee asymptotic stability via a linear quadratic
Gaussian optimal control philosophy (see Section 13.1.6).

It is, however, possible to prove UGAS for the nonlinear PID controller in combination with the
nonlinear passive observer of Section 11.4 under certain conditions. Consider the passive observer:

˙̂
ξ = Awξ̂ + K1(ωo) ỹ (12.208)

˙̂η = R(y3)ν̂ + K2 ỹ (12.209)

˙̂
b = −T −1b̂ + K3 ỹ (12.210)

M ˙̂ν = −Dν̂ + R�(y3)b̂ + τ + τwind + R�(y3)K4 ỹ (12.211)

ŷ = η̂ + Cwξ̂ (12.212)

where drift is estimated using the bias term b̂. For the DP controller (12.206), the drift forces have been
compensated for by adding integral action in the controller. A PD controller motivated by (12.206), where
slowly varying environmental forces are compensated by using the observer bias estimates, R�(ψ)b̂, has
been proposed by Loria et al. (2000):

τ = −τ̂wind − R�(ψ)Kp(η̂ − ηd) − K∗
d ν̂ − R�(ψ)b̂ (12.213)

Notice that the integral term in the controller (12.206) is removed and replaced by the bias estimate. It is
then possible to show that the equilibrium point of the observer–controller is UGAS. The stability proof
is based on a separation principle, which holds for nonlinear systems (Loria et al., 2000).

Wind Feedforward

It is possible to implement wind feedforward τwind in DP control systems. However, this requires that
the wind forces and moment are known as functions of the wind speed and direction, as well as ship hull
parameters. Different wind models are presented in Section 8.1, suggesting that

τ̂wind = 1

2
ρaV

2
rw

⎡
⎣CX(γrw)AFw

CY (γrw)ALw

CN (γrw)ALw
Loa

⎤
⎦ (12.214)

where the relative wind speed and angle of attack are

Vrw =
√

u2
rw + v2

rw (12.215)

γrw = −atan2(vrw, urw) (12.216)
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The relative velocity components depend on the heading angle ψ, wind direction βw and wind speed Vw

according to

urw = u − uw = u − Vw cos(βw − ψ) (12.217)

vrw = v − vw = v − Vw sin(βw − ψ) (12.218)

When wind feedforward is implemented, it is important that the wind measurements are low-pass
filtered to avoid rapid changes in the actuator commands. Wind feedforward is an optional term since the
integrator in the DP system can compensate for slowly varying wind forces as well. The main difference
will be the response time. In general, wind feedforward will be much faster than integral action since the
integrator needs several minutes to remove a large wind component during the start-up of the DP system.

12.2.11 Case Study: Position Mooring Control System for Ships
and Floating Structures

Figure 12.24 illustrates different mooring strategies for ships and floating structures. The results of
Section 12.2.10 can be generalized to PM systems by adding a spring to the model. Consider the model

η̇p = ν (12.219)

Mν̇ + Dν + Kpηp = bp + τ + τwind + τwave (12.220)

Figure 12.24 Mooring systems for a submersible, FPSO and platform. Illustration by Bjarne Stenberg.
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where ν = [u, v, r]� and η = [N, E, ψ]�. For this system:

M = M� =

⎡
⎣m11 0 0

0 m22 m23

0 m32 m33

⎤
⎦ (12.221)

D = D� =

⎡
⎣ d11 0 0

0 d22 d23

0 d32 d33

⎤
⎦ (12.222)

K = diag{k11, k22, k33} (12.223)

The additional spring Kηp due to the mooring system adds spring stiffness in surge, sway and yaw
described by the parameters k11 > 0, k22 > 0 and k33 ≥ 0. With this in mind, two different design
philosophies for mooring systems are quite common:

• Turret mooring systems have cables that are connected to the turret via bearings. This allows the vessel
to rotate around the anchor legs. In this case, the rotational spring can be neglected such that k33 = 0.
The turret can be mounted either internally or externally. An external turret is fixed, with appropriate
reinforcements, to the bow or stern of the ship. In the internal case the turret is placed within the hull
in a moon pool. A moon pool is a wet porch, that is an opening in the floor or base of the hull giving
access to the water below, allowing technicians or researchers to lower tools and instruments into the
sea. Turret mooring systems allow the vessel to rotate in the horizontal plane (yaw) into the direction
where environmental loading due to wind, waves and ocean currents is minimal. This is referred to
as weathervaning.

• Spread mooring systems are used to moor Floating Production, Storage and Offloading (FPSO) units,
tankers and floating platforms (see Figure 12.24). The system consists of mooring lines attached
somewhere to the vessel. The drawback with a spread mooring system is that it restrains the vessel
from rotating (k33 > 0) and hence weathervaning is impossible. On the other hand, it is relatively
inexpensive to equip an existing vessel with mooring lines that can be attached directly to the hull.

For thruster-assisted PM systems the thrusters are complementary to the mooring system and the main
idea is to provide the system with additional damping, for instance by using a D controller:

τ = −Kdν (12.224)

The mooring term Kηp is in fact a P controller but additional spring forces can be included by position
feedback if necessary. Integral action is not used in PM systems, since the ship is only allowed to move
within a limited radius from the equilibrium point or field-zero point (FZP). If the vessel moves outside
the specified radius of the mooring system, a stabilizing control system of PD type can be used to drive
the vessel inside the circle again. This is usually done in an energy perspective since it is important to
reduce the fuel consumption of PM systems. Consequently, in bad weather it will be more optimal to use
additional thrust to stay on the circle rather than move the vessel to the FZP. In good weather, no control
action is needed since the vessel is free to move within the circle.

PM systems have been commercially available since the 1980s, and provide a flexible solution for
floating structures for drilling and oil and gas exploitation on the smaller and marginal fields (Sørensen
et al., 2000). Modeling and control of turret-moored ships are complicated problems since the mooring
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Figure 12.25 Block diagram showing the control allocation block in a feedback control system.

forces and moments are inherently nonlinear (Strand et al., 1998). The control design of PM systems
using nonlinear theory is addressed by Strand (1999).

12.3 Control Allocation
For marine craft in n DOF it is necessary to distribute the generalized control forces τ ∈ Rn to the
actuators in terms of control inputs u ∈ Rr as shown in Figure 12.25 (Fossen and Johansen, 2006). If
r > n this is an overactuated control problem while r < n is referred to as underactuated control; see the
discussion in Section 9.4. The input matrix is square for r = n, that is the number of actuators is equal
to the number of DOFs.

Computation of u from τ is a model-based optimization problem, which in its simplest form is uncon-
strained while physical limitations such as input amplitude and rate saturations imply that a constrained
optimization problem must be solved. Another complication is actuators that can be rotated at the same
time as they produce control forces. An example is azimuth thrusters on an offshore supply vessel. This
increases the number of available controls from r to r + p, where p denotes the number of rotatable
actuators for which additional nonlinearities are introduced.

12.3.1 Actuator Models

The control force due to a propeller, a rudder or a fin can be written (assuming linearity)

F = ku (12.225)

where k is the force coefficient and u is the control input depending on the actuator considered; see
Table 12.3. The linear model F = ku can also be used to describe nonlinear monotonic control forces.
For instance, if the rudder force F is quadratic in rudder angle δ, that is F = k δ |δ|, the choice u = δ |δ|,
which has a unique inverse δ = sgn(u)

√|u|, satisfies (12.225).

Table 12.3 Definition of actuators and control variables

Actuator u (control input) α (control input) f� (force vector)

Main propellers (longitudinal) Pitch and rpm – [F, 0, 0]
Tunnel thrusters (transverse) Pitch and rpm – [0, F, 0]
Azimuth (rotatable) thruster Pitch and rpm Angle [F cos (α), F sin (α), 0]
Aft rudders Angle – [0, F, 0]
Stabilizing fins Angle – [0, 0, F ]



Control Allocation 399

Figure 12.26 Fin stabilized ship where the vertical force F = ku is proportional to the angle u for small
deflections.

For marine craft the most common actuators are:

• Main propellers: The main propellers of the craft are mounted aft of the hull, usually in conjunction
with rudders. They produce the necessary force Fx in the x direction needed for transit.

• Tunnel thrusters: These are transverse thrusters going through the hull of the craft. The propeller unit
is mounted inside a transverse tube and produces a force Fy in the y direction. Tunnel thrusters are
only effective at low speeds, which limits their use to low-speed maneuvering and stationkeeping.

• Azimuth thrusters: Thruster units that can be rotated an angle α about the z axis and produce two
force components (Fx, Fy) in the horizontal plane are usually referred to as azimuth thrusters. They are
usually mounted under the hull of the craft and the most sophisticated units are retractable. Azimuth
thrusters are frequently used in DP systems since they can produce forces in different directions. Hence,
this becomes an overactuated control problem that can be optimized with respect to power and possible
failure situations.

• Aft rudders: Rudders are the primary steering device for conventional marine craft. They are located
aft of the craft and the rudder force Fy will be a function of the rudder deflection (the drag force in the
x direction is usually neglected in the control analysis). A rudder force in the y direction will produce
a yaw moment that can be used for steering control.

• Stabilizing fins: Stabilizing fins are used for the damping of vertical vibrations and roll motions (see
Figure 12.26). They produce a force Fz in the z directions that is a function of the fin deflection.
For small angles this relationship is linear. Fin stabilizers can be retractable, allowing for selective
use in bad weather. The lift forces are small at low speed so the most effective operating condition
is in transit.

• Control surfaces: Control surfaces can be mounted at different locations to produce lift and drag
forces. For underwater vehicles these could be fins for diving, rolling and pitching and rudders
for steering.

• Water jets: Water jets are an alternative to main propellers aft of the ship. They are usually used for
high-speed craft.
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Figure 12.27 Propellers that can be rotated an angle α to produce a force F in an arbitrary direction.

The forces and moments in 6 DOF corresponding to the force vector f = [Fx, Fy, Fz]� can be written
(see Table 12.3)

τ =
[

f

r × f

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

Fzly − Fylz

Fxlz − Fzlx

Fylx − Fxly

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4 DOF=⇒ τ =

⎡
⎢⎢⎣

Fx

Fy

Fzly − Fylz

Fylx − Fxly

⎤
⎥⎥⎦ (12.226)

where r = [lx, ly, lz]� are the moment arms. For rotatable (azimuth) thrusters the control force F will be
a function of the rotation angle α and propeller revolution u (see Figure 12.27). Consequently, an azimuth
thruster in the horizontal plane will have two force components, Fx = F cos(α) and Fy = F sin(α), while
the main propeller aft of the ship only produces a longitudinal force Fx = F (see Table 12.3).

Thrust Configuration and Force Coefficient Matrices

The control forces and moments f = [u1, . . . , un]� are conveniently expressed as

f = Ku (12.227)

where u = [u1, . . . , ur]� is a vector of control inputs and K ∈ Rr×r is a diagonal force coefficient matrix
given by

K = diag{K1, . . . , Kr}, K−1 = diag

{
1

K1
, . . . ,

1

Kr

}
(12.228)
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The actuator forces and moments relate to the control forces and moments by

τ = T (α)f

= T (α)Ku (12.229)

where α = [α1, . . . , αp]� ∈ Rp is a vector of azimuth angles and T (α) ∈ Rn×r is the thrust configuration
matrix. For a marine craft equipped with r actuators for operation in n DOFs, the thrust configuration
matrix describes the geometry or locations of the actuators.

Thrust Configuration Matrix for Nonrotatable Thrusters: The trivial case refers to a marine craft
equipped with nonrotatable thrusters such that

T = [t1, . . . , tr] = constant

The thrust configuration matrix is defined in terms of a set of column vectors ti ∈ Rn. In 4 DOF (surge,
sway, roll and yaw) the column vectors for some standard actuators are

ti =

⎡
⎢⎢⎣

1

0

0

−lyi

⎤
⎥⎥⎦

︸ ︷︷ ︸
main propeller

, ti =

⎡
⎢⎢⎣

0

1

−lzi

lxi

⎤
⎥⎥⎦

︸ ︷︷ ︸
tunnel thruster
and aft rudder

, ti =

⎡
⎢⎢⎣

0

0

lyi

0

⎤
⎥⎥⎦

︸ ︷︷ ︸
stabilizing fin

An example using this representation is found in Section 13.1.5 discussing fin and rudder control
systems.

Thrust Configuration Matrix for Rotatable Thrusters: For marine craft equipped with azimuth
thrusters in combination with nonrotatable thrusters we write:

T (α) = [t1, . . . , tr] (12.230)

where α = [α1, . . . , αp]� ∈ Rp is a vector of azimuth angles. The thrust configuration matrix is defined
in terms of a set of column vectors ti ∈ Rn. In 4 DOF (surge, sway roll and yaw) the column vectors
take the following form:

ti =

⎡
⎢⎢⎣

cos (αi)

sin (αi)

−lzi
sin (αi)

lxi
sin (αi) − lyi

cos (αi)

⎤
⎥⎥⎦

︸ ︷︷ ︸
azimuth thruster

, ti =

⎡
⎢⎢⎣

1

0

0

−lyi

⎤
⎥⎥⎦

︸ ︷︷ ︸
main propeller

, ti =

⎡
⎢⎢⎣

0

1

−lzi

lxi

⎤
⎥⎥⎦

︸ ︷︷ ︸
tunnel thruster
and aft rudder

, ti =

⎡
⎢⎢⎣

0

0

lyi

0

⎤
⎥⎥⎦

︸ ︷︷ ︸
stabilizing fin

An example using this representation is found in Section 12.3.5 discussing dynamic position-
ing systems.
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Extended Thrust Configuration Matrix for Rotatable Actuators: When solving the control alloca-
tion optimization problem an alternative representation to (12.230) is the extended thrust configuration
matrix. Equation (12.230) is nonlinear in the controls α. This implies that a nonlinear optimization
problem must be solved. In order to avoid this, the rotatable thrusters can be treated as two forces.
Consider a rotatable thruster in the horizontal plane (the same methodology can be used for thrusters
that can be rotated in the vertical plane):

Fxi
= Fi cos(αi)

= Kiui cos(αi) (12.231)

Fyi
= Fi sin(αi)

= Kiui sin(αi) (12.232)

Next, the extended force vector is defined according to

f e := Keue (12.233)

such that

τ = T eKeue (12.234)

where T e and Ke are the extended thrust configuration and coefficient matrices, respectively, and ue

is a vector of extended control inputs where the azimuth controls are defined as

uix := ui cos(αi) (12.235)

uiy := ui sin(αi) (12.236)

This approach was used by Sørdalen (1997b). The following example illustrates how this model can
be established for an underwater vehicle equipped with two main propellers and two azimuth thrusters
in the horizontal plane (Fossen et al., 2009).

Example 12.8 (Thrust Configuration Matrix for an Underwater Vehicle)
The forces and moment X, Y and N in surge, sway and yaw, respectively, for the AUV thruster configu-
ration shown in Figure 12.28 satisfy

τ = T (α)Ku (12.237)

�
⎡
⎣X

Y

N

⎤
⎦ =

⎡
⎣ cos(α1) cos(α2) 1 1

sin(α1) sin(α2) 0 0

lx1 sin(α1) lx2 sin(α2) −ly3 −ly4

⎤
⎦ ·

⎡
⎢⎢⎣

K1 0 0 0

0 K2 0 0

0 0 K3 0

0 0 0 K4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ (12.238)
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Figure 12.28 AUV equipped with two azimuth thrusters (forces F1 and F2) and two main propellers
(forces F3 and F4). The azimuth forces are decomposed along the x and y axes.

The extended thrust vector ue corresponding to (12.234) and (12.235)–(12.236) satisfies

τe = T eKeue (12.239)

�

⎡
⎣X

Y

N

⎤
⎦ =

⎡
⎣ 1 0 1 0 1 1

0 1 0 1 0 0

0 lx1 0 lx2 −ly3 −ly4

⎤
⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 0 0 0

0 K1 0 0 0 0

0 0 K2 0 0 0

0 0 0 K2 0 0

0 0 0 0 K3 0

0 0 0 0 0 K4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1y

u2x

u2y

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.240)

Notice that T e = constant while T (α) depends on α. This means that the extended control input vector
ue can be solved directly from (12.234), for instance using the pseudo-inverse approach presented in
Section 12.3.2. This is not the case for (12.230), which represents a nonlinear optimization problem. If
ue is computed using the pseudo-inverse, the azimuth control can be derived from the extended control
vector elements by mapping the pairs (u1x, u1y) and (u2x, u2y) according to

u1 =
√

u2
1x + u2

1y, α1 = atan2(u1y, u1x) (12.241)

u2 =
√

u2
2x + u2

2y, α2 = atan2(u2y, u2x) (12.242)

The last two controls u3 and u4 are elements five and six in ue.
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12.3.2 Unconstrained Control Allocation for Nonrotatable Actuators

The simplest allocation problem is the one where all control forces are produced by thrusters in fixed
directions alone or in combination with rudders and control surfaces. This implies that

α = α0 = constant, T = T (α0) (12.243)

It will be assumed that the allocation problem is unconstrained; that is there are no bounds on the vector
elements fi, αi and ui, and their time derivatives. Saturating control and constrained control allocation
are discussed in Sections 12.3.3–12.3.4.

For marine craft where the configuration matrix T is square or nonsquare (r ≥ n), that is there are
equal or more control inputs than controllable DOFs, it is possible to find an “optimal” distribution of
control forces f for each DOF by using an explicit method. Consider the unconstrained least-squares
(LS) optimization problem (Fossen and Sagatun, 1991):

J = min
f

{
f�Wf
}

subject to: τ − Tf = 0
(12.244)

Here W is a positive definite matrix, usually diagonal, weighting the control forces. For marine craft that
have both control surfaces and propellers, the elements in W should be selected so that using the control
surfaces are considerably less expensive than using the propellers.

Explicit Solution to the LS Optimization Problem using Lagrange Multipliers

Consider the Lagrangian (Fossen, 1994)

L(f , λ) = f�Wf + λ�(τ − Tf ) (12.245)

where λ ∈ Rr is a vector of Lagrange multipliers. Consequently, differentiating the Lagrangian L with
respect to f yields

∂L

∂f
= 2Wf − T �λ = 0 (12.246)

⇓

f = 1

2
W−1T �λ (12.247)

Next, assume that TW−1T � is nonsingular such that

τ = Tf = 1

2
TW−1T �λ (12.248)

⇓
λ = 2(TW−1T �)−1τ (12.249)
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Substituting the Lagrange multipliers λ = 2(TW−1T �)−1τ into (12.247) yields

f = W−1T �(TW−1T �)−1︸ ︷︷ ︸
T
†
w

τ (12.250)

where the matrix

T †
w = W−1T �(TW−1T �)−1 (12.251)

is recognized as the generalized inverse. For the case W = I, that is equally weighted control forces,
(12.251) reduces to the right Moore–Penrose pseudo-inverse

T † = T �(TT �)−1 (12.252)

Since

f = T †
wτ (12.253)

the control input vector u can be computed from (12.230) as

u = K−1T †
wτ (12.254)

Notice that this solution is valid for all α0 but not optimal with respect to a time-varying α0 (only f ).
Optimality with respect to α in addition to (12.247) is discussed in Section 12.3.4.

Matlab
The generalized inverse for the case T = T (α0) = constant is implemented in the Matlab MSS
toolbox as

u=ucalloc(K,T,W,tau)

12.3.3 Constrained Control Allocation for Nonrotatable Actuators

In industrial systems it is important to minimize the power consumption by taking advantage of the
additional control forces in an overactuated control problem. From a critical point of view concerning
safety it is also important to take into account actuator limitations such as saturation, wear and tear as
well as other constraints. In general this leads to a constrained optimization problem.
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Explicit Solution using Piecewise Linear Functions

An explicit solution approach for parametric quadratic programming has been developed by Tøndel et
al. (2003a) while applications to marine craft are presented by Johansen et al. (2005). In this work the
constrained optimization problem is formulated as

J = min
f,s,f̄

{
f�Wf + s�Qs + βf̄

}
subject to:

Tf = τ + s

f min ≤ f ≤ f max

−f̄ ≤ f1, f2, . . . , fr ≤ f̄

(12.255)

where s ∈ Rn is a vector of slack variables. The first term of the criterion corresponds to the LS criterion
(12.244), while the third term is introduced to minimize the largest force f̄ = maxi |fi| among the
actuators. The constant β ≥ 0 controls the relative weighting of the two criteria. This formulation ensures
that the constraints f min

i ≤ fi ≤ f max
i (i = 1, . . . , r) are satisfied, if necessary by allowing the resulting

generalized force Tf to deviate from its specification τ. To achieve accurate generalized force, the
slack variable should be close to zero. This is obtained by choosing the weighting matrix Q � W > 0.
Moreover, saturation is handled in an optimal manner by minimizing the combined criterion (12.255).

Letting

z = [f�, s�, f̄ ]� ∈ Rr+n+1 (12.256)

and

p = [τ�, f�
min, f

�
max, β]� ∈ Rn+2r+1 (12.257)

denotes the parameter vector, it is straightforward to see that the optimization problem (12.255) can be
reformulated as a QP problem:

J = min
z

{
z�	z + z�Rp

}
subject to:

A1z = C1p

A2z ≤ C2p

(12.258)

where

	 =

⎡
⎣ W 0r×n 0r×1

0n×r Q 0n×1

01×r 01×n 0

⎤
⎦ , R =

[
0(r+n+1)×(n+2r)

[
0(r+n)×1

1

]]
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A1 = [T −In×n 0n×1

]
, C1 = [ In×n 0n×(2r+1)

]

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ir×r 0r×n 0r×1

Ir×r 0r×n 0r×1

Ir×r 0r×n

⎡
⎢⎢⎢⎢⎣

1

1

...

1

⎤
⎥⎥⎥⎥⎦

Ir×r 0r×n −

⎡
⎢⎢⎢⎢⎣

1

1

...

1

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C2 =

⎡
⎢⎢⎣

0r×n −Ir×r 0r×r 0r×1

0r×n 0r×r Ir×r 0r×1

0r×n 0r×r 0r×r 0r×1

0r×n 0r×r 0r×r 0r×1

⎤
⎥⎥⎦

Since W > 0 and Q > 0 this is a convex quadratic program in z parametrized by p. Convexity guarantees
that a global solution can be found. The optimal solution z∗(p) to this problem is a continuous piecewise
linear function z∗(p) defined on any subset

pmin ≤ p ≤ pmax (12.259)

of the parameter space. Moreover, an exact representation of this piecewise linear function can be com-
puted offline using multiparametric QP (mp-QP) algorithms (Tøndel et al., 2003b) or the Matlab Multi-
Parametric Toolbox (MPT) by Kvasnica et al. (2004). Consequently, it is not necessary to solve the QP
(12.255) in real time for the current value of τ and the parameters fmin, fmax and β if they are allowed to
vary. In fact, it suffices to evaluate the known piecewise linear function z∗(p) as a function of the given
parameter vector p, which can be done efficiently with a small amount of computations. For details of
the implementation aspects of the mp-QP algorithm see Johansen et al. (2004) and references therein.
An online control allocation algorithm is presented in Tøndel et al. (2003a).

Explicit Solution for Varying α using Piecewise Linear Functions

An extension of the mp-QP algorithm to marine craft equipped with azimuth thrusters and rudders has
been given by Tøndel et al. (2003a). A propeller with a rudder can produce a thrust vector within a range of
directions and magnitudes in the horizontal plane for low-speed maneuvering and stationkeeping. The set
of attainable thrust vectors is nonconvex because significant lift can be produced by the rudder only with
forward thrust. The attainable thrust region can, however, be decomposed into a finite union of convex
polyhedral sets. A similar decomposition can be made for azimuth thrusters including forbidden sectors.
Hence, this can be formulated as a mixed-integer-like convex QP problem, and by using, arbitrarily,
number, of rudders as well as thrusters, other propulsion devices can be handled. Actuator rate and
position constraints are also taken into account. Using a mp-QP software, an explicit piecewise linear
representation of the least-squares optimal control allocation law can be precomputed. The method has
been tested on a scale model of a supply vessel by Tøndel et al. (2003a) and a scale model of a floating
platform by Spjøtvold (2008).
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Explicit Solutions based on Minimum Norm and Null-Space Methods

In flight and aerospace control systems, the problems of control allocation and saturating control have
been addressed by Durham (1993, 1994a, 1994b). Durham also discusses an explicit solution to avoid
saturation, referred to as the “direct method”. By noticing that there are infinite combinations of admissible
controls that generate control forces on the boundary of the closed subset of attainable controls, the “direct
method” calculates admissible controls in the interior of the attainable forces as scaled-down versions
of the unique solutions for force demands. Unfortunately it is not possible to minimize the norm of the
control forces on the boundary or some other constraint since the solutions on the boundary are unique.
The computational complexity of the algorithm is proportional to the square of the number of controls,
which can be problematic in real-time applications.

In Bordignon and Durham (1995) the null-space interaction method is used to minimize the norm of
the control vector, when possible, and still access the attainable forces to overcome the drawbacks of the
“direct method”. This method is also explicit but much more computationally intensive. For instance, 20
independent controls imply that up to 3.4 billion points have to be checked at each sample. In Durham
(1999) a computationally simple and efficient method to obtain near-optimal solutions is described. The
method is based on prior knowledge of the controls’ effectiveness and limits such that precalculation of
several generalized inverses can be done.

Iterative Solutions

An alternative to the explicit solution could be to use an iterative solution to solve the QP problem. The
m-file function quadprog.m in the Matlab optimization toolbox can be used for computer simulations,
while a stand alone compiled QP solver must be implemented in a real-time application. The drawback
with the iterative solution is that several iterations may have to be performed at each sample in order to
find the optimal solution. An advantage of the iterative approach is that there is more flexibility for online
reconfiguration, as, for example, a change in W may require that the explicit solutions are recalculated.
Computational complexity is also greatly reduced by a “warm start”; that is the numerical solver is
initialized with the solution of the optimization problem computed at the previous sample.

12.3.4 Constrained Control Allocation for Azimuth Thrusters

The control allocation problem for marine craft equipped with azimuth thrusters is in general a nonconvex
optimization problem that is hard to solve. The primary constraint is

τ = T (α)f (12.260)

where α ∈ Rp denotes the azimuth angles. The azimuth angles must be computed at each sample together
with the control inputs u ∈ Rr which are subject to both amplitude and rate saturations. In addition,
azimuth thrusters can only operate in feasible sectors αi,min ≤ αi ≤ αi,max at a limiting turning rate α̇i.
Another problem is that the inverse

T †
w(α) = W−1T �(α)[T (α)W−1T �(α)]−1 (12.261)

can be singular for certain α values. The consequence of such a singularity is that no force is produced
in certain directions. This may greatly reduce dynamic performance and maneuverability as the azimuth
angles can be changed only slowly. This suggests that the following criterion should be minimized
(Johansen et al., 2004):
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J = min
f,α,s

{
r∑

i=1

P̄i |fi|3/2 + s�Qs + (α − α0)�
(α − α0)

+ �

ε + det(T (α)W−1T �(α))

}
(12.262)

subject to:

T (α)f = τ + s

f min ≤ f ≤ f max

αmin ≤ α ≤ αmax

�αmin ≤ α − α0 ≤ �αmax

where

• ∑r

i=1 P̄i |fi|3/2represents power consumption where P̄i > 0 (i = 1, . . . , r) are positive weights.
• s�Qs penalizes the error s between the commanded and achieved generalized force. This is necessary

in order to guarantee that the optimization problem has a feasible solution for any τ and α0. The weight
Q > 0 is chosen to be large enough so that the optimal solution is s ≈ 0 whenever possible.

• f min ≤ f ≤ f max is used to limit the use of force (saturation handling).
• αmin ≤ α ≤ αmax denotes the feasible sectors of the azimuth angles.
• �αmin ≤ α − α0 ≤ �αmax ensures that the azimuth angles do not move too much within one sample,

taking α0 equal to the angles at the previous sample. This is equivalent to limiting α̇, that is the turning
rate of the thrusters.

• The term

�

ε + det(T (α)W−1T �(α))

is introduced to avoid singular configurations given by det(T (α)W−1T �(α) = 0. To avoid division
by zero, ε > 0 is chosen as a small number, while � > 0 is scalar weight. A large � ensures high
maneuverability at the cost of higher power consumption and vice versa.

The optimization problem (12.262) is a nonconvex nonlinear program and requires a significant amount
of computations at each sample (Nocedal and Wright, 1999). The nonlinear program is solved by using
iterations as shown in Figure 12.29. The following two implementation strategies are attractive alternatives
to nonlinear program efforts.

Iterative Solutions using Quadratic Programming

The problem (12.262) can be locally approximated with a convex QP problem by assuming that:

1. The power consumption can be approximated by a quadratic term in f near the last force f 0 such that
f = f 0 + �f .

2. The singularity avoidance penalty can be approximated by a linear term linearized about the last
azimuth angle α0 such that α = α0 + �α.
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Figure 12.29 Control allocation using an iterative solution.

The resulting QP criterion is (Johansen et al., 2004)

J = min
�f,�α,s

{
(f 0 + �f )�P(f 0 + �f ) + s�Qs + �α�
�α

+ ∂

∂α

(
�

ε + det(T (α)W−1T �(α))

)∣∣∣∣
α0

�α

}
(12.263)

subject to:

s + T (α0)�f + ∂

∂α
(T (α0)f )|α0,f 0

�α = τ − T (α0)f 0

f min − f 0 ≤ �f ≤ f max − f 0

αmin − α0 ≤ �α ≤ αmax − α0

�αmin ≤ �α ≤ �αmax

The convex QP problem (12.263) can be solved by using standard software for numerical optimization,
for instance the m-file function quadprog.m in the Matlab optimization toolbox.

Iterative Solutions using Linear Programming

Linear approximations to the thrust allocation problem have been discussed by Webster and Sousa (1999)
and Lindfors (1993). In Lindfors (1993) the azimuth thrust constraints

|fi| =
√[

fi cos(αi)
]2 + [fi sin(αi)

]2 ≤ f max
i (12.264)

are represented as circles in the (fi cos αi, fi sin αi) plane. The nonlinear program is transformed to a linear
programming (LP) problem by approximating the azimuth thrust constraints by straight lines forming a
polygon. If eight lines are used to approximate the circles (octagons), the worst case errors will be less
than ±4.0 %. The criterion to be minimized is a linear combination of ‖f‖, that is magnitude of force
in the x and y directions, weighted against the magnitudes |

√
[fi cos(αi)]2 + [fi sin(αi)]2| representing

azimuth thrust. Hence, singularities and azimuth rate limitations are not weighted in the cost function. If
these are important, the QP formulation should be used.

Explicit Solution using the Singular Value Decomposition and Filtering Techniques

An alternative method to solve the constrained control allocation problem is to use the singular value
decomposition (SVD) and a filtering scheme to control the azimuth directions such that they are aligned
with the direction where most force is required, paying attention to singularities (Sørdalen, 1997b).
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Results from sea trials have been presented in Sørdalen (1997a). A similar technique using the damped
least-squares algorithm has been reported in Berge and Fossen (1997), where the results are documented
by controlling a scale model of a supply vessel equipped with four azimuth thrusters.

12.3.5 Case Study: DP Control Allocation System

Most DP ships use thrusters to maintain their position and heading. Both fixed pitch (FP) and controllable
pitch (CP) propellers are available for this purpose.

Fixed-Speed CP and Variable-Speed FP Propellers

The thrust F from a variable-speed FP propeller can be modeled as

F (n) = Kn |n| (or F (n) = Kn) (12.265)

where K = constant is the thrust coefficient and n is the propeller revolutions per minute (rpm). Some
propellers show linear behavior in n while others are quadratic. Even combinations of the linear and
quadratic behavior are observed in practice.

CP propellers are screw blade propellers where the blades can be turned under the control of a hydraulic
servo. This introduces a second control variable, pitch p, which is used to obtained the desired thrust F

for different propeller revolutions n. If P is the “traveled distance per revolution” and D is the propeller
diameter then p = P/D represents the pitch ratio.

The thrust from a fixed-speed CP propeller can be approximated by

F (n, p) = K(n)|(p − p0)|(p − p0) (or F (n, p) = K(n)(p − p0)) (12.266)

where the force coefficient K(n) now depends on the propeller revolution. Again, thrust is quadratic,
alternatively linear, in p–p0 or combinations of both. The pitch offset is denoted as p0. For DP ships
using fixed-speed CP propellers it is common to operate at one or two fixed propeller revolutions such
that only p is used for active control by the DP system; see Example 12.9.

For ships in transit a constant demand for thrust and power suggests that a fixed-speed CP propeller
should be used while low-speed applications such as DP operations require little thrust in good weather,
suggesting that a variable-speed FP propeller might be advantageous (see Figure 12.30). Notice that the
fixed-speed CP propeller also requires power at zero thrust.

Example 12.9 (Experimental Thrust Characteristics)
The supply vessel in Fossen et al. (1996) is equipped with a main propeller and tunnel thrusters.
The measured thrust is shown as asterisks in Figure 12.31 while the solid lines are least-square fits to
the quadratic thrust function (12.266). The main propeller operated at n = 122 rpm and n = 160 rpm,
while the tunnel thruster ran at n = 236 rpm resulting in

Main propeller F (122, p) = 370 |p| p F (236, p) = 137 |p| p
Tunnel thruster F (160, p) = 655 |p| p

Actuator Configuration and Thrust Coefficient Matrices

Recall from Section 12.3 that the forces and moment τ ∈ R3 (surge, sway and yaw) can be written
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Figure 12.30 Power consumption of fixed-speed CP and variable speed FP propellers.

Figure 12.31 Thrust F (n, p) = K(n)p |p| versus pitch p for a main propeller (left-hand plot) and a
tunnel thruster (right-hand plot). The asterisks are experimental measured values and the solid lines are
least-square fits to a quadratic model.



Control Allocation 413

τ = T (α)f (12.267)

f = Ku (12.268)

where f ∈ Rr (r = number of thrusters) is the thrust force vector and u ∈ Rr is a DP control variable
given by

CP: u = [|p1|p1, |p2|p2, . . . , |pr|pr]�, (or u = [p1, p2, . . . , pr]�)
FP: u = [|n1|n1, |n2|n2, . . . , |nr|nr]�, (or u = [n1, n2, . . . , nr]�)

(12.269)

The thrust coefficient matrix K is a diagonal matrix of thrust coefficients given by

K = diag{K1(n1), K2(n2), . . . , Kr(nr)} (12.270)

The actuator configuration matrix T (α) ∈ R3×r only depends on the location of the actuators and possible
angles α used for rotatable thrusters (azimuth thruster).

Example 12.10 (Supply Vessel Thrust Configuration and Coefficient Matrices)
Computation of T (α) can be illustrated by considering the supply vessel in Figure 12.32, which
is equipped with two main propellers (aft of the ship), two tunnel thrusters and two azimuth thrusters,
which can be rotated to arbitrary angles α1 and α2, and therefore produce thrust in different directions;
see Figure 12.32. Hence, we have eight control variables (six rpm setpoints and two azimuth angles) for
3 DOF. The control variables are assigned according to (clockwise numbering of ui):

u1, α1 fore azimuth thruster u4 aft tunnel thruster
u2 fore tunnel thruster u5 starboard main propeller

u3, α2 aft azimuth thruster u6 port main propeller

Figure 12.32 Schematic drawing showing the thruster configuration for a offshore supply vessel.
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From Section 12.3 it follows that

K = diag{K1, K2, K3, K4, K5, K6} (12.271)

T (α) =

⎡
⎣ cos(α1) 0 cos(α2) 0 1 1

sin(α1) 1 sin(α2) 1 0 0

l1 sin(α1) l2 l3 sin(α2) l4 −l5 −l6

⎤
⎦ (12.272)

where li (i = 1, . . . , r) are the moment arms in yaw. It is also seen that l5 = −l6 (symmetrical location of
the main propellers). The thrust demands are defined such that positive thrust results in positive motion
according to the VP axis system. The resulting forces and moment are

τ = T (α)Ku (12.273)

�

⎡
⎣X

Y

N

⎤
⎦ =

⎡
⎣ cos(α1) 0 cos(α2) 0 1 1

sin(α1) 1 sin(α2) 1 0 0

l1 sin(α1) l2 l3 sin(α2) l4 −l5 −l6

⎤
⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 0 0 0

0 K2 0 0 0 0

0 0 K3 0 0 0

0 0 0 K4 0 0

0 0 0 0 K5 0

0 0 0 0 0 K6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.274)

One of the advantages of the model representation (12.267) is that input uncertainties only appear in
the diagonal force coefficient matrix K, since T (α) will be perfectly known. In fact, this decomposition is
highly advantageous since it can be exploited when designing the feedback control system where robust
measures for uncertainties in K must be taken.

