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Preface

Magnetohydrodynamics (MHD) is concerned with the flow of electrically
conducting fluids in the presence of magnetic fields, either externally applied
or generated within the fluid by inductive action. Its origin dates back to pio-
neering discoveries of Northrup, Hartmann, Alfvén, and others in the first half
of the twentieth century. After 1950, the subject developed rapidly, and soon
became well established as a field of scientific endeavour of great importance
in various contexts: geomagnetism and planetary magnetism, astrophysics,
nuclear fusion (plasma) physics, and liquid metal technology.

This volume surveys both the historical evolution of the field and some of
the current trends. It is based on a workshop on the History of MHD organ-
ised at Coventry University, UK, 26–28 May 2004, by the working group on
“High Magnetic Fields” within the European network “Magnetofluiddynamics”
(COST Action P6). It contains contributions by the workshop participants,
supplemented by several additional invited papers in order to provide more
comprehensive coverage of the recent trends. It also includes reminiscences of
scientists who worked during the period of pioneering discoveries in the field
(1950s and 1960s), together with photos of at least some of the pioneers of
the subject.

Topics covered in this volume include dynamo theory and experiment,
astrophysics, plasmas, high magnetic fields, turbulence, and electromagnetic
processing of materials. Other topics such as magnetoconvection, magnetic
reconnection, and tokamak plasmas are not included, simply because to do
justice to these important topics would have required a book of unmanageable
proportions.

Judging by the vitality of the field as evidenced by this volume, we believe
that MHD still poses challenges of great fundamental, as well as practical,
importance, and that the prospects for its continuing vitality are bright.

We gratefully acknowledge the willing cooperation of all participants
of the workshop and contributors to this volume, the financial support of
the European Cooperation in the field of Scientific and Technical Research
(COST), the help of Svetlana Aleksandrova in organising the event, the advice



x Preface

of Leo Bühler on the sometimes painful process of conversion between various
pieces of software, and last but by no means least, the patience and under-
standing of the publishers (Springer).

Coventry, Grenoble, Cambridge The Editors
January 2006



Part I

Dynamo, Astrophysics, and Plasmas



How MHD Transformed the Theory
of Geomagnetism

Paul Roberts

Department of Mathematics and Institute of Geophysics and Planetary Physics,
University of California at Los Angeles, Los Angeles, CA 90095, USA
(roberts@math.ucla.edu)

Summary. The main magnetic field on the Earth is generated by, and has been
maintained throughout Earth’s history by, a fluid dynamo operating in the Earth’s
electrically conducting core. The author gives his personal view of how understand-
ing of this ‘geodynamo’ grew during his lifetime, and he includes recollections of
some of the scientists involved. The remarkable evolution of the subject from simple
applications of electromagnetic theory to today’s sophisticated magnetohydrody-
namic theory is outlined. The importance of Coriolis forces in core MHD is not fully
appreciated even today, but it transforms MHD into an essentially different subject
that is briefly reviewed here. Proposals are made to give it its own special name.

1 Early days

As this is a meeting about the history of magnetohydrodynamics (MHD), it
seemed to me, when I was preparing my talk, that it might be appropriate
to include some reminiscences1; I expected a fair number of people in the
audience to be too young to have interacted with the founders of the subject
but who might be interested to hear snippets about them, and as an old fogey
I am in a position to oblige. But it seems I am wrong: the room is full of old
fogies. Nevertheless I’ll continue as planned.

When was MHD born? The answer to this question is subjective. It seems
to me that no study that explores only one side of the interrelationship
between the magnetic field and the motion of the conductor can truly be
said to be a part of MHD. Thus Faraday’s famous experiment [1] of 1832
on Waterloo bridge, that was intended to detect tidal motion in the Thames
by electromagnetic (=em) induction, is not an MHD experiment, since the
dynamical effect of the field on the motion is negligible and is not included.
The same can be said of many early attempts to understand the geomagnetic
field, as we shall see.
1 Sergei Molokov has encouraged me to be equally informal too in this written

account of my talk, which I nearly subtitled “on falling off chairs”; read on!;

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
3–26. c© 2007 Springer.
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Fig. 1. Hannes Alfvén

We have already heard at this meeting of exciting experiments in liquid
metals in a tradition that go back to Hartmann and Lazarus [2] in 1937. These
involve both sides of the MHD relationship, but to my mind they are not really
MHD experiments for they do not exhibit the main feature of MHD. The
interaction of conducting fluids and magnetic fields gives rise to a completely
unexpected phenomenon, the Alfvén wave. That discovery [3], which was a
triumph of theory over experiment, was made during World War II. As I see
it, this marks the birth of MHD.

Perhaps it is time to start reminiscing. I first met Alfvén at a symposium
in Saltsjöbaden near Stockholm in 1956 and, during the time I still worked in
Newcastle, he visited there a couple of times. I remember two things about
him. First, his colleagues held him in great awe. Second, he ate an apple in a
most unusual way. He removed all the skin, where I’m told all the goodness
lies, and then he ate all the rest including the pips in the core, which I’ve
been told contain small amounts of prussic acid.

The Alfvén wave could have been discovered even before Maxwell intro-
duced displacement currents. How had everyone else missed it? It was said
that, as a research student, Ferraro had suggested to his supervisor, Sydney
Chapman, that it might be interesting to look for wave motions, but Chapman
had told him it would be a waste of time. So Ferraro discovered not the wave
but (in 1937) his law of isorotation [4], which is not, according to my definition,
an MHD phenomenon. True or false, this is a cautionary tale for all research
students. Listen to your supervisor by all means, but do not necessarily take
his/her advice. Your own instincts may be better!
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Fig. 2. Walter Elsasser; look at the blackboard!

Another great thing Alfvén did in explaining his wave was to give a physical
argument [3] in support of his “frozen flux theorem”, which I shall call his
first theorem:

Magnetic field is “frozen” to a perfect conductor as it moves.

Of course, we do not encounter perfect conductors much, but the theorem
is very helpful in visualizing MHD processes whenever the magnetic Reynolds
number is large. You will remember that this number is

Rm = LV/η, or Rm = τη/T , (1)

where L, T and V are typical length, time and velocity scales, η = 1/µσ
is magnetic diffusivity, µ is permeability, σ is electrical conductivity (SI
units), and

τη = L2/η (2)

is the electromagnetic diffusion time. If we take L = 106 m and η = 2 m2/s
as appropriate for the Earth’s core, τη is of order 104 years, and Rm = 100
for V = 10−4 m/s (as suggested by the “westward drift” of the field). But L is
necessarily small in laboratory experiments with liquid metals and therefore
Rm is small too. The frozen field picture is then not so useful; indeed, some
say it is distinctly unhelpful. The magnetic field acts more like an anisotropic
friction.

To detect an MHD wave it must be seen to “cross the apparatus”. The
wave travels with the Alfvén speed

VA = B/
√

(µρ), (3)
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Fig. 3. Interior of the Earth

where B is the magnetic field and ρ is density. It crosses the apparatus in
a characteristic time of τA = L/VA but, as it does so, the induced current
system that travels with it decays ohmically in a characteristic time of τη. The
condition that the wave is detected is τA < τη, i.e., the Lundquist number,

Lu = LVA/η, (4)

must be “large enough”, and generally it isn’t in the laboratory.
In neutral Sweden, MHD got off to a fine start and it was several years

after the war before the rest of the world caught up. Meanwhile, Lundquist
wrote the first paper on magnetostatics in 1950, a famous review in 1952 [5],
and attempted to demonstrate Alfvén waves in the laboratory using mercury
as the working fluid [6]. Lehnert used liquid sodium instead. His method of
disposing of used sodium led to an amusing incident that shows his skill as a
conciliator rivals his prowess as a scientist. He relates this tale elsewhere in
this book.

2 Early pioneers: Cowling, Elsasser, Bullard,
and Chandrasekhar

The famous physicist, Walter Elsasser, who had emigrated to the United
States in the 1930s for obvious reasons, began in 1939 to take an increas-
ing interest in why the Earth is magnetic [7]. It may be appropriate here to
remind you of the Earth’s internal structure; see Fig. 3. Elsasser’s studies led
him ever deeper into MHD culminating in 1955/56 with a two part review [8],
but initially he made use only of em theory. In 1950 he discovered the by now
well-known Elsasser variables V ± VA, where V is the fluid velocity [9].

One of his most interesting papers [10] appeared in 1946, the second of a
series on “Induction effects in terrestrial magnetism”. This shows that he had
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Fig. 4. The ω-effect

by now realized that rotation is very important in the MHD of the core. He
got close to introducing the important dimensionless measure of the relative
sizes of Lorentz and Coriolis forces in a rotating system:

Λ = B2/µρηΩ = V2
A/ηΩ, (5)

where Ω is the angular velocity. I christened this the Elsasser number in his
honour and the name has stuck. Although he did not write down his number,
he did introduce the important scale BE based on Λ = 1, namely

BE =
√

(µρηΩ), (6)

which he estimated as about 12 gauss for Earth’s core, i.e., much the same
value as we would accept today, taking ρ = 104 kg/m3. I will return to the
Elssaser number later.

Elsasser was also the first to draw attention to the importance of the
toroidal field in geomagnetism, the existence of which had previously been
unsuspected since it is trapped in the core (assuming that the electrical con-
ductivity in and above the mantle is negligible). One expresses the magnetic
field, B, as

B = BT + BP , (7)
BT = ∇×(Tx), BP = ∇×∇×(Sx), (8)

where BP is the ‘poloidal field’ that escapes to the Earth’s surface where we
view it, and BT is the ‘toroidal field’; here x is the radius vector from the
geocenter. Elsasser pointed out, I think for the first time, that zonal motions
easily create toroidal field from poloidal field, a process I later named ‘the
ω-effect.’ With the help of the frozen flux idea, one can visualize the lines of
force of an axisymmetric poloidal field, BP , being stretched out along lines
of latitude by a zonal shear, VT (Fig. 4). In this way a zonal BT is created of
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Fig. 5. Thomas Cowling (left); Subrahmanyan Chandrasekhar (right)

order Rm × BP , where Rm is defined using the zonal velocity VT . The belief
quickly developed that

BT /BP ∼ Rm, VT /VP ∼ Rm (9)

are large; unseen is to be believed! If Rm = O(100) (see above), BP = 3
gauss, implies B ≈ BT is about 300 gauss, the value used in making estimates
below. For example, B ≈ 300 gauss gives VA ∼ 0.3 m/s, so that Λ ∼ 100
rather than Λ ∼ 1. The concept (9) dominated core MHD until the mid-
1990s, when numerical simulations did not support it [11]. One should not
forget however that simulations were not, and still are not, in a geophysically
realistic parameter range.

My own forays into geomagnetism started in 1951 when, as a 1st year
research student I approached Herman Bondi, who had been the outstanding
teacher of my undergraduate years to ask him for a topic in relativity and
cosmology to work on for a Ph.D. The gist of his reply, as I recall it, was
that, if he had a problem in that area to work on, he’d work on it himself.
He suggested instead that I solve the dynamo problem either by generalizing
Cowling’s theorem [12] or by creating an example of a working dynamo.

I first met Cowling at a party at the British Embassy in Stockholm at the
time of the Saltsjöbaden meeting. I found him a rather forbidding presence,
especially so since he imbibed soft drinks while everyone else was getting
plastered at British government expense. But I like this photograph of him
(Fig. 5). A little smile plays around his lips. No doubt he was thinking at
the time of all the trouble that his theorem was giving other theoreticians.
Later, when I visited Leeds often to collaborate with Harold Ursell, I got to
know and like “Tom” a lot better. But there is no denying that his scientific
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standards were high and his powers of criticism even higher. I am not the first
to note that Cowling’s theorem is a negative result:

Axisymmetric magnetic fields cannot be maintained by a dynamo.

When I later got to know Subrahmanyan Chandrasekhar, popularly known
as “Chandra”, it seemed to me that he felt that Cowling’s exacting standards
sometimes had a stultifying effect on the scientists. He propounded to me
what he called Alfvén’s second theorem:

Given Cowling, ∃ no theoretical astrophysics.

I never could discover whether Alfvén really had said that or whether this
was a product of Chandra’s impish sense of humour but, given its formal
mathematical flavour, I suspect the latter [13].

While on the subject of Cowling’s theorem, I cannot resist another story.
Einstein and Elsasser maintained contact with each other after they had both
moved to the new world. At one meeting, Einstein (who apparently had a long
standing interest in the origin of the Earth’s magnetism [14]) asked Walter
for full details about his progress in solving the problem. Walter explained
dynamo theory, as it stood in the early 1940s. He explained that it was still
not known whether dynamos could function in simple bodies like spheres. He
explained Cowling’s theorem. “Enough” said the great man, “If dynamos do
not work in such a simple case, they will not work at all”. (I have been unable
to remember or discover who told me this amusing tale, but I suspect it does
grave injustice to an outstanding physicist.)

To go back to my own unfortunate experiences, I spent a year failing to
generalize Cowling’s theorem and also failing to find an example of a work-
ing dynamo. The nearest I came to it was something like Herzenberg’s 1958
model [15], but I got lost in the maths. I was therefore very happy to accept
Bondi’s advice, which was to stop hitting my head against the wall, as the idea
might not work anyway. A lost opportunity? Maybe. A lost year? Not entirely.
I’d learned some MHD, and what did a year matter? At age 22 one is going
to live forever. One pleasant part of the year was getting acquainted with
that lovable character “Teddy” Bullard who was ultra supportive of research
students perhaps partly because, as a research student himself, he had encoun-
tered less than tolerant treatment from Rutherford who had told him never
to darken the doors of his (Cavendish) laboratory again. Bullard even invited
me, a lowly research student, to be a guest in his home at the National Physi-
cal Laboratories in Teddington so that we could have more time to discuss the
geodynamo. At that time he was Director of the NPL, in a position to drive
its computing section crazy attempting to solve a kinematic dynamo model
with the very primitive electronic computers then available [16].

My failure caused me to change direction and supervisor. In 1952, I started
to work on other geomagnetic problems under the direction of Keith Runcorn,
and I made my first positive contribution to geomagnetism, which I would
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Fig. 6. “Teddy” Bullard (left); Keith Runcorn (right)

claim was actually the first success of MHD in the subject. At that time,
DAMTP did not exist and contact between geophysicists and applied mathe-
maticians, and between geophysicists and engineers, was non-existent. Apart
from Raymond Hide (or “Spike”, as he was known then), nobody I met seemed
to know anything whatever about MHD. Most geophysicists thought that the
sources of the geomagnetic field must lie in the upper 200 km of the core. The
argument was based on the “skin effect”: a field changing on a timescale of T
penetrates a solid conductor only to a depth of order

dη = (ηT )1/2. (10)

For T = 10 years, a typical secular variation timescale, dη = 30 km; for T =
1000 years, d = 200 km. So all the sources had to be near the top of the fluid
core.

Even Elsasser [10] swallowed this, as did Lowes and Runcorn [17]. In 1952, I
pointed out to Keith that the argument was not convincing essentially because
the Lundquist number based on a poloidal field strength of 3 gauss is large:
Lu > 1000 for L = 106 m. Thus, I claimed, Alfvén waves would carry the
secular variations from deep within the core to its surface with essentially
negligible dissipation [18]. Keith almost fell out of his chair and then told
me that I “must have made a mistake”. Of course, “imitation is the sincerest
form of flattery”, and Runcorn flattered me by including my insight into the
published account [19] of an address he gave at a meeting of the American
Geophysical Union in 1953, and he acknowledged the contribution I had made
in a characteristic way: “It is a pleasure to record my gratitude to my colleagues
in the Department of Geodesy and Geophysics of Cambridge University for
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much discussion and for permission to report on the results of their work prior
to publication.”

In reality, no permission was sought, from me at least, but who needs to
seek permission from a lowly research student? My idea may seem to be rather
obvious nowadays, but it was not so in 1952, and (after all) it was my idea
and not his. So it rankled, and still rankles a half a century later (as you
see!) [20].

In 1954, after my Ph.D., I became a postdoc at Yerkes Observatory of
the University of Chicago where I got to know Chandra, whose early work on
white dwarfs later led to a shared Nobel prize. When I visited, he was working
frenetically on hydrodynamic and hydromagnetic stability, the subject of his
later book, but he was vitally interested in MHD and dynamo theory. He
was the first person to emphasise to me that a marginal kinematic dynamo
might be an overstable solution of the em equations (i.e., one that oscillates
sinusoidally in time) rather than the steady, “exchange of stabilities” solution
that people such as Cowling and Bullard had so far been seeking.

After returning to England for military service, I moved to Newcastle but
attempted little geomagnetism and even less MHD. What I did was mostly
in partnership with Spike [21]. One valuable lesson he taught me was how
to deal with adversity in research. Prior to that time, I would blame my
stupidity if I failed to reach an objective. Though he was seldom in such a
position, Spike would rebound quickly, merely opining that the objective itself
was more difficult than he had originally anticipated.

I returned “permanently” to Yerkes in 1961 where Chandra was now work-
ing away frenetically (apparently the only way he ever worked) on the sta-
bility of rotating self-gravitating fluids. At the time, Keith Stewartson was
on sabbatical at the Army Research Center in Madison and we started col-
laborating [22]. This gives me an opportunity to remind you of some of the
outstanding work Keith did in MHD. With his strong background in aeronau-
tical theory, a natural problem for Keith to analyse was flow over a “wing”
with an aligned magnetic field (Fig. 7).

Others looked at this problem too, and had generated solutions that, as in
the non-magnetic case, had a wake following the wing. Keith realized however
that, when the Alfvén number

A = V/VA (11)

(sometimes called the ‘magnetic Mach number’) is less than 1, the solution
is fundamentally different as the wing signals its presence upstream through
Alfvén radiation. “Obvious”, we might tend to say today but, when he spoke
about it at the Williamsburg meeting [23] in 1960, it was still controversial
and hotly disputed.

During this period, Stewartson challenged me to solve a problem on MHD
duct flow concerning the steady flow of conducting fluid down an insulat-
ing pipe in the presence of a large transverse magnetic field. He wanted to
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Fig. 7. Keith Stewartson (left); aligned flow (right)

determine the structure of the singularities in the Hartmann layer that occur
at the points where the applied field is tangential to the walls. I eventually
rose to his challenge [24], and it was Stewartson’s turn almost to fall out of his
chair. (He also challenged me to solve the corresponding singularity structure
for the Ekman layer, but that was too tough for me.)

I returned to Newcastle in 1963 and began to get interested in geomag-
netism and MHD again. I started a project with Stan Scott that achieved
some notoriety and recently some controversy [25]. It was based on MHD
and Alfvén’s theorem and argued that the secular variation could mostly be
explained as the advection of field “frozen” to fluid motions beneath a bound-
ary layer at the core surface.

3 Stanislav Braginsky, father of geomagnetic theory

In 1965 I lunched with Bullard at some meeting or other and he asked me if
I’d looked at “extraordinary claims” made by “some Russian or other” about
kinematic dynamos. That Russian was Stanislav Braginsky. At first sight, his
paper [26] seemed obviously wrong. How could the mathematics of his nearly
symmetric kinematic dynamos possibly simplify in the remarkable way he
claimed? I spent a long time trying to evaluate this work. I was not helped
by the notorious terseness of Soviet papers, caused by the strict length limits
imposed by Soviet autocracy (because of the well-known shortage of paper
caused by the death of trees in Russia!). It was the kind of situation where
it was hard to re-derive results even when they are known to be correct. One
marvelled at the pioneer who had faith to continue along such a complicated
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Fig. 8. Stanislav Braginsky

path without really knowing for sure where it would lead. When I realized the
paper was correct, it was my turn almost to fall out of my chair! Later, Andrew
Soward [27] found an alternative and more fundamental route to Stanislav’s
result, but it is hardly simpler!

It would take me too long a digression to describe this work here. Suffice it
to say that it is based on a simple idea: the magnetic Reynolds number, Rm, of
the zonal core motion is large (see §2). Therefore even a small deviation from
axisymmetry should be enough to defeat Cowling’s theorem. Stanislav devel-
oped an asymptotic solution of the induction equation in powers of R−1/2

m , in
which (9) holds, and in which the asymmetric components V′ and B′ of the
velocity and magnetic field are of order R−1/2

m VT and R−1/2
m BT , respectively.

Since B′/BP = O(R1/2
m ) � 1, it appears at first sight that this solution is geo-

physically irrelevant, but Stanislav was able to show that the largest terms
in the expansion of B′ could not leave the conducting core; he demonstrated
that B′

external = O(R−1
m B′

internal) = O(R−1/2
m BP ), consistent with the small

inclination of the magnetic dipole to the geographic axis.
In this work [26], Stanislav provided the first really compelling mathemat-

ical support for Eugene Parker’s concept [28] of a “Γ−effect”, though he did
not have in mind em induction by turbulent motions as ‘Gene had. I had
heard’ Gene talk about his ideas at Yerkes in 1955, but I was slow to realize
their significance. At the time it seemed to me that he had merely replaced
one equation (in three space dimensions) that I could not solve by another
equation (in two space dimensions) that I could not solve either. Parker’s
work was taken further by Steenbeck, Krauze and Rädler [29]. They clarified
the α-effect (Parker’s Γ -effect), invented helicity (or “Schraubensinn” as they
called it – roughly “screwiness”), explored the relationship between the two,
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Fig. 9. ’Gene Parker

and created a new subject: Mean Field Electrodynamics (MFE). They pro-
vided a mathematical and computational model of solar activity in terms of
a ‘dynamo wave’, much as Parker had envisaged [30].

Stanislav [31] combined his asymptotic analysis with numerical integra-
tions, performed in his own machine code on the computers available to him
in the USSR, which were even more primitive by today’s standards than those
used in the West at that time. This combined analytic–numeric approach to
the kinematic geodynamo may fairly be said to be the first successful solutions.

Stanislav also generalized his first asymptotic theory. In [26] he had
assumed that the α-effect was created by a single asymmetric planetary
“wave”, brought to rest by choice of reference frame. In an even more compli-
cated generalization [32], he demonstrated that the α−effects of an arbitrary
number of such planetary waves, each having its own angular velocity about
the symmetry axis, are additive. This paper illustrates how the idea of a
dynamo operating by means of planetary waves had already taken root in
Stanislav’s mind.

The astrophysical impact of the work [29] of the Potsdam trio has been
considerable. The geophysical impact of a companion paper, in which again
turbulent motions in the core are held responsible for dynamo action, has
been much less for what I believe are the following reasons.

Let us contrast convection in the Sun and in the Earth’s core. In the former
an abundant energy supply drives wildly turbulent motions. In the latter the
question has always been, “Where on Earth (sorry!) does the core get enough
energy to maintain the dynamo against ohmic losses?” The magnetic field
in the Sun is highly intermittent. Violent motions bring flux tubes together
and reconnect them with the release and dissipation of magnetic energy.
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Fig. 10. The Potsdam trio; from left to right, Max Steenbeck, Karl-Heinz Rädler,
and Fritz Krause

Correspondingly, the timescale of magnetic activity is greatly shortened.
Instead of τη being of order 1011 years, as one might expect if one used a
molecular or η, it is of order 10 years, suggesting that a turbulent diffusivity,
ηT , about 1010 times greater than the molecular η is relevant. Models of the
solar activity cycle, routinely assume that all diffusivities in the solar convec-
tion zone are of order 109 m2/s. In contrast, one cannot expect such vigorous
turbulence in the Earth’s core, which is struggling to make do with the little
energy it has available. There is absolutely no evidence that the timescales of
the geomagnetic field are greatly shortened. An analogue of the regular activ-
ity cycle on the Sun is the irregular polarity reversal of the geomagnetic field.
Palaeomagnetism assures us that it takes of order 104 years for the Earth to
switch its polarity and this is about what is suggested for τη with the esti-
mated molecular η. Theoretical discussions of turbulent induction link the
turbulent α-effect to the turbulent diffusivity, both being proportional to the
Reynolds number defined by the small scales, i.e., if the turbulent diffusivity
ηT is small, so is the turbulent α-effect. This may be a simplistic way of sta-
ting the situation, since it omits the obvious influence of Coriolis forces and
density stratification, but (to my mind) it distils the essence of the matter.
Although it would be a brave man that said that turbulence plays no part in
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the generation of the large-scale geomagnetic field, it seems to me that such a
statement would be nearer the truth than saying the opposite, that the main
geomagnetic field is mainly produced by small-scale motions in the core. It is
the large-scale motions that are responsible, and Andrew Soward was able to
define a helicity for these and to relate it, in Braginsky’s large Rm analysis,
to his α.

I hope I have not given the impression, as Andrew Soward has told me I
have on past occasions, that I believe turbulence is unimportant in the core.
The Earth’s core is a liquid metal, having a magnetic Prandtl number,

Prm = ν/η, (12)

of about 10−6. Thus core turbulence has to supply the deficiencies of molecular
processes by transporting large-scale momentum and heat. Turbulence there-
fore plays a crucial role in core MHD, though not in em induction processes.
The significance (and anisotropy) of core turbulence was recognized in another
paper [33] that Stanislav wrote in 1964, his “annus mirabilis”. This contained
several other important ideas too and, although it is hard to choose, I would
rank this as his most important paper; I shall refer to it henceforth as “the
1964 paper”. Later developments on core turbulence can be found in [34, 35].

At the time Stanislav wrote the 1964 paper [33], his estimate of η for the
core was about 3 times what is accepted today and it seemed that thermal
buoyancy could not provide the energy needed to offset ohmic dissipation.
(Recall here that the greater the σ, the larger the BT for the given, observed
BP , and therefore the bigger the ohmic dissipation.) Stanislav came up with
a new mechanism [33,36]: compositional buoyancy. Jack Jacobs had cogently
argued [37] that the Earth’s solid inner core had been created by the solidi-
fication of the iron-rich fluid alloy originally filling the core, and further that
the inner core surface is, even to this day, continually moving slowly upwards
as freezing continues. Verhoogen [38] had recognized that the concomitant
release of latent heat would assist core convection. Stanislav made two impor-
tant points, first that the light components of the alloy, the “admixture”, would
be preferentially released during freezing and would help stir the core too;
second, he pointed out that such compositional convection would be thermo-
dynamically much more significant than thermal convection, which is limited
by (essentially) the Carnot efficiency. Others provided mathematical backing
for these ideas [39] (and still others have received credit for them). Ideas of
convective efficiency now dominate discussions of planetary dynamos, e.g.,
see [40]. The idea that core turbulence would mix entropy as effectively as it
mixes the light constituents released from the inner core led Stanislav to the
anelastic approximation. It is interesting to contrast his concise derivation of
that approximation with those of earlier authors.

Another important idea in the 1964 paper [33] concerned the effects of
rotation and buoyancy on Alfvén waves. This topic was not completely new
though its application to the Earth’s core was novel. I will digress again.
Alfvén discovered his waves during attempts to explain the solar activity cycle;



How MHD Transformed the Theory of Geomagnetism 17

see [18]. His colleague Walén developed [41], and Alfvén endorsed, a theory of
“whirl rings”, which resembled circular flux tubes. They visualized that these
were produced near the Sun’s energy producing core and travelled upwards as
Alfvén waves, riding on the general poloidal field of the Sun. When Lehnert
was a visitor to Yerkes Observatory in 1953 he analysed Alfvén waves in
highly rotating systems and he found that they are replaced by slow waves,
now often called ‘Lehnert waves’ in his honour [42]; they are sometimes also
called ‘MC waves’ (see below). They are highly dispersive. The whirl rings
would therefore not preserve their identity as they rose from deep within the
Sun to its surface. I heard that Lehnert was not as thrilled by his discovery as
you or I might have been. He was greatly in awe of Alfvén and did not know
how to break the news to him.

The characteristic timescale of the Lehnert waves is

τslow = ΩL2/V2
A, (13)

which is about 200 years, for L = 106 m and B = 100 gauss (VA = 10 cm/s).
Since

τslow = Λ−1τη, (14)

it is also, for Λ = 100, roughly the timescale over which ohmic dissipation
would obliterate the waves.

Stanislav’s had built his kinematic theory [26,32] on the dynamo action of
waves, and he needed an explanation of how these waves are generated and
maintained. So in the 1964 paper [33] he undertook a simple (Cartesian) analy-
sis similar to Lehnert’s but with the crucial difference that buoyancy forces
were also included. This led him to the concept of the MAC wave, where M
= Magnetic, A = Archimedean (buoyancy), and C = Coriolis. This acronym
is mainly significant for what it omits: inertial and viscous forces (although
a pressure gradient is, as always, significant). To improve geophysical real-
ism, he later studied MAC waves in spherical geometry [43]. He argued that
the geomagnetic secular variation is a manifestation of slow planetary MAC
waves; see also Hide [44]. Buoyancy feeds energy to the waves and prevents
their disappearance; the waves create the non-local α-effect that maintains
the geomagnetic field. It’s a nice idea, though a difficult one to develop theo-
retically; doubtless it will be pursued more in the future.

Andrew Soward joked once that the Alfvén velocity is that velocity with
which no wave travels in the Earth’s core! Certainly rotation changes every-
thing. He would, however, make an exception of the torsional oscillations
(TO) which are a kind of Alfvén wave travelling across the geostrophic cylin-
ders which are coupled together by the s-component of the prevailing poloidal
field (Fig. 11); here (s, φ, z) are cylindrical coordinates with Oz parallel to
Ω. In a highly rotating body of fluid like the Earth’s core, it is convenient to
divide the fluid motion into geostrophic and ageostrophic (non-geostrophic)
parts: V = VG +VN . The geostrophic part, VG, is in the zonal (φ) direction,
and is defined, for each geostrophic cylinder C(s), by the average of Vφ over
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Fig. 11. Geostrophic cylinders; for simplicity, the inner core is ignored

C(s):

VG(s, t) =
1

4πz1

∫ z1

−z1

dz

∫ 2π

0

dφ Vφ(x, t), (15)

where z1 =
√

(R2−s2). The significance of the division V = VG +VN is that
the Coriolis forces associated with VG can be absorbed into the pressure gra-
dient, i.e., it is ineffective. This means that the inertial force, which has (com-
pared with the Coriolis force) a negligible effect on the (ageostrophic) MAC
waves, determines the fate of the geostrophic motions in much the same way
as for an Alfvén wave. Stanislav [45] founded the theory of TO too and, based
on some observation and analysis, these oscillations, which have a decadal
timescale, have been detected [46].

This brings me to Stanislav’s current work, which is motivated by a per-
plexing property of the geomagnetic field: the dipole varies on a decadal
timescale. This cannot be explained by the TO, because these are axisymmet-
ric and leave the dipole unaffected. Large-scale MAC waves create a dipole
variation, but only on a timescale that is much too long. Stanislav currently
attributes the dipole variation to MAC waves in a stably stratified “ocean”
at the top of the core, about 80 km deep and having a density that is about
0.9999 times that of the fluid below it [47]. For such small-scale MAC waves,
(13) gives τslow in the decadal range. It is fair to say that the geophysical
community at large is not yet convinced of the existence of such an ocean.
Another of Stanislav’s ideas, “Model-Z” [48], has also not won general accep-
tance either. Nevertheless, Stanislav has been right before. . . . . .
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Fig. 12. Sketch of postulated bifurcation diagram

4 Epilogue: a question

I have sketched out a scenario, largely due to Stanislav Braginsky, of the MHD
of the Earth’s core and its consistency with what can be gleaned from past
and present data on the geomagnetic field.

I will conclude by riding one of my favourite hobby-horses: the way that
Coriolis forces transform traditional MHD into almost an unrecognizable form.
I have touched on this topic several times already but another striking man-
ifestation of this is the strong field dynamo which is illustrated here by a
sketch (Fig. 12) that I was showing in my talks even in the 1960s. (Apologies
to other old fogeys here present!) Consider the planar dynamo operating in a
Bénard layer rotating about the vertical. This was originally studied by Steve
Childress, Andrew Soward, and Yves Fautrelle [49], but recently it has been
the focus of computations by Chris Jones in association with myself and Jon
Rotvig [50]. This is the context in which my statements have so far the best
theoretical backing. Figure 12 is a sketch of the (Ra,B)−plane of solutions; Ra
is the Rayleigh number and Rac marks the onset of non-magnetic convection;
if Ra is gradually increased from this state, the motions grow in magnitude
and ultimately, at Ra = RaB become strong enough to maintain a magnetic
field. As Ra is further enhanced, V and B increase too and the weak field
branch arises, on which the Hartmann number Ha = BL/√(µρην) is O(1),
i.e., on which Λ = O(E), where E = ν/ΩL2 is the Ekman number, which is
of order 10−14 if we assume that ν = 10−6m2/s is a molecular viscosity and
of order 10−8 if we assume that ν is a turbulent viscosity of order 1 m2/s.
Ultimately, at the asymptote Ra = RaA, there is runaway field growth to the
strong field branch where the Elsasser number, Λ, is O(1). Also evident on the
strong field branch are subcritical solutions, i.e., solutions that exist at even
smaller Rayleigh numbers than those at which convection can first occur. The
Earth appears to be operating a dynamo on the strong field branch.
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This is but one of the striking ways in which the Coriolis force transforms
MHD. I believe it is an essentially different subject and deserves a different
name and acronym. So I conclude this presentation by asking my audience
(and readers) what that name and acronym should be. In the past I suggested
‘RMHD’ standing for ‘rotating MHD’ but that has been appropriated both by
‘reduced MHD’ and by ‘relativistic MHD’. I recently proposed CMHD, stand-
ing for ‘Coriolis MHD’, but Stanislav has put forward an attractive alternative:
‘MACHD’, which is specially appropriate for the Earth’s core, as it empha-
sises the central importance of Coriolis forces. (One could even take this idea
further by reserving MAHD for the MHD of liquid metals in general, while
using ‘MHD’ for the entire field, including plasma MHD.) What do you think?
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1 Introduction

Electric discharges in gases were subject to a rather limited research effort
during the first three decades of the twentieth century. There was, however, a
turning point when Hannes Alfvén [1,2] started his studies on electromagnetic
phenomena in astrophysics at the end of the 1930s, and especially after his
discovery of magnetohydrodynamic waves in 1942.

Ever since Alfvén received his professorship in 1940 at the Royal Insti-
tute of Technology in Stockholm, he continued an intensified research with
his collaborators on the behavior of electrically conducting media in a mag-
netic field. In his spirit the research was whenever possible carried out in close
connection between theory and experiments. Two essential features originat-
ing from Hannes Alfvén’s earlier results formed the basis of the phenomena
to be investigated, namely the concept of “frozen-in” magnetic field lines in
a highly conducting medium, and the magnetohydrodynamic waves where
these field lines were pictured as elastic strings in a dynamic process. During
this early period of magnetohydrodynamic (MHD) research in Stockholm to
be described here, the studies were mainly concentrated on MHD flow, the
characteristic dimensionless numbers of MHD phenomena, MHD waves, heat
convection in a magnetized electrically conducting layer, and the idea of a
self-exciting dynamo. In addition to this, there were important investigations
at the laboratory on gaseous discharges with application to the aurora, and on
motions of charged particles in electromagnetic fields. In the 1950s Alfvén’s
department consisted of about 20 persons out of whom about a half were
active in research and the rest in technical and administrative duties. The
laboratory had a small workshop, and also a large magnet for generating a
steady almost homogeneous magnetic field with a strength up to 1 T within
a volume of about 0.01 m3 (Fig. 1).

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
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28 B. Lehnert

Fig. 1. The electromagnet at Alfvén’s Department of Electronics at the Royal Insti-
tute of Technology in Stockholm. An almost homogeneous magnetic field up to about
1 T can be generated in the gap. The experimental arrangement is placed on a fixed
stand. The magnet can be turned around a horizontal axis, such as to generate a
magnetic field which forms any angle with the vertical direction

2 Magnetohydrodynamic flow

The magnet was used in simple qualitative demonstrations of MHD phenom-
ena. In a glass vessel filled with mercury, a horseshoe-formed piece of copper
was dipped into the liquid and moved across the magnetic field. Polarized elec-
tric currents were then generated which coupled the motion to a large part of
the mercury body, thus demonstrating the occurrence of a strong MHD drag.

An investigation of pressure-driven MHD channel flow was first reported by
Hartmann and Lazarus in 1937 [3,4]. Later the author [5] studied theoretically
an equivalent case of Couette-like flow of a conducting viscous liquid placed
between two parallel walls moving in opposite directions, and where there
is a perpendicular magnetic field. In both cases the magnetic field and the
resulting induced electric currents where shown to have a strong influence on
the velocity profile, by forming boundary layers with strong velocity gradients
and an enhanced drag force.
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In a simple experiment with mercury in the spacing between two rotating
concentric cylinders [5] the mutual torque was measured in presence of an
axial magnetic field. There were drag effects both from the mid-parts and
from the end regions of the cylinders. The qualitative conclusion was that,
at least in certain cases, the magnetic field suppresses the turbulence which
occurs at sufficiently large angular velocities.

With the main purpose of finding out whether there may also exist situa-
tions in which an imposed magnetic field can give rise to non-laminar motion in
the form of regular vortices or even turbulence, an experiment was designed [6]
as shown in Fig. 2. In a shallow tray filled with mercury are placed a copper
disc A and two concentric copper rings C and D. A and D are at rest, whereas
C rotates round a vertical axis at a constant rate of one fifth revolution per
second. In a stationary unmagnetized state the whole mass of liquid rotates
slowly due to viscous coupling between neighboring layers. This is shown in
Fig. 3a where the motion of the surface has been made visible with grains
of sand, illuminated from the side and photographed with an exposure time
of 1/5 s. Figure 3b further shows the image of a grating as seen in the mer-
cury surface which is used as a mirror. Deformations of the surface due to a
fluid motion would give rise to corresponding local deformations of the image.
Thus, Fig. 3a indicates a slow and diffuse motion due to the viscous drag, and
Fig. 3b shows that the surface is practically plane in the absence of a magnetic
field. This situation is radically changed when applying a strong vertical mag-
netic field of about 0.43 T, as demonstrated by Figs. 3c and d. Thus Fig. 3c
shows that the fluid is kept at rest in the layers above the immovable disc A
and ring D, whereas it rotates at full speed in the layers above the rotating
ring C. This is a clear demonstration of frozen-in magnetic field lines. It also
supports Ferraro’s isorotation law [7], according to which the layers of a mag-

Fig. 2. Apparatus demonstrating the frozen-in magnetic effect, as well as an insta-
bility caused by a magnetic field, in the flow of a mercury layer. The copper ring C
rotates round the vertical axis, whereas the disc A and the ring D are at rest, in a
tray filled with mercury. The mean diameter of C is 7 cm, and the mercury layer
has a thickness of 6 mm. (From [6].)
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(a)

(c) (d)

(b)

Fig. 3. The mercury surface of Fig. 2 seen from above. The basic motion at the free
surface has been indicated with grains of sand, as seen in (a) and (c). The deforma-
tion of the surface is revealed by the image of a grating, as seen when the surface is
used as a mirror in (b) and (d). The magnetic field is vertical, having zero strength
in (a) and (b), and the strength 0.43 T in (c) and (d). (From [6].)

netized and ionized body will be forced to rotate at the same angular speed
at every point on a magnetic field line. From Fig. 3d it is further seen that
vortex streets are formed above both the inner and outer edges of the ring C.
Consequently this presents an example in which an imposed magnetic field
can give rise to a vortex motion. In the present case the frozen-in condition
enforces the velocity gradient of the basic flow to become large above the
edges of the ring C, and this leads in its turn to an instability driven by the
velocity gradients.

The final period of decay of homogenous magneto-turbulence in an exter-
nally imposed homogenous magnetic field was studied theoretically by the
author [8]. It was found to develop pronounced anisotropic properties where
turbulence elements with finite wave numbers in the direction of the field are
strongly damped, as also being observed. For a fluid of mercury, the decay
has a time dependence exp(−t/τ) with the decay time τ given by

1/τ = 2
[
νk2 + k2

zV
2/k2(λ− ν)

]
. (1)
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Here k is the total wave number, kz its component in the direction of the
magnetic field, V is the Alfvén velocity, ν the kinematic viscosity, λ = 1/(µσ),
σ the electrical conductivity, and µ the absolute magnetic permeability. An
introduction of an angular velocity of rotation, inclined to the magnetic field,
further destroys the symmetry and modifies the damping effects. The influence
of the magnetic field on the damping can in certain situations be counteracted
by the Coriolis force.

3 Characteristic dimensionless numbers

The basic MHD equations can be written in a dimensionless form where every
quantity Q = QcQ

′ is replaced by its characteristic value Qc and the corre-
sponding dimensionless variable Q′. In this way a system of equations for
Q is obtained which includes characteristic dimensionless numbers as coeffi-
cients. The latter then consist of combinations of the various characteristic
values Qc. With each of the characteristic dimensionless numbers being fixed,
a solution of the equations then generates an entire class of geometrically sim-
ilar configurations in space and time. These numbers were found to have the
forms [5], [9]:

R1 = vc/V, R2 = vcLc/λ, R3 = vcLc/ν, (2)

S1 = pc/ρv
2
c , S2 = φc/ρv

2
c , (3)

S3 = vcLc/κ, S4 = v2
c/cvTc, (4)

where V = Bc/(µρ)1/2 is the Alfvén velocity with ρ as the mass density, κ is
the thermometric conductivity, cv is the specific heat at constant volume, and
Bc, vc, Lc, pc, φc, Tc are the characteristic values of the magnetic field strength,
fluid velocity, length scale, fluid pressure, gravitation potential, and temper-
ature, respectively. Of these numbers the new first deduced ones [5] were the
Alfvén Mach number R1 and the magnetic Reynolds number R2, whereas the
conventional Reynolds number R3 and the rest are earlier known parameters.
A combination of R1 and R2 leads to the Lundquist number [10]

R2/R1 = BcLcσ(µ/ρ)1/2 ≡ Lu, (5)

the magnitude of which in many cases can be taken as a measure of the
strength of a MHD phenomenon.
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4 Magnetohydrodynamics waves

Eight years after Alfvén’s discovery of the transverse MHD mode [11], Nicolai
Herlofson showed that there also exists a longitudinal mode [12] in a com-
pressive fluid conductor. This mode is associated with a compression of the
frozen-in magnetic field.

Experiments with the purpose of confirming the existence of the transverse
Alfvén mode were first undertaken about 7 years after its discovery. Lundquist
[13] planned and performed an investigation in which a cylindrical column of
mercury was placed in a strong axial magnetic field generated by the magnet
in Fig. 1. Torsional oscillations were imposed at the lower end of the column
by a motor-driven disc with paddle-wheels. The amplitude and phase of the
oscillations were measured at the upper free surface of the column. In this way
it was shown that the whole column behaved like an elastic body for which the
torsional force and motion at the bottom were transferred along the column
to its top, thereby revealing a phase-shift between its ends.

The conditions for the existence of Alfvén waves in a dissipative conducting
liquid can be estimated from a simple theoretical model [9]. In a frame (x, y, z)
the liquid is assumed to be situated between two parallel infinitely conducting
planes with the spacing d. The z-axis is chosen to be perpendicular to the
planes, and a magnetic field of the strength B0 is imposed along the same axis.
A transverse MHD wave with the wave number k = 2π/d and a perturbed
magnetic field component b = (b, 0, 0) is then introduced into the basic MHD
equations. The decay of the standing-wave perturbation is then given by

b(z, t) = {b1 exp
[
i(λ− ν)k2(ξ2 − 1)1/2t

]

+b2 exp
[
−i(λ− ν)k2(ξ2 − 1)1/2t

]
}

× exp
[
−(λ+ ν)k2t

]
sin kz, (6)

where

ξ = 2B0/
[
(µρ)1/2k(λ− ν)

]
(7)

with λ > ν and b1 and b2 being constants. Consequently, there is a range
ξ > 1 for damped wave motion, and another range ξ ≤ 1 for aperiodic motion
without wave phenomena. The critical periodic limit ξ = 1 then corresponds
to a Lundquist number Lu = π when λ >> ν.

With linear dimensions of Lc
∼= 0.1m and a magnetic field strength

Bc
∼= 1 T, the corresponding Lundquist numbers become Lu ∼= 1 and Lu ∼= 38

for mercury and liquid sodium, respectively. MHD wave motion under labora-
tory conditions is therefore hardly realizable with mercury, whereas strongly
damped waves can become available with liquid sodium, due to its larger
conductivity and lower density. An experiment with the latter medium was
therefore performed some years later by the author [14]. The set-up was in
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principle the same as that used by Lundquist. The oscillations were excited
by a motor-driven copper disc at the bottom of the column, having a smooth
surface with good electrical contact with the sodium. The amplitude and
phase-shift of the recorded signal U were measured by an electric probe at
the top free surface. The level of the sodium was adjusted by means of a sys-
tem of pipes, and in a nitrogen atmosphere. The measurements were made
at a fixed torsional frequency of 30 cycles per second, with a magnetic field
strength varying in the range from 0.3 to 1.0 T. The results were in satisfac-
tory agreement with theory. Thus, at increasing magnetic field strength they
showed a weakly developed resonance peak of the amplitude (Fig. 4a), and
a phase-shift (Fig. 4b), both being reconcilable with deduced rather strongly
damped torsional Alfvén waves propagating along the column.

The practical details of the sodium experiment were not without problems.
A break in the delivered pipes made sodium leak out, thereby burning and
gasifying the asbestos parts of the experimental device and sending smoke
up from the basement to the second floor, while the author was supervising
the fire, lying on the floor in asbestos clothes. After the experiment had been
completed, a contaminated part of about half a liter of sodium was put into
a can with stones and was thrown by the author into the Baltic Sea at the
suburb Djursholm during a beautiful summer’s evening. The burst was like
that of a medium–heavy artillery; the windows in the neighboring houses were
shaking and the motorboats on sea turned around. Then the police appeared,
but was persuaded through a lecture on MHD not to claim for penalty, and
was later as thanks sent a reprint of [14].

(a) (b)

Fig. 4. The experiment on torsional MHD oscillations of a cylindrical column of liq-
uid sodium in an axial magnetic field. Full curves present deduced behavior, and the
crossed marks indicate the experimental results. The dot-and-dash curve represents
the ideal case of resonance at infinite electrical conductivity. (a) The amplitude at
the surface of the column, normalized to its value at infinite magnetic field strength.
(b) The phase shift at the surface of the column. (From [14].)
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During a stay as visitor of S. Chandrasekhar at Yerkes Observatory in
the United States, the author was inspired to look into the behavior of MHD
waves in rotating bodies, such as in magnetized stars. It was found that a
plane Alfvén wave is split up into two circularly polarized transverse waves,
traveling at velocities V1 and V2 in the direction of the wave normal and with
moduli |V1| > |Vz| > |V2|, where Vz = V (cos θ), V being the Alfvén velocity
and θ the angle between the wave normal and the homogeneous magnetic
field [15]. In a rotating medium with an immersed magnetic field, an MHD
disturbance will then not necessarily travel along the magnetic field lines, as
found in a further study of the group velocity [16]. These effects are caused
by the Coriolis force, thus modifying the propagation of MHD waves in such
cosmical bodies as the sun.

5 Heat convection

In a series of investigations, Chandrasekhar performed detailed rigorous stud-
ies on the thermal instability of a layer of fluid heated from below [17]. Among
these investigations, there were studies on the inhibition of convection in an
electrically conducting fluid in a magnetic field.

Experiments on a mercury layer heated from below and placed in the
field of the magnet in Fig. 1 were at an early stage performed by Jirlow [18],
who was a student of the author. These investigations were followed by a
larger set of experiments reported by the author and Little [19], who was a
visiting scientist at the institute. The technique for revealing surface motions
of convective cells was the same as that applied in the experiments of Figs. 3a
and c. First there were studies in which the layer was placed in a nearly vertical
but slightly inhomogeneous magnetic field of varying strength in a direction
along the mercury surface. Under appropriate conditions convective cells were
then observed within a part of the surface, whereas there were no cells within
the rest of the latter. The boundary between convection and no convection
was then found to be situated where the inhomogeneous magnetic field had a
local value being in agreement with the critical field strength for the onset of
convection, as predicted by Chandrasekhar. A second type of experiments was
undertaken with the magnet being turned around, to produce a field which
was parallel to the mercury surface. Then convective cells were observed as in
Fig. 5, being strongly elongated in the magnetic field direction, in agreement
with the theory by Chandrasekhar.

6 The MHD dynamo

A cylindrical column of an electrically conducting fluid which is traversed
by an electric current and immersed in an axial magnetic field can become
subject to a kink instability, by which the column becomes distorted and
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Fig. 5. Cellular convection in a layer of mercury when the magnetic field is parallel
to the free surface. The cells are seen to be elongated in the field direction and
extend across the entire vessel. (From [19].)

bent into a screw-shaped geometry. This instability was at an early stage
proposed by Alfvén [2] to provide a dynamo mechanism for the magnetic field
of stars and planets. This idea was further analyzed by Lundquist [20], who
was at this stage the first to reformulate the hydrodynamic energy principle
for disturbances of an equilibrium state, such as also to apply to MHD.

In the Earth’s electrically conducting core a dynamo process is imagined
to arise from fluid motions driven by temperature gradients. To demonstrate
the dynamo mechanism, a first experimental attempt was made in a vessel
containing 58 l of liquid sodium which was set into motion by a rotating disc
provided with radial strips [21]. An initial poloidal magnetic field, of strength
up to 0.02 T, was generated by a coil under the bottom of the vessel. In the
bottom layers of the sodium radial metal strips had been placed, to inhibit a
toroidal flow. Possibly occurring magnetic disturbances were recorded by an
adjustable magnetic probe inside the vessel. Angular velocities of the disc up to
47s−1 were imposed on the fluid. The measurements indicated the occurrence
of poloidal and toroidal induced magnetic disturbances, but no tendency of
instability or of any self-excited dynamo behavior. Not until 42 years later,
a similar but far more sophisticated dynamo experiment with an associated
theorywas successfully conducted at Salaspils nearRiga inLatvia byA. Gailitis,
O. Lielausis and collaborators [22]. This experiment was performed with 2
tons of liquid sodium. The rotational velocities were large enough to reach
magnetic Reynolds numbers R2 in Eq. (2) of about 10, thus being in the
range of sufficiently strong MHD interaction.
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Summary. The long history of laboratory experiments on homogeneous dynamo
action is delineated. It is worked out what sort of insight can be expected from
experiments, and what not. Special focus is laid on the principle and the main results
of the Riga dynamo experiment which is shown to represent a genuine hydromagnetic
dynamo with a non-trivial saturation mechanism that relies mainly on the fluidity
of the electrically conducting medium.

1 Natural dynamos

Wherever in the cosmos a large body of electrically conducting fluid is found
in vigorous motion, there is also a magnetic field around the corner [1].

Geophysicists may consider it a luck to live on a planet whose liquid iron
core produces a most interesting magnetic field [2]. It shows polarity rever-
sals at irregular intervals with a reversal rate that varies from nearly zero
during the Cretaceous superchron to approximately 5/Myr in the present.
Some observations indicate that reversals might consist of a slow field decay
and a fast field recreation [3]. There is also some evidence for a correlation of
the field strength and the persistence time in one polarity [4], as well as for a
possible bimodal behaviour of the dipole moment [5]. Why this is so, is still in
question, despite the enormous advancements that dynamo simulations have
experienced during the last decade [6].

The magnetic field of the Sun, or more precisely the magnetic field con-
nected with sunspots, was discovered in 1908 by Hale at Mt. Wilsons obser-
vatory [7]. Actually, it was this discovery that prompted Larmor to suggest
self-excitation as the source of magnetic fields of large astronomical bodies [8].
Still today, the 11-year periodicity of sunspots, their migration towards the
equator (the “butterfly diagram”), and the occurrence of grand minima which
are superimposed upon the main periodicity are the subject of intensive inves-
tigations [9].

However, the magnetic field of our Sun is rather moderate compared with
that of other stars. The field of some white dwarfs can easily reach values of

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
37–54. c© 2007 Springer.
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100 T, and even fields of 1011 T have been ascribed to some anomalous x-ray
emitting pulsars [10].

The large-scale fields of spiral galaxies, which are closely correlated with
the optical spiral pattern, have typical values in the order of 10−9 T [11]. But
magnetic fields can spread far beyond the galaxies that created them. Only
recently it was shown that the energy stored in the magnetic field within
the “lobes” of free-standing giant radio galaxies can reach huge values. It has
been estimated that up to 10% of the gravitational infall energy are being
recycled back into the intergalactic medium by the accreting supermassive
black holes [12].

It should be pointed out, however, that magnetic fields are not only passive
by-products of fluid motion in the cosmos. Quite contrary, they seem to play
an active role in cosmic structure formation by virtue of the magnetorotational
instability (MRI) which is responsible for rendering (hydrodynamically stable)
Keplerian flows unstable and ensuring sufficient angular momentum transport
in accretion discs [13].

2 What to expect from experiments, and what not

Not one of the quoted natural systems can be put into a Bonsai form to
be studied in laboratory. Taking the Earth dynamo as a striking example,
it is not possible to actualize all of the dimensionless numbers in an equiv-
alent experimental set-up. The Ekman number – the ratio of viscous forces
to Coriolis forces – of the earth outer core is approximately 10−15. A liquid
sodium experiment of 1 m radius would have to rotate with 108 (!) rotations
per second in order to reach this number.

So what, then, can we learn from dynamo experiments?
First of all, it is certainly legitimate to verify experimentally that homoge-

neous dynamos work at all. Theoretically, kinematic dynamo action has been
proved for a large variety of velocity fields or some related turbulence para-
meter. But still there were open questions, in particular regarding the role of
turbulence. Kinematic dynamos are governed by the induction equation for
the magnetic field B,

∂B
∂t

= ∇× (v × B) +
1
µ0σ

∆B with ∇ · B = 0,

under the assumption of a given velocity field v. The constants µ0 and σ
denote the magnetic permeability of the free space and the conductivity of
the liquid. The evolution of the magnetic field in Eq. (1) is controlled by the
relative importance of diffusion and advection. For zero velocity the magnetic
field will decay within a typical time td = µ0σl

2, with l being a typical length
scale of the system. On the other hand, the advection can lead to an increase
of B within a kinematic time tk = l/v. The ratio of the two timescales is the
famous magnetic Reynolds number, Rm = µ0σlv, that rules the evolution of



Dynamo Experiments 39

the magnetic field. Depending on the flow pattern, typical values of the critical
Rm are in the range of 101–103. For the best liquid metal conductor, sodium,
the product of conductivity and magnetic permeability is approximately
10 m2/s. Thus, to get an Rm of 100, the product of length and velocity
has to reach 10 m2/s. It is this large value, in combination with the technical
and safety problems in handling sodium, that makes hydromagnetic dynamo
experiments so costly.

Assume now that a dynamo works and a magnetic field starts to self-excite.
How can the exponential field growth be stopped, how does the dynamo sat-
urate? To answer this second question, we have to abandon purely kinematic
theory and consider dynamically consistent dynamo models which include
the back-reaction of the magnetic field on the flow field. The details of this
mechanism certainly depend on the concrete form of the flow, in particular
on the degrees of freedom that the moving medium has. Dynamically consis-
tent dynamos have to satisfy, in addition to the induction equation for the
magnetic field B, the Navier–Stokes equation for the velocity v,

∂v
∂t

+ (v · ∇)v = −∇p
ρ

+
1
µ0ρ

(∇× B) × B + ν∆v + fdrive ,

where ρ and ν denote the density and the kinematic viscosity of the fluid, µ0

is the permeability of the vacuum, and fdrive symbolizes a driving force.
Third, besides its influence on the large-scale flow, the magnetic field back-

reaction may also change the turbulence structure of the flow. Sometimes
this effect is considered the most important one that dynamo experiments
may help to understand, as they provide an interesting test-case for MHD
turbulence models. Those models, once validated, could gain reliability when
applied to such hard problems as magnetic field generation in the Earth’s
core, say. But “turbulence model validation” sounds much easier than it is in
reality. Even the simple flow measurement in liquid sodium is a problem in
its own right, let alone the measurements of all sorts of correlation functions
which might be important for the validation of turbulence models.

Intimately connected with the issue of turbulence modification is a fourth
topic related to the destabilizing role magnetic fields can have on flows. Typ-
ically dynamo experiments and experiments on the magnetorotational insta-
bility are of similar size, making it worth to hunt for new instabilities in the
presence of (self-excited or externally applied) magnetic fields.

A fifth issue that could possibly be addressed by dynamo experiments has
to do with the distinction between steady, oscillatory, and reversing dynamos.
We will come back to this point in the conclusions.

It seems worth to mention a sixth issue which we would like to coin inverse
dynamo theory. In the sense of determining the tangential velocity at the core-
mantle-boundary (using the frozen flux approximation) inverse dynamo theory
has a long tradition in geomagnetism going back to the early work of Roberts
and Scott [14]. In the framework of dynamo experiments, however, there is
a wider variety of problems in connection with optimizing flows to give a
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minimal critical Rm, to tailor dynamos in order to show particular spectral
features, or to infer flow features from measured magnetic field information.

3 Laboratory dynamos: an overview

In this section we compile some material about past and present dynamo-
related experiments. Due to the space limitations, this overview is bound to
be sketchy. A more comprehensive overview may be found in [15].

3.1 Lehnert’s Experiment

A liquid sodium experiment was reported by Lehnert as early as 1958 [16].
His set-up can be considered as the prototype of a number of dynamo-related
experiments which will be considered later. The flow is produced by motor-
driven disk, partly attached with radial strips, rotating in a 0.4 m diameter
vessel containing 58 l of liquid sodium. Lehnert observed the conversion of
an applied poloidal magnetic field component into a toroidal field (nowa-
days known as the Ω-effect), which is an important ingredient of the dynamo
process, but also the (quadratic in Rm) induction of an additional poloidal
field.

3.2 The first homogeneous dynamos: the experiments of Lowes
and Wilkinson

At the University of Newcastle upon Tyne, Lowes, and Wilkinson had carried
out a long-term series of homogeneous dynamo experiments [17, 18], a sum-
mary of which can be found in [19]. These experiments were inspired by the
pioneering work of Herzenberg [20], who had given, under mild assumptions,
the first existence proof for a homogeneous dynamo consisting of two rapidly
rotating, and well-separated, small spheres embedded in a large sphere of the
same conductivity (cf. Fig. 1a). His steady solution, which results for an angle

ω1

ω1

ω4

ω3

ω2ω1 ω2 ω2

(c)(b)(a)

Fig. 1. The principle of the Herzenberg dynamo (a) and two of the experiments of
Lowes and Wilkinson (b, c)
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ϕ between the spin axes satisfying 90◦ < ϕ < 180◦, was later accomplished
by on oscillatory solution for 0◦ < ϕ < 90◦ by Brandenburg et al. [21].

Interestingly, Herzenberg-type dynamos possess no helicity h (h = v·∇×v)
at all. They work as dynamos because each rotor winds up a local poloidal
field into a toroidal field that diffuses away and serves, in turn, as a local
poloidal field for the other rotor.

In the first homogeneous dynamo Herzenberg’s rotating spheres were
replaced by two cylinders (each of 7 cm diameter) spinning around non-parallel
axes (with 8 cm distance) in a “house-shaped” surrounding conductor (see Fig.
1b). Mercury was used as a conducting lubricator between the cylinders and
the bulk [17]. After having inhibited an unfavorable current system by non-
conducting layers at the top of the rotating cylinders, a steady magnetic field
self-excited at rotation rates of around 1,800 rpm.

The sequence of five experiments carried out by Lowes and Wilkinson is
very instructive, not only for their step-by-step improvements, but also for
the continuing comparison of the resulting field features with those of the
geomagnetic field [19]. Starting with a simple geometry of the rotating cylin-
ders, which produced steady and oscillating magnetic fields, the design was
made more sophisticated so that the fifth dynamo (Fig. 1c) finally permitted
the observation of field reversals. In that way it was shown that a complex field
structure and behaviour can be produced with comparatively simple patterns
of motion.

It should be said, however, that a key point for the success of these exper-
iments was the use of ferromagnetic materials (perminvar, mild steel) making
the magnetic Reynolds number large, simply by a high relative magnetic per-
meability µr (between 150 and 250). One attempt (the third dynamo), to get
self-excitation with rotating non-magnetic copper cylinders failed [19]. And,
although being homogeneous, these dynamos were extremely stiff in that
there was no freedom of the moving conductor to be deformed by the Lorentz
forces. Later we will compare this stiffness with the more flexible saturation
behaviour in the Riga and Karlsruhe experiments.

3.3 The “α-box”

Also in the 1960s, the concepts of mean-field dynamos and the α-effect
were developed [22, 23]. Roughly speaking, the α effect means that a non-
mirror-symmetric flow can induce an electromotive force that is parallel to an
assumed mean magnetic field.

In order to validate this principle in experiment, Steenbeck et al. in 1967
constructed the “α-box,” a system of two orthogonally interlaced channels
with sodium flowing through them [24]. This experiment confirmed the α-
effect to be proportional to Bv2, which means that is independent of the flow
direction whereas it reverses its sign with reversed magnetic field.
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3.4 Precession

Another tradition line of dynamo-related experiments was opened up by Gans
in 1970 [25]. Its background is that precession has long been discussed as a
possible energy source for the geodynamo [26, 27]. Gans used a sodium filled
precessing cylinder with a diameter of 0.25 m and approximately the same
height. The rotation rate of the cylinder reached 3,600 rpm, and the precession
rate 50 rpm. Amplifications of an applied magnetic field up to a factor of 3
were observed.

Recently, this concept has been taken up by Léorat [28] who studied a
precessing flow in a cylindrical container filled with 27 l of water. Special
focus was laid on influence of the precession parameter (ratio of precession
to rotation rate) on the transition from laminar to turbulent flows, and on
the possible dynamo capabilities of such a device. An envisioned precession
experiment with liquid sodium would have the attractive features of being
closed (no shafts for propellers, etc.) and having no internal constraints.

3.5 Unintended dynamos?

With the advent of fast breeder reactors it became important to know if
dynamo processes could occur in the huge liquid sodium pumps where the
magnetic Reynolds numbers are indeed large. Early papers on that topic indi-
cated that this could really happen [29–31]. Recent experimental results show
that no dynamo action has occurred in the Superphenix [32].

3.6 The first hydromagnetic dynamos in Riga and Karlsruhe

It was an interesting historical coincidence that, after decades of theoretical
and numerical studies and years of preparation, the hydromagnetic dynamo
effect was experimentally demonstrated at two liquid sodium facilities in Riga
and Karlsruhe almost simultaneously at the end of 1999 [33, 34].

While the Riga experiment, which will be portrayed in more detail below,
can be seen as the elementary cell of dynamos, namely a single helical flow,
the Karlsruhe dynamo can be considered as a demonstration of mean-field
dynamo theory.

It is not widely known that the underlying geophysical motivation, the
basic idea, the mathematics and even a final formula for the critical flow-
rates for a sort of Karlsruhe experiment can already be found in a paper of
1967 [35]. The idea was to substitute real helical (“gyrotropic”) turbulence by
“pseudo-turbulence”, actualized by a large (but finite) number of parallel chan-
nels with a helical flow inside. Later, in 1975 [36], Busse considered a similar
kind of dynamo which prompted him to initiate the Karlsruhe dynamo exper-
iment.
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In 1972, Roberts had proved dynamo action for a velocity pattern periodic
in x and y that comprises both a rotational flow and an axial flow [37]. The
α-part of the electromotive force for this flow type can be written in the form
E = −α⊥(B̄− (ez · B̄)ez), which represents an extremely anisotropic α-effect
that produces only electromotive forces in the x- and y-directions but not in
the z-direction [38].

In the specific realization of the Karlsruhe experiment the Roberts flow in
each cell is replaced by a flow through two concentric channels. In the central
channel the flow is straight, in the outer channel it is forced by a “spiral
staircase” on a helical path. This design principle of the Karlsruhe dynamo
being given, a fine-tuning of the geometric relations was carried out with the
aim to achieve a maximum α effect for a given power of the pumps. Such an
optimization led to a number of 52 spin generators, a radius of 0.85 m and a
height of 0.7 m for the dynamo module.

The scheme in Fig. 2a depicts the central dynamo module and one of the
52 spin generator in detail. Figure 2b shows the stability diagram and the
pressure increase beyond the critical flow rate. Below we will compare this
rather steep pressure and power increase with the corresponding behaviour
for the Lowes and Wilkinson experiment and for the Riga experiment. During
its comparably short lifetime, the Karlsruhe dynamo experiment has brought
about many results on its imperfect bifurcation behaviour and on MHD tur-
bulence which are documented in [39–43].

Fig. 2. (a) Sketch of the central module of the Karlsruhe dynamo and details of
one of the 52 spin generators. (b) Phase diagram of the experimentally determined
dynamo action as a function of the volumetric flow rates in the central channel
(VC) and in the helical channel (VH), and its comparison with numerical results by
Tilgner for different magnetic diffusivities l. The inset shows the pressure increase
for increasing VH at VC = 105 m3/s. (Figures are taken from [41]).
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3.7 Maryland

D. Lathrop and his collaborators at the University of Maryland have investi-
gated a number of liquid sodium flows with a view on their dynamo capabil-
ities [44, 45]. The first experiment (Dynamo I), a fast rotating (up to 25,000
rpm) 0.2 m diameter titanium torus, which was heated from the outer side and
cooled at the axis, was motivated by common ideas about planetary convec-
tion. In a second experiment (Dynamo II), 15 l of liquid sodium were stirred
by two counterrotating propellers with up to 7,200 rpm within a 0.3 m diam-
eter steel sphere. A third experiment (Dynamo III) was basically a spherical
Couette flow of 0.6 m outer diameter.

Up to the present, in neither of these experiments was there any sign of
a dynamo effect. However, in a modified Dynamo II configuration (with the
propeller replaced by an inner sphere of 5 cm diameter), the Maryland group
might have achieved a very important result with the detection of an insta-
bility which they identify, for some good reasons, with the magnetorotational
instability [46]. Presently, a 3 m diameter spherical Couette experiment is set
up at Maryland, which will reach magnetic Reynolds numbers of 700!

3.8 Cadarache

Since a couple of years, the “von Karman Sodium” (VKS) dynamo experi-
ment has been pursued at the CEA research center in Cadarache (France).
The sodium flow of the s2+t2 type (comprising two poloidal vortices directed
inward in the equatorial plane, and two toroidal vortices) is produced by two
disks in a cylinder. The VKS 1 experiment was carried out with 50 l sodium
in a cylinder with diameter and height of 0.4 m, using two 75 kW motors at
rotation rates up to 1,500 rpm.

The results of the VKS 1 experiments, including measured inductions and
turbulence data, have been published in [47–49]. No self-excitation has been
achieved, although remarkable deformations of applied magnetic fields have
been measured.

Presently, a second version of this experiment, VKS 2, is being tested. The
volume is extended to 100 l, the available motor power can reach 300 kW, and
great effort was spent in order to optimize the shape of the impellers. Even
with these preparations the experiment is subject to imponderabilities, one
of them being evidently the role of the rather high turbulence level on the
dynamo threshold, the other being hitherto unsolved questions concerning
the role of the boundary conditions in axial direction.

3.9 Madison

At the University of Wisconsin, Madison, C. Forest and his colleagues have
set up a liquid sodium experiment within a 1 m spherical shell [50, 51]. Two
propellers drive a flow of the same s2+t2 type as in the VKS experiment.
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The Madison dynamo experiment (MDX) is instructive on how inverse dynamo
theory can be utilized in dynamo experiments. First, a lot of effort has been
spent in the numerical optimization of the precise geometry of the flow. Sec-
ond, much attention has been paid to the inference of the velocity field from
externally measured magnetic field signals. In a recent experiment, the latter
technique has brought about a surprising coincidence of the measured induced
magnetic fields with the predicted ones for a given propeller speed. This gives
hope for a success of the real dynamo experiments, albeit it is not a guarantee
since for highly fluctuating flows the average of the product of two induction
effects is not equal to the product of two averages of the individual induction
effects.

3.10 Grenoble

A group of geophysicists in Grenoble has build a medium-size rotating sphere
experiment which they coined “Derviche Tourneur Sodium (DTS)” [52]. The
Grenoble ansatz relies on the concept of magnetostrophic equilibrium between
the Coriolis forces and the Lorentz forces. Similar to Dynamo III and the
3 m sphere in Maryland, DTS is a spherical Couette experiment with 0.4 m
outer diameter and 0.15 m inner diameter. A peculiarity of this experiment
is that the inner sphere is made of a permanent magnet (having 0.15 T at
its poles). This configuration is intended to reveal several aspects of rotating
fluids under the influence of a magnetic field, including torsional oscillations,
the features and instabilities of a super-rotating layer [53, 54], and several
turbulence characteristics in the presence of Coriolis and Lorentz forces. First
experiments have been carried out in spring 2005. Of course, the experiment
is not expected to reach the critical magnetic Reynolds number for such types
of flows, which has been estimated (in the non-magnetized case) to be in the
order of a few thousand [55].

3.11 Perm

An interesting dynamo concept which avoids the usual large size and driving
power of other facilities has been pursued in the group of P. Frick at the Insti-
tute of Continuous Media Mechanics in Perm, Russia [56]. The experiment is
based on the fact that a non-stationary helical flow of the Ponomarenko type
can be produced within a torus when its rotation is abruptly braked and a
fixed diverter forces the inertially continuing flow on a helical path. In the
final sodium experiment the torus will have a major radius of 0.4 m and a
minor radius of 0.12 m. Its rotation with 3,000 rpm (which means velocities
up to 140 m/s) will be braked by hydraulic brakes within 0.1 s.

Both numerical [57] and experimental studies at a gallium prototype exper-
iment [58] indicate that self-excitation could be possible in such a config-
uration.
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3.12 New Mexico

The α−Ω dynamo experiment at the New Mexico Institute of Mining and
Technology has as its physical background the magnetic field generation in
active galactic nuclei and in stars [59, 60]. In its present configuration the
experiment consists of two coaxial cylinders with radii of 0.15 m and 0.3 m,
respectively, which are rotating with a frequency ratio of 4:1. This combination
makes the experiment marginally unstable to Taylor vortices. In the present
form the experiment is intended to investigate MRI; for studying dynamos a
modification in the form of additional injected α-plumes has been envisioned.

4 Some lessons from the Riga experiment

Having sketched the long history of dynamo related experiments, we focus
now in more detail on the Riga experiment. Evidently, this has to do with our
personal involvement, but besides this we feel that this experiment represents,
in particular, a genuine hydromagnetic dynamo, which makes the analysis of
its saturation mechanism also interesting for future experiments.

4.1 Basics, theory, and numerics

The principle idea of the Riga dynamo experiment (see Fig. 3) goes back
to Ponomarenko [61], who had proved that a helically moving, electrically
conducting cylinder embedded in an infinite stationary conductor can show
dynamo action. This simple, paradigmatic configuration was analysed in more
detail by Gailitis and Freibergs [62] who found a remarkably low critical mag-
netic Reynolds number of 17.7 for the convective instability. By adding a
back-flow, this convective instability can be rendered into an absolute insta-
bility [63]. All this early numerical work, including the optimization [64] of
the main geometric relations which led to the design of the Riga dynamo (see
Fig. 3b), was done with a 1D eigenvalue solver.

For refined kinematic simulations a 2D finite difference code (in radial and
axial direction) was written whose main advantage is the possibility to treat
velocity structures varying in axial direction, which is indeed of relevance for
the Riga dynamo [65]. The magnetic field structure as it comes out of this
code is illustrated in Fig. 3c.

As for the saturation regime, we tried to capture the most essential
back-reaction effects within a simple model [65, 66]. Roughly speaking, this
model relies on the fact that, in contrast to the axial velocity component,
the rotational velocity component is only maintained by inertia. Therefore,
the Lorentz force can brake this component without significantly increas-
ing the pressure and hence the motor power. Under some assumptions, this
amounts to a simple 1D differential equation for the downstream accumulating
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Fig. 3. The Riga dynamo experiment and its eigenfield. (a) Photograph of the Riga
dynamo facility as of February 2005. M: Two motors with 100 kW each. (b) Details of
the central dynamo module. 1: Propeller; 2: central helical flow region; 3: back-flow
region; 4: outer sodium region; 5: thermal insulation. At one third and two thirds
of the dynamo length there are four ports for various magnetic field, pressure and
velocity probes. (c) Simulated magnetic eigenfield in the kinematic regime

brake of the azimuthal velocity, which can be applied both to the flow in the
inner and in the back-flow cylinder.

Only recently, a more sophisticated back-reaction model has been devel-
oped in collaboration with the Delft Technical University, which basically
confirmed, and slightly improved, the results of the simple model.

4.2 The experiments up to present

It should not be forgotten that a predecessor of the present Riga experiment,
in which an external pump was used instead of a propeller, was carried out
in St. Petersburg already in 1986 [67]. It showed a considerable amplification
of an externally applied magnetic field, although self-excitation could not be
achieved.

At the present facility, seven experimental campaigns have been carried out
between November 1999 and March 2005. In the first campaign in November
1999, a self-exciting field was documented for the first time in a liquid metal
dynamo experiment, although the saturated regime could not be reached at
that time [33]. This had to be postponed until the July 2000 experiments [68].
In June 2002, the radial dependence of the magnetic field was determined by
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the use of Hall sensors and induction coils situated on “lances” going through-
out the whole dynamo module. In February and June 2003, first attempts were
made to measure the Lorentz force induced motion in the outermost cylinder.
A novelty of the May 2004 campaign was the measurements of pressure in the
inner channel by a piezoelectric sensor that was flash mounted at the inner-
most wall. In February/March 2005, a newly developed permanent magnet
probe was inserted into the innermost cylinder in order to get information
about the velocity there, and two traversing rails with induction coils were
installed to get continuous field information along the z-axis and across the
whole diameter of the dynamo. More details about these results can be found
in [15, 65, 66, 69–71], and will be published elsewhere.

4.3 Main results and their interpretation

Figure 4 shows the axial magnetic field measured by induction coils inside the
upper and the lower port close to the innermost wall during the last run on
1 March 2005. This figure might serve as an example of how the magnetic
field can be switched on and off at will, and on how its amplitude depends
on the propeller rotation rate. Comparing Figs. 4a and b, a peculiarity of this
dependence becomes visible. Whereas at the upper sensor (Fig. 4a) the field
amplitude increases from 27 mT for 2,000 rpm to 120 mT for 2,500 rpm, at
the lower sensor the corresponding increase is only from 24 to 65 mT. This is a
clear indication for a drastic change of the field dependence in axial direction
with increasing overcriticality, which in turn mirrors a significant change of
the axial dependence of the flow.

This effect can be explained by the selective braking of the azimuthal
velocity component described above, and it is also consistent with the growth
rate and frequency behaviour that is documented in Fig. 5. In this figure, the
numerical curves in the kinematic regime result from the 2D solver (slightly

Fig. 4. Axial magnetic field and propeller rotation rate during the run 6 of the
February/March 2005 campaign measured by induction coils within the upper
(a) and the lower (b) port, close to the innermost wall
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Fig. 5. Measured and computed growth rates (a) and frequencies (b) in the kine-
matic and saturated regime. For the saturation regime, a simple 1D model of braking
and a 3D hydrodynamic model from TU Delft has been used

Fig. 6. (a) A rough picture of the Joule power dependence on Rm/Rm,crit for the
Lowes and Wilkinson experiments, the Karlsruhe experiment and the Riga experi-
ment. (b) Power spectral density of the radial magnetic field and the pressure

corrected by the effect of the different wall conductivity which was estimated
separately by a 1D solver). In the saturated regime, we show the results of our
simple back-reaction model, together with the results from a hybrid method
including a 3D hydrodynamic solver from TU Delft. Evidently, the simple
back-reaction model covers the most essential saturation effects.

The quoted deformation of the flow field has consequences for the depen-
dence of the Joule power on the overcriticality. In Fig. 6a we try to compare the
corresponding curves for the Lowes and Wilkinson experiment, the Karlsruhe
experiment and the Riga experiment. Note that all these three curves are not
very accurate: for the Lowes and Wilkinson case we refer to their paper [19], for
the Karlsruhe results we simply use the pressure increase shown in the inset
of Fig. 2b, and for Riga we take our own motor power measurements [65].
In stark contrast to the sharp rise for the Lowes and Wilkinson experiment,
but also strongly differing from the steep increase in the Karlsruhe experiment,
the Joule power dependence on the overcriticality in the Riga experiment is
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very flat. Quite different to the back-reaction of a rigid body, the sodium flow
deforms under the influence of the Lorentz forces, and the resulting deterio-
ration of the dynamo condition makes the growth rate drop down to zero.

In Fig. 6b we turn to some turbulent properties of the Riga experiment
by showing two sorts of spectra, one for the radial magnetic field measured
in the lower port in the central cylinder, 2 cm from the wall. The other spec-
trum results from the data of the piezoelectric pressure sensor, which is also
mounted on the lower level. The main feature of the magnetic spectra is, of
course, the peak at the eigenfrequency f0. However, there is also a peak at
the triple frequency 3f0, and even a small one at 5f0. Neither of these peaks
is seen in the pressure spectrum. Instead, we detect here a dominant peak
at 2f0 and some smaller peak at 4f0. This cascade can be easily explained
by the back-reaction of different azimuthal magnetic field modes on the flow.
Concerning the inertial range of the spectrum, we have plotted the f−11/3

law for the magnetic field and a f−7/3 law for the pressure for comparison,
without claiming a perfect agreement with the measured data. Between the
main field frequency f0 and the propeller frequency fprop there seems to be
a region with f−1, which has also been observed experimentally in [47] and
numerically in [72].

5 Are we at the end, or at the beginning of dynamo
experiments?

The homogeneous dynamo effect has been validated, up to present, in three
experiments. The experiments of Lowes and Wilkinson represented an inge-
nious demonstration of Herzenberg’s theory. The Riga and Karlsruhe experi-
ments, which are based on complementary dynamo concepts, have introduced
the aspect of fluidity. The Riga experiment has been shown to possess a non-
trivial saturation mechanism, which relies on the deformability of the fluid
flow.

For the still functioning Riga experiment, as well as for all dynamo exper-
iments to come, a central topic will be the development of measuring tech-
niques for all sorts of velocity, vorticity, and electromagnetic field quantities
and their correlations. Hence, with the view on the validation of MHD turbu-
lence models, we might well be at the very beginning of experimental dynamo
work.

The study of rotating systems under the influence of magnetic fields
has just begun. Possibly, large-scale dynamo activities may be superseded
by somewhat smaller experiments using externally applied rather than self-
excited magnetic fields. Those experiments are particularly important for the
investigation of the magnetostrophic regime and the magnetorotational insta-
bility [73].

The last point: It seems that the geomagnetically motivated drive of Lowes
and Wilkinson to construct a dynamo that shows irregular reversals has been
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lost somehow in the recent experimental work, which is more than under-
standable with view on the grave technical problems to actualize a working
hydromagnetic dynamo at all. But postponed is not abandoned. In an attempt
to understand the essence of reversal we have studied a very simple model, a
spherically symmetric mean-field α2 dynamo with α-quenching, influenced by
noise [74]. It turned out that such a simple dynamo shows already the most
prominent features of Earth’s magnetic field reversals, namely, asymmetry,
correlation between field strength and chron duration, and bimodal field dis-
tribution. Interestingly, all this can be attributed to the special magnetic field
dynamics in the vicinity of the “exceptional points” of the spectrum of the
non-self-adjoint dynamo operator. Hence this model could give us a general
recipe on how the kinematic growth rate curve must be shaped for reversals to
occur in the saturated regime. First numerical work to apply this concept to a
modified Karlsruhe type dynamo and to a s2+t2 dynamo showed encouraging
results [75].
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1 Introduction

Mean-field dynamo theory has proved to be a useful tool for understanding
the generation of magnetic fields in the Earth and the Sun, in stellar bodies,
and even in galaxies. It provides a basis for the elaboration of detailed dynamo
models of these objects. Fundamentals of this theory were developed in the
1960s of the last century in the Institute for Magnetohydrodynamics in Jena
in Germany under the directorship of Max Steenbeck. The 21st of March
2004, a date close to that of the Coventry meeting, would have been his 100th
birthday. Let me say first some words about his life and his contributions to
various fields in physics. This will lead naturally to the early ideas of mean-
field dynamo theory, to its remarkable findings and to some of the problems
of its further development.

2 Max Steenbeck (1904–1981)

Born on 21st of March 1904 in Kiel in North Germany, on the Baltic coast,
Max Steenbeck spent his childhood and school days there. Later he went to
Kiel University, starting with chemistry but soon switching to physics. Among
his teachers were Christian Gerthsen, Hans Geiger, and Walther Kossel. Under
the supervision of the latter Max Steenbeck provided a thesis on energy mea-
surements of x–rays, and on this basis he was granted a Ph.D. degree in 1928.

Already in 1927 Max Steenbeck accepted a position in the Siemens-
Schuckert Company in Berlin, where he worked until the end of the Second
World War in 1945. For many years he was a member of the Scientific Depart-
ment and later became the director of the Rectifier Plant. His main activities
lay in the physics of gas discharges and plasmas. Many of the tasks he dealt
with were connected with technical applications, mainly in heavy current engi-
neering. The scientific work of that time is documented in many publications.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
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The most prominent ones are the two-volume monograph “Elektrische Gasent-
ladungen, ihre Physik und Technik” by Alfred von Engel and Max Steenbeeck
(1932/1934) [1] and the famous 120-page-long article “Der Plasmazustand der
Gase” by Robert Rompe and Max Steenbeck (1939) [2].

In this period Max Steenbeck also designed and constructed a device for
the acceleration of electrons, the “betatron”, which worked successfully for the
first time in 1935. Devices of that kind were later used for several purposes
in medicine. An important achievement in this context was his discovery of a
configuration of the magnetic field in the betatron which ensures stable paths
of the electrons.

One of the remarkable activities of Max Steenbeck during the Second
World War was the search and deactivation of British underwater mines,
which proved to be an enormous challenge for a physicist.

At the end of the war, in May 1945, officers of the Soviet Army found Max
Steenbeck in Berlin. Assuming that he, the director of an important plant, had
some higher position in the Nazi hierarchy, and not believing that he was not
even a party member, they took him to a detention camp in Poland. He lived
there a few months in terrible conditions and was soon close to starvation.
It may sound strange but it was probably the atomic bombs on Hiroshima
and Nagasaki which saved his life. The Soviet government believed that its
atomic program should be advanced by all possible means, including the help
of scientists of the defeated Germany. So he was brought to a place near
Sukhumi at the Black Sea, where other German scientists were also interned,
among them the Nobel Prize winner Gustav Hertz. Living in a paradise place
but with very restricted personal freedom, later joined by their families, they
enjoyed reasonable working conditions for Uranium isotope separation and
related topics. Max Steenbeck developed here a new type of gas centrifuge for
isotope separation. Later he worked also in other parts of the Soviet Union on
other research fields, e.g., on semiconductor problems. In this way he came into
contact with several outstanding Soviet physicists and earned their respect.
Later he was elected a Foreign Member of the Soviet Academy of Sciences.

After 11 hard years, in 1956, Max Steenbeck and also the other members
of the German group were allowed to return to Germany. He decided to go
to Jena in the German Democratic Republic (G.D.R.). Apart from holding
a chair in plasma physics at Jena University, he was Director of the Insti-
tute for Magnetic Materials outside the University from 1956 to 1959. In 1959
he handed over the directorship to younger co-workers and established the
Institute for Magnetohydrodynamics, which he directed until his retirement
in 1969. One of the main ideas he had in mind for this institute was to con-
tribute to the technical realization of energy-producing nuclear-fusion devices,
which at that time seemed to be feasible in the near future. In fact the institute
was a place for a variety of research work in plasma physics and magnetohy-
drodynamics, including that on magnetic field generation by the motion of
electrically conducting fluids, which is discussed in more detail below.
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Fig. 1. Max Steenbeck

In addition to these positions Max Steenbeck was the head of the Scientific–
Technical Office for the Construction of Nuclear Power Stations between
1957 and 1962, which accompanied the development of the first experimental
nuclear reactor in the G.D.R. He shared his time every week between Jena and
this office, situated in Berlin, working very hard at both places. From 1962
to 1966 Max Steenbeck was Vice-President of the Academy of Sciences of the
G.D.R., and from 1962 until his retirement in 1969, first Vice-President and
later President of the Research Council of the G.D.R. In this way he continued
to share his life between Jena and Berlin. Despite all his official and repre-
sentation duties Max Steenbeck always found time and energy for his own
detailed work on scientific topics, which he then introduced in discussions
with his younger co-workers.

After his retirement Max Steenbeck followed the progress in many fields
of science with great interest. His achievements were honored in several ways,
including the Lomonosov Gold Medal in 1973 and the Krupp Award in 1977.

