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Preface
Water wave problems are of interest to coastal engineers, marine and offshore engineers, engineers working on naval architecture and ship design, and scientists
working on physical oceanography and marine hydrodynamics. The theoretical study of water waves can be traced back to two centuries ago. In the past few
decades, research in water waves has been very active, driven by the increasing demand of sea transport and offshore oil exploration. Various water wave theories
have been developed to describe different wave phenomena. These wave theories enable us to understand the physical mechanisms of water waves and provide the
basis for various water wave models.
Historically, the techniques of water wave modeling were developed in mainly two areas, coastal engineering and offshore engineering (including naval
architecture). While the traditional wave modeling in coastal engineering has emphasised detailed wave transformation over a rigid and fixed bottom or structure,
the wave modeling in offshore engineering and naval architecture has focused on wave loads on relatively large bodies and the corresponding structure responses. In
recent years, there has been a trend to couple the modeling of complicated wave transformation (e.g., wave breaking) with the analysis of body motion.
Furthermore, efforts are also being made to develop general-purpose models that can be applied not only to water wave problems, but also to many other types of
turbulent-free surface flow problems (e.g., river flows, mold filling).
This book is based largely on the author’s teaching and research during the last 14 years. The relevant postgraduate courses include Coastal Engineering and
Offshore Hydrodynamics developed at National University of Singapore and Advanced Turbulence Modeling developed at Sichuan University. The relevant
research is the modeling of water waves and turbulent-free surface flows at Cornell University, Hong Kong Polytechnic University, National University of
Singapore, and Sichuan University. The intended readers of this book include students, researchers, and professionals. The main purpose of this book is twofold: (1)
to introduce readers to the basic
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wave theories and wave models so that readers are able to choose appropriate existing models for different physical problems and (2) to provide adequate details of
numerical techniques so that advanced readers can construct their own wave models and test the models against the benchmark tests provided.
This book is organized in the following way. The general background of water waves and water wave modeling is introduced in Chapter 1 and the basic
hydrodynamics including turbulence modeling is reviewed in Chapter 2. In Chapter 3, the linear and nonlinear water wave theories based on potential flow
assumption are discussed, followed by the introduction of various wave phenomena in oceans. In Chapter 4, different numerical methods are introduced and
compared. Readers will be exposed not only the classical numerical methods (e.g., finite difference method, finite element method, and boundary element method),
but also the innovative methods (e.g., meshless method, lattice Boltzmann method). Various types of water wave models based on different wave theories and
solved by different numerical methods are introduced in Chapters 5. Extensive working examples and benchmark tests are provided to demonstrate the capability of
these models. The modeling of wave-structure interaction, which is of primary interest to coastal and offshore engineers, is continued in Chapter 6, again with model
demonstration and benchmark tests. The summary for the suitability of different wave models for different wave problems is provided in Chapter 7. In the same
chapter, some related subjects that are not adequately covered elsewhere in the book are briefly introduced and the future trend of water wave modeling is
highlighted.
Many people have contributed in various ways to this book. The author is particularly grateful to his Ph.D. students, Dr. Liu Dongming, Chen Haoliang, and Lin
Quanhong at National University of Singapore, for running the benchmark tests and editing the book draft. Ph.D. student Xu Haihua and former student Lee Yi-Jiat
have helped to draw sketches, prepare appendix scripts, and proofread the manuscript. Colleagues at National University of Singapore (Prof. Chan Eng Soon, Prof.
Jothi Shankar, Prof. Liong Shie-Yui, Dr. Guo Junke, Prof. Cheong Hin Fatt, Dr. Pavel Tkalich, and Prof. Vladan Babovic) and Sichuan University (Prof. Xu Weilin,
Prof. Cao Shuyou, and Prof. Yang Yongquan) have offered the author much help and that help is acknowledged with thanks. The author is grateful to many
colleagues who generously provided pictures of their own research for this book and their names are acknowledged in the captions of the pictures. The author would



also like to thank Tony Moore at Taylor & Francis who initiated the writing of this book in the summer of 2005, Katy Low at Taylor & Francis who assisted in the
preparation of the book draft, and Cherline Daniel at Integra who helped with the typesetting of the final book proof. During the writing of this book, the author was
supported, in part, by the research grants through

page_viii

Page ix
National University of Singapore (R-264–000–182–112) and Sichuan University (NSFC: 50679046 and 50525926; 973:2007CB714100). Last but not least, the
author would like to thank his family and friends, who have provided continuous support throughout the journey of his life, not only the writing of this book.
Professor Pengzhi Lin
Sichuan University
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Page 1
1
Introduction to water wave modeling
1.1 Introduction to waves
Waves are a common phenomenon in nature. By general definition, a wave is a movement with a certain periodic back-and-forth and/or up-and-down motion. A
wave can also be defined as a disturbance that spreads in matter or space, obeying a certain “wave equation.” Among the many types of waves, those that we are
familiar with are sound waves, light waves, radio waves, and water surface waves. Although light waves and radio waves belong to electromagnetic waves that can
travel in a vacuum, other types of waves need a medium to transmit the disturbance.
Waves that propagate through media, depending on the form of wave transmission, may be divided into two major categories, namely body waves and surface
waves. In the case of body waves, they can travel in a single medium. A typical example is sound waves, which are caused by a pressure disturbance in a solid,
liquid, or gas. Wave propagation is accomplished by the consecutive compression and dilatation that occur in the wave propagation direction. Another example of
such a wave is the P-type seismic wave. Besides the above pressure-induced body waves, there are also stress-induced body waves, in which the medium moves in
a direction perpendicular to the direction of wave propagation, for example, S-type seismic waves.
Surface waves always appear on the interface of two different media. The restoring force, which attempts to restore the interface to the equilibrium state, plays a
predominant role in wave propagation. Surface waves can occur at the interface between a solid and a fluid, e.g., Rayleigh-type seismic waves. They can also occur
at a fluid-fluid interface, e.g., ocean internal waves between two fluid layers with different density and ocean surface waves on an air-water interface.
1.2 Ocean surface waves and the relevance to engineering applications
In this book, we shall mainly focus on ocean surface waves. Ocean surface waves, or more generally surface water waves or simply water waves, are
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mainly generated by wind in deep oceans. Other possible sources of wave generation include astronomical attraction forces (e.g., tide), seismic disruptions (e.g.,
tsunami), underwater explosions, and volcano eruptions. Like all other surface waves, ocean surface waves require restoring forces to propagate. On most
occasions, the gravity of Earth is the major restoring force. It is only when the scale of the wave is very small [i.e., O(1 mm)], that surface tension becomes the main
restoring force for the resulting capillary wave.
Water waves share many similarities with light waves. For example, water waves experience refraction when they propagate over a changing bathymetry, similar to
light traveling from one medium to another medium. Water waves form a certain diffraction pattern behind a large object or through a narrow gap. This is again
similar to what light experiences under a similar condition. In fact, many theories established in optics, linear or nonlinear, can easily find their counterparts in water
wave theories. The only exception is probably the wave-breaking phenomenon, which is an important physical process for water waves to dissipate excessive
energy in terms of turbulence, but a similar process is not identified for light.
The study of water waves has important applications in engineering design. In deep oceans and deepwater offshore regions, wave height and wave period are two
major design criteria. The practical problems include the maneuvering of ships against waves, the safe operation of offshore structures such as floating production
storage offloading (FPSO) vessels or floating airports or terminals in extreme waves, and the stability of offshore structures such as bottom-mounted jacket
platforms subjected to wave attacks. Because water depth is usually larger than wave length, the main wave mechanism to be considered in design is wave
diffraction. The calculation of six-degree-of-freedom (DOF) structure motions, i.e., sway, surge, heave, pitch, roll, and yaw, and the control of the motion are the
key considerations in the design. Other related problems are liquid sloshing in a tank induced by different external excitations and the “green water” effect caused
by large-amplitude waves impinging on ship decks or offshore platforms.
In nearshore regions, waves can go through complex transformations with the combination of wave shoaling, wave refraction, wave diffraction, and wave breaking.
There is also an active nonlinear energy transfer among different wave harmonics when waves propagate over abruptly changed bottom topography. Because of
this, it is more challenging to understand wave motions in shallow water than in deep water. The engineering concerns for water waves in nearshore regions are
quite different from those in deep seas. The functional performance of various coastal protections, which range from breakwater and groin to seawall and
revetment, is one of the most important considerations in coastal engineering. Most of these protections are designed to provide a calm or at least reduced wave
environment in the protected areas such as harbors or beaches.
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1.3 Wave modeling
There are various types of techniques for modeling a prototype wave system, i.e., analytical wave modeling, empirical wave modeling, physical wave modeling, and
numerical wave modeling. With their inherent advantages and limitations, these techniques shall be applied for different purposes.
1.3.1 Analytical wave modeling
A physical wave system in nature can be very complicated. We may find a way to represent the wave system by analyzing the system with a simplified theoretical
model that should be able to capture the most important characteristics of the wave system. The model is usually expressed by mathematical equations, which are in
the form of partial differential equations (PDEs) or ordinary differential equations (ODEs) governing the space-time relationship of the important variables for the
waves. A good theoretical model is always constructed on rigorous mathematical derivations, each step of which has clear physical and mathematical assumptions
and implications. When the equations are solved analytically for a specific condition, the closed-form solution can be obtained and used to predict wave system
behavior accurately. This procedure of solution seeking is called analytical wave modeling, which is a powerful tool for us to understand the physical phenomenon
of a particular wave system. One typical example of this kind of modeling is the study of the fission and fusion of solitons by solving the KdV nonlinear wave
equation using inverse scattering transform. Another example is the wave-scattering pattern around a large vertical circular cylinder with the use of diffraction
theory. Unfortunately, although most of the wave systems can be formulated theoretically, only very few of them can be solved analytically. This greatly limits the
application of this approach to general wave problems.
1.3.2 Empirical wave modeling
An empirical formula is usually a simple mathematical expression summarized from available field data of a prototype system. It can describe the system behavior in
terms of simple algebraic equations with important parameters. Since the empirical approach is simple and easy to implement, it is widely adopted in engineering
design. In empirical wave modeling, empirical formulas can be used to estimate the maximum wave load on a structure (i.e., the Morison equation), the reflection
coefficient from a certain type of structure, the maximum wave run-up on a beach, and the maximum wave overtopping rate over a dike. However, since empirical
formulas are
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established on the known problems and database, when a new prototype system is considered, the existing empirical formulas may not be suitable.
1.3.3 Physical wave modeling
To understand a prototype wave system in nature, we can alternatively build a small-scale physical model in the laboratory as the miniature of the prototype. The
wave characteristics (and wave loads on the model structure if wave-structure interaction is investigated) can be obtained by laboratory measurements. The
information can then be extrapolated based on certain scaling laws to estimate what will really happen to the prototype system. This approach is called physical
wave modeling. It is straightforward and allows us to visualize and understand the important physical processes from the small-scale model study. Typical examples
of physical wave modeling include the studies of wave loads on an offshore structure, wave transmission and reflection from a breakwater, etc. However, when a
physical system becomes very complicated, a physical model that satisfies all the important scaling laws, on which the physical model is designed and constructed,
may not exist. Other approaches may have to be sought under such circumstances or when a physical model study is too expensive and time-consuming. Readers
are referred to Hughes (1993) for a more detailed description of the physical models in coastal engineering and to Chakrabarti (1994) for offshore structure



modeling.
1.3.4 Numerical wave modeling
A numerical wave model is the combination of the mathematical representation of a physical wave problem and the numerical approximation of the mathematical
equations. Compared to theoretical modeling, the difference is only in the means of finding the solution of the governing equations for the wave problems. To model
ocean waves numerically, we must start from some existing “wave equations” obtained from theoretical studies. In most cases, we can have more than one wave
equation to describe the same wave phenomenon, depending on different levels of approximation made in the theoretical derivations. Similarly, the same wave
model can also be applied to many different wave problems, as long as the basic assumptions in the model are valid.
1.4 Numerical models for water waves
In the following subsections, we will classify wave models based on their modeling capability so that readers can have a broad idea of the wave models that are
available and the problems that they can solve. In Chapter 5, in addition to providing sufficient theoretical background of wave theories, we will further elaborate
on the theoretical assumptions and capabilities of these wave models.
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1.4.1 Wave spectral models
The most commonly employed wave model in modeling large-scale wave motion is the wave energy spectral model or wave action spectral model. This type of
model is constructed on the assumption that a random sea state is composed of an infinite number of linear waves whose wave height is a function of wave
frequency and the direction of wave propagation. For an individual wave train, the rate of change of wave energy (or action) flux is balanced by the wave energy
transfer among different wave components in different directions (i.e., wave refraction) and different frequencies (i.e., nonlinear wave interaction) as well as energy
input and dissipation. The representative wave energy spectral models are WAM (WAve prediction Model) (Hasselmann et al., 1988) and Wave Watch III
(Tolman, 1999), which can be used to model large-scale variations of wave heights in deep oceans. Being connected with an atmosphere model, a wave energy
spectral model is able to predict global ocean wave climate. When the current effect is considered, the wave action spectral model can be formulated and used
instead to simulate combined wave-current interaction in a large-scale nearshore region. The representation of such a model is SWAN (Simulating WAves
Nearshore; Ris et al., 1999).
With the wave phase information being filtered out in the formulation, the wave spectral model can use computational meshes much larger than a wavelength and
thus can be applied in a very large area. Without wave phase information, however, the model is unable to represent wave diffraction that is phase-related. For this
reason, this kind of model is usually used to provide far-field wave information only. The detailed wave pattern around coastal structures where diffraction is
important is left to other types of wave models.
1.4.2 Mild-slope equation wave models
The mild-slope equation (MSE) was originally derived based on the assumptions of linear waves and slowly varying bottoms. The equation can be used to describe
combined wave refraction and diffraction in both deep and shallow waters. In most events, the MSE model is employed to study monochromatic waves, though it
can be applied to irregular waves by summing up different wave harmonics. The extension of the MSE to abruptly varying topography and larger amplitude waves
was also attempted in the last two decades. So far, most of the applications of the MSE models are limited to the region from an offshore location to a nearshore
location some distance away from the shoreline before wave nonlinearity becomes strong. One exception is its application in harbor resonance modeling because
water depth in a harbor is usually deep even along the boundaries. The MSE has three different formulations, namely the hyperbolic MSE for a time-dependent
wave field, the elliptic MSE for a steady-state wave field, and the parabolic MSE for a simplified steady-state wave field that has a primary wave propagation
direction.
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1.4.3 Boussinesq equation wave models
To model nearshore waves with strong wave nonlinearity, a Boussinesq equation wave model (or simply the Boussinesq model in water wave modeling) is often a
good choice. The Boussinesq equations are depth-averaged equations with the dispersion terms partially representing the effect of vertical fluid acceleration.
Rigorously speaking, Boussinesq equations are valid only from intermediate water depth to shallow water before the waves break. However, in engineering
applications, the equations are often extended beyond the breaking point, up to wave run-up in the swash zone. This is possible by adding an artificial energy
dissipation term for wave breaking. Besides, efforts are also made to extend the model to deeper water. Unlike the wave spectral model and the MSE model, the
Boussinesq model does not have the presumption that the flow is periodic. Therefore, it can be applied to waves induced by impulsive motions, i.e., solitary waves,
landslide-induced waves, tsunami, and unsteady undulation in open channels.
1.4.4 Shallow-water equation wave models
To model tsunami or other long waves (e.g., tides), a shallow-water equation (SWE) model is more likely to be adopted. Compared with the Boussinesq model, the
SWE model is simpler because the flow is assumed to be uniform across the water depth and the wave-dispersive effect is neglected. The SWE model has a wide
application range in modeling tsunami, tides, storm surges, and river flows. The main limitation of the SWE model is that it is suitable only for flows whose
horizontal scale is much larger than vertical scale.
1.4.5 Quasi-three-dimensional hydrostatic pressure wave models
All the earlier discussed wave models can be operated on a horizontally two-dimensional (2D) plane due to vertical integration. When a shallow-water flow is
modeled, the depth-varying information may still be needed on some occasions. A typical example is ocean circulation where the horizontal length scale is much
larger than the vertical scale, but the vertical circulation, though relatively weak, is still of interest in many events. Thus, in this case, a three-dimensional (3D)
model would be necessary. This type of model often solves the 3D Navier-Stokes equations (NSEs) directly under the hydrostatic pressure assumption. Under such
an assumption, the solution procedure to the 3D NSEs is greatly simplified and the model is referred to as the quasi-3D model, against the fully 3D model to be
discussed later. The model of this type is often solved in the σ-coordinate that maps the irregular physical domain to the regular computational domain for the ease
of application of the boundary condition. The representative model of this kind is the Princeton Ocean model (POM).
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1.4.6 Fully three-dimensional wave models with turbulence: Navier-Stokes equation models
To model fully 3D wave problems, we must turn to the general governing equations, NSEs, without a hydrostatic pressure assumption. The NSEs are derived from
the general principle of mass and momentum conservation that is able to describe any type of fluid flow including water waves. With the inclusion of a proper
turbulence model, it is possible for an NSE model to simulate difficult wave problems, e.g., nonbreaking or breaking waves, wave-current interactions, and
wave-structure interactions. When breaking waves are simulated, there is the potential to include air entrainment on the surface of the water; when the wave-body
interaction is computed, it can treat both the rigid body and the flexible body. With almost no theoretical limitation, this type of model seems to be the best choice
of all. However, the main barrier that prevents the wide application of such a model is the expensive computational effort. To solve the fully 3D NSEs, the
computation can be much more expensive than all the previously introduced wave models. So far, the application of such models in engineering computation is still
restricted to the simulation of local wave phenomena near the location of interest, e.g., the surf zone when the breaking wave and/or sediment transport is
considered and the flows around coastal and offshore structure when the wave-structure interaction is considered.
1.4.7 Fully three-dimensional wave models without turbulence: potential flow models
When turbulence is negligible and the bottom boundary layer thickness is thin (e.g., nonbreaking waves), the NSEs can be reduced to the Laplace equation based on
potential flow theory. The theory is applicable to most of the linear and nonlinear nonbreaking waves and their interaction with large bodies. The Laplace equation
can be solved numerically by many different methods. One of the most commonly used methods is the boundary element method (BEM), which converts domain
integration into surface integration with the use of Green’s theorem. This type of model is capable of simulating highly nonlinear waves in both deep and shallow
waters. It is effective in the study of nonlinear wave transformation over changing topography, linear wave diffraction over a large body, and wave force on a large
structure. The major limitation of such a model lies on the potential flow assumption that requires the flow to be irrotational. For this reason, the model is unable to
simulate breaking waves as well as wave interaction with small bodies, during which the flow becomes rotational. Furthermore, the computational cost for modeling
3D fully nonlinear waves using BEM is rather high.
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1.5 Books on water waves
There are many books on water waves. While some of these books address the general aspects of water wave theories (e.g., Stoker, 1957; Whitham, 1974;
Newman, 1977; Lighthill, 1978; Mei, 1989; Dean and Dalrymple, 1991; Dingemans, 1997), other books address either specialized topics related to water waves
(e.g., Le Méhauté and Wang, 1996) or the engineering applications in coastal and offshore engineering (Chakrabarti, 1987; Goda, 2000; Kamphuis, 2000; Reeve et
al., 2004; Mei et al., 2005). The books dedicated to the numerical modeling of water waves normally cover only a particular type of wave model, e.g., Massel
(1993) for wave spectral models and Dyke (2007) for shallow sea models. Only recently, Tao (2005) published a book (in Chinese) on water wave simulations by
different wave models. This book is intended to be a different addition to the available literature so that readers can develop a thorough understanding of various
water wave theories on which different wave models are constructed and applied to different physical problems.
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2
Review of hydrodynamics
In this chapter, we will review the fundamentals of hydrodynamics, especially those closely related to water waves. The review will start from the NSEs, which are
the general equations that govern the motion of fluids. The potential flow theory will then be deduced from the equations with the assumption of irrotational flow
and negligible viscous effect. This will build up the theoretical background for water wave theories, which will be detailed in Chapter 3.
Under certain environmental conditions (e.g., waves under strong winds and waves in shoaling), waves become unstable and break. It is during this process that
strong turbulence is generated. Turbulence can also be generated during wave-structure interaction. The solution to these challenging problems requires appropriate
turbulence modeling. In this chapter, we will also review most of the commonly used turbulence closure models whose advantages, limitations, and applicable
ranges are discussed.
2.1 Basic equations for hydrodynamics
The governing equations for fluid flow motions are based on the principles of mass conservation and force balance. The equations can be formulated differently,
depending on the flow variables used. The most common formulation is based on the primitive variables of fluid flow velocity and pressure. However, other
equivalent formulations are also possible by using the derived variables such as vorticity and/or stream function.
2.1.1 Primitive variable formulation: Navier-Stokes equations
2.1.1.1 The momentum equation
Newton’s Second Law, which dictates that the net force applied to a body is equal to mass of the body multiplied by the acceleration of the body attained, was
originally constructed on the Lagrangian frame that follows the motion of the object. This law is the basis for classic mechanics, of
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which fluid mechanics is a branch. The momentum equation is essentially the reiteration of Newton’s Second Law in the Eulerian (fixed) frame. With the use of the
Reynolds transport theorem, a translator between the Lagrangian frame and the Eulerian frame, Newton’s Second Law in the Eulerian system can be recast into the
following momentum equation:

(2.1)
where D/Dt is called the total derivative (also called substantive derivative, material derivative, or Lagrangian derivative), representing the time rate of change
following the fluid particle motion; i=1, 2, 3 represents three orthogonal directions in space (in most of the cases, i=1, 2, 3 are in x-, y-, and z- directions,
respectively); ρ is the fluid density; ui is the fluid velocity in the ith direction; and fi is the force applied to the fluid system per unit mass in the ith direction. The
first term in the bracket on the left-hand side (LHS) of (2.1) the local acceleration of the fluid particle and the second term is the convective acceleration. The force
fi for most of the real fluids is composed of three contributions, namely pressure force, body force, and viscous force, i.e.:

(2.2)
where p is the pressure, gi is the gravitational acceleration in the ith direction, and  is the second-order viscous stress tensor. For Newtonian fluids, the stress is
linearly proportional to the rate of the strain of the fluid particle:

 
as:

(2.3)
where µ is the molecular viscosity of the fluid.
Continuum: It is noted that the above equation is established by assuming that the fluid is a continuum, meaning that all fluid variables vary continuously through
the fluid. This assumption is valid for most of the fluids that have the mean free path (the average distance a molecule travels between collisions) of molecules much
shorter than the characteristic length scale for a problem.
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2.1.1.2 The continuity equation
Under the same Reynolds transport theorem, the statement that the mass of a fluid system is unchanged regardless of its motion (the basis for classical mechanics,
but not the theory of relativity) will be translated into the equation in Eulerian system as follows:

(2.4)
This equation is often called the continuity equation that ensures the mass conservation in a fluid system. Equations (2.1) and (2.4) are the well-known NSEs. In the

case where the fluid is inviscid, the term  and the equations are reduced to the so-called Euler equations.
Equations (2.1) and (2.4) become complete with the supplementary state equation that relates the local pressure with the local density as follows:

(2.5)
where p0 and ρ0 are the reference pressure and density, respectively, and k and γ are the coefficients that are related to fluid property and thermodynamic status.
The explanation of the Reynolds transport theorem and the derivation of NSEs can be found in many fluid mechanics books (e.g., the Streeter et al., 1998:115,
201).
Incompressibility: Like solids, all real fluids are compressible. This means that when a force is applied on a fluid particle, the particle will change shape and/or
volume. If the force applied is normal to the surface, the fluid will be stretched or compressed. The level of dilatation or compression subject to the normal force is
the property of the fluid, which is often referred to as the compressibility of the fluid, and it is characterized by the modulus of elasticity. When the fluid flow is in
the low-speed regime where the flow speed U is much smaller than the speed of pressure wave C (and thus we have a Mach number Ma=U/C<<1), the
compressibility of the fluid can be neglected, meaning that the volume of the fluid particle remains the same regardless of the forces being applied. Under such a
circumstance, the density of a fluid particle remains constant and the fluid is called incompressible. Mathematically, this means that following a fluid particle the
total derivative of the fluid density is zero, i.e.:

(2.6)
Substituting (2.6) into (2.4), the continuity equation for incompressible fluid has the following new form:

(2.7)
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The above equation is simplified compared with the original continuity equation that is time-dependent.
Constant density: If the fluid has a constant density (i.e., fluid density does not change in time and space), the same simplified continuity equation (2.7) can be
derived and this often creates confusion between an incompressible fluid and a constant density fluid. One should realize that although the final continuity equation
takes the same form, the way of imposing it is different between an incompressible fluid and a constant density fluid. The latter has a stronger restriction on density
variation, namely the individual derivative of density with respect to time and space is zero, i.e., ∂ρ/∂t=∂ρ/∂xi=0. For an incompressible fluid, however, only
∂ρ/∂t+∂ρ/∂xi=0 is imposed and we can have ∂ρ/∂t=−∂p/∂xi≠0. This implies that an incompressible fluid can be at the same time stratified (i.e., density varies in
time and space). This has special implication in ocean wave theories because the sea water in many occasions is stratified but can still be assumed to be
incompressible.
To summarize, the continuity and momentum equations for incompressible or constant density fluids are as follows:

(2.8)

(2.9)



In case the viscosity is constant, the diffusion term with the second-order tensor  can be simplified to  where ν=µ/ρ is the kinematic viscosity. The
momentum equation then becomes, with the use of the continuity equation:

(2.10)
Now all variables in the equation are either scalar or vector. This enables us to write NSEs in the equivalent form using vector operators:

(2.11)

(2.12)

where the operators  represent divergence, gradient, and Laplacian, respectively, and the vector is represented by boldface. In this book,
both notations are mixed, depending on whichever is more convenient.
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Note that the NSEs introduced above are established on an inertial reference frame and Cartesian coordinate system. However, there are cases where the problem
can be more conveniently solved in a noninertial reference frame (e.g., liquid sloshing in an excited tank). The virtual forces will then have to be added in the
momentum equation (see Section 6.5.1.4). In contrast, sometimes it may be more convenient to solve the equations in another coordinate system (e.g., cylindrical
coordinate and spherical polar coordinate). In this case, the governing equations originally established on the Cartesian coordinate must be converted using
mathematical identities (see Appendix I).
2.1.2 Vorticity-velocity formulation
Definition of vorticity: The vorticity ω is the measure of the local rotational rate of a fluid particle, and it is defined as the curl of local fluid velocity:

(2.13)
where i, j, and k represent the unit vectors in x-, y-, and z- directions, respectively.
Momentum equation: Taking the curl  on both sides of the momentum equation (2.12), we have:

(2.14)
This is the equation describing the transport of vorticity. To arrive at the above equation, the fluid density is assumed to be constant and the vector product identity

 (φ can be any scalar) is used. The first term on the right-hand side (RHS) of (2.14),  can be dropped for a 2D problem because the two vectors
are orthogonal to each other.
Continuity equation: Similarly, if we take the curl on  and make use of the continuity equation, we have:

(2.15)
This equation describes the relationship between velocity and vorticity under the constraint of the continuity equation. The equation is obtained by using Lagrange’s

formula of vector cross-product identity  (the complete vector operation identities are given in
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Appendix II). Equations (2.14) and (2.15) can be proven to be equivalent to the original NSEs expressed in terms of primitive variables (2.11) and (2.12). The
benefit of using the above equations lies mainly on the easier treatment of the solid boundary, the source of vorticity, compared to the primitive variable
formulation.
Once both velocity and vorticity are obtained in the flow field, the pressure can be obtained by solving the pressure Poisson equation (PPE) obtained by taking the
divergence on both sides of the original momentum equations of NSEs:

(2.16)
where Tr( ) is the trace of a matrix and  represents the cross-product of two tensors.
2.1.3 Stream function-velocity formulation for 2D problems

Continuity equation: Consider another vector product identity  for any vector field; we realize that the divergence-free velocity field for
incompressible fluid flow actually allows the introduction of a vector potential ψ that is defined by  Taking the curl of the above definition, we have:

(2.17)
This equation in combination with the vorticity transport equation (2.14) forms another equivalent formulation of the NSEs in terms of vector potential and
vorticity.
However, such a formulation does not seem to have any immediate advantage over the primitive variable formulation, unless it is reduced to the following form for
2D problems [e.g., on the (x, y) plane]:

(2.18)

where both ψ and ω become scalars [by considering the single vector component perpendicular to the (x, y) plane and thus in the z- direction]. The term 
equals zero because the gradient in the z- direction is always zero for 2D problems.
Momentum equation: Similarly, the vorticity equation can be simplified as the convection-diffusion equation:

(2.19)
and the velocity above is related to ψ by:

(2.20)
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The scalar ψ is often referred to as the stream function because the contour line of this function is also the streamline, the tangent of which defines the local fluid
velocity direction. The advantage of using the stream function-vorticity formulation is that instead of working on the vector transport equations, we now work on
two governing equations for scalars. Furthermore, the stream function along a solid surface is a constant, which makes the implementation of the solid boundary
condition straightforward.
Readers can find more information on the alternative formulations of NSEs and their numerical solutions from Quartapelle (1993).
2.2 Potential flow theory
2.2.1 Basic assumptions
Ideal fluid: All real fluids are viscous just as they are compressible. However, the viscous effect can be significant or insignificant on different occasions when
compared with the rest of the force contributions. If the viscous effect is negligible in a fluid flow, the fluid is referred to as an ideal fluid. Among the three types of
external forces in (2.2), only viscous forces have shear components that act on the tangential direction of fluid particles. It is these shear forces that change the
rotational status of fluid particles. Therefore, in an ideal fluid the vorticity will be neither created nor destroyed.
Irrotational flows: It is well known that a steady fluid flow around a solid body will induce a boundary layer near the body surface, within which the viscous effect
is important. Outside the boundary layer, the viscous effect diminishes toward the far field. This implies that in a location away from the solid body, the fluid
gradually loses the driving mechanism that changes its vorticity status. If the fluid flow is initially irrotational, it will remain so, i.e., ω=0. This type of flow is called
irrotational flow.
Potential function: If the flow is irrotational, there exists a scalar velocity potential function  that can be expressed as follows:

(2.21)
By substituting (2.21) into (2.13), it is not difficult to prove that the existence of the potential function is the necessary and sufficient condition for the irrotationality
of the fluid flow.
2.2.2 Potential flow and the Laplace equation



The Laplace equation: If the potential function exists, the continuity equation for an incompressible fluid can be rewritten in a new form by substituting (2.21) into
(2.11):

(2.22)
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This is the Laplace equation. Although the Laplace equation is the result of the continuity equation and it is for the purpose of ensuring mass conservation,
additional enforcements (i.e., fluid incompressibility and flow irrotationality) have been added along the line of derivation. The flow that can be described by the
above Laplace equation is called potential flow. Compared with equation (2.11), equation (2.22) is simplified in the sense that only one scalar  needs to be dealt
with, rather than a vector u that has three components.
Bernoulli equation: At this point, we still have the remaining problem of how to relate  to pressure p. By substituting (2.21) into the momentum equation (2.12)
and integrating the resulting equation in space after neglecting the viscous term (see Appendix III), we have:

(2.23)
where C(t) is the integration constant that is uniform in space and changes with time. The value of it can be determined from boundary conditions. To obtain the
above equation, we also assume that the gravitational acceleration is in the vertical direction, i.e., gx=gy=0 and gz=−g. This equation is called the Bernoulli
equation, and it relates fluid pressure with fluid velocity potential between any two positions in space. Equation (2.23) is the simplified momentum equation under
the potential flow assumption. By solving (2.22) and (2.23) together, one is able to find the velocity and pressure variation in time and space. It is noted that there is
another version of the Bernoulli equation along the streamline (not the entire space) for viscous fluid, which has been elaborated in many fluid mechanics books and
will not be further discussed here.
2.2.3 Formulation based on the stream function for 2D problems
For a 2D irrotational flow, the stream function also satisfies the Laplace equation because the vorticity is zero throughout [see (2.18)]:

(2.24)
With the definition of ψ and  in terms of u and υ by (2.20) and (2.21), it is ready to prove:

(2.25)
This implies that the streamline is always perpendicular to the contour line of velocity potential function.
It is also ready to have the following relationship:

(2.26)
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This pair forms the Cauchy-Riemann conditions and the problem can thus be solved by complex variable analysis.
2.3 Turbulent flows and turbulence modeling
2.3.1 Definition of turbulent flows
For a real fluid, viscous effect plays an important role in balancing the fluid inertia and dissipating the fluid energy. When the viscous effect is relatively important,
the flow tends to be laminar. It would become turbulent as fluid inertia increases. The dimensionless parameter commonly used to characterize the tendency of
flow transition from laminar flow to turbulent flow is known as the Reynolds number (Re):

(2.27)
where U and L are the characteristic velocity scale and the length scale of the flow, respectively.
When a flow becomes turbulent, chaos will develop inside the flow. The resulting flow contains both organized components and random fluctuations. An
instantaneous velocity in a turbulent flow can thus be expressed as the sum of two contributions:

(2.28)

where  is the organized velocity field that can be resolved by the repetition of flow sampling and it is also called ensemble average velocity; u′(x, t) is the
velocity fluctuation that is random for a particular sample but has certain statistical characteristics from a large number of samplings for the same problem.
Usually,  covers the large-scale mean flow motion, whereas u′(x, t) spans a wide spectrum of length scales from those close to the mean motion down to
those at the Kolmogorov scale, in which the turbulence energy is dissipated (Tennekes and Lumley, 1972). Between the large-scale mean flow motion and the
smallest turbulence scale are the energy cascades that are in the form of eddies in various sizes. This range of flow is classified as the inertial subrange, which serves
as a bridge to pass the mean flow energy to the smallest turbulence eddies on which the viscous effect acts to dissipate the kinetic energy to heat. With the
continuous reduction of the size of eddies in the inertial subrange, the turbulence becomes increasingly isotropic and similar to each other among various turbulent
flows. Therefore, a turbulent flow is always 3D even though the mean flow can be 2D.
Compared to a laminar flow, a turbulent flow has stronger flow randomness, wider flow motion scales, larger capacity of momentum transfer, and greater energy
dissipation rate. Despite the above facts, the original
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NSEs are still valid to describe various turbulent flow motions. This consensus is the basis for different turbulence models to be discussed below.
2.3.2 Direct numerical simulation
The logic of direct numerical simulation (DNS) is simple and straightforward: since all types of fluid flows, laminar and turbulent, can be described by the NSEs, the
numerical solution to a turbulent flow requires no special treatment except to solve the original NSEs accurately. To adequately capture a turbulent flow, however,
the following requirements are needed:
1. All turbulence structures, including the smallest Kolmogorov turbulence scale, must be adequately resolved by the numerical scheme.
2. The numerical solution must be accurate enough to simulate the energy dissipation rate correctly (e.g., the numerical errors/dissipation should not overwhelm the
actual energy dissipation).
3. The proper statistical methods need to be used to analyze the numerical results in order to extract the turbulence information.
Based on Kolmogorov (1962), the smallest turbulence length scale (e.g., Kolmogorov η) can be estimated as:

(2.29)
where ε is the dissipation rate of the turbulent flow that can be estimated by the dimensional analysis:

(2.30)
This gives the ratio of the mean flow length scale L to the Kolmogorov scale η to be:

(2.31)
This ratio is also the minimum grid number required in one space to solve a turbulent flow. Therefore, the total number of grids in a 3D space is:

(2.32)
For a problem with Re=104, the total number of grids is therefore 109, which is nearly the upper limit of the computer power at this stage.
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This explains why DNS is applicable only to a limited number of practical problems with relatively small Re.
DNS offers an opportunity to a modeler to obtain an instantaneous flow field for a turbulent flow. The DNS results are analogous to high-precision experimental
data, from which turbulence information can be extracted. Both ensemble average (for unsteady flows) and time average (for quasi-steady flows) can be employed
to separate the mean quantities and random fluctuations. In order to obtain the statistical properties of flow turbulence, the Monte Carlo method is often used,
which introduces random perturbation to the flow to trigger the turbulence generation in the simulation. Readers are referred to Pope (2000:344) for more
information on DNS.



2.3.3 Large eddy simulation
For most of the high Re turbulent flows, DNS is not a practical choice with the current computational power (probably it is also not an optimal choice for most
engineering computations even when computer power catches up in the future). The natural thinking is that we only need to compute the resolvable large-scale
turbulence and mean flow, while the unresolvable small-scale turbulence is modeled based on some closure models. This is the fundamental of large eddy simulation
(LES), which can be regarded as a partial DNS because only part of the turbulence structure is directly calculated.
While a DNS provides information on the instantaneous flow field including both the mean flow and the full spectrum of turbulence motion, an LES truncates the
computation of turbulence at some cutoff scale. In an LES calculation, the following division can be done:

(2.33)

and LES only captures 

Obviously, both  and  vary with the change of the cut-off scale, which is often set to be the same as the mesh resolution. As the turbulence scale
becomes smaller, the turbulence becomes more isotropic and self-similar in the inertial subrange. This implies that the universal form of a closure model for
small-scale turbulence modeling may be possible, as long as the unresolvable turbulence structure is small enough. One of the earliest subgrid scale (SGS) models
was proposed by Smagorinsky (1963). In his approach, the original NSEs are first transformed into the following form by applying the spatial average filter that has
a size equivalent to the mesh size:

(2.34)
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(2.35)

where  with  and the overbar represents the spatial average operation. 

 is the additional stress induced by the unresolved turbulence fluctuation. This term can be modeled by the eddy viscosity concept, i.e., the
additional effect of turbulence mixing and energy dissipation can be modeled as a process similar to molecular viscous effect, but with a different viscosity (eddy
viscosity) that is flow- and filter-dependent. In the SGS model, the closure model for this stress is as follows:

(2.36)
where Ls is the characteristic length scale that equals Cs∆, with Cs≈0.17 (Lilly, 1967) being the Smagorinsky coefficient. The mean filter size ∆ can be related to the
mesh size in a 3D problem by ∆=(∆1∆2∆3)1/3, where ∆1, ∆2, and ∆3 are the mesh sizes in three directions, respectively.
As ∆ approaches zero, the value of Rij also approaches zero. This implies that the effect of small turbulence becomes negligible to the resolved flow computation
and LES returns to DNS. In contrast, as ∆ increases, more turbulence needs to be modeled. This causes the difficulty in having a simple yet universal closure model
because larger size turbulence is more anisotropic and mean flow-dependent that require more sophisticated closure models. When the mesh size ∆ is out of the
turbulence inertial subrange, the simple closure model (2.36) is no longer accurate. Researchers have proposed the so-called dynamic SGS model (e.g., Lilly, 1992)
that intends to incorporate the information on the local resolved flow into the determination of the coefficient in (2.36) so that the closure model is more adaptable
to various turbulent flows. The dynamic SGS can generally provide more accurate simulation results compared with the simple SGS model.

Note that since  contains the turbulence flow structure  which is generally 3D, an LES model is normally required to run under a 3D framework.

An exception occurs only when the mean flow  is 2D and the filter size ∆ is so chosen that  is also primarily 2D.
2.3.4 Reynolds stress model
It is quite natural to ask the following question: What happens when ∆ in LES approaches the largest turbulence scale, i.e., the length scale of the mean flow? In this

case, all turbulence effects will be lumped into  and  We then have  The term Rij would therefore include all of the
turbulence effects on the mean flow. In this case, Rij is called Reynolds stress and historically it is derived by performing the
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ensemble average (or Reynolds average, represented by the notation of  in the following equations) on the original NSEs:

(2.37)

(2.38)

where  The above equations are called Reynolds-averaged Navier-Stokes (RANS) equations or simply Reynolds equations. There are many ways
of modeling Rij and they are summarized below.
2.3.4.1 Reynolds stress transport model
Starting from the original NSEs (2.8) and (2.9), one may derive the transport equations for the Reynolds stresses divided by −ρ (Launder et al., 1975) as follows:

(2.39)
where δij is the Kronecker delta. The LHS of the equation calculates the rate of change of Reynolds stress following the mean flow field. The first two rows on the
RHS represent the total diffusion of Reynolds stress through the turbulent pressure work, turbulent fluxes, and molecular viscous force. The third row on the RHS
denotes the production of Reynolds stress due to the work done by Reynolds stresses against the mean flow gradients. The first term of the last row on the RHS
represents the interaction between the pressure fluctuation and the rate of strain of turbulence, which does not contribute to the total change of turbulence energy
but redistributes the turbulence energy in different directions. The second term of the RHS is the tensor of energy dissipation rate εij caused by the viscous effect.
The above transport equations for Reynolds stresses contain a few higher order correlation terms, i.e., diffusion terms, pressure-strain rate correlation term, and
dissipation term, which need to be closed by certain models. The turbulence diffusion terms can be modeled by the gradient diffusion models. However, depending
on different levels of approximation, the
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diffusion coefficients can be either anisotropic (Daly and Harlow, 1970; Hanjalic and Launder, 1972) or isotropic (Mellor and Herring, 1973). The pressure-strain
rate correlation term contributes to the redistribution of turbulence energy, and thus, it is important for the characteristics of turbulence anisotropy. This term is
normally modeled by the combination of Rotta’s linear model of return-to-isotropy (Rotta, 1951; Tennekes and Lumley, 1972) for the slow pressure effect and
some nonlinear models for the rapid pressure effect. In view of the different assumptions, at least five different closure models have been proposed. Demuren and
Sarkar (1993) conducted the numerical tests with the use of different diffusion models and pressure-strain rate correlation models and concluded that no model can
predict the turbulence characteristics completely satisfactorily when compared with experimental data and DNS data. A further systematical study is still necessary
to improve these closure models, especially for complex flows.
With regard to the dissipation term, it is obtained by solving the transport equation in most approaches. First, the isotropic dissipation is assumed that makes

 where  The transport equation for ε can also be derived from the NSEs with higher order correlation terms as follows:



(2.40)
The physical meaning of each term on the RHS of the equation is as follows. The first term represents the production by vortex stretching due to the turbulence
vorticity, while the second term represents the viscous dissipation due to the spatial gradients of turbulence vorticity. The third term, which is in the form of spatial
divergence, represents the molecular and turbulence diffusion of ε. The last two terms represent the production due to the interaction between the turbulence
correlations and the mean velocity gradients.
To close up the problem, the RHS of (2.40) will be modeled and the final transport equation reads as follows:

(2.41)
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in which σε, C1ε and C2ε are empirical coefficients and  is the turbulence kinetic energy.
The system of equations (2.39) and (2.41) is closed and can be solved numerically. However, since the numerical solution to the Reynolds stress transport model is
computationally expensive and the closure model for the pressure-strain rate correlation may contain large uncertainties, simpler and more robust turbulence models
are often used instead.
2.3.4.2 The algebraic stress model
One of the simplified approaches is to use an algebraic equation rather than the transport equation to express six Reynolds stresses in a 3D turbulent flow. The
model based on this approach is called the algebraic stress model (ASM; e.g., Rodi, 1972). The model has the advantage of having a simple algebraic expression.
However, the correct physics may be lost in the modeling of complex turbulent flows. For this reason, such a model was not popularly adopted in general
engineering computation.
Another approach that is popularly used to model the Reynolds stresses is the combination of the algebraic model and reduced transport equations. The algebraic
model makes use of the eddy viscosity concept, in which the Reynolds stresses are related to the local rate of strain of the mean flow and the effective (eddy)
viscosity as follows:

(2.42)
νt in (2.42) includes all turbulence scale effects and it is always greater than that in the LES model (2.36). To determine νt, which is mean flow-dependent, there are
a few so-called two-equation closure models, namely the  model, k−w model, and k−kl model.
2.3.4.3 The k−ε model
The k−ε model is the best well-known turbulence model. In this model, νt is related to k and ε as follows:

(2.43)
where Cd is an empirical coefficient:

Cd=0.09 (2.44)
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To obtain k, we need to solve the transport equation for k that can be obtained by summing up the three normal Reynolds stress transport equations together:

(2.45)
The above equation is simpler than (2.39) not only because the number of the equation is reduced from 6 to 1 but also because the pressure-strain rate correlation
term disappears and the dissipation term becomes scalar. The diffusion term, the only unknown correlation term, can be modeled by the gradient diffusion again
(Rodi, 1980). The final equation reads:

(2.46)
in which σk is an empirical coefficient.
The variable ε above has the same physical meaning as defined before, and therefore, the same transport equation (2.41) used in the Reynolds stress transport model
can still be used here. The coefficients in the k and ε transport equations have been determined by performing many simple experiments; the recommended values
for these coefficients are (Rodi, 1980):

C1ε=1.44, C2ε=1.92, σε=1.3, σk=1.0 (2.47)
In the above traditional k−ε model, the Reynolds stress is linearly proportional to the rate of strain, similar to Newtonian fluid flows. The immediate effect of such
treatment is that the turbulence production, which is the product of Reynolds stress and the rate of strain of the mean flow, is always positive, meaning turbulence
always extracts energy from the mean flow, which may not be true in certain circumstances. Besides, this linear relationship may not adequately represent the
physics for anisotropic turbulence in complex turbulent flows. To resolve this problem, Pope (1975) proposed a more general nonlinear Reynolds stress model. In
this model, the Reynolds stresses are the function of not only the linear terms of the strain rate of the mean flow but also the higher order terms. Shih et al. (1996)
proposed a set of coefficients for all quadratic terms for this type of model and calibrated the coefficients using the turbulent flow over a step as follows:
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(2.48)
in which C1, C2, and C3 are empirical coefficients. When C1=C2=C3=0 the above model returns to the conventional linear eddy viscosity model. The values of
these coefficients were further corrected by Lin and Liu (1998b) based on the Couette flow experiments and applied to the breaking wave studies:

C1= 0.0054, C2=−0.0171, C3=0.0027 (2.49)
Under the extreme flow conditions, model (2.48) may predict the unphysical situations, i.e., negative turbulence velocity in one direction or unbounded Reynolds
stress component. To enforce the correct physics in complex flows, certain realizability requirements are necessary, which correct the coefficients in (2.49) to be
(Lin and Liu, 1998b):

(2.50)
where



 
and

 
The adoption of the above modifications will ensure the nonnegativity of turbulence velocity and bounded Reynolds stress. It is noted that all coefficients will return
back to their originally proposed values as in (2.44) and (2.49) when Smax and Dmax approach zero.
According to Apsley et al. (1998), the employment of the nonlinear Reynolds stress model can greatly improve the accuracy of numerical results because of the
fulfillment of more physical constraints. The nonlinear model not only captures most of the physics described by the Reynolds stress transport model but also retains
the simple form of the k−ε model. For simplicity, many nonlinear models have included only the quadratic terms (Shih et al., 1996; Lin and Liu, 1998b), which
represent the most important nonlinear anisotropy characteristics of turbulence.
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2.3.4.4 The k−ω model
The k−ω model is a turbulence model, especially applicable to turbulent boundary layer flows. The variable ω can be related to k and ε by ω= ε/(Cdk). The ω
equation was originally proposed by Kolmogorov (1942), who employed a physical reasoning and dimensional arguments similar to those involved in the derivation
of the ε equation. The idea was further extended by Wilcox (1988), who provided the following k−ω model popularly used today. In the model, the eddy viscosity is
determined as follows:

(2.51)
The transport equation for turbulence kinetic energy is expressed as follows:

(2.52)
The equation for ω is:

(2.53)
where α=5/9, β=3/40, β*=Cd=9/100, σ=1/2, σ*=1/2. Later, the k−ω model was further modified by Speziale et al. (1992) and Wilcox (2004).
2.3.4.5 The k-kl model
Besides the k−ε model, the k−kl model is another two-equation model used in some engineering computations. In this model, instead of solving the transport
equation for ε, the transport equation for the product of turbulence kinetic energy k and turbulence scale l, kl, is proposed and solved (Rotta, 1951). In the k−kl
model, the eddy viscosity is closed by:

υt=k1/2l (2.54)
While the k equation is the same as that in the k−ε model, the turbulence length scale is tracked by solving the following equation:

(2.55)
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where CL1=0.98, CL2=0.059+702(l/y)6, CD=0.09, and σk=σL1= σL2=1.
Although the turbulence length scale has a clear physical meaning, the direct measurement of it is almost impossible. For this reason, the k−kl model has received
less attention than the k−ε and k−ω) models. Generally speaking, the predictions from this model are comparable to the k−ε and k−ω) predictions for simple
constant pressure flows, but the model has not been pursued to any greater extent.
Note that there are other types of two-equation models, e.g., the k−ω2 model (Saffman, 1970) and the  model (Speziale et al., 1992). These models are less
popular and thus they shall not be discussed in further detail in this book.
2.3.4.6 One-equation models (the k-equation model)
In the k−ε two-equation model, the k equation can be exactly derived except for the turbulence diffusion term, which can be modeled by a simple gradient diffusion
model. Compared to the k equation, the ε equation contains many assumptions in the closure model. The same deficiency applied to the second equation of the
other two-equation models. It is fair to say that the accuracy of the k−ε model is mainly affected by the imperfect modeling of ε. Because of this, researchers have
proposed the one-equation model in which only k is solved with the use of the transport equation, whereas the other physical quantity, which can be ε, l, or ω, is
obtained by some simpler (yet reliable) algebraic turbulence closure models (e.g. Spalart and Allmaras, 1992).
2.3.4.7 Zero-equation models (mixing-length hypothesis)
When the characteristic turbulence scales can be explicitly related to physical conditions, the solution of the transport equation(s) may be unnecessary. In this case,
the so-called zero-equation model can be applied. One of the earliest zero-equation models is Prandtl’s mixing-length hypothesis for solving the turbulent boundary
layer flow. This model lays the basis for the derivation of the log-law velocity profile in the turbulent boundary layer above a flat plate. In this approach, νt is

modeled by the product of the turbulence velocity Ut and the characteristic length scale Lt that are functions of the local mean flow gradient  and the
normal distance to the wall z:

(2.56)
where κ is called the von Karman constant.
Since a zero-equation model is unable to account for the history effects (e.g., diffusion and convection) on turbulence, this model is not applicable for general
transient turbulent flows. It, however, serves as a good wall turbulence model that is popularly used together with the k−ε model when
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the spatial resolution is insufficient to fully resolve the turbulent boundary layer near a wall. With the assumption (Liu and Lin, 1997) of local equilibrium, the
turbulence wall boundary conditions are as follows:

(2.57)

where u* is the friction velocity and it is related to wall shear stress by  The friction velocity can be obtained by solving the log-law equation, given a
one-point velocity in the boundary layer:

(2.58)
where z0 is the coefficient related to local wall roughness and Re. It will be discussed in more detail in Section 3.14.1 when the current-induced boundary layer is
discussed.
2.3.5 The renormalization group theory
Renormalization group (RG or RNG) is a term in theoretical physics, and it refers to the concepts and techniques related to the change of physics with the
observation scale. RNG theory studies the phenomena of scale invariance. One good example of RNG theory is a turbulence flow for which the effective viscosity
seems enhanced in the scale of the mean flow although the actual molecular viscosity remains the same. When RNG theory is applied to turbulence modeling, a
simple iteration will be used to eliminate the highest wave number modes (i.e., the smallest turbulence scale) and replace their effect on the remaining flow by a
small increase of effective viscosity. The resulting equations are rescaled (renormalized) to be “equivalent” to the original equations. The iteration will continue
until the rescaled equations are identical between two successive iterations.
This idea shares a number of similarities to LES, except that the iterative procedure is used in the RNG to achieve a better representation of small-scale turbulence
effect on the remaining flow. The pioneering work was done by Yakhot and Orszag (1986) for the development of the dynamic RNG method for hydrodynamic



turbulence. The method was applied to a SGS turbulence model for LES. One of the major advantages of the RNG theory is that by scale expansion, the important
turbulence coefficients can be theoretically determined rather than being adjusted empirically. This, of course, is at the cost of increased computational time in the
iterative procedure. Later, Yakhot et al. (1992) extended the RNG to the development of the generalized k−ε turbulence model and Reynolds stress transport
model. The RNG analysis results in the same k equation but a modified ε equation:

(2.59)
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where R is an ad hoc model not derived from RNG analysis and it plays an important role in the modeling of turbulent flows. Combining a few earlier studies,
Orszag et al. (1996) suggested the following values of the turbulence transport coefficients:

Cd=0.0845, C1ε=1.4, C2ε=1.68, σε=0.72, σk=0.72 (2.60)
2.3.6 Detached eddy simulation
As flow approaches a solid boundary (e.g., a wall), the turbulence length scale is reduced. In this case, when LES is used, the grid size must be sufficiently small to
resolve the representative turbulence length scale. The computational cost will consequently be increased. To reduce the computing effort, a wall model that is used
in the near-wall region can be combined with the LES model so that LES is performed only in the interior region away from the wall. More generally, a RANS
model can be used in the region where the turbulence length scale is smaller than the grid size, and it is switched smoothly to LES in the region where the turbulence
length scale is adequately resolved by the LES model. Such a model is called detached eddy simulation (DES) model, in which a single velocity field is smooth
across the solution regions of the RANS and LES models (e.g. Strelets, 2001).

page_29

Page 30
3
Water wave theories and wave phenomena
In this chapter, various wave theories will first be introduced to describe linear and nonlinear waves under the idealized situations of a flat bottom and nonbreaking
free surface. It is followed by the introduction of realistic wave phenomena in nature and their engineering applications. In connection to each wave phenomenon,
we will also briefly introduce various techniques of analysis. Considering that the numerical techniques will be further elaborated in later chapters, we shall focus
the discussion in this chapter on the nonnumerical methods such as theoretical approaches and empirical approaches.
3.1 Linear wave theory
The flow region under a water wave train can be decomposed into two parts, namely, the bottom boundary layer, within which the fluid viscous effect is significant,
and the flow outside the boundary layer, where the viscous effect is negligible. In the region where the viscous effect can be neglected, the flow is essentially
irrotational unless there are other mechanisms (e.g., wave breaking or wave-structure interaction) to transport vorticity from the boundaries of the bottom, the
structure, or the free surface. In this case, it is justified to assume that the flow is the potential flow outside the boundary layer.
The thickness of the laminar boundary layer δ induced by a wave train can be estimated by the following simple formula derived from the dimensional analysis:

(3.1)
where ν is the kinematic viscosity of the fluid and T is the wave period. Given the typical value of ν=1.0×10−6 m2/s for water and T=2−30 s (from short wind
waves to longer storm waves), the corresponding boundary layer thickness ranges from 1.4 to 5.5 mm. In the coastal region where the water depth is from a few
meters to a few tens of meters, the boundary layer region is much smaller than the entire flow region. Therefore, it is justified
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to assume that the water waves can be governed by the Laplace equation based on the potential flow theory.
3.1.1 Small-amplitude waves
Without loss of generality, we will look into the case where a 2D wave train is propagating on a flat bottom (constant water depth h) toward the positive x-direction
and the crest line is in the y-direction (see illustration in Figure 3.1).
The governing equation and the boundary conditions are summarized as follows:
Governing equation:

(3.2)
Bottom boundary condition:

(3.3)
Kinematic free surface boundary condition:

(3.4)
Dynamic free surface boundary condition:

(3.5)
Lateral periodic boundary condition:

(3.6)

Figure 3.1 Illustration of a periodic wave train propagating on a flat bottom.
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Temporal periodic condition:

(3.7)
where L is the wavelength, η is the free surface displacement measured from the still water depth where z=0, and pη is the atmospheric pressure on the free surface
and is often set to be 0 (i.e., gauge pressure). It is noted that both the bottom and the free surface dynamic boundary conditions are derived from the general
material surface preservation equation:

 
where F(x, y, z, t)=0 represents the impermeable solid surface or the immiscible fluid surface.
The above governing equation (3.2) possesses the following analytical solution that satisfies all the constraints imposed by the conditions from (3.3) to (3.7) up to
the first-order approximation of η, u, and w about z=0:

(3.8)
where H=2a is the wave height with a being the wave amplitude, σ is the wave angular frequency (σ=2π/T=2πf with f being the wave frequency), and k is the wave
number (k=2π/L). By definition, the wave celerity (or wave phase velocity) can be calculated by c=L/T=σ/k. The validity of the solution relies on the assumptions of



both ka<<1 (wave steepness; an important measure in deep water) and a/h<<1 (an important measure in shallow water; see proof in Appendix III) so that all the
nonlinear terms (e.g., products of η, u, and w) can be neglected in the derivation. Therefore, besides the name of “linear wave theory,” solution (3.8) also bears the
name of “small-amplitude wave theory.” The same theory sometimes is also referred to as the Airy (who made the earliest attempt to derive the theory of tides)
wave theory or sinusoidal wave theory (the form of the expression).
From the linearized dynamic free surface boundary condition, the corresponding free surface displacement is found to be:

(3.9)
This represents a progressive wave (Figure 3.2), in which the wave form moves from the left to the right direction without change of wave shape.
The fluid particle velocities are found to be:

(3.10)

(3.11)
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Figure 3.2 Illustration of a linear progressive wave train.
The local fluid particle accelerations are:

(3.12)

(3.13)
The pressure under the wave can be obtained from the Bernoulli equation (2.23). It consists of two parts, namely the hydrostatic pressure that is independent of
water waves and the dynamic pressure associated with the wave:

(3.14)
With the use of kinematic free surface boundary condition, the angular wave frequency is related to the wave number and the local water depth by the wave
dispersion equation:

σ2=gk tanh kh (3.15)
The above equation can be rewritten as:

(3.16)
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It implies that waves with different wave numbers (or wavelengths) will propagate at different speeds and therefore separate from each other (the effect of
dispersion as light travels in a medium). By knowing any two of the three variables in (3.15), the third variable can be found. The most commonly encountered
situation is that both local water depth and wave period are known and one needs to find the wave number. This needs to be done by iteration in general unless
under some special circumstances such as short wave or long wave assumptions, which will be further discussed in the following sections.
3.1.2 Short and long waves
The wave theory presented in Section 3.1.1 represents a general linear wave train. When the wavelength becomes much shorter or longer than the local water depth,
some special wave properties will be present and the wave theory can be simplified due to the asymptotic behavior of hyperbolic functions present in the linear
wave theory. Table 3.1 gives a summary of linear wave theory in finite, deep, and shallow water depth. For both short and long waves, the dispersion equation can
be simplified and therefore no iteration is needed when the equation is solved for k given σ and h.
Short waves: Short waves refer to waves with kh>>1. Based on the asymptotic behavior of the hyperbolic tangential function in the dispersion equation (3.15), the
most distinct feature of short waves is that the wave number is independent of the local water depth, i.e., k=σ2/g. This is easy to understand because for a given
wave period, the water depth will lose its effect on surface waves once it exceeds a certain threshold, beyond which further increase of water depth will not be
“felt” by the wave train. This is a usual situation in deep oceans where the wind waves are generated. The effect of wind on the generation of waves will not reach
the sea bottom. Another interesting observation for short waves is that all the wave-induced flow properties (i.e., velocity, dynamic pressure, and acceleration)
decay exponentially toward the sea bottom where they all reduce to practically zero. The third feature of short waves is that the horizontal and vertical flow motions
have the same magnitude but 90° of phase shift. This makes a circular orbit of the fluid particle under the wave.
Long waves: Long waves refer to waves whose wavelength is much larger than water depth (i.e., kh<<1). In contrast to short waves, the bottom effect now
becomes a predominant factor for long waves. The dispersion equation can be reduced such that the wave phase velocity is dependent upon the local water depth

only, i.e.,  This formula is the same as that used to calculate the propagation speed of disturbance in an open channel. The equation suggests that a group
of waves with different wave periods will not “disperse” (separate) when they propagate in a shallow water region. Another observation for the long wave is that
the horizontal velocity, acceleration, and dynamic pressure are uniform across the water
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Table 3.1 Summary of wave parameters in finite, deep and shallow water depths
Wave parameters Finite water depth (0<kh<∞) Deepwater depth (kh>>1) Shallow water depth (kh<<1)

Velocity potential, 

Horizontal velocity, u

Vertical velocity, w

Local horizontal accleration, ax

Local vertical accleration, az



Dynamic pressure, pD
Dispersion equation σ2=gk tanh kh σ2=gk σ2=gk2h

Wave celerity, c (phase velocity)

Wave group velocity, cg cg=c

Wavelength, L
Particle orbits Elliptical orbit (horizontal>vertical) Circulat orbit Linear orbit (horizontal only)
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depth, whereas the vertical velocity and acceleration decay linearly from water surface to bottom, where both of them become zero. Because the vertical fluid
motion under a long wave is much smaller than the horizontal fluid motion, the orbit of the fluid particle is reduced to a horizontal line.
3.1.3 Wave energy
The potential and kinetic energy contained in a wave train per unit horizontal area can be obtained by the integration of flow properties under a linear wave:

(3.17)

(3.18)
To calculate the wave-induced potential energy, the datum is selected on the bottom and the reference value of the potential energy of the fluid without the wave is
subtracted from it. It is interesting to note that under a linear wave, the energy is equally distributed into potential and kinetic energy. The total energy is
proportional to the square of the wave height,

(3.19)
3.2 Nonlinear properties of linear waves
In linear wave theory, velocity, acceleration, and dynamic pressure are linearly proportional to the wave amplitude. The energy, however, does not follow this linear
proportionality. Some interesting nonlinear wave properties can result from linear waves. In this section, the time-averaged nonlinear quantities, which are correct to
the second order of wave steepness ka, will be derived from the linear wave theory.
3.2.1 Mean energy flux and group velocity
It is obvious that a wave train transmits energy in its propagation direction. Wave energy propagates at a speed that is different from the phase velocity. Based on
the definition, the average energy flux, which is the product of the average wave energy defined above and the mean velocity at which the wave energy is
transmitted, can be obtained as follows:

(3.20)
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Apparently, the speed at which the wave energy is transmitted is:

(3.21)
where cg is the wave group velocity whose origin of the name will be discussed in Section 3.5.
It is not difficult to show that c/2≤cg≤c in general; for long waves (kh<<1) we have cg=c and for short waves (kh>>1) we have cg=c/2. Since a wave train cannot
propagate without the supply of wave energy, this implies that the wave front, behind which the wave energy is contained, will propagate at a generally slower
speed than the following waves. Physically, this means that the following short waves that propagate at c will eventually catch up with the wave front that
propagates at cg and die out there. This is clearly shown in Figure 3.3 in which the wave propagates freely at c in the wave train before it reaches the wave front,
where it disappears.
3.2.2 Mean mass flux and Stokes drift
A linear wave train not only transmits energy but also transports mass in its propagation direction. The trajectory of the particle motion under the wave can be found
by taking the time integration of u and w. As a first-order approximation, with the use of the particle velocity at the center of the orbit

Figure 3.3 Propagation of a short wave train with T=1s in constant depth of h=1m (kh=4.03); the solid and dashed lines represent the traces of wave profile and
wave front following c and cg; the highlighted wave profile with the thick line represents the same wave; computational results are from the time-dependent MSE
model (Lin, 2004a).
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motion, we are able to find the approximate particle displacement in x- and z-directions (ζ, ξ) as follows:

(3.22)

(3.23)
where ζ0 and ξ0 are Particle displacement amplitudes. The fluid particle follows a closed-circle motion that starts from the forward motion under the crest, followed
by a downward and then backward motion under the trough, and an upward and forward motion under the next crest.
Careful inspection of fluid particle motion reveals, however, that the magnitude of the forward velocity under the crest is always larger than the magnitude of the
backward velocity under the trough, where the fluid particle is located at a lower elevation. This implies that after one wave period, the fluid particle will not come
back exactly to its original location. Instead, it moves forward. This small forward movement is termed “Stokes drift” and it plays a pronounced role in long-term
wave-induced mass transport. By taking the time average of the particle velocity following its near-orbit trajectory, we can find the expression for Stokes drift as:

(3.24)
The mean mass flux induced by Stokes drift Md can be found by the vertical integration of the above velocity:

(3.25)



The mean velocity of Stokes drift is then:

(3.26)
In deep water, the equation for Stokes drift (3.24) can be reduced to:

(3.27)
3.2.3 Mean momentum flux and radiation stress
Consider a 2D free surface flow with negligible viscosity and turbulence. The momentum equation in the x-direction reads:

(3.28)
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Integrating the equation in the vertical direction from −h to η, we have:

(3.29)
In arriving at the above simple form, the Leibniz rule of integration is used, e.g.:

(3.30)
In addition, the bottom boundary condition (3.3) and the kinematic free surface boundary condition (3.4) are also used to cancel out the resulting additional terms
on the LHS. Furthermore, the pressure on the free surface is assumed to be zero (i.e., gauge pressure).
The pressure p in (3.29) can be obtained by taking the vertical integration of the momentum equation in the z-direction, i.e.:

(3.31)
Now let us consider a steady periodic wave train propagating over an uneven bottom in the x-direction (Figure 3.4). In this case, the flow motion contains wave
motion only, i.e.:

(3.32)

Figure 3.4 Illustration of a wave train propagating over an uneven bottom.
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When the bottom slope is mild, the linear wave theory is still applicable as a first-order approximation. However, the wave height may vary slowly in space and the
mean water level may deviate from the still water level z=0. The free surface displacement can then be expressed as follows:

(3.33)
where the overbar denotes the time average over a wave period, i.e.:

(3.34)
By taking the time average of the depth-integrated momentum equation in the x-direction (3.29), we have:

(3.35)
The periodicity of the dynamic pressure and velocity in time immediately reduces the above equation to:

(3.36)
The last term is the mean reaction force from the bottom. Now if we substitute the definition of p in (3.31) in (3.36), we have:

(3.37)
By neglecting the third term on the RHS of the above equation, we have:

(3.38)
This equation implies that the change of mean water level will be balanced by the gradient of wave-induced time-averaged stresses on the RHS. To further simplify
the expression, we shall make the following assumptions:
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(a) For small amplitude waves, the term on the RHS in the order of O(a3) is negligible so that:



(3.39)
(b) The pressure distribution from the still water level to the free surface can be approximated by hydrostatic pressure, i.e., p=ρg(η−z) and thus ρw2~0.
This gives:

(3.40)
This reduces (3.38) to:

(3.41)
The first term on the RHS is identified as the excess depth-integrated momentum flux in the wave propagation direction and the second and third terms are the
contributions from the wave-induced dynamic pressure that acts in all directions. The sum of these three terms is called “radiation stress” (Longuet-Higgins and
Stewart, 1964) that can be readily evaluated as follows:

(3.42)
In the direction orthogonal to wave propagation, the radiation stress contains only pressure contribution:

(3.43)
Note that pressure makes no contribution to the depth-averaged shear radiation stress, which in this case is zero because the transverse velocity υ equals zero:

Sxy=0 (3.44)
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The above definition can be extended to the general case where the wave train propagates at an angle θ to the x-axis:

(3.45)

(3.46)

(3.47)
In an even simpler notation, the radiation stresses are expressed in the tensor form as (Phillips, 1977):

(3.48)
where ki is the wave number in the ith direction.
The radiation stress concept is important in understanding coastal processes, i.e., wave set-down and set-up (Section 3.2.4), generation of bound infragravity waves
(Section 3.13.2), and generation of longshore current (Section 3.14.2.4). Recently, efforts have been made to derive 3D radiation stress (e.g., Lin and Zhang, 2004).
In this section, a brief discussion of the general idea of the depth-dependent radiation stress is presented and further discussion will be addressed in Section 3.14.3.2
when wave-current interaction is considered. Considering again a wave train propagating over an uneven bottom in the x-direction and performing the time average
directly (without depth averaging) on the same horizontal momentum equation (3.28), we have:

(3.49)
By substituting p defined in (3.31) into the above equation and realizing the periodicity of u under the wave, the above equation becomes:
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(3.50)
Again the last term for pressure is neglected. The above equation states that the local wave-induced stress gradient must be balanced by the mean water level
gradient. Based on the linear wave theory, we are ready to obtain the depth-dependent wave-induced normal stress as:

(3.51)
and the shear stress for irrotational wave (e.g. Rivero and Arcilla, 1995) as:

(3.52)
The wave-induced shear stress becomes zero when the bottom is flat and there is no change of wave amplitude in space. Such a conclusion can also be drawn from
the fact that u and w have 90° phase shift for nondissipative waves on a flat bottom.
Interestingly, the wave-induced normal stress is constant across the depth due to the cancellation of  and  Integrating Wxx from the bottom to z=0, where the
time-averaged flow computation ends, the first two terms of the depth-averaged radiation stresses in (3.42), i.e., Sxx(1)+Sxx(2), can be recovered. The term Sxx(3)
that comes from the pressure contribution from z=0 to free surface, however, cannot be resumed from the above expression. By realizing that Sxx(3) essentially
takes into account the mean pressure effect of the orbit flow motion under the wave, Lin and Zhang (2004) proposed the depth-dependent correction term arising
from the Lagrangian mean of the vertical fluid particle motion under the wave. The method is similar to the generalized Lagrangian mean (GLM) (Andrews and
McIntyre, 1978) that can be used to obtain the depth-dependent Stokes drift except that this time it is applied to mean pressure contribution. The correction term
takes the following form:

(3.53)
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The above additional normal stress reduces linearly to the bottom for small kh (shallow water) but exponentially for large kh (deep water). Under such a correction,
the radiation stress appearing in (3.42) can be fully recovered by taking the depth integration of −Wxx(1) − Wxx(2) from −h to 0.
Thus, when applied to the region up to the mean water level with the presence of waves, equation (3.50) will be rewritten as follows (when the time-averaged flow
computation goes only to the mean water level rather than the maximum height of the free surface):

(3.54)
3.2.4 Set-down and set-up of mean water level
Consider a wave train that propagates toward a plane beach with the normal incidence in the x-direction. As the local water depth reduces, both the wave number
[based on the dispersion equation (3.15)] and the wave height (based on the shoaling formula to be explained in Section 3.6) will increase, causing an increase of
radiation stress. The gradient of radiation stress must be balanced by the change of local mean water depth based on (3.41):

(3.55)
The general conclusion we can draw here is that with the increase in wave height and thus Sxx toward the breaking point, the mean water level will be drawn down
below the still water level z=0. This process is called wave set-down. After the waves break, the wave height will decay as the result of energy dissipation and
therefore the radiation stress will decrease. Consequently, the mean water level rises shoreward from the breaking point. This process is referred to as wave set-up.
3.3 Nonlinear wave theory
As indicated earlier, linear wave theory is constructed on the assumption of ka<<1 and a/h<<1. When wave amplitude increases beyond a certain range, the linear
wave theory may become inadequate. The reason is that those higher order terms that have been neglected in the derivation become increasingly important as wave
amplitude increases. Nonlinear wave theories are required for describing large-amplitude waves.
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3.3.1 Stokes wave theory
The immediate extension of the linear wave theory is to retain all the second-order terms during the derivation. This will end up with the so-called second-order
Stokes wave theory. The theory stipulates that for larger amplitude waves, the wave profile is the sum of two sinusoidal waves, one of which is the same as that
obtained from the linear wave theory and the other from the second-order correction terms, i.e.:

(3.56)
The velocity, acceleration, and dynamic pressure are as follows:

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
Note that for second-order Stokes waves, the linear dispersion equation (3.15) remains valid. Figure 3.5 shows the comparison of a linear wave and a second-order
Stokes wave for the same given wave parameters.
The second-order Stokes wave theory may develop a secondary crest at the wave trough in shallow water. To prevent this from occurring, the following constraint
is imposed:

(3.62)
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Figure 3.5 Comparison of a linear wave (dotted line) and second-order Stokes wave (solid line) for the wave with H=0.4 m, h=1.0 m, and T= 2.0 s; the difference is
the second-order wave mode (dashed line).
The term on the LHS of the expression is called the Ursell (1953) parameter, which is essentially the ratio of relative wave height (a=H/h) and the square of the
relative water depth (β=h2/L2). While H/h represents nonlinear effect, h/L represents dispersive effect.
As the wave height increases further, more nonlinear terms are needed to be retained to represent the physics of nonlinear waves correctly. Besides the
second-order Stokes waves, there also exist third-, fourth-, fifth-, and higher-order Stokes waves. In the third-order Stokes waves, the linear dispersion equation
becomes invalid and the correction must be included in the dispersion equation to reflect the wave height effect on wave dispersion. For most of the engineering
computations, the fifth-order Stokes waves are sufficient (Skjelbreia and Hendrickson, 1961):



(3.63)
where k is the wave number and A is the wave steepness coefficient (λ= kH/2 for a linear wave), the determination of which will be described later. In the above
equation, for simplicity, θ is introduced and represents the phase angle (=kx−σt). The coefficients B in the above equation can be obtained from the following
equations:

(3.64)

(3.65)
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(3.66)

(3.67)

(3.68)

(3.69)
For simplicity, we denote sh=sinh(kh) and ch=cosh (kh). The nonlinear wave height and the dispersion equation are functions of k and λ:

(3.70)
σ2=gk tanh kh (1+C1λ2+C2λ4) (3.71)

where the expressions for the coefficients C1 and C2 are:

(3.72)

(3.73)
The iteration scheme (e.g., Newton-Raphson method) can be used to solve the system of the nonlinear equations (3.70) and (3.71) to obtain the values of k and λ,
given H, h, and T (see Appendix IV).
The velocities under the fifth-order Stokes waves are expressed as follows:

u=c{λ(A11+λ3A13+λ5A15) cosh [k(h+z)] cos θ
+2(λ2A22+λ4A24) cosh [2k(h+z)] cos 2θ
+3(λ3A33+λ5A35) cosh [3k(h+z)] cos 3θ

+4λ4A44 cosh [4k(h+z)] cos 4θ+λ55A55 cosh [5k(h+z)] cos 5θ}

(3.74)

ω=c{(λA11+λ3A13+λ5A15) sinh [k(h+z)] sin θ
+2(λ2A22+λ4A24) sinh [2k(h+z)] sin 2θ
+3(λ3A33+λ5A35) sinh [3k(h+z)] sin 3θ

+4λ4A44 sinh [4k(h+z)] sin 4θ+λ55A55 sinh [5k(h+z)] sin 5θ}

(3.75)
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where the coefficients A are expressed as follows:

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
and c=σ/k is the nonlinear wave phase velocity.
Figure 3.6 shows the wave profile predicted by the fifth-order Stokes wave theory. It can be observed that the wave has a sharper and higher crest and

Figure 3.6 Comparison among a fifth-order Stokes wave (solid line), a second-order Stokes wave (dashed line), and a linear wave (dotted line) for a wave with
H=0.6 m, h=1.0 m, and T=2.0 s.
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a flatter trough compared with the linear wave. The second-order Stokes wave theory fails here due to the presence of the secondary hump on the trough resulting
from the strong wave nonlinearity.
3.3.2 Cnoidal wave theory
Stokes wave theory is basically for nonlinear waves in deep and intermediate water depth. For nonlinear waves in shallow water, Wiegel (1960) proposed the
cnoidal wave theory:

(3.85)

where cn is the Jacobian elliptic function associated with the cosine, K(k) is the complete elliptic integral of the first kind with modulus  and ηt is the
displacement of the trough from the still water level (always negative) and is expressed as follows (Mei, 1989:546):

(3.86)

Here E(k) is the complete elliptic integral of the second kind with modulus 
Once the modulus k (or m) is known, the cnoidal wave profile can be determined completely. To solve m, the following two equations that relate m with H and L
need to be solved simultaneously:

(3.87)

(3.88)
The role of these two equations is similar to the nonlinear wave height and dispersion equations for fifth-order Stokes waves (3.70) and (3.71). Substituting (3.88)
into (3.87), the equation becomes:

(3.89)
Given H, h, and T, the above equation can be solved iteratively to obtain m (Appendix V).
The corresponding horizontal and vertical velocities under a cnoidal wave are expressed as follows:
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(3.90)

(3.91)
where:

 
The Jacobian elliptic function cn is periodic with a period of 4K and cn2 has a period of 2K. Generally, cn2 will give a function that has a sharp peak and a flat
trough, as shown in Figure 3.7.
The cnoidal wave theory has two asymptotes: (1) m=k=0 and (2) m=k=1. When m=k=0, the cn function is reduced to the cosine function and ηt=−H/2. The cnoidal
wave becomes a simple sinusoidal wave, i.e.:

Figure 3.7 Illustration of a cnoidal wave with H=0.6 m, h=1.0 m, and T=5.0 s.
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(6.92)
3.3.3 Solitary wave theory and N-wave theory
When m=k=1, the cn function is reduced to hyperbolic function and ηt=0 (Lee et al., 1982):

(3.93)
where the phase velocity is expressed as follows:

(3.94)
and the water particle velocities are expressed as follows:



(3.95)

(3.96)
From (3.93):

(3.97)

(3.98)

(3.99)
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Figure 3.8 Illustration of a solitary wave with H=0.4 m and h=1.0 m.
Figure 3.8 shows the free surface profile for a solitary wave.
A solitary wave is regarded as a weakly nonlinear and dispersive wave, in which wave nonlinearity is perfectly balanced by wave dispersion. While wave
nonlinearity tends to make the wave front steepened, wave dispersion will counterbalance it. For this reason, a solitary wave can travel a long distance without
significant shape distortion and energy loss.
A solitary wave is often used to approximate the leading wave front of a tsunami. In reality, a tsunami may contain a wave packet with a few wave crests and
troughs. Since the wave packet profile is similar to a series of “Ns” connected, the so-called N-wave theory has been proposed to describe the nonlinear wave
packet (Tadepalli and Synolakis, 1995). Similar to a solitary wave, an N-wave is also weakly nonlinear and dispersive.
3.3.4 Validity of linear and nonlinear wave theories
All the wave theories presented so far are based on the assumptions that the flow is irrotational and the sea bottom is flat. While linear wave theory is valid for
small-amplitude waves, Stokes wave theory and cnoidal wave theory are applicable for large-amplitude waves in deep and shallow waters, respectively. These wave
theories describe waves with permanent shapes, but they fail under two circumstances. One is when bottom geometry changes so rapidly in space that it causes
significant reflection and/or change of the wave form. The other is when the wave amplitude is so large that the wave front breaks. The former is related to wave
shoaling (Section 3.6) and reflection (Section 3.9). The latter refers to wave breaking in deep and shallow waters with different breaking forms (Section 3.7), and it
sets the outer limit of the validity range of the previously introduced wave theories. Figure 3.9 shows
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Figure 3.9 Validity range of various wave theories. (Courtesy of Prof. Subrata Chakrabarti at University of Illinois at Chicago)
the validity range of various wave theories. Readers are referred to Dean (1970) and Chakrabarti (1987:77) for more discussion on the analytical and physical
validity of different wave theories.
3.3.5 Other wave theories
So far, all the wave theories have been based on the velocity potential function formulation. As shown in Section 2.2.3, both potential function and stream function
satisfy the Laplace equation and they form a pair of Cauchy—Riemann equations. In principle, all orders of wave theories can be equally formulated in terms of
stream function. However, so far, the formulation based on stream function was reported only for higher order nonlinear waves, attempting to provide the
theoretical basis for simpler computation possible for any order of wave theory (Dean, 1965; Cokelet, 1977). There is also the
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nonlinear wave theory in deep water based on the rotational fluid particle under waves (Gerstner, 1809). Readers can refer to the review article by Craik (2004) for
more details.
3.4 Wave generation and propagation
3.4.1 Disturbing forces and forced waves
Water waves can be generated in various ways under the action of disturbing forces. For example, in the case of wind waves, the disturbing force is wind stress; for
tides, the disturbing force is the gravitational attraction from the sun and the moon. Because a tidal motion is associated with the relative positions of the sun and the
moon, the source of the disturbing force, this type of wave is called a forced wave. In this case, the disturbing force contributes to both wave generation and
propagation.
3.4.2 Restoring forces and free waves
All surface water waves start with some form of free surface disturbance. Once leaving its equilibrium position, water surface has the tendency to return back to its
equilibrium position under the so-called restoring force. The restoring force for the majority of water waves on Earth is gravity. For very short waves (e.g., T<0.1 s),
the surface tension can dominate over gravity as the restoring force. This type of wave is called capillary wave (e.g., ripple). If the wave propagation is connected to
the restoring force only, the wave is called a free wave. A typical example of a free wave is a wind wave outside of the fetch area. Another example is tsunami
generated by seismic motion. It is noted that a tsunami is sometimes called a “tidal wave,” although it has no physical connection at all to astronomical tides.
3.4.3 Wind wave generation and swell formation
Over 50 percent of wave energy in oceans is in the form of wind waves, most of which have a wave period ranging from 1 s to 30 s. These wind waves are often
generated from a large fetch area in deep oceans where strong wind can continue to blow over the area for many hours. In the fetch region, water will receive
energy from winds through wind-induced surface stress. The continuous feed of wind energy to water results in the growth of mean wave height and wave period
over a distance (Garrison, 2002). However, due to the intermittent feature of wind, the generated waves often have a wide range of frequency and they propagate
forward with a significant directional spreading. If the fetch area is large enough, a fully developed sea can be attained.
Wind will cease to blow toward the edge of the fetch outside of which gravity becomes the only predominant force. Under this circumstance, in
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the continued propagation of the wave packet, waves with similar frequency will group together and separate from other wave groups. This process of self-sorting is
called wave dispersion. The longest waves that propagate at the fastest speed will arrive at the farther places earliest. After leaving behind the shorter waves, which
cause the choppy sea state, the ocean surface becomes smoother and consists mainly of long and fast-moving smooth undulation, which is called swell. Compared to
the shorter waves behind, the swell normally has large wave amplitude and it is of most critical consideration in coastal and offshore design.
3.4.4 Extreme waves
Storm wave height can reach up to 8–10 m in the deep sea under extreme wind conditions. If propagating against strong currents, the wave amplitude can be further
enhanced. In a random sea, a very large wave can occasionally appear due to the superposition of a few short wave crests, creating a very large wave called a rogue
wave or freak wave (Figure 3.10; see Section 5.3.4.5 for more discussion). The earlier observed maximum wave height was about 25 m estimated from the picture
taken by Philippe Lijour on the coast of Durban in 1980. This massive ocean wave was suspected of being the possible cause of the sinking of supertankers and
container ships exceeding 200 m in length, most of which, however, are only built to withstand maximum wave heights of 15 m. The recent satellite data collected
by the European Space Agency revealed that more than 10 individual waves over 25 m in height were found around the globe within 3 weeks in 2001.