Example 12.11 (Supply Vessel Thrust Allocation)
In order to implement a DP control system for the vessel shown in Figure 12.32 a thrust allo-
cation algorithm is needed. The simplest algorithm is the generalized inverse

u = K−1T †(α)τ (12.275)

T †(α) = W−1T �(α)[T (α)W−1T �(α)]−1 (12.276)

where W = WT > 0 is a positive definite weighting matrix, usually chosen to be diagonal. W should be
selected so that using the tunnel and azimuth thrusters is less expensive (small Ki value) than using the
main propellers (large Ki value). This solution is easy to use for constant azimuth angles α. As soon as α

is allowed to vary or the control input saturates, a strategy for this must be developed. This significantly
complicates the control allocation software. Many companies solve this in an ad hoc manner and the
price is extensive failure testing in order to cover all failure situations. An alternative to this is to use
an optimal solution for varying α and limited thrust f such as the one presented in Section 12.3. This
of course requires an iterative solver to be implemented in the control loop and extensive testing is
needed to verify that the optimal solution is convergent and stable. For a system with quadratic thrust
characteristics, the computed u values must be mapped to pitch or rpm commands. If ui = |pi|pi, it is
straightforward to verify that

pi = sgn(ui)
√

ui (12.277)
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The generalized inverse

T †(α) = 1

det[T (α)W−1T �(α)]
W−1T �(α) adj[T (α)W−1T �(α)] (12.278)

will be a function of the azimuth angles α1 and α2 in Figure 12.32. The expression for the determinant
in (12.278) will be nonzero for all combinations of α1 and α2, since the craft has more actuators than
needed for 3 DOF stabilization (overactuated). However, for some craft a singular configuration may
exist; that is the determinant becomes zero for certain combinations of αi (i = 1, . . . , r). The expression
for the determinant can also be used to compute optimal angles α1 and α2 in a minimum energy sense
by simply maximizing the determinant with respect to α1 and α2.



13
Advanced Motion Control
Systems

State-of-the-art motion control systems are usually designed using PID control methods, as described in
Chapter 12. This chapter presents more advanced methods for optimal and nonlinear control of marine
craft. The main motivation for this is design simplicity and performance. Nonlinear control theory can
often yield a more intuitive design than linear theory. Linearization destroys model properties and the
results can be a more complicated design process with limited physical insight. Chapter 13 is written
for the advanced user who wants to exploit a more advanced model and use this model to improve the
performance of the control system. Readers of this chapter need background in optimal and nonlinear
control theory.

Preview of the Chapter

Chapter 13 starts with linear quadratic optimal control theory (Section 13.1) with the focus on regulation,
trajectory-tracking control and disturbance feedforward. Optimal motion control systems are designed
by considering the linearized equations of motion (Section 7.5.3) in the following form:

ẋ = Ax + Bu + Ew (13.1)

For a marine craft, the linear model (13.1) is based on several assumptions such as zero or constant
cruise speed u together with the assumptions that the velocities v, w, p, q and r are small. In addition,
the kinematic equation η̇ = J�(η)ν must be linearized under a set of assumptions on the Euler angles
φ, θ and ψ.

When linearizing the equations of motion, several model properties such as symmetry of the inertia
matrix M, skew-symmetry of the Coriolis and centripetal matrix C(ν) and positiveness of the damping
matrix D(ν) are destroyed, and this often complicates the control design. Also physical properties that
are important tools for good engineering judgement are lost. This is seen by comparing the LQ design
procedure with the nonlinear techniques in Sections 13.2–13.4. It is also demonstrated how the nonlinear
controllers can be related to the PID control design methods in Chapter 12 in particular, under the
assumption of setpoint regulation. Often it is useful to think about the nonlinear controller as a PID
control system where additional terms are added to obtain global stability results. Keeping this in mind, it
is also possible to derive a nonlinear controller using advanced methods and then use engineering insight
to simplify the representation of the controller. The resulting controller should be as simple as possible

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6
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but still contain the most important terms when implementing the algorithm into a computer. In fact, a
so-called simplified nonlinear controller will be recognized as a PID controller with additional terms.
Many nonlinear methods are popular due to their simplicity and design flexibility. The assumptions on
u, v, w, p, q, r and φ, θ, ψ which are needed when linearizing the models are also avoided.

The nonlinear design methods in this chapter are based on the robot-like model of Fossen (1991):

η̇ = J θ(η)ν (13.2)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + w (13.3)

It is important to understand the physical properties of the model in order to know which terms in the
model can be omitted when deriving a model-based nonlinear controller. This is an important question
since model inaccuracies can destabilize a feedback control system. Often better results are obtained
when uncertain terms are chosen to be zero in the controller.

13.1 Linear Quadratic Optimal Control
Optimal control deals with the problem of finding a control law for a given system such that a certain
optimality criterion is achieved. This is usually a cost function that depends on the state and control
variables. The optimal control law is a set of differential equations that minimize the cost functional
and it can be derived using Pontryagin’s maximum principle (a necessary condition) or by solving the
Hamilton–Jacobi–Bellman equation (a sufficient condition). We will limit our discussion to linear systems
and quadratic cost functions. This is referred to as linear quadratic (LQ) optimal control theory (Athans
and Falb, 1966).

13.1.1 Linear Quadratic Regulator

A fundamental design problem is the regulator problem, where it is necessary to regulate the outputs
y ∈ Rm of the system to zero or a constant value while ensuring that they satisfy time-response spec-
ifications. A linear quadratic regulator (LQR) can be designed for this purpose by considering the
state-space model

ẋ = Ax + Bu (13.4)

y = Cx (13.5)

where x ∈ Rn, u ∈ Rr and y ∈ Rm. In order to design a linear optimal control law the system (A, B, C)
must be controllable while observability (see Definition 11.2 in Section 11.2.3) is necessary if some
of the states must be estimated. Controllability for linear time-invariant systems is given by the
following definition

Definition 13.1 (Controllability)
The state and input matrix (A, B) must satisfy the controllability condition to ensure that there
exists a control u(t) that can drive any arbitrary state x(t0) to another arbitrary state x(t1) for t1 > t0.
The controllability condition requires that the matrix (Gelb et al., 1988)

C = [B | AB | · · · | (A)n−1B] (13.6)

must be of full row rank such that a right inverse exists.
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The feedback control law for the system (13.4)–(13.5) is found by minimizing the quadratic
cost function

J = min
u

{
1

2

∫ T

0

(
y�Qy + u�Ru

)
dt

= 1

2

∫ T

0

(
x�C�QCx + u�Ru

)
dt

}
(13.7)

where R = R� > 0 and Q = Q� ≥ 0 are the weighting matrices. The steady-state solution to this
problem is (Athans and Falb, 1966)

u = −R−1B�P∞︸ ︷︷ ︸
G

x (13.8)

P∞A + A�P∞ − P∞BR−1B�P∞ + C�QC = 0 (13.9)

where P∞ = limt→∞ P(t). The optimal feedback control system is illustrated in Figure 13.1.

Matlab
The steady-state LQR feedback control law is computed as (see the script ExLQR.m)

Q = diag([1]); % user editable tracking error weights (dim m x m)

R = diag([1]); % user editable input weights (dim r x r)

% System matrices

A = [0 1; -1 -2]; % user editable state matrix (dim n x n)

B = [0; 1]; % user editable input matrix (dim n x r)

C = [1 0]; % user editable output matrix (dim m x n)

% Compute the optimal feedback gain matrix G

[K,P,E] = lqr(A,B,C’*Q*C,R);

G = -K

Figure 13.1 Block diagram showing the linear quadratic regulator (LQR).
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The Matlab function lqr.m also returns the eigenvalues of the closed-loop system

ẋ = (A + BG)x (13.10)

denoted by the symbol E.

13.1.2 LQR Design for Trajectory Tracking and Integral Action

The LQR can be redesigned to track a time-varying reference trajectory xd ∈ Rn for a large class of
mechanical systems possessing certain structural properties. This section presents a simple solution to
this problem while a more general solution is presented in Section 13.1.3.

Transformation of the LQ Tracker to a Setpoint Regulation Problem

In order to transform a trajectory-tracking problem to a setpoint regulation problem reference feedforward
can be used. Unmeasured slowly varying or constant disturbances are compensated for by including
integral action. This is usually done by augmenting an integral state ż = e to the system model. A
mass–damper–spring system will be used to demonstrate the design methodology.

Example 13.1 (Mass–Damper–Spring Trajectory-Tracking Problem)
Consider the mass–damper–spring system

ẋ = v

mv̇ + dv + kx = τ

Let

τ = τFF + τLQ (13.11)

where the feedforward term is chosen as

τFF = mv̇d + dvd + kxd (13.12)

such that

më + dė + ke = τLQ (13.13)

where e = x − xd and ė = v − vd. The desired states are computed using a reference model:

ẋd = vd (13.14)

v̇d = φ(vd, r) (13.15)

where r is the setpoint. The trajectory-tracking control problem has now been transformed to an LQ
setpoint regulation problem given by (13.13), which can be written in state-space form as

ẋ =
[

0 1

− d

m
− k

m

]
︸ ︷︷ ︸

A

x +
[

0
1
m

]
︸︷︷︸

B

u

e = [ 1 0
]︸ ︷︷ ︸

C

x

where x = [e, ė]� and u = τLQ.
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Integral Action

In Example 13.1 it was shown that a feedforward term τFF could transform the LQ trajectory-tracking
problem to an LQR problem. For the system model

ẋ = Ax + Bu (13.16)

integral action is obtained by augmenting the integral state z ∈ Rm to the state vector. Let

ż = y = Cx (13.17)

where the C matrix is used to extract potential integral states from the x vector. This system is a standard
LQR problem:

ẋa = Aaxa + Bau (13.18)

where xa = [z�, x�]� and

Aa =
[

0 C

0 A

]
, Ba =

[
0

B

]
(13.19)

The control objective is regulation of xa to zero using u. This is obtained by choosing the
performance index

J = min
u

{
1

2

∫ t

0

(
x�

a Qaxa + u�Ru
)

dτ

}
(13.20)

where R = R� > 0 and Qa = Q�
a ≥ 0 are the weighting matrices. Hence, the solution of the LQR

setpoint regulation problem is (see Section 13.1.1)

u = −R−1B�
a P∞xa

= −R−1[0 B�]

[
P11 P12

P21 P22

][
z

x

]
= − R−1B�P12︸ ︷︷ ︸

Ki

z − R−1B�P22︸ ︷︷ ︸
Kp

x (13.21)

where P12 and P22 are found by solving the algebraic Riccati equation (ARE)

P∞Aa + A�
a P∞ − P∞BaR

−1B�
a P∞ + Qa = 0 (13.22)

Notice that the feedback term u includes feedback from the tracking errors e and ė as well as the
integral state

z =
∫ t

0

e(τ)dτ (13.23)

13.1.3 General Solution of the LQ Trajectory-Tracking Problem

Consider the state-space model

ẋ = Ax + Bu + Ew (13.24)

y = Cx (13.25)
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The LQ trajectory-tracking control problem is addressed under the assumption that both the state vector
x and disturbance vector w are measured or at least obtained by state estimation. If the estimated values
are used for x and w, stability can be proven by applying a separation principle. This is known as LQG
control in the literature and involves the design of a Kalman filter for reconstruction of the unmeasured
states, which again requires that the system is observable. For simplicity, full-state feedback is assumed
in this chapter. The interested reader is recommended to consult the extensive literature on LQG control
for output feedback control; see Athans and Falb (1966) and Brian et al. (1989), for instance.

Reference Feedforward Assumptions

Consider a time-varying reference system:

ẋd = φ(xd, r) (13.26)

yd = Cxd (13.27)

where xd ∈ Rn is the desired state, yd ∈ Rp (p ≤ n) is the desired output, r ∈ Rr (r ≤ n) is the setpoint
and φ : Rn × Rr→Rp. If linear theory is assumed the dynamics of the desired state can be conveniently
represented by

φ(xd, r) = Adxd + Bdr (13.28)

This is a linear reference model for trajectory-tracking control; see Section 10.2.1 for how to choose Ad

and Bd . A special case is regulation:

yd = Cxd = constant (13.29)

Disturbance Feedforward Assumptions

Two cases of disturbance feedforward are considered:

1. The disturbance vector w = constant for all t > Tp where Tp is the present time. An example of this
is a marine craft exposed to constant (or at least slowly varying) wind forces. This is a reasonable
assumption since the average wind speed and direction are not likely to change in minutes.

2. The disturbance w = w(t) varies as a function of time t for future time t > Tp. This is the case
for most physical disturbances. However, a feedforward solution requires that w is known (or at
least estimated) for t ≥ 0. In many cases this is unrealistic so the best we can do is to assume that
w(t) = w(Tp) = constant, that is in a finite future time horizon so that it conforms to Case 1 above.

Control Objective

The control objective is to design a linear quadratic optimal trajectory-tracking controller using a time-
varying smooth reference trajectory yd given by the system (13.26)–(13.27). Assume that the desired
output yd = Cxd is known for all time t ∈ [0, T ], where T is the final time. Define the error signal:

e := y − yd

= C(x − xd) (13.30)

The goal is to design an optimal trajectory-tracking controller that tracks the desired output, that is
regulates the error e to zero while minimizing



Linear Quadratic Optimal Control 423

J = min
u

{
1

2
e�(T )Qf e(T ) + 1

2

∫ T

t0

(e�Qe + u�Ru) dt

}
subject to ẋ = Ax + Bu + Ew, x(0) = x0 (13.31)

where R = R� > 0 and Q = Q� ≥ 0 are the tracking error and control weighting matrices, respectively.
The weight matrix Qf = Q�

f ≥ 0 can be included to add penalty to the final state. Notice that this is
a finite time-horizon optimal control problem and it has to be solved by using the differential Riccati
equation (DRE); see Athans and Falb (1966, pp. 793–801).

It is assumed that the desired output signal comes from a linear reference generator given by

ẋd = Adxd + Bdr (13.32)

y = Cxd (13.33)

where r is a given reference input, which is filtered through the generator. C is the same output matrix
as in the plant. A special case of (13.31) is the one with no weight on the final state; that is Qf = 0,
resulting in the quadratic performance index

J = min
u

{
1

2

∫ T

0

(e�Qe + u�Ru) dt

}
(13.34)

Substituting (13.30) into (13.34) yields the equivalent formulation

J = min
u

{
1

2

∫ T

0

( x̃� Q̃ x̃ + u�Ru) dt

}
(13.35)

where x̃ = x − xd and

Q̃ = C�QC ≥ 0 (13.36)

Linear Time-Varying Systems

It can be shown that the optimal control law is (Brian et al., 1989)

u = −R−1B�[Px + h1 + h2] (13.37)

where P , h1 and h2 originate from the Hamiltonian system. P accounts for the feedback part, h1 accounts
for the feedforward part due to the time-varying nature of the reference signal yd and h2 accounts for
the feedforward part due to the measurable time-varying disturbance w. The equations that need to be
solved are

Ṗ = −PA − A�P + PBR−1B�P − Q̃ (13.38)

ḣ1 = −[A − BR−1B�P]�h1 + Q̃xd (13.39)

ḣ2 = −[A − BR−1B�P]�h2 − PEw (13.40)
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with

P(T ) = Q̃f (13.41)

h1(T ) = − Q̃f xd(T ) (13.42)

h2(T ) = 0 (13.43)

where Q̃f = C�Qf C. Equations (13.38)–(13.40) represent three differential equations: a matrix DRE
and two vector differential equations (adjoint operators), respectively. Notice that the initial conditions
for these equations are not known, but rather the final conditions are known. Consequently, they have
to be integrated backward in time a priori to find the initial conditions, and then be executed forward in
time again with the closed-loop plant from [0, T ].

There are different ways of doing this. A frequently used method is to discretize the system and run
the resulting difference equation backward. A simple Euler integration routine for (13.38) is given below,
where δ is set as a small negative sampling time. Moreover, using a first-order Taylor expansion

P(t + δ) ≈ P(t) + δ{−PA − A�P + PBR−1B�P − Q̃} (13.44)

with P(T ) = Q̃f produces P(0). Another procedure is to simulate backwards in time. The system

ẋ = f (x, t) + G(x, t)u, t ∈ [T, 0] (13.45)

can be simulated backwards in time by the following change of integration variable t = T − τ with
dt = −dτ, and

−dx(T − τ)

dτ
= f (x(T − τ), T − τ) + G(x(T − τ), T − τ)u(T − τ) (13.46)

Let z(τ) = x(T − τ); then

dz(τ)

dτ
= −f (z(τ), T − τ) − G(z(τ), T − τ)u(T − τ) (13.47)

This system can now be simulated forward in time with the initial condition z(0) = x(T ).
The method is demonstrated in Example 13.2, where it is assumed that both xd and w are time varying

but known for all future t. A special case dealing with constant values for xd and w will be studied later.

Example 13.2 (Optimal Time-Varying LQ Trajectory-Tracking Problem)
Consider a mass–damper–spring system:

mẍ + dẋ + kx = u + w (13.48)

where m is the mass, d is the damping coefficient, k is the spring stiffness coefficient, u is the input and
w is the disturbance. Choosing the states as x1 = x and x2 = ẋ, the following state-space realization
is obtained: [

ẋ1

ẋ2

]
=
[

0 1

− k

m
− d

m

][
x1

x2

]
+
[

0
1
m

]
u +
[

0
1
m

]
w (13.49)
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For simplicity, assume that m = k = 1 and d = 2 such that

ẋ =
[

0 1

−1 −2

]
x +
[

0

1

]
u +
[

0

1

]
w (13.50)

y = [ 1 0
]
x (13.51)

where x = [x1, x2]�. The disturbance signal is assumed to be known for all future time and is simply
chosen as

w = cos(t) (13.52)

Similarly, the reference signal is assumed to be known for all future time and is given by the generator

ẋd =
[

0 1

−1 −1

]
xd +

[
0

1

]
r (13.53)

yd = [ 1 0
]
xd (13.54)

where

r = sin(t) (13.55)

The Matlab MSS toolbox script ExLQFinHor.m demonstrates how forward and backward integra-
tion can be implemented for the mass–damper–spring system. The simulation results are shown in
Figures 13.2–13.3.

Approximate Solution for Linear Time-Invariant Systems

Unfortunately, the theory dealing with the limiting case

J = min
u

{
1

2
lim

T→∞

∫ T

0

(
e�Qe + u�Ru

)
dt

}
(13.56)

is not available. This solution is very useful since it represents a steady-state solution of the LQ trajectory-
tracking problem. Fortunately, this problem can be circumvented by assuming that T is large but still
limited; that is

0 	 T1 ≤ T < ∞ (13.57)

where T1 is a large constant. For T → ∞ the solution of (13.38) will tend to the constant matrix P∞
satisfying the algebraic Riccati equation (ARE)

P∞A + A�P∞ − P∞BR−1B�P∞ + Q̃ = 0 (13.58)

This solution is interpreted as the steady-state solution of (13.38) where P(t) ≈ P∞ for all t ∈ [0, T1].
This is verified in the upper plot of Figure 13.3. Furthermore, it is assumed that

xd = constant, w = constant, ∀ t ∈ [0, T1] (13.59)
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Figure 13.2 Upper plot: states x1and x2 and the reference trajectories xd1 and xd2 as a function of time.
Lower plot: optimal control u as a function of time.

In practice the assumption that xd is constant can be relaxed with xd being slowly varying compared
to the state dynamics. A similar argument can be used for w. It is also common to drop the dis-
turbance feedforward term since integral action in the controller can compensate for nonzero slowly
varying disturbances.

Next, if the eigenvalues of the matrix

Ac = A + BG1 where G1 = −R−1B�P∞ (13.60)

have negative real parts

λi(Ac) < 0 (i = 1, . . . , n) (13.61)

the steady-state solution for h1 and h2 in (13.39) and (13.40) on [0, T1] becomes

h1∞ = (A + BG1)−� Q̃xd (13.62)

h2∞ = −(A + BG1)−�P∞Ew (13.63)
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Figure 13.3 Optimal solutions of the elements in P , h1 and h2 as a function of time.

Substitution of (13.58) into (13.37) yields the steady-state optimal control law (see Figure 13.4)

u = G1 x + G2 yd + G3w (13.64)

Figure 13.4 Block diagram showing the full state feedback LQ tracker solution with disturbance
feedforward.
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where yd = constant and w = constant, and

G1 = −R−1B�P∞ (13.65)

G2 = −R−1B�(A + BG1)−�C�Q (13.66)

G3 = R−1B�(A + BG1)−�P∞E (13.67)

Matlab
The function lqtracker.m is implemented in the MSS toolbox for computation of the matrices
G1, G2 and G3:

function [G1,G2,G3] = lqtracker(A,B,C,Q,R)

[K,P,E] = lqr(A,B,C’*Q*C,R);

G1 = -inv(R)*B’*P;

Temp = inv((A+B*G1)’);

G2 = -inv(R)*B’*Temp*C’*Q;

G3 = inv(R)*B’*Temp*P*E;

For a mass–damper–spring system the optimal trajectory tracking controller is found using
ExLQtrack.m:

%Design matrices

Q = diag([1]); % tracking error weights

R = diag([1]); % input weights

% System matrices

A = [0 1; -1 -2]; % state matrix

B = [0; 1]; % input matrix

C = [1 0]; % output matrix

% Optimal gain matrices

[G1,G2,G3] = lqtracker(A,B,C,Q,R)

SISO Systems

Consider the SISO state-space model

ẋ = Ax + bu + Ew (13.68)

y = c�x (13.69)

where x ∈ Rn, u ∈ R and y ∈ R. For SISO systems, the performance index (13.34) simplifies to

J = min
u

{
1

2
lim

T→∞

∫ T

0

(
q e2 + r u2

)
dτ

= q

2
lim

T→∞

∫ T

0

(
e2 + r

q
u2

)
dt

}
(13.70)
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where q ≥ 0 and r > 0 are two scalars. By choosing q = 1 (without loss of generality) and defining
λ := r/q > 0, the performance index (13.70) changes to

J∗ = min
u

{
1

2
lim

T→∞

∫ T

to

(
e2 + λu2

)
dt

}
(13.71)

Consequently, the steady-state optimal solution can be approximated as

u = g�
1 x + g2 yd + g�

3 w (13.72)

where

g�
1 = − 1

λ
b�P∞ (13.73)

g2 = − 1

λ
b�(A + bg�

1 )−�c (13.74)

g�
3 = 1

λ
b�(A + bg�

1 )−�P∞E (13.75)

Here P∞ = P�
∞ > 0 is the solution of the ARE:

P∞A + A�P∞ − 1

λ
P∞bb�P∞ + cc�= 0 (13.76)

For a mass–damper–spring system the term g�
1 x can be viewed as a PD controller while g2yd and g�

3 w

represent reference and disturbance feedforward, respectively.

13.1.4 Case Study: Optimal Heading Autopilot for Ships and
Underwater Vehicles

Autopilots for rudder-controlled ships and underwater vehicles can be designed by considering a linear
quadratic optimization problem:

J = min
δ

{
α

T

∫ T

0

[e2 + λ1r
2 + λ2δ

2]dτ

}
(13.77)

where α is a constant to be interpreted later, e = ψd − ψ is the heading error, δ is the actual rudder angle
and λ1 and λ2 are two factors weighting the cost of heading errors e and heading rate r against the control
effort δ. This criterion can also be reformulated to describe marine craft that not are turned using a single
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rudder by replacing the quadratic term δ2 with other control inputs. In the forthcoming, we will restrict
our analysis to a single input.

For marine craft, operation in restricted waters usually requires accurate control, while the minimization
of fuel consumption is more important in open seas. This can be obtained by changing the weights λ1

and λ2. We will discuss three criteria for control weighting that have all been derived by considering a
ship. However, the same principles apply for underwater vehicles.

The Steering Criterion of Koyama

The first criterion was derived by Koyama (1967) who observed that the ship’s swaying motion y could
be approximated by a sinusoid

y = sin(et) =⇒ ẏ = e cos(et) (13.78)

during autopilot control. The length of one arch La of the sinusoid is

La =
∫ π

0

√
(1 + ẏ2) dτ =

∫ π

0

√
[1 + e2 cos2(eτ)] dτ ≈ π

(
1 + e2

4

)
(13.79)

Hence, the relative elongation due to a sinusoidal course error is

�L

L
= La − L

L
= π(1 + e2/4) − π

π
= e2

4
(13.80)

This suggests that the percentage loss of speed during course control can be calculated by using the elon-
gation in distance due to a sinusoidal course error. Consequently, Koyama (1967) proposed minimizing
the speed loss term e2/4 against the increased resistance due to steering given by the quadratic term δ2.
This motivates the following criterion:

J = min
δ

{
100
(

π

180

)2 1

T

∫ T

0

[
e2

4
+ λ2δ

2

]
dτ ≈ 0.0076

T

∫ T

0

[e2 + λ2δ
2]dτ

}
(13.81)

In this context (13.77) can be interpreted as

J = loss of speed (%) (13.82)

α = 0.0076 (13.83)

Notice that λ1 = 0 for this method. In practice it might be desirable to penalize r2 by choosing λ1 > 0.

For ships, Koyama suggested a λ2 factor of approximately 8–10. Experiments show that such high values
for λ2 avoid large rudder angles, and thus high turning rates. Therefore, λ2 = 10 will be a good choice
in bad weather, where it is important to suppress high-frequency rudder motions.

Norrbin’s Steering Criterion

Another approach for computation of λ2 was proposed by Norrbin (1972). Consider the surge dynamics
of a rudder-controlled marine craft in the form

(m − Xu̇)u̇ = X|u|u|u|u + (1 − t)T + Tloss (13.84)
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where

Tloss = (m + Xvr)vr + Xccδδc
2 δ2 + (Xrr + mxg)r2 + Xext (13.85)

Norrbin (1972) suggested minimizing the loss term Tloss to obtain maximum forward speed u. Conse-
quently, the controller should minimize the centripetal term vr, the square rudder angle δ2 and the square
heading rate r2, while the unknown disturbance term Xext is neglected in the analysis. The assumptions
in doing this are as follows:

1. The sway velocity v is approximately proportional to r. From Section 7.2 it follows that

v(s) = Kv(Tvs + 1)

K(Ts + 1)
r(s) ≈ Kv

K
r(s) (13.86)

if Tv ≈ T . Hence, the centripetal term vr will be approximately proportional to the square of the
heading rate; that is vr ≈ (Kv/K)r2.

2. The ship’s yawing motion is periodic under autopilot control such that

rmax = ωr emax (13.87)

where ωr is the frequency of the sinusoidal yawing.

These two assumptions suggest that the loss term Tloss can be minimized by minimizing e2 and δ2 which
is the same result obtained in Koyama’s analysis. The only difference between the criteria of Norrbin and
Koyama is that the λ2 values arising from Norrbin’s approach will be different when computed for the
same ship. The performance of the controller also depends on the sea state. This suggests that a trade-off
between the λ2 values proposed by Koyama and Norrbin could be made according to

(calm sea)︸ ︷︷ ︸
Norrbin

0.1 ≤ λ2 ≤ 10 (rough sea)︸ ︷︷ ︸
Koyama

(13.88)

Van Amerongen and Van Nauta Lemke’s Steering Criterion

Experiments with the steering criteria of Koyama and Norrbin soon showed that the performance could
be further improved by considering the squared yaw rate r2, in addition to e2 and δ2 (Van Amerongen
and Van Nauta Lemke, 1978). Consequently, the following criterion was proposed:

J = min
δ

{
0.0076

T

∫ T

0

(e2 + λ1r
2 + λ2δ

2) dτ

}
(13.89)

For a tanker and a cargo ship, Van Amerongen and Van Nauta Lemke (1978, 1980) gave the following
values for the weighting factors λ1 and λ2 corresponding to the data set of Norrbin (1972):

Tanker: Lpp = 300 m, λ1 = 15 000, λ2 = 8.0

Cargo ship: Lpp = 200 m, λ1 = 1 600, λ2 = 6.0
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The solution of the optimal steering criteria is found by considering Nomoto’s first-order model in
the form

ψ̇′ = r′ (13.90)

T ′ṙ + (U/L)r = (U/L)2K′ δ (13.91)

Straightforward application of optimal control theory to the criterion of Van Amerongen and Van Nauta
Lempke (1978) yields (see Section 13.1.3)

δ = −Kp(ψ − ψd) − Kdr (13.92)

where the controller gains are computed using the steady-state solution (13.73) and (13.76). This gives

Kp =
√

1

λ2
(13.93)

Kd = L

U

√
1 + 2KpK′T ′ + K′2(U/L)2 (λ1/λ2) − 1

K′ (13.94)

Consequently, the solution of the criteria of Koyama and Norrbin is obtained by setting λ1 = 0 and
λ2 = λ, which yields

Kp =
√

1

λ
(13.95)

Kd = L

U

√
1 + 2KpK′T ′ − 1

K′ (13.96)

From these expressions it is seen that Kp depends on the weighting factor λ, while Kd depends on Kp

as well as the model parameters K′ and T ′. Hence, accurate steering requires that K′ and T ′ are known
with sufficient accuracy.

An extension to Nomoto’s second-order model is found by considering the state-space model (see
Section 7.2)

ẋ = Ax + Bu (13.97)

y = Cx (13.98)

where x = [v, r, ψ]�, u = δ, y = [r, ψ]� and

A =

⎡
⎣ a11 a12 0

a21 a22 0

0 1 0

⎤
⎦ , B =

⎡
⎣ b1

b2

0

⎤
⎦ , C =

[
0 1 0

0 0 1

]
(13.99)



Linear Quadratic Optimal Control 433

Let y = [0, ψd]� = constant and

e = y − yd

= C(x − xd) (13.100)

The steady-state optimal solution minimizing the quadratic performance index

J = min
u

{
1

2

∫ T

0

(e�Qe + u�Ru) dτ

}
(13.101)

where Q = diag{q11, q22}≥ 0 and R = r11 > 0 are the weights is (see Section 13.1.3)

u = G1x + G2yd (13.102)

where

G1 = −R−1B�P∞ (13.103)

G2 = −R−1B�(A + BG1)−�C�Q (13.104)

and P∞ is the solution of the matrix Riccati equation:

P∞A + A�P∞ − P∞BR−1B�P∞ + C�QC = 0 (13.105)

The robustness of optimal autopilots for course-keeping control with a state estimator is analyzed in
Holzhüter (1992).

13.1.5 Case Study: Optimal Fin and Rudder-Roll Damping Systems
for Ships

The roll motion of ships and underwater vehicles can be damped by using fins alone or in combination
with rudders. The main motivation for using roll stabilizing systems on merchant ships is to prevent
cargo damage and to increase the effectiveness of the crew by avoiding or reducing seasickness. This is
also important from a safety point of view. For naval ships critical marine operations include landing a
helicopter, formation control, underway replenishment, or the effectiveness of the crew during combat.

Several passive and active (feedback control) systems have been proposed to accomplish roll reduction;
see Burger and Corbet (1960), Lewis (1967) and Bhattacharyya (1978) for a more detailed discussion.
Design methods for rudder-roll damping and fin stabilization systems are found in Perez (2005). Some
passive solutions are:

Bilge Keels: Bilge keels are fins in planes approximately perpendicular to the hull or near the turn of
the bilge. The longitudinal extent varies from about 25 to 50 % of the length of the ship. Bilge keels
are widely used, are inexpensive but increase the hull resistance. In addition to this, they are effective
mainly around the natural roll frequency of the ship. This effect significantly decreases with the speed
of the ship. Bilge keels were first demonstrated in 1870.

Hull Modifications: The shape and size of the ship hull can be optimized for minimum rolling using
hydrostatic and hydrodynamic criteria. This must, however, be done before the ship is built.

Anti-Rolling Tanks: The most common anti-rolling tanks in use are free-surface tanks, U-tube tanks
and diversified tanks. These systems provide damping of the roll motion even at small speeds. The
disadvantages are the reduction in metacenter height due to free water surface effects and that a large
amount of space is required. The earliest versions were installed about the year 1874.
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The most widely used systems for active roll damping are:

Fin Stabilizers: Fin stabilizers are highly useful devices for roll damping. They provide considerable
damping if the speed of the ship is not too low. The disadvantage with additional fins is increased hull
resistance and high costs associated with the installation, since at least two new hydraulic systems must
be installed. Retractable fins are popular, since they are inside the hull when not in use (no additional
drag). It should be noted that fins are not effective at low speed and that they cause underwater noise
in addition to drag. Fin stabilizers were patented by John I. Thornycroft in 1889.

Rudder-Roll Damping (RRD): Roll damping by means of the rudder is relatively inexpensive compared
to fin stabilizers, has approximately the same effectiveness and causes no drag or underwater noise
if the system is turned off. However, RRD requires a relatively fast rudder to be effective; typically
rudder rates of δ̇max = 5–20 deg/s are needed. RRD will not be effective at low ship speeds.

Gyroscopic Roll Stabilizers: Gyroscopic roll stabilizers are typically used for boats and yachts under
100 feet. The ship gyroscopic stabilizer has a spinning rotor that generates a roll stabilizing moment
that counteracts the wave-induced roll motions. Unlike stabilizing fins, the ship gyroscopic stabilizer
can only produce a limited roll stabilizing moment and effective systems require approximately 3 to
5 % of the craft’s displacement.

For a history of ship stabilization, the interested reader is advised to consult Bennett (1991), while a
detailed evaluation of different ship roll stabilization systems can be found in Sellars and Martin (1992).

Rudder-roll damping (RRD) was first suggested in the late 1970s; see Cowley and Lambert (1972,
1975), Carley (1975), Lloyd (1975) and Baitis (1980). Research in the early 1980 showed that it was
indeed feasible to control the heading of a ship with at least one rudder while simultaneously using the
rudder for roll damping. If only one rudder is used, this is an underactuated control problem. In the linear
case this can be solved by frequency separation of the steering and roll modes since heading control
can be assumed to be a low-frequency trajectory-tracking control problem while roll damping can be
achieved at higher frequencies.

Before designing an RRD system the applicability of the control system in terms of effectiveness
should be determined (Roberts, 1993). For a large number of ships it is in fact impossible to obtain a
significant roll damping effect due to limitations of the rudder servo and the relatively large inertia of
the ship.

Motivated by the results in the 1970s, RRD was tested by the US Navy by Baitis et al. (1983, 1989), in
Sweden by Källström (1987), Källström et al. (1988), Källström and Schultz (1990) and Källström and
Theoren (1994), and in the Netherlands by Amerongen and coauthors. Van Amerongen et al. (1987), Van
Amerongen and Van Nauta Lempke (1987) and Van der Klugt (1987) introduced LQG theory in RRD
systems. A similar approach has been proposed by Katebi et al. (1987), while adaptive RRD is discussed
in Zhou (1990).

Blanke and co-workers have developed an RRD autopilot (Blanke et al., 1989) that has been im-
plemented by the Danish Navy on 14 ships (Munk and Blanke, 1987). Sea trials show that some of
the ships had less efficient RRD systems than others. In Blanke and Christensen (1993) it was shown
that the cross-couplings between steering and roll were highly sensitive to parametric variations, which
again resulted in robustness problems. Different loading conditions and varying rudder shapes have been
identified as reasons for this (Blanke, 1996). In Stoustrup et al. (1995) it has been shown that a robust
RRD controller can be designed by separating the roll and steering specifications and then optimizing
the two controllers independently. The coupling effects between the roll and yaw modes have also been
measured in model scale and compared with full-scale trial results (Blanke and Jensen, 1997), while a
new approach to identification of steering-roll models has been presented by Blanke and Tiano (1997).