The sad experiences of his life also motivated Max Steenbeck to dedicate
himself to political issues. After his retirement he continued or even intensified
his activities on a political level. For example, since 1970, as the President of a
corresponding committee in the G.D.R., he was involved in the International
Conferences for Security and Cooperation in Europe.
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In addition to a large number of papers on his research work in physics,
Max Steenbeck wrote many articles and essays on general aspects of science
and scientists, on the importance of basic research, on the responsibility of
the scientist in human society etc. In his memoirs “Impulse und Wirkungen
- Schritte auf meinem Lebensweg” (1977) [3] he recounts the very interesting
events of his turbulent life in Germany and in the Soviet Union and gives
some insights into political and social developments during his life.

Max Steenbeck died on 15th of December 1981 in Berlin.

3 Early ideas on mean-field electrodynamics
and dynamos

3.1 The Jena findings

As already mentioned, one of the original aims of the Institute of Magneto-
hydrodynamics in Jena was to contribute to the realization of nuclear fusion
reactors. Initially it was not intended to do research on astrophysical or geo-
physical problems. It was some kind of hobby of Max Steenbeck to think also
about the question how, for example, the Sun produces and maintains its
magnetic fields. He liked to discuss such questions from time to time with his
younger co-workers, in particular with Fritz Krause (born 1927, mathemati-
cian) and the author (born 1935, physicist), who both had also a number of
other duties in the institute. During the first years of the 1960s these discus-
sions and the investigations stimulated by them were carried out in isolation.
There was no close contact, for example, with astrophysicists who knew E. N.
Parker’s early works on solar magnetic fields (1955/1957) [4, 5], and no easy
access to the relevant literature.

Let me sketch some of the ideas which we discussed in relation to the Sun.
The laws of the occurrence of sunspots, which are magnetic phenomena, and of
their distribution with respect to heliographic latitude and time, suggested a
general magnetic field, which is axisymmetric, consists of a strong toroidal and
a weak poloidal part, and varies periodically in time. This general field has to
be understood as a mean field, that is, a smoothed version of the real field or,
in other words, its large-scale part. It was clear how the differential rotation of
the convection zone produces a toroidal magnetic field from a given poloidal
one. A dynamo seemed to be possible with a mechanism that reproduces a
poloidal magnetic field from a toriodal one. Many ideas on mechanisms of
this kind were discussed and investigated. Some of them were reported in a
lecture by Max Steenbeck (1963) [6]. For example, a proper anisotropy of the
electric conductivity relevant to mean fields could create, in addition to the
electric currents which correspond to a toroidal field, others corresponding to a
poloidal field. This anisotropy could be a consequence of randomly distributed
conductivity inhomogeneities of the solar plasma if it is subject to the shear
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connected with the differential rotation. In another example, a magnetization
of the conducting medium was defined by interpreting a part of the electric
currents on small scales, resulting from small-scale motions, as magnetization
currents. The mentioned shear of the plasma may then lead to an anisotropy
of the magnetic permeability which has to be ascribed to mean fields. This
anisotropy may also cause a poloidal field in addition to the toroidal one.

These ideas, the essence of which consists in assuming modified material
properties of the solar plasma when considering mean fields, did however not
lead to realistic models of the solar dynamo. In 1965 a new finding emerged:
if on average the small-scale, convective or turbulent motions lack reflectional
symmetry, that is, show helical features, then Ohm’s law for the mean fields
contains an electromotive force with a component parallel or antiparallel to
the mean magnetic field, which has no counterpart in the original version
of Ohm’s law. The occurrence of this kind of electromotive force has been
named the “α-effect.” The lack of reflectional symmetry, which is crucial for
the α-effect, occurs naturally with motions on rotating bodies, that is, under
the influence of the Coriolis force. The α-effect leads in particular to the
generation of a poloidal magnetic field from a toroidal one and in this way
resolves the main difficulty for the construction of a solar dynamo model. It
is, moreover, crucial for all dynamo theory and may lead to dynamo action
even in the absence of differential rotation. This finding was reported in a
paper by Steenbeck et al. (1966) [7]. More detailed results are given in the
Ph.D. thesis of the author [8] (see also [9, 10]) and in the Habilitationsschrift
of Krause (1968) [11].

The α-effect, which was found without knowing Parker’s earlier idea
of “cyclonic convection” (1955/1957) [4, 5], is nevertheless closely connected
with it. The theory of the α-effect has to be considered as a mathematically
more rigorous formulation of this idea. Considerable progress in modeling the
geodynamo was achieved by S. I. Braginsky with his theory of the “nearly
symmetric dynamo” (1964) [12, 13]. The Γ term in his equations corresponds
in a sense to the α-effect.

After establishing the fundamentals of mean-field electrodynamics, more or
less detailed mean-field dynamo models for the Sun and also for the Earth and
the planets were developed and investigated numerically. The first extended
presentations of results were given in two papers by Steenbeck and Krause
(1969) [14, 15].

The Jena phase of the elaboration of the mean-field electrodynamics and
dynamo theory, which was characterized by a continuous participation of Max
Steenbeck, ended with his retirement in 1969. After that Fritz Krause and the
author moved first to the Geomagnetic Institute in Potsdam and then to the
Central Institute for Astrophysics at the same place. The first comprehensive
representation of mean-field electrodynamics and dynamo theory developed
so far is given in an extended article by Krause and Rädler (1971) [16].

Almost all papers on the Jena findings were written in German. This
reflects the spirit of Max Steenbeck, who started his scientific carrier at a time
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when German was still an important language in physics and spent a large part
of his life in Russian-speaking surroundings. Of course, our colleagues outside
the German-language area only slowly became aware of our results. Fritz
Krause and the author are very grateful to Keith Moffatt, who pointed out
our results extensively in a paper (1970) [17], and to Paul Roberts and Michael
Stix, who translated a large number of papers into English and compiled in
1971 a volume with these translations [18].

3.2 Experimental verifications and the danger of dynamo action
in nuclear reactors

Max Steenbeck always strove for experimental verifications of theoretical
findings and thought about their practical value. A short time after discov-
ering the α-effect, already in 1967, on his initiative an experiment was car-
ried out in the Institute of Physics in Riga, Latvia, under the directorship of
I.M. Kirko. In a box with a system of channels, the “α-box,” a liquid-sodium
flow possessing helical features was organized. In the presence of an imposed
magnetic field an electromotive force corresponding to the α-effect was indeed
measured [19, 20].

There were numerous discussions between Jena and Riga colleagues on the
realization of a dynamo in the laboratory, which reflects some features of the
geodynamo. Already in 1967 Agris Gailitis in Riga theoretically investigated a
model in which an α-effect results from a 2D flow pattern [21]. More precisely
he considered a pattern in which, when referred to a Cartesian coordinate sys-
tem, all three velocity components are in general unequal to zero but depend
only on two coordinates. He found that, if a pattern of that kind is realized
inside a spherical volume of a conducting fluid, it may indeed act as a dynamo.
In this way he anticipated in some sense the dynamo with a spatially periodic
flow pattern theoretically investigated by G.O. Roberts (1970) [22, 23], and
also the proposal of a laboratory dynamo made by F.H. Busse (1975) [24],
which has been realized later in the Karlsruhe experiment (see below).

The investigation of the first dynamo models of cosmic objects has brought
some understanding of the self-excitation conditions of magnetic fields. In 1971
Max Steenbeck came up with the idea that self-excitation of magnetic fields
cannot be excluded in the huge liquid-sodium loops of fast-breeder reactors.
In these devices rather high magnetic Reynolds numbers are possible, and due
to the construction of the pumps the flow patterns may show helical features.
As a Foreign Member of the Soviet Academy of Sciences he explained this
in a note to its President and pointed out that this implies a big danger for
the reactor security. Stimulated by this note in 1974 a meeting took place
in the reactor town of Obninsk near Moscow with Soviet reactor specialists,
colleagues from the Riga magnetohydrodynamic community, Max Steenbeck
and the author. Since that time attention was paid to the avoidance of self-
excitation of magnetic fields in the liquid-metal circuits of nuclear reactors.
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Careful magnetic measurements were carried out, for example in 1981, when
the large Soviet BN600 reactor was put into operation [25,26]. The danger of
self-excitation of magnetic fields in reactors has been independently recognized
in Great Britain, too, as documented in papers by Bevir (1973) [27] and
Pierson (1975) [28]. A series of investigations in that sense was carried out
later for the French Superphenix reactor [29–31].

In 1975 Max Steenbeck proposed in a letter to the President of the Acad-
emy of Science of the G.D.R. and to several Soviet scientists in high positions
to study dynamo action in a large liquid-sodium experiment. He argued that it
could deliver not only valuable contributions to astrophysics and geophysics,
but it would be at the same time of great importance for the reactor technol-
ogy. It is interesting that he considered it necessary to have an active volume
of about 10 m3 liquid sodium and volumetric flow rates not less than 10 m3/s.

Only 18 years after his death, at the end of 1999, the first dynamo exper-
iments have run successfully: the Riga experiment realizing a Ponomarenko-
type dynamo [32,33] and the Karlsruhe experiment already mentioned above
[34,35]. For sure, Max Steenbeck would have been highly delighted with these
experiments. Incidentally, compared to the estimates he mentioned, both the
active volume of sodium and the volumetric flow rates in the Karlsruhe exper-
iment were smaller by a factor of about 3.

At the moment laboratory experiments with dynamos are under prepa-
ration at several places. A survey is given in a Special Issue of the journal
“Magnetohydrodynamics” in 2002 (vol. 38, 1–2).

3.3 The solar dynamo, the geodynamo, etc.

As mentioned above, the first results for more or less detailed mean-field
dynamo models for the Sun and also for the Earth and the planets were given
in two papers by Steenbeck and Krause (1969) [14, 15]. These papers were
the starting point for a large number of studies of that kind performed by a
growing international community of colleagues. Further early results have been
delivered by Deinzer et al.(1971) [36] and by Roberts and Stix (1972/1973)
[37–39]. At the beginning only axisymmetric mean fields were considered.
A complete analysis of mean-field dynamo models of course requires to admit
also non-axisymmetric mean fields. First results of that kind were given in a
paper of the author (1975) [40]. In addition to spherical dynamo models being
of interest for the mentioned class of objects also others were considered in
view of the magnetic fields found in galaxies, first in papers by Stix (1975) [41]
and by White (1978) [42]. In between, a large number of studies has been
carried out, which go beyond the kinematic consideration of dynamos, and
take into account the back-reaction of the dynamo-generated magnetic field
on the fluid motion; for references see, e.g. [43–45].

The early mean-field dynamo models for the Sun reflected many of the
observed magnetic phenomena very well. The distribution of sunspots with
respect to latitude and time could be reproduced under some assumptions
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on α-effect and angular velocity in the deeper layers of the convection zone,
which were inaccessible to observations. So the dynamo theory served also as
some kind of probe for these layers, which provided us in particular with infor-
mation on the radial dependence of the angular velocity. Later, however, the
conclusions drawn in this way came in conflict with the findings of helioseis-
mology. Although there is hardly any doubt that the α-effect and differential
rotation are key ingredients of the solar dynamo mechanism, many details are
now again under debate [46].

Like the theory of the nearly symmetric dynamo, the mean-field dynamo
theory, too, contributed much to the understanding of the geodynamo process.
There are, however, several difficulties in developing a consequent detailed
mean-field theory that reflects essential features of the geodynamo. One of
them is the missing scale separation in the fluid flow inside the Earth’s
core (see below). The real progress in modeling the geodynamo came with
direct numerical simulations on powerful computers; see, e.g. [47]. By the way,
recently numerical results for a simple geodynamo model have been used to
calculate the parameters of a traditional mean-field model with axisymmetric
magnetic fields. This mean-field model indeed reproduces essential features
that occur in the numerical simulations [48].

4 A critical view on mean-field electrodynamics

Let me now summarize some essentials of mean-field electrodynamics and
point out a few misunderstandings or incorrect statements, which sometimes
occur in the literature, as well as some open problems.

4.1 Basic concept

Consider electromagnetic processes in a homogeneous electrically conducting
fluid. Assume that the magnetic field B, the electric field E and the elec-
tric current density J are governed by Maxwell’s equations and constitutive
relations in the magnetohydrodynamic approximation, that is,

∇ × E = −∂tB, ∇ ·B = 0, ∇ × B = µJ , J = σ(E + U × B) , (1)

where µ and σ are the magnetic permeability and the electric conductivity,
and U is the velocity of the fluid. Focus attention on B. As a consequence of
(1) it has to satisfy the induction equation

η∇2B + ∇ × (U × B) − ∂tB = 0, ∇ ·B = 0 , (2)

where η is the magnetic diffusivity 1/µσ.
Assume further that both the electromagnetic fields B, E, and J, as well

as the fluid velocity U, show in addition to variations on large scales in
space and time also small-scale, e.g., turbulent variations. Then it is useful to
introduce mean fields, which describe the large-scale behavior of such fields.
A mean field F assigned to an original field F is defined by applying a proper
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averaging procedure to F . In the case of vector or tensor fields, averaging
has to be restricted to their components with respect to the chosen coordi-
nate system. Note that mean vector fields defined on the basis of a Cartesian
coordinate system are therefore very different from those defined, e.g., with
respect to a cylindrical or a spherical coordinate system. Various choices of
the averaging procedure may be admitted. The only requirement is that the
Reynolds averaging rules apply, that is,

F +G = F +G , FG = F G , ∂xF = ∂xF , ∂tF = ∂tF , (3)

where F as well as G are arbitrary fields, and x stands for any space coor-
dinate. With F = F + f and G = G + g this implies that f = g = 0 and
further FG = F G + fg. The Reynolds rules apply exactly for statistical or
ensemble averages and also, e.g., for azimuthal averages, defined by averaging
over the coordinate ϕ in cylindrical or spherical coordinate systems, (r, ϕ, z)
or (r, ϑ, ϕ). For the usual space average, defined for a given point by aver-
aging over certain surroundings of it, the Reynolds rules can be justified as
an approximation if there is a clear separation of small and large scales in
the spatial scale spectrum, sometimes labelled the “two–scale situation”. This
applies analogously to the usual time average, too.

Split now the magnetic and velocity fields according to B = B + b and
U = U + u into mean fields B and U and deviations b and u from them,
which are called “fluctuations” in the following. Averaging of Eq. (1) yields:

∇ ×E= −∂tB, ∇ ·B = 0, ∇ ×B = µJ , J = σ(E + U×B + E) . (4)

From these equations, or by averaging (2), the mean-field induction equation

η∇2B + ∇ × (U × B + E) − ∂tB = 0, ∇ ·B = 0 , (5)

can be derived. Here E is the mean electromotive force due to fluctuations,

E = u× b , (6)

which is crucial for all mean-field electrodynamics.
For the following discussion of E , the velocity U, that is, its mean part U

and the fluctuations u, are considered as given. As can be concluded from (2)
and (5), the fluctuations b are determined by

η∇2b + ∇ × (U × b + G) − ∂tb = −∇ ×
(
u× B

)
, ∇ · b = 0 ,

G = u × b− u × b . (7)

These equations imply that b can be considered as a sum b(0) + b(B), where
b(0) is independent of B, and b(B) is linear and homogeneous in B. This in
turn leads to

E = E(0) + E(B) , (8)
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with E(0) being independent of B, and E(B) being linear and homogeneous
in B. As can be concluded from very general arguments, E(B) can be repre-
sented in the form

E(B)
i (x, t) =

∫ ∞

0

∫
∞
Kij(x, t; ξ, τ)Bj(x − ξ, t− τ)d3ξ dτ , (9)

where the kernel Kij is determined, apart from η and from initial and bound-
ary conditions for b, by U and u. Here Cartesian coordinates are used and
the summation convention is adopted.

In many cases, in particular if u corresponds to turbulence, the kernel Kij

is only in some range of small |ξ| and τ markedly different from zero. This
suggests to expand Bj(x− ξ, t− τ) under the integral in a Taylor series with
respect to ξ and τ ,

Bj(x − ξ, t− τ) = Bj(x, t) −
∂Bj(x, t)
∂xk

ξk − ∂Bj(x, t)
∂t

τ − · · · . (10)

In most of the traditional representations of mean-field electrodynamics, only
the first two terms on the right-hand side are taken into account. Then it
follows from (8), (9), and (10) that

Ei = E(0)
i + aijBj + bijk

∂Bj

∂xk
, (11)

where

aij =
∫ ∞

0

∫
∞
Kij(x, t; ξ, τ)d3ξ dτ,

bijk = −
∫ ∞

0

∫
∞
Kij(x, t; ξ, τ) ξk d3ξ dτ . (12)

Assume for a simple (somewhat academic) example that there is no mean
motion, U = 0, and u corresponds to a homogeneous isotropic turbulence.
Then symmetry arguments lead to E(0) = 0, further to aij = α δij and bijk =
β εijk, and consequently to

E = αB− β∇×B , (13)

where the two coefficients, α and β, are independent of position and are deter-
mined by u. The term αB describes the α-effect. If in addition the u-field is
on the average mirror-symmetric, that is, all averages depending on u are
invariant under reflexion of this field at a plane or a point, α turns out to
be equal to zero. Hence the occurrence of an α-effect requires a deviation of
u from mirror-symmetry. In the mirror-symmetric case the mean-field ver-
sion of Ohm’s law, that is, the last relation in (4), takes the form J = σmE
with the mean-field conductivity σm = σ/(1+β/η). The mean-field induction
Eq. (5) then formally agrees with (2) after replacing there η by the mean-field
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diffusivity ηm = η+β. In a wide range of assumptions β proves to be positive.
Return now to the more general relation (11) for E . It is equivalent to

E = E(0) −α ·B− γ × B− β · (∇ ×B) − δ × (∇ ×B) − κ · (∇B)(s) ; (14)

see, e.g., [45]. Here α and β are symmetric second-rank tensors, γ and δ are
vectors, and κ is a third-rank tensor, which may be assumed to be symmetric
in the indices connecting it with (∇B)(s). The latter is the symmetric part
of the gradient tensor of B, with respect to Cartesian coordinates given by
(∇B)(s)jk = 1

2 (∂Bj/∂xk + ∂Bk/∂xj). Of course, the quantities α, γ, β, δ
and κ can be expressed by the components of aij and bijk. The term with
α in (14) describes again the α-effect, which is now in general anisotropic.
That with γ corresponds to an advection of the mean magnetic field. Thus,
the effective velocity responsible for advection is U − γ. The term with β
can be interpreted by introducing a mean-field conductivity or a mean-field
diffusivity, which are, in general, no longer isotropic. That with δ can be
included in this interpretation. Whereas the conductivity or diffusivity tensors
introduced on the basis of β alone are symmetric, those involving δ have also
non-symmetric parts. The term with κ is more difficult to interpret.

As is well known, the α-effect is in general capable of dynamo action. In
the absence of any shear in the mean motion there is the possibility of an α2

dynamo. A sufficiently strong shear, e.g., by differential rotation, opens up the
possibility of an αω dynamo. However, even in the absence of any α-effect,
dynamos are possible due to the combination of effects described by the δ
or κ terms in (14) with shear. For more details on mean-field dynamos see,
e.g., [43–45].

Some comments

1. It is sometimes said that mean-field electrodynamics or mean-field
dynamo theory applies only under the assumption of a clear separation
between the large and small scales in space and time. This is not generally
correct. An assumption of that kind is of some interest in view of the Reynolds
rules. For statistical or azimuthal averages, however, these rules apply inde-
pendent of any such an assumption. To justify them as an approximation for
the usual space average as explained above only a scale separation in space, for
the time average only one in time are necessary. When working with the inte-
gral representation (9) for E there is no further reason for any scale separation.
Of course, the more special relations (11) or (14) are based on assumptions
concerning space and time scales of B.

2. In some representations of mean-field electrodynamics the part E(0) of
the mean electromotive force E is ignored. This is justified if in the case B = 0
the fluctuations b decay to zero, that is, the turbulence is of pure hydrody-
namic nature. It is not generally justified if also for B = 0 a real magneto-
hydrodynamic turbulence exists. Then E(0) vanishes only in particular cases,
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e.g., if this turbulence is isotropic and therefore does not allow the definition of
a vector. Possibilities of non-zero E(0) have been discussed, e.g., by Rädler [49]
or, in particular for a case with non-zero ∇×U, by Yoshizawa [50]. A non-zero
E(0) may create a mean magnetic field B from a state with B = 0. It loses its
importance as soon as B exceeds some magnitude.

3. In general, the mean-field induction Eq. (5) has to be completed by (8)
and (9), and has therefore to be considered as an integro-differential equation.
Only if (8) and (9) are reduced to (11) or (14) with E(0) = 0, as is done in
most applications, Eq. (5) has again the same mathematical character as (2).
It is however important to note that (11) and (14) apply only under restrictive
assumptions on the variations of B in space and time.

4. Although the above derivations were done mainly in view of situations
with turbulence, no specific properties of u were used which exclude the appli-
cation of the results given here to cases in which u corresponds, for example,
to regular flow patterns or shows space or time behaviors other than those of
turbulence.

4.2 First-order smoothing and other approximations

A central problem in the elaboration of mean-field electrodynamics is the
determination of the mean electromotive force E for a given fluid velocity, that
is, given U and u. Many calculations are based on the “second–order correla-
tion approximation” (SOCA), sometimes also called the “first–order smooth-
ing approximation” (FOSA). This approximation is based on Eq. (7) for b,
but assumes some smallness of u such that it is justified to ignore there the
term G. Consider for the sake of simplicity the case of an infinitely extended
fluid with zero mean motion, U = 0. Then Eq.(7) can be solved analytically
and an expression for Kij in (9) and (12) can be derived,

Kij(x, t; ξ, τ) = (εilmδnj − εiljδmn)
∂G(ξ, τ)
∂ξ

ξn
ξ
Qlm(x, t;−ξ,−τ) , (15)

where G is a Green’s function

G(ξ, τ) = (4πητ)−3/2 exp(−ξ2/4ητ), (16)

and Qlm is the second-rank correlation tensor of u defined by

Qlm(x, t; ξ, τ) = ul(x, t)um(x + ξ, t+ τ) . (17)

In order to define special cases for the calculation of E, a correlation length
and a correlation time, λc and τc, of the velocity field u is introduced such that
Qlm is no longer markedly different from zero if ξ/λc or τ/τc markedly exceed
unity. Consider then the dimensionless quantity q = λ2

c/ητc. The limits q → ∞
and q → 0 are called “high–conductivity limit” and “low–conductivity limit”,
respectively. For most astrophysical applications the high-conductivity limit
is of particular interest. A sufficient condition for the validity of the second-
order approximation in the high-conductivity limit reads uτc/λc � 1, in the
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low-conductivity limit instead uλc/η � 1, where u means a characteristic
magnitude of u.

Return now to the simple example considered above, in which U = 0 and
u corresponds to a homogeneous isotropic turbulence. A calculation of the
coefficient α in (13) with the help of (12), (15), (16), and (17), delivers

α = −1
3

∫
∞

∫ ∞

0

G(ξ, τ)u(x, t) · (∇ × u(x + ξ, t− τ)) d3ξ dτ . (18)

In the high-conductivity limit, q → ∞, this turns into

α = −1
3

∫ ∞

0

u(x, t) · (∇ × u(x, t− τ)) dτ , (19)

or, provided u(x, t) · (∇ × u(x, t)) does not vanish,

α = −1
3
u(x, t) · (∇ × u(x, t− τ)) τ (α)

c , (20)

with τ (α)
c determined by equating the two right-hand sides. The corresponding

result for the low-conductivity limit, q → 0, reads

α = − 1
3η

∫ ∞

0

u(x, t) · (∇ × u(x + ξ, t)) ξ dξ

= − 1
3η

∫ ∞

0

u(x, t) · (ξ × u(x + ξ, t))
dξ
ξ
. (21)

Note that the integrands do not depend on the direction of ξ but only on ξ.
With the vector potential ψ of u defined by u = ∇×ψ+∇ · · · and ∇ ·ψ = 0
this can be rewritten in the simple form

α = − 1
3η
ψ(x, t) · (∇ ×ψ(x, t)) . (22)

In the high-conductivity limit it is the mean kinetic helicity u · (∇ × u), in the
low-conductivity limit the related quantity ψ · (∇ ×ψ), which are crucial for
the α-effect. Both indicate the existence of helical features in the flow pattern
and vanish for mirror-symmetric turbulence.

The sufficient conditions for the applicability of the second-order corre-
lation approximation given above are rather narrow for most of the appli-
cations. It is basically possible to proceed from the second-order correlation
approximation to approximations of arbitrarily high order with a larger range
of validity. However, calculations of that kind for specific cases are extremely
tedious and have been done so far only for very simple examples. Several other
approaches to results with a wider range of validity have been also explored,
e.g. [51], but their correctness is still under debate [52]. So the calculation of
coefficients like α, γ, β, δ, and κ in a wide range of validity remains a chal-
lenge. As already mentioned, recently such coefficients have been extracted
from results of direct numerical simulations [48]. This also opens up the pos-
sibility to check the results obtained analytically.
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Some comments

1. Almost all dynamo models studied in relation to cosmic objects work
with the α-effect. In the mean-field induction equation, often the relevant
term of E is simply taken in the from αB, which corresponds to the case
of isotropic turbulence. It is then further assumed that α differs only by a
factor from the mean kinetic helicity u · (∇ × u). Even if there should be
reasons to work with αB one should have in mind that the proportionality
of α to u · (∇ × u) is a specific result applying in second-order correlation
approximation and high-conductivity limit only. In general, however, it is not
the coefficient α in the sense of (13) and (20), but the components of the
tensor α which enter the mean-field dynamo equations. In the case of an
αω dynamo, e.g., mainly the component αϕϕ is of interest, where ϕ indicates
again the azimuthal coordinate. It is the trace of the tensor α, which in second-
order correlation approximation and high–conductivity limit, is proportional
to u · (∇ × u). The individual components are given by other properties of u.

2. Simplified considerations on α-effect dynamos for astrophysical objects,
for which the high-conductivity limit is appropriate, have led to the opinion
that any dynamo requires a non-vanishing kinetic helicity of the fluid flow.
This is definitely wrong for several reasons. As mentioned above, in the low-
conductivity limit the α-effect is no longer determined by the kinetic helicity.
In addition, as mentioned above, there are mean-field dynamos which work in
the absence of any α-effect, e.g., due to a combination of effects described by
δ and κ with a mean shear.

3. Concerning the dependence of the α-effect on the kinetic helicity, a
dynamo proposed by G. O. Roberts [23], with a steady spatially periodic flow
pattern depending on two Cartesian coordinates only, say x and y, deserves
some attention. It can easily be interpreted within the mean-field concept,
with averaging over x and y, and appears then as an α-effect dynamo [53].
Roberts considered a flow pattern with a non-zero helicity. It can however
be shown that dynamo action and α-effect do not vanish if it is modified
such that the helicity (not only the mean helicity) is everywhere equal to
zero. The α-effect is instead related to a quantity of the type ψ · (∇ ×ψ).
In another interesting example of a dynamo investigated by Zheligovsky and
Galloway [54] both u · (∇ × u) and ψ · (∇ ×ψ) (not only their mean values)
are equal to zero everywhere.

4.3 Magnetic quenching

In general, a magnetic field acts on the motion of the fluid via the Lorentz
force. In this way also the mean-field coefficients like α, γ, β, δ, and κ are
influenced by this magnetic field. Assume as a simple example a turbulence
which is homogeneous and isotropic in the limit of vanishing magnetic field.
Then symmetry arguments show that for finite B

E =
{
α+ α̃

(
B · (∇ × B)

)}
B − γ̃∇B

2 × B − β∇ × B , (23)
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where the coefficients α, α̃, γ̃, and β may be considered as functions of u(0),
which means u in the limit of small B, and of |B|; see, e.g., [45, 55]. In the
limit of small B, of course, α and β agree with those in (13), and α̃ and γ̃
vanish. Simple considerations suggest that, e.g., |α| is reduced, or “quenched,”
if |B| grows. Investigations on the dependence of α, α̃, γ̃, and β on B have, of
course, to be done on the basis of the induction equation and the momentum
balance, that is, the Navier–Stokes equation. They lead from mean-field elec-
trodynamics to the more comprehensive mean-field magnetohydrodynamics.

Many attempts have been made to determine the dependence of quantities
like α on B. Specific results, in particular of numerical simulations, have been
interpreted in the sense of a drastic α-quenching, which would prevent mag-
netic fields from growing to such magnitudes as are observed in real objects,
e.g., at the Sun. There is a persistent, controversial debate on this “catastroph-
ical quenching” and mechanisms which avoid it; see, e.g., [56].

A great challenge in the further elaboration of mean-field electrodynamics,
or mean-field magnetohydrodynamics, consists in establishing a reliable theory
of the behavior of quantities like α, γ, β, δ, and κ in a regime with finite or
even large B.

A comment

Most of the investigations on the problems addressed here start from the very
beginning with the induction equation and the momentum balance. It should
be noted that the general relations for the calculation of E and quantities like
α, γ, β, δ, and κ delivered by the second-order correlation approximation
or its generalization to higher orders do not lose their validity if u or the
correlation tensors like Qlm depend on B. They may be specified by inserting
u as determined by the momentum balance including the Lorentz force. In
that sense they can well be a starting point for the solution of the problems
discussed.

References

1. von Engel A, Steenbeck M (1932, 1934) Elektrische Gasentladungen, ihre Physik
und Technik, Vols 1 and 2. Springer, Berlin

2. Rompe R, Steenbeck M (1939) Der Plasmazustand der Gase. In: Ergebnisse
der exakten Naturwissenschaften, Springer, Berlin 18:257–376

3. Steenbeck M (1977) Impulse und Wirkungen – Schritte auf meinem Lebensweg.
Verlag der Nation, Berlin

4. Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293–314
5. Parker EN (1957) The solar hydromagnetic dynamo. Proc Natl Acad Sci 43:8–14
6. Steenbeck M, Krause F, Rädler K-H (1963) Elektromagnetische Eigenschaften

turbulenter Plasmen. Sitzungsber Dt Akad Wiss Berlin Kl Math Phys Techn
1/1963



70 K.-H. Rädler

7. Steenbeck M, Krause F, Rädler K-H (1966) Berechnung der mittleren Lorentz-
Feldstärke v × b für ein elektrisch leitendes Medium in turbulenter, durch
Coriolis–Kräfte beeinflußter Bewegung. Z Naturforsch 21a:369–376

8. Rädler K-H (1966) Zur Elektrodynamik turbulent bewegter leitender Medien.
PhD thesis, Friedrich-Schiller-Universität Jena

9. Rädler K-H (1968) Zur Elektrodynamik turbulent bewegter leitender Medien
I Grundzüge der Elektrodynamik der mittleren Felder. Z Naturforsch 23a:1841–
1851

10. Rädler K-H (1968) Zur Elektrodynamik turbulent bewegter leitender Medien
II Turbulenzbedingte Leitfähigkeits- und Permeabilitätsänderungen. Z Natur-
forsch 23a:1851–1860

11. Krause F (1968) Eine Lösung des Dynamoproblems auf der Grundlage einer lin-
earen Theorie der magnetohydrodynamischen Turbulenz. Habilitationsschrift,
Friedrich-Schiller-Universität Jena

12. Braginskii SI (1964) Self-excitation of a magnetic field during the motion of a
highly conducting fluid. Sov Phys JETP 20:726–735

13. Braginskii SI (1964) Theory of the hydromagnetic dynamo. Sov Phys JETP
20:1462–1471

14. Steenbeck M, Krause F (1969) Zur Dynamotheorie stellarer und planetarer Mag-
netfelder I Berechnung sonnenähnlicher Wechselfeldgeneratoren. Astron Nachr
291:49–84

15. Steenbeck M, Krause F (1969) Zur Dynamotheorie stellarer und planetarer Mag-
netfelder II Berechnung planetenähnlicher Gleichfeldgeneratoren. Astron Nachr
291:271–286

16. Krause F, Rädler K-H (1971) Elektrodynamik der mittleren Felder in turbu-
lenten leitenden Medien und Dynamotheorie. In: Rompe R, Steenbeck M (eds)
Ergebnisse der Plasmaphysik und der Gaselektronik. Akademie, Berlin 2:1–154

17. Moffatt HK (1970) Turbulent dynamo action at low magnetic Reynolds number.
J Fluid Mech 41:435–452

18. Roberts PH, Stix M (1971) The Turbulent Dynamo – A translation of a series
of papers by F Krause, K-H Rädler and M Steenbeck. Technical Report NCAR-
TN/IA-60, National Center for Atmospheric Research, Boulder, Colorado. Elec-
tronic version available in NCAR Library

19. Steenbeck M, Kirko IM, Gailitis A, Klawina AP, Krause F, Laumanis IJ, Lielau-
sis OA (1967) Der experimentelle Nachweis einer elektromotorischen Kraft längs
eines äußeren Magnetfeldes, induziert durch eine Strömung flüssigen Metalls (α–
Effekt). Mber Dtsch Akad Wiss Berlin 9:714–719

20. Steenbeck M, Kirko IM, Gailitis A, Klawina AP, Krause F, Laumanis IJ,
Lielausis OA (1968) Experimental discovery of the electromotive force along
the external magnetic field induced by a flow of liquid metal (α–effect). Sov
Phys Dokl 13:443–445

21. Gailitis A (1967) Conditions of the self–excitation for a laboratory model of the
geomagnetic dynamo. Magnetohydrodynamics 3:45–54

22. Roberts GO (1970) Spatially periodic dynamos. Phil Trans R Soc Lond
A266:535–558

23. Roberts GO (1972) Dynamo action of fluid motions with two-dimensional peri-
odicity. Phil Trans R Soc Lond A271:411–454

24. Busse FH (1975) A model of the geodynamo. Geophys J R Astron Soc 42:
437–459



Mean-Field Dynamo Theory: Early Ideas and Today’s Problems 71

25. Kirko IM, Mitenkov FM, Barannikov VA (1981) Observation of MHD phe-
nomena in the liquid–metal volume of the first loop of the fast–neutron reac-
tor BN600 of the Beloyarskaia nuclear power plant. Dokl Akad Nauk SSSR
257(4):861–863 (In Russian)

26. Kirko GE (1985) Generation and self–excitation of a magnetic field in technical
devices. Nauka, Moscow (In Russian)

27. Bevir MK (1973) Possibility of electromagnetic self-excitation in liquid metal
flows in fast reactors. J Br Nucl Soc 12(4):455–458

28. Pierson ES (1975) Electromagnetic self-excitation in the liquid-metal fast
breeder reactor. Nucl Sci Eng 57:155–163

29. Plunian F, Alemany A, Marty Ph (1995) Influence of magnetohydrodynamic
parameters on electromagnetic self-excitation in the core of a fast breeder reac-
tor. Magnetohydrodynamics 31:382–390

30. Plunian F, Marty Ph, Alemany A (1999) Kinematic dynamo action in a network
of screw motions; application to the core of a fast breeder reactor. J Fluid Mech
382:137–154

31. Alemany A, Marty Ph, Plunian F, Soto J (2000) Experimental investigation of
dynamo effect in the secondary pumps of the fast breeder reactor Superphenix.
J Fluid Mech 403:263–276

32. Gailitis A, Lielausis O, Dement’ev S, Platacis E, Cifersons A, Gerbeth G,
Gundrum T, Stefani F, Christen M, Hänel H, Will G (2000) Detection of a
flow induced magnetic field eigenmode in the Riga dynamo facility. Phys Rev
Lett 84:4365–4368

33. Gailitis A, Lielausis O, Platacis E, Gerbeth G, Stefani F (2001) On the results
of the Riga dynamo experiments. Magnetohydrodynamics 37:71–79

34. Müller U, Stieglitz R (2000) Can the Earth’s magnetic field be simulated in the
laboratory? Naturwissenschaften 87:381–390

35. Stieglitz R, Müller U (2001) Experimental demonstration of a homogeneous
two-scale dynamo. Phys Fluids 13:561–564

36. Deinzer W, Stix M (1971) On the eigenvalues of Krause–Steenbeck’s solar
dynamo. Astron Astrophys 12:111–119

37. Roberts PH (1972) Kinematic dynamo models. Phil Trans R Soc Lond
A272:663–703

38. Roberts PH, Stix M (1972) Alpha–effect dynamos by the Bullard–Gellman
formalism. Astron Astrophys 18:453–466

39. Stix M (1973) Spherical αω–dynamos by a variational method. Astron Astro-
phys 24:275–281

40. Rädler K-H (1975) Some new results on the generation of magnetic fields by
dynamo action. Mem Soc R Sci Liege VIII:109–116

41. Stix M (1975) The galactic dynamo. Astron Astrophys 47:243–254
42. White MP (1978) Numerical models of the galactic dynamo. Astron Nachr

299:209–216
43. Krause F, Rädler K-H (1980) Mean–field magnetohydrodynamics and dynamo

theory. Akademie, Berlin and Pergamon Press, Oxford
44. Rädler K-H (1995) Cosmic dynamos. Rev Mod Astron 8:295–321
45. Rädler K-H (2000) The generation of cosmic magnetic fields. In: Page D, Hirsch

JG (eds) From the Sun to the Great Attractor (1999 Guanajuato Lectures in
Astrophysics) Lecture Notes in Physics. Springer, Berlin, pp: 101–172

46. Ossendrijver M (2003) The solar dynamo. Astron Astrophys Rev 11:287–367



72 K.-H. Rädler

47. Roberts PH, Glatzmaier GA (2000) Geodynamo theory and simulations. Rev
Mod Phys 72:1081–1123

48. Schrinner M, Rädler K-H, Schmitt D, Rheinhardt M, Christensen U (2005)
Mean–field view on rotating magnetoconvection and a geodynamo model.
Astron Nachr 326:245–249

49. Rädler K-H (1976) Mean–field magnetohydrodynamics as a basis of solar
dynamo theory. In: Bumba V, Kleczek J (eds) Basic Mechanisms of Solar Activ-
ity. D Reidel Publishing Company Dordrecht: 323–344

50. Yoshizawa A, Yokoi N (1993) Turbulent magnetohydrodynamic dynamo for
accretion disks using the cross-helicity effect. Astrophys J 407:540–548

51. Rädler K-H, Kleeorin N, Rogachevski I (2003) The mean electromotive force
for MHD turbulence: The case of a weak mean magnetic field and slow rotation.
Geophys Astrophys Fluid Dyn 97:249–274

52. Rädler K-H, Rheinhardt M (2006) Mean–field electrodynamics: critical analysis
of various analytical approaches to the mean electromotive force. (In prepara-
tion)

53. Rädler K-H, Rheinhardt M, Apstein E, Fuchs H (2002) On the mean–field
theory of the Karlsruhe dynamo experiment I Kinematic theory. Magnetohy-
drodynamics 38:41–71

54. Zheligovsky VA, Galloway DJ (1998) Dynamo action in Christopherson hexag-
onal flow. Geophys Astrophys Fluid Dyn 88:277–293

55. Roberts PH (1971) Dynamo theory. In: Reid WH (ed) Lectures on Applied
Mathematics. American Mathematical Society, Providence, Cambridge, MA,
14:129–206

56. Brandenburg A, Subramanian K (2005) Astrophysical magnetic fields and non-
linear dynamo theory. Phys Rep 417:1-209



Astrophysical MHD: The Early Years
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1 Cosmical magnetic fields: Earth, Sun, magnetic stars,
interstellar medium; historical landmarks

(1) Halley, working before the discoveries of Oersted, Ampère, Faraday, and
Henry, pictured the Earth’s interior with two massive blocks of permanently
magnetized material (lodestone): an outer shell and a concentric inner nucleus.
From the observed magnetic variations, he inferred the existence of a fluid
domain.

(2) Galileo and contemporaries observed dark patches on the Sun at low
latitudes – sunspots – from which they inferred the solar rotation.

(3) In the nineteenth century, Schwabe, Carrington, Spörer discovered the
11-year solar cycle and the associated latitude drift of sunspot pairs. The first
hint of a magnetic connection came with the correlation between the sunspot
cycle and geomagnetic storms.

(4) In 1908, Hale applied the recently discovered Zeeman effect to infer
sunspot fields of several kG. The observed field reversal in the leading spot
of a pair showed that the 11-year cycle is in fact one half of a basic 22-year
cycle. In 1913, Hale measured a weak general solar field.

(5) In 1959, Babcock discovered that the general solar field reverses along
with the sunspot cycle. Later work showed the existence of solar-type magnetic
activity in other “late-type” stars – the “Solar-Stellar Connection”.

(6) From 1947, strongly magnetic “early-type” stars were discovered, form-
ing a subclass of the “chemically peculiar” (CP) stars. The fields appear to
be stable, but show periodic variations, including polarity reversal in some.
The most plausible explanation is that we are witnessing the rotation of a
magnetic structure that is not symmetric about the rotation axis, e.g., the
“oblique rotator”, with the magnetic field axis inclined to the rotation axis.

(7) From 1949 on, a galactic magnetic field has been inferred from sev-
eral independent phenomena. The observed polarization of starlight is due to
selective absorption by magnetically aligned, non-spherical dust grains, yield-
ing the optical electric vector parallel to the galactic B. Synchrotron radiation

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
73–84. c© 2007 Springer.
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from relativistic electrons gyrating about B is recognized by its spectrum and
by its polarization with E perpendicular to B. Faraday rotation of the polar-
ization of waves from radio galaxies is recognizable by its characteristic λ2-
dependence. And the Zeeman effect on e.g., the 21 cm line emitted by atomic
hydrogen is detected, especially from clouds massive enough for gravitational
amplification of the density and so also of the field strength.

2 Basic electrodynamics

1. Maxwell’s equations, truncated – the displacement current is ignorable in
high-conductivity media for low-frequency phenomena. In Gaussian units,

∇× B =
4π
c

j, ∇× E = −1
c

∂B
∂t
,

∇ · B = 0, ρe =
∇ · E
4π

. (1)

2. Generalization of simplest form of Ohm’s law j = σE to a moving conductor:

E′ ≡ E +
v × B
c

=
j
σ
, (2)

where E′ is the electric field measured in the frame moving with the local
bulk velocity v – the local ‘rest-frame’. In non-relativistic problems, terms of
order (v/c)2 are ignorable. The theory is applicable to moving solids as well
as to fluids, e.g., to a dynamo armature.

High-conductivity, large-length scales → large Magnetic Reynolds Number:

E � −v × B/c (3)

→ ‘freezing of the field into the moving fluid’ found to be a good first approx-
imation in many problems. Then in the local rest-frame E′ � 0. From the
Lorentz Transformation, B′ = B(1 + O(v/c)2) = B, i.e., B is invariant in an
essentially non-relativistic theory.
3. The ‘two-fluid model’ of a fully ionized gas, with electron/ion density/pre-
ssure ne,i, pe,i, yields a generalized Ohm’s Law:

E′ =
j
σ

+
j × B
cnee

, E′ =
(
E +

v × B
c

+
∇pe

nee

)
. (4)

The conductivity σ = nee
2τ/me, with −e, me the electronic charge and

mass, τ the time between successive scattering of electron by ions.
Note the new terms: (1) the Hall term j × B/cnee; and (2) the ‘battery

term’ ∇pe/nee, analogue of the Peltier effect.
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Hall term
Ohmic term

= ωτ, ω = eB/mc = electron gyration frequency. (5)

When ωτ �1, the relation between j and E′ is isotropic. When ωτ � 1, the
relation is anisotropic, sometimes described as a ‘reduction of conductivity’
for currents flowing across B; but there is no significant increase in the dissi-
pation, which remains j2/σ, with σ the ‘unreduced conductivity’ given above.
(Different results hold for a lightly ionized gas – see § 7 below).

One can write (4) as

E +
(v + V) × B

c
=

j
σ
− ∇pe

nee
, (6)

where V = −j/nee is the streaming velocity of the electrons relative to the
ions. This yields

d
dt

(Magnetic Flux over Surface Se) = c

∫
C

(
∇pe

nee
− j
σ

)
· ds, (7)

where C is a circuit moving with the electron gas, bounding the surface Se.
In a non-turbulent medium, the Ohmic term −j/σ yields a slow destruction
of flux. If ne is not a function of pe – i.e. ∇pe not parallel to ∇ne – then
∇pe/ne has a curl, its line-integral in (7) is non-zero, acting as the ‘emf’ of
the ‘Biermann battery’, building up flux slowly against self-induction. In a
medium of scale R, at rest, the characteristic time of growth or decay is the
Cowling time 4πσR2/c2.
4. The equation of motion of the gas is the Navier–Stokes equation supple-
mented by the Lorentz force density ρeE + j × B/c. From (1), the magnetic
force density is

|j× B|/c � B2/4πD, (8)

where D is a characteristic scale of variation of B or v. From (1) and (3),
|ρe| = |∇ · E|/4π, so |ρeE| � (v/c)2(B2/4πD). Thus the electric part of the
Lorentz force is negligible in a non-relativistic theory that ignores terms of
order (v/c)2, with the Lorentz γ factors all put equal to 1.

In 1942, Alfvén and Walén discovered the “Alfvén Wave”. A uniform field
B exerts a tension (B2/4π)A along a thin flux tube of cross-sectional area A.
If the medium of volume density ρ is perfectly conducting, the same flux tube
acquires an effective mass per unit length ρA. From elementary string theory,
waves are propagated along the field with speed

vA =
(

(B2/4π)A
ρA

)1/2

=
B

(4πρ)1/2
. (9)

For more details, see, e.g., Mestel [1]. In the rest of this paper, a brief
account is given – in approximate chronological order – of the early application
of the theory to a number of cosmical problems.
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Earth

N

N

Sun

Fig. 1. The Chapman–Ferraro model of geomagnetic storm

3 Geomagnetic storms

The theory began with the highly idealized model of Chapman and Ferraro
[2] – see Fig. 1. An ionized, non-magnetic plasma sheet, emitted from the
active Sun, impinges on the Earth’s field, supposed initially to be that of a
vacuum dipole. Perfect conductivity is implicit, as the Earth’s field does not
penetrate into the sheet, but instead is squashed by it. The essentials of this
pioneering work survive in the updated models, which include in the initial
state a quasi-steady solar wind, confining the Earth’s field in a magnetosphere
in dynamic equilibrium, with the ram pressure balancing the pressure of the
distorted field. Eruptions on the Sun cause further distortion, observed as a
geomagnetic storm.

These models are essentially collective, with the Larmor gyration radii
of the low-speed particles small compared with the macroscopic scales. There
was a lot of controversy with Hannes Alfvén, whose approach differed, focusing
rather on the motion of the highly energetic solar cosmic rays, which do not
take cognizance of the magnetic field. Ian Axford (private communication)
informs me that the updated models are a synthesis of these complementary
approaches.

4 Magnetism and stellar rotation

The pioneering paper here was by Ferraro [3]: ‘Non-uniform rotation of the
Sun and its magnetic field’. His work is reproduced with some minor changes
of notation. He worked with cylindrical polar coordinates, (�, φ, z), with a
prescribed time-independent poloidal field Bp, symmetric about the rotation
axis Oz, and maintained by toroidal (i.e., azimuthal) currents – see Fig. 2.
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Fig. 2. Cylindrical polar coordinates (�, φ, z). Rotation axis Oz. Poloidal magnetic
field, symmetrical about Oz: Bp = [B�(�, z), 0, Bz(�, z)]. Non-uniform rotation
Ω(�, z)ẑ in general generates a toroidal field Bt = Bφt = [0, Bφ(�, z), 0]

The condition ∇·B = 0 is satisfied by the introduction of the flux function
P (�, z):

Bp = −∇P × t
�

, (10)

with t the unit toroidal vector. The poloidal field lines are given by P =
constant. Motions in meridian planes are assumed ignorable, but there is a
rotational velocity

v = vφt = Ω�t (11)

with the angular velocity an initially unprescribed function Ω = Ω(�, z).
Suppose the star has also a toroidal field Bφt, maintained by poloidal

currents, satisfying the simplest form of Ohm’s Law. In a steady state,

j = σ

(
vφt× Bp

c
−∇V

)
, (12)

with V the electric potential. The curl of (12) has the φ-component

∇2Bφ − Bφ

�2
− 1
�
∇(�Bφ) · ∇σ

σ
= −4πσ

c2
∂(P,Ω)
∂(�, z)

. (13)

Ferraro considers two possibilities.
(1) If Bφ = 0, then jp = 0, and the vanishing of the Jacobian in (13) yields

the law of isorotation – Ω constant on field lines:

Ω = Ω(P ), (14)

with an associated electrical polarization of the medium – V = − 1
c

∫
Ω(P )dP .

(2) If Bφ 
= 0, Ferraro solves for Bφ, and associated poloidal currents, for
prescribed

Ω = Ω0(r) +Ω1(r) cos2 θ + ..... σ = σ0(r). (15)
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Nowadays, there is a change of emphasis. If Ω = Ω(P ), each poloidal
field line is rotated as a whole. If Ω 
= Ω(P ), but the medium is highly
conducting, then we expect field freezing to hold to a high approximation. In
(12), we put 1/σ = 0, and replace −∇V by a non-irrotational E. An initially
purely poloidal field is thus sheared so as to generate a toroidal component,
by Faraday’s Law:

∂Bφ

∂t
= (�Bp) · ∇Ω. (16)

Ferraro’s state (2) is kinematically steady: slippage due to finite resistivity
balances the effect of shearing. But in his words: ‘It is highly improbable that
these poloidal currents flow’. The consequent φ-component of the Lorentz
force

jp × Bp/c = [Bp · ∇(�Bφ)/(4π�)]t (17)

“acts on the rotation to destroy shear”.
Ferraro always kicked himself for not going on to discover the Alfvén wave.

The back reaction of the growing Lorentz force (17), exerted by the field gen-
erated according to (16), would come into play well before the resistive terms
become important. However, Ferraro’s paper is seminal: strong magnetic cou-
pling with rotation inside stars, in stellar coronae and winds, and in accretion
discs, and even on the galactic scale, is built into contemporary astrophysics.

5 Sunspots; magneto-convection

This area can be traced back to a remarkable correspondence between Tom
Cowling and Ludwig Biermann during the 1930s. A simple model for the
lateral dynamic equilibrium of a spot is illustrated in Fig. 3.

Dynamical equilibrium requires

pext − pint =
B2

8π
; (18)

Fig. 3. Idealized sunspot model: umbra with vertical field lines
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heat flow channeled
along field lines

Fig. 4. A more realistic sunspot model, with field lines splaying out

the combined magnetic and thermal pressures of the cool umbra are balanced
by the thermal pressure of the hotter surrounding penumbra. The long life of
a spot requires that the lateral heat flow into the umbra must be balanced
by a reduction in the vertical heat supply. Biermann suggested that this is
due to magnetic interference with the otherwise highly efficient turbulent heat
transport. Cowling noted that this will be important when the magnetic and
turbulent energy densities are comparable.

The magnetic field is thus identified as the primary cause of the sunspot
phenomenon. Detailed models require that there be not a suppression of the
turbulent heat flow, but a reduction by a factor that decreases monotonically
from unity as the ratio of magnetic to turbulent energy increases. More realis-
tic field models (Schlüter and Temesvary) have the field lines splaying out, as
in Fig. 4. In studying heat flow, allowance must be made for the channelling
of the reduced turbulent heat flow along the field lines (Hoyle, Chitre).

6 Solar and stellar flares

Magnetohydrodynamic coupling of the high-density, sub-photospheric solar
convective envelope with the low-density solar atmosphere was suggested as
a plausible explanation of the general heating of the solar corona. To explain
flaring, one needs energy to be stored in a non-curl-free field, to be subse-
quently released rapidly, e.g., by a macro-instability. Sweet [4] proposed the
following model, to be developed subsequently by Parker and by Low and
Wolfson.

In Sweet’s model, the initial state is as in Fig. 5a: above the y-axis – the
solar surface – there is a quadrupolar, curl-free field with an X-type neutral
point. Now suppose motions in the convective zone have shifted the foot-
points. A new curl-free field will be topologically similar to Fig. 5a, but with
different field-line connectivities – e.g., α linked with δ and β with γ. Such a
transition requires violation of flux-freezing. If strict flux-freezing holds, then
the new field will be as in Fig. 5b: the field is curl-free nearly everywhere,
but to keep the connectivities unchanged, there has to be a vertical pinched
current sheet. The field energy is greater than that in the initial curl-free
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Fig. 5. (a) The initial state: a quadrupolar field with a neutral point; (b) field
structure following motion of foot-points, with strict flux-freezing

field. The model can be generalized to more realistic geometry, yielding fields
that are force-free nearly everywhere, but again with singular, magnetically
pinched domains carrying current sheets.

There has developed a whole industry on the reconnection-problem – the
processes by which deviation from flux-freezing allows for changes in field
topology and associated release – slow or fast – of stored magnetic energy
(Dungey, Sweet, Parker, Petschek, Priest, and collaborators).

7 Self-gravitating magnetic gas clouds

The estimated galactic field strengths suggested strongly that we should
observe strongly magnetic gas clouds, with the Lorentz force comparable with
self-gravitation. Chandrasekhar and Fermi [5] derived from the equations of
motion the appropriate generalization of the virial theorem, used in basic stel-
lar structure theory. For a gas cloud in equilibrium, this integral condition is

2T + (3γ − 1)U + M + V =
∫ (

p+
B2

8π

)
(r · n)dS − 1

4π

∫
(B · r)(B · n)dS,

(19)
where U is the thermal energy, with γ the ratio of principal specific heats
(assumed constant), T the macroscopic kinetic energy (rotational, turbulent),
M the magnetic energy, V the (negative) gravitational energy. The surface
integral terms depend on the thermal pressure and the Maxwell stresses and
are often (but not always) small enough to be dropped.

From (19), the ‘virial limit’ to the magnetic flux F in a gravitationally
contracting cloud of mass M is given by dropping all the terms except V and
M, yielding Fc � kG1/2M , with k a constant of about 4. If the field remains
frozen in, it will certainly inhibit or even prevent fragmentation into proto-
stars, though it can be the dominant agent for the removal of excess angular
momentum.
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The strongest magnetic fields observed in upper main sequence stars are
much below the virial limit. It was suggested that the required leakage of
unwanted flux occurs in the early stages of star formation. In a lightly ionized
cloud, it is a good approximation to picture the ions and electrons as a fully
ionized “plasma”, immersed in a much denser gas of neutral atoms or mole-
cules. As the gravitationally distorted magnetic field tries to straighten itself,
it drives the plasma plus the inductively coupled field through the neutral
gas. This “ambipolar diffusion” occurs at the rate fixed by balance between
the Lorentz force and the friction due to collisions between the ions and the
neutral particles. The consequent reduction in the magnetic flux threading a
cloud can be an important factor in the fragmentation of a cloud into proto-
stars (Mestel and Spitzer [6]). Subsequent work on cosmical gas dynamics
incorporates the differing electromagnetic properties of fully and partly ion-
ized media.

Almost simultaneously, there appeared papers by Piddington [7] and Cowl-
ing [8], following earlier ones by Schlüter and Biermann [9] and Schlüter [10],
discussing the general problem of dissipation of magnetic energy in partially
ionized media. The crucial result is that whereas currents j‖ flowing along
B suffer essentially the ordinary Ohmic resistivity, for currents j⊥ flowing
perpendicular to B, the effective resistivity is the very much larger quantity

F 3ZτiB
2

nmic2
, (20)

where F is the fractional contribution of the non-ionized gas to the total
density, n is the electron density, Z = n/ni with ni the ion density, and τi
is mn/(mn +mi) times the time interval between successive scatterings of an
ion of mass mi by a neutral particle of mass mn.

8 Dynamo action

Biermann’s slowly acting “battery” term Eb ≡ ∇pe/nee can generate signif-
icant fields; e.g., a toroidal field in a rotating star with a non-irrotational
centrifugal field. The flux could be the seed from which a much larger flux
could be generated by dynamo action, as suggested first by Larmor. Mass
motions in the presence of an existing B generate currents

j = σ[v × B/c], (21)

where the brackets “[....]” indicate the non-curl-free part. The “self-exciting
dynamo” problem reduces to asking: can one find a velocity field v that yields
from (21) the current field j which maintains B as given by Ampère’s law?

Cowling [11] anticipated a “routine calculation” to find what fields can be
maintained in this way. In a hypothetical steady state, Ohmic decay is offset by
motional induction. If the velocities are increased, the field grows in strength
until the back-reaction of the growing Lorentz force limits the velocities.
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Bp~

vd
vd

current jt~

Fig. 6. Near an O-type neutral point of the poloidal field, the maintaining current
flows into the paper. The Ohmic field yields loss of flux through diffusion into O
with velocity vd

However: an axisymmetric poloidal field Bp has one or more O-type neu-
tral points, with the field locally as in Fig. 6. By Ampère’s law, the maintaining
current jt flows into the sheet. If vp = 0, then as noted by Sweet, the decay
of the field can be pictured as the diffusion of the field lines into O with the
velocity

vd =
c(jt × Bp)

σB2
p

=
(∇× Bp) × Bp

(4πσ/c2)B2
p

, (22)

since (22) yields E+vd × Bp/c = E− jt/σ = 0. The spontaneous decay could
be offset only if gas were to emerge from O.

This is the essence of Cowling’s celebrated “anti-dynamo” theorem. The
original theorem is extensible to non-axisymmetric fields that are topologically
similar (Cowling, Bullard).

In his 1937 paper [3], recall that Ferraro stated that the initial axisymmet-
ric (poloidal) field Bp is maintained by azimuthal currents, but by implication
accepted Cowling’s argument, applying the steady state Ohm’s law just to
the meridional currents maintaining his toroidal field Bt = Bφt. Non-uniform
rotation generates Bt from Bp, but under axisymmetric poloidal motions,
the toroidal field component remains toroidal, so the cycle in not completed.
In Elsasser’s words, there is a ‘topological asymmetry’ between poloidal and
toroidal fields.

An early dynamo existence theorem for an essentially non-axisymmetric
system was given by Herzenberg [12]. Two spheres are rotating about mutu-
ally inclined axes within a bounded conducting medium. The toroidal field
generated by the shear at the surface of one sphere serves as the poloidal
field at the second; the rotation of the second sphere generates a toroidal
field, which serves as poloidal field at the first.

In a seminal paper, Parker [13] produced a model with the essence of what
is now called an “αΩ” dynamo in a late-type star. Again, a rotational shear
generates Bt from Bp, but the cycle is closed by an explicit appeal to non-
axisymmetric and non-isotropic turbulent motions: small-scale vortices in a
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compressible, stratified medium, acting on Bt, yield a new poloidal compo-
nent. The process is modelled by writing

Bp = ∇× (At),
∂A

∂t
= αBφ + turbulent resistive terms. (23)

The first models yielded periodic solutions, with reversal of both poloidal
and toroidal components, mimicking to some extent the observed solar behav-
iour. However, to yield something like a 22-year cycle period, one must appeal
to a macro-resistivity.

Sweet [4] was one of the earliest to point out that the reduction of scale
when the magnetic field is tangled by an inexorable turbulent field would
yield a large effective resistivity. This is partially analogous to the turbulent
viscosity introduced in early studies of stellar rotation, and indeed in models
of the Kolmogoroff cascade. There is however the important difference that
tangling of the field simultaneously increases the Lorentz forces opposing the
tangling – a problem that is still with us.

The pioneering work by Parker and by Steenbeck and colleagues has been
followed by a whole dynamo industry, including texts by Moffatt [14], Parker
[15], Krause and Rädler [16], Zel’dovich et al. [17], and a host of papers on
terrestrial, stellar and galactic dynamos.

9 MHD turbulence

If a magnetic field is supposed present, it is of interest and often of importance
to study the effect on the field of a well-defined fluid motion. Batchelor [18]
considered the effect of homogeneous, isotropic turbulence on an initial “seed”
field, arguing for an analogy between (B) and the vorticity ω = ∇× v in
hydrodynamic turbulence. The word “dynamo” was not used in this paper,
but in subsequent discussion he and others appeared to assume without fur-
ther analysis that his model was of a self-exciting dynamo. Some confusion
had arisen through differing usage. Some have called a “dynamo” any device
for the continual conversion of kinetic energy into magnetic energy. In geo-
physics and astrophysics, one is usually interested in self-exciting AC or DC
dynamos. A procedure which builds up and maintains a steady or fluctuat-
ing field, but only if the externally generated initial seed field persists, is best
described as an “amplifier”. And indeed a number of recent studies have shown
that while tangling of an initial field by isotropic turbulence can yield a small-
scale field, in approximate equipartition with the small-scale turbulence, to
increase the net magnetic flux through the domain, the turbulence must have
an essential anisotropy, e.g., a net magnetic helicity, as in the Parker model
and its derivatives. The treatment in Moffatt [14] is pedagogically very helpful
in showing how non-isotropic, unimpeded turbulence can yield both flux gen-
eration through the “α-effect” (23) and strongly enhanced Ohmic dissipation.
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Macro-dissipation of unwanted, small-scale fields is essential for the suc-
cessful generation of a large-scale field, e.g., a galactic field, detectable by
Faraday rotation. And an unpalatable consequence of strict adherence to
flux-freezing was noted early by Bondi and Gold [19]. If fluid motions are
confined to a finite volume of perfectly conducting fluid, – e.g., a stellar
convection zone – then outward diffusion of flux newly generated by inter-
nal dynamo action would be forbidden: the total flux, or equivalently the
externally observed dipole moment would hardly change.

References

1. Mestel L (1999, 2003) Stellar Magnetism. Clarendon Press, Oxford
2. Chapman S, Ferraro VCA (1931) Terr Magn atmos Elect 36:77 and 171
3. Ferraro VCA (1937) Mon Not R Astr Soc 97:458
4. Sweet PA (1958) In: Electromagnetic Phenomena in Cosmical Physics.

Cambridge University Press, Cambridge 123
5. Chandrasekhar S, Fermi E (1953) Ap J 118:113 and 116
6. Mestel L, Spitzer Jr L (1956) Mon Not R Astr Soc 116:583
7. Piddington JH (1955) Mon Not Roy Astr Soc 114:638 and 651
8. Cowling TG (1956) Mon Not Roy Astr Soc 116:114
9. Schlüter A, Biermann L (1950) Zeits f Naturforschung 5A:237

10. Schlüter A (1951) Zeits f Naturforschung 6A:73
11. Cowling TG (1934) Mon Not R Astr Soc 94:39
12. Herzenberg A (1958) Phil Trans R Soc A 250:543
13. Parker EN (1955) Ap J 122:293
14. Moffatt HK (1978) Magnetic Field Generation in Electrically Conducting Fluids.

Cambridge University Press, Cambridge
15. Parker EN (1978) Cosmical magnetic fields. Oxford University Press, Oxford
16. Krause F, Rädler K-H (1980) Mean-field magnetohydrodynamics and dynamo

theory. Pergamon, Oxford
17. Zel’dovich YaB, Ruzmaikin AA, Sokoloff DD (1983) Magnetic Fields in Astro-

physics. Gordon and Breach, New York
18. Batchelor GK (1950) Proc R Soc A 201:405
19. Bondi H, Gold T (1950) Mon Not R Astr Soc 110:607



Turbulence and Magnetic Fields
in Astrophysical Plasmas

Alexander A Schekochihin1 and Steven C Cowley2

1 DAMTP, University of Cambridge, Cambridge CB3 0WA and Department of
Physics, Imperial College, London SW7 2BW, United Kingdom
(a.schekochihin@imperial.ac.uk)

2 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547,
USA and Department of Physics, Imperial College, London SW7 2BW, United
Kingdom (cowley@physics.ucla.edu)

1 Introduction

Magnetic fields permeate the Universe. They are found in planets, stars,
accretion discs, galaxies, clusters of galaxies, and the intergalactic medium.
While there is often a component of the field that is spatially coherent at the
scale of the astrophysical object, the field lines are tangled chaotically and
there are magnetic fluctuations at scales that range over orders of magnitude.
The cause of this disorder is the turbulent state of the plasma in these sys-
tems. This plasma is, as a rule, highly conducting, so the magnetic field lines
are entrained by (frozen into) the fluid motion. As the fields are stretched and
bent by the turbulence, they can resist deformation by exerting the Lorentz
force on the plasma. The turbulent advection of the magnetic field and the
field’s back reaction together give rise to the statistically steady state of fully
developed MHD turbulence. In this state, energy and momentum injected
at large (object-size) scales are transfered to smaller scales and eventually
dissipated.

Despite over 50 years of research and many major advances, a satisfactory
theory of MHD turbulence remains elusive. Indeed, even the simplest (most
idealised) cases are still not fully understood. One would hope that there are
universal properties of MHD turbulence that hold in all applications – or
at least in a class of applications. Among the most important questions for
astrophysics that a successful theory of turbulence must answer are:

• How does the turbulence amplify, sustain and shape magnetic fields? What
is the structure and spectrum of this field at large and small scales? The
problem of turbulence in astrophysics is thus directly related to the fun-
damental problem of magnetogenesis.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
85–115. c© 2007 Springer.
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• How is energy cascaded and dissipated in plasma turbulence? In accretion
discs and the solar corona, for example, one would like to know if the
turbulence heats ions or electrons predominantly [1].

• How does the turbulent flow and magnetic field enhance or inhibit the
transport of heat, (angular) momentum, and cosmic rays? Again in accre-
tion discs, a key parameter is the effective turbulent viscosity that causes
the transport of angular momentum and enables accretion [2]. In cluster
physics, an understanding of how viscous heating and thermal conduction
in a turbulent magnetised plasma balance the radiative cooling is necessary
to explain the observed global temperature profiles [3].

In this chapter, we discuss the current understanding of the most basic
properties of astrophysical MHD turbulence. We emphasise possible universal
aspects of the theory. We shall touch primarily on two applications: turbu-
lence in the solar wind and in clusters of galaxies. These are, in a certain (very
approximate) sense, two “pure” cases of small-scale turbulence, where theore-
tical models of the two main regimes of MHD turbulence (discussed in § 2 and
§ 3) can be put to the test. They are also good examples of a complication
that is more or less generic in astrophysical plasmas: the MHD description
is, in fact, insufficient for astrophysical turbulence and plasma physics must
make an entrance. Why this is so, will be explained in § 4.

The astrophysical plasma turbulence is even more of a terra incognita than
the MHD turbulence, so we shall start with the equations of incompressible
MHD – the simplest equations that describe (subsonic) turbulent dynamics
in a conducting medium:

du
dt

= −∇p+ ν∆u + B · ∇B + f , ∇ · u = 0, (1)

dB
dt

= B · ∇u + η∆B, (2)

where u is the velocity field, d/dt = ∂t +u ·∇ the convective derivative, p the
pressure (scaled by the constant density ρ and determined by the incompress-
ibility constraint), B the magnetic field scaled by (4πρ)1/2, ν the kinematic
viscosity, η the magnetic diffusivity, and f the body force that models large-
scale energy input. The specific energy injection mechanisms vary: typically,
in astrophysics, these are either background gradients (e.g., the temperature
gradient in stellar convective zones, the Keplerian velocity shear in accre-
tion discs), which mediate the conversion of gravitational energy into kinetic
energy of fluid motion or direct sources of energy such as the supernovae in
the interstellar medium or active galactic nuclei in galaxy clusters. What all
these injection mechanisms have in common is that the scale at which they
operate, hereafter denoted by L, is large, comparable with the size of the
system. While the large-scale dynamics depend on the specific astrophysical
situation, it is common to assume that, once the energy has cascaded down
to scales substantially smaller than L, the non-linear dynamics are universal.
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The universality of small scales is a cornerstone of all theories of tur-
bulence. It goes back to Kolmogorov’s 1941 dimensional theory (or K41 [4];
see [5], § 33 for a lucid and concise exposition). Here is an outline Kolmogorov’s
reasoning. Consider Eq. (1) without the magnetic term. Denote the typical
fluctuating velocity difference across scale L by δuL. The energy associated
with these fluctuations is δu2

L and the characteristic time for this energy to cas-
cade to smaller scales by non-linear coupling is L/δuL. The total specific power
(energy flux) going into the turbulent cascade is then ε = 〈u · f〉 ∼ δu3

L/L.
In a statistically stationary situation, all this power must be dissipated, so
ε = ν〈|∇u|2〉. Since ε is a finite quantity completely defined by the large-
scale energy-injection process, it cannot depend on ν. For very small ν, this
implies that the velocity must develop very small scales so that ν〈|∇u|2〉 has
a constant limit as ν → +0. The only quantity with dimensions of length
that one can construct out of ε and ν is lν ∼ (ν3/ε)1/4 ∼ Re−3/4L, where
Re ∼ δuLL/ν is the Reynolds number. In astrophysical applications, Re is
usually large, so the viscous dissipation occurs at scales lν � L. The energy
injected at the large-scale L must be transfered to the small-scale lν across
a range of scales (the inertial range). The hydrodynamic turbulence theory
assumes that the physics in this range is universal, i.e., it depends neither on
the energy-injection mechanism nor on the dissipation mechanism. Four fur-
ther assumptions are made about the inertial range: homogeneity (no special
points), scale invariance (no special scales), isotropy (no special directions),
and locality of interactions (interactions between comparable scales domi-
nate). Then, at each scale l such that L � l � lν , the total power ε must
arrive from larger scales and be passed on to smaller scales:

ε ∼ δu2
l /τl, (3)

where δul is the velocity difference across scale l and τl the cascade time.
Dimensionally, only one timescale can be constructed out of the local quanti-
ties δul and l: τl ∼ l/δul. Substituting this into Eq. (3) and solving for δul,
we arrive at Kolmogorov’s scaling: δul ∼ (εl)1/3, or, for the energy spectrum
E(k),

δu2
l ∼

∫ ∞

k=1/l

dk′E(k′) ∼ ε2/3k−2/3 ⇒ E(k) ∼ ε2/3k−5/3. (4)

The history of the theory of MHD turbulence over the last half century has
been that of a succession of attempts to adapt the K41-style thinking to fluids
carrying magnetic fields. In the next two sections, we give an overview of these
efforts and of the resulting gradual realisation that the key assumptions of
the small-scale universality, isotropy and locality of interactions fail in various
MHD contexts.
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2 Alfvénic turbulence

Let us consider the case of a plasma threaded by a straight uniform magnetic
field B0 of some external (i.e., large-scale) origin. Let us also consider weak
forcing so that the fundamental turbulent excitations are small-amplitude
wave-like disturbances propagating along the mean field. We will refer to such
a limit as Alfvénic turbulence – it is manifestly anisotropic.

2.1 Iroshnikov–Kraichnan turbulence

If we split the magnetic field into the mean and fluctuating parts, B = B0 +
δB, and introduce Elsasser [6] variables z± = u± δB, Eqs. (1) and (2) take a
symmetric form:

∂tz± ∓ vA∇‖z± + z∓ · ∇z± = −∇p+
ν + η

2
∆z± +

ν − η

2
∆z∓ + f , (5)

where vA = |B0| is the Alfvén speed and ∇‖ is the gradient in the direction of
the mean field B0. The Elsasser equations have a simple exact solution: if z+ =
0 or z− = 0, the non-linear term vanishes and the other, non-zero, Elsasser
field is simply a fluctuation of arbitrary shape and magnitude propagating
along the mean field at the Alfvén speed vA. Kraichnan [7] realised in 1965
that the Elsasser form of the MHD equations only allows nonlinear interactions
between counterpropagating such fluctuations. The phenomenological theory
that he and, independently, Iroshnikov [8], developed on the basis of this idea
(the IK theory) can be summarised as follows.

Following the general philosophy of K41, assume that only fluctuations
of comparable scales interact (locality of interactions) and consider these
interactions in the inertial range, comprising scales l smaller than the forcing
scale L and larger than the (still to be determined) dissipation scale. Let us
think of the fluctuations propagating in either direction as trains of spatially
localised Alfvén-wave3 packets of parallel (to the mean field) extent l‖ and
perpendicular extent l (we shall not, for the time being, specify how l‖ relates
to l). Assume further that δz+

l ∼ δz−l ∼ δul ∼ δBl. We can again use Eq.
(3) for the energy flux through scale l, but there is, unlike in the case of
purely hydrodynamic turbulence, no longer a dimensional inevitability about
the determination of the cascade time τl because two physical timescales are
associated with each wave packet: the Alfvén time τA(l) ∼ l‖/vA and the
strain (or “eddy”) time τs(l) ∼ l/δul. To state this complication in a somewhat
more formal way, there are three dimensionless combinations in the problem
of MHD turbulence: εl/δu3

l , δul/vA, and l‖/l, so the dimensional analysis does
not uniquely determine scalings and further physics input is needed.
3 Waves in incompressible MHD can have either the Alfvén- or the slow-wave polar-

isation. Since both propagate at the Alfvén speed, we shall, for simplicity, refer
to them as Alfvén waves. The differences between the Alfvén- and slow-wave
cascades are explained in detail at the end of § 2.4.
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Two counterpropagating wave packets take an Alfvén time to pass through
each other. During this time, the amplitude of either packet is changed by

∆δul ∼
δu2

l

l
τA ∼ δul

τA
τs
. (6)

The IK theory now assumes weak interactions, ∆δul � δul ⇔ τA � τs. The
cascade time τl is estimated as the time it takes (after many interactions) to
change δul by an amount comparable to itself. If the changes in amplitude
accumulate like a random walk, we have

t∑
∆δul ∼ δul

τA
τs

√
t

τA
∼ δul for t ∼ τl ⇒ τl ∼

τ2
s

τA
∼ l2vA
l‖δu2

l

. (7)

Substituting the latter formula into Eq. (3), we get

δul ∼ (εvA)1/4l
−1/4
‖ l1/2. (8)

The final IK assumption, which at the time seemed reasonable in light of the
success of the K41 theory, was that of isotropy, fixing the dimensionless ratio
l‖/l ∼ 1, and, therefore, the scaling:

δul ∼ (εvA)1/4l1/4 ⇒ E(k) ∼ (εvA)1/2k−3/2. (9)

2.2 Turbulence in the solar wind

The solar wind, famously predicted by Parker [9], was the first astrophysical
plasma in which direct measurements of turbulence became possible [10]. A
host of subsequent observations (for a concise review, see [11]) revealed power-
like spectra of velocity and magnetic fluctuations in what is believed to be the
inertial range of scales extending roughly from 106 to 103 km. The mean
magnetic field is B0 ∼ 10–102 µG, while the fluctuating part δB is a factor
of a few smaller. The velocity dispersion is δu ∼ 102 km/s, approximately in
energy equipartition with δB. The u and B fluctuations are highly correlated
at all scales and almost undoubtedly Alfvénic. It is, therefore, natural to think
of the solar wind as a space laboratory conveniently at our disposal to test
theories of Alfvénic turbulence in astrophysical conditions.

For nearly 30 years following Kraichnan’s paper [7], the IK theory was
accepted as the correct extension of K41 to MHD turbulence and, therefore,
with minor modifications allowing for the observed imbalance between the
energies of the z+ and z− fluctuations [12], also to the turbulence in the
solar wind. However, alarm bells were sounding already in 1970s and 1980s
when measurements of the solar-wind turbulence revealed that it was strongly
anisotropic with l‖ > l⊥ [13] (see also [14]) and that its spectral index was
closer to −5/3 than to −3/2 [15].4 Numerical simulations have confirmed the
anisotropy of MHD turbulence in the presence of a strong mean field [17–19].
4 Another classic example of a −5/3 scaling in astrophysical turbulence is the spec-

trum of electron density fluctuations (thought to trace the velocity spectrum) in
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2.3 Weak turbulence

The realisation that the isotropy assumption must be abandoned led to a
reexamination of the Alfvén-wave interactions in MHD turbulence. If the
assumption of weak interactions is kept, MHD turbulence can be regarded as
an ensemble of waves, whose wavevectors k and frequencies ω±(k) = ±k‖vA
have to satisfy resonance conditions in order for an interaction to occur. For
three-wave interactions (1 and 2 counterpropagating, giving rise to 3),

k1 + k2 = k3 ⇒ k‖1 + k‖2 = k‖3, (10)

ω±(k1) + ω∓(k2) = ω±(k3) ⇒ k‖1 − k‖2 = k‖3, (11)

whence k‖2 = 0 and k‖3 = k‖1. Thus (i) interactions do not change k‖; (ii)
interactions are mediated by modes with k‖ = 0, which are quasi-2D fluctua-
tions rather than waves [20–22].5

The first of these conclusions suggests a quick fix of the IK theory: take
l‖ ∼ k−1

‖0 = constant (the wavenumber at which the waves are launched) and
l ∼ l⊥ in Eq. (8) (no parallel cascade). Then the spectrum is [23]

E(k⊥) ∼ (εk‖0vA)1/2k−2
⊥ . (12)

The same result can be obtained via a formal calculation based on the
standard weak-turbulence theory [24, 25]. However, it is not uniformly valid
at all k⊥. Indeed, let us check if the assumption of weak interactions, τA � τs,
is actually satisfied by the scaling relation (8) with l‖ ∼ k−1

‖0 :

τA
τs

∼ ε1/4

(
k‖0vA

)3/4
l
1/2
⊥

� 1 ⇔ l⊥ � l∗ =
ε1/2

(
k‖0vA

)3/2
∼ δu2

L

v2
A

1
k2
‖0L

, (13)

where δuL is the velocity at the outer scale (the rms velocity). Thus, if Re =
δuLL/ν and Rm = δuLL/η are large enough, the inertial range will always
contain a scale l∗ below which the interactions are no longer weak.6

the interstellar medium – the famous “power law in the sky”, which appears to
hold across 12 decades of scales [16].

5 Goldreich and Sridhar [23] argued that the time it takes three waves to realise
that one of them has zero frequency is infinite and, therefore, the weak-interaction
approximation cannot be used. This difficulty can, in fact, be removed by noticing
that the k‖ = 0 modes have a finite correlation time, but we do not have space
to discuss this rather subtle issue here (two relevant references are [24,25]).

6 There is also an upper limit to the scales at which Eq. (12) is applicable. The
boundary conditions at the ends of the “box” are unimportant only if the cascade
time (7) is shorter than the time it takes an Alfvénic fluctuation to cross the box:
τl � L‖/vA ⇔ l⊥ � L∗ = (ε/k‖0v3

A)1/2L‖, where L‖ is the length of the box
along the mean field. Demanding that L∗ > L, the perpendicular size of the box,
we get a lower limit on the aspect ratio of the box: L‖/L > k‖0L(vA/δuL)2. If this
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R.S. Iroshnikov (1937–1991) R.H. Kraichnan

P. Goldreich S. Sridhar

Fig. 1. IK and GS. (Photo of R.S. Iroshnikov courtesy Sternberg Astronomical
Institute. Photo of R.H. Kraichnan courtesy of the Johns Hopkins University.)

2.4 Goldreich–Sridhar turbulence

In 1995, Goldreich and Sridhar [27] conjectured that the strong turbulence
below the scale l∗ should satisfy

τA ∼ τs ⇔ l‖/l⊥ ∼ vA/δul, (14)

a property that has come to be known as the critical balance. Goldreich
and Sridhar argued that when τA � τs, the weak turbulence theory “pushes”

is not satisfied, the physical (non-periodic) boundary conditions may impose a
limit on the perpendicular field-line wander and thus effectively forbid the k‖ = 0
modes. It has been suggested [23] that a weak-turbulence theory based on 4-wave
interactions [26] should then be used at l⊥ > L∗.
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the spectrum towards the approximate equality (14). They also argued that
when τA � τs, motions along the field lines are decorrelated and naturally
develop the critical balance.

The critical balance fixes the relation between two of the three dimension-
less combinations in MHD turbulence. Since now there is only one natural
timescale associated with fluctuations at scale l, this timescale is now assumed
to be the cascade time, τl ∼ τs. This brings back Kolmogorov’s spectrum (4)
for the perpendicular cascade. The parallel cascade is now also present but is
weaker: from Eq. (14),

l‖ ∼ vAε
−1/3l

2/3
⊥ ∼ k−1

‖0
(
l⊥/l∗

)2/3
. (15)

The scalings (4) and (15) should hold at all scales l⊥ � l∗ and above
the dissipation scale: either viscous lν ∼ (ν3/ε)1/4 or resistive lη ∼ (η3/ε)1/4,
whichever is larger. Comparing these scales with l∗ [Eq. (13)], we note that the
strong-turbulence range is non-empty only if Re,Rm �

(
k‖0L

)3(
vA/δuL

)3, a
condition that is effortlessly satisfied in most astrophysical cases but should
be kept in mind when numerical simulations are undertaken.

The Goldreich–Sridhar (GS) theory has now replaced the IK theory as the
standard accepted description of MHD turbulence. The feeling that the GS
theory is the right one, created by the solar wind [15] and ISM [16] observa-
tions that show a k−5/3 spectrum, is, however, somewhat spoiled by the consis-
tent failure of the numerical simulations to produce such a spectrum [17,19].
Instead, a spectral index closer to IK’s −3/2 is obtained (this seems to be
the more pronounced the stronger the mean field), although the turbulence is
definitely anisotropic and the GS relation (15) appears to be satisfied [17,18]!
This trouble has been blamed on intermittency [17], a perennial scapegoat of
turbulence theory, but a non-speculative solution remains to be found.

The puzzling refusal of the numerical MHD turbulence to agree with either
the GS theory or, indeed, with the solar-wind observations highlights the
rather shaky quality of the existing physical understanding of what really
happens in a turbulent magnetic fluid on the dynamical level. One conceptual
difference between MHD and hydrodynamic turbulence is the possibility of
long-time correlations. In the large-Rm limit, the magnetic field is determined
by the displacement of the plasma, i.e., the time integral of the (Lagrangian)
velocity. In a stable plasma, the field-line tension tries to return the field
line to the unperturbed equilibrium position. Only “interchange” (k‖ = 0)
motions of the entire field lines are not subject to this “spring-back” effect.
Such motions are often ruled out by geometry or boundary conditions (cf.
footnote 6). Thus, fluid elements in MHD cannot simply random walk as this
would increase (without bound) the field-line tension. However, they may ran-
dom walk for a substantial period before the tension returns them back to the
equilibrium state. The role of such long-time correlations in MHD turbulence
is unknown.
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Reduced MHD, the decoupling of the Alfvén-wave cascade, and turbu-
lence in the interstellar medium. We now give a rigorous demonstration of
how the turbulent cascade associated with the Alfvén waves (or, more precisely,
Alfvén-wave-polarised fluctuations) decouples from the cascades of the slow waves
and entropy fluctuations. Let us start with the equations of compressible MHD:

dρ

dt
= −ρ∇ · u, (16)

ρ
du

dt
= −∇

(
p+

B2

8π

)
+

B · ∇B

4π
, (17)

ds

dt
= 0, s =

p

ργ
, γ =

5

3
, (18)

dB

dt
= B · ∇u −B∇ · u. (19)

Consider a uniform static equilibrium with a straight magnetic field, so ρ = ρ0 + δρ,
p = p0 + δp, B = B0 + δB. Based on observational and numerical evidence, it
is safe to assume that the turbulence in such a system will be anisotropic with
k‖ � k⊥. Let us, therefore, introduce a small parameter ε ∼ k‖/k⊥ and carry out
a systematic expansion of Eqs. (16)–(19) in ε. In this expansion, the fluctuations
are treated as small, but not arbitrarily so: in order to estimate their size, we shall
adopt the critical-balance conjecture (14), which is now treated not as a detailed
scaling prescription but as an ordering assumption. This allows us to introduce the
following ordering:

δρ

ρ0
∼ u⊥
vA

∼ u‖
vA

∼ δp

p0
∼ δB⊥

B0
∼ δB‖

B0
∼ k‖
k⊥

∼ ε, (20)

where we have also assumed that the velocity and magnetic-field fluctuations have
the character of Alfvén and slow waves (δB ∼ u) and that the relative amplitudes of
the Alfvén-wave-polarised fluctuations (u⊥/vA, δB⊥/B0), slow-wave-polarised fluc-
tuations (u‖/vA, δB‖/B0) and density fluctuations (δρ/ρ0) are all the same order.7

We further assume that the characteristic frequency of the fluctuations is ω ∼ k‖vA,
which means that the fast waves, for which ω � k⊥

√
v2

A + c2s, where cs = γp0/ρ0 is
the sound speed, are ordered out.