Figure 3.10 Draupner wave record in the North Sea, the first confirmed scientific evidence of a freak wave. (Courtesy of Dr. Sverre Haver at Marine Structures and
Risers, Norway)

page_55

Page 56
Tsunamis are infamous for their catastrophic power of sweeping through the coast. When it is in deep ocean, however, a tsunami’s amplitude hardly exceeds a few
meters. It is only when it approaches the coast that the wave amplitude is amplified significantly by the combined wave shoaling, refraction, and diffraction, during
which wave energy can be focused and trapped near a small area. The maximum tsunami run-up can easily go beyond 30 m based on many post-tsunami surveys.
The highest wave on record, however, was caused by a landslide in Lituya Bay, Alaska, in 1958 after a magnitude 8 earthquake. The wave was rather localized in
the bay, but it had an astonishing height of 520 m. In land, the largest water wave is probably the dam break wave that is generated after the failure of a dam. A
shock wave front with the wave height close to the reservoir height will be formed and flood the downstream area.
3.5 Wave superposition and wave group
Linear waves can be superposed together to create new waves. A random sea is regarded as the result of wave superposition of an infinite number of small linear
waves with different wave amplitudes and frequencies traveling in different directions.
Now let us consider a special case of wave superposition to illustrate how wave group and wave group velocity are defined. Two linear wave trains propagate in the
x-direction and have a small frequency difference ∆σ and the corresponding wave number difference ∆k:

(3.100)

(3.101)
The linear superposition of these two waves results in:

(3.102)
The corresponding wave profile is shown in Figure 3.11. It is seen that the wave packet (or “wave group”) is bracketed within the “wave envelope” that also
propagates forward. The envelope is defined by the last term on the RHS of (3.102). While waves within the envelope propagate at the speed of c=σ/k, the wave
envelope propagates at a different speed of ∆σ/∆k. The wave envelope has the nominal wavelength of Lg=2π/(∆k/2)=4π/∆k and the length between any two peaks
is half of Lg, i.e., 2π/∆k.
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Figure 3.11 Wave envelope resulting from two linear wave trains propagating in constant water depth; T=4 s, h=100 m, ∆σ=0.04 (1/s), and ∆k=0.0128 (1/m).
The speed at which the wave envelope (or the group of the waves) propagates is called wave group velocity cg=∆σ/∆k In the limit of ∆σ, ∆k→0, cg can be
evaluated from the linear dispersion equation as follows:

(3.103)
Note that the above expression is exactly the same as that for the speed at which the wave energy propagates [see equation (3.21)]. This suggests that the wave
energy is transmitted together with the wave envelope rather than the individual wave form.
3.6 Wave shoaling
When a wave train propagates toward a gentle plane slope from a normal incidence, the train will gradually slow down in the shallow water region due to the
reduction of water depth. If no major energy dissipation and wave reflection occur during the process, we would expect that the energy flux defined in (3.20) is a
constant, i.e.:

F=Ecg (3.104)
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which will lead to the change of wave height as follows:

(3.105)
where cg0 is the wave group velocity in deep water. This process is called wave shoaling, during which an approaching wave train will change its wave height based
on its offshore condition and local water depth.
Figure 3.12 is the illustration of wave shoaling on a plane beach. Two observations can be made from the figure. One is that the wave crests are packed together in
the nearshore region where the wave speed slows down and the wavelength is reduced. The other is that the wave height increases toward the shoreline due to the
conservation of energy flux. In fact, based on the shoaling formula (3.105), the wave height will reach infinity at the shoreline where the still water depth is zero.
This will of course never happen in reality due to the presence of wave nonlinearity, bottom friction, and wave breaking, which limit the growth of wave height.
For a long wave (e.g., tsunami), (3.105) can be reduced to:

(3.106)

Figure 3.12 Linear wave shoaling on a plane beach with a slope of 1/20; the incident wave has a wave height of 1 m and wave period of 8 s.
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It is seen that the wave height is reciprocally proportional to local depth to a power of 1/4. This is the so-called Green’s law for long wave height (or amplitude)
variation on a slope. The above equation is valid before wave nonlinearity becomes important. With the use of the theory of soliton, for which wave nonlinearity is
balanced by wave dispersion, it is able to deduce the nonlinear Green’s law (e.g., Shuto, 1973) that instead gives the change of wave height being reciprocally
proportional to local water depth:

(3.107)
In reality, an actual wave amplitude evolution is often enveloped by the two lines from deeper water to shallow water before wave breaks.
3.7 Wave breaking
Wave height can be increased due to many reasons, e.g., wave shoaling, wave growth due to the continuous wind action, and wave energy focusing by either the
superposition of various wave modes or the combined wave refraction and diffraction. When the wave height exceeds a certain threshold, the wave system will
become unstable. Wave breaking is an important process for the unstable wave system to release the “excessive” wave energy into turbulence and to return back to
the stable stage. The wave will break differently depending on whether the wave is in deep or shallow water.
3.7.1 Wave breaking in deep and intermediate water
In deep water, wave steepness is the only sensible index for judging whether a wave will break. Stokes (1880) found that the maximum crest angle for a
nonbreaking wave is 120°, which leads to the following critical wave height in deep water:

(3.108)



where Lb is the wavelength at the breaking location. The above equation can be modified to predict the breaking wave height in the intermediate water depth (e.g.,
Miche, 1944):

(3.109)
where kb=2π/Lb and hb are the wave number and the water depth at the breaking point, respectively.
3.7.2 Wave breaking in shallow water
In shallow water, the ratio of wave height to local water depth is the natural index for judging whether a wave will break. The most commonly used
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formula to estimate the initial breaking wave height Hb on a mild-slope beach is the simple formula originally proposed by McCowan (1894):

Hb=Kbhb (3.110)
where Kb=0.78. The wave-breaking criteria in (3.108)–(3.110) set the upper limits for the validity range of various nonlinear wave theories (refer to Section 3.3.4).
Generally speaking, there are three typical types of wave breakers in shallow water. When the beach slope is mild compared with the wave steepness, waves will
break in the form of a spilling breaker, which forms a series of aerated wave crests on the beach. As the beach slope increases or the wave steepness decreases, the
breaker type changes to a plunging breaker, during which the crest of the wave front overturns forward and impinges on the wave trough in front. As a result, an air
tube is enclosed inside and the strong air entrainment will take place when the plunging jet collapses. As the beach slope increases further, waves will break in the
form of a collapsing or surging breaker, which breaks on the dry land during the run-up process.
The classification of various breakers can be made based on the surf similarity parameter ξb, which is defined as follows:

(3.111)
where β is the beach slope and L0 is the wavelength in deep water. When ξb<0.4, waves break in the form of spilling breakers (Battjes, 1974). When 0.4≤ξb<2.0,
plunging breakers occur. When ξb≥2.0, waves break as collapsing or surging breakers, during which most of the wave energy is reflected back from the beach with
a small amount of wave energy lost in the breaking process. When the slope is very steep, the surging wave experiences near complete reflection with little breaking
after it runs up to the maximum elevation.
Since (3.110) does not include the slope effect and breaker type, there have been a few modified breaking criteria developed in the past decades for coastal
engineering design. Some commonly used formulas include the CERC formula (1984):

(3.112)
where

 
Coda’s formula (1970):

(3.113)
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and Kamphuis’ formula (1991) for irregular waves:

(3.114)
where Hsb is the significant wave height at the breaking point.
3.7.3 Bore
After waves break in shallow water and if the shallow water region is long, moving bores can be formed where broken wave fronts propagate forward at the celerity

of local wave speed  A moving bore can be regarded as a continuously breaking wave. Violent turbulence is generated inside the bore that causes continuous
air entrainment. Similar to a hydraulic jump, a bore can be either uniform or undulatory. The inherent similarity among spilling breaker, bore, and hydraulic jump
has been discussed by Peregrine and Svendsen (1978).
3.8 Wave run-up, run-down, and overtopping
3.8.1 Wave run-up
Waves on a sloping beach, breaking or nonbreaking, will eventually run up on the beach, causing inundation. While wave run-up is defined as the vertical distance
between the mean water level and the wave front, inundation is defined as the horizontal distance between the mean shoreline and the wave front. The maximum
run-up height R is used to measure the maximum level of the wet line caused by the wave, and it depends on both incident wave height and beach geometry and
material type. Carrier and Greenspan (1958) proposed an analytical solution for nonlinear shallow water waves on a sloping beach. The solution, however, did not
provide a simple and explicit relationship among R, incident wave height H0, and beach slope β. Hunt (1959a), using a series of regular wave run-up experiments on
smooth and impermeable slopes, summarized the empirical equation for R, which, after transforming from the original dimensional inhomogeneous equation to the
dimensionless homogenous equation reads:

(3.115)
where H0 is the wave height in deep water. This formula is valid for both nonbreaking and breaking waves. The ratio of R/H0 in (3.115) has a maximum value of
3.0 for surging waves.
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For nonbreaking solitary wave run-up on a smooth plane beach, Synolakis (1987) proposed an expression of the maximum wave run-up:

(3.116)

The above formula is valid for  The above theoretical result was extended by Li and Raichlen (2001) by including higher order nonlinear
contribution:

(3.117)
The theoretical work was also extended by Kanoglu and Synolakis (1998) for piecewise linear topographies and by Carrier et al. (2003) for various forms of tsunami
wave fronts. With the introduction of the energy balance model (EBM), Li and Raichlen (2003) managed to predict breaking solitary wave run-up.
For irregular waves, the maximum run-up is often based on the run-up exceeded by 2 percent of the waves R2%. Due to the large scattering of experimental data,
there were many empirical curves (e.g., CERC, 1984) and formulas (e.g., Ahrens, 1981). The recent Coastal Engineering Manual (Burcharth and Hughes, 2002)
made the following recommendations for irregular wave run-up on a steep slope of 1/4<tan β<1:

(3.118)
and on a mild slope 1/8<tan β<1/3 (De Waal and Van der Meer, 1992):

(3.119)

where Hm0 is the energy-based zeroth-moment wave height,  is the deepwater wavelength associated with the peak wave period Tp, and Hs is the significant
wave height that approximately equals Hm0 if the irregular wave spectrum follows the Rayleigh distribution. Recently, Hughes (2004) attempted to use depth-



integrated momentum flux to unify various expressions.
Note that all the above formulas are based on smooth and impermeable slopes. For the rough and/or permeable slopes, the formulas need to be modified. Teng et al.
(2000) found that for solitary wave run-up on a mild slope (β<10°), the run-up height can be reduced by more than 50 percent. In most of the engineering
applications, a surface roughness correction coefficient, which accounts for the roughness and permeability
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and ranges from 1.0 (smooth surface like asphalt or smooth concrete) to 0.3 (two-layer tetrapods), is multiplied by the original estimation from the above formulas.
The correction coefficients for different material surfaces are summarized in Reeve et al. (2004:362).
In the last two decades, the numerical modeling of wave run-up on sloping beaches has become popular. With the use of nonlinear SWEs, Hibberd and Peregrine
(1979) investigated the behavior of bore run-up on a beach. Kobayashi et al. (1987) used the same approach to investigate wave run-up on rough slopes. Zelt (1991)
used a Boussinesq model to investigate breaking solitary wave run-up on a beach. Lin et al. (1999) employed a RANS model to solve both nonbreaking and
breaking wave run-up on a plane beach.
3.8.2 Wave run-down and undertow
A wave run-up is followed by wave run-down (or draw-down), during which water retreats seaward. The area of run-up and backwash of water is known as the
swash zone (Figure 3.13). For illustration, a normal incident wave train on a uniform plane beach is considered. The retreating water from the beach will be partially
blocked by the next incoming wave front, which most of the time is in the form of a moving bore. Since the breaking wave in the surf zone is highly nonlinear with
the net mass flux near the free surface being much larger than that underneath, the blocking effect for the retreating water will be more significant near the free
surface. The only possible channel for the receding water to return back to the sea on a

Figure 3.13 Illustration of a swash zone. (Courtesy of COMET program)
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uniform beach is by means of the bottom current. This returning current underneath the breaking bore is called undertow. When it is strong enough, it can also push
up a small wave that rolls back toward the incoming waves.
Depending on different types of breaking waves, undertow characteristics can be very different. This has a direct impact on beach morphology. Undertow flow has
been extensively studied experimentally (e.g., Stive and Wind, 1986), numerically (e.g., Péchon and Teisson, 1994), and analytically (e.g., Hansen and Svendsen,
1984). It is believed that the undertow profile is affected by many factors including radiation stresses, the mean wave set-up, and the turbulence shear stresses
generated by breaking waves. The theoretical relationship between undertow and radiation stresses will be further elaborated in Section 3.14.2.3. Recently, Lin and
Liu (2004) applied a RANS model that incorporates all the above mechanisms to simulate the undertow velocity profiles at various locations in the surf zone under
spilling and plunging breaking waves. Their results agree well with laboratory measurements by Ting and Kirby (1995, 1996).
3.8.3 Wave overtopping
When wave run-up takes place on a slope of finite length and height, there exists the possibility that the run-up will continue with wave overtopping, during which
part of the fluid overtops the crown of the structure. This may happen in an emerging low-crested breakwater, a seawall, or a deck of an offshore platform under
attack by large waves. One of the most popular empirical formulas to estimate the overtopping rate was proposed by Owen (1980):

(3.120)

where q is the time-averaged discharge rate per unit length, Hs is the post-breaking significant wave height,  is the dimensionless freeboard with Rc
being the actual freeboard (i.e., the distance between the still water line and the deck), and a and b are coefficients that are functions of structure profile.
Later, van der Meer and Janssen (1995) proposed another empirical formula by including slope and other information:

(3.121)

where the surf similarity parameter is  [see (3.119)] and the coefficients γb, γh, γr, and γβ account for the influence of berm, shallow foreshore,
roughness, and angle of wave attack, respectively.
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Recently, Hedges and Reis (1998), based on Owen’s experimental data, proposed another simple formula:

(3.122)
where CRH is the ratio of the maximum wave run-up on a smooth slope to the significant wave height (R/Hs), q0 represents the dimensionless discharge when the
dimensionless freeboard is zero, and b depends on the water surface profile on the seaward face of the structure. Other empirical formulas also exist (e.g., Franco
and Franco, 1999), but they will not be discussed in this book. Readers can refer to Allsop et al. (2005) for a complete review of existing empirical formulas.
3.9 Wave reflection
Waves will be reflected back from an obstacle in the form of wave reflection. Depending on the material and shape of the obstacle, the ratio of the reflected wave
energy and the incident wave energy can range from 0 (fully absorbed) to 1 (completely reflected).
3.9.1 Standing waves
Consider a smooth vertical wall that is fixed, rigid, impermeable, and infinitely long; a normal incident linear wave train will be completely reflected back and form
the so-called standing waves, which is basically the superposition of two progressive waves propagating in opposite directions:

(3.123)
In a standing wave, there exist nodal points where the free surface displacement remains zero at all time and antinodal points where the wave amplitude is amplified
two times (Figure 3.14). For a standing wave, the net energy flux is 0.
3.9.2 Partially standing waves
In cases when only part of the wave energy is reflected (and thus the reflected wave height HR is smaller than the incident wave height HI), the resulting wave
profile can be obtained by the superposition of two wave trains:



(3.124)
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Figure 3.14 Wave envelope for a standing wave.
This is the so-called partially standing wave (Figure 3.15), in which the quasi-nodal points have the minimum wave height Hmin and the quasi-antinodal points have
the maximum wave height Hmax. It is ready to find the following relation:

Hmax=HI+HR, Hmin=HI−HR (3.125)
A common practice to estimate the reflection coefficient KR=HR/HI in the laboratory is based on the measurement of the maximum and minimum wave heights at
the quasi-nodal point and the quasi-antinodal point and the substitution into the following equation derived from (3.125):

(3.126)
3.9.3 Mach reflection and stem waves
For an obliquely incident linear wave train in front of a perfectly reflecting boundary, the interference between the incident waves and the reflected waves will form
a honeycomb pattern as shown in Figure 3.16. The relative density of the nodal and antinodal points in two directions is dependent upon the wave incident angle.
The larger the incident angle is, the denser the nodal and antinodal points will be along the wall. The pattern will propagate
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Figure 3.15 Wave envelope for a partial standing wave (HR/HI=0.5).

Figure 3.16 Instantaneous wave pattern in front of a perfectly reflecting vertical wall (at kx=40 on the right) for an obliquely incident linear wave train with the
incident angle θ=70°; the gray scale represents the free surface displacement normalized by the incident wave height.
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forward along the wall direction, similar to a special type of progressive wave.
In the case of a large-amplitude wave approaching a vertical seawall obliquely, waves often break in front of the wall and there is a chance for the development of
growing progressive waves in front of the wall. Such waves are termed stem waves and they are the result of the so-called Mach reflection, which was first
discovered in aerodynamics. It is a well-known fact that when a shock wave (with its Mach number greater than 1) approaches obliquely a rigid surface, sometimes



the reflection does not take place at the solid wall but a distance away from it. A so-called slipstream will be developed in the downstream. In the region between
the downstream wall and the slipstream line, a special reflection with a growing strength will occur with its Mach number being smaller than 1. This phenomenon is
called Mach reflection or Mach stem (Figure 3.17). The Mach reflection in water waves was first found by Perroud (1957) when he studied the solitary wave
reflection from a wall. It was further confirmed by Yue and Mei (1980) using numerical models and by Melville (1980) through laboratory experiments. Berger and
Kohlhase (1976) conducted experiments to investigate periodic wave reflection from a wall. Yoon and Liu (1989a) employed a parabolic approximation to study
the stem waves induced by an oblique cnoidal wave train in front of a vertical breakwater.

Figure 3.17 Sketch of the development of a stem wave due to Mach reflection.
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Recently, Mase et al. (2002) extended the study of stem waves induced by random wave incidence.
3.9.4 Bragg reflection
Waves will experience reflection when they propagate over submerged structure and varying bottom topography. Further discussion will be made separately for
wave interaction with submerged structures in Section 3.15.1.1. In this section, only the wave reflection from a periodic bathymetry, e.g., sandbar or sand ripple,
will be discussed. It was found that strong reflection could occur when waves propagate through a long and periodically varying bottom, even though the magnitude
of bottom variation is small. For normal incident waves, the condition for this strong reflection to take place is when the wavelength of the topography is equal to
half of the incident wavelength.
The above strong reflection is termed Bragg reflection (or Bragg resonance, Bragg diffraction, Bragg scattering) as it was originally discovered by William Henry
Bragg and William Lawrence Bragg (father and son) in 1913 when they performed the study of X-ray wave diffraction by crystalline solids. Strong reflection will be
produced if the following Bragg’s condition is satisfied:

2λm cos θ=nL (3.127)
where θ is the incident angle, λm is the wavelength of periodic materials such as crystal matrix, and n is any integer. Their work won them the Nobel Prize in 1915;
by then William Lawrence Bragg was only 25 years old, the youngest Nobel laureate to date.
The significance of Bragg reflection in water wave dynamics is that if a periodic bottom is formed specifically, the transmitted wave energy can be significantly
reduced. On the basis of the Laplace equation, Mei (1985) proposed an asymptotic approximation for Bragg reflection of water waves from periodic sandbars.
Considering the nonlinear wave interaction, Liu and Yue (1998) studied various classes of the Bragg scattering of surface waves by bottom ripples. Cho and Lee
(2000) furthered the study by considering an arbitrarily varying topography and applied the theory to the study of singly and doubly sinusoidally varying
topography. Enlarging on Floquet’s theorem for electronics and optics, Chou (1998) derived the equation for small-amplitude water wave propagation in the
presence of an infinite array of periodically arranged surface scatterers. Using Miles’s theory (1981), Wang et al. (2006) studied Bragg reflection of water waves
from double composite artificial bars.
Bragg reflection was also studied by using various simplified theories. For example, using shallow water approximation, Yoon and Liu (1987) studied resonant wave
reflection by corrugated boundaries. The method
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was extended by Chen and Guza (1998) to study resonant scattering of a trapped edge wave by longshore periodic topography with the use of multiple-scale
expansion. Starting from the Boussinesq equation, Liu and Cho (1993) showed that long waves associated with a wave group of long and short waves can be
reflected resonantly by a field of periodic sandbars. Recently, extensive studies have been made by using the modified MSE, which has the capability of resolving
rapidly changing topography, to the study of Bragg reflection over periodic bottom geometry (e.g., Miles and Chamberlain, 1998; Zhang et al., 1999).
3.9.5 Wave reflection from a slope
When a wave train propagates normally to a plane slope, part of the wave energy will be reflected back from the slope. Most of the time, the reflected wave energy
can be estimated only by empirical formulas. On a smooth impermeable slope, Battjes (1974) proposed the following formula for the estimation of reflection
coefficient:

KR=0.1ξ2 (3.128)

where  is the Iribarren number (Iribarren and Nogales, 1949) that appeared in (3.115). The only difference between the Iribarren number and the
surf similarity parameter defined in (3.111) is that the breaking wave height Hb is used in (3.111).
On a rough permeable slope, Allsop and Channell (1988) proposed another formula:

KR=0.125ξ0.73 (3.129)
Using the field data, Davidson et al. (1996) proposed an improved formula for porous breakwaters as follows:

KR=0.151Rc0.11 (3.130)
where:

 
is called the reflection parameter with ht being the water depth at the toe of the structure and d50 the mean diameter of the porous material.
3.10 Wave refraction
The word “refraction” originated from optics that defines the process by which light changes its direction when entering obliquely from one medium
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to another. In water wave theory, it refers to a similar process except that the “medium” is replaced by “local water depth” that affects wave speed. For this
argument, wave refraction will occur only for waves in shallow and intermediate water depths.
3.10.1 Conservation equation of waves
Consider a steady linear wave train propagating over a changing topography (see Figure 3.18 for definition). The free surface displacement of the waves can be
described by the real part of the following expression:

(3.131)

where S(x, y, t) is the phase function and  is the wave number with the local wave propagation angle θ=tan−1(ky/kx). The relationship among kx and
ky and k is kx=k cos θ and ky=k sin θ. The phase function is a scalar whose time derivative gives angular frequency, i.e., ∂S/∂t=−ω, and whose spatial gradient gives
the wave number vector, i.e.:



(3.132)
By substituting S(x, y, t)=k·x−ωt into the trivial identity  we have:

(3.133)
The above equation is called the conservation equation of waves (or wave number). This equation describes the kinematics of wave propagation, during which the
change rate of the wave number with time must be balanced

Figure 3.18 A steady linear wave train propagating over a changing topography.
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by the spatial variation of wave angular frequency. For a steady wave field without current, the wave frequency is uniform in space and thus the wave number at a
particular location is a constant.
3.10.2 Snell’s law and wave refraction
From the identity of vector operation (see Appendix II), we have the irrotationality of the wave number vector as follows:

(3.134)
Let us consider a simple case of a linear wave train propagating toward a plane beach from an angle θ (Figure 3.19). Since all variations in the y-direction along the
plane beach are zero, equation (3.134) can be reduced to:

(3.135)
This implies that the projection of the wave number on the longshore direction is a constant. Dividing by the constant angular frequency σ on both sides of the
equation (3.135), we have:

(3.136)

Figure 3.19 Illustration of a wave refraction on a plane beach for an obliquely incident wave train.
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This is Snell’s law originally found in geometry optics, and it can be equally applied to water waves. Based on the above equation, the trajectory of a particular
wave ray, for which the incident wave angle in the offshore region is known, can be traced when the wave propagates toward the shoreline. This equation explains
the common phenomenon that waves always turn to be normal to a shoreline when they are making the final approach to the beach, regardless of their incident
angle in the offshore region (suppose near the shoreline c→0, which leads to θ→0).
3.10.3 Combined wave shoaling and refraction
Because wave refraction always occurs on a changing topography, the change of wave direction is always accompanied by the change of wave height. When a
wave train approaches a beach from an angle, the process of wave refraction is combined with wave shoaling. In this case, the shoaling formula derived earlier for a
normally incident wave (3.105) must be modified. On the basis of the same assumptions of negligible wave energy dissipation and wave reflection, the conservation
of energy flux within a band of wave rays ensures:

Ecgb=E0cg0b0 (3.137)
where b and b0 are the widths of the band of wave rays (normal to its propagation direction) in nearshore and offshore regions. By realizing that the projected
length (or wave number) of the wave rays in the longshore direction is a constant, i.e., l=b/cos θ=b0/cos θ0, we then have:

(3.138)
Compared with the original shoaling formula (3.105), a correction term is added to account for the effect of wave refraction. The propagation angle θ at any
location can be obtained with the use of Snell’s law, given the incident wave angle and bottom geometry.
3.11 Wave diffraction
Diffraction refers to the process in which the wave bends around an obstruction and part of wave energy “diffuses” into the “shadow” area. Wave diffraction
becomes a predominant process when waves pass a large object. The examples include wave diffraction behind a breakwater, wave diffraction around a large
circular pile, and wave diffraction around a very large floating structure (VLFS). For structures with a simple shape, an analytical solution exists. For structures with
a complex geometry, numerical modeling must be used in the analysis.
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Two classical analytical solutions were developed by Sommerfeld (1896) for wave diffraction around a semi-infinite breakwater and by MacCamy and Fuchs (1954)
for wave diffraction around a large fixed vertical circular cylinder. Both theories are based on potential flow and linear wave assumptions. Thus, the theories are
applicable only to cases where flow separation around the structure is negligible.
3.11.1 Wave diffraction around a semi-infinite breakwater
Consider a linear wave approaching a semi-infinite breakwater from a normal direction (Figure 3.20). By reducing the 3D Laplace equation to 2D Helmholtz
equation on a horizontal plane, Sommerfeld (1896) found the analytical expression for the complex velocity potential function θ(x, y, z, t)=Z(z)F(x, y)eiσt, which
contains both wave amplitude and phase information. The expression of F(x, y) is:

(3.139)
where:



(3.140)
The sign of (β, β′) is (+, +) for x<0 and y<0 (−, −) for x>0 and y<0, and (+, −) for y>0. Based on F(x, y), the diffraction pattern around the breakwater can be
determined (see Appendix VI).

Figure 3.20 Sketch of a wave diffraction behind a semi-infinite breakwater.
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The original Sommerfeld solution is exact but complicated in algebra. For large values of x (i.e., x>2L), the approximate solution was proposed by Penney and Price
(1952a):

(3.141)
where D is the diffraction coefficient that represents the ratio of local wave height to incident wave height H0, and the Fresnel integrals S(σ) and C(σ) are:

 
Figure 3.21 gives the comparison of the wave diffraction coefficient behind the breakwater based on the exact and approximate theories. It is clear that

Figure 3.21 The diffraction coefficient behind a semi-infinite breakwater at (a) x/L: 1.62, (b) x/L=6.50, and (c) x/L=19.50.
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the approximate theory underestimates the wave energy spreading into the shadow area near the breakwater. Away from the breakwater, the two theories are rather
close.
3.11.2 Wave diffraction around a large vertical circular cylinder
Wave diffraction around a large body is often an important concern to offshore engineers. Based on the linear wave theory, MacCamy and Fuchs (1954) found the
analytical solution of the velocity potential function for the wave field around a surface-piercing vertical circular cylinder. This leads to the closed-form solution for
the diffraction coefficient around the cylinder:

(3.142)

where δ0=1 and δm=2 for  is the Hankel function of the first kind of order m, and Jm is the Bessel function of the first kind of order m.
Figure 3.22 gives the analytical solution for the diffraction coefficient along the circular cylinder (see Appendix VII). It is seen that in the frontal part of the
cylinder, the wave amplitude is about doubled due to the presence



Figure 3.22 The closed-form solution of the wave diffraction coefficient around a circular vertical cylinder; wave period T=2 s, water depth h=80 m, and the
diameter of cylinder D=10 m.
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of a partial standing wave by reflection. The wave amplitude reduces toward the rear part of the cylinder in an oscillatory manner due to wave diffraction in the
sheltered region. MacCamy and Fuchs’s theory was later extended to multiple circular structures (Spring and Monkmeyer, 1974; Linton and Evans, 1990) and
porous cylinders (Wang and Ren, 1994).
3.11.3 Wave diffraction around a large floating circular thin plate
Recently, efforts have also been made to develop the exact solution for wave diffraction around a floating circular thin plate with zero drift. By using long-wave
approximation, Zilman and Miloh (2000) proposed an exact solution in terms of angular eigenfunctions to express the wave velocity potential around a body. Later,
Watanabe et al. (2003) extended the analytical solution to finite water depth. In their solution, the deflection of the plate due to wave-structure interaction is also
formulated based on Mindlin’s (1951) plate theory. As a result, the hydroelastic responses of the plate to the wave force and its influence on the wave diffraction
field are coupled together. The solution is used to evaluate the behavior of a pontoon-type circular VLFS. The wave velocity potential around the plate can be
written as the sum of diffraction and radiation potentials:

(3.143)

where  is the potential function associated with wave diffraction,  is the potential function associated with wave radiation due to body
deformation, and ζns is the modal amplitude. The details of the evaluation of these variables can be found in Watanabe et al. (2003). When Young’s modulus of
elasticity approaches infinity, the solution represents the wave diffraction around a rigid and fixed floating thin circular plate.
3.11.4 Combined wave refraction and diffraction around an island
When a wave train approaches an island, it is subjected to combined wave refraction and diffraction due to the change of bottom topography and the obstruction
from the island. Wave height can be amplified by many times in the rear part of the island provided there is favorable bottom geometry. Using the long-wave theory,
Homma (1950) derived a closed-form solution of wave height distribution around a circular island mounted on a paraboloidal shoal. Recently, Liu et al. (2004)
extended the problem to shorter waves and proposed an analytical solution in power series form based on the MSE.
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3.11.5 Wave diffraction and scattering around a porous structure
When a linear wave train propagates over a porous structure, the permeability of the structure will affect the diffraction pattern around the structure. Theoretical
expressions of wave reflection and transmission over a rectangular porous breakwater were derived for linear waves (e.g., Sollitt and Cross, 1972; Dalrymple et al.,
1991). Using potential flow theory, Yu and Chwang (1994) studied the general characteristics of wave transformation through porous structures of various shapes.
Yu (1995) further extended the study to wave diffraction around porous breakwaters.
3.12 Wave damping
Wave damping refers to the continuous reduction of wave amplitude in the course of wave propagation. There are many causes for wave damping, such as bottom
friction, bed percolation, wave breaking, and adverse surface wind effect. Besides, the surface tension and viscous effect will result in additional wave damping
given sufficient time, which is especially important for ship hull design. Zilman and Miloh (2001) studied the effect of surface tension on surface wave behavior. Wu
et al. (2001) presented a linearized analytical solution for viscous wave damping in a confined tank. Recently, Chen et al. (2006) proposed a study of gravity wave
under the effects of both surface tension and fluid viscosity. In this section, only wave damping due to bottom effects, the major cause for most nonbreaking waves,
will be elaborated.
3.12.1 Wave damping due to bottom friction
3.12.1.1 Laminar boundary layer
For a rigid and impermeable bottom, wave damping is mainly caused by bottom friction inside the wave-induced boundary layer, whose thickness can be estimated
as follows:

(3.144)
For most wind waves with wave periods less than 10 s, the boundary layer thickness is less than 1 cm, much smaller than the water depth being considered. The
viscous effect within the boundary layer is significant. In this case, the wave-induced bottom shear stress can be derived analytically (Lamb, 1945: Art. 345; Dean
and Dalrymple, 1991):

(3.145)
The bed shear stress has a phase delay of 45° from the free surface displacement. The average bed shear stress over a wave period is zero.
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If the phase lag is neglected, we can express the bed shear stress in the following conventional form similar to the current-induced bottom shear stress (see Section
3.14.1):

(3.146)
where cfw is the effective bottom friction coefficient under the wave and ub=ζbσ cos(kx−σt) is the near-bottom velocity derived from the potential flow theory
with:

 
being the maximum horizontal excursion of the fluid particle on the bottom.
Relating (3.145) and (3.146) for the maximum values by dropping the time-dependent terms, we have:

(3.147)
which gives:

(3.148)
where ubmax=ζbσ. The above expression is valid for Re<10,000 for a smooth bed.



The wave damping rate is determined by the rate of work done by bed shear stress. By assuming that the amplitude of a progressive wave train decays
exponentially, i.e.:

a(t)=a0 exp(−αt) (3.149)
where a0 is the initial wave amplitude and α is the damping coefficient, we can find the following expression for α (Dean and Dalrymple, 1991:266):

(3.150)
The wave damping in space can readily be obtained, given wave celerity.
The laminar boundary layer under other types of waves, e.g., Stokes waves, solitary waves, and cnoidal waves, has been studied theoretically, experimentally, and
numerically. Readers are referred to Lin and Zhang (2008) for more information.
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3.12.1.2 Turbulent boundary layer
As the boundary layer flow becomes turbulent due to increased bottom roughness and/or wave amplitude, two effects will result. One is the reduced phase lag
between the bottom shear stress and the free surface displacement due to the stronger vertical mixing rate. The other is the increased bottom shear stress by
turbulence. Both effects increase the energy dissipation rate within the boundary layer. Generally speaking, the friction coefficient is the function of Re and bottom
roughness. For the laminar wave boundary layer discussed earlier, the bottom roughness is small and thus the friction coefficient depends on Re only. At the other
extreme, when Re becomes large enough for a fully developed turbulent boundary layer, the friction coefficient tends to depend on bottom roughness only.
Putnam and Johnson (1949) performed an early theoretical and experimental study of wave damping on an impermeable bed due to bottom friction. Based on the
available theory and experiments, Kamphuis (1975) generated the wave-induced friction coefficient diagram similar to the Moody diagram. With the use of the
friction coefficient in the turbulent boundary layer, the wave damping in space is found to be (Dean and Dalrymple, 1991:269):

(3.151)
Due to the nonlinearity in the bottom friction, the decay rate no longer follows an exponential pattern. The larger the value of cfw is, the faster the wave amplitude
reduces.
3.12.2 Wave damping by other bottom mechanisms
Besides bottom friction, other bottom mechanisms can also cause wave damping. These mechanisms include a viscous bottom mud layer that moves with wave
propagation, a rigid porous bed that allows flow percolation inside, and a sandy bottom whose sediment can be suspended. The theoretical study of wave damping
over a viscous mud bottom was reviewed by Dean and Dalrymple (1991:273). Lian et al. (1999) proposed a nonlinear viscoelastic model for mud transport under
waves and currents, which was later improved and validated against laboratory data by Zhao et al. (2006). The wave damping over a porous bed is mainly caused
by friction inside the porous bed. The earliest study of wave damping due to percolation was performed by Putnam (1949) using Darcy’s unsteady law. Hunt
(1959b), Murray (1965), and Liu (1973) proposed analytical solutions of wave damping over the porous bed of infinite depth by considering the linear friction
effect. Liu and Dalrymple (1984) extended the study to a finite depth of the porous bed. The study was further extended by Gu and Wang (1991) to include the
linearized nonlinear effect. Recently, Karunarathna and Lin
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(2006) developed a fully nonlinear numerical model to study wave damping over various porous beds. The wave damping over a sandy bottom with sediment
suspension involves more complex mechanisms that include the effect of sediment suspension on bottom shear stress as well as the effect of changed bottom
geometry on wave energy dissipation. At this moment, there is no complete analytical study for this problem.
3.13 Nonlinear wave interaction
Nonlinear wave interaction is the process during which waves exchange energy among different wave modes. Depending on the local wave and wind condition,
wave energy can be transferred from high frequency to low frequency and vice versa. The most active wave energy exchange occurs between two wave modes
having close frequencies, i.e., one has the frequency of σ+∆σ/2 and the other σ−∆σ/2. In this case, the nonlinear wave interaction transfers energy to waves whose
frequencies equal the difference frequency ∆σ and sum frequency 2σ. The phenomenon can be explained by the secondary interaction theory proposed by Tick
(1963). In addition, higher order energy exchanges for ocean waves also exist. Hasselman (1968) established the theory for calculating the net energy transfer
among different wave modes in a wave frequency-direction spectrum. The theory is the basis for all wave energy spectral models to compute nonlinear wave energy
transfer. We shall discuss this more in Section 5.3.4.2.
3.13.1 Harmonic generation
The most common nonlinear process for wave energy transfer from low frequency to high frequency is the process of frequency doubling, during which the input
wave transfers energy to the wave that has the frequency twice that of the input wave. This can easily be demonstrated by a laboratory experiment, in which a
large-amplitude sinusoidal wave generated from the wave maker will eventually evolve into a second-order (or higher order) Stokes wave, given sufficiently long
propagation distance. The process is also called second harmonic generation (SHG), a famous nonlinear process also observed in optics. With the further nonlinear
interaction of the input wave and the second harmonic wave, the third harmonic wave with the frequency triple of the input wave can also be generated. In
principle, through a series of nonlinear wave interactions, wave energy can be redirected to all discrete wave modes that have the frequency of the integer times the
fundamental frequency. Such a process is often termed harmonic generation. The process sometimes is also referred to as “nonlinear resonant interaction.”
An informative but not rigorous way to view how a wave transfers energy to its lower and higher harmonics by nonlinear interaction is provided below. Consider a
wave group containing two wave components with two
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close frequencies σ+∆σ/2 and σ−∆σ/2. The free surface displacement at a particular location is then given by:

η(t)=a1 cos [(σ+∆σ/2) t+ε1]+a2 cos [(σ−∆σ/2)t+ε2] (3.152)
where a1 and a2 are wave amplitudes associated with the two wave components. Based on linear wave theory, the local horizontal velocity under the two waves is
linearly proportional to the free surface displacement and thus can be expressed similarly. A few quantities such as wave energy and wave-induced pressure (think
about the Bernoulli equation) are associated with the quadratic term of the free surface displacement and velocity, i.e., η2 or u2. Let us now evaluate η2 based on
(3.152) as follows:

(3.153)
It is seen that the quadratic term η2 contains two additional terms containing the second-order nonlinear interaction of the two wave modes (i.e., the terms with
a1a2). One term is related to the sum frequency (or frequency doubling when two frequencies are close) and the other is related to the difference frequency.
3.13.2 Bound and free infragravity waves
Another way to explain the transfer of the wave energy from the fundamental frequency to the lower frequency wave mode is the concept of radiation stress
introduced in Sections 3.2.3 and 3.2.4. Consider again a group of two waves with the same wave amplitude and two close frequencies σ+∆σ/2 and σ−∆σ/2. In
Section 3.5, we have shown that the wave group will be confined in a wave envelope that propagates at a speed of cg (see Figure 3.11). It is easy to see that the
wave height in the envelope varies in space and time with the wave number and frequency of ∆k and ∆σ, respectively. According to the concept of radiation stress,
the mean water level will be drawn down in the region where the wave amplitude is large. This causes the formation of a forced long wave that will propagate
together with the wave group. This wave has the angular wave frequency of ∆σ and is termed “bound long wave” or sometimes “bound infragravity wave.” The
bound long wave has 180° of phase shift to the wave envelope (Figure 3.23). The wave amplitude is generally rather small in the offshore region and the
corresponding wave period ranges from 20 to 300 s. This bound long wave was first described by Munk (1949) as surf beat, which
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Figure 3.23 Illustration of wave group propagation and the associated bound long wave generated by a nonlinear wave interaction; h=100 m, H=1 m, T=4 s,
∆σ=0.04 s−1.
can also be generated by the time-varying wave set-down and set-up during the wave shoaling on a beach.
Once waves break on the beach, the mechanism that locks the bound infragravity wave to the carrier wave envelope disappears. The released long wave is called
“free long wave” or “free infragravity wave” that has two fates. For a normal incident wave, it is reflected back to the offshore and is classified as the leaky mode
of the free long wave. For an obliquely incident wave, most of the wave energy will be trapped in the nearshore region and form the edge wave that will propagate
in the longshore direction.
3.13.3 The Benjamin-Feir instability
Nonlinear wave interaction also results in the so-called Benjamin-Feir instability, which was named after the theoretical work by Benjamin and Feir (1967) and
sometimes is also called sideband instability (Mei, 1989:620) or modulational instability (Dingemans, 1997:929). In their works, the difficulty in maintaining a
permanent shape of nonlinear wave trains (e.g., Stokes wave train) for long-distance propagation was explained theoretically. It was found that under certain
circumstances, the wave mode of the fundamental frequency can become unstable and grow exponentially in time under the small disturbance of the wave modes
with a close frequency, which is termed sideband disturbance. It is already known that with the
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introduction of a small sideband disturbance, a slowly modulated wave envelope will be formed. Due to nonlinear effects, the crest at the peak of the envelope will
propagate faster than the nearby waves, thus shortening the waves ahead and lengthening the waves behind. The group velocity, at which the wave energy is
transmitted, will increase behind but decrease in front with the change of wavelength. As a result, the crest at the peak of the envelope will continuously gain net
energy from the wave groups and develop instability (see Lighthill, 1978:462).
The phenomenon of Benjamin-Feir instability has been observed and measured for both gravity waves and capillary waves (e.g., Benjamin and Feir, 1967; Su,
1982a, b; Perlin and Hammack, 1991). The instability can be stabilized by energy dissipation, which was recently discussed by Segur et al. (2005) and Wu et al.
(2006). Benjamin-Feir instability can be more rigorously explained with the use of nonlinear Schrödinger (NLS) equations, which will be detailed in Section 5.3.3.4.
Using a cubic NLS equation, Hara and Mei (1991) included the wind effect to explain the downshift of frequency in Benjamin-Feir instability. In contrast, a proof
within the Hamiltonian framework was given by Bridges and Mielke (1995) for Benjamin-Feir instability of the Stokes periodic wave train. Recently, Osborne et al.
(2000) and Slunyaev et al. (2002) found that Benjamin-Feir instability may also contribute to the generation of rogue waves under certain circumstances.
3.14 Wave-current interaction
3.14.1 Current-induced turbulent bottom boundary layer
Consider a steady and uniform current above a flat impermeable bottom. The horizontal momentum equation can be reduced to:

(3.154)
This implies that the turbulence-induced Reynolds stress in the boundary layer is a constant, i.e.:

(3.155)

where  is the friction velocity with  being the bottom shear stress. Using the mixing-length hypothesis, the eddy viscosity can be modeled by:

(3.156)
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where κ is the von Karman constant. By substituting the above definition into (3.155) and taking the vertical integration, we obtain the well-known log-law velocity
profile in the turbulent boundary layer:

(3.157)
where z0 is the zero-crossing point of the log-law profile that is defined as:

(3.158)
where kn is the physical bottom roughness.
The above log-law profile is often used to describe the velocity profile within the thin layer of turbulent boundary, in which the shear stress does not vary
significantly in the vertical direction. For free surface flows on a flat bottom, this is not true because the current is driven by a pressure gradient and thus the bed
shear varies linearly in the vertical direction. In this case, we have:

(3.159)

where S is the surface slope. Integrating the above equation in the vertical direction and applying the boundary conditions on the bottom  and free surface
 we have:

(3.160)
This time the eddy viscosity needs to be modeled differently by considering the fact that it reduces to zero on both the bottom and the free surface. It is found that
when νt=κu*z(1−z/h), the same log-law profile (3.157) can result. The same derivation is also applicable for open channel flows on a slope, where S represents the
net slope of the free surface and bottom.
With the use of equation (3.157), any single velocity at an arbitrary depth can be used to determine the friction velocity and bottom shear stress. Besides, for the
given water depth h, the mean velocity and the friction velocity have the following relation:

(3.161)
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The bed shear stress can then be related to the mean flow velocity in the following way:

(3.162)
where cf is the friction coefficient. The above equation has a form similar to the Chezy formula or Manning’s equation, and they can be interchanged with each
other when the coefficients associated with each equation are properly converted.
3.14.2 Wave-induced current
Wave motion can induce current in various ways and they are summarized below.
3.14.2.1 Stokes drift
Stokes drift is one of the most common wave-induced currents (see Section 3.2.2). The mechanism of generating Stokes drift has been discussed before. In open sea,
Stokes drift creates a net mass flux in the wave propagation direction. In a close basin (e.g., wave tank, wave basin, continental shelf), because the net mass
transport is zero, a returned flow will be formed near the sea bottom (see Figure 3.24 for illustration).

Figure 3.24 Stokes drift in (a) open sea and (b) closed basin; water depth h= 10 m, wave height H=2 m, and wave period T=8.71 s; udmax= 0.0943 m/s is the
maximum Stokes drift at z=0.
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3.14.2.2 Boundary layer drift
Due to the viscous effect, the horizontal and vertical velocities within the boundary layer do not have 90° of phase shift as predicted by linear wave theory. As a
result, the time average over a wave period for the product of u and w does not reduce to zero. This will cause an additional stress similar to Reynolds stress. The
vertical gradient of such stress will induce a flow in the same direction as wave propagation. Longuet-Higgins (1953) gave the explanation of this flow and termed it
the boundary layer drift.
3.14.2.3 Undertow
While Stokes drift arises purely from the net mass flux of a linear wave based on its nonlinear property, the excess momentum flux can induce additional current
under certain circumstances. In Sections 3.2.3 and 3.2.4, we introduced the concept of radiation stress and stated that the imbalance of radiation stress is the cause
of wave set-down and set-up, which create mean surface slope to balance the radiation stress gradient. The mean wave set-down and set-up can be calculated by
considering the depth-integral quantities of radiation stress. After waves break, the magnitude of the radiation stress gradient is quite large near the free surface and
reduces quickly toward the bottom. The excess pressure gradient, however, is nearly uniform across the water depth. As a result, the net mass flux will be created
near the free surface, accompanied by the returning flow near the bed. This flow is called undertow and it plays a profound role in sediment transport in surf zones.
Nielsen (1992:60) has discussed the quantification of undertow in a surf zone.
3.14.2.4 Longshore current
Besides the undertow that is in the cross-shore direction, there is another type of current in the longshore direction called longshore current. A longshore current is
normally induced by an obliquely incident wave train that bends toward the shoreline due to refraction, during which the wave height changes locally and causes the
change of local radiation stress Sxx, Syy, and Sxy (see Section 3.2.3). The gradient of Sxy in the onshore-offshore direction will create a current in the longshore
direction. However, such a current is generally quite weak before the wave breaks because the variation of wave height is small. After the wave breaks, the wave
height decays rapidly. A strong longshore current can be generated that can reach up to 0.5 m s−1 in certain areas (Figure 3.25).
3.14.2.5 Rip current
Rip currents will form when waves approach a curved beach from a nearly normal incidence. Due to the nonuniformity of the beach profile and/or the
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Figure 3.25 Illustration of the generation of longshore current by obliquely incident waves (Courtesy of COMET program).
wave field, waves can break strongly in one place and weakly in another place. A horizontal flow circulation will be formed within which a narrow channel of water
flows fast in the offshore direction (Figure 3.26). This flow is called rip current, which has a width ranging from 15 m to 50 m and a speed from 0.3 m/s to 2.0 m/s.
The generation of rip current is basically the result of the mass balance of the excess water driven by wind and waves from offshore. The effect of the rip current
generally extends to deep water beyond the sandbars that separate the onshore and offshore regions.
3.14.3 Wave effects on current
3.14.3.1 Apparent bed roughness
Besides the wave-induced currents, there are other types of currents in oceans. Examples include large-scale ocean circulations driven by wind or the difference of
density due to the change of salinity and/or temperature, tidal currents, and river flows in estuaries. One of the main wave effects on current is to increase the
apparent bed roughness felt by the current. In other words, when a current enters into a wave field, it flows over a rougher bed and thus the effective bottom friction
increases.
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Figure 3.26 Illustration of the generation of rip currents on a nonuniform beach.
The increased bed shear stress enhances the current capacity of initiating bottom sediments and suspends them. This explains why large-amplitude waves riding on a
current can significantly increase the turbidity level in coastal regions. In this case, the bed shear stress is the function of the cross flow (current), the physical
roughness of the bed, and the wave condition. It has been found that the wave-current interaction angle does not have significant influence on bottom friction (e.g.,
Arnskov et al., 1993). Grant and Madsen (1986) gave the formula to estimate the time-varying bed shear stress under the combined wave-current action.
3.14.3.2 Current profile under a wave
It is generally believed that under the influence of a wave, the near-bed current profile can still be described by the classical log-law, though the bed friction
velocity and the apparent roughness will be modified. The current profile near the mean water level, however, can be significantly modified by waves. Such a
change in current profile has important applications in the study of the fate of substances in large-scale ocean circulations. It was reported by Kemp and Simons
(1982, 1983) from laboratory measurements that the current profile will be tilted back when waves propagate with the current and
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Figure 3.27 Illustration of wave-current interaction.
extended outward when waves propagate against the current (Figure 3.27). This is somehow against the intuition and knowledge from Stokes drift, but it was
confirmed by Klopman’s experiments later (1994).
To explain this phenomenon, let us start with the time-averaged equation (3.54) we derived earlier for 3D wave-induced radiation stress:

(3.163)
where Wxx(2) is the additional normal radiation stress caused by nonzero mean pressure of the Lagrangian orbit motion of fluid particles under waves. Also note
that we add a subscript D for w2 to indicate that the contribution of this term is caused by the dynamic pressure associated with waves only. Although the above
equation was derived for waves only in Section 3.2.3, it can be extended to include current, waves (variables with tilde sign), and turbulence:

(3.164)
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Substitute (3.164) into (3.163), we have:

(3.165)
To arrive at the above equation, the correlations between mean flow and wave, between mean flow and turbulence, and between wave and turbulence are assumed

to be zero under the time average. The time averages of  and w′ are also set to zero. By realizing that in general  and  based
on the previous definition, we then have:

(3.166)
The above equation suggests that the change in the mean velocity and the mean water level in the x-direction is balanced by the gradient of wave-induced radiation

stresses  and Wxx(2), turbulence-induced Reynolds shear stress  and additional shear stress caused by nonzero mean flows 
The above equation can be rearranged into:

(3.167)

where  is the Reynolds shear stress and the RHS represents the mean stress contribution from waves and mean flow. When the RHS is neglected, this



returns back to the open channel flow whose mean shear stress can readily be derived by taking the vertical integration as follows:

(3.168)
where 
Now consider the waves propagating with the current. Based on Klopman’s experiments (1994), the mean current velocity near the free surface curls back, giving
negative  and implying that the Reynolds shear stress becomes negative near the free surface. One possible explanation is that the presence of the waves
introduces additional shear near the free surface. By neglecting the mean flow stress contributions in (3.167), the equation can be solved again to obtain with the use
of (3.51), (3.52), and (3.53):
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(3.169)
To make the Reynolds shear stress negative near the free surface, the RHS must be negative near z=0. On a flat bottom when h is a constant, this can happen only
when wave amplitude decays in the wave propagation direction (i.e., ∂E/∂x<0). With an uneven bottom where ∂h/∂x≠0, the situation becomes more complex. Note
that the above derivation is based on the pure linear wave theory. In the presence of both wave and current, nonlinear interaction among waves, current, and
turbulence can be rather complicated and the above equation is inadequate. You (1996) made an attempt to model the wave-induced stresses under the influence of
current as a lumped term by an empirical formula. But the empirical formula does not include important wave parameters such as wave height and wave number
and thus it is not applicable for general wave-current interaction problems.
On a flat bottom, the change of mean water level in the current direction will inevitably cause the flow to be nonuniform. In this case, the additional contribution

caused by  and  on the RHS of equation (3.167) is not negligible. If the flow accelerates or decelerates in the x-direction, a nonzero  will result. The
additional stress contribution  may become relatively significant near the free surface where the turbulent Reynolds stress approaches zero, even though  can
be a few orders of magnitude smaller than 
In recent years, intensive studies have been performed in surface wave interaction with current, driven by the need to better understand the sediment transport and
contaminant transport in coastal water. Huang and Mei (2003) showed theoretically the boundary layer effect on wave-current interaction. Yang et al. (2005)
discussed the role of mean vertical velocity  in the study of wave-current interaction. Umeyama (2005) measured Reynolds stresses
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and velocity distribution in the combined wave and current flow. Shi and Lu (2007) simulated the turbulent flow structure under the combined wave and current.
However, the explanations of the changed current profiles due to the presence of waves are still controversial and it requires more experimental evidence and
theoretical exploration to arrive at consensus on this subject.
3.14.3.3 Langmuir circulation
During wave-current interaction, the mean current profile can also be affected by the transverse flow that is identified as the secondary flow (circulation) in open
channels (e.g., Dingemans et al., 1996). In open seas or lakes, both waves and current will be generated in the direction of the wind. In addition, the so-called
Langmuir circulation may also be formed, similar to the secondary flow in wide open channels (Figure 3.28). As a result, the water particles will move forward in a
spiral fashion (readers should not confuse this horizontal spiral motion with the wind-induced vertical Ekman spiral in oceans due to the Coriolis effect; see Figure
3.28 for illustration). Substances with smaller density, for example, air bubbles or flotsam, will tend to converge into lines parallel to the wind. These lines are called
windrows, below which there exist downwelling water motions. In oceans with strong winds, the downwelling motion can be so strong that it will pull down air
bubbles and other planktons even hundreds of meters below the water surface. The substances will gradually return to the surface, following the spiral path together
with nutrients and cool water. This is an important mechanism in oceans for vertical mixing and substance exchange. The review article for Langmuir circulation
can be found in Leibovich (1983).

Figure 3.28 Sketch of Langmuir circulation and Ekman spiral.
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3.14.4 Current effects on wave
Current can also affect waves in a few different ways, which are summarized as follows.
3.14.4.1 Change of wavelength
One of the most pronounced effects of current on a wave is the change of wavelength, which depends on the current speed and current angle to the wave
propagation direction. When a wave train meets a following current, the wavelength will be elongated. In contrast, when a wave train propagates against a current,
the wavelength will be shortened. A simple equation to relate a current to waves is as follows:

ω=ω(k, x, y)=σ+k·U (3.170)
where ω is the absolute (or apparent) angular frequency and σ is the relative (or intrinsic) angular frequency that is related to wave number k by the linear
dispersion equation. The variables ω and σ represent the observed wave frequencies from a fixed frame and a frame moving with the current, respectively. For a
steady-state current and wave field, the absolute angular frequency ω is a constant over the field and the relative angular frequency σ is the function of U(x, y).
Generally speaking, this change of wave property perceived by an observer moving relative to the source of the waves is called Doppler effect, named after
Christian Andreas Doppler. Figure 3.29 shows an example of Doppler



Figure 3.29 Illustration of Doppler effect when a point-source of wave is exposed to a current moving to the right.
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effect for a stationary wave source exposed to a uniform current moving to the right. The wave propagates against the current on the left side where the observed
wavelength is shortened and it propagates following the current on the right side where the observed wavelength is elongated.
To better explain this phenomenon mathematically, let us first consider a current that follows a linear wave train. Equation (3.170) can be rewritten as follows:

(3.171)
For a given absolute frequency and current speed, there are two possible mathematical solutions for the intrinsic frequency. One solution has smaller magnitudes of
k and σ and thus a longer wavelength than that without current. This corresponds to a slow current that waves always catch up with when the observer is riding on
the current from behind. The other possible solution is associated with the negative values of σ and k. This solution corresponds to a fast current that overtakes the
wave.
For an opposing current, the equation takes the following form:

(3.172)
Mathematically, this will always result in the increase of k and thus a shorter wave. Physically, since wave energy is transmitted at the speed of group velocity,
when the opposing current speed exceeds wave group velocity, the waves will be essentially blocked and the wave energy will dissipate into turbulence by
wave-breaking processes. This is the typical situation in a river mouth where the incoming waves feel the increasing current when they are making the way against
the river flow. Shorter waves are blocked first due to their smaller group velocities. At the location of wave blocking, strong air entrainments can be induced by
wave breaking, forming a visible breaker line.
Longer waves, however, can penetrate further into the river. Some strong high tides can propagate against the river flow over 100 km further into the river delta
region if the river mouth has a slowly expanding width. During the propagation of the tidal flow, the so-called tidal bore will be formed that looks like a breaking
wave front. There are only a few places in the world where tidal bores form and propagate for very long distances. One of the well-known tidal bores is the
Qiantang river tidal bore, which is formed due to the high tidal level and special topography in Hangzhou Bay that is in the shape of a trumpet (Figure 3.30). In a
full-moon high tide, the tidal bore can propagate all the way to Hangzhou city, which is about 130 km from the Qiantang river mouth (see Figure 3.30).
Note that a similar equation with the change of sign is also applied to a ship moving in a wave field, i.e.:

(3.173)
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Figure 3.30 Map of Hangzhou Bay (top); and the Qiantang Tidal Bore at Raining (bottom). (Permission from Google Earth™ Mapping Service)
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where U is the ship velocity. In this case, ω is called the encounter angular frequency and σ the intrinsic angular frequency, representing the observed frequency
from the moving ship and a fixed frame, respectively. Different from the case of wave-current interaction, the intrinsic angular frequency σ is a constant whereas
the encounter frequency ω is the function of U(x, y).
3.14.4.2 Wave refraction by current
When waves propagate through a nonuniform current, they will experience a similar refraction effect as they propagate over a changing topography. The theoretical
framework was developed by Longuet-Higgins and Stewart (1961) and extended by many researchers later (e.g., Dingemans, 1997:336). For the complete review of
the theory, readers are referred to Mei (1989:89).
3.15 Wave-structure interaction
Wave-structure interaction is a branch of more general fluid-structure interaction (FSI). In the study of wave-structure interaction, focus is often on one or all the
following aspects: (a) the change of wave motion due to the presence of a structure; (b) the wave loads on the structure; and (c) the dynamic response (motion) of
the structure due to the wave loads and its effect from the further change of wave motion. We will now discuss these issues respectively.
3.15.1 Wave scattering by structure
The presence of a structure changes flow motion locally, which in turn causes wave transformations including wave diffraction, wave refraction, wave reflection,
and wave breaking. The characteristics of wave transformation and diffraction have been discussed in earlier sections. In this section, we will further discuss wave
transmission and reflection from bottom geometry (e.g., breakwater, sills, and trench) and porous structures that have important applications in coastal engineering.
3.15.1.1 Impermeable structure
For a submerged impermeable structure, part of the wave energy will transmit over the structure and form the transmitted wave that has smaller wave amplitude.
Part of the wave energy will be reflected back from the structure and form the reflected waves. Near the structure, local vortex and turbulence may be generated
that cause energy dissipation. The effectiveness of a structure in blocking wave energy is measured by the reduction of wave transmission. While the use of coastal
protection is to minimize the wave transmission, a strong reflection is normally not preferred because of
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navigation concerns. In this case, a design can be made to dissipate wave energy locally near the structure through wave breaking or vortex shedding and turbulence
dissipation. This, however, may increase the potential damage and failure of a structure by direct wave impact and/or foundation erosion. A practical design needs
to be a compromise to balance wave energy transmission, reflection, and dissipation.
Long-wave approximation: Lamb (1945: Art. 176) gave analytical solutions of reflection and transmission coefficients for wave propagation over a step by using
the linear long-wave approximation:

(3.174)
where HI is the incident wave height, HT is the transmitted wave height, HR is the reflected wave height, h0 is the still water depth for the incident wave, and h1 is
the still water depth on the step. In the above expressions, we have 1≥HR/HI≥0 and 2≥HT/HI≥1. It is easy to prove that the above equations satisfy the total energy
conservation among the incident, transmitted, and reflected waves for a linear wave train, i.e.:

(3.175)

where  is the group velocity in the deep water while  is the group velocity on the step. Equation (3.175) can be applied to all
long-wave transformations over a changing topography with negligible wave energy dissipation.
Mei (1989:130) extended the analysis to more general case of long waves passing through a step with a finite length of 2a. The still water depths in front of, on, and
behind the step are h0, h1, and h2, respectively. The reflection coefficient was found to be:

(3.176)
where  and s21=(k2h2)/(k1h1) with k0, k1, and k2 representing wave numbers in h0, h1, and h2. The corresponding transmission
and reflection coefficient can then be obtained by:

(3.177)
It is interesting to note that full transmission will be obtained if h0=h2 and  during which the structure looks transparent to the incident waves. In

contrast, the maximum reflection will be attained when 
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Figure 3.31 Sketch of wave transmission over a submerged obstacle of trapezoidal shape; the origin is defined at the intersection of the frontal slope extrapolation
and the still water level.
When a slope is presented in front of a step, analytical solution is available only for some special slope profiles (e.g., power law function). Kajiura (1961) obtained
an analytical solution for a step behind a parabolic slope and Dean (1964) obtained an analytical solution for a step behind a linear slope.
To assess the performance of a submerged breakwater of trapezoidal shape (Figure 3.31; note the origin is defined at the intersection between the extension of the
frontal slope and the still water depth), Lin and Liu (2005) unified the earlier study by giving the more general form of analytical solution as follows:

(3.178)
where:

(3.179)

(3.180)
with:

(3.181)
and:

(3.182)
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where Ji and Yi are the ith order Bessel function of the first and second kind. The definitions of α and β are given below:

α0=−2k0x0, α1=−2k1z1
β1=2k1h1(x3−x2)/(h2−h1), β2–2k2h2(x3−x2)/(h2−h1)

(3.183)

Using the above closed-form solution, one can easily predict the reflected and transmitted wave heights, given the information of water depths in front of, above,



and behind the breakwater, the incident wave heights and wave periods, the frontal and back slopes of the breakwater, and the length of the crown of the
breakwater. Liu and Lin (2005) extended the study to the trench case where h1>h2. A Matlab script is provided in Appendix VIII for this purpose.
The above equation can be reduced to the simpler solutions by Lamb (1945: Art. 176) and Mei (1989:130) for a step with infinite and finite length as well as the
solution by Dean (1964) for wave transformation above a shelf behind a linear slope, i.e.:

(3.184)
where:

(3.185)
Potential f low theory: To study shorter wave transmission and reflection from a submerged obstacle, potential flow theory needs to be used. Bartholomeusz (1958)
was probably the first to study wave reflection from an infinite step with the use of full potential flow theory. He obtained an integral equation that governs the
horizontal component of velocity at the shelf discontinuity but solved the equation only in the limiting cases of long waves and recovered the results by Lamb
(1945: Art. 176). Newman (1965a, b) considered both a long obstacle and a step in finite and infinite water depths using the method of matching eigenfunction
expansions. In his approach, there are two propagative modes in any domain of constant water depth and an infinite number of evanescent modes at the step
discontinuity. It was found by Newman (1965a) that the reflection coefficient could become zero for some lengths of the obstacle, as confirmed later by Mei (1989)
using linear long-wave approximation.
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In contrast, Miles (1967) applied the variational principle to a continental shelf. He introduced the so-called scattering matrix related to the coefficients of two
propagative modes on each side of the obstacle, in which the elements were determined by means of variational integrals. This variational method was later
employed by Mei and Black (1969) for a rectangular obstacle in a channel of finite water depth and extended by Devillard et al. (1988) by using the renormalized
transfer matrix to study wave propagation over a set of successive steps. In contrast, Massel (1983) employed the Galerkin method to determine the wave reflection
coefficient from a shelf. A new approach was introduced by Evans and Linton (1994) who transformed the problem into a uniform strip before the approximate
analytical solution was sought. Recently, Rhee (1997) proposed a second-order solution for wave transmission over a shelf and compared his results to the earlier
results by Newman (1965b), Miles (1967), and Massel (1983).
For more general problems of varying bathymetry, Roseau (1952) proposed an analytical solution for a special bottom profile based on the original Laplace
equation. By employing the eigenfunction expansion method, Takano (1960) developed an approximate theoretical model to simulate the propagation of a
monochromatic wave over an arbitrary bathymetry, where the topography is approximated by a series of small steps. This approximate theoretical model was later
adopted by Kirby and Dalrymple (1983a), Liu et al (1992), and Cho and Lee (2000).
Solitary wave: Besides periodic waves, special attention has been paid to the study of solitary wave transmission and reflection from a shelf, in an attempt to study
the behavior of tsunami transformation over a continental shelf. Examples of these studies include the earlier attempts by Tappert and Zabusky (1971) and Johnson
(1972). Miles (1979) considered nonlinear effects during wave transformation. Mei (1986) further explored the effect of sudden change of channel geometry on
solitary wave transformation on a shelf. For solitary wave interaction with a rectangular obstacle of a finite length, so far there is no reported analytical study.
Roles of vortex generation and wave breaking: All the above analyses were based on the assumption that there is no energy dissipation in the process of wave
interaction with obstacles. In reality, however, a vortex will be generated at the edge of the structure, which traps wave energy that will eventually be dissipated.
Besides vortex generation, wave breaking may also take place when the wave amplitude is large on the structure. The energy dissipation will affect wave
transmission and reflection. The way of quantifying the energy dissipation by vortex generation and wave breaking is through laboratory experiments or numerical
modeling, the former of which will be discussed below and the latter will be detailed in Section 6.4.1.
Laboratory studies can be performed by taking both free surface displacement and velocity measurements. For example, based on wave gauge data, the nonlinear
wave transformation over a submerged bar was analyzed by Beji and Battjes (1993). Rey et al (1992) studied the vortex generation
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around the edge of the structure during the propagation of linear and weakly nonlinear waves. The more detailed point measurements were taken by using laser
Doppler anemometer (LDA) for velocities around the structure under wave propagation by Ting and Kim (1994), who reconstructed spatial vortex structure around
the obstacle and concluded that a viscous flow model is needed to resolve the complex eddies in the flow separation domain. Recently, Jung et al. (2004) used
particle image velocimetry (PIV) to directly resolve the spatial structure of a vortex near the edge of the rectangular structure.
The laboratory study of solitary wave transformation over a shelf or an obstacle was performed by Seabra-Santos et al. (1987). Losada et al. (1989) examined the
effect of the depth discontinuity on the solitary wave transformation over a shelf. Later, Zhuang and Lee (1996) and Tang and Chang (1998) studied the vortex
motion behind the obstacle during the passage of a solitary wave. Chang et al. (2001) employed PIV to study detailed vortex structures near two edges of
rectangular obstacles. The work was furthered by Chang et al. (2005) for the study of cnoidal waves and by Lin et al. (2005) for the study of solitary wave passage
over a submerged vertical plate.
3.15.1.2 Porous structure
In the process of wave interaction with a porous structure, additional wave energy dissipation will be induced when the fluid flow passes through the pores between
porous particles. Most of the existing theoretical studies of wave interaction with porous breakwaters have assumed linear periodic waves and a rectangular
breakwater. In these studies, the energy dissipation inside the structure was taken into account through the linearized friction coefficient, which is evaluated by
applying Lorentz’s principle of equivalent work. By incorporating the linearized friction coefficient, several theoretical expressions for reflection and transmission
coefficients have been derived for linear waves (e.g., Sollitt and Cross, 1972), linear long waves (e.g., Kondo and Toma, 1972; Madsen, 1974), and obliquely
incident linear waves (e.g., Dalrymple et al., 1991; Yu, 1995) interactions with rectangular porous breakwaters. Attempts have also been made to extend these
models for breakwaters of trapezoidal shape (Madsen and White, 1975) and arbitrary shape (Sulisz, 1985). Wave reflection and transmission by other
nonconventional porous breakwaters such as Jarlan-type structures (Isaacson et al., 2000), multislice structures (e.g., Twu and Chieu, 2000; Twu et al., 2002),
semicircular breakwaters (Xie, 1999), and partially perforated walls (Li et al., 2002) have also been studied theoretically and/or experimentally.
For nonlinear waves, the existing theoretical studies were mainly made for solitary waves, special weak nonlinear and dispersive shallow water waves. Due to the
nonlinear characteristics of solitary waves and nonlinear flow motion inside the porous media, the available theoretical models have
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to make various assumptions for the linearization of resistance forces inside the porous media. Theoretical expressions for reflection and transmission coefficients
for a solitary wave interaction with a rectangular porous breakwater were derived by Vidal et al. (1988) by assuming that the length of the breakwater is small
compared with wavelength. In their study, flow motion within the fluid domain and inside the porous breakwater was described by linear Boussinesq equations. The
friction loss within the porous media was represented by an equivalent linearized term. Silva et al. (2000) derived another theory to evaluate reflection and
transmission coefficients for solitary wave interaction with porous breakwaters. In the derivation, the incident solitary wave was decomposed into its harmonic
series through Fourier analysis. The reflected and the transmitted waves were obtained by multiplying the harmonic series for the incident wave with transfer
functions, which were obtained by using plane-wave approximation based on the linear wave theory.
To consider stronger nonlinear waves and/or breaking wave interaction with porous structure, experimental studies or numerical studies must be employed. This will
be elaborated in Sections 5.2.1.7 and 6.4.1 when the numerical modeling of porous flows and wave-structure interaction is discussed.
3.15.2 Wave load on rigid and fixed structure
When flow passes around a structure, it will exert forces on the structure. These forces are induced by pressure difference around the body and the viscous stresses
on the body surface. In principle, by taking the surface integration of pressure and viscous stresses around the object, the total fluid flow forces can be calculated.
This, however, requires the detailed information of pressure and stress distribution on the surface of the body, which is generally unavailable unless the direct
numerical computation is made.
3.15.2.1 The Morison equation
In-line forces: In many engineering computations, the simpler alternative based on semitheoretical and semiempirical approaches is adopted. Let us take a closer
look at the contribution of pressure and viscous stress to the total fluid force on a body. For a simple case of a steady-state flow, the total force is called total drag
that can be further divided into the form drag and the skin friction. The form drag is caused by the pressure difference in front of and behind the body due to flow
separation, which creates a wake region behind the body where the pressure drops due to the existence of local vortices. The skin friction is caused by the viscous
force within the boundary layer around the body. Generally speaking, the form drag force predominates for large Re and bluff body whereas the skin friction
predominates for small Re and long body. In engineering applications, a
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popular way of estimating the total flow force on a body is by the use of the following empirical formula that merges the form drag and the skin friction:

(3.186)
where A is the maximum cross-section area perpendicular to the flow, U is the far-field undisturbed velocity, and CD is the drag coefficient that is the function of
Re, body surface roughness, and body shape.
When an unsteady flow is considered, additional inertial force will result, in addition to the total drag force. This inertial force is basically the result of the additional
pressure gradient across the body. One contribution to this additional pressure gradient comes from the pressure gradient that exists in an unsteady flow to
accelerate or decelerate the flow itself, even without the presence of the body. The other contribution comes from the added mass effect, and it is equivalent to the
case when the body is accelerating or decelerating in the opposite direction in a quiescent fluid. All together, the inertial force can be expressed as follows:

(3.187)
where V is the volume of the body, CM=1+CA is the inertial coefficient, and CA is the added mass coefficient that approaches zero for a long and thin body and
approaches infinity for a short and thick bluff body.
When (3.186) and (3.188) are combined, we have the following formula that can be used to calculate the total force exerted by an unsteady flow on a body:

(3.188)
This equation was originally proposed by Morison et al. (1950) and it is called the Morison equation. It is widely used to calculate wave (a particular type of
unsteady flow) loads on a body with arbitrary shape.
For a bottom-mounted vertical slender circular cylinder, the total wave force on it (where x=0) can be obtained by using (3.188) and the formulas in Table 3.1:

(3.189)
The overturning moment about the seafloor is as follows:
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(3.190)
The terms within the braces on the RHS simply represent the lever arms, which are h/2 and h for long waves and short waves, respectively.
The relative importance of the inertial and drag forces can be estimated by evaluating the Keulegan-Carpenter (KC) number, which is named after the pioneer
experimental work by Keulegan and Carpenter (1958) and is defined as KC=umT/∫D, where um is the maximum fluid particle velocity in the oscillatory flow with
the period of T and D is the characteristic length of the body in the flow direction. For a linear wave load on a vertical cylinder, when CD and CM are of the same
order of magnitude, the drag force will predominate when KC<<10 and the inertial force will predominate when KC<<10.
Lift force: When the drag force predominates over the inertial force (i.e., KC>>1), vortices will be formed in the lee side of the body. For a smooth circular
cylinder, when KC>>1 and Re>30, these vortices will shed from the cylinder alternately, causing the time-varying asymmetric flow pattern in the transverse
direction (Figure 3.32). The imbalance of pressure

Figure 3.32 Steady current-induced vortex shedding behind a circular cylinder (bottom) and the associated time histories of drag (solid line) and lift (dotted line)
coefficients (top).
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on the two lateral sides of the cylinder results in the transverse force that is often termed the “lift force.” This force has a zero mean but can oscillate strongly in
time. The frequency of the oscillation of the lift force f is the same as the shedding frequency of vortices from the cylinder. The dimensionless frequency is
represented by the so-called Strouhal number and is defined as:

(3.191)
For a smooth circular cylinder, the Strouhal number is the function of Re and KC. For KC>>1 and Re<105, the Strouhal number is nearly constant St≈0.2. The lift
force can be calculated in the same way as the drag force, i.e.:

(3.192)
The only difference is that the lift coefficient has a different dependence on KC and Re and it is time dependent. Figure 3.32 shows the corresponding drag and lift
coefficients as the function of time. It is seen that although the drag coefficient is also time dependent and has a frequency twice that of the lift coefficient, the
fluctuation is much smaller and thus it can practically be taken as a constant in engineering computations.
3.15.2.2 Froude-Krylov method
When the inertial force predominates over the drag force for a body that is comparably smaller than wavelength, the Froude-Krylov (F−K) method may be used for
force calculation. In this circumstance, the pressure distribution around the body can be obtained by using the linear wave theory as if there is no presence of the
body:

(3.193)
The force can then be obtained by taking the surface integration of the pressure around the body:



(3.194)
While the surface integration of dynamic pressure generates wave-induced force on the body, the surface integration of hydrostatic pressure simply results in
buoyancy. In the special case that the spatial variation of velocity acceleration is neglected, the wave force calculated from the F−K method is equivalent to the
inertial force calculated from the Morison equation without considering the added mass effect, i.e.:
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Chakrabarti (1987:234) gave the closed-form expression of the F–K method for a few bodies with common shapes of circular cylinder, circular plate, hemisphere,
etc. In principle, the wave force on structures with a complex shape can also be evaluated with the use of the F–K method, as long as its overall size falls into the
applicable range (i.e., D <<L).
3.15.2.3 Diffraction theory
As the body size increases to be comparable to the wavelength, the interference of the body to the wave field becomes inevitable. Neither the Morison equation nor
the F–K method can be used. In this case, the wave diffraction theory becomes a powerful tool to determine the disturbed wave field around the body, from which
the wave force can be determined. Since the flow separation is no longer an important mechanism to be considered, it is justified to use potential flow theory to
describe the wave field, from which various analytical solutions have been developed to describe wave diffraction and wave loads on bodies with different shape.
Diffraction theory finds its main application in offshore engineering and naval architecture, both of which involve large bodies, floating or bottom-mounted, exposed
to the wave field. The classical work by MacCamy and Fuchs (1954) gave the closed-form solution of linear wave diffraction around a large vertical circular
cylinder, from which the wave force is derived. Later, Spring and Monkmeyer (1974) obtained an analytical solution for wave diffraction around two unequal
cylinders at an arbitrary wave incident angle. The solution of wave diffraction for multiple cylinders was given by Chakrabarti (1978). Kagemoto and Yue (1986)
proposed an algebraic method to study wave diffraction around multiple 3D bodies. The method was extended by Linton and Evans (1990) to study wave
interaction with arrays of vertical circular cylinders and by Yilmaz and Incecik (1998) to study wave diffraction around a group of truncated cylinders. Chakrabarti
and Naftzger (1974) developed the analytical solution for wave forces on a horizontal half-circular cylinder and a bottom-seated hemisphere. For a floating circular
plate (e.g., dock, pontoon), the analytical solution of wave forces on the body was proposed by Garret (1971).
People also attempted to develop nonlinear wave diffraction theory by including the higher order terms in the analysis. Using Stokes wave theory, Chakrabarti
(1971), Raman et al. (1975), Isaacson (1977), and Molin (1979) proposed various treatments to develop the approximate analytical solution of second-order wave
diffraction around a vertical circular cylinder. The second-order diffraction force on a vertical cylinder was calculated by Chau and Taylor (1992). For very large
amplitude waves whose amplitude is on the order of magnitude as the cylinder diameter, Faltinsen et al. (1995) included third-order terms in the analysis of wave
forces. McIver and McIver (1990) developed an analytical solution for wave diffraction around a submerged circular cylinder. Kim and Yue (1989) extended the
analytical solution to
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a more general axisymmetrical body. Huang and Taylor (1996) developed a semianalytical solution for second-order wave diffraction by a truncated circular
cylinder. Ghalayini and Williams (1991) presented an analytical solution for nonlinear wave forces on arrays of vertical cylinders. Sulisz (2002) presented the
analytical solution for nonlinear wave forces on a horizontal rectangular cylinder.
Although the analytical studies of wave diffraction and wave forces on a large body offer good insight into physics and provide benchmark results, they are limited
to relatively simple body shape. For composite structures (e.g., an offshore platform) or bodies with irregular shapes (e.g., a ship hull), the numerical modeling,
which is based on the Laplace equation for large bodies or NSEs for small bodies, must be employed. More discussions on numerical modeling of wave loads on
structures will be given in Sections 6.4.3 and 6.4.4.
3.15.2.4 Second-order wave drift force
Based on the linear wave theory, the mean wave force acting on a fixed body is zero for a regular wave. In reality, however, waves will exert a mean force on the
body in the direction of wave propagation. This mean wave force is proportional to the square of the wave amplitude and is classified as the second-order wave
force. Because this force is responsible for the slow drift motion of a floating body, it is also termed the wave drift force. A simple way of explaining the drift force
is to look at a linear wave train propagating through a long floating body (e.g., the beam sea condition for a ship and thus the problem can be approximated by a 2D
case near the center of the ship). Due to the presence of the body, part of the wave energy will be reflected back and the transmitted wave will have smaller wave
amplitude. By examining the momentum balance in the control volume that encloses the ship, it is ready to derive the mean wave force (per unit length) by retaining
the second-order terms (e.g. Longuet-Higgins, 1977):

(3.195)

When no energy dissipation is considered, we have  For the extreme case of full wave transmission, the wave drift force reduces to zero. In contrast,
when waves are completely reflected back, the maximum drift force will be attained that equals E in deep water and 2E in shallow water. For a general 3D body,
diffraction theory can be applied to obtain the wave drift force with the use of pressure and velocity under the diffracted wave field (Faltinsen, 1990:136), i.e.:

(3.196)
page_108

Page 109
where S∞ can be any fixed vertical circular cylindrical surface away from the body.
When a random sea is considered, there exist additional second-order difference-frequency wave forces and sum-frequency wave forces. These forces are the result
of the combined actions from different wave modes. The mechanism is similar to nonlinear wave-wave interaction that generates new waves with both difference
frequency and sum frequency (see Section 3.13.1). The second-order difference-frequency wave force is responsible for the slowly varying drift motion of a floating
body that will be discussed in Section 3.15.3.1, while the second-order sum-frequency wave force may induce high-frequency structure vibration.
3.15.3 Structure response to wave load
3.15.3.1 One-dimensional structure response to waves and currents and the response amplitude operator
A structure will react to wave loads by body deformation, body motion, or both of them. Let us first consider a one-DOF problem in the x-direction. The motion of a
rigid body can be described by the dynamic equation of motion as follows:

(3.197)
where x is the displacement of the body from its equilibrium position which is often defined as the origin (and thus  is the acceleration of the body), I is the mass of
the structure, FT represents the force induced by fluid flow around the body, FM represents the additional fluid force caused by the relative motion of the structure,
and FR is the restoration force (e.g., a mooring system for a floating body).
In reality, FT and FM are not separable. The sum of them can be obtained by the surface integration of actual pressure and stress around the body, i.e.:

(3.198)
In engineering analysis, the Morison equation can be employed to approximate FT and FM separately, i.e.:

(3.199)
and

(3.200)
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Note that the motion-induced force is also represented by the Morison equation with the change of signs and the replacement of the inertial coefficient by the added
mass coefficient. Substituting the above definitions and Hook’s law of linear restoration force FR=−Kx (where K is the restoring factor) into the dynamic equation,
we have:



(3.201)
For a steady current, all the time-dependent terms will vanish. The above equation reduces to a simple algebraic equation describing the equilibrium stage where the
restoring force is balanced by the flow-induced drag, i.e.:

(3.202)
For an unsteady flow, the above equation is a second-order nonlinear ODE. For a periodic forcing term (e.g. by waves), it is justified to assume that the motion of
the structure is also periodic having the same frequency. Therefore, we have:

U=U0eiσt (3.203)
x=x0ei(σt+δ) (3.204)

where U0 is the maximum fluid particle velocity, x0 is the maximum displacement of the structure to be determined, and δ is the phase shift. For wave-induced
motion, U0 is linearly proportional to wave amplitude, i.e., U0=Ga, where G is a coefficient. Substituting the above definitions into the equation, the ODE now
becomes a nonlinear algebraic equation, from which x0 can be solved. Since the equation is nonlinear with complex variables, only the numerical solution is
available in general. However, when all nonlinear terms are neglected, the resulting algebraic equation can be simplified as follows:

[−(I+CAρV)σ2+K]x0eiδ=iCMρVσU0=iCMGρVσa (3.205)
This gives the closed-form expression for x0, from which the so-called response amplitude operator (RAO) (sometimes called response transfer function) can be
easily derived:

(3.206)

where  is the natural frequency of the structure that depends on the dynamic system (e.g., restoring force, body mass, and body
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Figure 3.33 Illustration of the RAO curve for a floating body subject to wave action.
shape that affects added body mass). In general, RAO is a complex number whose amplitude is |RAQ| and whose phase can be determined once δ is known; δ is
−π/2 (i.e., the structure moves with the waves) when there is no damping and deviates from −π/2 when damping is present. Apparently, when σ=ωN, |RAQ| tends to
infinity, the indication of structural resonance (Figure 3.33). For a specific structure system, RAO is the function of incident wave frequency only. By plotting
|RAO| against σ, one may locate the frequency range of the incident waves that may possibly induce structural resonance, i.e., |RAO|≈1.
Under the combined wave and current, the motion of the body comprises both the current-induced response (1/2K)CDρAUc|Uc| and the wave-induced response

that is periodic and whose amplitude can be calculated as a×RAO. In addition, there also exists the steady drift response that can be estimated by  where  is
the second-order wave drift force. For a random sea, due to the mean actions from wave components with different frequency, there is also a slow varying drift
response of the body that can be calculated from difference-frequency wave drift force using wave spectrum information. The above four body motions represent
the typical structure responses under the action of waves and currents in random seas (Figure 3.34), and it can be extended to the analysis of body motion in other
directions and other modes (e.g., rotations).
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Figure 3.34 Typical structure responses under the combined action of random waves and a steady current.
3.15.3.2 Two-dimensional structure responses to flow and vortex-induced vibration
The above analysis can be extended to the analysis of 2D body motion under external forces. For a 2D body, three DOF motions (i.e., two translations and one
rotation) can describe the body responses. When the rotation is negligible (e.g., a circular cylinder exposed to the fluid with negligible fluid shear on the body
surface), we need to consider two translations in two orthogonal directions, and therefore, the similar equations and methodology introduced in Section 3.15.3.1 can
be employed in the analysis of structure responses. A typical example is vortex-induced vibration (VIV) of a cylinder (e.g., a mooring line, a riser, a pipeline). When
a steady flow passes over the body, both drag and lift forces will be induced. Because both forces have time-varying components, the body will oscillate about its
equilibrium position in both in-line and transverse directions. Similar to RAO, the amplitude of the body motion depends on the dynamic system of the structure and
the frequency of oscillating forces. The only difference is that in this case, this frequency is essentially the vortex-shedding frequency that depends on the incoming
flow velocity and the body size.
From the definition of the Strouhal number, we can easily estimate the shedding period as follows:

(3.207)
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In contrast, the natural period of the dynamic system can be defined as TN (for a simple spring system, we would have  Obviously, the most severe
vibration of the cylinder will occur when Ts≈TN, which gives:

(3.208)
where UR is called the reduced velocity and is dimensionless. Considering that St≈0.2, this gives the value of UR around 5 for the occurrence of VIV. Practically,
UR varies from 2.5 to 8.3 (Chakrabarti, 2002:328).
Since the lift force usually has a much stronger oscillation than the in-line drag force, the motion of a 2D cylinder under the influence of a steady flow often
displaces a “figure-eight” (8) response during VIV. When wave loads are considered for VIV analysis, both wave frequency and vortex-shedding frequency need to
be considered and this will complicate the analysis. For this reason, a numerical computation is often preferred. The VIV will have important effects on the fatigue
life of a structure. When multiple structures in vicinity (e.g., risers for an offshore platform) experience VIV, possible collision may take place that will worsen the
situation. The study of reducing VIV by employing various types of “VIV spoilers” is still being active researched in offshore engineering, and readers are referred
to Chakrabarti (2002:362) for more information.
3.15.3.3 Three-dimensional structure responses and global response analysis
For a 3D rigid body under the action of waves and current, there are six DOF motions. Referring to a ship, these six motions include three translations of surge,
sway, and heave and three rotations of roll, pitch, and yaw (Figure 3.35).

Figure 3.35 Rigid body motions under the action of waves and current.
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The equations of motion can be expressed as follows:

(3.209)
where Ijk is the generalized mass (for j=1, 2, 3) and moment of inertia (for j=4, 5, 6) matrix and Ajk is the added mass (for j= 1, 2, 3) and moment of inertia (for j=4,
5, 6) matrix, D0jk, D0jk, and D0jk are zeroth-, first-, and second-order damping coefficients, Kjk is the restoring coefficient matrix, and Fj is the excitation forces
(for translations) and moments (for rotations) vector. The equations for j= 1, 2, 3 describe the body translation based on Newton’s Second law and the equations for
j=4, 5, 6 describe body rotations based on the equations of balance of angular momentums.
In the above equation, the zeroth-order damping corresponds to the Coulomb friction, which is a constant independent of body velocity but dependent upon the
mechanical system only. The first-order (or linear) damping is related to linear viscous damping that is significant only for small Re flow, the radiation damping, and
the wave drift damping. Physically, the radiation damping can be explained by the simple fact that a moving body in a free surface flow will impart energy to the
fluid system and part of the energy will radiate to infinity (and thus is not reversible) in an open space. As a result, the body will generally come to stop even if the
fluid is inviscid. The wave drift damping is to realize the physical fact that a ship feels increased resistance in waves compared with calm water. This increased
resistance is related to the mean wave drift force that is linearly proportional to ship speed (Faltinsen, 1990:162). The second-order damping is related to damping
due to flow separation and turbulence effect. This term is essentially represented by the drag force in the Morison equation for high Re flows.
For a particular dynamic system of structure exposed to known environmental conditions (e.g., wind, wave, and current), both Kjk and Fj can be directly
determined, i.e., Kjk is known from the mechanical system and Fj is the sum of wind, current, and wave (first- and second-order) forces. The main difficulties lie on
the determination of various damping coefficients and added mass and moment of inertia coefficients. These coefficients are primarily dependent upon the shape of
the structure and vary with different heading angles of the body. The coefficients can be determined empirically, experimentally, or numerically.
With all the coefficients being known, the system of nonlinear ODEs (3.209) for six motions can be solved. Such a process of dynamic analysis for determining 3D
structure motions is called global response analysis (GRA) in offshore engineering. The general solution to (3.209) will provide the time-varying information for the
six motions, and the procedure of solving the six ODEs directly is called time-domain analysis. Although the theory ensures
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the unique solution for the motions, the way of seeking these solutions is not trivial due to the nonlinear terms appearing in both damping and forcing terms. The
only feasible way is to solve the equation numerically, which can be computationally expensive for a random sea condition.
Alternatively, these nonlinear terms can be linearized or even neglected if the nonlinear effect is weak. With the equations being linearized, the immediate benefit is
that the ODEs can be converted to algebraic equations by assuming harmonic motions. The total responses can be obtained by summing up the solutions of motions
induced by each wave mode (see Section 3.15.3.1 for the 1D example). Since the analysis is based on the summation of structure responses to each incident wave
component with different frequency, it is often referred to as frequency-domain analysis.
Although the above technique is mainly used in offshore engineering for the analysis of a floating body, it can be extended to the analysis of a bottom-seated
structure as well. For example, Li et al. (1999) employed this analysis technique to develop the optimal design of tuned mass damper (TMD) for reducing the
vibration of a jacket platform; Oumeraci and Kortenhaus (1994) conducted the analysis of dynamic responses of caisson breakwaters. Wang and Zheng (2001)
analyzed the vibration of a caisson breakwater under breaking wave actions.
Further discussions of wave loads on ships and offshore structures and structure responses to wave action can be found in Sarpkaya and Isaacson (1981),
Chakrabarti (1987), Faltinsen (1990), and Hudspeth (2006).
3.15.4 Coupled fluid-structure system
In the analyses discussed in Section 3.15.3, the external forcing term is independent of the structure motion, i.e., the wave and current conditions will not be
changed by structure responses though the motion-induced additional forces have been considered. In reality, the motion of a structure may possibly change the
flow condition around it and thus the fluid force on the structure is modified. To fully consider such effect, the coupled FSI must be considered. In this section, we
discuss a few simple examples of such analyses.
3.15.4.1 One-dimensional liquid sloshing in a U-tube with a moving object
The simplest example that requires coupled FSI analysis is the liquid sloshing in a large U-tube, within which a moving body is deployed. The body will be moved by
the fluid due to the flow loads on it and in turn it changes the fluid motion. Denote the length and the radius of the circular cross section of the U-tube to be L and R
and the still water depth to be h (Figure 3.36).
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Figure 3.36 Sketch of a moving object in a U-tube.
The complete dynamic equation that governs the fluid motion inside the tube can be written as follows:

(3.210)
where u0 is a linearized mean velocity for the damping, A1 is the cross-sectional area of the body perpendicular to the flow, and V is the volume of the body. The
three terms on the RHS of the equation represent the linearized drag force, the inertial and added mass force, and the restoring force by fluid weight. In contrast, the
governing equation for the body motion is as follows:

(3.211)
For the case that the inertial force is predominant, the drag term can be neglected and (3.211) can be simplified as follows:

(3.212)
Substituting (3.212) into (3.210) and neglecting the drag force we have:

(3.213)
If we define:

η=Aeiσt (3.214)
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where A is the initial free surface displacement and σ is the complex angular frequency, the real part of σ then represents the oscillation frequency and the imaginary
part represents the decaying rate. Substituting (3.214) into (3.213), we have:

−σ2CAeiσt+EAeiσt=0 (3.215)
This gives:

(3.216)
Since σ is always a real number, both the fluid and the sphere will oscillate inside the U-tube forever. The oscillation frequency of the fluid system, however, is
related to the body mass of the solid as well as the inertial coefficient.
In contrast, if the drag force predominates and the body motion is negligible, i.e.,  equation (3.210) can be simplified as follows:

(3.217)
Substituting the definition η=Aeiσt into the dynamic equation, we have:

−σ2Aeiσt+DiσAeiσt+EAeiσt=0 (3.218)
This gives:

(3.219)

If X=−D2+4E>0, then  the real component represents the oscillatory mode and the imaginary part the decay mode. If X= −D2+4E<0, there will
be only decaying mode.
3.15.4.2 Two-dimensional vortex-induced vibration under wave and current loads
In Section 3.15.3.2, we have discussed the analysis of VIV by solving the dynamic equation of motion in two orthogonal directions. It must be realized, however,
that the method is a simplified approach by neglecting the change of flow field around the cylinder in vibration, which may have profound impact on the forcing on
the cylinder and the resulting VIV pattern. So far, there is no analytical technique to fully account for the effect of body motion on the changed vortex shedding.
One possible way to address this issue is through a DNS. In the simulation, the viscous fluid flow
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is first solved around the structure, from which the flow force is obtained to calculate the body motion. The updated body position and velocity will subsequently
feed back into the next flow computation. With this treatment, the fully coupled structure response can be recovered with the consideration of the body motion
effect on the changed flow and flow force. One example of this approach was by Schultz and Kallinderis (1998), who developed a 2D FSI model to model the VIV
and recover the well-known “figure-eight” motion of a vibrating cable.
3.15.4.3 Coupled response analysis of a large three-dimensional body using diffraction theory
For a large rigid body exposed to wave actions, the body responses include six DOF motions. These motions will affect the wave field that can be analyzed through
diffraction theory. For a large flexible body, so-called hydroelastic analysis is required to account for the coupling effect between wave diffraction and wave
radiation induced by structure motion and deformation. The hydroelastic analysis has also been used in the analysis of a flexible structure in response to fluid flow
action, e.g., liquid sloshing in a container with flexible walls. Note, however, that the closed-form solution is available only for a limited number of problems with
idealized wave condition and body shape.
Rigid body: The theoretical study of coupled structure response to the wave motion using diffraction theory started quite early. For example, Ijima et al. (1972)
presented an analytical solution for body motion under wave action. Yeung (1981) presented an eigenfunction approach to study heave, sway, and roll motions of a
floating vertical circular cylinder.
Deformable body (hydroelastic analysis): The application of hydroelastic analysis to a large deformable floating body was initiated in the 1990s. For example,
Hamamoto and Tanaka (1992) developed an analytical method for the hydroelastic analysis of a circular floating island. Ertekin et al. (1993) developed an efficient
method for the hydroelastic analysis of a VLFS. Using long-wave approximation, Zilman and Miloh (2000) obtained a closed-form solution of the hydroelastic
response of a circular floating plate in shallow waters. For a circular thin plate, Watanabe et al. (2003) extended the analysis to deep waters. Yan et al. (2003)
proposed a new plate Green function for the hydroelastic analysis of a VLFS. Ohkusu and Namba (2004) proposed an analytical solution for the hydroelastic
analysis of a large rectangular plate. A combined analytical and numerical study was performed by Andrianov and Hermans (2005) for a circular plate in various
water depths. The review articles about hydroelastic analysis of a VLFS were written by Kashiwagi (2000) and Watanabe et al. (2004).
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3.15.4.4 Other coupled fluid-structure interactions
There are many other problems that require the coupled analysis of FSI. Examples include the water entry and slamming of a cylinder (Greenhow and Li, 1987), a
ship approaching a dock or another ship. For a complex loading condition (e.g., combined wave and shear current) or a body with a complex shape, various
numerical approaches (e.g., panel or strip method for irrotational flows or RANS model for turbulent flows) may have to be used. It will be further pursued in
Section 6.4.5.
3.15.5 Waves generated by a moving body: ship waves
There is another category of wave-structure interaction, which is essentially the simplified version of coupled wave-structure interaction, by assuming that the body
motion is prescribed and not affected by ambient flow. In short, this is the problem of wave generation by a moving body. In principle, any movement of a solid



body in a fluid will produce a local disturbance of fluid pressure that will be the source of surface wave generation. There are a few cases commonly encountered,
e.g., waves generated by wave makers, waves generated by ship motion, waves generated by seafloor movement (e.g., tsunami), and standing waves generated in a
confined tank with external excitations (e.g., liquid sloshing). In the case of wave generation by wave maker, the paddle movement is driven by a mechanical device
and will not be affected by the generated waves. The complete theory behind various wave makers can be found in Dean and Dalrymple (1991:170) and will not be
reiterated here. In this section, only ship waves and liquid sloshing will be discussed.
Ship waves are of great importance in naval architecture. As a ship advances steadily in water, surface waves will be generated. The wave originating from the bow
of the ship is called a bow wave. As the bow wave spreads out, it defines the outer limits of the ship’s wake within a “V”-shaped wedge, which is similar to the
shock waves in aerodynamics. In general, the size of the bow wave is a function of the shape of the bow and the speed of the ship, ocean wind waves, and water
depth. The bow wave will induce the so-called wave drag. The simple logic behind it is that the ship needs to impart energy to create the bow wave and such energy
can be converted to the equivalent wave drag for a particular ship. In contrast, the wave originating from the ship stern is called a stern wave, which is present
behind the ship and mixed up with the shed vortices from the ship in the vortex wake region (Figure 3.37). Since the pressure in the vortex region is low, this is
another source of ship resistance.
The early study of ship waves can be traced back to Lord Kelvin, who discovered that in deep water, stationary ship waves are always left behind a moving ship and
the angle of the wake formed by the bow wave is an invariant of roughly 39°, provided that the ambient wind waves and
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Figure 3.37 Sketch of bow wave and stern wave.
current effects are negligible. This phenomenon is evident from the photo in Figure 3.38, from which one can readily see that the angle of the wake (the wedge
bracketed by the thin and dark traces) is independent of ship size, shape, and speed. Further inspection reveals that within the ship wake, which was later named
Kelvin wake, there exist two types of waves, namely the divergent wave whose crest line is nearly parallel to the outlines of the wake on two sides of the ship and
the transverse wave whose crest line is perpendicular to the track of the ship (see Figure 3.38). These two patterns of waves are called Kelvin wave system. Readers
should not confuse this with the Kelvin wave resulting from the geostrophic effects (i.e., Coriolis forces) on long waves (e.g., Dean and Dalrymple, 1991:155),
which will not be discussed in this book.
Inspired by the observation of the stationary wave pattern around ships, the theoretical derivation was made by Lord Kelvin (Thomson, 1887) based on the small-
amplitude wave theory. A moving ship can generate waves in all possible frequencies. However, only the wave that propagates at the same speed of the ship V is
stationary; other waves will either overtake the ship or be left further behind and thus are unsteady and nonsustainable. This determines the phase velocity of the
stationary ship wave to be c=V, from which the wavelength and wave frequency can be determined from the dispersion relationship. The spread half-angle α of the
wedge of the Kelvin wake is the function of wave phase velocity and group velocity:

(3.220)
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Figure 3.38 Photo of the aircraft carrier USS John F.Kennedy and its escorts in the Arabian Gulf, from which the V-shape wave wakes are evident sketch of
transverse wave and diverging wave within Kelvin wake (bottom) (Top photo take by Christian Eskelund; U.S. Navy imagery used in illustration without
endorsement expressed or implied).
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In deep water, we have:

 
which leads to the following:

(3.221)
The details of the above theoretical derivation can be found in Lamb (1945:395), Stoker (1957:181), Newman (1977:270), and Lighthill (1978:3.10).
In reality, the variation of the angle of Kelvin wake does exist. This is attributed to the fact that in the theoretical derivation, the ship motion was treated as a
moving point source without consideration of the detailed shape of the hull, which can generate different shedding vortices and induce different wave breaking
affecting the ship wake angle. Besides, the ambient current and ocean wind, waves will also have influence on the wake angle. Recently, Shugan et al. (2006)
extended the analysis to include the wind wave and current effect on Kelvin wake.
When a ship moves in shallow water, both ship speed and depth effect have influence on Kelvin wake. Havelock (1908) presented an analysis with the inclusion of
water depth effect. Under this circumstance, the half-angle α is dependent upon the depth Froude number (Sørensen, 1973):

 
When Fr=1, the angle α=90° and the transverse and divergent waves form a single large wave, which often breaks, with its crest normal to the sailing line. For
Fr<1, the ship speed is in the subcritical regime and for Fr>1 it is in the supercritical regime. Lanzano (1991) proposed a theory to describe the linear ship waves
from deep to shallow waters.
For fast ships in shallow water, the ship waves often possess the weak nonlinear and dispersive properties. Under this circumstance, the ship waves will have the
form of Stokes waves or cnoidal waves. When F is around 1.0, a succession of solitons that propagate ahead of the ship may also be generated. Akylas (1984)
proposed a theoretical study for the mechanism of the generation of these solitons, which were named by Wu (1987) as precursor solitons. Cole (1985) studied an
equivalent problem of a flow past a bump in a channel. Mei (1986) proposed a study of soliton generation in shallow water by a slender body.
By treating the ship as the moving free surface pressure disturbance, Ertekin et al. (1986) used the depth-averaged long-wave Green-Naghdi (GN) equation to
describe the ship-generated waves. In contrast, the forced KdV equation was proposed by Wu (1987) with a singular forcing function
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as a point source of disturbance. In all these approaches, the hull shape can be partially treated but the solution can be obtained only by numerical computation.
Some other numerical computations include the use of BEM based on the potential flow theory (Cao et al., 1993), the use of NSE solvers (e.g. Zhang and Chwang,
1999), and the use of modified Boussinesq equations (e.g. Liu and Wu, 2004). A review article for nonlinear ship wake and ship waves was written by Soomere
(2006).
The total ship resistance includes wave drag, skin friction, and form drag. Thus, the boundary layer development around the ship hull, the vortex shedding behind
the ship, the turbulence dissipation around the ship, and the wave breaking in the wake region will all have influence on the ship resistance. Besides, it was found
that the capillary waves generated by ship motion will also contribute to wave drag (e.g., Raphael and deGennes, 1996). The short waves radiated from the turbulent
boundary layer near the ship’s stern were studied by Gu and Phillips (1994). The interaction among surfactant, vortices, and free surface is an important mechanism
to affect ship waves (Tsai and Yue, 1995). In a review article, Sarpkaya (1996) reviewed the studies on the effects of surfactants and vortices on free surface
waves.
3.15.6 Liquid sloshing in tanks
Liquid sloshing in confined tanks with prescribed excitations is a special type of standing wave generated by a moving boundary. The main difference between
sloshed liquid in a tank and ship waves is that the wave motion during liquid sloshing is confined in a finite domain without energy radiation to a far field. Liquid
sloshing is an important consideration in sea transport. In analysis, the sloshing can be decomposed into many standing wave modes, which can be expressed by the
closed-form analytical solution for small-amplitude oscillation and particular shape of container. Below is the summary of existing analytical solutions for various
liquid sloshing.
3.15.6.1 Two-dimensional liquid sloshing in a stationary tank
In the case that the free surface is initially displaced to some position and released, the liquid sloshing will continue without external forcing. This type of sloshing is
classified as the free sloshing. For a 2D case, the available analytical solution exists when the rectangular tank with a length of W has a still water depth of h and a
linear slope s of the initial free surface profile (Lin and Li, 2002):

(3.222)

where the origin is set at the center of the still water level, kn=(nπ)/W,  and An=4sW/(n2π2) sin(nπ/2).
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3.15.6.2 Three-dimensional liquid sloshing in a stationary tank
For a 3D case, the analytical solution exists when the tank is of rectangular shape Lx×Ly and the initial free surface displacement is of Gaussian distribution about
the center of the basin, i.e.:

(3.223)
where H0 is the initial height of the hump, β is the peak enhancement factor, and the origin is defined at the left-bottom corner of the basin. Wei and Kirby (1995)
proposed a linear analytical solution for the free surface deformation within the basin:

(3.224)
in which:

(3.225)
where δnm is the Kronecker delta function and:

(3.226)
The (n, m) wave mode has the corresponding natural frequency, which is determined by the linear dispersion equation:

(3.227)
where h0 is the still water depth and:

(3.228)
3.15.6.3 Two-dimensional sloshing of viscous fluid in a stationary tank
When viscous effect is considered, a linearized analytical solution for 2D small-amplitude viscous waves in a rectangular tank has been derived by Wu et al. (2001)
where the initial interface elevation profile is specified as follows:

(3.229)
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where the origin is set at the left edge of the still water level, a is the initial wave amplitude, and k=2π/W with W being the tank length. In the case when
κ=g/(ν2k3)>0.5814122, the analytical solution for free surface deformation within the basin can be expressed in terms of the following closed form:

(3.230)



where  and γ1 and γ2 are any two nonconjugate roots of the four possible roots of the equation:
(x2+1)2–4x+κ=0 (3.231)

Writing γ1=γ1R+iγ1I and γ2=γ2R+iγ2I, we then have:

(3.232)

where 
3.15.6.4 Two-dimensional and three-dimensional sloshing in a tank with periodic horizontal excitation
A 2D rectangular tank has still water depth h and tank length W=2a. For the periodic horizontal excitation of ue=−A cos ωt, where ue is the tank excitation velocity,
A=bω is the velocity amplitude with b being the displacement amplitude, and ω is the angular frequency of the excitation, Faltinsen (1978) gave the linear analytical
solution for the velocity potential function, from which the free surface displacement η can be obtained as follows:

(3.233)
where:
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The origin is set at the center of the still water level.
Note that for a 3D rectangular tank with tank lengths of Wx and Wy in x- and y-directions, the liquid sloshing under the horizontal excitations of combined surge and
sway can be obtained by summing up the surge and sway contributions together (Liu and Lin, 2008), i.e.:

η=ηsurge(x, y, t)+ηsway(x, y, t) (3.234)
where ηsurge(x, y, t) and ηsway(x, y, t) can be obtained with the use of (3.233) for 2D tank.
3.15.6.5 Liquid sloshing in a tank under vertical excitation or rotational excitation
It has been long since the first discovery of fluid instability in a tank under vertical oscillation (Faraday, 1831). Small waves will develop in a tank under vertical
oscillation and some modes of these waves will be amplified under certain conditions of vertical oscillation. The Mathieu equation, a second-order ODE, can be
used to describe the wave motions under some special cases when the separation of variables is allowed. With the introduction of coordinate transformation,
Mathieu’s equation can be transferred into algebraic form and thus allows the analytical solution in terms of special functions for some special cases. The theoretical
study was performed by Benjamin and Ursell (1954). Penney and Price (1952b) proposed a nonlinear analytical solution to describe wave behavior in finite
amplitude.
The liquid sloshing under the excitations of pitch and roll is also an important mechanism to consider. So far, there are few reports on the closed-form solution that
describes the liquid sloshing under the rotational excitation. Numerical simulation (e.g., Kim et al., 2004) or semianalytical solution based on the multimodal
approach (e.g., Faltinsen et al., 2000), however, has been used to investigate this problem.
3.15.6.6 Liquid sloshing in a cylindrical tank or a tank of arbitrary shape
Most of the theoretical studies were made for rectangular tanks. For cylindrical tanks that are often used as containers of liquids, it is difficult to separate sloshing
modes in radial and angular directions. Thus, the complete theoretical solution was rarely reported except for some semianalytical ones (e.g., Papaspyrou et al.,
2004). Various types of numerical models were also developed for the analysis of liquid sloshing in tanks of arbitrary shapes.
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3.15.6.7 Nonlinear liquid sloshing
When the sloshing amplitude becomes comparable to water depth, the linear solution will fail to provide accurate prediction of liquid sloshing. Under this
circumstance, the nonlinear terms should be included in the solution to account for nonlinear contributions. Faltinsen et al. (2000) proposed a multidimensional
modal analysis for liquid sloshing in a rectangular tank by considering the nonlinear modal contributions. The study was revised to match both shallow liquid and
secondary (internal) resonance asymptote later (Faltinsen and Timokha, 2002). Recently, Frandsen (2004) and Hill and Frandsen (2005) presented third-order
analytical solutions for liquid sloshing in a horizontally oscillating basin.
3.15.6.8 Liquid sloshing in a tank with flexible walls
Recently, using containers with flexible walls has become an attractive idea to reduce liquid sloshing. In this case, both liquid sloshing and tank response are of
important consideration. So far there are few analytical solutions for the analysis of liquid sloshing in such a tank. Alternatively, numerical modeling of this type of
problem is promising and under active research.
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4
Numerical methods
4.1 Introduction
4.1.1 Background of numerical methods
Most of the traditional numerical methods are equation-based, i.e., the methods are developed to solve existing governing equations for particular physical problems
numerically. Recently, there is a new methodology of problem-based numerical methods, i.e., the numerical methods are developed to solve physical problems
directly.
4.1.1.1 Equation-based numerical methods
Strong and weak formulation: Most of the governing equations for fluid flows or water waves are in the form of PDEs. Examples include the momentum equation
for general fluids (2.1) and the Laplace equation for potential flows (2.7). Various numerical algorithms have been developed to solve PDEs. Based on how an
approximation is made, there are two types of numerical methods. One approximates various orders of the derivatives in the original PDE and is called strong
formulation, and the other approximates the unknown solution function and is called weak formulation. Finite difference method (FDM) is a representative example
for the former, finite element method (FEM) is for the latter.
Mesh-based and meshless methods: There is another way of categorizing numerical methods, i.e., whether the algorithm is constructed on meshes (or elements) or
on particles (or points). The former type covers all the traditional numerical methods including FDM, finite volume method (FVM), FEM, and BEM, in which
computational nodes are connected by a mesh or a grid to form elements or cells. The latter type is called a meshless (or gridless, mesh-free, particle Lagrangian)
method that is constructed on particles without explicit connectivity. The popular meshless methods include generalized finite difference method (GFDM; also
called finite point method, FPM), smoothed particle hydrodynamics (SPH), reproducing kernel particle method (RKPM), and element-free Galerkin
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method (EFGM). While GFDM is based on the strong formulation that solves the original PDE by approximating derivatives, SPH, the PKPM, and EFGM as well
as other methods in the same family are based on various kernel or Galerkin weak formulation by approximating solutions.
The mesh-based methods generally suffer difficulties in resolving arbitrary boundary geometry. For example, FDM is not flexible near a complex boundary, and
thus, numerical accuracy can be reduced due to the poor representation of boundary curvature. In contrast, FEM or FVM is able to resolve irregular boundary shape
with unstructured mesh, but the mesh generation can be tedious and time-consuming. Furthermore, the accuracy of the result is highly dependent upon the quality
of mesh generation. On the other hand, the meshless methods can overcome these difficulties because the methods operate on the distribution of scattered particles
and their weak local connectivity information. Unlike the mesh-based methods where strong connectivity information is required, i.e., specific lines must be used to
connect neighboring nodes, the weak connectivity information in the meshless method is loose, flexible, and implicit and can be easily changed with time.
4.1.1.2 Problem-based numerical methods
A numerical method can also be established on the basis of solving an intended problem directly. By doing so, the problem is formulated in discrete form based on



fundamental physical laws and thus the governing equation in the form of PDE is no longer needed. The representative example of this method is the lattice
Boltzmann method (LBM), which is constructed on a stochastic basis for microscopic scale particle motion to simulate the macroscopic behavior of fluids. For
solids, the equivalent method is called discrete element method (DEM).
4.1.1.3 Numerical discretization
All numerical methods, meshless or mesh-based, require the approximation of the continuous time and space in a physical problem by the discrete time and space in
numerical computations. While meshless methods tend to be less cumbersome in the arrangement of particles that are used to discretize the space and tracked by
the Lagrangian approach, mesh-based methods must have a predetermined grid or mesh system on which the computation is performed. The quality of grid or mesh
configuration is important to the numerical accuracy and stability, especially when the flow is violent and near an irregular boundary. Various ways of mesh
generation will be introduced in Section 4.9 after numerical methods are discussed.
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4.1.1.4 Outline of contents in this chapter
Since most of the numerical methods are equation-based (more specifically PDE-based), we shall first have a brief discussion of the mathematical characteristics of
various types of PDEs that may be encountered in water wave modeling. After the introduction of PDEs, we will start with FDM, one of the most commonly used
numerical methods in computational fluid dynamics (CFD). A detailed introduction will be provided for the construction of the finite difference (FD) scheme as well
as the concept of numerical consistency, numerical accuracy, numerical stability, etc. The other traditional numerical methods such as FVM, FEM, and BEM will
then be introduced and compared to each other. Next, different meshless methods and problem-based methods will be introduced. Finally, the mesh generation
methods and matrix solvers will be discussed briefly.
4.1.2 Basic equations for fluid flows and waves
Let us start from the following 1D PDE with a first-order time derivative:

(4.1)
where  is a general variable, Cn is the coefficient associated with the nth spatial derivative, and C0 is the source/sink term. The first term represents the rate
of change of the variable in time, which is balanced by the sum of the rate of change of the variable in 1D space x and the contributions from source and sink. For a

well-posed problem with proper initial and boundary conditions, a unique solution  of exists.
When i and Cn in (4.1) are equal to different numbers and values, the equation represents different physical phenomena. For example, when i=1, this is a
convection equation representing that the variable is transported from one place to another. In case when C1 is a constant and C0=0, this becomes a 1D wave

equation, the solution of which gives a wave form translating at a constant speed without change of shape. When C1 is the function of x or  the term 
becomes a nonlinear convective term. In this case, the wave changes its shape during propagation.
When i=2, the second-order spatial derivative represents the diffusion process, and the equation is called convection-diffusion equation. In the case of C1=0, the
equation reduces to the transient diffusion equation. Analogous to the classification of polynomials, the diffusion equation is referred to as a parabolic type of PDE.
With the extension of i to 3, one more term of the third-order derivative is included. This term represents the “dispersion” process, during which wave modes with
different wavelengths will propagate at different speeds and thus will separate (disperse) away from each other. Generally speaking, the odd number of n represents
the process of wave propagation (n=1)
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and dispersion (n=3, 5,…, 2m+1, where m is a positive integer), during which the total “energy”  is conserved. In contrast, the even number of n represents the
process of diffusion, during which the total “energy” can decrease [(−1)n/2Cn>0] or increase [negative diffusion; (−1)n/2Cn<0].
When a second-order time derivative is considered, the PDE will have different characteristics. Let us now use the following 2D second-order PDE as an example:

(4.2)
When a, b, c>0, the equation is classified as the hyperbolic type of PDE that can be split into two first-order convection equations, representing wave propagation
in two opposite directions. When a=0 and b×c>0, the equation is classified as the elliptic type of PDE. The equation is the 2D Laplace equation if d=0 or the 2D
Poisson equation if d≠0. Including the parabolic type of PDE (diffusion equation) discussed earlier, these equations form the three basic types of PDEs. The
majority of PDEs encountered in water wave modeling are in the form of one of these three basic PDEs or the combination of them. Below we shall review some
common PDEs in wave mechanics.
Nonlinear wave equation: This equation describes nonlinear wave motion, during which the shock front will be developed during propagation due to wave
nonlinearity:

(4.3)
Burgers’s equation: The equation is named after Johannes Martinus Burgers (1895–1981). It is a nonlinear convection and diffusion equation. The equation has
been applied in many areas like wave propagation, gas dynamics, and traffic flow:

(4.4)
When ν=0, the equation is reduced to a nonlinear wave equation, which sometimes is also called inviscid Burgers’s equation.
Korteweg-de Vries (KdV) equation: The equation is used to describe nonlinear dispersive shallow water wave traveling in one direction. It was named after
Diederik Korteweg and Gustav de Vries and has the following form:

(4.5)
The KdV equation allows a permanent positive wave form moving to the positive x-direction. Such a solution describes the so-called soliton, in which wave
nonlinearity is balanced by dispersion.
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Boussinesq equation: Boussinesq equation is the extension of the KdV equation, and it is used to describe nonlinear dispersive wave propagation in two opposite
directions (Zwillinger, 1997):

(4.6)
For the 2D case, the Boussinesq equation is often expressed as the system of two PDEs in terms of first-order time derivatives.
Kadomtsev-Petviashvili (KP) equation: It is also called Kadomtsev-Petviashvili-Boussinesq equation, which is the generalization of the KdV equation in the 2D
case (Kadomtsev and Petviashvili, 1970) for wave propagation primarily in one direction with a small lateral spreading angle. It has the following form:

(4.7)
The KP equation has been used to describe waves in porous media, ferromagnetic media, and the matter-wave pulses in Bose-Einstein condensates.
Nonlinear Schrödinger equation: This equation is used in fiber optics, water wave theory, and theoretical physics (e.g., second quantized bosonic theory to describe
diffracted waves). It has the following form:

(4.8)
where  represents a complex field.
4.1.3 Initial and boundary conditions
For a transient problem in a finite domain, both initial and boundary conditions must be specified to make the problem well posed and to have a unique solution.
Such a problem is called an initial-boundary value problem. In the case where the transient problem is solved in an infinite domain, the problem can be simplified to
initial value problem because no boundary condition is needed. In contrast, if a steady problem is solved in a finite domain, the problem is called boundary value
problem and only boundary conditions are needed.
The number of boundary conditions required is equal to the order of the highest spatial derivatives in the governing equation for each coordinate space. For
example, for a 1D diffusion problem, the highest order of the spatial derivative is two and thus two spatial boundary conditions are needed. Typically, three types of
boundary conditions can be specified, namely the Dirichlet type where the variable value is given, the Neumann type where the normal gradient of the variable is



provided, and the mixed
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type where the relationship of the variable and its normal gradient is defined, i.e.:

(4.9)
Note that for higher order derivatives, there exist other combinations of mixed types of boundary conditions.
4.2 Finite difference method
4.2.1 Finite difference construction
The FDM is the most natural way of solving a PDE directly in an approximate manner. The idea behind FDM is to discretize the continuous time and space into a

finite number of discrete grid points and then to approximate the local derivatives at these grid points with FD schemes. Let us first use the function  as an

example to illustrate how an FD scheme is derived for  and  To represent this curve with discrete points, we can either use fine and uniform grid
distribution (e.g., square on the left curve in Figure 4.1) or coarse and nonuniform grid distribution (e.g., circle

Figure 4.1 FDM representation of a continuous function by discrete points.
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on the right curve in Figure 4.1). This implies that the discretization process is not unique. However, a “sufficient” discretization should be such that the main
features of the variable function (e.g., maxima and minima) are captured.
Once the discretization is determined, an FD can then be developed. Without loss of generality, we shall use three circular points on the right side of the curve to

illustrate how we can develop an FD scheme to approximate  and  numerically at node i. We thereby define the following notations:  and
 represent the value of  at the nodes i−1, i, and i+1, respectively. The distance between node iZ−1 and i is defined as ∆xi−1/2 and between i and i+1 as

∆xi+1/2. Although there are other ways of developing an FD scheme, e.g., polynomial representation (Jaluria and Torrance, 2003), the most common approach is to
start from Taylor expansion, from which we have:

(4.10)

(4.11)
The above expansion is valid as long as the function is smooth, and it is exact when m→∞. In practical computation, truncation needs to be made to include a finite
number of terms in the above equation. The symbol O[(∆x)m] is often used to represent the order of the error of the approximation if the truncation is made up to
m−1. Obviously, the larger the m is, the more accurate the approximation will be.

Now let us see how a particular FD scheme can be derived from the above Taylor series expansion. Assume that we want to use two points only, e.g.,  and 
to approximate  A linear combination of  and  will be used here, i.e.:
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(4.12)
We need to have the coefficients in front of each term equal on both sides of the equation, which gives a system of equations as follows:



(4.13)
In the above system of equations, we have an infinite number of equations but only two unknowns. Therefore, the system of equations is over determined with more
constraints than necessary. We can relax the system by removing the less important constraints (e.g., higher order terms) until the system is balanced. In this case,
we will retain only the first two equations to solve the coefficients a and b that leads to the following:

(4.14)
This gives the final form of the FD scheme:

(4.15)
The last term will not be evaluated in the computation and is the leading order of the error for this particular FD scheme. This FD is therefore first-order accurate.
Because the scheme is based on the local node i and its backward node i−1, the scheme is called backward difference. The above form can also be deduced based
on simple intuition. However,
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the use of Taylor expansion not only provides the theoretical explanation for the order of the error but also serves as the basis for the systematic development of
other more complex FD schemes
4.2.2 Truncation error and order of accuracy
The exact expression of O(∆xi−1/2) in (4.15) can be obtained by substituting the Taylor series for each term in the FD equation. This term is called truncation error
(TE), which is used to quantify the order of errors as well as the characteristics of the leading error terms for the FD scheme. For example, for the backward FD, the
TE is found by the following operation:

(4.16)

Apparently, TE is the difference between the FD numerical approximation [e.g.,  and the exact derivative [e.g., ]. For this particular FD
scheme, the leading TE is proportional to ∆xi−1/2.

Following the same procedure, we can find the FD form and the corresponding TE when nodes i and i+1 are used to approximate 

(4.17)

(4.18)
Because the FD scheme uses local node i and its forward node i+1, the scheme is called forward difference. Compared with the backward
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difference, the TE of forward difference has a different sign in front of all even-order derivatives (diffusion). This difference of sign changes the characteristics of
the two FD schemes, although the order of accuracy is the same for both schemes.
When we use nodes i−1 and i+1 to approximate the first-order derivative, the scheme is called central difference because the derivative is evaluated at the location
between two nodal points. The FD scheme and the TE are found to be:

(4.19)

(4.20)
An interesting finding here is that the scheme remains first-order accurate when ∆xi+1/2≠∆xi−1/2 (i.e., nonuniform grid spacing). However, the scheme becomes
second-order accurate when uniform grids are applied in which ∆xi+1/2=∆xi−1/2.

To have a second-order FD for  in a nonuniform grid system, at least three grid points are needed. If we use nodes i−1, i, and i+1, we would have the
following FD scheme:



(4.21)
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To have a second-order accurate scheme, we need to impose the following:

(4.22)
This renders:

(4.23)
Substituting the above expressions of a, b, and c into (4.21), we can find that the FD is as follows:

(4.24)

Another way of understanding the above FD scheme is that it is the linear combination of the FDs for  and  with the weighting coefficients
being reciprocally proportional to the lengths between two grid points. The above scheme is reduced to the conventional central difference scheme when
∆xi+1/2=∆xi−1/2, in which node i is no longer needed.
Using the methods discussed in (4.21), we are in principle able to establish an FD scheme in any order of accuracy, given sufficient number of grid points. A few
facts can be proven for the general case with a nonuniform grid:
1 To derive an FD scheme for an nth-order derivative, at least m=n+1 grid points are needed.
2 The maximum order of accuracy of an FD scheme is equal to the number of grid points m minus the order of derivative n for a nonuniform grid.
3 When the required order of accuracy of an FD scheme is equal to m−n, the FD scheme is unique.
4 When the required order of accuracy of an FD scheme is smaller than m−n, there will be an infinite number of possible FDs. For example, if
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we use nodes i−1, i, and i+1 to develop a first-order accurate scheme for  based on (4.21), we only need to satisfy (4.22a) and (4.22b) whereas the RHS of
(4.22c) can be any arbitrary value. This makes an infinite number of combinations of a, b, and c, within which the backward difference, forward difference, or
central difference is only one of the many possible solutions.
5 For an FD equation that consists of a few PDF approximations, the overall order of accuracy is the lowest order of accuracy in all the FD approximations.
4.2.3 Consistency and convergence
In Section 4.2.2, we introduced the concept of FDs and the systematical way of establishing a particular FD for a derivative based on the order of accuracy
requirement and the given grid points. Now let us consider a specific PDF with the combination of a few derivative terms. The simplest yet very useful PDF is the
1D convection equation:

(4.25)
Consistency: The definition of consistency is related to whether an FD equation authentically represents a PDF. Based on the discussion in Section 4.2.2, we are
able to approximate any spatial derivative term by an FD with the controlled order of accuracy. The error terms can be lumped into a TE whose leading term is
proportional to certain power of mesh size. The same methodology can be applied to the temporal derivative. An FD representation of a PDF is consistent if the
total TE approaches zero when ∆x and ∆t approach zero. It is not difficult to view the following fact: if the FD for each derivative in a PDF is at least first-order
accurate, the finite different equation will be consistent with the PDE.
Convergence: While consistency ensures an FDM gives an approximation close enough to a PDE, convergence is related to whether the numerical solution from an

FD equation is close enough to the true solution of a PDE. Mathematically, with the well-posed initial and boundary conditions, a unique solution  always
exists, although most of the time it cannot be expressed as a closed-form analytical solution. By solving the FD equation, a numerical solution can be obtained. An
FD scheme is called convergent if its numerical solution approaches the true solution as ∆x and ∆t approach zero. Generally, convergence is a stronger condition for
an FD than is consistency. A convergent scheme is always consistent, whereas a consistent scheme may not be convergent due to inbuilt instability. However,
although the above statement is true and mathematically it is possible to “create” such a scheme that is consistent but not convergent, in most of the practical
applications, the convergence and the consistency of a numerical scheme imply the same; with the continuous refinement of mesh and time step,
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the numerical solution will converge to the true solution within a bounded finite TE.
4.2.4 Stability
4.2.4.1 Heuristic analysis of numerical stability
A consistent and convergent FD scheme may not necessarily lead to an acceptable numerical solution for a PDE. The classical example is the explicit “forward-time
and central-space (FTCS)” FD for the simple convection equation. Under a uniform grid system, the FD is written as follows:

(4.26)
Based on the above scheme, the variable value at any nodal point can be advanced from the current time step n to the next time step n+1 (time matching) with the
known information at time step n. The “explicit” reflects the fact that the nodal information can be updated individually based on the previous time-step information
without referring to its neighborhood at the current time step. The forward time method is also called “Euler method”.



This is a simple scheme but will unfortunately lead to an unstable solution no matter how small ∆x and ∆t are. Figure 4.2 shows an example of the numerical result
from the above scheme for calculating a step of discontinuity advancing to the right with a constant speed C. Without loss of

Figure 4.2 Numerical results for pure advection based on FTCS scheme at t=0 (solid line), 5 (dashed line), and 10 (dotted line).
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generality, C=1, ∆x=1, and ∆t=0.5. In this case, the analytical solution will lead to the pure advection of the step without a change of shape. The numerical
simulation, however, results in increasing size of wiggles, which will eventually blow up with the further progress of time. The above wiggles will not disappear even
when ∆x and ∆t are reduced. This feature is called instability of the numerical scheme, and it prompts us to explore the stability property of an FD scheme.
First, let us try to find out what causes the instability of an FD. Based on the earlier introduction, an FD is an approximation of the original PDF. The difference is
actually the TE that varies for different FD approximations. For the FTCS scheme, it is not difficult to perform the analysis to reveal the following fact:

(4.27)

In the above analysis, the approximation of  is used to convert the second-order time derivative into the equivalent spatial derivative. It
is seen that the FD is equivalent to solving the original PDF at the nodal point i with the additional TEs that are expressed on the RHS of the equation. The leading
orders of the TE in (4.28) are the second-order spatial derivative (diffusion) and third-order spatial derivative (dispersion). It is noted that the “diffusion coefficient”
in front of the second-order derivative is always negative, implying that in this case negative diffusion prevails. In contrast to the positive diffusion, a negative
diffusion enhances the wiggles generated by the TE and round-off error. This makes the numerical scheme unstable, i.e., a small error can have unlimited
amplification as the scheme moves in time. For this reason, numerical stability refers only to transient problems, whereas convergence applies to both steady-state
and transient problems.
The above analytical technique can be applied to essentially all FD schemes. By inspecting the characteristics of the TE for a particular FD, we are able to not only
examine the accuracy of a scheme but also judge whether a scheme can possibly become unstable. This type of stability analysis is called heuristic analysis of
numerical stability.
4.2.4.2 von Neumann analysis of numerical stability
A more rigorous way of performing stability analysis is by using the well-known von Neumann stability analysis method, which is based on Fourier
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series expansion, and it is applicable to linear FD schemes only. In this method, an error is introduced at time step n for node i, and this error takes the form of one
component of the Fourier series, i.e.:

(4.28)

where  is the wave number in the x-direction, and An is the amplitude associated with this component. It is noted that here we consider only one space
but it can be easily extended to multiple dimensions.
To examine whether a particular FD scheme is stable or not, we would assume that the error propagation follows the same FD and check whether the error will be
bounded, i.e., |G|=|An+1/An|≤1, where G is the amplification factor. To illustrate how this method works, we shall still use the TCS scheme discussed earlier as the
example:

(4.29)
Replacing  by E and substituting (4.28) into the above FD, we obtain:

(4.30)
From this equation, we are able to find the expression for the amplification factor:

(4.31)
from which we have:

(4.32)
The magnitude of the amplification factor is always greater than 1.0, implying that the proposed scheme is unconditionally unstable.
4.2.5 Finite difference schemes for convection equation
A few well-known FD schemes have been proposed in the past decades to solve the convection equation. Their forms and properties are summarized in this section.
We will use uniform grid and linear convection in all examples.
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4.2.5.1 Implicit methods (Laasonen method, Crank-Nicolson method, and alternating direction implicit method)
Realizing that FTCS is an unconditionally unstable scheme for a pure convection problem, the immediate alternative is to weight the convection FD between the
time step n and the time step n+1 as follows:

(4.33)
where γ is the weighting factor that varies from 0 to 1. When γ=0, this returns to FTCS, whereas when γ≠0, the n+1 time-step information is required in the solution
procedure. The method is thus called “implicit method” because a matrix needs to be solved to update all variables simultaneously.
Laasonen method and Crank-Nicolson method: When γ=1, the scheme is equivalent to the backward time difference and is referred to as “Laasonen method.”