More recently H∞ control has been used to deal with model uncertainties in RRD control systems.
This allows the designer to specify frequency-dependent weights for frequency separation between the
steering and roll modes; see Yang and Blanke (1997, 1998). Qualitative feedback theory (QFT) has also
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been applied to solve the combined RRD heading control problem under model uncertainty; see Hearns
and Blanke (1998). Results from sea trials are reported in Blanke et al. (2000).

Simulation and full-scale experimental results of RRD systems using a multivariate autoregressive
model and the minimum AIC estimate procedure have been reported by Oda et al. (1996, 1997). Experi-
mental results with various control strategies are also reported by Sharif et al. (1996). A nonlinear RRD
control system using sliding-mode control for compensation of modeling errors is reported in Lauvdal
and Fossen (1997).

A gain scheduling algorithm for input rate and magnitude saturations in RRD damping systems has
been developed by Lauvdal and Fossen (1998). This method is motivated by the automatic gain controller
(AGC) by Van der Klugt (1987) and a technique developed for stabilization of integrator chains with
input rate saturation.

In this section the focus will be on linear quadratic optimal RRD. The interested reader is recommended
to consult the references above and Perez (2005) for other design techniques.

Linear Quadratic Optimal RRD Control System

Consider the 4 DOF maneuvering model (7.138) in Section 7.4:

ẋ = Ax + Bu (13.106)

where x = [v, p, r, φ, ψ]� and

φ = c�
rollx, ψ = c�

yawx (13.107)

The transfer functions corresponding to (13.106) and (13.107) are

φ

δ
(s) = b2s

2+b1s + b0

s4+a3s3+a2s2+a1s + a0
≈ Kroll ω2

roll (1 + T 5s)

(1 + T 4s)(s
2+2ζωrolls + ω2

roll)
(13.108)

ψ

δ
(s) = c3s

3+c2s
2+c1s + c0

s(s4+a3s3+a2s2+a1s + a0)
≈ Kyaw (1 + T 3s)

s(1 + T 1s)(1 + T 2s)
(13.109)

The control objective is a simultaneous heading control ψ = ψd = constant and RRD (pd = φd = 0)
using one control input. There will be a trade-off between accurate heading control (minimizing
ψ̃ = ψ − ψd) and control action needed to increase the natural frequency ωroll and damping ratio ζroll.
Also notice that it is impossible to regulate φ to a nonzero value while simultaneously controlling the
heading angle to a nonzero value by means of a single rudder. This can easily be seen by performing a
steady-state analysis of the closed-loop system. This suggests that the output of the controller should be
specified as

y = [p, r, φ, ψ]�, yd = [0, 0, 0, ψd]� (13.110)

Choosing y = Cx implies that

C =

⎡
⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎦ (13.111)
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Application of optimal control theory implies that the control objective should be specified as an optimiza-
tion problem for course keeping, roll damping and minimum fuel consumption. The trade-off between
these quantities can be expressed as

J = min
u

{
1

2

∫ T

0

(
ỹ�Q ỹ + u�Ru

)
dτ

}
(13.112)

where ỹ = y − yd, x̃ = x − xd and xd = [0, 0, 0, 0, ψd]�. Accurate steering is weighted
against roll damping by specifying the cost matrix Q = diag{Qp, Qr, Qφ, Qψ} ≥ 0, while
R = diag{R1, R21, . . . , Rr} > 0 weights the use of the different rudder servos.

The solution to the LQ trajectory-tracking problem is (see Section 13.1.3)

u = G1x + G2yd (13.113)

where

G1 = −R−1B�P∞ (13.114)

G2 = −R−1B�(A + BG1)−�C�Q (13.115)

with P∞ = P�
∞ > 0 given by

P∞A + A�P∞ − P∞BR−1B�P∞ + C�QC = 0 (13.116)

Frequency Separation and Bandwidth Limitations

Since (A, B) is controllable and full-state feedback is applied, it is possible to move all the five poles of
the system. The closed-loop system becomes

ẋ = Ax + Bu

= (A + BG�
1 )︸ ︷︷ ︸

Ac

x + BG2 hψd︸︷︷︸
yd

(13.117)

where

h = [0, 0, 0, 1]� (13.118)

The closed-loop transfer function in yaw is

ψ(s) = c�
yaw(sI − Ac)

−1BG2hψd(s) (13.119)

which clearly satisfy

lim
t→∞

ψ(t) = ψd (13.120)
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Notice that integral action in yaw is needed in a practical implementation of the controller. Similarly, the
closed-loop roll dynamics becomes

φ(s) = c�
roll(sI − Ac)

−1BG2hψd(s) (13.121)

If one rudder is used to control both φ and ψ, frequency separation is necessary to achieve this.
Assume that the steering dynamics is slower than the frequency 1/Tl and that the natural frequency in
roll is higher than 1/Th. Hence, the vertical reference unit (VRU) and compass measurements can be
low- and high-pass filtered according to

φ

φvru
(s) = hh(s) = Ths

1 + Ths
(13.122)

ψ

ψcompass
(s) = hl(s) = 1

1 + Tls
(13.123)

It is also necessary to filter the roll and yaw rate measurements p(s) and r(s). These signals can also be
computed by numerical differentiation of φvru(s) and ψvru(s) using a state estimator.

This suggests that the bandwidth of the yaw angle control system must satisfy (frequency separation)

ωb 	 ωroll (13.124)

This again implies that the low- and high-pass filters must satisfy

ωyaw︸︷︷︸
cross-over
frequency

< ωb︸︷︷︸
bandwidth

in yaw

< 1/Tl︸︷︷︸
low-pass filter

frequency

< 1/Th︸︷︷︸
high-pass filter

frequency

< ωroll︸︷︷︸
natural

frequency

which clearly puts a restriction on the ships that can be stabilized. For many ships this requirement is
impossible to satisfy due to limitations of the rudder servos and control forces.

Example 13.3 (RRD Control System Using One Rudder)
Let G1 = [g11, g12, g13, g14, g15] and G2 = [0, 0, 0, g24] such that the solution (13.113) of the
SISO LQ trajectory-tracking problem can be written

δ = [g11, g12, g13, g14, g15] x + g24ψd (13.125)

or

δ = −Kvv︸ ︷︷ ︸
sway feedback

−Kp(ψ − ψd) − Kdr︸ ︷︷ ︸
PD heading controller

−Kr1p − Kr2φ︸ ︷︷ ︸
roll damper

(13.126)

where Kv = −g11, Kp = −g15 = g24, Kd = −g13, Kr1 = −g12 and Kr2 = −g14. Frequency separation
suggests that

δ = hl(s)δcourse + hh(s)δroll (13.127)

where

δcourse = −Kvv − Kp(ψ − ψd) − Kdr (13.128)

δroll = −Kr1p − Kr2φ (13.129)
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The controller gains can be found by using the MSS toolbox m-function (see Section 13.1.3):

[G1,G2]=lqtracker(A,B,C,Q,R)

Alternatively, the gains can be computed by using pole placement. The two subsystems (7.145) and
(7.146) with heading autopilot and RRD become (neglecting the interactions between the systems)

[
ṗ

φ̇

]
=

⎡
⎢⎣

a22 − b21Kr1︸ ︷︷ ︸
−2ζrollωroll

(a24 − b21Kr2)︸ ︷︷ ︸
−ω2

roll

1 0

⎤
⎥⎦[p

φ

]
= 0 (13.130)

⎡
⎣ v̇

ṙ

ψ̇

⎤
⎦ =

⎡
⎣ a11 − b11Kv a13 − b11Kd −b11Kp

a31 − b31Kv a33 − b31Kd −b31Kp

0 1 0

⎤
⎦
⎡
⎣ v

r

ψ − ψd

⎤
⎦ = 0 (13.131)

The poles can be specified directly in Matlab using

[Kr1,Kr2]=place(A phiphi,B phiphi,[p phi1,p phi2])

[Kv,Kp,Kd]=place(A psipsi,B psipsi,[p psi1,p psi2,p psi3])

For roll it is seen that

−ω2
roll = a24 − b21Kr2, −2ζrollωroll = a22 − b21Kr1 (13.132)

or

Kr1 = a22 + 2ζrollωroll

b21
, Kr2 = a24 + ω2

roll

b21
(13.133)

where ζroll and ωroll are pole-placement design parameters that can be used instead of eigenvalues. The
model of Son and Nomoto (see ExRRD2.m in the MSS toolbox) has been used to demonstrate how an LQ
optimal RRD control system can be designed. The linear state-space model for the container ship is

A =

⎡
⎢⎢⎢⎢⎢⎣

−0.0406 −1.9614 0.2137 0.1336 0

0.0011 −0.1326 −0.1246 −0.0331 0

−0.0010 0.0147 −0.1163 −0.0006 0

0 1 0 0 0

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

−0.0600

0.0035

0.0026

0

0

⎤
⎥⎥⎥⎥⎥⎦ (13.134)

The controller gains were computed using[G1,G2]=lqtracker(A,B,C,Q,R) with the weights

Q=diag([10000 1000 10 1]), R=0.5

resulting in

G1=[0.1631-16.1193-6.7655-1.1644-0.4472], G2=[0 0 0 0.4472]

Notice that g15 = −g24. The open- and closed-loop poles are computed in Matlab by using the commands
damp(A)and damp(A+B*G1); see Table 13.1.
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Table 13.1 Eigenvalues, damping ratios and frequencies for the RRD control system

Eigenvalues Damping Frequencies (rad/s)

Open loop Closed loop Open loop Closed loop Open loop Closed loop

0 −0.061 − 1.00 − 0.016
−0.027 −0.026 1.00 1.00 0.027 0.026
−0.071 + 0.183i −0.100 + 0.165i 0.36 0.52 0.197 0.193
−0.071 − 0.183i −0.100 − 0.165i 0.36 0.52 0.197 0.193
−0.121 −0.131 1.00 1.00 0.121 0.131

It is seen that the natural frequency and relative damping ratio in roll are ωroll = 0.193 rad/s and
ζroll = 0.36, respectively. This is improved to ωroll = 0.197 rad/s and ζroll = 0.52 by roll feedback. It
is difficult to increase the relative damping ratio further due to limitations of the steering machine
(δ̇max = 20 deg/s and δmax = 20 deg). These values can, however, be changed in RRDcontainer.m.

Since the roll frequency ωroll is 0.193 rad/s and the cross-over frequency in yaw ωyaw is 0.03 rad/s,
see Figure 7.7 in Example 7.7, it is approximately one decade between the frequencies ωyaw and ωroll.
Therefore, frequency separation can be obtained by choosing the low-pass and high-pass filter frequencies
as 1/Tl = 0.1 rad/s in yaw and 1/Th = 0.05 rad/s in roll, respectively. It is seen that the heading controller
moves the poles to −0.061, −0.026 and −0.131, resulting in satisfactory course-changing capabilities
(see Figure 13.5). It is also seen that the course-keeping performance is degraded during RRD. The
additional yawing motion, typically 1–2 degrees in amplitude, is the price paid for adding roll feedback
to an autopilot system. Also notice that the right half-plane zero in the transfer function φ/δ1(s) given by
(7.147) is unchanged since feedback only moves the poles.

Performance Criterion for RRD

The percentage roll reduction of RRD system can be computed by using the following criterion of Oda
et al. (1992):

Roll reduction = σAP − σRRD

σAP
× 100 % (13.135)

where

σAP = standard deviation of roll rate during course-keeping (RRD off)
σRRD = standard deviation of roll rate during course-keeping (RRD on)

For the case study in Example 13.3, σAP = 0.0105 and σRRD = 0.0068. This resulted in a roll reduction
of approximately 35 % during course-keeping. For small high-speed vessels a roll reduction as high as
50–75 % can be obtained. This of course depends on the shape of the hull (hydrodynamic effects) and the
capacity of the steering machine. In particular the maximum rudder rate δ̇max should be in the magnitude
of 15–20 % to obtain good results.

Optimal Fin and RRD Systems

The most effective roll damping systems are those that combine stabilizing fins and rudders; see Källström
(1981), Roberts and Braham (1990) and Perez (2005). Warship stabilization using integrated rudder and
fins are discussed by Roberts (1992). More recently robust fin stabilizer controller design using the QFT
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Figure 13.5 Performance of RRD control system during course-keeping and a 10◦ course-changing
maneuver. The RRD system is active between t = 300–700 s.

and H∞ design techniques have been presented by Hearns et al. (2000), while the performance of classical
PID, optimized PID (Hickey et al., 2000) and H∞ controllers are compared in Katebi et al. (2000). Sea
trials with the MV Barfleur using PID and H∞ controllers are presented in Hickey et al. (1997) and
experimental results with a fin and RRD control system onboard a frigate-size Royal Naval warship are
reported in Sharif et al. (1995, 1996).

Reduction of vertical accelerations of fast ferries using fins and a T-foil is discussed by Esteban
et al. (2000) and Giron-Sierra et al. (2001), while the modeling and identification results are reported in
de-la-Cruz et al. (1998) and Aranda et al. (2000).

Fin stabilizers are useful for roll reduction since they are highly effective, work on a large num-
ber of ships and are more easier to control than RRD systems, even for varying load conditions
and actuator configurations. Fin stabilizers are effective at high speed, but at the price of additional
drag and added noise. The most economical systems are retractable fins, where additional drag is
avoided during normal operation, since fin stabilizers are not needed in moderate weather. Another
advantageous feature of fin stabilizing systems is that they can be used to control φ to a nonzero
value (heel control). This is impossible with an RRD control system where the accurate control of ψ

has priority.
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Notice that a stand alone fin stabilization system can be constructed by simply removing the rudder
inputs from the input matrix. When designing an LQ optimal fin and RRD system the following model
representations can be used:

Mν̇ + Dν = τ (13.136)

where

τ = Tf , f = Ku (13.137)

In this representation, K is the diagonal matrix of force coefficients and T is the actuator configuration
matrix (see Section 12.3). We can premultiply (13.136) with M−1 to obtain

ν̇ = −M−1D︸ ︷︷ ︸
upper left part
of A in (7.138)

ν + M−1TK︸ ︷︷ ︸
upper part

of B in (7.138)

u (13.138)

In the first representation, the generalized force τ is used as the control input while the last representation
uses u, that is propeller rpm, rudder angles and fin angles. In practice it is advantageous to use (13.136)
instead of (13.138), since actuator failures can be handled independently by the control allocation al-
gorithm without redesigning the control law. Notice that the B matrix in (13.138) depends on T and K

while these matrices are not used in (13.136); see Section 12.3.

Energy Optimal Criterion for Combined Fin and RRD

It is possible to derive LQ controllers for both models (13.136) and (13.138). This is demon-
strated by considering a ship equipped with r1 rudders and r2 fins. The total number of actuators is
r = r1 + r2, implying that u ∈Rr. The DOFs considered are sway, roll and yaw; that is n = 3.
Consequently, ν = [v, p, r]� ∈Rn. It is also assumed that the ship is fully actuated such that r ≥ n.
The generalized forces are

τ = Tf

= TKu (13.139)

It is advantageous to solve for the optimal control force τ and then use control allocation to compute u.
For most systems the inverse (see alloc.m in the Matlab MSS toolbox)

u = K−1T †
wτ (13.140)
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exists. An energy optimal criterion weighting f , u or τ against accurate tracking and roll damping is

J = min
f

{
1

2

∫ T

0

(e�Qe + f�Rf f ) dτ

}

= min
u

⎧⎪⎨
⎪⎩1

2

∫ T

0

(e�Qe + u� K�Rf K︸ ︷︷ ︸
Ru

u) dτ

⎫⎪⎬
⎪⎭

= min
τ

⎧⎨
⎩1

2

∫ T

0

(e�Qe + τ� (T †
w)�RuT w︸ ︷︷ ︸

Rτ

τ) dτ

⎫⎬
⎭ (13.141)

where e = y − yd . The elements in Q = diag{Qp, Qr, Qφ, Qψ} ≥ 0 are used to weight accurate steering
against roll damping. The rudder and fin servos are weighted against each other by specifying the elements
in Rf = diag{Rδ1, Rδ2, . . . , Rδr1 , Rf1, Rf2, . . . , Rfr2 } > 0. If r1 = 0 and Rδ1 = Rδ2 = · · · = Rδr1 = 0
only fin stabilization is obtained (no rudders).

The control weights satisfy

Ru = K�Rf K, Rτ = (T †
w)�Rf T †

w (13.142)

The solution to the LQ problem (13.141) with τ as the control variable is (see Section 13.1.3)

τ = G1x + G2yd (13.143)

G1 = −[(T †
w)�Rf T †

w]−1B�P∞ (13.144)

G2 = −[(T †
w)�Rf T †

w]−1B�(A + BG1)−�C�Q (13.145)

where Q and Rf are design matrices while P∞ = P�
∞ > 0 is given by

P∞A + A�P∞ − P∞B[(T †
w)�Rf T †

w]−1B�P∞ + C�QC = 0 (13.146)

Operability and Motion Sickness Incidence Criteria

Operability criteria for manual and intellectual work as well as motion sickness are important design
criteria for the evaluation of autopilot and roll damping systems. Sea-sickness is especially important in
high-speed craft and ships with high vertical accelerations.

Human Operability Limiting Criteria in Roll: Operability limiting criteria with regard to vertical and
lateral accelerations, and roll angle for the effectiveness of the crew and the passengers are given in
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Table 13.2 Criteria for effectiveness of the crew (Faltinsen, 1990)

Standard deviation (root mean square) criteria

Vertical Lateral
acceleration (ẇ) acceleration (v̇) Roll angle (φ) Description of work

0.20 g 0.10 g 6.0 deg Light manual work
0.15 g 0.07 g 4.0 deg Heavy manual work
0.10 g 0.05 g 3.0 deg Intellectual work
0.05 g 0.04 g 2.5 deg Transit passengers
0.02 g 0.03 g 2.0 deg Cruise liner

Table 13.2. This gives an indication on what type of work that can be expected to be carried out for
different roll angles/sea states.

ISO 2631-3:1985 Criterion for Motion Sickness Incidence: In addition to operability, limiting crite-
ria passenger comfort can be evaluated with respect to motion sickness. The International Organization
for Standardization (ISO) motion seasickness incidence criterion is reported in ISO 2631-1 (1997).
This report replaces ISO 2631-3 (1985); see http://www.iso.ch. The most important factors for sea-
sickness are vertical (heave) accelerations az (m/s2), exposure time t (hours) and encounter frequency
ωe (rad/s). The ISO standard criterion for MSI proposes an MSI of 10 %, which means that 10 % of the
passengers become seasick during t hours. The MSI curves as a function of exposure time are shown
in Figure 13.6, where

az(t, ωe) =
{

0.5
√

2/t for 0.1 Hz < ωe

2π
≤ 0.315 Hz

0.5
√

2/t · 6.8837
(

ωe

2π

)1.67
for 0.315 Hz ≤ ωe

2π
≤ 0.63 Hz

(13.147)

Matlab
The MSI curves (13.147) as functions of the exposure time are implemented in the Matlab MSS
toolbox as

[a z,w e] = ISOmsi(t)

Figure 13.6 is generated by using the example file

ExMSI

The main limitation of the ISO criterion is that it only predicts the exceedence of the 10 % MSI
point. It is also assumed that the accelerations in the CG are representative for the entire ship
and that a representative wave period can be used instead of the actual wave. In many cases it is
advantageous to use the extended sickness method for more accurate predictions. This method is
presented below.

Probability Integral Method for MSI: The O’Hanlon and McCauley (1974) probability integral
method is convenient to use since it produces an MSI criterion in percentage for combinations of
heave acceleration az (m/s2) and frequency of encounter ωe (rad/s). The MSI index is defined as the
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number of sea sick people in percentage for an exposure time of two hours; see Lloyd (1989) and
Lewis (1989). The criterion is as follows:

MSI = 100

[
0.5 ± erf

(± log10 (az/g) ∓ μMSI

0.4

)]
(%) (13.148)

where

μMSI = −0.819 + 2.32
(

log10 ωe

)2
(13.149)

and

erf(x) = erf(−x) = 1√
2π

∫ x

0

exp

(
−z2

2

)
dz (13.150)

Figure 13.6 Heave acceleration az (m/s2) as a function of frequency of encounter ωe (rad/s) for different
exposure times. The ISO curves represent an MSI of 10 %.
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Figure 13.7 MSI is the number of motion sick persons in percentage during a two hour exposure time
as a function of encounter frequency ωe (rad/s) and heave acceleration az (m/s2).

Matlab
The Matlab MSS toolbox function

msi = HMmsi(a z,w e)

can be used for computation of the MSI. Notice that the erf function in HMmsi.m is scaled
differently from the Matlab function erf.m. The MSI curves in Figure 13.7 are plotted for
different az and ωe using the example file

ExMSI

The major drawback of the O’Hanlon and McCauley method is that it only applies to a two hour exposure
time. Another effect to take into account is that the O’Hanlon and McCauley MSI criterion is derived from
tests with young men seated separately in insulated cabins. According to ISO 2631-1, the MSI number
is about 1.5 higher among women and children, suggesting that the actual MSI number for passengers
of average age and sex distribution should be at least 1.25 times higher.
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13.1.6 Case Study: Optimal Dynamic Positioning System for Ships
and Floating Structures

In Section 12.2.10 a nonlinear PID controller was designed for DP and the equilibrium point was rendered
asymptotically stable under the assumption of full-state feedback. Output feedback in terms of a nonlinear
passive observer was also discussed and UGAS of the resulting system was relying on a nonlinear
separation principle (Loria et al., 2000). An alternative to the nonlinear PID controller is to formulate the
problem as a linear optimal control problem using vessel parallel coordinates. The LQ controller will be
designed under the assumption that all states can be measured. This assumption can, however, be relaxed
by combining the LQ controller with a Kalman filter for optimal state estimation; see Section 11.3.6.
The resulting control law is known as the LQG optimal controller, and convergence and stability of the
interconnected system can be proven using a linear separation principle (Gelb et al., 1988).

Controller Model: Recall from Section 7.3.2 that

η̇p = ν (13.151)

Mν̇ + Dν = bp + τ + τwind + τwave (13.152)

where VP coordinates have been employed (see Section 7.5.3). The North-East positions and heading
are related to ηp according to

η = R(ψ)ηp (13.153)

In order to incorporate the limitations of the propellers, the model is augmented by actuator dynamics.
The simplest way of doing this is to define three time constants in surge, sway and yaw such that

τ̇ = Athr(τ − τcom) (13.154)

where τcom is the commanded thrust and Athr = −diag{1/Tsurge, 1/Tsway, 1/Tyaw} is a diagonal matrix
containing the time constants. The resulting state-space model becomes

ẋc = Axc + Bτcom (13.155)

where the controller states are xc := [η�
p , ν�, τ�]� and

A =

⎡
⎣ 0 I 0

0 −M−1D M−1

0 0 Athr

⎤
⎦ , B =

⎡
⎣ 0

0

−Athr

⎤
⎦ (13.156)

This model is the basis for the LQ controller.
Observer Model: The Kalman filter can be designed using only position and heading measurements.

For this purpose the filter states are chosen as xf := [η�
p , b�

p , ν�
p ]�. The WF model is omitted for

simplicity but in an industrial system six more states should be added following the approach in
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Section 11.3.6, for instance. The filter model takes the following form:

ẋf = Fxf + Gτ + Ew (13.157)

z = Hxf + v (13.158)

where

F =

⎡
⎣ 03×3 03×3 I3×3

03×3 03×3 03×3

03×3 M−1 −M−1D

⎤
⎦ , G =

⎡
⎣ 03×3

03×3

M−1

⎤
⎦ , H = [I3×3, 03×3, 03×3] (13.159)

Controllability and Observability

It is important to be aware that the controller model must be controllable and the observer model must be
observable to guarantee a stable solution for the LQG controller. These conditions can easily be verified
in Matlab by considering the following example:

Matlab
The following example demonstrates how observability and controllability can be checked for a
ship in surge, sway and yaw.

Example 13.4 (Observability and Controllability of Ships)
Consider a supply vessel with nondimensional system matrices (Fossen et al., 1996):

M ′′ =

⎡
⎣ 1.1274 0 0

0 1.8902 −0.0744

0 −0.0744 0.1278

⎤
⎦ , D′′ =

⎡
⎣ 0.0358 0 0

0 0.1183 −0.0124

0 −0.0041 0.0308

⎤
⎦ (13.160)

These values are defined in accordance to the bis system (see Section 7.2.5) such that

M = mT −2(TM ′′T −1), D = m
√

g/L T −2(TD′′T −1) (13.161)

where T = diag{1, 1, L}. Assume that Athr = −1/100 × I3×3. The linear state-space model in
surge, sway and yaw is computed as

A =

⎡
⎣ 03×3 I3×3 03×3

03×3 −M−1D M−1

03×3 03×3 Athr

⎤
⎦ , B =

⎡
⎣ 03×3

03×3

−Athr

⎤
⎦ (13.162)

F =

⎡
⎣ 03×3 03×3 I3×3

03×3 03×3 03×3

03×3 M−1 −M−1D

⎤
⎦ , H = [I3×3, 03×3, 03×3]

Notice that only the positions (N, E) and yaw angle ψ are defined as the outputs for the observer.
Observability and controllability can be checked in Matlab using the commands (see ExObsCtr.m):

n obs = rank(obsv(F,H))

n ctr = rank(ctrb(A,B))

Since n obs = n ctr = 9 the supply vessel is both observable and controllable.
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Since the supply vessel is controllable, it is straightforward to design an optimal control law with
wind feedforward and integral action. In order to do this, it is convenient to split the control input into
two parts:

τcom = τLQ − τ̂wind (13.163)

where τLQ is the optimal feedback and τ̂wind is an estimate of the generalized wind forces that can be
implemented using (12.214).

Optimal Feedback Control

The LQ control objective is to obtain x = 0 such that ηp = ν = τ = 0. This is achieved by minimizing
the performance index:

J = min
τLQ

{
1

2

∫ T

0

(x�Qx + τ�
LQRτLQ) dτ

}
(13.164)

where R = R� > 0 and Q = Q� ≥ 0 are two cost matrices to be specified by the user. The Q matrix
is defined as Q := diag{Q1, Q2, Q3} where the weights Q1, Q2 and Q3 put penalty on position and
heading ηp, velocity ν and actuator dynamics τ, respectively. The optimal control law minimizing (13.164)
is (see Section 13.1.1)

τLQ = −R−1B�P∞︸ ︷︷ ︸
G

x (13.165)

where P∞ is the solution of the ARE:

P∞A + A�P∞ − P∞BR−1B�P∞ + Q = 0 (13.166)

Integral Action

In order to obtain zero steady-state errors in surge, sway and yaw, integral action must be included in the
control law. Integral action can be obtained by using state augmentation. Since we want the three outputs
(N, E, ψ) to be regulated to zero, no more than three integral states can be augmented to the system.
Define a new state variable:

z :=
∫ t

0

y(τ)dτ =⇒ ż = y (13.167)

Here y is a subspace of x given by

y = Cx (13.168)

with

C = [ I3×3 03×3 03×3

]
(13.169)
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Next consider an augmented model with state vector xa := [z�, x�]� such that

ẋa = Aaxa + Baτcom (13.170)

where

Aa =
[

03×3 C

09×3 A

]
, Ba =

[
03×3

B

]
(13.171)

Matlab
Controllability of the augmented system (Aa, Bb) is checked in Matlab by using the command (see
ExObsCtr.m):

n ctr=rank(ctrb(Aa,Ba))

which gives n ctr = 12. Hence, the supply vessel with additional states for integral action is
controllable.

The performance index for the integral controller becomes

J = min
τLQ

{
1

2

∫ T

0

(x�
a Qaxa + τ�

LQRτLQ) dτ

}
(13.172)

where R = R� > 0 and

Qa =
[

QI 0

0 Q

]
≥ 0 (13.173)

The matrix QI = Q�
I > 0 is used to specify the integral times in surge, sway and yaw. The optimal PID

controller is (see Section 13.1.1)

τLQ = Gaxa = Gx + GI

∫ t

0

y(τ) dτ︸ ︷︷ ︸
z

(13.174)

where Ga = [GI , G] and

Ga = −R−1B�
a P∞ (13.175)

P∞Aa + A�
a P∞ − P∞BaR

−1B�
a P∞ + Qa = 0 (13.176)
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LQG Control–Linear Separation Principle

In practice only some of the states are measured. A minimum requirement is that the position and heading
of the craft is measured such that velocities and bias terms can be estimated by an observer. This is usually
done under the assumption that the states x can be replaced with the estimated states x̂ such that the optimal
integral controller (13.174) can be modified as

τLQ = Gx̂ + GIC

∫ t

0

x̂(τ) dτ (13.177)

where the state estimate x̂ can be computed using

• Kalman filter (Section 11.3.6)
• Nonlinear passive observer (Section 11.4.1)

For the Kalman filter in cascade with the LQ controller there exists a linear separation principle
guaranteeing that x̂ → x and that x → 0 (Athans and Falb, 1966). This is referred to as LQG control
and it was first applied to design DP systems by Balchen et al. (1976, 1980a, 1980b) and Grimble et
al. (1980a, 1980b). Optimal DP systems are used to maintain the position of offshore drilling and supply
vessels (see Figure 13.8).

Figure 13.8 Oil production using a dynamically positioned semi-submersible. Illustration by Bjarne
Stenberg/MARINTEK.
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13.2 State Feedback Linearization
The basic idea with feedback linearization is to transform the nonlinear system dynamics into a linear
system (Freund, 1973). Feedback linearization is discussed in more detail by Isidori (1989) and Slotine
and Li (1991). Conventional control techniques such as pole-placement and linear quadratic optimal
control theory can then be applied to the linear system. In robotics, this technique is commonly referred
to as computed torque control (Sciavicco and Siciliano, 1996).

Feedback linearization is easily applicable to ships and underwater vehicles since these models ba-
sically are nonlinear mass–damper–spring systems, which can be transformed into a linear system by
using a nonlinear mapping. Transformations that can be used for applications both in BODY and NED
coordinates will be presented. Trajectory-tracking control in the BODY frame is used for velocity control
while NED frame applications are recognized as position and attitude control. Combined position and
velocity control systems will also be discussed.

13.2.1 Decoupling in the BODY Frame (Velocity Control)

The control objective is to transform the marine craft dynamics into a linear system:

ν̇ = ab (13.178)

where ab can be interpreted as a body-fixed commanded acceleration vector. The body-fixed vector
representation should be used to control the linear and angular velocities. Consider the nonlinear marine
craft dynamics in the form

Mν̇ + n(ν, η) = τ (13.179)

where η and ν are assumed to be measured and n is the nonlinear vector

n(ν, η) = C(ν)ν + D(ν)ν + g(η) (13.180)

The nonlinearities can be canceled out by simply selecting the control law as (see Figure 13.9)

τ = Mab + n(ν, η) (13.181)

where the commanded acceleration vector ab can be chosen by, for instance, pole placement or linear
quadratic optimal control theory. However, note that to investigate optimality of the original system, the
optimal control and cost function must be transformed back through the nonlinear mapping.

Figure 13.9 Nonlinear decoupling in the BODY frame.
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Pole Placement

Let � > 0 be a diagonal design matrix

� = diag{λ1, λ2, . . . , λn}

used to specify the desired control bandwidth, νd the desired linear and angular velocity vector and
ν̃ = ν − νd the velocity tracking error. Then the commanded acceleration vector can be chosen as a PI
controller with acceleration feedforward:

ab = ν̇d − Kp ν̃ − Ki

∫ t

0

ν̃(τ) dτ (13.182)

Choosing the gains as

Kp = 2�, Ki = �2

yields the second-order error dynamics

M( ˙̃ν − ab) = M

(
˙̃ν + 2� ν̃ + �2

∫ t

0

ν̃(τ) dτ

)
= 0 (13.183)

This implies that for each DOF both poles are in s = −λi (i = 1, . . . , n). Consequently,

(s + λi)
2

∫ t

0

ν̃(τ) dτ = 0 (i = 1, . . . , n) (13.184)

The reference model of Section 10.2.1 can be used to generate a smooth velocity trajectory νd for
trajectory-tracking control.

13.2.2 Decoupling in the NED Frame (Position and Attitude Control)

For position and attitude control the dynamics are decoupled in the NED reference frame. Consider

η̈ = an (13.185)

where an can be interpreted as the commanded acceleration in NED. Consider the kinematic and kinetic
equations in the form

η̇ = J�(η)ν (13.186)

Mν̇ + n(ν, η) = τ (13.187)

where both η and ν are assumed measured. Differentiation of the kinematic equation (13.186) with respect
to time yields

ν̇ = J−1
� (η)[η̈ − J̇�(η)ν] (13.188)
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The nonlinear control law

τ = Mab + n(ν, η) (13.189)

applied to (13.187) yields

M(ν̇ − ab) = MJ−1
� (η)[η̈ − J̇�(η)ν − J�(η)ab] = 0 (13.190)

Choosing

an = J̇�(η)ν + J�(η)ab (13.191)

yields the linear decoupled system

M∗(η̈ − an) = 0 (13.192)

where M∗ = J−�
� (η)MJ−1

� (η) > 0. From (13.191) it is seen that

ab = J−1
� (η)[an − J̇�(η)ν] (13.193)

where the commanded acceleration an can be chosen as a PID control law with acceleration feedforward:

an = η̈d − Kd
˙̃η − Kp η̃ − Ki

∫ t

0

η̃(τ) dτ (13.194)

where Kp, Kd and Ki are positive definite matrices chosen such that the error dynamics

¨̃η + Kd
˙̃η + Kp η̃ + Ki

∫ t

0

η̃(τ) dτ = 0 (13.195)

is GES. One simple pole-placement algorithm for PID control is

(s + λi)
3

∫ t

0

η̃(τ) dτ = 0 (i = 1, . . . , n) (13.196)

which yields

Kd = 3� = diag{3λ1, 3λ2, . . . , 3λn}
Kp = 3�2 = diag{3λ2

1, 3λ2
2, . . . , 3λ2

n}
Ki = �3 = diag{λ3

1, λ
3
2, . . . , λ

3
n}
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Figure 13.10 Nonlinear decoupling in the NED frame with transformation to the BODY frame.

This is shown in Figure 13.10. When implementing the trajectory-tracking controller a third-order refer-
ence model can be used to compute smooth position and attitude trajectories ηd (see Section 10.2.1).

13.2.3 Case Study: Feedback Linearizing Speed Controller for Ships
and Underwater Vehicles

Consider the following decoupled model of a ship in surge:

mu̇ + d1u + d2|u|u = τ (13.197)

From Section 13.2.1 it follows that the commanded acceleration can be calculated as

ab = u̇d − Kp(u − ud) − Ki

∫ t

0

(u − ud) dτ (13.198)

while the speed controller takes the following form:

τ = m[u̇d − Kp(u − ud) − Ki

∫ t

0

(u − ud) dτ] + d1u + d2|u|u (13.199)

Hence, the equilibrium point of the linear system

˙̃u + Kp ũ + Ki

∫ t

0

ũ(τ) dτ = 0 (13.200)

is GES if the gains are chosen as

Kp = 2λ (13.201)

Ki = λ2 (13.202)

with λ > 0. In order to implement the speed controller, the following reference model can be used (see
Section 10.2.1):

üd + 2ζωu̇d + ω2ud = ω2rb (13.203)

where ζ > 0 and ω > 0 are the reference model damping ratio and natural frequency while rb is the
setpoint specifying the desired surge speed.
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13.2.4 Case Study: Feedback Linearizing Ship and Underwater
Vehicle Autopilot

Consider the nonlinear model (Norrbin, 1963):

ψ̇ = r (13.204)

mṙ + d1r + d2|r|r = τ (13.205)

where ψ is the yaw angle. Hence, the commanded acceleration can be calculated as (Fossen and
Paulsen, 1992)

an = ṙd − Kd(r − rd) − Kp(ψ − ψd) − Ki

∫ t

0

(ψ − ψd) dτ (13.206)

where rd is the desired yaw rate and ψd is the desired heading angle. For this particular example, (13.193)
implies that an = ab. Choosing the decoupling control law as

τ = m

[
ṙd − Kd(r − rd) − Kp(ψ − ψd) − Ki

∫ t

0

(ψ − ψd) dτ

]
+ d1r + d2|r|r (13.207)

finally gives the error dynamics

˙̃ψ = r̃ (13.208)

˙̃r + Kd r̃ + Kpψ̃ = 0 (13.209)

The reference model can be chosen as (see Section 10.2.1)

ψ
(3)
d + (2ζ + 1)ωψ̈d + (2ζ + 1)ω2ψ̇d + ω3ψd = ω3rn (13.210)

Notice that (13.207) depends on the uncertain parameters d1 and d2 while m is quite easy to estimate using
hydrodynamic programs. Hence, care must be taken when implementing (13.207). For most craft, the
control law (13.207) works very well even with d1 = d2 = 0 so the need for choosing nonzero damping
parameters should be seen as a trade-off between robustness and performance.