We start by observing that the Alfvén-wave-polarised fluctuations are 2D soleno-
idal: since ∇ · u = O(ε2) [from Eq. (16)] and ∇ · B = 0, separating the O(ε) part
of these divergences gives ∇⊥ ·u⊥ = ∇⊥ · δB⊥ = 0. We may, therefore, express u⊥
and δB⊥ in terms of scalar stream (flux) functions:

u⊥ = b̂0 × ∇⊥φ,
δB⊥√
4πρ0

= b̂0 × ∇⊥ψ, (21)

where b̂0 = B0/B0. Evolution equations for φ and ψ are obtained by substituting
the expressions (21) into the perpendicular parts of the induction Eq. (19) and the

7 Strictly speaking, whether this is the case depends on the energy sources that
drive the turbulence: as we are about to see, if no slow waves are launched, none
will be present. However, it is safe to assume in astrophysical contexts that the
large-scale energy input is random and, therefore, comparable power is injected
in all types of fluctuations.
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momentum Eq. (17) — of the latter the curl is taken to annihilate the pressure term.
Keeping only the terms of the lowest order, O(ε2), we get

∂

∂t
ψ + {φ, ψ} = vA∇‖φ, (22)

∂

∂t
∇2

⊥φ+
{
φ,∇2

⊥φ
}

= vA∇‖∇2
⊥ψ +

{
ψ,∇2

⊥ψ
}
, (23)

where {φ,ψ} = b̂0 · (∇⊥φ× ∇⊥ψ) and to lowest order,

d

dt
=

∂

∂t
+ u⊥ · ∇⊥ =

∂

∂t
+ {φ, · · · } , (24)

B

B0
· ∇ = ∇‖ +

δB⊥
B0

· ∇⊥ = ∇‖ +
1

vA
{ψ, · · · } . (25)

Eqs. (22) and (23) are known as the Reduced Magnetohydrodynamics (RMHD).
They were first derived by Strauss [28] in the context of fusion plasmas. They form
a closed set, meaning that the Alfvén-wave cascade decouples from the slow waves
and density fluctuations.

In order to derive evolution equations for the latter, let us revisit the perpendic-
ular part of the momentum equation and use Eq. (20) to order terms in it. In the
lowest order, O(ε), we get the pressure balance

∇⊥

(
δp+

B0δB‖
4π

)
= 0 ⇒ δp

p0
= −γ v

2
A

c2s

δB‖
B0

. (26)

Using Eq. (26) and the entropy Eq. (18), we get

d

dt

δs

s0
= 0,

δs

s0
=
δp

p0
− γ

δρ

ρ0
= −γ

(
δρ

ρ0
+
v2

A

c2s

δB‖
B0

)
, (27)

where s0 = p0/ρ
γ
0 . On the other hand, from the continuity Eq. (16) and the parallel

component of the induction Eq. (19),

d

dt

(
δρ

ρ0
− δB‖

B0

)
+

B

B0
· ∇u‖ = 0. (28)

Combining Eqs. (27) and (28), we obtain

d

dt

δρ

ρ0
= − 1

1 + c2s/v2
A

B

B0
· ∇u‖, (29)

dδB‖
dt

=
1

1 + v2
A/c

2
s

B

B0
· ∇u‖. (30)

Finally, we take the parallel component of the momentum Eq. (17) and notice that,
due to Eq. (26) and to the smallness of the parallel gradients, the pressure term is
O(ε3), while the inertial and tension terms are O(ε2). Therefore,

du‖
dt

= v2
A

B

B0
· ∇ δB‖

B0
. (31)

Eqs. (30) and (31) describe the slow-wave-polarised fluctuations, while Eq. (27)
describes the zero-frequency entropy mode. The non-linearity in these equations
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enters via the derivatives defined in Eqs. (24), (25) and is due solely to interactions
with Alfvén waves.

Naturally, the reduced equations derived above can be cast in the Elsasser form.
If we introduce Elsasser potentials ζ± = φ± ψ, Eqs. (22) and (23) become

∂

∂t
∇2

⊥ζ
± ∓ vA∇‖∇2

⊥ζ
± = −1

2

[{
ζ+,∇2

⊥ζ
−}+

{
ζ−,∇2

⊥ζ
+
}
∓∇2

⊥
{
ζ+, ζ−

}]
.

(32)
This is the same as the perpendicular part of Eq. (5) with z±

⊥ = b̂0 × ∇⊥ζ±. The
key property that only counterpropagating Alfvén waves interact is manifest here.
For the slow-wave variables, we may introduce generalised Elsasser fields:

z±‖ = u‖ ± δB‖√
4πρ0

(
1 +

v2
A

c2s

)1/2

. (33)

Straightforwardly, the evolution equation for these fields is

∂z±‖
∂t

∓ vA√
1 + v2

A/c
2
s

∇‖z
±
‖ = −1

2

(
1 ∓ 1√

1 + v2
A/c

2
s

){
ζ+, z±‖

}

−1

2

(
1 ± 1√

1 + v2
A/c

2
s

){
ζ−, z±‖

}
. (34)

This equation reduces to the parallel part of Eq. (5) in the limit vA � cs. This
is known as the high-β limit, with the plasma beta defined by β = 8πp0/B

2
0 =

(2/γ)c2s/v
2
A. We see that only in this limit do the slow waves interact exclusively

with the counterpropagating Alfvén waves. For general β, the phase speed of the
slow waves is smaller than that of the Alfvén waves and, therefore, Alfvén waves can
“catch up” and interact with the slow waves that travel in the same direction.

In astrophysical turbulence, β tends to be moderately high8: for example, in the
interstellar medium, β ∼ 10 by order of magnitude. In the high-β limit, which is
equivalent to the incompressible approximation for the slow waves, density fluctua-
tions are due solely to the entropy mode. They decouple from the slow-wave cascade
and are passively mixed by the Alfvén-wave turbulence: dδρ/dt = 0 [Eq. (27) or Eq.
(29), cs 
 vA]. By a dimensional argument similar to K41, the spectrum of such a
field is expected to follow the spectrum of the underlying turbulence [29]: in the GS
theory, k−5/3

⊥ . It is precisely the electron-density spectrum (deduced from observa-
tions of the scintillation of radio sources due to the scattering of radio waves by the
interstellar medium) that provides the evidence of the k−5/3 scaling in the inter-
stellar turbulence [16]. The explanation of this density spectrum in terms of passive
mixing of the entropy mode, originally conjectured by Higdon [30], is developed on
the basis of the GS theory in [31].

Thus, the anisotropy and critical balance taken as ordering assumptions lead to a
neat decomposition of the MHD turbulent cascade into a decoupled Alfvén-wave cas-
cade and cascades of slow waves and entropy fluctuations passively scattered/mixed

8 The solar corona, where β ∼ 10−6, is one prominent exception.
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by the Alfvén waves.9 The validity of this decomposition and, especially, of the
RMHD Eqs. (22) and (23) turns out to extend to collisionless scales where the
MHD Eqs. (16)–(19) cannot be used: this will be briefly discussed in § 4.3.

3 Isotropic MHD turbulence

Let us now consider the case of isotropic MHD turbulence, i.e., a turbulent
plasma where no mean field is imposed externally. Can the scaling theories
reviewed above be adapted to this case? A popular view, due originally to
Kraichnan [7], is that everything remains the same with the role of the mean
field B0 now played by the magnetic fluctuations at the outer scale, δBL,
while at smaller scales, the turbulence is again a local (in scale) cascade of
Alfvénic (δul ∼ δBl) fluctuations. This picture is only plausible if the mag-
netic energy is dominated by the outer-scale fluctuations, an assumption that
does not appear to hold in the numerical simulations of forced isotropic MHD
turbulence [32]. Instead, the magnetic energy is concentrated at small scales,
where the magnetic fluctuations significantly exceed the velocity fluctuations,
with no sign of the scale-by-scale equipartition implied for an Alfvénic cas-
cade.10 These features are especially pronounced when the magnetic Prandtl
number Prm = ν/η = Rm/Re � 1, i.e., when the magnetic cutoff scale lies
below the viscous cutoff of the velocity fluctuations (Fig. 2). The numerically
more accessible case of Prm � 1, while non-asymptotic and, therefore, harder
to interpret, retains most of the features of the large-Prm regime. A handy
formula for Prm based on the Spitzer [34] values of ν and η for fully ionised
plasmas is

Prm ∼ 10−5T 4/n, (35)

where T is the temperature in Kelvin and n is the particle density in cm−3.
Eq. (35) tends to give very large values for hot diffuse astrophysical plasmas:
e.g., 1011 for the warm interstellar medium, 1029 for galaxy clusters.

Let us examine the situation in more detail. In the absence of a mean
field, all magnetic fields are generated and maintained by the turbulence itself,
9 Eqs. (27), (32), and (34) imply that, at arbitrary β, there are five conserved quan-

tities: Is = 〈|δs|2〉 (entropy fluctuations), I±⊥ = 〈|∇ζ±|2〉 (right/left-propagating
Alfvén waves), I±‖ = 〈|z±‖ |2〉 (right/left-propagating slow waves). I+

⊥ and I−⊥ are
always cascaded by interaction with each other, Is is passively mixed by I+

⊥ and
I−⊥ , I±‖ are passively scattered by I∓⊥ and, unless β 
 1, also by I±⊥ .

10 This is true for the case of forced turbulence. Simulations of the decaying case [33]
present a rather different picture: there is still no scale-by-scale equipartition but
the magnetic energy heavily dominates at the large scales – most likely due to a
large-scale force-free component controlling the decay. The difference between the
numerical results on the decaying and forced MHD turbulence points to another
break down in universality in stark contrast with the basic similarity of the two
regimes in the hydrodynamic case.
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Fig. 2. Cross sections of the absolute values of u (left panel) and B (right panel)
in the saturated state of a simulation with Re � 100, Prm = 10 (run B of Ref. [32])

i.e., isotropic MHD turbulence is the saturated state of the turbulent (small-
scale) dynamo. Therefore, we start by considering how a weak (dynamically
unimportant) magnetic field is amplified by turbulence in a large-Prm MHD
fluid and what kind of field can be produced this way.

3.1 Small-scale dynamo

Many specific deterministic flows have been studied numerically and analy-
tically and shown to be dynamos [35]. While rigorously determining whether
any given flow is a dynamo is virtually always a formidable mathematical chal-
lenge, the combination of numerical and analytical experience of the last 50
years suggests that smooth 3D flows with chaotic trajectories tend to have the
dynamo property provided the magnetic Reynolds number exceeds a certain
threshold, Rm > Rm,c ∼ 101–102. In particular, the ability of Kolmogorov
turbulence to amplify magnetic fields is a solid numerical fact first established
by Meneguzzi et al. (1981) [36] and since then confirmed in many numerical
studies with ever-increasing resolutions (most recently [32,37]). It was, in fact,
Batchelor who realised already in 1950 [38] that the growth of magnetic fluc-
tuations in a random flow should occur simply as a consequence of the random
stretching of the field lines and that it should proceed at the rate of strain
associated with the flow. In Kolmogorov turbulence, the largest rate of strain
∼δul/l is associated with the smallest scale l ∼ lν – the viscous scale, so it is
the viscous-scale motions that dominantly amplify the field (at large Prm).
Note that the velocity field at the viscous scale is random but smooth, so the
small-scale dynamo in Kolmogorov turbulence belongs to the same class as
fast dynamos in smooth single-scale flows [32, 35].
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Fig. 3. Stretching/shearing a magnetic-field line

A repeated application of random stretching/shearing to a tangled mag-
netic field produces direction reversals at arbitrarily small scales, giving rise
to a folded field structure (Fig. 3). It is an essential property of this structure
that the strength of the field and the curvature of the field lines are anticor-
related: wherever the field is growing it is relatively straight (i.e., curved only
on the scale of the flow), whereas in the bending regions, where the curvature
is large, the field is weak. A quantitative theory of the folded structure can
be constructed based on the joint statistics of the field strength B = |B| and
curvature K = b̂ · ∇b̂, where b̂ = B/B [39].11 The curvature is a quantity
easily measured in numerical simulations, which confirm the overall straight-
ness of the field and the curvature–field-strength anticorrelation [32]. At the
end of this section, we shall give a simple demonstration of the validity of the
folded structure.

The scale of the direction reversals is limited from below only by Ohmic
diffusion: for Kolmogorov turbulence, balancing the rate of strain at the vis-
cous scale with diffusion and taking Prm � 1 gives the resistive cutoff lη:

δulν/lν ∼ η/l2η ⇒ lη ∼ Pr−1/2
m lν . (36)

If random stretching gives rise to magnetic fields with reversals at the resis-
tive scale, why are these fields not eliminated by diffusion? In other words,
how is the small-scale dynamo possible? It turns out that, in 3D, there are
magnetic-field configurations that can be stretched without being destroyed
by the concurrent refinement of the reversal scale and that add up to give rise
to exponential growth of the magnetic energy. Below we give an analytical
demonstration of this. It is a (somewhat modified) version of an ingenious
argument originally proposed by Zeldovich et al. in 1984 [42]. A reader look-
ing solely for a broad qualitative picture of isotropic MHD turbulence may
skip to § 3.2.
11 This is not the only existing way of diagnosing the field structure. Ott and

co-workers studied field reversals by measuring magnetic-flux cancellations [40].
Chertkov et al. [41] considered two-point correlation functions of the magnetic
field in a model of small-scale dynamo and found large-scale correlations along
the field and short-scale correlations across.
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Fig. 4. Ya. B. Zeldovich (1914–1987). (Photo courtesy of M. Ya. Ovchinnikova.)

Overcoming diffusion. Let us study magnetic fields with reversals at subviscous
scales: at these scales, the velocity field is smooth and can, therefore, be expanded

ui(t,x) = ui(t,0) + σi
m(t)xm + . . . , (37)

where σi
m(t) is the rate-of-strain tensor. The expansion is around some reference

point x = 0. We can always go to the reference frame that moves with the velocity
at this point, so that ui(t,0) = 0. Let us seek the solution to Eq. (2) with velocity
(37) as a sum of random plane waves with time-dependent wave vectors:

Bi(t,x) =

∫
d3k0

(2π)3
B̃i(t,k0)e

ĩk(t,k0)·x, (38)

where k̃(0,k0) = k0, so B̃i(0,k0) = Bi
0(k0) is the Fourier transform of the initial

field. Since Eq. (2) is linear, it is sufficient to ensure that each of the plane waves is
individually a solution. This leads to two ordinary differential equations for every
k0:

∂tB̃
i = σi

mB̃
m − ηk̃2B̃i, ∂tk̃l = −σi

l k̃i, (39)

subject to initial conditions B̃i(0,k0) = Bi
0(k0) and k̃l(0,k0) = k0l. The solution of

these equations can be written explicitly in terms of the Lagragian transformation
of variables x0 → x(t,x0), where

∂tx
i(t,x0) = ui(t,x(t,x0)) = σi

m(t)xm(t,x0), xi(0,x0) = xi
0. (40)

Because of the linearity of the velocity field, the strain tensor ∂xi/∂xm
0 and its

inverse ∂xr
0/∂x

l are functions of time only. At t = 0, they are unit matrices. At
t > 0, they satisfy

∂t
∂xi

∂xm
0

= σi
l
∂xl

∂xm
0

, ∂t
∂xr

0

∂xl
= −σi

l
∂xr

∂xi
0

. (41)
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We can check by direct substitution that

B̃i(t,k0) =
∂xi

∂xm
0

Bm
0 (k0) exp

[
−η
∫ t

0

dt′k̃2(t′)

]
, k̃l(t,k0) =

∂xr
0

∂xl
k0r . (42)

These formulae express the evolution of one mode in the integral (38). Using the
fact that det(∂xr

0/∂x
l) = 1 in an incompressible flow and that Eq. (42) therefore

establishes a one-to-one correspondence k ↔ k0, it is easy to prove that the volume-
integrated magnetic energy is the sum of the energies of individual modes:

〈B2〉(t) ≡
∫
d3x |B(t,x)|2 =

∫
d3k0

(2π)3
|B̃(t,k0)|2. (43)

From Eq. (42),

|B̃(t,k0)|2 = B0(k0) · M̂(t) · B∗
0(k0) exp

[
−2η

∫ t

0

dt′ k0 · M̂−1(t′) · k0

]
, (44)

where the matrices M̂ and M̂−1 have elements defined by

Mmn(t) =
∂xi

∂xm
0

∂xi

∂xn
0

and Mrs(t) =
∂xr

0

∂xl

∂xs
0

∂xl
, (45)

respectively. They are the co- and contravariant metric tensors of the inverse
Lagrangian transformation x → x0.

Let us consider the simplest possible case of a flow (37) with constant σ̂ =
diag {λ1, λ2, λ3}, where λ1 > λ2 ≥ 0 > λ3 and λ1 +λ2 +λ3 = 0 by incompressibility.
Then M̂ = diag

{
e2λ1t, e2λ2t, e2λ3t

}
and Eq. (44) becomes, in the limit t→ ∞,

|B̃(t,k0)|2 ∼ |B1
0(k0)|2 exp

[
2λ1t− η

(
k2
01

λ1
+
k2
02

λ2
+
k2
03

|λ3| e
2|λ3|t

)]
, (46)

where we have dropped terms that decay exponentially with time compared to those
retained.12 We see that for most k0, the corresponding modes decay superexponen-
tially fast with time. The domain in the k0 space containing modes that are not
exponentially small at any given time t is given by

k2
01

λ2
1t/η

+
k2
02

λ1λ2t/η
+

k2
03

λ1|λ3|te2λ3t/η
< const. (47)

The volume of this domain at time t is ∼ λ2
1(λ2|λ3|)1/2(t/η)3/2eλ3t. Within this

volume, |B̃(t,k0)|2 ∼ |B1
0(k0)|2e2λ1t. Using λ3 = −λ1 − λ2 and Eq. (43), we get

〈B2〉(t) ∝ exp [(λ1 − λ2)t] . (48)

12 If λ2 = 0, k2
02/λ2 in Eq. (46) is replaced with 2k2

02t. The case λ2 < 0 is treated in
a way similar to that described below and also leads to magnetic-energy growth.
The difference is that for λ2 ≥ 0, the magnetic structures are flux sheets, or
ribbons, while for λ2 < 0, they are flux ropes.
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Fig. 5. Magnetic fields vs. the Lyapunov directions. (From [32].) Zeldovich et al. [42]
did not give this exact interpretation of their calculation because the folded structure
of the field was not yet clearly understood at the time

Let us discuss the physics behind the Zeldovich et al. calculation sketched above.
When the magnetic field is stretched by the flow, it naturally aligns with the stretch-
ing Lyapunov direction: B ∼ ê1B

1
0e

λ1t. The wave vector k has a tendency to align
with the compression direction: k ∼ ê3k03e

|λ3|t, which makes most modes decay
superexponentially. The only ones that survive are those whose k0’s were nearly
perpendicular to ê3, with the permitted angular deviation from 90◦ decaying expo-
nentially in time ∼e−|λ3|t. Since the magnetic field is solenoidal, B0 ⊥ k0, the modes
that get stretched the most have B0 ‖ ê1 and k0 ‖ ê2 (Fig. 5). In contrast, in 2D,
the field aligns with ê1 and must, therefore, reverse along ê2, which is always the
compression direction (Fig. 5), so the stretching is always overwhelmed by the dif-
fusion and no dynamo is possible (as should be the case according to the rigorous
early result of Zeldovich [43]).

The above construction can be generalised to time-dependent and random veloc-
ity fields. The matrix M̂ is symmetric and can, therefore, be diagonalised by an
appropriate rotation R̂ of the coordinate system: M̂ = R̂T · L̂ · R̂, where, by def-
inition, L̂ = diag

{
eζ1(t), eζ2(t), eζ3(t)

}
. It is possible to prove that, as t → ∞,

R̂(t) → {ê1, ê2, ê3} and ζi(t)/2t → λi, where êi are constant orthogonal unit vec-
tors, which make up the Lyapunov basis, and λi are the Lyapunov exponents of
the flow [44]. The instantaneous values of ζi(t)/2t are called finite-time Lyapunov
exponents. For a random flow, ζi(t) are random functions. Eq. (48) generalises to

〈B2〉(t) ∝ exp [(ζ1 − ζ2)/2], (49)

where the overline means averaging over the distribution of ζi. The only random
flow for which this distribution is known is a Gaussian white-in-time velocity first
considered in the dynamo context in 1967 by Kazantsev [45].13 The distribution of
ζi for this flow is Gaussian in the long-time limit and Eq. (49) gives 〈B2〉 ∝ e(5/4)λ1t,

13 As the only analytically solvable model of random advection, Kazantsev’s model
has played a crucial role. Developed extensively in 1980s by Zeldovich and
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where λ1 = 〈ζ1〉/2t [41]. For Kazantsev’s velocity, it is also possible to calculate the
magnetic-energy spectrum [45,49], which is the spectrum of the direction reversals.
It has a peak at the resistive scale and a k+3/2 power law stretching across the sub-
viscous range, l−1

ν � k � l−1
η . This scaling appears to be corroborated by numerical

simulations [32,37].

Folded structure revisited. We shall now give a very simple demonstration that
linear stretching does indeed produce folded fields with straight/curved field lines
corresponding to larger/smaller field strength. Using Eq. (2), we can write evolution
equations for the field strength B = |B|, the field direction b̂ = B/B and the
field-line curvature K = b̂ · ∇b̂. Omitting the resistive terms,

dB

dt
=
(
b̂b̂ : ∇u

)
B, (50)

db̂

dt
= b̂ ·

(∇u
)
·
(̂
I − b̂b̂

)
, (51)

dK

dt
= K ·

(
∇u
)
·
(̂
I − b̂b̂

)
− 2(b̂b̂ : ∇u)K −

[
b̂ ·
(
∇u
)
· K
]
b̂

+b̂b̂ :
(∇∇u

)
·
(̂
I − b̂b̂

)
. (52)

For simplicity, we again use the velocity field (37) with constant σ̂ = diag {λ1, λ2, λ3}.
Then the stable fixed point of Eq. (50) in the comoving frame is b̂ = ê1 (magnetic
field aligns with the principal stretching direction), whence B ∝ eλ1t. Since K·b̂ = 0,
we set K1 = 0. Denoting Σ = b̂b̂ : ∇∇u, we can now write Eq. (52) as

dK2

dt
= −
(
2λ1 − λ2

)
K2 +Σ2,

dK3

dt
= −
(
3λ1 + λ2

)
K3 +Σ3. (53)

Both components of K decay exponentially,14 until they are comparable to the
inverse scale of the velocity field (i.e., the terms containing ∇∇u become important).
The stationary solution is K2 = Σ2/(2λ1 − λ2), K3 = Σ3/(3λ1 + λ2).

If the field is to reverse direction, it must turn somewhere (see Fig. 3). At such
a turning point, the field must be perpendicular to the stretching direction. Setting
b1 = 0, we find two fixed points of Eq. (50) under this condition: b̂ = ê2 and b̂ = ê3.
Only the former is stable, so the field at the turning point will tend to align with
the “null” direction. Thus, stretching favours configurations with field reversals along
the “null” direction, which are also those that survive diffusion (see Fig. 5). From
Eq. (52) we find that at the turning point, K2 = 0, K3 = Σ3/(λ1 + 3λ2), while K1

grows at the rate λ1 − 2λ2 (assumed positive). This growth continues until limited

co-workers [46], the model became a tool of choice in the theories of anomalous
scaling and intermittency that flourished in 1990s [47] (in this context, it has been
associated with the name of Kraichnan who, independently from Kazantsev, pro-
posed to use it for the passive scalar problem [48]). It remains useful to this day
as old theories are reevaluated and new questions demand analytical answers [39].

14 K3 decays faster than K2. If the velocity is exactly linear (Σ = 0), K aligns
with ê2 and decreases indefinitely, while the combination BK1/(2−λ2/λ1) stays
constant. This rhymes with the result that can be proven for a linear Kazantsev
velocity: at zero η, B ∝ eζ1/2, while BK1/2 ∝ eζ2/4 and λ2 = 〈ζ2〉/2t = 0.
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A. Schlüter L. Biermann (1907–1986)

Fig. 6. Photo of A. Schlüter courtesy of MPI für Plasmaphysik; photo
of L. Biermann courtesy of Max-Planck-Gesellschaft/AIP Emilio Segrè Visual
Archives. Photo of G.K. Batchelor may be found in H.K. Moffatt’s contribution
to this volume

by diffusion at K ∼ 1/lη . The strength of the field in this curved region is ∝ eλ2t,
so the fields are weaker than in the straight segments, where B ∝ eλ1t.

When the problem is solved for the Kazantsev velocity, the above solution gener-
alises to a field of random curvatures anticorrelated with the magnetic-field strength
and with a stationary PDF of K that has a peak at K ∼ flow scale−1 and a power
tail ∼K−13/7 describing the distribution of curvatures at the turning points [39].
Numerical simulations support these results [32].

3.2 Saturation of the dynamo

The small-scale dynamo gave us exponentially growing magnetic fields with
energy concentrated at small (resistive) scales. How is the growth of magnetic
energy saturated and what is the final state? Will magnetic energy stay at
small scales or will it proceed to scale-by-scale equipartition via some form of
inverse cascade? This basic dichotomy dates back to the 1950 papers by Batch-
elor [38] and Schlüter and Biermann [50]. Batchelor thought that magnetic
field was basically analogous to the vorticity field ω = ∇ × u (which satisfies
the same Eq. (2) except for the difference between η and ν) and would, there-
fore, saturate at a low energy, 〈B2〉 ∼ Re−1/2〈u2〉, with a spectrum peaked
at the viscous scale. Schlüter and Biermann disagreed and argued that the
saturated state would be a scale-by-scale balance between the Lorentz and
inertial forces, with turbulent motions at each scale giving rise to magnetic
fluctuations of matching energy at the same scale. Schlüter and Biermann’s
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argument (and, implicitly, also Batchelor’s) was based on the assumption of
locality of interaction (in scale space) between the magnetic and veloc-
ity fields: locality both of the dynamo action and of the back reaction. As
we saw in the previous section, this assumption is certainly incorrect for the
dynamo: a linear velocity field, i.e., a velocity field of a formally infinitely large
(in practice, viscous) scale can produce magnetic fields with reversals at the
smallest scale allowed by diffusion. A key implication of the folded structure
of these fields concerns the Lorentz force, the essential part of which, in the
case of incompressible flow, is the curvature force B2K. Since it is a quantity
that depends only on the parallel gradient of the magnetic field and does not
know about direction reversals, it will possess a degree of velocity-scale spa-
tial coherence necessary to oppose stretching. Thus, a field that is formally at
the resistive scale will exert a back reaction at the scale of the velocity field.
In other words, interactions are nonlocal: a random flow at a given scale l,
having amplified the magnetic fields at the resistive scale lη � l, will see
these magnetic fields back react at the scale l. Given the nonlocality of back
reaction, we can update Batchelor’s and Schlüter and Biermann’s scenarios
for saturation in the following way [32, 51].

The magnetic energy is amplified by the viscous-scale motions until the
field is strong enough to resist stretching, i.e., until B·∇B ∼ u·∇u ∼ δu2

lν
/lν .

Since B · ∇B ∼ B2K ∼ B2/lν (folded field), this happens when

〈B2〉 ∼ δu2
lν ∼ Re−1/2〈u2〉. (54)

Let us suppose that the viscous motions are suppressed by the back reaction,
at least in their ability to amplify the field. Then the motions at larger scales in
the inertial range come into play: while their rates of strain and, therefore, the
associated stretching rates are smaller than that of the viscous-scale motions,
they are more energetic [see Eq. (4)], so the magnetic field is too weak to resist
being stretched by them. As the field continues to grow, it will suppress the
motions at ever larger scales. If we define a stretching scale ls(t) as the scale
of the motions whose energy is δuls ∼ 〈B2〉(t), we can estimate

d

dt
〈B2〉 ∼ δuls

ls
〈B2〉 ∼

δu3
ls

ls
∼ ε = const ⇒ 〈B2〉(t) ∼ εt. (55)

Thus, exponential growth gives way to secular growth of the magnetic energy.
This is accompanied by elongation of the folds (their length is always of
the order of the stretching scale, l‖ ∼ ls), while the resistive (reversal) scale
increases because the stretching rate goes down:

l‖(t) ∼ ls(t) ∼ δu3
ls/ε ∼

√
ε t3/2, lη(t) ∼ [η/(δuls/ls)]

1/2 ∼
√
ηt. (56)

This secular stage can continue until the entire inertial range is suppressed,
ls ∼ L, at which point saturation must occur. This happens after t ∼
ε−1/3L2/3 ∼ L/δuL. Using Eqs. (55), (56), we have, in saturation,

〈B2〉 ∼ 〈u2〉, l‖ ∼ L, lη ∼ [η/(δuL/L)]1/2 ∼ R−1/2
m L. (57)



Turbulence and Magnetic Fields in Astrophysical Plasmas 105

Fig. 7. Alfvén waves propagating along folded fields. (From [51].)

Comparing Eqs. (57) and (36), we see that the resistive scale has increased only
by a factor ofRe1/4 over its value in the weak-field growth stage. Note that this
imposes a very stringent requirement on any numerical experiment striving
to distinguish between the viscous and resistive scales: Prm � Re1/2 � 1.

If, as in the above scenario, the magnetic field retains its folded struc-
ture in saturation, with direction reversals at the resistive scale, this explains
qualitatively why the numerical simulations of the developed isotropic MHD
turbulence with Prm ≥ 1 [32] show the magnetic-energy pile-up at the small
scales. What then is the saturated state of the turbulent velocity field? We
assumed above that the inertial-range motions were “suppressed” – this applied
to their ability to amplify magnetic field, but needed not imply a complete
evacuation of the inertial range. Indeed, simulations at modest Prm show a
powerlike velocity spectrum [32, 37]. The most obvious class of motions that
can populate the inertial range without affecting the magnetic-field strength
are a type of Alfvén waves that propagate not along a mean (or large-scale)
magnetic field but along the folded structure (Fig. 7). Mathematically, the
dispersion relation for such waves is derived via a linear theory carried out
for the inertial-range perturbations (L−1 � k � l−1

ν ) of the tensor BiBj

(cf. [52]). The unperturbed state is the average of this tensor over the sub-
viscous scales: 〈BiBj〉 = b̂ib̂j〈B2〉, where 〈B2〉 is the total magnetic energy
and the tensor b̂ib̂j only varies at the outer scale L [Eq. (57)]. The resulting
dispersion relation is ω = ±|k · b̂|〈B2〉1/2 [51]. The presence of these waves
will not change the resistive-scale-dominated nature of the magnetic-energy
spectrum, but should be manifest in the kinetic-energy spectrum. There is,
at present, no theory of a cascade of such waves, although a line of argument
similar to § 2 might work, since it does not depend on the field having a spe-
cific direction. A numerical detection of these waves is also a challenge for the
future.

What we have proposed above can be thought of as a modernised version
of the Schlüter and Biermann scenario, retaining the intermediate secular-
growth stage and saturation with 〈B2〉 ∼ 〈u2〉, but not scale-by-scale equipar-
tition. However, an alternative possibility, which is in a similar relationship
to Batchelor’s scenario, can also be envisioned. In Eqs. (55), (56), the scale lη
at which diffusion cuts off the small-scale magnetic fluctuations was assumed
to be determined by the stretching rate δuls/ls. However, since the non-linear
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suppression of the viscous-scale eddies only needs to eliminate motions with
b̂b̂ : ∇u 
= 0 [Eq. (50)], 2D “interchange” motions (velocity gradients ⊥ b̂)
are, in principle, allowed to survive at the viscous scale. These could “two-
dimensionally” mix the direction-reversing magnetic fields at the rate δulν/lν –
much faster than the unsuppressed larger-scale stretching can amplify the
field, – with the consequence that the resistive scale is pinned at the value
given by Eq. (36) and the field cannot grow above the Batchelor limit (54). The
mixing efficiency of the suppressed motions is the key to choosing between the
two saturation scenarios. Numerical simulations [32] corroborate the existence
of an intermediate stage of slower-than-exponential growth accompanied by
fold elongation and a modest increase of the resistive scale [Eq. (56)]. This tips
the scales in favour of the first scenario, but, in view of limited resolutions,
we hesitate to declare the matter definitively resolved.

3.3 Turbulence and magnetic fields in galaxy clusters

The intracluster medium (hereafter, ICM) is a hot (T ∼ 108 K) diffuse
(n ∼ 10−2–10−3 cm−3) fully ionised plasma, which accounts for most of the
luminous matter in the Universe (note that it is not entirely dissimilar from
the ionised phases of the interstellar medium: e.g., the so-called hot ISM).
It is a natural astrophysical environment to which the large-Prm isotropic
regime of MHD turbulence appears to be applicable: indeed, Eq. (35) gives
Prm ∼ 1029.

The ICM is believed to be in a state of turbulence driven by a variety
of mechanisms: merger events, galactic and subcluster wakes, active galac-
tic nuclei. One expects the outer scale L ∼ 102–103 kpc and the velocity
dispersions δuL ∼ 102–103 km/s (a fraction of the sound speed). Indirect
observational evidence supporting the possibility of a turbulent ICM with
roughly these parameters already exists (an apparently powerlike spectrum
of pressure fluctuations found in the Coma cluster [53], broadened abundance
profiles in Perseus believed to be caused by turbulent diffusion [54]), and
direct detection may be achieved in the near future [55]. However, there is as
yet no consensus on whether turbulence, at least in the usual hydrodynamic
sense, is a generic feature of clusters [56]. The main difficulty is the very large
values of the ICM viscosity obtained via the standard estimate ν ∼ vth,iλmfp,
where vth,i ∼ 103 km/s is the ion thermal speed and λmfp ∼ 1–10 kpc is the
ion mean free path. This gives Re ∼ 102 if not less, which makes the exis-
tence of a well-developed inertial range problematic. Postponing the problem
of viscosity until § 4, we observe that the small-scale dynamo does not, in
fact, require a turbulent velocity field in the sense of a broad inertial range:
in the weak-field regime discussed in § 3.1, the dynamo was controlled by the
smooth single-scale random flow associated with the viscous-scale motions;
in saturation, we argued in § 3.2 that the main effect was the direct nonlocal
interaction between the outer-scale (random) motions and the magnetic field.
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Given the available menu of large-scale stirring mechanisms in clusters, it is
likely that, whatever the value of Re, the velocity field is random.15

The cluster turbulence is certainly magnetic. The presence of magnetic
fields was first demonstrated for the Coma cluster, for which Willson detected
in 1970 a diffuse synchrotron radio emission [57] and Kim et al. in 1990 were
able to estimate directly the magnetic-field strength and scale using the Fara-
day rotation measure (RM) data [58]. Such observations of magnetic fields in
clusters have now become a vibrant area of astronomy (reviewed most recently
in [59]), usually reporting a field B ∼1–10 µG at scales ∼1–10 kpc [60].16 All
of this field is small-scale fluctuations: no appreciable mean component has
been detected. The field is dynamically significant: the magnetic energy is less
but not much less than the kinetic energy of the turbulent motions.

Do clusters fit the theoretical expectations reviewed above? The magnetic-
field scale seen in clusters is usually 10–100 times smaller than the expected
outer scale of turbulent motions and, indeed, is also smaller than the viscous
scale based on Re ∼ 102. However, it is certainly far above the resistive scale,
which turns out be lη ∼ 103–104 km! Faced with these numbers, we must
suspend the discussion of cluster physics and finally take account of the fact
that astrophysical bodies are made of plasma, not of an MHD fluid.

4 Enter plasma physics

4.1 Braginskii viscosity

In all of the above, we have used the MHD Eqs. (1) and (2) to develop turbu-
lence theories supposed to be relevant for astrophysical plasmas. Historically,
such has been the approach followed in most of the astrophysical literature.
The philosophy underpinning this approach is again that of universality: the
“microphysics” at and below the dissipation scale are not expected to matter
for the fluid-like dynamics at larger scales. However, in considering the MHD
turbulence with large Prm, we saw that dissipation scales, determined by the
values of the viscosity ν and magnetic diffusivity η, played a very prominent
role: the growth of the small-scale magnetic fields was controlled by the tur-
bulent rate of strain at the viscous scale and resulted in the magnetic energy
piling up, in the form of direction-reversing folded fields, at the resistive scale
– both in the growth and saturation stages of the dynamo. It is then natural
to revisit the question of whether the Laplacian diffusion terms in Eqs. (1),
(2) are a good description of the dissipation in astrophysical plasmas.

15 Numerical simulations of the large-Prm regime at currently accessible resolutions
also rely on a random forcing to produce “turbulence” with Re ∼ 1–102 [32,37].

16 Because of the availability of the RM maps from extended radio sources in clus-
ters, it is possible to go beyond field-strength and scale estimates and construct
magnetic-energy spectra with spatial resolution of ∼0.1 kpc [61].
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The answer to this question is, of course, that they are not. A necessary
assumption in the derivation of these terms is that the ion cyclotron frequency
Ωi = eB/mic exceeds the ion–ion collision frequency νii or, equivalently, the
ion gyroradius ρi = vth,i/Ωi exceeds the mean free path λmfp = vth,i/νii. This
is patently not the case in many astrophysical plasmas: for example, in galaxy
clusters, λmfp ∼ 1–10 kpc, while ρi ∼ 104 km. In such a weakly collisional
magnetised plasma, the momentum Eq. (1) assumes the following form, valid
at spatial scales � ρi and at timescales � Ω−1

i ,

du
dt

= −∇
(
p⊥ +

B2

2

)
+ ∇ ·

[
b̂b̂(p⊥ − p‖ +B2)

]
+ f , (58)

where p⊥ and p‖ are plasma pressures perpendicular and parallel to the local
direction of the magnetic field, respectively, and we have used B · ∇B =
∇ ·(b̂b̂B2). The evolution of the magnetic field is controlled by the electrons –
the field remains frozen into the flow and we may use Eq. (2) with η = 0.

If we are interested in subsonic motions, ∇(p⊥ +B2/2) in Eq. (58) can be
found from the incompressibility condition ∇ · u = 0 and the only quantity
still to be determined is p⊥− p‖. The proper way to compute it is by a rather
lengthy kinetic calculation due to Braginskii [62], which cannot be repeated
here. The result of this calculation can, however, be obtained in the following
heuristic way [63].

The fundamental property of charged particles moving in a magnetic field
is the conservation of the first adiabatic invariant µ = miv

2
⊥/2B.17 When

λmfp � ρi, this conservation is only weakly broken by collisions. As long as µ
is conserved, any change in B must be accompanied by a proportional change
in p⊥. Thus, the emergence of the pressure anisotropy is a natural consequence
of the changes in the magnetic-field strength and vice versa: indeed, summing
up the first adiabatic invariants of all particles, we get p⊥/B = constant. Then

1
p⊥

dp⊥
dt

=
1
B

dB

dt
− νii

p⊥ − p‖
p⊥

, (59)

where the second term on the right-hand sight represents the collisional relax-
ation of the pressure anisotropy p⊥ − p‖ at the rate νii ∼ vth,i/λmfp.18 Using
Eq. (50) for B and balancing the terms in the rhs of Eq. (59), we get

p⊥ − p‖ = ν‖
1
B

dB

dt
= ν‖b̂b̂ : ∇u, (60)

where ν‖ ∼ p/νii ∼ vth,iλmfp is the “parallel viscosity”. This equation turns
out to be exact [62] up to numerical prefactors in the definition of ν‖.
17 It may be helpful to the reader to think of this property as the conservation of

the angular momentum of a gyrating particle: miv⊥ρi ∝ miv
2
⊥/B = 2 µ.

18 This is only valid if the characteristic parallel scales k−1
‖ of all fields are larger than

λmfp. In the collisionless regime, k‖λmfp 
 1, we may assume that the pressure
anisotropy is relaxed in the time particles streaming along the field cover the
distance k−1

‖ : this entails replacing νii in Eq. (59) by k‖vth,i.
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The energy conservation law based on Eqs. (58) and (2) is

d

dt

(
〈u2〉
2

+
〈B2〉

2

)
= ε− ν‖

〈
|b̂b̂ : ∇u|2

〉
= ε− ν‖

〈(
1
B

dB

dt

)2
〉
, (61)

where Ohmic diffusion has been omitted. Thus, the Braginskii viscosity only
dissipates such velocity gradients that change the strength of the magnetic
field. The motions that do not affect B are allowed to exist in the subviscous
scale range. In the weak-field regime, these motions take the form of plasma
instabilities. When the magnetic field is strong, a cascade of shear-Alfvén
waves can be set up below the viscous scale. Let us elaborate.

4.2 Plasma instabilities

The simplest way to see that the pressure anisotropy in Eq. (58) leads to
instabilities is as follows [63]. Imagine a “fluid” solution with u, p⊥, p‖, B
changing on viscous time and spatial scales, t ∼ |∇u|−1 ∼ lν/δulν and l ∼ lν .
Would such a solution be stable with respect to fast (ω � |∇u|−1) small-scale
(k � l−1

ν ) perturbations? Linearising Eq. (58) and denoting perturbations by
δ, we get

−iωδu = −ik (δp⊥ +BδB) +
(
p⊥ − p‖ +B2

)
δK

+ ib̂k‖
[
δp⊥ − δp‖ −

(
p⊥ − p‖ −B2

)
δB/B

]
, (62)

where the perturbation of the field curvature is δK = k2
‖δu⊥/iω [see Eq. (52)].

We see that regardless of the origin of the pressure anisotropy, the shear-
Alfvén-polarised perturbations (δu ∝ k × b̂) have the dispersion relation

ω = ±k‖
(
p⊥ − p‖ +B2

)1/2
. (63)

When p‖ − p⊥ > B2, ω is purely imaginary and we have what is known
as the firehose instability [64–67]. The growth rate of the instability is ∝ k‖,
which means that the fastest-growing perturbations will be at scales far below
the viscous scale or, indeed, the mean free path. Therefore, adopting the
Braginskii viscosity [Eq. (60)] exposes a fundamental problem with the use
of the MHD approximation for fully ionised plasmas: the equations are ill
posed wherever p‖ − p⊥ > B2. To take into account the instability and its
impact on the large-scale dynamics, the fluid equations must be abandoned
and a kinetic description adopted. A linear kinetic calculation shows that the
instability growth rate peaks at k‖ρi ∼ 1, so the fluctuations grow fastest at
the ion gyroscale. While the firehose instability occurs in regions where the
velocity field leads to a decrease in the magnetic-field strength [Eq. (60)], a
kinetic calculation of the pressure perturbations in Eq. (62) shows that another
instability, called the mirror mode [66], is triggered wherever the field increases
(p⊥ > p‖). Its growth rate is also ∝ k‖ and peaks at the ion gyroscale.



110 A.A. Schekochihin and S.C. Cowley

In weakly collisional astrophysical plasmas such as the ICM, the random
motions produced by the large-scale stirring will stretch and fold magnetic
fields, giving rise to regions both of increasing and decreasing field strength
(§ 3.1). The instabilities should, therefore, be present in weak-field regions
where |p‖ − p⊥| > B2 and, since their growth rates are much larger than
the fluid rates of strain, their growth and saturation should have a profound
effect on the structure of the turbulence. A quantitative theory of what exactly
happens is not as yet available, but one might plausibly expect that the fluctu-
ations excited by the instabilities will lead to some effective renormalisation of
both the viscosity and the magnetic diffusivity. A successful theory of turbu-
lence in clusters requires a quantitative calculation of this effective transport.
In particular, this should resolve the uncertainties around the ICM viscosity
and produce a prediction of the magnetic-field scale to be compared with the
observed values reviewed in § 3.3.

In the solar wind, the plasma is magnetised (ρi ∼ 102 km), while collisions
are virtually absent: the mean free path exceeds the distance from the Sun
(108 km). Ion pressure (temperature) anisotropies with respect to the field
direction were directly measured in 1970s [68, 69]. As was first suggested by
Parker [66], firehose and mirror instabilities (as well as several others) should
play a major, although not entirely understood role [70]. A vast geophysical
literature now exists on this subject, which cannot be reviewed here.

4.3 Kinetic turbulence

The instabilities are quenched when the magnetic field is sufficiently strong:
B2 overwhelms p⊥− p‖ in the second term on the right-hand side of Eq. (58).
If we use the collisional estimate (60), this happens when

B2 � ν‖δulν/lν ∼ Re−1/2δu2
L. (64)

The firehose-unstable perturbations become Alfvén waves in this limit. In
the strong-field regime (δB � B0), the appropriate mathematical description
of the weakly collisional turbulence of Alfvén waves is the low-frequency limit
of the plasma kinetic theory called the gyrokinetics [71, 72].19 It is obtained
under an ordering scheme that stipulates

k⊥ρi ∼ 1, ω/Ωi ∼ k‖/k⊥ ∼ δu/vA ∼ δB/B0 � 1. (65)

The second relation in Eq. (65) coincides with the GS critical-balance conjec-
ture (14) if the latter is treated as an ordering assumption. The gyrokinetics
can be cast as a systematic expansion of the full kinetic description of the

19 While originally developed and widely used for fusion plasmas, this “kinetic-fluid”
description has only recently started to be applied to astrophysical problems such
as the relative heating of ions and electrons by Alfvénic turbulence in advection-
dominated accretion flows [1].
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plasma in the small parameter ε ∼ k‖/k⊥ – the direct generalisation of the
similar expansion of MHD equations given at the end of § 2.4. It turns out that
the decoupling of the Alfvén-wave cascade that we demonstrated there is also a
property of the gyrokinetics and that this cascade is correctly described by the
RMHD Eq. (22) and (23) all the way down to the ion gyroscale, k⊥ρi ∼ 1 [72].
Broad fluctuation spectra observed in the solar wind [11] and in the ISM [16]
are likely to be manifestations of just such a cascade. The slow waves and
the entropy mode are passively mixed by the Alfvén-wave cascade, but Eqs.
(29)–(31) have to be replaced by a kinetic equation.

When magnetic fields are not stronger than the turbulent motions – as is
the case for clusters, where the magnetic energy is, in fact, quite close to the
threshold (64) – the situation is more complicated and much more obscure
because small-scale dynamo (§ 3.1), back reaction (§ 3.2), plasma instabilities
(in weak-field regions such as, for example, the bending regions of the folded
fields, § 3.1), and Alfvén waves (possibly of the kind discussed in § 3.2) all
enter into the mix and remain to be sorted out.

5 Conclusion

We conclude here, in the hope that we have provided the reader with a fair
overview of the state of affairs to which the MHD turbulence theory has arrived
after its first 50 years. Perhaps, despite much insight gained along the way, not
very far. It is clear that a simple extension of Kolmogorov’s theory has so far
proven unattainable. Two of the key assumptions of that theory – isotropy
and locality of interactions – are manifestly incorrect for MHD. Indeed,
even the applicability of the fundamental principle of small-scale universality is
suspect. Although a fair amount is known about Alfvénic turbulence, progress
in answering many important astrophysical questions (see the Introduction)
has been elusive because there is little knowledge of the general spectral and
structural properties of the fully developed turbulence in an MHD fluid and,
more generally, in magnetised weakly collisional or collisionless plasmas. Thus,
while many unanswered questions demand further effort on MHD turbulence,
there is also an imperative, mandated by astrophysical applications, to go
beyond the fluid description.
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Summary. Some researches are described concerning early work on the transient
self-magnetic “pinch effect” in plasmas at both high and low pressures. Theoretical
work motivated by interest in shock waves led to the discovery in 1958 of solitary
waves in plasma physics, they were later to become known as solitons.

1 Magnetohydrodynamics and plasma physics

I am not at all sure whether I am well qualified to be an invited contributor
to this volume on “Magnetohydrodynamics: Historical Evolution and Trends”;
this is because most of my work has been in Plasma Physics rather than the
magnetohydrodynamics of liquids. The two subjects are, of course, closely
related, mainly because both depend on Maxwell’s equations; MHD can be
defined as the branch of continuum mechanics that deals with the motion of
an electrically conducting fluid in the presence of a magnetic field. The usual
approach employs the simplest (isotropic) form of Ohm’s Law in which the
current is in the direction of the electric field. This is valid because the Hall
parameter (ωτ) is much less than unity in a liquid, where ω is the electron
gyrofrequency and τ is the mean free time between collisions. The displace-
ment current is neglected. Neither of these assumptions is generally true in
a plasma. In MHD the model of an infinitely conducting fluid is sometimes
employed, this leads to the concept of “frozen-in” magnetic lines of force as
pioneered by Alfvén. The concept is analogous to Kelvin’s theorem in fluid
mechanics, which applies in the case of negligible viscosity.

Research workers in Plasma Physics employ three different models to
describe a plasma; mixed models are also used. The simplest model is to
consider the plasma as an electrically conducting fluid and again the perfect
conductor is sometimes invoked. More accurately it can be considered as two
(or more) fluids coexisting in space. Quite often the ion fluid is considered
to be cold whereas the electron fluid is always considered to be hot. The
terms “electron temperature” and “ion temperature” are employed, although

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
117–127. c© 2007 Springer.
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the system is very rarely in a state of thermal equilibrium for which the term
“temperature” is normally defined. More detailed study of plasmas is based
on kinetic theory; new phenomena, such as wave damping in the absence of
collisions are then encountered (Landau damping), which lie beyond the reach
of fluid mechanics and our fluid models have to be abandoned.

In this chapter I shall describe some of the experimental and theoretical
work on plasmas that I was involved in during the 1950s and 1960s. The first
two plasma models briefly described above were employed in the theoretical
work, although the “two-fluid” case was restricted to cold fluids.

2 Research at the University of Liverpool

Plasma Physics is, of course, related to research on controlled thermonuclear
reactions (fusion). In the United Kingdom research on fusion began, not in
Government Laboratories, but in the Universities. Shortly after World War II
research groups were engaged in this activity at Liverpool (J.D.Craggs), Impe-
rial College (G.P.Thomson), and Oxford (P.C.Thonemann). The experiments
at that time were based on the self-magnetic “pinch -effect”, i.e., the tendency
of a plasma column carrying a high current to be constricted by the inwardly
directed j × B force. It is not generally known that one of the first attempts
to produce a thermonuclear reaction in the laboratory was carried out in the
late 1940s at Liverpool University when Reynolds and Craggs employed a high
current spark discharge, of about 300 kA in deuterium at atmospheric pres-
sure. The experiment gave a negative result in that no neutrons were detected,
but Professor Skinner later persuaded the authors to publish their work [1].

Fig. 1. The high current generator viewed from above. The arrangement of con-
nections can be clearly seen [2]. To fix the scale, the top of each capacitor measured
approximately 50 cm× 30 cm
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Fig. 2. Symmetrical 188 kA spark in hydrogen; mirror speed 238 rev/s [3]

As a Ph.D. student at Liverpool University I later (1949) inherited the capac-
itor bank [2] shown in Fig. 1; it consisted of 114 0·5 µF 25kV capacitors (then
known as condensers) stacked in 19 columns. After altering the central spark
chamber assembly, I carried out research on high current spark channels in
various gases [3]. The highest current in these experiments was 265 kA and it
reached its maximum value after 7.7 µs. Fig. 2 shows a streak photograph of
a 188kA spark in hydrogen, the radius of the core at the current maximum
was 0.55 cm. This value, together with measurements of the voltage gradient
in the channel, gave an electron temperature of 94,000 K, assuming that the
conductivity depended on collisions between electrons and ions. This tem-
perature is much lower than that required for a thermonuclear reaction (in
deuterium). An estimate of the pressure at the centre of the discharge, based
on a steady-state calculation, gave a value of 370 atmospheres.

I shall now digress and refer to the first paper that I have found referring
to the “pinch effect”. In 1907 Northrup [4] carried out experiments in which he
passed current through liquid mercury and observed the pressure difference
existing between the axis and the outer edge of the column. This effect resulted
from the j× B force associated with the self-magnetic field. The apparatus
employed by Northrup is shown in Fig. 3; it is seen that he summed a number
of such pressure differences in order to obtain a measurable effect. The mercury
was contained in a tube so that the instabilities later encountered by workers
in fusion were not able to develop. His friend, Carl Hering, suggested that the
phenomenon should be called the “pinch effect”.

3 Research at the Atomic Energy Research
Establishment (Harwell)

On leaving the University in 1952 my first job was at the Atomic Research
Establishment at Harwell (instead of doing military service!). Peter Thone-
mann had just moved to Harwell from Oxford to continue his research on
Controlled Thermonuclear Reactions (fusion). One of my tasks, with Peter
Reynolds, was to repeat and extend the experiments carried out on the tran-
sient pinch discharge, at low pressures, by Cousins and Ware at Imperial
College [5]. In this case the j × B force associated with the self-magnetic field
causes the discharge to contract, rather than oppose its expansion as in the
Liverpool work. Figure 4 illustrates a simple theory of the phenomenon [6].
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Fig. 3. The apparatus used by Northrup to demonstrate the “pinch effect” in liquid
mercury in 1907. Summing the pressure differences developed in a number (22) of
mercury conductors enabled him to measure the effect [4]

Fig. 4. Distance–time diagram illustrating the sequence of events [6]

A shock wave travels ahead of the “magnetic piston”. On arrival at the axis
the shock wave is reflected and the magnetic pressure is then no longer suf-
ficiently great to contain the plasma column, which thereby expands. The
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Fig. 5. Schematic diagram showing the trajectories of the electrons and ions, viewed
in a coordinate system moving with the wave. An induced electric field exists in the
y-direction [8]

experimental results that we obtained [7] were remarkably similar to those
shown in the diagram, given that the electrical conductivity was finite rather
than infinite as in the model.

Returning to the question of shock waves, the question then arose as to
whether one could have a shock wave in the absence of collisions. John Adlam
and I tackled this problem by considering a wave propagating into an undis-
turbed plasma across a magnetic field; the particle trajectories are illustrated
in Fig. 5, where a coordinate system moving with the wave was chosen. An
induced electric field in the y-direction exists in the moving frame, and an
electrostatic field in the x-direction maintains quasi-neutrality for the case in
question. Such quasi-neutrality exists when the electron plasma frequency is
much greater than the electron cyclotron frequency. Not surprisingly, since no
dissipative mechanism was involved, we did not find a shock wave but instead
we found a solitary wave. The equations could be solved analytically and the
results are displayed in Fig. 6. The uppermost curve shows the magnetic field
strength and the lowest curve illustrates the electron density. It can be noted
that electrons are not “tied to the magnetic lines of force” as often stated in
the literature. The quantity α is the Alfvén Mach number and the analytical
solution is valid for 1<α< 2. We can note here that the “Alfvén velocity” is
a characteristic velocity in both Plasma Physics and Magnetohydrodynam-
ics, although the physics is quite different in the two cases; Alfvén considered
wave propagation in an electrically conducting fluid. In a second paper Adlam
and I [9] considered the experimental arrangement shown in Fig. 7, where a
plasma containing a magnetic field is compressed by a stronger field. Such
an arrangement became known as a “theta-pinch”, although another name for
it was the orthogonal pinch, because the magnetic lines of force are straight
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Fig. 6. The variation throughout the wave of (a) the magnetic field, (b) the elec-
trostatic field, (c) the relative velocity between electrons and ions, and (d) the ion
density [8]

and the lines of current flow are circles. The resulting magnetic force is again
inwards. The numerical work that we carried out in this case showed the gen-
eration of a series of “solitary waves”, as depicted in Fig. 8. Later Zabusky
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Fig. 7. Schematic diagram of an experiment for the compression of a plasma by a
magnetic field which is parallel to the internal magnetic field [9]

Fig. 8. Magnetic field strength and ion density, as functions of hn (a Lagrangian
coordinate) computed for various times after the start of the compression [9]
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and Kruskal studied the same plasma wave numerically and showed that two
such waves retained their identity after colliding. In view of this “particle-like”
behaviour Zabusky and Kruskal introduced the term “soliton” to describe the
solitary wave [10]. It is interesting to note that this phenomenon was known
early in the nineteenth century, for the case of shallow water waves [11].

My work with John Adlam seems to have been largely overlooked until
very recently [12], presumably because it pre-dated the term “soliton”.

4 Research at Rome and Frascati

My next post was in Rome where Professor Amaldi had invited me to help
to set up a Plasma Group in collaboration with Bruno Brunelli. The group
started work at the Università di Roma (La Sapienza) and then moved to
Frascati in the nearby Alban hills. Part of the programme, that dealing with
“fusion research”, was to study the theta pinch, similar to that illustrated
in Fig. 7. We were not especially concerned with the details of the electrical
breakdown, i.e., the transition from an insulating gas to a conducting one,
but in designing the experiment it was necessary to consider the distribution
of the electric field existing before breakdown. This is illustrated in Fig. 9 for
the usual theta-pinch geometry [13]; it can be noted that the field distribu-
tion bears little resemblance to the concentric circles that were assumed by
other workers at the time. Our theta-pinch, which was designed to study the
rapid compression of a plasma by a magnetic field [14], was more complex
and six feed-points were employed, as shown in Fig. 10. The apparatus was

Fig. 9. The lines of force of the electric field inside a single turn coil. The numbers
are the values of the flux function in arbitrary units [13]
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Fig. 10. Schematic diagram of “Cariddi” [14]

Fig. 11. The lines of force of the electric field inside a six sector coil. The numbers
are the values of the flux function in arbitrary units [13]

named “Cariddi”, which is Italian for Charybdis [15], since the name Scylla
had already been employed in some other theta-pinch research. Figure 11
shows the electric field before breakdown; in the absence of screening, the
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Fig. 12. Image converter photographs (exposure time 90 ns) of a hydrogen discharge
taken at 50 µHg (6.7 Pa). From left to right, the times are: 2.9 µs, 3.15 µs, 3.3 µs,
3.55 µs, and 5.2 µs, respectively [14]

electric field configuration consists of concentric circles near the centre, but
strong electrostatic fields appear at each feed-point gap [13].

Figure 12 shows a series of image converter photographs of a hydrogen
discharge taken at 50 µHg (6.7 Pa). The centre photograph refers to the
maximum compression, examination of the original film shows that less light
was emitted from the centre. The first two photographs show that the lumi-
nous region had an irregular outer surface and the final photograph (5.2 µs)
shows a complicated structure which corresponds to a new plasma just leav-
ing the walls. In general electrical breakdown took place during the first half
cycle. Magnetic probe measurements showed that the imploding plasma sub-
sequently compressed the internal magnetic field.

These measurements simply indicate one avenue of research that was being
pursued at the time (1962). Since then, research on magnetically confined
plasmas for fusion has been largely carried out with tokamak machines, with
their more complex configurations of magnetic field. Time will show whether
this approach is the right one, or indeed whether power generation using
controlled thermonuclear reactions (fusion) is possible. The present writer
hopes so.

5 Epilogue

After 6 years in Rome I returned to England and, after a brief sojourn at
Cambridge, I took up a post at the University of Oxford. Since then I have
mainly worked on low-temperature plasmas.1 In this work magnetic forces are
usually negligible, although a changing magnetic field is sometimes employed
to produce an electric field and the magnetic field plays a rôle via the Poynting
vector in the vast majority of cases.

1 I have done just a little work on liquid MHD, some of it with Sergei Molokov,
one of the editors of the present volume, and the references are appended below
[16–19].
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1 Early interest in liquid metals

How the study of magnetohydrodynamics came to the Engineering Depart-
ment of Cambridge University was never fully recorded. What is known is
that an interest in the heat-transfer properties of liquid metals began with
the research undertaken by L.M. Trefethen, who entered the Department as a
research student in 1946. Trefethen’s earlier education had been in the United
States, culminating in a master’s degree from the Massachusettes Institute of
Technology. His subject of research at Cambridge was approved initially as
“Gas turbines – turbine blade cooling”.

At some stage a research contract was negotiated with the Ministry of
Supply, acting for the Atomic Energy Research Establishment at Harwell.
How the switch in general area of interest from gas turbines to nuclear energy
came about is not known, but both areas were of course potential users of
cooling systems capable of carrying high heat loads. A key contact in the
negotiations with the AERE was Dr Stefan Bauer of the Chemical Engineering
Section there. He was an enthusiastic believer in the future of nuclear energy
for power production, including the use of fast reactors, and for the latter he
realized that the only practical media for heat removal would be liquid metals
or molten salts.

Trefethen’s research developed into a study of heat transfer to and from
the turbulent flow of liquid metals in pipes and annuli. In setting up a flow
circuit to conduct tests with mercury as the circulating fluid, the decision
was taken to drive the mercury and measure its flow rate by electromagnetic
means and, so, magnetohydrodynamics came to the Department.

In 1947 a new student was recruited to the research effort in liquid-metal
heat transfer. He was W. Murgatroyd, a Cambridge graduate in engineering.
His subject of research was approved as “Heat transfer from liquid metals” and
he collaborated in the design and commissioning of Trefethen’s liquid-metal
flow circuit, developing in the process an interest in electromagnetic pumps.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
131–154. c© 2007 Springer.
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The pump on Trefethen’s rig was a simple linear DC one, but Murgatroyd
began to consider other possibilities, such as a centrifugal type in which
a liquid-metal disk was spun by electromagnetic forces. He was naturally
concerned with losses in electromagnetic pumps and this led him to inves-
tigate “magnetic viscosity”, taking measurements of the friction factor for flow
in insulated rectangular channels of high sectional aspect ratio (15:1). The
transverse magnetic field was normal to the longer sides, which were 6.8 mm
apart.

It is for his results on transition to turbulence [1] that Murgatroyd’s name
remains well known in the MHD community. The apparatus was such that he
could conduct experiments at considerably higher values of Reynolds number
Re than had been achieved earlier in Denmark by Hartmann and Lazarus [2].
He was able to show that, given high enough values of Hartmann number Ha
such that the Hartmann layers on the long sides of the channel were much
thinner than their distance apart, non-dimensional quantities such as friction
factor would depend on the ratio Re/Ha. Departure from the predictions
of analysis assuming laminar-flow Hartmann layers took place experimentally
when Re/Ha ≈ 225,1 which has been normally used since then as the criterion
for the onset of turbulence.

At a much later date (1998/99) interest in the stability of Hartmann lay-
ers was revived in the Department of Engineering by a young member of the
academic staff, T. Alboussière, in collaboration with a postdoctoral research
fellow, R.J. Lingwood. Over the years various researchers elsewhere had taken
up the subject, both analytically and experimentally. A classic result had been
that of Lock [3], who had calculated the threshold for growth of infinitesimal
disturbances and had obtained 50,000 approximately for the critical value of
Re/Ha. The discrepancy between Lock’s analytical value and Murgatroyd’s
experimental result was embarrassing, but the latter was used by Lykoudis [4]
and confirmed by Branover [5]. Lingwood and Alboussière [6] made the impor-
tant point that what was being found in the experiments was the condition for
laminarization as a turbulent flow entered a region of magnetic field, and by
means of an energy analysis they calculated the condition for decay of finite
perturbations to be Re/Ha< 26.5. They also calculated the growth condition
more precisely as Re/Ha> 48250. It is clear that the stability problem is not
yet resolved.

In another paper the same authors [7] developed a mixing-length model for
fully developed turbulent Hartmann layers, giving friction factor as a function
of Re/Ha. Their results agreed well with experimental data for channel flows
when the layers on either side were thin enough not to overlap.

Before Murgatroyd completed his Ph.D. a new recruit to the liquid-metal
group arrived in 1951. J.A. Shercliff had been awarded the Rex Moir prize
in 1947 for being the most distinguished undergraduate of his year in the

1 Murgatroyd presents the figure as 900, but this is a consequence of his using a
length scale in Re four times that in Ha.
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Department of Engineering. After graduating he had taken a master’s degree
at Harvard and completed a graduate apprenticeship with the aircraft man-
ufacturers A.V. Roe & Co. Ltd. His subject of research was approved as
“Problems in magnetohydrodynamics”, although he seems to have taken a lit-
tle while to settle on a particular topic. Nevertheless Shercliff interacted well
with Murgatroyd and was soon involved in research on channel flows and elec-
tromagnetic flowmeters. In his first year as a research student he was already
submitting a paper [8] which was to become a classic one in the literature of
laminar flow of electrically conducting fluids through insulated channels with
an imposed transverse magnetic field. From analysis of the problem when the
cross-section of the channel is rectangular he deduced the important result
for high Hartmann number that not only would there be layers of thickness
order 1/Ha times channel dimension on walls with a normal magnetic-field
component, but also layers of thickness order

√
1/Ha on walls with no normal

magnetic-field component. This was effectively the first discussion of “parallel
layers” in MHD.

A part of the same paper was concerned with insulated channels no longer
rectangular in section, but having symmetry about a plane normal to the
magnetic field. Shercliff showed how the properties of Hartmann layers lead
to current return in the layers being the dominant influence on the velocity
distribution in an inviscid core between the layers. Later Moreau of the MHD
group at Grenoble would coin the phrase “active Hartmann layers” to describe
such influence. The predictions of Shercliff’s analysis compared well with the
results of experiments conducted by Hartmann and Lazarus [2] in channels
of square and circular section. In the case of the former experimental results
were closely approximated by asymptotic analysis for high Ha, even though
values of Ha were only moderate, whereas this seemed not to be so in the
case of the circular channels. Later (1962) Shercliff was introduced to work
by Gold [9] which led him to realize that an effect had been missed in his
asymptotic analysis, namely that in a circular channel core velocity varies in
the direction mutually perpendicular to the magnetic field and the axis of
the channel. In consequence there are order 1/Ha viscous forces in the core
and these forces have an overall effect of the same magnitude as the order
1/Ha thickness of the Hartmann layers. When viscous forces in the core were
included in the analysis, much improved agreement was obtained between
theory and experiment.

Shercliff continued his Ph.D. work with further study of problems arising
in the context of flow measurement by electromagnetic means. It had been
known for some time that a potential difference across a circular channel with
uniform transverse magnetic field would be directly proportional to the total
flow rate and independent of the detailed velocity distribution provided that
the distribution is axially symmetric. Furthermore there was a general belief
that the calibration of electromagnetic flowmeters would be nearly indepen-
dent of the velocity distribution even if the flow were not axially symmetric.
As Shercliff showed [10, 11], this was just not true and much of his work was
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devoted to quantifying effects which might influence the calibration, such as
the distortion to the velocity distribution caused by entry to a region of mag-
netic field [12]. The work culminated in his monograph of 1962 on the theory
of electromagnetic flow measurement [13].

Shercliff was appointed to a University Demonstratorship (a title which is
no longer used, but was roughly equivalent to an Assistant Lectureship), fol-
lowed by appointment to a University Lectureship in 1957. Being established
on the academic staff of the Department, he was in a position to expand
research activity in the field of magnetohydrodynamics.

2 Ionized gases

In the spring of 1956 Soviet Academician Kurchatov was invited to give a
lecture at the Atomic Energy Research Establishment, Harwell. He let it be
known then that the Russians were working on the control of thermonuclear
fusion of hydrogen isotopes for the purpose of peaceful power production. In
fact the British and the Americans had also been working on controlling fusion,
but the research had been classified. The Kurchatov lecture marked perhaps
the most significant event in the general opening up of fusion research in the
three countries, and a major exchange of information occurred at the United
Nations conference on the peaceful uses of atomic energy held at Geneva in
1958. The principal effort of all three countries was concentrated on finding
the means to contain the hydrogen isotopes at high enough temperature for
the fusion reaction to produce net energy. Since the gas would be ionized
and electrically conducting, the route everyone favoured at that time was the
formation of a “magnetic bottle”. A detailed history of the early work on fusion
research in the UK is to be found in a report by Hendry and Lawson [14].

Within the Atomic Energy Authority it was proposed that Universities be
encouraged to contribute to the research effort and Shercliff seized the oppor-
tunity to involve Cambridge in work on ionized gases and their interaction
with magnetic fields. A research contract was negotiated with the UK Atomic
Energy Authority to finance the construction of a combustion-driven shock
tube, capable of propagating shock waves into argon at Mach numbers (shock
speed divided by the speed of sound in the argon ahead of the shock) up to 17.
Argon flow behind the shock would typically have a temperature of 13, 700 K
and an ionization level of 17%.

The Cambridge effort was not a venture into the totally unknown. There
was a small shock-tube group at Harwell under W. Miller, who acted as moni-
tor for the research contract with Cambridge. The Harwell shock tube differed
from that proposed at Cambridge only in size, being just under 35 mm internal
diameter as compared to 127 mm at Cambridge. The main Harwell experi-
ments concerned the interaction of the plasma flow behind a shock wave with
the magnetic field due to a coil mounted coaxially with the shock tube. Typ-
ical conditions in those experiments behind a Mach 17 shock wave traveling
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into argon at a pressure of 10 mm Hg yielded a magnetic Reynolds number
Rm ≈ 1.5 based on tube diameter d and flow velocity v, so that only a mod-
est distortion of the magnetic field might be expected. On the other hand,
for 3 T, the maximum magnetic field available on the coil axis, and with an
initial pressure in the argon of 10 mm Hg again, the interaction parameter
N = σB2d/ρv took the more promising value of about 4. Here σ, B and ρ are
the scales for electrical conductivity, magnetic field strength and density. Cer-
tainly, when the Harwell experiments were reported by Dolder and Hide [15]
the patterns of luminosity appearing on photographs of the radiating ionized
gas provided strong evidence of the flow being affected.

In the Harwell experiments axial symmetry, a poloidal magnetic field and
only weak variation of the field in time implied that the electric field could
be taken as zero and current density given by j = σv × B. However, the
configuration meant that v and B were not close to being perpendicular to
each other over much of the magnetic-field region. It was therefore thought
that the first task with a larger shock tube at Cambridge would be to conduct
similar experiments to those at Harwell except that the flow would pass axially
through an annulus and interact with a mainly radial magnetic field between
pole pieces. Current density would be primarily azimuthal, giving an axial
retarding force, and the flow situation, if it settled to a steady state, would
nearly correspond to the 1D Fanno-line process of ordinary gasdynamics.

The Cambridge shock-tube group under the leadership of Shercliff came
into being at the start of the academical year 1956/57, two research stu-
dents having been recruited. The first was E.J. Morgan a Shell Scholar from
Australia who had graduated from the University of Sidney with a first-
class degree in electrical engineering and physics. His subject of research was
approved as “Ionized gas flows”. I was the second recruit, returning to Cam-
bridge after a year spent in the gas-turbine design office of Brown Boveri,
Switzerland. My subject of research was approved as “Shock-tube flows”. I
found that the prospect of being connected to the glamorous field of plasma
physics was exciting, but the task of designing, constructing, instrumenting,
and commissioning the shock tube was somewhat daunting.

In the end it was three full years before the shock tube was ready to be
used as a regular experimental tool (see Fig. 1), Morgan having taken a major
share of the development work. A particular aspect of this had been the design
and testing of ionization gauges, which would have to respond reliably to the
passage of a shock wave. The time of travel between two such gauges was the
major diagnostic, used for determining shock speed and hence determining
conditions in the plasma flow. The problem is that too sensitive a gauge and
it is likely to be triggered by precursor ionization arising from radiation being
absorbed ahead of the shock wave. With an insufficiently sensitive gauge and
a time interval between arrival of the shock wave and the onset of substantial
ionization, a delay in triggering the gauge is likely to occur. Morgan decided
to build on his experience with development of the gauges and to use them
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Fig. 1. The shock tube in 1960. A test section is positioned between the velocity
measuring section and the dump chamber. The latter replaced the blank end of the
shock tube when avoidance of high pressures due to shock reflection was desired

for measuring ionization rates. He was particularly interested in determining
the influence of adding small amounts of gaseous impurity on the rates.

After completing his work on ionization rates, little time was left to Mor-
gan for the experiment which had been originally planned – the study of a
nearly 1D flow through a transverse magnetic field. One expected outcome can
be illustrated by means of the hydraulic analogy to unsteady one-dimensional
gas flow. In Fig. 2a hydraulic jump, analogous to a shock wave (S1), has been
generated to the right of the picture by lifting a sluice gate at O and it is prop-
agating leftward into still water, which has been dyed black. The horizontal
strips in the figure are pictures taken at successive instants in time, creat-
ing a distance-time diagram for phenomena in the water channel. The jump
interacts with a gauze obstacle (online GG′) equivalent to a region of elec-
tromagnetic forces opposing the flow. In the picture shown the consequence
is a transmitted jump (S2) and a reflected jump (S3). However, if the gauze
were to provide only a weak blockage effect and S1 were strong enough to
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Fig. 2. The hydraulic analogy to shock-tube flow. The thin horizontal lines mark
the floor of the channel and the black region immediately above is the water (dyed)

have sufficiently super-critical flow behind it (supersonic flow), there would
be no upstream propagation, i.e., S3 could not exist. In the shock tube, the
dividing condition between there being a reflected shock and there not being
one is that the shock is stationary at the entrance to the magnetic field region.
Fair agreement was shown between theory and observation of this behaviour
in a few runs, but, by the time the experiments on the blockage effect got
under way, experiments elsewhere (e.g., R.M. Patrick and T.R. Brogan, work-
ing under A.R. Kantrowitz at Avco in the late 1950s [16]) meant that the
Cambridge work was virtually superseded.

The value of the magnetic Reynolds number based on diameter of the
Cambridge shock tube was approximately 6 and it seemed likely that magnetic
fields applied in shock-tube experiments would suffer considerable distortion
due to the flow of the electrically conducting medium. With this in mind I
began a general study of kinematic problems, where the flow field is taken as
known [17]. Solution of the particular problem of magnetic-field distortion in a
configuration similar to that of the Harwell shock tube [15] was then compared



138 M. Cowley

with measurements of flow influence in the Cambridge apparatus [18] with
good agreement, which is perhaps surprising in view of the finite length of
the plasma (about two shock-tube diameters instead of being infinitely long)
and the temperature variation along the plasma due to cooling by radiation.
However, it did confirm that the shock tube was capable of supplying a useful
sample of plasma.

3 Magnetogasdynamic shock waves

Although the shock tube saw two more research students through to the Ph.D.
degree after Morgan and me, its main significance, sad to say, was to act as
an encouragement to thinking about gasdynamics and magnetogasdynamics
rather than providing direct experimental evidence of phenomena. Shercliff
[19] initiated theoretical work with a generalized treatment of steady 1D
processes in ordinary gasdynamics. Typical of such processes is the Fanno line,
which could arise in the context of the action of electromagnetic forces without
exchange of electromagnetic energy (i.e., E = 0 and j × B = σ(v × B) × B),
and the Rayleigh line which could be generated by energy exchange j·E whilst
B = 0. Shercliff showed how qualitative differences between supersonic and
subsonic flow could be deduced from general requirements of thermodynamic
stability, together with the assumption of ∂2p/∂v2 > 0 on isentropics, v here
being specific volume, a condition formulated by Weyl [20] in the context of
shock waves. At a qualitative level there is no need to invoke particular gas
laws with the consequent complexity which that would imply for ionized gases.

Linking magnetogasdynamic behaviour to ordinary gasdynamic processes
was an important step forward in understanding, which applied primarily to
flows with magnetic Reynolds number Rm tending to zero. However, it was
clearly going to be difficult to treat problems analytically with both effective
electromagnetic forces and Rm of order unity. This provided justification for
gaining a better understanding of flows at the other extreme, i.e., Rm →
∞, while for much of the work still keeping an interest in cases where the
electric field is short-circuited (E = 0). Ohm’s law under steady conditions
then requires that v × B be zero, i.e., v parallel to B, and continuity of
both magnetic flux and flow implies that B/ρv be constant along streamlines.
Analysis under these conditions turned out to be easier than first thought,
when it was realized that the governing equations could be recast in a form
analogous to those of ordinary gasdynamics. The quantity corresponding to
velocity in the analogous flow is v∗ = v(1 − b2/v2), where v is the actual
velocity and b the local Alfvén wave speed, but there were some peculiarities,
such as the possibility of the analogue to Mach number becoming imaginary
and the density negative [21]!

Meanwhile Shercliff was extending his 1D analysis to perfectly conducting
(Rm → ∞) flows, covering cases where v and B are parallel [22] and cases
where B is perpendicular both to v and the direction of variation [23].
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This was also a period when in the world at large there was an upsurge
of interest in perfectly conducting magnetogasdynamic flows. The analogy
which I had spotted was also discovered by Imai [24], while various authors
worked directly on flows with v and B parallel, e.g., Sears [25]. Of particular
interest was the topic of magnetogasdynamic shock waves in such flows and
in his paper Shercliff [22] gave what is probably the clearest account of the
classification of the states which could occur on either side of oblique-field
shock waves and their ordering 1→2→3→4 in accordance with transitions
permitted by the second law of thermodynamics. Here oblique refers to the
magnetic field direction being at an angle to the shock normal. If u is the
velocity component normal to the shock wave, b the Alfvén wave speed, cf
the fast magnetoacoustic speed and cs the slow, all in the normal direction,
the states are defined by u1 > cf1 > b1, cf2 > u2 > b2, b3 > u3 > cs3,
b4 > cs4 > u4. It turned out that slightly earlier and independently Germain
[26], who was working on the structure of magnetogasdynamics shock waves,
adopted and is credited with, the same classification of states.

A contribution to shock-wave theory which was due mainly to Russian
workers, e.g., Akhiezer, Liubarski, and Polovin [27] concerned the stability of
transitions when perturbed by weak magnetoacoustic or Alfvén waves. Deter-
mination of whether a particular transition is stable (or has the ability to
evolve) depends on counting the number of waves which may emanate from it
as a consequence of the perturbation. What is needed for the problem to be
well posed and to satisfy boundary conditions at the transition is that there
can be three magnetoacoustic waves (contact surface not counted) emanating
from the transition if the perturbation is due to a magnetoacoustic wave or
that there can be two Alfvén waves emanating if the perturbation is due to a
transverse Alfvén wave. Note that the waves may include ones which are trav-
elling upstream relative to the flow, but are actually being swept downstream.
Counting the waves shows that fast shocks 1→2 and slow shocks 3→4 can emit
just the right number of waves to react to magnetoacoustic or Alfvén waves.
Intermediate shock waves 1,2→3,4 are not able to emit enough Alfvén waves
to react in an orderly way to perturbations carried by Alfvén waves and 1→4
shocks are not able to react to magnetoacoustic waves. What happens in these
cases was elucidated by Todd (see below). For all other transitions between
shock states too many waves can be emitted and this can mean that shock
waves will decay spontaneously. A comprehensive monograph on shock waves,
including their structure, was written by Anderson [28], a graduate student at
MIT who interacted with Shercliff when the latter was spending a year (1960–
61) there on sabbatical leave. What was also emerging was that, although not
all transitions which satisfy the second law of thermodynamics may evolve in
an orderly fashion when perturbed, there seems to be a match between the
results of the stability analysis and those of investigations into shock structure
when ohmic diffusivity is the largest of the diffusivities. Too many waves in the
stability analysis seemed to match there being no steady structure solution.
Too few waves matched the structure problem becoming non-unique.
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On his return to Cambridge UK from MIT Shercliff recruited L.Todd who
was just starting research and was in the Department of Applied Mathematics
and Theoretical Physics. Shercliff was appointed supervisor and Todd’s sub-
ject of research was approved as “Magnetogasdynamic shock-wave stability”.
His first project was an analytic and computational demonstration of how a
normal 1→4 shock wave evolves when perturbed by an infinitesimal Alfvén
wave. In the unperturbed state, such a shock wave could be an ordinary gasdy-
namic one with both velocity and magnetic field normal to the shock plane, so
that there is no electromagnetic interaction. It must therefore be the case that
a structure for the shock wave exists involving viscous and thermal diffusivi-
ties. Now consider small transverse perturbations to the velocity and magnetic
fields acting under the influence of large ohmic diffusivity. The gasdynamic
shock wave becomes a sub-shock in a wide region where the combination of
Ohm’s law and transverse momentum requires that

∂2Bt

∂n2
= µσu

(
1 − b2/u2

) ∂Bt

∂n
,

where n and t denote the normal coordinate and transverse direction and
b is again the Alfvén wave speed based on normal component of magnetic
field. The assumption of weak transverse components implies that µσu(1 −
b2/u2) may be taken as approximately constant on the upstream side of the
sub-shock and a different constant on the downstream side. It follows that,
as n → −∞, Bt may decay to zero from some value β at the sub-shock
provided u > b upstream. As n→ ∞, Bt may decay from β to zero provided
u < b. Thus an ordinary gasdynamic shock wave which can be classed as
intermediate 1→4 can absorb arbitrary amounts of transverse magnetic flux
(but in actuality non-linear effects limit). The distribution ofBt was computed
by Todd [29] for that case and also for u > b both upstream and downstream.
His calculations showed the two emitted waves of the latter case forming. Todd
went on to extend his analysis to generally oriented intermediate shock waves
[30] followed by an exhaustive analysis of switch-on and switch-off shocks [31].

Before leaving the topic of magnetogasdynamic shock waves two proposals
for experiments using the shock tube deserve a brief mention. The idea behind
the proposals was that for very strong magnetic fields achieving a highly con-
ducting flow pattern depends on electromagnetic forces being strong enough
to make the gas flow adjust so that E+v×B ≈ 0, whilst the magnetic field is
unaffected. What then sets the length scale over which conditions may depart
from perfectly conducting is the length which makes the interaction parameter
of order unity instead of the magnetic Reynolds number. The interaction para-
meter N and the magnetic Reynolds number are related by N = Rm(b2/v2),
so that modest Rm with large value of N implies b>>v and any attempt to
generate a magnetogasdynamic shock in the shock tube would only be feasible
for a slow shock. Although an attempt was made to study the diversion of
ionized-gas flow over a truncated cone mounted coaxially with the shock tube
in the presence of an axial field, it proved too difficult to separate effects at the
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cone from disturbances where the upstream axial flow interacts with the radial
field components at entry to the magnetic-field region. Some background to
the experiment is provided by analysis of plane flow over a wedge [32].

The second proposal was for an experiment on shocks which are ionizing a
cold gas as well as being affected by the presence of a magnetic field. Since the
directions of magnetic field and flow were different from the cone experiment,
it was believed that the problems at entry to the field region might be avoided
more readily. However, before the experiment was attempted, the decision was
taken to wind up the shock-tube work and all that was left was some analysis
of the ionizing shock waves [33]. At a much later date the analytical techniques
proved useful in the elucidation of behaviour in a magnetogasdynamic thruster
model [34].

4 Magnetohydrodynamic waves

Returning to an earlier stage in this history, 1958 saw an expansion of the
group, whose interests now began to extend beyond shock-tube plasmas. Two
new research students were recruited. The first was G.A. Jameson, a Cam-
bridge graduate, and the second J.A. Decker, who had come from the United
States with a degree from MIT. Shercliff had attempted in 1953 a demonstra-
tion of Alfvén waves in an electrically conducting liquid. He failed to achieve
a convincing demonstration, but there was a clear indication that a mild
improvement in parameters would lead to success. So Shercliff suggested to
Jameson that he might like to try the experiment on a larger scale and with
sodium as liquid medium rather than sodium–potassium eutectic and it turned
out that Jameson was indeed interested.

The sodium was contained in a sealed, stainless-steel torus, which was
mounted with its axis vertical in a nearly uniform vertical magnetic field B0

as shown in Fig. 3a. The cross-section of the toroidal passage was rectangular,
being 237 mm in the radial direction by 195 mm in the vertical. The strength
of magnetic field available was limited by the need to prevent over-heating of
the field windings, but the magnet could run at 1 T for short periods and 0.7 T
indefinitely. The aim of the set-up was to generate vertically running Alfvén
waves by means of an exciting coil wrapped around the toroidal passage in
such a way that velocity and magnetic-field perturbations would be directed
azimuthally. What was happening in the sodium would then be inferred from
search coils, one wrapped around the toroidal passage in the same way as the
exciting winding and another small coil mounted in a sealed casing to measure
∂B/∂t at the centre of the flow passage. The final feature of the apparatus was
a heater winding to maintain the sodium in the liquid state, the temperature
being held at 120oC. The construction and filling of the torus was undertaken
by the Atomic Energy Authority and, as Shercliff delighted in saying, it could
have had strawberry jam inside it for all we knew at Cambridge.
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Fig. 3. The geometry of various experiments. In (a) only one turn of the perturbing
coil is shown. In (c) the thick-lined loop indicates the position of current sheets,
two in the Hartmann layers on the insulating walls and two in free shear layers. In
(d) a similar loop indicates the position of passive Hartmann layers and free layers
carrying a change in the tangential component of the electric field [41]

Consider the simpler geometry of two infinite parallel planes with magnetic
field perpendicular to them. The dispersion relationship for plane Alfvén waves
traveling in the field direction and carrying perturbations in velocity vt and
field Bt components which are perpendicular to the main field is

(
iω + λk2

) (
iω + νk2

)
= −b2k2.