When γ=1/2, the FD scheme is second-order accurate in both time and space, and it is unconditionally stable based on von Neumann stability analysis. This scheme
is called “Crank-Nicolson” method and is primarily used when a higher order accurate scheme is needed. Although the Crank-Nicolson method has the advantage in
both accuracy and stability properties, it possesses two shortcomings. One is that when the scheme is used to solve a convection problem with a sharp front,
spurious oscillation will be present near the front. This is caused by the leading TEs in dispersion form. Another is that since the scheme is implicit, a matrix must be
solved to obtain the solution. The matrix can become very large when 2D and 3D problems are considered. In that case, either a sparse matrix solver must be
introduced or some other alternatives [e.g. alternating direction implicit (ADI) method; see below] need to be used.
ADI method: ADI is the application of the time-splitting implicit method for multiple dimensional problems. It is known that when the implicit method is used, a
matrix needs to be solved. For 1D problems, the matrix has a simple tridiagonal format that can be efficiently solved by the Thomas algorithm. For 2D or 3D
problems, the matrix being formed, however, will be large and sparse. To avoid the numerical solution to a large sparse matrix, one can split the solution into a few
substeps. In each substep, only 1D convection is solved. The efficient Thomas algorithm can then be applied to the numerical solution in each direction, and the
final solution will be obtained after the ADI is applied to all directions alternately within one time step.
4.2.5.2 Explicit central-space methods (the Lax method and the Lax-Wendroff method)
Compared to implicit methods, explicit methods are attractive because they are easier to construct and compute. However, the explicit FTCS has
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proven to be an unconditionally unstable scheme. Alternatively, people have developed various stable explicit central-space methods to solve the convection
equation.
Lax method: The simplest way of constructing an explicit central-space method is to revise the FTCS by replacing the previous time-step central point variable with
its spatial average from its left and right neighborhood nodes:

(4.34)
This scheme has a TE of O(∆t,(∆x)2) and is stable if Cr=C∆t/∆x≤1, where Cr is the Courant number and the above condition is called Courant-Friedrichs-Lewy
(CFL) condition, which is in fact applicable to most of the explicit FD schemes. The mathematical implication of the CFL condition is straightforward: ∆t must be so
small that the information cannot propagate over two grid points within one time step. One of the drawbacks of the Lax method is that the method is too dissipative
due to the first-order TE in time.
Lax-Wendroff method: To construct a higher order accurate explicit scheme for the convection equation, the Lax-Wendroff scheme is used. Realizing that FTCS
has the leading order TE of negative diffusion, to make it stable one can introduce an artificial positive diffusion to balance this term:

(4.35)
This scheme is second-order accurate in both time and space and is conditionally stable when Cr≤1. The leading order error term for the Lax-Wendroff method has
the form of third-order dispersion, which implies that wiggles may be developed near the shock front in the computation, similar to the Crank-Nicolson method.
4.2.5.3 Upwind schemes (first-order upwind, QUICK, QUICKEST, and method of characteristics)
First-order upwind scheme: To suppress numerical oscillation, some kind of numerical damping is needed. One of the most commonly used schemes for this
purpose is the first-order upwind scheme, e.g.:

(4.36)
In this scheme, the backward difference is used when C is positive, and the forward difference is used when C is negative. This scheme is explicit and
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only first-order accurate in time and space but can successfully suppress the oscillation near the sharp front. The scheme is conditionally stable when Cr≤1.
QUICK (quadratic upwind interpolation of convective kinematics) scheme: Since the above upwind scheme is only first-order accurate in time and space,
researchers have proposed higher order upwind schemes to improve the accuracy of the scheme and to preserve the advantage of the scheme in suppressing
numerical oscillations. QUICK is one such scheme (e.g., Leonard, 1979; Hayse et al., 1992). The scheme is based on the local upwind-weighted quadratic
interpolation for the convection term. The scheme is often used to solve the convection-diffusion equation with the employment of second-order central difference
for the diffusion term. For the convection term, the scheme is third-order accurate in space and first-order accurate in time, and thus, it is sometimes called
third-order upwinding. Due to the first-order TE in time, QUICK is most appropriate for steady or quasi-steady highly convective elliptic flows.
QUICKEST (quadratic upstream interpolation for convective kinematics with estimated streaming terms) scheme: To improve the numerical accuracy in time,
Leonard (1988) proposed the QUICKEST scheme. By estimating the temporal behavior of the convection term (and diffusion term if any), more accurate averages
can be obtained in the solution procedure. Formally, QUICKEST is third-order accurate in both time and space.
Method of characteristics: This method is a special FDM that is similar to the upwind scheme in concept but different in numerical treatment. In this method,
numerical solution follows the characteristic lines describing wave propagation routes. Numerical interpolations are used to obtain the variable information between
two grid points at the previous time step. The method is popularly used to solve a system of two convection equations describing wave propagation in two opposite
directions. The examples include water wave equations and pressure wave equations (e.g., water hammer problems in pipe flows). Depending on how many grid
points are used in the interpolation procedure, various orders of accuracy of the scheme can be achieved.
4.2.5.4 Oscillation control methods (flux limiter methods, essentially nonoscillatory methods, and other interface-tracking methods)
All the higher order (second-order and above) numerical schemes we have introduced so far will inevitably develop spurious oscillations when they are used to
solve the convection process of a shock front. This problem can be alleviated by using lower order schemes (e.g., the first-order upwind or Lax method) or
introducing artificial viscosity near the front. While the former practice reduces overall numerical accuracy, the latter practice has inherent difficulty in the
determination of the artificial viscosity that
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is case-dependent. Alternatively, some more robust and accurate methods have been developed to solve the convection equation with a sharp front.
TDV methods using flux limiters: The introduction of various flux limiters is meant to eliminate the oscillation to achieve the criterion of total variation diminishing
(TDV) (Harten, 1984). By using the carefully designed limiters, the oscillation near the discontinuity can be eliminated. The limiters will be active only near the
sharp front, where the numerical accuracy can possibly degenerate to first order only, and will not affect the numerical accuracy in the rest of the computational
domain. Some common limiters include van Leer limiter, ULTIMATE (universal limiter for transport interpolation modeling of the advective transport equation),
and Chakravarthy-Osher limiter. These limiters are usually combined with higher order accurate numerical schemes to have a numerical scheme that is both
accurate and oscillation-free, e.g., the ULTIMATE-QUICKEST scheme (Leonard, 1991).
ENO schemes: As shown earlier in (4.21), FDM is essentially an interpolation method to approximate the local derivative for a smooth function. The order of
accuracy can be precisely analyzed with the use of Taylor expansion. For a specific derivative, higher order accurate schemes can be derived by using more nodal
points. In the shock front where discontinuity of the function exists, the above conclusion will not hold. As a matter of fact, the more nodal points included, the
more spurious oscillations will be developed. The ENO scheme (Harten et al., 1987) is basically a self-similar and uniformly higher order scheme for piecewise
smooth functions. A hierarchy is established in ENO to automatically determine the number of nodal points to be included in the interpolation process based on the
local smoothness of the function. As a result, the scheme is especially suitable for the problem that both shock fronts and smooth flow regions are presented. The
numerical solution will resolve the shock front with essentially no spurious oscillation but maintain the higher order numerical accuracy for the rest of the regions.
The scheme was later extended by many other people to further enhance the stability and improve the accuracy (e.g., weighted ENO (WENO) scheme by Liu et al.,
1994).
Other interface-capturing methods: A shock front is essentially an interface where the function has a discontinuity. Sometimes, the motion of the interface is the
only interest to a modeler when the convection equation is solved, e.g., the density equation is solved to capture the interface between two immiscible fluids. In this
case, some special treatments can be developed near the interface to keep it sharp in the process of solving the convection equation. In many cases, the information
of interface orientation is helpful to develop a higher order nonoscillation scheme for interface capturing. This requires that the interface reconstruction before the
convection equation be solved. The typical examples include volume-of-fluid (VOF) method to track the free surface and level set method to track the interface.
More details of these methods will be provided in Sections 5.2.1.3 and 5.5.1.1.
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4.2.5.5 Time-splitting methods (MacCormack method and other predictor-corrector methods)
MacCormack method: MacCormack method is one of the simplest time-splitting methods that breaks down the solution procedure into two substeps in time:



(4.37)

In the predictor step, the tentative value of the variable  is obtained. This tentative value is corrected in the corrector step, during which the space derivative is
approximated by the arithmetic average of the forward difference at time tn and the backward difference of the tentative value at time tn+1. The main merits of the
scheme include simplicity and high accuracy (second-order in both space and time). However, similar to other second-order accurate central-space schemes (e.g.,
Lax-Wendroff and Crank-Nicolson methods), it has a drawback that in the computation of shock waves and spurious oscillations may appear.
Adams-Bashforth-Moulton method: This method was originally developed based on the integration of the polynomials that interpolate the known nodal information
to approximate the nearby derivative. The method can be extended to any order of accuracy, given sufficient number of grid points. This method was often used to
solve ODEs, but it can also be extended to solve PDEs. More commonly, this method is used to develop a higher order accurate FD scheme in time by using
two-level or multiple-level time-splitting predictor-corrector methods.
Time-splitting methods for multiple-dimension problems: For multiple-dimension problems, the convection process takes place in all directions. In the numerical
solution, the FD from time step n to n+1 can be split into m sublevels where m is the dimension of the equation. As a result, in each substep, only 1D convection is
solved. This can simplify the coding effort considering that the convection in various directions can be solved by the same method. In connection to the implicit
method, it can also improve the numerical efficiency (e.g., ADI) by reducing the resulting matrix size.
Time-splitting methods for multiple-variable problems (leapfrog method): The time-splitting method can also be applied to multiple-variable problems. For
example, the so-called leapfrog method is a time-splitting method that is employed to solve a system of two (for 1D problems) or three (for 2D problems) PDEs, one
of which describes the time derivative of a scalar and the other describes a vector (e.g., SWEs). By defining the scalar and vector on a staggered mesh system (i.e.,
the scalar defined at the center of a cell whereas the vector defined at cell boundaries), the scalar and vector will be solved at n and n+1/2
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time steps, respectively, with the central-space method for the convection term. This method is second-order accurate in both time and space.
4.2.6 Finite difference schemes for diffusion and dispersion equations
So far, we have not discussed the FD approximation for other terms like diffusion and dispersion. These terms are normally discretized by various orders of central
differences and the corresponding stability conditions can be obtained by von Neumann analysis if the problem is linear. Because the resulting leading order TEs
from the approximation of these terms are associated with higher order derivative terms, the addition of diffusion and dispersion generally only modifies the stability
criterion but not the characteristics of the leading TE. For the diffusion term, the typical stability criterion for an explicit central difference method is ν∆t/∆x2<O(1),
similar to the CFL condition imposed by the explicit solution for convection.
When an FDM is used to solve a PDE with both lower and higher order derivatives, caution must be taken that the TE resulting from the lower order derivatives
does not overwhelm the physical higher order derivatives. Consider a 1D convection-diffusion equation. If we use the first-order upwind scheme to discretize the
convection term and the central difference to discretize the diffusion term, with the consideration of the leading order TE, we are equivalently solving the following
equation:

(4.38)
where DN is the numerical diffusivity that results from the upwind scheme and has been used to stabilize the numerical scheme. If the diffusion process is important,
we must have DN<<D to ensure that the correct physics is represented by the FDM; otherwise we are actually solving a different problem. If the convection is
dominant over diffusion (i.e., potential flow), the numerical results will then become less sensitive to DN and it may be tolerable to have DN>D. A similar argument
applies to other equations, e.g., the convection-dispersion equation (i.e., Boussinesq equation). In this case, the numerical dispersion resulting from the FD
approximation of the convective term must be kept small enough when compared to the physical dispersion terms.
4.3 Finite volume method
The FVM can be regarded as the integral formulation of FDM over a small space around a grid point. In contrast to the FDM, which is established on a nodal point
based on Taylor expansion to approximate local derivatives, FVM is established over a small control volume, within which the conservation of the variable is
ensured not only mathematically but
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also numerically. For this reason, FVM is also called the control the volume method.
Consider a convection equation as follows:

(4.39)
where  Compared with the convection equation we studied earlier [e.g. (4.25)], the difference in the above equation is that the convection
term is now expressed as the form of flux derivatives. The physical meaning of the above equation is clear: the time rate of change of variable  is balanced by the
variable flux in space. This is clearer when we integrate the equation over a control volume:

(4.40)
where V is the control volume and S is the control surface with n being denoted as a unit outward normal vector on the surface. The conversion of the volume
integration to surface integration is accomplished by using Gauss’s divergence theorem.
To approximate the above equation with the use of an FVM, we shall first divide the physical domain into a group of small control volumes that are not overlapping.
There are many ways of discretizing the physical

Figure 4.3 Sketch of a structured staggered mesh system for an FVM.
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domain, but one of the simplest ways is to use a staggered mesh as shown in Figure 4.3. In this figure, a rectangular mesh is used for control volumes. In each
control volume, the scalar variable  is defined at the cell center [i.e., (i, j)], whereas the vectors FX and FY are defined at the cell boundaries. The straightforward
finite volume approximation for the integral equation (4.40) can be readily derived:

(4.41)



It is not difficult to prove that with the above scheme, the conservation law will strictly satisfy for a local control volume. If we further assume that  is uniformly
distributed within the control volume and F is uniformly distributed along all boundaries, the above equation can be reduced to a form similar to an FD:

(4.42)
Since the fluxes are defined at cell boundaries, their information will be shared by any two adjacent cells. Therefore, the conservation law is automatically satisfied
not only locally for a particular cell but also globally for the entire physical domain. This global conservation is the result of the conservation of transport between
control volumes, which ensures that the conservation law is satisfied for any arbitrary assembly of connected control volumes.
An FVM can be regarded as the equivalent FD expression of the integral (not differential) form of the governing equation. From the above analysis, it can be seen
that the FVM in (4.42) is similar to the FTCS FD scheme. As a matter of fact, nearly all FD schemes (e.g., Lax-Wendroff method, QUICK, and QUICKEST) can
find their counterpart expressions in FVM in a structured mesh system. Under such circumstances, the numerical accuracy and numerical stability for an FVM can
be established by examining the leading TE using Taylor series expansion or by performing von Neumann stability analysis using Fourier analysis, similar to those
used in the FDM. The major reason of constructing a finite volume scheme is often based on the motivation of having a fully conserved scheme, which is not
explicitly enforced by an FD method based on the differential form of the governing equation.
Another major advantage of a finite volume approach is that it allows the use of unstructured meshes that can be conformal to irregular boundary geometry. This is
especially useful when we are dealing with a complex problem with an arbitrary domain shape. In this case, a finite volume constructed on an unstructured mesh
system (e.g., triangle mesh) can be used to follow closely the actual domain boundaries. The accuracy and stability analysis, however, will not be straightforward.
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4.4 Finite element method
4.4.1 Background of finite element method
While both FDM and FVM approximate a governing PDF, in differential and integral form, respectively, FEM approximates the solution of a PDF. FEM provides
regional approximations to the solution of a PDF by using piecewise functional approximations, usually polynomials. Similar to FVM, FEM has the flexibility of
using various geometrical shapes in element approximations and therefore can be adapted to a complex boundary. Traditionally, FEM has been popularly used in
structural and solid mechanics where the material is approximated by an elastic or an elastoplastic continuum. In recent years, its applications in fluid computation
have grown.
4.4.2 Solution procedure in finite element method
The FEM has a well-established standard procedure to solve various types of problems. In the following section, we shall use the convection problem again as an
example to illustrate how the FEM works. Consider the following equation:

(4.43)
The integration of the above equation in the entire domain V or any subdomain V′ will still be valid, e.g.:

(4.44)
4.4.2.1 Domain discretization
The first step of the finite element (FE) approach is the discretization of the domain into a finite number N of elements, each of which has Ne nodes. The total nodal
number is M that is always less than the sum of Ne because a node can be shared by multiple elements. For the 1D case, line segments are the natural choice (Figure
4.4). In this example, we shall use N uniform linear elements with the element length ∆x=L/N, where L is the total length of the computational domain and 0≤x≤L.
As a result, we have M=N+1 nodes. For 2D and 3D problems, various types of geometrical shapes are possible, e.g., triangles and tetrahedra.
4.4.2.2 Introduction of shape function
By dividing the entire domain into N elements, we are now able to approximate the true solution of Φ(x, t) in the entire domain by the approximate
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Figure 4.4 Illustration of a solution function approximation in the FEM for 1D problem; e represents the element number and j the nodal number.

function  that can be expressed as the linear summation of M nodal values multiplied by the corresponding shape function (or interpolation function):

(4.45)
where Sj(x) is the linearly independent shape function of x associated with the nodal point j and Φj is the approximated value of Φ at the nodal point j and time t,
the latter of which is the numerical solution to be sought that should satisfy all boundary conditions. Here Φj is in close proximity to the true solution of Φ at the
nodal point j, and therefore, one shall expect that the shape function Sj(x) is unity at this node j but zero far away. In practical computation, the shape function must
be a known simple function. Polynomials are the most commonly used shape functions, within which a linear polynomial is the simplest. In this case, S(x) is 1.0 at
node j and linearly reduces to zero to its nearest neighborhood nodes:

(4.46)
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4.4.2.3 Error minimization by the method of weighted residuals (collocation method, Galerkin method, and least-squares method)

Since  is the approximate solution of Φ(x, t), it is expected that by substituting it into the original PDE, a small error (or residual) will result:

(4.47)

Although we are unable to force ε to be zero everywhere in the domain [otherwise  would have been the true solution already], we can minimize it globally
by driving the weighted integral of the residual to zero or to its minimum for M linearly independent weighting functions Wk:



(4.48)
The above method is called the method of weighted residuals and different weighting functions can be introduced in the computation.
Collocation method: When the weighting functions are chosen to be the delta function, i.e.:

Wk=δ(x−xk) (4.49)
for all nodes, equation (4.48) becomes:

(4.50)
The method is called collocation method. In this method, the residuals are driven to zero at all nodes but not necessarily on the elements. Possible instability may
develop in practical computations with the use of this method.
Galerkin method: When the weighting functions are chosen to be the same as the shape function, i.e., Wk=Sk, the method is called Galerkin’s method. This method
requires the residual to be orthogonal to all the linearly independent shape functions Wk, i.e.:

(4.51)
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It can be proven that the norm of the residual in the entire domain approaches zero as M approaches infinity. This is the most popular method in the FEM.
Compared to the collocation method, the Galerkin method is more stable because the residual has been minimized in the entire domain. The price it pays is the
increased computational effort in evaluating the integrals in (4.51).
Least-squares (LS) method: In formulating the weighted integral of the residual, the weighting function can also be chosen as the residual itself. In this case, the
integral corresponds to the inner product of the residual, and it will always be positive. We are only able to minimize it by forcing its derivative with respect to
Φk(L) to be zero:

(4.52)
This method is called the LS method. It is equivalent to choosing the weighting function as ∂ε/∂Φk in (4.48).
In the following example, we shall focus on the Galerkin method.
4.4.2.4 Matrix assembly
When the shape function Sj(x) is a simple polynomial, the closed-form expression of (4.51) is possible, provided that the time derivative ∂Φj(t)/∂t can be expressed

by the FD approximation  At the end, a system of linear equations for all nodes can be formed:

(4.53)
where Ajk is the matrix of M×M, Φj is the unknown solution to be solved at all M nodes, and fk is the forcing vector of size M that incorporates all boundary
conditions and previous time-step information. Both Ajk and fk are determined by the property of the PDF to be solved and the choice of FE.
In practical computation, by realizing that the shape function Sk is nonzero only in the elements adjacent to node k, the global integration can be reduced to the sum
of local element integration. In this problem with the specific numbering system for nodes and elements in Figure 4.4, by realizing that node k is shared by elements
k−1 and k, equation (4.51) can be recast into the following form:

(4.54)
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where V(e) is the integration range for the eth element and  is equivalent to Se+m−1(x)Φe+m−1(t), the former of which is defined based on element
information and the latter on global nodal information. For a particular k, the above equation can be rewritten as follows:

(4.55)
By expressing the integration in terms of each element, the integration can be performed on each element with reference to the local coordinate (i.e., from 0 to ∆x)
as shown above. When all elements share the same geometric property, the evaluation of integration can be greatly simplified because only a limited number of
combinations of shape function products exist. In this case, by using (4.46) and the fact sm(e)(x)=Sm+e−1, the above equation can be further reduced to:

(4.56)
The above localization facilitates the evaluation of integration of shape function. Once the integration for each element is obtained, it can be assembled to obtain the



coefficients Ajk associated with each  and thus Φj=m+e−1 for the kth linear equation. When the operation is applied to all k from 1 to M, the entire matrix Ajk
can be determined. The boundary condition and the time derivative term will be reflected in fk(Φn) in (4.53).
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4.4.2.5 Solution of linear system of equations

Equation (4.53) can be solved by any appropriate matrix solver to obtain the approximate solution of  at all nodes.
4.4.3 Comments on finite element method
Although being approached very differently, there actually exists an inherent relationship between FEM and FDM. With the time derivative being approximated by

the forward time difference (and thus the spatial derivative term being expressed at the time step n) and replacing  equation (4.56) actually gives
the following:

(4.57)
A very interesting finding here is that (4.57) is similar to the FTCS FD scheme except that the time derivative is weighted among three neighborhood nodes.
Presumably, the scheme will be more stable than the FTCS method, and in fact standard von Neumann analysis can be used to analyze its stability property.
The clear relationship between FEM and FDM, however, does not exist generally for 2D and 3D problems with complex shape functions. In contrast to FDM, there
exists no well-established technique for the analysis of numerical accuracy and numerical stability in FEM. This may pose a great difficulty to CFD computation
when the flow is complex and varies strongly in both time and space. For this reason, although FEM has the advantage of representing arbitrary surface geometry on
the boundary, its application in fluid computation for long-term time integration is still less popular compared with FDM or BEM, the latter of which will be
discussed later.
It is also noted that there also exist other types of FEM based on variational principles, and they are mainly applied to structural analysis. Readers shall refer to
Zienkiewicz and Taylor (1989) for more details and discussions about FEM.
4.5 Spectral method
Similar to FEM, spectral method (SM) also approximates the solution of a governing equation, but via the Fourier series or other valid series. In SM, the true
solution of a problem is approximated by a series of functions, i.e.:

(4.58)
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where ΦK(x)=eiKx in Fourier spectral method (FSM), ΦK(x)=TK(x) in Chebyshev spectral method (CSM), and ΦK(x)=LK(x) in Legendre spectral method (LSM).
The main advantage of SM is the unparallel accuracy of the solution with a relatively small amount of computational expense. However, the SM is often limited to
relatively simple domains (e.g., with the shape of cube, cylinder, rectangle).
It is interesting to compare the functional approximation between SM and FEM, which approximates the solution as:

(4.59)
Although (4.58) and (4.59) look similar, the interpretation of the two approximations is quite different. First, the number k in SM represents the modal number in
wave number space, whereas j in FEM represents the nodal number of the discretization in physical space. Second, the function ΦK(x) in SM is continuous in space,
and it represents the wave modes in different wave number space for FSM. The unknown coefficient aK(t) is associated with mode K. In FEM, the interpolation
function Sj(x) is 0.0 at node j and 1.0 at other nodes. The value Φj(t) is the approximate solution to be sought at node j. If an analog is made for the variables in
these two methods, ΦK(x) in SM is similar to the interpolation function Sj(x) in FEM and aK(t) in SM is similar to Φj(t) in FEM.
To illustrate how an SM works, we shall use FSM to solve a 1D diffusion equation:

(4.60)
With the initial and periodic boundary condition:

(4.61)
The FSM approximates the solution directly and globally:

(4.62)
where aK(t) is to be determined. Substituting the above approximation into (4.60), we have:

(4.63)
This gives us the following:

(4.64)
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where ak(0) can be determined by the initial condition from the Fourier transformation:

(4.65)
If  is a simple continuous function, the coefficients can be evaluated analytically and therefore there is no need to use grids at all. The accuracy of the
numerical results depends only on the total number of wave modes M included in the summation. In cases when the initial condition is provided at discrete grid
points or the analytical integration of (4.65) is impossible, numerical integration is needed by using discrete grid points. Consider N collocation points at:

(4.66)
Then:

(4.67)
The above method is called pseudospectral (collocation) method, which is more popularly used in practical computation.
A classical study was performed by Orszag and Patterson (1972) for homogenous turbulence with DNS with the use of pseudospectral method. Readers should refer
to Gottlieb and Orszag (1977) and Canuto et al. (1987) for a more detailed description and application of this method.
4.6 Boundary element method
The BEM is based on the mathematical identity between volume integration and surface integration for certain types of PDEs. Let us use an example to illustrate
how this method works, and along the solution procedure, we shall also discuss the advantages and disadvantages of the method.
Consider a 2D Laplace equation for velocity potential  The governing equation reads:

(4.68)
This is a boundary value problem, in which  or their relationship (e.g.,  for linear problems) must be specified in order to have a well-posed
problem. Based on Green’s second identity, we have:



(4.69)
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where P and Q are arbitrary functions that are continuous in the domain except at finite points. In connection with the numerical solution to a 2D Laplace equation,
we often make the following definition:

(4.70)
where P is called the free space Green’s function between the boundary point x and any known point x0 on the boundary or the interior. The expression of P will
change accordingly if a 3D Laplace equation is considered.
Substituting (4.70) into (4.69), we have:

(4.71)
where

 
In the numerical solution procedure, the boundary is first discretized by a series of N linear boundary elements with N nodes. Equation (4.71) is then applied at each
node, for which a linear equation will be formed with 2N unknowns of  and  at all boundary nodes that have resulted from the surface integration on the
RHS of the equation. With the application of N boundary conditions, which specify  or their relationship at each of N nodes, the number of unknowns
can be reduced to N. This ensures the unique solutions of unknowns  and  on the boundary; together with the boundary conditions one can predict the value
of  in the interior domain using (4.71).
The major advantage of BEM is the possible numerical efficiency embedded in the solution procedure. After the application of the boundary integral equation, the
problem will be converted into its equivalency with the reduction of dimension by 1. This means that the original 2D and 3D problems are reduced to 1D and 2D
boundary problems. Such a reduction of problem dimension, however, does not necessarily ensure a reduction of CPU time in computer modeling, since the
resulting matrix is dense and it can be computationally expensive for a large problem. We shall come back to the assessment of computational efficiency between
BEM and FDM for a large 3D problem in Section 6.2.2.3 when the modeling of wave-structure interaction is discussed.
Although BEM was originally developed for the efficient solution to steady boundary value problems that can be described by the Laplace equation, it was later
extended to the solution of the Helmholtz equation and the Poisson equation. BEM finds many applications in potential flows, groundwater flows, fracture
mechanics, acoustics, electromagnetics, etc. In fluid mechanics, the application of BEM was also explored to solve incompressible viscous fluid flows (Wu, 1982).
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Regardless of the success of BEM in many scientific and engineering computations, it must be realized that BEM is not a general solution procedure of PDEs. It can
be applied only to a limited number of PDEs that allow for the transformation of the original equations to boundary integral equations. This is different from FDM,
FVM, and FEM, which are more versatile and can be applied to any PDE.
4.7 Meshless particle method
Meshless methods have been developed to resolve the complex surface geometry that cannot be readily handled by mesh-based methods. SPH is the earliest
meshless method developed in the 1970s for the study of astrophysics using Lagrangian particles. The GFDM was proposed in early 1980 based on particle
information. Substantial development and improvement of meshless methods started from the mid-1990s, after which there was a booming of meshless methods in
computational physics and mechanics. At this moment, SPH is the main meshless method that has many reported successful applications in water wave modeling
and interfacial fluid flow computation.
In meshless methods, particles that can be either regularly or randomly distributed, moving or stationary are used to discretize the domain. The loose local
connectivity of these particles (e.g., relative locations) can be established once the domain of influence for a particle of interest is determined. The collective
behavior of many neighboring particles will be used to approximate the function and/or its derivatives. To adequately represent a problem, a certain amount of
particles needs to be used. This is similar to the mesh-based methods where a certain mesh resolution is needed. Therefore, a meshless method is not meant to
reduce computational effort. In fact, it can be more computationally expensive than the conventional method, but with the possibly improved flexibility and
accuracy near irregular boundaries.
4.7.1 Meshless derivative approximation method
The GFDM is the meshless method that approximates the functional derivative in a PDE (e.g., Liszka and Orkisz, 1980). Let us use a 2D diffusion equation as an
example:

(4.72)
Writing it in FD form, we have:

(4.73)
where M is the total number of particles in the computational domain. At this juncture, GFDM is still the same as FDM.
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Figure 4.5 Illustration of GFDM; the circle represents the domain of influence for the central particle.

The key issue at this moment is how to evaluate  at all particle locations based on the neighborhood particle information. To achieve this
objective, the domain of influence must be defined first. Generally, this domain must be large enough to include sufficient number of neighborhood particles for the
accurate evaluation of local derivatives. However, the domain also needs to be small enough to be locally representative. Although there is no hard rule here,
usually the radius of the search r is about twice the average distance between two particles h, i.e., r~2h (Figure 4.5).
Once the radius of influence for a particular node at (x0, y0) (i = 0) is determined, the other nodes (i = 1 to N) within the radius can be determined by searching the

domain. Based on Taylor series expansion, we are able to write the expression to relate the functional values at these nodes  to that at the interest node  as:



(4.74)
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We are now able to form a linear system of equations with the equation number of N and the number of unknowns of 5 for this case:

Ax=b (4.75)
where:

(4.76)

 
and

(4.77)
Note that as long as there are at least five other nodes within the radius of influence, the five derivatives can be determined by error minimization of the system of
linear equations, i.e., by LS method. The GFDM does not require the symmetric set of particles. It can be proven that under a special case of symmetry particles and
for the particular choice of domain of influence, the GFDM will produce the results with the same accuracy as does the conventional FDM. The GFDM, however,
excels in being able to make use of an irregular set of nodes, which are advantageous in simulating a problem with complex boundary configuration.
4.7.2 Meshless function approximation method
Compared to GFDM that approximates derivatives using the collective information of particles, the meshless function approximation method makes use of the
particles to approximate solution function directly, analogous to FEM. The development of the general meshless function approximation method is rather recent.
Similar to the FEM, there are two key issues related to this type of meshless method, namely the function approximation and the solution procedure for the function.
The former is about how the function and its derivative are approximated, and the latter is
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related to how the problem is formulated (i.e., Galerkin method, collocation method, or LS method). In the following discussion, various types of meshless methods
will be discussed based on the classification in terms of the way of function approximation.
4.7.2.1 Moving least-squares method
The moving least-squares (MLS) method can be used in function approximation. A few methods with the use of MLS were proposed in the past decade.
Diffuse element method: The diffuse element method is a meshless collocation method first proposed by Nayroles et al. (1992). In this method, a “diffuse
approximation method” was used to approximate functions from a given set of particles. The so-called MLS method, which reconstructs the continuous function
from an arbitrary set of particles via the calculation of a weighted LS around the evaluation point, is used to obtain the local approximate derivatives. The MLS is
generally more accurate than the grid-based numerical methods near irregular surfaces. This method can solve general PDEs and it has been applied to both solid
mechanics and fluid dynamic problems.
Element-free Galerkin method: EFGM is a meshless Lagrangian method developed for continuum problems (Belytschko et al., 1994). The method improved the
diffuse element method by providing more stable and accurate results in the numerical computation. The method shares some similarity to SPH, but it is much more
computationally expensive. Although the proposal of EFGM is very recent, it has been quickly and widely applied to many engineering analyses. Currently, EFGM
is one of the most matured meshless methods in engineering computation. EFGM method is most frequently applied in solid mechanics that involves strain
localization and fracture, where there exist a large deformation and spatial gradient of material properties.
4.7.2.2 Kernel-based method
Smoothed particle hydrodynamics: SPH is the first meshless method in computational physics. The method was proposed in the 1970s (Gingold and Monaghan,
1977; Lucy, 1977) for the study of astrophysics. SPH is a Lagrangian meshless method where the solution is approximated by a kernel function. An important
interpretation of the method was made by Monaghan (1992). The method has been successfully applied to many fluid flow problems, including breaking waves. In
Japan, a similar method is named moving particle semi-implicit (MPS) method (Koshizuka et al., 1998). The conventional SPH may be subjected to numerical
instability near boundaries. Various types of numerical damping have been introduced to ensure stable numerical results.
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Reproducing kernel particle method: SPH tends to produce unstable and/or less accurate results near boundaries, where the consistency conditions are not
imposed. To overcome this difficulty, W.K.Liu et al. (1995) developed RKPM. Being still a kernel-based method, RKPM improves the numerical accuracy by
constructing the shape function and its derivatives on the boundary in such a way that the consistency conditions are enforced explicitly. Thus, the method is
especially suitable for problems with large deformation, around which the tensile instability can be easily developed in conventional SPH.
4.7.2.3 Partition of unity methods and other meshless methods
Belytschko et al. (1996) have shown that any kernel method whose parent kernel is identical to the weighting function of an MLS approximation is identical to the
MLS method. Babuska and Melenk (1997) proposed the partition of unity method and argued that both MLS method and kernel-based method can be regarded as
the special cases of the partition of unity method. Some other popular meshless methods under the categories of partition of unity method include h–p Clouds
method (Duarte and Oden, 1996) and generalized finite element method (GFEM) (e.g., Strouboulis et al., 2000).
There are also many other function approximation meshless methods such as free mesh method (Yagawa and Yamada, 1996), natural element method (NEM)
(Sukumar et al., 1998), and the meshless local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998). The characteristics shared by all the methods discussed in
Section 4.7.2 are that they are all based on various Galerkin or collocation weak formulations for the problem, against the strong formulation by GFDM.
Meshless methods have advanced very rapidly in the last decade, and new methods are still emerging for better function and/or its derivative approximation.
Interested readers should refer to some dedicated books for more discussion on meshless methods (e.g., Liu, 2002; Li and Liu, 2004; Belytschko and Chen, 2007).
4.8 Problem-based discrete formulation methods
All the numerical methods introduced earlier are numerical techniques developed to approximately solve a PDE. Alternatively, there exists another type of
numerical method that solves the problem directly with discrete formulation, usually based on particles, using fundamental physical principles such as mass and
momentum conservation.
4.8.1 Lattice Boltzmann method
The LBM has a very different way of solving a fluid problem compared to traditional numerical methods. It is well known that fluid motion
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can be described on three levels: the molecular (microscopic) level at which the motion is reversible; the kinetic (mesoscopic) level at which the motion is
irreversible and can be represented by Boltzmann approximation; and the macroscopic level at which the continuum approximation is applicable. It has been proven
that the macroscopic features of fluid dynamics can be recovered by an appropriate Boltzmann model using a finite number of velocity vectors. Most of the
Boltzmann models are based on probabilistic assumptions and they are continuous in time and space, but discrete in velocity.
In the 1980s, lattice gas (LG) automata became an attractive alternative to solve fluid problems by using discrete lattices (Frisch et al., 1986). LG can be considered
a simplified fictitious molecular dynamic in which space, time, and particle velocities are all discrete. LG employs the simplified kinetic equation to describe the
microscopic particles, the collective behavior of which results in the desired macroscopic fluid dynamics. In LG automation, there can be either 1 or 0 particle at a
lattice node that moves in a lattice direction. At the next time step, each particle will move to its neighboring node in its direction, and this process is called
propagation. When there is more than one particle arriving at the same node from different directions, they collide and change their directions according to the
collision laws. Suitable collision rules should conserve the particle number (mass), momentum, and energy before and after the collision. Because LG is constructed



on simple linear kinetic equations for discrete particles, it has advantages in the implementation of complex boundary conditions and parallel computations. Because
of the use of particle occupation variables that are defined by Boolean variables, statistic noise will result even for smooth flows. Besides, Galilean invariance
(Galilean relativity), that the fundamental laws of physics are the same in all inertial frames, may not be strictly satisfied in LG formulation.
The LBM was designed to overcome the shortcoming of the original LG by replacing the Boolean particle number in a lattice direction with its ensemble average,
the so-called density distribution function. In this way, individual particle motion is neglected and only the average of many particles is considered. The LBE that is
in the form of a discrete kinetic equation and that governs the particle distribution function reads:

fi(x+ci∆x, t+∆t)=fi(x, t)+Ωi(fi(x, t)), i=1, 2,…, M (4.78)
where fi is the particle distribution function in ith direction, Ωi(fi)(x, t)) is the collision function to be detailed later, ∆x and ∆t are space and time intervals, ci is the
local velocity, and M is the number of discrete directions of the particle velocity that will be determined by the modelers based on accuracy requirements (Figure
4.6).
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Figure 4.6 Illustration of LBM for a 2D problem with nine velocity components in square lattice elements.
The macroscopic fluid flow properties, i.e., density ρ and momentum ρu, are defined as the first and second moments of the particle distribution function as follows:

(4.79)
The discrete collision rules in LG automation are modified to be a continuous collision operator. One of the most common methods is to use the Bhatnagar-
Gross-Krook term (Bhatnagar et al., 1954) to approximate the collision operator:

(4.80)

where  is the relaxation time at which the local particle distribution is relaxed to its equilibrium state with the equilibrium particle distribution function as 
The above collision term is the simplified linear operator to approximate the nonlinear collision process.
If we carefully examine the LBE, we would find that this simple kinetic equation that advances the distribution function in time and space looks very similar to the
FD approximation discussed before. The difference is that in the FDM, the PDE is prescribed, whereas in LBM we do not
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know in advance which PDE the kinetic equation represents. Curiosity leads us to ask the following question: if ∆x and ∆t are small enough, can LBE be reduced to
the PDE we are familiar with? The answer is yes! In fact, by using multiscale Chapman-Enskog expansion (Frisch et al., 1986), it is possible to find that the LBE
can be converted to the following system of PDEs up to the second order of small perturbation ε~O(∆x)~O(∆t) (Chen and Doolen, 1998):

(4.81)

(4.82)
where II is the momentum tensor that can be expressed as:

(4.83)

and  is the first-order nonequilibrium distribution function, which satisfies the following:

(4.84)
Equations (4.81) and (4.82) look similar to the mass and momentum conservation equations in NSEs. As the matter of fact, it has been proven that the
incompressible NSEs can be recovered in the limiting case of small variation of density if (1) sufficient lattice symmetry is provided (so is the symmetry of discrete

velocity direction) and (2) a proper local equilibrium distribution function  is chosen. The general form of  for a small Mach number is written as
follows:

(4.85)

where A, B, C, and D are lattice constants, which can be obtained analytically based on the constraints of  and  given the specific lattice
structure. Similarly, different state equations can be derived to relate the local pressure p to the local density and speed of sound and to relate the kinematic
viscosity ν to the relaxation time 
Possessing both the microscopic statistical feature and the macroscopic dynamic feature, the LBM is especially promising in modeling some new physics where the
existing knowledge is not adequate to explain the macroscopic phenomenon. Examples include air entrainment during wave breaking, sediment incipience and
suspension, and other multiphase problems, which so far are still highly dependent upon very crude empirical formulas.
For more discussions on LBM, readers are referred to Benzi et al. (1992), Qian et al. (1995), and He and Luo (1997).
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4.8.2 The discrete element method
The DEM was pioneered by Cundall and Strack (1979) in the study of rock mechanics. Readers should not confuse DEM with diffuse element method, a MLS
meshless method we discussed before. DEM has another name: distinct element method. The method utilizes a large number of discrete particles (usually spheres or
discs) to represent the bulk behavior of granular materials such as sands. The particle interaction laws are based on collision laws and the equations of motion are
typically integrated explicitly in time. The resulting algorithms are simple and intuitive, but they are able to describe complex physical phenomena.
The DEM shares an important similarity to LBM, i.e., both of them start from the direct discrete formulation of the problem using particle representation, whereas
the other numerical methods solve the existing governing equations in the form of PDEs on a discrete grid or mesh system. DEM can be regarded as the sister
version of the LBM in the application in solid mechanics. Because DEM was primarily used in the simulation of soil, rock, and other granular solid particles, we will
not discuss this method further in this book. Readers can refer to Bicanic (2004) for more details.
4.9 Grid and mesh generation
All mesh-based numerical methods require a grid or a mesh for discretizing the computational domain. Difficulty can easily arise when we apply a numerical model
in a domain with complex boundary configuration. In this section, we discuss various ways of generating grids or meshes automatically, especially when an irregular
boundary is present.
4.9.1 Definition and classification of grid and mesh



4.9.1.1 Definitions of grid and mesh
Let us use a 2D example to illustrate how grid and mesh are defined. Consider a rectangular domain of 12 m×10 m. The simplest spatial discretization is to divide
the domain into uniform cells of squares (Figure 4.7). The domain after spatial discretization is thus composed of a grid system where the numerical solution is
sought at each grid point, the intersection of any two orthogonal lines. The line connecting two adjacent grid points shows the connectivity between grid points, on
which no physical quantity is defined. This is a typical “grid system” when FDM is constructed. In contrast, the numerical solution can also be sought at the centroid
of a cell in FVM. In this case, the line connecting grid points now becomes the boundary of the cells, on which the flux of the physical quantity is defined. This is a
typical mesh system. Therefore, for a simple problem, a grid system
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Figure 4.7 Sketch of a rectangular grid or mesh for a 2D problem.
can be identical to a mesh system. Whether it is regarded as a grid system or a mesh system depends on how it is used by a particular numerical scheme.
Sometimes, however, the difference between a mesh system and a grid system becomes blurred when a hybrid scheme is used. For example, a numerical model can
be solved in the so-called staggered grid system, in which the scalar (e.g., pressure, free surface displacement) is defined and solved at the center of a rectangular
cell and the vector (e.g., velocity, flux) is defined and solved at the cell boundary (Figure 4.8). For the scalar, the scheme is similar to the control volume method,
whereas for the vector, the general FD scheme (e.g., upwind scheme) may be used that does not enforce the explicit conservation law within the control volume. In
this case, both grid and mesh are used.
4.9.1.2 Structured and unstructured grid and mesh
A typical “structured grid” is characterized by regular (or structured) connectivity that can be expressed as a 2D or 3D array for 2D or 3D problems. The major
feature of a structured grid is that all interior grid points (sometimes called nodes) in the grid system have an equal number of adjacent cells or elements. In contrast,
an unstructured grid is characterized by
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Figure 4.8 Illustration of a staggered grid system.

Figure 4.9 Examples of structured (top) and unstructured grids (bottom).
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Figure 4.10 Conformal (left) and nonconformal (right) meshes.
irregular connectivity that allows for any possible element a solver might use (Figure 4.9). Compared to a structured grid, the storage requirements for an
unstructured grid can be substantially larger since the neighborhood connectivity must be explicitly stored. Because an unstructured grid is often used in FEM or
FVM, it is more commonly referred to as an unstructured mesh.
4.9.1.3 Conformal and nonconformal mesh
There is another classification of mesh based on whether the conformity condition is satisfied. A mesh is said to be conformal if the intersection of any two elements
in the mesh is an empty set, a vertex, an edge, or a face of both elements. The examples of conformal and nonconformal meshes are shown in Figure 4.10. Although
the conformal mesh has simpler connectivity information (and thus requires less memory for faster computation), the nonconformal mesh possesses better flexibility
for resolving a computational domain.
4.9.2 Structured grid generation and coordinate transformation
4.9.2.1 Cartesian grid and mesh
When a structured grid is used, the grid shape is normally taken as either quadrangle for 2D problems or hexahedron for 3D problems. For a 2D problem, the
simplest quadrangle is a rectangle and the grid system based on rectangles is also called Cartesian grid. With the use of the Cartesian grid, it is straightforward to
construct FDM. However, it poses a problem for a modeler to resolve arbitrary geometry of the body surface that may not necessarily cross grid points. In this case,
a grid point can be taken as either
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Figure 4.11 Sketch of stair-step of a structured grid in the vicinity of a curved body surface; the thick lines connecting dotted grid points represent the
approximated body surface.
a fluid grid or a solid grid, depending on whether it is located outside or inside the body. As a result, an irregular surface is approximated by a series of stairs (Figure
4.11). The numerical accuracy may be greatly reduced in the vicinity of the solid surface, especially when the resolution is low.
4.9.2.2 General coordinate transformation
To resolve this problem, a popular method is to apply a coordinate transformation that recasts the irregular surface in the physical domain into a straight line in the
computational domain. Thus, the body surface can be precisely represented in the computational domain by grids distributed exactly on the surface. Let us consider
a 2D problem whose original governing equations in the form of PDEs are established in the physical domain (x, y, t). To map the physical problem, in which the
solid surface is curved, into the computational domain where the curve surface is transformed into a straight line, we need to introduce the coordinate
transformation that links the physical domain and the computational domain, i.e.:

(4.86)
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There are many ways of choosing ξ, η, and  which are to be discussed below. It is noted that since the problem will be solved in the transformed computational
domain, the original governing equations also need to be transformed so that the derivatives with respect to (x, y, t) are converted into  with the use of chain
rules of differential calculus. For first-order derivatives, we have:

(4.87)

(4.88)

(4.89)
The subscripts above indicate that these variables will be held constant in the partial differentiation. Similarly, the second-order and higher order derivatives can
also be obtained. With the use of these chain rules, the governing equations are re-expressed in the new coordinate  An alternative way of achieving the
same objective is to use Jacobian matrix, which is defined as follows:

(4.90)
Either way, there is a need to determine:

 

from the functional dependency of  on (x, y, t).
4.9.2.3 Elliptic grid generation

There are many ways to specify  One of the most efficient ways to map a fluid domain around a body is to use elliptic grid generation (Thompson et al.,
1974). In this approach, the simple elliptic equations will be used to define ξ, η as follows:



(4.91)
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In principle, the solution of the above system of PDE gives ξ, η as the function of (x, y), from which:

 
can be evaluated, at least numerically, and adopted in the governing equation in the transformed plane. No transformation is used for time, i.e., 
In actual computation, the information of (ξ, η) is easy to obtain at the interaction of any two straight lines, which prompts us to solve (x, y) with respect to (ξ, η) by
using the inverse of the original elliptic equations:

(4.92)
By specifying the proper boundary condition of (x, y) at the four boundaries of (ξ, η), the above equations can be solved numerically to map every discrete point (ξ,
η) on the computational domain to (x, y) in the physical space. Figure 4.12 gives an example of using elliptic grid generation method to map the physical domain
around a 2D body to the corresponding computational domain represented by a rectilinear orthogonal grid. The elliptic mesh generation method can be readily
extended to 3D problems.
Instead of solving the problem in the transformed computational domain, another way of employing the method is to generate a curvilinear boundary-fitted mesh in
the physical domain, on which the problem is solved directly with the use of FEM or FVM (e.g., the left side of Figure 4.12). In this case, the solution of the elliptic
equations is simply generating a smoothly connected structured boundary-fitted mesh.
4.9.2.4 Structured grid generation using σ-coordinate transformation
When mapping between two wavy surfaces, σ-coordinate transformation is often used because of its simplicity. Consider a 2D physical domain (x, y)
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Figure 4.12 Sketch of elliptic grid generation that maps the irregular boundary conformal grid in the physical domain (left) to the Cartesian grid in the
computational domain (right).
in which the bottom is at y=−h(x) and the free surface at y=ζ(x, t); the σ-coordinate transformation is expressed as follows:

(4.93)
where σ is similar to η in the elliptic grid generation. With the use of the above transformation, the irregular physical domain is transformed into a regular
computational domain as shown in Figure 4.13. The great advantage of σ-coordinate transformation over elliptic coordinate transformation is that only the algebraic
operation is involved in the transformation. Thus, the derivative terms of ∂σ/∂x, ∂σ/∂y, ∂ω/∂t, etc., which will be used in the conversion of the governing equations
to those in the computational domain, can be expressed analytically in terms of h(x) and ζ(x, t).
Similar to elliptic grid generation, σ-coordinate transformation can also be simply viewed as a technique to generate structured boundary-fitted mesh if the problem
is directly solved in the physical domain using FEM or FVM.
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Figure 4.13 Sketch of grids in the physical (left) and computational (right) domains based on σ-coordinate transformation.
4.9.2.5 Stretched and compressed structured grid
In resolving the boundary layer that is very thin, within which the velocity gradient can be very large, the grid can be compressed in this region and stretched
outside of the boundary layer for computational efficiency. There are many possible ways to stretch the grid in one direction using linear, exponential, or
logarithmic functions. To illustrate how this works, we shall only use the following simple logarithmic function as an example:



(4.94)
For a flat plate on the bottom, the grids in the physical domain and the computational domain are shown in Figure 4.14. Note that the grid-stretching technique
above can be combined with the σ-coordinate transformation to resolve the boundary layer above an irregular bottom.

Figure 4.14 Sketch of grids in the physical (left) and computational (right) domains in a stretched grid system.
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The stretched grid can be applied to 2D and 3D problems. This is necessary if FSI is to be modeled and the boundary layers in all directions are to be considered. A
typical example would be wave interaction with a square cylinder. To model this process, finer grids will be deployed around the cylinder and stretched in all
directions outward from the cylinder. In another example of fluid motion in a confined tank, the finer grids may be deployed around all walls and stretched toward
the interior region.
The stretched grid technique is one of the simplest algebraic mesh generations. The generated mesh is also referred to as nonuniform mesh. Besides the logarithmic
stretching, some other commonly used nonuniform mesh systems include linearly varying mesh (the difference of any two adjacent mesh sizes is a constant),
constantly stretching mesh (the ratio of any two adjacent mesh sizes is a constant), and mesh stretching using hyperbolic sine function (Thompson et al., 1985).
4.9.2.6 Adaptive structured grid
In some cases, whether the grids should be compressed or stretched at a particular location cannot be determined a priori. This can happen when the flow is
transient and complex so that the high strain-rate flow region is unknown in advance. To resolve this problem, the so-called adaptive grids may be used, which
automatically adjust the grid distribution to adapt to the local flow-field gradients. Automatic adjustment of local mesh size may be achieved by relating it to the
local velocity gradient at every time step.
Besides resolving the unsteady flow, adaptive grids are also popularly used in the problems with moving boundaries when there is a moving body or a moving free
surface. In treating the problems with free surface, the grid generated from σ-coordinate transformation is one typical example of adaptive grid. The purpose of
using the adaptive grids in this case is to have a time-dependent boundary-fitted grid and the grid size in the vertical distance maintains certain ratio regardless of the
free surface location.
4.9.2.7 Comments on structured grid generation
As mentioned earlier, all the coordinate transformations can also be employed as the tool for the generation of curvilinear boundary-fitted grids in the physical
domain. If we use FVM or FEM, the computation can proceed on the mesh basis in the physical domain directly. In this case, the coordinate transformation
becomes the tool for the generation of a structured mesh system in the physical domain.
There are essentially only two main branches of structured mesh generation, namely elliptic mesh generation and algebraic mesh generation. When the elliptic
system of PDEs is used to generate regular quadrilateral and
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hexahedral meshes, the method is also referred to as mesh extrusion technique (e.g., Vassberg, 2000). In contrast, all algebraic mesh generation techniques are
constructed on some kind of interpolation between the surface of the body and either another surface (e.g., free surface) or the computational boundary. The
interpolation can be done independently in different directions or include the interdependence of the interpolation in three dimensions. The latter method is called
transfinite interpolation and it is a simple yet reliable technique for algebraic generation of structured meshes around 3D bodies (e.g., Eriksson, 1982).
4.9.3 Special Cartesian grid and mesh
The Cartesian grid is the simplest structured grid. However, as mentioned earlier, it fails to represent an arbitrary shape of the body surface accurately. This prompts
researchers to develop the modified Cartesian grid that retains the advantage of a rectilinear grid while overcoming its drawback in the vicinity of solid boundaries.
4.9.3.1 Cut-cell method and partial-cell method
The cut-cell method is used to reshape the mesh in the vicinity of an irregular solid boundary. Most of the time, the actual curved geometry of the solid surface is
approximated by the linear (or higher order polynomial function) piecewise segments in the background of Cartesian cells, using the information of interactions
between the solid surface and the grid lines. Away from the body, the Cartesian coordinate is resumed. Figure 4.15 shows how a curved body surface is represented
by the cut-cell method.

Figure 4.15 Sketch of cut-cell treatment; the shaded area on the right represents a solid body and the thick dashed line on the left represents the Cartesian grid
whose length varies near the solid boundary.
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Compared to the stair-step representation of a curved solid surface, the cut-cell method has a better representation of actual body geometry and it retains the
simplicity of Cartesian grid in the far field. A special numerical scheme, however, has to be developed at these cut cells. If FVM is used, the cut cells can simply be
regarded as some special unstructured meshes and the construction of a flux-conservation scheme does not require great additional effort. If FDM is employed, the
FD scheme at the boundary cut cells needs to be written in a way that the distance to the solid surface (or the length of the cut-cell boundary) is formulated
properly.
In the family of cut-cell method, there is another branch of the so-called partial-cell treatment, which is often used in the FD scheme constructed on a staggered grid
system. In this method, the cut cells at the solid boundary will be treated as the interior cells, and thus, no special treatment will be made to change the FD scheme
there. However, the effect of the solid surface will be accounted for by the modification of the mean flux around the cell boundary. This is equivalent to having
these cells filled with a porous medium so that the mean velocity, which is continuous across every cell boundary, is locally equal to the pore velocity multiplied by
the porosity. Apparently, the more the cell boundary is cut and occupied by the solid body, the less the space is left to the fluid and the smaller the “porosity” is,
which slows down the local velocity. One example of partial-cell treatment is shown in Liu and Lin (1997), who used this method to approximate a sloping beach in
their simulation of wave run-up on a slope.
4.9.3.2 Quadtree grids
Quadtree grids are composed of square cells with different sizes in a hierarchical tree structure. Starting from an initial unit square, recursive subdivision is applied
within this cell according to prescribed criteria to accomplish the local refinement for either an irregular body surface or complex flow structure. Quadtree grids
have some obvious advantages, i.e., fast and automatic grid generation, clear hierarchical data structures, and flexibility of local mesh refinement and adaptation.
Figure 4.16 shows the quadtree grid representation of a circle.
Quadtree grids are mainly used in FDM, which can be easily constructed on a square grid system. In a 2D problem, the subdivision of any square cell will always
generate four small squares of equal size. This facilitates the exchange of information between any two level cells. It is noted that quadtree can also be applied to



FEM (e.g., Greaves and Borthwick, 1999). The early application of quadtree grids was made by Samet (1990) for processing digital image and it quickly spread into
CFD computation (e.g., Yiu et al., 1996). Recently, the method was also extended to water wave simulation (e.g., Park et al., 2006). It is noted, however, that
although a quadtree grid can improve accuracy by local refinement, the method has the inherent nature of stair-step approximation of curved surface.
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Figure 4.16 Quadtree grid for a circle.
4.9.4 Unstructured mesh generation
4.9.4.1 Unstructured mesh around a fixed and rigid body
Compared to a structured mesh, an unstructured mesh is more flexible to represent arbitrary surface geometry. Without the restriction of regular connectivity,
unstructured meshes can be freely inserted into the area where higher resolution is needed. Because a modeler can shape the mesh cells based on his or her own
preference, the generation of unstructured meshes in some sense is more like a work of art. The use of unstructured meshes simply increases the complex level of
mesh connectivity but will not violate any principle in FVM and FEM.
Unlike the structured mesh generation, it is not easy to have a clear classification for the methods of unstructured mesh generation. Every method can be very
different. Nevertheless, most of the unstructured mesh generation techniques make use of the principle of Delaunay triangulation (Delaunay, 1934) or Voronoi
triangulation, which divides the 2D or 3D Euclidean place into triangles or tetrahedra. For a 2D case, given a set of points, a Delaunay triangulation of these points
is the set of triangles such that no point is inside the circumcircle of a triangle. The triangulation is unique if no three points are on the same line and no four points
are on the same circle. This process can be extended to a 3D problem with the triangle being replaced by a tetrahedra.
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Triangle and tetrahedron are the most common shapes used for resolving the curved surface. Sometimes, a quadrangle and hexahedron can also be used in the
generation of unstructured meshes in 2D and 3D cases. Other polygonal and polyhedral shapes may also be possible. The methods of quadtree/octree can be used
for this purpose.
The generation of unstructured meshes is not a trivial task. The automatic generation of a mesh system with the given constraints is a branch in computation
geometry and topology, and it is still an active research area. Nevertheless, many automatic (or semiautomatic) mesh generators, open source codes (e.g., GMSH;
http://www.geuz.org/gmsh/), and commercial software (GAMBIT for FLUENT) are available.
4.9.4.2 Hybrid mesh (mixed mesh)
While the unstructured mesh is flexible to resolve the irregular and curved body surface, the structured mesh has the advantages of simple structure connectivity,
easy generation, and higher accuracy with the same computational effort. It is natural to combine the two approaches to create a hybrid or mixed mesh, where the
unstructured mesh is deployed near the body and the structured mesh is used in all other places.
4.9.4.3 Adaptive unstructured mesh for moving objects
In case the boundary (solid surface or free surface) is in motion, unless the coordinate is established on the moving body that is feasible only for the simple case of a
single rigid body in consideration, the boundary-fitted mesh system needs to be adjusted at each time step to maintain the mesh boundary conformality. Such a mesh
system is called adaptive mesh or moving mesh, which is constructed on either the global (one) mesh system or the overlapped mesh system.
Global mesh system: In the global mesh system, an unstructured mesh is used with the cell boundaries being conformal to solid surfaces at all times. When a body is
in motion, either a mesh deformation (for small movement) or a remeshing process (for large movement) is required at every time step to maintain the conformity
between cell boundary and solid boundary. For relatively simple and small movements such as body oscillation or liquid sloshing, the arbitrary Lagrangian-Eulerian
(ALE) method can be used. In this method, the Lagrangian motion of fluid particles at all mesh nodal positions is computed at each time step, followed by the
rezoning stage, in which the mesh nodes can move by following the Lagrangian velocity (Lagrangian description), the weighted Lagrangian velocity (combined
Lagrangian-Eulerian description), or not move at all (Eulerian description). The method was introduced by Hirt et al. (1974) in fluid computation and was used
widely in CFD because of its simple nature. For large movements, the automatic mesh generator needs to be used in the remeshing process
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(e.g., Hassan et al., 2000 for two-object simulation and Lohner et al., 1999 for multiple-object simulation), which can be computationally expensive.
Overlapped mesh system: Alternatively, the overlapped mesh system, which is also called multiblock mesh system or Chimera grid system, has been proposed (e.g.,
Benek et al., 1985). In this approach, an unstructured mesh that conforms to the body surface and follows the body motion is arranged only in the vicinity of the
moving body and the rest of the domain is discretized by fixed structured grids. Interpolation is used to exchange data between two mesh systems (or multiple mesh
systems if multiple bodies are considered). The method is similar to the hybrid mesh system with the exception that the unstructured mesh moves with the body.
Since no connectivity between the structured mesh and the unstructured mesh is pursued, the adaptive mesh around the body can be easily obtained by simple
translation and rotation.
For more information on automatic mesh generation, readers are referred to Thompson et al. (1982, 1985) and Frey and George (2000).
4.10 Matrix solvers
The numerical solution of a PDF often involves the solution of a matrix (e.g., implicit method in FDM, all FEM, and BEM). The resulting system of linear algebraic
equations takes the following general form:

Ax=b (4.95)
The matrix A has a dimension of n×n where n is the total nodal number. The element in A is represented by aij. The solution of the above system of linear equations
is found to be:

x=A−1b (4.96)
The numerical solution to A−1 (the inverse of A), directly or approximately, is the main challenge for a large matrix.
In the case when A is full and dense (e.g., BEM), Gauss elimination can be used to solve the system of equations. This, however, will take great computational
effort. Although some decomposition techniques such as LU factorisation, QR factorisation, Cholesky decomposition, and singular value decomposition (SVD) can
be used to enhance the solution efficiency (Press et al., 2007), the computational cost is still rather high. Fortunately, in many other cases, the matrix can be sparse,
meaning that there are only a few nonzeros in each row of the matrix. This is the situation in most of FDM and FEM schemes. In this case, various iteration
techniques can be used to solve the matrix, taking advantage of the sparseness of the matrix by manipulating nonzero elements only. These iteration schemes
include Gauss-Seidel method, successive over-relaxation (SOR) method, and conjugate gradient (CG) method.
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4.10.1 Gauss-Seidel method and Jacobi method
The Gauss-Seidel method is a technique used to solve a linear system of equations iteratively. The solution procedure reads:



(4.97)
Note that the computation is performed only for nonzero aij on the RHS of (4.97) and thus the computation effort can be greatly reduced for a large sparse matrix.

The calculation of  makes the mixed use of the most recent value of  that has already been computed (e.g., j<i) and the previous value of  that has yet
to be advanced to iteration k+1 (e.g., j>i This means that no additional storage is required, and the computation can be done in place (x(k+1) replaces x(k)). This is
the only difference between the Gauss-Seidel method and the Jacobi method, the latter of which makes use of only previous step information x(k) in the iteration.
The iteration continues until the changes between two iterations are below some tolerance. This process is called convergence of the iteration to the true solution of
a linear equation system. The Gauss-Seidel method makes a faster convergence than the Jacobi method because of the use of updated solution information in the
iteration.
4.10.2 Successive over-relaxation method
SOR is a numerical method used to further speed up the convergence of the Gauss-Seidel method. By realizing that the Gauss-Seidel method converges faster than
the Jacobi method because of the use of the updated solution information, one may naturally expect that the convergence may be further enhanced by using the
“future” solution information extrapolated from the previous and updated solution information. The algorithm then changes to:

(4.98)

Compared to the Gauss-Seidel method, the difference is that the relaxation a) is multiplied by the original estimation of  and it is counterbalanced by the

previous solution  For a symmetric (i.e., AT=A) and positive-definite (i.e., xTAx>0 for all nonzero vectors x) matrix, it can be proven that 0<ω<2 will lead
to convergence and Gauss-Seidel method corresponds to ω=1. When ω<1, the method is called SOR method. The optimal value of ω for the fastest convergence is
case-dependent.
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4.10.3 Conjugate gradient method
The CG method is an iterative algorithm for obtaining the numerical solution of a symmetric and positive-definite matrix. Two nonzero vectors u and v are said to
be conjugate with respect to A if:

uTAυ=0 (4.99)
If u is conjugate to v, v is conjugate to u as well.
In CG method, the solution of the linear equation system is first expanded as follows (similar to Fourier expansion but the series number is finite here):

(4.100)
where pk is a sequence of n mutually conjugate vectors representing n orthogonal directions. The coefficient associated with each pk is as follows:

(4.101)
Now the key issue becomes how to find these n conjugate directions pk. If we can choose the conjugate vectors pk properly, we will be able to obtain a good
approximation for the true solution x with a small number of leading terms in (4.100). This idea is again similar to Fourier series expansion whose finite number of
leading terms may provide a good approximation to the original function.
In the iteration, we shall start from any initial guesses of x as x0 and pk=p0=b−Ax0. The corresponding first base vector pk+1=p1 is then calculated by:

(4.102)
where rk=b−Axk is the residual vector.
In iteration, the calculation is terminated when the norm of the residual is smaller than certain small tolerance, i.e., ||rk||<ε. Theoretically, the solution to Ax=b is
equivalent to the minimization of f(x)=xTAx/2−bTx. This is achieved by setting the gradient of f(x) to zero. The CG method bears its current name because the way
to find pk in (4.102) is equivalent to finding the gradient of f(x) at x=xk and the following procedure corresponds to finding the conjugate vectors for this gradient.

page_184

Page 185
5
Water wave models
5.1 Introduction
Water wave models are numerical tools for simulating ocean waves. In Chapter 1, we briefly introduced different types of wave models developed for different
purposes. In this chapter, we will classify the wave models based on the level of their theoretical completeness. The major assumptions associated with each model
are discussed. This allows readers to understand the limitations of each model and the theoretical linkages among different wave models. Examples of simulations
are used to demonstrate the capability of each model in engineering applications.
Some case studies are presented that provide examples of the applications of wave models to realistic problems. There is special emphasis on the coupling between
different wave models in order to advance the simulation from far field to near field, during which either the same wave model, but with different levels of grid
resolution, or different wave models will be applied to resolve different physical processes.
Finally, we present a few examples of wave models and a series of benchmark tests for different wave problems. Adequate numerical details are provided so that
advanced readers can build up their own wave models using the techniques introduced. In addition, readers can test the wave models with either the self-developed
or existing ones against the benchmark tests where the comparisons of numerical results and available theories and experimental data have already been made. The
main purpose of this section is to establish the validity range of different wave models.
5.2 Depth-resolved models
In this section, we will introduce wave models that are able to resolve depth-varying flow information in the simulations. We will start from the most generic wave
models that are based on the NSEs. It is then followed by various simplified wave models.
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5.2.1 Numerical models based on full Navier-Stokes equations
5.2.1.1 Governing equations
The NSEs are the governing equations for general fluid flows including water waves. For most of the water wave problems, we can assume that the fluid is
incompressible, which leads to the incompressible NSEs, i.e.:

(5.1)

(5.2)
where i=1, 2 for 2D models and i=1, 2, 3 for 3D models.
The main difficulty in solving the above equations is that the pressure is a passive variable that is not determined by a time-advancing transport equation. Instead, it
depends on the instantaneous velocity field. The solution for pressure needs to be obtained by solving the PPE that incorporates the continuity equation in the
momentum equation. Since the Poisson equation is an elliptic type of PDE, the numerical solution for pressure for 2D and 3D problems involves the solution of a
large sparse matrix. Normally, an iterative algorithm such as the SOR method or CG method is required.
5.2.1.2 NSE solvers
Pressure-velocity iteration method and pressure correction technique: The first numerical model for solving incompressible NSEs was developed by Harlow and
Welch (1965). In their model, the NSEs were discretised into forward-time FD form. By enforcing zero divergence of the velocity field at both previous and current
time steps, the pressure was solved in an iterative way. With the employment of the updated pressure, the velocity information at the current time step can be
obtained. The method was later referred to as pressure-velocity iteration method.
One branch of the later development of NSE solvers follows a similar idea. Examples include the more practical SIMPLE-like models based on a pressure



correction technique. For example, SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm was first proposed by Patankar and Spalding (1972)
and SIMPLER (SIMPLE Revised) by Patankar (1981). By improving the model convergence, more members joined the SIMPLE family later, e.g., SIMPLEC
(SIMPLE Consistent) algorithm by van Doormaal and Raithby (1984), SIMPLEST (SIMPLE ShorTened) algorithm by Spalding (1980), and SIMPLEM (SIMPLE
Modified) algorithm by Acharya and Moukalled (1989). Besides, PISO (Pressure Implicit with Splitting of Operators) algorithm by Issa (1982) was another
improvement to the original solution procedure, in which the pressure-velocity coupling scheme was
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used. Note that many of the above solvers are applicable for both incompressible and compressible flows. Recently, Moukalled and Darwish (2000) reviewed the
performance of various NSE solvers and proposed a unified model for solving flow problems at all speeds.
Projection method: Another important branch stemmed from the projection method proposed by Chorin (1968, 1969). In the projection method, the calculation is
split into two steps. At the first step, the tentative velocities are calculated with the absence of pressure and thus the velocity field carries the correct vorticity
information. At the second step, the pressure is updated based on the PPE to obtain the final velocity field satisfying the continuity equation.
Based on the projection method, Kothe et al. (1991) and Kothe and Mjolsness (1991) developed an efficient and robust numerical scheme for free surface flows.
The model, called RIPPLE, solves the PPE using the incomplete Cholesky conjugate gradient (ICCG) method. In RIPPLE, a new approach was also adopted to
model the surface tension as a volume force. Because of its computational efficiency and numerical robustness, this model was selected as the base model by Liu
and Lin (1997) for studying water wave problems. The model was further extended to COBRAS (Liu et al., 1999b) and NEWFLUME (Lin and Xu, 2006) for more
general turbulent free surface flow problems.
Artificial compressibility method: There exists another way of solving incompressible NSEs, with the use of artificial compressibility method (ACM). The method
was originally proposed by Chorin (1967) in the attempt to resolve the difficulty in solving the elliptic PPE iteratively. By realizing that NSEs for compressible fluid
flow are of a hyperbolic type that are easier to solve, one may introduce an artificial (or sometimes called pseudo-) compressibility into the flow. The pseudotime
and subiteration, however, are needed for each physical time step to ensure numerical accuracy. The method has been successfully applied to many fluid flow
problems, e.g., Rogers et al. (1991) for internal flows and Farmer et al. (1994) for free surface flows. Recently, by incorporating the k−ε turbulence model and
employing a boundary-conforming control volume mesh, Li (2003) developed an ACM model to study ship waves.
5.2.1.3 Free surface tracking
The accurate tracking of free surface is of paramount importance for water wave models solving NSEs. Traditionally, there have been two types of approaches for
tracking free surfaces, namely the Lagrangian and the Eulerian methods. Although the Lagrangian method determines the exact free surface location within a
computational cell, the Eulerian method provides the bulk fluid property (e.g., mean density) in a computational cell, from which the free surface can be
reconstructed only approximately.
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Sometimes, the Lagrangian method is classified as “interface tracking method,” whereas the Eulerian method is classified as “interface capturing method.”
Marker-and-cell (MAC) method: The Lagrangian approach follows the motion of particles on the free surface and in the interior domain based on the ambient flow
velocity information. This kind of tracking philosophy forms the basis of the MAC method originally developed by Harlow and Welch (1965):

(5.3)
where Xi is the fluid particle position (tracer) in the i-direction and ui is the corresponding velocity at the particle location that can be obtained by interpolation. By
following these particles originally deployed on the free surface, the updated free surface information can be obtained at each time step, assuming that particles on
the free surface will remain so for nonbreaking waves. For breaking waves, the free surface particles need to be reconstructed because particles on the free surface
may leave the surface during the breaking process. In fact, MAC can be regarded as the extension of the earlier particle-in-cell (PIC) method, which was originally
developed for plasma simulation. With the use of MAC method, Hirt et al. (1975) developed the SOLA model to simulate free surface flows.
The VOF method: In the Eulerian approach, the normalized density at the fixed location (e.g., cell center) is tracked by solving the transport equation of the VOF
function, i.e.:

(5.4)
where F is defined as the volume fraction of the fluid in the cell (control volume), which is equivalent to the normalized (by liquid density) mean density of the
liquid-air mixture in the cell. Obviously, F=1 in liquid, F=0 in air, and 0<F<1 on the free surface. Therefore, with the updated information of F in all computational
cells, the free surface geometry can be approximated and reconstructed. This approach is the basis of the so-called VOF method originally developed by Nichols et
al. (1980) and Hirt and Nichols (1981) in their code SOLA-VOF for the simulation of broken free surfaces.
Level set method: In recent years, the level set method developed by Osher and Sethian (1988) became popular to capture interface motion (e.g., Sussman et al.,
1994; Chang et al., 1996). In this method, instead of tracking the density, which has a sharp front on the free surface or two-fluid interface, the so-called level set
function  which is designed to be zero on the interface but smoothly changing across the interface, is tracked by solving the following equation:

(5.5)
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There are many ways of designing  and the most intuitive way is to define it as the normal distance function to the free surface, which leads to  in water,

 in air, and  on the free surface.
After the level set function is known, it will be used to determine the density at each cell through the Heaviside function (Gu et al., 2005) as follows:

(5.6)

in which  represents the nonfree surface cell and  the free surface cell. The coefficient ap is defined as the volume ratio of liquid in the cell that

can be calculated based on the tangential plane of the zero level set contour  across the cell (Gueyffier et al., 1999). The mean fluid density for a particular
cell is then calculated as follows:

(5.7)
Kinematic free surface boundary condition: For a nonbreaking free surface that is the single-value function of the horizontal coordinate, one can solve the
following equation to update the free surface location:

(5.8)
The above equation is essentially the extension of the kinematic free surface boundary condition (3.4) to 3D problems. To obtain the updated free surface location,
the accurate velocity information on the free surface must be known.
Height function transport equation: More often, for a nonbreaking free surface, the so-called height function transport equation is solved instead as follows:

(5.9)
The equation is essentially the vertically integrated continuity equation. The equation is favored against (5.8) because it is less sensitive to the inaccuracy of velocity
calculation near the free surface. The review of the advantages and shortcomings of various free-surface tracking methods can be found in Floryan and Rasmussen
(1989) and Lin and Liu (1999a).
5.2.1.4 Turbulence modeling
To model general water wave problems, the inclusion of proper turbulence models is necessary. In recent years, in connection with the NSE solvers,

page_189

Page 190
there are two main approaches for turbulence modeling, namely k−ε turbulence models linked with the RANS equations and LES models linked with spatially
averaged Navier-Stokes (SANS) equations. The model based on the former approach is often referred to as RANS wave model (e.g., Lin and Liu, 1998a) and the
latter as LES wave model (e.g., Li and Lin, 2001). Because both RANS equations and SANS equations have the same equation structure as NSEs, the NSE solvers
discussed above can be equally applied to solving turbulent flows except that the additional turbulence-induced stresses must be properly modeled.
5.2.1.5 Boundary conditions



To model water waves, proper boundary conditions must be specified at all domain boundaries and physical boundaries. The domain boundaries include inflow and
outflow boundaries, whereas physical boundaries include free surface, bottom boundaries, and boundaries on solid surfaces.
Inflow boundary: At the inflow boundary, normally both free surface displacement (or its derivative) and velocity distribution are given based on certain wave and
current theories, i.e.:

(5.10)
where the variables on the RHS of the equation with the subscript 0 are the known values.
Radiation (open or nonreflecting) boundary: Generally, the computation can be performed only in a finite domain. This means that the domain must be truncated
at some place where the artificial boundary condition is specified. For water waves, the Sommerfeld radiation boundary condition (1964) is applicable at the
truncated boundary where outgoing waves are allowed to leave freely without reflection. This radiation condition was explained by Sommerfeld as “the sources
must be sources, not sinks of energy. The energy which is radiated from the sources must scatter to infinity; no energy may be radiated from infinity into…the
field.” Mathematically, this ensures the following condition that is the solution of the Helmholtz equation in all directions of an m-dimensional “sphere”:

(5.11)
where  is any flow variable and m=1, 2, 3 is the dimension of space. When m=1, the above equation reduces to:

(5.12)
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By including the time harmonic, the flow variable at infinity can be expressed as follows:

(5.13)
When the truncated boundary is located at a place that is far from the source of disturbance and has a mildly varying bathymetry, it is justified to treat this boundary
as the radiation boundary. For a right-propagating linear wave train, equation (5.13) can be reduced to:

(5.14)
where c is the local wave phase velocity. For an oblique wave train, the radiation boundary condition should be revised to:

(5.15)
where θ is the incident wave angle. In an actual simulation, the angle θ is often unknown a priori.
Engquist and Majda (1977) proposed a higher order 2D open boundary condition when the main propagation direction is in the x-direction:

(5.16)
The condition allows the majority of wave trains leaving the domain with the reflected wave amplitude less than 3 percent of the incident wave amplitude for θ≤45°.
Extensive reviews of various nonreflecting open boundary conditions were made by Givoli (1991) and Tsynkov (1998), the latter of whom provided a comparative
assessment of different existing methods in constructing the open boundary conditions for a truncated domain.
Sponge layer treatment: Note, however, that the open boundary conditions (5.15) and (5.16) are, in principle, applicable only to linear monochromatic waves. For
nonlinear waves and waves with different frequencies, the definition of c is ambiguous. Significant errors may result when a wide-spectrum wave train is treated. To
help resolve this problem, a sponge layer, which is effective to damp out short wave energy, can be added in front of the radiation boundary. Inside this sponge
layer, a gradually increased artificial viscosity is introduced to damp out wave energy without causing significant wave reflection. If the artificial viscosity and the
length of the sponge layer are well chosen, the majority of short waves will be damped out and the remaining waves will contain only long-wave components, for

which the phase speed can be easily calculated by  Lin and Liu
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(2004) in their NSE solvers introduced an artificial damping term  in the momentum equation of the RANS equations inside the sponge layer that has a
length xs=1.5λ, with λ being the wavelength of the waves to be damped out. By measuring from the left boundary where x=0, f(x) takes the following form:

(5.17)
where n=10 and α=200 in their study but can be changed to other values when the length of the sponge layer is changed.
Infinite element method: In both the radiation the boundary condition and artificial sponge layer treatment, the domain is truncated into finite length and the
treatment is meant to minimize the artificial wave reflecting from the truncated boundary. To have a real nonreflecting boundary, there is another treatment called
infinite element method. In this method, the exterior domain is not truncated but is represented by elements of infinite extent. Some type of outward propagating
wave-like function is then proposed to describe the general characteristics of waves in the element (Bettess and Zienkiewicz, 1977). Most of the time, the infinite
element method is used with the FEM in solving wave problems.
Free surface boundary: On the free surface, the continuity of normal and shear stresses is imposed, i.e.:

(5.18)
In most of the numerical computations, the air effect can be neglected and the RHS is set to zero.
Solid boundary: On the surface of a solid body, the fluid velocity will be the same as the solid velocity, i.e., the no-slip boundary condition:

ui=uiS (5.19)
If the boundary is fixed and rigid (e.g., bottom), the above boundary condition becomes:

ui=0 (5.20)
The pressure boundary condition is also needed when the PPE is solved. This boundary condition can be derived by using the momentum equation and requires the
convection and diffusion terms to vanish on the solid boundary:

(5.21)
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For a stationary body, the above equation is reduced to:

(5.22)
Boundary conditions for turbulence on solid surface and free surface: If turbulence modeling is included, proper boundary conditions for turbulence on the solid
surface are also needed. In both the k−ε model and LES model, if the viscous sublayer is not resolved by the numerical resolution, the log-law wall function is first
used, i.e.:

(5.23)
By employing the tangential velocity information u and its normal distance to the wall z at the fluid cell nearest to the wall, we are able to solve (5.23) to find the
friction velocity, from which the wall shear stress can be obtained:

(5.24)
This wall shear stress will be used as the boundary condition when the momentum equation is solved.
For the k−ε model, the boundary conditions for k and ε on a solid surface are needed, i.e:



(5.25)
On free surface, the zero fluxes of k and ε are imposed, i.e.:

(5.26)
5.2.1.6 Wave generation
Wave generation from inflow boundary: Various waves can be generated from the inflow boundary. The free surface displacement and velocities can be specified
based on various wave theories (e.g., linear, irregular, Stokes, cnoidal, and solitary waves) at the inflow boundary as follows:

(5.27)
where  represent both velocity and free surface displacement. Different waves can be generated from the inflow boundary and then propagate into the
computational domain.
Wave generation with absorption of weak reflected waves: When there is a solid body inside the computational domain or the radiation boundary
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is not perfect so that wave reflection results, the reflected waves will propagate backward and interfere with the inflow boundary where waves are generated. In this
event, the so-called secondary (unrealistic) wave reflection will be generated from the inflow boundary and contaminate the computation. To relieve this problem,
the use of an absorbing wave maker has been adopted. Basically, the idea behind the absorbing wave maker is to detect the reflected waves and then to correct the
inflow wave-making process accordingly to absorb the reflected waves during wave generation. Mathematically, the inflow boundary condition (on the left) is
revised as follows:

(5.28)

where  is the detected wave reflection with  being the known incident wave variable from wave theory and  being the wave variable to be
specified. This equation will be reduced to the conventional radiation boundary condition if there is no wave incidence. In the case when the wave reflection is zero,
the above equation is reduced to  the conventional wave generation boundary condition. The above treatment can be used to treat weak wave reflection
that will not cause strong nonlinear wave interaction at the inflow boundary. The main difficulty in this method is the accurate detection of the reflected wave,
which can be of multiple directions and multiple frequencies.
Wave generation by a moving paddle: Alternatively, if a moving boundary is coded in the computer program, a wave train can be generated by specifying the time
history of the velocity and trajectory of the wave paddle, a mimic to the wake maker in a physical wave flume. Numerically, it requires the track of the Lagrangian
motion of the paddle. Lin (2007) proposed the so-called locally relative stationary (LRS) method to model a moving object in the fixed-grid RANS model. The
model was used to create a solitary wave by specifying the velocity and trajectory as follows:

(5.29)
where

 

x0 is the distance between the origin and the crest of the wave train at t=0 and  is the phase velocity of the wave train.
Internal wave maker: All the above wave generation techniques may face problems when a strong reflection is present in the computation. To avoid the
complication, we should try to avoid the simultaneous treatment
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of wave generation and wave absorption at the same place. This can be achieved by generating waves inside the computational domain with the use of artificial
mass or momentum sources. If the source function is linear, it will not interfere with the background waves in the process of wave generation. Lin and Liu (1999b)
were the first ones to implement mass source in the NSE solver to generate waves inside the computational domain. In their method, the continuity equation was
modified in the selected source region inside the computational domain as follows:

(5.30)
where s(x, t) is the mass source function.
Depending on how the source function is specified, various types of linear and nonlinear waves can be generated inside the computational domain. For a 2D
problem, by choosing a fully submerged rectangular domain and setting that using a uniform source function s(t), Lin and Liu (1999b) suggested the following form
of s(t) for a linear wave train:

(5.31)
where A is the total area of the source region.
An irregular wave train can be generated as follows:

(5.32)
where δi is the random phase angle.
A Stokes wave (second order or fifth order) can be generated as follows:

(5.33)
where the wave amplitude associated with each wave component ai can be found in Section 3.3.1.
A cnoidal wave can be generated as follows:

(5.34)
where yt and m can be determined given H, h, and T (see Section 3.3.2).
A solitary wave can be generated as follows:

(5.35)

where  in order to reduce the mass error below 1 percent.
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The major advantage of this approach is that the inflow boundary condition is no longer needed and only the radiation boundaries are specified at all lateral
boundaries. When combined with the use of a numerical sponge layer, wave reflection can be effectively controlled, which is especially important when long-term
simulation of random waves is performed.
5.2.1.7 Modeling of porous flows and flows in vegetation
In the earlier numerical study of wave-induced porous flows, either potential flow theory (e.g., Sulisz, 1985) or SWEs (e.g., Kobayashi and Wurjanto, 1990) were
used as the base model that incorporates the damping terms in porous media. Later, the more rigorous and accurate porous flow models in connection with NSE
solvers were developed (e.g., van Gent, 1995; Liu et al., 1999a). In their approach, the NSEs were averaged over space to have a new set of equations that have
similar characteristics to NSEs but the additional friction in porous media is included.
To illustrate how the new equations are derived, we shall confine ourselves to saturated porous flows only. To simplify the derivation, we assume that the porous
medium is of spherical shape with the mean diameter d50. The original NSEs are still valid in the fluid domain, i.e.:



(5.36)

(5.37)
Now consider a control volume (sometimes called filter space) as enclosed by the thick lines in Figure 5.1. In this control volume, the volume taken

Figure 5.1 Sketch of porous skeleton and porous flow.
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by the porous material and the pore space filled with fluid are Vs and Vf, respectively. The porosity is defined as n=Vf/(Vf+Vs).
Let us now introduce the spatial average operation as:

 
By taking the spatial average of the NSEs within the control volume for the fluid only, we obtain the new set of equations by applying divergence theorem and
assume that the operator is commutable for integration and differentiation of velocities:

(5.38)

(5.39)
where Sc is the control surface of the fluid part for the chosen control volume, Sp is the total surface of the porous material inside the control volume, and n is the
outward unit normal vector from the fluid to the solid surface. In the above equations, we have two terms requiring proper closures: (1) the additional stress term

induced by the correlation of velocity variation in space  (this is similar to Reynolds stress for turbulent flows) and (2) the additional forcing terms from the
surface integration of the reaction force from the porous materials within the control volume. Physically, this is not difficult to understand because the surface of the
porous material coincides with the surface of integrated fluid volume, through which the porous material acts as the source of external force.

We can now relate the control volume mean velocity  with the spatial-averaged velocity in fluid domain  by  (based on the mass conservation
argument). By further assuming that the porous material shares the same pressure and stresses as those in fluid, we can apply the divergence theorem again in the
entire control volume and obtain:

(5.40)

(5.41)
If we define the friction term:
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and substitute (5.40) and (5.41) into (5.39), we have the new set of governing equations for the mean flow averaged over the entire control volume:

(5.42)

(5.43)
By using the control volume mean velocity, the flow inside and outside the porous media can be directly linked by the same velocity, which is continuous across the
interface. As a result, there is no need to impose flow boundary conditions on the porous interface when the flow inside and outside of the porous domain is solved
as one fluid flow system.