13.2.5 Case Study: MIMO Adaptive Feedback Linearizing Controller
for Ships and Underwater Vehicles

So far only feedback linearization has been discussed under the assumption that all model parameters
are known. This can be relaxed by using parameter adaptation. Consider a marine craft given by the
nonlinear system

η̇ = J�(η)ν (13.211)

Mν̇ + n(ν, η) = τ (13.212)

Taking the control law to be

τ = M̂ab + n̂(ν, η) (13.213)
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where the hat denotes the adaptive parameter estimates, yields the error dynamics

M[ν̇ − ab] = [M̂ − M]ab + [n̂(ν, η) − n(ν, η)] (13.214)

If the equations of motion are linear in a parameter vector θ, the following parametrization can be applied:

[M̂ − M]ab + [n̂(ν, η) − n(ν, η)] = �(ab, ν, η) θ̃ (13.215)

Here θ̃ = θ̂ − θ is the unknown parameter error vector and �(ab, ν, η) is a known matrix function of
measured signals usually referred to as the regressor matrix. Using the result an = J̇�(η)ν + J�(η)ab

from (13.191) gives

MJ−1
� (η)[η̈ − an] = �(ab, ν, η) θ̃ (13.216)

Premultiplying this expression byJ−�
� (η) and lettingM∗(η) = J−�

� (η)MJ−1
� (η) yields the error dynamics

M∗(η)[η̈ − an] = J−�
� (η)�(ab, ν, η) θ̃ (13.217)

Furthermore, let the commanded acceleration be chosen as a PD controller with acceleration feedforward:

an = η̈d − Kd
˙̃η − Kp η̃ (13.218)

where Kp > 0 and Kd > 0. Hence, the error dynamics can be expressed according to

M∗(η)[ ¨̃η + Kd
˙̃η + Kp η̃] = J−�

� (η)�(ab, ν, η) θ̃ (13.219)

Writing this expression in state-space form yields

ẋ = Ax + BJ−�
� (η)�(ab, ν, η) θ̃ (13.220)

where x = [ η̃�, ˙̃η�]� and

A =
[

0 I

−Kp −Kd

]
, B =

[
0

M∗(η)−1

]
(13.221)

The convergence of η̃ to zero can be proven by considering

V (x, θ̃, t) = x�Px + θ̃�	−1 θ̃ (13.222)

with a time-varying P = P� > 0 and where 	 = 	� > 0 is a positive definite weighting matrix of
appropriate dimension. Differentiating V with respect to time and substituting the error dynamics into
the expression for V̇ yields

V̇ = x�(Ṗ + PA + A�P)x + 2(x�PBJ−�
� � + ˙̃θ �	−1) θ̃ (13.223)

Assume that the parameters are constant such that θ̇ = 0 holds. The parameter update law is chosen as

˙̂θ = −	��(ab, ν, η)J−1
� (η)y (13.224)
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where y is signal vector given by

y = Cx, C = B�P (13.225)

In order to prove that V̇ ≤ 0, let

C = [c0I c1I] (13.226)

where c0 > 0 and c1 > 0 are two scalars to be interpreted later. Furthermore, let

PA + A�P = −Q, Q = Q� > 0 (13.227)

where P and Q are defined according to Asare and Wilson (1986):

P :=
[

c0M
∗Kd + c1M

∗Kp c0M
∗

c0M
∗ c1M

∗

]
(13.228)

Q :=
[

2c0M
∗Kp 0

0 2(c1M
∗Kd − c0M

∗)

]
(13.229)

Assume that there exists a constant β > 0 such that

x�Ṗx = x�
[

c0Ṁ
∗Kd + c1Ṁ

∗Kp c0Ṁ
∗

c0Ṁ
∗ c1Ṁ

∗

]
x ≤ βx�

[
M∗ 0

0 M∗

]
x (13.230)

Hence, P = P� > 0, c0 > 0, c1 > 0 and x�Qx > x�Ṗx implies that

V̇ = x�(Ṗ − Q)x ≤ 0 (13.231)

if the following requirements are satisfied:

(i) (c0Kd + c1Kp)c1 > c2
0I

(ii) 2c0Kp > βI

(iii) 2(c1Kd − c0I) > βI

Here β is usually taken to be a small positive constant while Kp > 0 and Kd > 0 can be chosen as
diagonal matrices. Consequently, convergence of η̃ and ˙̃η to zero is guaranteed by applying Barbălat’s
lemma (Barbălat, 1959); see Appendix A.2. It is also seen that the parameter vector θ̃ will be bounded
but not necessarily convergent.

Adaptive feedback linearization has been applied to the ship autopilot control problem by Fossen and
Paulsen (1992). The assumption that x�Ṗx is bounded by a positive constant β can be relaxed by using
adaptive slide-mode control where the skew-symmetric property x�[Ṁ − 2C(ν)]x = 0 is exploited (see
Slotine and Benedetto, 1990, Fossen, 1993).

13.3 Integrator Backstepping
Backstepping is a design methodology for construction of a feedback control law through a recursive
construction of a control Lyapunov function. Nonlinear backstepping designs are strongly related to
feedback linearization. However, while feedback linearization methods cancel all nonlinearities in the
system it will be shown that when applying the backstepping design methodology more design flexibility
is obtained. In particular, the designer is given the possibility to exploit “good” nonlinearities while “bad”
nonlinearities can be dominated by adding nonlinear damping, for instance. Hence, additional robustness
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is obtained, which is important in industrial control systems since cancelation of all nonlinearities requires
precise models that are difficult to obtain in practice.

13.3.1 A Brief History of Backstepping

The idea of integrator backstepping seems to have appeared simultaneously, often implicit, in the works
of Koditschek (1987), Sonntag and Sussmann (1988), Tsinias (1989) and Byrnes and Isidori (1989).
Stabilization through an integrator (Kokotovic and Sussmann, 1989) can be viewed as a special case of
stabilization through an SPR transfer function, which is a frequently used technique in the early adaptive
designs (see Parks, 1966, Landau, 1979, Narendra and Annaswamy, 1989). Extensions to nonlinear
cascades by using passivity arguments have been done by Ortega (1991) and Byrnes et al. (1991).
Integrator backstepping appeared as a recursive design technique in Saberi et al. (1990) and was further
developed by Kanellakopoulos et al. (1992). The relationship between backstepping and passivity has
been established by Lozano et al. (1992). For the interested reader, a tutorial overview of backstepping
is given in Kokotovic (1991).

Adaptive and nonlinear backstepping designs are described in detail by Krstic et al. (1995). This
includes methods for parameter adaptation, tuning functions and modular designs for both full-state
feedback and output feedback (observer backstepping). Sepulchre et al. (1997) make extensions to for-
warding, passivity and cascaded designs. Also discussions on stability margins and optimality are in-
cluded. The concept of vectorial backstepping was first introduced by Fossen and Berge (1997). Vectorial
backstepping exploits the structural properties of nonlinear MIMO systems and this simplifies design
and analysis significantly.

Krstic and Deng (1998) present stochastic systems with a focus on stochastic stability and regulation.
The focus of this section is practical designs with implementation considerations for mechanical

systems. This is done by exploiting the nonlinear system properties of mechanical systems such as
dissipativness (good damping), symmetry of the inertia matrix and the skew-symmetric property of the
Coriolis and centripetal matrix. In addition, emphasis is placed on control design with integral action.
Two techniques for integral action in nonlinear systems using backstepping designs are discussed (see
Loria et al., 1999, Fossen et al., 2001).

13.3.2 The Main Idea of Integrator Backstepping

Integrator backstepping is a recursive design technique using control Lyapunov functions (CLF). The CLF
concept is a generalization of Lyapunov design results by, for instance, Jacobson (1977) and Jurdjevic
and Quinn (1978).

Definition 13.2 (Control Lyapunov Function)
A smooth positive definite and radially unbounded function V : Rn → R+ is called a control
Lyapunov function for (see Arstein, 1983, Sontag, 1983)

ẋ = f (x, u) (13.232)

where x ∈ Rn and u ∈ Rr if

inf
u∈Rr

{
∂V

∂x
(x)f (x, u)

}
< 0, ∀x /= 0 (13.233)
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Figure 13.11 Second-order nonlinear system with one single nonlinearity f (x1) and a pure integrator
at the input.

The main idea of integrator backstepping can be demonstrated by considering a simple nonlinear
scalar system:

ẋ1 = f (x1) + x2 (13.234)

ẋ2 = u (13.235)

y = x1 (13.236)

where x1 ∈ R, x2 ∈ R, y ∈ R and u ∈ R. The second equation represents a pure integrator (see
Figure 13.11).

Let the design objective be regulation of y → 0 as t → ∞. The only equilibrium point with y = 0
is (x1, x2) = (0, −f (0)) corresponding to ẋ1 = f (0) + x2 = 0. The design objective is to render the
equilibrium point GAS or GES. Since the nonlinear system (13.234)–(13.235) consists of two states x1

and x2, this will be a recursive design in two steps. Equations (13.234)–(13.235) are therefore treated as
two cascaded systems, each with a single input and output. The recursive design starts with the system
x1 and continues with x2. A change of coordinates

z = φ(x) (13.237)

is introduced during the recursive design process where z is a new state vector and φ(x) : Rn → R
n is a

transformation to be interpreted later. The backstepping transformation is a global diffeomorphism, that
is a mapping with smooth functions φ(x) and φ−1(x). Hence, the existence of an inverse transformation

x = φ−1(z) (13.238)

is guaranteed.

Step 1: For the first system (13.234) the state x2 is chosen as a virtual control input while it is recalled
that our design objective is to regulate the output y = x1 to zero. Hence, the first backstepping variable
is chosen as

z1 = x1 (13.239)
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The virtual control is defined as

x2 := α1 + z2 (13.240)

where

α1 = stabilizing function
z2 = new state variable

Hence, the z1 system can be written

ż1 = f (z1) + α1 + z2 (13.241)

The new state variable z2 will not be used in the first step, but its presence is important since z2 is
needed to couple the z1 system to the next system, that is the z2 system to be considered in the next
step. Moreover, integrator backstepping implies that the coordinates during the recursive design are
changed from x = [x1, x2]� to z = [z1, z2]�.
A CLF for the z1 system is

V1 = 1

2
z2

1 (13.242)

V̇1 = z1ż1

= z1(f (z1) + α1) + z1z2 (13.243)

We now turn our attention to the design of the stabilizing function α1 which will provide the nec-
essary feedback for the z1 system. For instance, choosing the stabilizing function as a feedback
linearizing controller

α1 = −f (z1) − k1z1 (13.244)

where k1 > 0 is the feedback gain, yields

V̇1 = −k1z
2
1 + z1z2 (13.245)

and

ż1 = −k1z1 + z2 (13.246)

A block diagram showing the stabilizing function and the new state variable is shown in Figure 13.12.
Hence, if z2 = 0 then the z1 system is stabilized. We now turn our attention to the z2 system.

Step 2: The z2 dynamics is computed by time differentiation of (13.240):

ż2 = ẋ2 − α̇1

= u − α̇1 (13.247)
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Figure 13.12 Stabilization of the x1 system by means of the stabilizing function α1 = α1(x1). Note
that −α̇1(x1) when integrated cancels out the feedback term α1(x1).

A CLF for the z2 system is

V2 = V1 + 1

2
z2

2 (13.248)

V̇2 = V̇1 + ż2z2

= (−k1z
2
1 + z1z2) + ż2z2

= −k1z
2
1 + z2(z1 + ż2)

= −k1z
2
1 + z2(u − α̇1 + z1) (13.249)

Since our system has relative degree two, the control input u appears in the second step (see
Figure 13.13). Hence, choosing the control law as

u = α̇1 − z1 − k2z2 (13.250)

with k2 > 0 yields

V̇2 = −k1z
2
1 − k2z

2
2 < 0, ∀z1 /= 0, z2 /= 0 (13.251)

Implementation Aspects

When implementing the control law (13.250) it is important to avoid expressions involving the time
derivatives of the states. For this simple system only α̇1 must be evaluated. This can be done by

Figure 13.13 Stabilization of the x2 system by means of the control input u = u(α̇1, z1, z2).
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time differentiation of α1(x1) along the trajectory of x1. Hence, α̇1 can be computed without using the
state derivatives:

α̇1 = −∂f (x1)

∂x1
ẋ1 − k1ẋ1

= −
(

∂f (x1)

∂x1
+ k1

)
(f (x1) + x2) (13.252)

The final expression for the control law is then

u = −
(

∂f (x1)

∂x1
+ k1

)
(f (x1) + x2) − x1 − k2(x2 + f (x1) + k1x1) (13.253)

If f (x1) = −x1 (linear theory), it is seen that

u = − (−1 + k1) (−x1 + x2) − x1 − k2(x2 − x1 + k1x1)

= − (2 + k1k2 − k1 − k2)︸ ︷︷ ︸
Kp

x1 − (k1 + k2 − 1)︸ ︷︷ ︸
Kd

x2 (13.254)

which is a standard PD control law. In general, the expression for u is a nonlinear feedback control law
depending on the nonlinear function f (x1).

Backstepping Coordinate Transformation

The backstepping coordinate transformation z = φ(x) takes the form[
z1

z2

]
=
[

x1

x2 + f (x1) + k1x1

]
(13.255)

while the inverse transformation x = φ−1(z) is[
x1

x2

]
=
[

z1

z2 − f (z1) − k1z1

]
(13.256)

The Final Check

If you have performed the backstepping design procedure correctly the dynamics of the closed-loop
system in (z1, z2) coordinates can always be written as the sum of a diagonal and skew-symmetric matrix
times the state vector. This can be seen by writing the resulting dynamics in the form

[
ż1

ż2

]
= −

[
k1 0

0 k2

]
︸ ︷︷ ︸

diagonal matrix

[
z1

z2

]
+

[
0 1

−1 0

]
︸ ︷︷ ︸

skew-symmetrical matrix

[
z1

z2

]
(13.257)

or equivalently

ż = −Kz + Sz (13.258)
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where z = [z1, z2]�, K = diag{k1, k2} > 0 and

S = −S� =
[

0 1

−1 0

]
(13.259)

where S satisfies z�Sz = 0, ∀z. In some cases the diagonal matrix will be a function of the state; that is
K(z) > 0. This is the case when nonlinear damping is added or when some of the nonlinearities not are
canceled by the controller.

Investigation of Stability

It is also seen that

V2 = 1

2
z�z (13.260)

V̇2 = z�(−Kz + Sz)

= −z�Kz (13.261)

Hence, Lyapunov’s direct method for autonomous systems ensures that the equilibrium point
(x1, x2) = (0, −f (0)) is GAS. In fact, this system will also be GES since it can be shown that the
state vector x decays exponentially to zero by using Theorem A.3; that is

‖z(t)‖2 ≤ e−β(t−t0) ‖z(t0)‖2 (13.262)

where β = λmin(K) > 0 is the convergence rate.
A generalization to SISO mass–damper–spring systems is done in Section 13.3.3 while extensions to

MIMO control are made in Section 13.3.6.

Backstepping versus Feedback Linearization

The backstepping control law of the previous section is in fact equal to a feedback linearizing controller
since the nonlinear function f (x1) is perfectly compensated for by choosing the stabilizing function as

α1 = −f (x1) − k1z1 (13.263)

The disadvantage with this approach is that a perfect model is required. This is impossible in practice.
Consequently, an approach of canceling all the nonlinearities may be sensitive for modeling errors.

One of the nice features of backstepping is that the stabilizing functions can be modified to exploit
so-called “good” nonlinearities. For instance, assume that

f (x1) = −a0x1 − a1x
2
1 − a2 |x1| x1 (13.264)

where a0, a1 and a2 are assumed to be unknown positive constants. Since both a0x1and a2 |x1| x1 tend
to damp out the motion these two expressions should be exploited in the control design and therefore
not canceled out. On the contrary, the destabilizing term a1x

2
1 must be perfectly compensated for or

dominated by adding a nonlinear damping term proportional to x3
1 (remember that z1 = x1).

Nonlinear damping suggests the following candidate for the stabilizing function:

α1 = −k1z1︸ ︷︷ ︸
linear
damping

−κ1z
3
1︸ ︷︷ ︸

nonlinear
damping

(13.265)
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Figure 13.14 Domination of destabilizing terms by adding nonlinear damping.

where k1 > 0 and κ1 > 0 (see Figure 13.14). Hence,

ż1 = f (z1) + (α1 + z2)

= −a0z1 − a1z
2
1 − a2 |z1| z1 − (k1 + κ1z

2
1)z1 + z2

= −( a0 + a2 |z1|︸ ︷︷ ︸
good damping

+k1)z1 − a1z
2
1︸︷︷︸

bad damping

−κ1z
3
1 + z2 (13.266)

Consider the CLF:

V1 = 1

2
z2

1 (13.267)

V̇1 = −(a0 + a2 |z1| + k1)z2
1 − a1z

3
1 − κ1z

4
1 + z1z2 (13.268)

In the next step it is seen that

V2 = V1 + 1

2
z2

2

V̇2 = −( a0 + a2 |z1|︸ ︷︷ ︸
energy dissipation

+k1)z2
1 − a1z

3
1︸︷︷︸

energy dissipation/
generation

−κ1z
4
1 + z2(z1 + u − α̇1)

From this expression it can be concluded that the good damping terms contribute to the energy dissipation.
The bad damping term, however, must be dominated by the nonlinear damping term. Choosing

u = α̇1 − k2z2 − z1 (13.269)

finally yields

V̇2 = −(a0 + a2 |z1| + k1)z2
1 − a1z

3
1 − κ1z

4
1 − k2z

2
2 (13.270)



Integrator Backstepping 465

This expression can be rewritten by completing the squares. Consider the expression(
1

2
√

κ1
x + √

κ1y

)2

= 1

4κ1
x2 + xy + κ1y

2 ≥ 0 (13.271)

�

−xy − κ1y
2 = −

(
1

2
√

κ1
x + √

κ1y

)2

+ 1

4κ1
x2 (13.272)

Equation (13.270) with x = a1z1 and y = z2
1 yields

V̇2 = −
(

a1

2
√

κ1
z1 + √

κ1z
2
1

)2

+ a2
1

4κ1
z2

1 − (a0 + a2 |z1| + k1)z2
1 − k2z

2
2 (13.273)

Since

−
(

a1

2
√

κ1
z1 + √

κ1z
2
1

)2

≤ 0

−a2 |z1| ≤ 0 (13.274)

it then follows that

V̇2 ≤ −
(

a0 + k1 − a2
1

4κ1

)
z2

1 − k2z
2
2 (13.275)

Hence, by choosing the controller gains according to

κ1 > 0 (13.276)

k1 >
a2

1

4κ1
− a0 (13.277)

k2 > 0 (13.278)

our design goal to render V̇2 < 0 is satisfied. Notice that the controller (13.269) with (13.265) is im-
plemented without using the unknown parameters a0, a1 and a2. Hence, a robust nonlinear controller
is derived by using backstepping. This result differs from feedback linearization, which is based on
model cancelation.

13.3.3 Backstepping of SISO Mass–Damper–Spring Systems

The results of Section 13.3.2 can be generalized to the following class of SISO mechanical systems:

ẋ = v (13.279)

mv̇ + d(v)v + k(x)x = τ (13.280)

y = x (13.281)
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Figure 13.15 Nonlinear mass–damper–spring system.

where x is the position, v is the velocity and

m = mass (positive)
d(v) = nonlinear damper (non-negative)
k(x) = nonlinear spring (non-negative)

The nonlinear mass–damper–spring system is shown in Figure 13.15.

Nonlinear Trajectory-Tracking Control

Backstepping of the mass–damper–spring can be performed by choosing the output

e = y − yd (13.282)

where e is the tracking error and yd(t) ∈ Cr is an r times differentiable (smooth) and bounded reference
trajectory (see Section 10.2.1). Regulation of y = x to zero is obtained by choosing ẏd = yd = 0. Time
differentiation of e yields the following model:

ė = v − ẏd (13.283)

mv̇ = τ − d(v)v − k(x)x (13.284)

The backstepping control law solving this problem is derived in two recursive steps similar to the integrator
backstepping example in Section 13.3.2.

Step 1: Let z1 = e = y − yd , such that

ż1 = v − ẏd (13.285)

Taking v as virtual control,

v = α1 + z2 (13.286)

where z2 is a new state variable to be interpreted later, yields

ż1 = α1 + z2 − ẏd (13.287)

Next, the stabilizing function α1 is chosen as

α1 = ẏd − [k1 + n1(z1)]z1 (13.288)
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where k1 > 0 is a feedback gain and n1(z1) ≥ 0 is a nonlinear damping term, for instance a nonlinear
nondecreasing function n1(z1) = κ1 |z1|n1 with n1 > 0 and κ1 ≥ 0. This yields

ż1 = −[k1 + n1(z1)]z1 + z2 (13.289)

A CLF for z1 is

V1 = 1

2
z2

1 (13.290)

V̇1 = z1ż1

= −[k1 + n1(z1)]z2
1 + z1z2 (13.291)

Step 2: The second step stabilizes the z2 dynamics. Moreover, from (13.286) it is seen that

mż2 = mv̇ − mα̇1

= τ − d(v)v − k(x)x − mα̇1 (13.292)

Let V2 be the second CLF, which is chosen to reflect the kinetic energy 1
2 mv2 of the system. However, it

makes sense to replace the velocity v with z2 in order to solve the trajectory-tracking control problem.
This is usually referred to as “pseudo-kinetic energy”. Consider

V2 = V1 + 1

2
mz2

2 (13.293)

V̇2 = V̇1 + mz2ż2

= −[k1 + n1(z1)]z2
1 + z1z2 + z2[τ − d(v)v − k(x)x − mα̇1] (13.294)

Since the input τ appears in V̇2, a value for τ can be prescribed such that V̇2 becomes negative definite.
For instance:

τ = mα̇1 + d(v)v + k(x)x − z1 − k2z2 − n2(z2)z2 (13.295)

where k2 > 0 and n2(z2) = κ2 |z2|n2 ≥ 0 with n2 > 0 can be specified by the designer. This yields

V̇2 = −[k1 + n1(z1)]z2
1 − [k2 + n2(z2)]z2

2 (13.296)

When implementing the control law, α̇1 is computed by taking the time derivative of α1 along the
trajectories of yd and z1, see (13.288), to obtain

α̇1 = ∂α1

∂ẏd

ÿd − ∂α1

∂z1
ż1 = ÿd − ∂α1

∂z1
(v − ẏd) (13.297)

Hence, the state derivatives are avoided in the control law. Notice that the desired state yd is assumed
to be smooth such that ẏd and ÿd exist.
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Error Dynamics

The resulting error dynamics is written

[
1 0

0 m

][
ż1

ż2

]
= −
[

k1 + n1(z1) 0

0 k2 + n2(z2)

][
z1

z2

]
+
[

0 1

−1 0

][
z1

z2

]
�

Mż = −K(z)z + Sz (13.298)

where z = [z1, z2]� and

M = diag{1, m}
K(z) = diag{k1 + n1(z1), k2 + n2(z2)}

S =
[

0 1

−1 0

]

Hence, the equilibrium point (z1, z2) = (0, 0) is GES. This can be seen from V2(z) = 1
2 z�Mz, which

after time differentiation yields V̇2(z) = −z�Kz since z�Sz = 0, ∀z. Notice that kinetic energy has been
applied in the Lyapunov analysis to achieve this.

Setpoint Regulation

Setpoint regulation is obtained by choosing ẏd = yd = 0. For simplicity let n1(z1) = n2(z2) = 0
such that

z1 = x

α1 = −k1z1

and

τ = mα̇1 + d(v)v + k(x)x − z1 − k2z2 (13.299)

Nonlinear PD Control

The backstepping control law (13.299) can also be viewed as a nonlinear PD control law:

u = −Kp(x)x − Kd(v)v (13.300)

by writing (13.299) as

u = [d(v) − mk1]v + [k(x) − 1]x − k2(v + k1x)

= [d(v) − mk1 − k2]v + [k(x) − 1 − k1k2]x (13.301)
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Hence,

Kp(x) = k1k2 + 1 − k(x) (13.302)

Kd(v) = mk1 + k2 − d(v) (13.303)

Nonlinear PID Control

The nonlinear PD controller (13.300) can be extended to include integral action by using constant
parameter adaptation or by augmenting an additional integrator to the plant. More specifically

1. Constant parameter adaptation: An unknown constant (or slowly varying) disturbance is added to
the dynamic model. This constant or bias is estimated online by using adaptive control. The resulting
system with parameter estimator can be shown to be UGAS for the case of regulation and trajectory-
tracking control (Fossen et al., 2001).

2. Integrator augmentation: An additional integrator is augmented on the right-hand side of the integrator
chain in order to obtain zero steady-state errors. The resulting system is proven to be GES.

The methods are presented in Sections 13.3.4 and 13.3.5.

13.3.4 Integral Action by Constant Parameter Adaptation

The constant parameter adaptation technique is based on Fossen et al. (2001). For simplicity a mass–
damper–spring system is considered. Hence, adaptive backstepping results in a control law of PID type.

Consider the system:

ẋ = v (13.304)

mv̇ + d(v)v + k(x)x = τ + w (13.305)

ẇ = 0 (13.306)

The trajectory-tracking control law can be designed by considering the tracking error

z1 = x − xd (13.307)

with

ż1 = ẋ − ẋd

= v − ẋd

= (α1 + z2) − vd

(13.308)

where z2 is a new state variable and v := α1 + z2 is the virtual control for z1. Choosing the
stabilizing function

α1 = ẋd − k1z1 (13.309)
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yields

ż1 = −k1z1 + z2 (13.310)

The definition z2 := v − α1 implies that

ż2 = v̇ − ẍd + k1(v − ẋd) (13.311)

mż2 = τ − d(v)v − k(x)x + w − mẍd + mk1(v − ẋd) (13.312)

Consider the CLF:

V1 = 1

2
z2

1 + 1

2p
w̃2, p > 0 (13.313)

V̇1 = z1ż1 + 1

p
w̃ ˙̃w

= z1z2 − k1z
2
1 + 1

p
w̃ ˙̂w (13.314)

wherew̃ = ŵ − w is the parameter estimation error. Next, consider the CLF:

V2 = V1 + 1

2
mz2

2 (13.315)

V̇2 = V̇1 + z2(mż2)

= z1z2 − k1z
2
1 + 1

p
w̃ ˙̂w

+ z2[τ − d(v)v − k(x)x + w − mẍd + mk1(v − ẋd)] (13.316)

where it is noticed that ˙̃w = ˙̂w. Choosing the control law as

τ = d(v)α1 + k(x)x − ŵ + mẍd − mk1(v − ẋd) − z1 − k2z2 (13.317)

where α1 = v − z2, yields

V̇2 = −k1z
2
1 − [k2 + d(v)]z2

2 +w̃

(
1

p
˙̂w − z2

)
(13.318)
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Choosing the update law as

˙̂w = pz2 (13.319)

finally yields

V̇2 = −k1z
2
1 − [k2 + d(v)]z2

2 (13.320)

The error dynamics takes the form

[
ż1

ż2

]
=
[−k1 1

−1 −k2 − d(v)

][
z1

z2

]
+
[

0

−1

]
w̃ (13.321)

˙̃w = −p
[

0 −1
] [ z1

z2

]
(13.322)

�
ż = h(z, t) + bw̃ (13.323)

˙̃w = −pb�
(

∂W(z, t)

∂z

)�
(13.324)

Notice that the dissipative termd(v) = d(z2 + α1) = d(z2 − k1z1 + ẋd(t)) > 0,∀v has not been “canceled
out” in order to exploit this as good damping in the error dynamics. The price for exploiting the so-
called good nonlinearities in the design is that the error dynamics becomes nonautonomous. Since
the feedback gains are assumed to be positive, that is k1 > 0 and k2 > 0, p > 0, b = [0, −1]� and
b�b = 1 > 0, Theorem A.6 with W(z) = 1

2 z�z guarantees that the nonautonomous systems (13.321)–
(13.322) is UGAS.

Notice that if a feedback linearizing controller is applied instead of (13.317), replacing the damping
term d(v)α1 with d(v)v), the control input becomes

τ = d(v)v + k(x)x − ŵ + mẍd − mk1(v − ẋd) − z1 − k2z2 (13.325)

The error dynamics

[
ż1

ż2

]
=
[−k1 1

−1 −k2

][
z1

z2

]
+
[

0

−1

]
w̃ (13.326)

is autonomous. In this case, Krasovskii–LaSalle’s invariant set theorem (Theorem A.2) can be used to
prove GAS.
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13.3.5 Integrator Augmentation Technique

Consider the second-order mass–damper–spring system:

ẋ = v (13.327)

mv̇ + d(v)v + k(x)x = τ + w (13.328)

y = x (13.329)

where w is a constant unknown disturbance. Let e denote the tracking error

e = y − yd (13.330)

where yd is the desired output. Hence,

ė = v − ẏd (13.331)

mv̇ + d(v)v + k(x)x = τ + w (13.332)

Nonlinear PD Control

If w = 0, backstepping results in a nonlinear control law of PD type similar to the result in Section 13.3.3.
However, by augmenting the plant with an additional integrator at the right end of the integrator chain,
as illustrated in Figure 13.16, nonlinear PID control can be obtained.

Nonlinear PID Control

Augmentation of an additional integrator ėI = e to the second-order plant (13.331)–(13.332) yields

ėI = e (13.333)

ė = v − ẏd (13.334)

mv̇ + d(v)v + k(x)x = τ + w (13.335)

Figure 13.16 Augmentation of an additional integrator.
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For simplicity let us first assume that w = 0. Hence, backstepping with z1 = eI results in three steps:

Step 1:

ż1 = e

= α1 + z2 (13.336)

Choosing the stabilizing function α1 = −k1z1 yields

ż1 = −k1zI + z2 (13.337)

Hence,

V1 = 1

2
z2

1 (13.338)

V̇1 = z1ż1

= −k1z
2
1 + z1z2 (13.339)

Step 2:

ż2 = ė − α̇1

= v − ẏd − α̇1

= (α2 + z3) − ẏd − α̇1 (13.340)

Hence,

V2 = V1 + 1

2
z2

2 (13.341)

V̇2 = −k1z
2
1 + z1z2 + z2ż2

= −k1z
2
1 + z2(z1 + α2 + z3 − ẏd − α̇1) (13.342)

Choosing the stabilizing function α2 = α̇1 + ẏd − k2z2 − z1 yields

ż2 = −z1 − k2z2 + z3 (13.343)

V̇2 = −k1z
2
1 − k2z

2
2 + z2z3 (13.344)

Step 3:

mż3 = mv̇ − mα̇2

= τ + w − d(v)v − k(x)x − mα̇2

= τ − d(v)α2 − d(v)z3 − k(x)x − mα̇2 (13.345)
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Let

V3 = V2 + 1

2
mz2

3 (13.346)

V̇3 = −k1z
2
1 − k2z

2
2 + z3(z2 + mż3)

= −k1z
2
1 − k2z

2
2 + z3(z2 + τ − d(v)α2 − d(v)z3 − k(x)x − mα̇2) (13.347)

Choosing the control law as

τ = mα̇2 + d(v)α2 + k(x)x − z2 − k3z3 (13.348)

yields

V̇3 = −k1z
2
1 − k2z

2
2 − (d(v) + k3)z2

3 < 0, ∀z1 /= 0, z2 /= 0, z3 /= 0 (13.349)

and

mż3 = −[d(v) + k3]z3 − z2 (13.350)

Error Dynamics

For the undisturbed case w = 0, the error dynamics takes the form⎡
⎣ 1 0 0

0 1 0

0 0 m

⎤
⎦
⎡
⎣ ż1

ż2

ż3

⎤
⎦ = −

⎡
⎣ k1 0 0

0 k2 0

0 0 d(v) + k3

⎤
⎦
⎡
⎣ z1

z2

z3

⎤
⎦+

⎡
⎣ 0 1 0

−1 0 1

0 −1 0

⎤
⎦
⎡
⎣ z1

z2

z3

⎤
⎦ (13.351)

Hence, the equilibrium point (z1, z2, z3) = (0, 0, 0) is GES and therefore the tracking error e converges
to zero. If w = constant, the error dynamics takes the form

⎡
⎣ 1 0 0

0 1 0

0 0 m

⎤
⎦
⎡
⎣ ż1

ż2

ż3

⎤
⎦ = −

⎡
⎣ k1 0 0

0 k2 0

0 0 d(v) + k3

⎤
⎦
⎡
⎣ z1

z2

z3

⎤
⎦+

⎡
⎣ 0 1 0

−1 0 1

0 −1 0

⎤
⎦
⎡
⎣ z1

z2

z3

⎤
⎦+

⎡
⎣ 0

0

1

⎤
⎦w

Hence, in the steady state (ż = 0 and d(v) = 0)

z2 = k1z1 = e − α1 = e + k1z1 ⇒ e = 0 (13.352)

The equilibrium point for w = constant is⎡
⎣ z1

z2

z3

⎤
⎦ =

⎡
⎣ k1 −1 0

1 k2 −1

0 1 k3

⎤
⎦

−1⎡
⎣ 0

0

1

⎤
⎦w = 1

k1k2k3 + k1 + k3

⎡
⎣ 1

k1

1 + k1k2

⎤
⎦w (13.353)

Therefore it can be concluded that for the case w = constant the equilibrium point (z1, z2, z3) is GES but
(z1, z2, z3) will converge to the constant nonzero values given by (13.353), even though e = 0. This shows
that augmentation of an additional integrator when performing backstepping leads to zero steady-state
errors in the case of regulation under the assumption of a constant disturbance w.
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Implementation Considerations

The integrator augmentation technique is particularly interesting for implementation in mechanical sys-
tems since the integral term is computed by integrating z1 = y − yd which for a mechanical system is
the position tracking error. This corresponds to applying a PID controller on a second-order system. On
the contrary, when using constant parameter adaptation the integral term will be the integral of a linear
combination of the state tracking errors; see (13.322). For a mechanical system this implies that both
the position and velocity tracking errors are used to provide integral action. In many cases it is difficult
to measure the velocity with the same accuracy as the position. This implies that the adaptive method
will be more sensitive to measurement noise than the integrator augmentation technique. A comparative
study of the different backstepping integral techniques is found in Skjetne and Fossen (2004).

13.3.6 Case Study: Backstepping of MIMO Mass–Damper–Spring
Systems

The concept of vectorial backstepping was first introduced by Fossen and Berge (1997) and Fossen and
Grøvlen (1998). Consider a MIMO nonlinear mass–damper–spring system in the form

ẋ = v (13.354)

Mv̇ + D(v)v + K(x)x = Bu (13.355)

where x ∈ Rn is the position vector, v ∈ Rn is the velocity vector, u ∈ Rr (r ≥ n) is the control input
vector, D(v) ∈ Rn×n represents a matrix of damping coefficients, K(x) ∈ Rn×n is a matrix of spring
coefficients, M ∈ Rn×n is the inertia matrix and B ∈ Rn×r is the input matrix. Hence, backstepping can
be performed in two vectorial steps.