Here ω and k are frequency and wave number respectively, λ and ν the ohmic
and viscous diffusivities and b the Alfvén wave speed. In the limit of both dif-
fusivities tending to zero by comparison with ω/k2, the relationship reduces
to that for ideal Alfvén waves, k = ±ω/b. Taking account of the ohmic diffu-
sivity, while still treating the fluid as inviscid (since ν << λ in practice), the
relationship yields a decaying wave, k ≈ ±(ω/b)(1− iωλ/2b2). The parameter
controlling the damping of the wave ωλ/2b2 may be written approximately
as kλ/2b provided the damping is weak and in this form it is recognizable
as π times the inverse of a magnetic Reynolds number based on wavelength
and wave speed, i.e., the inverse of a Lundquist number. In an ideal wave
the magnitude of the velocity perturbation is related to the magnitude of the
magnetic-field perturbation by |vt| = |Bt| /

√
µρ. This is not what is needed at

the horizontal boundaries in Jameson’s apparatus where |vt| = 0 and |Bt| 
= 0.
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The second solution for k2 in the dispersion relation must also be invoked in
order to satisfy the boundary conditions. However, the second solution turns
out to be not so obvious as the wave-like one, but inspection of the dispersion
relation shows that an approximate solution is k2 = −b2/νλ, provided that
ω is much less than νk2 and λk2. Clearly k is imaginary and not dependent
on ω. The second solution can therefore represent an exponentially decaying
layer with thickness of order

∣∣k−1
∣∣ =√νλ/b2 =

√
ρν/σB2

0 , i.e., a Hartmann
layer. The change of perturbation velocity ∆vt across the layer is related
to the change of perturbation magnetic field ∆Bt by the standard result
∆vt = (∆Bt/µ)

√
ρνσ. It is then easily shown that ∆Bt across the layer is

of order
√
ν/λ times the amplitude of the magnetic field perturbation being

propagated by Alfvén waves if the velocity condition is to be met. Since this
ratio of diffusivities is small, wave motion in the sodium is strongly coupled
to perturbations introduced by the exciting winding of Jameson’s apparatus,
whereas, if the ratio had been large, it would have been more appropriate
to generate the waves by a mechanical oscillation, a point discussed in more
detail in Shercliff’s textbook [35]. This book was being written soon after
Jameson completed his Ph.D. work.

Jameson [36] looked for resonances in the torus and the results provided
a convincing demonstration of wave-like behaviour. Signals from the central
search coil peaked at a magnitude 9.6 times the magnitude for a free-space
field there. Comparison with theory was good, in spite of uncertainty about
the exact influence of the stainless-steel walls and their contact resistance
with the sodium. Jameson also ran a series of experiments with a step input
of exciting current, although the results were not made public until Shercliff
quoted them in a paper (1976) [37].

Meanwhile Decker was building apparatus to study magnetoacoustic waves
in a low-pressure caesium plasma. The first discharge tube in which the plasma
was contained was 640 mm long and 47 mm in diameter (a second tube was
subsequently made to similar measurements). The tube was placed on the axis
of a solenoidal winding, capable of giving a longitudinal magnetic field of 0.5
T. Oscillations observed in the tube were attributed to longitudinal ion-wave
resonance, but the experiment owed more to plasma physics than to MHD
(further details of the work were published by Decker (1964) [38]).

The next recruit to the shock-tube group was P.L. Read (in October 1959),
who already had some experience of liquid-metal work. As a final-year under-
graduate he had undertaken a project with Shercliff related to the use of
liquid-metal “brushes” on commutators of electric motors. However, his first
task was to assist Morgan with the experiments on 1D flow through a trans-
verse magnetic field and it may well have been partly that experience which
led him to appreciate the need for more diagnostic facilities on the shock tube,
although another factor was the early proposal that he investigate boundary
layers in ionized gases. Read’s main Ph.D. project became the development
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of apparatus to measure the small-angle scattering of an electron beam when
it passes through a shock-tube plasma. The underlying idea was to use such
measurement to deduce the density of both the charged and neutral particles
present. However, like Decker’s, Read’s work turned out not to have direct
connection with magnetohydrodynamics.

Experimental work with a strong MHD flavour began again in October
1961 when A.A. Mikolajczak joined the group and took on a project aimed
at forming magnetoacoustic waves in the shock tube. As illustrated by the
water-channel analogy (see Fig. 2), a sample of stationary ionized gas is cre-
ated when a shock wave reflects at the end of the tube, if it is a blank end.
In Mikolajczak’s experiment a solenoidal winding around the tube, as shown
in Fig. 3b, provided a longitudinal magnetic field of up to 1.4 T there, with
current supplied from a capacitor bank over a sufficiently long time for the
field to be regarded as steady. An additional winding superimposed a longi-
tudinal perturbation field. Search coils were mounted so as to detect radial
propagation of the field.

The essence of Mikolajczak’s experiment is most easily understood in terms
of an analogy with ordinary gasdynamics discovered by Grad [39] for the
case of plane 2D flow with magnetic field everywhere perpendicular to the
flow plane. The equation of motion is then the same as that of ordinary
gasdynamics except that pressure is replaced by p∗ = p + B2/2 µ. If the
gas has infinite conductivity, the flux-freezing theorem implies that B/ρ is
maintained constant following a fluid particle. With B/ρ constant throughout,
p∗ becomes a function directly of the thermodynamic state and the speed of
ideal magnetoacoustic waves for the geometry of the analogy will be given
by
√

dp∗/dρ, which evaluates under the dubious assumption of isentropic
conditions as cf =

√
a2 + b2. Here a is the ordinary speed of sound and b is

the Alfvén-wave speed again (but note that the waves are fast magnetoacoustic
carrying radial variation of radial velocity).

The problem of how the waves should be excited bears a resemblance to
the similar problem in Jameson’s experiment. The wave phenomenon imposes
a relation between velocity and perturbation magnetic field, which is not con-
sistent with a boundary condition of zero normal velocity at the tube wall.
What is needed is a boundary layer to match wave phenomena to the boundary
conditions. Treating the region near the wall as one with flow nearly uniform
in direction and as inviscid, the dispersion relation there is approximately

(
λk2 − iω

) (
a2k2 − iω2

)
= iωb2k2.

Suppose that k2λ/ω → 0. The dispersion relation then reduces to k2 =
ω2/c2f , representing the wave propagation proposed above. The criterion jus-
tifying this infinite-conductivity result is found by eliminating k2, so that
λω/c2f → 0, i.e., the inverse of the magnetic Reynolds number based on fre-
quency and wave speed tends to zero. With large, but finite magnetic Reynolds
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number, the dispersion relation would represent damped magnetoacoustic
waves. However the full dispersion relation is quadratic in k2 and the sec-
ond root has been lost. Suppose the lost root does refer to a thin layer at the
wall (large k) and take ω2/a2k2 → 0 to yield k2 = (iω/λ) (c2f/a

2), meaning
that the length scale of the solution is the normal skin depth

√
λ/ω modified

by the factor (a/cf). The modification arises because compressibility in the
skin causes movement and in contrast to the effect in solids v×B is non-zero
(without which waves would not be generated). Another interesting feature
of the skin-effect limit is that the neglect of the ω2 term implies negligible
inertia, the force balance in the skin being between pressure and magnetic
pressure.

Using the boundary condition that the two solutions combine at the sur-
rounding cylindrical wall in order to give zero normal velocity there, it is easily
shown that the perturbation magnitude of the magnetic field is made up of
contributions with ratio

√
λω/a2(b/cf )2 between the skin-effect and wave-like

solutions. The implication is that, if the value of the magnetic Reynolds num-
ber is very high, most of the perturbations would be associated with the skin.
On the other hand too low a magnetic Reynolds number, and the waves will
be heavily damped. Typical conditions in Mikolajczak’s experiments gave a
value order one for

√
λω/a2(b/cf)2, so that it was more a case of modified

skin effect than a real demonstration of magnetoacoustic waves. Nevertheless
calculations taking account of the axial symmetry, but not of the finite length
of plasma sample or the decay of ionization due to radiation agreed reasonably
well with measurements.

5 Return to liquid metals

October 1962 heralded a brief golden age for what had now become the magne-
tohydrodynamics, rather than shock-tube, group. Three new research students
joined, C.J.N. Alty, J.A. Baylis, and C.J. Stephenson, all of whom were Cam-
bridge graduates. In the outside world magnetohydrodynamics was becoming
more popular as a subject of research, although there were some unfortunate
attempts to liven up moribund topics in fluid mechanics by adding an arbi-
trary magnetic field. This was not always the case and other papers were truly
enlightening. I can remember the excitement in the group over the paper by
Hasimoto [40] on flow parallel to the axis of an infinite cylinder in the presence
of a transverse magnetic field. This was the first intimation that free shear
layers parallel to the magnetic field have an important role to play in external
flows.

Shercliff realized that Hasimoto’s work also had implications for flow in
square ducts (and other cross sections) when two opposite walls are insulating
and the other two highly conducting, while a uniform magnetic field is oriented
transversely to the flow but at an angle to the walls. He suggested to Alty that
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it would be interesting to undertake an experiment on such a configuration and
Alty set about building a mercury flow circuit in which the test section was a
square channel of side 12.7 mm machined out of a high-conductivity copper
rod and of length 254 mm. The bottom of the channel was insulated by a strip
of sellotape and an insulated cover formed the opposing wall. The test section
was mounted in the field of a magnet capable of providing up to 1.27 T. The
flow was driven through the test section by a longitudinal pressure gradient
acting against electromagnetic forces induced by current crossing between
the channel sides with exposed copper. The channel construction provided a
short-circuit path between those sides.

Being a linear problem, use of super-position is helpful when determining
how the electrical current flows. It is easier to visualize what is happening with
a flow being driven electrically along the channel, there being no longitudi-
nal pressure gradient, i.e., the electrodes are now at appropriately different
potentials. The difference between electrical drive and pressure-gradient drive
is just the addition of a uniform current flow with the consequent j × B bal-
anced by a uniform pressure gradient. The key then to predicting asymptotic
behaviour in the channel at high Hartmann number is the well-known fact
that in the inviscid (core) regions current density does not vary along field
lines. With electrical drive j×B must in fact be zero in such regions, so that
the direction of j can only be parallel to B. Three cases may be envisaged for
a field line crossing the channel at an angle in an inviscid region: (i) the field
line intersects two insulating walls, (ii) it intersects one insulating wall and
one conducting wall, (iii) it intersects two conducting walls.

In case (i) current entering a Hartmann layer on an insulating wall from
a core region would induce vorticity normal to the wall, but at the other
Hartmann layer vorticity is of opposite sign, so that there is a contradiction
and it is to be concluded that there is no current in the region. In a similar
fashion for case (ii) it is found that current is zero and also that the stationary
conducting wall holds the velocity at zero. Case (iii) has a voltage-gradient
component along the field line, but the overall voltage gradient must be normal
to the conducting wall. Since j is parallel to B, a vector diagram of j/σ, E
and v × B shows that Ohm’s law requires v × B to be non-zero.

Denote by θ the angle of tilt of the channel away from the position where
the magnetic field is normal to the insulating walls. For 0 < θ < π/4, the
situation is made up of two case (ii) regions separated from a case (i) region
by parallel shear layers (see Fig. 3c). The Hartmann layers on the insulating
walls where region (i) field lines meet the walls are active, so that the velocity
in the region is given by the standard Hartmann layer result J/√ρνσ, where
J is half the current supplied by the electrical drive per unit length of channel.

When the tilt is such that π/4 < θ < π/2 (see Fig. 3d), there are again two
case (ii) regions, but they are now separated from a case (iii) region by free
layers of the type described by Moffatt [41], which carry a change of electric
field tangential to the layer or, in other words, varying potential difference
across it. That potential difference is balanced by the emf which the flow in
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the layer induces and a jet is formed there, which contributes a total flow of
the same order as that in the case (iii) region.

Although the only measurements taken were the pressure difference down
the channel, the total flow rate and potential distributions at the insulated
walls, the results are remarkably close to the asymptotic theory for high Hart-
mann number [42]. In addition, before the results were published, Hunt [43]
and Hunt and Stewartson [44] had developed analytical solutions for channel
flows corresponding to θ = π/2 and θ = 0 and Alty was able to make com-
parisons between their solutions and his experiments. At a much later date
I incurred a debt to this work of Shercliff and Alty for its influence on my
choosing a tilted container for a model in which to investigate principles of
buoyancy-driven MHD flow [45].

A particular preoccupation in the outside world during the 1960s was
production of electrical power directly from flow of combustion gases in a
MHD duct. The aim was to gain a thermodynamic advantage by deriving
this power at a much higher temperature than would be possible in a gas
turbine, say, because with the latter there is a need limit the temperature
of highly stressed blading. To turn the combustion gases into a moderately
good conductor, it was proposed that they be seeded with small amounts of
potassium or caesium and one of the difficulties of the whole scheme was going
to be the recovery of the seed material before the gases were exhausted to the
atmosphere. (Shercliff’s joke was that MHD power generation with potassium
seeding should be linked to tomato-growing schemes down wind of the stack.)
The group at Cambridge were skeptical about the viability of MHD power
generation, but gaining experience with seeded gas was given consideration.
The plan was to construct a torus of similar dimensions to the one used by
Jameson and mount it in his magnet (Jameson had completed his Ph.D. work
by this stage). Radial current would be passed from an outer conducting wall
to an inner one so as to heat a gas-potassium mixture within the torus and
interaction of the current with the applied axial magnetic field would drive
the gas azimuthally. It was realized that the Hartmann number would not
be large, so that resistance to motion would probably involve secondary-flow
effects. Although the project did not come to fruition, it left an interest in
secondary flows, which was picked up by Baylis.

Baylis’ subject of research was approved all inclusively as “Magnetohy-
drodynamics” (the same had been true of Alty) but his thesis title “Fully
developed secondary flow in magnetohydrodynamics” is a more reasonable
indication of his work. He used the solenoid which had been part of Decker’s
apparatus and mounted mercury-filled toruses of rectangular cross section
and of various aspect ratios, coaxially with the solenoid. Flow was driven
azimuthally by radial current.

At Shercliff’s suggestion Baylis’ first experiment was conducted in a torus
formed by concentric copper cylinders with a narrow gap between them. The
criterion for stability of a pressure-driven Couette flow in the gap has been
given by Chandrasekhar [46], although full axial symmetry with such a drive is
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clearly not possible. On the other hand, if conditions are such that jr = C/r,
where C is a constant, drive by electromagnetic force is precisely equivalent
to a continuous pressure gradient around the gap. Detection of when the flow
becomes unstable, i.e., forms Taylor vortices, is achieved from overall voltage-
current characteristics, which are linear between zero current and the value at
instability. The break-away point from the original line of the characteristic
occurs where the flow resistance begins to increase more strongly as current
increases, and it is easily located.

The gap between the cylinders in Baylis’ experiment [47] was just over
1 mm, the radius R1 of the inner cylinder was 26 mm and the length 50 mm.
Values of the magnetic field strength ranged from 0.1 T to 0.4 T, corresponding
to Hartmann numbers based on gap width from 3 to slightly more than 12.
Experimental results for the critical Dean number, Recrit

√
d/R1, compared

well with the predictions of Chandrasekhar [46], e.g., 35.94 as Ha → 0 (the
pressure-driven case), 80 for Ha = 10. The results tended to be slightly above
the predicted values and this was considered most likely due to uncertainty
over the gap width when amalgam layers were building up on the copper.

For the next series of experiments Baylis constructed a toroidal chan-
nel of square cross section. Although the initial aim had been to investigate
secondary-flow effects and their interaction with the MHD [48], it turned out
that the apparatus provided an excellent test bed [49] for the asymptotic
(Ha → ∞) theory of channel flow due to Hunt and Stewartson [44], men-
tioned above in the context of Alty’s work.

Baylis’ final series of experiments was conducted in a disk-like torus. It
had been noticed that the axially symmetric boundary-layer equations for
flow over stationary disks appeared to admit a family of similarity solutions
with an azimuthal primary flow and a radial/axial secondary flow. The sim-
ilarity solutions would only be valid for Ha → 0, but they were expected to
be qualitatively like that of Bödewadt [50], which is the member of the fam-
ily having solid-body rotation outside the boundary layer. Other members of
the family may be characterized by the index m in vθ ∝ rm, where vθ is the
azimuthal velocity. For driven flow between two stationary disks continuity
is satisfied when the radial inflow in the boundary layers balances radially
outward core flow with velocity vr ∝ r(1+m)/2. The Coriolis term in the equa-
tion of motion for the core must then have a dependence on radius to the
power (1 + 3m) /2. To be consistent with a j×B force varying inversely with
radius, m should be −1. For the Bödewadt solution velocities oscillate as the
edge of the layer is approached. Unfortunately the oscillations become more
violent as the power is decreased, until the solution collapses just at m = −1.
Nevertheless, Baylis’ thesis contains a wide range of experimental data for
secondary-flow situations. Calculations of inflow in the family of boundary
layers at various powers were confirmed shortly afterwards by the work of a
group in California [51].

A more successful foray into secondary flow in boundary layers on non-
conducting disks was made by Stephenson, who started experiments on
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mercury flow between one stationary and one rotating disk [52]. The appa-
ratus was designed to fit into the gap in Jameson’s magnet giving a uniform
magnetic field parallel to the axis of the disks and this limited the diameter
of the disks to 254 mm. The gap between them was set at either 12.7 mm or
25.4 and the stationary disk was fitted with a shroud at its edge. Platinum
voltage probes were mounted in a radial line at the surface of the stationary
disk so that the average azimuthal velocity could be deduced from the radial
gradient of voltage.

The addition of a uniform axial magnetic field does not affect the fact that
similarity solutions exist for flows with radial dependence of azimuthal veloc-
ity to the power 1, such as flow over a spinning disk, and this is true for the
full Navier–Stokes equations, not merely the boundary-layer equations. There
is, however, the constraint on the electromagnetic aspects that the magnetic
Reynolds number be much less than unity. The ordinary hydrodynamic prob-
lem has received much attention over the years, because it represents an exact
solution to the Navier–Stokes equations, although there has been controversy
over whether in practice it works for flow between disks of finite diameter. In
the MHD case the layers on the disks can range from pure Hartmann type
to pure secondary flow. Matching the radial current flow inwards on the sta-
tionary disk to the flow outwards on the spinning disk when electromagnetic
effects are dominant leads to the angular velocity of the fluid half way between
the disks being half the angular velocity of the spinning disk. Matching the
fluid inflow to the outflow when secondary-flow effects are dominant leads
to the angular velocity between secondary flow layers being 0.31 times that
of the spinning disk. Stephenson’s measurements of voltage confirmed these
predictions and reproduced the expected variation in angular velocity ratio
between the two extremes of high Hartmann number and high secondary-flow
effect. The ranges covered by Stephenson were 100 < Ωd2/ν < 800, where Ω
is the angular velocity of the spinning disk and 0 < Ha2 < 800.

Two more Cambridge graduates were recruited in October 1963, R.C.
Baker and J.C.R. Hunt. One of the proposals for MHD generators had been
that a striated fluid might be made to flow through the duct. The stria-
tions would arise from the injection of a conducting fluid and they would act
as “pistons” against which the non-conducting medium would do work, but
Lemaire [53] had pointed out that the interface between conductor and non-
conductor would be subject to Rayleigh–Taylor instability. Shercliff suggested
to Baker that he investigate the stability of mercury partly filling a trough and
set in a horizontal magnetic field. A horizontal electric current would inter-
act with the magnetic field so as to give an upward vertical force and it was
expected that with unstable conditions 2D waves would grow exponentially
with time constant τ given by

τ−2 =
2

3
√

3T
(|j × B| − gρ)

3
2

ρ
,
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where T is the surface tension. The two-dimensionality refers to the wave
crests running parallel to the current and it was observed that just before
complete breakdown of the surface a crest would rise slightly, stretching from
electrode to electrode. Although there was considerable scatter in a plot of
τ−1 against |j × B|, the results were nevertheless convincing [54]. Later, when
Shercliff had left Cambridge for Warwick University, he set a research stu-
dent there, I.R. Robinson, onto a more comprehensive investigation of surface
waves [55].

After completion of the stability experiment, Baker decided to work on the
sensitivity and optimization of the type of electromagnetic flowmeter which
had been patented in 1917 by Smith and Slepian for application as a ship’s log.
The meter is also known as a wall velometer and works by having a magnetic
field emanating from the wall, field coils lying behind the surface. The voltage
difference is measured between two flush-mounted electrodes. The response
of the meter is likely to be influenced most by the flow nearest the wall and
the influence of flow further away becomes progressively weaker with distance
from the wall. Such a sensitivity distribution is not what is wanted in the
face of the boundary layer on the wall surface, and, in marine applications, of
variability caused by marine growth.

Shercliff [13] had derived expressions for induced voltage on the electrodes
in two cases, a uniform velocity and uniform velocity gradient. Baker made a
remarkable advance by showing how the response would depend on velocity V
and its distribution when it varied as a function of distance x from the wall.
Baker’s formula for the overall potential field is

∞∫

0

V (ξ)By (2ξ + x, y, z)dξ +

∞∫

x

V (ξ)By (2ξ − x, y, z)dξ,

where the x-axis is directed normal to the wall and the z-axis is directed
parallel to the flow. I always found the appearance of the factor 2 multiplying
ξ intriguing, but there is a physical explanation and it appears in the published
derivation [56]. Further generalizations of flowmeter theory were to be made
by M.K. Bevir at Warwick University later [57]. Baker used a water channel
to test the response of a wall velometer with magnetic field designed in the
light of his formula. Subsequently he conducted practical tests with a wall
velometer mounted in the flat bottom of a punt!

Although Hunt was registered as a Ph.D. student of Cambridge University,
he spent only the first year of research (subject “Magnetohydrodynamics”) at
Cambridge. He was being supervised by Shercliff and it was at the end of
Hunt’s first year that Shercliff left to become head of the engineering depart-
ment at the new university of Warwick. Hunt followed, being given leave to
work away from Cambridge.

Hunt was supported as a research student by the Central Electricity Gen-
erating Board. As this was a time of interest in MHD power generation, it was
natural that he should become involved with channel-flow problems, albeit at
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higher Hartmann number than seemed likely in the power generation context.
During that first year of research, while still at Cambridge, he found that he
could extend the analysis used by Shercliff for rectangular-section channels
with insulating walls all round to the problem of a channel with conducting
walls perpendicular to a uniform magnetic field and insulating walls parallel to
the field. Alternatively the analysis would work for perfectly conducting walls
perpendicular to the field and imperfectly conducting walls parallel [43]. What
at that stage eluded Hunt was a solution of the practically important case for
pumps and generators of insulating walls perpendicular to the magnetic field
and conducting walls parallel. However that was to wait only a short time
until it yielded to a collaboration between Hunt and Stewartson [44]. As is
well known in MHD circles Hunt then went on to a highly productive period
with other collaborations in a wide range of duct flows and electrically driven
flows.

6 The end of an era

The departure of Shercliff in October 1964 marked the end of the early years
of MHD in the Engineering Department. Alty and Baylis stayed on for a time
to complete their Ph.D. work. Baker remained and was awarded a Research
Fellowship at St John’s College. During the academic year 1966/1967 I took
Sabbatical leave and spent it at MIT, where I picked up an interest in electric
arcs, initially in the context of heaters for high-stagnation-enthalpy flows, but
developing into the context of high-current switch gear. Baker joined in and
experimental work on arcs in gas flow was initiated.

Hunt returned to Cambridge, having been awarded a Research Fellow-
ship at Trinity College and reinvigorated activity in the field of liquid-metal
magnetohydrodynamics, a well-known student of his being R.J. Holroyd, who
undertook experiments on flow in a duct through a strong, but spatially vary-
ing magnetic field. The practical interest in this was the power requirements
for circulating lithium in fusion-reactor blankets. Another student of Hunt
was P.A. Davidson, who worked on electromagnetic stirring of liquid metals
in continuous casting processes. After a period away from Cambridge David-
son returned to a University Lectureship in the Engineering Department in
1994 and resurrected the MHD group up with the aid of T. Alboussière.

A tragedy for MHD and cause of sadness to those who knew Arthur Sher-
cliff personally was that, having returned to Cambridge in 1980 and begun
to foster his latest enthusiasm, thermoelectric MHD, he died from cancer in
1983 at the early age of 56. We can still obtain some flavour of his personality
because we are fortunate in having a film record [58] of him demonstrating
some classic MHD experiments at the time when he was a young firebrand at
Cambridge (see Fig. 4).
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Fig. 4. Arthur Shercliff illustrating the action of a magnetic field on vorticity at
low-magnetic Reynolds number by spinning a brass loop in a field. (Still taken from
the educational film “Magnetohydrodynamics” [58].)
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1 Historical introduction

Julius Hartmann, born in 1881 (November 11th) and deceased in 1951
(November 6th), was a leading Professor at the Technical University of
Denmark, in Copenhagen, where he founded the Laboratoriet for teknisk fysik,
which was the basis for today’s Department of Applied Physics. In this labo-
ratory, he worked on different technical processes, inventing in particular the
device now called the electromagnetic conduction pump to drive the flow of
electrically conducting liquids, such as molten metals. He may be the first sci-
entist using mercury in a hydraulic circuit, and applying a magnetic field and
a DC current in two orthogonal directions, both perpendicular to the duct
axis, to generate an electromagnetic force capable to drive a fluid flow against
friction. In the archives of the Copenhagen Technical University, there are
still reminiscences of this pump, whose construction dates back to probably
1915–1917. But it is now extremely difficult to get published papers related
to this pioneering work (Moerch [1]).

Julius Hartmann is well known within the MHD community for his
discovery in 1937 [2] of the now well-known distributions of the velocity and
current density in the fully established flow of an electrically conducting fluid
between two parallel solid walls, both being electrically insulating, in the pres-
ence of a uniform magnetic field applied from outside in the direction perpen-
dicular to the walls. Those distributions exhibit exponential functions, often
expressed in terms of cosh(zB

√
σ/ρν), because of the duct symmetry (here

B denotes the magnetic field intensity, σ the fluid electrical conductivity, ρ
its density, ν its kinematic viscosity, and z stands for the coordinate in the
magnetic field direction). Those expressions show that, when the magnetic
field is high enough, there exist a core flow with a uniform velocity profile,
between two boundary layers (now called the Hartmann layers), where all the
velocity variations takes place. The layer’s thickness is then δ = 1

B

√
ρν
σ , and

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
155–170. c© 2007 Springer.



156 R. Moreau and S. Molokov

the ratio between the duct’s half-width h and δ is now called the Hartmann
number,

Ha =
h

δ
= Bh

√
σ

ρν
.

Hartmann also understood that the induced current loop is confined within
the cross section. This implied that the total current is zero, and that the
total current passing in the core is exactly opposed to that within the layers,
however thin they are. His results demonstrate that these layers, having a
thickness inversely proportional to the applied magnetic field, may be as thin
as one desires, depending on the strength of the magnetic field.

Hartmann’s aim in his 1937 theoretical paper was, indeed, to understand
the origin of the rather poor efficiency of the conduction pump. In this paper,
he first derives a simple analytical solution of the basic equations of motion, in
which the Lorentz force j×B is introduced. Then he obtains an expression for
the local shear stress at the wall (now walls transverse to the field are called
the Hartmann walls), and for the pressure gradient necessary to maintain a
given flow rate against this friction. Then, he discusses the origin of the strong
head losses that they had measured with Lazarus [3]. As a consequence, his
paper is not limited to the theoretical investigation of the fully established
regime (now called the Hartmann flow), since he qualitatively describes the
mechanisms of the important pressure variations, which appear both at the
entrance to and at the exit from the region of a uniform magnetic field.

In this review, we discuss the Hartmann layer properties in a more general
context, since we escape from the fully established regime and we consider
core flows carrying inertia and vorticity (possibly turbulence). In § 2, we start
with the Hartmann layers at plane solid walls, focusing on the particular
case of an electrically insulating wall for the sake of simplicity. In § 3, we
discuss particular properties of the Hartmann layer when it develops in the
vicinity of a free surface, attempting to underline the differences between the
two cases. Finally, in § 4, we try to conclude this paper with remarks on
the quite singular character of the Hartmann layer. Each paragraph aims at
illustrating the remarkably large number of important and specific properties
of that layer. For each of them, it has been our intention to select and to
quote the first paper in which it is theoretically established or experimentally
demonstrated, but not to present an exhaustive list of the published papers
where it is discussed or applied to investigate a particular flow.

2 The Hartmann layer at a plane solid wall

Let us consider a fluid flow in the vicinity of an insulating plane wall at z = 0,
whose velocity scale is U0, in the presence of a uniform magnetic field B,
which is transverse to two parallel electrically insulating walls. Outside the
Hartmann layer, where viscosity cannot play any role, we assume that inertia
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Fig. 1. Julius Hartmann

is negligible in comparison with the Lorentz force (later on the validity of this
assumption will be specified). Then, combining the expressions for the electric
potential ϕ0 derived from the equation of conservation of the electric charge
and Ohm’s law, one gets:1

∂2ϕ0

∂z2
+∆⊥ϕ0 = B · ω0, (1)

where ω0 = ∇⊥ × u⊥0 stands for vorticity in the core, ∇⊥ = (∂x, ∂y, 0), and
∆⊥ = ∇2

⊥.
Using Navier–Stokes equation yields:

∆⊥ϕ0 = B · ω0. (2)

This follows from the strong property that, in the core flow, most quantities,
such as u⊥0 and ϕ0, are asymptotically independent of the z-coordinate. This
result, derived by Ludford [4] (see also [5,6]), may be seen as analogous to the
Proudman–Taylor theorem for rotating fluids. It implies that any structure
in the core must have the form of a column parallel to the magnetic field, or
that all planes perpendicular to the magnetic field are strongly correlated.
1 In the following, the zero index systematically refers to quantities in the core and

the ()⊥ index for vector quantities refers to their components in the plane (x, y).
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But, within the Hartmann layer, the equation for the potential is:

∂2ϕ

∂z2
+ ∆⊥ϕ = B · (∇⊥ × u⊥). (3)

Then, assuming that ∆⊥ϕ and ∆⊥ϕ0 are close to each other and combining
Eqs. (2) and (3) yields new expression

∂2ϕ

∂z2
= B · [∇⊥ × (u⊥ − u⊥0)] , (4)

which, after two integrations, confirms that the variation of the electric poten-
tial across the Hartmann layer is of the order of δ2 and becomes negligible
when δ is very small. This allows to simplify the equation of motion within
the Hartmann layer as follows:

ρν

σB2

∂2u⊥
∂z2

− u⊥ = −u⊥0, (5)

and to get the exponential velocity distribution

u⊥ = u⊥0 [1 − exp(−Haz/h)] = u⊥0 [1 − exp(−z/δ)] . (6)

This expression is a minor generalisation to the case of non-established
flows, where u⊥0 is non-uniform, of the equivalent relations obtained by
Hartmann [2] and Shercliff [5], for fully established flows. It introduces the
Hartmann number defined above, but one could notice that the thickness δ is
independent of the duct half-width h.

Since the electric potential and the velocity are known within the Hartmann
layer, the expression for the current density immediately follows from Ohm’s
law. It also has an exponential form similar to Eq. (6), but its main feature
is the integral quantity

J⊥ =
∫

H

(j⊥ − j⊥0)dz =
√
σρν(u⊥0 × eB), (7)

where integration is performed over the Hartmann layer thickness.
A somewhat analogous relation deserves to be mentioned. It is the expres-

sion
(jz)0 =

√
σρνω0 (8)

valid at the edge of the Hartmann layer. Equation (7) means that one can
consider the layer as an electric current sheet carrying a current J⊥ propor-
tional and perpendicular to the local core velocity u⊥0. And expression (8)
explains how this sheet may be fed from the electric current passing in the
neighbouring core. These expressions, discovered almost at the same time by
Hunt and Ludford [7] and by Kulikovskii [8], are of particular interest for
non-established flows where u⊥0 is non-uniform (see Hunt and Shercliff [9]).
For instance, they imply that each quasi-two-dimensional (quasi-2D) vortical
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structure present or moving in the core flow carries an electric circuit, which
must loop through the Hartmann layer. They are also of prime importance
to match local solutions in the core, in the Shercliff layers2 present along the
walls parallel to the magnetic field, or in free shear layers [6,9–11]). Remark-
ably, the local value of the magnetic field does not appear in Eq. (7) (the only
information on B which is relevant is its orientation eB); this implies that
relation (7) is also valid in the presence of a non-uniform magnetic field, as
at the entry into or at the exit from the region where the magnetic field is
uniform.

From the above ideas follows that the current density within the core flow
is Ha times smaller than in the Hartmann layer, where it is of the same
order of magnitude as the other two terms of Ohm’s law: σBU0. This has
two strong implications. First, it implies that the relevant non-dimensional
number to estimate the ratio between the Lorentz force and inertia in the core
is not the interaction parameter N = Ha2

Re , but rather the number Ha
Re , where

Re is the Reynolds number. This has been observed in many experiments,
starting from Murgatroyd [12], and in all the experiments with insulating
ducts performed in Riga and Purdue in the 1960s. It was observed that the
friction law in duct flows with a transverse magnetic field was exactly the
same as in a laminar regime, even when turbulence was still present but was
quasi-2D (see the review paper by Lielausis [13], as well as Branover [14]).
Second, it implies that the Joule dissipation is essentially located within the
Hartmann layer, just like the viscous dissipation. According to Eq. (4), which
implies an exact balance between viscous friction and electromagnetic force,
those two dissipations are equal to each other. This means that the total
damping supported by any quasi-2D vortical structure, is located within the
Hartmann layers present at its two ends. The relevant form of the kinetic
energy theorem applied to a fluid domain of such a structure, at the leading
order (the terms disregarded are Ha times smaller), is then

∂

∂t

∫ +h

−h

ρu2

2
dz ≈ −

∫ +h

−h

j2

σ
dz. (9)

Clearly the predominant contribution to the integral on the left-hand side
comes from the core, whereas the predominant contribution to the other inte-
gral comes from the Hartmann layers. Then, it is straightforward to derive
an estimate of these terms, which yields the following expression for the
Hartmann damping time τH :

ρU2
0h

τH
≈ σB2U2

0 δ. (10)

2 The authors suggest that these boundary layers present along the walls parallel
to the magnetic field, which were named “side layers”, be now named “Shercliff
layers”, since they were first analysed by Shercliff [5].
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This demonstrates that the damping of this quasi-2D structure (an eddy,
for instance, turbulent or not, or any other flow structure with a non-zero
vorticity, like a free-shear layer) is much weaker than the usual Joule damping,
whose time scale is

τJ =
ρ

σB2
.

It is given by the following expression (Sommeria and Moreau [15]) when the
Hartmann walls are insulating:

τH =
h

B

√
ρ

σν
= HaτJ . (11)

On the basis of the above ideas, which yield specific properties for the core
flow and for the two Hartmann layers, Sommeria and Moreau [15] introduced
the z-averaged velocity

v⊥ =
1
2h

∫ +h

−h

u⊥dz, (12)

which is very close to the core velocity when Ha is very large, and derived
the following equation for the quasi-2D flow:

dv⊥
dt

= −1
ρ
∇⊥p0 + ν∇2

⊥v⊥ − v⊥
τH

, (13)

where viscous friction and Lorentz force present in the Hartmann layer are
both included in and modelled by the last linear damping term. The pre-
dictions derived from this equation have been investigated by Messadek and
Moreau [16] in the MATUR experiment. The agreement is fair if the mag-
netic field is large enough to make inertia negligible within the Hartmann
layer. This requires that N � 1, but in such conditions inertia may remain
non-negligible within the core flow.

Therefore, for flows at moderate Hartmann number (say in the range
10–200), where the concept of a Hartmann layer separated from the core flow
is well justified, the question of introducing inertial effects in the Hartmann
layer theory is quite relevant. This question has recently been addressed by
Pothérat et al. [17], who expressed the core velocity u⊥0 in the plane perpen-
dicular to the magnetic field as a series expansion in terms of the two small
parameters 1/N and 1/Ha:

u⊥0 = u0
⊥0 +

1
N

u1,0
⊥0 +

1
Ha

u0,1
⊥0 +O

(
1

NHa
,

1
N2

,
1

Ha2

)
. (14)

At the leading order, the basic averaged equations reduce exactly to the
inviscid version of Eq. (13). But at the following order (1/N , which is usu-
ally much larger than 1/Ha), the z-averaged velocity obeys a more complex
equation involving a new and complex non-linear term:
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dv⊥
dt

= −1
ρ
∇⊥p0 −

v⊥
τH

+
τH
Ha2

(
7
36
D +

1
8
∂

∂t

)
(v⊥ · ∇⊥)v⊥, (15)

where the operator D has the following definition:

D : F → D F = (v⊥ · ∇⊥)F + (F · ∇⊥)v⊥.

Equations (13) and (15) have been solved numerically by Pothérat
et al. [18]. At moderate values of Ha, the results obtained with Eq. (15)
agree more satisfactorily with the experimental data, namely in the case of
isolated vortices [19] and in the case of the MATUR experiment [16], than
those obtained with the simple model, Eq. (13). It is clear from the expres-
sion of the last term in (15) that the results obtained at large Ha with the
two model equations coincide.

From a physical point of view, according to Pothérat et al. [17, 18], the
introduction of inertia within the Hartmann layer theory results in a kind of
extra diffusion, the vorticity distribution predicted by Eq. (15) being smoother
than that predicted by Eq. (13). This is also suggested by the experimental
data mentioned above. And, the z-dependence of the actual core velocity u⊥0

is essentially controlled by a sort of Ekman secondary flow driven by centrifuge
effects, which take place within the Hartmann layer. This would be exactly
an Ekman flow if the vortical structures would be exactly circular. But their
complex shape, due to the shear present at large scale in the quasi-2D flow, is
responsible for the complex form of the last term in Eq. (15). The fluid, which
enters the structure within the Hartmann layer, is released within the core,
almost uniformly. This results in a swelling of the structure in the centre and
in the z-distribution of u⊥0, which is parabolic and gives the eddies a kind
of “barrel shape”. A similar effect comes from the electric circuit associated
with each eddy, due to the current entering the eddy at each end according to
Eq. (8), and exiting in the middle part. It also yields a parabolic z-distribution
of the velocity u⊥0. But this second effect scales as Ha−1 and is therefore
usually much smaller than the inertial effect, which scales as N−1.

The stability of the Hartmann layer at an insulating solid wall has
been investigated theoretically by Lock [20], Pavlov and Simkovich [21, 22],
Takashima [23], and Lingwood and Alboussière [24] among others, and exper-
imentally in many experiments in duct flows in Riga and Purdue (see reviews
by Lielausis [13] and Tsinober [25]) and more recently by Moresco and
Alboussière [26].

Lock’s analysis predicted that, with infinitely small initial disturbances,
the Hartmann layer remains stable until the critical value RL = 48, 250 of the
only non-dimensional parameter

R =
U0δ

ν
=
Re

Ha
.

Pavlov and Simkovich [21, 22] stressed the importance of finite amplitude
perturbations for the stability of the Hartmann layer, and initiated non-
linear stability analysis. Lingwood and Alboussière [24] performed a detailed
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non-linear analysis. According to Lingwood and Alboussière, when the ampli-
tude of the initial disturbance A0 is finite, the critical value of R decreases
when A0 increases, until an asymptotic limit RG = 328. This global stability
limit is fairly well confirmed by the measurements performed by Moresco and
Alboussière [26] in the Grenoble High Magnetic Field Facility, using magnetic
fields up to 13 T. They obtained a critical value of 380 for R. This has also
been confirmed by a recent numerical analysis by Krasnov et al. [27], who find
a critical value close to 350.

It is noticeable that these values differ significantly from those previously
available (around 250) after the first experiments on duct flows, performed by
Murgatroyd [12] and in Riga and Purdue. This may probably be explained
by the fact that previous experiments have been performed in ducts, which
involved the entrance effect into the magnetic field with other sources of tur-
bulence.

Another experimental result, which is worth to be mentioned here, is the
role of the wall roughness on the stability threshold [13,14,26]. In Moresco and
Alboussiere’s experiment with a rough wall, this threshold slightly decreased
from 380 to about 320 when Ha increased, whereas it is Ha-independent when
the wall is smooth.

3 The Hartmann layer at a free surface

Let us now turn attention to free-surface flows. The situation here is far more
complicated as we will see below. Despite the existence of certain theoretical
results (see a review by Molokov and Reed [28]), the work on the active role
of the Hartmann layers at the free surface has been initiated only recently.

Concerning experimental work, it has been noticed that in many situations
it is very difficult to stabilise free-surface flows with the magnetic field. A
good example is the experiment by Bucenieks et al. [29], who investigated
a film flow in a trough inclined to gravity in the presence of a magnetic
field parallel to backing plate (Fig. 2). This and other similar experiments
reveal a very non-uniform film thickness in the transverse cross section of the
trough with maximum at the vertical sidewalls. This maximum may exceed
the film thickness at the centre of the trough by a factor of 2 or even 5.
Bucenieks et al. [29] observed two flow regimes simultaneously: slow one at the
sidewalls, and fast one in the centre. The flow pattern was very complicated,
exhibiting “dolphins”, i.e., time-periodic humps appearing at the sidewalls and
disappearing downstream. The origin of these effects is still unclear. However,
possible triggers may be inertia, three-dimensional effects, poor wetting of the
trough’s walls or dimensions of the meniscus (in liquid metals it is quite high,
of the order of 0.3–1.3 cm [28]). These effects ultimately result in a highly
non-uniform electromagnetic braking in various regions of the flow, in which
the Hartmann layers and/or electrically conducting walls play a decisive role.
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Fig. 2. Schematic diagram of a free-surface flow in a trough, showing regions of
different type in the transverse cross section. The magnetic field lines intersect two
solid walls in region 1, solid wall and free surface in region 2, and free surface at two
positions in region 3

We will be interested here in the Hartmann layers, which are formed not
only along all the solid walls, but along the free surface as well (Fig. 2). Outside
the Hartmann layers there are regions of inviscid fluid (the cores). There is
also a free shear layer originating at the left bottom corner of the trough and
extending along the magnetic field, which will not be discussed here.

Let us turn attention to the Hartmann layers at the free surface. These
layers may be active or passive. It depends mainly on whether a magnetic
field line crosses a free surface at two points (such as in region 3 in Fig. 2), or
only at one, crossing a solid wall as well (region 2).

The effect of the Hartmann layer on the core flow is weaker than that
exerted by the layer at the solid wall. Indeed, for the existence of the Hartmann
layer, traction at the adjacent surface is needed. However, the free surface is
traction-free, and the conclusion might be that the primary, active boundary
layer, which strongly affects the core flow, cannot exist. In this case, the layer
at the free surface would be passive, and thus may be ignored. Then, all
the boundary conditions (kinematic, dynamic, and vanishing of the normal
component of current) may be applied directly to the core variables. Indeed,
this is the case for regions such as 2 in Fig. 2, in which the Hartmann layer at
the corresponding solid wall retains its controlling influence on the core. An
example of such a flow is discussed in § 3.1.

There is another situation, however, when a magnetic field line crosses the
free surface at two points such as in region 3. Then this argument fails, the
Hartmann layer at the free surface becomes active, and in § 3.2 we explain
the reasons for this.

3.1 Passive free-surface layer

Here we discuss a peculiar example, which demonstrates controlling features
of the Hartmann layer at a solid wall in free-surface flows [30]. Consider a hor-
izontal fluid layer on a solid infinite plate in the presence of a strong, vertical
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(α = 90o), uniform magnetic field. The plate is in general electrically conduct-
ing, but we again consider an insulating plate here for the sake of simplicity.
Now, suppose that an initial, finite-amplitude disturbance z = h(x, y, t) is
created, where h is a single-valued function. The disturbance will evolve owing
to gravity and surface tension, while the Lorentz force will prevent its spread-
ing. In the inertialess approximation, and for Ha� 1, the flow splits into the
core and the Hartmann layers at the plate and at the free surface. As each
magnetic field line crosses both the wall and the free surface, Hartmann layer
at the free surface is passive and is not discussed further. The evolution of this
disturbance may or may not be guided by the Hartmann layer at the plate as
we will see below.

The dimensionless equations for the core are:

p0 = −z + pw, ϕ0 = −zjz,0 + ϕw, (16)

j⊥0 = eB ×∇⊥pw, jz,0 = Ha−1∇2
⊥φw , jz,0 = Υpw, (17)

u⊥0 = eB ×∇⊥ϕ−∇⊥pw, vz,0 = z∇2
⊥pw, (18)

ht = ∇⊥ · (h∇⊥pw) − Υϕw + hΥ 2pw. (19)

Here pw = h − Bo−1κ and ϕw are the pressure and the electric potential at
the plate, respectively, and

κ = ∇⊥ · ∇⊥h√
1 + (∇⊥h)2

is the curvature of the free surface. These functions are independent of z.
In Eqs. (16)–(19) the scaling is based on the interaction between gravity

and the electromagnetic force. In particular, the fluid velocity and time are
scaled with U0 = ρg/σB2 and τg = σB2L/ρg, respectively, where g is accel-
eration due to gravity and L is typical lengthscale of the disturbance. We
note that the scales of velocity and time are proportional to 1/B2 and B2,
respectively, i.e., the magnetic field slows down propagation of disturbances
significantly. The Bond number, Bo = L2ρg/γ, represents the ratio of gravity
to surface tension. Here γ is the surface tension coefficient.

The operator, acting on a function s(x, y) is the Jacobian Υ defined as
follows:

Υs = [s, h] = ∂xs∂yh− ∂ys∂xh. (20)

It should be noted that this differential operator acts along instantaneous
isolines of h. Thus, Υh ≡ 0, and Υpw ≡ −Bo−1Υκ.

Using these results and eliminating vertical component of current between
Eqs. (17−2) and (17−3), gives the system of coupled equations for two
unknown functions, h and ϕw, as follows:
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ht = ∇⊥ ·
{
h∇⊥

(
h−Bo−1κ

)}
− Υϕw −Bo−1hΥ 2κ, (21)

Bo

Ha
∇2

⊥ϕw = −Υκ. (22)

These are the evolution equation for the elevation of the free surface and the
Poisson equation for the wall potential, respectively.

At this point several observations can be made.
1. The consequence of Eq. (17−3) is that the vertical current is determined

by the variation of curvature along the instantaneous isolines of h. If curvature
is a constant along the isolines (e.g., a straight line or a circle), i.e.,

κ = f(h), (23)

where f is an arbitrary function, then Υκ = 0, and the vertical current van-
ishes as a result. If it vanishes within the whole fluid layer, the Hartmann layer
is passive, as there is no current entering the layer, and the wall potential ϕw

vanishes as well (cf. Eq. (22)). The resulting evolution equation is:

ht = ∇⊥ · (h∇⊥h) −Bo−1∇⊥ · (h∇⊥κ) . (24)

If one considers an initially axisymmetric disturbance, for which curvature of
h vanishes identically, the flow will be axisymmetric for all times until the
disturbance decays completely. The analysis [31] shows that the axisymmetric
perturbations are stable in this sense.

2. Vertical current is created by surface tension only. If one considers large-
scale, smooth disturbances, for which surface tension may be neglected, i.e.,
in the limit Bo → ∞, there is no vertical component of current, the wall
potential vanishes, and the Hartmann layer becomes passive. In this case the
evolution Eq. (21) reduces to

ht = ∇⊥ · (h∇⊥h) , (25)

which is a particular case of Eq. (24), and which has an analogy in porous
media flows.

3. From Eq. (22) follows that if curvature varies along the isolines of h, then
the parameter which determines the importance of surface tension is Ha/Bo.
As typically Bo ∼ 1 [28], this means that for non-symmetric disturbances the
Hartmann layer is always active, and that the surface tension effects cannot
be neglected. This has significant implications for modelling MHD flows with
free surface.

More generally, for Ha� 1, two processes take place within the flow. One
is purely diffusive, in which the Hartmann layer is passive. This happens on
a slow, “gravity” timescale τg. The other one is fast, occurring on a timescale
τγ = τgBo/Ha, and is related to reshaping of the disturbance. This involves
surface tension and active Hartmann layer.
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Suppose Υκ 
= 0, then from Eq. (22) follows that ϕw = O(Ha/Bo) � 1,
and thus the term containing φw on the right-hand side of Eq. (21) dominates
the other terms. Introducing the rescaled potential Φ = ϕwBo/Ha and time
T = tHa/Bo, to the leading order this gives:

∂Th = −ΥΦ, (26)

∇2
⊥Φ = −Υκ. (27)

The system of Eqs. (26) and (27) governs the process of reshaping the
free surface, which tends to reduce the variation of κ along the isolines of
h. Indeed, an equilibrium for this process occurs when ∂Th = 0, i.e., when
ΥΦ = 0.

This fast process itself is quite peculiar. The horizontal components of
velocity become very high, O(Ha/Bo), compared to those during the purely
diffusive stage being O(1), which yields

u⊥0 =
Ha

Bo
eB ×∇⊥Φ. (28)

As function Φ is 2D, the fast regime is characterised by a quasi-2D flow in
the horizontal plane with vorticity in the core being ωz,0 = −ΥκHa

Bo . The
fluid flows along the instantaneous isolines of the electric potential. This is
the effect of the active Hartmann layer.

However, unless as a result of the restructuring the disturbance becomes
isolated and axisymmetric, the process is not complete. Indeed, Eq. (23) may
be considered as a planform equation with infinite number of equilibrium
states for Eqs. (26) and (27). A good example is the Helmholtz equation

∇2
⊥h = −k2h,

which is obtained from Eq. (23) by linearising curvature and assuming that
function f is linear. It is shown in [31] that the process goes through many
stages, in which a slow, diffusive regime is followed by a fast regime until
a new equilibrium is reached with higher horizontal lengthscale. Then the
process of transition to larger and larger scales via a sequence of slow/fast
regimes repeats until the amplitude of the disturbance becomes so small that
the non-linear effects vanish.

Of course, when inertia is present, it induces additional vorticity in the
core, the associated weak vertical current entering the Hartmann layer, and
all the other effects discussed in § 2.

More generally, however, the flow is not quasi-2D, as the electric potential
and thus all the three components of the fluid velocity are linear functions
along the magnetic field (cf. Eqs. (16)–(18)). This is especially so for the
electrically conducting plate [30]. Thus, the vorticity in general retains all the
three components.
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3.2 Active free-surface layer

When the magnetic field line intersects a free surface at two positions, such
as in region 3 in Fig. 2, the corresponding Hartmann layers become active.
Consider a flow in a rivulet on a plate inclined to gravity in a transverse
magnetic field parallel to the plate [32] (see Fig. 3). The main effect of the
magnetic field, as with the duct flows, is to eliminate variation of the velocity
along the field lines. However, the usual strong damping characteristic for
duct flows is absent as there are no solid walls transverse to the magnetic
field. As the core velocity is constant along magnetic field lines, it induces
weak stresses at the curved free surface. These stresses are eliminated by the
Hartmann layers.

The electric currents induced in the core are very weak, which leads to
weak Lorentz force, comparable to the viscous force in magnitude. The core
becomes viscous, with viscous effects acting in the plane transverse to the
field only. The magnitude of the resulting core velocity is the same as in the
hydrodynamic flow in the absence of the magnetic field. The electric currents
induced in the core must close in the Hartmann layers at the free surface,
which thus control the core flow, and together with viscous forces shape the
velocity profile in the plane transverse to the field.

Finally, it is tempting to speculate as to what will happen in the trough
as shown in Fig. 2. Any non-uniformity in the free-surface elevation, i.e., the
appearance of region such as 3, may result in very high velocities in this region
due to low damping, producing further instabilities.
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Fig. 3. Active Hartmann layers at the free surface in a rivulet in a magnetic field
parallel to the plate (transverse cross section). The magnetic field lines cross free
surface only. The arrows show the direction of the electric current, which is induced
in the core and passes through the Hartmann layers. (From [32].)
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4 Concluding remarks

The main lesson arising from this review is that the Hartmann layer belongs
to the class of the active boundary layers, like the Ekman layer in rotating
fluids. Those active layers differ from the classic Blasius-type layers, which
adapt themselves to the properties of the neighbouring core flow in order to
satisfy the no-slip condition at the wall, without any reaction on the core flow.
In the case of the Ekman layer, the reaction on the core flow comes from the
conservation of the flow rate of the secondary centrifuge flow and remains
simple. In the case of the Hartmann layer, this character of an active layer is
always true along a solid wall and it may be also true along a free surface.

When the Hartmann layer is active, its reaction on the core flow is man-
ifold and quite subtle. First, the conservation of the recirculating current (7)
between the core and the layer plays a role similar to the conservation of
the recirculating flow rate in the Ekman layer. But, second, it has the other
property (8) that any quasi-2D vortical flow is associated with a local elec-
tric current, proportional to the local core vorticity, exiting the Hartmann
layer and entering into the core, where it forces some open electric circuit. Of
course, these two conditions are not independent, as the presence of the jz
component (8) implies some divergence of the current sheet J⊥ (7). Third,
it is worth to underline that most of the drag (including both viscous fric-
tion and electromagnetic drag) is located within the Hartmann layer (as well
as within the Hartmann wall when it is non-insulating). And, remarkably,
when Ha is still larger (say above 200), the theory of this Hartmann damping
becomes quite simple, since inertia is negligible within the layer (although it
may be significant within the core flow, as in a turbulent regime). Then the
Hartmann damping may be modelled in the equation of motion (13) with a
linear damping term behind which viscous friction and j × B are hidden.

Among the main consequences of these strong and specific properties of
the Hartmann layer, we must mention the difficulty to develop numerical soft-
ware capable to compute accurately flows at very large Ha numbers. Indeed,
there are two options, either to mesh the Hartmann layer, or to model it ana-
lytically. As shown by Tagawa et al. [33], the first option requires at least five
meshes across the depth of the layer and this may imply enormous computing
resources. For instance, to compute flows relevant to the liquid metal blanket
of fusion nuclear reactors, where Ha ≈ 104–105, this condition makes any
attempt quite unrealistic. On the contrary, the second option may save the
main part of these resources, but, so far, it has only been checked on simple
geometries (plane walls).

We conclude by emphasizing that surface tension effects acting via the
active Hartmann layers play a very important role in the dissipation of energy.
If they are not taken into account in flow models, the dissipation may be too
weak.
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1 Introduction

The realization of controlled thermonuclear fusion could lead to a significant
contribution to future energy demands. The reaction between the fuel compo-
nents tritium and deuterium requires temperatures above 108 K so that any
confinement using solid walls is excluded. At these temperatures the fuels are
ionized and form an electrically highly conducting plasma that can be con-
fined by strong magnetic fields to a defined volume. During the past decades
different concepts of magnetic confinement have been investigated and a num-
ber of conceptual designs for commercial or experimental fusion reactors have
been studied.

One of those is the linear magnetic confinement in a very long solenoid (up
to 130 m [1]). For strong enough magnetic fields, charged plasma particles are
spiraling freely along the field lines from which they cannot escape. At both
ends of the linear solenoid the plasma is compressed by stronger magnetic
fields created by coils of special shape (called the mirror). Particles which
move not primarily parallel to the field lines are reflected at the ends, others
may leave the confinement at the ends. A major part of the kinetic energy of
escaping charged particles can be directly converted into electric energy.

In order to avoid the very complicated mirrors it is a straightforward idea
to bend the former geometry and to connect both ends. Magnetic field lines,
along which charged particles move, become closed and the confined plasma
fills a torus. The primary magnetic field required for plasma confinement
has toroidal orientation. The best-established machine with toroidal confine-
ment is the Tokamak in which a toroidal electric current is driven around the
doughnut-shaped plasma. The toroidal currents induce a secondary, poloidal
magnetic field, which in superposition with the primary one generates nested
toroidal magnetic surfaces. The field lines follow a helical path on those sur-
faces as they wind around the torus. Tokamaks have proven their capabilities
for fusion confinement in a number of experiments in several countries, from
which the most prominent is probably the Joint European Torus experiment
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171–194. c© 2007 Springer.
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(JET) in Culham, UK, in which in 1991 the worlds first controlled release of
deuterium–tritium fusion power of 1.7 MW was realized. Two years later the
US experiment, the Tritium-fueled Fusion Test Reactor (TFTR) at Prince-
ton generated 6 and later 10 MW. In 1997, JET was able to produce more
that 16 MW and the upcoming international thermonuclear experimental reac-
tor (ITER) will beat all prior experiments by orders of magnitude in fusion
power, confinement time, and capital investment. Primarily designed as a
physics experiment, ITER will also provide the opportunity to test a number
of engineering components, which are essential elements of future thermonu-
clear fusion power plants, including liquid metal breeding blankets.

A blanket is the solid structure that is positioned between the plasma and
the magnetic coils in order to shield or protect the latter ones from intolerable
radiation doses. Moreover, the blanket has two other functions which are the
absorption of fast neutrons, conversion of their energy into heat, and breeding
of tritium, one of the fuel components. The plasma-facing wall called the first
wall receives a high heat flux emitted from the fusion plasma. The major
heat input to the blanket occurs by volumetric heating due to strong neutron
radiation. To ensure safe, reliable operation, all heat released in the blanket
has to be removed at such rates that wall temperatures do not exceed critical
values.

Various engineering concepts have been discussed in the past with the
aim to achieve sufficient cooling by using liquid metals such as lithium or the
eutectic lithium–lead alloy as possible coolants. In principle, liquid metals are
prime candidates for coolants. They can be operated at high temperature, they
have high thermal conductivity, and due to the lithium content the coolant
serves simultaneously as a material for the tritium breeding. Blankets which
rely exclusively on the heat transfer capabilities of liquid metals are known as
self-cooled liquid metal blankets. In other concepts the liquid metal serves only
as breeder material while the heat is removed by coolants like water or helium
gas at high pressure. We will call those concepts separately-cooled liquid metal
blankets. A combination of both ideas results in the so-called dual coolant
blankets, where the strong heat flux from the first wall (and from other walls)
is removed by helium, while the volumetrically deposited heat is removed by
the liquid metal flow. It would be impossible to address here all individual
concepts that appeared during the last three decades. In the following we
will outline some specific features of different blanket types illustrated by
examples.

The magnetohydrodynamic (MHD) issues for applications in fusion have
been discussed in the past by numerous authors and one should recall here, for
example, the reports by Hunt and Hancox [2], Lielausis [3], Hunt and Holroyd
[4]. These reports and references cited there highlight all major aspects con-
cerning liquid-metal MHD in a fusion environment and most results presented
there serve up to now as a fundamental basis for the evaluation of new designs.
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2 Formulation

The presentation of governing equations follows closely the textbook by Müller
and Bühler [5] focusing on fusion-specific aspects. Details of solution proce-
dures may be found in that reference or in original papers cited therein. The
discussion concentrates exclusively on MHD-related issues and omits such
important topics as heat transfer, tritium breeding, and corrosion.

2.1 Governing Equations

For applications in fusion blankets MHD equations in the inductionless limit
are preferred. With this assumption the magnetic field is a known quantity
that does not depend on the flow. The nondimensional inductionless equations
for an incompressible viscous fluid consist of the momentum balance

1
N

[
∂v
∂t

+ (v · ∇)v
]

= −∇p+
1
Ha2

∇2v + j × B, (1)

and Ohm’s law
j = −∇φ+ v × B, (2)

with conservation of mass and charge

∇ · v = 0, ∇ · j = 0. (3)

Here, v, B, j, p, and φ stand for velocity, applied magnetic field, current
density, pressure, and electric potential, scaled by the reference velocity v0,
the magnitude of the applied magnetic field B0, j0 = σv0B0, p0 = Lσv0B

2
0 ,

and φ0 = Lv0B0, respectively. The typical geometric dimension of the duct
cross section is denoted by L and the fluid properties like density ρ, elec-
tric conductivity σ, and kinematic viscosity ν are assumed to be constant.
Inductionless models are valid in general for low magnetic Reynolds numbers
Rm = µσv0L � 1, with magnetic permeability µ, but they can be applied
even to cases with higher Rm provided that RmO (j) � 1, where O (j) rep-
resents the order of magnitude of nondimensional current density in the fluid
(as outlined, e.g., by Walker (1986) [6]).

The two nondimensional groups are the interaction parameter and the
Hartmann number,

N =
σLB2

0

ρv0
and Ha = LB0

√
σ

ρν
, (4)

which characterize the ratios (electromagnetic/inertia forces) and (electro-
magnetic/viscous forces)1/2, respectively. The hydrodynamic Reynolds num-
ber is given in terms of these groups as Re = Ha2/N .

The boundary conditions at the fluid–wall interface Γ are

v = 0 and j · n = jw · n at Γ, (5)
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where n is the inward unit normal to the wall and jw the current density
in the wall. For smooth walls of conductivity σw, whose thickness t is small
compared with L, the local current entering the wall is discharged into the
thin wall in a quasi two-dimensional (2D) way. To describe this behavior the
charge conservation equation is integrated across the wall which leads to the
thin-wall condition

j · n = −∂φ
∂n

= ∇ · (c∇τφw) at Γ, (6)

where c = σwt
σL is the wall conductance parameter, φw stands for the dimen-

sionless wall potential defined at the fluid–wall interface and the subscript τ
denotes components tangential to the wall [7]. Currents leaving the fluid enter
the wall, turn in the wall into a tangential direction, and create in the wall a
distribution of wall potential. For applications in fusion blankets, the metal
walls are usually assumed to be perfectly wetted by the fluid with φw = φ.
However, in order to minimize pressure drop some design concepts propose the
use of thin insulating coatings of thickness δi with resistivity ρi between the
fluid and the wall. As reported by Bühler and Molokov [8], the wall potential
is then related to the fluid potential by

j · n =
1
κ

(φw − φ) at Γ, (7)

with the nondimensional contact resistance κ = ρiδi σ/L .

2.2 Conditions in fusion blankets

Prime candidates for breeder and/or coolants in fusion blankets are pure
lithium and the eutectic lithium lead alloy Pb-17Li. The material properties
are given in Table 1 for a temperature of 450◦C which is a typical tempera-
ture for applications in fusion blankets. For comparison, the values of FLIBE
(LiF-34BeF2) at 500◦C, which has been considered as another liquid breeder
or coolant, has been added to the table. The liquid metals are superior to the
latter material in breeding ratio, thermal conductivity and lower viscosity so
that FLIBE never was a real alternative. With these properties we may esti-
mate the controlling nondimensional groups for geometries with L = 0.05 m,
B = 10 T, and v0 = 0.5 m/s.

We observe that for the liquid metals used in fusion blankets the Hartmann
number is very high,Ha� 1, i.e., the electromagnetic forces dominate over the
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Table 1. Physical properties of liquid breeder materials

ρ
[
kg /m3

]
ν
[
m2 / s

]
σ [1/Ωm] Ha N Re

Li 4.9 × 102 7.1 × 10−7 2.9 × 106 4.5 × 104 6.0 × 104 3.2 × 104

Pb-17Li 9.2 × 103 1.4 × 10−7 7.5 × 105 1.1 × 104 8.2 × 102 1.5 × 105

FLIBE 2 × 103 0.7 × 10−5 1.5 × 102 50 0.8 3.4 × 103

viscous ones. As a consequence, the fluid moves quasi inviscidly through cores
which occupy most of the blanket. The core flow establishes a balance between
pressure gradient and Lorentz force. Viscous effects are confined to thin layers,
as shown in Fig. 1. The viscous layers at walls to which the magnetic field
has a normal component are the Hartmann layers. They are very thin and
scale as δH = O

(
Ha−1

)
. Layers at walls parallel to the field are the parallel

layers or the side layers whose thickness scales as δs = O
(
Ha−1/2

)
. One

could dedicate such layers to Arthur Shercliff who investigated first the flows
in parallel layers for insulating rectangular ducts in 1953 [9], but one should
also remember in this context the name of Julian Hunt who demonstrated in
1965 the possible occurrence of high-velocity jets in such layers, depending on
the conductivity of the walls [10].

Layers between different cores are known as Ludford layers. They originate
from discontinuities of either geometrical or electrical properties at the walls
like corners, different conductivities or thicknesses of walls, etc. and spread
into the fluid along magnetic field lines. In the viscous-electromagnetic regime
these layers scale in thickness like Shercliff’s layers, i.e. δL = O

(
Ha−1/2

)
,

provided that Ha� Re2 [11]. The latter condition is hardly met in self-cooled
fusion applications.

Inspection of the interaction parameter N in Table 1 tells us that inertia
forces are fairly small compared with electromagnetic forces, at least in the
cores. However, inertia may play a role for flows of heavy alloys like Pb-
17Li or in pure Pb, preferentially in side layers of Hunt’s type, where the
velocity in the jets may exceed the mean velocity by orders of magnitude.
Moreover, inertia will affect essentially the Ludford layers between cores and
as a consequence they will change their thickness to δL = O

(
N−1/3

)
in the

inertial-electromagnetic regime, if Re1/2 � Ha� Re2 [11].
The values for N and Re given in Table 1 have been evaluated for a

velocity that is typical for self-cooled blankets. Velocities in separately cooled
blankets can be smaller at least by two orders of magnitude which increases
N or decreases Re by more than two orders of magnitude compared to the
values shown above. Under such conditions one comes closer to a viscous-
electromagnetic balance in Ludford layers of Li blankets but flows of Pb-17Li
in such layers will remain inertial.
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Finally, it should be mentioned that the main effect of a strong magnetic
field is the formation of uniform flow conditions in the cores and that tur-
bulent fluctuations, if they were carried into the field, are damped out very
quickly. This leads to laminar MHD flows even far beyond the hydrodynamic
thresholds for the onset of turbulent motion. This observation facilitates the
analysis on one hand, but reduces the heat transfer capabilities to that of
laminar flows.

2.3 Analysis

For numerical analyses of three-dimensional (3D) MHD flows it is often useful
to eliminate currents from the momentum equation and Ohm’s law which
yields

1
N

[
∂

∂t
+ (v · ∇)

]
v = −∇p+

1
Ha2

∇2v −B2v⊥ + B×∇φ, (8)

∇2φ = ∇ · (v × B) , (9)

where v⊥ represents the velocity components in the plane perpendicular to
the direction of the externally applied magnetic field. The first equation is
a standard one present in many commercially available fluid dynamics codes
with a source term B×∇φ to be modeled by the user. The second equation
is a diffusion-type equation for determining the potential φ as an additional
scalar variable with the source term ∇ · (v × B). Examples of the use of
commercial software for solving MHD problems for fusion applications are
described, e.g., by DiPiazza and Ciofalo (2002) [12] or by Kharicha et al.
(2004) [13]. A number of academic codes has been developed, which make
use of the MHD equations in the form (8) and (9). Among them are, e.g.,
Myasnikov and Kalyutik (1997) [14], Sterl (1990) [15], and the list goes back
at least to Aitov et al. (1979) [16] and Schumann (1976) [17].

However, until today, neither commercial nor academic codes are able to
simulate pressure-driven 3D MHD flows in the relevant parameter range for
Ha and N with sufficient accuracy. A major problem here is that important
phenomena happen on different scales but have to be resolved simultaneously.
For example, the flow in the core varies on length scales of the order of one,
while essential properties of the flow are determined in the very thin Hartmann
layers or in the parallel layers which are a bit thicker. The proper resolution
of these layers is a key issue for the correct computation of pressure drop,
since these layers, together with the adjacent walls, determine the electric
resistance for current loops, limit the current density in the core and the
pressure drop. Moreover, together with the thin-wall condition (6) for c� 1,
and thus relevant in fusion applications, the discretized numerical problem in
terms of linear algebraic equations looses its diagonal dominance and becomes
finally ill-conditioned with severe consequences on convergence and numerical
stability of the codes.
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2.4 Approximations for strong magnetic fields

For high Hartmann numbers, Ha� 1, one may consider the flow in the cores
as being inviscid and exclude viscous Hartmann layers from the numerical
simulation of the core flow. The solution in Hartmann layers is well known
from asymptotic considerations (see, e.g., Moreau who describes in 1990 the
detailed properties of Hartmann layers [18]) so that we can take them into
account in an integral manner. The most important aspect of the Hartmann
layers is their ability to provide a path where currents may close. This modifies
the thin-wall condition (6) to

jc·n = −∂φ
∂n

= ∇ · [(c+ δ)∇τφw] at Γ, (10)

where δ = (Ha |n · B|)−1 stands for the local dimensionless thickness of
the Hartmann layer. This formulation has been used by Bühler (1995) [19].
A condition valid for insulating walls has been given by Walker et al.
(1971) [20]. The kinematic boundary condition applied to the inviscid core
now requires vc·n =0, which is a sufficient condition for inviscid flows. This
approximation is valid at walls which are not parallel to the magnetic field.
Applications to circular ducts become inaccurate in Roberts layers, in the
neighborhood of lines where the magnetic field is tangential to the wall.
However, since this region is small, the influence on the core velocity, flow
rate, or pressure drop is negligible at high Hartmann numbers [21, 22].
Equations (8)–(10) are frequently used either for numerical simulation of
channel flow or as the basis of asymptotic analyses. A general modeling of
near-wall layers for numerical simulations of MHD flows has been outlined by
Widlund (2003) [23].

Inertial forces in the cores of fusion blankets are often negligible compared
to Lorentz forces for N � 1. This leads us to Kulikovskii’s magnetostatic
approximation published in 1968 [24]. This ingenious approach has inspired
a number of researchers in the past for evaluation of MHD flows in fusion
blankets, where it was sometimes called the core flow approximation (see, e.g.,
[22,25,26]). Bühler [19] describes in 1995 the implementation of Kulikovskii’s
approach into a numerical code using tensor notation with boundary fitted
coordinates. The coordinate transformation

x = x̄
(
u1, u2

)
+ h
(
u1, u2

)
u3ẑ, (11)

which is illustrated in Fig. 2, maps the computational volume defined by the
coordinates u1, u2, u3 onto the physical space in terms of coordinates x, y, z.
The momentum equation with mass conservation and Ohm’s law with con-
servation of charge now read as

∂ip = V bikj
k, ∂k

(
V vk

)
= 0, (12)

ji = −∂iφ+ V bikv
k, ∂k

(
V jk

)
= 0, (13)
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Fig. 2. Sketch of the mapping used to describe boundary- and magnetic field- fitted
coordinates

where V bikjk and V bikv
k stand for the Lorentz force and induced electric

field, and the antisymmetric tensor bik represents the interaction with the
magnetic field. These equations can be integrated analytically along field lines
according to Kulikovskii’s approach, where the two integration functions, aside
from pressure p

(
u1, u2

)
, are taken as the wall potentials φ±

(
u1, u2

)
at the

upper and lower walls at u3 = ±1. The wall potentials are determined from
the thin-wall condition (10) in the form

V j3 = ∓∂k

[
(c+ δ)Agki∂iφ±

]
. (14)

Once the 2D pressure and wall potentials are obtained it is straightforward
to evaluate all the 3D properties of the MHD flow by analytical relations.
The numerical code based on Eqs. (12)–(14) can be applied to calculate MHD
flows in nearly arbitrary geometries, for spatially varying magnetic fields, con-
ducting and insulating walls, walls with contact resistance, and it performs
best for high Hartmann numbers.

3 Self-cooled liquid-metal blankets

In the following, some liquid-metal blankets are outlined that have been pro-
moted during the last decades of fusion research and key issues concerning the
liquid-metal flow are briefly discussed. Let us start the presentation with self-
cooled blankets. The use of the same fluid as both tritium breeder and coolant
greatly simplifies design and materials considerations. There are important
constraints related to the use of liquid metals in the blanket of a fusion reac-
tor. For example, compatibility between the coolant and structural material
limits the allowable coolant–wall interface temperature and the reactivity of
lithium with air and water is an important design hazard [27].
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3.1 Poloidal blankets

One of the simpler self-cooled liquid-metal blankets is the blanket designed for
the linear confinement in the central part of a tandem mirror reactor (TMR)
as outlined in MARS [1]. This blanket, as shown in Fig. 3, consists of two
staggered rows of circular pipes which are curved around the plasma. Behind
the pipes there are ducts of more or less rectangular cross section in the so-
called beam zone. The fluid enters the ducts and pipes through a manifold
at the top, flows once through the blanket and leaves it via a collector at the
bottom.

For MARS the Hartmann number is Ha = 104 and the Reynolds number
is Re = 105. Therefore, it is realistic as well as conservative to assume laminar
flow through the blanket. The heat transfer is then dominated by conduction.
The wall conductance parameter is about c ≈ 10−2, with the consequence that
walls are much better conducting than the Hartmann layers. The velocity
profile for the fully developed flow in conducting circular pipes is uniform,
v = x̂, and the pressure gradient evaluates according to Chang and Lundgren
(1961) [28] as

∂p

∂x
= − c

1 + c
. (15)

If we return to dimensional quantities (indicated by *) we find that the dimen-
sional pressure gradient,

∂p∗

∂x∗
= −σwv0B

2
0

t

L

1
1 + c

, (16)

becomes independent of the fluid conductivity for c� 1. Moreover, the pres-
sure drop and therefore the maximum pressure in the blanket depend linearly

B

Blanket coolant Pb-17Li

Coolant temperature 350/500˚C

Structural temperature 350/550˚C

Maximum coolant velocity in blanket 0.17m/s

in feed pipe 1.34m/s

Manifold Header connection

Beam zone

Tube zone

B

Plasma

Fig. 3. Sketch of the TMR blanket for MARS with detailed view on cross sections
of rectangular ducts (called beams) and circular pipes facing the plasma [1]
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on the thickness t of the wall, which results in wall stresses that are indepen-
dent of L and t but depend only on the wall conductivity σw, velocity v0, and
magnetic field B0. It is therefore impossible to allow larger blanket pressure
by using thicker walls. It is worth to notice here that the MHD pressure drop
at magnetic fields of B0 = 4.7 T exceeds the hydrodynamic pressure drop by
nearly four orders of magnitude.

In the MARS study also “end-of-loop” effects caused by gradients of v × B
in flow direction with resulting extra pressure drop have been taken into
account by empirical correlations. The pressure drop in the whole blanket
becomes ∆p∗ = 1.57 MPa.

If we apply the same ideas to a tokamak reactor we arrive at so-called
poloidal blankets. The simplest case is the pure poloidal flow design as shown
in Fig. 4b. For a surface heat flux of 0.5 MW /m2, a neutron wall loading
of 5 MW /m2, and magnetic fields up to 7.5 T a pressure drop of 2.6 MPa
is required to remove the fusion heat at a mixed-mean temperature rise of
150◦C. When the velocities are increased to reduce the first wall tempera-
ture to acceptable levels the pressure drop becomes prohibitively high. Abdou
et al. [29] showed that the average velocity required to keep the first wall
temperature at an acceptable level is too high from either a thermal efficiency
point of view (too low average temperature) or from an MHD pressure drop
point of view (wall stress and pumping power). Thus, a poloidal flow con-
cept for fusion blankets with conducting walls does not look attractive as a
result of the relatively poor heat transfer performance. The use of electrically
insulating coatings at the walls of poloidal channels could reduce the pressure
drop below 1 MPa as outlined by Kirillov et al. (2000) [30].

A method to reduce pressure drop in poloidal flows, that was preferentially
promoted by the Russian fusion team (e.g., [31]), was the use of so-called
slotted channels, which have a large dimension L along field lines. Inspection
of Eq. (16) shows that increasing L reduces pressure drop. On the other hand,
if L is increased too much, the solid structure looses its mechanical strength
so that designs using anchorlinks become necessary.

The helical flow concept shown in Fig. 4a intends to help reduce the
interface temperature by mechanical stirring. The stirring is obtained at the
expense of higher pressure drop [32] and only a detailed analysis can show
if the positive aspects associated with this idea prevail. First estimates show
that the pressure drop of 3.5 MPa results in hoop stress equal to the limiting
value of the wall material [29].

Another method, called MHD flow tailoring, relies on heat transfer improv-
ement by exploiting salient features of MHD flows in strong magnetic fields
to create desirable velocity profiles in poloidal ducts. This can reduce blanket
complexity and costs as well as enhance thermal hydraulic performance (see,
e.g., [33]). A particular form of flow tailoring, involving ducts with alternating
expansions and contractions, lends itself to the design of first-wall coolant
ducts. As a result of successive contractions and expansions, strong jets are
created periodically along the sidewalls, where one of those walls constitutes
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Fig. 4. Poloidal blankets for a tokamak reactor; (a) helical vanes in circular pipes
improve heat transfer at the first wall, (b) simple poloidal channels, (c) view of
reactor sectors [29]

the first wall in the blanket. The jets should take the heat from the first wall
and mix it periodically with the colder bulk of the flow. By this method it
should be possible to increase the velocity locally at the first wall up to a
factor of 3 at the expense of some extra pressure drop.

Heat transfer improvement in rectangular poloidal ducts can be achieved
also by unstable or turbulent side layers. It has been shown experimentally by
Reed and Picologlou (1989) [34] that the high-speed side layers become unsta-
ble at a critical Reynolds number between 2,600 and 5,100. Similar results
have been obtained by Burr et al. (2000) [35] who measured additionally the
improvement in heat transfer. At strong enough magnetic fields the destabiliz-
ing effect of strong shear generated at the sidewalls wins the competition with
the damping effect by Joule’s dissipation, and turbulent side layers are cre-
ated. Due to the strong nonisotropic character of the electromagnetic forces,
the turbulence structure is characterized by large-scale quasi-2D vortices with
their axes aligned in the direction of the magnetic field. A surprising result
in the latter reference is the fact that even if the side layers become unstable or
turbulent, the pressure drop still obeys the laminar law over the whole para-
meter range investigated. The discrepancy between experimentally observed
critical Reynolds numbers and theoretical predictions by linear stability the-
ory, published by Ting et al. (1991) [36], is still an open question.

The most advanced design of a poloidal blanket is the self-cooled lead-
lithium blanket (SCLL), investigated in the European Power Plant Con-
ceptual Study [37], derived from an earlier design called TAURO [38]. The
SCLL is a blanket of a fusion power reactor based on advanced plasma
physics assumptions and large technological extrapolation compared with
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present-day knowledge. The design is based on the principle of coaxial flow,
proposed in the ARIES-AT study [39]. In-vessel components are based on the
use of ceramic fiber enforced SiCf/SiC composite structure and the use of
high-temperature Pb-17Li (at temperature above 1000 ◦C) both as coolant
and breeder. SiC is an excellent candidate for a low-activation wall mater-
ial. Being nearly an electrical insulator, it yields high electrical resistance,
reduces currents, and associated pressure drop. The pressure drop in fully
developed poloidal flows in the SCLL blanket seems to be not an issue for
the design. 3D effects at the blanket ends or in supply lines, however, give
their extra contribution to flow resistance and should be investigated in the
future.

Finally it is appropriate to mention here the so-called dual coolant blanket
presented in 1993 by Malang et al. [40]. Although it is intrinsically not a self-
cooled blanket, its similarity with poloidal blankets justifies a brief discussion
here. In a dual coolant blanket the high surface heat flux at the first wall
is removed by fast helium flow while the volumetrically deposited heat in
poloidal breeding channels is removed by the liquid metal flow. The dual
coolant blanket avoids MHD problems encountered in self-cooled concepts for
cooling of the first wall. Helium cooling of the first wall provides a double
containment of the liquid metal and leads therefore to improved safety and
reliability. These basic ideas have been further advanced during the European
Power Plant Conceptual Study by Norajitra et al. (2002) [41], derived from
Sze et al. (2000) [42]. In the latest design all walls of poloidal channels are
helium-cooled and the fluid in these channels is insulated from the walls both
thermally and electrically by the use of SiC inserts. Electrical insulation yields
small pressured drop and thermal insulation allows liquid-metal temperatures
above the usual critical interface temperature, since the latter one is kept
low by helium cooling of the walls. MHD issues are typically the same as for
the ceramic-wall SCLL blanket. However, since the inserts at conducting walls
are not perfectly electrically insulating one has to account for leakage currents
and their consequences on flow redistribution as already described in 1993 by
Bühler and Molokov [43].

3.2 Cellular blankets

Another design concept is the cellular blanket considered in the ORNL/ West-
inghouse Tokamak Blanket Study, cited, e.g., by Hunt and Holroyd (1977) [4]
and Walker and Wells (1979) [44], who performed analyses of the MHD flow in
breeder cells under the combined action of the strong stationary toroidal mag-
netic field and a weaker time-dependent poloidal field. Here, lithium is used as
fluid. The key parameters in feeding pipes are Ha = 2.7× 104, N = 1.4× 105,
c = 8.5 × 10−3. The main design feature of this blanket, as shown in Fig.
5, is that the fluid flows along the first wall only over a short distance so
that the heat can be removed from the first wall with moderate velocity and
pressure drop, without exceeding critical temperature margins. The key MHD
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Fig. 5. View on cellular blanket modules [46] and sketch of a single cell [4]

features here are the flow in coaxial circular pipes forming the cells, flows at
the plasma-facing hemispheres and the mechanical integrity of the cells caused
by Lorentz forces due to the pulsed poloidal magnetic field and by plasma
disruptions (accidental rapid breakdown of toroidal plasma current). The for-
mation of shear layers near the first wall will leave a volume of stagnant fluid
trapped in the dome of the cell which might deteriorate heat transfer there.
An optimization of parameters for best performance of a cellular blanket was
given by Holroyd and Mitchell (1984) [45].

3.3 Toroidal blankets

In all studies of self-cooled flow concepts the key issue is the pressure drop of
the MHD flow that is preferentially oriented perpendicular to the magnetic
field. The idea to use a toroidal flow direction near the first wall appears
already in 1971 in a report by Hunt and Hancox [2], in which the toroidal
cooling ducts are circular tubes (see Fig. 6a). A toroidal flow minimizes the
magnetohydrodynamic interaction. A perfect alignment of the flow with the
magnetic field could ideally yield pressure drop as in hydrodynamic pipe flow.
The only effect which a magnetic field exerts upon the moving fluid is then
the suppression of turbulent fluctuations. This leads to a reduction of heat
transfer comparable to that expected for laminar flows, which, however, could
be acceptable for the fast flows at the first wall.

A design that is closer to an engineering application has been developed at
the Argonne National Laboratory and published, e.g., by Smith (1985) [27].
In this concept (Fig. 6b) the first wall is cooled by a fast toroidal flow of Pb-
17Li in narrow channels. The fluid is supplied to the first wall ducts through



184 L. Bühler

(b) Smith et al. 1985

First wall

large-scale eddy 
current loop

(a) Hunt & Hancox 1971

Poloidal duct
Toroidal duct

Radial duct

Pb-17Li
Inlet  outlet

(c) Malang et al. 1988

Fig. 6. Schematics of self-cooled liquid metal blankets for a tokamak reactor with
toroidal flow near the first wall

larger, slightly slanted poloidal manifolds (perpendicular to the field). The
mean velocity in poloidal ducts can be kept at relatively low values which
reduces the MHD pressure drop through the manifold. A second advantage of
this design is that walls of poloidal channels can take higher stress levels than
the first wall since they are not exposed to the surface heat flux and receive less
radiation dosage. The flow in toroidal channels is perpendicular only to the
poloidal field which is much weaker than the toroidal one. Thus, the velocity
in the toroidal channels can be increased considerably over that in poloidal
ones without increasing significantly the overall pressure drop. Estimates for
pressure drop presented by Abdou et al. (1983) [29] are near 3 MPa for the
inboard blanket and near 1.7 MPa for the outboard blanket.

Later it was discovered that there is a potential current loop for large-scale
eddy currents across common dividing walls of radial ducts which connect the
poloidal manifold and the toroidal channels at the first wall (see Fig. 6b). The
additional pressure drop due to this so-called multichannel effect (also known
as Madarame effect according to its discoverer; he made approximations which
allowed solutions for geometries more complex than could be analyzed from
first principles [47]) was estimated to be more than 3 MPa, but it has been
shown that some kind of electric insulation could reduce this effect consider-
ably. It should also be mentioned that the influence of eddy currents is not
uniformly distributed over all coolant ducts, i.e., ducts in the center of the
module suffer more from this unfavorable behavior. This leads to nonuniform
cooling of the first wall.

The toroidal flow concept was attractive enough that it had been consid-
ered as a candidate for Next European Torus (NET, now ITER). A description
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of the blanket proposed by the Forschungszentrum Karlsruhe was published
in 1988 by Malang et al. [48]. In this concept the pressure drop in poloidal and
radial channels is further reduced by the use of so-called flow-channel-inserts
(FCI), which are loosely fitted into the ducts for electrical insulation and
decoupling of neighboring fluid domains. The feasibility of this approach has
been demonstrated experimentally by Barleon et al. (1989) [49], who showed
a reduction of pressure drop by one order of magnitude.

The bright prospects offered by toroidal concepts and the challenge in
predicting associated MHD flows stimulated a number of research activities
related to radial-toroidal MHD bend flow like Molokov and Bühler [50] who
show that the flow is very sensitive to parameters like the wall conductance
and aspect ratio of toroidal cross section. Depending on these parameters
the flow exhibits a variety of flow patterns including helical or vortex-type
structures. For nonperfect alignment of toroidal ducts with the field, the
bends are called forward and backward elbows. Such flows, treated by Walker
and coauthors [51, 52], significantly differ from those obtained for perfect
alignment. Stieglitz et al. [53] find good agreement between their bend exper-
iments and asymptotic analysis for pressure drop and surface potentials for
high Ha and N . The viscous and inertial contributions were detected to scale
like Ha−1/2 and N−1/3, thus indicating that parallel layers in the viscous and
inertial regime play a role for fusion relevant parameter values. Multichannel
effects and flow coupling have been investigated by Stieglitz and Molokov [54]
and Reimann et al. [55], who show a tremendous increase of pressure drop and
inertial influence with the increasing number of electrically coupled channels.
But they also find that electrical decoupling of radial channels is sufficient
to significantly reduce this effect and reestablish uniform pressure drop in
neighboring channels.