The main issue now becomes how to model the friction term  and the turbulence stress term  While the latter term can be modeled by the same kind of

modified turbulence eddy viscosity model, i.e.,  the former can be modeled by the Morison equation (3.188) for general unsteady
flow, i.e.:

(5.44)

where  and  are the inertial and drag force contributions. The inertial force is caused by the resistance of the rigid and fixed porous particles to the ambient
flow acceleration. Lin and Karunarathna (2007) derived the following expressions assuming that the control volume is filled with uniform spheres:

(5.45)
where N is the total number of spheres in the control volume, VP is the volume of one sphere, and CM is the virtual mass coefficient. CM is also called the inertial
coefficient that is the sum of the Froude-Krylov force coefficient 1.0 and the added mass force coefficient Ca, i.e., CM=1+Ca. The Froude-Krylov (F–K) force
results from the pressure difference in an accelerating fluid flow and it behaves in a similar way to the buoyancy force. The added mass force is the additional force
resulting from the presence of the body and it is a function of body shape. For a single sphere, Ca = 0.5 and CM=1.5.
However, in most of the existing literature, the value of CM based on oscillatory flow experiments is generally smaller than 1.0. For example, the suggested values
of CM by van Gent (1995) [based on Smith’s (1991) experiments] and Gu and Wang (1991) are CM=0.34 and CM=0.46, respectively. Lin and Karunarathna
(2007) also adopted CM=0.34 in their study. One possible explanation for the small value of CM in porous media could be that
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in a densely packed porous medium, the porous flow moves through the channels of pores similar to the flow in curved tubes with changing diameter, in which both
F–K force coefficient and added mass coefficient are reduced. The reduction of the F–K force coefficient is due to the packing of porous materials that reduce the
effective cross-sectional area exposed to the flow direction. Since the F–K force has the same expression and similar justification as buoyancy force, the reduced
FK force coefficient in porous media can be explained by the reduced buoyancy for a composite cylinder sitting on the bottom (Figure 5.2). In such a case, the total
lift force is reduced because part of the uplift force originally acting on the lower surface of the structure disappears. Besides the F–K force coefficient, the added



mass coefficient is also reduced when we consider the porous materials as many variable-diameter pipelines rather than individual spheres.
Based on the Morison equation again, the drag force can be expressed as:

(5.46)

where  is the characteristic velocity that can be estimated by =  is the maximum cross-sectional area of the sphere, and CD is the drag force
coefficient.

Figure 5.2 Illustration of the changed lift force on a composite cylinder due to the change of relative position of the structure.
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For a single sphere in steady flow, the drag coefficient formula was proposed by Fair et al. (1968):

(5.47)

where  In reality, porous media have various shapes, surface roughness, and packing patterns. The wake flows behind particles also have influence on
the drag force of the following particles. All these would have an impact on the value of CD. By employing a large amount of experimental data, Lin and
Karunarathna (2007) suggested the following modification for CD in simulating wave-induced flows in porous materials:

(5.48)
where c1=7.0 and c2=1.8~4.2 are found in their study, with the smaller c2 better describing the flow in a small porous medium. In this book, the value of c2=4.0 is
adopted. In the Keulegan-Carpenter number KC= UmaxT/(nd50), Umax is the maximum water particle velocity and T is the wave period. This term (1+7.5/KC) is
included to account for the additional influence of the flow unsteadiness on the turbulent boundary layer around the porous particles. For more general unsteady
flows, T represents the characteristic timescale that has to be determined case by case.
Consider a 1D steady flow in the x-direction. Substituting (5.46) into (5.43), we have:

(5.49)
For small Re (e.g., Re<10), the porous flow is laminar and CD=24c1/Re. Substituting it into (5.49), we have:

(5.50)
where K(m/s) is the permeability. This is the well-known Darcy’s law for laminar flows in porous media where the mean velocity is linearly proportional to the mean
pressure gradient.
When Re is large, CD=0.34c2 becomes a constant and (5.49) is reduced to:

(5.51)
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Now the drag is proportional to the mean velocity square and it is often called nonlinear friction that prevails when the porous flow is fully turbulent (e.g.,
Re>1000).
In many earlier studies, only the linear and nonlinear terms are employed to describe flow resistance in porous media, neglecting the transitional flow range [i.e., the

term  in (5.48)] that may be important for intermediate Re (e.g., 10<Re<1000). For example, Forchheimer (1901) proposed the following formula:

(5.52)
There have been many proposals for the expression of a and b based on different theoretical assumptions and experimental data (e.g., Ergun, 1952; Engelund,
1953). The comparison among different equations was made by Burcharth and Andersen (1995) and is extended here by using the following more general equation:

(5.53)
Authors a b c

Carman (1937) 0 0

Ergun (1952) 0

Engelund (1953) 0

van Gent (1995) 0

Liu et al. (1999a) 0

Lin and Karunarathna (2007) with c1=7.0 and c2=4.0
The power dependency of a on (1−n) varies from one another. Lin and Karunarathna’s (2007) coefficient is smaller than all others because of the lower order
dependency on (1−n). The functional form for b is essentially the same among all models except that the coefficients vary. Lin and
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Karunarathna’s (2007) coefficient is again smaller than others, probably because of the additional term in their model for the transitional flow, where CD is

reciprocally proportional to 
Comparisons can also be made by converting the earlier models in the form of (5.52) to the equivalent drag coefficient used in (5.46). The converted drag

coefficient has similar expression to (5.48) except that there is no term associated with  Since different dependencies on (1−n) are used in different models,
the comparisons need to be made for different values of n separately. Figure 5.3 shows the comparison of the effective CD (Re) in different porous flow models.
Most of these models give close prediction of CD except for van Gent’s model that has a much larger value of CD for relatively small Re. Due to the inclusion of
the transition flow correction, Lin and Karunarathna’s (2007) model has larger CD than Liu et al.’s (1999a) model for 10<Re<1000 and n=0.3 and 0.4.

Figure 5.3 Comparisons of equivalent CD in different porous flow models.
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For the flows in vegetation, the spatially averaged governing equations can be similarly derived and they are essentially the same as (5.42) and (5.43) except that the
friction term needs to be expressed differently. By assuming that the vegetation is of uniform rigid smooth cylinders with the diameter of D, Su and Lin (2005)
proposed the following expression for the friction term:

(5.54)
where the added mass coefficient is defined as (Andersen, 1994):

(5.55)
and the drag force coefficient is derived from that for smooth circular cylinders:

(5.56)
For the drag force coefficients, a larger range of Re dependency needs to be developed if the prototype problems are to be modeled.
So far, little has been said about the modeling of turbulence inside porous media. The study of turbulence characteristics in porous media has been intensively made
in meteorology (e.g., boundary layer air flow interaction with forest; see Raupach et al., 1996) but relatively less in hydrodynamics. For a densely packed porous
medium, the Reynolds stress is often relatively small compared to the friction term because the presence of porous particles restricts the growth of turbulence. For a
loosely packed porous medium, e.g., vegetation, the turbulence can actually be enhanced due to the presence of porous materials. In this case, the realistic
turbulence modeling inside the porous domain becomes crucial. In principle, the modified simple mixing-length eddy viscosity model (e.g., Nepf, 1999), k−ε model
(Shimizu and Tsujimoto, 1994), and the LES model (e.g., Su and Lin, 2005) can all be used but a robust and accurate turbulence model inside porous media for
various types of porous flows is yet to be developed and tested.
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5.2.1.8 Water wave models based on the Navier-Stokes equation solvers
Chan and Street (1970) were probably the first to apply NSE solvers with the MAC method to water wave modeling. The so-called irregular star method is used in
the pressure solution on a free surface. The model is named SUMMAC. Along the line of using MAC to track free surface, SOLA was developed later for more
general free surface flows (Hirt et al., 1975). TUMMAC was developed in the 1980s to simulate ship waves (Miyata et al., 1985; Miyata, 1986) and its improved
version is still used nowadays for hull design (Park et al., 1999) and breaking wave impact on ships (Yamasaki et al., 2005). Gao and Zhao (1995) used the MAC
model to study wave interaction with structures and sand beds.
Water wave models were also developed by using the VOF method to track free surface. For example, Austin and Schlueter (1982) extended SOLA-VOF model
(Nichols et al., 1980) to the study of breaking wave interaction with breakwaters. Lemos (1992) introduced the k−ε turbulence model to SOLA-VOF to model
turbulence under broken waves. The model SKYLLA developed by van der Meer et al. (1992), van Gent et al. (1994), and van Gent (1995) was applied to free
surface flows on impermeable slopes and permeable structures (Doom and van Gent, 2004). Independently, Iwata et al. (1996) developed a numerical code to
investigate breaking waves and post-breaking wave deformation above submerged impermeable structures. Wang and Su (1993) simulated wave breaking on a
sloping beach. Troch (1997) proposed a model called VOFbreak2 to study wave breaking on rubble mound breakwaters. Lin and Liu (1998a, b) presented a 2D
RANS model named COBRAS that is coupled with a nonlinear Reynolds stress model and a k−ε turbulence model to study breaking waves and their transformation
over slopes and structures (Liu et al., 1999a; Lin et al., 1999). Lin and Xu (2006) proposed a more general model named NEWFLUME to study turbulent free
surface flows in both open channels and oceans. In Figure 5.4, an example of numerical simulation of plunging breaking waves on a sloping beach by NEWFLUME



is given. Recently, Liu and Lin (2008) developed a 3D NumErical Wave TANK (NEWTANK) to simulate more general free surface flow problems. The model can
be used to simulate laminar and turbulent flows in porous media and vegetation. Figure 5.5 shows the simulation of wave run-up on a beach with the presence of
coastal vegetation (e.g., mangrove), where the effect of vegetation on reflecting and attenuating the wave energy and reducing coastal inundation is clearly
demonstrated.
Water wave models based on NSE solvers can employ other methods for free surface tracking. For example, using the level set method, Gu et al. (2005) proposed a
3D model to simulate liquid sloshing in a tank. By using the height function as the free surface tracking technique and the irregular star method for solving pressure
on the free surface, Kim (2001) proposed a 3D model to simulate liquid sloshing in a tank under external excitation.
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Figure 5.4 Simulation of a plunging breaking wave on a linear slope of s=1/10 by using NEWFLUME; the periodic wave has H=0.24 m and T=1.35 s in constant

water, and h=0.80 m; the time interval between the two snapshots is 0.05 s; the uniform ∆x=∆z=0.01 cm is used; color represents turbulence intensity 
All the previous wave models are z-coordinate (z-level) models based on the FD formulation in a physical domain. Such models will face difficulty in resolving
uneven bottom. Special treatment such as cut-cell method, partial-cell treatment, or immersed boundary (IB) method must be used, which increases the coding
complexity and reduces the numerical accuracy near the bottom. Some models employ unstructured mesh that is boundary-fitted (e.g., Fringer et al., 2006), but the
mesh generation may become difficult and expensive.
An alternative way of handling the uneven bottom is the use of σ-coordinate transformation that maps the irregular physical domain between the wavy free surface
and the uneven bottom into a regular computational domain, in which the solution is sought by solving the modified governing equations. For example, Stansby and
Zhou (1998) and Li and
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Figure 5.5 Comparison of a solitary wave run-up on a beach with (solid line) and without (dashed line) vegetation; the top figure is for the problem setup of H=6 m,



h=20 m, and s=1/20; the vegetation domain is from 250 m to 500 m and the vegetation has a mean stem diameter of 0.05 m and a volume density of 1%.
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Johns (2001) proposed a vertical 2D σ-coordinate numerical model that considered nonhydrostatic pressure. Casulli (1999) proposed a semi-implicit model for 3D
nonhydrostatic free surface flows. Lin and Li (2002) developed a 3D wave model and employed it to study wave interaction with current (Lin and Li, 2003),
structures (Li and Lin, 2001), and vegetation (Su and Lin, 2005). Stelling and Zijlema (2003) also developed an efficient σ-coordinate for solving Reynolds
equations. Recently, Lin (2006) developed a multiple-layer σ-coordinate to solve wave interaction with immersed and floating structures, which cannot be treated
by the conventional σ-coordinate models.
The wave models based on meshless particle methods have advanced rapidly in the past few years. Most of these meshless methods are based on SPH method (e.g.,
Shao and Ji, 2006 for the study of 2D breaking waves; Dalrymple and Rogers, 2006 for the study of 3D breaking waves) or MPS method (e.g., Koshizuka et al.,
1998 for simulation of breaking waves) that solves NSEs. Currently, this type of water wave model is still under development and refinement. Figure 5.6 gives an
example of the simulation of 2D plunging breaking waves on a plane beach using an SPH wave model (Shao and Ji, 2006).

Figure 5.6 Simulation of plunging waves (incident cnoidal wave has H=0.128 m, h=0.40 m, and T=5.0 s) on a plane beach (s=1/35) from an SPH model; color
represents eddy viscosity (mm2/s). (Courtesy of Dr. Songdong Shao of the University of Bradford)
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5.2.1.9 Commercial software for NSE solvers applicable for water wave modeling
So far, most of the available commercial software based on NSE solvers are not dedicated to water wave modeling. Instead, the software was designed to be a CFD
tool for general fluid problems. There is a lot of CFD software available in the market, namely FLUENT (originally by FLUENT, Inc. and now acquired by
ANSYS), FLOW3D (by Flow Science, Inc.), PHOENICS (by CHAM Ltd.), STAR-CD (by CD-adapco), and CFX (by ANSYS Ltd.) Most of the software packages
are based on the FVM formulation, though some also have the version of, the FEM formulation. Freitas (1995) compared the numerical results from eight
commercial codes (i.e., FLOW3D, FLOTRAN, STAR-CD, NS3, CFD-ACE, FLUENT, CFDS-FLOW3D, and NISA/3D-FLUID) with five benchmark experiments.
He concluded that although these codes are in general very promising, they can be inaccurate under certain circumstances, even for laminar flow computation.
Thus, these codes must be used with caution and proper validation. Almost all the software packages have the capability of treating turbulent flows with free
surface. Their applications to water wave problems, especially breaking wave problems, however, require further validation.
5.2.2 Wave models based on the Navier-Stokes equations with hydrostatic pressure assumption
Since the numerical solution to full NSEs requires the iterative procedure for pressure solution, the computational expense of running an NSE model is relatively
high. This limits the application of this type of model to local-scale computation. To efficiently model a large-scale wave and current problem, certain simplifications
are necessary.
5.2.2.1 Hydrostatic pressure assumption
For the flow motion whose horizontal characteristic length is much larger than local water depth, e.g., long waves, storm surges, tides, bores, ocean circulation,
ocean currents, the hydrostatic pressure assumption is valid, i.e.:

P=ρg(η−z) (5.57)
The above expression is the solution of the vertical momentum equation in the original NSEs after neglecting all inertial and viscous terms. The assumption of
hydrostatic pressure also implies that the free surface has a mild slope and is the single function of the horizontal plane, i.e., η=η(x, y).
Let us consider a 3D case where g1=g2=0 and g3=−g. By substituting (5.57) into the horizontal momentum equations in NSEs, we have:
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(5.58)

(5.59)
The continuity equation takes the same form as in the original NSEs:

(5.60)
This equation can be used to calculate w when u and υ are solved from (5.48) and (5.49).
If we further integrate the continuity equation in the vertical direction from the bottom to free surface and apply the kinematic free surface boundary condition and
the bottom boundary condition, we obtain the so-called height function transport equation (see Section 5.3.1 for the detailed derivation), i.e.:

(5.61)
The above equation can be used to track the movement of the free surface displacement of water waves as long as the free surface does not overturn.
Compared with the original NSEs, the governing equations with the assumption of hydrostatic pressure become simpler. Iteration is no longer needed for pressure
solution. The passage of time can be used first to advance the horizontal velocities based on the momentum equations, which will later be used to obtain the vertical
velocity from the continuity equation. A model solving the above system of PDEs is usually referred to as a quasi-3D model, which is generally used to simulate
large-scale currents or very long waves such as tides and tsunami.
Johns and Jefferson (1980) were one of the early explorers of this approach, though their model was only 2D in a vertical plane. Blumberg and Mellor (1987)
developed a 3D ocean circulation model to study various ocean circulation and mixing problems. Casulli and Cheng (1992) also presented a 3D model of this type
and used it to simulate coastal flooding by tides. This type of model can also be applied to study various turbulent open channel flows (e.g., Li and Yu, 1996).
Most of these quasi-3D models are constructed on the σ-coordinate, which maps the physical space between a wavy free surface and an uneven bottom to a regular
space:

(5.62)
where H=h+η and σ is the new coordinate in the vertical direction that varies from 0 (when z=−h) to 1 (when z=η). With the introduction
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of σ-coordinate transformation, the boundary conditions can be applied exactly on the free surface and bottom.
The introduction of the σ-coordinate transformation modifies the original NSEs to the following forms:



(5.63)

(5.64)

(5.65)
where

 
and

 
The above equations are valid by assuming x=x* and y=y*.
The free surface tracking equation then becomes:

(5.66)
5.2.2.2 Wave models: open source codes
The pioneer work by Blumberg and Mellor (1987) has led to the success of POM, which has been widely used in the simulation of large-scale ocean circulation and
ocean mixing processes, storm surge (Minato, 1998), and tidal currents (Liu et al., 2005). Currently, a real-time forecasting system of sea surface height (SSH) and
currents is under development with the use of POM (Oey et al., 2005; Figure 5.7), which can be used for the prediction of storm surge in coastal water induced by
hurricanes.
Another open source code is the COHERENS (COupled Hydrodynamical Ecological model for REgioNal Shelf seas) model that was developed under the Marine
Science and Technology Programme (MAST-III) sponsored by the
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Figure 5.7 Simulation of sea surface height (SSH) and current in Gulf of Mexico during Hurricane Wilma (2005) by using POM. (Courtesy of Dr. Leo Oey, of
Princeton University)
European Union. COHERENS is a 3D hydrodynamic multipurpose model for coastal and shelf seas, which is coupled to biological, resuspension, and contaminant
models, and resolves mesoscale to seasonal scale processes (Marinov et al., 2006).
Sometimes, the depth-resolved hydrostatic model is also applied to river flows, estuarial flows, or flows in reservoirs or lakes. In these cases, considering that the
flow is confined by two lateral sides, the lateral averaging can be performed to further reduce the computational effort. The model CE-QUAL-W2, which was
developed by the U.S. Army Corps of Engineers (USAGE), is a 2D laterally averaged FD model. This model can be used to model the vertical variation of flow and
water quality in rivers, lakes, reservoirs, and estuaries.
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5.2.2.3 Wave models: commercial software
Currently, there are two commercial 3D codes based on the σ-coordinate transformation and hydrostatic pressure assumption. One is MIKE 3 developed by the
Danish Hydraulic Institute (DHI). MIKE 3 is applicable for simulations of hydrodynamics, water quality, and sediment transport in water bodies (coastal and inland)
where 3D effects are important. The other is DELFT3D developed by DELFT Hydraulics. Delft3D provides the integrated modeling environment for
hydrodynamics, waves, sediment transport, morphology, water quality, and ecology.
5.2.3 Wave models based on potential flow theory
5.2.3.1 Governing equations and boundary conditions
When the potential flow theory is used to describe a 3D wave problem, the governing equation for the velocity potential is:

(5.67)
in which we have the following definition:

(5.68)
The general kinematic free surface boundary condition is:

(5.69)
from which the boundary location can be updated. The above general kinematic free surface boundary condition can be reduced to the following form if free



surface displacement is a single-value function of the horizontal coordinate:

(5.70)
The corresponding dynamic free surface boundary condition on the free surface is:

(5.71)
The general boundary condition on a solid surface (e.g., bottom, immersed body surface, and wave paddle surface on the inflow boundary) follows the free-slip
condition:

(5.72)
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where n is the outward unit normal vector from the fluid to the solid surface and Vn is the velocity of the body in the normal direction. For a rigid body and bottom,
Vn=0. For a moving body, Vn is a function of time, which can be either prescribed for a forced motion or determined by the dynamic equation of a free body. One
application of the above equation is wave generation at the inflow boundary by specifying the wave paddle movement Vn(t) based on wave-maker theory.
Similarly, if the bottom can be represented by a single function of the horizontal coordinate, the generalized bottom boundary condition can be simplified as follows:

(5.73)
When h is specified as the function of time, waves can be generated from bottom movement, similar to tsunami generation.
To truncate the computational domain in a finite region, the radiation boundary condition must be applied. For normally outgoing waves, the linear radiation
boundary condition reads as follows:

(5.74)
Theoretically, the potential flow can also be formulated by Euler equations. One can solve Euler equations with the appropriate initial (e.g., irrotational) and
boundary conditions for potential flows as well (e.g., Chen and Chiang, 1999). However, this is often more computationally expensive when compared to the
numerical solution of the Laplace equation. Furthermore, it is hard to ensure numerically the flow irrotationality near the edge of a structure. Therefore, this
approach is not popularly adopted by modelers.
5.2.3.2 Wave models solving the Laplace equation
There are essentially two ways of solving the Laplace equation (5.47). One is based on the direct numerical solution to the Laplace equation. Under this category,
either FEM or FDM can be used. For example, Wu et al. (1998) developed a 3D FEM to solve the Laplace equation for fully nonlinear wave sloshing in a tank. To
generate finite elements following the moving free surface, either the σ-coordinate transformation (e.g., Turnbull et al., 2003) or the ALE method (e.g.,
Nitikitpaiboon and Bathe, 1993) can be used. In contrast, Li and Fleming (1997) solved the Laplace equation in the σ-coordinate with the use of FDM. Frandsen
and Borthwick (2003) proposed another σ-transformed FDM model to simulate liquid sloshing in a 2D tank. The major advantage of this approach is that the
nonlinear free surface boundary conditions can be imposed directly on the free surface.
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The alternative way of solving the Laplace equation is to solve its equivalent form of the boundary integral equation with the use of the BEM (see Section 4.6),
using Green’s theorem that links volume integration to surface integration. With such treatment, the dimension of the problem is reduced by 1, which may cut down
the computational cost in some but not all cases, depending on the balance between the reduced dimension and the resulting full and dense matrix. The main
numerical difficulty in the BEM is the application of fully nonlinear kinematic and dynamic free surface boundary conditions (5.70) to (5.71). With the nonlinearity
being retained, the matrix being formed will be different at every time step and therefore the computation can be expensive because the large full matrix needs to be
inverted at every time step. With all the boundary conditions being linearized, however, the matrix can be formed only once at the beginning of the computation
that can drastically reduce the computational time for a dynamic problem. More details of the numerical procedure will be provided in Section 6.2.2.2.
Longuet-Higgins and Cokelet (1976) were the pioneers who successfully developed a 2D BEM model to solve highly nonlinear nearly breaking water waves in deep
water. Later, this technique and its variations were adopted in both offshore engineering and coastal engineering. In offshore engineering, the technique is often
referred to as the panel method and it was mainly for the analysis of wave loads on structures and structure responses (Isaacson, 1982). In coastal engineering, the
development of the BEM is to extend the model to finite depth to study the complex nonlinear wave transformation over changing topography and wave run-up on
slopes (e.g., Grilli et al., 1989).
5.2.3.3 Boundary element method wave models: commercial software
Although BEM wave models can be applied to both offshore and coastal engineering, the commercialization of the codes has taken place mainly in offshore
engineering. The main reason could be the inherent limitation in extending the BME wave models beyond the breaker line, after which the flow is turbulent and
rotational. Besides, the computation of large-scale wave transformation in shallow water, which is often the main objective in coastal engineering, can be too
computationally expensive for BEM models. In contrast, in offshore engineering applications, the computation is mainly conducted near an offshore structure,
which is usually large and allows potential flow assumption during wave-structure interaction. Furthermore, the local water depth is relatively deep which allows the
wave to be linearized in the simulation as long as the wave steepness is not too large.
Currently, most of the commercial BEM codes are developed for the design of offshore oil platforms and ship hulls. The code developers
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are mainly in two fields, namely the research institutes and universities having offshore industrial partnerships or collaboration, and the ship and offshore
classification agencies in different countries (e.g., American Bureau of Shipping (ABS), Bureau Veritas France (BV); Det Norske Veritas (DNV)). Some popular
commercial codes in analyzing wave-structure interaction using BEM models include WAMIT (Wave Analysis At Massachusetts Institute of Technology; Lee,
1995), MOSES (MultiOperational Structural Engineering Simulator), UNDA (the Latin word for wave; by the Norwegian University of Science and Technology
(NTNU), Norway), Nauticus Hull (by DNV).
Figure 5.8 shows an example of using a BEM model in the simulation of wave interaction with a moving body, which is important in both offshore engineering and
ship design. In the simulation, both wave loads on structures and structure responses need to be modeled. In addition, the wave generated by body motion also
needs to be simulated. Such a model is applicable as long as the KC number is small so that flow separation is not significant. In Section 6.2, we shall provide more
details on using the BEM models in the study of wave-structure interaction.
5.3 Depth-averaged models
All depth-averaged models share the same motivation that the depth-resolved models can be too computationally expensive for large-scale problems. Through depth
averaging the computational cost can be greatly reduced. The depth averaging, of course, must be based on some assumptions of the vertical flow structure and
therefore the applications of these models are relatively restricted.
In the case where the vertical flow motion is weak and not an important consideration, we can calculate the depth-averaged horizontal velocities only. If we make a
further assumption that the horizontal velocities are uniform in the vertical direction, we will end up with the well-known SWEs. The SWEs can deal with the same
type of long-wave problems handled by quasi-3D models (Section 5.2.2). Since a SWE model can run much faster than a quasi-3D model, it can be applied to a
larger computational domain. To model shorter waves, both vertical acceleration and vertical flow variation must be considered. This leads to the so-called
Boussinesq equations. Depending on the way approximation is made in the derivation, there are many types of Boussinesq equations that have different
characteristics.
Although Boussinesq equations have been successfully applied to nonlinear dispersive waves in shallow waters, they are not applicable to very deep waters.
Alternatively, the MSE, another type of depth-averaged equation with the assumption of a monochromatic linear wave, has been derived and applied in both deep
and shallow waters. The derivation of the MSE normally starts from the Laplace equation and its application is restricted to
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Figure 5.8 Numerical simulation of wave interaction with a moving ship by Nauticus Hull Wave Load Analysis developed by DNV. (Courtesy of DNV Software)
periodic water waves only. Because the exact linear dispersion equation is employed to relate flow property with local water depth, the MSE can be applied to
periodic waves in all water depths.
A wave energy spectral model is not only a depth-averaged, but also a phase-averaged model. This is different from all other wave models we have discussed so far,
all which are of the phase-resolved type.
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The phase-averaging process eliminates the need to resolve the flow change within the wavelength and wave period in the computation. Instead, only the variation
of wave height, which is normally slow in both time and space, needs to be resolved. This provides a great advantage in terms of computational efficiency because
the mesh size can be so large that it covers many wavelengths. For this reason, this type of model has been used mainly to forecast the wave climate in very large
areas (e.g., over the globe). The main limitation of the model is its inability to simulate wave diffraction due to the lack of wave phase information.
5.3.1 Shallow-water equation models
5.3.1.1 Derivation of the shallow-water equations
Let us start with incompressible NSEs:

(5.75)

(5.76)
Taking the vertical integration of the continuity equation from the bottom to the free surface, we have:

(5.77)
The above equation can be rewritten as follows:

(5.78)
In arriving at the above expression, the Leibniz rule of integration was used, i.e.:

(5.79)
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Recall the kinematic free surface boundary condition:

(5.80)
and the bottom boundary condition:

(5.81)
By substituting (5.80) and (5.81) into (5.78) and defining:

(5.82)
where H=η+h is the total water depth, we have the final form of the integrated continuity equation, i.e.:

(5.83)
This equation is also called the height function transport equation. It can be used to track the movement of the free surface. The above equation can be rewritten as
follows:



(5.84)
In the case when the still water depth is time-dependent (e.g., in the event of an underwater earthquake), the RHS becomes a source of wave generation.
To derive the vertically integrated momentum equation, let us first rewrite the momentum equation in the x-direction in the conservative form with the application
of continuity equation:

(5.85)
Assuming hydrostatic pressure and constant density in the vertical direction, i.e., p=pa+ρg(z+η), we have:

(5.86)
The first term can be significant when the current and the surface abnormity are driven by an atmospheric pressure difference (e.g., due to storm
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surge, hurricane, typhoon). The third term can be important for a large-scale ocean circulation driven by density difference. Taking the vertical integration from the
bottom to free surface for (5.85) and applying the kinematic free surface and bottom boundary conditions and Leibniz’s rule, we have:

(5.87)
Depending on how the flow and stress terms are assumed, there are a few variations of SWEs as follows:
Version 1 (Uniform velocity and stresses in the vertical direction): If we assume that the flow is uniformly distributed in the vertical direction (and thus u=U, υ=V)

and  and  do not depend on z (thus  and  are constant in the z-direction), equation (5.87) can be simplified as follows:

(5.88)

where  and  are surface (e.g., wind) and bottom (e.g., friction) shear stresses, which come into the equation as the source functions. Similarly, the
momentum equation in the y-direction is:

(5.89)
The above equations have been used by Dean and Dalrymple (1991).
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Version 2 (Varying stresses in vertical direction): The SWEs have another form if we do not make the assumption that  and  are constant, i.e.:

(5.90)

(5.91)
In the above equations, the shear stresses  and  on the bottom are all zero because the slip velocities are zero there.
Version 3 (Conversion of stresses following tangents on a sloping free surface and bottom): If we establish the new coordinate (x′, y′, z′) whose (x′, y′) plane is
aligned with the tangential plane of the free surface and z′ being normal to the free surface pointing upward, the coordinate transformation can be established
between the original coordinate and the new coordinate in the following general form:

(5.92)
where l, m, and n are determined by the rotational angles in the new coordinate. This will lead to the following relationship between the stress tensors in the two
coordinates:

(5.93)
To make the mathematics easier to follow, we shall use a 2D problem in the (x, z) plane as an example where the new coordinate (x′, z′) rotates in the
counterclockwise direction at an angle of θ to follow the surface, from which the following relationship is satisfied:

(5.94)
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from which we have:

(5.95)
If we further assume that the free surface steepness is small, we would have sin θ≈tan θ=∂η/∂x and cos θ≈1, which leads to the following:



(5.96)
For a 3D case, with the same assumption of small surface steepness, we would have:

(5.97)

Here  should be regarded as the stress following the free surface orientation such as wind stress. Similarly, we could have the following if the bottom slope is
mild:

(5.98)

where  can be regarded as the bottom shear stress along the sloping surface.
Substituting the above into the original SWE, we have:

(5.99)

(5.100)
The above formulas have been adopted by Kuipers and Vreugdenhil (1973).
Version 4 (On a spherical coordinate with Coriolis forces): For large-scale computations, the SWEs must be constructed on spherical coordinates by including
Coriolis forces, i.e.:
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(5.101)

(5.102)

(5.103)
where  represent the longitude and latitude of Earth, R is the radius of Earth, and f is the Coriolis force parameter due to Earth’s rotation. The stress terms are
neglected for simplicity. With the introduction of the Coriolis force, there exists another restoring force from the Coriolis effect, besides the conventional
gravitational force. The Coriolis restoring force will result in the so-called Rossby wave, which is one type of inertial wave that exists in both atmosphere and ocean.
The Rossby wave is also called planetary wave that is different from an ocean surface wind wave in that its wave energy is transmitted through the bulk of the fluid
rather than on the surface only. Readers are referred to Dickinson (1978) for more details on Rossby waves.
1D lateral-averaged SWEs (Saint-Venant equations): To apply the SWEs to rivers, the equations can be further simplified by taking the lateral integration across
the river section by assuming that the flow is dominated by longitudinal flow. By doing so, the equations are reduced to 1D equations along the river flow direction.
The cross-sectional information and river direction will be included in the equation by lateral integration. By neglecting the centrifugal force, we have the
well-known Saint-Venant equations in vector form:

(5.104)
where x represents the river flow direction and:

(5.105)
with V being the mean velocity, A the cross-sectional area,  the distance from the water surface to the centroid of the area, ql the lateral flow, Vx the component of
the velocity of the lateral flow in the x-direction, So the slope of the river bed, and Sf the slope of the energy line. The main difference of (5.104) from the 1D SWEs
is the inclusion of the lateral flow, the cross-sectional area, and the slope of the energy line due to the spatial variation of the mean water level. It is not difficult to
prove that for a rectangular channel (thus A=h+η for a unit length of the channel) without the lateral flow (and thus ql=0), equation (5.104) can be reduced to the
nonlinear SWEs (5.83) and (5.88) by realizing So=∂h/∂x. Besides, we have also neglected the atmospheric pressure and fluid density variation in the x-direction and
viscous
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effect in (5.88) and assumed that  The 1D SWE models are often used in modeling river and reservoir hydraulics (e.g., HEC-2
developed by the USAGE).
Conservative and nonconservative SWEs for inviscid fluids: The momentum equations can be simplified as follows if the viscous effects and surface forcing terms
are neglected:

(5.106)

(5.107)
In the above equations, the convection terms are written in conservative form. Making use of the continuity equation (5.83), the equivalent SWEs in
nonconservative form can be obtained:

(5.108)

(5.109)
Linear long-wave equation and linear wave equation: When the wave amplitude is small, i.e., η<<h, and thus the wave nonlinearity is negligible, the SWEs in
conservative form can be further simplified to be the linear equations:

(5.110)

(5.111)
By taking the time derivative of the continuity equation and substituting the above momentum equations into it, we are able to merge the three equations into one
equation:



(5.112)

where  If we first assume that the bottom is fixed, i.e.:

 
the above equation becomes:

(5.113)
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For a monochromatic wave train, we can define η(x, y, t)=F(x, y)e−iσt, where F(x, y)e−iσt is the complex wave amplitude with its modulus representing real wave
amplitude and argue the phase angle information. By substituting the definition into (5.113), we would have the steady-state wave equation described by Helmholtz
equation:

(5.114)

In contrast, if the bottom slope is comparably smaller than the free surface steepness, i.e.,  the time-dependent equation (5.113) can be further
reduced to:

(5.115)
This is called linear wave equation, which describes wave propagation on a 2D horizontal plane. For 1D problems, the equation can be split into two convection
equations for waves propagating in two opposite directions:

(5.116)
The two equations are readily solved by the method of characteristics (Erbes, 1993). For 2D SWEs, the numerical methods were discussed by Vreugdenhil (1994)
and Durran (1999).
5.3.1.2 Boundary conditions
Since SWEs are depth-integrated equations, only the lateral boundary conditions are needed in computations. The most common lateral boundary conditions include
the following:
1. Reflected boundary condition where the wave energy is completely reflected back. This happens on a smooth, rigid, and impermeable vertical wall.
Mathematically, it is expressed as a mirror plane, i.e.:

Un=0 and ∂η/∂n=0 (5.117)
2. Outflow boundary condition where waves or currents are allowed to leave the domain freely.
A. For waves, the radiation boundary condition can be specified:

(5.118)
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Here  is the variable of the mean flow and free surface displacement and n is the outward unit normal vector.
B. For flows, different treatments will be used for subcritical and supercritical flows. For subcritical flows, the downstream water level must be provided, whereas
for supercritical flows the gradient of total depth must be specified.
3. Inflow boundary condition where the wave or the current is generated:
A. To generate tides from all open sea boundaries, the time history of water elevation must be provided. The information can be extracted from either the tidal table
or gauge record.
B. To generate long waves, both the flux and the water level need to be provided based on wave theory.
C. To generate subcritical open channel flows, the flux and the gradient of the wave level need to be provided.
D. To generate supercritical open channel flows, both the flux and the water level need to be provided.
4. Moving boundary when wave run-up or flow inundation, during which the water wet line changes with time, is modeled. There have been various ways of
treating the moving boundary condition in different SWE models, which are summarized below:
A. In principle, the shoreline-fitted grid system can be generated dynamically at every computational step so that the computation will be carried out on the fluid
domain only. Such a technique, however, was rarely used in practical modeling due to the high computational cost.
B. Tao (1983) proposed the slot technique, in which each computational cell on the possible run-up and run-down area has a narrow and deep slot to allow inside
water going up and down, in order to simulate wave run-up and run-down on a beach. This method is like replacing the impermeable beach with a porous one, and
thus the water level on each cell can possibly go below the beach surface during the computation. Strictly speaking, Tao’s method does not treat a moving boundary
because all cells are treated as interior cells and calculated. The advantage of the slot technique is that there is no need to track the wet line of the water front.
However, the mass used to fill the slot may cause the reduction of simulated wave run-up. Later, Kennedy et al. (2000) tried to improve the method for better mass
conservation in their Boussinesq model.
C. An alternative way is to track the wet line at each time step on a fixed grid system. Certain criteria are used to justify whether the wet line will be moved to the
neighborhood cells and, if yes, how much the mass flux is. Examples include Cho (1995) in his SWE model and Lynett et al. (2002) in their Boussinesq model (in
fact, all the boundary conditions discussed above are equally applicable to Boussinesq models).
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5.3.1.3 Modeling of wave and current generation
Waves can be generated in various ways. The most straightforward way of wave and current generation is by specifying the mean flux and water level at the inflow
boundary, as discussed in Section 5.3.1.2. By applying a nonuniform wind shear stress on water surface, long waves and currents can also be generated. Similarly,
by applying the pressure gradient on water surface, large-scale water surface abnormities can be generated and modeled. Waves can also be generated from the
bottom by the change of bathymetry. In an SWE model, this can be easily achieved by making still water depth the function of time, i.e., h=h(x, y, t). Waves will be
generated when h changes with time, which can be used to simulate tsunamis generated by an underwater earthquake and landslide (e.g., Heinrich et al., 2001).
An innovative numerical technique was proposed by Larsen and Dancy (1983) to generate waves internally inside the computational domain by specifying a line
source function. The idea was practiced in their Boussinesq model to generate waves and it can be equally applied to all SWE models. The source function is added
to either the continuity equation or the momentum equation to simulate the wave generation process by the change of mass or momentum inside the domain. When
the mass change is adopted, a source function will be added in the continuity equation. This is similar to tsunami generation by the change of h(x, y, t) in SWEs [see
(5.84)]. In contrast, when momentum (or energy) change is considered, source functions are added in the momentum equations. This is similar to wave generation
by varying the wind speed/pressure during which the stress/pressure gradients are applied in the momentum equations as the forcing terms [see (5.87)].
In using the source function technique, the reflected waves will not interact with the wave generation mechanism. By generating waves internally, all lateral
boundaries can become open boundaries that deal with outgoing waves only. The idea of wave generation inside the domain can be implemented in other types of
wave models including the NSE solver (Lin and Liu, 1999b), the BEM model (Grilli and Horrillo, 1997), the Boussinesq model (Lee et al., 2001), and the MSE
model (Madsen and Larsen, 1987).
5.3.1.4 Turbulence modeling
Most of the SWE models were furnished with some turbulence closure models for the depth-averaged turbulence-induced Reynolds stresses. These turbulence
closure models range from the simple mixing-length model to the more advanced k−ε model. Now let us use the example of the depth-averaged k−ε model to show
how the depth-integrated Reynolds stress:
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can be assessed. Recall the original k−ε transport equations:

(5.119)

(5.120)
where

 
Taking the depth average of (5.119) and (5.120), we have:

(5.121)

(5.122)

where  and  are the depth-averaged turbulence kinetic energy and dissipation rate with:

(5.123)
and:

(5.124)
which represents the turbulence production by the mean horizontal velocity gradients, and:

(5.125)
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which represents the turbulence production from the turbulent bottom boundary layer. In the above equations, u* is the friction velocity [e.g., 

 and  and  (Rastogi and Rodi, 1978), with cf being the friction coefficient that can be determined from
either the Manning equation or Chezy formula.
The depth-integrated turbulent stresses can be modeled as follows (Rastogi and Rodi, 1978):

(5.126)
5.3.1.5 Numerical methods
The numerical solution to the SWEs can be advanced in time from an initial condition. In most of the SWE models, either the FDM or FEM is used. In recent years,
the meshless method was extended to solve SWEs. For example, Hon et al. (1999) proposed a meshless particle method by using the radial basis function (RBF) to
solve SWEs and applied the model to the simulation of a typhoon-induced current. Ata and Soulaimani (2005) extended the SPH technique to solve SWEs.
5.3.1.6 The shallow-water equation models and their applications
Tides: Tides are probably the longest surface water waves on Earth. A tide at a particular location can be estimated from the relative position of Earth, the moon,
and the sun as Earth rotates; Earth revolves around the sun, and the moon revolves around Earth. The tidal energy is distributed into many frequencies (or
constituents, harmonics). The height of the tide can therefore be represented by a general formula (Schureman, 1958):

Htide=H0+ΣH cos[σt−κ] (5.127)
where H0 is the mean water level above the datum selected, H is the mean amplitude of the particular constituent under the influence of the moon or the sun, σ is
the angular frequency of the constituent, and t is the time reckoned from some initial epoch κ.
Tidal analysis is basically the determination of the constants in (5.127) for each tidal constituent. The most important tidal constituents include the semidiurnal
constituents generated by the moon (M2) and the sun (S2) with the periods of 12.42 h and 12 h, respectively, and the daily inequality (or diurnal) constituents with
the periods of 24.48 h and 24 h, respectively. Besides, there are many other constituents taking account of other factors (Kamphuis, 2000:117).
The tidal constituent by the moon is the most influential factor to affect tidal height. Two bulges of water on the surface of Earth, one facing
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the moon and the other on the opposite side, will be drawn by gravitational attraction as the moon revolves around Earth. At a particular location, it will experience
the flood tide (or incoming tide), during which the water level increases from the low level to the high level, and ebb tide (or receding tide, falling tide), during
which the water level reduces from its high level to a low level, nearly twice a day. The highest water level is called high tide and the lowest water level is called low
tide. Considering the combined effect from the gravitational attraction from the sun, the magnitude of the tidal level will increase from the new moon, when the sun
has the maximum counterbalancing effect on the moon-induced tide, to the full moon, during which the sun, the moon, and Earth are nearly in the same line and the
tide level will be at its highest level in the month. The tide in the period from the new moon to the full moon is called spring tide. From the full moon to the next
new moon, the tide is called neap tide.
If a tidal gauge is deployed at a particular geographical location, the time history of the tidal height data can be obtained and used to derive the constants in (5.127)
using either LS technique or Fourier analysis. The information is used to produce the so-called tidal table after collecting a long history of tidal data in the area. For
those harmonics whose period is longer than tidal records, theoretical formulas are used to estimate the corresponding constants. The tidal tables allow us to predict
the tidal heights at any time where the tidal tables are derived.
One of the main applications of SWE models is for the simulation of tidal current in coastal waters (e.g., Westerink et al., 1992). The modeling of tidal flows is
“probably the oldest form of coastal ocean prediction, and certainly the most accurate” (Parkar et al., 1999). The reason that it is the most accurate compared with
other ocean predictions is that the driving force for tides is definite (e.g., astronomical effects) and the tidal flows are of a strict shallow water type.
To employ an SWE model for the simulation of tidal flows in a region, the lateral boundaries are often selected to be in the open sea away from coastlines. Based on
the available tidal tables and their interpolated values on the boundaries, the time histories of tidal heights can be specified at all lateral boundaries. The tidal flows
inside the computational domain are driven by the difference of tidal heights at different boundaries (e.g., Shankar et al., 1997).
Tsunamis: Tsunami is a particular type of water wave, which often has a very long wavelength and is induced by geophysical effects such as an underwater
earthquake or landslide. It may cause severe coastal flooding. The recent Indian Ocean tsunami caused by an earthquake offshore Sumatra, Indonesia, on 26
December 2004, devastated 11 Indian Ocean countries and caused the death of 229,866 people (based on the analysis compiled by the United Nations). Tsunami
modeling is another important application of SWE models. To model a tsunami, three main processes need to be simulated, namely tsunami generation due to
earthquakes or

page_229

Page 230
landslides, tsunami propagation in deep oceans, and tsunami run-up and inundation along coastlines.
Tsunami generation is the process with most of the uncertainties in the simulation because the relation between an earthquake and the displaced ocean surface is
difficult to determine precisely. In most of the simulations, the initially displaced volume of water was introduced on the free surface based on the empirical formula



that accounts for the crustal movement of the seafloor at the fault of the earthquake. Depending on the relative rupture movement, positive waves can be pushed on
one side and negative waves drawn down on the other side. Two waves will then propagate in two opposite directions.
The tsunami propagation simulation often covers a very large area (e.g., across oceans), and thus the SWE model needs to be constructed on spherical coordinates
as given in (5.101)–(5.103). During tsunami propagation in deep oceans, the wave amplitude remains small (e.g., a couple of meters). For this reason, the linear
SWE is sufficient for the modeling of tsunami propagation. Because the wavelength is long and the wave amplitude is small, little wave energy is consumed during
long-distance travel.
When the wave packet comes close to land, the reduction of water depth causes the combined effect of wave shoaling, refraction, and diffraction, the first of which
will greatly enhance the incoming wave height and the latter two effects can make the waves warp around an island. As a result, nearly all places along the coastline
of an island can possibly face the devastating wave attack. Damage can be more severe in a harbor (or bay) due to the seiching effect that causes the accumulation
of wave energy in the partially enclosed basin by wave resonance. As a matter of fact, tsunami is the Japanese term of “great harbor wave” since it can be greatly
excited in a harbor. Because the wavelength of a tsunami is rather long, when its front comes to the beach, it will cause continuous coastal flooding (or shoreline
receding if the wave front has a negative form) for quite a long time (i.e., a few minutes). This behavior makes a tsunami look like a tide, although the flooding
tsunami moves much faster than a tide. In earlier days, without knowing the cause of a tsunami, people called a tsunami a “tidal waves,” even though it has no
connection with real tide at all.
The actual inundation pattern depends on many factors such as incoming wave characteristics, nearshore bathymetry, and beach configuration. To accurately
estimate tsunami run-up and inundation, both wave nonlinearity and moving the water front need to be considered. Although there exist some analytical approaches
for the analysis of maximum wave runup (e.g., Carrier and Greenspan, 1958; Pelinovsky and Mazova, 1992; Carrier and Yeh, 2002), the inundation map for an
actual topography can be obtained only from the tsunami run-up modeling. In the numerical modeling, the run-up process of nonlinear waves is simulated. This
requires moving the boundary condition, which is handled by various methods to
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compute the changing wet line caused by wave run-up and drawdown, as discussed in Section 5.3.1.2.
Currently, there are a few existing tsunami models adopted by various tsunami research centers or research institutes. For example, the MOST (Method Of Splitting
Tsunami) model, developed by Titov of the Pacific Marine Environmental Laboratory and Synolakis of the University of Southern California (Titov and Synolakis,
1998), was adopted by the National Oceanic and Atmospheric Administration (NOAA), U.S.A. The model uses nested computational grids to telescope down into
the high-resolution area of interest. Nested grids are used so there is minimum number of nodes in a wavelength in order to adequately resolve the wave with
minimum computational effort. It has been used to investigate the global reach of the 26 December 2004 Indian Ocean tsunami (Titov et al., 2005).
Another well-known model is the TUNAMI-N2 (Tohoku University’s Numerical Analysis Model for Investigation of Near-field tsunamis) model, developed by the
Disaster Control Research Center of Tohoku University in Japan. It uses a compact leapfrog FD scheme in time and space discretization. The method is efficient
and accurate for modeling linear long waves. This model has been widely used in modeling many events of tsunami propagation and run-up (e.g., Shuto et al., 1990;
Goto et al., 1997).
Besides the above two models, tsunami models were also developed in many other institutions. To name a few, the tsunami model COMCOT (Cornell Multigrid-
COupled Tsunami) developed at Cornell University has been used to simulate solitary wave run-up on a circular island (Liu et al., 1995) and a real tsunami run-up
event (Liu et al., 1994). The code NAMI DANCE developed by Efim Pelinovsky, Andrey Kukin, Andrey Zaytsev, and Ahmet Yalciner was used to simulate a few
historical tsunami events. To include the wave dispersion effect, the Boussinesq model such as FUNWAVE was also used to model tsunami transformation
nearshore (Grilli et al., 2007). To better represent the irregular coastline, Myers and Baptista (1999) developed an FEM tsunami model. Recently, there is also a
trend to couple a 2D SWE model with a 3D hydrodynamic model to simulate tsunami transformation and run-up in the nearshore region. Figure 5.9 gives an
example of the numerical modeling of the tsunami in the Indian Ocean in 2004 with the use of the SWE module in DELTF3D.
In the tsunami simulation, another interesting issue is the so-called inverse problem. In many cases, the details of initial free surface displacement are unknown even
though the magnitude scale and the epicenter of an earthquake have been detected. This triggers an interesting problem, namely, whether we are able to find out the
actual seafloor movement by analyzing the observed and collected data of tsunami wave height and run-up on different affected coasts. Mathematically, this is
called an inverse problem. Naturally, one would think that the problem can be handled by the reverse modeling that solves the same governing equation but with the
negative time step to trace back what happens initially. However, besides the difficulty of
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collecting sufficient amount of observation data to initiate the simulation, the computation is often numerically unstable. Most of the time, an inverse problem is
ill-posed, i.e., it has more unknowns than the number of equations formed and thus no unique solution exists. A reasonable solution must

Figure 5.9 Simulation results of the Indian Ocean tsunami on 26 December, 2004 at Indonesian time 8:00, 9:00, and 10:00. (Produced with DELFT3D from
WL|Delft Hydraulics; courtesy of Dr. Deepak Vatvani; permission from Google Earth for educational purposes)
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be obtained under additional constraints. Readers are referred to Tanioka and Satake (2001) and Carl (1996) for the inverse problem in tsunami and ocean
circulation problems.
Storm surge and ocean circulation: Wind generates not only waves but also current and ocean surface abnormities. When wind continues blowing toward a shore,
water surface will be pushed up along the shoreline and this is called wind-induced setup (in contrast to wave-induced setup discussed in Section 3.1.4.4). Surface
set-down results if the wind blows offshore. If the wind direction is parallel to the shoreline, the longshore current can be generated. Besides, a bulge of water
surface setup can also be generated under the eye of a storm, where the atmospheric pressure is low. The increase in water surface can be further enhanced by the
wave- and wind-induced water setup when the storm is moving toward the shore. The rise of water level caused by the combined wind stress and pressure effect by
a storm is termed storm surge. Besides the recent storm surge caused by Hurricane Katrina in August 2005 that left the downtown of New Orleans, U.S.A, under 3
m water, there were many other notorious disasters caused by a storm surge. The greatest disaster of storm surge in the twentieth century occurred in Bangladesh in
November 1970. The wind under the cyclone, coupled with the storm surge and heavy rainfall, killed 300,000–500,000 people.
Ocean surface abnormity and ocean current can also be generated from other mechanisms. For example, when a tidal flow or ocean current, which
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can be generated by wind in the monsoon season, approaches a curved strait, water surface can be pushed up on the outer side of the strait. In contrast, a large-scale
ocean circulation can be generated from the mean density difference on a horizontal plane. All the above phenomena can be modeled by using an SWE model.
Other long waves: There are other water waves fitting into the category of long waves. They are tidal bores in the estuarial region, broken waves in surf and swash
zones, edge waves on shallow-water beaches, and all long-period waves whose kh<0.3.
Kobayashi and his colleagues at the University of Delaware developed an SWE model for the simulation of various wave phenomena in surf zones, i.e., wave
transformation over submerged breakwaters (Kobayashi and Wurjanto, 1989), wave reflection and run-up on slopes (Kobayashi et al., 1990), and wave overtopping
of revetments (Kobayashi and Raichle, 1994). Once waves are broken on the beach, they will behave like moving bores, which are similar to hydraulic jumps but
moving at the celerity of shallow-water waves. The motion of the bores can be best described by nonlinear SWEs with the inclusion of appropriate energy
dissipation terms. This subject has been studied both analytically (e.g., Keller et al., 1960; Hibberd and Peregrine, 1979) and numerically (e.g., Madsen et al., 2005).
Edge waves are a special type of water waves that are either generated locally (e.g., by coastal landslide) or reflected from obliquely incident wind waves or swells,
but their further propagation of wave energy is confined nearshore. Under this circumstance, waves will propagate alongshore for a long distance due to negligible
energy leakage to the offshore region. Ursell (1952) proposed the analytical solution of the edge wave modes based on the small-amplitude wave theory. At about
the same time, Eckart (1951) found that with the use of linear SWEs, the edge wave can also be predicted with good accuracy on a plane beach. This was further
confirmed by the laboratory and numerical studies using an SWE model (Liu et al., 1998).
Open channel flows and river flows: Another important application of SWE models is the simulation of open channel flows and river flows. Unsteady open channel
flows share a lot of similarity with long waves with varying free surface and near hydrostatic pressure. However, for open channel flows, gravity plays the role of
the driving force for flows rather than the restoring force for waves. Depending on whether Fr is greater or less than unity, the flow is classified as a supercritical or
subcritical flow. The characteristics and the control section (by various upstream and downstream boundary conditions) of open channel flows are closely related to
the flow classification. There are numerous works of numerical modeling of various types of open channel flows with the use of SWE models, e.g., Chapman and
Kuo (1985) for shallow-water recirculation flows, Younus and Chaudhry (1994) for supercritical flows in a diverging channel and circular hydraulic
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jumps, Stalling and Duinmeijer (2003) for dam break flows, and Zhou and Stansby (1999) for hydraulic jumps. Readers are referred to Chow (1973) and Chaudhry
(1993) for the theory and computation of open channel flows.
Both commercial software and freeware are available for the modeling of river hydraulics using the SWE approach. For example, MIKE 11 developed by DHI is
commercial software that can be used to model unsteady river dynamics, lakes/reservoirs, irrigation canals, and other inland water systems. The software can be
used together with data mining for modeling and real-time forecasting (Babovic, 1998). In contrast, HEC-2 developed by the Hydrological Engineering Center of
USAGE is freeware that can be used for a 1D steady, gradually varied flow in rivers of any cross section. This model can also be used to model the flood in a
catchment area (e.g., Greenbaum et al., 1998).
5.3.2 The Boussinesq models
5.3.2.1 The background of the Boussinesq equations
The SWE model is a powerful and efficient numerical tool for the simulation of large-scale long waves and shallow-water flows. However, when it is applied to
relatively short waves, i.e., kh~O(1), or weakly nonlinear dispersive waves, i.e., solitary waves or N-waves, the errors can be intolerable, especially for the
simulation of long-distance propagation. The main reason is that in SWE models, the characteristics of wave dispersion are completely neglected. In reality,
however, wave modes with different frequencies will tend to separate in finite water depth. This dispersive property of water waves is the direct result of
nonhydrostatic pressure. This means that to model a dispersive wave, a reasonable approximation of the nonhydrostatic pressure is required.
The standard Boussinesq model: The earliest depth-averaged model that included weakly dispersive and nonlinear effects was derived by Boussinesq (1871), in
which the nonhydrostatic pressure was approximated and included in the momentum equations. The equations were derived for horizontal bottoms only. Later, Mei
and LeMehaute (1966) and Peregrine (1967) derived Boussinesq equations for variable depth. While Mei and LeMehaute (1966) used the velocity at the bottom as
the dependent variable, Peregrine (1967) used the depth-averaged velocity and assumed the vertical velocity varying linearly over the depth. Due to wide popularity
in the coastal engineering community, the equations derived by Peregrine (1967) are often referred to as the standard Boussinesq equations, which assumed that

 for weakly nonlinear and dispersive waves [recall that the Ursell number is defined as Ur=(L2H)/h3=α/ε2]. The
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equations, after neglecting the viscous effect, have the following form:

(5.128)

(5.129)

(5.130)
The above system of equations has the same continuity equation as that in SWEs. The momentum equations in x- and y-directions, however, contain two more



terms that are in the form of third-order mixed derivatives in time and space. The additional terms mathematically represent wave dispersion. These terms result
from the vertical acceleration of fluid particles and thus they take into consideration, at least partially, the nonhydrostatic pressure effect. The above equations
represent the lowest order of wave dispersion and wave nonlinearity. Peregrine (1967) uses the equation to simulate a solitary wave on a plane beach. Abbott et al.
(1978) developed a Boussinesq model to simulate regular short waves in shallow water. Freilich and Guza (1984) used the equations to study nonlinear wave
interaction between shoaling irregular waves.
The standard Boussinesq equations are valid only for relatively small kh and H/h. To extend the validity range of the equations, researchers have suggested various
ways such as (a) improving the linear dispersion characteristics in deeper water and (b) including higher order wave nonlinearity. Witting (1984) attempted to match
the dispersion equation using Pade’s expansion. The equations make use of free surface velocity and are fully nonlinear, but approximate for dispersion relationship.
The equations, however, are valid only for constant water depth. Madsen et al. (1991) and Madsen and Sørensen (1992) included higher order terms with adjustable
coefficients into the standard Boussinesq equations for constant and variable water depth, respectively. Beji and Nadaoka (1996) presented a formal derivation for
Madsen and Sørensen’s (1992) improved Boussinesq equations. Their equations were employed later by Li et al. (1999) to develop an FEM Boussinesq model for
wave simulation.
Nwogu’s model: By defining the dependent variable as the velocity at an arbitrary depth, Nwogu (1993) achieved a rational polynomial approximation to the exact
linear dispersion relationship without the need to add
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higher order terms to the equations. The errors in the linear phase speed were minimized over a certain depth range. Nwogu’s Boussinesq equations have the
following form:

(5.131)

(5.132)
where uα is the horizontal velocity vector at an arbitrary depth zα.
Nwogu’s equations have a relatively simple form with the improved ability for representing wave nonlinearity and dispersion. In Nwogu’s original paper, an iterative
Crank-Nicholson method was employed with a predictor-corrector scheme to solve the Boussinesq equations in 1D space. Wei and Kir by (1995) developed a 2D
numerical model using a higher order FD time-stepping scheme. Walkley and Berzins (2002) developed a 2D numerical model with the use of FEM. Lin and Man
(2006) developed a 2D FDM model on a staggered grid system, in which the mass is better conserved for long-term computation.
Kirby and his group’s model: In the past decade, great advances have been made to further extend the validity range of the Boussinesq equations to deeper water
and higher nonlinearity. For example, Kirby and his colleagues at the University of Delaware proposed a few higher order accurate Boussinesq equations extended
from Nwogu’s equations. The following modified Boussinesq equations improve the nonlinear properties (Wei et al., 1995):

(5.133)

(5.134)

(5.135)
u and υ are the horizontal velocities at z=zα=−0.531h, and U and V are defined as:
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The remaining quantities E, E2, F, F1, F2, G, G1, and G2 are spatial derivatives of  that are defined as follows:

(5.136)

(5.137)

(5.138)

(5.139)

(5.140)

(5.141)

(5.142)
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(5.143)
where E2, F2, and G2 are the additional higher order nonlinear terms that would not exist for weakly nonlinear equations. The constants a1, a2, b1, and b2 are
defined as follows:

a1=β2/2−1/6, α2=β+1/2, b1=β2/2, b2=β (5.144)
where β=zα/h. Later, Gobbi et al. (2000) further improved the model’s accuracy to O(kh).4
Liu and his group’s model: Liu and his colleagues at Cornell University (e.g., Liu, 1994; Chen and Liu, 1995) derived fully nonlinear and weakly dispersive
Boussinesq equations using velocity potential and free surface elevation. The equations take the following dimensional form (Liu and Wu, 2004):

(5.145)

(5.146)
where zα=−0.531h, which provides an adequate description of wave propagation in terms of phase speed and group velocity for 0≤kh≤π. Later, Lynett and Liu
(2004) presented a two-layer Boussinesq model that is accurate up to kh=6.
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Madsen and his group’s model: Independently, Madsen and his colleagues at the Technical University of Denmark have proposed a series of new highly nonlinear
Boussinesq models, in which either the mean velocity or the velocity at an arbitrary z-level was used to minimize the depth-integrated error of the linear velocity
profile. The equations proposed by Schäffer and Madsen (1995) take the following form:

(5.147)

(5.148)

(5.149)
where zα=−0.02907h, β1=−0.13054, β2=−0.53582, γ1=0.01196, and γ2=0.00144. Later, Madsen and Schäffer (1998) and Madsen et al. (2002) further improved
the Boussinesq models and the latter one is accurate up to kh=40.
5.3.2.2 Extension of Boussinesq equations in other applications
Boussinesq models in porous media: Attempts were made to develop Boussinesq equations in porous media so that the model can be used to
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simulate wave flow over a porous bed or through a porous structure. Cruz et al. (1997) presented such a Boussinesq model and used it in the study of wave
transformation over a porous bed. Liu and Wen (1997) developed a fully nonlinear and weakly dispersive wave model in porous media. Recently, Hsiao et al.
(2002) introduced a new set of Boussinesq equations for nonlinear waves over a porous bed. Chen (2006) extended this model to the breaking wave region and used
it to study wave interaction with porous structures.
Boussinesq models for stratified flows: Another extension of the development of the Boussinesq equations was to simulate stratified flows. Internal waves may be
generated at the interface of two fluid layers with different densities. Lamb (1994) employed a Boussinesq model to investigate the internal wave generated by
strong tidal flow. Choi and Camassa (1996, 1999) developed weak and full nonlinear internal wave models in a two-layer fluid system and found that the equations
can be reduced to the Boussinesq equations or KdV equations in shallow water and to intermediate long-wave (ILW) equations in deep water. Chen and Liu (1998)
proposed a generalized modified the KP equation for interfacial wave propagation. Kataoka et al. (2000) derived a fully nonlinear evolution equation for finite
amplitude long internal waves in a uniformly stratified fluid. The equation can be reduced to the KP equation in a small-amplitude limit. Lynett and Liu (2002)
developed an internal wave model to simulate internal wave evolution in straits and near islands. Strictly speaking, some of the equations used to describe internal



wave motion are not Boussinesq equations, rather the extension of the Boussinesq equations to other equation types that share some similar characteristics of wave
dispersion and nonlinearity.
Boussinesq models for moving surfaces: The Boussinesq equations were also extended to describe wave generation and propagation by moving surface
disturbance. The surface disturbance may come from a free surface, bottom, or a moving object in between. The first scenario is associated with either the
large-scale wave generation by wind or the local-scale ship wave generation by a moving hull. In this case, the equations need to be revised to include the surface
pressure gradient as in SWEs (5.88) and (5.89). For example, Wu and Wu (1982) proposed a generalized Boussinesq model to simulate nonlinear long waves due to
moving surface pressure. To simulate shorter waves, Liu and Wu (2004) employed a nonlinear and dispersive Boussinesq model to simulate ship waves in channels.
The second scenario corresponds to tsunami generation by underwater landslides or earthquakes. For example, using the generalized Boussinesq equation, Sander
and Hutter (1992) simulated weakly nonlinear dispersive waves generated by submerged moving boundaries. In their approach, the still water depth becomes the
prescribed function of time. A similar approach was also adopted in SWE models for simulating tsunami generation (e.g., Heinrich et al., 2001). For an immersed
moving body, Lee et al. (1989) proposed a forced KdV equation model and a generalized Boussinesq model to study waves generated by
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a moving body with arched cross section. Their results agreed with experimental data and the numerical results from an NSE-solver model (Zhang and Chwang,
1996).
KdV equation and solitons: Boussinesq models have received a lot of attention in the past few decades not only because of their capability of describing nonlinear
dispersive shallow-water waves, but also because of their inherent connection to some important physical phenomena in basic science, e.g., soliton transmission,
nonlinear wave-wave interaction. When a wave travels in one direction, the Boussinesq equations can be simplified into the KdV equation as follows:

(5.150)
The equation is famous as an example of an “exactly solvable model” for a nonlinear PDE. A few analytical solutions in the form of soliton exist for some
well-posed initial and boundary conditions. The analytical expression of the soliton solution can be obtained by the inverse scattering transform, a mathematical
procedure for integrating some nonlinear PDEs, e.g., KdV equation, NLS equation, and sine-Gordon equation, by converting them into a system of linear ODEs. All
these equations have soliton type of analytical solutions (Ablowitz and Segur, 1981; Drazin and Johnson, 1989).
The soliton phenomenon was first described by John Scott Russell (1808–1882), who observed a solitary wave in the Union Canal and named it as “wave of
translation.” Later, theoretical investigations were made by Lord Rayleigh and Boussinesq around 1870 and by Korteweg and de Vries in 1895. Compared with the
Boussinesq equations that are more restrictedly used in modeling shallow-water waves, the KdV equation has a wider application in general physics such as
ion-acoustic waves in plasma and acoustic waves on a crystal lattice. When the KdV equation is generalized in the primary wave propagation direction but with a
small spreading angle, the KP equation results. The KP equation is a single PDE and thus is easier to be treated numerically than the Boussinesq equations. This is
similar to parabolic approximation made in the elliptic MSE (EMSE), which is to be discussed later.
5.3.2.3 Other nonlinear wave equations
All the previously introduced Boussinesq equations have been derived based on perturbation theory, which allows a different order of approximation for wave
nonlinearity and dispersion. Other types of equations for nonlinear water waves can also be obtained by using Luke’s variational principle (e.g., Luke, 1967). In
contrast, by using the direct approximation to the Euler equations expressed in terms of continuity and energy equation, Green and Naghdi (1976) derived the
so-called GN equations for wave propagation in water of variable depth.
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Serre equations (1953) are another set of governing equations for highly nonlinear water waves. These equations received less attention than the Boussinesq
equations for water wave modeling until recently when some researchers revisited the equations and found some good characteristics in the equations in modeling
nonlinear dispersive waves, especially after introducing some higher order correction terms (e.g., Barthelemy, 2004). For a 1D case, the original Serre equations
take the following simple form:

(5.151)

(5.152)
The RHS of the momentum equation explicitly contains the nonlinear effect on dispersion. In contrast to the Boussinesq equations, equations (5.151) and (5.152)
have the closed-form soliton solution (e.g., Rayleigh solitary wave solution), i.e.:

(5.153)

where A is the wave amplitude and  The above solution can be reduced to KdV solitary wave solution for small-amplitude waves, but it may
produce more stable solitons for larger amplitude soliton.
Recently, Wu (1999, 2000) attempted to develop a new unified model to allow nonlinear and dispersive wave effects to operate to the same extent as the Euler
equations. The model was used to study various nonlinear dispersive gravity-capillary water wave phenomena. These problems include nonlinear wave interaction
of solitons during overtaking collisions (e.g., Hirota, 1973; Whitham, 1974) and soliton propagation in variable channels (Shuto, 1974; Miles, 1979; Teng and Wu,
1992, 1997).
Although Boussinesq models and other nonlinear dispersive wave models have been stretched to model waves in much deeper waters in the past decade, such
models are still limited to a finite value of kh. This is because the linear dispersion relation is satisfied only in an approximate manner for all Boussinesq models. In
deriving a Boussinesq model, the linear dispersion is not explicitly enforced; rather, the momentum equations are manipulated during the integration to ensure that
the linear dispersion equation is satisfied to the best possible extent. As a result, in solving the Boussinesq equations, the wave number (or wavelength) is not sought
explicitly. This makes the Boussinesq equations not only applicable to shallow-water waves but also to any unsteady shallow-water flow. The price it pays,
however, is that the dispersive errors can accumulate and become significant in the simulation of short waves.
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5.3.2.4 Boussinesq models and their applications
Some widely used and reported Boussinesq models include FUNWAVE (Kirby et al., 1998) developed in the Center for Applied Coastal Research (CACR),
University of Delaware; a two-layer Boussinesq model developed at Cornell University and Texas A&M University (Lynett and Liu, 2004; Lynett, 2006); and a
higher order Boussinesq model developed in the Technical University of Denmark (Madsen et al., 2006); For commercial software, both DELFT3D and MIKE 21
have modules of Boussinesq models for nonlinear and dispersive water wave modeling.
These Boussinesq models have been used to simulate long-wave breaking and run-up on beaches (e.g., Lynett et al., 2003), wave diffraction around coastal
structures (Fuhrman et al., 2005), wave interaction with longshore current (Chen et al., 2003), etc. Figure 5.10 shows an example of the modeling of a surface wave
and wave-induced flow by a Boussinesq model (Madsen et al., 1997). Figure 5.11 provides an example of large-scale wave modeling around a port using a
Boussinesq model using parallel computation (Sitanggang and Lynett, 2005). Another important application of



Figure 5.10 Simulation results by a Boussinesq model for surface waves and wave-induced flows around a detached breakwater on a beach subjected to
multidirectional irregular waves. (Courtesy of Prof. P.A.Madsen of the Technical University of Denmark)
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Figure 5.11 Numerical simulation of a quasi-steady-state wave field near Freeport, Texas, U.S.A. using a Boussinesq model; the simulation area is 35 km×8 km with
the grid size of 3 m×3 m; the incoming wave is irregular with Hs=2 m and Tp=12.5 s; the model was run on 50 parallel Opterons and the wall clock time is about 24
hours for running 100 wave periods. (Courtesy of Dr. Patrick Lynett of Texas A&M University)
Boussinesq model is to couple with a sediment transport to calculate sediment transport in the surf zone and the long-term beach profile evolution (e.g., Rakha et
al., 1997; Karambas and Koutitas, 2002).
To apply Boussinesq models to surf zones and swash zones, the correct modeling of wave breaking and wave-current interaction is inevitable. Two theoretical
barriers need to break through, i.e., the proper modeling of turbulence in breaking waves that are highly nonuniform in the vertical direction and the correct
inclusion of current-induced vorticity in the potential flow-based Boussinesq equations. Using the eddy viscosity concept, Zelt (1991) introduced the energy
dissipation terms in the Boussinesq models to simulate breaking waves propagation and run-up. Karambas and Koutitas (1992) solved the one-equation turbulence
kinetic energy (k) transport model and used the resulting information to calculate the eddy viscosity under the broken waves. Kabiling and Sato (1994) developed a
breaking wave model and coupled it to the beach evolution model. Later, Veeramony and Svendsen (2000) and Kennedy et al. (2000) also proposed their
Boussinesq models to model wave-breaking processes. The proper inclusion of current effects into Boussinesq models was pioneered by Yoon and Liu (1989b) and
further extended by Chen et al. (2001) for
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modeling longshore current and Shen (2000) for modeling stratified flows and surface waves. Although most of Boussinesq models are constructed on FDM or
FEM, there is the exception of using the meshless method to solve the Boussinesq equations (Wang and Liu, 2006).
5.3.3 Mild-slope equation models
5.3.3.1 Transient mild-slope equation
To ensure that the wave dispersion relationship is strictly satisfied, another category of depth-integrated wave model was developed. The model is based on the
equation that was derived from the potential flow theory assuming that the wave is linear and the bottom slope is mild and thus it is called linear MSE (e.g., Eckart,
1952; Berkhoff, 1972; Smith and Sprinks, 1975; Lozano and Meyer, 1976). The equation is exact in terms of the linear dispersion relationship, and it has been
widely used to describe the combined wave refraction and diffraction over a slowly varying topography. The time-dependent MSE is written as (Dingemans,
1997:254):

(5.154)
The relationship among k, h, and σ is determined by the linear dispersion equation:

σ2=gk tanh kh (5.155)
Equation (5.154) is a second-order hyperbolic equation that has second-order derivatives in both time and space. Few numerical attempts have been made to solve
(5.154) directly except for Lin (2004a), who proposed a compact FD scheme to solve the equation directly.
Realizing (5.154) has similar characteristics to the linear long-wave equation (5.112), people have tried to split the original second-order MSE into a pair of
first-order hyperbolic equations (e.g., Copeland, 1985). The pseudofluxes P and Q, both of which are complex variables, were introduced into the equations:

(5.156)

(5.157)

(5.158)
The above equation system is similar to SWEs but the fluxes do not carry a definite physical meaning. Besides, although the equations are transient,
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due to the use of pseudofluxes, only their steady-state solution can be sought. Madsen and Larsen (1987) improved the solution procedure by extracting the time



harmonic part and employing an efficient ADI algorithm. Introducing a slow coordinate for the time variable, Lee et al. (1998) developed a system of hyperbolic
MSEs for fast-varying topography. Abohadima and Isobe (1999) proposed a nonlinear time-dependent MSE based on Luke’s (1967) variational principle method
and employed it to study nonlinear wave diffraction. Zheng et al. (2001) adopted the nonlinear dispersion relationship proposed by Kirby and Dalrymple (1986) in
their time-dependent MSE model. The inclusion of current and dissipation in the MSE was made by Feng and Hong (2000).
5.3.3.2 Elliptic mild-slope equation
For a harmonic wave train, by defining η=F(x, y)e−iσt, where F(x, y) is the spatially fast-varying complex wave amplitude function, the time derivative term in
(5.154) can be eliminated. This leads to the steady-state MSE (Berkhoff, 1972), i.e.:

(5.159)
The above equation is an elliptic type and is referred to as an EMSE. Radder (1979) suggested that by variable transformation of:

 
the equation can be reduced to Helmholtz equation:

(5.160)
The numerical solution to an EMSE generally requires a significant number of iterations. Berkhoff (1972) attempted to solve (5.159) numerically but the method is
restricted to a small domain. Later, Panchang et al. (1991) adopted a preconditional CG method to accelerate the convergence rate and thus the model could be
applied to a larger area. Li and Anastasiou (1992) proposed another solution procedure by using the multigrid technique that also aimed at speeding up the
convergence rate. Later, various CG versions of EMSE solvers were proposed to improve the efficiency of the numerical solution (e.g., Zhao and Anastasiou,
1996).