Step 1: For the first system (13.354) consider v as the control and let

v = s + α1 (13.356)

where

s = ṽ + �x̃ New state vector used for tracking control

α1 Stabilizing vector field to be defined later

Here ṽ = v − vd and x̃ = x − xd are the velocity and position tracking errors, respectively, and � > 0
is a diagonal matrix of positive elements. The definition of the s vector is motivated by Slotine and Li
(1987), who introduced s as a measure of tracking when designing their adaptive robot controller. It
turns out that this transformation has the nice property of transforming the nonlinear state-space model
(13.354)–(13.355) to the form

Mṡ + D(v)s = Mv̇ + D(v)v − Mv̇r − D(v)vr

= Bu − Mv̇r − D(v)vr − K(x)x (13.357)
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where vr can be interpreted as a “virtual” reference trajectory:

vr = v − s

= vd − �x̃ (13.358)

The position error dynamics of Step 1 can therefore be written

˙̃x = v − vd

= s + α1 − vd (α1 = vr = v − s)

= −�x̃ + s (13.359)

Hence,

V1 = 1

2
x̃�Kp x̃, Kp = K�

p > 0 (13.360)

and

V̇1 = x̃�Kp
˙̃x

= x̃�Kp(−�x̃ + s)

= − x̃�Kp�x̃ + s�Kp x̃ (13.361)

Step 2: In the second step, a CLF motivated by pseudo-kinetic energy is chosen according to

V2 = 1

2
s�Ms + V1, M = M� > 0 (13.362)

V̇2 = s�Mṡ + V̇1

= s�(Bu − Mv̇r − D(v)vr − K(x)x − D(v)s) − x̃�Kp�x̃ + s�Kp x̃

= s�(Bu − Mv̇r − D(v)vr − K(x)x − D(v)s + Kp x̃) − x̃�Kp�x̃ (13.363)

This suggests that the control law is chosen as

Bu = Mv̇r + D(v)vr + K(x)x − Kp x̃ − Kds, Kd > 0 (13.364)

which results in

V̇2 = −s�(D(v) + Kd)s − x̃�Kp�x̃

Since V2 is positive definite and V̇2 is negative definite it follows from Theorem A.3 that the equilibrium
point ( x̃, s) = (0, 0) is GES. Moreover, convergence of s → 0 and x̃ → 0 implies that ṽ → 0. When
implementing the control law (13.364) it is assumed that B has an inverse:

B† = B�(BB�)−1 (13.365)

or simply B−1 for the square case r = n.
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Nonlinear Mass–Damper–Spring System with Actuator Dynamics

Consider the mass–damper–spring system of the previous section with actuator dynamics:

ẋ = ν (13.366)

Mv̇ + D(v)v + K(x)x = Bu (13.367)

T u̇ + u = uc (13.368)

where T ∈ Rr×r is a diagonal matrix of actuator time constants and uc ∈ Rr is a vector of actuator
commands. Instead of choosing the controller u in Step 2, uc is treated as the control input to be specified
in Step 3. Recall that

V̇2 = s�(Bu − Mv̇r − D(v)vr − K(x)x − D(v)s + Kp x̃) − x̃�Kp�x̃ (13.369)

Step 3: Let Bu be the virtual control vector of Step 3. Hence,

Bu = z + α2 (13.370)

α2 = Mv̇r + D(v)vr + K(x)x − Kp x̃ − Kds (13.371)

where z is a new state variable. This results in

V̇2 = s�z − s�(D(v) + Kd)s − x̃�Kp�x̃ (13.372)

Choose

V3 = 1

2
z�z + V2 (13.373)

V̇3 = z�Kż + V̇2

= z�(Bu̇ − α̇2) + s�z − s�(D(v) + Kd)s − x̃�Kp�x̃

= z�(BT −1(uc − u) − α̇2 + s) − s�(D(v) + Kd)s − x̃�Kp�x̃ (13.374)

The control law

uc = u + TB†(α̇2 − s − Kzz) (13.375)

yields

V̇3 = −z�Kzz − s�(D(v) + Kd)s − x̃�Kp�x̃ (13.376)



478 Advanced Motion Control Systems

Again GES is guaranteed. The main drawback of including the actuator dynamic is that α̇2 must be
computed. The expression for α̇2 will not depend of the state derivatives since

α̇2 =
n∑

i=1

∂α2

∂(state)i

•
(state)i

•
(state)i = system equation depending on the states only

Example 13.5 (MIMO Backstepping of Robots)
This example is based on the results of Fossen and Berge (1997). Consider the nonlinear robot
model (Sciavicco and Siciliano, 1996):

q̇ = v (13.377)

M(q)v̇ + C(q, v)v + g(q) = τ (13.378)

where M(q) = M�(q) > 0 is the inertia matrix, C(q, v) is a matrix of Coriolis and centripetal forces
defined in terms of the Christoffel symbols and g(q) is a vector of gravitational forces and moments.
q ∈ Rn is a vector of joint angles, v ∈ Rn is a vector of joint angular rates and τ ∈ Rn is a vector
of control torques. Vectorial backstepping of a robot manipulator (see Figure 13.17) can be done in
two steps:

Figure 13.17 Robot manipulator.
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Step 1: Define the virtual control vector

q̇ = v := s + α1 (13.379)

where s is a new state variable and α1 is stabilizing vector field, which can be chosen as

α1 = vr, vr = νd − � q̃ (13.380)

where � > 0 is a diagonal design matrix and q̃ = q − qd is the tracking error. Combining (13.379)
and (13.380) yields

ṽ = −� q̃ + s (13.381)

where ˙̃q = ṽ.

Step 2: Consider the CLF:

V = 1

2

(
s�M(q)s + q̃�Kq q̃

)
> 0, ∀s /= 0, q̃ /= 0 (13.382)

V̇ = s�M(q)ṡ + 1

2
s�Ṁ(q)s + q̃�Kq ṽ

= s�M(q)ṡ + 1

2
s�Ṁ(q)s − q̃�Kq� q̃ + q̃�Kqs (13.383)

Equations (13.379) and (13.380) can be combined to give

M(q)ṡ = M(q)v̇ − M(q)α̇

= τ − M(q)v̇r − C(q, v)vr − g(q) − C(q, v)s (13.384)

Substituting (13.384) into (13.383) yields

V̇ = s� (τ − M(q)v̇r − C(q, v)vr − g(q) + Kq q̃
)

+ s�
(

1

2
Ṁ(q) − C(q, v)

)
s − q̃�Kq� q̃

= s� (τ − M(q)v̇r − C(q, v)vr − g(q) + Kq q̃
)− q̃�Kq� q̃ (13.385)

Here the skew-symmetric property s�( 1
2 Ṁ(q) − C(q, v))s = 0, ∀s has been applied. The backstepping

control law is chosen as

τ = M(q)v̇r + C(q, v)vr + g(q) − Kds − Kq q̃ (13.386)

where Kd = K�
d > 0 and Kq = K�

q > 0 are design matrices. This finally yields

V̇ = −s�Kds − q̃�Kq� q̃ < 0, ∀s /= 0, q̃ /= 0 (13.387)

and GES follows. The control law (13.386) is equivalent to the control law of Slotine and Li (1987) with
perfectly known parameters (nonadaptive case) except for the additional feedback term Kq q̃ which is
necessary to obtain GES.
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13.3.7 Case Study: MIMO Backstepping for Fully Actuated Ships

Conventional ship control systems are designed under the assumption that the kinematic and kinetic
equations can be linearized such that gain-scheduling techniques and optimal control theory can be
applied (see Fossen, 1994). This is not a good assumption for tracking applications where the surge
and sway positions (N, E) and yaw angle ψ must be controlled simultaneously. The main reason for
this is that the rotation matrix in yaw must be linearized. In addition to this, assumptions such as lin-
ear damping and negligible Coriolis and centripetal forces are only good for low-speed maneuvering
and stationkeeping. These limitations clearly motivate a nonlinear design. MIMO nonlinear backstep-
ping designs can be used for this purpose by exploiting nonlinear system properties such as symmetry
of the inertia matrix, dissipative damping and skew-symmetry of the Coriolis and centripetal matrix
(see Fossen and Fjellstad, 1995).

A MIMO nonlinear backstepping technique for marine craft where the nonlinear system properties
are exploited is presented below (Fossen and Strand, 1998). An alternative reference is Fossen and
Strand (1999a) .

Vectorial Backstepping of Marine Craft in 6 DOF

Consider a marine craft described by the following equations of motion:

η̇ = J�(η)ν (13.388)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (13.389)

τ = Bu (13.390)

This model describes the motion of a craft in 6 DOF. It is assumed that the craft is fully actuated such
that BB� is invertible. The system (13.388)–(13.390) satisfies the following properties:

(i) M = M� > 0, Ṁ = 0
(ii) C(ν) = −C�(ν)

(iii) D(ν) > 0
(iv) BB� is nonsingular
(v) J�(η) = Euler angle transformation matrix (not defined for θ = ± 90◦)

New State Variables

Assume that the reference trajectories given by η
(3)
d , η̈d, η̇d and ηd are smooth and bounded. The virtual

reference trajectories in BODY and NED coordinates are defined as

η̇r := η̇d − � η̃ (13.391)

νr := J−1
� (η)η̇r, θ /= ± 90◦ (13.392)

where η̃ = η − ηd is the tracking error and � > 0 is a diagonal design matrix. Furthermore, let

s = η̇ − η̇r = ˙̃η + � η̃ (13.393)

The marine craft dynamics (13.388)–(13.389) can be written (Fossen, 1993)

M∗(η)η̈ + C∗(ν, η)η̇ + D∗(ν, η)η̇ + g∗(η) = J−�
� (η)τ (13.394)
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where

M∗(η) = J−�
� (η)MJ−1

� (η)

C∗(ν, η) = J−�
� (η)[C(ν) − MJ−1

� (η)J̇�(η)]J−1
� (η)

D∗(ν, η) = J−�
� (η)D(ν)J−1

� (η)

g∗(η) = J−�
� (η)g(η)

Hence,

M∗(η)ṡ = −C∗(ν, η)s − D∗(ν, η)s + J−�
� (η)Bu

− M∗(η)η̈r − C∗(ν, η)η̇r − D∗(ν, η)η̇r − g∗(η) (13.395)

or equivalently

M∗(η)ṡ = −C∗(ν, η)s − D∗(ν, η)s

+J−�
� (η)[Bu − Mν̇r − C(ν)νr − D(ν)νr − g(η)] (13.396)

Step 1: Consider the error dynamics

η̇ − η̇d = J�(η)(ν − νd) (13.397)

Let ν be the virtual control vector

J�(η)ν := s + α1 (13.398)

The position error dynamics can therefore be written

˙̃η = J�(η)(ν − νd)

= s + α1 − J�(η)νd {α1 = η̇r = η̇d − � η̃, η̇d = J�(η)νd}
= −� η̃ + s (13.399)

Hence, a CLF is

V1 = 1

2
η̃�Kp η̃, Kp = K�

p > 0 (13.400)

resulting in

V̇1 = η̃�Kp
˙̃η

= η̃�Kp(−� η̃ + s)

= − η̃�Kp� η̃ + s�Kp η̃ (13.401)

Step 2: In the second step a CLF motivated by the pseudo-kinetic energy is chosen:

V2 = 1

2
s�M∗(η)s + V1, M∗ = (M∗)� > 0 (13.402)
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V̇2 = s�M∗(η)ṡ + 1

2
s�Ṁ∗(η)s + V̇1

= −s�[C∗(ν, η) + D∗(ν, η)]s

+ s�J−�
� (η)[Bu − Mν̇r − C(ν)νr − D(ν)νr − g(η)]

+ 1

2
s�Ṁ∗(η)s − η̃�Kp� η̃ + s�Kp η̃ (13.403)

Using the skew-symmetric property

s� (Ṁ∗(η) − 2C∗(ν, η)
)

s = 0, ∀ν, η, s (13.404)

yields

V̇2 = s�J−�
� (η)

[
Bu − Mν̇r − C(ν)νr − D(ν)νr − g(η) + J�

�(η)Kp η̃
]

−s�D∗(ν, η)s − η̃�Kp� η̃ (13.405)

Hence, the control law can be chosen as (see Figure 13.18)

τ = Mν̇r + C(ν)νr + D(ν)νr + g(η) − J�
�(η)Kp η̃ − J�

�(η)Kds (13.406)

u = B†τ (13.407)

Figure 13.18 Nonlinear MIMO backstepping controller for 6 DOF trajectory-tracking control.
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where Kd > 0. This results in

V̇2 = −s�(D∗(ν, η) + Kd)s − η̃�Kp� η̃

Since V2 is positive definite and V̇2 is negative definite it follows from Theorem A.3 that the equilibrium
point ( η̃, s) = (0, 0) is GES. In addition, it follows from convergence of s → 0 and η̃ → 0 that ˙̃η → 0.

Vectorial Backstepping in 3 DOF

Vectorial backstepping in 3 DOF (surge, sway and yaw) is a special case of the general 6 DOF solu-
tion which can be applied for surface vessels. Typical applications are stationkeeping and low-speed
maneuvering of ships, semi-submersibles and high-speed craft (see Figure 13.19).

In this case the Euler angle transformation matrix J�(η) reduces to (see (2.40) in Section 2.2):

J�(η) ∈ R6×6 → R(ψ) ∈ SO(3) (13.408)

Figure 13.19 Dynamic positioning of a supply vessel using measurements from a global navigation
satellite system. Illustration by Bjarne Stenberg/Department of Marine Technology, NTNU.
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which is the rotation matrix in yaw. This implies that

R−1(ψ) = R�(ψ) (13.409)

The equations of motion (13.394) therefore become

M∗(ψ)η̈ + C∗(ν, ψ)η̇ + D∗(ν, ψ)η̇ = R(ψ)τ (13.410)

where the gravitational and buoyancy forces are assumed to outbalance each other such that g(η) = 0,
and

M∗(ψ) = R(ψ)MR�(ψ)

C∗(ν, ψ) = R(ψ)[C(ν) − MR�(ψ)Ṙ(ψ)]R�(ψ)

D∗(ν, ψ) = R(ψ)D(ν)R�(ψ)

13.3.8 Case Study: MIMO Backstepping Design with Acceleration
Feedback for Fully Actuated Ships

The results of the previous section can be extended to include acceleration feedback. A surface vessel in
surge, sway and yaw will be used to illustrate the design procedure. For simplicity a PD control law will be
designed. Integral action can easily be included by using adaptive backstepping or integral augmentation
techniques as explained in Sections 13.3.4 and 13.3.5.

Consider the 3 DOF maneuvering model:

η̇ = R(ψ)ν (13.411)

Mν̇ + C(ν)ν + D(ν)ν = τ (13.412)

where

M =

⎡
⎣m − Xu̇ 0 0

0 m − Yv̇ mxg−Y ṙ

0 mxg−Nv̇ Iz−Nṙ

⎤
⎦ (13.413)

Conventional accelerometers measure linear accelerations along the body axes. Hence, the signals u̇ and
v̇ can be fed back using the control law

τ = τPD − Kmν̇ − Cm(ν)ν (13.414)

where

Km =

⎡
⎣K11 K12 0

K21 K22 0

K31 K32 0

⎤
⎦ (13.415)

Cm(ν) =

⎡
⎣ 0 0 −K21u − K22v

0 0 K11u + K12v

K21u + K22v −K11u − K12v 0

⎤
⎦ (13.416)
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The expression for Cm(ν) in (13.414) is based on (6.43). Consequently, the system inertia matrix after
acceleration feedback becomes

H = M + Km =

⎡
⎣m − Xu̇+K11 K12 0

K21 m − Yv̇+K22 mxg−Y ṙ

K31 mxg−Nv̇+K32 Iz−Nṙ

⎤
⎦ (13.417)

and

CH (ν) = C(ν) + Cm(ν) (13.418)

The feedback term Cm(ν)ν is necessary to ensure that

s�[Ḣ∗(ψ) − 2C∗
H (ν, ψ)]s = 0, s /= 0 (13.419)

where

H∗(ψ) = R(ψ)HR�(ψ) (13.420)

C∗
H (ν, ψ) = R(ψ)[CH (ν) − HR�(ψ)Ṙ(ψ)]R�(ψ) (13.421)

The control law (13.414) gives us some flexibility since the acceleration feedback terms K11, K12, K21,

K22, K31 and K32 can be chosen such that H = H� > 0. A symmetric inertia matrix is obtained by
requiring that

Km =

⎡
⎣K11 K12 0

K21 K22 0

K31 K32 0

⎤
⎦ :=

⎡
⎣Xu̇ + �K11 0 0

0 Yv̇ + �K22 0

0 Nv̇ − Yṙ 0

⎤
⎦ (13.422)

where �K11 and �K22 can be treated as additional design parameters for the mass in the x and y directions.
The resulting expression is

H =

⎡
⎣m + �K11 0 0

0 m + �K22 mxg−Y ṙ

0 mxg−Y ṙ Iz−Nṙ

⎤
⎦ (13.423)

If �K11 = �K22, the mass in the x and y directions is equal. Hence, the PID controller will be independent
of the heading angle, which is advantageous when tuning dynamic positioning systems, for instance.

The resulting dynamics after acceleration feedback is

Hν̇ + CH (ν)ν + D(ν)ν = τPD (13.424)

Consider the CLF:

V1 = 1

2
z�

1 Kpz1, z1 = ηd − η (13.425)

V2 = V1 + 1

2
ν�Hν (13.426)

where V1 and V2 represent the potential and kinetic energy, respectively.
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New State Variables

Assume that the reference trajectories η
(3)
d , η̈d, η̇d and ηd are smooth and bounded. A virtual reference

trajectory is defined as

η̇r := η̇d − � η̃, νr := R�(ψ)η̇r (13.427)

where η̃ = η − ηd is the tracking error and � > 0 is a diagonal design matrix. Furthermore, let

s = η̇ − η̇r = ˙̃η + � η̃ (13.428)

The marine craft dynamics (13.411)–(13.424) can be transformed to

H∗(ψ)η̈ + C∗
H (ν, ψ)η̇ + D∗(ν, ψ)η̇ = R(ψ)τPD (13.429)

Hence,

H∗(ψ)ṡ = −C∗
H (ν, ψ)s − D∗(ν, ψ)s + R(ψ)τPD

−H∗(ψ)η̈r − C∗
H (ν, ψ)η̇r − D∗(ν, ψ)η̇r (13.430)

or equivalently

H∗(ψ)ṡ + C∗
H (ν, ψ)s + D∗(ν, ψ)s = R(ψ)[τPD − Hν̇r − CH (ν)νr − D(ν)νr] (13.431)

Step 1: Consider the error dynamics:

η̇ − η̇d = R(ψ)[ν − νd] (13.432)

Let R(ψ)ν be the virtual control vector R(ψ)ν := s + α1. The position error dynamics can therefore
be written

˙̃η = R(ψ)[ν − νd]

= s + α1 − R(ψ)νd, {α1 = η̇r = η̇d − � η̃, η̇d = R(ψ)νd}
= −� η̃ + s (13.433)

Hence,

V1 = 1

2
η̃�Kp η̃, Kp = K�

p > 0 (13.434)

and

V̇1 = η̃�Kp
˙̃η

= η̃�Kp(−� η̃ + s)

= − η̃�Kp� η̃ + s�Kp η̃ (13.435)

Step 2: In the second step, a CLF is motivated by pseudo-kinetic energy is chosen according to

V2 = 1

2
s�H∗(ψ)s + V1 (13.436)
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Figure 13.20 Acceleration feedback and PID controller.

V̇2 = s�H∗(ψ)ṡ + 1

2
s�Ḣ∗(ψ)s + V̇1

= s�[−C∗
H (ν, ψ)s − D∗(ν, ψ)s + R(ψ) [τPD − Hν̇r − CH (ν)νr − D(ν)νr]

]
+1

2
s�Ḣ∗(ψ)s − η̃�Kp� η̃ + s�Kp η̃ (13.437)

Using the skew-symmetric property s�[Ḣ∗(ψ) − 2C∗
H (ν, ψ)]s = 0 yields

V̇2 = s�R(ψ)[τPD − Hν̇r − CH (ν)νr − D(ν)νr + R�(ψ)Kp η̃]

−s�D∗(ν, ψ)s − η̃�Kp� η̃ (13.438)

Consequently, the 3 DOF control law

τPD = Hν̇r + CH (ν)νr + D(ν)νr − R�(ψ)[Kp η̃ + Kds] (13.439)

results in

V̇2 = −s�(D∗(ν, ψ) + Kd)s − η̃�Kp� η̃

Since V2 is positive definite and V̇2 is negative definite it follows that the equilibrium point (η̃, s) = (0, 0)
is GES. Moreover, convergence of s → 0 and η̃ → 0 implies that ˙̃η → 0. The PD controller can
easily be replaced by a PID controller (see Sections 13.3.4 and 13.3.5). In this case only UGAS
is guaranteed.

13.3.9 Case Study: Nonlinear Separation Principle for PD
Controller-Observer Design

For the motion control systems presented so far, slowly varying environmental forces have been com-
pensated for by adding integral action in the controller. In this section it is demonstrated how a globally
converging observer and a PD control law plus a nonlinear term of observer bias estimates can be com-
bined to compensate for slowly varying environmental disturbances (Loria et al., 2000). Moreover, the
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integral term is removed in the controller and replaced by a bias estimate. The stability proof is based
on a separation principle, which holds for nonlinear systems. The separation principle is theoretically
supported by results on cascaded nonlinear systems and standard Lyapunov theory, and it is validated in
practice by experimentation with a model ship.

The controller–observer is designed in three steps:

1. Design a UGAS state estimator.
2. Design the control law as if the whole state x and bias term b were known (measured) and free

of noise.
3. Implement the control law with the observer estimates x̂ and b̂ and show that the observer–controller

error dynamics is GAS.

The stability proof of this approach requires that the separation principle hold for nonlinear systems.
The method in this section relies on Lyapunov theorems for stability of cascaded time-varying systems
to prove UGAS (Panteley and Loria, 1998).

Cascaded Systems

Consider the time-varying systems �1 and �2 (Loria et al., 2000):

�1 : ẋ1 = f 1(t, x1) + G(t, x)x2 (13.440)

�2 : ẋ2 = f 2(t, x2) (13.441)

where x1 ∈ Rn, x2 ∈ Rm and x = [x�
1 , x�

2 ]�. The function f 1(t, x1) is continuously differentiable in
(t, x1), while f 2(t, x2) and G(t, x) are continuous in their arguments, and locally Lipschitz. The two
subsystems �1 and �2 will represent the controller and observer error dynamics, respectively, while
G(t, x)x2 is the interaction term coupling these two subsystems together. A growth rate condition on
G(t, x) is needed in order to prevent the controller error dynamics �1 from becoming unstable when the
true states are replaced with observer estimates.

The cascaded system (13.440)–(13.441) can be proven to be UGAS by reformulating
Theorems 1 and 2 in Panteley and Loria (1998) according to:

Theorem 13.1 (UGAS for Cascaded Systems)
The cascaded system (13.440)–(13.441) is UGAS if Assumptions A1–A3 are satisfied:

A1. The system

ẋ1 = f 1(t, x1) (13.442)

is UGAS with a Lyapunov function V (t, x1), V : R≥0 × Rn → R≥0, positive definite, that is
V (t, 0) = 0 and V (t, x1) > 0 for all x1 /= 0, and proper (radially unbounded), which satisfies∥∥∥∥ ∂V

∂x1

∥∥∥∥ ‖x1‖ ≤ c1V (t, x1), ∀ ‖x1‖ ≥ μ (13.443)

where c1, μ > 0. It is also assumed that (∂V/∂x1)(t, x1) is bounded uniformly in t for all ‖x1‖ < μ;
that is there exists a constant c2 > 0 such that for all t ≥ t0 ≥ 0:∥∥∥∥ ∂V

∂x1

∥∥∥∥ ≤ c2, ∀ ‖x1‖ ≤ μ (13.444)



Integrator Backstepping 489

A2. The function G(t, x) satisfies

‖G(t, x)‖ ≤ θ1 (‖x2‖) + θ2 (‖x2‖) ‖x1‖ (13.445)

where θ1, θ2 : R≥0 → R≥0 are continuous.

A3. Equation ẋ2 = f 2(t, x2) is UGAS, and for all t0 ≥ 0:∫ ∞

t0

‖x2(t)‖ dt ≤ φ (‖x2(t0)‖) (13.446)

where the function φ(·) is a class K function.

DP Control System

Consider the nonlinear DP model:

η̇ = R(ψ)ν (13.447)

Mν̇ + Dν = τ + R�(ψ)b (13.448)

ḃ = 0 (13.449)

y = η + ηw (13.450)

where b ∈ R3 is a bias term representing slowly varying environmental forces and y ∈ R3 represent the
measurements. Instead of using integral action to compensate for b, a PD controller

τ = −R�(ψ)Kpe − Kdν − R�(ψ)b, e = η − ηd (13.451)

can be implemented under the assumption that b is known (perfect compensation) and η̇d = 0. How-
ever, it is impossible to measure b so a state observer is needed. For this purpose the passive observer
(11.128)–(11.132) in Section 11.4.1 can be used to generate estimates of η, ν and b, and at the same time
provide wave filtering. Application of a nonlinear separation principle implies that the controller can be
implemented using the estimated states η̂, ν̂ and b̂; that is

τ = −R�(ψ)Kpê − Kd ν̂ − R�(ψ)b̂, ê = η̂ − ηd (13.452)

The proof needed to show that the passive observer with the controller (13.452) is UGAS is done in three
steps corresponding to Assumptions A1–A3 in Theorem 13.1.

Step 1: Observer Error Dynamics

Since the observer error dynamics

�2 : ẋ2 = f 2(t, x2) (13.453)
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is UGES and consequently UGAS when considering the passive observer in Section 11.4.1, there exist
positive constants λ1 and λ2 such that

‖x2(t)‖ ≤ λ1 ‖x2(t0)‖ e−λ2(t−t0) (13.454)

Therefore Assumption A3 in Theorem 13.1 is satisfied with φ (‖x2(t0)‖) = (λ1/λ2) ‖x2(t0)‖.

Step 2: Regulator Error Dynamics

The full-state feedback controller (13.451) when applied to (13.447)–(13.448) results in

ė = R(ψ)ν (13.455)

Mν̇ + (D + Kd) ν + R�(ψ)Kpe = 0 (13.456)

This system is GAS according to LaSalle–Krasovskii’s theorem since

V = 1

2

(
ν�Mν + e�Kpe

)
> 0, ∀ν /= 0, e /= 0 (13.457)

and

V̇ = −ν� (D + Kd) ν ≤ 0 (13.458)

This implies that the first condition on the system ẋ1 = f 1(t, x1), Assumption A1 in Theorem 13.1, is
satisfied. Next, a constant c1 is easily found by considering∥∥∥∥ ∂V

∂x1

∥∥∥∥ ‖x1‖ ≤ max{mM, kM, 1} ‖x1‖2 , ∀ ‖x1‖ ≥ μ (13.459)

where mM = λmax(M) and kM = λmax(Kp). Hence, (13.443) is satisfied with

c1 = max{mM, kM, 1}
min{mm, km, 1} (13.460)

where mm = λmin(M) and km = λmin(Kp). Also from (13.459) it is clear that (13.444) is satisfied by

c2 = max{mM, kM, 1}μ (13.461)

Step 3: Growth Rate Condition

Finally, it can be shown that the growth rate condition (13.445) on x1, Assumption A2 in Theorem 13.1,
is satisfied by choosing θ1 = constant and θ2 = 0 such that

‖G(t, x)‖ ≤ θ1 (‖x2‖) (13.462)

The details in this analysis is found in Loria et al. (2000).

Experimental Results

The nonlinear controller (13.452) and passive observer of Section 11.4.1 have been tested experimentally
using a model ship. In this experiment wind and wave forces were generated using a fan and a wave
maker. More details regarding the experiment are found in Loria et al. (2000).
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In the experiments the desired position and heading of the ship during DP were chosen as

xd = 208 m (13.463)

yd = 334 m (13.464)

ψd = −150 deg (13.465)

The experiment was carried out for a ship scale 1:70, but the results have been transformed to full scale.
The development of the experiment is as follows:

1. During the first 350 seconds there are no environmental forces perturbing the ship.
Comments: From Figure 13.22 it is seen that the bias estimate b̂ and the WF estimate η̂w are both
approximately zero, as expected, in the first 350 seconds. The nonzero values of b̂ are due to the water
motion generated by the propellers. It is also seen that the regulation and estimation errors are very
small during this phase; see upper plots in Figures 13.21 and 13.23.

2. After 350 seconds wind forces are generated by using a ducted fan directed approximately 30 degrees
off the port side bow of the ship.
Comments: When turned on, the fan produces a step input disturbance to the system; notice the peaks
in Figures 13.21 and 13.23. This step is an unrealistic situation (in full-scale applications, no abrupt
changes in the bias occur). However, it can be generated in the laboratory to show the performance of
the observer-based controller. The bias estimates b̂ from the observer are used in the output feedback
control law to obtain perfect regulation, which verifies the separation principle (see Figure 13.23). Most
of the wind force is compensated by the control input, and therefore the regulation errors converge to
zero in 100–150 seconds; see the first three plots of Figure 13.21. However, since the wind force is a
step, the observer needs some time for the bias estimate to converge to its true value, after which the
controller compensates for the bias, hence keeping the ship almost still.

3. After 800 seconds the wave generator is turned on.
Comments: This results in an oscillatory WF motion ηw which builds up over time. The estimated
wave frequency motion η̂w is shown in the upper plots of Figure 13.22. Their effect in the posi-
tion measurements is shown in the upper plots of Figure 13.21. In order to avoid η̂w entering the
feedback loop, this signal is filtered out from the position measurement. This results in smooth con-
trols; see the bottom plots of Figure 13.22. The LF estimates are clearly shown in the upper plots of
Figure 13.21.

4. After 1700 seconds both the wind and wave generators are turned off.
Comments: Turning off the fan produces a second step input disturbance while the wave-induced
motion decays more slowly. It is seen from Figure 13.22 that the bias estimates drop to approximately
their initial values in 100–150 seconds while the amplitudes of the WF motion estimates drop quite
slowly. Again, almost perfect regulation to zero is obtained as soon as the bias estimates have converged
to their true values. This clearly demonstrates the separation principle. In a full-scale implementation
the wind force will build up quite slowly. Hence the step inputs do not constitute a problem.

13.3.10 Case Study: Weather Optimal Position Control for Ships
and Floating Structures

Conventional DP systems for ships and free-floating rigs are usually designed for stationkeeping by
specifying a desired constant position (Nd, Ed) and a desired constant heading angle ψd . In order to
minimize the ship fuel consumption, the desired heading ψd should in many operations be chosen such that
the yaw moment is zero. For vessels with port/starboard symmetry, this means that the mean environmental
forces due to wind, waves and ocean currents act through the centerline of the vessel. Then the ship must
be rotated until the yaw moment is zero.
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Figure 13.21 Plots 1–3 show the three components of the measurement vector y = [x + xw, y +
yw, ψ + ψw] and the LF estimates. Plots 4–6 show the estimated LF velocity components ν̂ = [û, v̂, r̂]�

versus time.
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Figure 13.22 Plots 1–3 show the estimated WF motion components η̂w = [x̂w, ŷw, ψ̂w]� while plots
4–6 show the bias estimates b̂ = [b̂1, b̂2, b̂3]� versus time.
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Figure 13.23 Plots 1–3 show the three components of the measured position y = [x + xw, y + yw, ψ +
ψw]� together with the desired position ηd = [xd, yd, ψd]� while plots 4–6 are the control inputs τ =
[τ1, τ2, τ3]� versus time.
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Unfortunately, it is impossible to measure or compute the direction of the mean environmental force
with sufficient accuracy. Hence, the desired heading ψd is usually taken to be the measurement of the
mean wind direction, which can be easily measured. In practice, however, this can result in large offsets
from the true mean direction of the total environmental force. The main reason for this is the unmeasured
ocean current force component and waves that do not coincide with the wind direction. Hence, the DP
system can be operated under highly nonoptimal conditions if fuel saving is the issue. A small offset in
the optimal heading angle will result in a large use of thrust.

One popular method for computing the weather optimal heading ψd is to monitor the resulting thruster
forces in the x and y directions. Hence, the bow of the ship can be turned in one direction until the thruster
force in the y direction approaches zero. This method is appealing but the main catch in doing this is that
the total resulting thruster forces in the x and y directions have to be computed since there are no sensors
doing this job directly. The sensors only measure the angular speed and pitch angle of the propellers.
Hence, the thrust for each propeller must be computed by using a model of the thruster characteristic,
resulting in a fairly rough estimate of the total thruster force in each direction.

Another principle, proposed by Pinkster (1971) and Pinkster and Nienhuis (1986), is to control the x

and y positions using a PID feedback controller, in addition to feedback from the yaw velocity, such that
the vessel tends toward the optimal heading. This principle, however, requires that the rotation point of
the vessel is located a certain distance forward of the center of gravity, or even fore of the bow, and it
also puts restrictions on the thruster configuration and the number of thrusters installed.

This section describes the weather optimal position controller (WOPC) by Fossen and Strand (2001).
The control objective is that the vessel heading should adjust automatically to the mean environmental
forces (wind, waves and ocean currents) such that a minimum amount of energy is used in order to
save fuel and reduce NOx/COx emissions without using any environmental sensors. This is particularly
useful for shuttle tankers and FPSOs, which can be located at the same position for a long time. Also
DP-operated supply vessels that must keep their position for days in loading/off-loading operations have
a great WOPC fuel-saving potential.

The ship can be exponentially stabilized on a circle arc with constant radius by letting the bow of the
ship point toward the origin of the circle. In order to maintain a fixed position at the same time, a translatory
circle center control law is designed. The circle center is translated such that the Cartesian position is
constant, while the bow of the ship is automatically turned up against the mean environmental force to
obtain weathervaning. This approach is motivated by a pendulum in the gravity field where gravity is the
unmeasured quantity. The circular motion of the controlled ship, where the mean environmental force
can be interpreted as an unknown force field, copies the dynamics of a pendulum in the gravity field (see
Figure 13.24).

3 DOF Equations of Motion using Polar Coordinates

Consider a marine craft in 3 DOF:

η̇ = R(ψ)ν (13.466)

Mν̇ + C(ν)ν + D(ν)ν = τ + w (13.467)

where the North-East positions (N, E) and heading ψ are represented by η = [N, E, ψ]� and the body-
fixed velocities are represented by ν = [u, v, r]�. It is assumed that M = M� > 0, Ṁ = 0 and D(ν) > 0.

Unmodeled external forces and moment due to wind, ocean currents and waves are lumped together into
a body-fixed disturbance vector w ∈ R3 to be interpreted later.

The Cartesian coordinates (N, E) are related to the polar coordinates by

N = N0 + ρ cos(γ), E = E0 + ρ sin(γ) (13.468)
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Figure 13.24 The principle of WOPC using the equivalence to a pendulum in the gravity field where
gravity is the unmeasured quantity.

where (N0, E0) is the origin of a circle with radius ρ and polar angle γ given by

ρ =
√

(N − N0)2 + (E − E0)2 γ = atan2 ((E − E0), (N − N0)) (13.469)

Time differentiation of (13.468) yields

Ṅ = Ṅ0 + ρ̇ cos(γ) − ρ sin(γ)γ̇ (13.470)

Ė = Ė0 + ρ̇ sin(γ) + ρ cos(γ)γ̇ (13.471)

Define the state vectors:

p0 := [N0, E0]� , x := [ρ, γ, ψ
]�

(13.472)

From (13.470) and (13.471) a new kinematic relationship can be derived in terms of the vectors p0 and
x as

η̇ = R(γ)H(ρ)ẋ + Lṗ0 (13.473)

H(ρ) =

⎡
⎣ 1 0 0

0 ρ 0

0 0 1

⎤
⎦ , L =

⎡
⎣ 1 0

0 1

0 0

⎤
⎦ (13.474)
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From (13.473) the Cartesian kinematics (13.466) can be replaced by a differential equation for the
polar coordinates:

ẋ = T (x)ν − T (x)R�(ψ)Lṗ0 (13.475)

T (x) = H−1(ρ) R�(γ)R(ψ)︸ ︷︷ ︸
R�(γ−ψ)

(13.476)

Note that the conversion between Cartesian and polar coordinates is only a local diffeomorphism, since
the radius must be kept larger than a minimum value, that is ρ > ρmin > 0, in order to avoid the singular
point ρ = 0.