4 Separately cooled blankets

In separately cooled liquid metal blankets Li or Pb-17Li are used as breeder
materials while the heat is removed by helium or water. These electrically
nonconducting coolants do not suffer from MHD interactions. For that reason
it is possible to circulate them through the magnetic field at high enough
flow rates without intolerable MHD pressure drop. Heat transfer in the liquid
metal relies on heat conduction, although the liquid breeder is far from being
stagnant. It may move freely due to buoyant convection in the blanket, but it
is also circulated at small flow rates to external facilities for tritium removal.
Due to the small liquid metal velocities the MHD pressure drop in the blanket
is small compared to that in self-cooled blankets.

4.1 Water-cooled blankets

The water-cooled lead-lithium blanket that was investigated within the Euro-
pean fusion research community is based on a geometry which is closely
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Fig. 7. Water-cooled lead–lithium blanket (WCLL) [57]

related to poloidal flow concepts. The liquid metal breeder is filled in rec-
tangular poloidal channels from which the heat is removed by a large number
of inserted water tubes. A first design had been shown by Giancarli et al. [56].
The blanket displayed in Fig. 7 was presented in 2000 [57]. Engineering rea-
sons required further modifications, especially concerning the supply of the
liquid breeder into the poloidal boxes and connections of the water pipes with
the upper plenum. In the latest design (not shown here) the available space
for liquid metal feeding pipes was really small so that the liquid metal could
be supplied to and removed from the breeder channels only through small
circular holes machined in a massive header structure, where the wall was
much thicker than the bore diameter. Although the liquid metal velocity in
the large breeder channels is as small as 5 mm / s the velocity in the smaller
access bores is considerably larger so that the major pressure drop is created
in the headers. Important MHD issues in the context of this blanket concept
are magnetoconvection in long vertical containers, flows in ducts with inter-
nal obstacles, and pressure drop in ducts with very thick walls. The blanket
is based on the use of ferromagnetic steel which raises the question on MHD
flows in ferromagnetic pipes.

The use of water as coolant requires a high-pressure containment and limits
the upper coolant temperature to values below 325◦C, although liquid metals
offer the potential for operating a reactor at much higher temperatures with
better thermal conversion efficiency. Another non-MHD issue of water-cooled
blankets is the permeation of tritium from the breeder into the water from
where its removal is difficult.
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4.2 Helium-cooled blankets

Helium as a coolant in separately cooled blankets resolves some disadvantages
compared to water. Helium can be operated at higher temperatures, it is inert
and does not react with liquid lithium. For these reasons helium was already
considered as a potential coolant in cellular lithium blankets of the type shown
in Fig. 5. In a concept addressed briefly in 1985 by Smith et al. [27], lithium
was contained in tube bundles cooled by a crossflow of helium.

More recently a helium-cooled lead-lithium blanket has been investigated
within the European fusion research program. This blanket consists of liquid-
breeder-filled rectangular boxes that are arranged around the plasma similar
to the cellular blanket (see Fig. 8). All walls including the first wall are cooled
by helium, which flows inside the walls in small channels. The boxes, called
the breeder units, are fed and drained from the back side through narrow
gaps that connect the breeder units with poloidal manifolds. It is necessary
to insert in each breeder unit a number of five cooling plates to remove the
volumetrically released fusion power and to keep the wall temperature below
critical values. As indicated in Fig. 8 the fluid enters one unit coming from the
manifold through a small distributing gap, flows radially inwards between the
cooling plates towards the first wall, turns at the first wall in poloidal direction,
changes into the neighboring unit through a narrow gap, flows back in outward
radial direction and leaves the second unit at the back through another narrow
gap towards the poloidal manifold. The velocity of the flow in the breeder units
required for tritium removal is near 1 mm/s so that MHD pressure drop should
not be a serious issue for the flow in the breeder units. The flow through the
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Fig. 8. Helium-cooled lead–lithium blanket (HCLL) [58]
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distributing gaps, however, moves at higher velocities. Here, the flow contracts
and expands preferentially in the plane of the magnetic field, thus creating
the strongest MHD interactions. Moreover, one poloidal manifold feeds up to
eight breeder units which leads to the highest velocities and pressure drop in
these manifolds.

MHD issues to be studied for this type of blanket are flows in slender
ducts formed by the cooling plates, and expansions and contractions at the
entrance and exit to the breeder units. The liquid metal is heated volumetri-
cally and cooled at all boundaries. This leads to strong temperature gradients
responsible for buoyancy-driven magnetoconvective flows, whose velocity may
even exceed that of the imposed forced flow. Depending on the orientation of
individual breeder units (near the equatorial plane or near top poloidal posi-
tions) Kharicha et al. [13] find either one or two recirculating convection loops
between the cooling plates. Another important point is the electrical coupling
between neighboring fluid domains at both sides of common cooling plates
or at common walls between two breeder units. Those walls are electrically
conducting, without surface insulation, and currents may pass through these
walls from one fluid region into the other.

5 Exotic blankets

The blanket types shown above (with the exception of the SCLL based on
ceramic walls) rely on available materials and known fabrication technolo-
gies, so that their realization seems feasible. During the US Advanced Power
Extraction (APEX) Study researchers tried to identify and explore novel, pos-
sibly revolutionary, concepts for chamber technology. Two ventured concepts
investigated during that study are shown in Fig. 9.

The first one is EVaporation Of Lithium and Vapor Extraction (EVOLVE ),
fabricated from high-temperature refractory alloys. It is based on a
transpiration-cooled first wall with evaporation of lithium similar to heat
pipes. The rear part of the blanket consists of liquid lithium-filled trays
from which heat is removed by evaporation of lithium by pool boiling at
1,200–1,400◦C. The vapor is removed from the blanket through large pipes.
Calculations indicate that an evaporating system with Li can remove a first
wall surface heat flux >2MW/m2 with an accompanying neutron wall load
of >10 MW/m2 [59]. Critical MHD issues for this concept are MHD flows
through porous structures at the first wall, MHD pool boiling where Lorentz
forces inhibit the movement of raising bubbles and thereby deteriorate heat
transfer.

The other concept shown in the figure is a blanket with a thick liquid
first wall. Liquid wall concepts set solid first walls aside and rely instead on
heat transfer capabilities of a fast-moving free-surface flow around the plasma
that is pressed to the walls by centrifugal forces when it moves down along
the curved back wall. Concepts using Lorentz forces to attach the liquid to
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Fig. 9. Conceptual designs for EVOLVE and for a thick liquid first wall blanket [59]

the walls have been also discussed. The design is conceptually simple and
provides a renewable first liquid wall that avoids replacing solid structures at
regular intervals. For ideal film flows in a closed torus with toroidal magnetic
field Hartmann walls perpendicular to the field are absent. Therefore, current
closure is excluded and the MHD resistance to such flows should be low.
On the other hand, any fusion reactor must have penetrations through the
blanket for plasma diagnostics and heating which introduces again Hartmann
walls and associated Hartmann braking. Moreover, the flow happens across
magnetic fields that vary along the flow direction. This induces axial potential
differences that drive axial currents which, depending on their orientation,
could generate Lorentz forces that might detach the film from the wall. A
complete review on all types of free surface MHD flows and in particular those
relevant for fusion applications, until 1999 was given by Molokov and Reed [60]
(for a particular application see [61]). Plasma pollution by evaporating Li is
an open issue in addition to free-surface stability and interaction with the
plasma. Extraction of the liquid metal from the evacuated plasma chamber
could be another prohibiting design issue.

6 Conclusions

Liquid metal MHD flows in fusion blankets considered during the past decades
cover a number of phenomena like pressure-driven duct flow, flows in expan-
sions and contractions, in bends of different orientation, electrical flow cou-
pling, flows in ducts covered with insulating coatings, buoyant convection, free
surface flows, and even evaporation and boiling. So far there is nothing really
special in fusion MHD flows, except that the magnetic fields are much higher
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than in any other known engineering application. All phenomena occurring
in 3D flows in single ducts seem well understood and can often be predicted
with sufficient accuracy for designing engineering components of fusion reac-
tor blankets. Asymptotic theory is the preferred method for predicting MHD
flows for fusion applications but with increasing progress in computational
resources complete numerical solutions could reach the desired parameter
range in a couple of years. If so, asymptotic solutions will still serve as a
tool for code validation and they will continue to provide insight into physical
phenomena involved. Academic computational tools will contribute to results
at the frontiers of applications which are not yet assessable for commercial
fluid dynamics codes. In principle, many commercial codes allow the user to
implement such items like Lorentz forces or electric potentials (if not already
existing). However, experience shows that the user depends exclusively on
the policy of the software companies. Any change in the code’s version may
require serious updates of self-developed user subroutines and the effort to do
that might be as large as to proceed in research. Moreover, the given types of
boundary conditions are not always suited for efficient calculations of MHD
flows. On the other hand, academic codes are strongly linked to personnel
that develops and handles these tools.

For designing fusion blankets with such complexity as outlined above it
will not be sufficient to accurately predict MHD flows in single components.
Since Madarame we know that global effects, that do not arise until the full
system is considered, can deteriorate the overall performance. For that reason
engineering approaches are required in addition, which take into account flow
coupling in global complex 3D systems, even at the expense of some flow
details.

All progress made in fusion-related MHD research was supported by exper-
iments, which confirmed often the validity of theoretical solutions, or which
yielded results for cases where theoretical predictions did not yet exist. The
enormous costs of operating ITER and testing of liquid metal blankets in a
nuclear environment, will make MHD experiments and pretesting of compo-
nents necessary in order to minimize potential risks during the development.
The future MHD research for fusion blankets may have to focus on one par-
ticular reference concept concerning modeling and experiments. Nevertheless,
a certain part of the research activity should be dedicated to fundamental
aspects of MHD flows which are not restricted to a specific design. This could
be necessary in order to attract and to keep qualified scientists in this chal-
lenging field. Moreover, during the past three decades we have seen a number
of different blanket concepts appearing and disappearing on the scene, from
which only the most prominent ones were presented in this review. What has
remained from all these investigations for future applications are the funda-
mental research results but not concept specific details.
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1 Introduction

Low magnetic Reynolds number magnetohydrodynamic (MHD) flows and low
Rossby number rotating flows share a number of common features. Both are
subjected to a strong linear force: Lorentz or Coriolis. From an energetic
point of view, they are very different, as Lorentz forces are dissipative in
nature (Joule dissipation adding to viscous dissipation) while Coriolis forces
are purely conservative. Both forces however tend to favour a two-dimensional
(2D) flow, independent of the direction of the applied magnetic field or rota-
tion axis. This can be seen most easily on steady solutions, where three-
dimensional (3D) structures are absent in the bulk of the flow. Exactly how
these MHD or rotating flows become 2D is very interesting. In MHD flows,
due to Joule dissipation, this takes the form of a pseudo-diffusion ([1], or [2]),
whereby 3D features are diffusively stretched in the direction of the magnetic
field, with a pseudo-diffusion coefficient proportional to the square of their
size in the perpendicular direction. In rotating flows the process is dominated
by inertial waves. 3D structures give rise to dispersive fast (small Rossby
number) inertial waves, whereas nearly 2D structures correspond to inertial
waves with a wave-number perpendicular to the rotation axis, hence a vanish-
ing pulsation according to their dispersion relationship (see [3] for a complete
exposition). Those 2D structures are thus not rapidly dispersed and remain
alone eventually. Historically, the tendency towards 2D flows in rotating sys-
tems has been suggested and demonstrated experimentally by Proudman [4]
and Taylor [5, 6].

Having established the 2D nature of these flows, it was then natural to
derive 2D flow equations. For rotating flows, Montgomery (1938) [7] pointed
out the role of the so-called geostrophic contours (constant depth in the direc-
tion of rotation in the case of uniform density): this follows from the conserva-
tion of the background angular momentum. If the flow departs slightly from
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those contours, this is a source of vorticity in the rotating frame of reference.
The contribution of Ekman layers was recognized following Ekman [8]: for the
case of a solid boundary, they are also a source (or rather a sink) of vorticity
associated to Ekman pumping. Finally, the core two-dimensional viscosity is
also “dissipating” enstrophy. When the material derivative of the vorticity is
expressed in terms of these above-mentioned three contributions, the equation
of the so-called homogeneous model for rotating flows is obtained. This has
been used for modelling oceanic circulation [3]: some typical boundary layers
arising from this model have been invoked to represent western streams such
as the Gulf stream or the Kuroshio stream. Stewartson [9,10] played an impor-
tant role in analysing shear layers developing on singular surfaces parallel to
the rotation axis.

In parallel, progress has been made in the understanding of the behaviour
of electrically conducting fluids in the presence of an imposed magnetic field.
Hartmann and Lazarus (1937) [11] discovered Hartmann layers, the bound-
ary layer analogue to the Ekman layer and responsible for an increase in wall
friction. Another type of layers, parallel to the direction of the magnetic field
and an analogue to Stewartson layers, has been put in evidence by Shercliff
(1953) [12] first. Kulikovskii (1958) [13] made a major contribution when he
launched the concept of “characteristic surfaces”, analogous to the geostrophic
contours. Characteristic surfaces are made of magnetic lines with a constant
ratio of magnetic field intensity divided by the line length. Magnetic circu-
lation is conserved for flows following these surfaces. Otherwise, in case of
crossflow, vorticity is generated by the electrical currents created by the vari-
ations in magnetic circulation. Holroyd and Walker (1978) [14] have written
inertialess 2D equations, which were only recently put under a form similar
to the rotating homogeneous model and analysed in terms of potential 2D
structures [15].

The similarity between rotating and MHD flows will be emphasized here as
much as it is possible, so as to benefit from all advances in either field. More
efforts have gone into rotating flows, and they are perhaps slightly easier
to handle as there is only one equation to consider (Navier–Stokes) while
Ohm’s law has to be combined with Navier–Stokes in MHD studies. There
has seemed that rotating flows could show a greater variety of shear layers.
Using the analogy between both types of flows, one can either find the cor-
responding MHD layers or find a good reason why the corresponding layer is
not physical.

In § 2, the fundamental lengthscales arising in rotating or MHD flows will
be introduced. Section 3 will be devoted to the derivation of the homogeneous
model of rotating flows. An MHD 2D model is derived in § 4. The next § 5
will provide an example of a 2D MHD flow calculated from the model just
derived. Finally, conclusions and perspectives will be presented in § 6.
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2 Fundamental length scales

Starting from the governing equations of rotating and MHD flows, respec-
tively, fundamental scales will be identified and used to justify the subsequent
2D models to be introduced in the second stage.

2.1 Rotating flows

Fluid motion in a reference system rotating with a steady angular velocity Ω
is subjected to apparent forces, Coriolis and centrifuge. While centrifuge forces
can be absorbed in a modified pressure term, Coriolis forces have to be con-
sidered specifically as they play a distinct role. Momentum, or Navier–Stokes
equation, with Coriolis forces, is the governing equation for the solenoidal
velocity field u. This equation takes the following dimensionless form:

∂u
∂t

+ (u · ∇)u = −∇p+ 2E−1 u × ez + ∇2u, (1)

where dimensionless vector position x, time t, velocity field u, and pressure
field p are derived from their corresponding dimensional quantities using the
scales H , H2/ν, ν/H and ρν2/H2, respectively. Here H is a length scale of
the fluid domain, ρ the density of the fluid and ν its kinematic viscosity.
The Ekman number appearing in the equation is defined as E = ν/(ΩH2).
Reference axes have been chosen so that the rotation axis lies in the z-direction
and ez denotes the unit vector along the z-direction.

It is possible to extract fundamental time and length scales from the gov-
erning equation. Taking the curl of Eq. (1) eliminates the pressure:

∂∇× u
∂t

+ ∇× [(u · ∇)u] = 2E−1 ∂u
∂z

+ ∇2 (∇× u) . (2)

In the asymptotic limit of strong rotation (E −→ 0), the first term on the
right-hand side of Eq. (2) is dominant and can be balanced by the first term
(time derivative) of the left-hand side when a short timescale E is invoked,
i.e., the time for the reference system to rotate an angle of one radian. These
two terms are responsible for the inertial waves, which satisfy the following
dispersion relationship:

ω = ±2E−1 cos θ, (3)

where the velocity of inertial modes is defined as u = u0 e
i(ωt+k·x) and where

θ is the angle between k and Ω. After a transient period of inertial wave
propagation, the final state of the flow corresponds to a quasi-steady 2D state
(θ � π/2, hence ω � 0). These inertial waves can be disrupted by non-linear
inertial terms (the second term on the left-hand side), provided the Rossby
number is not small compared to unity. In our dimensionless formulation, the
Rossby number is the product of the dimensionless velocity with the Ekman
number, while it is Ro = U/(ΩH) when U denotes a dimensional velocity



198 T. Alboussière

scale. Viscous effects (second term on the right-hand side) can also affect
inertial waves by viscous damping and are responsible for thin shear layers
in the steady or quasi-steady state: E1/2 Ekman layers along boundaries not
parallel to the rotation direction and E1/3 Stewartson layers developing along
surfaces containing the rotation direction. Finally, the condition for the exis-
tence of a quasi-steady 2D flow is that of a small Rossby number only for
regions outside Ekman and E1/3 Stewartson layers. These conditions will be
used a posteriori to assess the validity of 2D solutions.

2.2 MHD flows

In MHD flows, our attention will be restricted here to the case of low
Lundquist and magnetic Reynolds numbers. Momentum equation and Ohm’s
law are the two governing equations, expressed in a dimensionless form:

∂u
∂t

+ (u · ∇)u = −∇p+Ha2 j × B + ∇2u, (4)

j = −∇φ+ u × B. (5)

Dimensional scales already defined above for rotating flows are still valid. In
addition, the dimensionless electric current density j and electric potential field
φ are obtained from their dimensional counterpart using the scales νσB0/H
and νB0, where B0 is a typical value of the imposed magnetic field.

To obtain an equation for the velocity field u suitable for analysis, one can
take the curl of the momentum equation twice and substitute ∇× j using the
curl of Ohm’s law:

∂

∂t

(
−∇2u

)
+ ∇×∇× [(u · ∇)u] = Ha2 ∂

2u
∂z2

−
(
∇2
)2

u. (6)

This equation is obtained using the approximation of a locally uniform mag-
netic field. This is not exact but this does not affect the following scaling
analysis. The asymptotic strong MHD regime is characterized by a large value
of the Hartmann number (Ha −→ ∞). The dominant first term on the right-
hand side of Eq. (6) can only be balanced by the first term (time derivative)
on the left-hand side on a short timescale of order Ha−2, i.e., the so-called
Joule time ρ/(σB2). These two terms define an equation of pseudo-diffusion
for the velocity field. Its dispersion relationship takes the following form:

ω = iHa2 (k.B)2

k2
, (7)

for elementary solutions defined as u = u0 e
i(ωt+k·x). This is similar to the dis-

persion relationship of an equation of diffusion, but with a diffusion coefficient
D dependent on the length scale l of the velocity disturbance D � Ha2l2. The
ultimate state of pseudo-diffusion is a quasi-steady 2D flow. The non-linear
inertial term (the second one on the right-hand side of Eq. (6)) can disrupt



Geostrophic Versus MHD Models 199

this pseudo-diffusion process provided the interaction parameter N is small
compared to unity. In our dimensionless formulation, the interaction para-
meter is defined as the square of the ratio of the Hartmann number by the
dimensionless velocity, or N = σB2

0H/(ρU) using the dimensional scale U
for the velocity. Viscous terms (the last term in Eq. (6)) provide additional
diffusion to the MHD pseudo-diffusion and are responsible for the existence
of thin shear layers in the steady state: Ha−1-thick Hartmann layers on walls
non-parallel to the magnetic field and Ha−1/2-thick “parallel” layers develop-
ing along surfaces made of magnetic lines. 2D models will be valid for a large
value of the interaction parameter and will apply outside Hartmann or parallel
layers.

3 The "homogeneous model" of rotating flows

This model has been developed initially to model oceanic circulation for which
the thin aspect ratio (depth over horizontal scales) gives another reason, in
addition to rotation effects, to focus on 2D flows. This aspect ratio condition
is not necessary and the homogeneous model has also been applied to other
geometries, e.g., to the thick atmosphere of Jupiter or to the earth’s liquid
inner core.

Let us assume for simplicity that the fluid domain is symmetrical with
respect to a plane perpendicular to the axis of rotation. A 2D model arises
naturally for the long time evolution of flows in rotating systems if one con-
siders Eq. (2) and the fact that the fluid domain is bounded in the direction of
the rotation axis. From this last condition, it is concluded that the strongest
flow components will be perpendicular to the rotation axis. This follows from
continuity as Ekman layers cannot accept a jump in the normal component
but only a jump in the tangential components of velocity. Hence, the 2D flow
is a flow with 2D flow components in the direction perpendicular to the axis
of rotation. From Eq. (2), the flow component parallel to the rotation axis is
odd with respect to the plane of symmetry and small compared to perpendic-
ular components. The main component of vorticity is parallel to the axis of
rotation and is 2D.

Traditionally, the homogeneous model is derived from the equation of
vorticity, projected on the direction of the rotation axis. Sources of vortex
stretching are due to two causes: geometrical effects and Ekman pumping. If
the depth of the fluid domain changes in the direction of the 2D flow, axial
stretching or compression must occur so that the core flow remains tangent
to the upper and lower boundaries. Regarding Ekman layers developing at a
solid boundary, there is a fundamental linear relationship between the normal
flow velocity entering the layer and the vorticity of the 2D flow.

We are going to present a slightly different derivation based on global
conservation, Ekman layer properties and analysis of the 2D core flow. The
geometry of the cavity consists of the space situated between two symmetrical



200 T. Alboussière

surfaces, defined in the orthonormal coordinate system (x, y, z) by the two
functions, zu(x, y) and −zu(x, y), respectively, where z is still referring to the
direction of the axis of rotation. The “depth” of the cavity is defined as the
distance between both surfaces as a function of x and y, d(x, y) = 2zu(x, y).
Assuming the existence of a core flow were x and y components of the flow
are independent of z, a purely 2D flow u0 with no z component is introduced:

u0 =
[
u0x(x, y)
u0y(x, y)

]
. (8)

One must be careful as this is not the real flow and, for instance, this flow
need not be divergence-free. However, in the absence of flow injection through
the upper and lower boundaries, global volume conservation implies that the
2D mass flow rate, denoted Q(x, y), is a divergence-free 2D vector field. It is
attributed to a streamfunction, ψ:

Q = ∇ψ × ez. (9)

One has to link Q to u0, taking into account the effect of the upper and lower
Ekman layers. These layers contribute a small flow deficit in the direction of
the core flow, but more importantly, they generate a component of crossflow
due to Ekman pumping. This crossflow is small but has important conse-
quences in terms of mass conservation: a vortex core flow creates a purely
divergent crossflow in Ekman layers. In our dimensionless formulation, the
crossflow is equal to E1/2ez × u0, so that the global 2D flow can be written:

Q = du0 + E1/2ez × u0. (10)

Finally, one must write the restriction of the momentum Eq. (1) to the x and
y components in the core of the flow, in terms of the 2D vector field u0 and
the pressure field p = p0(x, y) at z = 0:

∂u0

∂t
+ (u0 · ∇)u0 = −∇p0 + 2E−1u0 × ez + ∇2u0. (11)

Let us denote the single component (in the direction of the rotation axis)
of the curl of u0 by ω0. We shall take the curl of the restricted momentum
Eq. (11), bearing in mind that all variables are 2D:

∂ω0

∂t
+ u0 · ∇ω0 + (∇ · u0)ω0 = −2E−1(∇ · u0) + ∇2ω0. (12)

The divergence of u0 can be expressed from the 2D divergence of Eq. (10),
where Q is solenoidal:

∇ ·Q = d∇ · u0 + u0 · ∇d− E1/2ω0 = 0, (13)
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hence
∇ · u0 = −1

d
u0 · ∇d+ E1/2ω0

d
. (14)

In the first term of the right-hand side, one can express u0 with Q at the
leading order: u0 = Q/d. Eq. (14) becomes:

∇ · u0 = Q · ∇
(

1
d

)
+ E1/2ω0

d
, (15)

where the small E1/2ω0/d term is necessarily retained as ∇·u0 will be multi-
plied by the large E−1 factor in Eq. (12). Next, the non-linear term u0 · ∇ω0

will be approximated using u0 � Q/d so as to retain only consistent orders
of magnitude in a E1/2 Taylor expansion. Eq. (12) can finally be written as
follows:

∂ω0

∂t
+ ∇

(ω0

d

)
×∇ψ = −2E−1∇

(
1
d

)
×∇ψ − 2E−1/2ω0

d
+ ∇2ω0. (16)

Note that all terms are scalars in the 2D equation above: cross products are
identified with their single non-zero z-component. Note also that vorticity
transport and geometrical vortex stretching have been combined into a single
term: ∇ω0 × (∇ψ/d) + ω0∇ (1/d) × ∇ψ = ∇ (ω0/d) × ∇ψ. These are local
vorticity terms, not planetary or background vorticity. Finally, as we have
carefully retained dominant terms in the vorticity equation above, we can
again use u0 � Q/d to express vorticity in terms of the streamfunction ψ:

ω0 = −∇ ·
(
∇ψ
d

)
. (17)

The 2D Eqs. (16) and (17) constitute the so-called homogeneous model of
quasi-geostrophic flows.

The homogeneous model can be entered into a numerical formulation, and
quasi-geostrophic flows can be computed. Here, we shall only have a look at
this model to identify some expected features. In a steady or quasi-steady low-
Rossby number regime, there can be a competition between the last two terms
(dissipation by Ekman layer friction or bulk 2D viscous dissipation), which
results in the development of E1/4 thick Stewartson layers. This feature is
legitimate in the quasi-geostrophic model, as E1/4 is thicker than E1/3: as
it is recalled in § 2.1, the length-scales perpendicular to the rotation axis of
the order E1/3 or smaller are not associated with two-dimensional structures,
but to 3D ones. Apart from Stewartson layers, there can be Munk layers [16]
when topography effects exist: the first and last terms at the right-hand side
of Eq. (16) compete on a length scale E1/3β−1/3, where β is the magnitude
of ∇(1/d). When β is very small compared to unity, this length scale is large
compared to E1/3 and corresponds to a valid quasi-geostrophic flow structure.
When unsteady solutions are considered, the easiest case is that of a balance
between the time-dependent term and the dominant term in Ekman number
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expansion, that of planetary vortex stretching. Considering local coordinates
(x,y) such that the depth d is constant along the x direction, this balance in
Eq. (16) can be written as follows:

∂ω0

∂t
= 2E−1β

∂ψ

∂x
. (18)

This equation is generating the so-called Rossby waves. When β is small com-
pared to unity, homogeneous elementary solutions eiωt+ik·x must satisfy:

ω = 2E−1β
kx

k2
. (19)

These waves live in two dimensions and are slower than inertial waves. Rossby
waves are indeed the trace of inertial waves in the 2D plane perpendicular to
the axis of rotation.

4 A two-dimensional MHD model

The derivation of a 2D MHD model presented here follows very closely the
presentation of the model of homogeneous rotating flows above. Global 2D
conservation laws (for mass and electric charge) are combined to the evolution
equation for vorticity and electric current in the bulk of the fluid to provide
two coupled governing equations.

The magnetic field is supposed to lie in the z-direction, but its intensity
can now be a function of x and y, Bz = Bz(x, y): this is known as the “straight
magnetic lines approximation”. As a first step, we consider that the “horizon-
tal” components (perpendicular to B) of the velocity and also of the electric
current density are independent of z in the bulk of the fluid:

u0 =
[
u0x(x, y)
u0y(x, y)

]
, j0 =

[
j0x(x, y)
j0y(x, y)

]
. (20)

The 2D integrated volume flow rate is still denoted Q(x, y) and we introduce
also the 2D integrated electric current density I(x, y). We shall then consider
the 2D mass and electric charge conservation laws after integration along z
over the total depth d(x, y) of the cavity (from the lower wall z = −zu(x, y) to
the upper wall z = zu(x, y)). This implies the existence of two streamfunctions:

Q = ∇ψ × ez, I = ∇h× ez, (21)

where the variable name h(x, y) for the electric current streamfunction recalls
us that this is indeed the induced magnetic field in the z direction. The next
step is to express the 2D, integrated fluxes in terms of a bulk flow contribution
(20) and a contribution from Hartmann layers. In MHD, the flow deficit in
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Hartmann layers is of little importance. The electric current developing in
them is the important feature [12]:

Q = du0, I = d j0 + 2Ha−1Bzez × u0, (22)

written here for the case of a slowly varying depth ∂d/∂x << 1, ∂d/∂y << 1.
We then consider the restriction of the momentum Eq. (4) and of Ohm’s law
(5) to the x and y components in the core of the flow, in terms of the 2D vector
fields u0, j0 and pressure and electric potential fields at z = 0, p = p0(x, y),
φ = φ0(x, y):

∂u0

∂t
+ (u0 · ∇)u0 = −∇p0 +Ha2Bzj0 × ez + ∇2u0, (23)

j0 = −∇φ+Bzu0 × ez. (24)

Taking the curl of these 2D equations leads to:

∂ω0

∂t
+ u0 · ∇ω0 + (∇ · u0)ω0 = −Ha2∇ · (Bzj0) + ∇2ω0, (25)

∇× j0 = −∇ · (Bzu0). (26)

From Eq. (22), divergence terms in the equations above can be written:

∇ · (Bzj0) = (I · ∇)
(
Bz

d

)
+ 2Ha−1ez · ∇ ×

(
Bz

d2
Q
)
, (27)

∇ · (Bzu0) = (Q · ∇)
(
Bz

d

)
, (28)

which can be substituted into the 2D governing Eqs. (23) and (24). Using
the streamfunctions ψ and h defined by Eq. (21), the governing equations are
finally written:

∂ω0

∂t
+ ∇

[ω0

d

]
×∇ψ = Ha2∇

[
Bz

d

]
×∇h+ 2Ha∇ ·

[
Bz

d2
∇ψ
]

+ ∇2ω0, (29)

−∇ ·
[
1
d
∇h
]

= ∇
[
Bz

d

]
×∇ψ, (30)

where Eq. (17) relating ω0 and ψ is still valid here, in the MHD context.
These governing Eqs. (17), (29), and (30) will be discretized and solved

numerically in § 5 for a particular configuration. Let us here first analyse these
equations from a general point of view in the same way as for the homogeneous
model of rotating flows. One can first look at the structures arising from the
balance of bulk viscosity and Hartmann layer friction, i.e., between the last
two terms in Eq. (29). By scaling analysis, this corresponds to shear layers of
thickness Ha−1/2. This corresponds to the typical thickness of parallel layers
(see § 2). This does not mean however that we are representing parallel layers
well with the 2D model. On the contrary, we know that structures developing
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on a length scale of unity in the direction of the magnetic field and on a
length-scale Ha−1/2 or less in a direction perpendicular to the magnetic field
are essentially 3D. We may obtain a solution looking like a parallel layer, but
this is just an approximation. And this approximation does not become any
more accurate as the Hartmann number is increased. As a corollary, we may
just remove the last term (bulk viscosity) from Eq. (29) as it will always be
negligible compared to the term before (Hartmann layer friction), as long as
legitimate 2D structures are modelled. The situation has to be contrasted with
that of rotating flows for which a similar balance had provided a legitimate
E1/4 length scale (2D Stewartson layers), larger than 3D E1/3 Stewartson
layers1.

For steady, high interaction parameter flows, one may examine the balance
between Hartmann layer friction and the first term on the right-hand side of
Eq. (29), representing a source of vorticity as the electric current passes across
characteristic surfaces (Bz/d constant). To do so, we must use the electric Eq.
(30), expressing the fact that curl is generated for the 2D current when the
2D flow passes across characteristic surfaces. In order to combine more easily
Eqs. (29) and (30), it will be useful to write them in local coordinates (x,
y), such that the characteristic function Bz/d is constant along the x axis.
In the steady, inertialess regime, denoting the magnitude of ∇(Bz/d) by G
and neglecting other variations of Bz and d for simplicity, the governing 2D
equations take the following form:

0 = −Ha2G
∂h

∂x
+ 2Ha

Bz

d2
∇2ψ, (31)

−1
d
∇2h = −G∂ψ

∂x
. (32)

Taking the Laplacian of Eq. (31) and substituting h using Eq. (32), one gets
a local equation for ψ, bearing in mind that all variations of Bz and d have
been discarded, except obviously when building G:

−HaG2d
∂2ψ

∂x2
+ 2

Bz

d2
∇4ψ = 0. (33)

This balance shows that shear layers of thickness Ha−1/4G−1/2 and length
unity can develop along characteristic surfaces, as illustrated in [15]. This
equation can also be used to derive the development length Ha1/2G observed
for instance in pressure-driven flows in cylinders with a step transverse mag-
netic field. Another outcome of Eq. (33) takes the form of boundary layers
along walls cutting characteristic surfaces. They are equivalent to Munk layers
in rotating fluids, or rather Stommel layers [17], as the balance in Eq. (33)
involves topographic effects and Hartmann layer friction. In this case, scaling
analysis of Eq. (33) provides a typical thickness Ha−1/2G−1. When G << 1,
1 The fact that both structures have been discovered by Stewartson and named

after him does not help to distinguish them.
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this scaling is legitimate with respect to the 2D nature of the solution. In real-
ity, there is probably a double layer structure in most practical cases, with
a genuine Ha−1/2 (3D) parallel sublayer within this thicker Ha−1/2G−1 2D
layer. The steady features above have been described in more details in [15,18].

Finally, one can take a look at the unsteady 2D regime in the simplest
regime of negligible non-linear inertial terms. The time-dependent term in
Eq. (29) is balanced by the dominant term in terms of Hartmann number
expansion,Ha2∇ [Bz/d]×∇h. Using again the local coordinates defined above,
and neglecting variations of Bz and d, the following equation can be derived:

1
d

∂

∂t

(
∇2
)2
ψ = Ha2G2d

∂2ψ

∂x2
.

Solutions to this equation are the counterpart of Rossby waves in rotating
fluids. Starting from elementary eiωt+ik·x the dispersion equation is:

ω = iHa2G2d2 k
2
x

k4
, (34)

typical of a pseudo-diffusion equation. This is obviously reminiscent of the 3D
pseudo-diffusion in the direction of the magnetic field. For 2D flows, this has
become pseudo-diffusion in the direction of the characteristic surfaces, with
a pseudo-diffusion coefficient, Ha2G2d2l4, where l is the typical size of the
structure considered. When G is very small compared to unity, this pseudo-
diffusion coefficient is small compared to that of 3D MHD pseudo-diffusion.

5 A flow in a spatially varying magnetic field

This section will be devoted to an example of an MHD 2D flow, calculated
numerically from Eqs. (17), (29), and (30). As can be seen in Fig. 1, the
configuration is that of a duct of a rectangular cross section with a (smooth)
step transverse magnetic field. Two apparently slightly different configurations
will be considered: one in which the shape of the duct is strictly rectangular
and another one in which, downstream the magnetic field change, the top
and bottom duct walls are slightly curved. The difference lies in the fact that
characteristic surfaces are degenerate in the first case, while characteristic
surfaces are well defined and aligned with the mean flow direction in the
second case, downstream the magnetic field step.

To be more specific, the width of the duct is equal to 2 in dimensionless
terms while its length is 24, from x = −6 to 18, the change in magnetic field
intensity taking place between x = −2 and +2:

Bz = 0.2, for x ≥ 2,
Bz = 1 − 0.6x+ 0.05x3, for −2 ≤ x ≤ 2, (35)

Bz = 1.8, for x ≤ −2,
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Fig. 1. Rectangular ducts with transverse step magnetic field: (a) flat case, (b)
curved case

ensuring a smooth magnetic field and first derivative for all values of x. The
depth of the duct in the direction of the magnetic field is uniform and equal
to 1 for the first case (a), and varies in the following way for case (b):

d = 1, for x ≤ −2,
d = 1 − (0.25 + 0.1875x− 0.015625x3)y2, for − 2 ≤ x ≤ 2, (36)

d = 1 − 0.5y2, for x ≥ 2.

Figure 2 shows lines of constant value for the characteristic function Bz/d for
both configurations (a) and (b), in the (x, y) plane. Numerical simulations
have been run for a single value of the Hartmann number, Ha = 5 × 103, and
increasing values of the Reynolds number (see Fig. 1). In these simulation, the
small bulk viscous term has been retained but boundary conditions at y = ±1
are free-slip conditions for the velocity field. A no-slip condition would be
numerically more demanding as the parallel layers would cause considerable
mesh refinement. Moreover, we are not particularly interested in Ha−1/2 par-
allel layers in this study. The smallest value of Reynolds number corresponds
to an inertialess solution. In the region of varying magnetic field, the flow
goes through boundary layers, as expected [15], scaling like Ha−1/2G−1 as
discussed in the previous section. For larger values of the Reynolds number, a
clear asymmetry appears between upstream and downstream regions on each
side of the magnetic field change. Upstream the flow is quite similar to the
inertialess case, while downstream the wall jets, generated in the non-uniform
region of magnetic field, remain and undergo instability. These instabilities
lead to vortices, eventually damped by Hartmann layer friction.

The difference between cases (a) and (b) is visible in the behaviour of the
wall jets. In Fig. 2, snapshots of the vorticity isovalues are shown in the final
statistically steady regime. For the case (a) of a strictly rectangular duct, the
jets undergo shear instability and mixing is rather efficient. For the case (b) of
non-uniform duct depth, the characteristic surfaces channel the jets and delay
their instability, so that these jets survive further downstream. As discussed
in the previous section, vortices are stretched along the x-direction by pseudo-
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Fig. 2. Isovalues of the characteristic function Bz/d (top), vorticity isolines for
increasing Reynolds, Re = 5, 103, 2× 103 and 4× 103: (a) flat case, (b) curved case

diffusion, which is probably at the origin of the observed stabilization of the
jets. Their flow direction coincides with the orientation of the surface layers
which helps them to propagate further downstream.

6 Conclusions and perspectives

Rotating and MHD flows have been compared for a long time. The comparison
is extended here to show that the 2D models can be derived within the same
framework in both cases. The 2D equations are different indeed but they both
indicate that the evolution of (local) vorticity is subjected to four effects:
(1) non-linear transport and stretching of local vorticity; (2) “topographic”
constraint, related to the conservation of background circulation or magnetic
circulation; (3) Ekman or Hartmann layer friction; and (4) 2D bulk viscos-
ity. These terms involve different derivation orders and their magnitude have
different scalings with respect to the Ekman or Hartmann number. Hence,
various shear layers can arise with a range of different thicknesses. Attention
must be paid to the lower acceptable size for these 2D structures, Ha−1/2 for
MHD flows, and E1/3 for rotating flows, under which structures are necess-
arily 3D.

We have also discussed the unsteady behaviour of 2D flows. Rossby waves
dominate 2D rotating flows unless there is no topographic (or beta-plane)
effect. Correspondingly, we have shown here that 2D unsteady MHD flows are
subjected to pseudo-diffusion in the direction of characteristic surfaces, unless
there is no topography and the magnetic field is uniform2. These unsteady 2D
2 By the way, this shows that the case of a uniform transverse magnetic field and

parallel walls constitutes a very singular case.
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features can be linked to the basic unsteady features of the 3D flows. Inertial
waves responsible for the 2D nature of rotating flows reappear as Rossby
waves in the (imperfectly) 2D beta-plane configuration. Similarly, pseudo-
diffusion responsible for the 2D nature of MHD flows has a pseudo-diffusion
reminiscence in the 2D MHD equations.

The analysis of the MHD equations has been restricted here to the case of
electrically insulating boundaries. It would be interesting to extend this work
to electrically conducting boundaries for practical applications, as done by
Bühler and Molokov [19]. Another interesting extension for practical appli-
cations (e.g., cooling by liquid metal films of fusion reactors) would be to
study the effect of a free-surface flow, as initiated by Molokov [20]. Combin-
ing MHD 2D modelling and free-surface analysis should result in a “shallow
water” model for MHD flows.

Let us mention other effects not included in the present work which can
affect MHD flows. Inertial effects can become significant in the Hartmann lay-
ers themselves at sufficiently high Reynolds number. This causes the appear-
ance of Ekman pumping within the Hartmann layers. In consequence, the 2D
equations contain an extra term. This effect has been studied by Pothérat
et al. [21] and by Dellar [22] in the absence of topography. One can even
go a step further and consider the effects of instability [23] and transition
to turbulence [24] in Hartmann layers. One can envisage the possibility of
a 2D flow with turbulent Hartmann layers. This is analogous to the case of
atmospheric or oceanic studies where a turbulent Ekman layer is adjacent to
a 2D large-scale flow.

From a theoretical point of view, an important question is related to the
nature of the MHD 2D turbulence under the effect of the pseudo-diffusive
effects described above. As we know, beta-plane turbulence, studied initially
by Rhines [25] departs very significantly from pure 2D turbulence. This tur-
bulence is characterized by a mixture of non-linear inertial terms and linear
Rossby waves. Not much has been done so far to characterize 2D MHD tur-
bulence, in the presence of topography or non-uniform magnetic fields.
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Summary. This essay provides a personal account of the development of the
subject of magnetohydrodynamic (MHD) turbulence from its birth in 1950 to its
“coming-of-age” in 1971, following the development of mean-field electrodynamics, a
major breakthrough of the 1960s. The discussion covers the early ideas based on the
analogy with vorticity, the passive vector problem, the suppression of turbulence by
an applied magnetic field, and aspects of the turbulent dynamo problem.

1 Birth pangs of the 1950s

The conception of the state of magnetohydrodynamic (MHD) turbulence dates
from G.K. Batchelor’s seminal paper “On the spontaneous magnetic field in
a conducting liquid in turbulent motion”, published in the Proceedings of the
Royal Society in 1950 [1]. At that time, it was already recognised that, just
as vortex lines are, under ideal circumstances, frozen in the fluid (i.e., trans-
ported with conservation of flux), so the magnetic lines of force are similarly
frozen in a conducting fluid (again with conservation of flux) in the ideal
perfect-conductivity limit. The evolution equations for magnetic field B in
a perfectly conducting fluid, and for ω in an ideal fluid (with no magnetic
effects), are then superficially identical. The word superficially is here deliber-
ate, the analogy between B and ω being imperfect, in that ω is constrained, by
its very definition, to be equal to the curl of the velocity field u that transports
it, whereas B of course suffers no such constraint. There is thus far greater
freedom in the choice of initial conditions for the pair of fields (u,B) than
for the pair (u,ω). This imperfection was, I believe, recognised by Batchelor,
but dismissed as irrelevant; what was important for him was the physical fact
that the velocity u transports both ω and B in a similar way, and that the
statistics of these fields may therefore be expected to evolve in a correspond-
ingly similar way, perhaps after the decay of transients associated with initial
conditions. In this regard, as would emerge much later, Batchelor was at best
only partially correct.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
213–222. c© 2007 Springer.
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Fig. 1. Portrait of G.K. Batchelor FRS by artist Rupert Shepherd (1984). The
portrait hangs in DAMTP, Cambridge

Of course both ω and B are subject to diffusive effects, viscous in the case
of ω, with diffusivity the kinematic viscosity ν, and resistive in the case of B,
with diffusivity the magnetic resisitivity η. However, if η = ν, Batchelor’s anal-
ogy (albeit imperfect for the above reason) persists, and it was this analogy
that Batchelor sought to exploit in the context of turbulence. Here, the recog-
nised and very contemporary scenario was that in homogeneous turbulence in
an incompressible fluid, the rate of viscous dissipation of mean square vortic-
ity (or enstrophy as it is now called) always adjusts itself to be in approximate
equilibrium with its rate of production by the all-pervasive process of stretch-
ing of vortex lines. If ν were to suddenly decrease (through the agency of some
Maxwell demon), then the enstrophy would increase, but at the same time,
the characteristic length scale of the vorticity field would decrease till a new
equilibrium at a higher enstrophy level is established. Batchelor argued that, if
η < ν, the magnetic energy (the analogue of enstrophy) will similarly increase
through stretching of magnetic lines of force, and he inferred an exponential
increase of this energy on the Kolmogorov timescale (ν/ε)1/2 characteristic of
the small scales of the turbulence where the enstrophy spectrum is maximal.
Batchelor’s condition η < ν is satisfied in the interstellar medium where the
density is low and the kinematic viscosity ν is correspondingly large.
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Batchelor further argued that, when this condition is satisfied and dynamo
action occurs, then, as a result of the back-reaction on the turbulence of the
growing Lorentz force distribution, the mean magnetic energy density will sat-
urate at a level of order (νε)1/2, this being the energy density characteristic of
the smallest scales of motion. It was arguable however that, even if saturation
is quickly achieved on the Kolmogorov scale, magnetic modes could continue
to grow through the familiar stretching mechanism on larger scales l (where
the characteristic velocity is u ∼ (εl)1/3) provided simply that the local mag-
netic Reynolds number Rm = ul/ν is larger than some critical value of order
unity. Saturation would then be progressively established at all scales satis-
fying this criterion, at a level of magnetic energy (equipartition) equal to the
local (in scale) kinetic energy of the turbulence. This was the alternative tur-
bulent dynamo scenario proposed also in 1950 by Schlüter and Biermann [2],
a scenario that was more readily accepted by the astrophysical community.
It was a view further developed in the review article of Syrovatsky 1957 [3],
which revealed for the first time the high current level of interest and activity
in MHD in the former Soviet Union. The two standpoints were considered
in Cowling’s influential monograph Magnetohydrodynamics [4], published in
1957, who however concluded his penetrating discussion with the statement
“These remarks serve to illustrate how unsatisfactory is the present state of the
theory of magnetohydrodynamic turbulence. . . .Work decisively distinguishing
between these standpoints is still to be awaited”. Within the fluid mechan-
ics community, Batchelor’s theory, based on the above analogy with vorticity,
undoubtedly retained its appeal, but there seemed little prospect of provid-
ing convincing proof of its validity by theoretical argument. Nor of course
was there at that time any prospect of either numerical simulation or labora-
tory experiment that could even remotely approach the range of parameters
where (on either theory) turbulent dynamo action might be anticipated. Only
quite recently (see, e.g., [5]) are numerical simulations at sufficiently high Rm

becoming possible.
I was fortunate to start my own research in this field, under Batchelor’s

supervision and guidance, in 1958. Batchelor had just completed his study of
the passive scalar problem, and he gave me an advance copy of two famous
papers on this topic [6, 7] published in JFM one year later. I had been much
influenced by Cowling’s monograph, and also by lectures on Cosmical Elec-
trodynamics given that year by Leon Mestel in Part III of the Cambridge
Mathematical Tripos. It seemed to me that the techniques that Batchelor had
used for the passive scalar problem might be adapted to the passive vector
problem, which is of course just the kinematic dynamo problem as we now
understand it. Batchelor had originally suggested that I work on the prob-
lem of the effect of turbulence on the rate of evaporation of droplets in a
turbulent airflow; but he readily agreed to this change of focus. Thus, it was
that in 1959 I started to think about the detailed nature of the back-reaction
of Lorentz forces under the condition η � ν, when Batchelor’s criterion for
dynamo growth of magnetic energy is well satisfied. This was to provide the
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core of my Ph.D. thesis Magnetohydrodynamic Turbulence (1962); my paper
on this topic appeared 1 year later [8].

2 Marseille 1961: a definitive moment

An important Colloquium Mécanique de la Turbulence, sponsored by CNRS,
was held in August 1961 on the occasion of the inauguration of the Institut
de Mécanique Statistique de la Turbulence in Marseille. The meeting was dis-
tinguished by the presence of the great pioneers of the subject, G.I. Taylor,
Th. Von Karman, and A.N. Kolmogorov himself. It was the occasion when the
first reliable observational evidence in support of the Kolmogorov k−5/3 spec-
trum was first presented by R.W. Stewart (later published by Grant et al.
(1962) [9]), only to be followed by Kolmogorov’s remarkable contribution
Précisions sur la structure locale de la turbulence dans un fluide visqueux
aux nombres de Reynolds élevés [10] in which he addressed the problem of
the intermittency of the local rate of dissipation ε(x, t), and showed how this
could be expected to modify the (-5/3) exponent of the energy spectrum; thus
did Kolmogorov undermine the very foundations of the study of turbulence
that he had himself laid 20 years previously; it was indeed a revolutionary
moment for the subject!

The Colloquium included a section chaired by L.S.G. Kovasznay on Tur-
bulence in Compressible and Electrically Conductive Media, to which I was
privileged to contribute. It is perhaps an indication of the primitive state of
the subject that, apart from myself, only Kovasznay spoke on the subject of
turbulence in conducting fluids. He drew attention to the evidence for the pres-
ence of turbulence in plasma experiments, and of the need to take account of
terms analogous to Reynolds stress in the time-averaged equations of MHD,
namely 〈u × B〉 in the mean induction equation, and 〈j × B〉 in the mean
momentum equation; this seems so absolutely natural now that it is difficult
to appreciate how novel, and indeed daring, such a suggestion still appeared at
that time. Kovasznay [11] had been primarily concerned with situations typ-
ical of plasma experiments in which the source of energy is electromagnetic,
and energy flows via MHD instabilities of various kinds to the turbulence
with resulting enhancement of the rate of Joule dissipation of energy. In this
respect, his approach was complementary to that of the dynamo theoreticians,
who were concerned with circumstances when the source of energy was purely
dynamic, and the flow of energy was from the resulting turbulence to the
magnetic field. I did my best in my contribution [12] to distinguish the main
features of these contrasting situations.
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3 The low-Rm situation

It was recognised by Golitsyn (1960) [13] that, when Rm is small, an applied
magnetic field is weakly perturbed by turbulence, and the induction equation
may therefore be linearised in order to obtain the fluctuating field b in terms
of the velocity field u. The spectrum Γ (k) of b may then be obtained in terms
of the spectrum of u, with the result that Γ (k) ∼ k−11/3 (a result that may be
compared with the corresponding k−17/3 law obtained by Batchelor et al. [7]
for the passive scalar case).

On the assumption that Batchelor’s criterion η < ν for dynamo action was
correct, I considered at about the same time [14] the situation of moderate
conductivity, when η is large compared with ν but η still small enough that
Rm � 1; i.e., when the Reynolds number Re of the turbulence satisfies Re�
Rm � 1. I argued the case for a k1/3 spectrum (like that of vorticity) up to
a conduction cut-off, kc = (ε/η3)1/4, and a k−11/3 spectrum, like Golitsyn’s
result (and for similar reasons) above kc. The k−11/3 result has been found
by Odier et al. (1998) [15] in experiments on turbulence in liquid gallium, a
welcome and long-awaited validation of ideas that were both rudimentary and
tentative in those early days of the subject.

4 The high-Rm situation

The situation when η � ν is very different. Here, magnetic fluctuations per-
sist on sub-Kolmogorov scales where the velocity gradient may reasonably be
assumed to be approximately uniform. Batchelor [6] had exploited this idea to
determine a k−1 law for the spectrum of a passive scalar. The same arguments
applied to magnetic field (treated as a passive vector) led to an unacceptably
divergent k+1 spectrum, possibly a symptom of dynamo instability. In fact,
it had been shown at about the same time by Pearson (1959) [16] that if a
weak random vorticity field is subjected to uniform irrotational strain, then
the associated enstrophy in general increases exponentially, and this in spite
of the effect of viscosity. This result carried over by analogy to the effect of a
similar uniform straining motion on a random magnetic field: the mean mag-
netic energy increases exponentially, despite the effect of Joule dissipation.
This surprising result is perhaps attributable to the unphysical assumption
of a strain field that is uniform to infinity, but nevertheless it suggested that
stretching of field lines could persist until the growing Lorentz force reacted
back upon this strain field, in a way that might lead to structures in which
the straining process was exactly compensated by this back-reaction. I did
indeed find such structures [8], although it seemed inevitable that finite dif-
fusivity would lead to some leakage of magnetic flux, causing slow decay. It
was argued at about the same time by Saffman (1963) [17] that the decrease
of scale associated with the stretching process during the kinematic phase
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would ultimately lead to decay of magnetic energy; this prediction has not
been substantiated by later developments.

There has been a recent renewal of interest in such “small-scale dynamo
action” stimulated by the work of Kulsrud (1999) [18], with reference to
processes in the interstellar medium (see also Schekochihin et al. (2004)
[19] and the extensive bibliography therein). The availability of high-speed
computer power opens up new possibilities for the investigation of this regime.
Together with Y. Hattori, I have recently returned to the study of isolated
“magnetic eddies” in the perfect conductivity limit [20]. Even without imposed
strain, the behaviour of such eddies under the action of the Lorentz force
distribution is of interest! It turns out that, in the simplest case, an axisymmet-
ric magnetic eddy can contract towards the axis of symmetry and split into two
nearly spherical eddies which propagate away from each other along the axis
of symmetry. These are candidate “coherent structures” of MHD turbulence
in the high conductivity limit.

5 Suppression of turbulence by a strong applied field

My first research student at Cambridge in the 1960s was Jacques Nihoul from
Liège. One of the problems that he worked on was the effect of a suddenly
applied magnetic field on a field of homogeneous turbulence at low Rm. The
fact that a magnetic field could suppress turbulence had been demonstrated
experimentally by Murgatroyd (1953) [21]; and it was already recognised from
the work of Lehnert (1955) [22] and Shercliff (1965) [23] that vorticity com-
ponents perpendicular to a uniform applied field tend to be preferentially
suppressed; this process is effectively linear, and Nihoul (1965) [24] found that
the turbulent energy decays as t−3 during this suppression phase. I carried this
work somewhat further [25] and showed the manner in which anisotropy devel-
ops from an initially isotropic state: in fact, the anisotropy ratio 〈u2+v2〉/〈w2〉
decreases from the isotropic value of 2 asymptotically to 1 during this phase,
where u, v are the velocity components perpendicular to the field, and w is
the component parallel to the field. This result holds only insofar as the fluid
can be regarded as unbounded; much work has since been done on the non-
linear effects which resist the anisotropisation process (Sommeria and Moreau
(1982) [26]) and on the effect of fluid boundaries perpendicular to the applied
field (Pothérat et al. (2000) [27]); but the fact that a strong field induces a
state of ‘nearly two-dimensional’ turbulence having very weak variation par-
allel to the field seems to be reasonably well established.

6 Helicity and the α-effect

The great breakthrough in dynamo theory came in the mid-1960s, with the
work of Steenbeck et al. (1966) [28] and their subsequent series of papers,
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work that only became widely known some years later when distributed in
English translation by Roberts and Stix (1972) [29], and again much later
with the publication of the book of Krause and Rädler (1980) [30]. The key
idea of the theory lay in recognition of the fact that, within the framework
of the kinematic dynamo problem for which the statistics of the velocity field
are regarded as “given”, the mean electromotive force (or emf ) 〈E〉 = 〈u×b〉
is linearly related to the mean magnetic field 〈B〉, assumed to vary on a
length-scale large compared with that of the turbulence. At leading order in
the ratio of these scales, and assuming isotropic turbulence, this gives the
famous relationship 〈E〉 = α〈B〉. This astonishing result, the appearance of a
mean emf parallel, rather than perpendicular, to the mean field, was somewhat
arbitrarily described by Steenbeck et al. [28] as the α-effect, a description that
is now firmly established. It is an effect that appears only when the turbulence
lacks reflexional symmetry (such turbulence may be described as chiral), and,
as shown by Steenbeck et al., it is responsible for the exponential growth of
the mean field in a variety of planetary and stellar circumstances.

This discovery completely superseded, and rendered almost irrelevant, the
previous divergence between the points of view that had been advocated by
Batchelor [1] and Biermann and Schlüter [2], as described above. The focus
from this point on was to be on length-scales large (rather than small) com-
pared with the scale of the energy-containing eddies of the turbulence; this was
entirely appropriate as far as the problem of explaining the observed existence
of stellar and planetary fields was concerned.

One of my research students in the late 1960s was Glyn Roberts, who
worked on dynamo action associated with space-periodic velocity fields; this
work, contained in his 1969 Ph.D. thesis, was published 1 year later [31].
(Roberts’s subsequent paper [32] developed this theme further, and provided
the basis for the Karlsruhe experiment of Müller et al. [33] which, some 30
years later, was to be one of the first experiments successfully demonstrating
dynamo action in a fluid.) I had difficulty initially in understanding Glyn’s
arguments, and I finally succeeded only through carrying out a parallel treat-
ment for homogeneous turbulence [34]; at this stage, it became clear that
turbulent dynamo action could occur even when the magnetic Reynolds num-
ber Rm(l) based on the scale l of the turbulence is small compared with unity;
the sole requirement was indeed that the turbulence should lack reflexional
symmetry; a magnetic field similarly lacking reflexional symmetry would then
grow on scales L large enough for the associated magnetic Reynolds number
Rm(L) to be of order unity or greater. Batchelor’s theory [1] therefore turned
out to be wrong for the reason that it failed to take account of large-scale
modes that are available to the magnetic field but not to the vorticity field.
Its relevance to reflexionally symmetric turbulence is still however a matter
for debate.

By sheer coincidence, I had just 1 year earlier in 1969 [35] published a paper
concerning the degree of knottedness of tangled vortex lines and relating this
to a new invariant, which I named the helicity, of Euler flows. (This was the
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analogue of Woltjer’s (1958) [36] invariant for ideal MHD, which henceforth
became known as magnetic helicity.) A physical interpretation of the cross-
helicity 〈u ·b〉 as the degree of mutual linkage of vorticity and magnetic fields
emerged at the same time. I learnt some years later that the helicity invariant
had been previously discovered by J.-J. Moreau (1961) [37]; but I think it is
fair to claim that it was my 1969 paper that firmly established the bridge
between topology and the dynamics of ideal fluids which has since proved so
fruitful. In any event, non-zero helicity provided the simplest symptom and
measure of the required lack of reflexional symmetry, and has played a central
role in the understanding of the dynamo process ever since.

The mean-field electrodynamics of Steenbeck et al. had a precursor in the
work of Parker (1955) [38], who had considered the effect of what he described
as random cyclonic events (i.e., helical upwellings) acting on a locally uniform
magnetic field B. The aggregate effect of these upwellings was to provide a
mean current parallel to B. The role of magnetic diffusivity in this process
remained obscure however, and the theory, as presented by Parker, though
physically appealing, lacked the mathematical foundation that followed only
10+ years later. A second precursor lay in the work of Braginskii (1964)
[39], who had developed a theory of nearly axisymmetric dynamo action; here
again, an α-effect, whose origin was to be greatly clarified later by Soward
(1972) [40], was the main outcome of the theory; but the sheer complexity of
Braginskii’s treatment meant that for many years it had less impact on the
MHD community than it undoubtedly deserved.

With mean-field electrodynamics, turbulent dynamo theory had come of
age. The two-scale technique opened the way to dynamic, as opposed to purely
kinematic, models of dynamo action, particularly in circumstances where Cori-
olis, as well as Lorentz, forces played a dominant role [41]. The next decade
was to be a period of consolidation, and of reaping the fruits of the great
advances of the 1960s, the ‘teenage years’ of the subject. This in turn would
lead into the modern era when high-powered numerical simulation would play
a role of ever-increasing importance. The situation as it appeared to me in
1978 may be found in my research monograph Magnetic Field Generation in
Electrically Conducting Fluids [42], which treated dynamo theory in both its
kinematic and dynamic aspects, as then understood.
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Summary. A brief account is presented on analogies between the processes of
evolution of vorticity and magnetic field and related problems starting from the
very beginning and including the most recent results. The emphasis is made on
essential differences as contrasted to similarities. This is seen already on a purely
kinematic level which is the main theme of this communication.

1 Introduction and brief history

What is hardest to accept in Batchelor’s discussion is the assumed
simlarity between B and ω. Lundquist 1952

The criticism of Lundquist (1952) [1] refers to the paper by Batchelor
(1950) [2] which followed his presentation in Paris in 1949 at a Symposium on
problems of motion of gaseous masses of cosmical dimensions [3]. He proposed
an analogy between magnetic field and vorticity based on the observation that
the equations for vorticity ω and magnetic field B are identical in form

∂ω

∂t
− ∇×(u× ω) = ν∇2ω, (1a)

∂B
∂t

− ∇×(u × B) = η∇2B, (1b)

and that there is thus a formal analogy between the two solenoidal vectors
ω and B, provided ω refers to the motion of non-conducting fluid and B to
the motion of conducting fluid. Many of the results concerning vorticity in
classical hydrodynamics can now be interpreted in terms of magnetic field
in the electromagnetic hydrodynamic problem (Batchelor [2], p. 409). On the
dynamical level Batchelor put forward a hypothesis as follows: The ultimate
balance between magnetic and hydrodynamic systems is such that the large
wave-number components contain comparable amount of kinetic and magnetic

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
223–230. c© 2007 Springer.



224 A. Tsinober

energy (Batchelor [2], p. 414), i.e., magnetic energy saturation at the viscous-
eddy energy and scale1. Another hypothesis claimed eventual equipartition
between the magnetic and kinetic energy at all scales assuming that interac-
tions only between velocities and magnetic fields at the same scale are impor-
tant, i.e., locality (Schlüeter and Biermann [6], Biermann and Schlüeter [7]).

The analogy proposed by Batchelor is, in fact, an extension of the popu-
lar analogy between vorticity ω and material line elements l (proposed by
Taylor 1938 [8], and which goes back to Helmholz 1858 [9] and Kelvin 1880
[10]), equations for which in the absence of viscosity are identical in form as
well:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = 0, (2a)

∂l
∂t

+ (u · ∇)l − (l · ∇)u = 0. (2b)

These equations are identical in form provided that the field l is solenoidal,
which is not necessarily the case. It follows from the equation for l that
D(divl)/Dt = 0, i.e., divl is a pointwise Lagrangian invariant and is con-
served along fluid particle trajectories in inviscid flow. If initially divl = 0, it
will remain such all the time as in the case when initially lt=0 = ωt=0, and
subsequently l(t) = ω(t). This latter relation is usually used in claims about
the analogy between vorticity ω and material line elements l. However, there
are two main problems with this analogy. The first is that, generally, material
line elements l are dynamically passive, whereas vorticity is not a dynami-
cally passive quantity. Second, the material line elements, which initially and
thereby consequently coincide with vorticity, are special in the sense that they
are not dynamically passive quantities anymore and react back on the flow
precisely as does vorticity. In other words, the fact that vorticity is frozen in
the inviscid flow field does not mean that vorticity behaves in the same way as
material lines, but the other way around: those material lines which coincide
with vorticity behave like vorticity, because they are not passive anymore as
are all the other material lines.

While the above analogies have since been realized to be flawed,2 only
recently more attention was given to the differences rather than similarities
(Kraichnan and Kimura [13], Lüethi et al [14], Ohkitani [15], Tsinober [16],
[17], Tsinober and Galanti [18]). It is the main purpose of this communication
to address the main of these differences as contrasted to similarities mostly on
kinematic level. For a review of dynamical aspects and problems and a variety
of related issues see Schekochihin et al. [19].
1 A similar analogy was promoted by Chandrasekhar (1951) [4,5].
2 In the first edition of Electrodynamics of Continuous Media, Landau and Lifshitz

1957 [11] devoted the whole § 55, entitled Spontaneous magnetic field in turbulent
flow of conducting fluid. It was replaced by § 74 with a different title Turbulent
dynamo, in which the material of the paper by Batchelor [2] was replaced by later
developments mainly due to Zel’dovich and his group [12].
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2 Magnetic field versus vorticity

The usual comparison is based on looking at the Eqs. (1a, b) for vorticity ω
and the (solenoidal) passive vector B as proposed by Batchelor [2]. Though
a number of differences are known, these differences are hidden when one
looks at the equations for ω and B, which – as mentioned, are identical in
form. However, a more “fair” comparison should be made between the veloc-
ity field, u, and the vector potential, A, with B = ∇ × A (Tsinober and
Galanti [18]). Such a comparison allows to see immediately one of the basic
differences between the fields u and A (apart of the first being non-linear
and the second linear), which is not seen from the Eqs. (1). Namely, the
Euler equations conserve energy, since the scalar product of u · (ω × u) ≡ 0
is identically vanishing. In contrast – unless initially and thereby subse-
quently u ≡ A – the scalar product of A · (u × B) 
≡ 0.3 It is this term,
A·(u× B) ≡ −AiAksik+∂/∂xk{AkAlul− 1

2ukA
2}, which acts as a production

term in the energy equation for A. In other words, when the initial conditions
for u and A are not identical, the field A (and B), is sustained by the strain,
sik, of the velocity field – in contrast to the field u, which requires external forc-
ing. The production term −AiAksik is positively skewed and 〈−AiAksik〉 > 0.
A noteworthy feature is that an analogue of Kolmogorov’s 4/5 law4 is valid
for the vector A (see, e.g., Gomez et al. [20] and references therein)

〈
∆u‖(∆A)2

〉
= −4/3rεA, (3)

where ∆u‖ ≡ ∆u · r/r ≡ [u(x + r) − u(x)] · r/r, ∆A = A(x + r) − A(x),
and εA is the mean dissipation rate of the energy of A. An important point
is that the relation (3) holds for any random isotropic velocity field includ-
ing the Gaussian one, which is not the case for the velocity field itself, since〈
∆u‖(∆u)2

〉
≡ 0 for a Gaussian velocity field5. Similarly, there are essential

differences in the behaviour of vorticity, ω and B. First, in statistically sta-
tionary velocity field (NSE but not Gaussian) the enstrophy ω2 saturates to
some constant value, since vorticity is not a dynamically passive quantity. In
contrast, the energy of magnetic field B2 grows exponentially without limit:
in the kinematic regime magnetic field is a passive vector and the fluid flow
does not know anything about its presence. Second, growth of magnetic field
is insensitive to the particulars of the random flow, e.g., the velocity field
can be artificial such as Gaussian. In such a velocity field the production term
3 The corresponding equation for the vector potential A has the form

∂A

∂t
+ B × u = −∇pA + η∇2A

4 It is more convenient to use the 4/3 law for the velocity field in the form〈
∆u‖(∆u)2

〉
= − 4

3
〈ε〉 r , which turns into the 4/5 law by isotropy.

5 Yaglom (1949) [21] has shown that the 4/3 law in the form (3) holds for a passive
scalar. Here, again it is valid for any random velocity field including Gaussian
one.
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BiBksik is also positively skewed and 〈BiBksik〉 > 0. This is not the case with
vorticity: there is no amplification of vorticity in a Gaussian velocity field, the
PDF of ωiωksik is precisely symmetric and consequently 〈ωiωksik〉 ≡ 0: to
be amplified vorticity needs for this ‘its own’ genuine turbulent velocity field.
For other results concerning differences between ω and B see Tsinober [16],
Tsinober and Galanti [18], and references therein.

3 Evolution of disturbances

Important aspects of the essential difference between the evolution of fields
ω and B arising from the non-linearity of the equation of ω and linearity of
the equation for B are revealed when one looks at how these fields amplify
disturbances. In other words, B and ω possess essentially different stability
properties. The reason is that the equation for the disturbance of vorticity
differ strongly from that for vorticity itself due to the non-linearity of the
equation for the undisturbed vorticity ω, whereas the equation for the evolu-
tion of disturbance of the field B is the same as that for B itself due to the
linearity of the equation for B. Consequently, the evolution of disturbances of
the fields ω and B is drastically different. For example, in a statistically sta-
tionary velocity field the energy of the disturbance of B grows exponentially
without limit (just like the energy of B itself), whereas the energy of vorticity
disturbance grows much faster than that of B for some initial period until it
saturates at a value which is of the order of the enstrophy of the undisturbed
flow. It is noteworthy that much faster growth of the energy of disturbances
of vorticity during the very initial (linear in the disturbance) regime is due to
additional terms in the equation for the disturbance of vorticity, which have
no counterpart in the case of passive vector B. Indeed, the equation for the
disturbance of vorticity ∆ω

i ,

D∆ω
i

Dt
= ∆ω

j sij + ωj∆
s
ij −∆u

j

∂ωi

∂xj
+∆ω

j ∆
s
ij −∆u

j

∂∆ω
i

∂xj
+ ν∇2∆ω

i , (4)

contains three terms ∆ω
j sij , ωj∆

s
ij ,−∆u

j
∂ωi

∂xj
being all linear in disturbance,

whereas the equation for the disturbance of the magnetic field is just the same
as that for the magnetic field itself. It is important to stress that the additional
‘linear’ terms

(
ωj∆

s
ij and −∆u

j
∂ωi

∂xj

)
in Eq. (4) arise due to the non-linearity

of the equations for the undisturbed vorticity. In this sense the essential differ-
ences between the evolution of the disturbances of vorticity and the evolution
of the disturbance of passive vector B with the same diffusivity can be seen
as originating due to the non-linear effects in genuine NSE turbulence even
during the linear regime. For more details and for other results concerning
differences between the evolution of disturbances of ω and B see Tsinober
and Galanti [18].
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4 Two dimensional flows

In two dimensions (x, y) the differences between ω and B are even more
drastic. First, vorticity vector in this case has only a z-component and there
is no stretching/amplification of vorticity as in three dimensions. Magnetic
field can possess all three components and there is a process of stretching of
magnetic field in the plane (x, y). This process can lead to substantial transient
growth of magnetic field, which at later times is always overcome by diffusion
and consequent eventual decay of the magnetic field. However, this transient
regime can be very long (Kinney et al. [22], Dar et al. [23]). The importance of
the two-dimensional (2D) configuration is that it is a state to which tends any
magnetohydrodynamic (MHD) flow in some sense (locally and/or globally)
due to the development of anisotropy in such flows (Maron and Goldreich
[24], Mueller et al. [25], Tsinober [26], Zikanov and Thess [27], and references
therein). This means that in the dynamical case the difference between the
behaviour of ω and B becomes even larger than that at the kinematic level.

5 Concluding remarks

Until recently the emphasis was made on analogies between genuine and “pas-
sive” turbulence. Most probably it started with the well known Reynolds anal-
ogy on transport of momentum and heat (Reynolds 1874 [28]) and study of
fluid motion by means of ‘colour bands’ (Reynolds 1894 [29]). Since then such
analogies were promoted in a number of papers (see references in Antonov
et al. [30], Tsinober [16]).

The essential differences in the behaviour of passive and active fields,
including those described above, point to serious limitations on analogies
between the passive and active fields and show that caution is necessary in
promoting such analogies. They also serve as a warning that flow visualiza-
tions used for studying the structure of dynamical fields (velocity, vorticity,
etc.) of turbulent flows may be quite misleading, making the question “what do
we see?” extremely nontrivial. The general reason is that the passive objects
may not ‘want’ to follow the dynamical fields (velocity, vorticity, etc.) due to
the intricacy of the relation between passive and active fields and Lagrangian
chaos, just like there is no one-to-one relation between the Lagrangian and
Eulerian statistical properties in turbulent flows (Tsinober [16]). This does not
mean that qualitative and even quantitative study of fluid motion by means of
‘colour bands’ (Reynolds [29]) is always impossible or necessarily erroneous.
However, watching the dynamics of material ‘colour bands’ in a flow may not
reveal the nature of the underlying motion, and even in the case of right qual-
itative observations the right result may come not necessarily for the right
reasons. The famous verse by Richardson belongs to this kind of observation.

It is the right place to remind the outstanding and specific property of gen-
uine turbulence – self -amplification of the field of strain. This is underlying
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some of (but not all) main differences between genuine and passive turbu-
lence since there is no counterpart to this process in the behaviour of passive
objects. It is a reflection of a more general property of genuine turbulence
possessing an intrinsic dynamical mechanism generating randomness (intrin-
sic stochasticity), whereas in case of passive objects randomness is imposed
by the velocity field.

There are properties of passive objects which do depend on the details of
the velocity field (Tsinober [16], [17], Tsinober and Galanti [18]). For example,
though growth of magnetic field is insensitive to the particulars of the random
flow, its alignment with the eigenframe of the rate of strain tensor is sensitive
to the details of the velocity field. Namely, in a genuine turbulent field (NSE)
the magnetic field is primarily aligned with the eigenvector corresponding to
the intermediate eigenvalue of the rate of strain tensor, whereas in a Gaussian
velocity field the magnetic field is aligned with the eigenvector corresponding
to largest (i.e., positive and purely stretching) eigenvalue of the rate of strain
tensor. Just these very properties can be effectively used to study the differ-
ences between the real turbulent flows and the artificial random fields. More
precisely, the essential differences in the behaviour of passive objects in a real
and synthetic turbulence may be exploited in order to gain more insight into
the dynamics of real turbulence. At present, however, the knowledge neces-
sary for such a use is very far from being sufficient. With few exceptions it
is even not clear what can be learnt about the dynamics of turbulence from
studies of passive objects (scalars and vectors) in real and ‘synthetic’ turbu-
lence. This requires systematic comparative studies of both. An attempt at
such a comparative study was made by Tsinober and Galanti [18]. This is a
relatively small part of a much broader field of comparative study of ‘passive’
turbulence reflecting the kinematical aspects and genuine turbulence repre-
senting also the dynamical processes. It seems that this branch of turbulence
research is quite promising.
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Summary. This paper is an attempt to summarize the most important results and
established ideas on magnetohydrodynamic (MHD) turbulence in flows of liquid
metals when the magnetic Reynolds number is significantly smaller than unity. It
is written on the basis of the round-table discussion organised during the Coventry
meeting, with additions introduced by the authors, coming from their own vision
of the subject, or raised during their exchanges with other specialists. It covers
the turbulent regimes observable in rather well controlled laboratory experiments
as well as in metal processes where electromagnetic devices are used for different
purposes (stirring, pumping, refining, etc). A number of still not-understood points
are mentioned and some needs of new efforts are underlined.

1 Introduction

This paper is not a pure synthesis of comments and remarks raised during
the round-table discussion on turbulence organized during the Coventry
meeting on the history of magnetohydrodynamics (MHD). It is rather a review
paper written on the basis of these comments and remarks, complemented
with a few additions, which were raised during the subsequent exchanges
between the authors and with significant contributions from other colleagues.

The main conclusion arising from all those experimental investigations is
the fact that, in flows bounded by electrically insulating walls, the turbulence
is not damped, even when the magnetic field is very high. It may on the
contrary be more intense than in a similar flow without any magnetic field.
Indeed, as discussed later, it becomes quasi-two-dimensional, or “spiral” in
Branover’s terminology [74].

Turbulence is a common feature of flows at high Reynolds number (Re =
UL/ν). In the case of electrically conducting fluids and in the presence of a
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magnetic field, the magnetic Reynolds number (Rm = µσUL) becomes also
significant. But most of the papers presented at this meeting put the emphasis
on liquid metals at scales which are usual in the laboratory or in the indus-
try, where Rm is significantly smaller than unity, so that the disturbance of
the magnetic field, although often measurable, remains negligible in compar-
ison with the applied magnetic field. Then the typical conditions, which were
considered during the round-table discussion and which still prevail in this
paper, are focusing on Re >> 1 and Rm << 1. Very often, the speakers
at the Coventry meeting were referring to the experiments previously per-
formed first in Riga and in Purdue (see the review papers by Lielausis [1] and
Tsinober [2, 3]), and more recently in Beer-Sheva, Grenoble, and Dresden.
But the emphasis was essentially on the guiding ideas and on the leading
mechanisms, which allow to understand and to predict the observations.

In the following, §2 is devoted to the simplest condition to analyse the influ-
ence of a magnetic field, when this field is uniform and when the turbulence is
homogeneous. Here all the average quantities, including mean velocity, dou-
ble and higher-order velocity correlations are spatially uniform. Homogeneous
turbulence has the advantage of being amenable to analytical description
and numerical simulation based on Fourier transforms and pseudo-spectral
methods, respectively. Moreover, it may be actually observed in laboratory
experiments, in MHD as well as in ordinary hydrodynamics.

In §3, we focus on the influence of the Hartmann walls. As it is well known,
in the presence of a uniform magnetic field, two characteristics of these walls
are of primary importance: their electrical conductivity and their orienta-
tion. Concerning their conductivity, it is generally supposed that the walls
are either insulating or thin, so that the conductance ratio (C = σwe/σL) is
quite small. As a consequence, the main part of the electric current cannot be
short-circuited by the walls and the net effect is a moderate damping (propor-
tional to B−1, whereas it varies as B−2 when the walls are good conductors).
And concerning their orientation, it is well known that, except when they are
parallel to the magnetic field, their vicinity is occupied by a Hartmann layer,
which has the property to react on the neighbouring core flow. The walls par-
allel to the magnetic field cannot have such a strong influence on the core
flow. And §4 briefly focuses on the cases where the fluid domain is so wide
in the direction of the magnetic field that the fluid flow may be considered
without any influence of the Hartmann layers.

Section 5 summarizes the discussion on much more complex problems,
since it is related to shear flows, where the turbulence cannot be homoge-
neous. This class includes the usual duct flows, which have been the subject
of many experiments in the past, as well as flows around bodies and shear
flows generated in the vicinity of an electrical discontinuity in the Hartmann
wall.

Section 6 is devoted to the remarks and comments, which were made on
the still more complex cases where the applied magnetic field is either AC or
non-uniform. Of course, with an AC field, a necessary non-uniformity is due
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to the skin effect, but other causes, like the finite length of the inductor, may
also generate non-uniformities.

In §7 we have listed a number of other conditions (free surface phenom-
ena, Alfvén waves, transport of scalar quantities, non-zero magnetic Reynolds
number, natural convection, etc) where turbulence is also a central feature,
but still less understood than in the cases discussed in § 1–6.

Throughout this paper, a number of questions of significant importance are
raised and underlined, which are still poorly understood and should therefore
deserve new efforts. Finally, this paper ends up with a few more remarks
and wishes shared by the authors, even if they were not explicitly mentioned
during the round-table discussion.

2 Homogeneous turbulence

Homogeneous turbulence refers to a state whose statistical properties are
independent of position (Pope [4]). In practice, homogeneous turbulence is
approximately realized far away from walls provided no other source of shear
does exist. In ordinary hydrodynamics, homogeneous turbulence has become
a paradigm and has been intensively studied both experimentally and theo-
retically. In MHD at low Rm the challenge is to predict the statistical proper-
ties of turbulence in the presence of a homogeneous magnetic field. The first
theoretical predictions of the decay of velocity components parallel and per-
pendicular to the magnetic field and of their ratio (〈u2

‖〉 = 2〈u2
⊥〉) are due to

Moffatt [5]. They were followed by experimental investigations by Alemany
et al. [6] and Caperan and Alemany [7], using grid turbulence in a cylinder
of mercury located in a long vertical coil and by direct numerical simula-
tions [8–10], which confirmed the existence of angular transfers of energy in
the wave-number space.

Many other experiments, performed in channel flows, also yield important
information on the turbulent properties (see the review papers by Lielausis [1]
and Tsinober [2, 3], as well as Sukoriansky et al. [75], and Branover et al.
[74]). However, those results often remain more qualitative than quantitative,
because homogeneity is not well guaranteed, and because other effects, which
will be discussed later on, also influence the turbulence (e.g. entry into the
fringing magnetic field, presence of walls and boundary layers, etc).

Among the main results, which received significant support, let us mention
the k−3 spectral law for the kinetic energy, although most of the measurements
concern only the velocity component parallel to the magnetic field. The sim-
plest heuristic way to interpret this law is based on the assumption that some
quasi-steady equilibrium exists for all k, between the local energy transfer,
whose timescale must be of the order of 1/

√
k3E(k), and the Joule damping

time, which is itself k-independent. This requires that E ≈ k−3. There is an
obvious analogy between these results and the equivalent results in rotating
or stratified fluids.
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Now, if the Joule damping time is independent of the wave number, it
does depend on the orientation of the wave vector k. Let us denote θ the
angle between k and the magnetic field. The local and instantaneous Joule
timescale within the Fourier space is τJ/ cos2 θ, where τJ = ρ/σB2 is the
Joule timescale in an isotropic turbulence. If, as shown in all experiments,
the time decay law is of the form t−n, this implies that cos2 θ ≈ τJ/τ . Then,
after a time of the order of a few τJ , the only k vectors carrying a significant
energy are almost perpendicular to the magnetic field. And it is justified to
admit that cos2 θ ≈

(
l⊥/l‖

)2, where l‖ and l⊥ are the typical length scales
parallel and perpendicular to the magnetic field. This shows that, after some
initial period of decay, there exists an asymptotic morphological anisotropy,
such that l‖/l⊥ ≈ (t/τJ)1/2. This basic law, which expresses how the turbulent
eddies elongate as time progresses, is often quoted by the expression tendency
to two-dimensionality. Remarkably, for the linear regime we can understand
and predict both the kinematic anisotropy

(
u‖/u⊥

)
and the morphological

anisotropy (l‖/l⊥), whereas for the non-linear regime, if the above prediction
for l‖/l⊥may still be accepted, no predictions or measurements are available
to be substituted to the Moffatt’s prediction.

The above interpretation of the morphological anisotropy, due to Alemany
et al. [6], which is valid in homogeneous turbulence, is much more general. It
can also be established in terms of the reminiscence of the Alfvén waves at
small Rm. As shown by Sommeria and Moreau [11], those waves degenerate
into a diffusion along the magnetic field lines, which provides the (t/τJ)1/2 law.
And, more recently, the invariance of the parallel component of the angular
momentum, discovered by Davidson [12, 13] also yields an interesting way to
understand this prediction and to accept it even in complex shear flows.

Clearly, our picture of homogeneous MHD turbulence is still far from com-
plete. In particular, there is a conspicuous lack of reliable experimental studies
providing velocity data with high spatial and temporal resolution. In order to
obtain such data it is either necessary to develop new measurement techniques
for liquid metals like mercury and gallium or to perform MHD experiments
in transparent fluids using strong magnetic fields of the order of 10 T. Both
directions offer attractive opportunities for probing MHD turbulence down to
the Kolmogorov scale and thereby laying the foundations for the development
of turbulence models that could be used in engineering applications.

3 Influence of the Hartmann walls

These walls have at least two major effects. The first one develops as soon
as the two-dimensionality of the turbulence is fairly well satisfied or, in other
words, as soon as the length of the energy-containing eddies in the magnetic
field direction becomes of the same order as the gap between the Hartmann
walls. Then these walls suppress the velocity component parallel to the mag-
netic field B. More precisely, as shown by Pothérat et al. [14], the only
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mechanism, which still drives some velocity fluctuations parallel to B, is the
Ekman pumping within the Hartmann layer. A straightforward order of mag-
nitude analysis shows that such a velocity scales as Re/Ha3, which is indeed
very small in most relevant experiments.

The second important effect due to the presence of the Hartmann walls and
boundary layers is the damping, which remains present and important in this
region where the two-dimensionality cannot exist. Sommeria and Moreau [11]
have shown that, when the Hartmann number (Ha = Bh

√
σ/ρv, where h

stands for the distance between the walls perpendicular to B) is large enough
to justify the classical inertialess theory of the Hartmann layer, the relevant
damping timescale is not anymore the usual Joule timescale τJ = ρ/σB2. It
becomes Ha times larger, since it is now

τH =
h

B

√
ρ

σν
= Ha

ρ

σB2
. (1)

This expression, valid when the Hartmann wall is insulating, can easily
be modified to take into account the electrical conductance of the wall. It is
noticeable that this Hartmann damping time includes both the viscous and the
ohmic dissipation, together present within the Hartmann layers, and capable
to brake the whole two-dimensional (2D) eddies. According to Sommeria and
Moreau [11], within the core flow all planes perpendicular to the magnetic
field are identical and the actual turbulent core flow in such a plane may be
modelled with the simple equation

du⊥
dt

= −1
ρ
∇⊥p+ ν∇2u⊥ − u⊥

τH
. (2)

In this model Eq. (2) the Lorentz force is hidden behind the last, linear
term. The validity of these ideas has been well confirmed in the MATUR
experiment (Messadek and Moreau [15]) performed in the presence of a high
magnetic field (up to 6 T, which represents the Hartmann number of the order
of 1,800). This experiment has also shown that below some value of Ha (close
to 300), inertia present in the turbulent core starts to modify the Hartmann
layer properties, even when those layers are not yet turbulent.

Quite recently another experiment [16] has demonstrated that the
Hartmann layers become unstable for R = Re/Ha ≈ 380, a value significantly
larger than that previously admitted (R ≈ 250, according to Lielausis [1]).
And it is also noticeable that a direct numerical simulation performed at the
same time by Krasnov et al. [17] agrees fairly well with this new experimental
threshold, although it is a bit smaller (R ≈ 350 instead of 380).

In Pothérat et al. [14], an amendment to the Sommeria and Moreau [11]
model Eq. (2) is introduced, under the form of a rather complex non-linear
term, which takes into account the Ekman pumping at the scale of each eddy
and implies some departure from the 2D core flow. Since it results in enlarging
the quasi-2D structures in their middle part, these authors call this three-
dimensional (3D) disturbance the “barrel effect”. A similar behaviour has been
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observed in the direct numerical simulation performed by Zikanov and Thess
[9] and by Mück et al. [18].