There are a few interesting asymptotic behaviors of the original EMSE. In shallow water, i.e.,  we have  and the above equation can be
reduced to (5.114):

(5.161)
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In deep water, i.e.,  or constant water depth, the spatial gradients of both cg and c are zero. The EMSE can then be reduced to Helmholtz equation:

(5.162)
This equation describes the wave diffraction only and was used by Penney and Price (1952a) to develop an analytical solution of wave diffraction behind
breakwaters.
5.3.3.3 Eikonal equation and energy equation
If we factor out the fast-varying component in space by further defining F(x, y)=a(x, y)eiS(x,y), where a(x, y) istheslowly varying realwaveamplitude function and S
is the real phase function, and substituting into the EMSE, we have:

(5.163)
Both the real part and the imaginary part in the above equation need to be zero. The real part reduces to the eikonal equation as follows:

(5.164)
which represents the correction of the effective wave number due to the change of topography that causes both wave diffraction (the second term on the RHS) and
wave refraction (the third term on the RHS). Note that wave diffraction can occur without wave refraction but wave refraction always occurs with wave diffraction.
Generally speaking, for a diffracted/refracted wave field, the wave number k obtained from the linear dispersion equation will be different from the effective wave
number κ, from which the local wave propagation direction is determined. Using the identity of  (irrotationality of the effective wave number
vector), we are able to uniquely determine the value of S, from which we can trace the wave ray direction.
The imaginary part of (5.163) can be reduced to:

(5.165)
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This is the energy conservation equation. By realizing that wave energy density E=ρga2/2 and defining the new wave group velocity vector on varying bathymetry
as:

 
the above equation can be reduced to the shoaling formula based on the conservation of wave energy flux, i.e.:

(5.166)
It shows that the wave energy is propagating in the direction of  which is orthogonal to wave crests, at the rate of |vg|.
5.3.3.4 Parabolic mild-slope equation
In the analysis, if we force the phase function S to be a specific form throughout the domain, most of the time being the same as the far-field expression though it
can be any other form in principle, the complex wave amplitude function can then be re-expressed as, if the far-field wave propagates in the x-direction with the
wave number kx0:

(5.167)
In this case, the slowly varying wave amplitude function:

 
will have to be a complex function in general when a wave changes its direction from the original x-direction due to either wave refraction and/or wave diffraction.
By substituting the above expression into the original EMSE (5.159), we have the following equation:

(5.168)
This equation is similar to (5.163) but has a complex A(x, y). As a result, the eikonal equation and the energy equation are no longer separable and need to be solved
together. In (5.168), the value of kx0 can be arbitrary and the deviation of S′ from S will be absorbed into A(x, y). Sometimes we can also set kx0=k(x, y) and this
makes the last term in (5.168) zero. So far (5.168) is still exact and it is equivalent to (5.163) but expressed differently.
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Compared with the coupled eikonal and energy equations, the above equation is decoupled to some extent by absorbing the phase function into the slowly varying
complex amplitude function A(x, y). The elliptic equation can be solved to obtain A(x, y), given proper boundary conditions. Once A(x, y)=Ar+iAi is known, the real

wave amplitude can be readily obtained by  The actual phase function can be obtained by the following equation:



(5.169)
The effective wave number can then be obtained by using the definition of  from which the wave propagation angle can be determined, i.e.,
θ=arctan(Ky/Kx).
If we assume that wave diffraction occurs primarily in the transverse y-direction (perpendicular to the primary wave propagation in the x-direction), equation
(5.168) can be simplified to:

(5.170)
This equation has a parabolic form against the original EMSE in elliptic form. Therefore, it is often called parabolic MSE (PMSE). A similar expression was first
obtained by Radder (1979) in an effort to derive the parabolic approximation of the MSE and applied it to the study of wave passage through a submerged shoal
during which both wave refraction and diffraction are important. The original motivation of parabolizing the EMSE is to reduce the computational cost of solving
the elliptic equation.
When the nonlinear term is kept in the derivation, the above equation can be modified to describe the forward-scattering second-order Stokes waves (Kirby and
Dalrymple, 1983b; Liu and Tsay, 1984), i.e.:

(5.171)
where
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In constant water depth k=kx0, the above equation is reduced to the familiar NLS equation:

(5.172)
By using the Wentzel-Kramers-Brillouin (WKB) expansion, Yue and Mei (1980) arrived at the same expression for weakly nonlinear Stokes waves propagating
toward a specific direction in constant water depth. In this case, the wave diffraction is the only mechanism that causes the change of wave propagation direction.

In this case although the magnitude  the vector  in general (consider waves behind a breakwater where waves bend into the
shadow area by changing the propagation direction). Therefore, A(x, y) must remain a complex function to account for the difference between the actual phase
function S(x, y) and its approximation S′=kx0x.
When only linear waves are considered, the above equation can be further reduced to the linear Schrödinger equation (e.g. Lozano and Liu, 1980), i.e.:

(5.173)
This is the lowest order parabolic approximation of the original Helmholtz equation. The equation implies that the diffraction process is similar to a diffusion process
but with imaginary diffusivity, which causes the change of wave phase rather than the decaying of wave energy that is proportional to |A|2.
Later, Dalrymple and Kirby (1988) extended the validity range of the parabolic approximation and introduced an angular spectrum concept into their model. Liu
(1990) summarized the development of parabolic approximation and its application range. The major advantage of the PMSE is that the numerical solution can be
marched from deep water to shallow water without iteration, similar to solving an initial value problem but replacing “t” with “x.” The research on the PMSE was
most active in the 1980s but it became less popular later, partly because of its theoretical limitation to narrowly banded waves only. Nevertheless, the theoretical
works of deriving various versions of PMSE provide important theoretical insight on wave refraction and diffraction of a single beam of wave ray, which was later
used by Lin et al. (2005) to derive the wave energy spectral model capable of handling wave diffraction.
5.3.3.5 Modified mild-slope equation
The original MSE is limited by three drawbacks: (1) the equation is applicable only to linear waves; (2) the equation is applicable only to waves on very
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mild and impermeable bottom geometry; and (3) the equation does not contain energy dissipation. Recently, the advances in theoretical derivation of the MSE are
mainly focused on the stretch of its applications to weakly nonlinear waves and steeper bottom slope. The inclusion of various types of energy dissipation was also
attempted. This forms the group of so-called modified MSEs (MMSEs) or sometimes extended MSEs.
Nonlinear waves: The inclusion of nonlinear wave effects, even for the lowest order, can have a pronounced effect on wave refraction and diffraction (Kirby and
Dalrymple, 1983b; Liu and Tsay, 1984). In principle, the nonlinear wave effects can be considered by including higher order nonlinear terms in the formulation
(e.g., Yue and Mei, 1980) and/or the use of the corrected nonlinear dispersion equation (e.g., Booij, 1981). The former approach results in additional nonlinear
terms in the MMSE. The recent work on second-order MSEs was developed by Chen and Mei (2006). In the latter approach, the linear dispersion equation is
modified as follows (Kirby and Dalrymple, 1986):

(5.174)

Steep bottom slopes: The original MSE assumes a slowly varying bottom slope, i.e.,  Booij (1983) investigated numerically the wave reflection from a
plane slope and concluded that the MSE model is acceptable up to  To account for a rapidly varying topography effect, the higher order bottom slope
must be considered in the derivation. Kirby (1986) extended the EMSE to include a rapidly varying topography. O’Hare and Davies (1992) and Guazzelli et al.
(1992) included fast-changing bottom undulations by approximating the bed as a series of horizontal shelves and used the MMSE to study Bragg reflection
phenomenon. Massel (1993) found that the bottom effect can be more rigorously considered by including higher order bottom effect terms that are proportional to
the bottom curvature and the square of the bottom slope. Adopting a similar idea, Chamberlain and Porter (1995) proposed a widely used form of the MMSE that is
as follows:

(5.175)
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where



 
Later, Chandrasekera and Cheung (1997) and Suh et al. (1997) also developed different versions of MMSE to include a rapidly varying bathymetry. Miles and
Chamberlain (1998) developed a hierarchy of PDEs and proved that the system can be reduced to various orders of MSE. Agnon and Pelinovsky (2001) performed
a systematic derivation and compared their results with various MMSEs. Using the multiple scale method to enforce the seabed boundary condition, Liu and Shi
(2008) proposed the so-called complementary MSE for wave propagation over an uneven bottom. It shows that the MMSE in general does provide a more accurate
description of wave refraction and diffraction around rapidly varying bottom geometry such as a shoal. The MMSE including a higher order depth effect is
especially useful in the simulation of wave propagation problems over depth discontinuity and/or with larger curvature of depth (e.g., ripples and sandbars). Further
discussion of the characteristics of MMSEs can be found in Porter (2003) and Hsu et al. (2006).
Energy dissipation: Bottom friction and wave breaking are two main sources of energy dissipation when waves approach the shoreline. Dalrymple et al. (1984) and
Dally et al. (1985) proposed the following modified EMSE:

(5.176)
where w is the damping factor (Dalrymple et al., 1984):

(5.177)
with cf being the dimensionless friction coefficient that is the function of Re and bottom roughness, γ is the wave-breaking parameter:

(5.178)
where χ=0.15 (Dally et al., 1985) and Γ=0.4 (Demirbilek and Panchang, 1998).
The inclusion of wave-breaking effects in the surf zone was recently attempted and it also resulted in additional nonlinear terms. This requires
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special treatment in the numerical solution (e.g., Tao and Han, 2001; Zhao et al., 2001; Chen et al., 2005).
Porous beds: Another extension of MSE is to simulate wave propagation over porous beds or through porous structures. Losada et al. (1996) presented an MSE
model to study wave propagation over porous slopes. Later, Hsu and Wen (2001) proposed a time-dependent parabolic equation to describe wave propagation over
permeable beds. Recently, Tsai et al. (2006) proposed a new time-dependent MSE to solve wave transformation over porous breakwaters on porous beds.
5.3.3.6 Mild-slope equation models and their applications
The MSE enjoys the theoretical advantage of being capable of modeling waves from deep water to shallow water without the limitation of kh as long as the wave is
linear. This is because the linear dispersion relation is explicitly enforced in the equation, and thus the vertical variation of velocity is correctly accounted for in the
vertical integration for all kh. The MSE is frequently used to study the combined wave refraction and diffraction above a changing topography (e.g., shoal, pit, or
trench) or around an idealized island. Many MSE models were developed in the past few decades based on the various versions of MSE. For example, the REF/DIF
model was developed by Dalrymple and Kirby (1985) based on PMSE. A general-purpose coastal wave model CGWAVE was developed at the University of Maine
sponsored by USAGE based on EMSE (Demirbilek and Panchang, 1998). The model was constructed on FEM formulation.
Waves above a shoal on a beach: The problem the MSE models are often tested against is the wave propagation over an elliptic shoal on a slope (Berkhoff et al.,
1982). In this case, the monochromatic wave train has an incident angle of 20° to a plane beach. The combined wave refraction and diffraction around the shoal
cause the wave to focus behind the shoal where the wave is amplified and wave nonlinearity becomes significant. Many numerical models based on MSE studied
this problem to verify either the model convergence and accuracy (e.g., Panchang et al., 1991) or the contribution from nonlinear terms (e.g., Kirby and Dalrymple,
1984; Zheng et al., 2001). A similar problem of a cusped caustic of the focusing wave behind a shoal was numerically investigated by Liu and Tsay (1984) and
compared to Whalin’s (1971) experimental data. The computation of wave propagation over an elliptic shoal in constant water depth was originally made by
Berkhoff (1972) using FDM and later by Bettess and Zienkiewicz (1977) using FEM and infinite element method and by Zhu (1993) using BEM.
Wave transformation over a changing bathymetry: Another popular problem that is often studied by MSE models is the wave transformation and reflection over a
changing bathymetry, e.g., ripple beds, trenches, pits. For example, Dalrymple et al. (1989) have investigated wave diffraction over a bottom with slowly varying
ridges and troughs. With the use of time-dependent MSE models, Suh et al. (1997) investigated the strong Bragg reflection, which occurs when the normally
incident wave number is about
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half of that for the underlying periodic bottom undulation (e.g., sandbar). Their numerical results were compared with the experimental data by Davies and
Heathershaw (1984) for a singly sinusoidal bottom and by Guazzelli et al. (1992) for a doubly sinusoidal ripple bed. Recently, Porter and Porter (2001) used MMSE
to study the interaction of waves with 3D periodic topography.
Combined wave refraction and diffraction around an island: Another commonly studied problem using MSE models is the combined wave refraction and
diffraction around an island. For example, Smith and Sprinks (1975) developed an integral technique for modal decomposition to study water waves around a
conical island. The trapped edge wave modes around the island were computed numerically. Using the collocation method, Jonsson et al. (1976) solved the MSE for
wave scattering around a circular island on a parabolic shoal, for which the analytical solution was obtained in a shallow water limit by Homma (1950). The same
problem was later studied by Houston (1981) using eigenfunctions. An FD model was developed by Lo (1991) to study the wave condition around an arbitrary
island. Zhu (1993) developed an efficient dual-reciprocity boundary element method (DRBEM) model based on MSE to study wave diffraction and refraction
around islands. Using the MMSE, Chamberlain and Porter (1999) developed a methodology based on angular decomposition to study the near-trapping of water
waves around any axisymmetrical topography. Their results were compared with the earlier modeling results by Xu and Panchang (1993). Lin et al. (2002)
extended the study to random wave refraction and diffraction around a circular island and conducted experiments to verify their computation based on the MSE
model. Lin (2004a) developed a compact FD time-dependent MSE model and used it to study wave scattering around a circular island on a parabolic shoal. Figure
5.12 gives an example of a simulated quasi-steady-state wave field around the island using this time-dependent MSE model.
Harbor resonance: Harbor resonance is an important issue in harbor design. For harbors with simple geometry, an analytical solution based on linear wave theory is
possible. For example, Ippen and Goda (1963) presented an analytical solution for harbor resonance in a rectangular harbor. In reality, both the wall reflection
coefficient and the bottom friction will contribute to modify the actual resonance pattern. The MSE model is a good candidate for simulating harbor resonance in an
actual harbor with a complex boundary configuration, varying bottom bathymetry and bottom friction, partially reflecting walls, etc. Using CGWAVE, Demirbilek
and Panchang (1998) simulated rectangular harbor resonance and compared their simulation results with the analytical solution (Ippen and Goda, 1963) and
laboratory data (Ippen and Goda, 1963; Lee, 1971).
Random wave simulation: To be practically useful in ocean and coastal engineering to model actual sea state, the inclusion of random waves in MSE models is
needed. The linear angular spectrum wave model based on linear MSE was proposed by Dalrymple and Kir by (1988) to study directional
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Figure 5.12 Simulated wave pattern around a circular island above a shoal (top for 3D view and bottom for 2D bird’s-eye view); the computational domain covers a
domain of 100 km×100 km with 3000×3000 uniform cells; the steady wave field is obtained after running Lin (2004a)’s model for 16,000 time steps using 24 CPU
hours in a Pentium 4 3.6 GHz PC.
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spreading wave propagation. The model was extended to the nonlinear version (Suh et al., 1990) and the inclusion of wave breaking (Chawla et al., 1998).
Recently, the use of the parabolic approximation model for spectral waves, OLUCA-SP, in the application of random directional wave breaking over a submerged
circular shoal was reported by Liu and Losada (2002). In the model, the energy dissipation due to wave breaking has been modeled by the empirical formulas
proposed by Battjes and Janssen (1978), Thornton and Guza (1983), and Rattanapitikon and Shibayama (1998).
Limitations: Although the MSE models have proven to be successful to some extent for simulating nonlinear random breaking waves, the MSE models were rarely
used to study the detailed wave phenomenon in swash zones for wave run-up. The main reason is that the wave dispersion equation, even after including nonlinear
effects, will fail for large wave nonlinearity beyond the breaking point. At this stage, the explicit enforcement of the dispersion equation, which makes MSEs
advantageous over the Boussinesq equations in deep water, becomes its drawback. Furthermore, the nonlinear wave interaction in the surf zone that generates new
wave modes and currents cannot be handled by MSEs. For this reason, the MSE models are used less often in modeling waves in coastal waters when compared
with the Boussinesq models.
5.3.3.7 Analytical studies based on MSE and its long-wave approximation
Since the EMSE is a linear PDE and has a relatively simple form, analytical approaches have been attempted to obtain the closed-form solution for simple cases.
The most common approximation is to assume long waves so that the EMSE reduces to the linear long-wave equation. For example, Homma (1950) proposed an
analytical solution of wave transformation around a circular island on a paraboloidal shoal based on the linear long-wave equation in order to find tsunami response
near an island. It was found that for a certain incident wave frequency, the wave amplitude around the island can be greatly amplified. Later, Longuet-Higgins
(1967) proposed an analytical solution for long-wave propagation over a submerged circular sill, during which the near-trapping phenomenon occurs that causes the
amplification of waves above the sill. Summerfield (1972) extended the Longuet-Higgins’s study to wave transformation around a small surface-piercing circular
cylinder mounted on a submerged larger circular sill. Zhang and Zhu (1994) proposed the series solutions for long-wave scattering around a conical island and over
a paraboloidal shoal. The study was later extended to waves around a circular island above a conical shoal (Zhu and Zhang, 1996). Starting with MSE but making
the assumption of long-wave approximation, Yu and Zhang (2003) proposed a series-form analytical solution of wave amplification around a circular shoal with the
profile of different power functions. Suh et al. (2005) proposed the analytical solution
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for wave transformation and attenuation above a circular pit. Liu and Li (2007) proposed an analytical solution for wave scattering around a circular shoal with the
profile of an arbitrary power function and being truncated at any level. Their results can be reduced to that obtained from Longuet-Higgins (1967) for large values
of power m. All the above theoretical works are based on linear SWEs, which can be regarded as the limiting factor of the MSE with long-wave approximation.
The above analytical solutions, when compared to both experimental data and analysis based on potential flow theory, overestimated wave amplification above the
shoal due to the use of long-wave approximation (Renardy, 1983; Miles, 1986). This calls for a better description of the physics. The original the MSE is apparently
a good choice for this purpose. However, since the wave number and the water depth are coupled implicitly through dispersion equation in the MSE, a direct
closed-form analytical solution to MSE is impossible, even for rather simple bathymetry. Only recently, by using Hunt’s (1979)’s direct approximation to the linear
dispersion equation, an approximate analytical solution was obtained by Liu et al. (2004) for shorter wave scattering around Homma’s Island. The method was then
extended to study wave scattering and trapping above a truncated paraboloidal shoal (Lin and Liu, 2007).
5.3.3.8 Unified equations
If we make a comparison between time-dependent MSEs and Boussinesq equations, we find that the two types of equations share some similarities, e.g., both are
depth-averaged equations and both can be split into a system of two hyperbolic PDEs. While the MSE has the advantage of representing waves from deep water to
shallow water with the explicit use of dispersion equation, the Boussinesq equations are primarily used in relatively shallow water with stronger wave nonlinearity.
It is not surprising that people want to find a unified model that contains the advantages from both the MSE model and the Boussinesq model.
The development of a unified wave model started by either extending the Boussinesq equations to include the full dispersive effect or extending the MSE to include
the fully nonlinear effect. One of the earliest attempts was made by Witting (1984) to create a unified model for the evolution of nonlinear water waves. Using the
series expansion solution, his model can provide accurate results for nearly breaking solitons. However, although he termed his model a “unified model,” it is more
appropriate to classify it as a higher order Boussinesq model. Later, Karambas (1999) and Wu (2000) developed different “unified models” of the Boussinesq type.
In contrast, Tang and Ouellet (1997) proposed a nonlinear MSE and claimed that the model captures the same wave nonlinearity as a Boussinesq model does. A



similar extension was made by Li and Fleming (1999) and Huang et al. (2001) with the use of variational principle to develop the unified models that can be
reduced to MSEs for small-amplitude waves and nonlinear Boussinesq equations in shallow water for finite-amplitude waves.
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The difficulty of having a really unified model is the fundamental dilemma of the accurate representation of water waves in both deep and shallow water. In deep
water, waves are essentially linear or weakly nonlinear. In this case, the wave form is almost symmetric. The linear and Stokes wave theories, which are governed
by dispersion relationship, can precisely describe the wave motion. The MSE inherits the use of the dispersion equation and thus can accurately describe wave
motion in deep water. Although the use of dispersion relation ensures the accurate simulation of wave propagation, it limits the application of MSE to purely
periodic wave motion only. As the waves get into shallow water with the increase of wave nonlinearity, the wave front becomes steepened, creating an asymmetric
wave profile and destroying the dispersion relationship by generating new wave modes and wave-induced current through nonlinear wave interaction. This requires
the relaxation of the dispersion equation that is true only for linear periodic waves. Boussinesq models are ideal candidates because the dispersion equation is not
explicitly enforced. By abandoning the dispersion equation, there is no need to know the wave number (or wave frequency) in advance. The generation of new
wave modes, the steepening of the wave front, and other nonlinear wave phenomena can be automatically handled by the nonlinear terms in the Boussinesq model.
The absence of the dispersion equation, however, makes the Boussinesq model restricted to relatively shallow-water region.
Realizing the above facts, a unified model can be successful only if it can generally phase out its dependency on wave number information when waves propagate
from deep to shallow water. Such a model, unfortunately, is not available for practical engineering computations but may become needed in the future with the
advancement of computer power that makes possible the large-scale phase-resolved computation for wave propagation from very deep water to shallow water.
5.3.4 Wave spectral models
5.3.4.1 Background of wave energy spectrum
Definition of spectral density function: Waves in the ocean contain random components. A random sea is composed of waves with different frequencies and
phases and propagate in different directions. Consider an ocean surface that consists of many wave components slowly varying in time and space. Assuming each
wave component is of a linear wave train, the sea state can then be recovered by the integration of waves over frequency and direction spaces as follows:

(5.179)
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where δ(σ, θ) is the random phase information that does not affect the mean wave energy. Each wave component follows a linear dispersion relationship, from
which the wave number can be determined locally with the information of local water depth:

σ2=k(σ)g tanh[k(σ)h] (5.180)
For each wave component, the energy density is related to wave amplitude by the following equation:

(5.181)
Based on (5.181), we can make the following definition:

(5.182)
where F (a, θ, x, y, t) is called wave energy spectral density function and can be regarded as the normalized (by ρg) wave energy density per unit frequency and unit
directional spreading angle. This gives the following formula for wave amplitude:

(5.183)
The wave frequency spectrum and directional spectrum can be obtained by taking the integration of F(σ, θ, x, y, t) over directional and frequency spaces,
respectively:

(5.184)

(5.185)
and we also have:

(5.186)

where  with arms being the root-mean-square wave amplitude. It is noted that, in principle, the wave spectrum can also be expressed as a function
of wave number vector (kx, ky), which is mutually
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convertible to frequency-direction space (σ, θ) by using the linear dispersion equation. Such representation, however, is less popularly used in wave modeling.
Frequency spectrum: For wind waves in oceans, the distribution of wave energy in different frequency and direction components is dependent upon the fetch area
of the wind, the strength of the wind, and the relative location in the fetch area. For an infinitely large fetch area, Phillips (1958) found that the equilibrium range of
the wave spectrum of a fully developed sea is independent of wind speed, location, and time. Under this circumstance, the simplified spectrum can be expressed as:

SP(σ)=αg2σ−5 (5.187)
where α is called Phillips constant. Phillips spectrum represents the upper limit of the energy spectrum. Although it is rarely used in any practical computation, it
serves as the basis for other spectra that are popularly used in practice.
Pierson-Moskowitz (P–M) spectrum (1964) is an energy spectrum that is widely used in offshore engineering. This spectrum is essentially the modification of
Phillips spectrum by considering the additional factor of wind speed for a fully developed sea:

(5.188)
where α=0.0081 and Uw is the wind speed.
Another popular frequency spectrum is JONSWAP spectrum developed during a JOint North Sea WAve Project (Hasselmann et al., 1973), which essentially is the
modified P–M spectrum by further considering the fetch length:

(5.189)
where γ is the peak enhancement parameter,  the shape parameter, and σ0 the peak angular frequency:

(5.190)
in which X is the length of the fetch.
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In shallow water, the so-called TMA (Texel-Marsen-Arsloe) energy spectrum (Bouws et al., 1985), which is extended from the original JONS WAP spectrum by



considering the finite depth, can be used:

(5.191)
where

 

and 
There are also other frequency energy spectra, i.e., Neumann spectrum (Neumann, 1953), Bretschneider spectrum (Bretschneider, 1959), ISSC spectrum
(International Ship Structures Congress, 1964), ITTC spectrum (ITTC, 1972), Scott Spectrum (Scott, 1965), Liu spectrum (Liu, 1971), Mitsuyasu spectrum
(Mitsuyasu, 1972), Ochi-Hubble spectrum (Ochi and Hubble, 1976). Chakrabarti (1987:120) compared various types of spectra.
Directional spreading spectrum: There are fewer directional spreading spectra when compared with frequency spectra. The two most popular models include
cosine-power model and the wrapped-around Gaussian (normal spreading) model, as introduced below. The cosine-power model was first proposed by Pierson et al.
(1955). It was later refined by Goda (2000:32) in the following form:

(5.192)
where θ0 is the principal propagation direction, β is the narrowness coefficient for directional spreading, and G0 is a constant that normalizes D(θ):

(5.193)
The wrapped-around Gaussian model is essentially an exponential model. It was proposed by Mardia (1972:239) and refined by Briggs et al. (1987) in the following
form:

(5.194)
where σs is the circular standard deviation in radians and it can be set to 0.6 for most offshore engineering applications. Unlike the cosine-power model, the above

wrapped-around Gaussian function does not reduce to zero when  Briggs et al. (1987) suggested the use of N=5.
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Besides, there are also the von Mises model based on the modified Bessel function of zeroth order (Abramowitz and Stegun, 1964), the hyperbolic function model
(Donelan et al., 1985), and the double-peak spreading model (Zakharov and Shrira, 1990).
5.3.4.2 The transport equation for the wave energy spectrum
Dynamic equation: Based on the concept of energy conservation, a general dynamic equation for the directional wave spectrum can be expressed as follows:

(5.195)
where ξ=(x, k) or ξ=(x, ω, θ) is the multidimensional space variable and Q is the source function that contributes to the local wave energy dissipation, wave energy
input, or wave energy exchange between various variable spaces through wave interaction.

In Cartesian coordinates when the divergences of the time derivatives of the space variables are zero, i.e.,  we have:

(5.196)
If the wave number space variables are used, the above equation becomes:

(5.197)
In contrast, if the wave frequency and direction variables are used, the equation has the following form:

(5.198)
To apply the above equation in a practical computation, we need to define:

 
and Q, the former of which can be exactly derived by applying the theory of wave kinematics as shown below and the latter of which must be closed empirically by
considering various physical processes.
Wave kinematics: Consider a linear wave train propagating over a changing topography and a nonuniform current U (Figure 5.13). The free surface displacement of
the waves can be described by the following expression:

(5.199)
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Figure 5.13 Illustration of a steady linear wave train propagating with a current.

where S is the phase function and  is the wave number with the local wave propagation angle θ=tan−1(ky/kx).
In the analysis of wave refraction (Section 3.10), the following conservation equation of wave number has been derived:

(5.200)
and the irrotationality of wave number reads:

(5.201)
In contrast, the study of wave-current interaction in Section 3.14.4 provides the relationship between the apparent angular frequency ω and the intrinsic angular
frequency σ as follows:

(5.202)
The following interpretation can be obtained by observing (5.200) and (5.202), respectively:
1. The change of apparent angular frequency ω in space will occur only when there is a change of wave field in time; in other words, for steady waves, ω is uniform



in space.
2. The intrinsic angular frequency a can vary in both time and space when the waves propagate over an unsteady nonuniform current.
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Expression of dxi/dt: This term represents the velocity vector at which wave energy propagates. It is the most straightforward term to be evaluated by considering
both current and wave effects:

(5.203)
To obtain the above equation, we have used the definition of wave group velocity cgi=∂σ/∂ki.
Expression of dki/dt: The total derivative can be written as:

(5.204)
The first term on the RHS can be evaluated using (5.200) and (5.202) as:

(5.205)
By using the irrotationality of wave number (5.201) and substituting (5.205) into (5.204), we have:

(5.206)
Expression of dω/dt: As mentioned earlier, instead of formulating the problem using the wave number vector, we can also use the equivalent formulation based on
wave frequency and wave direction, which is more popularly used in the wave spectral models. The total derivative of ω can be written as follows by using (5.200)
and (5.203):

(5.207)
The first term on the RHS can be evaluated as follows:

(5.208)
Substituting the above relationship into (5.207), we have:

(5.209)
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This equation describes the change rate of apparent angular frequency following a wave ray.
Expression of dθ/dt: The kinematics equation for wave propagation angle θ represents the wave refraction process. It can be established by making use of
irrotationality of wave number we used in Section 3.10 to derive Snell’s law:

(5.210)
which leads to:

(5.211)
If we define a new local coordinate (s, n) so that s is in the wave direction and n normal to it, we would have the following relationship from the coordinate
transformation:

(5.212)
Using the above coordinate transformation, equation (5.203) becomes:

(5.213)
We then have:

(5.214)
In the above equation, it is assumed that the apparent frequency is a constant in the n direction, i.e., ∂ω/∂n=0.
Transport equation in the Cartesian coordinate: Using the definition of dx/dt and dk/dt found in the earlier section based on wave kinematics, the dynamic
equation (5.198) becomes:

(5.215)
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In contrast, if we use wave frequency and wave direction as the space variables, we have, by substituting dω/dt and dθ/dt into (5.215):

(5.216)
In the case where there is no current and the variation of mean water depth with respect to time is negligible, the above equation can be further simplified to the
conventional wave energy spectrum equation in the Cartesian coordinate (e.g., Hasselmann et al., 1988):

(5.217)



Transport equation in spherical coordinate: The equation can be modified to include the great circle effect on Earth, whose latitude and longitude are defined by 
and λ, respectively. In this case, θ is measured clockwise from true north and thus the latitude  is similar to the x-direction and longitude λ to the y-direction in the
counterclockwise Cartesian coordinate system (x, y). The modified equation reads:

(5.218)
where

 
Source terms: By considering weak nonlinear interactions for wind-induced waves, Hasselmann (1968) proposed the following general form for the source Q, which
consists of nine contributions:

(5.219)
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In practical computation, however, there are essentially only three major types of sources affecting wave energy spectrum. The first contribution is the input of
wave energy from wind (Q1 and Q2), which can be expressed as:

(5.220)
where Fa is the reference wave spectrum (a constant) that is often unknown a priori. Fortunately, it is found that Q1, which represents a linearly growing sea,
contributes only to the initial wave growth and its influence on the future wave evolution is negligible. The continuing wave development is mainly controlled by
Q2, in which µ is called coupling coefficient and the theoretical expression was given by Mitsuyasu and Honda (1982) as:

(5.221)
where  is the friction velocity induced by wind.
The second contribution is the nonlinear energy transfer among different directional frequency spectral components (Q5). The complete expression of Q5 was given
by Hasselmann (1968) in the form of triple integration. To facilitate the computation, Hasselmann and Hasselmann (1985) gave the alternative expression based on
the parameterization of nonlinear energy transfer as:

(5.222)
where Enl is the mean value of a set of 18 exact computations for various JONSWAP-type spectra with the enhancement factor γ varying from 1 to 7 and different

directional spreading spectra.  is a set of five empirical orthogonal functions determined by the Qnl ensemble. C(i,j) is called expansion coefficient.
The third contribution is the energy dissipation due to white capping (deep-water wave breaking Q7), bottom friction (Q8), and various shallow-water wave
breakings (Q9), the last two of which are negligible in the deep-water region. Komen et al. (1984) based on the P–M spectrum gave the following expression of Q7:

(5.223)

where  and:
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with  being the variance of free surface displacement, which simply equals the total wave energy:

 
if the free surface displacement follows normal distribution.
For bottom friction, Bouws and Komen (1983) proposed the following form:

(5.224)
where the mean value of Cbt is found to be 0.038 m2s−3. Additional wave energy dissipation may result if the seafloor is permeable. This can be modeled as
follows if the porous layer has an infinite thickness:

(5.225)
where K is the intrinsic permeability of the porous bed.
For wave breaking in shallow water, Booij et al. (1999) proposed the following form:

(5.226)
where Sbr is the mean rate of energy dissipation due to wave breaking that can be expressed as:

(5.227)
with qbr being determined from the following equation:

 
and the maximum allowable wave height Hmax is related to the local still water depth h and beach slope β by Hm=[0.55+0.88 exp(−0.012 cot β)] h.
The transport equation in terms of wave action: Strictly speaking, all the above equations have been derived by assuming weak current or no current at all. When
waves propagate on a strong unsteady nonuniform current U(x, t), the apparent wave frequency is no longer a constant. This is evident from equation (5.202) where
ω=σ+k·U and  from which one can easily deduce that the unsteady current will cause the
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unsteadiness of k that consequently results in the spatial variation of ω. In this case, the wave energy will not be conserved.
Bretherton and Garrett (1969) showed that the so-called wave action N, which is defined as N=F/σ, is conserved in a moving medium like a current. With the use of
wave action, the governing equation expressed in frequency and directional space takes the following form:

(5.228)



This equation is used in both deep and shallow waters where the current effect is strong and changes with time and space. For a 2D case, the above equation can be
rewritten as:

(5.229)
where

 
all of which can be evaluated in the same way we introduced earlier in this section.
5.3.4.3 Wave spectral models and their applications
The transport equation for the wave spectrum describes the change of wave spectrum during wave propagation over a changing topography. By including
appropriate source terms, the model can be used to simulate wave generation, wave propagation, shoaling and refraction, nonlinear wave energy transfer among
different wave components, and wave dissipation. Starting from the so-called first-generation wave model (e.g., Pierson et al., 1966), the model has been improved
for better representation of nonlinear wave energy transfer and wave dissipation mechanisms. This leads to the second-generation wave models (e.g., Hasselmann et
al., 1976) and the third-generation wave model (Hasselmann et al., 1988) that is a powerful tool for modeling long-term and large-scale wave climates globally. The
representative third-generation wave spectral model in deep water includes WAM (Hasselmann et al., 1988) and WaveWatch III (Tolman, 1999), the latter of
which was developed by the National Centers for Environmental Prediction (NCEP) of NOAA, U.S.A. The model can cover a very large area (i.e., the entire ocean
surface on the globe outside the surf zone) with the mesh size varying from 1 to 10 km. Figure 5.14 shows an example of using this model for forecasting wave
height distribution in Pacific Ocean.
For wave transformation in shallow water, the representative wave spectral model is SWAN (Booij et al., 1999; Ris et al., 1999). In this model,
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Figure 5.14 Real-time forecast of wave height in Pacific Ocean with the use of the Wave Watch III model; the color scale represents wave height in meters.
(Courtesy of Dr. Hendrik Tolman of the Marine Modeling and Analysis Branch (MMAB) of the NCEP of NOAA)
the depth influences on waves, e.g., shoaling, refraction, bottom friction, depth-induced wave breaking, triad wave-wave interactions, are included. For more details
on wave spectral models, readers are referred to Sobey (1986) and Massel (1996:222).
5.3.4.4 Limitations of wave spectral models
Wave spectral models possess the great advantage of being able to simulate very large scale problems, i.e., the global wave climate. This is a distinct
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feature none of the other wave models can possibly have. The reason that wave spectral models can be used to simulate large-scale wave events is that the wave
spectrum filters out the wave phase information by retaining only the wave height (or wave energy) information. In most cases, the variation of wave height is slow
in both time and space. This means that in solving the transport equation of wave spectrum, one mesh can cross many wavelengths. However, the omission of wave
phase information suggests that such a model will not be able to simulate phase-related wave phenomena, i.e., wave diffraction, that may become important in
coastal regions when waves propagate over rapidly changing topography, islands, or man-made coastal structures (e.g., breakwaters).
The diffraction effect, which can be easily included by many phase-resolving wave models, is not directly derivable from the spectral energy balance equation. So
far, there is no standard way of incorporating diffraction in a directional spectral model. Rivero et al. (1997) proposed a way of incorporating the diffraction effect
into a conventional spectral wave model. New expressions for wave group velocity and angular energy transfer rate were derived from the eikonal equation that
takes into account the wave diffraction effect. In contrast, Booij et al. (1997) proposed another model in which an artificial diffusion term is added to correct the
term of angular energy transfer rate so that the diffraction effect could be considered to a certain extent. Later, Holthuijsen and Booij (2003) further suggested a
phase-decoupled refraction-diffraction approximation.
A revisit to MSE and its parabolic approximation was made by Lin et al. (2005), who revealed that wave diffraction can be possibly included in the wave spectral
model by introducing the complex wave height spectrum, from which the conventional wave energy spectrum can be recovered. With the use of the complex wave
height spectrum, the wave phase information is retained in the argument of the complex variable. By assuming that the change of wave phase is slow away from the
singularity point (e.g., the tip of a break water), the wave height spectrum can be solved to simulate wave diffraction.
Regardless of the efforts made so far to extend the wave spectral model for the inclusion of wave diffraction, wave spectral models are generally unable to provide
the detailed wave information as accurately as those phase-resolving wave models for local-scale wave simulation. Therefore, a general practise is to use a wave
spectral model for large-scale wave propagation simulation that is coupled with a near-field wave model for detailed simulation in coastal areas.
5.3.4.5 Wave statistics and rogue waves
A wave spectrum can be extracted from a time history of wave records in a random sea. The data extraction process removes wave phase information, the major
component of wave randomness, and retains the important component of wave energy. Therefore, a wave spectrum contains only
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deterministic information. To recover a random sea state, at least statistically, a random phase δ(σ, θ) must be introduced to each component of the wave mode in a
wave spectrum, i.e.:

(5.230)



This is a typical way to generate irregular waves in the laboratory to simulate a random sea. A typical wave series for a JONS WAP spectrum using (5.230) is shown
in Figure 5.15, from which one may easily identify the randomness of wave height from one wave crest to another. A simple relationship can be established between
F(σ) and the root-mean-square wave height:

 

Figure 5.15 An irregular wave train corresponding to a JONSWAP spectrum with γ=3.3.
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where N is the number of waves in the time-series wave record:

(5.231)
An immediate question from the above observation is what could be the possible maximum wave height if the observation is extended to a longer duration, e.g.,
5000 s, 1 day, 1 month, or 1 year? The answer to such a question has significance in the design of coastal and offshore structures and ship hulls. The theoretical
formulation for this question is available when the following assumptions are true:
1. The waves are narrowly banded (this could be theoretically achieved if we increase the value of γ in the JONSWAP spectrum to have a sharply peaked spectrum,
especially swells).
2. The forcing wave condition remains unchanged in the observation period.
3. The sampling volume is large enough to have statistical significance.
Under the above conditions, the distribution of wave height can be proven to follow the Rayleigh distribution (Dean and Dalrymple, 1991). The corresponding
probability density function of wave height is then expressed as:

(5.232)
and the wave height that may be exceeded by at least one wave in the entire wave record is:

(5.233)
Apparently, with the increase of observation time, the wave number N contained in the wave record also increases, which causes the increase of Hexceed. In
principle, as N→∞, Hexceed→∞ too. This implies that, given a sufficiently long time, the linear superposition of many wave modes can possibly create a very large
wave height at a particular location.
Such an event, however, will take place less frequently in the real world than what is predicted by the theory. The reason is that in a real sea, the wave-forcing
condition keeps changing and the resulting wave field has a widely banded spectrum. This makes the first two basic assumptions of the Rayleigh distribution invalid.
In addition, the white capping and depth-induced breaking will further trim down the wave height when the breaking condition is exceeded, which greatly reduce
the number of very large-amplitude waves.
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Nevertheless, observations were indeed reported for suddenly emerged huge waves on an otherwise quiet and calm background wave field in deep water. Such
waves are called rogue waves (or freak waves, monster waves, giant waves, steep waves, etc.). These waves can easily reach a wave height over 10 m without any
warning and thus pose great dangers to ships. In shallow waters nearshore, a similar phenomenon has also been observed and the wave is called a sneaker wave.
The real cause of rogue waves is still controversial and even mythical. Most of the reported freak waves were known only through anecdotal evidences from ships
that encountered them. The only exception is the so-called Draupner wave that was precisely measured at the Draupner oil platform in the North Sea, offshore of
Norway, on 1 January 1995 (see Section 3.4.4). The wave record confirmed a significant wave height of about 12 m and a maximum wave height of 26 m, with the
occurrence probability of about 1 in 200,000.
Currently, there are various reasons for the generation of these unexpected giant waves, namely the linear superposition of waves from different sources with their
crests coming together at the same time, wave focusing due to a particular incident wave condition and the bathymetry and ambient current, nonlinear wave
instability (e.g., Kharif and Pelinovsky, 2003), and strong wind. This mysterious part of nature will remain a challenging problem for both scientists and engineers in
the foreseable future.
5.4 Case studies using model coupling techniques
In modeling realistic waves and currents in oceans, there is a need to couple different wave models into one package to resolve different physical phenomena and/or
cover a very large scale domain. In the situation where the entire physical process can be described by the same type of wave model, the coupling mainly takes
place by data exchange between meshes of different sizes. A typical example is the simulation of tsunami generation, propagation, and run-up. In contrast, for cases
where different wave models are required in different regions or in an overlapped region to correctly represent the coupled physics, the coupling takes place not
only for data exchange, but also for the shift of wave models. The examples include the simulation of wind wave generation from deep oceans and the subsequent
propagation and transformation in the nearshore region as well as the simulation of wave-current interaction in the same domain.
This section is arranged in the following way: first, some commercial wave and current model packages will be briefly introduced. These commercial software
packages normally include different flow and wave modules within one package in order to treat complicated physical problems. Following the
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introduction of the commercial software, a few examples of numerical simulations that employ the model coupling technique will be presented.
5.4.1 Commercial software for hydrodynamics and wave simulation
Currently, there are a few commercial software packages available for the simulation of waves and coastal and offshore hydrodynamics. They are briefly introduced
below.
MIKE 21: The product of DHI. It includes four modules of HD (hydrodynamics for current and water level simulation), waves (wave simulation), AD (advection
and dispersion of pollutants), and sediment transport (sediment, mud, and particle transport). In the module of waves, there are models based on the wave action
concept for the large-scale wave transformation (MIKE 21 SW: OSW, offshore spectral wind wave module, and NSW, nearshore spectral wind wave module) and
models based on the momentum concept for the nearshore waves where the wave diffraction can become significant (BW Boussinesq wave model; EMS, elliptic
mild-slope wave model; and PMS, parabolic mild-slope wave model).



DELFT3D: The product of WL | Delft Hydraulics. DELFT3D includes a few modules, e.g., hydrodynamics, waves, sediment transport, morphology, water quality,
particle tracking for water quality, and ecology. For Delft Waves, it includes four modules, namely SWAN (spectral wave model for far-field wave simulation),
PHAROS (MSE model for middle-field wave simulation), TRITON (Boussinesq model for nearshore wave simulation), and SKYLLA (VOF NSE-solver model for
local-scale simulation).
SMS: Product of Environmental Modeling Systems, Inc. Many models have been included in SMS for the simulation of various types of surface flows such as river
flows and water waves. Relevant to coastal and ocean engineering problems, for current simulation, there is an SWE model ADCIRC; for wave modeling, there are
STWAVE (the wave spectral model), CGWAVE (the MSE model), and BOUSS-2D (the Boussinesq model). Besides, the shoreline change model GENESIS is also
included in the package.
5.4.2 Tsunami simulation
The case presented below is the simulation of the 2004 Indian Ocean tsunami using the MIKE 21 software package (simulation results kindly provided by DHI
Water • Environment • Health; see also Pedersen et al., 2005). The generation, propagation, and run-up of a tsunami normally cover a very large area that requires
different levels of mesh resolution for the optimal simulation results. Since the tsunami can be described by the same SWEs or the Boussinesq equations in both
deep oceans and nearshore, the main challenge here is the adequate spatial resolution for the physics in the entire domain. The difficulty, however, arises because
the length scales of the tsunami can
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be very different in deep water and shallow water, say, from hundreds of kilometers in deep oceans to a few kilometers nearshore.
5.4.2.1 Simulation on integrated unstructured mesh
One way of simulating a tsunami from far field to near field is to use an integrated unstructured mesh system that varies its size to adapt to the local shoreline
configuration. Usually, coarse meshes are used in the deep ocean whereas fine meshes are deployed in the coastal region. The governing SWEs are solved by either
FVM or FEM. By doing so, there is no need for model coupling and data exchange, and a unified model can be applied to model the entire process of tsunami
generation, propagation, and run-up. Figure 5.16 gives an example of using the MIKE 21 FM series (flexible mesh) to simulate the 2004 Indian tsunami. Such
treatment, however, may exhaust

Figure 5.16 The mesh used by MIKE 21 for the 2004 Indian Tsunami simulation; B, C, and D represent various levels of zoom-in regions.
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computational resources in the nearshore region before tsunami arrives. At this time, this approach is used less than the nested-mesh approach as elaborated next.
5.4.2.2 Simulation based on the nested-mesh approach
The second way of handling the large-scale simulation of tsunami propagation and run-up is to run the model on different mesh sizes (i.e., large mesh size for
far-field tsunami generation and propagation and small mesh size for local wave transformation and run-up). In adopting this approach, it can be advantageous to
introduce different approximations to the wave models running on different mesh systems, although these models essentially solve the same basic governing
equations. For example, in the far-field simulation, the model is often constructed on spherical coordinates with wave nonlinearity being neglected; for the
local-scale run-up simulation, the model can be constructed on the simplified Cartesian coordinate including wave nonlinearity and moving boundary treatment.
Figure 5.17 shows an example of the employment of the rectilinear version of MIKE 21 to simulate the 2004 Indian Tsunami, where the regional area is simulated
by using the grid size of 9720 m and the local area is simulated by using the grid size of 3240 m.
In this approach, the main difficulty lies in the exchange of data on the boundaries of two mesh systems. Because the large-scale mesh is nested with

Figure 5.17 Nested regional (left) and local (right) simulation of the 2004 Indian tsunami.
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the small-scale mesh, this type of modeling is called nested-mesh simulation. For rectilinear grids, the ratio of the large and small grid sizes is often an odd number
integer to facilitate the data exchange by interpolation. The data exchange can be either passive (i.e., the data are fed from large-scale simulation results to
small-scale simulation as the boundary condition) or dynamic (i.e., the data exchange between the large-scale simulation and the small-scale simulation is allowed so
that they are mutually affected). In principle, a multiple-level nested-mesh system can be used to zoom into a very small area for the simulation of detailed wave
run-up as long as the local bathymetry data are available (Figure 5.18 for example). Caution, however, must be taken for the data exchange in the nested-mesh
approach, because additional numerical errors will be inevitably introduced. This implies that the reliability of the numerical prediction of nearshore wave
phenomena will degenerate with the increase of levels of nested meshes.
5.4.3 Large-scale wind wave simulation
For wind waves, unlike the tsunami whose wavelength is greatly reduced when approaching the shoreline, the wavelengths from deep water to shallow water are
often on the same order of magnitude. This implies that to resolve

page_279

Page 280

Figure 5.18 An example simulation of wave transformation and inundation nearshore by MIKE 21 BW.
the wave motion, a similar spatial resolution is needed from far-field to near-field modeling if the same wave model is used. This is often infeasible if the distance
between the source of wave and the space of interest is thousands of wavelengths away. The effective method of solving this problem is to employ different wave
models at different stages and match the boundary conditions at the interface where two wave models are coupled to each other.
For far-field simulation, the most efficient model is the wave spectral model. By removing the wave phase information, a grid space can cover many wavelengths.
The wave height, wave period, and wave direction information obtained from the spectral model will be fed into the nearshore wave model, e.g., the Boussinesq
model or MSE model, in order to simulate combined wave refraction and diffraction in a relatively shallow-water region. The Boussinesq model can be continued
for wave run-up simulation or fed into a more detailed NSE model for wave-structure interaction modeling.
In the following example, a case study of seiche in the Port of Long Beach, California, USA, is induced. The study was originally performed by Kofoed-Hansen et
al. (2005). Figure 5.19 shows the mesh resolution by the global and regional MIKE 21 SW simulation with the use of the wave spectral model. Figure 5.20 shows
the local area near the port, in which the wave field is simulated by the BW model. Figure 5.21 shows the simulated waves in global scale by the wave spectral
model, which predicts the significant wave height and main wave propagation direction. On the local scale, the complex wave refraction, diffraction, and reflection
pattern can be resolved by the Boussinesq model (Figure 5.22).
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Figure 5.19 The mesh setup in MIKE 21 SW for global (top) and regional (bottom) simulation. (Images from Figure 5.19 through Figure 5.22 courtesy of DHI
Water • Environment • Health and from Kofoed-Hansen et al., 2005)
5.4.4 Combined wave and current simulation
Unlike the previous two cases where the same wave phenomenon (i.e., long-wave tsunami or wind wave) is simulated but with either different meshes or different
models being implemented in different regions, the simulation of combined wave-current interaction is conducted in the same domain. In this case, the model
coupling takes place between two models, normally on
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Figure 5.20 Local beach and harbor configuration; waves simulated by MIKE 21 BW.

Figure 5.21 Simulated wave height and direction using MIKE 21 SW.
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Figure 5.22 Simulated wave fields around the Port of Long Beach.
the same mesh system, by exchanging variable information obtained from the wave and current models, respectively. The data exchange is necessary because wave
and current have mutual influences on each other through linear and nonlinear wave-current interaction. The interaction changes both wave and current
characteristics. For example, currents can deflect wave direction and change wavelength, whereas waves can affect the current by imposing additional radiation
stresses and by changing the effective wind stress and bottom friction experienced by the current.
Different wave and current models can be coupled together, depending on the need of simulation. The commonly adopted wave model is the wave spectral model
that is capable of simulating large-scale wave variation in both time and space, e.g., WAM, Wave Watch III, or SWAN. Besides, the phase-resolving MSE model
and the Boussinesq model can also be adopted sometimes. The hydrodynamic model for flow simulation can be either the depth-averaged SWE model or the depth-
dependent quasi-3D model (e.g., POM or COHERENS).
5.4.4.1 Large-scale modeling
For large-scale modeling of combined wave and current, a typical example is the modeling of storm waves and storm surge under the influence of a large-scale
tropical storm (e.g., typhoons, hurricanes, or cyclones, all of which are
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tropical storms but termed differently based on their origins in the Atlantic Ocean, western Pacific, or near India and Australia, respectively). A storm causes the
reduction of atmospheric pressure in its eye where the sea level rises. Accompanying the storm is strong wind that generates storm waves. When the storm
approaches the shoreline, the storm waves combines with the storm surge to cause coastal flooding. Sometimes, a high tide will further worsen the situation.
To model this large-scale event, the general practice is to use a wave spectral model to simulate wave generation, propagation, and transformation in deep oceans
and use an SWE model to model current and sea surface variation. For example, Zhang and Li (1996) combined a third-generation wave spectral model with a 2D
SWE storm surge model to simulate the interaction of wind waves and storm surge. In their work, the current velocity and the sea surface level obtained from the
storm surge model are put into the wave model, and the radiation stresses estimated from the wave spectral model results and the modified wind stress are brought
back to the storm surge model. Ozer et al. (2000) reported a coupled WAM and SWE model to simulate tides, surges, and waves under the MAST III project and
employed the model to study North Sea and Spanish coasts. Choi et al. (2003) employed a coupled wave-tide-surge model (WAM and SWE) to investigate the tide,
storm surge, and wind wave interaction during a winter monsoon in the Yellow Sea and East China Sea.
For a wave spectral model coupled with an SWE model, the wave information is obtained by solving the wave action equation (Section 5.3.4.2), i.e.:

(5.234)
where cx, cy, cσ, and cθ are functions of mean water depth (i.e., sum of still water depth h and water setup/set-down η) and mean current velocity U and V. The
wind effect is considered in one of the source terms Q. From the wave action information, we are able to compute the root-mean-square wave height, the main
wave propagation direction, and the mean wave angular frequency by the following equations:

(5.235)

(5.236)
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(5.237)
To solve (5.234) the mean water level h+η and current velocities U and V are needed to estimate cx, cy, cσ, and cθ. The mean flow information can be obtained by
solving the SWEs:

(5.238)

(5.239)

(5.240)
where f=1.0312×10−4 (rad s−1 is the Coriolis parameter due to the self-rotation of Earth. In this equation, the large-scale change of atmospheric pressure pa

resulting from the moving storm eye is included as the forcing term of the current and the spatial variation of water level. The wind-induced surface stresses 

and  are included as other forcing terms for the generation of mean current, which is affected by the surface waves that change the effective water surface
roughness (Janssen, 1991). Inside the water column, the total stresses on the horizontal plane include the contribution from viscous effect, turbulence effect, and
wave-induced radiation stress:



(5.241)
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(5.242)

(5.243)

where  is calculated from the wave spectral modeling results. The wave effect in the current is thus reflected in this term by changing the total
effective stress. Another influence of wave effect on the current is the change of effective bottom shear stress, i.e.:

(5.244)
where the friction coefficient cwc is a function of wave properties, current velocity, and bottom roughness (Grant and Madsen, 1986). Note that when the above
approach is used to solve a very large scale problem across the ocean, both wave spectrum transport equation and SWEs should be converted into their equivalent
forms in the spherical coordinate.
5.4.4.2 Local-scale modeling
To resolve 3D coastal circulation, it is necessary to employ a quasi-3D hydrodynamic model for current simulation. For example, Xie et al. (2001) incorporate the
WAM model with the quasi-3D POM to study the 3D wave-current interaction through surface and bottom stresses. In their approach, the 2D wave information is
first converted into 2D wave-induced radiation stresses that are subsequently included in the 3D hydrodynamic model by applying the stresses uniformly in the
vertical direction. This treatment introduces errors in current computation in the vertical direction because the wave-induced radiation stresses vary in depth and
can be significant for large waves. Lin and Zhang (2004) proposed a formula for 3D depth-dependent radiation stresses and incorporated them into the coupled
WAM–POM model. The model was used to study wind-driven waves and currents in Singapore coastal water during the monsoon seasons.
Figure 5.23 shows Singapore coastal waters and their surroundings, and Figure 5.24 shows the simulated current profiles on the surface, middle, and bottom layers,
from which it is easy to see the vertical flow circulation in the coastal region.
When the wave diffraction effect needs to be considered, the wave spectral model needs to be replaced by the phase-resolving model with the inclusion of current
effect, e.g., an MSE model. In this case, wave propagation will be
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Figure 5.23 Map of Singapore coastal waters and their surroundings; the blocked region is the simulation area for waves and current. (From map © Collins
Bartholomew Ltd 2003; reproduced by permission of Harper Collins Publishers)

Figure 5.24 Simulation results of current distribution on surface, middle, and bottom layers in Singapore coastal waters by incorporating 3D radiation stresses in the
coupled WAM–POM models.
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simulated by the MSE model, and the water level and current are handled by an SWE or a 3D hydrostatic flow model. The coupling can be done similarly to the
coupling of wave spectral-SWE models. Recently, Liu et al. (2007) proposed a theoretical formulation for the coupled 3D wave and current flow.
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Another alternative is to use Boussinesq models for both wave and current simulations by realizing that a Boussinesq model is similar to an SWE model for current
simulation and similar to an MSE model for wave simulation. When properly treated, the Boussinesq model can accurately simulate breaking wave-induced
longshore current and circulation in the nearshore region (e.g., Chen et al., 2003). In this case, no model coupling is needed.
To solve the depth-dependent wave and current interaction with the use of a single wave model, we have to turn to the wave model based on NSE solvers. Similar
to the Boussinesq equations, the momentum equations of the NSEs represent the contributions from both wave and current. Their interaction has been implicitly
included in the nonlinear terms. With the use of a single RANS model, Lin and Liu (2004) simulated the breaking waves and the associated vertical structure of
undertow in the surf zone (see Figure 5.25). In this case, the radiation stresses are automatically accounted for when the combined flow of wave and current is
simulated, even though they are not explicitly included in the model.

Figure 5.25 Undertow current for spilling (top) and plunging (bottom) breaking waves in the surf zone; solid lines are numerical results and circles are measured
data; dashed lines are calculated envelopes that bracket the wave troughs and crests.
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5.5 Example wave models and benchmark tests
This section has a twofold purpose: (1) to provide a few examples of wave models with adequate numerical details so that readers can build up their own wave
models; and (2) to provide a few benchmark tests simulated by different wave models so that readers can benchmark their own models and understand more
thoroughly the behaviors of different wave models under different circumstances.
5.5.1 Examples of wave models
5.5.1.1 The wave models based on the Navier-Stokes equation solvers
As introduced earlier, the wave model based on NSE solvers is the most robust numerical model that can be used to simulate essentially any water wave
phenomenon. However, depending on how the NSE and RANS equations are solved numerically, these wave models may display different advantages and
limitations. Below we shall introduce three NSE-solver wave models, namely NEWTANK (3D), the σ-coordinate wave model (3D), and the SPH wave model (2D).
Focus will be on the introduction of NEWTANK, a 3D numerical wave tank that is currently being developed by the author and his group to simulate general
turbulent-free surface flows.
NEWTANK: NEWTANK (Liu and Lin, 2008) is the 3D extension of the earlier 2D NEWFLUME (Lin and Xu, 2006). In addition, NEWTANK also solves the
two-phase fluid flows with the use of higher order VOF method to track the interface motion. The NSEs (or RANS equations when the k−ε turbulence model is used
as the turbulence closure model; or SANS equations when the LES is used for turbulence modeling) are solved in a staggered grid system by FDM. Without loss of
generality, we shall discuss RANS equations only in this section:



(5.245)

(5.246)
where Rij is the Reynolds stress that is modeled by the linear eddy viscosity model:

(5.247)
where the eddy viscosity:
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with the turbulence kinetic energy k and its dissipation rate ε being governed by k−ε transport equations:

(5.248)

(5.249)
The coefficients in the above turbulence closure model are as follows:

Cd=0.09, C1ε=1.44, C2ε=1.92, σk=1.0, and σε=1.3  
The free surface tracking is accomplished with the use of VOF method, which solves the transport equation of the VOF function, a normalized fluid density
function:

(5.250)
For a two-phase fluid flow, knowing F, the mean density in each computational cell can be recalculated by using the following equation:

ρ=ρ1F+ρ2(1−F) (5.251)
where ρ1 and ρ2 represent the density of fluid 1 and fluid 2, respectively. The above equation can also be applied to multiphase fluid problems (e.g., internal wave
interaction with free surface wave) when the multiple VOF functions are solved to track the interface between any two adjacent fluids.
To solve the above equation, the two-step projection method (Chorin, 1968) is used. In the first step, the tentative velocity is solved, i.e.:

(5.252)
The second step is to project the tentative velocity field onto a divergence-free plane to obtain the final velocity, i.e.:

(5.253)
where:

(5.254)
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Taking the divergence of (5.253) and applying the continuity equation (5.254) to the resulting equation, we obtain get the PPE as follows:

(5.255)
After solving (5.255) with appropriate boundary conditions, the pressure information at the (n+1)th time step can be obtained and applied to (5.253) for the updated
velocity.
The advection terms in the x momentum equation are evaluated at the nth time level:

(5.256)
where the combination of a two-point upwind scheme and three-point central difference (for nonuniform grid) is used, e.g.:

(5.257)
where:

 
Similarly, we can have the expression for:

 
The coefficient α is the weighting factor between the upwind method and the central difference method. When α=0, the FD form becomes the central difference;
when α=1, the FD form becomes the upwind difference. In practice, α is selected in the range of 0.3–0.5.
The gradients of the viscous stresses for the x-component equation can be written as:

(5.258)
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which can be written in the following FD form:



(5.259)

where  with ∂ui/∂xj being discretized by the central difference method. The Reynolds stress terms could be solved in a similar way. The
momentum equations in the y- and z-directions can be discretized in the same way.
In solving the PPE in the second step, we first write out the following equation:

(5.260)
The central difference is used. For example, the first term on the LHS is discretized as follows:

(5.261)
with

 
Similar FDM can be used for the second and third terms on the LHS of the above PPE. The RHS of the PPE is expressed as follows:

(5.262)
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Finally, the discretized PPE with the proper boundary conditions yields a set of linear algebraic equations for the pressure field that can be solved by the CG
method.
After the updated velocity at the n+1 time step is obtained by solving (5.253), the k−ε equations are solved by FDM as follows:

(5.263)

(5.264)
where the advection is solved by the upwind scheme to eliminate any oscillation that may bring k or ε to be negative and the diffusion and turbulence production
terms are discretized by the central difference method.
The VOF transport equation (5.250) can be discretized in the following FD form for a 3D problem:

(5.265)
Here u will be taken from the most updated velocity information. Now the key issue becomes how to determine the VOF fluxes ∆Feast, AFwest, ∆Fnorth, ∆Fsouth,
∆Ftop, and ∆Fbottom Across the six cell faces for each computational cell. In NEWTANK, the second-order piecewise linear interface calculation (PLIC) method
is used to reconstruct the interface and to determine the VOF fluxes. The detailed procedure is given below for calculating ∆Feast and the others can be calculated
in the same way.
Step 1 Free surface reconstruction: The linear interface reconstruction is accomplished by knowing both the normal vector of the interface and the intercept of the
interface. The modified Young’s LS method (e.g., Rider and Kothe, 1998), which is second-order accurate, is employed to estimate the normal vector of the
interface first. Define the VOF value in a particular cell x0 as F0. The Taylor series expansions of the VOF functions at the neighborhood cells are:

(5.266)

The sum of  (difference between the estimated and the actual VOF in the neighborhood cells) over all n neighboring cells is then minimized
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in the LS sense. This L2 norm minimization will yield the VOF gradient  as the solutions to the linear system:

(ATA)x=(ATb) (5.267)
where:

 
in which:

 
The normal vector then can be computed as follows:

(5.268)

where  In a 3D Cartesian grid system, we choose n=26 surrounding grids to estimate m.
Once m is known, the normal distance α from the origin of the cell (west-south-bottom corner of the cell in NEWTANK) to the interface plane can be uniquely



determined with the given VOF value in the cell. The standard root-finding approach, such as bisection or Newton’s method, can be used for this purpose.
Step 2 Determination of donor cell: To determine the VOF flux across a particular cell face, the velocity on the cell face is used to identify the “donor” cell that
contributes VOF during the convection. For example, for the cell face on the “east” side (right side), if ui+1/2,j,k>0, the donor cell will be (i, j, k); if ui+1/2,j,k<0,
the donor cell becomes (i+1, j, k). In this example, we assume ui+1/2,j,k>0 and thus the reconstructed free surface in the cell (i, j, k) will be used in the following
calculation.
Step 3 Lagrangian propagation of the interface: Once m and α are determined, the interface plane in the cell (i, j, k) can be expressed as:

(5.269)

where  and  are the x, y, and z components of the unit normal vector m, respectively. During the convection, different parts of the plane
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Figure 5.26 Calculation of VOF flux using the PLIC method.
will be moved at different speeds, which can be obtained by the simple linear interpolation within the cell between the two cell faces (e.g., west and east). For the
2D case shown in Figure 5.26, this is done by moving the line ab to a′b′ with ui+1/2,j,k and ui−1/2,j,k, respectively. The new interface can be represented by the
following equation:

(5.270)

where  is the unit normal vector for the new plane interface:

 
and the normal distance:

 
with:

 
page_296

Page 297
Step 4 Determination of the VOF flux: In the 2D case shown in Figure 5.26, the VOF flux from cell (i, j, k) to cell (i+1, j, k) is the shaded area of AA′b′c. To
calculate the area, the information required is the interface function and the normal distance α′ in the cell (i+1, j, k). This can be obtained by introducing the simple
coordinate transformation from cell (i, j, k), where the updated interface equation is established, to cell (i+1, j, k):

x=x′+∆xi (5.271)
Substituting (5.271) into (5.270), we have:

m1x′+m2yn+m3zn=α′ (5.272)

where  and  As expected, the only change is the normal distance to the new origin. The area can then be calculated
using the following general formula (Gueyffier et al., 1999):

(5.273)
where F2(x) is the Heaviside step function defined as:

(5.274)
The convection in the vertical direction can be calculated similarly.
For 3D problems, equation (5.273) can be extended to:

(5.275)
where:

(5.276)
and F3(x) is the Heaviside step function and is defined as:

(5.277)
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Figure 5.27 Illustration of the transformation from the physical domain (left) to the computational domain (right) using σ-coordinate transformation.
σ-coordinate wave model: This model was constructed on a 3D FD grid system (Lin and Li, 2002). By introducing the new coordinate into the computational
domain:

(5.278)
where the variables with asterisk represent those in the physical domain and not in the computational domain (see Figure 5.27 for illustration of a 2D case). The
modified governing equations in the computational domain are the following:

(5.279)

(5.280)

(5.281)
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(5.282)
where:

(5.283)
and:

(5.284)
In the transformed space, the stresses are calculated as follows:

(5.285)
where the eddy viscosity is modeled by LES as:

(5.286)
where Sij is the strain rate of the resolved mean flow and Ls= 0.15 (∆x×∆y×∆z)1/3. The governing equation (5.279) for the free surface movement is converted into
the following form:

(5.287)
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The time-splitting method is used to solve the momentum equations. For example, in the x-direction, we have:

(5.288)

(5.289)

(5.290)
where the updated pressure can be obtained by solving the PPE equation in the transformed plane:



(5.291)
For the spatial derivative, the second-order central difference method is used for all terms except for the convection term, which is discretized by the combination
of quadratic backward characteristic method and the Lax-Wendroff method for smooth flows without structures inside the computational domain and the
combination of central difference and upwind scheme when a structure is present.
To handle wave-structure interaction problems, Lin (2006) extended the above model using the three-layer σ-coordinate system. Considering the problem as shown
in Figure 5.28, we can introduce three subdepths, namely h1, h2, and h3=h−h1−h2, where h1, h2, and h3 are function of space (x, y) that can be designed to be
conformal to the bottom topography, surface geometry of a solid body, and free surface. Note that the middle layers do not have to be horizontal; instead, they can
be designed to follow the body surface configuration. With the problem being thus defined, we then have:
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Figure 5.28 Sketch of the three-layer σ-coordinate system.

(5.292)
where Cn(n=1, 2, 3) is the weighting coefficients for the nth layer and C1+C2+C3=1. For simplicity, the value of Cn=Nn/Nt can be used where Nn is the number of
elements in the nth layer and Nt=N1+N2+N3 the total number of elements in the vertical discretization.
It is easy to prove that (5.292) can be reduced to the conventional σ-coordinate (5.278) when h1=h2=0. By arranging the layer system differently, the proposed
σ-coordinate can be used to simulate submerged, immersed, and floating structures. Except for the immersed structure, the other two types of structures can be
represented by only two layers, the special case of (5.292) with h2=0. With the three-layer σ-coordinate, the time derivative and spatial derivatives of σ are revised
to:
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(5.293)

(5.294)

(5.295)

(5.296)
SPH wave model: Although the SPH wave model (Shao and Lo, 2003) solved the same NSEs for incompressible fluids, the formulation and evaluation of function
derivatives are very different. The governing equations in SPH are written in the Lagrangian form for discrete particles, i.e.:



(5.297)

(5.298)
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The above two equations are equivalent to the mass and momentum conservation equations in NSEs but expressed following particle motion. The mass conservation
equation is for general fluid (compressible and incompressible), and the incompressibility condition will be forced later in the computation. The particle location is
governed by the following equation:

(5.299)
Numerically, the above equations are solved by the two-step projection method. In the first step, the tentative velocity is calculated without the inclusion of
pressure:

(5.300)
It must be realized that the velocity on the LHS represents the velocity of the same particle that is located at different positions at different times. After the tentative
velocity for each particle is solved, the particle is moved to its tentative location by:

(5.301)
In the second step, the velocity field is updated based on the updated pressure field that is calculated from the PPE and thus ensures the updated velocity field
satisfying the continuity equation:

(5.302)
where pn+1 can be obtained by solving the PPE:

(5.303)
Compared with the mesh-based NSE solvers, the above PPE in the SPH model is different in the sense that instead of forcing the velocity divergence to be zero

directly, it forces the density of the particle that is invariant in time, i.e., ρn+1=ρn=ρ0. With the final velocity  being obtained from
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(5.302), the final particle location is determined by averaging the previous and final velocity:

(5.304)
The above numerical solution involves the assessment of the variable function and the evaluation of function derivatives using a cluster of randomly distributed
particle information. In the SPH model, the variable function around any particle a is approximated by the weighted summation of the relevant quantities of its
neighborhood particles:

(5.305)
where Ω is the integration space around particle a. Usually Ω is taken as a circle for 2D problems and as a sphere for 3D problems with:

r=|xb−xa|≤r0=2h  
where h is the initial particle spacing (Monaghan, 1994). M is the number of particles within the space Ω (Figure 5.29). V(xb)=mb/ρ(xb) is the volume associated
with particle b, where mb is the mass of particle b and ρ(xb) is the density around it, which can be readily obtained by employing the same definition above, i.e.:

 

Figure 5.29 Sketch of the particle definition in the SPH model.
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Here W(xa, xb) is the weighting function (sometimes called interpolation kernel), which is used to determine how the neighboring particles are taken into
consideration.
There are different ways of defining the kernel, e.g., by Gaussian function, cubic spline, or any other function with similar characteristics of having larger weighting
near the particle and diminishing monotonically farther away from it to zero. The employment of different kernels in SPH method is analog to the use of a different
FD scheme in FDM, and they have direct impact on the numerical accuracy and stability. Besides, the kernel function should also satisfy the following constraint:

(5.306)
In the discussed SPH wave model, the kernel proposed by Monaghan (1992) is used:



(5.307)
With the variables being approximated by the above discrete form, various spatial derivatives at particle a can be evaluated as follows. For example, the pressure
gradient is evaluated as follows:

(5.308)
It is seen that the evaluation of the variable gradient is converted to the evaluation of the kernel function, which can be done analytically in general.
Similarly, the divergence, the gradient of stress, Laplacian, etc., can be evaluated as follows (Shao and Ji, 2006):

(5.309)

(5.310)

(5.311)
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The last term is formulated as the hybrid of SPH method and FDM to suppress the instability of the pressure calculation caused by the second-order derivative of
kernel function under strong particle disorder.
5.5.1.2 The Boussinesq wave model
Lin and Man (2006) presented a staggered grid FD Boussinesq model that solves Nwogu’s Boussinesq equations (Nwogu, 1993):

(5.312)

(5.313)

(5.314)
where the constants a1, a2, b1, and b2 are given by the following equations:

α1=(β2/2−1/6; α2=β+1/2; b1=1/6; b2=β  
with β=zα/h=−0.531.
To facilitate the later application of the higher order time-stepping procedure, equations (5.312)–(5.314) are rewritten as follows (e.g., Wei and Kir by, 1995); for
convenience, the time and spatial derivatives are represented by subscripts from herein:

ηt=E(η, u, υ) (5.315)
Ut=F(η, u, υ)+[F1(υ)]t (5.316)
Vt=G(η, u, υ)+[G1(u)]t (5.317)

where:
U(u)=u+h[b1huxx+b2(hu)xx] (5.318)
V(υ)=υ+h[b1hυyy+b2(hυ)yy] (5.319)
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The remaining quantities E, F, G, F1, and G1 are functions of η, u, and υ, which are defined as follows:

(5.320)

(5.321)

(5.322)
F1(υ)=−h[b1hυxy+b2(hυ)xy] (5.323)
G1(u)=−h[b1huxy+b2(hu)xy] (5.324)

A staggered grid system will be used in the numerical discretization. Figure 5.30 illustrates this staggered grid system in which all scalars such as free surface
displacement η and water depth h are defined at the cell center, while vectors such as velocity components u and υ are defined at the interfaces of the cell.
The governing equations are matched in time by the fourth-order accurate Adams predictor-corrector method in which the time level n refers to the present time
with all the known information. First, the predictor step is implemented for equations (5.315)–(5.317) by the explicit third-order



Figure 5.30 Sketch of the staggered grid system in the Boussinesq model.
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Adams-Bashforth scheme:

(5.325)

(5.326)

(5.327)
The evaluation of the predicted velocities:

 

requires simultaneous solution of tri-diagonal matrix systems. With the predicted values of  we can obtain the corresponding values of

 and  based on equations (5.320)–(5.324). These values will be employed in the corrector step with the fourth-order
Adams-Moulton method:

(5.328)

(5.329)

(5.330)
The predictor-corrector procedure will be iterated until the error between two successive results reaches a required limit.
The first-order derivatives of f=(h+η)u in the x-direction are discretized by the fourth-order accurate four-point central difference method so that the leading order
TE in the form of fifth-order dispersion will not suppress the third-order physical dispersion in the governing equations. For example:

(5.331)
For the first-order derivatives of η in the x-direction, the fourth-order accurate four-point central difference scheme is:

(5.332)
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For the first-order derivatives of u2 in the x-direction, the four-point finite difference scheme has the following form:

(5.333)
For the second-order derivatives in the x-direction, the three-point finite difference scheme is used:

(5.334)
where wxx=hu or u. Similar expressions in the y-direction can be obtained for both the first- and second-order derivatives. The cross-differentiation terms are
approximated as follows:

(5.335)

(5.336)
Again, similar expressions can be obtained for υxy and (hυ)xy.
The overall accuracy of the above scheme is of second order. It is also proven that the scheme is in conservative form for both mass and momentum and thus allows
us to perform long-term simulation with a small level of numerical contamination. Based on the linear von Neumann stability analysis, it can be proven that the
predictor scheme is stable when the Courant number:

 
and the corrector scheme is stable when Cr≤0.5. Considering the nonlinear effect in shallow water, the Courant number is often chosen to be 0.1 to 0.5 in actual
computations.
5.5.1.3 The shallow-water equation wave model
The following SWE model is mainly based on Lin and Lin’s (2006) SWE model in the simulation of sediment transport and bed morphology, except that here the
eddy viscosity is closed by the depth-averaged k−ε turbulence model. The depth-averaged 2D SWEs have the following forms in the Cartesian coordinate:

(5.337)
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(5.338)

(5.339)
where:

 
are bed shear stresses with n being Manning’s roughness coefficient, and Txx, Tyx, Txy, and Tyy are the depth-averaged Reynolds stresses that can be modeled as
follows:

(5.340)

where  is the depth-averaged turbulence eddy viscosity that is the function of depth-averaged turbulent kinetic energy  and its dissipation rate 

(5.341)
in which Cµ is an empirical constant.