Marine Craft Model Transformation

The marine craft model (13.467) can be expressed in polar coordinates by using (13.475) and substituting

ν = T −1(x)ẋ + R�Lṗ0 (13.477)

ν̇ = T −1(x)ẍ + Ṫ −1(x)ẋ + R�Lp̈0 + Ṙ�Lṗ0 (13.478)

such that

Mν̇ + C(ν)ν + D(ν)ν = τ + w

⇐
⇒ ρ > 0

Mx(x)ẍ + Cx(ν, x)ẋ + Dx(ν, x)ẋ = T −�[q(ν, x, ṗ0, p̈0) + τ + w] (13.479)

where

Mx(x) = T −�(x)MT −1(x)

Cx(ν, x) = T −�(x)
(
C(ν) − MT −1(x)Ṫ (x)

)
T −1(x)

Dx(ν, x) = T −�(x)D(ν)T −1(x)

q(ν, x, ṗ0, p̈0) = −MR�(ψ)Lp̈0 − MṘ�(ψ)Lṗ0 − [C(ν) + D(ν)]R�(ψ)Lṗ0

Here Mx(x), Cx(ν, x) and Dx(ν, x) can be shown to satisfy

Mx(x) = M�
x (x) > 0, Dx(ν, x) > 0, ∀x

The marine craft dynamics also satisfy the skew-symmetric property:

z� (Ṁx − 2Cx

)
z = 0, ∀z, x (13.480)
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Figure 13.25 Environmental force Fe decomposed into components w1 and w2.

Weather Optimal Control Objectives

The steady-state LF motion of the craft and also the craft’s equilibrium position depend on the unknown
environmental forces acting on the hull. Let the environmental forces due to wind, waves and ocean
currents be represented by:

• A slowly varying mean force Fe that attacks the craft at a point (lx, ly) in body-fixed coordinates.
• A slowly varying mean direction βe relative to the Earth-fixed frame (see Figure 13.25).

The WF motion is assumed to be filtered out of the measurements by using a wave filter (see
Chapter 11). Since there are no sensors that can be used to measure (Fe, βe) and (lx, ly) with suffi-
cient accuracy, it is impossible to use feedforward from the environmental forces. This leads to the
following assumptions:

A1: The unknown mean environmental force Fe and its direction βe are assumed to be constant or at
least slowly varying.

A2: The unknown attack point (lx, ly) is constant for each constant Fe.

Discussion: These are good assumptions since the motion control system is only supposed to counteract
the slowly varying motion components of the environmental forces.

From Figure 13.25 the body-fixed environmental force vector w ∈ R3 can be expressed as

w =

⎡
⎣w1(ψ)

w2(ψ)

w3(ψ)

⎤
⎦ =

⎡
⎣ Fe cos(βe − ψ)

Fe sin(βe − ψ)

lxFe sin(βe − ψ) − lyFe cos(βe − ψ)

⎤
⎦ (13.481)
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Notice that the environmental forces vary with the heading angle ψ of the craft. Consequently,

Fe =
√

w2
1 + w2

2, βe = ψ + tan−1(w2/w1) (13.482)

The environmental forces Xw and Yw with attack point (lx(ψ), ly(ψ)) are shown in Figure 13.25. Note
that the attack point will change with the yaw angle ψ. This relationship will be a complicated function
of hull and superstructure geometries. However, the weather optimal control objectives can be satisfied
by using the following definitions (Fossen and Strand, 2001):

Definition 13.3 (Weather Optimal Heading)
The weather optimal heading angle ψopt is given by the equilibrium state where the yaw moment
w3(ψopt) = 0 at the same time as the bow of the craft is turned up against weather (mean environmental
forces); that is w2(ψopt) = 0. This implies that ψopt = βe, lx(ψopt) = constant and ly(ψopt) = 0 such that

w(ψopt) =

⎡
⎣w1(ψopt)

w2(ψopt)

w3(ψopt)

⎤
⎦ =

⎡
⎣−Fe

0

0

⎤
⎦

Hence, the mean environmental force attacks the craft in the bow, which has the minimum drag coefficient
for water and wind loads.

Definition 13.4 (Weather Optimal Positioning)
Weather optimal positioning (stationkeeping) is defined as the equilibrium state where ψopt satisfies

w1(ψopt) = −Fe, w2(ψopt) = w3(ψopt) = ly( ψopt) = 0 (13.483)

and the position (N, E) = (Nd, Ed) is kept constant.

These definitions motivate the following two control objectives:

• Weather Optimal Heading Control (WOHC): This is obtained by restricting the craft’s move-
ment to a circle with constant radius ρ = ρd and at the same time force the craft’s bow to point
towards the center of the circle until the weather optimal heading angle ψ = ψopt is reached (see
Figure 13.26). An analogy to this is a pendulum in a gravity field (see Figure 13.24). The position
(N, E) = (N0 + ρ cos(γ), E0 + ρ sin(γ)) will vary until the weather optimal heading angle is reached.
This is obtained by specifying the control objective in polar coordinates according to

ρd = constant, γ̇d = 0, ψd = π + γ (13.484)

Discussion: The requirement ρd = constant implies that the craft follows a circular arc with a constant
radius. The second requirement γ̇d = 0 implies that the tangential speed ργ̇ is kept small while the last
requirement ψd = π + γ ensures that the craft’s bow points toward the center of the circle.

• Weather Optimal Positioning Control (WOPC): In order to maintain a fixed Earth-fixed position
(N, E) = (Nd, Ed), the circle center p0 = [N0, E0]� must be moved simultaneously as control objec-
tive O1 is satisfied. This is referred to as translatory circle center control.

Nonlinear and Adaptive Control Design

The WOPC positioning controller is derived by using the polar coordinate representation. The backstep-
ping design methodology (Krstic et al., 1995) with extension to integral control (Fossen et al., 2001) is
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Figure 13.26 Stable and unstable equilibrium points for WOPC.

used to derive the feedback controller (see Section 13.3). Notice that conventional PID control can be
used as well. It is assumed that all states can be measured.

The WOPC controller will be derived in three successive steps:

1. Nonlinear backstepping (PD control): The ship is forced to move along a circular arc with desired
radius ρd, with minimum tangential velocity ργ̇ and desired heading ψd.

2. Adaptive backstepping (PID control): This is necessary to compensate for the unknown environmental
force Fe.

3. Translational control of the circle center: The circle center (N0, E0) is translated such that the ship
maintains a constant position (Nd, Ed) even though it is moving along a virtual circular arc. Hence,
the captain of the ship will only notice that the ship is rotating a yaw angle ψ about a constant position
(Nd, Ed) until the weather optimal heading ψopt is reached.

Nonlinear Backstepping (PD Control)

A general positioning controller is derived by using vectorial backstepping (Fossen and Grøvlen,
1998). The tracking objective is specified in polar coordinates using a smooth reference trajectory
xd = [ρd, γd, ψd]� ∈ C3 where

xd, ẋd, ẍd ∈ L∞
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Since the transformed system (13.479) is of order 2, backstepping is performed in two vectorial steps,
resulting in a nonlinear PD control law. First, a virtual reference trajectory is defined as:

ẋr := ẋd − �z1 (13.485)

where z1 = x − xd is the tracking error and � > 0 is a diagonal design matrix. Furthermore, let z2 denote
a measure of tracking defined according to

z2 := ẋ − ẋr = ż1 + �z1 (13.486)

From (13.486), the following expressions are obtained:

ẋ = z2 + ẋr, ẍ = ż2 + ẍr (13.487)

This implies that the marine craft model (13.479) can be expressed in terms of z2, ẋr and ẍr as

Mxż2 + Cxz2 + Dxz2 = T −�τ + T −�q(·) − Mxẍr − Cxẋr − Dxẋr + T −�w (13.488)

Step 1: Let z1 be the first error variable, which from (13.486) has the dynamics

ż1 = −�z1 + z2 (13.489)

A CLF for the first step is

V1 = 1

2
z�

1 Kpz1 (13.490)

V̇1 = −z�
1 Kp�z1 + z�

1 Kpz2 (13.491)

where Kp = K�
p > 0 is a constant design matrix.

Step 2: In the second step the CLF is motivated by the “pseudo-kinetic energy”:

V2 = V1 + 1

2
z�

2 Mxz2, Mx = M�
x > 0 (13.492)

Time differentiation of V2 along the trajectories of z1 and z2 gives

V̇2 = V̇1 + z�
2 Mxż2 + 1

2
z�

2 Ṁxz2 (13.493)

which by substitution of (13.491) and (13.488) gives

V̇2 = −z�
1 Kp�z1 + 1

2
z�

2

(
Ṁx − 2Cx

)
z2 − z�

2 Dxz2 + z�
2 T −�w

+z�
2

(
Kpz1 + T −�τ + T −�q(·) − Mxẍr − Cxẋr − Dxẋr

)
(13.494)

By using the property (13.480) and choosing the nonlinear PD control law as

τ = T �(Mxẍr + Cxẋr + Dxẋr − Kpz1 − Kdz2) − q(·) (13.495)

where Kd > 0 is a strictly positive design matrix, it is seen that

V̇2 = −z�
1 Kp�z1 − z�

2 (Kd + Dx)z2 + z�T −�w (13.496)
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Notice that the dissipative term z�
2 Dxz2 > 0, ∀z2 /= 0 is exploited in the design as it appears in the

expression for V̇2. With the control law (13.495) the closed-loop dynamics becomes

Mxż2 + (Cx + Dx + Kd)z2 + Kpz1 = T −�w (13.497)

Error dynamics: The error dynamics of the resulting system becomes nonautonomous since[
Kp 03×3

03×3 Mx

][
ż1

ż2

]
= −

[
Kp� 03×3

03×3 Cx + Dx + Kd

][
z1

z2

]

+
[

03×3 Kp

−Kp 03×3

][
z1

z2

]
+
[

03×1

T −�

]
w

�
M(x)ż = −K(x, ν)z + Sz + B(x)w (13.498)

where the different matrices are defined as

M(x) = MT (x) =
[

Kp 03×3

03×3 Mx(x)

]

K(x, ν) =
[

Kp� 03×3

03×3 Cx(x, ν) + Dx(x, ν) + Kd

]
> 0

S = −ST =
[

03×3 Kp

−Kp 03×3

]
, B(x) =

[
03×1

T −�(x)

]

In the absence of disturbances, w ≡ 0, the origin z = 0 is uniformly locally exponentially stable (ULES)
according to Lyapunov. Global results cannot be achieved due to the local diffeomorphism between the
Cartesian and polar coordinates; that is the transformation matrix T (x) is singular for ρ = 0.

With disturbances w /= 0, the closed-loop system is input-to-state stable (ISS). In the next section, it
is shown how adaptive backstepping (backstepping with integral action) can be used to obtain ULES for
the case of a nonzero disturbance vector w /= 0.

Adaptive Backstepping (PID Control)

Since the mean disturbance w is nonzero this will result in a steady-state offset when using the PD
controller from the previous section. The craft is, however, restricted to move along a circular arc with
w as a force field. Therefore there will be a stable and an unstable equilibrium point on the circle arc
(similar to a pendulum in the gravity field); see Figure 13.24. The stable equilibrium point is given by

w = φFe = [−1, 0, 0]� Fe (13.499)

Since the disturbance Fe is assumed to be slowly varying, adaptive backstepping can be applied to obtain
an integral effect in the system. Thus, in the analysis it will be assumed that Ḟ e = 0. Let the estimate of
Fe be denoted as F̂ e and F̃e = F̂ e − Fe. An additional step in the derivation of the backstepping control
law must be performed in order to obtain an adaptive update law for F̂ e.
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Step 3: The adaptive update law is found by adding the square parameter estimation error to
V2. Consequently,

V3 = V2 + 1

2σ
F̃

2
e , σ > 0 (13.500)

V̇3 = V̇2 + 1

σ
˙̃Fe F̃e (13.501)

The nonlinear control law (13.495) is modified to

τ = T �(Mxẍr + Cxẋr + Dxẋr − Kpz1 − Kdz2) − q(·) − φF̂ e (13.502)

where the last term φF̂ e provides integral action. Hence, the z2 dynamics becomes

Mxż2 + (Cx + Dx + Kd)z2 + Kpz1 = −T −�φ F̃e (13.503)

This implies that

V̇ 3 = −z�
1 Kp�z1 − z�

2 (Kd + Dx)z2 − z�
2 T −�φ F̃e + 1

σ
˙̃Fe F̃e

= −z�
1 Kp�z1 − z�

2 (Kd + Dx)z2 + F̃e( − φ�T −1z2 + 1

σ
˙̃Fe) (13.504)

The adaptive law ˙̂Fe = ˙̃Fe is chosen as

˙̂Fe = σφ�T −1z2, σ > 0 (13.505)

such that

V̇ 3 = −z�
1 Kp�z1 − z�

2 (Kd + Dx)z2 ≤ 0 (13.506)

Error Dynamics

The nonautonomous error dynamics for the adaptive backstepping controller can be written

M(x)ż = [−K(x, ν) + S]z + B(x) F̃e (13.507)

˙̃Fe = −σB�(x)z (13.508)

where

B(x) =
[

03×1

−T −�(x)φ

]
(13.509)
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In order to satisfy control objective O1, the controller gains must be chosen according to

Kp =

⎡
⎣ kp1 0 0

0 0 0

0 0 kp3

⎤
⎦ , Kd =

⎡
⎣ kd1 0 0

0 kd2 0

0 0 kd3

⎤
⎦ , � =

⎡
⎣ λ1 0 0

0 0 0

0 0 λ3

⎤
⎦ (13.510)

Notice that kp2 = λ2 = 0. This implies that the craft is free to move along the circular arc with tangential
velocity ργ̇. The gain kd2 > 0 is used to increase the tangential damping (D control) while the radius ρ

and heading ψ are stabilized by using PID control.

Semi-Definite Matrices

Since the controller gains kp2 and λ2 are chosen to be zero, the matrices

Kp ≥ 0, � ≥ 0 (13.511)

are only positive semi-definite. Hence, V3 is positive semi-definite. Uniform local asymptotic stability
(ULAS) of the equilibrium (z, F̃e) = (0, 0) can, however, be proven since the error dynamics (z1, z2) is
ISS. Consider the reduced order system (z1r, z2) given by

z1r = Ez1, E =
[

1 0 0

0 0 1

]
(13.512)

This implies that

ż1r = −E�z1 + Ez2

= −(E�E�)z1r + Ez2 (13.513)

Notice that the last step is possible since the diagonal matrices � = diag{λ1, 0, λ3} satisfy

�E�z1r = �z1 (13.514)

Hence, the error dynamics (13.507)–(13.508) can be transformed to

Mr(x)żr = [−Kr(x, ν) + Sr]zr + Br(x) F̃e (13.515)

˙̂Fe = −σB�
r (x)zr (13.516)

where zr = [z�
1r, z

�
2 ]� and

Mr(x) = M�
r (x) =

[
EKpE

� 02×3

03×2 Mx(x)

]

Kr(x, ν) =
[

(EKpE
�)(E�E�) 02×3

03×2 Cx(x, ν) + Dx(x, ν) + Kd

]
> 0

Sr = −S�
r =
[

02×2 EKp

−KpE
� 03×3

]
, Br(x) =

[
02×1

T −�(x)φ

]
where the fact that KpE

�z1r = Kpz1 for Kp = diag{kp1, 0, kp3} has been applied.
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Nonautonomous Lyapunov Analysis

Even though the Lyapunov function V3 corresponding to the states (z1, z2) is only positive semi-definite
(since Kp is positive semi-definite) the Lyapunov function V3r corresponding to the new output (z1r, z2)
is positive definite. Using the fact that the closed-loop system governed by (z1, z2) is ISS, asymptotic
tracking is guaranteed by

V3r = 1

2

[
z�

1r(EKpE
�)z1r + z�

2 Mxz2 + 1

σ
F̃

2
e

]
> 0 (13.517)

V̇3r = −z�
1r(EKpE

�)(E�E�)z1r − z�
2 (Kd + Dx)z2 ≤ 0 (13.518)

where EKpE
� > 0 and E�E� > 0. Hence, z1r, z2, F̃e ∈ L∞. Notice that V̇3 is only negative semi-

definite since a negative term proportional to − F̃
2
e is missing in the expression for V̇3. ULES of the

equilibrium point (z1r, z2, F̃e) = (0, 0, 0) follows by using the stability theorem of Fossen et al. (2001)
for nonlinear nonautonomous systems (see Appendix A.2.4). Since, the closed-loop system (z1, z2) is ISS
it is sufficient to consider the reduced order system (z1r, z2) with output z1r = Ez1 in the stability analysis.
According to Appendix A.2.4, we can choose x1 = [z�

1r, z
�
2 ]�, x2 = F̃e, P = σ and W(x1, t) = 1

2 x�
1 x1.

Then the equilibrium point (z1r, z2, F̃e) = (0, 0, 0) of the nonlinear error system (13.507)–(13.508) is
ULES since

rank{(M−1
r (x)Br(x))�(M−1

r (x)Br(x))} = 1, ∀x

and

max {‖h(x1, t)‖ , ‖x1‖} = max
{∥∥M−1

r (x)[−Kr(x, ν) + Sr]x1

∥∥ , ‖x1‖
}

≤ ρ1(‖x1‖) ‖x1‖
‖B(x, t)‖ =

∥∥M−1
r (x)Br(x)

∥∥ ≤ ρ2(‖x1‖)

max

{∥∥∥∥∂B(x, t)

∂t

∥∥∥∥ ,

∥∥∥∥∂B(x, t)

∂xi

∥∥∥∥
}

= max

{∥∥∥∥∂M−1
r (x)Br(x)

∂xi

∥∥∥∥
}

≤ ρ3(‖x1‖)

Translational Control of the Circle Center

The adaptive backstepping controller satisfies a control objective O1, that is weather optimal heading
control. Weather optimal position control (control objective O2) can be satisfied by moving the circle
center p0 = [N0, E0]� online such that the craft maintains a constant position p = [N, E]�.

In order to meet the fixed position control objective, an update law for the circle center p0 must be
derived. The Cartesian Earth-fixed position of the craft is given by

p = L�η (13.519)

where L is defined in (13.474). Let p̃ = p − pd denote the corresponding deviation from the desired
position vector pd = [Nd, Ed]�. The desired position can either be constant (regulation) or a smooth time-
varying reference trajectory. The control law for translation of the circle center is derived by considering
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the following CLF:

Vp = 1

2
p̃� p̃ (13.520)

V̇p = p̃�(ṗ − ṗd) = p̃�(L�η̇ − ṗd) (13.521)

By using (13.473), L�L = I2×2 and ẋ = z2 + ẋr it is seen that

V̇ p = p̃�[L�(R(γ)H(ρ)ẋ + Lṗ0) − ṗd]

= p̃�(ṗ0 − ṗd + L�R(γ)H(ρ)ẋr) + p̃�L�R(γ)H(ρ)z2 (13.522)

Now, by choosing the circle center update law as

ṗ0 = ṗd − L�R(γ)H(ρ)ẋr − k0 p̃ (13.523)

where k0 > 0, it is seen that

V̇p = −k0 p̃� p̃ + p̃�L�R(γ)H(ρ)z2 (13.524)

In (13.524) a cross-term in p̃ and z2 is noted. In order to guarantee that the time derivative of the
total system Vwopc = V3r + Vp is negative semi-definite, the weather optimal controller (13.502) must be
modified such that the cross-term in (13.524) is canceled.

Weather Optimal Position Control (WOPC)

The cross-terms involving p̃ and z2 in V̇p can be removed by modifying the nonlinear controller
(13.502) to

τ = T �(Mxẍr + Cxẋr + Dxẋr − Kpz1 − Kdz2) − q(·) − φF̂ e − T �H�(ρ)R�(γ)L p̃ (13.525)

The last term in τ implies that

V̇3r = −z�
1r(EKpE

�)(E�E�)z1r − z�
2 (Kd + Dx)z2 − p̃�L�R(γ)H(ρ)z2 (13.526)

Consider

Vwopc = V3r + Vp (13.527)

V̇wopc = −z�
1r(EKpE

�)(E�E�)z1r − z�
2 (Kd + Dx)z2 − k0 p̃� p̃ (13.528)

and therefore the equilibrium point (z1r, z2, F̃e, p̃) = (0, 0, 0, 0) is ULES. The term p̈0 is needed in the
expression for q(·). This term is computed from (13.523) as
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p̈0 = p̈d − k0(ṗ − ṗd) − L�R(γ)H(ρ)ẍr

−L�Ṙ(γ)H(ρ)ẋr − L�R(γ)Ḣ(ρ)ẋr (13.529)

Experiment 1: Weather Optimal Heading Control (WOHC)

The proposed WOHC system has been implemented and tested experimentally using a model ship of
scale 1:70. A ducted fan was used to generate wind forces. The length of the model ship is Lm = 1.19 m
and the mass is mm = 17.6 kg. The experimental results are scaled to full scale by considering a supply
vessel with mass ms = 4500 tons using the bis system (see Section 7.2.5).

In the first experiment the ship was allowed to move on the circle arc and the circle center controller
(13.523) was turned off; that is N0 = constant and E0 = constant. This is referred to as WOHC. The
fixed origin and circle arc are shown in Figure 13.27. Notice that the initial heading is approximately
30 degrees (see Figure 13.28), while the position (N, E) ≈ (13, −43). These values are those obtained
when the fan was initially directed at 210 degrees in the opposite direction of the ship heading.

After 3000 seconds the fan was slowly rotated to 165 degrees, corresponding to a weather optimal
heading of −15 degrees (see Figure 13.28). During this process, the ship starts to move on the circle arc
with heading towards the circle center until it is stabilized to its new heading at −15 degrees. The new
position on the circle arc is (N, E) ≈ (3, 20). This clearly demonstrates that the ship heading converges
to the optimal value by copying the dynamics of a pendulum in the gravity field. This is done without
using any external wind sensor.

Figure 13.27 WOHC experiment showing the circular motion of the ship when the circle center con-
troller is turned off (WOHC).
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Figure 13.28 WOHC experiment showing the performance of the radius regulator (upper plot) and
weather optimal heading (lower plot) versus time (s).

In the next experiment, the circle center is translated online in order to obtain a constant
position (N, E).

Experiment 2: Weather Optimal Position Control (WOPC)

In the second experiment the ship should maintain its position by activating the circle center con-
troller (13.523). The performance during stationkeeping and translation of the circle is shown in
Figures 13.29–13.31. The position controller works within an accuracy of ±1 m, which is the accuracy
of the GNSS system.

Again the weather optimal heading is changed from approximately 23 degrees to 2 degrees but this
time without changing the position (N, E) of the ship. The position deviations and the weather optimal
heading are shown in Figure 13.30. These values are obtained by moving the fan from an initial angle of
203 degrees to 182 degrees.
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Figure 13.29 WOPC experiment showing how the circle center is moved to obtain stationkeeping to
(Nd, Ed) = (0, 0).

13.3.11 Case Study: Heading Autopilot for Ships and Underwater
Vehicles

A nonlinear backstepping controller can be designed by writing the autopilot model (7.53) in SISO strict
feedback form:

ψ̇ = r (13.530)

mṙ + d(r)r = δ (13.531)

where m = T/K and d(r) = HN (r)/K. The only nonlinearity in this model is due to the maneuvering
characteristic HN(r).

In Section 13.3.3 it was shown that the backstepping controller for this system is

δ = mα̇1 + d(r)r − z1 − k2z2 − n2(z2)z2 (13.532)

α1 = rd − [k1 + n1(z1)]z1 (13.533)

where k1 > 0 and k2 > 0 are two feedback gains and ni(zi) ≥ 0 (i = 1, 2) are two optional nonlin-
ear damping terms, for instance chosen as nondecreasing functions ni(zi) = κi |zi|ni with ni ≥ 1 and
κi ≥ 0 (i = 1, 2) as design parameters. The following change of coordinates is needed to implement
the controller:

z1 = ψ − ψd (13.534)

z2 = r − α1 (13.535)
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Figure 13.30 WOPC experiment showing the North and East position accuracies (upper plots) and
weather optimal heading (lower plot) versus time (seconds). The position accuracy is within ±1 m while
the heading changes from 23 degrees to 2 degrees as the fan is rotated.
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Figure 13.31 WOPC experiment showing the deviation for the radius regulator (upper plot) and the
translation of the circle center (N0, E0) (lower plots) versus time in seconds. The radius deviation is
within ±1 m during the rotation of the fan.



512 Advanced Motion Control Systems

The backstepping controller includes a PD term as well as reference feedforward. In addition the nonlinear
damping terms ni(zi) (i = 1, 2) can be used to improve the performance and stability of the closed-
loop system.

When using feedback linearization all the nonlinearities in HN(r) are compensated for. This requires
that the dissipative terms are known with good accuracy, which is not true in many cases. The backstepping
controller gives more design flexibility with respect to the damping terms. In fact, it is possible to exploit
good damping terms such as n3r

3 and n1r in HN (r) instead of canceling them. This is straightforward
in setpoint regulation; see Krstic et al. (1995), for instance. In trajectory-tracking control, however, it
is not clear how good damping with respect to a time-varying reference trajectory should be defined. A
discussion on backstepping versus feedback linearization is found in Section 13.3.2.

Extensions to integral action can be done by using the method of Loria et al. (1999) and Fossen
et al. (2001), which is referred to as backstepping with integral action. Alternatively, an integrator
augmentation technique can be applied. Both these methods are described in detail in Sections 13.3.4
and 13.3.5.

The actuator dynamics can be included in the design by using the approach of Fossen and Berge (1997)
where backstepping is performed in three steps to include a first-order actuator model.

13.3.12 Case Study: Path-Following Controller for Underactuated
Marine Craft

For floating rigs, semi-submersibles and supply vessels, trajectory-tracking control in surge, sway and yaw
(3 DOF) is easily achieved since independent control forces and moments are simultaneously available
in all degrees of freedom. For slow speed, this is referred to as DP and the craft is controlled by means
of tunnel thrusters, azimuths and main propellers. Conventional craft, on the other hand, are usually
equipped with one or two main propellers for forward speed control and rudders for turning control. The
minimum configuration for waypoint tracking control is one main propeller and a single rudder. This
means that only two controls are available, thus rendering the ship underactuated for the task of 3 DOF
trajectory-tracking control (see Section 9.4).

Conventional waypoint guidance systems are usually designed by reducing the output space from
3 DOF position and heading to 2 DOF heading and surge (Healey and Marco, 1992). In its simplest form
this involves the use of a classical autopilot system where the commanded yaw angle ψd is generated
such that the cross-track error is minimized. A path-following control system is usually designed such
that the ship moves forward with reference speed ud at the same time as the cross-track error to the path
is minimized. As a result, ψd and ud are tracked using only two controls.

This section is based on Fossen et al. (2003a) and presents a maneuvering controller involving an LOS
guidance system and a nonlinear feedback trajectory-tracking controller. The desired output is reduced
from (xd, yd, ψd) to ψd and ud using an LOS projection algorithm. The tracking task ψ(t) → ψd(t) is
then achieved using only one control (normally the rudder), while tracking of the speed assignment ud is
performed by the remaining control (the main propeller). Since we are dealing with segments of straight
lines, the LOS projection algorithm will guarantee that the task of path-following is satisfied.

First, an LOS guidance procedure is derived. This includes a projection algorithm and a waypoint
switching algorithm. To avoid large bumps in ψd when switching, and to provide the necessary derivatives
of ψd to the controller, the commanded LOS heading is fed through a reference model. Second, a non-
linear 2 DOF tracking controller is derived using the backstepping technique. Three stabilizing functions
α := [α1, α2, α3]� are defined where α1 and α3 are specified to satisfy the tracking objectives in the
controlled surge and yaw modes. The stabilizing function α2 in the uncontrolled sway mode is left as a
free design variable. By assigning dynamics to α2, the resulting controller becomes a dynamic feedback
controller so that α2(t) → v(t) during path following. This is an appealing idea that adds to the extensive
theory of backstepping. The presented design technique results in a robust controller for underactuated
ships since integral action can be implemented for both path-following and speed control.
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Problem Statement

The problem statement is stated as a maneuvering problem with the following two objectives (Skjetne
et al., 2004):

LOS Geometric Task: Force the marine craft position p = [x, y]� to converge to a desired path by
forcing the course angle χ to converge to (see Section 10.3.2)

χd = atan2 (ylos − y, xlos − x) (13.536)

where the LOS position plos = [xlos, ylos]� is the point along the path to which the craft should be
pointed. Notice that ψ = χ − β and ψd = χd − β implies that ψ̃ = χ̃ when designing the controller.

Dynamic Task: Force the speed u to converge to a desired speed assignment ud according to

lim
t→∞

[u(t) − ud(t)] = 0 (13.537)

where ud is the desired speed composed along the body-fixed x axis.

A conventional trajectory-tracking control system for 3 DOF is usually implemented using a standard
PID autopilot in series with an LOS algorithm. Hence, a state-of-the-art autopilot system can be modified
to take the LOS reference angle as input (see Figure 12.20). This adds flexibility since the default
commercial autopilot system can be used together with the LOS guidance system. The speed can be
adjusted manually by the captain or automatically using the path speed profile.

Consider the 3 DOF nonlinear maneuvering model in the following form:

η̇ = R(ψ)ν (13.538)

Mν̇ + N(ν)ν =

⎡
⎣ (1 − t)T

Yδδ

Nδδ

⎤
⎦ :=

⎡
⎣ τ1

Yδδ

τ3

⎤
⎦ (13.539)

where η = [N, E, ψ]�, ν = [u, v, r]� and

R(ψ) =

⎡
⎣ cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1

⎤
⎦ (13.540)

The matrices M and N take the following form:

M =

⎡
⎣m11 0 0

0 m22 m23

0 m32 m33

⎤
⎦ =

⎡
⎣m − Xu̇ 0 0

0 m − Yv̇ mxg−Y ṙ

0 mxg−Nv̇ Iz−Nṙ

⎤
⎦

N(ν) =

⎡
⎣ n11 0 0

0 n22 n23

0 n32 n33

⎤
⎦ =

⎡
⎣−Xu 0 0

0 −Yv mu − Yr

0 −Nv mxgu − Nr

⎤
⎦

The control force and moment in surge and yaw are denoted τ1 and τ3, respectively, while sway is left
uncontrolled. Notice that the rudder angle δ affects the sway equation but it will not be used to actively
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control sway. The controller computes τ1 and τ3 which can be allocated to thrust T and rudder angle
δ using

τ1 = (1 − t)T (13.541)

τ3 = Nδδ (13.542)

where t is the thrust deduction number. This gives

T = 1

1 − t
τ1 (13.543)

δ = 1

Nδ

τ3 (13.544)

Backstepping Design

The design is based on the model (13.538)–(13.539) where M = M� > 0. Define the error signals z1 ∈ S

and z2 ∈ R3 according to

z1 := χ − χd = ψ − ψd (13.545)

z2 := [z2,1, z2,2, z2,3]� = ν − α (13.546)

where χd and its derivatives are provided by proper filtering of the LOS angle, ud ∈ L∞ is the desired
speed and α := [α1, α2, α3]� ∈ R3 is a vector of stabilizing functions to be specified later. Next, let

h = [0, 0, 1]� (13.547)

such that

ż1 = r − rd = h�ν − rd

= α3 + h�z2 − rd (13.548)

where rd = ψ̇d and

Mż2 = Mν̇ − Mα̇

= τ − Nν − Mα̇ (13.549)

Consider the CLF:

V = 1

2
z2

1 + 1

2
z�

2 Mz2, M = M� > 0 (13.550)

Differentiating V along the trajectories of z1 and z2 yields

V̇ = z1ż1 + z�
2 Mż2

= z1(α3 + h�z2 − rd) + z�
2 (τ − Nν − Mα̇)

Choosing the virtual control α3 as

α3 = −cz1 + rd (13.551)
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while α1 and α2 are yet to be defined gives

V̇ = −cz2
1 + z1h

�z2 + z�
2 (τ − Nν − Mα̇)

= −cz2
1 + z�

2 (hz1 + τ − Nν − Mα̇) (13.552)

Suppose we can assign

τ =

⎡
⎣ τ1

Yδδ

τ3

⎤
⎦ = Mα̇ + Nν − Kz2 − hz1 (13.553)

where K = diag{k1, k2, k3} > 0. This results in

V̇ = −cz2
1 − z�

2 Kz2 < 0, ∀z1 /= 0, z2 /= 0 (13.554)

and by standard Lyapunov arguments, this guarantees that (z1, z2) is bounded and converges to zero.
However, notice from (13.553) that it is only possible to prescribe values for τ1 and τ3; that is

τ1 = m11α̇1 + n11u − k1(u − α1) (13.555)

τ3 = m32α̇2 + m33α̇3 + n32v + n33r − k3(r − α3) − z1 (13.556)

Choosing α1 = ud clearly solves the dynamic task since the closed-loop surge dynamics becomes

m11 (u̇ − u̇d) + k1 (u − ud) = 0 (13.557)

The second equation in (13.553) results in a dynamic equality constraint

m22α̇2 + m23α̇3 + n22v + n23r − k2(v − α2) = Yδ

Nδ

τ3 (13.558)

affected by the control input τ3. Substituting (13.556) into this expression yields

(
m22 − Yδ

Nδ

m32

)
α̇2 +

(
m23 − Yδ

Nδ

m33

)
α̇3 +

(
n22 − Yδ

Nδ

n32

)
v +
(

n23 − Yδ

Nδ

n33

)
r

− k2(v − α2) + Yδ

Nδ

(k3(r − α3) + z1) = 0

Application of α̇3 = c2z1 − cz2,3 + ṙd , α3 = −cz1 + rd, v = α2 + z2,2 and r = α3 + z2,3 then gives(
m22 − Yδ

Nδ

m32

)
α̇2 = −

(
n22 − Yδ

Nδ

n32

)
α2 + γ(z1, z2, rd, ṙd) (13.559)

where

γ(z1, z2, rd, ṙd) = −
(

m23 − Yδ

Nδ

m33

)(
c2z1 − cz2,3 + ṙd

)−
(

n22 − Yδ

Nδ

n32

)
z2,2

−
(

n23 − Yδ

Nδ

n33

)(−cz1 + rd + z2,3

)+ k2z2,2 − Yδ

Nδ

(
k3z2,3 + z1

) (13.560)

The variable α2 becomes a dynamic state of the controller according to (13.559). Furthermore,
m22 > (Yδ/Nδ)m32 and n22 > (Yδ/Nδ)n32 imply that (13.559) is a stable differential equation driven
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by the converging error signals (z1, z2) and the bounded reference signals (rd, ṙd) within the expression
of γ(·). Since z2,2(t) → 0, it follows that |α2(t) − v(t)| → 0 as t → ∞. The main result is summarized
by Theorem 13.2, which is a modification of Fossen et al. (2003a).

Theorem 13.2 (LOS Backstepping Controller for Underactuated Craft)
The LOS maneuvering problem for the 3 DOF underactuated craft (13.538)–(13.539) is solved using the
control laws

τ1 = m11u̇d + n11u − k1(u − ud)

τ3 = m32α̇2 + m33α̇3 + n32v + n33r − k3(r − α3) − z1

where k1 > 0, k3 > 0, z1 := ψ − ψd, z2 := [u − ud, v − α2, r − α3]� and

α3 = −cz1 + rd, c > 0 (13.561)

α̇3 = −c(r − rd) + ṙd (13.562)

The reference signals ud, u̇d, ψd, rd and ṙd are provided by the LOS guidance system, while α2 is
given by (

m22 − Yδ

Nδ

m32

)
α̇2 = −

(
n22 − Yδ

Nδ

n32

)
α2 + γ(z1, z2, rd, ṙd)

This results in a UGAS equilibrium point (z1, z2) = (0, 0) and α2 ∈ L∞ satisfies

lim
t→∞

|α2(t) − v(t)| = 0 (13.563)

Remark 13.1
Notice that the smooth reference signal ψd ∈ L∞ must be differentiated twice to produce rd and ṙd while
ud ∈ L∞ must be differentiated once to give u̇d . This is most easily achieved by using reference models
represented by low-pass filters (see Section 10.2.1).