4 Flows in the presence of azimuthal magnetic field

Flows in such configurations (i.e., without Hartmann walls) are of particular
interest due to the well-known fact that a pure 2D flow does not interact with a
homogenous magnetic field orthogonal to the plane of the flow. In other words,
the 2D flow in such a configuration is a solution of the ordinary Navier–Stokes
equations at arbitraryRm. To quote Landau and Lifshitz [19]: We may say that
the two-dimensional flow “does not see” a uniform field. In a strong external
field, the turbulence degenerates just into this two-dimensional form. Hence it
has been expected that, in such a configuration, one can realize a “pure” 2D
turbulent flow (Kit and Tsinober [20]) in a sufficiently strong magnetic field.
There is a number of qualitative experimental observations indicating that
this is the case, starting with famous experiments by Hartmann and Lazarus
in 1937 in MHD-channel flows with short Hartmann walls and the stability
study of a channel flow by Wooler [21].

Experiments on flows in the wake past cylinders were designed to study
the difference between the flow past cylinders either aligned with the magnetic
field or perpendicular to it (Kit et al. [22]). It was obtained, in the case of
a cylinder perpendicular to B, that the turbulent fluctuations in the wake
become even smaller than the noise, whereas in the case of a parallel cylinder
turbulent fluctuations grow and when the magnetic field is large enough they
become much larger than in the absence of magnetic field. A number of other
related results are reviewed by Tsinober [3, 23, 24].

However, all the above examples are not clean in the sense that Hartmann
walls are always present in the experiments at whatever small aspect ratio.
Therefore, these experiments must be conceived in such a way that the Hart-
mann damping time (1) is much larger than the other relevant timescales,
like the eddy turnover time. It is noteworthy that the cleanest way to observe
the process of two-dimensionalization can be achieved in the total absence
of the Hartmann walls. Experimentally, this can be done in an axisymmetric
configuration with an azimuthal magnetic field in the form B ∼ r. Such a
not curl-free field can be realized by applying an uniform electric current by
means of electrodes located upstream or downstream of the working section
with the expectation that their influence on the flow in the working section
would be negligible [3]. Numerically, this can be done using periodic bound-
ary conditions in the azimuthal direction [25]. The bottom line is that all the
observed flows are quasi-2D only and it is still not clear whether a clean purely
2D turbulent flow is achievable in such a configuration, and it seems worthy
to try to get a more definite answer to this question of basic nature.
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5 Flows with free shear layers

All wall-bounded flows exhibit some shear, at least in the boundary layers,
which always plays a significant role since the mean velocity gradient con-
trols the turbulence production. To be more specific, in ordinary turbulence,
one may consider that the main feature of any near-wall turbulence is the
global equilibrium between its production by the shear and its diffusion into
the neighbouring core flow. In MHD the novelty is twofold: increasing the
shear the magnetic field also increases the turbulence production, and besides
an increased damping mechanism, concentrated within the Hartmann layers,
becomes also relevant. This may result in the destabilization of the Hartmann
layer just mentioned above.

However, in the Coventry round-table, the shear, which was at the centre
of the discussion, is the one which is present in free shear layers between core
flows having different mean velocities, or in high velocity jets often present
along the walls parallel to the magnetic field. Such free shear layers, which
are also quasi-2D, like the turbulent eddies, are submitted to the classical
Kelvin–Helmholtz instability, which rapidly feeds a sort of quasi-2D turbu-
lence, almost insensitive to the Joule damping. Indeed, this damping is essen-
tially the one discussed above in § 3, since these quasi-2D eddies have their
extremities imbedded within the Hartmann layers. The recent MATUR exper-
iment [15] demonstrated that most properties of such a flow could be under-
stood in terms of the equilibrium between the eddy turnover time τtu ≈ l/u⊥
and the Hartmann damping time τH (1). This namely explains that the most
relevant non-dimensional parameter is the ratio

Ha

Re
=
τH
τtu

=
hu⊥
Bl⊥

√
ρ

σν
, (3)

instead of the interaction parameter N = Ha2/Re. This relevance of Ha/Re
in most shear flows under a high magnetic field was known as an experimen-
tal result for quite a long time [1, 2], but its explanation related to the 2D
organization of the core flow and to the Hartmann damping is quite recent.

Of course, the case of rectangular ducts is the most complex. First, in
the fully established regime it involves Hartmann layers as well as shear side
layers along the walls parallel to the magnetic field. The authors of this paper
think that they should be named “Shercliff layers”1. Although this was not
mentioned during the round table, it would be worth now to re-examine the
available data on turbulent duct flows in terms of the above ideas. But the
most striking phenomenon now seems to be the entry (or exit) effect, which
was studied first by Shercliff [26] and discussed in § 6.
1 This idea to name the side layers « Shercliff layers » has been discussed and

checked with Martin Cowley and Julian Hunt, who were Shercliff’s Ph.D. stu-
dents, during the colloquium « Turbulence, Twist and Treacle », organized in
Cambridge (21–22 April 2005) on the occasion of the 70th anniversary of Keith
Moffatt
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A question of significant importance, already evoked at the end of § 2,
which has strong implications for the numerical modelling of any quasi-2D
turbulent flows, is whether the small scales have the same anisotropy as the
large ones. Since they cannot get 2D during their turnover time, they must
suffer a strong Joule damping. Then, are they nevertheless relevant and do
they contribute to the eddy viscosity (RANS) or to the sub-grid scale (LES)
modelling? A related question, which has just started to receive some attention
(Knaepen et al. [27]), is whether the parallel velocity component has the
same anisotropy as the perpendicular components. It seems, from this first
attempt, that during the transition from an initially 3D state to the quasi-2D
regime between the Hartmann walls, where the parallel component is much
more rapidly damped out, and its anisotropy remains smaller than that of the
perpendicular components.

6 AC and spatially non-uniform fields

Turbulent flows driven by time-dependent (AC) magnetic fields play an impor-
tant role in industrial applications like electromagnetic stirring in metals
processes, electromagnetic flow control during the growth of semiconductor
crystals (Davidson [28]), as well as electromagnetic pumping. Two particu-
lar problems are of particular interest, namely the flow in a channel driven
by a travelling magnetic field (which is relevant to electromagnetic pumps)
and the flow in a cylindrical cavity with finite length under the influence of
a rotating magnetic field. Up to now, most investigators have explicitly or
implicitly assumed that the flow is driven by the mean (time-averaged) com-
ponent of the electromagnetic force and have neglected the time-dependent
part of the Lorentz force. This assumption becomes particularly questionable
when applied to situations involving electromagnetic flow control by means
of magnetic fields with very low frequency (of the order of 2 Hz). Such low
frequencies are currently applied in some commercial flow control systems for
continuous casting of steel. Even for higher frequencies, there is no reason to
believe that the flow under a real time-dependent Lorentz force should always
be close to the flow computed with a steady Lorentz force. This is due to the
fact that turbulence is known to be sensitive to small details of initial and
boundary conditions. It is a challenge both for experimental and theoretical
studies to develop a better understanding of turbulence under time-dependent
magnetic fields. This will require local turbulence measurements with high
temporal resolution and extensive direct numerical simulations.

Closely related to AC problems are flows under the influence of a spatially
non-uniform magnetic field. It should be emphasized that the first theoret-
ical treatment of the entry/exit effects (which later was called “M-shaped
velocity profiles”) was made by Shercliff [29]. A comprehensive understanding
has been developed for laminar flows, based on the existence of character-
istic surfaces [30, 31], which has been reviewed by Hunt and Shercliff [32].
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Then, Holroyd and Walker [33] and Hua and Walker [34] have extended
this analysis, introducing two new assumptions, the “straight magnetic field
approximation” and the “core flow approximation”. But the comparison
between their numerical results and their own measurements exhibit a clear
discrepancy. Quite recently, this type of approach has been revisited by
Alboussière [35] and extended to channels of varying cross section and arbi-
trary magnetic fields. The most prominent effect of a non-uniform field is to
create the so-called M-shaped velocity profile in the entrance region. However,
for the turbulent case our understanding is much less advanced. Although
there have been a large number of experimental studies for channel flows in
a variety of magnetic fields (see, e.g., [36]), the investigations have almost
exclusively dealt with the case of large magnetic interaction parameter.

The recent and still ongoing experiment performed by Andreev et al. [37]
exhibits a previously unexpected feature: the upstream turbulence seems to
be completely damped out in the fringing region, where the M-shaped veloc-
ity distribution forms. And the turbulence may then restart at some distance
downstream, fed by the Kelvin–Helmholtz instability of the jets, as discussed
above. This damping is almost paradoxical, because, following the Shercliff
idea, clearly evoked at the Coventry meeting during the presentation of his
movies on MHD (see MD Cowley paper, this volume), one might essentially
expect a generation of vortices and a localized source of turbulence. How-
ever, the situation is not quite the same as in the Shercliff movies, where the
magnet is translated upstream, whereas the walls and the free-surface liquid
are initially at rest. Then, in the movies there is a non-zero relative velocity
of the wall with respect to the magnetic field, whereas in the usual channel
flow this relative velocity is zero. This behaviour seems, nevertheless, related
to the key properties of such a flow in a strong non-uniform magnetic field,
which are related to the characteristic surfaces. The streamlines, as well as
the electric current lines must be lying within those surfaces. In other words,
any turbulent motion, namely the quasi-2D turbulent motion not significantly
braked by the Hartmann effect, cannot exist, since it would imply that the
streamlines escape from the characteristic surfaces.

By contrast, industrial applications such as electromagnetic brakes in met-
allurgy (see, e.g., [38,39]) are characterized by moderate magnetic interaction
parameters. Here, the turbulence stays 3D in contrast to the 2D turbulence
at high interaction parameters. Future investigations, both experimental and
theoretical will be necessary to shed new light on the structure of the micro-
turbulence in this type of flows. For instance, it would be interesting to better
understand the dual role of the magnetic field. On the one hand, the magnetic
field dissipates energy and leads to a damping of turbulence. On the other hand
the magnetic field creates M-shaped shear layers, which are prone to insta-
bilities and transition to turbulence. This antagonism is not well understood
and will require a lot of additional work.
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7 Other effects

7.1 Free surfaces

The interaction of MHD turbulence with free surfaces is important in a vari-
ety of industrial applications. For instance, in the application of magnetic
brakes during continuous casting of steel one would like to know how the
effect of the magnetic brake influences the amplitude and frequency of oscil-
lations of the free surface of the steel. Another example is the application
of low-frequency AC fields to free-surface flows, which creates strong surface
oscillations and internal turbulence. Recently, laboratory experiments were
performed, in which liquid metal droplets were exposed to low frequency
(Fautrelle and Sneyd [40]) and high frequency (Kocourek et al. [41]) mag-
netic fields. These experiments revealed a startling variety of instabilities and
non-linear phenomena, which (even without internal turbulence) are poorly
understood.

7.2 Finite Lundquist numbers

Along with possible engineering applications of flows (Shercliff [42];
Tsinober [43], [44]), turbulence in such a situation is expected to exhibit a
significantly different behaviour, since Alfvén waves are likely to be present
as soon as the Lundquist number is larger than unity (Roberts [45]; Iwai
et al. [46]). In such conditions, these waves propagate many times over the
characteristic length of the system before being damped, and feed the sys-
tem with additional oscillatory degrees of freedom. Consequently, resonant
phenomena involving external excitation (e.g., sound, vibrations), non-linear
Alfvén waves and turbulence production are likely to be present. Among
other things, turbulence is expected to be characterized by the exchange of
energy between the magnetic field and the fluid flow. It is noteworthy that
at Lu >> 1 transient regimes (e.g., starting the facility) become oscillatory
and large flow-rate oscillations and even reversals and resonances are possible
(Vatazhin et al. [47]; Antimirov and Tabachnik [48]).

7.3 Transport of passive scalars

It is quite astonishing that the transport of passive scalars in turbulent MHD
flow has received little attention in the past. This is particularly surprising
in view of the fact that the first unambiguous experimental demonstration
of the strong anisotropy of MHD turbulence was given by Kolesnikov and
Tsinober [49] measuring the concentration of In injected in a flow of mercury.
A good understanding of the propagation of passive scalars in MHD turbulence
is not only an interesting fluid dynamical problem in its own right, but it is also
important for applications in metallurgy and semiconductors crystal growth.
In order to improve our understanding of passive scalar transport, it would be
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desirable to develop experimental methods for local concentration measure-
ments with high spatial and temporal resolution. Alternatively, it could be
useful to use temperature as a passive scalar and carry over the experimental
techniques known from ordinary hydrodynamics (see, e.g., Warhaft [50]).

7.4 Natural convection

Turbulent convection in the absence of a magnetic field has been intensively
studied in the past. Understanding is particularly advanced for the Rayleigh-
Bénard problem, which is the flow in a fluid layer heated from below and
cooled from above (Siggia [51], Grossmann and Lohse [52]). For fluids as dif-
ferent as water, air, helium, mercury, and sodium there is consensus that the
turbulent convective flow is characterized by a well-mixed interior and by thin
thermal and velocity boundary layers in the immediate vicinity of the heat-
ing and cooling plates. Moreover, a large-scale circulation (sometimes called
“wind”) has been consistently observed in virtually all experiments conducted
for aspect ratios of order unity. The presence of a vertical magnetic field
affects the flow in two ways. On the one hand, Hartmann boundary layers at
the walls perpendicular to the magnetic field modify the heat transport and
velocity distributions near the heating and cooling plates. On the other hand,
the structure of the large-scale turbulent convection in the core is also modified
on account of the induced Lorentz forces. Experimental results with magnetic
field are scarce (Aurnou and Olsen [53], Burr and Müller [54], Burr et al. [55])
in contrast to numerical simulations (e.g., Hanjalic and Kenjeres [56]). The
work of Cioni et al. [57] is virtually the only experimental study extending
sufficiently far into the non-linear regime to be able to probe turbulent con-
vection. Significant new experimental and numerical work is necessary in this
field. As already mentioned in § 2, an attractive alternative to mercury might
be the use of transparent fluids in high magnetic fields of the order of 10 T.
Studying convection in such systems would permit to extract high-resolution
velocity data using optical flow measurement techniques like laser Doppler
anemometry.

But there are other convective situations, such as the case of long hori-
zontal cylinders heated at one end and cooled at the other end, and submit-
ted to an externally applied magnetic field (Alboussière et al. [58]; Davoust
et al. [59]). In this case, a flow is always present and submitted to the sta-
bilising influence of the magnetic field. Similarly, in long vertical enclosures
submitted to a horizontal magnetic field, the usual 3D flow is stabilized and
a laminar flow organization, essentially quasi-2D, develops (Tagawa et al. [60]
Authié et al. [61]). Remarkably, in both cases, the net heat flux is first
increased when the magnetic field is applied, and then it decreases when the
fluid velocity is significantly damped. Those simple flows are not yet com-
pletely understood, namely in their specific scenarios towards unsteady and
turbulent regimes. And there are many others, still more complex, like those
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relevant to crystal growth and solidification of liquid metals, which require
deeper investigations.

7.5 Finite magnetic Reynolds numbers

The most spectacular phenomenon, which takes place when Rm is sufficiently
large is the excitation of a magnetic field by dynamo effect. And the most
common belief is that in order to maintain MHD dynamo the turbulent
flow should lack reflectional symmetry (e.g., Alpha effect). However, it was
recognized quite for a while that dynamo is possible in flows without such
an asymmetry as well (e.g., Kazantsev [62]; Gailitis [63]; Novikov et al. [64];
Haugen et al. [65]). Subsequent developments showed that generally the pres-
ence of helicity does not matter at least on the qualitative level. It is already
known from astrophysical context with finite magnetic Prandtl numbers that
magnetic energy grows regardless and independently of whether the turbu-
lent velocity field has a helical component (Schekochihin et al. [66, 67] and
references therein). In fact it is known from the spectral theory of the kine-
matic dynamo driven by a random velocity field and also from numerical
simulations (Tsinober and Galanti [68]) that the magnetic energy grows expo-
nentially independently of whether the velocity field is helical or not and even
for random Gaussian velocity field. At the dynamical level (i.e., taking into
account the back reaction of the magnetic field) it is natural to expect the sat-
uration of the dynamo as observed also in liquid sodium experiments (Gailitis
et al. [69] and references therein). Among the natural candidates as the reason
for such a saturation is the local anisotropization of turbulent flow in case of
not small Rm. Indications of such an anisotropization are known from direct
numerical simulations (Schekochihin et al. [66,67]; Maron and Goldreich [70];
Müller et al. [71]).

Beside the regimes where Rm is larger than the critical value for a dynamo
effect, the domain where Rm is of order unity is also quite challenging. It
is characterized by the fact that the applied magnetic field is significantly
transported by the fluid flow, like scalar quantities such as temperature. But
because the magnetic field is a solenoidal vector quantity, the analogy remains
quite limited and specific properties should be observed. This challenge has
justified an important experiment, known as the for von Karman sodium
(VKS) experiment, using a liquid sodium facility, in which the fluid flow is
driven by two co-rotating or contra-rotating disks. Important results have been
obtained, first at low Rm, such as the k−11/3 spectral law for the turbulent
magnetic energy, which is the magnetic signature of the classical Kolmoroff
law for the kinetic energy. But, as soon as Rm is not very small, quite specific
results appear, such as a k−1 law in the domain of small wave numbers (Odier
et al. [72]; Bourgoin et al. [73]).
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8 Concluding remarks

The main conclusion of this paper is that the understanding of MHD tur-
bulence – though improving – is quite partial, even in simple configurations.
However, as soon as some non-uniformity in the applied magnetic field is
present, or the magnetic field is unsteady, or the magnetic Reynolds is not
small, our knowledge remains extremely modest. One of the consequences is
that there exists, at the moment, no available numerical model capable to
compute a complete MHD flow. It seems that the main reason for this is
the lack of detailed experimental data and that a joint international research
program should be encouraged to provide such data.

The ability to measure the velocity field in turbulent MHD flows with
high spatial and temporal accuracy is an important prerequisite for the pos-
sibility to test theoretical predictions in experiments. In MHD such flow
measurements are particularly important because liquid metals are opaque
and local measurements are often the only means to obtain reliable informa-
tion. These problems are discussed in detail by Eckert, Cramer, and Gerbeth
in this volume.
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1 Introduction

Numerical simulations of turbulent phenomena in fluids have made consid-
erable progress with the emergence of large parallel computers. For simple
geometries, very efficient numerical methods have been developed to pro-
vide accurate numerical solutions to the equations of fluid dynamics. These
approaches are referred to as direct numerical simulation (DNS) and their
predictions are often regarded as almost as reliable as the experimental data.

If the propagation of sound waves can be neglected and if thermal effects
are not considered, turbulence in non-conducting fluids is described by the
incompressible Navier–Stokes equations. For a given geometry, the turbulence
properties are then fully determined by a single dimensionless parameter:
the Reynolds number Re. There is however a strong limitation to the use of
DNS. Indeed, the number of degrees of freedom required to characterize a
velocity field ui that corresponds to a turbulent flow is known to increase as
Re9/4 in three-dimensional (3D) turbulent systems [1]. DNS of the Navier–
Stokes equations are thus limited to moderately small Reynolds number flows.
For electrically conducting fluids, the situation is similar, though even more
complex. The flow may be strongly affected by the coupling between the
velocity and magnetic fields and is described by the magnetohydrodynamic
(MHD) equations. The number of degrees of freedom is expected to be even
higher in MHD and the limitations to the use of DNS techniques are at least
as severe for MHD as they are for non-conducting fluids.

There is thus an interest in developing modelling techniques in which only
a fraction of the total number of degrees of freedom is actually simulated.
Among these techniques, large eddy simulation (LES) has attracted much
interest in the past few decades [2]. LES can be defined as a computer exper-
iment in which the large scales are simulated directly while the small scales
are modelled. This technique has been first developed for simulating Navier–
Stokes problems at high Reynolds numbers and has been recently adapted to
MHD flow simulations [3–7]. It will be presented in § 2 and tested in § 3.1 using

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
247–262. c© 2007 Springer.
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the incompressible MHD equations as well as the quasi-static (QS) approxi-
mation for low magnetic Reynolds number.

2 Large eddy simulation and MHD

The LES technique has been used to investigate numerically different flavours
of the MHD equations. In this presentation, only incompressible and iso-
thermal problems are considered, so that the only relevant equations are for the
velocity and magnetic fields. However, even for these specific problems, the
Lorentz force in the Navier–Stokes equations may be given by different
expressions depending on the range of parameters that characterize the flow.
We will thus briefly reproduce the relevant MHD equations before introducing
the LES approach in the following subsections.

2.1 Non-linear MHD and quasi-static approximation

For a conducting fluid the Navier–Stokes equations have to include the Lorentz
force per unit of mass fL:

∂tu = −∇P

ρ
− (u · ∇)u + fL + ν∇2u, (1)

where u is the velocity field, P is the pressure, ρ is the fluid density, and ν
is the kinematic viscosity. Assuming that no separation of charge is observed
within the fluid, the Lorentz force reduces to the magnetic part. For a very
wide range of problems, assuming that relativistic effects are negligible, the
non-linear MHD equations are directly derived from Maxwell’s equations
and read:

fL =
1
ρ
j × B, (2)

µj = ∇× B, (3)

∂tB = −u · ∇B + B · ∇u + η∇2B, (4)

where B is the magnetic field and j is the current density. The magnetic
properties are characterized by the magnetic permeability µ, the magnetic
diffusivity η = 1/(σµ), and the electric conductivity σ of the fluid. These
equations have to be supplemented by the incompressibility condition ∇·u = 0
and by ∇ ·B = 0.

Several dimensionless parameters are usually defined to characterize the
regimes of turbulence in a conducting fluid. The kinematic Reynolds number
is defined by the ratio:

Re =
UL

ν
, (5)
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where U and L are respectively a characteristic velocity and a characteristic
length scale of the flow. The kinematic Reynolds number is directly propor-
tional to the ratio between the non-linear convective term and the viscous
linear term in the Navier–Stokes equations. It is independent of the magnetic
properties of the fluids. The magnetic Reynolds number represents the same
type of ratio between non-linear and linear term in the induction equation for
B. It is defined by

Rm =
UL

η
. (6)

Depending on the application, the magnetic Reynolds number, Rm, can vary
tremendously. In astrophysical problems, Rm can be extremely high as a result
of the dimensions of the objects studied. On the contrary, for most industrial
flows involving liquid metal, Rm is very low, usually less than 10−2. For low
magnetic Reynolds number flows in the presence of an external magnetic field
B0, the non-linear MHD equations are simplified into the QS approximation
in which the equation for the induced magnetic field does not need to be solved.
In the QS approximation the Lorentz force is expressed in terms of the current
density and the imposed magnetic field:

fL =
1
ρ
j × B0, (7)

j = σ(−∇φ+ u × B0), (8)

where the electric potential φ is determined by imposing ∇·j = 0. In this case,
the interaction number N (also known as the Stuart number) characterizes
the ratio between the Lorentz force and the non-linear convective term:

N ≡ σ(B0)2L
ρU

, (9)

where B0 is the magnitude of the applied external magnetic field.

2.2 LES methodology

An LES is a numerical experiment in which the large scales of the flow are
simulated directly while the smallest scales of the flow are modelled. The
practical motivations are fairly obvious. The largest scales of motion are the
energy-containing scales. Their knowledge is often sufficient to predict most
of the relevant properties of the flow. Moreover, their simulation is by far
less costly than the full numerical simulation of turbulence. Indeed, typically
more than 90% of the kinetic energy is associated to the largest scales of
motion, which are described by about 0.1% of the dynamically active degrees
of freedom. It is known however that turbulence is characterized by a wide
spectrum of energy and, as a consequence, that the scale separation used in
LES cannot be defined in terms of physical or phenomenological properties.
On the contrary, it must be determined arbitrarily by the LES practitioner,
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depending mainly on the available computational resources. In practice, the
scale separation in LES is achieved by applying an LES operator G that splits
the turbulent fields φi (which can be either ui or bi) into a large-scale part,

φi(x) ≡ G ◦ φi , (10)

which is solved numerically, and a small-scale remainder. The exact nature of
G will not be discussed here. It has been the subject of an extensive literature,
especially in the applications of the LES approach to the Navier–Stokes prob-
lem. The important property of G is to damp the phenomena that occur at
scales smaller than a length scale ∆, while it leaves the largest scales almost
unaffected. The choice of ∆ should correspond to the finest grid size achievable
in a simulation considering the available computational resources. The equa-
tions for φi are thus expected to be much easier to solve numerically than the
original equations for φi. However, because of the non-linearities that appear
in the hydrodynamic and MHD equations, the equations for φi are not closed
and require modelling efforts. The models are needed to represent the inter-
actions between (i) the unresolved phenomena that occur at scales smaller
than the grid resolution and which are represented by φi − φi, and (ii) the
large-scale phenomena represented by φi. For this reason, they are usually
referred to as subgrid-scale models.

Beyond the above-mentioned practical motivations, the development of
LES approaches have also been prompted by theoretical considerations.
Indeed, large scales are usually very much dependent on the experimental
conditions (boundary conditions, geometry, type of forcing, etc.) Their mod-
elling is thus expected to be problem dependent. On the contrary, small scales
in turbulence are supposed to have a more universal behaviour. The modelling
of τij is thus expected to be “almost problem independent” and could be better
supported by theoretical approaches.

2.3 LES of MHD flows

Before presenting the application of LES to MHD flows, it is worth considering
briefly the case of non-conductive fluids. For such fluids, the current j and the
Lorentz force vanish. The application of the LES operator to the Navier–
Stokes equations yields the following equations:

∂tui = −∂ip− ∂j(ujui) + ν∇2ui − ∂jτij , (11)

where p represents the hydrodynamic pressure rescaled by ρ. The unknown
term is given by

τu
ij = ui uj − ui uj . (12)

This quantity, referred to as the subgrid-scale stress tensor, cannot be expre-
ssed in terms of the resolved velocity ui. In order to close the Eqs. (11), the
tensor τu

ij is usually approximated by a model tensor (see § 2.4).
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For flows characterized by a low Rm, the situation is not much more
complex. Indeed, in many situations, the external magnetic field B0 can be
assumed to be constant or, at least, to be weakly dependent on the position.
In this case, the application of the operator G to the evolution equations does
not yield additional difficulty, since the Lorentz force is a linear function of
the velocity:

fL = G ◦ fL =
1
ρ
j × B0, (13)

j = G ◦ j = σ(−∇φ + u× B0). (14)

Hence, the extension of the LES techniques for low-Rm flows is straightfor-
ward. The only term, which requires a modelling treatment is the same as that
in the Navier–Stokes equation (12). The phenomenology of low-Rm flows may
however be strongly affected by the external magnetic field, and it is not obvi-
ous that models performing well for the Navier–Stokes equations are valid for
the QS approximation. In particular, bi-dimensionalisation effects observed in
the presence of a strong external magnetic field may yield strongly anisotropic
small scales. Their modelling in terms of an isotropic eddy viscosity is a priori
questionable, though results presented in § 3.2 are very encouraging.

The application of LES to high magnetic Reynolds number flows, for which
the complete non-linear MHD Eqs. (1)–(4) have to be solved, is slightly more
complex. These equations are conveniently rewritten in terms of the reduced
magnetic field b = B/

√
ρµ as follows:

∂tui = −∂ip− ∂j(ujui − bjbi) + ν∇2ui, (15)
∂tbi = −∂j(ujbi − uibj) + η∇2bi, (16)

where p now represents the sum of the hydrodynamic and magnetic pressures
rescaled by ρ. The application of the LES operator to the non-linear MHD
equations yield to the following structure of the LES equations:

∂tui = −∂ip− ∂j(ujui − bjbi) + ν∇2ui − ∂jτ
u
ij , (17)

∂tbi = −∂j(ujbi − uibj) + η∇2bi − ∂jτ
b
ij , (18)

where two unknown terms enter the LES equations and need to be modelled:

τu
ij = (uiuj − uiuj) − (bibj − bibj) , (19)

τb
ij = (ujbi − ujbi) − (uibj − uibj) . (20)

Hence, the extension of the LES technique to non-linear MHD does not gen-
erate additional technical difficulties. The major difference with the Navier–
Stokes equations comes from the larger number of non-linearities, which yield
extra unknown terms that must be modelled to account for the influence of
the unresolved small scales on the large resolved scales.
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2.4 LES models

A simple model consists in assuming a linear relation between the model
tensor and the large-scale strain tensor Sij = (∂iuj + ∂jui)/2 :

τu,mod
ij = −2νe Sij . (21)

In particular, if νe is constant, the Navier–Stokes equations for ui are the same
as for the original variable ui with the change of viscosity ν → ν+νe. For this
reason, the coefficient νe is traditionally referred to as the eddy (or effective
or turbulent) viscosity. Similarly, an eddy magnetic diffusivity can be used to
model the tensor τb

ij :

τb,mod
ij = −2 ηe S

b

ij , (22)

where the tensor Sb

ij = (∂ibj − ∂jbi)/2 is now the antisymmetric derivative of
the resolved magnetic field.

In the application of LES to the Navier–Stokes problem, according to
Kolmogorov’s phenomenology, the eddy viscosity is supposed to scale like
∆

4/3
ε1/3, where ε is the energy transfer rate. Depending on the way of esti-

mating the energy transfer rate, different eddy viscosity models can be con-
structed. The most popular model has been derived in 1963 by Smagorinsky [8]
who proposed the following eddy viscosity structure:

νe = Cs ∆
2 |S|, (23)

where |S| =
√

2SijSij and Cs is an arbitrary dimensionless parameter, usually
referred to as the Smagorinsky constant. The direct extension of this model
to the eddy magnetic diffusivity is straightforward:

ηe = Ds ∆
2 |j|, (24)

where it has been taken into account that the norm of the antisymmetric
tensor S

b

ij is directly proportional to the current intensity thanks to rela-
tion (3).

Another, simpler model, has also been investigated. It is based on the
Kolmogorov assumption that the energy transfer rate is scale independent in
the inertial range of a turbulent flow. In this case, the eddy viscosity and the
eddy magnetic diffusivity are modelled by:

νe = Ck ∆
4/3
, ηe = Dk ∆

4/3
. (25)

Contrary to Cs and Ds, the parameters Ck and Dk are not dimensionless.
However, they are supposed to be scale invariant (i.e., independent of ∆),
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and this property is used to compute their value using the dynamic procedure
presented in § 2.5. The models (23) and (24) will be referred to in the following
as the Smagorinsky model (MS) while the models (25) will be referred to as
the Kolmogorov model (MK). A mixed model (MM) in which the Kolmogorov
eddy viscosity is used but no model for the eddy magnetic diffusivity (ηe ≈ 0)
is also used in some of the following examples. Finally, the case where no
model is used (νe ≈ ηe ≈ 0) is denoted by M0.

2.5 LES and dynamic procedure

The models τmod
ij that have been developed are often based on the phenom-

enological understanding of turbulent interactions between small unresolved
scales and large resolved scales. The most popular models, like the MS, simply
reduce to effective viscosity and magnetic diffusivity expressions derived using
dimensional analysis. They usually perform fairly well, but have the drawback
in that they contain unknown amplitude parameters, which have to be pre-
scribed a priori and very often are adjusted by a trial and error approach.
This difficulty has been overcome by the introduction of the dynamic proce-
dure [9–11] in which a second operator Ĝ is introduced. In this presentation,
the effect of the operator Ĝ is also considered as a convolution between a fil-
ter kernel and the turbulent fields, and the following notation will be used:
φ̂i = Ĝ ◦φi. The dynamic procedure is then based on an identity, which relates
the unknown tensor generated by the composition of G and Ĝ to the original
τij . Indeed, if the operator Ĝ ◦ G is applied to the MHD equations, unknown
tensors, such as

Tij = ̂φi φj − φ̂i φ̂j , (26)

are generated. The interesting property of Tij is that it is not independent of
τij , but is related to it through the Germano identity [10]:

Tij = Lij + τ̂ij , (27)

where Lij is known in terms of φi and, consequently, does not require addi-
tional modelling:

Lij = ̂φi φj − φ̂i φ̂j . (28)

The Eq. (27) is of course only valid for the exact and unknown tensors τij
and Tij . As already mentioned, models for these tensors are usually based
on dimensional analysis and contain unknown amplitude parameters. The
operators G and Ĝ ◦ G can be chosen so that they define large-scale fields,
which correspond to length scales in the same range. In this case, consistency
in the modelling suggest to use the same type of models: τmod

ij = Cmτ
ij [vl]

and Tmod
ij = CmT

ij [v̂l]. The difference Eij = Lij + ̂Cmτ
ij − CmT

ij between the
right- and the left-hand sides of Eq. (27) can be considered as a measure of the
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performance of the model. The dynamic procedure uses this measure in order
to prescribe the model parameter C by minimizing Eij . When a homogeneous
direction exists in the problem, the estimation for C is given by:

C ≈ 〈LijMij〉h
〈MijMij〉h

, (29)

where Mij = m̂τ
ij −mT

ij and the average 〈· · · 〉h is taken over the homogeneous
direction(s). Obviously, this approach is restricted to special geometries with
homogeneous direction(s). Complex geometries require an alternative treat-
ment with a local definition of the parameter C [12].

3 Examples

Several techniques have been considered in order to assess the LES perfor-
mances. When experimental results are available, the LES predictions are
compared to the measurements of large-scale properties of the flow. However,
realistic experimental set-ups correspond to complex geometries. In that case,
the predictions of the LES could be unsatisfactory for at least two reasons: the
models can perform poorly, or the numerical errors can affect the entire LES
predictions. The purpose of this section is to give some examples for which the
models provide a reasonable picture of the small-scale effects on the resolved
flow. Hence, in order to avoid possible difficulty related to the contamina-
tion of LES predictions by numerical errors, the following technique has been
adopted. First, very accurate high resolution DNS are produced for various
parameter sets. These DNS are performed using a pseudospectral code. The
geometry corresponds to a cubic or a rectangular box with periodic boundary
conditions. The parameter sets (viscosity, magnetic diffusivity, lengths of the
box, initial conditions) are chosen so that both the velocity and the magnetic
field are well resolved. Second, the initial condition is filtered to a much lower
resolution using a spectral cut-off, yielding the initial condition of the LES.
The LES is thus performed with this lower resolution, for which a model is
necessary, using exactly the same pseudospectral code. The results of the LES
at various times are then compared to the filtered DNS. Such a comparison
ensures that the evaluation properly reflects the performances without having
to deal with possible influence of the numerical scheme.

3.1 Homogeneous turbulence at high magnetic Reynolds number

In the first example, a high resolution (5123) DNS of decaying isotropic turbu-
lence has been performed. The integration domain is a cube of linear extension
2π. The initial data set of the DNS has been cut-off-filtered from 5123 to 643

Fourier modes, removing about 99.8% of the originally available information.
The influence of the filtered scales on the remaining large scales of motion,
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Fig. 1. Decay of the kinetic energy Eu (left) and magnetic energy Eb (right).
Diamonds correspond to the reference DNS filtered to 643, the dotted line shows
the result of the M0-LES without a model. The solid and broken lines represent the
predictions of the LES used with model MK and model MS, respectively

which still contain 90% of the total energy, is accounted for through the mod-
els for τu

ij and τb
ij . The unknown parameters entering the definitions of the νe

and ηe are systematically calibrated using the dynamic procedure.
A basic LES requirement is the reproduction of the temporal and spectral

behaviour of the resolved kinetic (Eu) and magnetic (Eb) energies :

Eu =
1
V

∫
dx

1
2
ui(x)ui(x), Eb =

1
V

∫
dx

1
2
bi(x)bi(x). (30)

The time evolution of these quantities is shown in Fig. 1, where t is given, like
for the reference DNS, in units of the large eddy turnover time. To evaluate
the overall influence of the dynamic subgrid modelling, the dotted lines show
the energy curves for a LES with no model M0. As expected, the M0-LES
results strongly deviate from the filtered DNS data, since energy dissipation
is mainly due to the high wavenumber modes, which have been cut off by the
grid-filtering operation. A clear improvement is observed when the subgrid
models MS and MK are applied. The evolution of Eu is well reproduced in
both cases, showing that the main influence of the small-scale velocity field
fluctuations on the kinetic energy is dissipative. The temporal development of
the magnetic energy in the LES with MS and MK also satisfactorily fits the
reference data, though one observes an offset between the LES results and the
DNS.

The application of the virtually parameter-free dynamic subgrid models
reproduces rather sensitive quantities like the angle-averaged energy spectra,

Eu =
∫
dk Eu

k (k), Eb =
∫
dk Eb

k(k), (31)

in good agreement with the DNS data. The kinetic energy spectrum Eu
k is

shown in Fig. 2 at time t = 6, when EK has decreased by a factor of about
6.5 . Both models, MS and MK, lead to spectra that follow the filtered DNS
data up to the high wavenumber range of the LES system.
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The agreement of the LES results with the filtered DNS spectrum is evi-
dently due to the subgrid models MS and MK, since the lack of such a model
in the M0-LES causes a large accumulation of kinetic energy over nearly two-
thirds of the LES wavenumber space, which is the consequence of the missing
filtered-scale energy dissipation in combination with the direct spectral energy
cascade. The same trends are observed for the angle-averaged magnetic energy
spectrum Eb

k (Fig. 2). However, the LES show a spectral magnetic energy dis-
tribution that is too low across a wide range of scales when compared to the
DNS spectrum. This observation suggests to neglect the dissipative effect of
τb
ij . In the following example (§ 3.3), the MM obtained using the Kolmogorov

scaling (25) for the eddy viscosity and no eddy magnetic diffusivity has been
explicitly tested with a reasonable success.

3.2 Homogeneous turbulence at low magnetic Reynolds number

In this section, the LES methodology is illustrated in the context of low mag-
netic Reynolds number flows. As in § 3.1, a homogeneous flow is considered and
analysed using a spectral code. Several DNS have been performed to generate
accurate databases. These DNS runs all have a resolution consisting of 5123

Fourier modes. The numerical experiments consist in describing the evolution
of a freely decaying conductive flow that is subject to an externally applied
magnetic field. This problem was first studied in 1976 by Schumann [13].
All the DNS start with the same initial condition obtained by time step-
ping a random phase velocity field until turbulent indicators like the skewness
of the velocity derivatives reach “quasi constant” values. At that stage, the
flow is characterized by the following quantities: Re = uL/ν = 380 (integral
Reynolds number), Rλ =

√
15/ενu2 = 84.1 (microscale Reynolds number),

and the magnetic field is switched on. Three different cases are then consid-
ered corresponding to different intensities of the applied magnetic field. The
corresponding values of the interaction parameter are: N = 0, N = 1, N = 10
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(the case N = 0 is thus a non-magnetic case which serves as a comparison
with the other two magnetic cases).

3.3 Evolution of global kinetic energy

The total kinetic energy contained in the flow illustrates very well the influ-
ence of the external magnetic field. In Fig. 3, the usual acceleration of decay
corresponding to higher values of the interaction parameter is observed for
the DNS runs.

In order to assess the LES method, some DNS snapshots of the flow field
have been truncated from the 5123 resolution to a 323 resolution (using a sharp
Fourier cut-off). The initial condition for the LES runs has been obtained in
the same way by truncating the DNS field at t = t0. To further stress the
efficiency of the dynamic procedure, some LES runs were also performed using
the classical MS (with a true constant Cs). For homogeneous and isotropic
turbulence, one can obtain the estimate Cs � 0.025 [14], which is the value
retained here.

Figure 4 represents the time evolution of the resolved kinetic energy den-
sity predicted by the LES (MS) and compared to the filtered DNS. On each
plot, another curve representing a simulation on the 323 mesh without SGS
modelling (M0) is added to stress the action of the subgrid-scale models. The
case Bext = 0 serves as a benchmark to check that for non-conductive flows,
and our LES code behaves as expected. In both the cases N = 1 and N = 10,
the LES performs remarkably well. In the case N = 1 the difference between
LES and unresolved DNS is very clear. In the case N = 10 and for this
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Fig. 3. Time history of the kinetic energy density E. The solid line represents the
flow decay without applied magnetic field, the broken curve corresponds to the case
N = 1, and the dash dot curve corresponds to the case N = 10. The dotted line
represents the time t0 at which the magnetic field is switched on (time has been
normalized by the eddy turnover time at t = t0)
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Fig. 4. Time history of the resolved kinetic energy density: LES vs. filtered DNS.
The solid lines represent the predictions of the model MS (with dynamic proce-
dure). The dash dot lines represent the classical Smagorinsky model (no dynamic
procedure). The diamonds represent the filtered kinetic energy density obtained by
truncating the DNS fields to a 323 resolution. The dotted lines represent the no-
model case M0

diagnostic, the unresolved DNS does not depart significantly from the filtered
DNS and LES (spectral diagnostics do however show a clear improvement of
LES over unresolved DNS [15]). It is also noted that the LES with dynamic
procedure performs consistently better than the LES with classical MS.

3.4 Anisotropy

It is well known that the action of the magnetic field in the QS approximation
leads to a progressive suppression of spatial variations in the flow along the
direction of the magnetic field. Figure 5 represent the contours of the kinetic
energy density at three different times respectively for the filtered DNS and
the LES with dynamic procedure (only the case N = 10 is shown because the
effect is more pronounced for strong applied magnetic fields). As is obvious
from the plots, the LES reproduces the filtered DNS structures very well.

Another form of anisotropy that appears in the presence of a magnetic
field concerns the partition of energy between the components of the velocity.
Let us assume that B0 ‖ 1z and denote E‖ =

〈
1
2u

2
z

〉
and E⊥ =

〈
1
4 (u2

x + u2
y)
〉
,

where < · · · > stands for spatial averaging. It has been shown in [16] and [13]
that, starting from an initial isotropic flow, one should have E‖/E⊥ → 2 for
t→ ∞ (neglecting viscous and inertial effects). Here the situation is of course
more complex since the simulations are performed at finite Reynolds numbers
with both viscous and inertial effects present. It is thus interesting to examine
how the LES simulations reproduce the energy partition anisotropy and this
is illustrated in Fig. 6. Again, the LES with dynamic procedure reproduces
the DNS behaviour very well.

3.5 Mixing layer turbulence at high magnetic Reynolds number

Although previous sections have been dedicated to homogeneous turbulence,
most physical situations are characterized by inhomogeneous turbulent flows.
Among them, the mixing layer represents one of the simplest configurations
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Fig. 5. Contours of the kinetic energy computed from the filtered DNS (top) and
LES (bottom) with MS (N = 10 case). The different times at which the contours
are calculated are indicated under the plots
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Fig. 6. Time history of the resolved kinetic energy density separated into parallel
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contributions

[17]. It consists of two “distinct” homogeneous regions of different turbulent
energy interacting through a layer of rapid transition. This configuration is an
interesting test case, since the influence of inhomogeneity on the turbulence
properties can be studied in detail without having to deal with the presence
of a solid boundary. This particular situation may be observed in geophysics
and astrophysics, where regions of different turbulent activities interact. It is
thus at first a physical motivation that encourages us to study this case.
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On the other hand, our motivation is also governed by practical compu-
tational aspects. Indeed, the mixing layer can be computed with the same
pseudospectral code used in the preceding examples. In practice, the use of
a discrete Fourier representation of the variables requires the flow to be peri-
odic in each direction. This condition is satisfied also in the inhomogeneous
direction if one considers a second mixing layer which performs the “reverse”
transition compared to the first one. This also has the advantage that results
gathered from both mixing layers can be averaged to improve the statistics.

Initializing homogeneous turbulence with a prescribed energy spectrum
and preserving incompressibility is a standard procedure [18]. However, build-
ing an initial condition that has a prescribed inhomogeneous energy profile
like in the mixing layer is not obvious in a pseudospectral code. Here, we have
decided to impose in each plane perpendicular to the inhomogeneous direc-
tion (y by convention), the 2D spectral properties of the velocity and magnetic
fields. In practice, this means that the amplitudes of the modes ui(kx, y, kz)
and bi(kx, y, kz) are set at prescribed values that depend on k2

x + k2
z and y

only. For values of y inside the homogeneous layers, these amplitudes basi-
cally correspond to isotropic turbulence with spectra chosen to reproduce the
experimental set-up studied by Veeravali and Warhaft [19] used to study the
shear-free mixing layer. Incompressibility is enforced using an iterative proce-
dure that allows simultaneously to satisfy continuity and to match the desired
spectra. As an illustration, the contour plot of the total (kinetic + magnetic)
energy density after this initialization procedure is shown in Fig. 7. Once the
procedure is finished, we let the flow decay freely.

The computational domain used in this example is a rectangular box of
size lx = 2π, ly = 4π, and lz = 2π with periodic boundary conditions. The
4π-length is chosen along the inhomogeneity direction in order to ensure the
existence of sufficiently large homogeneous layers. The kinematic viscosity and

Fig. 7. Left : some magnetic field lines at the initial time. Right : iso-surfaces of
the electric current. In both figures, the coloured contours represent the total (i.e.,
kinetic + magnetic) energy density
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Fig. 8. (a) Time evolution of the total energy. (b) Profile of the total energy in the
inhomogeneous direction. Legend: LES with model MK (broken line); model MM
(dotted line); model M0 (dash-dotted line); Filtered DNS (solid line)

magnetic diffusivity are identical (ν = η = 1.5 × 10−2) so that the magnetic
Prandtl number is equal to one.

The reference DNS is performed using 256 × 512 × 256 modes, while the
initial LES fields are obtained by filtering down the DNS to 32 × 64 × 32
modes.

Results are presented for the models MK, MM and M0. Figure 8a shows
the decay of the volume-averaged total energy as a function of time and Fig. 8b
shows a sample profile of the energy along the inhomogeneous direction (after
the global energy has decayed by approximately a factor of 2). Both results
indicate clearly that MM is the best performing model and that it significantly
improves the agreement with DNS data.

4 Discussion

The purpose of this contribution is to introduce the LES methodology and
to demonstrate its potential in modelling MHD turbulent flows, rather than
advocating the use of a specific model. The models that have been presented
are based on the very simple concepts of turbulent viscosity and turbulent
magnetic diffusivity. They are systematically implemented, together with the
dynamic procedure (see § 2.5), in order to avoid a lengthy discussion on the
optimal value of the model parameters. The comparisons between filtered DNS
and LES that have been presented here have to be considered as a proof of
concept. There is certainly room for further developments and improvements
of the small-scale models in MHD. Especially, the application of LES for
MHD flows in complex geometries and in the presence of solid boundaries has
almost not been developed so far. The major phenomenological differences,
which exist between the classical boundary layer and the Hartmann layer in
the presence of a magnetic field, certainly deserve further studies.
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The Growth of Magnetohydrodynamics
in Latvia and Israel

Herman Branover

Ben-Gurion University of the Negev, Beersheba, Israel (hbranover@OKsatec.com)

1 Professor Igor Mikhailovich Kirko, Director
of the Institute of Physics in Riga

The beginning of the rapid development of theoretical and applied magneto-
hydrodynamics (MHD) during the end of the 1950s can be understood only
by following the activities of a single talented, creative, and dedicated indi-
vidual – a man who was appointed executive director of the newly estab-
lished Institute of Physics at the Latvian Academy of Sciences. This was an
unusual appointment because the person we are referring to, Professor Igor
Mikhailovich Kirko, had just celebrated his 30th birthday. To the best of my
knowledge, Kirko was the first to direct a scientific institution that made a
broad experimental investigation on different phenomena of magnetohydro-
dynamics.

In order to prepare this chapter, I wrote to Professor Kirko asking him to
describe how he established his institute. I had last seen Kirko in the early
1970s and was excited to renew my relationship with him. Probably over 90
years old now, Kirko is still very active and creative. In his response to my
letter, he wrote me recollections detailing how he managed one of the most
important institutions for fundamental research and technological application
of numerous processes based on the results of profound theoretical studies. He
also informed me that he is preparing a book on MHD. This chapter quotes
freely from Kirko’s recollections that he sent me, with his permission [1].

Naturally, Professor Kirko wanted to hire the best people for his new
institute. He was fortunate to receive guidance on how to build his staff from a
number of distinguished physicists, among them Professor Abraham Yoffe, the
director of the Leningrad Physical Technical Institute of the Soviet Academy.
Kirko recalls:

“. . . Yoffe advised me that an academic laboratory does not need more
than ten researchers. In addition, there should be five expert technicians giving
support to the rest of the team. For optimum efficiency, there should be one

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
263–274. c© 2007 Springer.
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or more overlaps in the fields of expertise of the team members, so that in
case of health or other problems, if one person cannot come to work, another
team member can replace him. The technical personnel of each team would be
well familiar with all the technical problems that the team deals with. That
way deadlines could be met.”

“I was very nervous,” remembers Kirko, “about which main field of concen-
tration to choose for the newly established Institute of Physics of the Latvian
Academy. One day, one of my assistants showed me a new journal containing
a picture of an electromagnetic induction pump working without valves and
pistons. We were so excited by the picture in the journal and by the brief
description of the new type of asynchronous pump that we decided on the
spot to make a simple experiment to verify the device. We put some mercury
into a bottle and inserted the bottle into the clearance of the stator of an
asynchronous motor.

“What we saw seemed miraculous. The mercury in the bottle started rotat-
ing, while the shape of the free surface turned into that of a parabolic mirror.
This—together with other considerations—convinced me that my new insti-
tute should start working in this direction. In those times, science planning
was strictly centralized. Therefore, I had to report on our experiment and
my desire for the institute to conduct MHD research to the Academic Secre-
tary of the Department of Physics and Astronomy of the Academy of Sciences,
Lev Artsimovich. Artsimovich’s own work in thermo-nuclear fusion was highly
classified. He approved my request and arranged for additional financing to
add ten more scientific positions in my institute. Previously, I had been allot-
ted only thirty positions for the entire Institute of Physics. Receiving ten
additional positions was considered a great success for a young and inexperi-
enced director. Now I had a vaguely defined area of scientific exploration.”

Professor Kirko organized several teams of young researchers who had just
completed their doctoral studies and had not found jobs yet. Professor Kirko
writes:

“I came to the conclusion that I had to establish several teams working in
parallel and studying the very few existing reports in parallel. The next step
was to find talented people. Naturally, I contacted the physics department
of the University of Latvia and the Polytechnic Institute. My efforts resulted
in hiring several talented physicists, among them O. Lielausis, J. Lielpeter,
A. Kalnin, and A. Mikelson. All of them had just finished their studies and,
according to the regulations of that time had to accept the first position offered
to them. I also hired several physicists who had finished their studies a few
years earlier. Among them were I. Krumin and Y. Birzvalk.”

Birzvalk, it is interesting to note, in addition to being well acquainted
with contemporary physics, was deeply involved with classical literature. He
was intrigued by the mystery surrounding Shakespeare. He analysed most of
Shakespeare’s works and was very active in promoting the idea that they were
not written by one person.
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“The problem with all these people”, recalls Kirko, “was that none of them
had studied hydrodynamics beyond the general introductory course. (I mean
conventional hydrodynamics, let alone magnetohydrodynamics.)”

“I myself had graduated from the department of physics of the University
of Moscow. There, too, I had not been exposed to hydrodynamics beyond
some notions about the Bernoulli equation, and the transition from laminar
to turbulent flow determined by a certain value of the Reynolds number. To
resolve this severe problem, I went to the Polytechnical Institute of Leningrad
to seek the advice of Professor Lev Loitsiansky, the foremost expert in hydro-
dynamics in the Soviet Union. He gave his full attention to my problem and
offered advice and help on a permanent basis for the future.”

“Concerning my immediate manpower problem, Loitsiansky suggested, ‘I
have a doctoral student, Herman Branover, who is equally knowledgeable in
hydrodynamics and modern physics. If you give him a difficult problem in the
physics of flows, he will come back in a few hours with a detailed solution.
If you assume that the liquid is electroconductive and moves in an externally
imposed magnetic field, he will come back in a few days to make a complete
presentation, including theoretical studies and a well-developed program of
one or more experiments. . . . A few days ago he defended his candidate of
science thesis, a wonderful piece of work, but our academic council rejected it
by secret vote without any apparent reason. I don’t know their real motivation.
It could be caused by an anti-Semitic state of mind or by a desire to take
revenge on me.”

“What is your student doing now?”
“He said that he is going to abandon science and left for Riga to visit his

family.”
“Give me his address, and I’ll try to talk with him.”
“I found H. Branover in Riga, but he categorically declined my proposal

to get engaged in MHD because he did not feel qualified. However, he agreed
to take part in the weekly MHD seminars that I had initiated. . . . At these
seminars no one felt embarrassed. Neither the director nor the other colleagues
tried to conceal their ignorance, and everyone studied hard. A few weeks later,
Branover told me that he had searched several libraries in town in vain looking
for substantial information about MHD. . . . Ultimately, he agreed to accept
the position I was offering him. Naturally, he concentrated on experimental
studies fundamentally investigating the most general features of turbulence
in MHD flows in ducts of different shape, especially of different cross section.
He put forth special effort to construct a universal semi-empirical theory to
enable the calculation of energy loss and heat transfer and mass in such flows.

“We started building primitive MHD mercury pumps at our small work-
shop.”

Member of the Academy of Sciences Professor L. Artsimovich researched
the phenomenon of the MHD dynamo. He studied how the structure of tur-
bulence causes the spontaneous appearance of a magnetic field. An additional
laboratory headed by Dr. A. Gailitis was created to work on these areas.
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Professor Artsimovich also advised Professor Kirko to contact A. Komar
and V. Glukhikh of the Electrosila plant in Leningrad. In Kirko’s words:

“I left for Leningrad and told them openly about our first steps in the
development of MHD conduction pumps by reproducing the well-known Hart-
mann’s experiments. In response, I was told that all this was very interesting,
but they had already created an induction pump supplied by three-phase
mains at the laboratory in Leningrad. Our objectives, however, were more
profound. We were studying a transition from laminar to turbulent flow and
were able to estimate the drag coefficient and the effect of electromagnetic
field on it. This aroused their interest, and they asked us to give them more
details by secret mail.”

“Why should we use secret mail? We are now preparing our first collection
of articles on MHD for publication.”

“Really? But there is a governmental list of secret topics, and MHD studies
are not allowed to be published.”

“But I have already obtained permission to publish.”
“Well, your energy is outstanding!”
“This was the beginning of the friendship-rivalry of the two research teams

in Riga and Leningrad.”
Professor Kirko was as astute in building successful teams as he was in the

financial and physical construction of his institute. He writes:
“Cooperation with Professor G. Shturman, an expert in electrical machin-

ery, was started in a number of experimental and theoretical studies on the
applicability of electrical machine theory to line induction pumps. In partic-
ular, we investigated so-called attenuation factors caused by reverse influence
of liquid metal flow on the configuration of current lines and magnetic field
distribution. Experimental studies of edge effects at the liquid metal inlet and
outlet of the pump were of special interest. Here a strong influence of the
magnetic Reynolds number and a dimensionless parameter determining the
influence of the end effects were of considerable importance. J. Lielpeter con-
structed an annular electromagnetic channel, i.e., an induction pump without
end effects, and its analog – a line pump with an inlet and outlet and an orig-
inal system of the body suspension, which made it possible to establish the
dynamic interaction between the working medium, i.e., flowing liquid metal,
and the pump body very precisely. A rather precise method of estimating
such pumps was developed on the basis of both theoretical data and numer-
ous experiments. Our institute was among the first scientific institutions in
the USSR working with lithium – a very dangerous metal.”

By inventing financial tricks, Professor Kirko was able to legally pay expert
mechanics a salary of 1,600 rubles:

“Paying special attention to our team of designers and mechanics, we man-
aged to organize the necessary services thanks to our location in Salaspils, a
small regional center outside Riga. This allowed us to spend considerable sums
on wages for highly qualified workers attracting them by wages that sometimes
exceeded salaries of senior researchers.”
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“We started to build up rapidly, to purchase equipment, to make a part of
the necessary equipment by ourselves . . . . Several self-supporting enterprises
were founded under the auspices of our Institute, such as a design bureau of
magnetohydrodynamics in Riga that worked mainly according to our instruc-
tions, and a design bureau of MHD flow meters that developed novel types of
these instruments.

“Solving the scientific problems was much harder than providing the mate-
rial basis of our development. We committed ourselves to achieve very difficult
goals. In those times, a director of an institution who failed or broke govern-
ment contracts faced the prospect of grave penalties, and we all feared this.”

Professor Kirko, now a Foreign Member of the Latvian Academy of Science,
concludes his letter with a comment that accurate reporting forces me to
quote: “In this respect, our institute was fortunate because of two talented
scientists whose scientific work was especially intense and profound—Herman
Branover and Olgert Lielausis. A brilliant scientific team was formed around
them . . .”.

2 My personal debt to Professor Kirko

The Institute of Physics of the Latvian Academy of Sciences was fortunate
to have a director who provided optimum conditions for his researchers and
who took an active part in a great number of the research projects. As time
went by, though, despite the ideal research conditions that Professor Kirko
gave me, I felt that I could not continue living as a Soviet citizen working
at the Institute. There were manifold reasons for this. Since 1964 I had been
experiencing an awakening and began to believe in the Creator. The state
enforced primitive atheism of Soviet universities suffocated me. The Commu-
nists crassly outlawed Jewish religious practice such as observing the Sabbath
and keeping kosher. I felt that I was living a lie by being a Soviet scientist
trying to secretly observe the laws of the Torah. I wrote a philosophic essay
analysing my split personality. In this essay I disproved atheism and concluded
that a return to belief and Jewish values was necessary. I arranged a meeting
with members of the Israeli Embassy to give them my manuscript to take to
Israel. Unfortunately, this meeting was observed.

I shall never forget how one bright March afternoon I was taken by the
KGB to a most unpleasant interrogation. I feared that I would never see the
sunlight again. Yet, the meeting seemed to go better than expected. They
only wanted to know what was in the green notebook that I gave to a senior
staff member of the Israeli Embassy. To my surprise and relief, they let me go
and did not follow up.

According to rumor, Professor Kirko convinced the KGB that because of
the importance of my research they should not to disrupt my work at the
Institute by arresting me.
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Kirko saved me a second time when I brought to him the letters of invita-
tion I received from American scientists working in MHD asking me to come
to their universities in the United States and give seminars on my work. To
my shock, the chairwoman of the KGB department of the institute told me
to write to each scientist who had invited me and tell him that I cannot come
because my wife is ill. I did not write any such letters, but a few months later
I started to receive letters from the same foreign researchers wishing my wife
a speedy recovery. Someone in the secret service had answered the letters on
my behalf!

In order not to complicate Professor Kirko any more, I resigned from the
Institute at the beginning of 1971. After a long arduous struggle during which
I was harassed and arrested several times by administrative arrest with no
court proceedings or trial, I finally received permission to leave the Soviet
Union. After the collapse of the USSR, I returned to visit Latvia in 1991,
when I was elected a full foreign member of the Latvian Academy of Sciences.

3 Publications and conferences

In the mid-1960s the Institute of Physics started to publish its own journal,
Magnitnaya Gidrodinamika, edited by the distinguished physicist Y. Birzvalk.
The journal published the findings presented at the conferences that the Insti-
tute had initiated in order to discuss the scientific results and applications of
MHD in different technologies. The first MHD conference took place in 1958.
Since then, a conference was held in Latvia every 2 years, except from 1975 to
1996, when national economic hardship precluded such activity. During these
years, eight international conferences were held in Israel.

During the economic malaise of the eighties and nineties the activities of
the Institute stagnated to a certain degree. A number of researchers had left
Riga, including Director Igor Kirko, who resettled in Perm, and myself, who
immigrated to Beersheba, Israel. Despite these circumstances, the Institute of
Physics team in Riga continued to obtain impressive results. Perhaps the most
important achievement of this period was the construction and demonstration
of a facility that presented the phenomenon of the MHD dynamo. In this
volume there is a separate chapter describing the excellent work done by a
special team under the guidance of Dr. A. Gailitis.

4 MHD in Beersheba

In Beersheba – free now to live openly as a believing, practicing Jew – I
formed a new laboratory team using new equipment. About a dozen Ph.D.
students wrote theses focusing mainly on spiral turbulence and the hazardous
phenomenon of hurricane development. A detailed analysis of spiral turbulence
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Fig. 1. The Etgar 3 mixer in Beersheba: A. El-Boher (left) with H. Branover

is presented in our book Turbulence and Structures: Chaos, Fluctuations, and
Helical Self-Organization in Nature and the Laboratory [2].

The most important area of research that I have pursued in Beersheba is
the continuation of my studies of spiral turbulence and further understand-
ing the structure of turbulence when influenced by a strong magnetic field.
It seems natural that turbulent fluctuation would be suppressed until it ulti-
mately disappears. Measuring the pressure drop along the channel confirms
this conclusion. To our great surprise, however, the first local measurement
of turbulent velocity in a magnetic field showed not only that the turbulence
does not disappear, but, to the contrary, it grows manifold. This led us to the
conclusion that turbulence adjusts to the magnetic field and generates a new
type of turbulence. This new type of turbulence is close to 2D in the plane per-
pendicular to the magnetic field. To be more precise, the turbulence becomes
spiral. Such spiral turbulence leads to an inversed turbulent energy cascade.
This means that turbulent energy in a magnetic field is not transferred into
small-scale fluctuations when it is suppressed by viscosity, as is observed in
regular turbulent flows. The energy instead is transferred into large-scale fluc-
tuations having a very low level of turbulent energy dissipation. Such spiral
turbulence with an inversed energy cascade is most important in the analysis
of how hurricanes and other types of tropical atmospheric hazards develop.

The research team in Beersheba is now called the Joint Israeli-Russian
Laboratory for Energy Research. It has closely collaborated with a number of
Russian experts, particularly Professor S. Moiseev of the Institute of Space
Research in Moscow. Until his death, Professor Moiseev came to Beersheba
every year for 2–3 months and greatly contributed to the success of this lab-
oratory.
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Fig. 2. Part of the MHD family about to cut the cake

Fig. 3. Fifth Conference (Jerusalem, 1987). Participants J. Braun, F. Hussain, and
Kopland (from left to right) in the talent competition, wearing berets, mimicking
Herman Branover, chairman of the organizing committee

In addition to studying spiral turbulence, I continued my work creating a
universal semi-empirical theory of MHD turbulence. Completed a few years
ago, this work is referred to as Branover’s Semi-Empirical Theory by energy
turbulence researchers. This theory enables the calculation of pressure drop
and other integral characteristics of flows in ducts of different cross-sectional
shapes.

In parallel to the above, the team of the Joint Laboratory is intensifying
the research of spiral turbulence in a multitude of applicative and theoreti-
cal areas. So far, our greatest success has been in regards to metallurgy and
the role of turbulence with inversed energy cascade in the formation of hur-
ricanes and other tropical catastrophic phenomena in the atmosphere. The
leading contribution to the study of these two phenomena has been made
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Fig. 4. Seventh Conference (Jerusalem, 1993). H. Branover, chairman of the orga-
nizing committee, briefing participants J. Braun and H.K. Moffatt during the talent
contest

Fig. 5. Seventh Conference (Jerusalem, 1993). M. Petrick and R. Moreau with the
organizing committee cake

Fig. 6. Seventh Conference (Jerusalem, 1993). M. Garnier (left), R. Moreau (right)
and other French participants (B. Meneguzzi and F. Werkoff) in the talent contest
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Fig. 7. A. Schendlin, the leader of the Russian MHD conversion center, with
E. Matveeva

Fig. 8. A. Schendlin giving a bottle of Russian vodka as a prize to talent winner
J. Meng

Fig. 9. Y. Unger, organizer of the talent contests, awarding the first place winner
with a bottle of vodka.

by Professor A. Kapusta, Professor E. Golbraikh, Dr. S. Sukoriansky, and
Dr. B. Mikhailovich. Until his untimely death in 2002, this group benefited
from the invaluable leadership and initiative of Professor S. Moiseev. His
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Fig. 10. P. Lykoudis performing his first-prize winning sirtaki (Greek dance)

influence is still felt in all areas of our work and will continue to be of pivotal
importance in the coming years.

Another area of research involving a number of researchers of the Joint
Laboratory is the development of a new concept of an MHD electrical power
station, called the Etgar System. A completely designed system was developed
jointly with Dr. M. Petrick and other researchers at the Argonne National Lab-
oratory in Chicago. The performance and cost of such a system was analysed
by Arthur D. Little, Inc. in Boston and found to be highly competitive with
other systems.

Among other achievements attained by the Joint Laboratory, I wish to
mention the development of MHD electrical power systems to be used in
spaceships. We succeeded in achieving the lowest weight for an electric power-
generating system.

5 The talented MHD family

One of the important activities of the Joint Laboratory is the organization of
international conferences. Up until now, we have held eight such conferences,
with registration of about 150 foreign scientists. People involved in MHD
research sometimes feel lonely because it is still considered an esoteric field.
Therefore, we try to make our conferences be a kind of family reunion. One
way of creating this atmosphere is by running a talent competition at the gala
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dinner. We announce the talent show at the beginning of each conference. The
participants are given full freedom to choose whether they want to dance, sing,
or tell jokes. The idea is always received with such enthusiasm that we run
the risk of participants investing more effort into their talent performance
than their professional presentation. Sincere thanks go to my veteran Joint
Laboratory colleague Yeshajahu Unger for the creative energy he puts into
the talent shows that make us feel indeed like one big family.
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1 Introduction

Analysis and control of fluid flows, often subsidiary to industrial design issues,
require measurements of the flow field. For classical transparent fluids such as
water or gas a variety of well-developed techniques (laser Doppler and parti-
cle image velocimetry, Schlieren optics, interferometric techniques, etc.) have
been established. In contrast, the situation regarding opaque liquids still lacks
almost any commercial availability. Metallic and semiconductor melts often
pose additional problems of high temperature and chemical aggressiveness,
rendering any reliable determination of the flow field a challenging task. This
review intends to summarise different approaches suitable for velocity mea-
surements in liquid metal flows and to discuss perspectives, particularly in
view of some recent developments (ultrasound, magnetic tomography). Focus-
ing mainly on local velocity measurements, it is subsequently distinguished
between invasive and non-invasive methods, leaving entirely aside the acqui-
sition of temperature, pressure, and concentration, for which [1] may serve as
a comprehensive reference.

2 Invasive techniques

In this context, invasiveness means insertion of a sensing unit into the medium
under investigation, the consequence of which is twofold. We are not mainly
concerned with probably adverse effects on the sensor owing to, e.g., high tem-
perature or chemical aggressiveness, which ultimately boils down to a question
of material science, rather than with the influence of the probe on the flow.
This potential disturbance determines, besides their functional principles, the
applicability of various types of anemometers to a considerable extent. On this
note, different sensors are at first described and then discussed with particular
attention to sensitivity.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
275–294. c© 2007 Springer.
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Velocity probes to be immersed into the fluid can be classified, according
to the underlying physical effect, into force reaction, thermal, and conductive
sensors. Note that neither this small list is downright complete nor is it possi-
ble to review all variants in each category due to the scope of this review.
Following history, we start with the force reaction probes, because these had
been the first employed in order to determine velocities in moving fluids.

2.1 Force reaction probes

These probes respond to the force exerted onto them by the flowing medium,
which is in principle a pressure. Presumably, the best-known mechanical
anemometer is the vane type used in weather stations in order to deter-
mine wind speed. It usually consists of a few hemispheres or cups attached to
radial spokes. The rotation speed can be measured by a number of different
mechanisms. Often a magnet, affixed to the shaft, traversing past a fixed coil
induces a pulse for each revolution, or a digital shaft encoder is used. One may
ask whether such rugged devices are of any benefit for magnetohydrodynamic
(MHD) flow measurements. As far as integral stationary flow properties in
certain configurations are a matter, the answer is certainly yes.

Recently, both Tallbäck et al. [2] and Taniguchi et al. [3] successfully mea-
sured angular velocities in an electromagnetically driven rotary liquid metal
flow. Inserting vanes similar to the left one depicted in Fig. 1 having sizes of
almost that of the container diameter, these authors determined an integral
value that corresponds, e.g., to the flow rate in a pipe.

The commercial availability of such small impeller-based vanes, as shown
on the right-hand side for less than $ 400 including a data station, might
suggest to perform semi-local measurements also. Regarding the performance
of moving mechanical parts-based semi-local sensors, it is instructive to have
a look at similar devices. Szekely et al [4] made use of a linear arrangement
consisting of a spring loaded rod onto the head of which a o/ = 19 mm stainless
steel disc was fastened. Although the displacement of the rod owing to the
drag exerted on the disc was sensitively recorded by a linear voltage differential

Fig. 1. Classical cup vane to determine wind speed (left) and miniaturised impeller-
based vane probe (right)
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transformer, the smallest velocity difference reported by the experimenters
was 4 cm/s, and the smallest absolute value was 8 cm/s. For the suitability
concerning the measurement of velocity fluctuations we quote the authors:
“The inertia of the measuring system does not provide a great deal of insight
into the structure of this turbulent flow.” Force reaction probes comprising
moving mechanical parts can be summarised to be restricted to time-averaged
values at relatively high velocities and poor spatial resolution.

Another category of velocity probes makes use of directly measuring pres-
sures, thus avoiding any moving mechanical part. The principle of operation
of all these tubes is based on Bernoulli’s law p+ ρ

2v
2 = p0, where p0 denotes

the total pressure, which is a constant, p the static pressure, and ρ and v the
fluids density and velocity, respectively. In a stationary incompressible flow,
the sum of the dynamic pressure ρ

2v
2 and p always results in the pressure

within the resting fluid, which is that of the ambient atmosphere, plus the
hydrostatic contribution ρgh of the fluid. Tube anemometers comprise basi-
cally a bend with one end directed in such a way that it faces the flow. As
the kinetic energy is converted into potential one at the stagnation point, all
tubes measure at least the total pressure p0. Once the static pressure is known,
the simpler Pitot tube allows the determination of the velocity according to
Bernoulli’s law. The static pressure p can only be determined accurately by
measuring it in a manner such that the velocity pressure has no influence on
the measurement at all. This is achieved by measuring it at right angle to the
streamlines. The Prandtl tube sketched in Fig. 2 is an example of this, where
p is determined through several static taps arranged circumferentially in the
outer tube. A differential manometer thus allows for a direct measurement of
the fluid velocity.

There exists not a huge number of research reports wherein Pitot and
Prandtl tubes have been applied to liquid metal flows particularly addressing
questions about sensitivity. From the few available it turns out that Pitot

Fig. 2. Schematic diagram of a Prandtl tube
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tubes are advantageous because they can be manufactured in smaller size.
Typical outer diameters are in the range of a few millimetres. Moreau [5]
points out that care has to be taken when magnetic fields are involved, a
situation which is almost intrinsic to MHD experiments. Then, the stagnation
pressure is not exactly equal to the fluid’s loss of kinetic energy because of
electromagnetic forces. It is estimated in [5] that this effect becomes significant
for the smaller velocities of about 1 cm/s, which may be seen as the lower range
of reliable operability of tube-based anemometers in liquid metals. Besides [5],
for further reading see Branover et al. [6] and references therein.

It is obvious that this technique is not suitable for turbulence measure-
ments if, e.g., a U-manometer is used as a pressure sensor owing to inertia
of the fluid moving in the limbs. An attractive perspective of the method is
offered by the availability of piezo-resistive pressure transducers. We success-
fully measured static pressure fluctuations in a 50 Hz AC electro-vortically
driven flow through a o/ =1 mm hole drilled into the chamber wall at samp-
ling rates exceeding 1 kHz [7]. One may think about a Pitot tube consisting of
a bent syringe and a piezo-transducer mounted at the other end. In [8], Pitot
pressure surveys in a liquid metal atomization nozzle were reported, making
use of a o/ = 0.9 mm stainless steel tube. Operating also at the compara-
tively high rate of 1 kHz, the authors have been able to detect the transition
from subsonic to supersonic flow regimes. It convincingly demonstrates the
potential of tube-based anemometers.

With fibre flowmeters we return to the moving mechanical parts, but in
a somewhat miniaturized variant and optical recording. In an early work,
Griffiths and Nicol [9] mounted a single quartz fibre in a wall of a pipe in such
a way that it protruded at a right angle to the flow direction. The deflection
of the fibre tip was observed from the opposing side of the pipe by means of a
travelling microscope. In an air experiment, velocities down to 10 cm/s were
successfully recorded. Zhilin et al. [10] and Eckert et al. [11] constructed more
complex sensors upon this principle, which were proven to work in liquid
metals. A thin glass rod of several tens of µm in diameter was sealed into
a thin-walled conical glass tube. The other end of this pointer was either
blackened and brought into the light path where it led to absorption [10],
or illuminated and observed by means of an endoscope [11]. Both techniques
allowed for velocity resolution below 1 cm/s of two components. A remarkable
feature of fibre sensors is the applicability to electro-vortical flows. Using the
technique described in [11], Cramer et al. [7] determined the flow field in
the comparable small volume of 2× 4× 2.5 cm3 throughflown by currents
as high as several kiloamperes (kA) conveyed from a point source. Whereas
the spatial resolution perpendicular to the sensor’s axis was very high, the
problem with the extended range of axial sensitivity was coped with by a
mixed experimental–numerical approach. Based on bending moment theory,
a numerical model of the probe was implemented predicting the integrated
response of the sensor from a calculated flow field. These results were found
to be in good agreement with the measurements.
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2.2 Thermal anemometers

A wet finger in the air will detect the direction of the wind because a drop in
temperature is felt on the surface facing the wind. Thermal anemometers act
in a similar way, in that the passage of fluid takes heat away from a heated
element at a rate dependent upon the velocity. This element, which is either a
thin wire that can be made very short, or a metallic film on a quartz or ceramic
substrate, is mounted at the end of a probe that can be inserted into the liquid
under investigation. The mode of operation is either the change of electrical
resistance at constant current, or the measurement of the current required to
keep the resistance at a constant set point. Since the resistance will always
be proportional to the temperature, the latter are frequently termed constant
temperature anemometer. In practice, the resistance is measured or controlled
by means of a Wheatstone bridge, one leg of which is the thermal probe.

Owing to their principle, the velocity readout of thermal probes seems
instantaneous at first sight. However, even a very fine hot wire by itself can-
not respond to changes in fluid velocity at frequencies above 500 Hz. By
compensating for frequency lag with a non-linear amplifier this response can
be increased to values exceeding 100 kHz. When compared with hot wires
the cylindrical hot-film sensor, depicted in the upper right part of Fig. 3, has
basically two advantages. A better frequency response is achieved because the
sensitive part is distributed on the surface rather than on the entire cross sec-
tion as with a wire. Secondly, the heat conduction to the supports (end losses)
for a given length to diameter ratio are smaller due to the low thermal con-
ductivity of the substrate material. A shorter sensing length thus can be used.

Fig. 3. Examples of commercially available hotwire (top left) and hotfilm (top right
and bottom) probes. In particular, the lengths of the wire and the cantilever of the
single-ended film sensor can be made very short
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Hot-wire anemometers, employed mostly in gases by then, have been
adopted for liquid metals in the 1960s. Sajben [12] reported on a system
that was suitable in mercury at velocities from 1 to 12 cm/s. An improve-
ment of this technique by Trakas et al. [13], also applied to a flow of mercury,
revealed the capabilities of hot-film probes regarding velocity resolution. They
were conditionally restricted upon principle to velocities of a few millimetre
per second, which today may still be seen as the sensitivity threshold for an
employment in liquid metals. Hot wire and film sensors are prone to fouling
and deposition of debris and oxides, which change the transport properties of
heat. Because they are thermal devices, it is important to compensate care-
fully for variations in ambient temperature and pressure. In particular, when
applied in the low Prandtl number liquid metals, the high ratio between diffu-
sive and convective heat transport leads to a significant decrease of resolution.
All these drawbacks render the use of these thermal sensors in liquid metals
somewhat inconvenient if not even tedious [14, 15]. For a typical MHD appli-
cation, Robinson and Larsson [16] is referred to, who determined the mean
velocity field in a flow driven by a rotating magnetic field.

Quick response is one of the prerequisites for turbulence measurements.
Further, this measuring task puts a severe restriction on the size of the sensor
in order to resolve all scales of potentially significant vortices. Being not
restricted to thermal probes, this means that the finite extension of the sen-
sitive zone acts as a lowpass filter with respect to the time domain. Because
thermal sensors fulfill both suppositions, they have been intensively used in
the study of turbulence. To quote a few, Alemany et al. [17] is referred to,
who investigated the influence of a DC magnetic field on the flow of mercury
created by a moving grid with a hot-film sensor attached behind the grid.
Recently, Petrović et al. [18] reported on the accuracy of turbulence measure-
ments by hot wires. The article quotes a variety of modern studies devoted
to hot wires and somehow addresses the question about their perspectives, in
particular of such ones having up to 12 sensing wires.

2.3 Potential difference probes

Often these probes are also named the conductive anemometers. This may
be due to the fact that the sensing wires of the probe are in electrical con-
tact with the conducting medium. The basic principle consists in measuring
a voltage drop ∆φ induced by a magnetic field B across its wire spacing ∆l
according to Ohm’s law: j =σ(E +u× B). In the absence of electric currents
j, the electric field strength E, expressed by a finite difference of the poten-
tial E ≈ ∆φ/∆l for sufficiently small sensor dimensions, is independent of
the electrical conductivity σ, and is linearly related to the velocity u. Deter-
mination of fluid velocities via this electromotive force (e.m.f.) dates back
to Faraday [19]. He had tried vainly to measure the voltage induced across
the river Thames by the motion of the water in the earth’s magnetic field.
Kolin [20] proposed to use a probe consisting of two wires, insulated except at
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the tip, with a separation of the wire tips in the order of a few thousandths
of an inch. In an orthogonal arrangement with a homogeneous static measur-
ing field, the potential difference induced between the wires should then be a
direct measure of the corresponding velocity component.

The measuring magnetic field can be applied either globally over the
entire melt volume, or locally confined to the wire tips. Again Kolin [21] was
among the first who used also incorporated magnet probes. Equipped with a
small electromagnet, the probe’s sensitivity must have been poor. Ricou and
Vives [22] reported on a feasible solution using rare-earth CORAMAG and
ALNICO permanent magnets, the latter were even operable in aluminium
melts. As any sensor immersed into the fluid poses an obstacle, the influence
of which onto the flow increases with size, the question about how small a
probe can be build becomes an important issue. From this point of view, the
potential difference probes (PDP) using a globally applied field are seemingly
advantageous because they essentially consist only of two wires. On the other
hand, it is well known that static fields may damp the flow to be measured.
Compared to a typical hot wire having o/ = 1 mm, the probes in [22] were
several times larger. A globally applied field with the same strength as that
acting in the incorporated probe in [22] certainly influences the flow signifi-
cantly. Because the sensitivity of PDPs is determined by the product of field
strength and wire spacing, we are concerned here with the usual compromise
inherent to every measurement task. Without dismissing sensitivity, which
was about 1 cm/s minimum velocity at a stated by the authors of [22] resolu-
tion of 1 mm/s, Weissenfluh [23] constructed PDPs having o/ ≈ 1 mm. At this
stage it may be summarized that PDPs compare well to hot wires regarding
performance. The drawback that they are not suited in many configurations
owing to the presence of electric currents (see [24]) is compensated by the ease
of use.

Similar to thermal sensors, PDPs have been thoroughly employed for the
measurement of mean velocities down to their resolution of around 1 mm/s
[25, 26], and to determine turbulence characteristics of fast flows [27, 28]. An
advantage of PDPs is the utilization in those cases where a strong magnetic
field is intrinsic to the problem. This branch of investigations comprises basic
research, e.g., two–dimensional (2D) turbulence [29,30], as well as applications
in fusion technology [31]. In this context, one particular technique is worth
noting. When the fluid flow becomes quasi-2D in a sufficiently high magnetic
field, the electric potential does not vary considerably, neither in the core nor
in the Hartmann layers. Davoust et al. [32] and Messadek and Moreau [33]
acquired velocities non-invasively at the Hartmann wall by means of electrodes
mounted in the wall. These measurements yielded to a good approximation
the core velocity values in planes perpendicular to the applied field. Besides
observing local fluid velocities in an ideally isothermal flow, adding at least a
third electrode allows to account for temperature effects produced by thermo-
electricity (Seebeck effect). It depends on the particular choice of geometry,
the number of electrodes, and the materials thereof whether the fluid velocity
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is measurable without thermoelectric disturbances or the temperature can be
measured in addition. Examples for such combined probes are to be found
in [23, 31, 32].

Summarizing so far it becomes obvious that: (i) further miniaturization
of incorporated magnet PDPs below 1 mm will lead to a serious decrease in
sensitivity; (ii) the use of a globally applied field with the same strength of
that locally acting in incorporated PDPs is often unacceptable because of the
influence on the flow; (iii) any tip spacing ∆l > 1 mm does hardly allow for
turbulence measurements, according to Bolonev et al. [34], who determined
experimentally the influence of ∆l on the transfer function, which quantifies
the above-mentioned spatial integration leading to a lowpass filtering in the
time domain; (iv) a significant increase in sensitivity of e.m.f.-based measure-
ments can consequently be achieved only by an as good as possible noise –
and disturbance – free set-up of the electronic data acquisition system.

At least since the work of Remenieras and Hermant [35] tackling the prob-
lem of inductive transients and noise in e.m.f.-based velocity measurements,
it became obvious that a fully differential-ended amplifier chain is manda-
tory despite of the low impedance source of the probe. Using state-of-the-art
instrumentation with high impedance coupling between amplifier stages and
meticulously avoiding systematic disturbances such as thermoelectricity, we
have been able to extend the sensitivity of mean velocity measurements to
10−2 mm/s for a ∆l = 1 mm probe. From the calibration curve in Fig. 4 it is
seen that voltages less than 1 nV had to be acquired reliably. As sensitivity,
resolution, and bandwidth are always a compromise, the performance of the
measuring chain allowed the determination of velocity fluctuations in a flow
driven by a rotating magnetic field commencing slightly above the threshold
of linear stability. This corresponded to a mean velocity of a little less than
3 cm/s, over a wide range of the Taylor number. Figure 5 demonstrates that it

Fig. 4. Calibration curve of an incorporated magnet PDP using highly sensitive
analog instrumentation. The probe response was non-linear below 1 mm/s



Velocity Measurement Techniques for Liquid Metal Flows 283

Fig. 5. Power spectra of velocity fluctuations in a flow driven by a rotating magnetic
field from slightly above the linear stability threshold (steepest slope of inertial
range) spanning a range of factor 15 in the governing parameter [36]

was always possible to resolve all scales of wavelengths. A detailed description
of the experiment and the electronics can be found in Cramer et al. [36].

3 Non-invasive techniques

3.1 Ultrasonic methods

Ultrasonic methods are non-invasive, but not fully contactless. A continuous
acoustic path from the ultrasonic transducer to the liquid under investigation
is required for transmission of the ultrasonic wave into the flow region and for
reception of the measuring signal.