The transport of  and  can be determined from the following transport equations for  and 

(5.342)

(5.343)
where σk, σε, C1ε, and C2ε are empirical constants, and the production terms have the following expressions:

(5.344)
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(5.345)

where  with the friction coefficient cf=n2g/H1/3 for rough beds. The empirical constants mentioned above take the following values (Launder
and Spalding, 1974):

Cµ=0.09, σk=1.0, σε=1.3, C1ε=1.44, C2ε=1.92 (5.346)

The FDM constructed in the staggered grid system will be used, where the scalars  and  are defined at the cell center and the vectors P and Q are defined on
the cell boundaries, respectively. The SWEs are discretized by using the explicit leapfrog FD scheme:

(5.347)

(5.348)

(5.349)
where the nonlinear convection terms are discretized with the upwind scheme and the stress terms with the central difference scheme. In addition, the bottom
frictional terms are approximated as follows:

(5.350)
in which cx and cy are given in terms of Manning’s formula:

(5.351)
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The  and  equations can be solved semi-implicitly as follows:

(5.352)



(5.353)

The final FD forms for  equations are written as follows:

(5.354)

(5.355)

The convection and diffusion terms above can be discretized by the upwind scheme and the central difference scheme, respectively. The production term  is
evaluated by:

(5.356)
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5.5.1.4 The transient mild-slope equation wave model
Lin (2004a) proposed an MSE wave model with the use of compact FD scheme. The model solves the time-dependent MSE:

(5.357)
The explicit FD scheme for (5.357) is as follows:

(5.358)
Rearranging it, we have:

(5.359)
Note that when we advance the time step from n to n+1, the previous time step (n−1) information of η is still needed. The above scheme is compact and
second-order accurate in both time and space. The stability condition is found to be the following:

(5.360)
5.5.1.5 The wave height spectral model for weak diffraction problems
Lin et al. (2005) proposed a spectral model based on the complex weight height function that can model weak diffraction problems with the use of a grid size larger
than wavelength. For a slowly varying wave group propagating over
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a changing topography without current, the model solves the following governing equation:

(5.361)
where G(f, θ) is the complex wave height spectral function, cx=cg cos θ and cy=cg sin θ are group velocities in x- and y-directions:

 
is the refraction velocity, and P(G, G*)=Q(GG*)/(2G*) is the complex source function with Q(GG*)=Q(F) being the source function of the wave energy spectrum.
For example, the bottom friction in the above model can be converted from Booij et al.’s (1999) formula as

(5.362)
where Cbottom=0.067 is the bottom friction coefficient.
The model solves the governing equation (5.361) by using the operator-splitting method, which treats the wave propagation, wave refraction, wave diffraction, and
wave growth and dissipation (source terms) separately. The wave propagation is represented by the first five terms on the LHS of (5.361). To achieve better
accuracy, the equation is regrouped to be the summation of the conservative form minus a source term, i.e.:

(5.363)
In this model, equation (5.363) is further split into x- and y-directions and then solved by the conservative Lax-Wendroff method, which is second-order accurate.
The diffraction step is represented by the following equation:



(5.364)
Equation (5.364) is solved by using the Crank-Nicolson method, which is an implicit scheme and unconditionally stable. To improve the efficiency of the solution,
the ADI method is used, which further splits the solution
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procedure into the x- and y-directions. The scheme is again second-order accurate.
The wave refraction is solved next. Similar to the treatment for the wave propagation, the governing equation is first modified to be the summation of the
conservative form minus a source term as:

(5.365)
The conservative upwind scheme is chosen to discretize (5.365), and it can effectively suppress numerical dispersion. Since the refraction process is to redistribute
wave energy among different directional modes with the total energy conserved, the calculated energy is linearly scaled at the end of each step so that the
summation of all directional modes at the fixed point and frequency is conserved before and after the computation of refraction. Such treatment will ensure energy
conservation during the computation and is especially useful when the directional spreading angle of incident waves is narrow and wave ray bending is strong,
which could be encountered in the coastal region.
Finally, the source term is solved by the forward-time scheme as follows:

(5.366)
Two types of boundary conditions are needed in general. One is the inflow boundary condition that specifies the time-varying complex wave height function F. For
the same physical wave height |H|, there is an infinite number of valid choices of F by using different combinations of real and imaginary parts, e.g., G=i|H| or

 is valid. As long as the function F is uniformly specified on the boundary and GG*=|H|2, the final results in terms of physical wave height
|H| will remain the same. Another boundary condition will be specified either on the vertical wall or on the radiation boundary. A reflection coefficient β varying
from 0 to 1 is used to represent the completely absorbing boundary to the perfectly reflecting boundary. For the directional wave mode G(θj) incident on the wall
aligned with the y-axis, the mathematical representation for such a boundary condition is as follows:

(5.367)
The wave incident from other angles can be treated similarly. By varying the reflection coefficient, this approach could also be used to represent the partial wave
transmission through porous media, wave reflection from uneven bottoms, etc.
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The numerical scheme is stable as long as the Courant numbers defined in the propagation and refraction processes are less than unity:

(5.368)
Once the wave height spectrum is known, the wave height can be recovered:

(5.369)
5.5.2 Benchmark tests
A particular physical problem can often be simulated by different wave models with different levels of approximations. In contrast, a particular wave model can
simulate different physical phenomena as long as the basic assumptions in the wave model are not violated. In this section, we shall present a few examples that are
used to gauge the accuracy of a wave model. For each benchmark test presented, at least two different modeling results will be presented and compared with each
other with the additional analytical solution or experimental data. This will help readers know the characteristics of different wave models and be able validate their
own wave models.
5.5.2.1 Two-dimensional nonlinear wave transformation above a submerged breakwater
When a nonlinear wave train passes through a submerged breakwater, it may experience dramatic changes of waveform and significant nonlinear wave energy
transfer. Beji and Battjes (1993) investigated experimentally the nonlinear periodic wave transformation over a submerged breakwater of trapezoidal shape. In this
benchmark test, this problem will be revisited with the use of both NSE-solver model (e.g. the σ-coordinate model by Lin and Li, 2002) and Boussinesq model (Lin
and Man, 2007).
The problem setup is shown in Figure 5.31. A regular wave train that has a wave height of 0.04 m and a wave period of 2.86 s was sent from the left boundary
(x=0). The open boundary was implemented on the right end of the wave flume. In total, eight wave gauges were deployed at x=20.44, 24.04, 26.04, 28.04, 30.44,
33.64, 37.04, and 41.04 m. For the Boussinesq model, the numerical model was run for 50 s by using the grid size of ∆x=0.10 m and the time step of ∆t=0.01 s. For
the σ-coordinate NSE model, ∆x=0.05 m and ∆t=0.01 s are used and 20 grid points are deployed in the vertical direction.
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Figure 5.31 Experimental setup of a periodic nonlinear wave train past a submerged breakwater.
Figure 5.32 shows the comparisons between the two numerical results and the gauge data for free surface displacement at eight wave gauge locations. The overall
agreement between the measured data and calculated results is reasonably close during wave shoaling (x=20.04–24.04 m) and overtopping above the breakwater
crown (x=26.04, 28.04, and 30.44 m). Behind the breakwater, there is the generation of secondary harmonics as evidenced at the last three gauges. The numerical
results from the NSE model have an overall better agreement with the experimental data in terms of both phase capturing and wave height prediction, whereas
larger discrepancies are observed for Boussinesq model results, especially past the submerged breakwater.
5.5.2.2 Two-dimensional breaking waves on a linear slope
In this benchmark test, the numerical modeling of spilling and plunging breaking waves (Lin and Liu, 1998a, b) is revisited with the use of the improved RANS
model NEWFLUME and at various mesh sizes. One of the main objectives of the test is to present a sensitivity study of the numerical results to the change of mesh
size for breaking wave simulation. Besides, the NSE model based on the VOF method (NEWFLUME) is also compared with the SPH model based on the
Lagrangian particle method.
Spilling breaking waves: The problem setup follows the experiment by Ting and Kirby (1996). The still water depth dc=h=0.4 m and the linear beach slope s=1/35.
The incident wave is of cnoidal shape with the wave period T=2.0 s and the wave height H=0.125 m. When the origin is defined at the toe of the beach, waves
break at xb=6.4 m, where the mean water depth hb=0.199 m. Four wave gauges are deployed behind the
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Figure 5.32 Comparisons of measured (circle) and simulated wave profiles by Boussinesq model (solid line) and NSE model (dashed line) for nonlinear wave
transformation over a submerged trapezoidal breakwater.
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breaking point at (x−xb)/hb=4.397, 7.462, 10.528, and 13.618, where the mean water depths are h=0.175, 0.161, 0.148, and 0.133 m, respectively (Figure 5.33).
The corresponding wave-induced setups at these four sections are ζ=0.006, 0.009, 0.011, and 0.014 m.
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Figure 5.33 Problem setup for spilling and plunging breaking waves on a plane slope.
In the numerical simulation, the original mesh arrangement in Lin and Liu (1998a) uses a uniform ∆x=0.025 m and a nonuniform mesh for ∆y with the fine mesh
∆ymin=0.006 m near the free surface. In the present test, the uniform mesh of ∆x=0.015 m and ∆y=0.008 m is used. Besides, the higher order PLIC method is used
for VOF tracking in NEWFLUME (see Section 5.5.1.1) instead of the donor-acceptor method in the original code (Liu and Lin, 1997). The comparisons of free
surface displacement at four sections are shown in Figure 5.34 between the numerical simulations (the fifth wave passing the gauges) and the experimental
measurements (phase-averaged data). It is seen that with the refinement of mesh in the horizontal direction, the wave amplitude is better predicted right after the
breaking point (the first section). However, with the further evolution of the breaking wave into a turbulent bore, the difference between the two numerical results
becomes less significant and both of them compare well with the measurements.
Plunging breaking waves: The problem setup is similar to the spilling wave case with the change of wave conditions to H=0.128 m and T=5.0 s (Ting and Kirby,
1995). Waves break at xb=7.795 m, where the mean water depth hb=0.154 m. Measurements were made at five sections at (x−xb)/hb=0, 3.571, 6.494, 9.740, and
16.883, where the mean water depths are h=0.154, 0.143, 0.132, 0.119, and 0.090 m, respectively. The associated wave-induced set-downs/setups at these sections
are ζ=−0.002, 0.001, 0.004, 0.006, and 0.011 m. In the original numerical simulation, the uniform ∆x=0.04 m and the nonuniform mesh for ∆y with the fine mesh
∆ymin=0.0075 m near the free surface are used. In the present simulation, two uniform mesh systems are used: ∆x=0.015 m and ∆y=0.008 m and
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Figure 5.34 Comparison of simulation results (solid: present results; dashed: original results by Lin and Liu, 1998a) and experimental data (circle) for the time
history of free surface displacement at four gauge locations under the spilling breaking waves.
∆x=0.01 m and ∆y=0.006 m. Comparisons of numerical results (average between the second and third waves passing the gauges) and experimental data (phase-
averaged data) are shown in Figure 5.35.
Observe that by reducing the mesh from ∆x=0.04 m to ∆x=0.015 m, the wave amplitude at the breaking point is captured better. With the further refinement of
mesh size to ∆x=0.01 m, not much further improvement is observed. None of the numerical results provided good agreement with the experimental data at the
second gauge location, where the aeration on the free surface due to the plunging jet may produce a higher water level. Moving to the downstream gauge locations,
the comparisons between the numerical results and experimental data are getting closer and the difference between the coarse mesh results and fine mesh results
becomes smaller when the turbulent bore gradually forms. Figure 5.36 shows a
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Figure 5.35 Comparisons of numerical results (solid: ∆x=0.01 m and ∆y= 0.006 m; dotted line: ∆x=0.015 m and ∆y=0.008 m; dashed line: original results in Lin and
Liu, 1998b; and dashed-dotted line: SPH results using ∆x=0.013 m by Shao and Ji, 2006) and experimental data (circle) for the time history of free surface
displacement at five gauge locations under the plunging breaking waves.
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Figure 5.36 Simulated plunging waves from t/T=0 to t/T=0.2 with the mesh resolution of ∆x=0.01 m and ∆y=0.006 m. (Courtesy of Dr. Budianto Ontowirjo, JSPS
Researcher at Disaster Control Research Control, Tohoku University, Japan)
series of snapshots of the simulated free surface profiles under the plunging breaking waves using the same code NEWFLUME.
5.5.2.3 Three-dimensional liquid sloshing in a stationary tank
Consider a closed basin of size Lx×Ly, in which the origin is defined at the left-bottom corner of the basin. The initial free surface displacement
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is a Gaussian distribution about the center of the basin, i.e.:

(5.370)
where H0 is the initial height of the hump and β is the peak enhancement factor; the linear analytical solution for the free surface evolution is given in Section
3.15.6.2:



(5.371)
in which:

(5.372)
where δnm is the Kronecker delta function and:

(5.373)
The (n, m) wave modes have the corresponding natural frequency that is determined by the linear dispersion equation:

(5.374)
where h0 is the still water depth and:

(5.375)
In this benchmark test, we take the following parameters: Lx=Ly= 10 m, H0=0.005, 0.05, 0.2 m, h=0.50 m, and β=−0.4. The problem is simulated by Boussinesq
model, SWE model, and σ-coordinate NSE model. For Boussinesq model and SWE model, the domain is discretized by uniform grids with ∆x=∆y=0.2 m and the
numerical model runs at ∆t=0.01 s. For NSE model, ∆x=∆y=0.05 m and ∆t=0.0025 s are used. In total, 20 grids are used in the vertical direction. Figure 5.37 shows
the simulated free surface displacement at different times from the NSE model.
Figures 5.38–5.40 show the comparison of time histories of free surface displacement at the center and corner of the domain between the linear analytical solution
and the numerical results from SWE model, Boussinesq model, and NSE model. Three different initial hump heights are simulated, representing the linear
(H0/h=0.01), weakly nonlinear (H0/h=0.1), and strongly
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Figure 5.37 Snapshots of free surface profiles of liquid sloshing at t=0.0, 15.0, 20.0, and 25.0 s when H0/h=0.01.
nonlinear waves (H0/h=0.4), respectively. For linear waves, both Boussinesq model and NSE model results agree well with the analytical solution, whereas the
SWE model overestimates the maximum wave height due to the lack of ability to represent wave dispersion (see Figure 5.38). With the further increase in wave
height, differences start to show up among the Boussinesq model, NSE model, and analytical solution, with the NSE model giving slightly better results for the linear
analytical solution (see Figure 5.39). When the wave amplitude becomes large, none of the numerical results agree with the analytical solution. Interestingly, the
SWE model gives closer results to Boussinesq and NSE models in this strongly nonlinear case (see Figure 5.40).
5.5.2.4 Three-dimensional linear wave diffraction behind a semi-infinite breakwater
Wave diffraction behind a semi-infinite breakwater is a classical problem for testing wave models. The exact theoretical solution was presented by Sommerfeld
(1896) by solving the Helmholtz equation. The approximated analytical solution was proposed by Penney and Price (1952a) for the location away from the
breakwater (i.e., >2L). In this benchmark test, both the time-dependent MSE model (Lin, 2004a) and the wave height spectral model
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Figure 5.38 Comparisons of free surface displacement at the center and corner of the tank for H0/h=0.01.
for weakly diffracted waves (Lin et al., 2005) are used. Figure 5.41 shows the problem setup as well as the simulated transient wave field around the breakwater
from the MSE model. In the numerical simulation, the computational domain covers an area of 3 km×3 km with the constant water depth of h=10 m. The incident
linear wave has a wave period of T=10 s and a wavelength of L=92.32 m. The MSE model discretizes the domain by 1000×1000 uniform cells with ∆x=∆y=3 m and
∆t=0.1 s; the spectral model discretizes the domain using 100×100 uniform cells with ∆x=∆y= 30 m and ∆t=1.0 s.



Figure 5.42 shows the comparisons of the diffraction coefficient D= H/H0 between the two numerical results and the two theories. Although the spectral model
provides close agreement with the approximate theory,
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Figure 5.39 Comparisons of free surface displacement at the center and corner of the tank for H0/h=0.1.
the MSE model has excellent agreement with the exact theory. This is not surprising because both the approximate theory and the spectral model adopt the similar
idea of parabolic approximation that underestimates the lateral spreading of wave energy into the shadow area, especially right behind the breakwater. In contrast,
the MSE model provides good agreement with the exact analytical solution that gives a slower decay of wave amplitude (and thus faster energy leakage into the
shadow area) behind the breakwater. Note also that in the present spectral model, only three grid points are deployed for one wavelength and yet reasonable
numerical results are achieved. Lin et al. (2005) have shown that for the same incident wave even with the mesh size being increased to 3 km for the spectral
model, the numerical results can still show reasonable agreement with the theory in a larger scale (300 km×300 km) simulation.
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Figure 5.40 Comparisons of free surface displacement at the center and corner of the tank for H0/h=0.4.
5.5.2.5 Three-dimensional nonlinear wave refraction and diffraction above a shoal on a slope
This benchmark test is for nonlinear wave refraction and diffraction over an elliptical shoal on a linear slope (Berkhoff et al., 1982). Three numerical models will be
employed in this test, namely the σ-coordinate NSE model, the MSE model, and the Boussinesq model. Comparisons will be made between the numerical results
from these three wave models and the experimental data.
The problem setup is shown in Figure 5.43, in which an elliptic shoal is mounted on a plane beach. The slope-oriented coordinates (x′, y) are introduced that are
related to the computational coordinates (x, y) as follows:
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Figure 5.41 Problem setup of wave diffraction behind a semi-infinite breakwater.
x′=(x−x0) cos 20°−(y−y0) sin 20°, y′=(y−y0) cos 20°+(x−x0) sin 20° (5.376)

where (x0, y0) is the center of the shoal. The water depth on the slope is:

(5.377)
The water depth above the shoal, i.e., (x′/4)2+(y′/3)2<1, is modified as:

(5.378)
The incident wave has a wave period of T=1 s and a wave height of H0=0.0464 m. Experimental measurements were made at five sections behind the shoal (i.e.,
y=−1, −3, −5, −7, and −9m) and three sections parallel to the incident wave propagation direction (i.e., x=−2, 0, 2m).
In the numerical simulation, the uniform grid of ∆x=∆y=0.1 m is used for both MSE and Boussinesq models. The constants ∆t=0.002 and 0.05 s
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Figure 5.42 Comparison of the diffraction coefficient behind a semi-infinite break-water between numerical results (solid line: spectral model; dashed line: MSE
model) and theories (square: exact theory; circle: approximate theory) at (a) x/L=1.62, (b) x/L=6.50, and (c) x/L=19.50.
are used in the Boussinesq model and MSE model, respectively. For the NSE model, ∆y=0.033333 m, ∆x=0.1 m, and ∆t=0.005 s are used. In the σ-coordinate, 20
grid points are used in the vertical direction. All models are run until the wave field becomes stable (e.g., t>30 s) and the wave height is calculated by taking the
average of the last fives waves.
The numerical results are compared to the experimental data in Figure 5.44. It can be observed that the comparisons between all numerical results and experimental
data are rather good at y=−1 m, the section where the nonlinear wave interaction just starts and has not become very significant. However, as we move to the
downstream sections, the numerical results from the linear MSE model deviate evidently from the experimental data, due to the absence of wave nonlinearity in the
model. Both Boussinesq and NSE models capture the nonlinear
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Figure 5.43 Problem setup for a periodic wave train propagating over a submerged elliptical shoal on a slope.
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Figure 5.44 Comparisons of the wave amplitude behind the shoal between the numerical results (solid line: NSE model; dashed line: Boussinesq model; and dashed-
dotted line: MSE model) and experimental data (circle).
wave interaction and thus provide better agreement with the experimental data. However, the NSE model excels by producing authentic predictions of the wave
evolution in all sections behind the shoals, especially at the last section (y=−11m), where the accumulative wave dispersion and nonlinearity become so profound
that the Boussinesq model is inadequate.
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6
Modeling of wave-structure interaction
6.1 Introduction
The study of wave-structure interaction has important applications in coastal and offshore engineering. Although part of the study is to understand the fundamental



flow characteristics and wave scattering during wave-structure interaction, most of the study has a goal of finding the wave load on a structure, from which the
structure response and stability can be analyzed.
The total flow force on a body can be theoretically obtained by surface integration of pressure and stress on the body, which is, however, difficult to measure
directly in practise. In most of the engineering designs, the simple empirical or semiempirical approach such as the Morison equation or the Froude-Krylov (F–K)
method is employed. Only in the last two decades, as computer power has rapidly increased, has the direct modeling of wave-induced pressure and/or stress become
possible for practical design purposes. This chapter will provide an introduction to various engineering modeling techniques used in a wide range of wave-structure
interaction studies.
In general, both pressure and viscous stress under waves are depth-dependent unless the wavelength is very long. Besides, most of the coastal or offshore structures
have the surface configuration that is also depth-dependent. This implies that in order to accurately model wave loads on a structure, the depth-resolved wave
models must be used. In addition, since the vertical acceleration may become significant during wave-structure interaction along the vertical surface of the body, the
models must be capable of simulating nonhydrostatic pressure. Searching the category of wave models discussed in Chapter 5, we find that for general
wave-structure interaction modeling only two types of models are valid candidates, namely the potential flow models for inviscid and irrotational flows and the NSE
models for viscous and turbulent flows. The depth-averaged models, e.g., MSE models, SWE models, and Boussinesq models, may be used only if the focus of the
study is on wave scattering rather than wave loading.
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In the following sections, we shall discuss the BEM model, the major type of potential flow models, and the NSE model in connection with the numerical modeling
of wave-structure interaction. We will discuss the wave interaction with both fixed and moving bodies. The numerical details of handling irregular body surface and
body motion will be highlighted. Some previous numerical studies of wave interaction with structures and structure responses will be reviewed. Finally, the example
wave model NEWTANK will be introduced, followed by a series of benchmark tests of wave-structure interaction using the NSE models.
6.2 Models for inviscid and potential flows
Although potential flow theory has been very successful in describing many nonbreaking waves not near a solid boundary, its extension to the modeling of
wave-structure interaction must proceed with caution. In Section 3.15.2.1, we have argued that in wave-structure interaction, flow separation may take place
around the body. In the flow separation region, vortical flow motion predominates and the flow field is rotational. The low pressure in the vortex results in the form
drag, which can be the main contribution of wave force on a small body. Based on these facts, the potential flow theory will be inadequate to give a good
approximation for wave loads on a small structure, around which flow separation is considerable.
It is only when the body size is much larger than the fluid trajectory under a wave, i.e., KC<<1, that the assumption of potential flow theory is valid because the
flow separation is limited to a very small area compared with the body size. Under this circumstance, the wave loads on the structure are mainly caused by the
contribution of the irrotational flow part. By solving the Laplace equation, analytically or numerically, one can obtain the velocity potential distribution around the
body, from which the total forces on the body can be derived. The closed-form analytical solutions are possible only for simple geometry of the body based on
diffraction theory, and they have been discussed in Section 3.15.2.3. In the following sections, we shall focus on various numerical techniques that can be extended
to wave interaction with bodies of general shapes.
Although the Laplace equation can be solved directly (e.g., Li and Fleming, 1997 using FDM; Yue et al., 1978 using FEM; Dommermuth and Yue, 1987 using the
spectral method; Wu et al., 2006 using the meshless RBF method; and Yan and Ma, 2007 using quasi ALE FEM for waves on 2D moving bodies), it can be
computationally costly because a large matrix needs to be inverted. Further difficulty may also arise when the wavy free surface and the irregular body surface
geometry are considered. An alternative way of solving the Laplace equation is to solve the velocity potential only on all boundaries, from which the interior
velocity potential is obtained based on the special relationship of the variable on the boundaries and in the interior
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region. The numerical solution is then sought only on the discrete boundary elements that can be represented by lines for 2D problems and polygons for 3D
problems. In naval architecture and marine engineering for ship designs, this method is often referred to as (Rankine) panel method because the ship hull surface is
broken up into many small panels in the numerical approximation and the problem is solved with the use of Rankine sources. More generally, it is called BEM or
sometimes the boundary integral equation method (BIEM). In contrast, depending on how the velocity potential along the solid boundary is solved, the method can
be further classified into source-sink method (or source technique) or Green’s second identity method, which will be elaborated below.
6.2.1 Source-sink method
6.2.1.1 Introduction of source and sink
It is well known that for irrotational flows governed by the Laplace equation, there are simple solutions of velocity potential functions for elementary flows such as
uniform current, point or line source or sink, point or line vortex. The more complex flow can be formed by the superposition of these elementary flow solutions
according to the linear property of the Laplace equation (e.g., White, 2003:526). On a 2D plane (x, z), the uniform current in the x-direction, line source or sink, and
line vortex can be represented by the elementary potential function and the corresponding stream function as follows:

(6.1)

(6.2)

(6.3)
A classical Rankine oval can be formed by superimposing a uniform current with a pair of source and sink in the flow direction:

(6.4)
where a is half the distance between the source and the sink. The corresponding stream function is:

(6.5)
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Figure 6.1 An example of a Rankine oval; the solid lines are streamlines.
Figure 6.1 shows the contours of the stream function using the above equation with a=1, q=1, and U=1. The streamlines inside the ellipse are irrelevant and not
shown. The Rankine oval represents a uniform potential flow past a closed body with an oval shape. If a vortex is added in the middle of source and sink, a
circulation will be introduced that changes the flow pattern around the body and results in a lift force in the transverse direction. In aerodynamics, a series of
sources, sinks, and vortices can be superimposed together to represent the flow around an airfoil, from which the drag and lift force can be computed. For wave



interaction with a large body, the flow separation is negligible and therefore only sources and sinks are used.
6.2.1.2 Two-dimensional potential flow problems
The Laplace equation governing the potential flow reads as follows:

(6.6)
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A source or a sink on a 2D plane can be expressed as:

(6.7)
where:

 
represents the radial distance from the source or the sink point and Q is the strength of the source that can be obtained by taking the surface integration of  along
any circumference of the circle centered at the source location, i.e.:

 
With the definition of:

 
we have Q>0 for a source and Q<0 for a sink. It is not difficult to prove that for a source or a sink, the Laplace equation is satisfied everywhere except at the
source/sink point where the potential function goes to infinity. However, if a continuous and smooth line of sources/sinks is considered, the value of the potential
function becomes finite everywhere along the line due to the cancellation effect from the neighborhood sources/sinks. This implies that if we can properly arrange a
series of sources/sinks along all boundaries including the solid surface, free surface, and computational boundary, we can correctly simulate the potential function
inside the interior flow region.
A moving body in an infinite domain: Now let us consider a simple case of a moving 2D body in an infinite domain of fluid. In this case, the only boundary that
needs to be considered is the solid surface, on which the continuous source/sink will be distributed. Assume that the body has a simple translation motion of ub(t)
and the body surface is represented by the surface function S(x, z, t)=0, from which the surface coordinate can be determined as xs(S) and zs(S). Therefore, the
velocity potential in the entire domain due to one source/sink at a particular location of the body boundary is:

(6.8)
By considering the contribution from all sources/sinks on the boundary, we have the final solution by integrating the sources/sinks along the solid body, i.e.:
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(6.9)
The above resultant velocity potential needs to satisfy the solid boundary condition, i.e., the normal velocity of the fluid particle on the solid surface ufn must be the
same as the solid body velocity projected on the normal direction:

(6.10)
where χ is the angle between the body surface motion and its surface normal direction on the surface.
With the above procedure, we reduce the original 2D problem of the Laplace equation into a 1D problem for solving q(S) along the body surface. For the general
shape and motion of the body, however, the closed-form analytical solution does not exist. Thus, the above formulation must be solved numerically in the discrete
space. Generally, the approximation is made first by discretizing the curved body surface by N straight line segments and assuming that the source density is
constant in each line segment (Figure 6.2). By doing so, at a particular time the total velocity potential becomes:

(6.11)
For a simple linear segment, the integration cj in the above expression can be evaluated analytically to generate N constants associated with each line segment. This
makes the total velocity potential the sum of N linear terms of unknown qj. To find qj, we need to make use of the boundary condition on the body surface. By
substituting (6.12) into (6.11) and forcing the boundary condition being satisfied at the center of each segment, we would have total N linear equations in terms of N
unknown qj:

Figure 6.2 Sketch of body surface representation by linear segments in the source/sink method.
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(6.12)
The derivative of the integration, Aij, can be evaluated analytically for a simple line segment. This results in a system of linear equations Aijqj=bi, from which the
numerical values of qj can be uniquely determined.
Note that the body surface can also be discretized by a series of spline curves rather than straight lines for better representation of body curvature. Within each
element, certain variations (linear or higher order polynomial) of source density can be assumed rather than being constant. The closed-form expression of the line
integration in (6.11) and its derivative in (6.12) can still be found, but with an increased level of difficulty.
A moving body in a finite domain with free surface: If the body is placed in a finite domain with the presence of bottom, free surface, and side walls, the
computation can be carried out in a similar way by placing the source/sink along all boundaries and applying the proper boundary conditions, which specify

 or their relationship. For example, the dynamic free surface (where the gauge pressure is zero), bottom, and lateral solid boundary conditions are as
follows:

(6.13)

(6.14)

(6.15)
In addition, the kinematic free surface boundary condition is needed to track the motion of the free surface:



(6.16)
where xfs is the free surface location. When the free surface is nonoverturning, the above equation can be simplified as:

(6.17)
To create a single-connected domain that can be solved by the source technique, an immersed body can be connected to other boundaries (e.g., bottom
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Figure 6.3 Sketch of an immersed body in a finite domain; the loop of arrows suggests the way of making a single-connected domain in the source/sink method.
or solid lateral boundaries) by a straight line, along which both the advance and the return paths are specified so that the source/sink completely cancels out there
(this is similar to using scissors to cut out a part from the middle of a paper; see Figure 6.3 for illustration). The idea can be extended to multiple bodies and floating
bodies like ships.
Special attention is paid to the two nonlinear free surface boundary conditions. By enforcing the nonlinear boundary condition exactly, a system of nonlinear
equations will result that requires iterative procedures to solve, which we shall discuss further in Section 6.2.2.2. For small-amplitude waves, linearization can be
made by combining the two free surface conditions into one and applying it on the mean water level:

(6.18)
As a result, a system of linear equations will be generated that can be solved in the same way as the moving body in an infinite domain discussed earlier.
A body exposed to a linear periodic wave train: If a fixed and rigid body is placed in an open sea with a specified incident wave train, the resulting wave field
around the body is composed of both incident waves and diffracted/scattered waves. Rigorously speaking, “wave diffraction” refers to the wave energy deflected
into the shadow and lower energy regions, while “wave scattering” refers to the wave energy reflected from the body (but being modified by the diffracting process
it does not necessarily follow exactly the law of reflection). In most cases, however, the use of the terminology of diffraction and scattering is often mixed with any
one of them representing the combined wave field. For a moving body, the additional wave can be generated from the moved body and it is often
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called the “radiation wave.” Both diffracted/scattered and radiation waves will have the source location on the surface of the body. In the numerical modeling, they
are often treated as single term for the scattered wave.

For a linear periodic wave case, the total velocity potential can then be expressed as the sum of that from the incident wave  and the scattered wave  i.e.:
(6.19)

where the incident wave train can be readily expressed in the complex form as:

(6.20)
Thus, the solution is needed only for the scattered velocity potential, which is also governed by the Laplace equation:

(6.21)
The linkage between the scattered velocity potential and the incident wave potential is made by the solid-surface boundary condition:

(6.22)
For small-amplitude waves, the linearized free surface boundary can be obtained by combining the kinematic and dynamic free surface boundary conditions at the
still water level:

(6.23)
The bottom boundary condition reads:

(6.24)
The radiation boundary condition reads:

(6.25)
In case the body is fixed and rigid, the scattered wave has the same frequency as that of the incident wave and its velocity potential can be written as:

(6.26)
page_341

Page 342
By substituting the above expression into the governing equation and boundary conditions, we have:

(6.27)
with the solid-surface boundary condition:

(6.28)
the linearized free surface boundary condition:

(6.29)
the bottom boundary condition:

(6.30)
and the radiation boundary condition:

(6.31)
Note that the above is also true if the body has a linear response to the incident wave only (i.e., the body motion has the same frequency as that of the incident wave
and thus generates the radiation wave having the same frequency too).
Once the velocity potential is obtained, the pressure can be easily derived from the Bernoulli equation as:

(6.32)
where the first term on the RHS is the hydrostatic pressure, the second term is the linear dynamic pressure, and the third term is the second-order nonlinear dynamic



pressure, which can be neglected for small-amplitude linear waves. The total force on the body can be obtained by taking the surface integration of the pressure
around the body, i.e.:

(6.33)
page_342

Page 343
6.2.1.3 Three-dimensional potential flow problems
For 3D problems, the major difference is that the functional type of the potential function for source and sink is different, i.e.:

(6.34)
where:

 
Again, it is ready to show that:

 
where S is the surface of any sphere center at the source location. For a general transient 3D problem, the velocity potential in the fluid domain is:

(6.35)
Another major difference is that the radiation condition for the linear scattered wave velocity potential is expressed as:

(6.36)

where  is the radial distance from the source (body) on the horizontal plane. This gives the following approximate condition away from the sources:

(6.37)
Similar to 2D problems, if the incident wave is monochromatic and linear, the time variation component of the source function can be separated out and represented
by a simple harmonic:

(6.38)
where q(xs) is the source density along the body surface and G(x, xs) is referred to as time-independent Green’s function and its analytical expression can be
obtained for a body in both infinite water depth (e.g., Havelock,
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1942) and finite water depth (Wehausen and Laitone, 1960:475–9). Green’s function, of course, satisfies the Laplace equation and all necessary boundary
conditions on the bottom, free surface, and in the far field. Readers can refer to Faltinsen (1990:109–18) for an example of using the 3D source technique for the
analysis of added mass and damping in heave motion and Chakrabarti (1987:301–22) for a more general numerical solution of wave diffraction around a body.
The source technique introduced in this section is easy to understand and implement in a numerical code for wave-structure interaction. The method takes the
advantage of the generalized solution of the Laplace equation that has the special form of Green’s function. The BEM based on the source technique solves the
source density everywhere on the boundaries, from which the velocity potential and pressure on the boundaries and in the interior domain can be found. Although
this method can in principle be used in solving nonlinear water wave problems, its linearized version is more commonly used by treating the incoming waves as
linear harmonic waves (or the sum of harmonic waves for irregular waves). This technique is popular in naval architecture and offshore engineering for the design of
ship hulls and the analysis of floating platforms, where it is called panel method. In coastal engineering where wave nonlinearity becomes important, the alternative
formulation of BEM will often be adopted, which is detailed below.
6.2.2 Green’s second identity method
6.2.2.1 Model description
Green’s second identity takes the following general form:

(6.39)
where G is Green function satisfying the Poisson equation, i.e.:

(6.40)
with δ(x−xs) being the Dirac delta function and Q the source density coefficient that equals 2π for 2D problems and 4π for 3D problems. Green function satisfies
the Laplace equation everywhere except at the source location xs where the singularity arises. The free space Green function and the source density take the
following forms and values for 2D and 3D problems:

(6.41)
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Figure 6.4 Definition sketch of an integration surface used in Green’s second identity method where xs is the singular point.
Consider the domain of interest by excluding a small circle centered at xs with its radius approaching zero (Figure 6.4). If we substitute (6.40) and (6.41) into (6.39)

and force  we would have:

(6.42)
In the above equation, Green function G is known as Rankine source and its derivative ∂G/∂n is called a dipole. The above equation simply states that the velocity



potential can be represented by a distribution of Rankine source and its dipole, whose densities are  and  over a closed surface.
The above equation connects the velocity potential everywhere inside the computational domain with the velocity potential and its normal derivative on all

boundaries of integration. In principle, once  and  are known on the boundaries, the problem is solved. Caution should be taken when the above equation is
applied on the boundary where the value of Q should be reduced by half because the surface integration can be made only on a half space.

To obtain the values of  and  on all boundaries, discretization will first be made to approximate the actual boundary with a finite number
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(N) of linear elements, similar to those in the source technique. When the above equation is written at N nodes or N elements, we have:

(6.43)

This forms a system of N linear equations with 2N unknowns of  and  The additional information can thus be obtained from N boundary conditions on N
nodes or elements. Each boundary condition specifies either  or  or their relationship and thus can provide another N equation, which may be linear or
nonlinear. As a result, we have 2N equations with 2N unknowns, and unique solutions exist if all the 2N equations are independent. Alternatively, the N boundary
conditions can be absorbed in the first N linear equations, and thus, the numerical solution is sought only for the N unknowns of  or  on the boundary.
Compared with the source technique that seeks the numerical solution of source density on all boundary elements, Green’s second identify method seeks the
numerical solution for both velocity potential and its normal derivatives directly. Theoretically speaking, these two methods are equivalent and different only in
terms of solution procedures.
6.2.2.2 Treatment of wave nonlinearity
Nonlinearity exists in two fully nonlinear free surface boundary conditions (kinematic and dynamic) that need to be incorporated into the solution procedure:

(6.44)

(6.45)
Whereas the first equation is used to update free surface location and the associated velocity potential and its normal derivative, the second equation is needed in
the numerical solution procedure of the Laplace equation. There are a few ways of dealing with the nonlinear terms in these free surface boundary conditions and
they are summarized as follows.

Iteration for the system of fully nonlinear equations: If the nonlinear boundary condition is involved for either  or  the resulting system of
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equations will be nonlinear but the solution is still unique because we have the same number of equations as the number of unknowns. The numerical solution to the
system of equations, however, must be obtained by iteration. This approach was adopted by Kim et al. (1983). With a similar idea, Nakayama (1983) proposed the
error-correcting method to solve the system of nonlinear equations directly.
Successive solution to the Laplace equation: Alternatively, time stepping can also be made based on the Taylor expansion (Dold and Peregrine, 1984) as:

(6.46)

(6.47)
Since the Laplace equation is valid for  at any order of its derivative in time, the coefficients in the above Taylor expansion can be obtained by solving the
succession of the Laplace equation for various orders of derivatives in time. The solution of the lower order Laplace problem will provide the nonlinear free surface
boundary conditions for the next higher order Laplace equation. The details of the treatment can be found in Grilli et al. (1989). The methodology can be extended
in principle to any order, but most of the time the second-order treatment is sufficient to model strong nonlinear waves (e.g., overturning waves) and their
interaction with structures (Grilli and Svendsen, 1990). Later, Celebi et al. (1998) developed a numerical wave tank with a similar methodology and used it to study
a fully nonlinear wave interaction with vertical cylinders, bottom-mounted or truncated. Since the method solves the velocity potential on the Eulerian frame and
tracks the free surface location using the Lagrangian method, it is also called mixed Eulerian-Lagrangian (MEL) approach.
Perturbation technique: For waves in deep water with moderate wave steepness, the perturbation procedure used to derive Stokes wave theory can be similarly
applied in the BEM. This method does not need to update the influence matrix corresponding to the system of linear algebraic equations at each time step when the
free surface moves to a new position and thus avoids the most expensive part of computation. It is especially useful and efficient for solving 3D wave interaction
with structures in relatively deep water, a common case in offshore engineering. Under this circumstance, both velocity potential and free surface displacement can
be expanded using Taylor expansion based on the perturbation of a small parameter ε=ka (wave steepness):

(6.48)

(6.49)
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By doing so, the influence matrix for any order of numerical solutions is formed only once in the beginning of the computation, and it remains unchanged in the rest
of the computation. The first-order solution is obtained first by imposing the free surface boundary condition at z=0 and the solid boundary condition on the mean
location of the body surface. The higher order solution can also be sought once the lower order solutions are known. The detailed procedure can be found in Kim
and Kim (1997).
This perturbation method can be used to solve first-, second-, and higher order wave forces on the body, although it is unable to capture the overturning wave. In
this approach, the current effect and small structure motion (prescribed or dynamically responding movement) can also be included. There are many reports of using
this method for the studies of wave loads or combined wave-current loads on offshore structures (e.g., Isaacson and Cheung, 1992; Teng and Taylor, 1995; Skourup
et al., 2000).
6.2.2.3 Numerical efficiency of boundary element method models
It generally gives people the illusion that BEM is more computationally efficient than direct NSE solvers because the former only needs to resolve boundary
elements and has a reduced dimension by one while the latter solves the problem in the full dimension. However, a more careful analysis reveals the hidden cost for
BEM that prevents it from modeling fully nonlinear 3D water waves.
In all approaches of solving water waves using BEM, one needs to solve the following matrix:

Aijqj=bi, i=j=N (6.50)
where N is the number of elements on the boundary. In BEM, since the matrix A is full and dense, the flops of manipulation to solve it is O(N3). Let us use an
example of a 3D problem whose domain can be discretized by 1003=106 small cubes. In the BEM representation, the number of surface elements is reduced to
N=O(1002)=O(104). Therefore, the total flops of computation for solving (6.50) using standard Gauss elimination at each time step is around O(N3)=O(1012).
When some more efficient matrix decomposition methods (e.g., block LU decomposition, Cholesky decomposition, singular value decomposition) are used, the
computational effort can be brought down to O(N2.5)=O(1010), still very computationally expensive.
Alternatively, if we directly solve the 3D problem with the use of NSE, we will of course have to use more elements to resolve the domain [e.g., N= O(106)].
However, if we use the explicit projection method to solve the NSE, the only major part that involves intensive computation is the numerical solution to PPE, the
discretized form of which is a matrix with the size of i=j=N=106. This matrix, however, is very sparse with only seven
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nonzeros on each line. The efficient iterative matrix solvers such as the CG method can be used in solving this type of matrix. For most of our tests of water wave



problems, the total iteration number can be controlled within 100. This gives the computational efforts of O(108) flops for inverting the matrix. Even with the
consideration of other manipulations, the total flops at each time step is still cheaper than the BEM. Interestingly, the larger the problem is, the more advantageous
an NSE solver will be! This explains why so far there are few reports of the 3D BEM time-domain simulation of fully nonlinear water wave interaction with a
structure of complex shape.
Many practical 3D BEM water wave models are based on the perturbation technique introduced earlier. With the use of the perturbation method, the matrix A is no
longer time-dependent and only b will be updated at each time step. Therefore, the equation can be rewritten as follows:

(6.51)
The inverse matrix A−1 will be obtained only once at t=0. By doing so, the boundary condition is always imposed at the mean location of the body and on the still
water depth. Therefore, one is unable to simulate fully nonlinear waves that can overturn or surface waves induced by an arbitrary body motion using this approach.
6.2.2.4 Time-domain analysis and frequency-domain analysis
All of the fully nonlinear BEM models solve the transient water wave problem in the time domain, as described in the previous section. The numerical results are in
the form of time-varying nonlinear free surface displacement, from which the wave transformation and/or wave load on a body can be derived. The solution
procedure is called time-domain analysis, which can retain wave nonlinearity as well as its nonlinear interaction with a fixed or moving body. Time-domain analysis
can also be performed by using other wave models such as NSE models.
For small-amplitude waves, it is possible to linearize the free surface boundary conditions so that the problem is solved at z=0 and at the mean location of an
oscillatory body. This makes possible the frequency-domain analysis, where the irregular wave is first decomposed into a finite number of linear monochromatic
waves with discrete frequencies and directions. The numerical solution is then sought for both wave motion and body motion. The resultant wave diffraction and
body movements can be obtained by simply summing up the contribution from all wave harmonics. Because the same influence matrix can be used throughout the
computation thanks to linearization, the frequency-domain analysis is computationally efficient and thus it is a powerful tool in the study of wave diffraction and
structure response in a random sea. However, the fully nonlinear property, for both wave and structure motion, cannot be attained in the analysis.
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6.2.2.5 Other numerical issues
Corner: Corner is the place where  is not continuous. A corner may be present at the intersection of any two boundaries, e.g., wave maker and bottom,
structure surface and free surface. Various treatments have been made to develop the compatibility conditions at the corners for better numerical accuracy and
robustness. Readers are referred to Grilli et al. (1989) for more discussion.
Desingularization: Singularity exists on all source points which coincide with the body surface, free surface, and other boundaries where the boundary conditions
are applied. In theory, the singularity is removed after surface integration on a finite length of line segment. However, numerically the singularity may not be
completely removed and can lead to instability in certain places (e.g., sharp corners and tips of a breaking wave front). A proposal was made by Kim et al. (1998) to
move the source distribution outside the fluid domain, so that the source points will not coincide with the fluid collocation points. As a result, the resulting integrals
do not contain any singularity, which makes the numerical code more stable.
Leaky panel: When a large and complex 3D body surface (e.g., a ship hull) is represented by plane quadrilateral elements, leaks may appear at the place where the
panels do not fit at the junction. This will result in a finite value of normal velocity at the joint of two elements, where it should be zero theoretically. Normally, this
will not cause serious problems for the fluid and pressure computation around the body. Readers are referred to Faltinsen (1990:116) for more discussion.
Sawtooth instability: When breaking waves are simulated with the use of fully nonlinear boundary conditions, sawtooth numerical instability can be developed near
the tip of the breaking waves. This phenomenon was first reported by Longuet-Higgins and Cokelet (1976) and solved by applying the smooth procedure. Later,
Dold and Peregrine (1984) developed a consistently high-order time-stepping method using Taylor expansion. This minimizes the numerical instability. However, as
the tip of the breaking wave becomes very sharp, it is essentially a moving corner. The numerical treatment at this point is in fact a work of art, and different
treatments may result in very different details of tip shape. This implies that potential flow theory may start to break down from this point and any endeavor to
further the computation is unnecessary.
6.2.3 Strip theory
The strip theory was originally developed for the computation of wave force coefficients on a ship hull, and it was popularly used in naval architecture and ocean
engineering for ship design. Sometimes it is also called strip theory method or strip method; readers should not confuse this with “finite strip method” that is used in
structural analysis.
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The strip theory can be regarded as a simplified version of the BEM methods for slender bodies. Instead of solving the entire problem simultaneously, the strip
theory method divides the underwater part of the body into a number of strips along the longitudinal direction. As a result, the 3D body is represented by a series of
2D strips. For each strip, the problem is treated as a 2D problem, from which the BEM can be used to calculate 2D added mass and moment coefficients for the
particular incident wave train and ship hull. These coefficients will later be used in combination with equations of motions for the global response analysis or the
simpler 1D dynamic analysis of the body motion, in either nonlinear time domain or linear frequency domain.
In strip theory, it is assumed that the flow variation in the longitudinal direction is small, which may not be true at two ends of the ship. Besides, in using strip
theory, each strip is solved independently without any interaction or information exchange with other strips. The strip theory can be regarded as a “2.5D” problem
solver between the full solution of the 3D problem (e.g., by a 3D BEM model) and the approximated solution of the simplified 2D problem. For a monohull vessel,
strip theory can give rather decent results for the heave and roll motions, while it can lead to large errors for surge analysis and multihull vessels. Note that strip
theory is also used in aerodynamics (e.g., Delaurier, 1993). Readers are referred to Faltinsen (1990:50–4) for more discussion.
6.3 Models for viscous and turbulent flows
The model that can solve general viscous and turbulent flows is based on the NSE or its extension (e.g., Reynolds equations), i.e.:

(6.52)

(6.53)
Detailed discussions have been given in Section 5.5.1.1 for the numerical models based on NSE solvers. Most of the NSE models previously introduced have the
capability of handling structures with different body shape, although the body surfaces are treated differently. In this section, discussions are mainly made in
connection with the treatment of FSI.
When a body is present inside the computational domain, the immediate difficulty for a numerical model is to handle the possibly complex and irregular body
surface. This will be treated by either (1) boundary-fitted meshes or (2) Cartesian meshes with special treatment to include irregular boundary effect. If a body
moves during the computation, the body surface has the similar characteristics of a free surface, and therefore, it can be handled similarly by (1) using a moving
adaptive mesh based on the Lagrangian
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approach to ensure the boundary conformal mesh at all time or (2) keeping the grid fixed but updating the surface location/information in each cell. The use of
boundary-fitted unstructured mesh is often adopted in FEM or FVM, whereas Cartesian mesh is often used in FDM.
For the incompressible NSEs, there is no state equation connecting pressure and local fluid density. As a result, the pressure is coupled with the global velocity field.
This means there is no “memory” for pressure, which must adjust itself instantaneously according to the velocity. This is consistent with the fact that the pressure
wave transmits at the speed of infinity for incompressible fluid flows. The pressure distribution must satisfy the PPE that can be derived by combining continuity
equation and momentum equations. Since the nature of the Poisson equation is elliptic, the numerical solution to the pressure needs to be obtained in an iterative
way. There are various fractional-step methods to update velocity and pressure simultaneously for unsteady viscous flows. The simplest yet most accurate one is
based on the so-called projection method, which breaks down the numerical procedure into two steps. The first step is to seek the tentative velocity and the second
step is to project the tentative velocity on the plane where the continuity equation is satisfied. The projection angle will be determined by the solution of the PPE
that incorporates the tentative velocity information as the forcing function. A typical two-step projection method takes the following form:

(6.54)

(6.55)
where the pressure is obtained by solving



(6.56)
Most of the models discussed below follow similar methodology in terms of time discretization. Differences are mainly in the spatial discretization and numerical
approximation of the functions and their derivative terms, which will be discussed below.
6.3.1 Models based on finite element method
Hayashi et al. (1991) proposed a comparative study for four different fractional-step FEM NSE models with the use of benchmark tests of solitary wave
propagation. Radovitzky and Ortiz (1998) developed a fully Lagrangian FEM for solving NSEs. The mesh is maintained undistorted through continuous and
adaptive remeshing of the fluid mass. The model
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was used to simulate wave breaking to check the accuracy of the adaptive remeshing process. Onate and Garcia (2001) developed a semi-implicit FEM for solving
coupled FSI problems with the use of a moving mesh. The model was used for the analysis of totally or partially submerged bodies under surface waves. Since most
of the structural analyses were constructed on FEM, the use of FEM for solving fluid motions has the advantage of seamlessly connecting fluid computation to
structure response calculation. For this reason, there is an increasing trend of using FEM for solving NSEs in the analysis of FSI. Recently, Aliabadi et al. (2003)
proposed an FEM model that solved NSEs for fluid motion, coupled with the dynamic equation for nonlinear rigid-body motion and the linear elasticity equations
for cable motion. The model was used to simulate mooring forces on floating objects. Zhao et al. (2004) used an FEM NSE model to study wave interaction with a
submerged pipeline.
Although the remeshing process can provide a boundary-fitted mesh system to both the free surface and the body surface the computation of remeshing itself can be
quite involved. This motivates the combined use of Eulerian free surface-tracking techniques, which are constructed on fixed grid systems and have been well
established, and unstructured mesh that may provide better resolution to the body surface. For a fixed and rigid body, the hybrid model enjoys the benefit from both
the unstructured mesh in resolving the body surface and the Eulerian free surface-tracking techniques that do not require remeshing when the free surface moves.
Examples of such models include the FEM VOF model developed by Kim and Lee (2003) and the FEM level set method model by Lin et al. (2005b).
Note that besides the conventional formulation of NSEs based on primitive variables, the models constructed on other formulations were also available for solving
various wave-structure problems. For example, Lo and Young (2004) developed a FEM ALE model based on the vorticity-velocity formulation of NSEs (see
Section 2.1.2) and used the model to simulate solitary wave passage over a submerged structure.
6.3.2 Models based on finite volume method
Similar to FEM, FVM is able to solve the problem in an irregular physical domain with the use of a boundary conformal mesh. In addition, the FVM can explicitly
enforce mass and momentum conservation in each computational cell and thus may be more robust and accurate for long-term computation. Many of the
commercial software solving 3D NSEs have adopted this methodology. The boundary-conforming mesh is often generated by an automatic mesh generator, some of
which have the capability to generate adaptive mesh following the moving surface.
For wave simulation, one of the key issues relevant to an FVM model is the accurate tracking of free surface motion. Some recent developments of FVM-based
NSE-solver models are summarized below. Zhang et al. (1998)
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introduced a multiphase curvilinear FVM model with the free surface being tracked by the level set method and solved by the higher order ENO method. The model
was used to study the mold filling and the spreading and solidification of molten droplets. Yue et al. (2003) developed a free surface FVM model with the use of
level set method for free surface tracking. Alternatively, in their FVM model, Chan and Anastasiou (1999) used the triangular mesh to resolve the curved free
surface, and the mesh is updated at each time step based on the updated free surface location solved from the kinematic boundary condition. With the use of
combined FDM and FVM, Casulli and Zanolli (2002) proposed a 3D wave model constructed on an unstructured mesh system and the free surface is tracked by
solving the height function.
6.3.3 Models based on boundary element method
As pointed out before, BEM has the advantage of converting a domain integration problem to a surface integration problem, and this may improve the
computational efficiency. However, the application of BEM is most popular in solving the Laplace equation where the volume-surface transformation, ensured by
Green’s theorem, is complete. For viscous fluid flows, the governing equations can be converted to Poisson equations under certain special circumstances.

Examples include the PPE with the nonlinear source term [e.g., equation (2.16),  with ρ being a constant], the Poisson stream function

equation with the vorticity source for 2D problems [e.g., equation (2.18), ], and the Poisson velocity equation for Stokes flows with the negligible inertial
term (e.g., ). Compared to Laplace equation, Poisson equation requires volume integration of the source term and thus increases the expense of
using the BEM. For some cases, however, the complete surface integration can be achieved through the succession of high-order transformation. Wu (1982)
proposed a few BEM solutions to viscous flow problems.
The BEM model solving NSEs for water wave problems is rarely reported, mainly because the transformation is too involved, which makes the use of BEM not an
attractive option. A limited number of such attempts includes the BEM model presented by Zang et al. (2000) for solving the linearized NSEs in the frequency
domain to analyze viscous liquid sloshing.
6.3.4 Models based on spectral methods
The spectral methods are efficient and accurate, but they are often used in a relatively simple domain that allows the powerful Fourier transform. The application of
spectral methods in solving NSEs for problems with free surfaces and structures of arbitrary shape was not widely reported due to the irregularity of the
computational domain. Only a limited number of attempts have been made recently for the development of numerical models using spectral methods for solving free
surface flows and fluid
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interaction with structures. For example, Kevlahan and Ghidaglia (2001) introduced a Brinkman (volume) penalization of the obstacle in their pseudo-spectral
method model that solves NSEs on a Cartesian grid. The model was used to simulate flow past an array of cylinders. Chern et al. (2005) developed a pseudospectral
element model for the simulation of free surface viscous flows.
6.3.5 Models based on finite difference method
Most of the water wave models solving NSEs are based on the FDM formulation. Because FDM is normally constructed on Cartesian grids with small flexibility for
dealing with irregular geometry, special schemes are needed on the interface (between two fluids and between a fluid and a solid) that may cross through the grid
line at an arbitrary angle. Two immediate difficulties arise, namely the treatment of free surface and the treatment of solid surface, which are elaborated below.
6.3.5.1 Free surface treatment in Cartesian grid
The free surface treatment consists of two parts, namely the tracking of the free surface and the implementation of free surface boundary conditions, which are
often interrelated.
MAC method and irregular star technique: The accurate tracking of the free surface can be achieved by the MAC method based on the Lagrangian approach
(Harlow and Welch, 1965). In this method, the meshless particles are initially deployed on the free surface, and they are tracked by using the interpolated velocity
at the particle location. Since the particles originally on the free surface will remain for a nonbreaking free surface, the locations of the particles will be used to
determine the free surface location at any time step. In connection to the MAC method, the normal distance between the free surface cell center and the actual free
surface can be determined. To implement a dynamic free surface boundary condition that defines the pressure on the free surface as the atmospheric pressure, the
so-called irregular star technique was developed by Chan and Street (1970) to take into account the varying distance of the free surface cell center, where the
pressure is defined, to the actual free surface. The wave models in this category include TUMMAC (Miyata et al., 1985), GENSMAC (Tome and Mckee, 1994;
Tome et al., 2001), SIMAC (Armenio, 1997), and NS-MAC NWT (Park et al., 1999), all of which are able to simulate wave interaction with structures of complex
surface geometry.
VOF method and level set method: The free surface can also be “captured” by using the Eulerian approach. In this approach, two of the most popular methods are
the VOF method (Hirt and Nichols, 1981) and the level set method (Osher and Sethian, 1988). In both methods, the free surface cell is treated as a cell with a large
gradient of a certain fluid property function, which
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is the normalized density in the VOF method and the hypothetical interface function in the level set method. By solving this function in the Eulerian frame, the free
surface may be approximately reconstructed based on the functional values in the local cell and its neighborhood. The information about the reconstructed free
surface in each cell can be used by the “irregular star” technique when the pressure solution is sought. Alternatively, a free surface cell can also be treated as a
special fluid cell with the reduced mean density compared to the interior fluid cell. The dynamic free surface boundary condition for pressure is then either imposed
on the immediate neighborhood air cell for a single-phase fluid flow computation or not imposed at all for a multiphase fluid flow computation. This alternative
treatment is simpler because no free surface orientation information is needed. However, it may generate inaccurate results for pressure and thus for velocity in free
surface cells that must be corrected later by applying appropriate velocity boundary conditions (Liu and Lin, 1997).



The earliest practical VOF model was developed by Nichols et al. (1980) as SOLA-VOF, which was followed by NASA-VOF2D (Torrey et al., 1985),
NASA-VOF3D (Torrey et al., 1987), FLOW3D (Hirt, 1988), RIPPLE (Kothe et al., 1991), and TELLURIDE (Kothe et al., 1997). Some of these codes or their
methodology were extended to simulate water wave interaction with structures, and the successful examples include SKYLLA (van der Meer et al., 1992),
VOFbreak2 (Troch, 1997), COBRAS (Liu et al., 1999b), and NEWFLUME (Lin and Xu, 2006). The incorporation of level set method into an NSE-solver wave
model is fairly recent. Iafrati et al. (2001) proposed a model based on the level set method and demonstrated its capability of capturing a 2D breaking wave front.
Gu et al. (2005) developed a two-phase 3D model based on the level set method for the simulation of liquid sloshing in a tank. Hong and Doi (2006) presented a 3D
level set model to study 3D breaking ship waves.
6.3.5.2 Body surface treatment in Cartesian grid
Compared with the free surface, the body surface in many cases of wave-structure interaction can be regarded as fixed and rigid. Even when it is in motion and
deformation, the level of body distortion is generally far less than that of the free surface. Therefore, the tracking of body surface is relatively easy. The main
challenge is the accurate representation of body surface geometry, on which the correct boundary conditions must be accurately implemented.
Cut-cell method: One way of representing a body surface in a Cartesian grid is to use the cut-cell method that approximates the body curvature by a series of linear
segments, similar to the MAC method approximating the free surface. As a result, the fluid cell closest to the body is modified from a cube to a polygon whose
shape is determined by the actual body geometry.
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The distances between the body surface to the cell center and cell faces can be calculated precisely. When the velocity and pressure boundary conditions are
applied on the solid boundary, interpolation or extrapolation is used so that the distance information is incorporated appropriately, again similar to the “irregular
star” method used in the MAC method. Many of NSE solvers for wave problems use the cut-cell method to represent arbitrary body shape, and recent examples
include Li et al. (2004). The use of cut-cell is similar to the use of unstructured boundary-fitted grid on the body surface, but it avoids the complicated process of
mesh generation. However, since the transition between the boundary grid and the nearby Cartesian grid can be abrupt in the cut-cell method, numerical accuracy
may be reduced near the body.
Partial-cell treatment: Another alternative of body surface approximation is to use the volume fraction and line fraction of the solid in a cell to represent body
effect on the cell crossing the body surface. This approach is similar to the VOF method on one hand due to the use of cell volume fraction information and similar
to the MAC method on the other hand due to the use of the line fraction to represent the cell-crossing information. The method is named PCT by Kothe et al.
(1991). With such a representation, the actual body geometry in a cell was replaced by the cell partially available to the fluid, and the governing equation was
reformulated by treating the “partial cell” as a special porous cell with a particular value of porosity (Liu and Lin, 1997). This is different from the traditional
cut-cell treatment, in which the FD scheme (not the governing equations) is changed according to the cell shape. The wave models adopting this idea include
COBRAS (Liu et al., 1999b), NEWFLUME (Lin and Xu, 2006), and NS-MAC NWT (Park et al., 1999).
Other embedded boundary methods: Sometimes, the cut-cell method, the PCT, and other boundary-fitted methods are also called embedded boundary method,
which is the opposite of its counterpart of stair-step representation of the body surface in Cartesian grid system. For a moving solid surface, this method can be
extended to adaptive embedded boundary method or hybrid embedded boundary method such as Chimera method introduced before that overlaps the unstructured
boundary-fitted mesh around the structure on the background Cartesian grid system.
Porous-cell method: Although the PCT has the advantage of approximating irregular surface geometry by the cell volume fraction, it is not flexible enough due to
the introduction of a linear fraction to represent cell boundary-crossing information. This limits its application where the fluid-body interface has a large
deformation, e.g., a body with an elastic surface, a bed that evolves in time. Recently, the author and his research group have been developing a so-called
porous-cell method to treat fluid interaction with both solid body and porous mediums. The method employs a unified approach of volume fraction of the solid
material in the cell to represent the porous medium or the solid body, an analog to the VOF method in representing the free surface. As a result, it is easy to update
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this fraction to track the deformation of the body surface or the evolution of a porous bed. We shall provide more details in Section 6.5.1.3 for this treatment when
NEWTANK is further elaborated.
Virtual boundary force (VBF) method: An alternative way of handling the irregular boundary is to reformulate NSEs by explicitly including a VBF as the source
term in the momentum equations. This approach is named as “VBF” method in this book, and a similar version of the method has been called IB method or other
names in other studies. The entire idea behind the VBF method is that the presence of a body in fluid flow is equivalent to imposing appropriate reaction forces
along the solid boundary, so that the fluid comes to stop on the solid surface. By applying this force, the boundary conditions on the body surface are no longer
needed. The force being applied on the solid boundary is a Dirac delta function of the ambient flow and body configuration.
Peskin (1972) was the first person to introduce the concept of “IB method” to solve blood flows. In his treatment, the tension forces are imposed on the surface of
the vessel to reflect the influence of vessel stiffness on the blood flow and to calculate the deformation of the vessel. The force is iterated based on the feedback of
velocity computation. Later, Mohd-Yusof (1997) introduced the direct forcing immersed boundary (IB) method, in which the force is calculated directly without
iteration. The original IB method was revised by Leveque and Li (1994) as the so-called immersed interface (II) method. By introducing Lagrangian multipliers
based on the velocity constraint due to the internal solid boundary, Glowinski et al. (1994) introduced the so-called fictitious domain method. Recently, Baaijens
(2001) coupled the FD method with the mortar element (ME) method (Ben and Maday, 1997) to simulate the deflection of a slender flexible body under fluid flows.
Most of the previously reported VBF models handled only fully immersed bodies. So far, there have been very few reports of VBF models for the simulation of
wave-structure interaction where the free surface comes across the body surface. Only recently Lee and Lin (2005) implemented the VBF method in a σ-coordinate
model to study wave diffraction around a large circular cylinder. Berthelsen and Ytrehus (2005) also developed a two-phase model based on IB method to solve
partially filled pipe flows. Currently, the author and his research group are developing a 3D two-phase flow model incorporating the VBF and VOF methods to study
breaking wave interaction with a body of arbitrary shape. More details of the model will be provided later in Section 6.5.1.2.
In principle, the VBF method can also be applied to other types of wave models such as SWE model, Boussinesq model, MSE model, and wave spectral model. The
idea of replacing the boundary condition, especially on an irregular geometry of boundary, with an equivalent “virtual force” is applicable to almost all mechanical
problems with complex boundary configurations. In fact, the method has been recently incorporated into the solution of wave equation (Bokil and Glowinski, 2005),
Helmholtz equation
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(Heikkola et al., 2003), and Maxwell equation (Dahmen et al., 2003) for the study of acoustic and electromagnetic wave scattering.
6.3.5.3 Wave models constructed on a transformed plane
Alternatively, the coordinate transformation may be used to map the irregular computational domain to a regular domain so that the FDM can be constructed on
regular Cartesian grids in the transformed plane without any special treatment on the interface. The σ-coordinate transformation is the most commonly used method
in many water wave models because it is simple yet capable of mapping the space between the uneven bottom and the wavy free surface in a cubic domain (e.g.,
Casulli, 1999; Lin and Li, 2002). Other transformations (e.g., elliptic grid generation method) are also possible but they are less frequently used in wave modeling
(e.g. Hodges and Street, 1999).
The obvious limitation of the σ-coordinate transformation is that it is unable to handle depth discontinuity and structures with sharp corners, both of which result in
the singularity of the horizontal gradient of σ that is required in the computation. The use of other coordinate transformations such as the elliptic grid generation
method in principle allows the inclusion of sharp corners of the structure but the transformation may be too involved when the changing free surface is considered.
So far, there have been few examples of using the wave model on the transformed plane to simulate wave-structure interaction. The exception is the recent work by
Lin (2006), who proposed the use of multiple-layer σ-coordinate transformation at the depth discontinuity (e.g., step) or structure corners. In his study, a few
demonstrations were made for 2D and 3D wave interaction with submerged, immersed, and floating structures.
6.3.6 Models based on meshless particle methods
6.3.6.1 Smoothed particle hydrodynamics method
SPH is basically a meshless particle Lagrangian method solving NSEs. It is one of the most popular meshless methods employed to solve NSEs. Although this
method has been proposed for over three decades, its application to free surface flow problems started quite recently. Monaghan (1994) was the first to apply SPH
into solving free surface problems. The method was extended to 3D for modeling casting processes by Cleary et al. (2002) and extended to non-Newtonian flows by
Shao and Lo (2003). The method was also coupled with turbulence models and used to simulate breaking waves (e.g., Gotoh and Sakai, 2006; Shao and Ji, 2006).
So far, SPH has demonstrated good capabilities for modeling 3D fluid flows with highly distorted free surfaces. Considering its flexibility of handling complex body
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configurations, SPH can serve as a good alternative for modeling wave interaction with structures. However, no advantage in terms of computational efficiency has
been reported for this method compared with the conventional mesh-based NSE solvers.
6.3.6.2 Other meshless methods
Besides SPH, NSEs can also be solved with the use of other meshless methods. For example, with the use of MPS, a sister version of SPH, Chikazawa et al. (2001)
simulated wave propagation and interaction with a breakwater. Idelsohn et al. (2004) developed a particle FEM to simulate breaking waves. Ma (2005) proposed a
model that solves the Euler equations using the MLPG method for the simulation of nonlinear water waves.