Proof. The closed-loop equations become[
ż1

ż2

]
=
[ −c h�

−M−1h −M−1K

][
z1

z2

]
(13.564)

mα̇2 = −nα2 + γ(z1, z2, rd, ṙd) (13.565)

where

m =
(

m22 − Yδ

Nδ

m32

)
, n =

(
n22 − Yδ

Nδ

n32

)
(13.566)

From the Lyapunov arguments (13.550) and (13.554), the equilibrium (z1, z2) = (0, 0) of the z subsystem
is UGAS. The unforced α2 subsystem (γ = 0) is clearly exponentially stable. Since (z1, z2) ∈ L∞ and
(rd, ṙd) ∈ L∞, then γ ∈ L∞. This implies that the α2 subsystem is input-to-state stable from γ to α2.

This is seen by applying, for instance, V2 = 1
2 mα2

2 which differentiated along the solutions of α2 gives
V̇2 ≤ − 1

2 nα2
2 for all |α2| ≥ 2

n
|γ(z1, z2, rd, ṙd)| . By standard comparison functions, it is then possible

to show that for all |α2| ≥ 2
n

|γ(z1, z2, rd, ṙd)| then

|α2(t)| ≤ |α2(0)| e− n
2 t (13.567)

Hence, α2 converges to the bounded set {α2 : |α2| ≤ 2
n

|γ(z1, z2, rd, ṙd)|} since z2,2(t) → 0 as t → ∞.
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Case Study: Experiment Performed with the CS2 Model Ship

The proposed controller and guidance system were tested out at the Marine Cybernetics Laboratory
(MCLab). MCLab is an experimental laboratory for the testing of scale models of ships, rigs, underwater
vehicles and propulsion systems. The software is developed by using rapid prototyping techniques and
automatic code generation under Matlab/Simulink. The target PC onboard the model scale vessels runs
the real-time operating system, while experimental results are presented in real time on a host PC.

In the experiment, CyberShip 2 (CS2) was used. It is a 1:70 scale model of an offshore supply vessel
with a mass of 15 kg and a length of 1.255 m. The maximum surge force is approximately 2.0 N while
the maximum yaw moment is about 1.5 N m. The MCLab tank is L × B × D = 40 m × 6.5 m × 1.5 m.

Figure 13.32 shows CS2. Three spheres can be seen mounted on the ship, ensuring that its position and
orientation can be identified by infrared cameras. Two infrared cameras mounted on a towing carriage
currently supply the position and orientation estimates in 6 DOF, but due to a temporary poor calibration
the camera measurements vanished when the ship assumed certain yaw angles and regions of the tank. This
affected the results of the experiment and also limited the available space for maneuvering. Nevertheless,
good results were obtained.

The desired path consists of a total of eight waypoints:

wpt1= (0.372, −0.181) wpt5= (6.872, −0.681)
wpt2= (−0.628, 1.320) wpt6= (8.372, −0.181)
wpt3= (0.372, 2.820) wpt7= (9.372, 1.320)
wpt4= (1.872, 3.320) wpt8= (8.372, 2.820)

representing an S-shape. CS2 was performing the maneuver with a constant surge speed of 0.1 m/s. By
assuming equal Froude numbers, this corresponds to a surge speed of 0.85 m/s for the full scale supply

Figure 13.32 CyberShip 2 floating in the MCLab.
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ship. A higher speed was not attempted because the consequence of vanishing position measurements at
higher speed is quite severe. The controller used

M =

⎡
⎣ 25.8 0 0

0 33.8 1.0115

0 1.0115 2.76

⎤
⎦ , N(ν) =

⎡
⎣ 2 0 0

0 7 0.1

0 0.1 0.5

⎤
⎦

c = 0.75, k1 = 25, k2 = 10, k3 = 2.5

In addition, a reference model consisting of three first-order low-pass filters in cascade delivered contin-
uous values of ψd , rd and ṙd . The ship’s initial states were

(x0, y0, ψ0) = (−0.69 m, −1.25 m, 1.78 rad)

(u0, v0, r0) = (0.1 m/s, 0 m/s, 0 rad/s)

Both the ship enclosing circle and the radius of acceptance for all waypoints was set to one ship length.
Figure 13.33 shows an xy plot of the CS2’s position together with the desired geometrical path consisting
of straight-line segments. The ship is seen to follow the path very well. To illustrate the effect of the
positioning reference system dropping out from time to time, Figure 13.34 is included. It shows the actual
heading angle of CS2 alongside the desired LOS angle. The discontinuities in the actual heading angle
are due to the camera measurements dropping out. When the measurements return, the heading angle of
the ship is seen to converge nicely to the desired angle.

Figure 13.33 xy plot of the measured and desired geometrical path during the experiment.
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Figure 13.34 The actual yaw angle of the ship tracks the desired LOS angle well.

13.4 Sliding-Mode Control
A robust nonlinear design technique for marine craft is sliding-mode control (Utkin, 1977), which in-
corporates techniques to handle model uncertainty. Sliding-mode techniques are discussed in detail by
Utkin (1992) while applications to marine craft are found in Yoerger and Slotine (1985), Slotine and Li
(1991), Healey and Lienard (1993) and McGookin et al. (2000a, 2000b), for instance.

13.4.1 SISO Sliding-Mode Control

Define a scalar measure of tracking:

s := ˙̃ψ + 2λψ̃ + λ2

∫ t

0

ψ̃(τ) dτ (13.568)

where ψ̃ = ψ − ψd is the yaw angle tracking error and λ > 0 is a design parameter reflecting the band-
width of the controller. For s = 0 this expression describes a sliding surface (manifold) with exponentially
stable dynamics. To see this let us define a second sliding surface:

s0 := ψ̃ + λ

∫ t

0

ψ̃(τ) dτ (13.569)
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Figure 13.35 Graphical interpretation of the sliding surface s = ṡ0 + λs0 and boundary layer φ > 0.

such that the manifold s = 0 can be rewritten as

s = ṡ0 + λs0 = 0 (13.570)

Hence, both s0 and ψ̃ converge exponentially to zero since the linear system[
˙̃ψ

ṡ0

]
=
[−λ 1

0 −λ

][
ψ̃

s0

]
(13.571)

has two real eigenvalues at −λ. This ensures that the tracking error ψ̃ → 0 on the manifold s = 0. Hence,
the control objective is reduced to finding a nonlinear control law which ensures that

lim
t→∞

s = 0 (13.572)

A graphical interpretation of the sliding surfaces is given in Figure 13.35.
It is seen that a trajectory starting at s > 0 will move toward the sliding surface s = 0. When s = 0

is reached the trajectory will continue moving on the straight line corresponding to s = 0 toward the
equilibrium point s0 = 0. Similar behavior is observed when starting with a negative value of s.

Nonlinear Ship Autopilot

When deriving the control law, a stable ship model with nonlinear damping is considered:

T ṙ + n3r
3 + n1r = Kδ + τwind (13.573)

where τwind is the wind moment. Define a new signal v according to

v := r − s =⇒ s = r − v (13.574)
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such that

T ṡ = T ṙ − T v̇

= Kδ + τwind − (n3r
2 + n1)r − T v̇

= Kδ + τwind − (n3r
2 + n1)(v + s) − T v̇ (13.575)

Consider the CLF:

V (s) = 1

2
Ts2, T > 0 (13.576)

Differentiating V along the trajectories of s yields

V̇ (s) = sT ṡ

= s[Kδ + τwind − (n3r
2 + n1)(v + s) − T v̇]

= −[n3r
2 + n1]s2 + s[Kδ + τwind − [n3r

2 + n1]v − T v̇] (13.577)

Let the control law be chosen as

δ = T̂

K̂
v̇ + 1

K̂
[n̂3r

2 + n1]v − 1

K̂
τwind − Kds − Kssgn(s) (13.578)

where Kd > 0 and Ks > 0, while T̂ , K̂ and n̂3 are estimates of T, K and n3, respectively. Notice that
n1 = 1 for a stable ship. The signum function is defined as

sgn(s) :=

⎧⎨
⎩

1 if s > 0

0 if s = 0

−1 otherwise

(13.579)

This implies that

V̇ (s) = −[n3r
2 + n1 + Kd]s2 − Ks |s|

+
[(

T̂

K̂
− T

K

)
v̇ +
(

1

K̂
− 1

K

)
[n1v − τwind]

+
(

n̂3

K̂
− n3

K

)
r2v

]
s (13.580)

In order for this expression to become negative, Ks must be chosen large enough so that the parameter
errors are dominated. Consequently,

Ks ≥
∣∣∣∣
(

T̂

K̂
− T

K

)
v̇

∣∣∣∣+
∣∣∣∣
(

1

K̂
− 1

K

)
[n1v − τwind]

∣∣∣∣
+
∣∣∣∣
(

n̂3

K̂
− n3

K

)
r2v

∣∣∣∣ (13.581)
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implies that

V̇ (s) ≤ −(n3r
2 + n1 + Kd)s2 − Ks |s|

< 0, ∀s /= 0 (13.582)

The nonpositive term −(n3r
2 + n1 + Kd)s2 ensures exponential stability of s = 0. However, in order

to converge to the manifold s → 0 in finite time such that ψ̃ → 0 in finite time, the gain Ks > 0 must
be positive.

One way to find an estimate of Ks is to assume, for instance, 20 % uncertainty in all elements
such that

Ks ≥ 1.2
T̂

K̂
|v̇| + 1.2

1

K̂
|n1v − τwind| + 1.2

n̂3

K̂

∣∣r2v
∣∣ (13.583)

It is well known that the switching term Kssgn(s) can lead to chattering for large values of Ks. Hence,
Ks > 0 should be treated as a design parameter with (13.581) as a guideline. Recall that Lyapunov
stability analysis results in conservative requirements for all gains.

Chattering in the controller can, however, be eliminated by replacing the signum function with a satu-
rating function. Slotine and Li (1991) suggest smoothing out the control discontinuity inside a boundary
layer according to

sat(s) =
{

sgn(s) if |s/φ| > 1

s/φ otherwise
(13.584)

where φ > 0 can be interpreted as the boundary layer thickness. This substitution will assign a low-pass
filter structure to the dynamics inside the boundary layer (see Figure 13.35). Another possibility is to
replace Kssgn(s) with Kstanh(s/φ), where φ > 0 is a design parameter used to shape the slope of tanh(·)
close to the origin.

13.4.2 Sliding-Mode Control using the Eigenvalue Decomposition

Healey and Lienard (1993) have applied the theory of sliding-mode control to control the NPS AUV II.
A related work discussing the problems of adaptive sliding-mode control in the dive plane is found in
Cristi et al. (1990). Sliding-mode control for highly maneuverable underwater vehicles is discussed by
Lyshevski (2001), who considers the 6 DOF underwater vehicle equations of motion.

The method presented in this section can be applied to the lateral model (7.132), which includes the
roll mode, or to the reduced order model (7.33), which is recognized as the linearized maneuvering model
(see Section 7.1.4). Consider the state-space model

ẋ = Ax + bu + f (x, t) (13.585)

where f (x, t) is a a nonlinear function describing the deviation from linearity in terms of disturbances
and unmodeled dynamics, x = [v, r, ψ]� and u = δR is the rudder angle. Consequently,

A =

⎡
⎣ a11 a12 0

a21 a22 0

0 1 0

⎤
⎦ , b =

⎡
⎣ b1

b2

0

⎤
⎦ (13.586)
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The experiments of Healey and coauthors show that this model can be used to describe a large number
of AUV maneuvers. The feedback control law is composed of two parts:

u = −k�x + uo (13.587)

where k ∈ R3 is the feedback gain vector. Substituting (13.587) into (13.585) yields the closed-
loop dynamics

ẋ = (A − bk�)︸ ︷︷ ︸
Ac

x + buo + f (x, t) (13.588)

where k is computed by means of pole placement. In order to determine the nonlinear part uo of the
feedback control law, consider the output mapping

s = h� x̃ (13.589)

where h ∈ R3 is a design vector to be chosen such that s → 0, implying convergence of the state tracking
error x̃ = x − xd → 0. The output mapping s is also referred to as a sliding surface. Premultiplication
of (13.588) with h� and then subtraction of h�ẋd from both sides gives

ṡ = h�Acx + h�buo + h�f (x, t) − h�ẋd (13.590)

Assume that hT b /= 0 and let the nonlinear control law be chosen as (see Figure 13.36)

uo = (h�b)−1[h�ẋd − h�f̂ (x, t) − ηsgn(s)], η > 0 (13.591)

where f̂ (x, t) is an estimate of f (x, t). This gives the s dynamics

ṡ = h�Acx − ηsgn(s) + h��f (x, t) (13.592)

where �f (x, t) = f (x, t) − f̂ (x, t). The first term in this equation can be rewritten as

h�Acx = x�A�
c h = λx�h (13.593)

Figure 13.36 Nonlinear sliding-mode controller.
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by requiring that h is a right eigenvector of A�
c such that

A�
c h = λh (13.594)

where λ = λ(A�
c ) is the eigenvalue corresponding to h. Hence,

ṡ = λx�h − ηsgn(s) + h��f (x, t) (13.595)

Computation of h and k

The eigenvalue λ in (13.595) can be made zero by noticing that (13.586) has one pure integrator. Let

k = [k1, k2, 0]� (13.596)

such that the linear part of the controller only stabilizes the sway velocity v and yaw rate r. The yaw angle
ψ is left uncontrolled in the inner loop since this results in a closed-loop system matrix:

Ac =

⎡
⎣ a11 − b1k1 a12 − b1k2 0

a21 − b2k1 a22 − b2k2 0

0 1 0

⎤
⎦ (13.597)

where one of the eigenvalues is zero. Consequently,

λx�h = 0 if h is a right eigenvector of A�
c for λ = 0 (13.598)

With this choice of h, the s dynamics (13.595) reduces to

ṡ = −ηsgn(s) + h��f (x, t) (13.599)

and it follows from

V = 1

2
s2 (13.600)

that

V̇ = sṡ

= −ηsgn(s)s + sh��f (x, t)

= −η|s| + sh��f (x, t) (13.601)

Selecting η as

η >‖ h ‖ · ‖ �f (x, t) ‖ (13.602)
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finally yields

V̇ ≤ 0 (13.603)

Hence, by application of Barbălat’s lemma, s converges to zero in finite time if η is chosen to be large
enough to overcome the destabilizing effects of the unmodeled dynamics �f (x, t). The magnitude of η

will be a trade-off between robustness and performance.

Implementation Considerations

In practical implementations, chattering should be removed by replacing sgn(s) with

sat(s) :=
{

sgn(s) if |s/φ| > 1

s/φ otherwise
(13.604)

where the design parameter φ is the sliding surface boundary layer thickness. Alternatively, the discon-
tinuous function sat(s/φ) could be replaced by the continuous function tanh(s/φ). It should be noted
that the proposed feedback control with a predescribed η usually yields a conservative estimate of the
necessary control action required to stabilize the plant. This suggests that η should be treated as a
tunable parameter.

13.4.3 Case Study: Heading Autopilot for Ships and Underwater Vehicles

Consider the autopilot model⎡
⎣ v̇

ṙ

ψ̇

⎤
⎦ =

⎡
⎣ a11 a12 0

a21 a22 0

0 1 0

⎤
⎦
⎡
⎣ v − vc

r

ψ

⎤
⎦+

⎡
⎣ b1

b2

0

⎤
⎦ δ (13.605)

where |vc| < vmax
c is the transverse ocean current velocity. The reference trajectory is specified accord-

ing to [
ψ̇d

ṙd

]
=
[

0 1

−ω2
n −2ζωn

][
ψd

rd

]
+
[

0

ω2
n

]
ψref (13.606)

while vd = 0 during turning. Let x = [v, r, ψ]� and h = [k1, k2, k3]�such that

s = h�(x − xd) = h1v + h2(r − rd) + h3(ψ − ψd) (13.607)

Feedback from the sway velocity v and yaw rate r, that is k = [k1, k2, 0]�, implies that

Ac = A − bk� =

⎡
⎣ a11 − b1k1 a12 − b1k2 0

a21 − b2k1 a22 − b2k2 0

0 1 0

⎤
⎦ (13.608)

where the yaw dynamics ψ̇ = r is left unchanged. A pure integrator in yaw corresponding to the eigen-
value λ = 0 is necessary in order to satisfy

λx�h = 0 (13.609)
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The eigenvector h is computed in Matlab as:

Matlab

p = [-1 -1 0] % desired poles for Ac

k = place(A,b,p) % pole placement

Ac = A-b*k’

[V,D]=eig(Ac’) % eigenvalue decomposition

for i = 1:3 % extract the eigenvector h from V

hi = V(:,i);

if norm(hi.’*Ac) < 1e-10; h = hi; end

end

The resulting tracking controller is

δ = −k1v − k2r + 1

h1b1 + h2b2
[h2ṙd + h3rd − η sat(s)] (13.610)

Since the disturbance vc is unknown, the best guess for

f (x, t) = −

⎡
⎣ a11

a21

0

⎤
⎦ vc(t) (13.611)

is f (x̂, t) = 0. Hence,

η >‖ h ‖ · ‖ −[a11, a12, 0]�vmax
c ‖ (13.612)

13.4.4 Case Study: Pitch and Depth Autopilot for Underwater Vehicles

Pitch and depth control of underwater vehicles is usually done by using control surfaces, thrusters
and ballast systems. For a neutrally buoyant vehicle, stern rudders are effective for diving and depth
changing maneuvers, since they require relatively little control energy compared to thrusters. Consider
the longitudinal model in Section 7.5.6, which can be written⎡

⎣ m − Xu̇ −Xẇ mzg − Xq̇

−Xẇ m − Zẇ −mxg − Zq̇

mzg − Xq̇ −mxg − Zq̇ Iy − Mq̇

⎤
⎦
⎡
⎣ u̇

ẇ

q̇

⎤
⎦+

⎡
⎣ −Xu −Xw −Xq

−Zu −Zw −Zq

−Mu −Mw −Mq

⎤
⎦
⎡
⎣ u

w

q

⎤
⎦

+

⎡
⎣ 0 0 0

0 0 −(m − Xu̇)u

0 (Zẇ − Xu̇)u mxgu

⎤
⎦
⎡
⎣ u

w

q

⎤
⎦+
⎡
⎣ 0

0

W BGz sin(θ)

⎤
⎦ =

⎡
⎣ τ1

τ3

τ5

⎤
⎦ (13.613)
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The speed dynamics can be removed from this model by assuming that the speed controller stabilizes
the forward speed such that

u = uo = constant (13.614)

Hence, (13.613) reduces to a combined pitch and diving model

[
m − Zẇ −mxg−Zq̇

−mxg−Zq̇ Iy−Mq̇

][
ẇ

q̇

]
+
[ −Zw −Zq

−Mw −Mq

][
w

q

]

+
[

0 −(m − Xu̇)uo

(Zẇ−Xu̇)uo mxguo

][
w

q

]
+
[

0

BGzW sin (θ)

]
=
[

τ3

τ5

]

A state-space representation of this model is

ẋ = Ax + bu + f (x, t) (13.615)

⇐
⇒

⎡
⎢⎢⎢⎣

ẇ

q̇

θ̇

ḋ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

a11 a12 0 0

a21 a22 a23 0

0 1 0 0

1 0 −u0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w

q

θ

d

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

b1

b2

0

0

⎤
⎥⎥⎦ δS + f (x, t) (13.616)

where f (x, t) is a a nonlinear function describing the deviation from linearity in terms of disturbances
and unmodeled dynamics, x = [w, q, θ, d]� and u = δS is the stern rudder. The kinematic equations are
based on the approximations (see Section 2.2.1)

θ̇ = p cos(φ) − sin(φ) ≈ q (13.617)

ḋ = −u0 sin(θ) + v cos(θ) sin(ψ) + w cos(θ) cos(ψ) ≈ w − u0θ (13.618)

for v = p = 0 and small values of θ and φ.
The sliding surface for pitch and diving control can be constructed as

s = h� x̃ = h1(w − wd) + h2(q − qd) + h3(θ − θd) + h4(d − dd) (13.619)

where hi for i = 1, . . . , 4 are the components of h. Let xd = [wd, qd, θd, dd]� be a desired state vector
given by a reference model. From (13.587) and (13.591) it is seen that

u = −k�x + uo (13.620)

uo = (h�b)−1[h�ẋd − h�f̂ (x, t) − η sgn(s)], η > 0 (13.621)
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where k = [k1, k2, 0, k4]�. Notice that k3 = 0 since there is one pure integration in the pitch channel.
Hence, h is found by computing the eigenvalues λ(Ac) = λ(A − bk�) where A�

c h = 0 for λ3 = 0.

Consequently,

δS = −k1w − k2q − k4d + 1

h1b1 + h2b2

[
h1ẇd + h2q̇d + h3θd + h4dd − η sgn(s)

]
(13.622)
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A
Nonlinear Stability Theory

This appendix briefly reviews some useful results from nonlinear stability theory. The methods are
classified according to:

• Lyapunov stability of nonlinear autonomous systems ẋ = f (x), that is systems where f (x) does not
explicitly depend on the time t.

• Lyapunov stability of nonlinear nonautonomous systems ẋ = f (x, t), that is systems where f (x, t)
does depend on t explicitly.

A.1 Lyapunov Stability for Autonomous Systems
Before stating the main Lyapunov theorems for autonomous systems, the concepts of stability and con-
vergence are briefly reviewed (Khalil, 2002).

A.1.1 Stability and Convergence

Consider the nonlinear time-invariant system

ẋ = f (x), x(0) = x0 (A.1)

where x ∈ Rnand f : Rn → R
n is assumed to be locally Lipschitz in x; that is for each point x ∈ D ⊂ Rn

there exists a neighborhood D0 ∈ D such that

‖f (x) − f (y)‖ ≤ L ‖x − y‖ , ∀x, y ∈ D0 (A.2)

where L is called the Lipschitz constant on D0.
Let xe denote the equilibrium point of (A.1) given by

f (xe) = 0 (A.3)

The solutions x(t) of (A.1) are:

• bounded, if there exists a nonnegative function 0 < γ(x(0)) < ∞ such that

‖x(t)‖ ≤ γ(x(0)), ∀t ≥ 0 (A.4)

In addition, the equilibrium point xe of (A.1) is:

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd. ISBN: 978-1-119-99149-6



532 Nonlinear Stability Theory

Table A.1 Classification of theorems for stability and convergence

Autonomous
systems

V > 0, V̇ < 0
V > 0, V̇ ≤ 0

Lyapunov’s direct method
Krasovskii–LaSalle’s theorem

GAS/GES
GAS

Non-autonomous
systems

V > 0, V̇ < 0
V > 0, V̇ ≤ 0
V ≥ 0, V̇ ≤ 0

LaSalle–Yoshizawa’s theorem
Matrosov’s theorem
Barbalat’s lemma

UGAS
UGAS
Convergence

• stable, if, for each ε > 0, there exists a δ(ε) > 0 such that

‖x(0)‖ < δ(ε) ⇒ ‖x(t)‖ < ε, ∀t ≥ 0 (A.5)

• unstable, if it is not stable.
• attractive, if, for each r > 0, ε > 0, there exists a T (r, ε) > 0 such that

‖x(0)‖ ≤ r ⇒ ‖x(t)‖ ≤ ε, ∀t ≥ T (r, ε) (A.6)

Attractivity implies convergence, that is limt→∞ ‖x(t)‖ = 0.
• (locally) asymptotically stable (AS), if the equilibrium point xe is stable and attractive.
• globally stable (GS), if the equilibrium point xe is stable and δ(ε) can be chosen to satisfy

limε→∞ δ(ε) = ∞.
• global asymptotically stable (GAS), if the equilibrium point xe is stable for all x(0) (region of

attraction Rn).
• (locally) exponentially stable (ES), if there exist positive constants α, λ and r such that

‖x(0)‖ < r ⇒ ‖x(t)‖ < α exp(−λt) ‖x(0)‖ , ∀t ≥ 0 (A.7)

• globally exponentially stable (GES), if there exist positive constants α, λ and r such that for all x(0)
(region of attraction Rn):

‖x(t)‖ < α exp(−λt) ‖x(0)‖ , ∀t ≥ 0 (A.8)

Different theorems for investigation of stability and convergence will now be presented. A guideline
for which theorem that should be applied is given in Table A.1 whereas the different theorems are listed
in the forthcoming sections.

Notice that for nonautonomous systems GAS is replaced by uniform global asymptotic stability
(UGAS) since uniformity is a necessary requirement in the case of time-varying nonlinear systems.

A.1.2 Lyapunov’s Direct Method

Theorem A.1 (Lyapunov’s Direct Method)
Let xe be the equilibrium point of (A.1) and assume that f (x) is locally Lipschitz in x. Let
V : Rn → R+ be a continuously differentiable function V (x) satisfying:

(i) V (x) > 0 (positive definite) and V (0) = 0 (A.9)

(ii) V̇ (x) = ∂V (x)

∂x
f (x) ≤ −W(x) ≤ 0 (A.10)

(iii) V (x) → ∞ as ‖x‖ →∞ (radially unbounded) (A.11)

Then the equilibrium point xe is GS if W(x) ≥ 0 (positive semi-definite) and GAS if W(x) > 0 (positive
definite) for all x /= 0.
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Figure A.1 Mass–damper–spring system.

Proof. See Khalil (2002) or Lyapunov (1907).
The requirement that W(x) > 0 such that V̇ (x) < 0 is in many cases difficult to satisfy. This is illustrated

in the following example.

Example A.1 (Stability of a Mass–Damper–Spring System)
Consider the nonlinear mass–damper–spring system

ẋ = v (A.12)

mv̇ + d(v)v + kx2 = 0 (A.13)

where m > 0, d(v) > 0, ∀v and k > 0, see Figure A.1. Let us choose V (x) as the sum of kinetic energy
1
2 mv2 and potential energy 1

2 kx2 such that

V (x) = 1

2

(
mv2 + kx2

) = 1

2
x�

[
m 0

0 k

]
x (A.14)

where x = [v, x]� results in

V̇ (x) = mvv̇ + kxẋ

= v(mv̇ + kx)

= −d(v)v2

= −x�
[

d(v) 0

0 0

]
x (A.15)

Hence, only stability can be concluded from Theorem A.1, since V̇ (x) = 0 for all v = 0. However, GAS
can in many cases also be proven for systems with a negative semi-definite V̇ (x) thanks to the invariant
set theorem of Krasovskii–LaSalle; see LaSalle and Lefschetz (1961) and LaSalle (1966).

A.1.3 Krasovskii–LaSalle’s Theorem

The theorem of Krasovskii–LaSalle can be used to check a nonlinear autonomous system for GAS in the
case of a negative semi-definite V̇ (x).
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Theorem A.2 (Krazovskii–LaSalle’s Theorem)
Let V : Rn → R+ be a continuously differentiable positive definite function such that

V (x) → ∞ as ‖x‖ → ∞ (A.16)

V̇ (x) ≤ 0, ∀x (A.17)

Let � be the set of all points where V̇ (x) = 0, that is

� = {
x ∈ Rn|V̇ (x) = 0

}
(A.18)

and M be the largest invariant set in �. Then all solutions x(t) converge to M. If M = {xe} then the
equilibrium point xe of (A.1) is GAS.

Proof. See LaSalle (1966).

Example A.2 (Continued Example A.1: Stability of a Mass–Damper–Spring System)
Again consider the mass–damper–spring system of Example A.1. The set � is found by requir-
ing that

V̇ (x) = −d(v)v2 ≡ 0 (A.19)

which is true for v = 0. Therefore,

� = {(x∈ R, v = 0)} (A.20)

Now, v = 0 implies that mv̇ = −kx, which is nonzero when x /= 0. Hence, the system cannot get “stuck” at
a point other than x = 0. Since the equilibrium point of the mass–damper–spring system is (x, v) = (0, 0),
the largest invariant set M in � contains only one point, namely (x, v) = (0, 0). Hence, the equilibrium
point of (A.1) is GAS according to Theorem A.2.

A.1.4 Global Exponential Stability

The following theorem is useful to guarantee exponential convergence.

Theorem A.3 (Global Exponential Stability)
Let xe be the equilibrium point of (A.1) and assume that f (x) is locally Lipschitz in x. Let V :
R

n → R+ be a continuously differentiable and radially unbounded function satisfying

V (x) = x�Px > 0, ∀x /= 0 (A.21)

V̇ (x) ≤ −x�Qx < 0, ∀x /= 0 (A.22)

with constant matrices P = P� > 0 and Q = Q� > 0. Then the equilibrium point xe is GES and the
state vector satisfies

‖x(t)‖2 ≤
√

λmax(P)

λmin(P)
exp (−αt) ‖x(0)‖2 (A.23)

where

α = λmin(Q)

2λmax(P)
> 0 (A.24)

is a bound on the convergence rate.
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Proof. Since V (x) is bounded by

0 < λmin(P) ‖x(t)‖2
2 ≤ V (x) ≤ λmax(P) ‖x(t)‖2

2 , ∀x /= 0 (A.25)

it is seen that

− ‖x(t)‖2
2 ≤ − 1

λmax(P)
V (x) (A.26)

Hence, it follows from (A.22) that

V̇ (x) ≤ −x�Qx

≤ −λmin(Q) ‖x(t)‖2
2

≤ − λmin(Q)

λmax(P)︸ ︷︷ ︸
2α

V (x) (A.27)

Integration of V̇ (x(t)) yields

V (x(t)) ≤ exp (−2αt) V (x(0)) (A.28)

Finally, (A.25) implies

λmin(P) ‖x(t)‖2
2 ≤ exp (−2αt) λmax(P) ‖x(0)‖2

2 (A.29)

‖x(t)‖2 ≤
√

λmax(P)

λmin(P)
e−αt ‖x(0)‖2 (A.30)

This shows that ‖x(t)‖2 will converge exponentially to zero with convergence rate α.

A.2 Lyapunov Stability of Nonautonomous Systems
In this section several useful theorems for convergence and stability of time-varying nonlinear systems

ẋ = f (x, t), x(0) = x0 (A.31)

where x ∈ Rn, t ∈ R+ and f : Rn × R+ → R
n is assumed to be locally Lipschitz in x and uniformly in

t, are briefly reviewed.

A.2.1 Barbălat’s Lemma

Lemma A.1 (Barbălat’s Lemma)
Let φ : R+ → R be a uniformly continuous function and suppose that limt→∞

∫ t

0
φ(τ)dτ exists

and is finite; then

lim
t→∞

φ(t) = 0 (A.32)

Proof. See Barbălat (1959).
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Notice that Barbălat’s lemma only guarantees global convergence. This result is particularly useful if
there exists a uniformly continuous function V : Rn × R+ → R satisfying:

(i) V (x, t) ≥ 0

(ii) V̇ (x, t) ≤ 0

(iii) V̇ (x, t) is uniformly continuous

Hence, according to Barbălat’s lemma, limt→∞ V̇ (x, t) = 0. The requirement that V̇ should be uniformly
continuous can easily be checked by using

V̈ (x, t) is bounded =⇒ V̇ (x, t) is uniformly continuous

A.2.2 LaSalle–Yoshizawa’s Theorem

For nonautonomous systems the following theorem of LaSalle (1966) and Yoshizawa (1968) is
quite useful

Theorem A.4 (LaSalle–Yoshizawa’s Theorem)
Let xe = 0 be the equilibrium point of (A.31) and assume that f (x, t) is locally Lipschitz in x.
Let V : Rn × R+ → R+ be a continuously differentiable function V (x,t) satisfying

(i) V (x, t) > 0 (positive definite) and V (0) = 0 (A.33)

(ii) V̇ (x, t) = ∂V (x, t)

∂t
+ ∂V (x, t)

∂x
f (x, t) ≤ −W(x) ≤ 0 (A.34)

(iii) V (x, t) → ∞ as ‖x‖ → ∞ (radially unbounded) (A.35)

where W(x) is a continuous function. Then all solutions x(t) of (A.31) are uniformly globally
bounded and

lim
t→∞

W(x(t)) = 0 (A.36)

In addition, if W(x) > 0 (positive definite), then the equilibrium point xe = 0 of (A.31) is UGAS.

Proof. See LaSalle (1966) and Yoshizawa (1968).

A.2.3 Matrosov’s Theorem

Nonautonomous systems where V̇ (x, t) ≤ 0 are UGAS if Matrosov’s theorem is satisfied (Matrosov,
1962).

Definition A.1 (Class K Function)
A continuous function α : [0, a) → [0, ∞) is said to belong to class K if it is strictly increasing
and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.

Given two constants 0 ≤ δ ≤ � < ∞ and H(δ, �) := {x ∈ Rn : δ ≤ |x| ≤ �}, then Matrosov’s theorem
can be stated according to:

Theorem A.5 (Matrosov’s Theorem)
Consider the system:

ẋ = f (x, t), x(0) = x0, x ∈ Rn (A.37)
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If for this system there exist:
- a locally Lipschitz function V : R× Rn → R+
- a continuous positive semi-definite function U : Rn → R+
- functions α1, α2 ∈ K∞

such that:

1. α1 (‖x‖) ≤ V (t, x) ≤ α2 (‖x‖) ∀ (t, x) ∈ R× Rn

2. V̇ (t, x) ≤ −U(x) for almost all (t, x) ∈ R× Rn

and for each 0 < δ ≤ � and H(0, �) ⊆ Rn there exist:
- a locally Lipschitz function W : R× Rn → R

- a continuous function Y : Rn → R

- strictly positive numbers ε1, ε2, ψ > 0
such that:

3. max {|W(t, x)| , |Y (x)|} ≤ ψ ∀ (t, x) ∈ R× H(0, �)
4. Ẇ(t, x) ≤ Y (x) for all (t, x) ∈ R× Rn.

5. x ∈ H(δ, �) ∩ {x : U(x) ≤ ε1} =⇒ Y (x) ≤ −ε2.

then the origin of (A.37) is UGAS.

Remark: If the system (A.37) is time-invariant, that is ẋ = f (x), then Condition 5 can be replaced by:

5. x ∈ H(δ, �) ∩ {x : U(x) = 0} =⇒ Y (x) < 0

A.2.4 UGAS when Backstepping with Integral Action

When designing industrial control systems it is important to include integral action in the control law
in order to compensate for slowly varying and constant disturbances. This is necessary to avoid steady-
state errors both in regulation and tracking. The integral part of the controller can be provided by using
adaptive backstepping (Krstic et al., 1995) under the assumption of constant disturbances (see Section
13.3.4). Unfortunately, the resulting error dynamics in this case often becomes nonautonomous, which
again implies that Krasovskii–LaSalle’s theorem cannot be used. An alternative theorem for this case
will be stated by considering the nonlinear system

ẋ = f (x, u, θ, t) (A.38)

where x ∈Rn, u ∈ Rn and θ ∈Rp (p ≤ n) is a constant unknown parameter vector. Furthermore, assume
that there exists an adaptive control law

u = u(x, xd, θ̂) (A.39)

˙̂θ = φ(x, xd) (A.40)

where xd ∈ Cr and θ̂ ∈ Rp, such that the error dynamics can be written

ż = h(z, t) + B(t) θ̃ (A.41)

˙̃θ = −PB(t)�
(

∂W(z, t)

∂z

)�
, P = P� > 0 (A.42)
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where W(z, t) is a suitable C1 function and θ̃ = θ̂ − θ is the parameter estimation error. The parameter
estimate θ̂ can be used to compensate for a constant disturbance, that is integral action. Hence, the
conditions in the following theorem can be used to establish UGAS when backstepping with integral
action. The conditions are based on Loria et al. (1999) or alternatively Fossen et al. (2001). This can also
be proven by applying Matrosov’s theorem.