Two common principles are known to apply ultrasound for measurements
of fluid velocities: the ultrasonic Doppler and the transit time, also called the
time-of-flight technique. The operating mode of ultrasonic flowmeters by the
transit-time method is based on two sequential measurements: an ultrasonic
pulse is sent between two transducers upstream and downstream through
the liquid. The run-time difference between downstream acceleration and
upstream deceleration delivers the averaged velocity. To obtain local informa-
tion about the flow field, Johnson et al. [37] proposed a method to measure
three-dimensional (3D) flows by transmitting and receiving ultrasonic beams
along a multitude of lines. The arrangement is that each volume element is
traversed by a set of lines having components in each direction for which flow
components are to be reconstructed. Each propagation time measurement of
the ultrasonic wave is an integral of a function of sound speed and fluid veloc-
ity along the particular line leading to a set of integral equations, which have
to be inverted to obtain the unknown fluid velocity vector field.
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A more promising way to measure local velocities is offered by the ultra-
sound Doppler method, often called ultrasound Doppler velocimetry (UDV)
or ultrasonic velocity profile (UVP) monitor. The origin of this technique
can be retraced to the medical branch [38]. Owing to the pioneering work of
Takeda [39, 40] it has also been established in physics and fluids engineering.
The measuring principle is based on the pulsed echo technique. Ultrasound
pulses of a few cycles are emitted from the transducer and travel along the
measuring line. If such a pulse hits microparticles suspended in the liquid, a
part of the ultrasonic energy is scattered. It can be received using a second
transducer or by the same transducer working in the listening mode between
two emissions. In the majority of cases the second variant is realized. The
entire information of the velocity profile along the ultrasonic beam is con-
tained in the echo. If the sound velocity of the liquid is known, the spatial
position along the measuring line can be determined from the detected time
delay between the burst emission and its reception. The movement of an
ensemble of scattering particles inside the measuring volume will result in a
small time shift of the signal structure between two consecutive bursts. The
velocity is obtained from a correlation analysis between consecutive bursts.
The measuring principle is sketched in Fig. 6. Owing to the Nyquist theo-
rem, the product of measurable maximum velocity and penetration depth is
limited by the sound velocity and the ultrasonic frequency. For a more detailed
description of the basics of the measuring principle the reader is referred to
Takeda [40].
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Fig. 6. UDV-measuring principle shown for a channel flow
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We want to focus here on a few problems arising especially with the appli-
cation of UDV to liquid metal flows, namely the load of the sensors due to
high temperatures and the chemical aggressiveness of the melt, the transmis-
sion of the ultrasonic waves through container walls, the acoustic coupling
between the transducer, the wall and the melt, as well as the allocation of
suitable reflecting particles inside the liquid metal. The feasibility of velocity
profile measurements in liquid metals using UDV has been demonstrated for
the first time by Takeda [41], who measured velocity profiles in a T-tube filled
with mercury at room temperature. Further successful applications have been
published by Brito et al. [42] for liquid gallium and by Eckert and Gerbeth [43]
for liquid sodium at a temperature of about 150◦C. In many applications the
ultrasonic transducer cannot be brought into direct contact with the liquid
metal. The ultrasonic methods also allow measurements through the container
wall as shown in Fig. 7 for the case of a channel flow. However, one has to take
into account that any additional interface in the ultrasonic path diminishes
the energy of the ultrasonic beam. One reason for such losses might be a mis-
match between the acoustic impedances Z of the wall material and the liquid
metal, which is rather pronounced for liquid sodium (ZNa = 2 × 106 Ns/m3)
flowing inside a channel of stainless steel (ZSS = 4.5 × 107 Ns/m3). In this
case, the transmission of a sufficient amount of ultrasonic energy through the
wall can only be assured if the wall thickness meets almost exactly a multiple
of half the wavelength of the ultrasonic wave in the wall material [43]. Another
issue is the wetting at the inner wall. The occurrence of thin gas or oxide lay-
ers impedes the passover of the ultrasonic wave into the liquid metal. Brito
et al. [42] performed UDV measurements in a vortex of liquid gallium con-
fined in a cylindrical vessel made from different materials (polycarbonate,

Fig. 7. UDV measurements for a sodium channel flow [43]



286 S. Eckert et al.

nylon, copper). The authors observed a continuous deterioration of the signal
quality with progressing time of measurements. This phenomenon was related
to oxide films developing at the inner cylinder wall. To prevent adherence of
oxides at the wall the authors proposed a special coating with a cataphoretic
film. Experiences gained with stainless steel and liquid sodium [43] confirm
that oxide layers at the contact surface must be eliminated to guarantee a
low-loss transmission of the ultrasonic wave.

The conventional piezoelectric transducers using lead zirconate titanate
(PZT)-based materials are usually restricted to a temperature range below
200◦C. Other piezoelectric materials with higher Curie temperatures like
GaPO4 or LiNbO3 can work up to temperatures of 650◦C or 900◦C, respec-
tively. Such sensors have already been used for fluid level detectors in liquid
metal fast breeder reactors [44]. However, the piezoelectric coupling factor
of the heat-resistant piezoelectric materials is by a factor of about 5 less than
that for standard materials. This leads to a worse signal-to-noise ratio and,
thus, results in a sensitivity, which is insufficient for UDV measurements. The
application of acoustic wave guides as a buffer between the hot liquid and the
piezoelectric elements is another approach to elude the temperature restric-
tion of 200◦C. Different types of acoustic waveguides, consisting in the simplest
version of a solid cylinder of heat-resistant material, have already been applied
to extend the working range of ultrasonic flowmeters towards higher temper-
atures [45, 46]. The structure of waveguides for Doppler shift measurements
appears to be more sophisticated because a monomode propagation of the
ultrasonic wave inside the waveguide is required. This results in a restriction
for the thickness of the waveguide structures. Gelles [47] demonstrated the
basic features of a fiber-acoustic waveguide consisting of a bundle of cylindri-
cal fibres. Eckert et al. [48] presented a waveguide made of a stainless steel foil
with a thickness of 0.125 mm as shown in Fig. 8. The thinner the waveguide
structures, the higher the emission frequencies can be applied, and the lower
the velocities can be measured. The operability of such steel waveguides has
already been demonstrated in CuSn and aluminium at temperatures up to
750◦C [48,49].
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Electrical
connector

Electronic
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Fig. 8. Ultrasonic sensor with integrated acoustic waveguide for measurements in
hot metallic melts
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Doppler devices require the presence of scattering objects inside the fluid.
Artificial or natural particles, gas bubbles, or fluctuations in density can serve
for this purpose. There is a lack of quantitative studies in liquid metals focus-
ing on the dependence of signal properties on parameters, such as concentra-
tion, morphology (e.g., size, shape) and acoustic properties of the suspended
reflectors. The signal quality depends on the optimal particle concentration.
Though low concentration does not disturb the propagation of the ultrasonic
wave significantly, the sensitivity of the measurements deteriorates. On the
other hand, high concentration improves the sensitivity but increases the
attenuation and, in turn, limits the depth of the measurement. Scattering
particles to be added to the flow should match the fluid density to avoid a slip
between the fluid and particle motion and to guarantee homogeneous distrib-
ution in the entire fluid volume. Moreover, the particles need to be wetted by
the liquid to avoid agglomeration effects. It is obviously favourable to work
solely with natural impurities usually existent in metallic melts with a com-
mon, technical purity standard. Noble liquid metals, such as mercury, contain
an insignificant amount of natural tracers, whereas, for instance, in liquid gal-
lium or gallium alloys, a distinct oxidation cannot be avoided with reasonable
effort. Here, the situation could arise that the UDV measurements might be
complicated by too many tracers inside the measuring volume [42, 50].

Another essential point of interest is the question with respect to the
capability of the UDV technique for analysing turbulent velocity fluctuations.
In the past, electromagnetic potential probes were used in MHD turbulence
research to record local time series, and to calculate the frequency power
spectrum [29]. Because of the statistical character of the measuring principle
the UDV method is inferior regarding the time resolution of both measur-
ing techniques. A number of US bursts have to be superposed in order to
get a reliable velocity signal. Depending on the distinct experimental condi-
tions this requirement typically leads to time resolution of between 10 and
100 ms. On the other hand, the UDV technique delivers the local velocity
simultaneously at different locations along one measuring line. Usually, the
turbulent energy E(k) is derived from the frequency power spectrum P (f) by
employing Taylor’s hypothesis. In many applications, for instance, the electro-
magnetic stirring in confined geometries, this assumption becomes question-
able because a clearly dominating mean flow, which moves a frozen turbulent
structure, does not exist. Regardless of the limitations in time resolution, the
UDV method allows a direct calculation of the velocity structure functions,
and therefore provides information about the scaling properties of the flow.
Takeda [51,52] studied the transition from laminar flow to turbulent in a rotat-
ing Taylor–Couette system by measuring the spatiotemporal velocity field. To
analyse the velocity structure quantitatively he applied spatial and temporal
Fourier transform and orthogonal decomposition techniques. Related studies
on thermal turbulence in mercury have recently been published by Mashiko
et al. [53] and Tsuji et al. [54].
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The amount of publications dealing with UDV measurements in liquid
metal flows is still manageable. This measurement technique can provide valu-
able insight in miscellaneous flow situations, occurring for instance, during
electromagnetic stirring [50], during solidification of metallic alloys [55], inside
a mercury target for a spallation source [56] or in MHD two-phase flows [57].

3.2 Radioscopic techniques

Visible light cannot be used for flow visualization in metallic melts because
penetration of macroscopic metallic layers requires photon energies of at
least 10 keV. On the other hand, radioscopic techniques working with short-
wavelength radiation, such as x-rays or nuclear radiation, have been employed
for in situ investigations of kinetics and morphology of solid–liquid interfaces
during solidification. Information about the flow pattern can also be obtained.
Szekely [58] determined the turbulent diffusivity in liquid steel using radioac-
tive tracers. For this reason he introduced a capsule containing radioactive
gold into the centre of the bath. Samples of the steel were periodically taken
out at certain positions and the radioactive content was measured. Stewart
and Weinberg [59] introduced radioactive material into liquid tin to delin-
eate the flow pattern. After a certain period of time, the system was rapidly
quenched in order to freeze the tracer position. The tracer profile was taken as
representative of the flow pattern. Obviously, these first realizations have to
be considered as fairly crude and by no means non-invasive. An in situ mon-
itoring of the tracer movement in the melt is necessary. Kakimoto et al. [60]
report about a direct observation of the flow structure in molten silicon by
x-ray radiography. The authors developed a multilayered tracer consisting of
a small tungsten cylinder in the sensor. The tungsten was covered by layers of
SiO2 and carbon to adjust the density to that of silicon and to wet the tracer
by the molten silicon. X-rays penetrating the silicon pool during the process
were detected by an image intensifier. Because of the much larger absorption
coefficient the momentary position of the singular tungsten particle can be fol-
lowed by the visualization system allowing the reconstruction of the particle
trajectory.

Another approach is the visualization of the density field as proposed by
Koster et al. [61–64]. X-ray absorption within material depends on the mass
attenuation coefficient, fluid density, and the material thickness in the direc-
tion of the penetrating radiation. If the density is altered by temperature, the
method provides a temperature field visualization being related to the velocity
field in natural convection. This radioscopic technique was tested with a nat-
ural convection benchmark study in liquid gallium [63]. The weak dependence
of the density on temperature in metallic melts requires additional efforts, for
instance, to carefully avoid beam scattering in the environment, to achieve
excellent resolution of the radioscopic system. Koster et al. [63] published
a highest resolution in detection of local density changes of 0.02%. A very
recent development is the application of high frame-rate neutron radiography
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to investigate liquid metal two-phase flows. Saito et al. [65, 66] performed
experiments using the JRR-3M nuclear research reactor providing high neu-
tron fluxes. Gold–cadmium particles were added to a lead–bismuth melt, and
2D velocity fields were reconstructed using particle tracking velocimetry.

3.3 Flow tomography from measurements of the induced
magnetic field

Magnetoencephalography (MEG) is well established in the medical branch
as a convenient method to study the brain function and diseases, such as
epilepsy [67]. Low electric currents flowing inside the neurons generate mag-
netic fields which can be measured outside the body, thus providing a remark-
ably accurate representation of the local brain activity. Is it conceivable to
use a similar principle for flow measurements? To answer this question, let us
consider an electrically conducting liquid flowing within a certain volume. By
imposing an external magnetic field, such an unknown flow field will generate
a distribution of induced currents inside the liquid and thereby an induced
magnetic field. The latter is present inside, as well as outside of the melt
volume. The structure of the induced field obviously contains information
about the flow. A reliable interpretation of this information would provide a
fully contactless method to determine 3D velocity fields. The strength of the
applied fields must be sufficiently weak, so that the flow to be measured is
not influenced. However, this measuring principle can also be applied in cases
where stronger magnetic fields are already present in the process under con-
sideration, for instance, in continuous casting with an electromagnetic brake
or in single crystal growth processes.

The first attempt to utilize this principle for flow measurements was under-
taken by Köhler et al. [68]. The authors applied a few local sensors to detect
the flow velocity of liquid steel in the mould in close vicinity to the sensor posi-
tion. The sensors consisting of permanent magnets and highly sensitive mag-
netic field detectors were positioned close to the wall of the mould. Because
of difficulties regarding the sensor calibration, the velocity information was
obtained by correlating the output signal of two adjacent sensors. The ques-
tion is obvious whether a complete reconstruction of the velocity field can be
realized using a sufficient number of magnetic field sensors around the fluid
volume to be measured. Stefani et al. [69] showed that the sole measurement
of the induced magnetic field, even using numerous sensors, cannot deliver
a unique solution of the problem as long as the electrical potential at the
surface of the fluid volume is not taken into account. The determination of
the electric potential requires a set of electrodes at the fluid surface impli-
cating that the principle thus becomes less attractive for hot and aggressive
fluids or for facilities where the fluid boundary is not accessible owing to tech-
nological reasons. The problem can be solved by subsequent application of
various external magnetic fields to the same flow field [70]. The imposition
of two orthogonal magnetic fields represents a certain minimum configuration
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for a fully contactless flow tomography. An experimental demonstration of a
contactless inductive flow tomography (CIFT) has been reported by Stefani
et al. [71]. The scheme of this experiment is shown in Fig. 9.

A cylindrical vessel with an aspect ratio close to 1 contains about 4.5 l
of the eutectic alloy GaInSn. A propeller forces a flow inside the vessel up
to maximum velocities of 1 m/s, which corresponds to a magnetic Reynolds
number Rm ≈ 0.4. Two pairs of Helmholtz coils consecutively produce axial
and transverse magnetic fields. The induced magnetic fields are measured by
49 Hall sensors at different positions around the vessel. The main problem of
the method is that the values of the induced magnetic fields are some orders
of magnitude lower than the applied field. The authors let the propeller rotate
in both directions, resulting either in an upward or in a downward pumping
with different flow structures. Whereas the downward pumping produces both
a main poloidal roll and a toroidal motion, the latter one is, to a large extent,
inhibited by guiding blades for the upwards pumping. The CIFT technique
was able to discriminate between those different flow patterns [71]. By com-
paring these measurements with the UDV technique it was further shown that
not only the structure, but also the range of the velocity scale was correctly
reproduced, see the right part of Fig. 9.

A particular advantage of CIFT is the transient resolution of the full 3D
flow structure in steps of several seconds. Hence, slowly changing flow fields in
various processes can be traced in time. Further developments of this measur-
ing principle will use also AC magnetic fields to improve the depth resolution
of the determined velocity field.

Fig. 9. Scheme of the CIFT demonstration experiment (left), and comparison of
CIFT and UDV velocity measurements (right) for the axial velocities along the
central vertical axis of the cylinder (UDV measurements are only shown up to the
propeller position, whereafter they become unreliable) [71]
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1 Introduction

The possibility to act on a fluid flow in a contactless way, offered by magne-
tohydrodynamics (MHD), stimulated the imagination of aerodynamists and
naval engineers relatively early.

Ritchie [1] appears to be the first using electromagnetic forces to pump
electrolytes in 1832. Figure 1 shows two of his apparatuses. Basically, the
horizontal magnetic field component near the pole of a permanent magnet
(N) interacts with the mainly vertical electric field between two ring electrodes
(w, w′) to set the dilute acid in the angular gap (AB) into rotational motion.

In the 1950s, a multitude of aerospace applications of MHD flow control
techniques has been envisioned using the fact that at high enough speeds air
gets ionised by the action of shock waves and frictional heating, and thus
becomes a conductor. Such high-speed conditions are typical for re-entry
problems. Resler and Sears [2] and Busemann [3] proposed, among others,
to use magnetic fields to control heat transfer, to decelerate or to accelerate
vehicles, and to prevent flow separation. Although enthusiasm for the practi-
cal application of these ideas waned later on, the topic is now again under
investigation in connection with scramjets, e.g., [4, 5], heat transfer mitiga-
tion [6] and electromagnetic braking for re-entry vehicles [7]. An overview of
magnetoaerodynamic (MAD) research can be found in the proceedings of a
recent von Kármán institute lecture series [8]. MAD deals with compressible
fluids at hypersonic speeds, which represents quite a complex problem on its
own, and will not be discussed here. Henceforth, the discussion is limited to
incompressible fluids, mainly seawater. Due to the focus of our own work, the
survey may be somewhat biased towards the boundary layer control (BLC).

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
295–312. c© 2007 Springer.
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Fig. 1. Ritchie’s electromagnetically rotated electrolyte columns [1]

2 Electromagnetic propulsion

Electromagnetic propulsion in seawater has been proposed by Rice [9] already
in 1961. According to Friauf [10] and Way [11] the idea had attracted the
attention of several inventors at that time. The main reason for this attraction
has been the seemingly elegant operating principle using no moving parts.
Proposed applications include the silent propulsion of naval submarines [12],
the use in high-speed cargo submarines [11], and the propulsion of future
high-speed surface ships without the danger of cavitation [13].

Conventionally (see, e.g., [11,14]), the electromagnetic propulsion methods
are subdivided into four groups, as shown schematically in Fig. 2. If both the
electric and magnetic fields are imposed, the propulsion scheme is termed
“conductive” (Fig. 2a, c); if only an alternating magnetic field is applied, the
method is referred to as “inductive” (Fig. 2b, d). The internal flow systems
(Fig. 2a, b) use a duct with an electromagnetic pump, while the fields pene-
trate into the surrounding sea for external systems (Fig. 2c, d).

The arrangement of flush-mounted electrodes and magnets suggested by
Rice [9], and shown in Fig. 3, belongs to category c, the external conductive
propulsion. In 1966, Way [11] built a model submarine named EMS–1 with
an electromagnetic thruster of the external conductive type at the University
of California, Santa Barbara. The model was approximately 3 m long and had
a displacement of approximately 400 kg. A dipole electromagnet provided a
magnetic induction at the hull of 0.015 T. Powered by lead-acid batteries, the
submarine reached a maximum velocity of approximately 0.8 knots (0.4 m/s).

This experiment even arrested the attention of mass media at that time.
Nevertheless, in addition to the principal possibility to propel a marine vessel
by the electromagnetic forces, some fundamental problems inherent in electro-
magnetic propulsion in seawater, already noted by Friauf [10] and Phillips [15],
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Fig. 2. Classification of electromagnetic propulsion methods according to Way [11]

Fig. 3. Arrangement of electrodes (45) and permanent magnets (42) proposed by
Rice [9] to propel a cylindrical body in seawater

were now demonstrated in practice. Especially, the unfavourable ratio of power
input to available thrust was striking. After a period of active research, US
activities in electromagnetic propulsion declined, apparently towards the end
of the 1960s.

The reason for the efficiency deficit is easily explained. Regardless of the
electromagnetic propulsion method, the Lorentz force density f producing the
thrust is due to a current density j and a magnetic induction B, namely

f = j× B. (1)

Since in seawater applications the magnetic Reynolds number is small, the
induced magnetic fields can be neglected and B becomes the applied field
only. The current density is given by the Ohm’s law

j = σ(E + U × B). (2)
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Fig. 4. Operating principle of an internal conductive propulsor

Here, E denotes the electric field strength, U the flow field, and σ the electric
conductivity of the medium, respectively. Owing to its simplicity, internal
conductive propulsion (type a) as sketched in Fig. 4 is chosen to illustrate the
main performance criteria of electromagnetic propulsion in seawater following
Thibault [16].

Of primary interest are the necessary power input to achieve a specific
thrust (energy balance) and the total thrust available to propel the vessel at a
specific velocity (momentum balance). The thrust per unit volume equals the
Lorentz force density with the absolute value f = jB (f = |f |, . . .) in the case
sketched in Fig. 4, assuming uniform and orthogonal electromagnetic and flow
fields. The ideal electrical to mechanical efficiency η is the ratio of propulsive
power or thrust per unit volume pT = jBU to the total power supplied per
unit volume pE = jE, where U denotes the flow velocity and E the electric
field strength. This gives:

η =
pT

pE
=
UB

E
=

1
φ
. (3)

Thus, it appears that the ideal efficiency is the inverse of the load factor φ

φ =
E

UB
, (4)

giving the ratio of applied E to the induced UB electric field (see, e.g., [17]).
Expressing the current density in Eq. (1) by Ohm’s law (2) and taking

into account that the induced electric field acts against the applied one, the
total electromagnetic thrust F can be expressed as follows:

F = σUB2(φ− 1)V. (5)

Here V denotes the volume of the duct. Thus, for maximum ideal efficiency
(η = φ = 1), the attainable thrust is zero. However, to propel a vessel, the
usually non-zero total hydrodynamic drag D has to be balanced by the thrust.
In a rough estimate, the total drag in turbulent flows is proportional to the
square of the flow velocity: D = kU2. Taking into account the relation D = F
and Eqs. (3), (5), it follows that the ideal electric efficiency is:

η =
1

1 + kU
σV B2

. (6)
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To maximise the efficiency at a given velocity U , the product V B2 should
therefore be chosen as large as possible. This has been realised quite early.
Doragh, aware of the need for for high magnetic fields, suggested to use super-
conducting magnets already in 1963 [18].

Similar observations can be made for outer conductive propulsion methods
(see, e.g., [11]), and for inductive methods (see, e.g., [15]). The main conclusion
is always the need to deploy the highest possible magnetic induction in the
largest available volume.

Inductive arrangements have been investigated, for example, by Phillips as
early as 1962 [15] and later by Khonichev and Yakovlev [19], where the latter
paper was the first one treating the coupled electromagnetic and hydrody-
namic parts of the problem. Generally, the practical applicability of the induc-
tive approach is limited by the fact that superconducting magnets providing
an alternating magnetic field are not easily available. Therefore, the maximum
magnetic field strength and consequently the efficiency are quite limited. How-
ever, Saji et al. [20] proposed and demonstrated experimentally an ingenious
approach to the problem consisting in rotating the magnet including the cryo-
stat. Unfortunately, the effort required in a real application might countervail
the advantages gained. Intensive theoretical studies of the inductive approach
have been performed by Yakovlev and co-workers in the late 1970s and early
1980s [21–23].

Saji and co-workers built two model ships, SEMD-1 and ST-500, with
superconducting magnets with racetrack coils in the 1970s. In both cases,
the propulsors were of the external conductive type. SEMD-1 [24] tested in
1976 [25] had a 0.6 m long and relatively bulky magnet with a maximum
induction of ∼1 T mounted below the vessels hull. A maximum efficiency of
0.1% has been determined from tests in a tub, where the model was at rest and
mounted to a force balance. In 1979, a second model ST-500 has been built and
operated [25], now with a magnet of 2 T maximum induction and smoothly
integrated into the hull of the vessel. In towing tank tests a maximum speed
of 0.6 m/s has been reached with a total thrust of 15 N.

While thrusters of the external conductive type have been further inves-
tigated mainly numerically, e.g., [26–29], research concentrated on internal
conductive propulsion in the 1980s and 1990s. This type has been favoured,
because it allows for large thruster volumes with relatively homogeneous elec-
tromagnetic field distributions [16]. The most noticed achievement in this
field has without doubt been the successful sea trial of the YAMATO-1 in
1992 [30], a 30 m long ship with 185 t displacement propelled by two electro-
magnetic thrusters with a mean induction of 4 T delivering 8,000 N of thrust
each. YAMATO-1 reached top speed of 6.6 knots and a maximum electrical
efficiency of 1.4% [30]. Considerably higher efficiencies have been reported
for land-based experiments at Naval Undersea Warfare Center (NUWC) and
Argonne National Laboratory (ANL) in the USA, where electromagnetic
thrusters have been integrated in closed seawater loops. Meng et al. [31] found
a maximum efficiency of ∼2.7% for a magnetic induction of 3.3 T and a load
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factor of φ ≈ 20. While the efficiency could be further increased to nearly 10%
for a 6 T magnet at NUWC [32], as high values as 38% are reported by Meng
et al. [32] for experiments with a 6 T magnet of 1 m bore diameter at ANL.
However, this impressive device had a weight of more than 173 t.

For the simple crossed field arrangement sketched in Fig. 4 and used in
a modified form for the thrusters of YAMATO-1 and in the experiments at
NUWC and ANL, superconducting dipole magnets are necessary. These kind
of magnets require massive structural enforcement to withstand the large mag-
netic forces, resulting in heavyweight constructions and relatively low maxi-
mum magnetic field strength.

For the same bore diameter, superconducting solenoids allow for lower
weight and higher maximum field strength than dipole magnets. Recent
thruster developments concentrated therefore on the use of solenoids. How-
ever, the axial magnetic field requires a special arrangement of electrodes
and baffles forming the so called “helical thruster” (Fig. 5) as proposed and
demonstrated by Bashkatov [33] as well as by Tada [34] in 1991.

However, the increase of electrical efficiency due to the higher magnetic
field strength is accompanied by an increase of hydrodynamic losses in the
thruster introduced by the baffle and other guiding plates. In 1995, Lin
and Gilbert [12] used a 12 T helical thruster in a closed seawater loop and
measured nearly 20% electrical efficiency. In 1998, Chinese researchers oper-
ated a 3.5 m long model ship HEMS-1 with 1 t displacement in a seawater
pool [35,36]. Equipped with a helical thruster with 5 T induction, a maximum
speed of 0.68 m/s has been measured. In 1999, a helical thruster based on a
14 T solenoid has been run by a Chinese–Japanese group in a closed seawa-
ter loop [13, 37]. Ideal efficiencies exceeding 60% have been found, while the
maximum efficiency including all losses is 13% for a load factor of 2.6 [37].

Meanwhile, worldwide activities in MHD-propulsion decreased, magnetic
inductions and bore diameters of currently affordable superconducting mag-
nets allow only for thruster efficiencies far below that of competing propulsion
methods. This penalty currently outweighs all envisaged advantages. However,
driven by the simplicity of the approach and the fascination it exerts on con-
temporary art, MHD-propulsion made its way into the classroom after all [38].

Helical baffle
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Fig. 5. Sketch of a helical thruster
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3 Electromagnetic flow control

3.1 Drag reduction

Fluid dynamic drag can be of different origin. Electromagnetic flow control
in seawater has mainly concentrated on the skin friction drag and to a lesser
extent on the form drag. Wave drag has been dealt with by Petit [39] but while
the demonstration experiment used a dilute acid, the focus of his work was on
shock wave cancellation in hypersonic flight [40, 41]. The following discussion
is limited to skin friction and form drag.

3.1.1 Transition delay

In 1961, Gailitis and Lielausis [42] proposed to use a stripwise arrangement
of electrodes and magnets as sketched in Fig. 6 to delay the transition of a
laminar boundary layer. Except for the plane geometry, electric and magnetic
field sources are similar to the propulsion system patented by Rice [9] in the
same year, see Fig. 3. However, the idea of Gailitis and Lielausis was not
to propel the plate by the electromagnetic forces, but to compensate for the
viscous losses of the near wall flow. For the electrode–magnet–arrangement in
Fig. 6 the ratio of the electromagnetic to frictional forces, i.e., the Hartmann
number Z, can be written as

Z =
1
8π

j0M0a
2

ρνU∞
. (7)

Here M0 denotes the magnetisation of the permanent magnets, j0 the applied
current density, a the width of the electrodes, ρ the fluids density, ν its kine-
matic viscosity, and U∞ the outer flow velocity, respectively. For Z = 1, the
growth of the boundary layer can be inhibited. Assuming the Lorentz force
density distribution to be uniform in the spanwise direction and exponentially
decaying with the distance y from the wall, an exponential distribution of the
wall parallel velocity component u, namely

u

U∞
= 1 − e−

π
a y, (8)
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Fig. 6. Stripwise geometry of electrodes and magnets for a streamwise wall-parallel
force as proposed by Gailitis and Lielausis [42]
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follows as a solution of the boundary layer as well as the Navier–Stokes
equations. The exponential boundary layer profile is similar to that of the
asymptotic suction boundary layer and should therefore posses similar stabil-
ity characteristics, i.e., a critical Reynolds number based on the displacement
thickness of about Reδ1crit = 4.7 × 104 compared to only Reδ1crit = 520 for
the Blasius boundary layer [43]. The development of an exponential profile for
a force distribution f ∼ exp(−πy/a) and Z = 1 has been shown numerically
by Tsinober and Shtern [44] by solving the boundary layer equations. Experi-
mental work at that time has been limited to qualitative observations of flow
cases considerably different from zero-pressure-gradient boundary layers [45].
Meanwhile, also experimental evidence is available. Figure 7 presents Laser–
Doppler measurements showing convincingly the transformation of a Blasius
boundary layer profile with Reδ1 ≈ 290 to an exponential one [46].

Transition delay promises a huge potential for skin friction drag savings.
Comparing typical laminar to turbulent skin friction drag, these savings
may even be large enough to offset very low electrical efficiencies η (3).
However, as is well known, linear stability of the asymptotic boundary
layer profile alone is not a sufficient condition for the transition delay.
In practice, many additional effects, e.g., receptivity to the disturbance
environment and the influence of the real force distribution, have to be
taken into account. So far, these aspects have only partially been addressed.
The evolution of the boundary layer and the stability of the accompany-
ing profiles has been studied by Zhilyaev et al. [47] and later by Albrecht
et al. [48].

In 1962, Phillips [15] estimated power requirements for boundary layer
stabilisation with induced fields and found them far exceeding possible savings.
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To the knowledge of the authors, for stabilisation purposes, Lorentz forces
have up to now only be considered for modifications of the mean flow profile.
Techniques acting on the disturbances (wave cancellation) offer potentially
higher efficiencies, but are coupled to sophisticated sensor–actuator systems.

3.1.2 Turbulent boundary layers

Since transition control is practically limited to length Reynolds numbers
Rex < 4× 107 [49], techniques for skin friction reduction in turbulent bound-
ary layers (TBL) are desirable in many cases. Though Shtern [50] discussed
already in 1970 the possibility to limit the growth of a TBL by a stream-
wise Lorentz force, it was only at the beginning of the 1990s that electro-
magnetic control of TBLs became of increasing interest. While Meng [51]
followed the ideas of [9] and the work on BLC in the 1960s reviewed by
Tsinober [52] and Lielausis et al. [45], Nosenchuck and Brown developed a
different approach based on wall normal forces in 1993 [53]. Especially the
experiments by Nosenchuck and Brown [53], who coined the term electromag-
netic turbulence control (EMTC) [54], were very well received at that time,
e.g., [55], and sparked further research.

Mainly three different force configurations have been investigated in order
to control TBLs: wall parallel streamwise (Fig. 6), wall parallel spanwise
(Fig. 8, left), and nominally wall normal forces (Fig. 8, right).

Wall parallel forces in the streamwise direction have been applied, e.g., in
the experiments of Henoch and Stace [56] and Weier et al. [57] as well as in the
numerical analysis of Crawford and Karniadakis [58]. This force configuration
increases instead of reducing wall shear stress, because the acceleration of
the near wall fluid leads to a higher slope of the mean velocity profile in the
streamwise direction. However, the momentum gain due to the Lorentz force
surpasses the friction drag rise. While mean velocity and skin friction are
increased near the wall, their fluctuating components are damped for higher
momentum input [56,57]. Shtern’s [50] concept of a TBL of constant thickness
by means of streamwise forces has been experimentally verified in [57].

Nosenchuck and Brown [54], O’Sullivan and Biringen [59], Thibault and
Rossi [60], and others used nominally wall normal, time-dependent forces.
Nosenchuck and co-workers reported several successful experiments with a
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multitude of electromagnetic actuators (“tiles”) generating turbulent skin fric-
tion reductions of more than 90% [54], 55% [61], and a total drag decrease
of more than 50% [62]. The physical mechanism behind this drag reduction
is supposed to be a global reorganisation of the boundary layer into rota-
tional periodic structures, cf. [63] and the sketches and flow visualisations
in [64]. However, other groups were unable to reproduce these results [65]. As
pointed out by Rossi and Thibault [66], the real force distribution produced
by the electromagnetic tiles is quite complex and may play a crucial role in
the experiments.

Time-dependent wall parallel forces in spanwise direction have been inves-
tigated numerically, among others, by Berger et al. [67], and Du et al. [65] and
experimentally by Pang and Choi [68], and Breuer et al. [69]. Drag reductions
ranging from 10% for the directly measured mean drag coefficient [69] to 40%
for the local skin friction [68] have been found, indicating that this type of forc-
ing is indeed able to reduce the skin friction drag of turbulent flows. The drag
reduction mechanism is supposed to be similar to that suggested for spanwise
oscillating walls [68]. Nevertheless, the energy balance of the approach is not
favourable.

3.1.3 Form drag of bluff bodies

Compared to skin friction reduction, the use of Lorentz forces to control flow
separation received less attention. Probably, the first experimental demon-
stration of separation prevention, as well as provocation, on the half-cylinder
has been given by Crausse and Cachon [70].

Selected flow visualisations from their paper are reproduced in Fig. 9. Note
that not all field sources are inside the body. Although Crausse and Cachon
did not perform any force measurements, it is obvious from Fig. 9 that a

Fig. 9. Control of flow separating from the half-cylinder by the electromagnetic
forces. (From [70].) Unforced flow (1), force downstream (4), force upstream (6),
and the field configuration (8)
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Lorentz force directed downstream reduces the size of the separation bubble
behind the half-cylinder considerably, thereby reducing form drag as well.
Similar experiments, but with an interchanged role of electric and magnetic
fields and an additional conductivity gradient, where performed in 1961 by
Lielausis [45, 71].

Successful electromagnetic control of the flow around a circular cylinder
has been reported by Petit [39] for electrodes embedded in the cylinder and an
externally applied magnetic field. A circular cylinder equipped with electrodes
and permanent magnets generating a wall parallel force in the streamwise
direction was used in the experiments and numerical calculations of Weier
et al. [72]. Similar configurations have later been investigated by Kim and
Lee [73], Posdziech and Grundmann [74], and Chen and Aubry [75]. While
skin friction drag is increased by this force configuration, form drag is strongly
reduced for an initially separated flow at Reynolds numbers Re of the order
of 100. For stronger forcing the increase in skin friction drag dominates the
form drag decrease. The total drag on the cylinder under these conditions is,
however, negative due to the electromagnetically generated thrust.

Shatrov and Yakovlev [27] studied numerically the flow around a sphere
with mainly wall parallel Lorentz force for Re up to 1,000. For increasing
interaction parameter, i.e., the ratio of the electromagnetic to inertial forces,
the size of the separation region is first reduced. Later, separation is suppressed
completely resulting in a strong decrease of form drag. Skin friction drag
is increased, as is always the case for streamwise wall parallel forces acting
downstream. At sufficiently high interaction parameters, the sphere is driven
upstream by the Lorentz forces. In a subsequent paper [76], Shatrov and
Yakovlev extended the investigated Reynolds number range up to 105 treating
the problem of a steady and axially averaged flow. For large Reynolds number,
the total drag on the sphere was reduced four times, and despite the moderate
electrical efficiency of η ≈ 40%, the total energy consumption was reduced as
well. Note that this “moderate” electrical efficiency is high compared to what
has been reached in MHD propulsion experiments, since low load factors at
still sufficient momentum input, i.e., a strong magnetic field, is easier to realise
numerically.

Very recently, Shatrov and Gerbeth [77] have shown that it is possible to
reduce the drag on a sphere by three orders of magnitude using an optimised
field distribution. Since a high load factor was assumed, efficiency of this drag
reduction is nevertheless quite small.

3.2 Lift and manoeuvrability

Besides the drag reduction, there are other goals in flow control. A prominent
one is the prevention of separation in order to generate a certain lift used
for manoeuvring or stabilisation of marine vessels. For these applications,
energetical efficiency is not always a primary goal. The emphasis is rather on
the viability of a specific lift increase compared to the uncontrolled case.
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Fig. 10. Separated flow on the suction side of an inclined flat plate (left). Reattached
flow due to a wall parallel streamwise Lorentz (right) [57]

Separation suppression at the suction side of inclined hydrofoils is, as in
the case of bluff bodies, easily achieved by a streamwise wall parallel force
acting in the flow direction. The flow visualisations in Fig. 10 demonstrate
separation control in case of an 18◦ inclined flat plate at a chord length
Reynolds number of Re = 1.2 × 104. Electrodes and magnets are distributed
practically along the whole chord length, leading to a uniform acceleration of
the boundary layer flow along the plate.

The reattached flow shown in the right part of Fig. 10, while on one hand
reducing the drag, on the other hand also re-establishes the lift of the plate.
Figure 11 demonstrates this with measurements of the lift coefficient CL on
a PTL IV hydrofoil. At a fixed angle of attack of 17◦, the suction side flow is
already separated at the low chord length Reynolds numbers 3.4 . . . 5.8×104.
The Lorentz force influence is characterised by an electromagnetic momentum
coefficient cµ defined in analogy to the one used in separation control by blow-
ing [80]. cµ links the total electromagnetic momentum input to the dynamic
pressure and has been shown by Weier et al. [78] to collapse separation control
data of different experiments and enables a direct comparison to alternative
control methods [81]. Two control regimes can be distinguished in Fig. 11: at
small momentum coefficients, the boundary layer is gradually reattached to
the foil’s surface, a process leading to a steep increase in lift. Above a certain
momentum coefficient cµr, necessary for complete reattachment, further lift
increase can be observed which is weaker and is proportional to the square
root of cµ. These two regimes have been observed earlier in separation control
by blowing, see the right part of Fig. 11, and termed BLC and “circulation
control” by Poisson-Quinton [80].

Scale up of the experimental results reveal that power requirements for
the original design based on conventional permanent magnets may prevent its
application at sea going vessels.

In analogy to oscillatory suction and blowing [82], time-periodic Lorentz
forces can be used to excite the separated flow. This indeed reduces the
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momentum input necessary to recover the lift of the attached flow by more
than an order of magnitude [81]. However, increasing the maximum lift
requires momentum coefficients comparable to those necessary with steady
electromagnetic forces. Despite this, electromagnetic forces have proven to be
a flexible tool to study periodic excitation of separated flows. It has been
shown, for example, that using different excitation wave forms, increases in
the efficiency of 70% at constant efficient momentum input are possible [81].

4 Conclusions

Obviously the crux of the electromagnetic flow control, as well as the propul-
sion in poorly conducting fluids, is the efficiency limited by the achievable
magnetic field strength. Among others, Busemann [3] realised similar funda-
mental problems concerning MAD already in 1961: “Practically we are only
at one tenth of the conductivity and one tenth of the magnetic field strength
. . . ”. But at the same time he raised hopes that these unfavourable condi-
tions might be overcome: “The worst enemy of rigid mathematical proofs is
the designing engineer, who accomplishes the ‘impossible’ by simply violating
the assumptions of the proof.” For an energetically efficient electromagnetic
propulsion or drag reduction, this engineer is yet to come. On the other hand,
already today the electromagnetic force control might be of use for applica-
tions where the energetic balance is not the primary goal as described above
for lift production.

Until this time arrives, practical applicability of electromagnetic forces
for both propulsion as well as flow control, depends on the progress in
readily available sources for high magnetic fields. At the same time dealing
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numerically with low load factors enforces the solution of coupled flow and
electric fields as demonstrated by Shatrov and Gerbeth [83], a problem not
unfamiliar to traditional MHD but gladly avoided in the majority of present
papers on EMTC. In most of the works up to now, the electromagnetic flow
control was applied using a few simple force configurations only. A key poten-
tial for optimisation lies in the tailoring of the electromagnetic forces, both
in the spatial as well as in the time domain. An example for the spatial opti-
misation potential was recently given in [77]. The time optimisation of the
acting Lorentz forces may eventually result in a reactive solution [49].

Regardless of the efficiency, Lorentz forces have attractive features to offer
for basic research on flow control mechanisms. They are a unique possibility
for an easily controllable momentum source of unlimited bandwidth and great
flexibility.

The main problem for applications, namely efficiency, is different if one
changes the point of interest to areas other than ship building. Current densi-
ties are an inherent feature of electrochemical processes, leaving only the skil-
ful placements of magnetic sources to control momentum and thereby mass
transfer, space–time–yield, etc. However, this is a topic on its own and is
reviewed by Alemany and Chopart [84] in this volume.
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Summary. History of electromagnetic processing of materials (EPM) is described
and several functions utilized in EPM are reviewed. Main activities of EPM are
summarized with the view on mass production and applications of high magnetic
fields related to nanotechnology. Future trends and prospects of EPM are discussed.

1 Introduction

In a metal industry, electric energy has been used as heat energy for an
extended period of time because of cleanliness, high controllability, and high
energy density. Technologies using electric energy have been developed rather
early and went ahead without sufficient background of scientific understand-
ing. Good examples are electromagnetic levitation and electromagnetic mix-
ing, which were invented very early, in 1923 and 1932, respectively. To bridge
the gap between the technology and the scientific understanding, Magnetohy-
drodynamics (MHD) which had been established by Alfvén in 1942, was first
introduced at the IUTAM conference entitled “The Application of Magnetohy-
drodynamics to Metallurgy”, held in Cambridge, England in 1982 [1]. Before
the conference, a research laboratory, MADYLAM aiming at the applications
of MHD, has been established in CNRS in Grenoble, France. Encouraged
by the Cambridge symposium, the Iron and Steel Institute of Japan (ISIJ)
inaugurated the Committee of Electromagnetic Metallurgy in 1985. The new
research activity, which began in the iron and steel industry, has grown to hold
in 1994 the first International Symposium on Electromagnetic Processing of
Materials (EPM) in Nagoya, Japan. The term EPM, which has been estab-
lished by combining the two channels, metallurgy and MHD, has formally
been used for the first time at this symposium. Since the first international
symposium, it has been held every 3 years in France and Japan alternatively.

Hitherto, the activities of EPM have been devoted to the economical
aspect relating to mass production and nanotechnology aspect of high-quality

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
315–327. c© 2007 Springer.
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materials. Furthermore, EPM activity is spreading into a new area, solving
environment problems.

2 Functions of electromagnetism applied to materials
processing

Several functions making use of the Lorentz force are applicable to the mate-
rials processing as follows. The function of shape controlling is based on the
magnetic pressure given as Pm = B2/2µ. The function of fluid driving is
induced by imposing a direct electric current and a magnetic field, F = J×B,
or by imposing a traveling magnetic field. The function of flow suppressing
appears when applying a direct magnetic field to moving molten metal, based
on the principle of F = σ(v×B)×B. The function of levitating appears when
gravity force balances the electromagnetic one, J×B = g. When the electro-
magnetic force is much larger than both gravity and the adhesion force due to
surface tension, |J × B| > max{|ρg|, 6σ/a2}, the function of splashing takes
place. The Joule heat, q = |J|2/σ, provides the function of heat generating.

Regarding magnetization force given as (χ/µ) (B · ∇)B and M×B, there
are two kinds of forces available in materials processing. One is the force
pulling ferromagnetic and paramagnetic materials to a magnet and repulsing
diamagnetic ones. The other is the force rotating materials to a magnetic field
direction as a compass rotates to the north direction on Earth.

Figure 1 reveals an overview of the electromagnetic processing of mater-
ials as a tree. The roots indicate the academic background supporting this
engineering field as follows:

Electromagnetic

Thermodynamics

Electromagnetism
Fluid Mechanics

Magnetohydrodynamics

Materials Processing

Magnetic Science

Transport Phenomena
Electromagnetic
Processing of
Materials

That is, EPM is based on magnetic science, materials processing, and
MHD, where the functions of electromagnetism are utilized for processing
of materials, including the electrically conductive and non-conductive sub-
stances. The branches predict functions of electromagnetism and the leaves
in each branch show processes and technologies related to the corresponding
function as described in the above. Furthermore, the development of super-
conducting magnetic technologies has made helium-free superconducting mag-
nets available, and this promises to open new fields for practical industrial
applications.
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Fig. 1. A tree of electromagnetic processing of materials

3 EPM in mass productions

The practical application of EPM has begun in the field of economic mass pro-
ductions in steel and aluminium industries and a substantially large part of
EPM activities are concentrated in this field at present. Typical examples are
electromagnetic stirring and electromagnetic braking in a mold of a continu-
ous casting process of steel. Traveling alternating and static magnetic fields
are used there, respectively. Stirring has contributed to the improvement in
the surface quality of slabs, while braking has lead to the improvement in the
inner quality. Electromagnetic casting (EMC) process invented by Getselev [2]
in 1966 is the most significant and successful example in aluminium industry,
where a fixed alternating magnetic field with kilohertz frequency is applied to
make use of the function of the shape controlling. Surface defects of cast met-
als usually appearing near the surface have been eliminated by non-contact
between the mold and metal. In 1986, Vives et al. [3] proposed a CREM
process, in which an alternating magnetic field with commercial frequency
was imposed from the outside of a mold. The experimental result reported by
them was appreciated due to nice surface quality, similar to that in products
of EMC. Being stimulated by this experimental result, several fundamental
research works, aiming to apply Vives’s result to a continuous casting process
for steels, started at the Committee of EPM organized by ISIJ. They were
taken over to the International Project involving Japan, France, and Sweden
during the period of 1995−2000. Within this Project, an intermittent alter-
nating magnetic field has been developed for casting, and applied from the
outside of a mold. The researchers faced two crucial problems, namely the
magnetic decay in a copper mold, and the mold deformation due to thermal
stress in the mold. The experimental results have proved that the smooth sur-
face is achievable even in steel casts by the new casting. Another success story
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is a casting process of bimetallic slabs [4], where the function of flow suppress-
ing in a static magnetic field is used. For melting titanium scraps, a large-scale
cold crucible with about 500 kg melting capacity has been developed utilizing
the functions of levitation and heat generation. The process combining a cold
crucible with a precise casting technology has been developed for titanium-
alloy products, such as turbochargers and golf clubs [5]. The direct induction
skull melting [6] is another promising technology for melting materials with
rather low electrical conductivity, such as silicon and ceramics.

4 Applications of high magnetic fields in EPM

4.1 Classification of functions associated with high magnetic fields

Owing to the development of superconductive technologies, which made high
magnetic fields available within a rather large space even in conventional-
scale laboratories, the technologies relating to crystal orientation, structure
alignment, and spin chemistry have been introduced in the field of EPM.
Table 1 shows the classification of functions accompanied by a high magnetic
field in EPM. The high magnetic field enables not only to enhance various
functions based on the Lorentz force, but also to induce several functions
based on the magnetization force. The crystal orientation and the structure
alignment in non-magnetic materials are typical examples of the use of the
magnetization force.

The possibility of mass transport and mass rotation due to the mag-
netization force has been studied for several processes, such as solidifica-
tion [7–10], electro-deposition [11], vapour-deposition [12–14], and solid-phase
reaction [15]. It is now recognized that the application of a high magnetic field
is surely useful and promising method in EPM.

Table 1. Utilization of a High Static Magnetic Field in EPM
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4.2 Qualitative evaluation of phase transformation

4.2.1 Principle

Magnetic susceptibility of a mixture with two components is given by the
equation

χm = f1χ1 + f2χ2, (1)

where f1 and f2 are fractions of the two components, respectively. In addition,
equation

f1 + f2 = 1 (2)

obviously holds.
Once the magnetic susceptibility χm is measured, the fractions of compo-

nents in the mixture can be derived from Eqs. (1) and (2) to give:

f1 =
χm − χ2

χ1 − χ2
, f2 =

χm − χ1

χ2 − χ1
. (3)

Here, the magnetic susceptibility can be obtained by the use of Gouy
method [16,17] which is based on the measurement of the magnetization force
Fz , namely:

χm =
2Lµ0

ms(B2
L −B2

0)
Fz , (4)

where L and ms are the length and the mass of the specimen, respectively,
µ0 is the magnetic permeability, and BL and B0 are magnetic flux densities
at the top and the bottom of the specimen, respectively. The magnetization
force Fz can be obtained from the difference between the weights of a specimen
measured with and without magnetic field.

When we apply the principle to evaluate a phase fraction change during
a phase transformation, we have to measure temperature of the specimen,
together with the magnetization force. Then, we need to evaluate the values
of χ1 and χ2 appearing in Eq. (3) beforehand, since the magnetic susceptibility
is a function of temperature.

4.2.2 Measuring solid fraction during solidification

We can obtain the relationship between the magnetic susceptibility and tem-
perature measured during the solidification of an alloy as shown in Fig. 2. It
is found that the magnetic susceptibilities of both solid and liquid phases can
be expressed as a linear function of the temperature around the melting point
with good approximation. That is, the magnetic susceptibilities in the single
solid and liquid phases are given by equations

χml = Cl1T + Cl2, (5)

χms = Cs1T + Cs2. (6)

By substituting χml and χms evaluated from Eqs. (5) and (6) into
Eq. (3), the relation between the solid fraction and temperature during the
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Fig. 2. Calculation of the solid fraction

Fig. 3. The relation between temperature and solid fraction for zinc (cooling)

solidification of zinc is obtained as shown in Fig. 3. It can be noticed that
the solid phase of about 50 mass% has precipitated at the point where the
recalescence finishes and the temperature starts rising up to the melting point.

The method developed here can be applied to in situ measurement of
various phase transformations in solid, liquid, and gas phases, and will promise
better and deeper understanding of phase transformations and reactions in the
near future.

4.3 Crystal orientation in high magnetic field

4.3.1 Theory of crystal texture control

Recently, it has been found that crystal orientation in materials can be con-
trolled by the imposition of high magnetic fields. This principle can be applied
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not only to magnetic materials, but also to non-magnetic materials with
asymmetric unit cells [16–26].

When a non-magnetic substance is magnetized in a magnetic field, the
energy for magnetization of the substance is given by the equation

U = −
∫ B/µ0

0

MdBin, (7)

where M is the magnetization, B and Bin are the imposed magnetic flux
density and the magnetic flux density in the substance, respectively, and µ0

is the permeability in vacuum (4π × 10−7 H/m). The principle of control of
the crystal orientation using magnetic field is that magnetic torque rotates
crystals to take stable crystal orientation so as to decrease the magnetization
energy.

Let us consider the crystal structure with magnetic anisotropy, that is, the
magnetic susceptibility is different in each crystal direction. The value of the
magnetization energy is given by the equation

U = − χ

2µ0 (1 +Nχ)2
B2, (8)

which has been derived from Eq. (7). This determines the preferred crystal
direction depending on the magnetic susceptibility of each crystal axis and
the crystal shape. In the above N is the demagnetization factor. Let χc and
χa,b represent the c-axis and the a- or b-axis of the magnetic susceptibility,
respectively. When χc > χa,b, i.e. Uc < Ua,b, the c-axes of crystals is the
preferred one in parallel to the direction of the magnetic field. In contrast,
when χc < χa,b, i.e., Uc > Ua,b, the a- or b-axis of crystals is the preferred one
in parallel to the magnetic field. That is, the c-axis of crystals aligns to all of
the directions in the plane perpendicular to the imposed magnetic field.

Four necessary conditions have to be satisfied for the crystal orientation
under the imposition of a magnetic field. Firstly a unit crystal cell of materials
to be oriented should have magnetic anisotropy. The second is that the mag-
netization energy provided by the magnetic field should be higher than the
thermal energy to cause thermal perturbation. The third condition is that the
materials should be in the weak constraint medium, in which a particle com-
posed by the materials can rotate by such a feeble magnetization force. The
fourth is that each particle composed by a single crystal should be dispersed
in the medium.

4.3.2 Vapour-deposition process [13]

A crucible filled with target material of bismuth with 5 nine purity was put into
a vacuum chamber set in the bore of a superconducting magnet generating
a magnetic field of 12 T at the maximum intensity, and a glass plate as a
substrate was set perpendicular to the magnetic field direction at the position
with the maximum magnetic flux density in the bore. After the degree of
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Fig. 4. The relation between magnetic intensity and facial angle from the c-plane
in bismuth films

vacuum in the chamber reached a value of 5×10−3 Pa, bismuth in the crucible
was heated up to 1,073 K by an electric heater.

Figure 4 shows the relation between the magnetic field intensity and the
facial angle θF , the definition of which is given in the reference [27]. The
rotation to the a, b-plane increases with the increase in the magnetic field
intensity. This result agrees with the theoretical prediction based on Eq. (8).

4.3.3 Electro-deposition process

A copper substrate as cathode and a zinc plate as anode were set in a vessel
as an electrolytic cell. The magnetic field of 12 T was imposed perpendicular
to the cathode substrate plane. The detail of the experimental condition is
given in [11]. Figure 5 shows the relations between the orientation index and
the imposed magnetic flux density in the electrodeposits obtained at J =
700 A/m2. The higher the magnetic field, the more the c-plane orientation
is elicited. This result agrees with the theoretical derivation based on the
magnetization energy given in Eq. (8).

4.3.4 Applications of magnetic fields in slip casting process

A novel process where a high magnetic field is imposed during slip casting was
proposed to fabricate crystal-orientated ceramics [28, 29]. Here another novel
process is proposed, in which a specimen is rotated during the slip casting
under a high magnetic field. Figure 6 shows schematically the functions of
the magnetic field and rotation of crucible. Regarding the substance whose
magnetic susceptibility in the a- or b-axis is higher than that in the c-axis,
χc < χa,b, one-directional crystal orientation can not be obtained in a slip
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Fig. 5. Relations between magnetic flux density and orientation index of zinc elec-
trodeposits obtained at J = 700

Fig. 6. Schematic view of the functions of magnetic field and rotation of a crucible
under a magnetic field

casting under a high magnetic field, because the free choice of crystal orien-
tation exists both in the a- and b-axes. When the magnetic field is imposed
on the suspension, the c-axis of particles can align in various directions in the
plane perpendicular to the magnetic field direction. When a rotating magnetic
field is imposed on a fixed specimen, the c-axis of particles will be perpendic-
ular to the plane in which the magnetic field is rotating. From the viewpoint
of relative motion, the condition whereby the specimen is fixed and the mag-
netic field rotates is equivalent to the case where the specimen rotates in
a fixed magnetic field. It is suggested that in this configuration the c-axis of
particles will align to the direction of gravity. The usefulness of the newly pro-
posed process has been confirmed in fabrication of Si3N4 ceramics. In order
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Fig. 7. SEM micrographs of specimens made of α-Si3N4 powder with β-Si3N4 seeds:
(a), (b) without magnetic field; (c), (d) with magnetic field of 10 T under rotation
of crucible

to examine the effect of rotation, green samples have been prepared by rotat-
ing under the magnetic field of 10 T. Moreover, for the sake of comparison,
another sample has also been made without the magnetic field. After drying,
the green samples were embedded in powder bed of 60 wt % Si3N4 + 40 wt %
BN set in a graphite crucible and maintained at 1800oC for 1.5 h in N2 with-
out a magnetic field. Figure 7 shows the scanning electron microscope (SEM)
micrograph of the polished surfaces of specimen. It can be seen in Figs. 7a, b
that β-Si3N4 rod grains appear randomly distributed in the specimen, which
has been prepared without the exposure to the magnetic field. In the case of
the specimen prepared with the rotation under the magnetic field, a highly
textured material has been obtained as shown in Figs. 7c, d.

4.3.5 Crystal orientation in metal solidification

A zinc film (10 × 28 mm2) prepared by dipping a steel plate into a molten
zinc bath was set into a stainless steel pipe, which was inserted from the
upper part of a magnet bore. The sample plane was set up at the position
with the maximum magnetic flux density in the direction either parallel or
perpendicular to the magnetic field. A thermocouple was inserted through
the midair part of the stainless steel pipe and the temperature of the sample
was measured by the thermocouple connected with the plane. The crucible
was filled with argon gas to prevent the oxidation of the sample and the
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Fig. 8. X-ray diffraction patterns of zinc

temperature was kept in liquid and solid zone of zinc for 3 min. Then the
furnace was cooled down.

The diffraction pattern of x-rays on the samples, which were exposed to
the magnetic field in perpendicular and parallel directions is shown in Fig. 8a
and b, respectively. In Fig. 8a, the peak (101) plane was detected stronger in
the sample obtained with no magnetic field imposed. On the other hand, when
the magnetic field of 12 T was imposed, the peak (101) decreased, and the
peak (002) corresponding to the c-plane appeared stronger. The diffraction
pattern of x-rays on the sample to which the magnetic field was imposed in
parallel is shown in Fig. 8b. The peak (101) detected stronger in the sample
obtained with no magnetic field, the same as the previous result shown in
Fig. 8a. However, when the magnetic field of 12 T was imposed, the peak
(101) decreased, and the peak (100) corresponding to the a, b-plane appeared
stronger. That is, regardless of the direction of the imposed magnetic field, the
zinc crystals aligned in the direction predicted by the magnetization energy
mentioned before.

5 Future prospects for EPM

Concerning the future prospects for EPM, both the research trends and
industrial applications should be mentioned. One of the most crucial aspects
for the former is to find new functions, which are implied by the imposi-
tion of electric and magnetic fields. Stirring of molten metals, suppressing
liquid metal motion, heating metals, levitating metals, and separating non-
conductive materials in a conducting medium, etc., are well-known functions
based on the Lorentz force. Aligning crystal orientation and transporting
materials are the other well-known functions based on the magnetization force.
Recently, the introduction of high magnetic fields into EPM has provided
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several new functions, such as generating micro-eddy motion, the so-called
micro-MHD effect [30], and patterning of non-conductive particles [31], which
were found in the interaction between the electro-deposition reactions and
the Lorentz force. On the other hand, enhancing crystal orientation in sin-
tering process [32, 33], shifting solid–solid phase transformation [34], crystal
orientation during its transformation [35], and self-assembling and pattern-
ing of particles [36] are new functions, which have been explained using the
magnetization energy or the polarization effect.

Hitherto, industrial applications have concentrated on applications of func-
tions related to the Lorentz force. The functions of the magnetization force
induced by high magnetic fields, have scarcely been seen in practical appli-
cations. The functions based on the Lorentz force, such as stirring of molten
metals induced by traveling or alternating magnetic fields, suppressing molten
metal motion by static magnetic fields, and heating metals by high frequency
magnetic fields, have been used in metal industries for a long time. In 1990s,
cold crucible technology based on the functions of levitating and heating,
which was invented in 1920, was redeveloped for a great demand of chemi-
cally reactive metals, and for metals with high meting point, such as titanium
and silicon. In this technology, scaling up and the development of ejecting
method of a molten metal are main topics for the 2000s. The cold crucible
with the capacity of up to 500 kg has been developed in Japan [37], but the
full success story of the ejecting method has not been seen yet. The tech-
nology of soft-contacting solidification, whereby an alternating magnetic field
is imposed from outside of continuous casting mold to reduce the pressure
between the mold and a molten metal, and to provide the reduction of cool-
ing rate, was developed in a steel industry in the middle of 1990s. It is going
to be applied to continuous casting of metals with low latent heat per vol-
ume, such as aluminium and magnesium. The unstable solidification will be
reasonably prevented by the surface heating effect induced by high-frequency
magnetic field.

The activities in EPM are also spreading into a new area of solving envi-
ronmental problems.
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1 High magnetic fields in solidification processing

Magnetic fields are often used in materials processing, especially in solidifi-
cation processing for metallic alloys and semiconductors. For example, both
static and alternating magnetic fields have been used extensively to control
melt flow and solidified structures in the continuous casting of steels [1, 2].
Static magnetic fields are used as electromagnetic brakes and alternating mag-
netic fields are used as electromagnetic stirrers. Alternating magnetic fields
with rather high frequencies are used to hold melt pools and to achieve soft
contacts with molds. It is well known that electromagnetic processing can
significantly improve the quality of products.

The effect of static magnetic fields on macrosegregation has first been
reported in [3], based on observations of semiconductors grown by the hori-
zontal Bridgman technique. The magnetic field was found to suppress the
temperature fluctuations in the melt and the grown crystal did not exhibit
compositional striations. Static magnetic fields were also used for Czochralski
growth of semiconductor crystals InSb [4]. The imposed magnetic field elim-
inated the macrosegregation, which was associated with unsteady state flow
during crystal growth. In the solidification and crystal growth processes, both
conventional electromagnets and permanent magnets are used with magnetic
field intensities typically less than 2 T. It was recognized that conventional
magnetic field intensities are sufficiently high to reduce convection.

It has been reported that a sufficient amount of suppression of convection
during the Bridgman technique resulted in diffusion-controlled segregation [5].
The imposed magnetic field of 3 T is required to obtain diffusion-controlled
growth. The growth of single crystals in the presence of a magnetic field has
been carried out to improve crystal qualities [6–8]. Pioneering studies prove
that macrosegregation can be modified by high magnetic fields. In partic-
ular, the exposure of high magnetic fields is found to be a powerful tool for
suppressing the macroscopic melt flow sufficiently, and for achieving diffusion-
controlled growth.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
329–344. c© 2007 Springer.
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In addition to the modification of the macrosegregation, high magnetic
fields were used to control solidified structures in multiphase solidification.
Pb–Bi and Sn–Cd peritectic alloys were unidirectionally solidified under a
magnetic field of 10 T [9]. The diffusion-controlled solute transfer resulted in
a periodic structure in which the two constituent phases alternatively grew
perpendicular to the growth direction. An alternative use for high magnetic
fields is to achieve an intrinsic growth mode and to control solidified structures.

Recently, interest has focused on the use of high magnetic fields to suppress
microscopic flow and to modify microstructures. The Hartmann number,

Ha = Ba
√
σ/η, (1)

is often used as a measure of the influence of static magnetic fields on the
fluid flow. Here, σ and η are the electrical conductivity and viscosity, respec-
tively, B is the magnetic flux density, and a is the length scale of the system.
With increasing magnetic fields, the influence of the magnetic field is obvi-
ous, even for smaller systems. It is expected that a high magnetic field can be
used to control microscopic fluid flow. Thus, the micro magnetohydrodynamic
(µ-MHD) effect is recognized as a tool for controlling the microstructure of
materials.

In the 1990s, cryocooled superconducting magnets were developed and
became popular. The advantages of such magnets are their high magnetic
fields, their ability to run long-term and continuously, and their room-
temperature bore. Typically, a magnetic field of 10 T can be imposed in
a room-temperature bore of size 10 cm. In a relatively large bore at room
temperature, the superposition of alternating magnetic fields can easily be
achieved. Thus, the magnetic fields are designed for various purposes in mate-
rials processing, leading to a new area of study of electromagnetic processing
under high static magnetic fields. For example, a cold crucible was inserted
into a superconducting magnet [10, 11]. Titanium, which is one of the most
reactive metals, was statically melted in a cold crucible. Studies first proved
the potential of the simultaneous application of alternating and static mag-
netic fields for handling melts. The levitation technique has also been devel-
oped [12–14]. The design of functional magnetic fields should be noted as an
important technique in the electromagnetic processing of materials (EPM).

Under high magnetic fields, not only MHD but also thermodynamic effects
are important. The magnetic energy, Em, is given by the following equation:

Em = −M ·H. (2)

In general, the magnetic energy is extremely small, even for ferromagnetic
materials under a conventional magnetic field. However, the magnetic energy
influences the phase transformation in the solid state when a high magnetic
field is imposed [15,16]. The results proved that a high magnetic field enables
the development of novel material processing through MHD and the thermo-
dynamic effect.
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This paragraph presents examples of material processing under high mag-
netic fields. Firstly, the modification of a solidified structure by the µ-MHD
effect is demonstrated. Secondly, a novel levitation technique as well as its
application is presented. Thirdly, the thermodynamic effect of the high mag-
netic field is briefly explained.

2 Reduction of the melt flow in the microscopic region

2.1 Monotectic solidification

This paragraph describes the control of a solidified structure of monotectic
alloy by a static magnetic field and the fabrication of porous media using the
solidified structure. The high magnetic field has been used to suppress the
microscopic melt flow and motion of immiscible droplets, typically of 10 µm
diameter.

A monotectic reaction is defined by the simultaneous production of a solid
phase (S) and a liquid phase (L1) from a liquid phase (L), L → S + L1. The
reaction is essentially the same as the eutectic reaction defined by L → S1
+ S2, except that in the monotectic reaction one of the products is liquid.
In these reactions, coupled growth can often occur, in which two constituent
phases cooperatively grow by exchanging solute in the vicinity of the solidi-
fying front [17]. The coupled growth results in a lamellar structure or a rod
structure.

It is well known that the aligned rod structure can be produced for mono-
tectic alloys in monotectic compositions by unidirectional solidification as
well as for eutectic alloys [18–20]. Compared to eutectic structures [17], very
specific growth conditions are required for developing the aligned structure
in monotectic alloys. For example, a regular structure has rarely been pro-
duced in hypermonotectic compositions. The liquid–liquid interface can pro-
mote melt flow due to the temperature and concentration dependence of the
interfacial energy between the two liquid phases. The liquid phase produced
through the monotectic reaction moves easily in the melt due to convection
and density differences. Consequently, the inhomogeneous dispersion of the
minor phase particles, called “gravity segregation”, is often induced during
conventional solidification.

In spite of the difficulties associated with solidification, there are some
attractive features of the aligned structure of monotectic alloys. One is that
the shape of the minor phases is truly cylindrical because they are liquid when
major phases solidify. The other feature is that minor phase rods of the same
diameter are regularly aligned with each other, because the major and minor
phases grow cooperatively. It is a sort of self-organization process. If the fibrous
minor phase is removed from the matrix, porous media in which deep pores
with the same diameter are regularly aligned in the matrix, can be fabricated
[18–21]. Thus, it is of interest to control the monotectic solidification.
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2.2 Effect of high magnetic fields on monotectic solidification

Hypermonotectic Al-10 at % In alloys have been unidirectionally solidified
under magnetic fields of 10 T [22]. As is shown in Fig. 1, the imposition of a
static magnetic field during unidirectional solidification successfully achieved
an aligned rodlike structure, even for the hypermonotectic composition (10 at
% In). The three-dimensional (3D) image has been reconstructed from com-
puterized tomography using a synchrotron radiation facility [23]. The contin-
uous In rods with diameters of 10–20 µm are regularly aligned parallel to each
other.

The formation of the aligned structure is explained by considering the melt
flow in the vicinity of the solidifying front. For the hypermonotectic alloys,
the In droplet nucleates on the solidifying front of the Al phase. The In liquid
droplets can be pushed by the solidifying front [24–27]. Figure 2 is a schematic
illustration of an In droplet at the solidifying front. In the models [24–27], the
interfacial energy difference causes a repulsive force, and the melt flow into
the gap between the droplet and the solidifying front causes a drag force.
The drag force increases with increasing diameter of the droplet. When the
diameter exceeds a certain value, the droplet is engulfed by the front. The
sequence of the nucleation process, the pushing and the engulfment result in
a random distribution of the In droplets in the matrix.

The imposition of a static magnetic field during monotectic solidification
influences the melt flow around the droplets and the movement of droplets.

Fig. 1. (a) Transverse section of Al-10 at % In monotectic alloys solidified at 10 T
and (b) 3D image obtained by micro x-ray CT. The black and gray are Al and In,
respectively. In the 3D image, the Al phase has been removed
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Fig. 2. Schematic illustration of an L2 droplet at the solidifying front under a static
magnetic field

The melt flow around the droplet is similar to the melt flow of a rising par-
ticle in a metallic melt [28–30]. The analogy is used to explain the push-
ing/engulfment of the droplets at the solidifying front. The melt flows above
and below the sphere have a horizontal component and the eddy current is
induced. The Lorentz force caused by the imposed magnetic field and the
eddy current break the horizontal flow. As a result, the static magnetic field
enhances the drag force. The MHD analysis [28–30] and the experimental
result [31] indicate that the influence of the magnetic field becomes significant
in the case when the Hartmann number is sufficiently larger than unity.

In unidirectional solidification, the Hartmann number of the In droplet
(10µm diameter) is estimated to be roughly equal to 5 at a magnetic field of
10 T. This suggests that engulfment is enhanced by the magnetic field. The
local flow is also reduced, as well as the flow around the droplet. Therefore, the
solute transfer is relatively well controlled by the diffusion and consequently
the coupled growth between the Al-rich solid and In-rich liquid occurs even
at hypermonotectic compositions. According to the analysis, high magnetic
fields of the order of 10 T are required to control the microstructure of the
multiphase solidification, since the microstructure is typically of the order of
10−6 m.

Electrochemical dissolution successfully removes the In rods from the
matrix [22]. Figure 3 shows the porous Al produced using the monotectic
alloys solidified under the high magnetic field. Deep pores whose depths were
more than 500 µm were produced by monotectic solidification under a mag-
netic field and electrochemical dissolution. The study implies that a high mag-
netic field is a powerful tool for controlling the microstructure and contributes
to the fabrication of functional materials. MHD is expected to integrate high
magnetic fields into materials processing.
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Fig. 3. Porous aluminum fabricated by the selective dissolution of the In phase from
the Al–In alloy solidified under a magnetic field

3 Superposition of magnetic fields

3.1 Electromagnetic vibrations

From the viewpoint of materials processing, alternating magnetic fields have
active roles on melts, while static magnetic fields have passive ones. Further-
more, the effect of alternating magnetic fields depends on the frequency. For
example, relatively low frequencies are effective for stirring and high frequen-
cies are effective for inducing magnetic pressures. Thus, the superposition of
various magnetic fields is a promising method for improving the quality of
products.

In the continuous casting of steel, it has been found that an alternating
magnetic field imposed from the outside of a mould improves the surface
quality of steel [1, 2]. The hydrostatic pressure between a mould and molten
metal is reduced due to the magnetic pressure and the stabilization of the
meniscus of the molten steel. In addition, an intermittent alternating magnetic
field has also been imposed to introduce the synchronized oscillation of the
meniscus [2]. The superposition of alternating magnetic fields was found to
improve the surface quality of cast steel.

As mentioned above, a large room-temperature bore gives rise to the super-
position of an electric current and alternating magnetic fields in a high sta-
tic magnetic field. Compression waves in melts have useful functions such as
degassing, the acceleration of the reaction rate, the refinement of solidified
structures, and the dispersion of immiscible substances. Mechanical methods,
such as the electrostrictive and the magnetostrictive techniques are restricted
in metallurgical processes because of the contamination of devices in high-
temperature melts. The generation of compression waves in melts by the
application of high-frequency electromagnetic fields has been proposed [32].
To intensify the compression waves, an alternating magnetic field (60 Hz) was
superimposed on a high static magnetic field [33]. The observed pressure was
close to atmospheric one.
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Fig. 4. The effect of the electromagnetic vibration on the solidified structure. The
imposition of the electromagnetic vibration during the solidification significantly
contributed to the refinement. (After Professor Iwai, Nagoya University.)

Simultaneously, imposing an alternating current and a static magnetic field
has been found to refine the grain size of solidified alloys [34, 35]. Recently, a
novel method has been proposed [36, 37]. An alternating current was locally
imposed during solidification. Vibrations occurred near the electrodes and
propagated in the melt. Figure 4 shows the solidified structure. The vibrations
increased the number of seed crystals and consequently a refined structure was
obtained in the whole of the casting. The refinement of the crystal grains in
the solidified structure will be beneficial for improvement of the mechanical
properties.

3.2 Containerless process by magnetic fields

The electromagnetic levitator is the most popular method for processing
metallic melts using the containerless method [38–40]. The method has been
widely used to investigate solidification from undercooled melts [41] and
to measure thermophysical properties, even the metastable states [38]. The
electromagnetic force due to an alternating magnetic field is given by

F = − 1
2µ

∇(B · B) +
1
µ

(B · ∇)B. (3)

Here B is the magnetic flux density and µ is the magnetic permeability. The
force of gravity balances the electromagnetic force given by the first term in
Eq. (3). The second term is the rotational term, which causes electromag-
netic stirring. Even when the first term is dominant at high frequencies, the



336 H. Yasuda

second term remains nonzero. Therefore, electromagnetic levitation intrinsi-
cally induces convection and oscillations in melts.

Besides the electromagnetic force, the magnetization force, which origi-
nates in the interaction between the magnetization and the external magnetic
field, can be used to levitate melts in high static magnetic fields. The magne-
tization force is given by Eq. (4):

F = − 1
2µ
χ∇ · B2. (4)

Here, χ is the magnetic susceptibility. Diamagnetic materials were levitated
by the magnetization force [42–44]. Since magnetization is a body force, a
pseudo-microgravity condition can be achieved. Thus, the levitation method
by the static magnetic field can be used to avoid violent vibrations and strong
convection. In addition to diamagnetic materials, paramagnetic ones have also
been levitated using magneto-Archimedes levitation [45]. In this method, the
susceptibility of materials to levitation is relatively negative with respect to
the susceptibility of the atmosphere. Although the method can be used for
various materials, conventional superconducting magnets cannot levitate most
of the melts used in metallurgical processes. Thus, it is still desirable to develop
another method that is able to levitate melts at high temperatures.

Recently, an electromagnetic levitation method, which simultaneously
imposes alternating and static magnetic fields, has been developed [14]. A
theoretical approach has also been developed for fluid flow in melts levitated
using alternating and static magnetic fields [46]. The melt flow can be sup-
pressed by imposing a static magnetic field. Figure 5 is a schematic illustra-
tion of an electromagnetic levitator. A cryogen-free superconducting magnet

Fig. 5. Schematic illustration of the electromagnetic levitation apparatus using
alternating and static magnetic fields
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Fig. 6. Levitated copper melts at 0 T and 0.75 T

imposes a static magnetic field. An RF generator (frequency: 200 kHz, power:
20 kW) has been connected to the levitation coil. Figure 6 shows levitated
copper melts [14]. Oscillations and convection were only observed for mag-
netic fields below 0.5 T. Only rotation, for which the axis is parallel to the
static magnetic field, was observed in magnetic fields exceeding 1 T.

The motion of levitated melts can be classified into five categories: oscilla-
tion, convection, rotation (rotation axis perpendicular to the static magnetic
field), rotation (rotation axis parallel to the static magnetic field), and move-
ment of the center of gravity. According to analysis of the electromagnetic
force, all modes except rotation (rotation axis parallel to the static magnetic
field) can be suppressed by the static magnetic field. The experimental results
clearly indicate that the simultaneous imposition of alternating and static
magnetic fields achieve a stable levitation in which metallic melts are levi-
tated without melt flow or oscillation.

3.3 Application of electromagnetic levitation

Refined grains, such as equiaxed grains, are preferable for most castings. The
morphology of solidified structures has been investigated by the conventional
levitation method. In the Ni–Cu system, the morphological transition from
equiaxed to columnar grains occurs at a lower critical undercooling, and the
other transition from columnar to equiaxed grains occurs at a higher criti-
cal undercooling [41]. The fragmentation of the dendrites during the period
following the recalescence on the basis of the model has been evaluated [47,48].
The estimated morphology agrees qualitatively with the experimental results.



338 H. Yasuda

Fig. 7. Microstructure of middle carbon steels solidified at 0 T and 1 T using the
levitation method using alternating and static magnetic fields

However, the authors also point out that the lower critical undercooling esti-
mated by the model is in relatively poor agreement with the experimental
result [47]. The melt flow may also result in a poor agreement. However, the
melt flow cannot be modified by the conventional method. The novel levitation
method using the simultaneous application of alternating and static magnetic
fields achieves levitation without convection. Thus, it is of interest to examine
the effect of the melt flow on the microstructure from the undercooled melt.

Figure 7 shows the solidified structures of middle carbon steel using the
levitation method [49]. The equiaxed grains are obtained when a static mag-
netic field is not imposed during solidification. In contrast, dendrites grow into
the center of the specimen and columnar grains are obtained when a static
magnetic field of 1 T is imposed. The transition from equiaxed to columnar
grains by imposing a static magnetic field has also been observed for Cu–Ag
and Fe–Ni alloys [49]. Experiments using the novel levitation method show
that the transition from equiaxed to columnar grains by reducing the melt
flow is a universal phenomenon.

A possible mechanism for equiaxed grain formation is the fragmentation
of dendrite arms in the present case [50, 51]. Primary dendrite arms are frag-
mented due to the instability of the cylindrical shape [47, 48]. The surface
tension drives the shape change from a cylindrical to a spherical shape to
minimize the interfacial energy in the system. Since the shape change of the
dendrite arms is controlled by the solute diffusion around the arms, the solute
transfer can significantly affect the fragmentation. This transition induced
by the magnetic field indicates that the melt flow significantly enhances the
solute transfer and consequently causes fragmentation of the dendrite arms.
The experimental results first proved that solute transfer due to the melt flow
in the mushy zone contributed dominantly to fragmentation during solidifica-
tion at the lower undercooling region.
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Another application of the containerless processes is the measurement of
the thermophysical properties of melts at high temperatures. For example,
the oscillation drop method has been widely used for measuring the surface
tension of various melts [39, 40, 52, 53]. This is evaluated from the Rayleigh
frequency of the melt oscillation due to the surface tension. For measurements
under terrestrial conditions, the melt becomes aspherical due to the electro-
magnetic and gravitational forces. The deviation from a spherical shape results
in the split of the fundamental oscillation frequencies. For the l = 1 modes [39],
the oscillations of the m = 0, |m| = 1 and |m| = 2 modes exist. In cases where
the observed frequencies are identified, the surface tension can be evaluated
by the corrected equation [40]. However, it is not always easy to perform mode
identification [54].

As mentioned in § 3.2, static magnetic fields suppress the melt flow in levi-
tated melt. Recently, damping of the oscillation by a static magnetic field has
been observed [55]. The shape of the levitated melt has been traced as shown
in Fig. 8. Traces of the melt show that the electromagnetic force agitated sev-
eral modes of the oscillation at 0 T. At 0.6 T, the vertical length was almost
constant and the horizontal one changed periodically. The shape change sug-
gests that the oscillation of the l = 2, |m| = 2 mode remained, and that the
other modes were preferentially suppressed. An advantage of the damping is
that mode identification is not needed in the oscillation. Thus, the levitation
method may simplify the evaluation of the surface tension. It is expected that
the levitation method using alternating and static magnetic fields will become
a useful new technique for the measurement of surface tension.

Melt levitated without melt flow is also beneficial for the measurement of
other physical properties. For example, the volume of the melt can be precisely
measured because the shape of the melt does not fluctuate. Consequently, the
density of the melt is evaluated. In addition, other thermophysical proper-
ties such as the thermal conductivity, viscosity, and solute diffusivity may

Fig. 8. Traces of levitated copper melts
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be measured. The superposition of static magnetic fields on electromagnetic
levitation is expected to have various applications.

4 Thermodynamic effect on the microstructure evolution

The development of crystallographically aligned or textured microstructures
improves material properties. It has been recognized that the use of high mag-
netic fields can be a powerful tool for achieving crystallographically aligned
microstructures (referred to as aligned structures) even for paramagnetic and
diamagnetic materials. For example, the aligned structure of the Y–Ba–Cu–O
superconductor has been fabricated using the anisotropy of magnetic suscep-
tibility [56–59]. Aligned microstructures have also been obtained by sintering
for some ceramics [60–63]. In these processes, the crystalline particles rotate
in a preferential direction according to the magnetic anisotropy energy. The
alignment is essentially explained by considering the rotation in the fluids.

Recently, crystallographical alignment and textured structures have been
observed for ferromagnetic materials [64–67] and for paramagnetic ones [68,69]
during annealing under a high magnetic field. For example, textured struc-
tures have been observed in Zn bicrystals during annealing in a high magnetic
field [68]. The results suggest that the high magnetic field influences the ther-
modynamic equilibrium in the solid state, even for paramagnetic materials.
From the viewpoint of materials processing, the thermodynamics, including
the magnetic effect, need to be considered carefully, in addition to MHD.
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1 Introduction

When a liquid metal is submitted to an alternating magnetic field, electro-
magnetic forces, called Lorentz or Laplace forces, may be created in the metal
due to the interaction between the induced electric currents and the applied
magnetic field. When the magnetic field is pulsating and according to its
frequency f (which vanishes in the case of DC magnetic field), the electro-
magnetic forces generate various effects both on the bulk motion and at the
free surface of the liquid metal [1–3]. These effects have been applied to the
design of many industrial processes, and the use of AC magnetic fields is
now widespread. Formally, we may distinguish two kinds of phenomena: the
bulk flow hydrodynamics (the so-called electromagnetic stirring) and the free-
surface problem. Note that in practical applications the distinction is not so
strict. In the usual cases, the bulk hydrodynamics is decoupled from the elec-
tromagnetic aspects. The electromagnetic field and the electric currents are
calculated first as if the fluid is at rest. Then, the electromagnetic forces are
injected in the momentum equation to determine the bulk flow. However, con-
cerning the free-surface problems, the situation is different. The free-surface
domain deformation affects the electric current path, and there appears a real
coupling between the electromagnetic and dynamical aspects.

Let us now focus on the behaviour of free surfaces submitted to AC electro-
magnetic fields. It is a fascinating boundary problem. For the sake of simplic-
ity, two sub-cases may be distinguished: the case of static deformation and
the one of free-surface motion. These two cases will be considered in § 2.

2 Static deformation generated by AC magnetic fields

When the electric current is alternating, the electromagnetic forces F comprise
both a mean steady part 〈F〉 and an alternating one, F̃ cos(2ωt+ ϕ), i.e.,

F = 〈F〉 + F̃ cos(2ωt+ ϕ), (1)
where ω is the magnetic field pulsation and ϕ is a phase.

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
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Fig. 1. Sketch of a liquid metal pool submitted to an AC magnetic field generated
by a solenoidal coil supplied with alternating electric currents

The two parts usually are of the same order except in the very low freq-
uency case [4]. However, in the medium frequency range because of the fluid
inertia, the alternating part of the electromagnetic forces has no significant
effect on the liquid metal free surface provided that the magnetic field freq-
uency is much larger than the free surface natural frequencies. The mean part
of the electromagnetic forces is responsible for various phenomena. Firstly,
it is generally rotational and accordingly generates a significant bulk fluid
flow [1], [4]. But one of the most striking effects is the free surface static
deformations; thanks to the well-known repulsion effect. The latter phenom-
enon is caused by the so-called electromagnetic pressure. When the skin depth
δ is much smaller than the pool dimension, the electromagnetic forces reduce
to a gradient force perpendicular to the pool boundary. This is illustrated by
the sketch in Fig. 1.

2.1 Electromagnetic levitation

Thanks to a special design of the coil, the repulsive electromagnetic forces
are able to balance gravitational forces to levitate totally or partially a liquid
metal blob located in a coil [5–7]. This has been first demonstrated experi-
mentally by Okress [7]. An example of levitated drop experiment is shown in
Fig. 2. Theoretical analysis have been carried out by Mestel [5] and then by
Sneyd and Moffatt [6], who established that there exist a variational princi-
ple according to which the electrical energy input balances the gravitational
energy and the superficial one. By means of a balance between the magnetic
energy and the gravitational one, it may be easily shown that the typical
height hm of the levitated drop evolves as the square of the applied magnetic
field according to the following relation:
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Fig. 2. View of a liquid aluminium blob levitated by an AC magnetic field, pool
diameter 30 mm (experiment performed in the EPM laboratory)

hm =
B2

0

2µρg
, (2)

µ, ρ, g, and B0 being respectively the permeability of the vacuum, the liquid
metal density, the gravity and the typical magnetic field strength (r.m.s.
value).

2.2 Shaping and guiding

Another interesting use of the magnetic pressure is the possibility of shaping
or guiding a liquid metal jet which crosses a coil [8–10]. An example of shaping
is shown in Fig. 3. The liquid metal jet which crosses a Helmholtz-type coil
tends to be aligned with the magnetic field lines [8]. Then, the jet cross section
is flattened.

2.3 Dome effect

In a classical single-phase induction furnaces, the magnetic pressure is respon-
sible for the dome formation which has been widely shown both experimen-
tally and numerically [11]. Figure 4 shows a typical dome-shaped free surface
obtained in a cold crucible induction furnace [12]. The magnetic field exerts a
centring effect on the free surface and diminish the contact between the melt
and the crucible. This property has been used to develop the concept of soft
contact casting in continuous casting of steel.

2.4 Unsymmetric static free surfaces

The shape of the liquid free surface may not always remain axisymmetric
even in axisymmetric coil configurations, especially for large magnetic field
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Fig. 3. Deformation of mercury jets in a Helmholtz-type coil. Flow rate: 25 cm3/s;
nozzle diameter : Ø = 5 mm (a) B = 25.5 mT L/Ø = 1.13; (b) B = 54 mT L/Ø =
2.08; (c) B = 61.2 mT L/Ø = 2.73

Fig. 4. Photographs of the static deformation of a liquid metal free surface under
the effect of a AC magnetic field (a) classical stable dome shape on an aluminium
pool for f = 7.5 kHz [12]

amplitude. A symmetry breaking may occur in some geometrical conditions.
For example, for shallow horizontal liquid metal pools other types of static
deformation may be obtained [13]. Highly non-symmetric steady shapes may
be observed when the magnetic field amplitude increases. Figure 5 illustrates
such phenomenon on a gallium layer in a 10 kHz AC magnetic field. According
to the variational principle, the pool increases its surface energy (by increas-
ing the drop perimeter) rather than the gravitational one. This phenomenon
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Fig. 5. Static shapes of the liquid gallium drop submitted to a AC magnetic
field [13], pool diameter 60 mm, f = 14 kHz (a) the drop is at rest B0 max = 0,
(b) B0 max = 39 mT

may also be interpreted in another way. Indeed, the free surface horizontal
deformation modifies the induced electric current path giving birth to a kind
of “edge instability”. This instability is analogous to the pinch effect observed
in another configuration by Mohring and Karcher [14]. In such a particu-
lar geometry, the system tends to maximize the electric current path which
is confined near the pool edge. Accordingly, the global electric resistance of
the system is higher, and the coupling between the melt and the inductor
decreases.

3 Wave motion and instability under AC magnetic fields

The free-surface behaviour (shape, oscillation, instability) varies with the
value of the magnetic field amplitude, as well as the applied frequency. Two
kinds of situations may occur according to the value of the frequency of the
magnetic field. They will be discussed in §§ 3.1 and 3.2.

3.1 Low frequency single-phase magnetic field

It has been shown that very low frequency AC magnetic fields could generate
motions at the free surface of a liquid metal when the natural frequencies of
the interface are of the same order as the magnetic field frequency [10,12]. In
the limit of low frequencies, i.e., large skin depth compared with the dimension
of the pool, the oscillating part of the electromagnetic forces is dominant and
is responsible for two types of actions [15–17]. Firstly, it generates forced
standing free-surface waves. Such waves have the same degree of symmetry
as that of the force [17]. For example, in an axisymmetric geometry, the wave
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Fig. 6. Top view of forced waves on the free surface of a mercury pool located inside
a single phase coil [2], the oscillation frequency is 2f , the magnetic field amplitude
and frequency are respectively 0.10 T and f = 3.06 Hz (a) circular tank of radius
100 mm, (b) rectangular tank of dimension 120 mm, the magnetic field amplitude
and frequency are respectively 0.15 T and 2.87 Hz

pattern is axisymmetric as well. Such types of forced waves are illustrated in
Figs. 6 and 9b. They occur in various geometries. In Fig. 6 the liquid metal is
contained in a cylindrical or square tank with a horizontal free surface, whilst
in Fig. 9 the liquid metal domain consists of a liquid drop set on a substrate.
An instability appears for higher amplitude magnetic fields, the interaction
parameter N is of the order of one, N being defined as

N =
σB2

0

2πρf
, (3)

σ, ρ, B0, and f being respectively the electrical conductivity of the liquid
metal, its density, the magnetic field amplitude, and its frequency. The free
surface becomes unstable and non-symmetric waves appear on the free sur-
face. Such instabilities, which are illustrated in Figs. 7 and 9, mainly come
from “parametric” resonance effects due to the alternating part of the Lorentz
forces [15–19]. Note that, now, contrarily to the forced wave case, the free
surface oscillates at the applied magnetic field frequency. Two kinds of para-
metric instability may occur (see, e.g., Figs. 7 and 9c, e). Indeed, the type-I
parametric instability corresponds to a single-mode transition whilst type II
leads to a mode combination [17].

For large magnetic field values, the free surface becomes highly agitated.
Liquid metal ejections may be observed (Figs. 8 and 9). In some conditions an
emulsion of small droplets appears (see, e.g., Fig. 9f). The size of the droplets is
of the order of the gravito-capillary length. It is noteworthy that the emulsion
regime appears beyond a certain magnetic field threshold. The interpretation
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Fig. 7. View of the various free-surface instabilities in an annular vessel submitted
to a vertical uniform low frequency magnetic field [18]

Fig. 8. Free surface instabilities of a mercury pool located inside a single-phase
coil [15], the oscillation frequency f = 10.3 Hz. The pool diameter is 200 mm

is as follows. When the magnetic energy increases, the surface energy must
increase as well. This is achieved by a decrease of the width of the fingers.
However, that width cannot be smaller than the capillary length. Thus, the
only way to increase the surface energy of the drop is to break into droplets.
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Fig. 9. Plane liquid metal layer viewed from above [19]; the various pictures show
the regime according to both the magnetic field amplitude and the applied frequency,
the typical drop diameter is 60 mm, the magnetic field amplitude varies from 0.1
to 0.2 T. (a) Mercury drop is at rest; (b) forced wave regime f = 9.602 Hz; (c)
parametric regime, mercury drop f = 2.10 Hz; (d) unstructured regime with finger
formation, mercury drop f = 10 Hz; (e) combination mode regime (4 + 8), gallium
drop f = 4.01 Hz; (f) emulsion of a gallium drop f = 6.2 Hz

3.2 Instability under medium- and high-frequency magnetic field

Let us consider now the case where the electromagnetic skin depth is smaller
than the pool dimension. Both parts of the Lorentz forces are comparable.
The idea to use AC magnetic field in order to stabilize the free surface of a
liquid metal is quite old [14]. The action of AC magnetic fields still remains a
pending question. It is not clear whether or not a magnetic field may stabilize
a liquid metal free surface. The literature on the subject is quite controversial
even in a simple geometry such as a planar free surface under the action of
a parallel magnetic field. In the approximate quasi-steady analysis performed
by Garnier and Moreau [20] the magnetic field is neutral. But, by means of a
linear stability analysis, Mac Hale and Melcher [21] have found that a kind of
electromechanical-electrothermal instability could occur for a mid-frequency.
They confirmed their analysis by an experiment performed at a frequency of
2 kHz. Recent experiments on a liquid metal drop located in a coil also show
that instability occurs for sufficiently strong magnetic fields in the frequency



Effect of AC Magnetic Fields on Free Surfaces 353

Fig. 10. Effect of a parallel AC magnetic field on a liquid metal free surface [24];
maximum growth rate σ of the wave perturbations versus the magnetic field pul-
sation ω = 2πf for three values of the non-dimensional magnetic field strength
M = B2

0/2µρgδ; instability occurs when the growth rate is positive; instability dis-
appears for the highest frequencies, but increasing the magnetic field strength M
widens the unstable region

range of around 20 kHz [22]. Without using the quasi-steady approximation,
Deepak and Evans [23] performed a stability analysis and showed also that
a parallel magnetic field could be weakly destabilizing. Nevertheless, Iwai et
al. [24] showed experimentally that forced waves were damped when a high
frequency magnetic field (100 kHz) was applied parallel to a gallium free
surface. A possible explanation of the controversy was given by Fautrelle and
Sneyd [25] in the case of a uniform parallel single-frequency AC magnetic
field. They showed that the mode parallel to the field might be unstable
for moderate frequencies (the mode perpendicular to the magnetic field is
neutral) [24]. However, for a given magnetic field increasing the frequency
suppressed the instability, whilst increasing the magnetic field strength might
enhance it. This effect is illustrated in Fig. 10 extracted from [25]. It may be
seen from Fig. 10 that the higher the magnetic field strength, the easier the
ability of the surface of the pool to be destabilized. In that analysis the most
unstable wavelength were of the order of the electromagnetic skin depth. In
conclusions, when a medium-frequency magnetic field is used, for example, to
shape a liquid metal free surface or to levitate the liquid blob, the free surface
may be subject to electromagnetic instabilities according to the frequency as
well as the magnetic field amplitude.

Free-surface instabilities may exist even if the magnetic field frequency
is not very low. Drop and pinch experiments discussed in § 3 clearly show
that symmetry breaking occurs for sufficiently high magnetic fields. In that
case the unstable modes are perpendicular to the magnetic field contrary to
the previous one. Accordingly, another instability mechanism must be sought.
One possible mechanism comes from the fact that the electric currents are
significantly disturbed by the free-surface perturbations in that case (contrary



354 Y. Fautrelle et al.

to the previous situation). The latter effect could contribute to enhance the
instability.

4 Conclusions

The use of AC magnetic fields to control or to levitate liquid metal free surface
is quite old, and the first attempts were made approximately 50 years ago. It is
an elegant means to fulfil various metallurgical aims. For example, levitation
or quasi-levitation avoids or minimizes the contact between the liquid metal
and the crucible. Surface agitation generated by low-frequency magnetic field
increases significantly mass transfers across a liquid–liquid interface in ladle
refining. Recent trends involve using complex magnetic fields such as two-
frequency fields [26–28], i.e., high and low frequencies (modulated magnetic
fields) or DC field (f = 0) with high frequency field. It is noticeable that
50 years later some fundamental questions concerning the stability of free
surface under AC magnetic fields are still pending even in the simplest planar
geometry.

References

1. Sneyd AD (1994) Theory of electromagnetic stirring by AC fields. IMA J Math
Appl Bus Indust (invited review article) 5(2):87–113

2. Fautrelle Y, Perrier D, Etay J (2003) Free surface controlled by magnetic fields.
Trans ISIJ Int 43(6):801–806

3. Moreau R (1990) Magnetohydrodynamics. Kluwer Academic, Dordrecht
4. Taberlet E, Fautrelle Y (1985) Turbulent stirring in a experimental induction

furnace. J Fluid Mech 159:409–431
5. Mestel AJ (1982) Magnetic levitation of liquid metals. J Fluid Mech 117:27–43
6. Sneyd AD, Moffatt HK (1982) Fluid dynamical aspects of the levitation melting

process. J Fluid Mech 117:45–70
7. Okress EC, Wroughton DM, Comenetz C, Brace PN, Kelly JCK (1952) Elec-

tromagnetic levitation of solid and molten metals. J Appl Phys 23:545–552
8. Brancher JP, Etay J, Sero-Guillaume O (1983) Formage de lames liquides, cal-

culs et expériences. J de Mec Théor Appl 2(6):977–989
9. Etay J, Garnier M (1984) Some applications of high frequency magnetic field in

metallurgical applications of magnetohydrodynamics. In: Proceedings of IUTAM
Symposium. The Metals Society, London, pp 190–196

10. Shercliff JA (1981) Magnetic shaping of molten metals. Proc R Soc Lond
375:455–473

11. Barbier JN, Fautrelle Y, Evans JW, Cremer P (1982) Simulation numérique des
fours chauffés par induction. J de Mec Théor Appl 1(3):533–556

12. Leclerq I (1989) Ph.D. dissertation. Institut National Polytechnique de Greno-
ble, France



Effect of AC Magnetic Fields on Free Surfaces 355

13. Fautrelle Y, Perrier D, Etay J (2003) Free surface deformations of a liquid metal
drop submitted to a middle-frequency AC magnetic field. In: Proceedings of the
4th International Conference on Electromagnetic Processing of Materials, Lyon,
France, 14–17 October 2003, pp 279–282

14. Mohring J-U, Karcher Ch (2002) Electromagnetic pinch in an annulus: experi-
mental investigation and analytical modelling. In: Proceedings of the 5th Inter-
national PAMIR Conference on Fundamental and Applied MHD, Ramatuelle,
France, 16–20 September 2002, I, pp 143–148

15. Galpin JM, Fautrelle Y (1992) Liquid metal flows induced by low frequency
alternating fields. J Fluid Mech 239:383–408

16. Galpin JM, Fautrelle Y, Sneyd A (1992) Parametric instability in low frequency
magnetic stirring. J Fluid Mech 239:409–427

17. Fautrelle Y, Sneyd A (2005) Surface waves created by low-frequency magnetic
fields. Eur J Mech B/Fluids 24:91–112

18. Debray F, Fautrelle Y (1994) Free surface deformation frequencies of an elec-
tromagnetically excited mercury layer. Exp Fluids 16:316–322

19. Fautrelle Y, Etay J, Daugan S (2005) Free surface waves generated by low
frequency alternating magnetic fields. J Fluid Mech 527:285–301

20. Garnier M, Moreau R (1983) Effect of finite conductivity on the inviscid stability
of an interface. J Fluid Mech 127:365–377

21. Mac Hale EJ, Melcher JR (1982) Instability of a planar liquid layer in an alter-
nating magnetic field. J Fluid Mech 114:27–40

22. Karcher Ch, Kocourek V, Schulze D (2003) Experimental investigations of elec-
tromagnetic instabilities of free surfaces in a liquid metal drop. In: Nacke B,
Baake E (eds) Proceedings of International Scientific Colloquium “Modelling for
Electromagnetic Processing”, Institute for Electrothermal Processes, University
of Hannover, Germany, pp 105–110

23. Deepak, Evans JW (1995) The stability of an interface between viscous fluids
subjected to a high-frequency magnetic field and consequences for electromag-
netic casting. J Fluid Mech 287:133–150

24. Iwai K, Suda M, Asai S (1994) Damping behaviour of surface wave motion on
molten metals by imposing a high frequency magnetic field. In: Proceedings of
International Symposium on Electromagnetic processing of Materials EPM ’94,
Nagoya, Japan, 25–28 October. Iron and Steel Institute of Japan, Tokyo, pp
127–131

25. Fautrelle Y, Sneyd A (1998) Instability of a plane conducting free surface sub-
mitted to an alternating magnetic field. J Fluid Mech 375:65–83

26. Li T, Sassa K, Asai S (1994) Dynamic meniscus behavior in continuous cast-
ing mold with intermittent high frequency magnetic field and surface quality
of products. In: Proceedings of International Symposium On Electromagnetic
Processing of Materials EPM ’94, Nagoya, Japan, 25–28 October, The Iron and
Steel Institute of Japan, Tokyo, pp 242–247

27. Takeuchi E, Miyazawa K (2000) Electromagnetic casting technology of steel. In:
Proceedings of the 3rd International Symposium on Electromagnetic Processing
of Materials EPM’ 00, The Iron and Steel Institute of Japan, Tokyo, pp 20–27

28. Perrier D, Fautrelle Y, Etay J (2003) Experimental and theoretical studies of
the motion generated by a two-frequency magnetic field at the free surface of a
gallium pool. Metall Mat Trans B 34(5):669–678



Numerical Modelling for Electromagnetic
Processing of Materials

Valdis Bojarevics and Koulis Pericleous

University of Greenwich, CMS, Park Row, London SE10 9LS, United Kingdom
(v.bojarevics@gre.ac.uk)

1 Introduction

Electromagnetic processing of materials (EPM) is one of the most widely
practiced and fast growing applications of magnetic and electric forces to
fluid flow. EPM is encountered in both industrial processes and laboratory
investigations. Applications range in scale from nano-particle manipulation
to tonnes of liquid metal treated in the presence of various configurations of
magnetic fields. Some of these processes are specifically designed and made
possible by the use of the electromagnetic force, like the magnetic levitation of
liquid droplets, whilst others involve electric currents essential for electrother-
mal or electrochemical reasons, for instance, in electrolytic metal production
and in induction melting. An insight for the range of established and novel
EPM applications can be found in the review presented by Asai [1] in the
EPM-2003 conference proceedings.

Due to the complex coupling between flow and electromagnetics, numerical
modelling is the most economical way of analysing, optimising, and develop-
ing new EPM applications. Typically, numerical efforts are concerned with
specific manufacturing processes, application conditions, and particular field
configurations. This approach is encountered too often in numerical modelling,
and we would like to quote Jaluria [2] in saying that “what is often missing
is the link between the diverse processing techniques and the basic mecha-
nisms that govern the flow”. Bearing this in mind, we will restrict the present
review – also because of the obvious space limitations – to three major appli-
cations of EPM, where numerical modelling brings out basic physical mech-
anisms and where validation can be obtained by analytical solutions and/or
experimental measurements. We will consider (1) the magnetic levitation of
liquid droplets, (2) the induction cold crucible melting, and (3) the magneto-
hydrodynamic (MHD) aspects of aluminium electrolysis cells. These three
EPM processes have attracted considerable interest by modellers for many
years and vast experience has been accumulated. Nevertheless, the following
analysis will show how the link between the basic physical mechanisms is still

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
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a challenging task for the numerical modelling, especially where (a) the electro-
magnetic fields are coupled to the free surface and its time-dependent varia-
tion, (b) to the melting/solidification front position, and (c) the thermal field
depends on the turbulent flow and the combination of magnetic fields.

2 Magnetic levitation of liquids

Since the earliest magnetic levitation experiments in AC fields [3], it became
apparent that the levitated liquid metal is prone to oscillation and instabil-
ity. A very intense internal fluid flow was visually observed, apparently in the
turbulent regime for earthbound conditions. The visual observations indicated
typical velocities of the order of 0.20–0.40 m/s in a 10 mm diameter droplet [4]
corresponding to a Reynolds number of the order 103–104. Numerical mod-
elling of the fluid flow was usually restricted to an assumed, fixed shape of
the droplet [4–8]. The intense turbulent flow was therefore not included in
the free-surface shape calculation or oscillation analysis because of numerical
difficulties, until recently [9]. The common approach for predicting the free-
surface behaviour of a magnetically levitated droplet influenced by an external
high-frequency magnetic field is based on the idea of a thin skin-layer pene-
tration depth, when the free-surface shape can be obtained independently of
the internal fluid motion [5, 10, 11]. This approximation essentially removes
the dependence on the electrical conductivity of the levitated material.

It is instructive to see how this assumption compares to the known analyt-
ical solution for a conducting sphere surrounded by a single/multiple coaxial
AC loops [12]. Figure 1 shows that for typical levitation conditions the mag-
netic field still penetrates considerably the 8 mm aluminium sphere at 1 MHz
AC, and there is an interesting feature of the secondary induced currents
next to the skin layer. The same analytical solution can be used to validate
numerical solutions for the levitated droplet (Fig. 2). The numerical solution
method using the Green function representation [4, 7, 11, 13] is sensitive to
the discretization grid in an unexpected way: it is more important to have a
very fine mesh division along the skin layer, but not so much in the direction
normal to the boundary. In addition to this, the self-induction contribution is
essential for a realistic approximation.

With the assumption of an ideal fluid potential flow, droplet oscillations
induced under such conditions were studied using small amplitude linear the-
ory in [14], and the transient decay of the droplet oscillation with viscous
corrections in [15]. The viscous decay of small amplitude oscillations for the
relevant liquid metal was numerically simulated in [6], however, without a
magnetic field and in the absence of gravity. The transient internal flow decay
in the slow flow, Stokes approximation for a levitated droplet was theoretically
investigated in [7]. The thin skin-layer assumption was recently tested for cases
of typical experimentally used frequency and material property values, using
an axisymmetric direct numerical solution based on a spectral method [16].
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Fig. 1. Electric current and magnetic field induced in an aluminium sphere by a
single current loop (195 A, 1 MHz, analytical solution)

Fig. 2. Numerical solutions of different resolutions (radial*meridian) compared to
the analytical for the real part of electric current amplitude induced in an alumin-
ium sphere by a single current loop carrying 195 A at 1 MHz
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Fig. 3. High frequency AC solutions for the stationary velocity field and the sur-
face of aluminium droplet in zero gravity for the full electromagnetic force and the
magnetic pressure approximation

A significant difference was found between this and the asymptotic solution,
for both the predicted deformation size and the velocity field pattern. In the
asymptotic solution the magnetic force effects are restricted to the surface only
(magnetic pressure approximation). Evidently, the magnetic pressure approx-
imation is acceptable only for very high frequencies, i.e., about 1 MHz as in
the 10 mm aluminium droplet, such as in the example shown in Fig. 3. The
10 kHz case, considered in [16], leads to a significant difference in shape; the
difference is smaller at 100 kHz, and at 1 MHz there is no discernible difference
between the full force and magnetic pressure cases (Fig. 3).

The three-dimensional (3D) finite element simulation of a magnetically
levitated moving solid sphere was performed in [17], and a numerical gradual
iterative shape change in 3D for levitated metal in [18]. Solid objects are much
more prone to rotation and oscillation in levitated conditions owing to their
usually irregular shape. However, even a spherical metallic specimen starts to
rotate and oscillate when critical conditions are met [19]. The stability can be
greatly enhanced by applying a relatively moderate DC magnetic field [19,20].
The combination of AC and DC magnetic fields was recently recognized as an
efficient tool for the electromagnetic processing of materials [20, 21] and for
contactless thermo-physical property measurements [22]. Even in a purely DC
magnetic field, levitation is possible for paramagnetic and diamagnetic materi-
als, and it can be used for advanced material research [23,24]. Numerical sim-
ulations in [9] predict long-lasting quasi-stationary surface shape oscillations,
due to a dynamic change of the droplet position placed in the high-gradient
magnetic force field.

An important test case for any numerical algorithm is that of an ideal fluid
sphere, sustaining small amplitude oscillations, in the absence of gravity. In
this case the flow is linear and potential. The Rayleigh capillary oscillation
frequencies are known analytically [14]:
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Fig. 4. Fluid droplet oscillation in absence of gravity: the top position change in
time (. . . . . . for ideal fluid, —— viscous, - - - - - in presence of DC magnetic field)

fl =
1
2π

√
γl(l − 1)(l+ 2)/(ρR3

0); l = 2, 3, 4 . . . .,

where γ is the surface tension, ρ is the density, and R0 is the droplet radius.
The pseudo-spectral numerical solution in [9] obtains for zero viscosity the
non-decaying oscillation shown in Fig. 4 corresponding to the four-digit accu-
racy to the above expression. When the laminar viscosity ( ν = 10−6 m2/s ) is
introduced, the oscillation is slowly damped (Fig. 4), yet it retains the same
frequency. Adding the vertical uniform DC magnetic field Bz of moderate
intensity 0.1 T, introduces quite a dramatic change in the local flow struc-
ture, and quite significant damping of the oscillations shown by the dashed line
in Fig. 4. The flow is no longer irrotational even without viscosity. This can
be easily ascertained by taking the curl of the magnetic damping force term,
which is non-zero even for the uniform magnetic field case [9]. Remarkably,
the oscillation frequency is almost unchanged.

AC levitation under normal gravity is often used for thermophysical prop-
erty measurements [22, 25]. In a typical coil set-up [25], shown in Fig. 5, the
electric current flows in the positive azimuthal direction in the bottom four
turns of the coil and in the negative direction at the top two turns. The cur-
rent frequency is 450 kHz; therefore one can expect a very small penetration
depth for the electromagnetic field in a well conducting material like liquid
aluminium. An external DC magnetic field can be added using a coaxial coil
surrounding the AC coil as shown in Fig. 5. Passing a 200A DC current in the
eight-turn external coil creates an almost uniform additional magnetic field
inside the droplet.

When starting a numerical simulation (as with a physical experiment)
great care is needed to position the droplet in the coil, so that the initial
total electromagnetic force balances the weight of the droplet. However, there
is an initial transient adjustment phase during which the droplet assumes
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Fig. 5. The AC levitation coil for normal gravity conditions and the additional DC
coil for stabilizing the oscillations [9]

the shape imposed by the force balance. The initial transient oscillations are
soon damped, and a new non-decaying quasi-stationary oscillation pattern
is established in 3–4 s time (Fig. 6). The centre of mass for the droplet is
subject to a vertical cyclic motion which affects the shape-change oscilla-
tions. The final oscillation pattern does not show damping, which suggests a
net energy transfer from the external field to the droplet mechanical motion.
The generated oscillations depend on the material properties of the liquid
metal. The motion of the droplet with a high surface tension is dominated
by the centre of mass translational oscillation. The translational motion fre-
quency at 8.76 Hz gives the first peak in the simulated spectra in Fig. 6.
The l = 2 and l = 3 like modes are clearly present, yet the l = 3 peak is
shifted from the pure Rayleigh frequency because of the non-linear interac-
tions. The exact mechanism of the translational and normal mode oscillation
interaction needs further analysis, the non-linearity being a clue as suggested
by the close similarity of this effect to the translational motion generation as
a result of two close normal mode interactions observed for a bubble in fluid
oscillations [26].

Apart from the oscillation mode interaction, there is a considerable influ-
ence also of the intense circulation flow consisting of two vortices (Fig. 5),
the intensity of which changes with the oscillation phase. The lower, smaller
vortex is particularly affected by the bottom oscillation. The turbulent viscos-
ity is mainly generated in this bottom part and then transported to the rest
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Fig. 6. The computed oscillations in the levitation coil under normal gravity and
the Fourier power spectra with and without DC field

of the volume. The maximum magnitude for the time-dependent turbulent
viscosity is about 15–20 times the laminar value, and it greatly enhances
overall flow stability by limiting the velocity magnitude to below 0.3–0.4 m/s.
In the absence of numerical diffusion, attempts to simulate the flow with only
the laminar viscosity fail because the flow velocities start to increase contin-
uously.

If a DC magnetic field is added to the aluminium droplet oscillation in
the presence of the same AC coil, the droplet stability is greatly enhanced,
and the resulting oscillation amplitude is significantly reduced. However, for
the case of 200 A DC in the coil, the oscillation still reaches a quasi-stationary
state and the power spectra in Fig. 6 exhibit essentially the same frequencies as
without the DC field. The remaining oscillation can be completely suppressed
when a 500 A current is supplied to the DC coil.
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3 Melting in a cold crucible

The cold crucible technique is a process suitable for melting and preparing
reactive metal alloys of high purity, prior to casting or gas atomization. This
process is used to melt high-temperature materials like Ti, TiAl, Zr, Mo,
and many others to produce near-net-shape cast components [27–29] and to
investigate their material properties [30,31]. The water-cooled copper crucible
is used to contain the metal charge melted by Joule heating from the induced
current generated by an external medium to high-frequency AC coil (Fig. 7).
The copper wall is made of electrically insulated segments so that the magnetic
field can effectively penetrate through it; this penetration is achieved due
to high density AC current loops induced within each individual segment
(Fig. 8). These crucible currents incur relatively high energy losses removed
by the cooling liquid circulating within the copper segments. In addition to
the direct Joule losses, there are other, conductive and convective heat losses
from the metal charge when in contact with the crucible walls.

The molten metal is normally held away from the sidewalls by the electro-
magnetic force. The shape and position of the liquid metal depends on the
instantaneous balance of forces acting on it. Hence, the electromagnetic field
and the associated force field are strongly coupled to the free-surface dynamics
of the liquid metal, the turbulent fluid flow within it and the heat transfer.
This complex problem has been studied extensively both experimentally and
numerically. The early numerical simulation efforts mostly concentrated on
the electrodynamics part of the problem [32–34] with the heat transfer mostly
treated as a stationary problem. The liquid metal shape was obtained from
a magnetostatic approximation, and the turbulence of the melt velocity field
was considered within the stationary k − ε-type model range [28, 34].

Fig. 7. Melting in the cold crucible and the corresponding numerical simulation for
2.8 kg Al alloy and 5560 A coil current [29]
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Fig. 8. The force and electric current distribution in the aluminium alloy melt at
the final stage (left) and the calculated electric field distribution within the mid-
section of the copper wall fingers (right), only one of the fingers from the total of 24
is shown

A new type of simulation was attempted in [35] using large eddy simula-
tion (LES) technique for 3D, time-dependent flow within the domain of fixed
shape, which in a time-average sense replicates the experimentally measured
turbulent flow in the sodium experiment. The importance of the dynamic flow
effects on the free surface was shown in related studies [36,37] of conventional
induction crucibles.

At the present time only the axisymmetric model permits the simulation
of the complete melting cycle with the coupled fluid flow, thermal and elec-
tromagnetic fields using the exact boundary conditions on the free surface.
This technique was first applied to the closely related semi-levitation melting
problem [13]. An appropriate turbulence model [38] for the time-dependent
flow with free surface was implemented, and validated against detailed tur-
bulent flow measurements within a “cold” liquid metal (In–Ga–Sn) AC field-
driven experiment [39]. The fully coupled model for the cold crucible requires
a custom-made combination of complementary sub-models and solution tech-
niques: finite volume, integral equation, and pseudo-spectral methods com-
bined to achieve the description of the dynamic melting process [29]. The
predicted results match closely the experimental data of the temperature his-
tory of the melting at all stages and the heat losses in the various parts of the
furnace (Fig. 9).

Visual observations and the height measurements of the free surface at var-
ious times compare to the numerically predicted surface shapes (Fig. 7). The
detailed flow, turbulence intensity, and temperature fields from the dynamic
numerical simulation provide explanations for the thermal efficiency loss at
various stages of melting and the limitation of the resulting superheat of the
melt. The process parameter dependence demonstrates the effect of changes
in the melt weight, AC current frequency, induction coil position, and the
effect of the heat loss reduction achieved using an additional, external DC
electromagnetic field (Fig. 10).
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Fig. 9. Comparison of the measured temperature and power losses (dashed lines)
with the computed data (continuous lines) when melting Al alloy showing the effect
of stepwise increases in the supplied AC field power (dotted line)

Fig. 10. The temperature at the top of the liquid TiAl melt and the total power
released into the liquid metal. DC magnetic field is zero until 645 s, and then the
DC magnetic field is increased in steps

In the presence of a strong DC magnetic field, an additional modification
to the k − ω turbulence model [39] has been added by adapting Widlund’s
model [40,41]. Using the pseudo-spectral representation, the computation fol-
lows in detail the time development of the melting front, free-surface evolution,
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and turbulent flow characteristics determined by the coupled non-linear trans-
port equations. The DC field is shown to increase the melt superheat, a very
desirable parameter for casting applications. This is in part due to turbulence
damping in the whole melt volume and particularly close to the water-cooled
walls and base where most of the losses occur.

4 Aluminium electrolysis cells

Large-scale industrial electrolysis cells used to produce primary aluminium,
are sensitive to waves at the interface of liquid aluminium and electrolyte.
An aluminium electrolysis cell is a part of a row of similar cells, each cell is
connected in series to its neighbours by a complex arrangement of current-
carrying busbars as shown in Fig. 11. The electric current to each individual
cell is supplied from above through massive anode busbars made of solid
aluminium, whence anode rods connect to the carbon anodes. The liquid elec-
trolyte layer beneath the anode blocks is a relatively poor electrical conduc-
tor of a small depth (4–6 cm) if compared to its horizontal extension (2–4 ×
6–20 m). The electrolyte density is only slightly different to that of liquid
aluminium, which occupies a pool of depth 20–30 cm created as the result of

Fig. 11. 500 kA cell busbars and position of the cell in the row
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electrolytic reaction at the bottom of the cell. The interfacial waves are similar
in many aspects to stratified sea layers [42], but the penetrating electric cur-
rent and the associated magnetic field are intricately involved in the oscillation
process, which can lead to the unstable growth of the large amplitude waves.
Even under quasi-stationary conditions these MHD modified waves have oscil-
lation frequencies shifted from the purely hydrodynamic ones [43]. The result-
ing interface stability problem is of great financial and ecological importance,
since aluminium production is a major electrical energy consumer, and it is
linked to large-scale environmental pollution.

The first numerical investigation on the stability of the aluminium cells
appeared in [44] and a short summary of the main developments was given
in [43]. Important aspects of the multiple mode interaction were introduced
in [45], and a widely used linear friction law to represent the governing bot-
tom and top friction of the narrow layers was first applied in [46]. In [47]
a systematic perturbation expansion of the fluid dynamics equations and
electric current problem enabled reduction of the 3D physical problem to
a two-dimensional (2D) mathematical one. The procedure, well known in
oceanographic studies as the “shallow water approximation” can be extended
to cover weakly non-linear and dispersive waves. The Boussinesq formula-
tion allows generalization of the problem for non-unidirectionally propagat-
ing waves, accounting for sidewalls and for a two fluid layer interface [42].
Attempts to extend the electrolytic cell wave modelling to the weakly non-
linear case started in [48] where the basic equations were derived, including
the non-linearity and linear dispersion terms. An alternative approach for
the non-linear numerical simulation for an electrolysis cell wave evolution is
described in [49] and references therein, yet this approximation omits the dis-
persion terms and treats the dissipation only at the linear friction law level.
It can then only predict whether the waves are stable or not.

The self-sustained MHD modified interface waves, observed in the most
of commercial cells under certain conditions [43], require numerical modelling
of the coupled electric current, magnetic field, and fluid dynamics problem.
The inclusion of the horizontal circulation-generated turbulence is essential in
order to explain the small amplitude self-sustained oscillations of the liquid
metal surface observed in real cells, known as “MHD noise”. Reference [50]
describes a very ambitious full model, where the coupled effects of: fluid
dynamics, turbulent horizontal circulation, the non-linearity of the waves,
and the extended electromagnetic field that covers the whole busbar circuit
and ferromagnetic effects are accounted for.

It is instructive to analyse how a step by step inclusion of different physical
coupling factors is affecting the wave development in the electrolysis cells. The
general model in [50] permits the use of the full electromagnetic interactions
between cells, making it suitable for realistic plant simulations: the magnetic
field can be computed from up to six cells in the same row (Fig. 11) and five
cells in the return row (not shown). The electric current distribution in the
fluid layers (shown in Fig. 12 for the bottom aluminium layer) depends on the
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Fig. 12. The electric current distribution and the magnetic field in the liquid metal
layer of the 500 kA cell

Fig. 13. Comparison of the interface oscillations for the cathode current Jc =const
and for the computed Jc in the 500 kA cell (uniform Bz = 0.0005 T)

cathode collector connections to the full circuit of connecting bus elements
of unequal lengths and cross sections. The horizontal current, even in the
case of a flat aluminium surface without waves, arises because of geometrical
differences in the anode and collector bars and the tendency for the cathode
current to find the path of least resistivity (with the effect of the frozen ledge
protecting the cell walls).

Most theoretical models for wave development do not account for this
current distribution, instead assuming a uniform current density Jz at the
bottom. Figure 13 illustrates the difference in the directly computed oscilla-
tion pattern for the two cases keeping the magnetic field uniform and fixed
at Bz = 0.0005 T. The constant Jz assumption results in a fast-growing wave
at a frequency shifted from pure gravitational waves but corresponding to
the analytical prediction [47]. When the electric current is computed accord-
ing to the actual electrical circuit the growth rate is significantly lower, and
if a sufficient dissipation is included (due to friction say), does not lead to
instability.

In addition to this effect, the velocity field is time-dependent and turbu-
lent, thus ensuring higher dissipation rates for the waves than in the laminar
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Fig. 14. Horizontal velocity in the two fluid layers for the 500 kA cell

case. The horizontal, depth-averaged circulation is different in each of the
fluid layers because of the electric current distribution variation. The hori-
zontal electric current in the aluminium is responsible for the variation in the
nearly symmetric vortex structure, which is usually observed in the electrolyte
layer (Fig. 14). The horizontal circulation vortices create a pressure gradient
contributing to the deformation of the interface. Typically, an intense vortex
in a single fluid layer with free surface is associated with a dip in its centre.
For the two layers the effect on the common interface is in balance when two
equal vortices are positioned one above the other, if the densities of the two
fluids are not significantly different.

Instructive comparisons can be made for the interface at the same time
moments if accounting for the horizontal circulation and without the effect.
Fig. 15 (top) clearly shows the dips at the centre and the right side where
the aluminium vortices are more intense and an oscillating wave crest on the
left where the electrolyte circulation is more intense. There is nothing like
this in the case when the horizontal circulation effect is set to zero, Fig. 15
(bottom).

The corresponding self-sustained oscillation pattern is shown in Fig. 16.
The wave frequency is nearly the same in both cases, but the interface topol-
ogy and the wave amplitudes are quite different. The inclusion of turbulent
damping makes the cell stable for the appropriately designed bus network.
The 500 kA cell considered in this example is absolutely stable if positioned
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Fig. 15. Interface at fixed time 500 s: including horizontal velocity circulation effect
(top) and without the horizontal circulation (bottom)

Fig. 16. Comparison of the interface oscillations in the 500 kA cell: with and without
the horizontal circulation v effect



372 V. Bojarevics and K. Pericleous

in the line of cells far from the end, but it gives rise to a very low self-sustained
interface oscillation when positioned at the end of line.

The examples presented here show the importance of the fully coupled
custom-made numerical models for predicting the behaviour of real electrolysis
cells.
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1 Introduction to semiconductor crystal growth

We may define three main categories of crystal growth techniques: growth
from solid, vapour, and melt. These three main categories of crystal growth
methods need careful control of the phase change. We may introduce a sub-
category, growth from the solution, which is strictly already included in the
above definitions, and which represents crystal growth processes of solute from
an impure melt.

Figure 1 shows techniques commonly used for the crystal growth from the
melt. All of these growth techniques can be referred to two main categories:
meniscus-controlled crystal growth systems and confined crystal growth sys-
tems. In meniscus-controlled crystal growth systems (Czochralski technique,
floating zone technique) there is a three-phase boundary at which crystal, melt
and gaseous phase coexist. In confined crystal growth systems both crystal
and melt are confined within a solid container. Such techniques can be divided
into normal freezing method (in which the whole charge is melted initially
and then progressively crystallized), and zone-melting method (in which a
molten zone is established and traversed along an ingot). In those techniques
a crystal–melt interface moves vertically or horizontally. The vertical direc-
tional solidification technique is commonly known as the Bridgman technique,
while the horizontal directional solidification technique as the Chalmers tech-
nique. Zone-melting techniques are designed vertically or horizontally [1].

1.1 Czochralski method

Currently, the most important technique for the growth of bulk crystals
(Czochralski method) uses pulling from the melt and has its origin in the prob-
lem of crystallization velocities [2]. This technique [3] and various modifications

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
375–390. c© 2007 Springer.
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Fig. 1. Main categories of crystal growth techniques from the melt

have become the dominant process used in industry today for the production
of semiconductor and oxide single crystals. The melt (molten charge) is in the
crucible, which is heated (by resistive heating system or by frequency induc-
tion heating system). The pull rod with a single crystal (“seed crystal”) is
positioned axially above the crucible and is lowered. The temperature of the
melt is then adjusted so that the centre of the liquid is at its freezing point.
The seed crystal is dipped into the melt. The pull rod is rotated and lifted.
During the process of crystal growth by the Czochralski method, the crys-
tal is rotated to produce homogeneity near the melt–crystal interface. Since
buoyancy and surface tension forces are very strong and produce complex
flow structures (oscillatory and/or turbulent), forced convection is superim-
posed by rotating crucible. Application of a magnetic field for the melt in
Czochralski crystal growth system is also considered as one of the effective
tools for suppressing the melt convection. The main effort in the growth of
silicon (Si) single crystals is to control impurities and imperfections. Molten
silicon reacts slowly with the crucible material (SiO2). The oxygen from the
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crucible has an appreciable solubility in molten silicon and therefore acts as
impurity in the final silicon crystal. In addition to oxygen, other impurities in
the crucible can be dissolved into the molten silicon and can affect the elec-
trical properties of grown silicon single crystal. These impurity effects can be
minimized through pressure control and proper stirring of the melt. Crystal
lattice imperfections, such as dislocation, is controlled and eliminated by using
a technique [4], which requires the reduction in diameter of the seed followed
by growth at the reduced diameter before enlarging the crystal to the final
diameter. The current industry standard for Si growth is 200 mm diameter,
and 300 mm large diameters Si single crystals can be produced.

The liquid-encapsulated Czochralski (LEC) technique and high-pressure
liquid-encapsulated Czochralski (HPLEC) technique have been developed for
the production of single crystals of group III – group V compounds (GaAs,
InP, GaP). These techniques (LEC, HPLEC) have been developed to overcome
one of the main material limitations of the crystal pulling, that the material to
be grown should have a relatively low vapour pressure (in GaP, InP, and GaAs
compounds, the dissociation pressure of phosphorus or arsenic at melting point
is greater than 1 atm). An encapsulant layer (generally B2O3) is placed over
the compound melt to prohibit the escape of the volatile component. Crystals
of GaAs can be grown at about atmospheric pressure, because the equilibrium
vapour pressure at the melting temperature is about 0.9 atm. For the InP melt
crystal pulling chamber is a pressure chamber, because the vapour pressure of
the volatile component in the melt is high (about 27.5 atm for the phosphorus
in the InP melt). HPLEC system is very different from “Czochralski furnace”
for Si crystals, because of the pressure of an inert gas in the crystal growth
furnace. The gas convection plays an important role in a HPLEC furnace [5].

The flux pulling method has been developed to overcome another lim-
itation in the Czochralski technique, namely that the material should not
decompose upon or before melting. The flux pulling method consists of the
pulling of a crystal as in the conventional Czochralski technique from a melt,
which contains the desired compound in solution. The crystal growth process
in these techniques is dependent upon the mass transfer of the compound
from the solvent to the crystal interface. The bottom of the crucible is usually
hotter than the top of the melt, so that the nutrient dissolves at the bottom
and passes to the top of the melt by convection and diffusion [6]. A detailed
discussion on crystal growth using the Czochralski method (crystal pulling
technique) may be found in several books and review articles [7–11].

1.2 Floating zone method

The crucible-free zone melting process (floating zone technique) was developed
by Theuerer [12], Keck and Golay [13] to obtain high-purity crystals, especially
to avoid impurities from the crucible material. In the floating zone system,
a molten pool (molten zone) is formed by a circumferentially allocated heat
source. This molten zone (like a drop between two parts of the rod) separates
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a melting polycrystalline feed rod and a solidifying crystal. The molten zone
is moved through the rod over its whole length by the motion of the heater
or the rod. A single crystal can be generated by spontaneous nucleation or
by using “seed crystal” as the initial part of the rod, (seed crystal is kept to
be un-molten). For higher stability of the process, the molten zone is usu-
ally moved upwards. The growing crystals and sometimes also the melting
rods are rotated mostly with different rotation rates or counterrotation. The
floating zone technique is used for the growth of high-purity semiconductor
materials, such as silicon and germanium. This technique is also applied for
the growth of materials with high (or very high) melting points for which
no crucible materials are available. In small-scale, molten zone is performed
with conventional resistance heaters. Moreover, floating zone melting can also
be performed using electron bombardment, electric arc or plasma, thermal
or light radiation. For large-diameter industrial floating zone systems heat-
ing is achieved by using radio-frequency induction heating elements shaped
so that the induction coil has smaller diameter than the growing crystal. The
stability of the molten zone is determined by surface tension, gravity, centrifu-
gal forces (due to crystal rotation), Marangoni convection, buoyancy-driven
convection and electrodynamic forces (due to the high-frequency field of the
heater coil). The techniques related to the crucible-free zone melting processes
(floating zone techniques) are discussed in the books by Pfann [14] and Bohm
et al. [15].

1.3 Bridgman method and confined crystal growth systems

In confined crystal growth systems the material is loaded into an ampoule
(a solid container) and then melted and solidified by varying the temperature
field: by changing the heat power of the furnace (the gradient freeze technique)
or by translating the ampoule through the furnace (the Bridgman technique).
After solidification, the crystal is removed from the ampoule. The growth
of a single crystal in a confined system from the melt can be “seeded” or
“un-seeded”. The confined crystal growth techniques are very widely used and
the range of material grown by these techniques is enormous, because of the
simplicity and the ease of construction of equipment. The vertical directional
solidification technique is commonly known as the Bridgman technique or as
the “vertical Bridgman” (VB) technique. Horizontal directional solidification
technique has also been widely employed. In this technique, the ampoule is laid
horizontally with respect to the gravity and the temperature gradient in the
melt is changed by translating heater or by variation of the power of heater.
The melt is contained in the ampoule or open ampoule (the composition of
the melt can be equilibrated with the surrounding ambient). The horizontal
directional solidification technique is known today as the Chalmers technique
or as the “horizontal Bridgman” (HB) technique.

Zone melting set-up (in which a molten zone is established and traversed
along an ingot) was invented by Kapitza [16] to grow bismuth crystals in a
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glass tube. Repeated zone melting can produce a substantial purifying effect.
Pfann [17, 18] applied zone-melting technique for the purification of germa-
nium. Zone-melting techniques are designed vertically or horizontally. The
confined crystal growth systems have also been employed in space. Micrograv-
ity experiments of crystal growth in confined systems have been intensively
carried out in recent years in order to reduce buoyant convection and to grow
high quality crystals.

1.4 Industrial requirements of crystal growth processes

From the industrial requirements the crystal should be: large size (demand
for reduction of operation costs), perfect quality (“perfect crystal”, i.e., crys-
tal without dislocations, vacancies, impurities; concentration of the dopants
should be regular and in the case of a pseudobinary alloy the composition of
the crystal should be uniform). However, this is never completely obtained
because of the complexity of the phenomena taking place in the melt and
in the vicinity of the solidification interface. The quality and the size of the
grown crystal depend on many physical effects (macroscopic and microscopic).
The solidification front between crystal and melt plays a major role in the
process. The difficulty of growing high-quality crystals is the dependence of
interface shape and segregation on the melt flow pattern. Generally, the melt
flow is recirculating, three-dimensional (3D), time-dependent and is caused
by a combination of natural, forced, and Marangoni convection. The natural
convection is introduced by buoyancy forces, which are produced by thermal
boundary conditions (heating and cooling of the sidewalls, phase change at
the crystal–melt interface, radiative heat transfer from the free surface). The
buoyancy caused by concentration difference can play an important role in
the melt growth of semiconductor-mixed crystals. The mode of natural con-
vection plays a significant role in all crystal growth techniques from the melt.
The Marangoni convection due to the variation of surface tension is caused by
gradients of temperature and concentration. The mode of Marangoni convec-
tion plays a significant role in the crystal growth techniques containing free
surface of the melt. The forced convection is introduced by crystal rotation,
crucible rotation, crystal pulling, and by the reduction of the melt height
(in a Cz system). The growing crystal and sometimes also the melting rod
are rotated mostly with different rotation rates during the crucible-free zone-
melting process. The mode of forced convection plays a significant role in
these growth techniques. In semiconductor crystal growth, the electric current
induced in the melt may be important. For instance, in Czochralski crystal
growth system, the meniscus shape can depend on the electromagnetic field
if a significant Lorentz force is exerted on the surface of the melt, due to
the surface tension effect. Since buoyancy and surface tension forces are very
strong and produce complex flow structures (oscillatory and/or turbulent),
application of a magnetic field is considered to be one of the effective tools
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for suppressing melt flow oscillations. The use of magnetic fields can stabilize
the melt convection [19].

2 Fundamentals prerequisite to crystal growth
in magnetic fields

As mentioned in the previous subsection, semiconductor crystal growth is
closely relevant to various fundamental phenomena, such as buoyancy effect
caused by temperature or concentration difference, rotation of crystal or enclo-
sure, free surface, solid–liquid interface, etc., as well as the type of an applied
magnetic field. Therefore, in the following, each fundamental phenomenon
subjected to the magnetic field is discussed and reviewed.

2.1 Buoyancy effect

In the presence of temperature (or concentration) inequality, the fluid density
varies depending on the local temperature, and buoyant, or natural convection
arises. The melt of silicon and/or gallium arsenide semiconductors is an elec-
trically conducting, low-Prandtl number fluid, and its fluid motion exhibits
oscillatory or turbulent convection. In order to avoid such unwanted oscil-
latory melt flow, a static magnetic field is applied to stabilize and to damp
out the convection by means of the Lorentz force. There have been many
researches related to natural convection in an enclosure in the presence of
a magnetic field in order to investigate fundamentals prerequisite to crys-
tal growth [20–22]. The buoyancy effect is usually studied by employing the
Boussinesq approximation. The electric current density is governed by the
Ohm’s law, since the magnetic Prandtl number, Prm, is much less than unity
in most cases of semiconductor crystal growth. The temperature field can be
estimated from the energy equation, in which the viscous dissipation and the
Joule heat are usually neglected.

The thermal natural convection in an electrically conducting fluid in the
presence of a magnetic field is governed by three independent non-dimensional
parameters: the Rayleigh number, the Prandtl number, and the Hartmann
number. The other parameters such as the Grashof number, Gr, the Reynolds
number, Re, and the interaction parameter, N, can be estimated from combi-
nations of the three parameters. The Rayleigh number, Ra, characterizes the
strength of the natural convection when the inertial effect is neglected. The
Prandtl number, Pr, represents a fluid property and characterizes the ratio
of kinematic viscosity to thermal diffusivity of the fluid. For decreasing Pr
and for a constant Ra, the inertial effect prevails and therefore natural con-
vection of low-Pr fluids exhibits unstable oscillatory or turbulent behaviour.
The Hartmann number, Ha, represents the square root of the ratio of the
Lorentz to the viscous force. For an increasing Ha, the Lorentz force becomes
dominant with respect to the viscous one, and therefore the viscous effect is
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confined to thin boundary layers. Besides, as Ha increases, the Lorentz force
is also dominant to the inertial force (N � 1) and the effect of Pr becomes
negligible. In such an inertialess case, the governing parameters are Ra and
Ha. The Nusselt number, Nu, is used to reflect the non-dimensional rate of
heat transfer.

When the effect of solutal buoyancy in crystal growth is considered, an
additional buoyancy term should be included into the momentum equation,
and the diffusion equation for mass transfer must be included into the analysis.

2.2 The effect of the magnetic field on the flow

The pioneering study by Hartmann on what is now known as the Hartmann
flow, indicates that the Lorentz force acts to decelerate the core flow far from
two parallel walls, and to accelerate boundary flows in the vicinity of walls per-
pendicular to the magnetic field if walls perpendicular to the electric current
are electrically insulating. In general, when a magnetic field is imposed on the
electrically conducting melt flow, the flow tends to be flat along the applied
magnetic field except for the boundary layers near the walls perpendicular to
the field. This type of the boundary layer is called the Hartmann layer. The
importance of the Hartmann layer depends on the flow symmetry, direction
of magnetic field, electrical conductivity of the wall, and its thickness [23,24].

One of the other types of magnetic fields applied to the crystal growth
may be the rotating magnetic field. In case of a horizontal magnetic field,
which rotates at a constant angular velocity around the central axis of the
stationary crucible, the electrically conducting melt is rotated at the same
speed as that of the field in the interior region. However, near the sidewall,
a boundary layer exists, which becomes thinner as the Hartmann number
increases. This stirring effect is due to the principle of the temporal variation
of the magnetic field. The rotating magnetic field may be used to stir and to
change the melt flow mode as an alternative method to the rotation of the
crucible in the Czochralski method. The references on the use of the rotating
magnetic field can be found in [25–27].

2.3 Solid–liquid interface

During the crystal growth, wall–melt interfaces and a crystal–melt interface
exist. The effect of the electric conductance of a wall is as significant as the
direction of the applied magnetic field. Usually as the electric conductance
of a wall increases, the flow damping effect due to the Lorentz force becomes
remarkable. Such studies may be found in [28, 29].

The electrical conductivity of semiconductor crystal is much smaller than
that of melt, and the crystal–melt interface is usually assumed to be elec-
trically insulating. However, it should be mentioned that when the crystal
volume is large, a certain amount of electric current passes in the crystal and
this may change the electric current field in the melt. As a consequence, the
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change in the electric current in the melt causes the change in the flow mode
itself in the presence of a magnetic field.

Another important factor during the crystal growth under the magnetic
field is attributed to the Seebeck effect. When two different metals (conducting
media) are jointed in the presence of a temperature gradient, a thermoelec-
tric current is induced in the media owing to the difference of the absolute
thermoelectric power, which is called the Seebeck effect. The absolute ther-
moelectric power is a function of temperature. It shows steep change between
solid and liquid phase with respect to the melting temperature. Hence, addi-
tional electric current due to the Seebeck effect would occur and affect the
flow field as well in a magnetic field. There are some references related to the
thermoelectric MHD [30–32].

2.4 Rotation effect

During the process of Czochralski method, the crystal and the crucible are
rotated to produce crystals as homogeneous as possible. The rotation of cru-
cible causes both the centrifugal force and the Coriolis force, which change
the melt flow mode caused by buoyancy. The centrifugal force is conserva-
tive, similar to gravity, when the fluid is homogeneous. However, the melt
has local variation of fluid density, which may cause an additional buoyancy
force. The Coriolis force makes the flow tend to be uniform along the axis of
rotation by the principle of the Taylor–Proudman theory and may suppress
the meridional flow.

Concerning the combined convection due to buoyancy and rotation in the
Czochralski method, the flow inside the crucible is combined by both nat-
ural and forced convection. When a uniform axial magnetic field is imposed
on the Czochralski system, the radial flow caused by buoyancy is efficiently
damped out by the Lorentz force, while the azimuthal flow is not because of
the existence of electric current within the Hartmann layer at the bottom of
the rotating crucible. On the other hand, when a horizontal transverse mag-
netic field is applied to the system, it is difficult to describe this phenomenon
clearly, since the flow is 3D and the phenomenon depends on the balance of
intensities of the natural convection, forced convection, and magnetic field.
Such a detailed numerical analysis for the transverse magnetic field is given,
for instance, in [33].

2.5 Free surface

At the liquid–gas interface, heat is mainly transferred by radiation from the
melt surface, and interfacial tension takes place. The combination of the two at
the interface causes Marangoni convection. As mentioned in many references,
the Marangoni convection arises even in the absence of gravity. By applying
a magnetic field, the Lorentz force acts to affect the convection and indirectly
the temperature field. The reference related to magnetohydrodynamic (MHD)
Marangoni convection can be found, for instance, in [34].
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3 Semiconductor crystal growth in various
magnetic fields

Magnetic fields have recently been employed in manufacturing single crys-
tals by the Czochralski crystal growth, the floating zone, and the Bridgman
methods, and others. Magnetic fields have also been employed in continu-
ous steel casting processes to improve the quality of products and the safety
of operation of the system. In these processes, magnetic fields are applied
to liquid metals (electrically conducting fluids) to be solidified as described
in previous chapters and they are expected to suppress the disturbance of
convection by means of the Lorentz force. The convection of liquid metal is
known to be oscillatory but suppressible by a magnetic field, as demonstrated
by Chandrasekhar [35] theoretically and by Nakagawa [36] experimentally.
Details are given in Chandrasekhar’s book [37]. The Prandtl number of a liquid
metal is of the order of 0.01, and convection becomes oscillatory. This charac-
teristic has been employed for material processing as described in this chapter.

Chedzey and Hurle [38] applied a magnetic field of 0.25 T to a tellurium-
doped InSb melt and observed a decay of temperature fluctuation of 5◦C
amplitude. Utech and Fleming [39] reported the application of a magnetic
field of 0.175 T in the crystal growth of InSb with a Bridgman boat sys-
tem. The amplitude of the temperature oscillation was suppressed. Witt et
al. [40] appear to be the first to have reported an application of a transverse
magnetic field to the Czochralski crystal growth process of InSb for a field of
0.4 T. The amplitude of temperature oscillation decreased but with additional
higher order of fluctuation. These pioneering works appear to have proved the
effectiveness of a magnetic field in calming the oscillatory convection in crys-
tal growing systems. The first industrial application of a magnetic field to
Czochralski crystal growth of silicon was carried out by Hoshi et al. [41, 42].
They needed good quality silicon for manufacturing charge-coupled device
(CCD) cameras. They succeeded in controlling oxygen concentration, defect
formation, and crystal growth rate with a transverse magnetic field. However,
the magnetic Czochralski system did not develop as expected after this. The
reasons stated at crystal growing factories included the fact that the strong
magnetic field for practical growth process requires expensive superconduct-
ing magnets, while the floating zone crystal growing process could anyway
provide an oxygen-free silicon crystal rod, since it does not employ a SiO2

crucible. For various reasons, whether stated or not, the practical use of a
magnetic field appears to have been delayed until recently. The production of
large silicon crystal rods of 16 in. or so in diameter, however, appears to need
magnetic control. The required large-scale crucible induces turbulent natural
convection of molten silicon, since the Grashof number increases in propor-
tion to the cube of geometrical size. For such a crucible the melt surface may
become wavy and therefore inhibit the initial seeding process and various sub-
sequent operations. The following is a rather limited review of the application
of a magnetic field to the crystal growth processes.
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3.1 Transverse magnetic field applied to Czochralski
crystal growth

Suzuki et al. [43] reported that with a transverse magnetic field of 0.15 T,
thermal convection was suppressed to give crystals with oxygen concentration
from 1018 to 1017 atoms/cm3 and resistivity of about 380 Ω-cm. Kobayashi
[44] performed theoretical analysis on the solute distribution in Czochralski
crystals grown in either an axial or a transverse magnetic field. Unlike the axial
magnetic field, which was predicted to suppress the forced convection in the
radial direction resulting from the rotation of the crystal rod, the transverse
magnetic field does not affect the centrifugal forced convection. The melt
motion in Czochralski crucible involves an intrinsically 3D convection, and
the effect on it of a weak transverse magnetic field was studied by Williams
et al. [45] employing the axisymmetric base solution.

More recently, Ozoe and Iwamoto [46] carried out fully 3D numerical analy-
sis with a rotating crucible and a transverse magnetic field. They employed
a reasonable treatment developed by Ozoe and Toh [47] to obtain the radial
velocity component at the cylinder axis, rather than assuming it was zero, as
did Michelcic et al. [48]. Akamatsu et al. [33] obtained an elliptic temperature
profile at the top of a crucible with its major axis parallel and its minor axis
perpendicular to the transverse magnetic field in the absence of any rotation
of the crystal or the crucible. This was supported by the elliptic cross-sectional
crystal rod grown up for LEC GaAs by Kajigaya et al. [49]. Krauze et al. [50]
recently reported similar shapes of isotherms using 3D and turbulent models.

The number of papers published since 1999 in the Journal of Crystal
Growth are listed in Table 1 to show the general trends. Fully 3D numer-
ical analyses have become widespread, with or without turbulence models.
Comparison of axial and transverse magnetic fields has also been studied.

3.2 Axial magnetic field applied to Czochralski crystal growth

Hoshikawa [51] proposed using an axial (vertical) magnetic field for Czochral-
ski crystal growth, in contrast to the previously discussed transverse one. He
mentioned that the problem with the transverse magnet is its large size and
heavy weight, and that there is thermal asymmetry at the growth interface,
which causes difficulty in crystal shape control, and the generation of peri-
odic rotational striations of impurities. An axial magnetic field of 0.1 T was

Table 1. Number of papers published in JCG since 1999

Transverse magnetic field in Cz 11
Axial magnetic field in Cz 8
Cusp-shaped magnetic field in Cz 11
Bridgman crystal growth system 30
Floating zone crystal growth with magnetic field 10
Strong magnetic field and others for growth of protein 16
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provided by an 80 kg solenoid to suppress convection. Growth striations and
microscopic phosphorous dopant heterogeneity in the silicon rod decreased
below the limit of detection. This solenoid did not require the rearrangement
of the Cz furnace. This axial magnetic field allows rigorous axially symmet-
ric, two-dimensional (2D) modeling of the melt flow, and many reports can
be found. For example, Langlois and Lee [52] pointed out that the induced
magnetic field can be neglected and that the electric field is irrotational, and
they computed streamlines of the meridional circulation. Hurle and Series [53]
reported the effective distribution coefficient in a steady axial magnetic field.
Organ [54] mentioned that the effect of an axial magnetic field is to enhance
the azimuthal motion in the lower part of the crucible, and that the stir-
ring effect due to crystal rotation penetrates to a much greater depth in the
melt. Hjellming and Walker [55] performed linear analysis of the melt motion
with an axial magnetic field and found the effect of electrical conductivity of
a crystal rod in determining the flow. Series [56] measured the effects of an
axial magnetic field on the incorporation of interstitial oxygen, carbon and
phosphorous into silicon crystals. Hicks and Riley [57] examined the bound-
ary layer flow at the crystal–melt interface under either an axial or a radial
magnetic field. More recently, Fukui et al. [58] studied the effect of an axial
magnetic field and found that the fluid column under a rotating crystal rod
starts to rotate with the application of an axial magnetic field for a static
crucible. On the other hand, the rotating fluid column under a rotating rod in
a reversely rotating crucible stops rotating with the application of a magnetic
field. By numerical analysis these effects were found to be due to the Lorentz
force.

3.3 Cusp-shaped magnetic field applied to Czochralski
crystal growth

Hirata and Hoshikawa [59,60] proposed a cusp-shaped magnetic field as shown
in Fig. 2c for the Czochralski crystal growth process to overcome various short-
comings of the axial magnetic field. The axial magnetic field is perpendicular
to the crystal–melt interface and suppresses the desirable rotational forced
convection. Furthermore, the previous know-how for the operation of crys-
tal rotation can not be employed [61]. The diffusion layer near the melt-free
surface is thickened by the vertical magnetic field, causing the oxygen con-
centration in the bulk melt to increase toward the saturation level. These
difficulties forced them to adopt the cusp-shaped magnetic field employed
in nuclear engineering. They employed two superconducting magnets with
counter-directional electric currents placed coaxially to the crucible to pro-
duce a cusp-shaped magnetic field with a free surface near the centre of the
cusp. This cusp-shaped magnetic field is axially symmetric and orthogonal
to the whole melt–crucible interface, and it suppresses the boundary layer
flow along the crucible wall and decreases the dissolution rate of oxygen from
the wall. It also results in the absence of the magnetic field near the crystal
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Fig. 2. Three types of magnetic field applied in Czochralski crystal growth systems

growing interface, which allows free flow of the melt near the interface. The
oxygen concentration could be controlled from 1018 to 2 × 1017 atoms/cm3

in the crystal rod. The radial and axial oxygen distribution became homo-
geneous. Series [62] reported the use of a shaped magnetic field for similar
reasons. He called it symmetrical internal split pair Czochralski (SISP-CZ).
His system appears to be almost the same as the cusp-shaped magnetic sys-
tem reported by Hirata and Hoshikawa [59, 60]. Furthermore, according to
Hoshikawa and Hirata [61], this cusp-shaped magnetic field system has been
patented by Nanishi et al. [63] for the growth of GaAs.

3.4 Bridgman crystal growth system with a magnetic field

Kim [64] reported the suppression of thermal convection by a transverse mag-
netic field for the melt of InSb in a vertical column of 1.1 cm in diameter
and 4 cm in length. Temperature of the InSb melt was measured. At mag-
netic induction B = 0, temperature fluctuated extensively with amplitude
of 15◦C or so. From B = 0.09 to 0.166 T, the temperature fluctuated in a
regular oscillatory manner with amplitude from 6 to 1◦C. At B = 0.169 T,
the oscillation was suppressed and striation-free crystal growth was achieved.
Baumgartl and Muller [65] compared three different complexities of MHD
models for zone-melting crystal growth and reported a flow mode map of Ha
versus Raw from the experimental results. They concluded that for the steady
state or for slowly varying flow, the MHD2 model is enough to ensure that
the fluid flow does not disturb the externally applied magnetic field, while the
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Lorentz force still acts. Bridgman type crystal growth has been extensively
studied, as the number of reports listed in Table 1 shows. The magnetic fields
are either static, rotating, traveling, alternating and/or time dependent. The
direction of the magnetic field is either transverse or axial. Recently, a strong
magnetic field has been applied for crystal growth of compound materials and
proteins as well as levitation and chemical vapour deposition.

3.5 Floating zone crystal growth system with a magnetic field

This system was reported, for example, by Danilewsky et al. [66]. Heterogene-
ity of the dopant due to the time-dependent natural convection was suppressed
by an axial magnetic field. The floating zone crystal growth system has been
widely studied with static axial, transverse, or rotating magnetic field.
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1 Introduction

Magnetoelectrochemistry (MEC) is electrochemistry in the presence of an
imposed magnetic field. This relatively new branch of electrochemistry has
seen rapid development during the last years [1], the potential applications
being very promising even if not industrially realized up to now. Several stud-
ies have been performed with the objective to elucidate the effect of a magnetic
field on the electrolyte properties, on the mass transfer processes and, at a
smaller scale, on the electrochemical kinetics and on the structure and quality
of the deposit.

Fahidhy [2] and Ulrich and Steiner [3] summarise the progress starting from
the first observations of Faraday. Our intent here is to give an overview of the
most important points developed in previous studies, to propose a simplified
way to approach the mass transfer calculation essentially for the case when a
supporting electrolyte is used assuring the electrical conductivity of the bath,
and to discuss the main objectives for future research.

Roughly speaking, the role of a magnetic field on the electrochemical phe-
nomena can be divided into three main categories. The first one concerns
the effect of an external field on the main properties of the bath. The second
one, studied most extensively, is focused on the influence of an external mag-
netic field on the mass transfer phenomena. The third category at a smaller
scale includes the influence of the magnetic field on both the electrochemical
kinetics and the structure and quality of deposits.

2 Influence of the magnetic field on the electrolyte
properties

An electrolyte is a solution more or less dissociated in different charged parti-
cles, the ions. When these particles are submitted to an electric field E, they

S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends,
391–407. c© 2007 Springer.
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experience the action of an electrostatic force in the form:

F = qE, (1)

where q represents the electric charge of the particle. When a magnetic field
B is superimposed to the electric field, the particles are subjected, to a new
force in the form:

F = q(E + vp × B), (2)

where vp is the velocity of the particle. The second term on the right-hand
side of Eq. (2), representing the deviation from the linear trajectory, can be
associated with the Hall effect. As the trajectory of the particles deviates,
which results from the interaction between the two fields, the properties of
the electrolyte are bound to be modified.

2.1 Conductivity

The electrical conductivity of an electrolyte under an applied magnetic field
is difficult to identify. Depending on the magnetic field intensity, the measure-
ments show that the electrical conductivity increases by a factor of 1.04–1.2
with respect to the conventional one [2].

Later, using a method analogous to the kinetic gas theory, Tronel-Peyroz
and Olivier [4] have calculated the transport coefficient in an ionic solution
in the steady state in the presence of electric and magnetic fields. Using the
Boltzmann equation they have demonstrated that the ionic mobility and the
diffusion coefficients become tensor quantities, which depend on the magnetic
field. The matrix that represents the ionic mobility of the species is:

ū =

⎛
⎝ uT uH 0
−uH uT 0

0 0 u‖

⎞
⎠ , (3)

where uT = u
1+u2Γ 2B2 is the transverse mobility, uH = u2ΓB

1+u2Γ 2B2 is the Hall
mobility, u‖ = u is the conventional mobility in the absence of the magnetic
field, and Γ is a factor depending on the kinetic energy of the ion [4].

The matrix of diffusion can be deduced from the mobility by the following
relation:

D̄ =
KT

q
ū, (4)

where K represents the Boltzmann constant and T the bath temperature. The
authors estimate that for a KCl solution containing the ferro-ferricyanide, and
for a magnetic induction less that 1 T, and for Γ ≈ 103 and u ≈ 10−7m2/s,
one gets uH ≈ u2ΓB and uT ≈ u. This gives, neglecting the diffusion, the
following expression for the current induced by the electric field (the migration
current):

J = σ(E + uΓE× B). (5)



An Outline of Magnetoelectrochemistry 393

2.2 Diffusivity

Concerning the diffusivity, very few measurements devoted to the influence of
the magnetic field are accessible. Nevertheless, it appears that its variation is
relatively small and depends on the considered species.

2.3 Viscosity, temperature

In the same way, the relative increase of the viscosity measured under magnetic
field of 1 T decreases when the species concentration increases. Some thermal
effects have also been observed by Tronel-Peyroz and Olivier [5]. A local mod-
ification of the bath temperature has been measured when the electrolyte is
subject to both an electric and a magnetic field perpendicular to each other.

3 Influence of the DC magnetic field on the mass
transport

The rate of mass transfer inside an electrolyte can be significantly modified
by an external magnetic field. This is generally attributed to the effect of
the electromagnetic force, which modifies the existing flow (e.g., in the case
of continuous electrodeposition), or induces a fluid motion in an otherwise
quiescent fluid.

Generally (but this has to be considered carefully), the magnetic field effect
on mass transport consists in increasing the limiting current. The existence
of a critical value of the magnetic field intensity beyond which the diffusional
limit disappears has also been observed.

The explanation about the increase in the limiting current when the mag-
netic field increases is of the same nature as for the phenomena observed on
the rotating electrode when the rotation increases.

Let us consider the mass transfer on a plane surface, a rotating electrode
for example (Fig. 1). By improving the voltage between the anode and the
cathode, the electric current intensity J , and consequently the mass transfer,
increases. For a fixed voltage the rate of mass transfer can be evaluated using
the Nernst approximation, which gives:

J ≈ α
Cb − Cw

δd
, (6)

where α is a constant, which depends on the nature of the electrolyte, Cb and
Cw are concentrations of the species in the bulk of the solution and at the
electrode wall, respectively, and δd is the diffusion layer thickness. In the case
of a high Schmidt number, which usually takes a value greater than 1,000 in
the electrolyte, δd is generally controlled by the thickness of the hydrodynamic
boundary layer, δh (it is the case, for example, on the rotating electrode), the
typical ratio between both being: δh/δd = Sc1/3.
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Fig. 1. The rotating electrode experiment

Considering a given rotation velocity with typical value V0, when the volt-
age increases the intensity increases also and if the hydrodynamics is fixed (δd

is imposed), the only possibility to follow this increase consists in a decrease
of the concentration of the electroactive species, Cw. When Cw reaches 0, the
current is fixed at a value that depends on the hydrodynamics of the bath:
this is the diffusion limit.

For a fixed voltage, when the velocity increases, the hydrodynamic bound-
ary layer, and consequently the diffusion layer, decrease corresponding to an
improvement of the diffusion limit. At the first order in the case of diffusion
control, according to Levich [6], the rate of mass transfer on the rotating elec-
trode, characterised by the Sherwood number, Sh, depends on the Reynolds
Re and Schmidt Sc numbers, and is governed by the classical correlation:

Sh = KRe1/2Sc1/3, (7)

where the constant K depends on the flow configuration.
Let us now consider the situation where a magnetic field is superimposed

on the process. It is supposed that initially the electrolyte is at rest and the
mass transfer is governed only by diffusion. The electromagnetic force, which
results from the interaction between the magnetic field and the electric cur-
rent, gives rise to a fluid motion and to hydrodynamic boundary layers, which
control the mass transfer. The same mechanism as that explaining classical
electrochemistry can be invoked to explain the evolution of the current den-
sity versus the magnetic field intensity: increasing this intensity results in an
increase of the fluid velocity and consequently in an increase of the limiting
current (Fig. 2). If the magnetic field intensity becomes very high, the flow
can reach the turbulent condition.

Of course the efficiency depends on the orientation of the magnetic field.
The most important effect corresponds to an applied magnetic field being
parallel to the electrode (perpendicular to the electric current).
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Fig. 2. Increase of the limiting current under a magnetic field

3.1 Simple theoretical model

Two main types of problems can be considered depending on the origin of
the flow motion. It can be imposed by an external device (forced convection
problem) or can result from the natural convection. In such a case it is the
variation of the concentration of electroactive species that generates natural
convection controlled by the electrochemical coefficient of expansion β [7]:

β =
dρ

dCEA
, (8)

where subscript EA stands for electro-active species and ρ stands for the
solution density. Finally, the flow motion controls the mass transfer processes.

In both cases the superimposed electromagnetic forces are able to com-
pletely change the structure of the flows that can be partially or mainly con-
trolled by the magnetic field effect for sufficiently high values of the magnetic
field.

The explanation of the phenomena and the governing equations are based
on the hypothesis that the electrical conductivity of the bath is imposed by
a supporting electrolyte, which is the case in the industrial cells. In this case
the distribution of the electric current (Ohm’s law in electrochemistry) inside
the bath takes the following simplified expression [8]:

J = (zFD)EA∇CEA − σ∇Φb, (9)
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where z is the number of electrons exchanged with the electrode, F is the
Faraday constant, D is the diffusion coefficient, σ is the conductivity of the
bath, and Φb is the electric potential of the bath. This expression supposes
that (i) the term V×B0 (V being local velocity) of the classical Ohm’s law in
magnetohydrodynamics (MHD) is negligible compared to the imposed voltage
drop inside the bath; this is the case for most of the applications for which
the ratio of the two terms, |V × B|/|∇Φb|, is of order 10−2, (ii) the electrical
conductivity is imposed by the supporting electrolyte, (iii) at the vicinity of
the electrode the current is mainly controlled by the concentration gradient
of the electroactive species, (iv) the Hall effect is neglected, (v) the magnetic
Reynolds number is supposed to be very small so that the induced magnetic
field is negligibly small.

Under these approximations the following set of non-dimensional equations
can be used for describing the mass transfer processes in MEC [8]:

∇ ·V = 0, (10)

DV
dt

= −∇P ∗ +
1
Re

∇2V − Md

Re2Sc
∇f×B0, (11)

DC

dt
=

1
ReSc

∇2C, (12)

∆f = 0. (13)

These are continuity, Navier–Stokes and transport equations (in which C rep-
resents the concentration of the electroactive species), and the equation con-
trolling the current density, respectively. The above equations are written
in dimensionless variables using a proper choice of the kinetic and dynamic
variables. The term P ∗ includes gravity and pressure, and the dimensionless
function f represents the apparent potential, which depends on the concen-
tration distribution of the electroactive species and on the electric potential.
The expression for function f is:

f =
zFD

σV0B0L0
C +

Φb

V0B0L0
. (14)

In Eq. (14), L0 and B0 are typical scales of the length and the induction of
the magnetic field, respectively.

The dimensionless electric current distribution can easily be deduced form
this expression as follows:

J = ∇f. (15)

The continuity of the electric current reduces the distribution of the apparent
potential f to the solution of the Laplace equation. When the mass transfer
is controlled by the diffusion layer, the concentration gradient of electroactive
species becomes very high in the vicinity of the electrode, and the current
density is mainly controlled by this term. To the contrary, it is the imposed
electric field that controls the current density in the bath.
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It can be observed that the presence of the magnetic field in the governing
equations introduces a strong coupling between the Navier–Stokes equation,
which depends on the concentration field by the way of the current density dis-
tribution, and the convection–diffusion equation that depends on the velocity
distribution. This coupling disappears in classical electrochemistry for which
the Navier–Stokes equation is independent of the concentration equation.

The non-dimensional number, the so-called magneto-diffusion parameter,
Md, which appears in Eq. (1), is:

Md =
zFCbB0L

2
0

ρν
.

It can be noticed that Md

ReSc represents the ratio of the electromagnetic to
the viscous forces. It is analogous to the square of the Hartmann number in
classical MHD, while Md

Re2Sc is similar to the interaction parameter.
It can be also noted that if the motion occurs in the presence of a magnetic

field, the typical velocity, V0, can be estimated from the equilibrium between
the electromagnetic and inertia forces. This gives:

V0 ≈
[
zFDCbB0

ρ

]1/2

, (16)

and consequently:

Re =

√
zFDCbB0L2

0

ρν2
. (17)

If the difference of concentration ∆C between the bath and the elec-
trodes generates a density variation, which controls the fluid motion, then
the Reynolds number must be replaced by the electrochemical Grashof num-
ber:

Gr =

√
gβ∆CL3

0

ν2
. (18)

The above theoretical formulation of MEC has been tested in two typical
experiments performed in Japan.

3.2 Experimental validation

The first experiments to identify the influence of an imposed magnetic field
on the mass transfer processes have been performed by Ryoichi Aogaki [9]
and Shigeru Mori [10]. Aogaki experimented with forced convection in the
presence of the electromagnetic forces, while Mori tested the influence of the
magnetic field on the natural convection.

The Aogaki experiment (Fig. 3) can be viewed as an electrochemical con-
ducting pump. It involved a horizontal channel of rectangular cross section
immersed inside an electrochemical bath. Without the magnetic field the mass
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Fig. 3. The Aogaki experiment [9]

transfer is controlled by diffusion corresponding to a linear variation of elec-
troactive species between the anode and the cathode. The electrochemical
mechanism is consequently very slow. On the contrary, when the magnetic
field is applied, a fluid motion induced by the electromagnetic forces takes
place, which controls the mass transfer processes. Two types of channels were
tested, both using the same electrolytic solution composed of 1 mol/L of sul-
furic acid (H2SO4) and a varying concentration of copper sulfate (CuSO4).

The first channel was small, of length 5 cm, width 0.1 cm, and height 1 cm.
The second one was larger, of length 5 cm, width 2.5 cm, and height 2.5 cm.

The results obtained by numerical simulation [9] are partially given in
Figs. 4 and 5. For the small channel (Fig. 4), they can be regrouped to be
presented in the form of a linear dependence of the Sherwood number propor-
tional to the limiting current versus the product of C3/2

b B
1/2
0 , corresponding

to a linear dependence of the flow rate versus the product C3/2
b B

3/2
0 .

It can be seen that the theoretical results obtained by numerical simulation
[8] present a good agreement with the Aogaki data, even if the values are
greater than the experimental ones. This can be attributed to the numerical
procedure based on the assumption of a two-dimensional (2D) flow, and which
was not the case in the experiment.

For the large channel the agreement between the numerical simulation and
the Aogaki results was almost perfect. It is shown in Fig. 5.
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Fig. 4. Comparison between experimental [9] and numerical [8] data for the small
channel

Fig. 5. Comparison between experimental data [9] and numerical one [8] for the
large channel

It can be noticed that there is a difference with the previous case. The lim-
iting current (the Sherwood number) is proportional to the product C4/3

b B
1/3
0 ,

corresponding to the flow rate, which varies as C2/3
b B

2/3
0 . This difference can

easily be explained. In the first, narrow channel the two boundary layers,
developing along the anode and cathode join at a short distance from the
inlet. Thus, in most of the channel the flow is hydrodynamically established.
The phenomenological analysis of the situation performed by Ngo Boum and
Alemany [8] fits well with both numerical and experimental results. For the
second, wide channel the two boundary layers are separate over the whole
length. This leads to a different dependence between the magnetic field and
mass transfer, which is also phenomenologically explained in [8]. Concerning
comparison between simulation and experiment, the agreement is better for
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Fig. 6. The Mori experiment and the geometry of the associated numerical simula-
tion [10]

the large channel than for the small one, as has already been noted above.
This can be explained by the fact that the two-dimensionality of the flow is
more pronounced in the large channel, where the boundary layers are smaller
that the typical size of the channel.

The Mori experiment [10] has been performed to test the influence of the
magnetic field on natural convection.

The schematic diagram of the Mori cells is shown in Fig. 6. The experi-
mental set-up consists of a cylindrical cathode immersed inside a square box
with two walls being the two anodes. The axis of the cathode can take dif-
ferent angles with respect to the direction of the horizontal magnetic field.
The numerical simulation has been performed only for a cathode orientation
parallel to the magnetic field (Fig. 6).

The comparison between the experimental results by Mori, and the numer-
ical ones by Ngo Boum [9] shows a relatively good agreement for a weak
magnetic field. The choice of the dimensionless parameter MdRa

1/2/Sc (see
Fig. 7), where Ra is the electrochemical Rayleigh number, has been justi-
fied by Mori by the fact that it combines the parameter used to characterise
the natural convection with the dimensionless expression for the electromag-
netic forces due to the diffusion current. This is the reason why the agree-
ment between the experiment and the simulation is not too bad for small and
moderate values of this parameter. It can also be noted that the numerical
simulation agrees very well with the experimental Sherwood number obtained
for no magnetic field. Moreover, when the magnetic field increases, the flow is
completely controlled by forced convection induced by the Lorentz (Laplace)
forces, which are tangential to the cathode. In this case, and because there
is no renewal of the electroactive species, the diffusion layer is not controlled
by the hydrodynamic boundary layer, and thus becomes very thick. In such a
case, the mass transfer decreases when the magnetic field increases, explaining
the form of the curve obtained numerically.

Another approach, based on the work by Mollet et al. [11], has been taken
by Olivier and co-workers [12] with the aim to develop a method to study
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Fig. 7. Comparison between numerical and experimental results for the Mori experi-
ment [10]

the Lorentz (Laplace) force effect. For this case, they have deduced a relation
between the magnitude of the magnetic field and the current.

For limited diffusion at a circular microelectrode the current Ilim is:

Ilim = 0.678FD2/3Cbd
5/3α1/3, (19)

where d is the diameter of the electrode and α is the velocity gradient at the
wall. As the Lorentz (Laplace) force is proportional to B, the velocity gradient
α is also proportional to B, while the current is proportional to B1/3 [12]. It
has been shown that α also depends on the nature of the electroactive species
and the supporting electrolyte [13].

4 Magneto-electrolysis under AC magnetic field

To investigate any process, non-stationary perturbations can be applied during
the investigated phenomenon. Such a dynamic method has been undertaken
by two different methods. Aogaki and co-workers used cyclic magnetammetry
(CM), which consists of a periodically changing magnetic field applied to
an electrode under MHD control [14]. The current is measured during linear
sweep of the magnetic field. The authors examine specific magnetic field effects
on the reaction and diffusion processes excluding the usual MHD effect. They
have shown typical differences between a totally mass-transport-controlled
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system (i.e., ferri-ferrocyanide system) and a mixed electrochemical response
(i.e., copper electrodeposition) wherein a hysteresis effect of the magnetic field
and the periodic current response have been observed.

Olivier et al. [15] perturbed a constant magnetic field by a small sinu-
soidal amplitude superimposed by varying magnetic fields. The sinusoidal
modulation of the magnetic field ∆B generates a flow velocity modulation
∆vx, which creates a hydrodynamic perturbation and thus an electroactive
species concentration gradient perturbation ∆(dC/dx)x=0. The latter involves
an electrolytic current response ∆I, i.e.,

∆B → ∆vx → ∆αy → ∆(dC/dx)x=0 → ∆I.

By measuring the current response at a constant applied potential they
obtained a new MHD potentiostatic transfer function (∆I/∆B)E [15].

This transfer function is analogous to the classical electrochemical impe-
dance. It allows in-depth mass transport analysis to be made. By this tech-
nique, it has been possible to elucidate the hydrogen evolution mechanism in
nickel deposition from a Watts bath [16] and the diffusion process of zincate
species in zinc electrodeposition from a basic medium [17].

5 Turbulence

The examples given in the previous paragraph are devoted to the laminar
situation. Even in this case the problems are difficult to analyse numerically,
taking into account that for high Schmidt numbers the diffusion layer is con-
fined to an extremely small region at the walls. This necessitates the use of a
very fine mesh at the vicinity of the electrode.

Concerning turbulence, the problem to be solved is extremely difficult for
two main reasons.

The first one is also related to high values of the Schmidt number. In
this case, small variations of velocity inside the viscous sub-layer, which in
ordinary turbulent flows are neglected as far as the transfer of momentum is
concerned, become dominant for mass transfer processes. The reason is that
the diffusivity is generally 1,000 times lower than the kinematic viscosity.
Consequently, the problem is very difficult to analyse both numerically and
experimentally. The only numerical study [18] dealt with the problem using
large eddy simulation.

The second reason is related to the influence of the electromagnetic forces,
which are able to modify the characteristics of turbulence, and consequently
the mass transfer processes. As usual, the few attainable results reveal an
improvement in the transfer rate when a strong magnetic field is applied.
However, up to now no interpretation of the magnetic field influence have
been proposed for turbulent flow.
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Fig. 8. Ni–Fe alloy electrodeposited at –1.5 V/ESS: (a) without magnetic field,
(b) with a 0.9 T magnetic field parallel to the electrode [27]

The consequence is that the prediction of the mass transfer in magneto-
electrochemistry in a turbulent regime is a completely open problem.

6 Influence of a magnetic field on electrochemical
kinetics and on the structure and the quality
of the deposit

The influence of the magnetic field effects on electrochemical kinetics is still
subject to controversy. Many magnetic phenomena in magnetic fields of up
to 1 T have been proclaimed relevant to such effects, only to be proved later
to be induced by MHD convection [19, 20]. Few experiments have produced
certain results that can be claimed as an evidence for magnetic effect on the
electronic transfer kinetics. However, this question remains open and requires
a much deeper insight before a definite conclusion is made.

In contrast, when metal electrodeposition is undertaken with a magnetic
field superimposed on the electrochemical cell, the obtained materials may
exhibit significant texture and surface morphology modifications. Many exam-
ples have been given in recent reviews [21, 22]. Electrochemical investiga-
tions for copper and cobalt electrodeposition under high magnetic fields have
shown complex convective effects depending on the magnetic field orienta-
tion with respect to the electrode [23, 24]. During the electrodeposition of
iron and cobalt, a magnetic field superimposed on a thin-layer cell induces
typical arborescences that cannot be explained by classical MHD convection
only [25,26]. Physical insights by x-ray diffraction (XRD) and Scanning elec-
tron microscopy (SEM) analyses on nickel–iron alloys have highlighted modi-
fications of the composition and the smoothness of the deposit [27] (Fig. 8).

For cobalt–iron alloy, superimposition of the magnetic field leads to a
change in texture orientation without any modification of the composition
of the deposit [28] (Fig. 9).

Finally, it has to be noted that certain effects during non-metallic
compound electrodeposition, and chirality modifications have been observed
during polyaniline electropolymerization under high magnetic fields [29]
(Fig. 10).
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Fig. 9. XRD diagrams for Co–Fe alloys electrodeposited at –1.4 V/SSE: CoSO4

0.2 M, FeSO4 0.025 M, Na2SO4 0.5 M, NaCl 0.3 M, H3BO3 0.4 M for pH = 3,
T = 25◦C. The magnetic field is parallel to the horizontal electode

Fig. 10. Cyclic voltammograms of l- and d-ascorbic acids in a 0.5 M H2SO4 aqueous
solution on polyaniline film electrodeposited under (a) +5 T and (b) −5 T magnetic
field superimposition. The potential sweep rate is 50 mV/s [30]
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7 Concluding remarks

A new field of interest arises in the electrolysis under a magnetic field, when the
field of force that acts on the electrolyte has not an electromagnetic origin, but
a purely magnetic origin taking advantage of the magnetic susceptibility of the
electroactive species [31–33]. This is a new and promising field, which presents
high potential for applications to the deposition of paramagnetic materials.
For this case, main equations governing the flows have to be reconsidered,
more specifically the distribution of the electric current. This should take into
account the magnetic forces acting on the ions, which are able to modify their
trajectories.

A general conclusion is that MEC is a new domain of MHD, almost com-
pletely open for research with a large range of possible applications. For exam-
ple, we can refer to the numerical simulation by Olivas et al. [34] concerning
the improvement of both the rate of transfer and the homogeneity of the gold
electrodeposition around cylindrical connectors using a low frequency mag-
netic field. The main difficulty for the applications results in the possibility
to apply the magnetic field with significant intensity only onto some specific
zone.
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