Theorem A.6 (UGAS/LES when Backstepping with Integral Action)
The origin of the system (A.41)–(A.42) is UGAS if B�(t)B(t) is invertible for all t, P = P� > 0,
there exists a continuous, nondecreasing function ρ : R+ → R+ such that

max

{
‖h(z, t)‖ ,

∥∥∥∥∂W(z, t)

∂z

∥∥∥∥
}

≤ ρ(‖z‖) ‖z‖ (A.43)

and there exist class-K∞ functions α1 and α2 and a strictly positive real number c > 0 such that
W(z, t) satisfy

α1(‖z‖) ≤ W(z, t) ≤ α2(‖z‖) (A.44)

∂W(z, t)

∂t
+ ∂W(z, t)

∂z
h(z, t) ≤ −c ‖z‖2 . (A.45)

If, in addition, α2(s) ∝ s2 for sufficiently small s then the origin is LES.

Proof. See Fossen et al. (2001).
Theorem A.6 implies that both z → 0 and θ̃ → 0 when t → ∞. The following example illustrates

how a UGAS integral controller can be derived:

Example A.3 (UGAS Integral Controller)
Consider the nonautonomous system

ẋ = −a(t)x + θ + u (A.46)

u = −Kpx − θ̂ (A.47)

˙̂
θ = px (A.48)

where 0 < a(t) ≤ amax, θ = constant, Kp > 0 and p > 0. This is a PI controller since

u = −Kpx − p

∫ t

0

x(τ)dτ (A.49)

Choosing z = x, the error dynamics can be written

ż = −(a(t) + Kp)z − θ̃ (A.50)

˙̃θ = pz (A.51)

which is in the form (A.41)–(A.42) with W(z) = 1
2 z2 and B = 1. Since B�B = 1 > 0 and

max
{|a(t)z + Kpz|, |z|

} ≤ ρ|z| (A.52)
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with ρ = amax + Kp, the equilibrium point z = 0 is UGAS according to Theorem A.6. Notice that the
LaSalle–Yoshizawa theorem fails for this case since

V (z, t) = W(z) + 1

2p
θ̃

2
(A.53)

V̇ (z, t) = zż + 1

p
θ̃ ˙̃θ

= −[a(t) + Kp]z2

≤ 0 (A.54)

which by LaSalle–Yoshizawa only shows UGS and z(t) → 0, but not θ̃ → 0.



B
Numerical Methods

From a physical point of view, marine craft kinematics and kinetics are most naturally derived in the
continuous-time domain using Newtonian or Lagrangian dynamics. In the implementation of a control
law, it is desirable to represent the nonlinear dynamics in discrete time. This chapter discusses methods
for discretization of linear and nonlinear systems, numerical integration and differentiation.

B.1 Discretization of Continuous-Time Systems
This section discusses discretization of linear state-space models with extensions to nonlinear systems
using the method of Smith (1977).

Forward Shift Operator

For notational simplicity, let tk = kt such that x(k) = x(tk) and x(k + 1) = x(tk + h) where h is the
sampling interval. The forward shift operator z is defined by

x(k + 1) := zx(k) (B.1)

B.1.1 Linear State-Space Models

Consider the linear continuous-time model

ẋ = Ax + Bu (B.2)

Assume that u is piecewise constant over the sampling interval h and equal to u(k). Hence, the solution
of (B.2) can be written

x(k + 1) = exp(Ah)x(k) +
∫ (k+1)h

kh

exp(A[(k + 1)h − τ])Bu(k)dτ (B.3)

which after integration yields the linear discrete-time model

Handbook of Marine Craft Hydrodynamics and Motion Control,  First Edition.  Thor I. Fossen.
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x(k + 1) = �x(k) + �u(k) (B.4)

where

� = exp(Ah), � = A−1(� − I)B (B.5)

Matlab
The matrices � and � can be computed in Matlab as

[PHI,DELTA]=c2d(A,B,h)

Example B.1 (Discretization of a First-Order Linear System)
Consider the SISO linear system

ẋ = ax + bu (B.6)

y = cx + du (B.7)

Application of (B.3) yields

x(k + 1) = exp(ah)x(k) + b

a
[exp(ah) − 1]u(k) (B.8)

y(k) = cx(k) + du(k) (B.9)

Computation of the Transition Matrix

The transition matrix � can be computed numerically as

� = exp(Ah) = I + Ah + 1

2!
A2h2 + · · · + 1

n!
Anhn + · · · (B.10)

Hence,

� = A−1(� − I)B = h + 1

2!
Ah2 + · · · + 1

n!
An−1hn + · · · (B.11)

Consequently, a first-order approximation (Euler discretization) is obtained by

� ≈ I + Ah, � ≈ Bh (B.12)

Alternately, � can be computed by applying a similarity transformation

� = exp(Ah) = E exp(�h)E−1 (B.13)
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where

exp(�h) = diag{exp(λih)} (B.14)

is a diagonal matrix containing the eigenvalues λi of A and E is the corresponding eigenvector matrix.

Matlab
The transition matrix can be computed in Matlab as

[L,E]=eig(A)

PHI=E*exp(L*h)*inv(E)

B.1.2 Nonlinear State-Space Models

Consider the nonlinear model

M ν̇ + C(ν) ν + D(ν) ν + g(η) = Bu (B.15)

η̇ = J�(η)ν (B.16)

which can be expressed as a nonlinear time-invariant system

ẋ = f (x, u) (B.17)

where x = [η�, ν�]� and

f (x, u) =
[

J�(η)ν

M−1[Bu − C(ν)ν − D(ν)ν − g(η)]

]
(B.18)

Differentiating (B.17) with respect to time yields

ẍ = ∂f (x, u)

∂x
ẋ + ∂f (x, u)

∂u
u̇ (B.19)

The effect of a zero-order hold in the digital-to-analog converter makes u̇ = 0 over the discrete-time
interval. Furthermore, the definition of the Jacobian

J (x) := ∂f (x, u)

∂x
(B.20)

implies that the nonlinear continuous equation (B.19) is reduced to a homogeneous equation

ẍ = J (x)ẋ (B.21)

Let

J (x(k)) = ∂f (x, u)

∂x

∣∣∣∣
x=x(k)

(B.22)
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Hence, the solution of the homogeneous differential equation is

ẋ = exp[J (x(0))(t − t0)] ẋ(0) (B.23)

Integration of this expression over a sampling interval h finally yields

x(k + 1) = x(k) +
∫ h

0

exp[J(x(k))τ] ẋ(k) dτ (B.24)

Example B.2 (Discretization of a Second-Order Nonlinear System)
Consider the SISO nonlinear system

ẋ1 = x2 (B.25)

ẋ2 = f (x2) + u (B.26)

where x = [x1, x2]� is the state vector and u is the input. The Jacobian is found as

J (x) =
[

0 1

0 a(x2)

]
, a(x2) = ∂f (x2)

∂x2
(B.27)

Hence, applying a similarity transformation:

exp[J (x(k))t] = E−1 exp(�t)E (B.28)

where � is a diagonal matrix containing the eigenvectors of J and E is a matrix formed by the corre-
sponding eigenvectors, yields

exp[J(x(k))t] =
[

1 1
ak

[1 − exp(akt)]

0 exp(akt)

]
(B.29)

where ak = a(x2(k)). Hence,

[
x1(k + 1)

x2(k + 1)

]
=

[
x1(k)

x2(k)

]
+

∫ h

0

[
1 1

ak
[1 − exp(akτ)]

0 exp(akτ)

][
x2(k)

f (x2(k)) + u(k)

]
dτ (B.30)

The discrete model (B.24) can be simplified by approximating the exponential function to the first
order, that is

exp[J (x(k))h] = I + J (x(k))h + O(h2) (B.31)

B.2 Numerical Integration Methods
In this section numerical solutions to the nonlinear time-varying system

ẋ = f (x, u, t) (B.32)

where the control input u is assumed to be constant over the sampling interval h (zero-order hold), are
discussed. Four different methods will be presented.
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B.2.1 Euler’s Method

A frequently used method for numerical integration is forward Euler:

x(k + 1) = x(k) + hf (x(k), u(k), tk) (B.33)

The global truncation error for Euler’s method is of order O(h).
Applying Euler’s method to a second-order system

ẋ = v (B.34)

mv̇ + dv + kx = τ (B.35)

yields

v(k + 1) = v(k) + h

[
1

m
τ(k) − d

m
v(k) − k

m
x(k)

]
(B.36)

x(k + 1) = x(k) + hv(k) (B.37)

It should be noted that Euler’s method should only be applied to a well-damped second-order system
and not an undamped oscillator. In fact an undamped oscillator will yield an unstable solution, as seen
from Figure B.1, where the circle in the upper left-hand plot represents the stable region. An undamped
oscillator will have eigenvalues on the imaginary axis, which clearly lie outside the circle.

Forward and Backward Euler Integration

A stable method for the undamped second-order system can be obtained by combining the forward and
backward methods of Euler (dotted line in the upper left-hand plot in Figure B.1) according to

Forward Euler: v(k + 1) = v(k) + h

[
1

m
τ(k) − d

m
v(k) − k

m
x(k)

]
(B.38)

Backward Euler: x(k + 1) = x(k) + hv(k + 1) (B.39)

Extension to Nonlinear Systems

The methods of Euler can be extended to the more general nonlinear system

ν̇ = M−1
[
Bu − C(ν)ν − D(ν)ν − g(η)

]
(B.40)

η̇ = J�(η)ν (B.41)
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Figure B.1 Stability regions for the Euler, Adams–Bashford, RK-2 and RK-4 methods.

by the following set of discrete-time equations:

ν(k + 1) = ν(k) + hM−1
[
Bu(k) − C(ν(k))ν(k) − D(ν(k))ν(k) − g(η(k))

]
(B.42)

η(k + 1) = η(k) + h [J�(η(k))ν(k + 1)] (B.43)

B.2.2 Adams–Bashford’s Second-Order Method

Adams–Bashford integration is more computationally intensive than the schemes of Euler. For instance,
the two-step Adams–Bashford integration

x(k + 1) = x(k) + h

[
3

2
f (x(k), u(k), tk) − 1

2
f (x(k − 1), u(k − 1), tk−1)

]
(B.44)

implies that the old value

ẋ(k − 1) = f (x(k − 1), u(k − 1), tk−1) (B.45)
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must be stored. The global truncation error for this method is of order O(h2). The advantage with this
method compared to Euler integration is seen from Figure B.1.

B.2.3 Runge–Kutta Second-Order Method

Heun’s integration method or Runge–Kutta’s second-order method (RK-2) is implemented as

k1 = f (x(k), u(k), tk)
k2 = f (x(k) + hk1, u(k), tk + h)

x(k + 1) = x(k) + h

2 (k1 + k2)

(B.46)

The global truncation error for Heun’s method is of order O(h2).

B.2.4 Runge–Kutta Fourth-Order Method

An extension of Heun’s integration method to the fourth order (RK-4) is

k1 = f (x(k), u(k), tk)
k2 = hf (x(k) + k1/2, u(k), tk + h/2)
k3 = hf (x(k) + k2/2, u(k), tk + h/2)
k4 = hf (x(k) + k3/2, u(k), tk + h)

x(k + 1) = x(k) + 1

6
(k1 + 2k2 + 2k3 + k4)

(B.47)

The global truncation error for the RK-4 method is of order O(h4).

B.3 Numerical Differentiation
Numerical differentiation is usually sensitive to noisy measurements. Nevertheless, a reasonable estimate
η̇f of the time derivative η̇ of a signal η can be obtained by using a filtered differentiation. The simplest
filter is obtained by the first-order low-pass structure

η̇f (s) = Ts

Ts + 1
η(s) (B.48)

corresponding to the continuous-time system

ẋ = ax + bu (B.49)

y = cx + du (B.50)
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with u = η, y = η̇f , a = b = −1/T and c = d = 1. Using the results from Example B.1, the following
discrete-time filter equations can be used to differentiate a time-varying signal:

x(k + 1) = exp(−h/T )x(k) + [exp(−h/T ) − 1]u(k) (B.51)

y(k) = x(k) + u(k) (B.52)
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Holzhüter, T. and R. Schultze (1996). On the Experience with a High-Precision Track Controller for

Commercial Ships. Control Engineering Practice CEP-4(3), 343–350.
Holzhüter, T. and H. Strauch (1987). A Commercial Adaptive Autopilot for Ships: Design and Experi-

mental Experience. In: Proceedings of the 10th IFAC World Congress. July 27-31, Munich, Germany.
pp. 226–230.

Hooft, J. P. (1994). The cross-flow drag on manoeuvring ship. Oceanic Engineering OE-21(3), 329–342.
Hua, M.-D (2010). Attitude Estimation for Accelerated Vehicles using GPS/INS Measurements. Control

Engineering Practice CEP-18, 723–732.
Hughes, P. C. (1986). Spacecraft Attitude Dynamics. John Wiley & Sons, Inc. New York, NY.
Humphreys, D. E. and K. W. Watkinson (1978). Prediction of the Acceleration Hydrodynamic Coef-

ficients for Underwater Vehicles from Geometric Parameters. Technical Report NCSL-TR-327-78.
Naval Coastal System Center. Panama City, Florida.

Ikeda, Y., K. Komatsu, Y. Himeno and N. Tanaka (1976). On Roll Damping Force of Ship: Effects of
Friction of Hull and Normal Force of Bilge Keels. Journal of the Kansai Society of Naval Architects
JKSNA-142, 54–66.

Imlay, F. H. (1961). The Complete Expressions for Added Mass of a Rigid Body Moving in an Ideal
Fluid. Technical Report DTMB 1528. David Taylor Model Basin. Washington D.C.

Ingram, M. J., R. C. Tyce and R. G. Allen (1996). Dynamic Testing of State of the Art Vertical Reference
Units. In: Proceedings of the Oceans 96 MTS/IEEE. IEEE. pp. 1533–1538.

Isherwood, R. M. (1972). Wind Resistance of Merchant Ships. RINA Transcripts 115, 327–338.



References 557

Isidori, A. (1989). Nonlinear Control Systems. Springer-Verlag. Berlin.
ISO 2631-1 (1997). Mechanical Vibration and Shock. Evaluation of Human Exposure to Whole-Body

Vibration – Part 1: General Requirements.
ISO 2631-3 (1985). Evaluation of Human Exposure to Whole-Body Vibration – Part 3: Evaluation of

Whole Body z-axis Vertical Vibration in the Frequency Range 0.1 to 0.63 Hz.
Jacobson, D. H. (1977). Extensions to Linear-Quadratic Control, Optimization and Matrix Theory.

Academic Press. New York, NY.
Johansen, T. A., T. I. Fossen and S. P. Berge (2004). Constraint Nonlinear Control Allocation with Sin-

gularity Avoidance using Sequential Quadratic Programming. IEEE Transactions on Control Systems
Technology TCST-12, 211–216.

Johansen, T. A., T. I. Fossen and P. Tøndel (2005). Efficient Optimal Constrained Control Alloca-
tion via Multi-Parametric Programming. AIAA Journal of Guidance, Control and Dynamics 28,
506–515.

Jouffroy, J. and T. I. Fossen (2010). A Tutorial on Incremental Stability Analysis using Contraction
Theory. Modelling, Identification and Control MIC-31(3), 93–106.

Journée, J. M. J. and L. J. M. Adegeest (2003). Theoretical Manual of Strip Theory Program SEAWAY for
Windows. Delft University of Technology, Delft, Netherlands. http://www.ocp.tudelft.nl/mt/journee.

Journée, J.M.J. and W.W. Massie (2001). Offshore Hydrodynamics. Delft University of Technology.
Jurdjevic, V. and J. P. Quinn (1978). Controllability and Stability. Journal of Differential Equations

JDE-28, 381–389.
Källström, C. G. (1981). Control of Yaw and Roll by Rudder/Fin Stabilization System. In: Proceedings

of the 6th International Ship Control Systems Symposium (SCSS’81), Vol. 2. Paper F2 3-1. Ottawa,
Canada.

Källström, C. G. (1987). Improved Operational Effectiveness of Naval Ships by Rudder Roll Stabilization.
In: NAVAL’87, Asian Pacific Naval Exhibition and Conference. Singapore.

Källström, C. G. and W. L. Schultz (1990). An Integrated Rudder Control System for Roll Damping and
Maintenance. In: Proceedings of the 9th International Ship Control Systems Symposium (SCSS’90).
Bethesda, MD. pp. 3.278–3.296.

Källström, C. G. and K. Theoren (1994). Rudder-Roll Stabilization an Improved Control Law. In: Pro-
ceedings of the IEEE Conference on Control Applications. New York, NY, pp. 1099–1105.
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3 DOF maneuvering model, 113
4 DOF maneuvering model, 158
6 DOF equations of motion, 167

Abkowitz’s model, 138
absolute damping factor, 366
acceleration feedback, 365, 369
accelerometer, 329
Adams–Bashford’s integration method, 546
adaptive

feedback linearization, 455
weather optimal control, 499

added mass, 91
definition, 92
energy approach, 117
forces and moments, 118
hydrodynamic derivatives, 129
potential coefficient, 111
property of the system inertia matrix, 118
system inertia matrix, 118

AHRS, attitude and heading reference system,
328

anemometer, 191
angle of attack, 41
angular velocity transformation, 24, 29
anti-rolling tanks, 433
Archimedes, 59
attitude

control, 452
dynamics, 48
observer, 336

attitude and heading reference systems, 328
automatic pretrimming, 78
autopilot

acceleration feedback, 384
backstepping, 508
cross-tracking, 385
heading, 377, 525
history, 230
Kalman filter, 300
linear quadratic optimal, 429
LOS path-following, 387
model, 142
nondimensional models, 148
path-following, 512
PID, 379
pitch and depth, 526
sliding mode control, 518

AUV, autonomous underwater vehicle, 3
average wave period, 202
average zero-crossings period, 202

backstepping, 457
integral action, 469
integrator augmentation technique, 472
MIMO mass–damper–spring system, 475
robots, 478
ships, 480
SISO mass–damper–spring system, 465
weather optimal control, 500

ballast systems, 74
semi-submersible, 77
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bandwidth, 373
Beaufort number, 190, 203
Bech’s reverse spiral maneuver, 146, 354,

363
Bernoulli equation, 83
bilge keels, 433
bis system, 148
boat, definition, 3
BODY, body-fixed reference frame, 17
body-fixed vector representation, 167
Bretschneider spectrum, 202
buoyancy, 59
buoyancy force

floating vessels, 62
submerged vehicle, 59

Butterworth filter, 289

carrier DGPS, 305
CB, center of buoyancy, 18, 59
centripetal forces, 53
CF, center of flotation, 18, 68
CG, center of gravity, 18
CO, body axes coordinate origin, 17
commanded acceleration, 451–2
compass, 300, 331
computed torque, 450
configuration space, definition, 236
constant bearing guidance, 244
continuous-time Kalman filter, 298
control allocation, 398, 414

constrained, 405
unconstrained, 404

control bandwidth, 373
control design model, 6
control Lyapunov function, definition,

458
controllability, definition, 418
coordinate

form, 18
free vector, 18
systems, 16
transformation matrix, 20

Coriolis and centripetal forces
maneuvering, 115
seakeeping, 99

Coriolis and centripetal matrix
definition, 53
property, 54, 170

corrector–predictor representation, 299
course angle, definition, 39

craft, 3
cross-tracking, 385
cross-flow drag, 127, 136, 156
cross-product operator, 20
cross-track error, 258
cruise condition, 175
cubic splines, 267
Cummins equation, 96
current angle of attack, 155
current coefficients

area-based, 156
DP, 153
relationship to cross-flow drag and surge

resistance, 156
surge damping, 127

D’Alambert’s paradox, 122
damped oscillator, 365
damping

frequency-dependent, 95
matrix, 123

dead-reckoning, 299
decoupling

body-fixed reference frame, 451
NED reference frame, 452

degrees-of-freedom
definition, 235
model classification, 5
notation, 15

density
air, 189

describing function, 95
DGPS, differential GPS, 305
Dieudonné’s spiral maneuver, 146, 362
diffeomorphism, 459
directional stability, 344, 346
discrete-time Kalman filter, 296
discretization of continuous-time systems,

541
displacement vessel, 4
DOF, degrees-of-freedom, 235
DP

backstepping control system, 480
brief history, 391
control allocation, 411
definition, 391
Kalman filter, 304
linearized model, 157
nonlinear model, 153
nonlinear separation principle, 487
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optimal control system, 445
passive observer, 310
PID control system, 393
position mooring, 396
roll and pitch damping, 391
setpoint chasing, 393
weather optimal control system, 491

drag coefficient, 127
drift angle, definition, 40
Dubins path, 255
dynamic positioning, see DP, 391
dynamic stability

on course, 352
straight-line motion, 347

dynamic straight-line stability, theorem,
351

dynamically positioned vessel, definition,
391

Earth rotation, 47
ECEF, Earth-centered Earth-fixed frame,

16
ECI, Earth-centered inertial frame, 16
effective metacentric height, 73
ellipsoidal height, 36
energy dissipation, 122
environmental forces, 187
equations of motion

1 DOF, 142
3 DOF, 133
4 DOF, 158
6 DOF, 167
classical model, 7
DP, 152
expressed in BODY, 167
expressed in NED, 168
lateral, 185
longitudinal, 184
maneuvering, 109, 133
nondimensional, 148
nonlinear, 167
rigid-body, 51
seakeeping, 96
vectorial representation, 13

equations of relative motion, 188
equilibrium heading, 86
equivalent linearization, 95
Euler

angles, 22
backward, 545

equation, 83
forward, 544
parameters, 27

Euler angles from quaternions, 33
Euler’s

axioms, 46
integration method, 544
theorem on rotation, 21

extended
thrust configuration matrix, 402

feedback linearization, 450, 463
body-fixed reference frame, 451
NED reference frame, 452

filter
low-pass, 288
notch, 290

fin stabilizers, 434
flat Earth navigation, 35
flow

axes, 39
control, 76
irrotational, 83
potential, 83

fluid
kinetic energy, 117
memory effects, 81, 96, 104
viscous, 82

force RAO, 211
forced oscillations, 90
forward shift operator, 541
forward speed model, 140
four-quadrant arctangent, 33
free-surface

correction, 73
effect, 73

frequency
damped system, 367
encounter, 210
natural, 365

frequency-domain model, 89
frequency-independent

model, 113
potential coefficients, 111

frictional forces, 122
Froude number, definition, 3
FSC, free-surface correction, 73

GALILEO, European Union Global Positioning
System, 230, 305



570 Index

Gauss–Markov process, 223
generalized

coordinates, 116
eigenvalue problem, 70
inverse, 404

geodetic latitude, 36
GLONASS, GLObalnaya NAvigatsionnaya

Sputnikovaya Sistema, 230, 305
GM, metacenter height, 65
GNSS, Global Navigation Satellite Systems, 230,

305
GPS, NAVSTAR Global Positioning System,

230, 305
gravitational force

floating vessels, 62
submerged vehicle, 59

guidance, 241
closed-loop, 232
constant bearing, 244
line-of-sight, 243
open-loop, 232
pure pursuit, 243

guidance, navigation and control, definitions,
232

gyroscope, 229, 329
gyroscopic compass, 301

heading angle, definition, 39
heave, definition, 15
Helmholtz-Kirchhoff plate, 192
Hermite interpolant, 267
Heun’s integration method, 547
Hoerner’s curve, 127
Huygens–Steiner theorem, 50
hydrodynamic

code, 84
Coriolis and centripetal matrix, property,

120
damping, 122
derivatives, 118, 129
forces, 128
mass–damper–spring, 128
system inertia matrix, property, 118

hydrodynamics
computation programs, 84
potential theory, 82

hydrostatics, 59
box-shaped vessels, 64
floating vessels, 62
semi-submersibles, 62

ships, 62
submerged vehicles, 59

IKEDA damping, 95
IMU, inertial measurement unit, 328
inclination, 331
incompressible fluid, 82
inertia matrix, definition, 48
INS, inertial navigation system, 328
integrator backstepping, 457
interceptor, 243
irrotational

flow, 83
ocean currents, 103

irrotational constant ocean currents, 129
irrotational ocean currents, 55, 109
ITTC resistance, 125

JONSWAP, Joint North Sea Wave Project
spectrum, 205

Kalman filter
autopilot, 300
continuous-time, 297
corrector–predictor representation, 299
discrete-time, 296
DP, 304
extended, 298

Kempf’s zigzag maneuver, 354, 359
kinematic viscosity, 122
kinematics, 15
kinetics, 15, 45
Kirchhoff’s equations, 54, 116

Lagrange equations, 115
Laplace equation, 83
lateral model, 183
latitude, definition, 34
LCF, longitudinal center of flotation, 18
LF, low-frequency motion, 285
lift and drag, 122
line-of-sight

guidance, 243
path following, 254

linear damping formula for mass–damper–spring
system, 367

linear equations of motion
linear, 173

linear-quadratic optimal control, 418
linear-quadratic regulator, 418
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linear velocity transformation, 22, 28
linear viscous damping, 123
linearized

Coriolis and centripetal forces, 57
DP model, 157
equations of motion, 56
maneuvering model, 140

load condition, 67
long-crested irregular sea, 208
longitude, definition, 34
longitudinal model, 183
LOS, line-of-sight, 243
low-aspect ratio wing theory, 165
low-frequency motion, 286
low-pass filter, 288
low-speed model, 173
LQ

fin and rudder-roll damping, 433
heading autopilot, 429
optimal control, 418
trajectory-tracking, 421

LQG, 449
Luenberger observer, 293

magnetic
compass, 301
field, 331

magnetometer, 331
maneuver

Bech’s spiral maneuver, 363
Kempf’s zigzag maneuver, 359
pull-out maneuver, 361
turning circle, 354

maneuverability, 343, 353
maneuvering

coefficients, 128
equations, 128
kinematics, 85
theory, 9, 81, 109
zero-frequency model, 113

maneuvering control, definition, 266
maneuvering model

3 DOF, 133
4 DOF, 158
including ocean currents, 225
ITTC and cross-flow drag, 136
linearized, 140
odd functions, 138
potential theory representation, 141
second-order modulus, 136

marine craft, 3
mariner class vessel

Kalman filter, 303
Nomoto models, 144
nonlinear least-squares, 357
pivot point, 147
turning circle, 355

mass–damper–spring system, 345, 365
mean wave drift force, 95
measure of maneuverability, 353
metacenter height

lateral, 65
transverse, 65

metacenter stability, definition, 67
metacenter, definition, 62
modal

frequency, 201
period, 201

modal analysis, 69
model representations, 9
models, 6
modified Pierson–Moskowitz spectrum,

204
moments of area, definition, 66
moments of inertia, 48
Moore–Penrose pseudo-inverse, 77, 169
Morison’s equation, 122
motion

RAO, 213
sickness criteria, 443

Munk moment, 142

natural
frequency, 68, 113, 345, 365
period, 68

natural frequency model, definition, 113
Navier–Stokes equation, 82
navigation systems, 286
NED, North-East-Down reference frame, 17
Neumann spectrum, 202
neutrally buoyant, 61
Newton’s second law, 45
Newton–Euler formulation, 45
Newton–Raphson method, 68
Nomoto model

first-order, 143
nonlinear extension, 144
normalization, 151
second-order, 143

nondimensional equations of motion, 148
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nonlinear
constrained optimization, 273, 405
observer, 310
PID control, 469

normalization, 149
normalization forms, 148
notch filter, 290
numerical

differentiation, 547
integration, 544

observability, definition, 292
observer

design model, 7
fixed-gain, 292
IMU and GNSS, 328
Luenberger, 293
passive, 319

ocean currents, 188
2-D, 224
3-D, 224
direction, 223
equations of relative motion, 221
irrotational, 222
models, 221
speed, 223
wind generated, 221

odd functions, 138
optimal control, 418

dynamic positioning, 445
fin and rudder-roll damping, 433
heading autopilot, 429
regulator, 418
roll damping, 435
trajectory-tracking, 421
weather optimal, 491

optimal trajectory generation, 253
optimization

control allocation, 405
guidance, 273

orthogonal matrix, 19

P number, 354
panel methods, 84
parallel navigation, 244
parallel-axes theorem, 50
parametrization, 456
parametrized path, definition, 266
passive observer

dynamic positioning, 310

heading autopilot, 319
path

cubic splines, 269
parametrized, 266
straight lines and circular arcs, 255

path-following guidance, 254
peak period, 200
period

peak, 200
wave, 200
zero-crossing, 200

perturbation coordinates, 86, 111
PID control

acceleration feedback, 369
cross-tracking, 385
curved-path path following, 389
dynamic positioning, 391
heading autopilot, 377
LOS path-following, 387
mass–damper–spring system, 365
MIMO nonlinear systems, 375
position mooring systems, 396

pitch
definition, 15
period, 185
ratio, 411

pitch-controlled propeller, 411
pivot point, definition, 146
planning vessel, 4
PM spectrum, 203
PMM, 10, 140
pole placement, 319
polynomial interpolation, 267
position

control, 452
mooring systems, 396

positional motion stability, 344
potential

coefficients, 91, 111, 129
damping, 91, 111, 122, 129
theory, 82

potential coefficients
properties, 102
speed-dependent, 101
zero-speed, 100

predictor–corrector representation, 299
pretrimming, 76
Prime system, 148
principal rotation, 22
principle of superposition, 187
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products of inertia, 48
projected area, 189
propeller, 411
proportional navigation, 244
pull-out maneuver, 354, 361
pure pursuit guidance, 243

quadratic
drag, 122
programming, 276, 406

quaternions
definition, 27
from Euler angles, 32
from rotation matrix, 32
IMU and GNSS, 341

radiation force, 91
radius of gyration, 72
RAO

force, 199, 211
motion, 199, 213

reference frame
body-fixed, 17
Earth-centered Earth-fixed, 16
Earth-centered inertial, 16
flow axes, 39
North-East-Down, 17
seakeeping, 85
Serret–Frenet, 278

reference model, 247, 377
nonlinear damping, 251
position and attitude, 249
velocity, 249

regressor, 456
regulation, 418
relative

damping ratio, 345, 365
speed, 39
velocity, 188

response amplitude operator (RAO), 199
restoring

forces, 59, 129
matrix, 69

retardation functions, 12, 90, 97
Reynolds number, 122, 125
rig, 77
rigid-body kinetics

maneuvering, 110
Newton–Euler, 45
seakeeping, 90

robot, 478
roll

damping, 434
definition, 15
period, 72, 186

roll and sway–yaw subsystems, 159
rotation matrix, 19, 32
rotation matrix differential equation, 25
rotation point

yaw, 146
rotational motion, 48, 50
Routh stability criterion, theorem, 350
ROV, remotely operated vehicle, 3
RRD, rudder-roll damping, 434
RTK, real-time kinematic, 305
rudder-roll damping, 160, 434
Runge–Kutta integration methods, 547

sea state
codes, 202
definition, 200

seakeeping
coordinates, 86
equations of motion, 93
kinematics, 85
theory, 11, 81

second-order modulus functions, 138
second-order modulus terms, 128
second-order system, 365
second-order wave forces and moments, 199
semi-displacement vessel, 4
semi-empirical methods, 85
semi-submersible

ballast control, 78
dynamic positioning control system, 391
dynamic positioning system, 445, 487
optimal setpoint chasing, 393
position mooring control system, 396
roll and pitch damping, 391
weather optimal control system, 491

separation principle
linear, 449
nonlinear, 487

Serret–Frenet frame, 278
service speed, 148
setpoint regulation, 233
ship

acceleration feedback, 384
control allocation, 411
cross-tracking control system, 385
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ship (Continued)
curved-path path-following control, 389
definition, 3
dynamic positioning control system, 391
dynamic positioning system, 445, 487
fin and rudder-roll damping systems, 433
heading autopilot, 377, 429, 454, 508, 525
LOS path-following control, 387
optimal setpoint chasing, 393
path-following control, 512
position mooring control system, 396
weather optimal control system, 491

ShipX, 84
short-crested irregular sea, 209
sideslip angle, definition, 40
significant wave height, 200, 202
similarity transformation, 542
simple rotation, definition, 21
simulation model, 6
singularity, 25
skew-symmetry, 20
skin friction, 122
slack tank, 73
sliding-mode control

eigenvalue decomposition, 522
heading autopilot, 525
pitch and depth control, 526
SISO systems, 518

SNAME notation, 15
Son and Nomoto’s model, 162
special orthogonal group, 19
spectrum

Bretschneider, 202
JONSWAP, 205
modified Pierson–Moskowitz, 204
Neumann, 202
Pierson–Moskowitz, 203
Torsethaugen, 206

spiral maneuver, 354
spreading function, 209
SS(3), set of skew-symmetric matrices, 20
stability

axes, 41
directional, 346
index, 349
on course, 346
open-loop, 343

stabilizing function, 460
state feedback linearization, 450
stationkeeping model, 173

steering and roll, 162
steering autopilot, 525
steering criteria, 430
stopping trials, 354
straight-line stability, 344, 346
strip theory, 84
submarine

definition, 3
model, 183

submerged vehicles
hydrostatics, 59
model, 183

superposition, 187
surface vessels

hydrostatics, 62
surge

damping, 125
definition, 15
resistance, 125, 136, 156

sway, definition, 15
symmetry properties of inertia, 171
system inertia matrix

property, 170
system inertia matrix, definition, 52
system transformation matrix, definition, 177

tanks, 76
target, 243
target tracking, 242
Taylor series, 138
thrust allocation, 414
thrust configuration matrix, 411
time differentiation, moving reference frame, 47
Torsethaugen spectrum, 206
trajectory generation, 267
trajectory tracking, definition, 246
trajectory-tracking control, 233
transit, 175
translational motion, 47, 50
turning

circle, 354
index, 353

undamped oscillator, 365
underactuated

control, 247
marine craft, 235

underwater vehicle
acceleration feedback, 384
added mass and damping, 112
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cross-tracking control system, 385
curved-path path-following control, 389
definition, 3
heading autopilot, 377, 429, 454, 508, 525
lateral model, 185
longitudinal model, 184
LOS path-following control, 387
path-following control, 512
pitch and depth control, 526
restoring forces, 59

underway replenishment, 245
unified

model, 103
theory, 12

unit quaternions, 27
normalization, 31

UNREP, underway replenishment, 245
UUV, unmanned underwater vehicle, 3

vectorial mechanics, 45
velocity

control, 451
velocity transformation

angular, 24, 29
linear, 22, 28

VERES, 84
vessel parallel coordinates, definition, 173
vessel, definition, 3
viscous

damping, 122, 129
damping matrix, 95

volume of displaced fluid, 59
voyage planning systems, 277
VRU, vertical reference unit, 340

WAMIT, 84, 211
water plane area moment, 65
water tanks, 76
wave

first-order forces and moments, 199
force RAO, 211
force, no spreading function, 212
force, spreading function, 213
models, 202
period, 200
response, 214
second-order forces and moments, 199
state-space model, 215

wave amplitude response model, 208

wave drift damping, 122
wave excitation force, 95
wave filter

autopilot, 301, 319
dynamic positioning, 304, 311

wave filtering, definition, 286
wave spectrum

Bretschneider, 202
JONSWAP, 205
maximum value, 204
modified Pierson–Moskowitz, 204
Neumann, 202
Torsethaugen, 206

wave spectrum moments
moments, 201

wave-frequency motion, 199, 214, 286
wave-induced forces, 187
waypoint

representation, 255
tracking, 232

weather optimal position control, 491
weather routing, 277
weight, 59
WF, wave-frequency motion, 199, 214, 285
WGS-84, World Geodetic System, 17
wind

angle of attack, 188
axes, 41
coefficients, 188
container ship, 191
direction, 189
forces on marine craft at rest, 188
forces on moving craft, 191
large tankers, 195
merchant ships, 194
models, 188
moored ships and floating structures, 195
offshore vessels, 191
relative angle of attack, 191
relative speed, 191
speed, 188
tunnel, 191

wind-generated waves, 202
workspace, definition, 237

yaw, definition, 15

zero-frequency model, definition, 113
zero-speed model, 103