6.3.7 Other types of models
6.3.7.1 Discrete vortex method
There are other equivalent formulations of NSEs in terms of derived variables (Section 2.1.2). One example is the formulation based on stream function and
vorticity for 2D problems, i.e.:

(6.57)

(6.58)
Such a formulation has the advantage of solving FSI, during which vortices are always generated on the solid boundary that has a constant value of stream function.
When such a formulation is solved numerically, the so-called discrete vortex method (DVM) or other kind of vortex method is often employed (e.g., see Clarke and
Tutty, 1994). In the numerical method, the continuous vorticity field is represented by a finite number of discrete vortices that are generated from solid boundaries
and decay by diffusion in the process of convection. When the equations are solved in the Eulerian frame, the vortex-in-cell is used so that new vorticity is
introduced at each cell on the solid boundary to ensure the local no-slip boundary condition (e.g., Meneghini and Bearman, 1993). When the Lagrangian method is
adopted, the vorticity field is represented by many particles with different circulations. The solution procedure is to track these particles’ positions and to determine
their changing vorticity strengths (e.g., Chang and Chern, 1991).
The DVM is similar to DNS in the sense that it resolves the finest structure of vortices generated from the boundary layer. It has the advantage of simulating fluid
flow interaction with moving bodies. The main drawback is that the computational effort will increase rapidly with the increase of flow
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Re. Currently, most of the existing applications of DVM are limited to small Re within 1000. There are many other variations of vortex method, e.g., random vortex
method, particle strength exchange method, core-spreading method.
6.3.7.2 Lattice Boltzmann method
The LBM solves the discrete Boltzmann equation on the prescribed lattice with the proper particle collision models. By tracking a finite number of particles, the
viscous flow behavior will be captured automatically from the intrinsic particle stream and collision process. In fact, through a Chapman-Enskog analysis, one can
recover the NSEs from the discrete LBM algorithm, at least on a macroscopic scale. LBM starts from the direct discrete formulation of a mechanical problem based
on the fundamental processes of a particle stream and collision. Since LBM does not solve the PDE directly, it is easy to implement, and it is particularly effective
in dealing with bodies with complex geometry (e.g., Martys and Chen, 1996). It is also straightforward to incorporate additional microscopic interaction. Besides,
since the pressure field is directly available from the density distributions, there is no need to solve the Poisson equation iteratively, a big time-saving step compared
with the traditional NSE solvers.
The main challenge in modeling water waves using LBM is the treatment of the free surface. In the last two decades, significant advances have been made to
incorporate the LBM in the simulation of multiphase flows, especially those with a large density difference such as gas and liquid. For a small density difference, the
collision operator can be modified based on particulate kinetics, and thus, no special treatment is needed to manipulate the interfaces. Such a simplified treatment,
however, often results in an interface thickness much larger than that in real fluids. For the multiphase flows with a large density ratio, certain ways of interface
tracking are still necessary. One of the popular methods is called free energy method (Swift et al., 1995) that solves a distribution function to track the interface.
Such a method is similar to the VOF method (Zheng et al., 2006). Inamuro et al. (2004) combined the projection method with the free energy method in their LBM
and used the model to simulate capillary waves and air bubbles. In contrast, Ginzburg and Steiner (2003) introduced an antidiffusion algorithm on the free surface to
maintain a sharp front and applied the collision only on the nodes for fluids to simulate free surface flows. The model was used to study the filling process in casting.
Kurtoglu and Lin (2006) presented a study of the simulation of a 3D air bubble and compared their results with the numerical results from VOF and level set
methods.
With a similar idea and formulation, LBM can be extended to describe other fluid motion processes. For example, Gunstensen and Rothman (1993) employed LBM
to study flows in porous media. Yan (2000) used LB equation and Chapman-Enskog expansion to obtain 1D and 2D wave
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equations and used the LBM to simulate wave motion. Marcou et al. (2006) validated their two-phase LBM model against the Saint-Venant equations for the open
channel flows. There is the potential that the LBM can be proven to be equivalent to other wave models such as a Boussinesq model or an MSE model. Although so
far there has been no report of a workable model based on LBM for the simulation of realistic wave-structure interaction, it is expected that it will not take too long
for it to appear, given the active research and fast advancement in this area.
6.4 Numerical simulations of wave-structure interaction
In this section, we shall briefly review the numerical studies made previously on the modeling of wave-structure interaction. In coastal engineering, the majority of
structures (e.g., breakwaters, seawalls, groins) can be treated as stationary. The main focus of the study is then on the wave transformation caused by the presence
of the structure. On the other hand, in offshore engineering and naval architecture, the structures [e.g., tension-leg platforms (TLP), semisubmersibles, FPSOs,
ships] are not stationary. The main emphasis of the study then is on the determination of wave loads and the corresponding structure motions.
6.4.1 Wave transmission, dissipation, and reflection over submerged, immersed, or floating structures
In evaluating the performance of a breakwater (porous or impermeable), two main measures are the transmission and reflection coefficients, respectively. These two
coefficients define the effectiveness of the breakwater in blocking the wave energy as well as in reflecting back the wave energy to the offshore. The smaller the
transmission coefficient is, the less the wave energy can penetrate into the protected area. This will generally in turn increase the reflection coefficient, which
sometimes is also unwanted if a waterway is in the vicinity. In this case, a compromise must be made between these two coefficients. In addition, some engineering
measures (e.g., change of porous material or shape of breakwater, induction of local wave breaking) can be employed to increase the local energy dissipation.
6.4.1.1 Reflection, transmission, and dissipation coefficients
Although the concept of wave transmission and reflection is very simple, there are no simple formulas to calculate them based on the known information of wave
conditions and structure properties. In general, these coefficients are functions of many influential factors, i.e.:

(6.59)
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where RTD represents reflection, transmission, and dissipation coefficients, a and b are the effective structure length and the height of the breakwater, respectively,
and d50 and n are the mean porous size and the porosity of the porous breakwater, respectively. The above formula does not include the secondary effects such as
the shape of the structure, the packing and gradation characteristics of porous breakwater, etc. Even from the above simplified version of the formula, we may find
that the function is composed of seven independent variables, and it is not straightforward to have the closed-form expression. Another reason that prevents the
derivation of such a formula is the occurrence of wave breaking in a certain range of parameter combinations.
As a compromise, people only manage to establish empirical formulas for a limited range of parameter values or to derive the analytical expressions based on
certain assumptions. For example, Battjes (1974) proposed an empirical formula to estimate the reflection coefficient from a slope; Lin and Liu (2005) derived a
closed-form expression for long-wave transmission and reflection from a trapezoidal breakwater. Once the problem is outside the parameter range or the assumed
condition, one may have to conduct new experiments (e.g., Chang et al., 2001 for a solitary wave past a submerged block) or numerical modeling (e.g., Isaacson et
al., 2000 for wave interaction with slotted barriers).
Recently, with the use of a solitary wave, which reduces the number of wave-related parameters to only one (i.e., H/h for wave nonlinearity), Lin (2004b) and Lin
and Karunarathna (2007) conducted numerical experiments for wave transmission and reflection from an impermeable and a porous breakwater, respectively. The
full range of a/h, b/h, and d50/h has been investigated to produce the database for engineering usage. Although some factors are still not completely studied and the
functional expression of (6.59) is not sought, the simulation covers parameter ranges much larger than previous studies. These data, if properly analyzed and utilized
[e.g., by artificial neural networks (ANN) or the genetic algorithms the (GA)], can possibly generate simple and useful formulas for practical designs.
6.4.1.2 Harmonic generation for periodic waves over a submerged structure
When a wave train propagates above a submerged obstacle (e.g., break-water), the wave nonlinearity increases near the crown of the object where the local still
wave depth reduces. With the increase of wave nonlinearity, nonlinear wave interaction will be enhanced and accompanied by active harmonic generation. This
process redistributes wave energy into the higher frequency range of the transmitted waves. Above the obstacle, the higher harmonics are bound with the incident
wave, similar to the bound infragravity wave. Past the obstacle, these bound harmonics are released
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as free higher frequency waves. The actual amount of energy redistribution depends on the incident wave and the actual shape of the submerged obstacle. The
understanding of the nonlinear process has important applications to surf zone dynamics and local structural stability.
For a simplified obstacle shape, an analytical solution may be possible. For example, using the second-order Stokes wave theory, Massel (1983) developed a
theoretical work for nonlinear wave decomposition above a deeply submerged finite or infinite rectangular step. In most of the practical problems where the



obstacle has a more complex shape or is made of a porous medium, the harmonic generation can be obtained only through either laboratory experiment or numerical
computation. For example, Beji and Battjes (1993) conducted laboratory experiments to investigate wave transformation over a submerged bar of trapezoidal shape.
Losada et al. (1997) extended the experimental study to harmonic generation past submerged porous steps. Ohyama and Nadaoka (1994) developed a BEM model
and used it to investigate the nonlinear wave transformation past submerged shelves. Recently, Lin and Li (2002) used a σ-coordinate NSE model to simulate
nonlinear wave trains past a submerged impermeable breakwater. Garcia et al. (2004) employed COBRAS to simulate wave transformation over porous
breakwaters. Shen et al. (2004) proposed another VOF model to study wave propogation over a submerged bar.
6.4.1.3 Fission for solitary waves over a submerged structure
When a solitary wave passes over a submerged step or an obstacle, the solitary wave may split into a few smaller solitons. This process is called fission, which is the
antonym of “fusion” that is used to describe the merge of a few solitons into a larger one. Solitons are found in many physical phenomena, including nonlinear
dispersive water waves. A solitary wave is often used to represent the leading tsunami nearshore. The study of fission problems has a practical implication of
interpreting how a tsunami leading front transforms when it passes over a continental shelf. Tanaka (1986) presented a theoretical study of solitary wave instability
over a changing topography. Later, Seabra-Santos et al. (1987) and Losada et al. (1989) conducted experiments to investigate solitary wave transformation over a
step or an obstacle. The experiment was furthered by Chang et al. (2001) using PIV for the more detailed vortex structure measurements during solitary wave
passage over an obstacle. On the other hand, Liu and Cheng (2001) employed COBRAS to study solitary wave fission over a shelf. Lin (2004b) made a more
complete study of solitary wave transformation over a rectangular obstacle with its length varying from zero to infinity. Figure 6.5 shows an example of the solitary
wave past a submerged obstacle, during which wave reflection occurs when the wave front passes the frontal and rear corners of the obstacle.
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Figure 6.5 Simulation results of a solitary wave (H=0.1 m and h=1.0 m) past a submerged rectangular obstacle (40 m×0.6 m) using NEWFLUME; the wave profiles
from bottom to top have a time interval of 1.0 s.
6.4.1.4 Pulsating flow for periodic waves over an immersed horizontal plate
It has been found that an immersed horizontal plate can behave similarly to a conventional bottom-seated breakwater. The early analytical solution of wave
transmission and reflection from a submerged horizontal plate was made by Burke (1964). Patarapanich and Cheong (1989) conducted a series of laboratory
experiments to investigate transmission and reflection characteristics of regular and random waves past a submerged horizontal plate. It is found that there is an
optimal range of submergence of 0.05h-0.15h, during which wave energy is largely dissipated by wave breaking. Parsons and Martin (1992) formulated the problem
with the use of a hypersingular integral equation, from which the transmission and reflection coefficients
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can be solved. Compared with the traditional bottom-seated breakwater, the plate-type of breakwater can be material-effective because it can be very thin.
Another extraordinary feature of a submerged horizontal plate is that a net circulation can be formed around the immersed structure. The returning flow is always
beneath the structure and is called pulsating flow or reverse flow. This pulsating flow traps wave energy by inducing additional flow separation around the corners
of the plate. In this case, the plate can be regarded as a potential wave energy converter that can create the pulsating flow to drive a hydroturbine below the plate.
Graw (1993) gave a detailed description of the circulated flow based on the experimental data. Yu (2002) reviewed the studies of pulsating flows induced by waves
past a submerged plate and offered an explanation of pulsating flows as the result of momentum exchange between fluids above and below the plate. Using a VOF
RANS model, Qi and Hou (2003) simulated wave transformation above submerged plates. Recently, Carter et al. (2006) further explored the mechanism of the
pulsating flow generation by comparing their BEM and NSE simulation results with the available experimental data.
6.4.1.5 Wave interaction with a floating structure
The effort of anchoring an immersed plate at the desired submergence may not be trivial. Alternatively, a floating breakwater is a more practical concept in both
coastal and offshore engineering. Because wave energy is concentrated near the free surface, a floating breakwater is naturally the most efficient breakwater in
blocking wave energy. This type of breakwater is environmentally friendly because it allows water exchange between the protected area and the offshore region. A
similar case in nature would be wave interaction with ice sheets.
The concept of floating breakwater was proposed almost two decades ago (e.g., Williams et al., 1991). Most of the floating breakwaters are flexible and moored to
the seabed by mooring lines. In this case, the mooring force is one of the major concerns in the design (Sannasiraj et al., 1998). There are many types of floating
breakwaters, e.g., Ponton type (Sannasiraj et al., 1998), porous block-type (Wang and Ren, 1993), membrane type (Williams, 1996), cage type (Murali and Mani,
1997), spar buoy type (Liang et al., 2004), hybrid type with both membrane and rigid components [e.g., rapidly installed breakwater system (RIBS), Briggs et al.,
2002], pneumatic type (Koo et al., 2006). Recently, with the use of COBRAS, Koftis et al. (2006) simulated wave transmission and reflection from a fixed floating
breakwater and compared their results with the experimental data. Note that when the structure size becomes much larger than the wavelength, the structure is
often called VLFS. During wave interaction with a VLFS, both wave diffraction and structure deformation are significant, and the analysis must include both
hydrodynamics and the elastic property of the structure. Such an analysis is called “hydroelastic” analysis.
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6.4.2 Wave reflection, run-up, and overtopping a surface-piercing structure
There are generally three scenarios where waves overtopping a structure must be considered. One is for a surface-piercing breakwater that is designed to completely
block waves outside the protected area in normal wave and tidal conditions. In the extreme case such as high tide and/or large storm waves, part of the waves can
overtop the crown of the breakwater and transmit both mass and energy into the protected area. Another situation is for a seawall that is built along the coastline to
prevent a large wave or tsunami attack. The height of a seawall is often designed to allow a certain amount of wave overtopping to take place during the extreme
condition. If the waves are not high enough, wave run-up will then take place, followed by run-down and wave reflection, a physical process similar to waves on a
beach. The third case would be for a deck above the sea level (e.g., offshore platform or ship deck) subjected to large wave attacks. A great amount of water will
overflow the deck, and the process is often called “green water” effect, which is similar to waves overtopping the crown of a breakwater or a seawall.
6.4.2.1 Wave run-up and reflection
Wave run-up and reflection without overtopping occurs when the maximum wave height is less than the crown of a structure. Although a few empirical formulas
exist for wave run-up and reflection from a slope (see Sections 3.8.1 and 3.9.5), their reliability is still subject to further verification. Alternatively, a theoretical
approach or a numerical simulation can be made. One of the classical analytical solutions was proposed by Carrier and Greenspan (1958) to calculate wave run-up



and reflection from a linear slope based on the nonlinear shallow-water approximation. Although progress has been were made since then, the analytical solutions
are still limited to relatively simple geometry.
In contrast to the analytical approach, a numerical approach is more flexible in dealing with irregular geometry, permeability, roughness, porosity, etc. of a sloping
structure surface. For example, Zelt (1991) used a Boussinesq model to simulate solitary wave run-up on a plane beach. Titov and Synolakis (1998) employed a 2D
SWE model to simulate tsunami runup on beaches. With the use of a RANS model, Lin et al. (1999) simulated breaking and nonbreaking solitary wave run-up on a
beach. For periodic and irregular wave trains, Kobayashi (1999) used an SWE model to study the run-up and reflection from impermeable slopes. Although a lot of
RANS models are capable of simulating regular or irregular wave run-up and reflection from a beach (e.g., Lin and Liu, 2004), so far there have been few reports of
dedicated studies of periodic wave run-up and reflection from a slope using such models.
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6.4.2.2 Wave overtopping
When the incident wave height exceeds the crown of a structure, wave run-up will continue to cause waves overtopping the structure. This is an important
phenomenon in the design of a coastal or an offshore structure. Although there are a few empirical formulas (e.g., Owen, 1980; van der Meer and Janssen, 1995) for
estimating the mean overtopping rate, numerical modeling is often a good alternative when a new type of structure profile is considered. Most of the earlier
modeling efforts employed SWE models. Examples included Kobayashi and Raichle (1994) for simulating irregular waves overtopping coastal structures, van Gent
(1994) for simulating waves action on permeable or impermeable structures, Hu et al. (2000) for simulating waves overtopping seawalls, and Hubbard and Dodd
(2002) for simulating wave run-up and overtopping using a 2D adaptive mesh model. Although these SWE models have been successful to a certain extent, their
prediction accuracy degenerates when the vertical acceleration is significant (e.g., structures with steep frontal slope) or the wave breaking is strong.
The models based on the NSE solvers can better represent the physical processes. Liu et al. (1999a) employed a RANS model to simulate waves overtopping a
seawall protected by porous armor layers. Figure 6.6

Figure 6.6 Simulated breaking wave overtopping a seawall protected by the porous armor layer (between the seawall and the inclined white line); the top view
shows the simulated intensive turbulence and the bottom view shows the pressure distribution.
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shows the simulated wave overtopping process using this model. Li et al. (2004) developed an LES model to simulate waves overtopping a sea dike. Recently,
Reeve et al. (2007) employed a RANS model to simulate irregular waves overtopping an impermeable seawall. Besides better representing real physics, the models
solving RANS equations have another advantage over the SWE models in that the wave forces on the structure can be directly obtained based on the surface
integration of calculated fluid pressure. This is important if the impulsive wave loads are evaluated.
6.4.2.3 Green water
Although green water on an offshore structure is similar to a wave overtopping a coastal structure in nature, differences do exist between these two phenomena. The
main difference is that a wave overtopping a coastal structure is often a process continued from wave run-up on a slope or a vertical wall, whereas green water
often takes place separately without wave run-up. The main reason is that an offshore structure, below the platform, has an open space that allows waves to pass
through. This will effectively reduce the maximum overtopping rate but may induce dangerous uplift force when a large wave attacks the platform. In another
event, for ships or other floating vessels, the hull shape is often curved up from the bottom to the deck, which is equivalent to the negative slope angle. This will also
reduce the amount of overtopping water.
Compared with the wave overtopping a coastal structure, the detailed characteristics of green water on an offshore platform or a ship deck have been studied less.
Only recently, the quantitative study, experimentally or numerically, of green water has become intensive. For example, Cox and Ortega (2002) conducted
experiments to measure the free surface and velocity profile in waves overtopping a deck. By employing the SPH technique, Gomez-Gesteira et al. (2005)
simulated green water overtopping decks of offshore platforms and ships. Figure 6.7 shows a simulation of a deep-water breaking wave impinging on a spar platform
using NEWTANK. It is expected that more research will be carried out in this area with the use of NSE-solver models.
6.4.3 Wave diffraction around large bodies
When the structure size is much larger than wavelength, wave diffraction can become important. The wave direction will be modified in the diffraction process and
wave energy will be redistributed among different directional components. In the study of wave diffraction, there are two categories of interest. One is of major
concern in wave transformation during wave diffraction and the other is of concern in diffracted wave forces on the structure.
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Figure 6.7 Breaking wave impinging on a spar platform; the wave in deep sea has H=15 m, T=6.12 s, and L=58.5 m and the spar has the diameter D=20 m (top).
Schematic drawing of the spar platform; (bottom) simulation by NEWTANK.
6.4.3.1 Wave diffraction around a rigid body
When waves pass a fixed structure such as a breakwater, a large cylinder, or an island, wave diffraction takes place. There have been many theoretical studies of
wave diffraction around large bodies, provided the body geometry is simple and the incident waves are linear and chromatic. However, for more general shaped
bodies and/or nonlinear waves, numerical modeling may have to be employed. Many wave models are qualified to provide reliable results for wave diffraction
patterns. For structures with vertical surfaces (e.g., piles and breakwaters), the depth-averaged models (e.g., MSE model
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and Boussinesq model) can be used. For 3D bodies (e.g., ship hulls), only BEM models and NSE models can be employed.
One of the commonly studied problems is to model wave diffraction patterns in a real harbor. For example, for short wave diffraction around an arbitrary island, Lo
(1991) proposed an MSE model. Xu et al. (1996) developed another MSE model for the study of harbor waves. Li et al. (2000) employed a Boussinesq model to
simulate random wave diffraction behind breakwaters. Woo and Liu (2004) developed a FEM Boussinesq model to study harbor oscillations. For long-wave (e.g.,
tsunami) diffraction and refraction around an island, Titov and Synolakis (1998) employed a SWE model.
6.4.3.2 Diffraction force on a large body
The calculation of wave force on a large body can be derived from the wave diffraction pattern. In fact, this is one of the most important hydrodynamic measures in
designing an offshore structure and a ship hull. Currently, the established way of performing such a calculation is primarily based on the BEM models for potential
flows. For a practical 3D problem, almost all the approaches using BEM models introduce various simplifications for the nonlinear free surface boundary conditions.
For example, when only the first-order linear wave forces are required, the solution procedure can be linearized (Section 6.2.1.2). When the higher order (mainly
second-order) nonlinear wave forces are needed, the perturbation technique (Section 6.2.2.2) can be employed. Although it is possible to recover the time-domain
nonlinear wave force on the structure (e.g., Isaacson and Cheung, 1992) based on the perturbation technique, such an approach is unable to solve a fully nonlinear
problem in which the free surface may turn over and exert impulsive impact force on the structure. Some of the well-known commercial software of this kind
include WAMIT, MOSES, Nauticus Hull, etc. (see Section 5.2.3.3). So far, only a few studies have been made for simulating wave diffraction force on a large body
using the NSE models (e.g., Li and Lin, 2001; Lee and Lin, 2005). It is expected, however, that more studies of this kind will take place in the future.
6.4.3.3 Hydroelastic analysis for wave diffraction around an elastic large body
Rigid-body assumption is applicable only to relatively small structures with large stiffness. When the body size becomes many times the wavelength’s or the
structural stiffness is small, the elasticity of the body must be considered in the modeling of wave-structure interaction. Such an analysis is often termed hydroelastic
analysis. In the analysis, both the structural deformation and the wave diffraction around the structure must be simultaneously considered. In offshore engineering,
one example that requires hydroelastic
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analysis is VLFS. We have discussed the closed-form analytical solution based on the hydroelastic analysis for some simple VLFS (mainly axisymmetrical thin plate,
i.e., circular plate) in Section 3.11.3. For more general shaped structures, numerical analysis is needed. For example, using eigenfunction expansion, Wu et al.
(1995) analyzed the elastic response of a floating plate to wave action. Ertekin and Kim (1999) studied the hydroelastic response of a mat-type structure in shallow
water subject to obliquely incident waves. Combining the BEM model for fluid and the FEM model for structure, Liu and Sakai (2002) simulated the time-domain
elastic response of a floating structure to waves. The hydroelastic analysis can also be conducted for other types of structure (e.g., Lu et al., 2000 for the study of
hydroelastic response of structures during water impact) or liquid sloshing in an elastic container (e.g., Bermudez and Rodriguez, 1999).
6.4.4 Wave loads on small fixed structures
When the body size is small compared with the trajectory motion of fluid particles under waves, the viscous effect becomes important, and the potential flow
assumption is no longer valid. Flow separation takes place on the surface of the body and forms the wake region on the lee side, manifested by the presence of
vortex generation and shedding. In this case, the correct calculation of wave forces on the structure relies on the reasonable description of the vortical motion in the
wake region, which directly affects the net force on the body. For a structure with a simple shape, the empirical Morison equation is a useful tool for calculating
such forces. For a structure with a complex shape exposed to a strongly nonlinear wave field, the numerical approach based on NSE models can provide a more
accurate computation of wave forces.
To simulate wave action on structures with the presence of strong turbulence, the numerical model based on the RANS equations or LES is the most appropriate
choice. In many cases, the wave forces on the structure are always related to structure stability analysis, which in earlier days was mainly done with the use of
empirical formulas established on a limited number of experimental tests [e.g., the empirical formulas of van der Meer (1988) for the stability analysis of rubble
mount breakwaters]. With the use of NSE models, it is possible to calculate the wave forces acting on the structure directly by integrating the simulated pressure
around the body surface. For example, van Gent (1995) developed an NSE model to simulate wave force on both impermeable and permeable structures. Liu et al.
(1999a) proposed a RANS model to simulate wave action on a seawall. Lin and Li (2003) developed a 3D LES NSE model to simulate the combined wave and
current force on a vertical square cylinder. Figure 6.8 shows the example of the simulated vortical structure and the free surface profile around the cylinder at two
different instances.
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Figure 6.8 Simulation results of the vortical structures on the middle water level (top) and the associated free surface profiles (bottom; color scale for free surface
displacement in meters) around a rectangular cylinder (1 m×1 m) under a combined current (U=0.6 m/s and h=1.0 m) and wave (H= 0.05 m and T=4.0 s) action; the
time interval between left and right plots is 6.0 s.
6.4.5 Wave interaction with moving and/or flexible bodies
The motion of a body during wave-structure interaction adds difficulty to numerical modeling. To handle the body motion in the simulation, there are generally four
types of numerical treatments, namely adaptive mesh or its kind, the cut-cell method or its kind (this is mainly applicable to NSE models), moving coordinates, and
the perturbation technique (this is mainly applied to potential flow BEM models). In this section, we shall discuss all these methods.
6.4.5.1 Adaptive mesh approach
The adaptive mesh method is the most general numerical treatment for a moving body. In this approach, the problem is solved in the physical domain with the use of
an adaptive boundary-conformal mesh, at least near the moving body. The method is able to deal with both body motion and body deformation.
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Fully nonlinear BEM model: With a fully nonlinear BEM model that is able to simulate wave interaction with a moving body, the generation of adaptive elements
is relatively straightforward. As the body surface and the free surface move in time, the new location of the boundary elements can be readily determined using the
Lagrangian approach. For 2D problems, this idea has been successfully implemented to simulate wave paddle movement and other types of moving boundaries (e.g.,
Grilli and Subramanya, 1996). For 3D problems, the major limitation is the large CPU time required to invert the full and dense matrix at each time step. So far,
there have been few reports of a BEM model capable of simulating fully nonlinear wave interaction with a 3D moving body with complex surface configuration.
NSE-solver models: With the use of the NSE models, the remeshing process can be computationally expensive for a 3D moving body in fluid. The remeshing could
be done in the entire computational domain at each time step with the updated body surface information. Such an approach is called global remeshing. Apparently,
the full automation for the remeshing process without human interference is needed to simulate a practical problem. This can be very challenging if the body motion
is fast and arbitrary. The commercial software FLUENT is able to treat the moving and deforming domain by using the adaptive mesh dynamically generated by the
global remeshing process. The technique can be applied to the study of FSI. However, further development and tests for more complicated problems of surface
wave interaction with 3D moving bodies are still needed. If the body movement is small, especially periodic, the ALE method can be used to minimize the effort of
remeshing process.
Alternatively, one can also use chimera method to treat a moving body. In this method, two mesh systems are used, with one being fixed and the other being
conformal to body surface and moving with the body. With the use of chimera grid, there is no need to perform remeshing at each time step if the body motion is in
simple translation and rotation without deformation because the same boundary conformal mesh can be used at different locations and orientations. The changed
location of the body and thus the boundary conformal mesh at each time step will be reflected by different crossing information between the background grid and
the moving mesh. Interpolation will be used to exchange the flow information between the two grid systems. This method has been successfully used to simulate a
moving ship and the generated ship waves in a harbor (Chen and Chen, 1998). Note, however, that the simplicity of this method is applicable only to rigid bodies
without surface deformation.
6.4.5.2 Fixed Cartesian grid method
The cut-cell technique can be used to represent an irregular body surface. By using this method, the advantage of the Cartesian grid can be retained and
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the FD scheme only needs to be modified at the boundary cell. The similar numerical schemes include PCT and the porous-cell method (Section 6.3.5.2). When a
moving body is considered, some kind of body surface tracking is needed to update the location of the body and the information of the solid surface crossing
through the Cartesian grid. With the use of cut-cell method, Heinrich (1992) employed the modified NASA-VOF2D to simulate water wave generation by
landslides. Adopting an idea similar to the VOF method, Xiao (1999) used the color functions to represent a body. The convection equation for the color function
was solved in the Eulerian frame to update the body location at each time step. In contrast, with the use of PCT, Lin (2007) proposed the LRS method to handle a
moving body in a fixed Cartesian grid, where the rigid-body motion is tracked by the Lagrangian method. Figure 6.9 shows one of the case studies using this method
for modeling the impact and entry of a cylinder into water.
Another approach of simulating a moving body in a fixed Cartesian coordinate is based on the VBF approach. In this approach, the numerical solution is sought in
the entire computational domain, even inside the solid body. The VBF is applied along the original body surface to enforce the fluid velocity to be zero there
(no-slip boundary condition). Some of

Figure 6.9 Simulation results of a cylinder slamming and entering into water (color scale for pressure).
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the representative works of this kind include the IB method (e.g., Lai and Peskin, 2000), the II method (e.g., Leveque and Li, 1994), and the fictitious domain
method (e.g., Glowinski et al., 2001), all of which have the capability of treating moving boundaries. Recently, Fadlun et al. (2000) developed a second-order-
accurate IB method for simulating unsteady 3D incompressible flows and their interaction with moving bodies with complex geometries.
6.4.5.3 Moving coordinate approach
Constructing the coordinate frame on a moving body avoids remeshing. This is a natural choice if the body is moving at a constant speed in an infinite domain. In
this case, the moving body in quiescent fluid is theoretically equivalent to a stationary body in fluid that moves in the opposite direction. However, constructing the
coordinate on an arbitrarily moving body implies that the problem should be recast into a noninertial reference frame that requires the conversion of the original
governing equations for the fluid to new equations including the additional noninertial effects. This method loses its advantage when multiple bodies or a single body
with deformable surface are present. Usually, this approach is used only under two circumstances, i.e., when the fluid is confined inside a rigid container (e.g., liquid
sloshing in a tank) and when a single moving body is immersed in the fluid with a practically infinite domain (e.g., VIV of a riser under current action). In both
cases, the moving coordinate can be established following the body motion. For liquid sloshing, both potential flow BEM models and NSE models can be used,
whereas for an oscillatory body in fluid only NSE models can be used due to the presence of vortices (e.g., Dütsch et al., 1998 for numerical simulation of an
oscillatory circular cylinder).
6.4.5.4 Perturbation or other simplified methods
The perturbation method so far is only connected to BEM models in solving wave-induced structure motion. Similar to the treatment of the free surface, the body
location and motion are expressed as functions of the perturbed small variables in various orders. The solution is solved with the boundary condition applied on the
still water level and mean body location. This methodology is popularly adopted by many BEM (panel method) codes that are developed for the analysis of
structure response in random seas. This method is normally applied to frequency-domain analysis, although the results can also be extended to time-domain analysis.
The typical output from this kind of model includes (1) the added mass and moment of inertia coefficients, (2) first-order radiation and wave-drift damping
coefficients, (3) first- and second-order (drift) wave forces and moments by each wave component, second-order sum-frequency and
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difference-frequency wave forces, and moments between any two wave components, and (4) structure responses in terms of first-order RAO, sum-frequency RAO,
and difference-frequency RAO (see Sections 3.15.2 and 3.15.3 for the explanation of these forces and motions). One of the representative codes of this kind is
WAMIT that can be used to analyze the wave forces on a large floating offshore structure and the corresponding structure responses.
6.4.5.5 Meshless method
In an earlier section, we have introduced the meshless particle method. The main advantage of this type of model is its flexibility in treating highly irregular body
surface geometry. It was one of the hot research topics in computational mechanics in the last decade. However, its application in fluid interaction with a moving
body just started recently, e.g., Chew et al. (2006) developed a meshless GFDM model to simulate incompressible fluid flows around moving bodies. So far, there is
no report of a meshless model capable of simulating free surface flow interaction with moving bodies, although the method has a good potential in handling such
problems.
6.4.6 Liquid sloshing in partially filled containers
Liquid sloshing is a special type of wave-structure interaction. Compared with the traditional wave-structure interaction where waves are progressive and normally
come from a far field source not affected by the local structure, the waves during forced liquid sloshing are confined standing waves that are generated by container
motions. We have discussed some analytical approaches for analyzing liquid sloshing in 2D and 3D tanks (Section 3.15.6). Most of these analytical approaches,
however, are based on linear wave theory and simple tank geometry.
For the study of nonlinear waves, especially breaking waves, in a tank with complex geometry and excitation, numerical models become an attractive option. For
liquid sloshing with nonbreaking free surface, both potential flow models (solved by BEM, FEM, or FDM) and NSE models can be used. For example, Faltinsen
(1978) developed a BEM model and compared the numerical results with the linear analytical solution. Based on the potential flow assumption, Wu et al. (1998)
developed a 3D FEM model and used the model to make a series of 3D simulations of liquid sloshing. Frandsen (2004) developed a FDM that solves the Laplace
equation in the σ-coordinate and then employs the model to simulate 2D liquid sloshing in a tank moving horizontally and vertically.
In contrast, Behr and Tezduyar (1994) developed a 3D FEM NSE model to simulate nonbreaking liquid sloshing in a tank subject to vertical vibration. Armenio and
La Rocca (1996) developed a 2D FDM RANS model and compared the computational results with those from an SWE model. Celebi
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Figure 6.10 Simulated snapshots of broken free surface for liquid sloshing in a square tank.
and Akyildiz (2002) developed a 2D VOF NSE model to simulate liquid sloshing in a tank. Recently, Chen (2005) presented another 2D viscous model to simulate
liquid sloshing under the simultaneous excitation of heave, surge, and pitch. Kim et al. (2004) developed a 3D viscous model that employs the height function to
track the free surface during liquid sloshing. Few reports, however, were made for the NSE models that are capable of accurately simulating 3D liquid sloshing with
broken free surfaces except for the recent work by Liu et al. (2008). Figure 6.10 shows the simulation results of 3D liquid sloshing in a tank with a broken free
surface. The extensive review of liquid sloshing can be found in Ibrahim (2005).
6.5 Benchmark tests
There are many numerical models capable of simulating wave-structure interaction. In this section, we shall present NEWTANK, a generic 3D model for simulating
turbulent two-phase fluid flows and their interaction with structures. Details will be provided for the numerical treatment (e.g., porouscell method and VBF method)
of structures in fluids. A series of benchmark tests will be given for the study of various wave-structure interaction problems.
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6.5.1 Model description
In Chapter 5, numerical details (e.g., the two-step projection method, k−ε turbulence model, and the VOF method based on PLIC interface reconstruction) have
been provided for NEWTANK without the presence of structures (Section 5.5.1.1). In this section, the introduction of NEWTANK is completed by further
elaboration of solid boundary treatment and flow computation in a noninertial reference frame.
6.5.1.1 Governing equations
In NEWTANK, the following set of unified equations is solved:

(6.60)



(6.61)
where the coefficients Cc, Cp, Cg, Cv, and Ct are coefficients associated with convection, pressure, gravity, viscous stress, and turbulence stress terms, which are
used to account for the porous effect on the flow. In the absence of porous media, Cc=Cp=Cg=Cv=Ct=1. Compared with the conventional RANS equations, the
source terms have been included in the RHS of the continuity and momentum equations. The inclusion of the source term in the continuity equation is to generate
waves from internal sources (see Section 5.2.1.6). The advantage of generating waves in this way is to avoid the simultaneous wave generation and wave absorption
on the same boundary (see Section 5.2.1.6). Besides, it may also be used to simulate other physical processes such as waves generated by underwater explosion.
The inclusion of the source term in the momentum equations has multiple purposes (e.g., additional force in the noninertial reference frame, artificial wave damping
force in the sponge layer, resistance force in porous media). In this book, we shall only elaborate three types of forces f i, two of which are related to the solid
boundary treatment (VBF and porous-cell methods) and the third related to the force in the noninertial frame.
6.5.1.2 Virtual boundary force method
In the VBF method, the body is removed from the computational domain and replaced by the internal body forces at the original boundary location acting on the
fluid flow (see Figure 6.11 for illustration). Now the key issue becomes how the internal VBF can be determined. Apparently, the force is not known a priori before
the problem is solved. The obvious physical condition to determine the force is that the velocities at the original location of solid boundaries must vanish (i.e.,
no-slip boundary condition). In other
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Figure 6.11 Illustration of the VBF method that replaces the boundary condition on the body surface with a virtual boundary force.
words, the VBF should be defined such that the computational results of velocities at all boundaries go to zero at any time. Now let us see how such a force is
determined numerically in the model.
In the VBF method, the original NSEs are revised to be:

(6.62)

(6.63)
where (fVBF)i is the additional VBF that is used to replace the actual reaction force and is only nonzero on the solid surface. This force is a Dirac delta function in
theory but becomes finite in numerical computation that depends on the local discretization, flow characteristics, and boundary configuration. When the above
equations are solved on a Cartesian grid, body surface will likely come across the grid lines in various ways. In terms of force computation at each time step based
on the no-slip condition for velocity, interpolation is required to connect the information between the grid points where the numerical solution is sought and the
nearby body surface. The force can be obtained by iteration with the velocity feedback information, and the method is termed “feedback forcing method” (Peskin,
1972). In contrast, the force can also be obtained by the direct force that will be solved simultaneously with the pressure using the modified PPE. This method is
called “direct forcing method” (e.g., Mohd-Yusof, 1997), which is adopted in NEWTANK and elaborated below.

page_380

Page 381
In the first step of the numerical solution, the tentative velocity  is sought as usual:

(6.64)
In the second step, the intermediate velocity field is projected onto a divergence-free plane for the final velocity, i.e.:

(6.65)
where:

(6.66)
Taking the divergence of (6.65) and applying (6.66), we have the revised PPE:

(6.67)
If (fVBF)i is known, (6.67) can be solved numerically similar to the NSE model without VBF. By realizing (fVBF)i is nonzero only at the cells crossing the solid
boundary, we can make use of (6.65) and define (fVBF)i:

(6.68)

Here, we use  to replace the original  in (6.65) to enforce the no-slip velocity boundary constraint at the cells that cross the solid boundary.
Consider the 2D case illustrated in Figure 6.12 where a solid surface crosses through the cell (i, j, k). In this case, the VBF will be applied on the cell face center in
the fluid domain nearest to the solid surface (or on the solid boundary if it coincides with the cell face center where the velocity vector is defined). Therefore, the
term ∂(fVBF)i/∂xi on the RHS of (6.67) is evaluated as follows:
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Figure 6.12 Application of the VBF method for a 2D flow computation near a body surface.

(6.69)
The other terms in the PPE are discretized as follows:
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(6.70)

(6.71)
By substituting (6.69), (6.70), and (6.71) into (6.67), we have the discretized form of the revised PPE:

(6.72)

The only remaining task in the VBF method is to determine  and  The interpolation is needed in general to obtain these values using the tentative

velocity in the interior fluid cell and the no-slip velocity constraint on the solid surface. Taking  for example, one can easily obtain:
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(6.73)
where δx is the horizontal distance between the solid boundary and the cell top face center where the vertical VBF fVBFz is applied. Similarly, we can obtain



 With the interpolated velocities, the revised PPE can be solved to obtain the new pressure field that will enforce the final velocity to be divergence-free
and zero on the position of the solid surface. The above methodology has been extended to 3D cases in NEWTANK.
Since (fVBF)i is actually the reaction force on the fluid by the body, the total fluid force acting on the body is simply the volumetric integration of (fVBF)i around
the body with a minus sign, i.e.:

(6.74)
where Ω is the body surface volume, and in the numerical modeling, it represents the volume occupied by the computational cells crossing the body surface.
6.5.1.3 Flows in porous media
In Section 5.2.1.7, we have shown that for flows in porous media that can be approximated by uniform spheres with the mean diameter of d50, the general
governing equations can be written as:

(6.75)

(6.76)
On rearranging the equations and omitting the overbar for simplicity, we have the following generalized equations:

(6.77)

(6.78)
where
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and

 
In solving the above equations, the conventional two-step projection method is used, i.e.:

(6.79)

(6.80)
Special attention should be paid to the second step of the method where the nonlinear friction term is linearized by using the product of the tentative total velocity

 and the current velocity  This treatment has two advantages: (1) with linearization, it is possible to form the linear matrix for PPE; (2) with the
implicit treatment of the friction term, there is no additional time-step restriction enforced by this source term, even when Cf→∞ as n→ 0 and/or d50→0. The latter
is very important when we want to use special porous media (e.g., n→0) to represent an impermeable solid body.
The immediate numerical difficulty at this juncture is that we are unable to form the discretised PPE by simply taking the divergence of (6.80) and enforcing the

divergence of  as we did for nonporous flow cases. The additional terms will result from the friction term, even though it is already linearized. To resolve
this problem, an intriguing approach is used to first re-express (6.80) as follows:

(6.81)

Now by taking the divergence of (6.81) and applying  we have:

(6.82)
Comparing this with the PPE (6.56) we obtained earlier, the differences arise that both the matrix and the RHS are modified. Especially, the additional source term:

 
is required even when the gravitational acceleration is a constant because Cg varies across the porous interface.
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Figure 6.13 Definition sketch the use of porous cell treatment in representing an irregular impermeable body surface.
The method introduced above can be used in principle to solve fluid interaction with a structure with any permeability, which is the function of porous material
properties (e.g., mean size d50 and porosity n). In the extreme case when n approaches 1.0, it simulates a “transparent” structure, inside which flow can freely
move. On the other hand, when n approaches 0.0, it represents an impermeable structure. When the body surface crosses through a computational cell, the mean
value of porosity in the cell nc can be calculated by nc=(Vf+nVs)/(Vf+Vs), where Vf and Vs are volumes open to fluid and occupied by the porous medium in the
computational cell, respectively (see Figure 6.13 where n=0 for an impermeable body). With such treatment, it is able to simulate wave interaction with a body,
porous or impervious, with irregular geometry. The only caution is that as n approaches zero, the resulting PPE can be ill-conditioned. In this case, setting a lower
limit of n (e.g. 10−4) often helps resolve the problem.
The VOF method can still be used to track the free surface motion inside and across the porous media. However, correction must be made to account for the porous
effect in each cell:

(6.83)
The porosity does not appear in the convective term because ui in the porous media represents the mean velocity that already takes into consideration the porosity.



As a result, the PLIC established in Section 5.5.1.1 can be equally applied except that the FD equation in (5.265) is revised to:

(6.84)
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In this case, n can be the function of both time and space to represent the moving body or the evolving porous bed.
6.5.1.4 Flows in a noninertial reference frame
For a fluid inside a container that has six DOF motions, the easiest way of solving the fluid flow is to establish the coordinate system following the tank motion. By
doing so, the computational domain is fixed. The governing equations, however, need to be modified to take into account the additional virtual forces resulting from
the noninertial motions of the reference frame. For general cases, this corresponds to adding a force term (fNIF)i to the momentum equation:

(6.85)
The force (fNIF)i includes the contribution from the translational and rotational frame motions. The vector form of the force reads as follows:

(6.86)
where v and  are the translational and rotational velocity of the noninertial reference frame, respectively; r and R are the position vectors for the point of interest
in the computational domain and the origin of the rotation that can be either inside or outside the computational domain (Figure 6.14).
Following the similar procedure of the two-step projection method, we can write the second step as:

(6.87)

Figure 6.14 Definition sketch of simulation of fluid flows in a noninertial reference frame.
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This leads to the following equation:

(6.88)
This additional force must be included on the boundaries as well where the velocity comes to zero:

(6.89)
6.5.2 Benchmark tests
In this section, the benchmark tests will be provided for the studies of different wave-structure interaction problems. We will present only the numerical results by
the NSE models that are capable of simulating viscous and turbulent flows.
6.5.2.1 Two-dimensional drag and lift forces on a circular cylinder by a steady flow
When a steady flow passes over a circular cylinder, vortices will be formed behind the cylinder. Depending on the flow Re, vortices may be attached with the body
or shed from the body alternately. The resulting drag and lift force coefficients are functions of Re, and there are many experimental data for this problem. This is
the classical test for a viscous fluid model capable of handling an arbitrary solid surface. In the present test, NEWTANK will be used to simulate the problem. The
VBF method is used to handle the cylinder surface in the Cartesian grid.
A circular cylinder with the diameter of D=1.0 m is deployed in the computational domain of 30 m×10 m. The center of the cylinder is 10 m away from the left
boundary and in the middle of the y-direction. A nonuniform mesh system with a total number of 130×80 is used with the finest grid of ∆x=∆y=0.05 m being
arranged near the cylinder. The upstream velocity U is set to be 0.01 m/s and the Re=UD/ν is changed by adjusting the value of ν. No turbulence closure model is
used.
Figure 6.15 shows the simulated vortex structures around the cylinder at Re=1, 10, 100, and 1000. It is observed that for small Re<10, the vortices being formed are
symmetrical and attached to the cylinder. With the increase of Re>100, the vortices are elongated and shed from the cylinder alternately, causing the asymmetrical
flow pattern in the y-direction.
One of the important concerns in this test is whether the numerical model can accurately calculate the drag and lift force coefficients CD and CL that are closely
related to the flow separation point and are sensitive to the numerical accuracy of flow computation near the cylinder surface. Table 6.1 shows the comparisons of

the calculated  (mean drag coefficient), |CLmax|
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Figure 6.15 Simulated vortex structure behind a circular cylinder for different Re; the contours represent the normalized vorticity (σ/(U/D)) with the interval of 0.5.
(maximum lift coefficient), and Strouhal number St that quantifies the shedding frequency between the present results and other numerical results using the IB
method, e.g., Lai and Peskin (2000) and Palma et al. (2006). While Lai and Peskin (2000) employed 38 grids near the cylinder without the use of any turbulence
model, Palma et al. (2006) employed 50 grids with the use of the k−ω turbulence model. It is seen that the present results compare reasonably well with other

computations. There is a clear trend of decreased  and increased |CLmax| with the increase of Re.
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Table 6.1 Comparisons of the calculated CD, |CLmax|, and St between the present model and other numerical results

 |CLmax| St
 Present Lai and Peskin (2000) Palma et al. (2006) Present Lai and Peskin (2000) Palma et al. (2006) Present Lai and Peskin (2000) Palma et al. (2006)
1 17.049   0      
2 9.7105   0      
5 5.1831   0      
10 3.4685   0      
20 2.4504  2.05 0      
50 1.655   0      
100 1.4643 1.4473 1.32 0.3231 0.3299 0.331 0.162 0.165 0.163
200 1.4019  1.34 0.5819  0.68 0.184502  0.190
500 1.3985   0.8479   0.208333   
1000 1.4121   0.9617   0.218   
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6.5.2.2 Two-dimensional solitary wave transmission, reflection, and dissipation over an impermeable step
A solitary wave is often used to test a wave model that is capable of balancing wave dispersion and wave nonlinearity. In this test, the 2D NEWFLUME is validated
against the case of solitary waves past a step, a similar case of a tsunami front past a continental shelf. A solitary wave will go through the fission process during
which waves split into a number of solitons. The wave nonlinearity and fission process introduces the difficulty of defining the transmission coefficient based on the
ratio of wave heights. Alternatively, one can use the definition based on the energy flux concept to define the RTD coefficients (Lin, 2004b):

(6.90)
where EFtrans, EFref, and EFinc are the total energy fluxes integrated across the water depth for the transmitted, reflected, and incident waves. For a nonlinear
wave, the energy flux includes both the work done by the dynamic pressure and the nonlinear convective contribution.
By using the linear long-wave approximation, Lamb (1945) gave the analytical solutions of the reflected and transmitted wave heights (HR and HT) for wave
propagation over a step:

(6.91)
where HI=H is the incident wave height and b is the height of the step. In the above expressions, we have 1≥HR/HI≥0 and 2≥HT/HI≥1. It is easy to prove that the

above equations satisfy the total energy conservation among the incident, transmitted, and reflected waves for a linear wave train, i.e., 

where  is the group velocity in the deep water while  is the group velocity on the step. Thus, the above expressions can be modified so
that they can fit in the current definition of wave coefficients based on the energy concept:

(6.92)
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Later, Sugimoto et al. (1987) introduced an “edge-layer” concept that is based on the potential flow theory and allows vertical motion near the step. The theory
incorporates the higher order corrections to Lamb’s theory. An analytical solution was found for the wave reflection coefficient:

(6.93)
The number of solitons contained in the transmitted wave packet and the corresponding wave heights were also found analytically. Note that though allowing the
vertical velocity in the vicinity of the step, Sugimoto et al.’s result relies on the validity of potential flow theory and cannot represent the vortex shedding
mechanism from the step corner. Seabra-Santos et al. (1987) conducted a series of laboratory experiments to study this phenomenon. In the experiments, various
values of H/h that range from 0.14 to 0.44 were used, and the results were represented by the ratio of HR/HI.



Now let us present the comparisons between the numerical results and the theories and experimental data. The numerical simulations are performed in a domain 100
m long, with the deep-water depth being h=1 m. A uniform grid system of ∆x=0.05 m and ∆y=0.01 m is employed. Solitary waves with H/h=0.1 and H/h=0.3,
respectively, are sent from the left boundary. The step height varies from 0 to 2H (fully block the wave). Figure 6.16 shows the comparisons of the simulated
reflection coefficients to the experimental data. The definitions based on both wave height ratio and energy flux integration are presented. It is observed that the
differences between two definitions are small for H/h=0.1, but large for H/h=0.3. The simulated results in terms of the wave height ratio compare reasonably well
with the experimental data, which are also defined based on the wave height ratio, for both small and large wave height.
Figure 6.17 shows the simulated RTD coefficients together with the theories. For reflection coefficients, the numerical results agree very well with Lamb’s theory
up to about b/h≈1−2H/h for both weakly nonlinear waves H/h=0.1 and fully nonlinear waves H/h=0.3. The deviation of the large values of b/h is mainly caused by
the fact that KR actually reaches 1.0 when b/h=1+2H/h rather than b/h=1 as predicted by both theories. On the other hand, Sugimoto et al.’s theory gives
consistently smaller results. Since the current numerical model solves the Reynolds equation directly that is free of limitation from either the long-wave
approximation or the potential flow assumption, its better agreement with Lamb’s theory seems to suggest that the “edge-layer” theory, which enforces the smooth
streamlines over the step, may significantly underestimate wave reflection.
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Figure 6.16 Comparison of simulated wave reflection coefficients with the experimental data for small and large incident wave heights. (Sugimoto et al., 1987)
Considering that Lamb’s theory is for linear periodic long waves, this agreement also suggests that during the interaction, both the wave dispersion and the
periodicity are insignificant and do not affect the wave reflection process. Figure 6.17(b) and (c) shows the results for the transmission and dissipation coefficient.
With the increase of step height, wave breaking can be induced that increases the energy dissipation and decreases the wave transmission, whereas the wave
reflection is less affected by the breaking process.
With the validated model, Lin (2004b) has made a numerical study of solitary wave interaction with a rectangular block with an arbitrary aspect ratio. The RTD
coefficients are produced and tabulated for engineering design. The study was further extended by Lin and Karunarathna (2007) for solitary wave transmission and
reflection from a porous breakwater.
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Figure 6.17 Comparisons of (a) KR, (b) KT, and (c) KD between numerical results and theories by Lamb (1945) and Sugimoto et al. (1987).
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6.5.2.3 Two-dimensional solitary wave past a submerged rectangular block
When waves pass above a submerged bluff body, vortices may be formed around the corner of the body and subsequently transported into the region and possibly
interact with both the free surface and the bottom. In this test, we shall present the simulation of a solitary wave past a submerged rectangular block. Comparisons
will be made among the 2D VOF RANS model (Lin and Liu, 1998a), the 3D multiple-layer σ-coordinate LES model (Lin, 2006), and the experimental
measurements (Zhuang and Lee, 1996). The problem setup is shown in Figure 6.18(a), where the still water depth h=0.228 m and the incident wave height H=0.069
m. The rectangular obstacle has height of 0.114 m and length of L=0.381 m. The time histories of horizontal and vertical velocities are measured at two points
behind the obstacle, which are Point 1:0.040 m above the bottom and 0.034 m downstream from the obstacle and Point 2:0.017 m above Point 1. To simulate this
problem, the uniform mesh ∆x=0.0025 m is used in both models. For vertical resolution, in total 106 meshes are used in the VOF model, whereas
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Figure 6.18 (a) Problem setup of a solitary wave past a submerged obstacle and the simulation results of the vertical structure behind the obstacle during the wave

passage at  the two circles behind the obstacle represent measurement Points 1 (lower) and 2 (upper).
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40 and 100 meshes are used in the multiple-layer σ-coordinate model to represent coarse and fine vertical resolution, respectively.
Figure 6.18(b)–(d) shows the simulation results of the vortex development during the passage of the solitary wave over the obstacle for the coarse vertical resolution

case. The vortex is initiated around  when the crest of the solitary wave is above the rear corner of the obstacle. The vortex is further developed and

evolved at  after the crest has passed over the obstacle. The size of the vortex grows further and it rises toward the free surface even when the wave

has completely left the region (e.g., ). The comparisons between numerical results and available experimental data are shown in Figure 6.19. It is
found that all numerical results compared reasonably well with the experimental data for both horizontal and vertical velocity at these two points. This is true even
for the coarse resolution results, although the fine resolution results are

Figure 6.19 Comparisons of the time histories of horizontal and vertical velocities at the two points behind the rectangular obstacle among the σ-coordinate model,
VOF model, and experimental data.
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even better. Compared to the VOF model, the σ-coordinate model captures the velocity pattern inside the vortical structure better.
6.5.2.4 Two-dimensional solitary wave run-up on a linear slope
The main purpose of presenting this benchmark test is to show how the VBF treatment introduced in Section 6.5.1.2 can be used together with the VOF method to
simulate the free surface flow interaction with a surface piercing body, e.g., the linear slope in this case. The slope has an angle of 30° and s=tan(30°)=0.577. The



still water depth h=0.16 m and the solitary wave has the wave height of H=0.027 m. The PIV was used to determine the particle velocity and free surface
displacement (Lin et al., 1999).
The numerical computations are performed in the domain of 4.49 m≤ x≤ 6.99 m and −0.16 m≤z≤0.11 m, which is discretized by 250×90 uniform grids with ∆x=0.01
m and ∆z=0.003 m. The time step is adjusted dynamically to satisfy the stability constraints. The present numerical results from NEWTANK using the VBF method
are compared with the experimental PIV data and the earlier numerical results from NEWFLUME using the PCT method (see Figures 6.20–6.25). The overall
comparisons between

Figure 6.20 Solitary wave run-up and run-down at t=6.38s: (a) Comparison of free surface profiles (—: VBF model; arrows of velocity field also from VBF model;
o: PIV data); (b) Comparisons of velocities at (b1) x=6.3972 m, (b2) x=6.5556 m, and (b3) x=6.7146 m (—and -: u and w by VBF model, -.- and…: u and w by
NEWFLUME, o and *: u and w by PIV).
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Figure 6.21 Solitary wave run-up and run-down at t=6.58 s; explanatory data are in the caption for Figure 6.20.

Figure 6.22 Solitary wave run-up and run-down at t=6.78 s; explanatory data are in the caption for Figure 6.20.
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Figure 6.23 Solitary wave run-up and run-down at t=7.18 s; explanatory data are in the caption for Figure 6.20.

Figure 6.24 Solitary wave run-up and run-down at t=7.38 s; explanatory data are in the caption for Figure 6.20.
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Figure 6.25 Solitary wave run-up and run-down at t=7.58 s; explanatory data are in the caption for Figure 6.20.
the two numerical results and the experimental data are satisfactory. While the present VBF method provides the slightly better prediction during wave run-up
process, the PCT is closer to the experimental data during wave run-down.
6.5.2.5 Two-dimensional flows through porous blocks
In this test, we shall present the application of NEWTANK to the simulation of flows in porous media. The objective of this benchmark is to demonstrate the
efficacy of the porous-cell method (Section 6.5.1.3) and the validity of the semi-theoretical porous flow model (Section 5.2.1.7). The problems of the transient flow
past a porous block filled with rocks or beads (Liu et al., 1999a) are revisited with NEWTANK. The present numerical results are compared to the numerical results
using the earlier porous flow model and the laboratory data.
In the laboratory, a glass tank that is 89 cm long, 44 cm wide, and 58 cm high was used with a porous block of 29×44×37 cm3 being placed at the center of the tank,
i.e., 30.0–59.0 cm from the left glass tank wall. A gate was built 2 cm away from the left edge of the porous block to hold the water in the left-side reservoir. Two
porous materials are used in the experiments.
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One is the crushed rocks with an equivalent mean diameter of d50=1.59 cm. The porosity of the rocks is 0.49. The other porous material is the uniform glass bead
with a diameter of d50=0.3 cm and a porosity of 0.39 cm. The initial water depths are 23.85 cm in the left-side reservoir and 2.4 cm in the downstream for the case
of crushed rocks, whereas they are 13.8 cm and 2 cm for the case of beads.
In the numerical computations, a grid system with the uniform ∆x= 0.005 m and ∆y=0.0025 m is used. In NEWTANK, the drag force coefficient in (6.76) takes the
same form as that suggested by Lin and Karunarathna (2007) (Section 5.2.1.7), i.e.:

(6.94)



where we adopt the values of c1=7.0 and c2=4.0. The porous flow model by Liu et al. (1999a) considered linear friction and nonlinear friction only, and their model
can be converted to the equivalent drag force coefficient in (6.76) as:

(6.95)
For the inertial force coefficient, both of the two models employed CM= 0.34. Because the flow in the experiment is neither steady nor oscillatory, the KC number
cannot be precisely defined. By analyzing the time history of the water surface profile in the recorded images, the characteristic time scales T, which are the times
for water flowing through the porous dam, are estimated to be 1.0 s and 3.0 s for the rocks and the beads, respectively.
Figure 6.26 shows the comparisons of the flow past the porous block of crushed rocks between the numerical results and the experimental data. It is seen that both
the numerical modeling results are in reasonably good agreement with the experimental data. The numerical results from NEWTANK give slightly better results
than the earlier porous flow model in the later stage of flow passage (e.g., t=2.0 s). Figure 6.27 gives the comparisons for the case of beads. Again, two numerical
results are close to each other, and they provide reasonable comparisons to the measured data, although the comparisons are not as good as in the case of rocks.
This example shows that it is possible to use the same set of empirical coefficients to simulate flows in different porous media, although further fine tuning of the
model coefficients, especially the proper definition of KC for transient flows and the value of c2, may still be needed in the future based on larger amount of
laboratory data. The influence of medium shape and packing pattern also needs to be investigated further.
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Figure 6.26 Comparison of free surface displacement during flow passage through the porous block of crushed rocks between numerical results (solid: NEWTANK;
dashed: Liu et al., 1999a); and experimental data (circle).
6.5.2.6 Three-dimensional liquid sloshing under external excitation
In this benchmark test, NEWTANK will be used to simulate 3D water sloshing in a tank with still water depth h, tank length 2a, and width 2w. In the laboratory, the
tank is set on a shaking table at an angle φ from the axis of oscillation. The shaking table moves periodically as ue=−A cos ωt, where ue is the excitation velocity,
A=bω is the velocity amplitude with b being the displacement amplitude, and ω=2πf is the angular frequency of the excitation (Figure 6.28).
By splitting the velocity of the shaker ue into x and y components, i.e., ux=−A cos φ cos ωt and uy=−A sin φ cos ωt, and treating the problem to have linearly
coupled surge and sway motions, we are able to combine the 2D linear analytical solution of Faltinsen (1978) under 1D excitation (surge or sway; see Section
3.14.6.4) to generate the 3D linear analytical solution for liquid sloshing under the combined surge and sway excitations:
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Figure 6.27 Comparison of free surface displacement during flow passage through the porous block of beads between numerical results (solid: NEWTANK; dashed:
Liu et al., 1999a); and experimental data (circle).



Figure 6.28 Top view of the experimental setup of the tank on the shaking table. (Experimental data provided by Prof. Koh C.G. at the National University of
Singapore)
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(6.96)
where:

 

(6.97)
and:

 

(6.98)
Note that the origin is still set at the center of the tank and on the still water level.
In this study, we will use the parameters h=0.5 m, a=0.285 m, and w=0.155 m. The tank is set on the shaking table at an angle φ=30°. The natural frequencies for
different modes are:

(6.99)
The lowest natural frequencies are ω10=6.0578 s−1 and ω01=9.5048 s−1, respectively. In the numerical test, we will choose ω=0.985ω10 so that the near
resonance phenomenon will occur. In this first simulation, the small amplitude of excitation b=0.0005 m is used, so that the problem
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remains linear in the entire simulation. In the second simulation, the larger amplitude of excitation b=0.005 m is used, which is also the value used in the laboratory
experiment. In this case, strong nonlinearity will be present in the sloshing. Two wave probes are used to measure the free surface displacement and they are located
at (−0.265m, 0.0m) for Probe 1 and at (0.0m, 0.135 m) for Probe 2 (see Figure 6.28).
The numerical simulation is performed in a fixed computational domain with the virtual force being introduced in the noninertial reference frame (Section 6.5.1.4).
The mesh system has a uniform horizontal mesh size ∆x=∆y=0.005 m and a nonuniform vertical mesh size ∆z with the minimum ∆z=0.001 m being arranged near
the free surface. The time step is automatically adjusted to ensure numerical stability. Figure 6.29 shows the comparisons of the normalized (by displacement
amplitude) free surface displacement at two probe locations and one more corner location (−0.285m, −0.155m). When the excitation amplitude is small, the
numerical results agree very well with the linear analytical solution



Figure 6.29 Comparisons of the time series of normalized surface elevation at (a) Probe 1(0.02, 0.155), (b) Probe 2(0.285, 0.29), and (c) corner of the tank among
the linear analytical solution (cross), experimental data (circle), and the numerical results (b=0.0005 m: dashed line; b=0.005 m: solid line).
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at all positions. However, as the excitation amplitude increases, the free surface displacement deviates significantly from the linear solution; instead it matches well
with the experimental data. This demonstrates the good characteristics of NEWTANK in simulating strongly nonlinear liquid sloshing.
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7
Summary
In this chapter, a brief summary will be provided for different wave models introduced in this book. We will also take this opportunity to briefly discuss the
branches of wave modeling not adequately covered in this book. The future direction of research in water wave modeling will be highlighted at the end.
7.1 Summaries of wave models and numerical methods
We have introduced different numerical models for water wave modeling. They can be mainly classified into seven types, namely full NSE-solver model, quasi-3D
model based on hydrostatic pressure assumption, potential flow model (mainly BEM model), SWE model, Boussinesq model, MSE model, and wave energy (action)
spectral model. While one type of wave model can simulate different physical processes, a particular physical phenomenon can also be simulated by more than one
type of wave model. Therefore, it is worth summarizing the advantages and limitations of each wave model based on its capability and limitation. In Table 7.1, we
provide a summary based on the suitability of various wave models for different physical processes.
7.2 Subjects not covered in this book
It must be pointed out that there have been quite a number of subjects that are relevant to numerical modeling of water waves but not covered, at least adequately,
in this book. These subjects often involve multiple physical processes and thus are more challenging in terms of theoretical formulation and numerical computation
due to their multidisciplinary nature.
7.2.1 High-speed flows and cavitation
So far all our discussions have been confined to incompressible fluids. Fluid compressibility may become important when the fluid velocity
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Table 7.1 Suitability of wave models for simulation of different physical processes
Wave
models

Formulation
or
numerical
methods

Wave
diffraction

Wave
refraction

Wave
dispersion

Wave
non-linearity

Wave
breaking

Wave
run-up

Wave
over-topping

structure

Flow
turbulence

Wave-structure
interaction

Wave-current
interaction

Numerical
efficiency

Comments
marked by

(*)

NSE FVM or
FEM

 

 FDM *Cut-cell,
VBF, or their
kinds used

 SPH  
Quasi-3D FDM or

FVM
    *Mainly for

current
simulation
only and
solved in the
σ-coordinate

Potential
flow

BEM   * For
initiation of
wave
breaking only

 FEM (***)    For large
structures
only

Adaptive
mesh or

 FDM (****)   σ-coordinate

σ-coordinate
SWE FDM or

FEM
*Current
module only
in a coupled
model

BoussinesqStandard  
 High-order *For coupled

wave-current
simulation

MSE Elliptic (*)   *For steady
wave field
only

 Hyperbolic
(**)

  *For
transient
wave field



 Parabolic
(***)

  ***Waves
with primary
propagation
direction
Notes:

Spectral Wave
Energy

     

 Wave
Action

    

1 The number of stars represents the level of suitability of a particular model for the corresponding wave phenomenon;  represents half star.
2 The “numerical efficiency” in this table has two implications: (a) the size of the computational domain the simulation can possibly cover (e.g., global, regional, or
local); (b) for the same computational domain discretisation the CPU time required.
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is high. This can be the case when there is an underwater explosion, an underwater volcano eruption, fluid near a high-speed underwater vehicle or object, fluid near
a propeller, etc. In such a case, fluid compressibility can become important. Besides the surface waves, the underwater acoustic (pressure) wave is also important to
study. In connection with high-speed fluid flows, the cavitation near the surface of the solid body is another concern. This is one of the major considerations in
designing a high-speed underwater device or a ship propeller.
7.2.2 Stratified flows and internal waves
Most of the numerical simulations of water waves are for surface waves, assuming constant fluid density. When the density variation becomes considerable, it
increases the complex level of the problem. In oceans or large lakes, the internal wave can take place on the interface of two fluid layers and it is an important
physical process for vertical mixing. The studies of internal waves have applications to physical oceanography, coastal and offshore engineering, and submarine
design. In principle, all the NSE models have the potential capability of simulating internal waves, provided the interface between two fluid layers can be tracked
accurately. The numerical model that tracks both the free surface and internal interface can be used to simulate ocean surface-wave interaction with internal waves.
7.2.3 Sediment transport and bed morphology
Although extensive discussions have been made in this book for wave-structure interaction, few have addressed wave-bottom interaction. On the seafloor, there are
various types of bed materials, such as coral reef, mud, fine sediment, and sand. Different bed materials will react differently under wave action. The study of
wave-bed interaction involves the study of sediment transport, bed morphology, elastic soil skeleton response to wave action, soil liquefaction under cyclic wave
loads, foundation stability, etc. This is an important area of research but requires knowledge from both fluid dynamics and soil mechanics.
7.2.4 Ocean environmental modeling and green energy in oceans
There are many environmental issues related to ocean waves and currents. Water quality modeling in coastal zones and deep oceans requires the hydrodynamic
information that can be obtained by the modeling of ocean waves and currents. Examples of environmental modeling in oceans include the oil spill simulation, the
modeling of pollutant transport, and fate, the prediction of coastal eutrophication (e.g., “red tides” caused by algal bloom).
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On the contrary, green energy can be obtained from the ocean by making use of the wave, current, and tidal power that is clean, sustainable, and renewable.
Besides, wind energy and solar energy in oceans are vast and the future exploitation of them requires the deployment of devices in oceans, where the knowledge of
waves and currents is needed.
7.3 Future work
The numerical modeling of water waves is still a very active research area. There are many efforts being made for the improvement of wave theory, better
numerical technique, and an integrated modeling systems.
7.3.1 Improvement of wave theory
7.3.1.1 NSE-solver models
Turbulence modeling: A water wave is a complex natural phenomenon, yet it can be described by the very general NSEs. There is an increasing trend to use NSE
models to simulate water wave problems. Compared with other models, this type of numerical model has the fewest assumptions and can accurately represent the
viscous effect on fluid motion. The major challenge ahead is the better modeling of turbulence for high Re flows, which is the common challenge for most of the
fluid flow problems. Besides the Reynolds stress approach, the LES is another promising alternative that is becoming popular in modeling water waves. Air
entrainment: The modeling of flow turbulence near the free surface is closely related to the modeling of air entrainment. Although the MAC, VOF, and level set
methods have been developed to track the free surface, the detailed mixing process near the free surface caused by flow turbulence has not been adequately
modeled. The aeration process in wave breaking brings air into the water, and the physical property of the mixed two-phase fluid deviates significantly from that of
the single-phase fluid. More thorough study is needed in the future to understand the relationship between the free surface mixing mechanism and the flow
turbulence.
7.3.1.2 Unification of depth-averaged wave models
The depth-averaged models are important for coastal engineers and scientists of physical oceanography because they can cover a much larger simulation area than
that by the NSE models. Although efforts have been made in the past two decades to develop a unified depth-averaged wave model, the results are not very
encouraging. We basically end up with the Boussinesq-type models that are suitable for highly nonlinear waves in relatively shallow waters or the MSE models that
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are valid for all water depths but for weak wave nonlinearity only. It can be foreseen that efforts will be continued to extend the Boussinesq models to deeper water
and to improve the MSE model for stronger nonlinearity. A really unified depth-averaged model that is applicable from very deep water to very shallow water,
however, is still a challenging task.
7.3.1.3 Wave spectral models
The wave spectral models have been very successful in modeling large-scale wave motions. All physical phenomena can be reasonably modeled by the wave
spectral models except for wave diffraction. Although efforts have been made to develop the wave spectral model that can partially treat wave diffraction, so far
there is no model that is well accepted by the community. In the future, there is the need to further the research in this area, from both the theoretical and practical
modeling points of view.
7.3.2 Innovative numerical methods
Most of the wave models have been constructed with conventional numerical methods, e.g., FDM, FEM, or BEM. Recently, there has been an increasing trend to
use the meshless particle method to solve water wave problems. Besides, there exist other types of unconventional methods that may possibly be used for wave
modeling and wave data analysis, which are briefly introduced below.
7.3.2.1 Semianalytical method
With the advance of computational mathematics, some new methods for solving PDEs semianalytically have been proposed. For example, with the use of homotopy
analysis, an explicit series solution to some PDEs, Liao and Cheung (2003) solved nonlinear progressive waves in deep water. Starting from the initial trial solution,
the method employed a Maclaurin series expansion that provides successive approximation of the solution by repeated application of a differential operator.
Recently, there is the proposal of the so-called finite analytical method. In this method, the discrete algebraic equation is obtained from the analytical solution for
each local element. The method was applied to solve some diffusion problems (e.g., Jin et al., 1996). However, the application of the method is limited to certain
types of PDEs only, and the method is not as general as FDM or FEM.
Wavelet method has been primarily used in data analysis. However, recently this method has also been used to solve PDEs. Hong and Kennett (2002) employed the
wavelet-based method to solve wave equations for wave propagation.
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7.3.2.2 Numerical methods based on direct problem formulation
Many of the conventional numerical methods are simply the numerical tools for the PDE, which must be derived a priori to describe a particular physical process
mathematically. These numerical methods are therefore equation-based rather than problem-based. The PDE is the bridge to link the numerical method to the
physical problem. Alternatively, one can propose a numerical method that solves the problem directly, provided the numerical method faithfully represents the
fundamental physics of the problem. By doing so, the PDE is bypassed. The typical example of this approach is the LBM. Although the LBM has not been widely
used to model water wave problems, it has good potential, especially for the complex physical processes where the existing governing PDE is not adequate (e.g., air
entrainment, sediment transport).
7.3.3 System integration
7.3.3.1 Multidisciplinary problems
The simulation of water waves is often linked to other physical processes that need to be simulated by different numerical models.
Coupled to a meteorology model: Large-scale wave and current modeling requires knowledge of the instantaneous wind speed and direction as well as the changing



atmospheric pressure. Such information can be obtained only from a meteorology simulation model. On the contrary, ocean temperature and evaporation rate
information that is obtained from an ocean hydrodynamic model will be fed back to the meteorology model.
Coupled fluid-soil-structure interaction: We have discussed the simulation of coupled wave-structure interaction. However, in both coastal and offshore
engineering, the problem often involves soil reaction as well. A complete simulation of this problem must include hydrodynamics, structure dynamics, and soil
mechanics. It is an important subject in future research.
7.3.3.2 Development of a software package
We have already discussed the merits and limitations of each wave model. Apparently, there is no model that possesses the advantage of both numerical efficiency
and complete physical representation. In certain cases, a few models must be employed simultaneously to provide the reliable prediction within the feasible time
frame and computational resource. For this reason, the integration of different wave models into one package with the proper linkage among these models for
information exchange becomes very important. One of the major efforts in future research is to
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extend the modeling technique to large-scale engineering computation and management.
7.3.3.3 Data analysis
All the numerical models we discussed in this book are deterministic models. This means that a unique result will be generated with a particular set of initial and
boundary conditions. Therefore, one simulation will produce only one result for a particular set of variable combinations. In reality, there are many possible
combinations of wave, current, and structure conditions. When the variable number becomes large, simulating all possible cases becomes a mission impossible due
to the excessive number of possible variable combinations. In this case, some modern computational techniques have become good tools for reducing the efforts of
simulation and providing better interpretation of the generated data. These computational tools for data analysis include the artificial neural network (ANN), genetic
algorithm (GA), and fuzzy logic.
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Appendices
Appendix I Definition of gradient, divergence, curl, and the Laplacian operator in Cartesian, cylindrical, and spherical polar coordinates
Cartesian coordinates

(I.1)

(I.2)

(I.3)
where:

(I.4)

 are the normalized U, V, W base vectors:

(I.5)
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Combining (I.1) and (1.2), we have the Laplacian operator:

(I.6)
Cylindrical coordinates

With u=r, υ=θ, and w=z, we have  and:

(I.7)
It follows that:

(I.8)

(I.9)

(I.10)

(I.11)

where 
Spherical polar coordinates

With ρ, θ, and  we have:

(I.12)

(I.13)



(I.14)
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and:

(I.15)

where 
Appendix II Tensor and vector manipulation
Single operators
This section explicitly lists what some symbols mean for clarity.
Divergence:
For a vector field V, divergence is generally written as:

(II.1)
and is a scalar field.
Curl:
For a vector field V, curl is generally written as:

(II.2)
and is a vector field.
Gradient:
For a vector field V, gradient is generally written as:

(II.3)
and is a tensor.
Combinations of multiple operators
Curl of the gradient:
The curl of the gradient of any scalar field ψ is always zero, i.e.:

(II.4)
Divergence of the curl:
The divergence of the curl of any vector field A is always zero, i.e.:

(II.5)
Divergence of the gradient:
The Laplacian of a scalar field is defined as the divergence of the gradient, i.e.:

(II.6)
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Note that the result is a scalar quantity.
Curl of the curl:

(II.7)
Properties
Distributive property:

(II.8)

(II.9)
Vector dot product:

(11.10)
Vector cross product:

(11.11)
(II.12)

Product of a scalar and a vector
(II.13)

(11.14)
More identities

(II.15)
Appendix III Mathematical derivations in hydrodynamics and wave theory
Derivation of Bernoulli equation for a potential flow (Section 2.2.2.2)
Starting from the momentum equation of the NSE (2.10):

(III.1)
For a potential flow of an ideal fluid, the above equation can be rewritten as:

(III.2)
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The above equation can be rearranged to be:

(III.3)
In a Cartesian coordinate whose vertical axis z is aligned with gravity, we have gjxj=−gz. Integrating the above equation in space xi, we have:

(III.4)
Apparently, C is a constant in a 3D space but varies in time. Based on this equation, the pressure and the velocity for any two points in a 3D space are related. For a
steady flow, the above equation can be reduced to an even more familiar form of Bernoulli equation:

(III.5)
Proof of the small-amplitude wave requirement (e.g., ka<<1 and a/h<<1) in linear wave theory (Section 3.1.1)
The kinematic free surface boundary condition (3.4) is:

(III.6)



Applying the Taylor series expansion for the kinematic free surface boundary condition at z=0, we have:

(III.7)
To retain only the linear terms, we all the nonlinear product terms must be negligible. For example, we would have to require:

(III.8)
From linear wave theory, we have the expression of u, w, and ∂η/∂x at z=0 as:

(III.9)
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(III.10)

(III.11)
Substituting (III.9)–(III.11) into III.8, we have:

(III.12)
Rearranging the above equation, we have:

(III.13)
Obviously, we have:

(III.14)
If we divide (III. 13) by kh on both sides of the equation, we have:

(III.15)
This leads to the proof of another small-amplitude wave constraint:

(III.16)
Appendix IV Fortran source code for the fifth-order Stokes wave
c
c    Program to calculate fifth-order Stokes waves
c
    PROGRAM MAIN
   implicit real*8 (a-h,o-z)
    common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,c,s,
  & all,a13,a15,a22,a24,a33,a35,a44,a55,b22,b24,b33,b35,b44,b55
   read(*,*)aa,h0,xxt
   gz=-9.8
   pi=acos(-1.0d0)
   call Stokes5
C.......Calculate free surface displacement within one wave period;
C.......u(z,t) and w(z,t) can be similarly calculated using equations
     do j=1,101
     t=(j-1)/100*xxt
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     eta=amp1*cos(pi/2.0-cnf-sigma*t)+
    & amp2*cos(2.0*(pi/2.0-cnf-sigma*t))
    & +amp3*cos(3.0*(pi/2.0-cnf-sigma*t))
    & +amp4*cos(4.0*(pi/2.0-cnf-sigma*t))
    & +amp5*cos(5.0*(pi/2.0-cnf-sigma*t))
       end do
       end
C------------------------------------------------------------------------------
       SUBROUTINE Stokes5
    implicit real*8 (a-h,o-z)
      common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,c,s,
    & all,a13,a15,a22,a24,a33,a35,a44,a55,b22,b24,b33,b35,b44,b55
     dimension bb(2,2)
C.......this program calculates wave steepness (amp) and wave number (xxk) using
C.......given wave height (aa), water depth (h0), and wave period (xxt), based
C.......on fifth-order Stokes wave theory as proposed by Skjelbreia and
C.......Hendrickson (1967) (5-th conf. coastal engng.)
C.......The wave steepness (amp) and wave number (xxk) are obtained by
C.......solving two nonlinear algebraic equations (nonlinear wave
C.......amplitude equation (f 1) and nonlinear dispersion equation (f 2)).
C.......The Newton’s method is used to solve the nonlinear equation system.
C.......f1=pi*aa/h0–2*pi/(xxk*h0)*(amp+amp**3*b33+amp**5*(b35+b55))
C.......f2=(2*pi*h0)/(-gz*xxt**2)
C    &  -xxk*h0/(2*pi)*tanh(xxk*h0)*(1+amp**2*c1+amp**4*c2)
C.......first step of Newton’s method: guess the value of amp and xxk.
      xxk=2*pi/(xxt*sqrt(-gz*h0))
      amp=aa/2.0*xxk
      n=0
C.......second step: form matrix B=partial (f 1, f 2) /partial (xxk, amp)
C.......(Jacobian matrix)
C.......prepare the most frequently used coefficients
800 continue
     c=cosh(xxk*h0)
     s=sinh(xxk*h0)
C.......dc/dk and ds/dk
      ckk=hO*s
      sk=h0*c
      b33=(3.0*(8.0*c**6+1.0))/(64.0*s**6)



      b35=(88128.0*c**14–208224.0*c**12+70848.0*c**10+54000.0*c**8
    &        -21816.0*c**6+6264.0*c**4–54.0*c**2–81.0)
    &        /(12288.0*s**12*(6.0*c**2–1.0))
      b55=(192000.0*c**16–262720.0*c**14+83680.0*c**12+20160.0*c**10
    &  -7280.0*c**8+7160.0*c**6–1800.0*c**4–1050.0*c**2+225.0)
    &  /(12288.0*s**10*(6.0*c**2–1.0)*(8.0*c**4–11.0*c**2+3.0))
C.......d(b33)/dk
      b33k=9.0*c**5*ckk/(4.0*s**6)-
    &        (9.0*(8.0*c**6+1.0))/(32.0*s**7)*sk
     b35k=(14.0*88128.0*c**13*ckk-12.0*208224.0*c**11*ckk
    &      +10.0*70848.0*c**9*ckk+8.0*54000.0*c**7*ckk
    &        -6.0*21816.0*c**5*ckk+4.0*6264.0*c**3*ckk
    &        -2.0*54.0*c**1*ckk)
    &        /(12288.0*s**12*(6.0*c**2–1.0))
    &   -(88128.0*c**14–208224.0*c**12+70848.0*c**10+54000.0*c**8
    &       -21816.0*c**6+6264.0*c**4–54.0*c**2–81.0)*12.0
    &       /(12288.0*s**13*(6.0*c**2–1.0))*sk
    &   -(88128.0*c**14–208224.0*c**12+70848.0*c**10+54000.0*c**8
    &       -21816.0*c**6+6264.0*c**4–54.0*c**2–81.0)*12.0*c*ckk
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    & /(12288.0*s**12*(6.0*c**2-1.0)**2)
     b55k=(16.0*192000.0*c**15*ckk-14.0*262720.0*c**13*ckk
    &      +12.0*83680.0*c**11*ckk+10.0*20160.0*c**9*ckk
    &  -8.0*7280.0*c**7*ckk+6.0*7160.0*c**5*ckk
    &      -4.0*1800.0*c**3*ckk-2.0*1050.0*c**1*ckk)
    &  /(12288.0*s**10*(6.0*c**2-1.0)*(8.0*c**4-11.0*c**2+3.0))
    &    -(192000.0*c**16-262720.0*c**14+83680.0*c**12+20160.0*c**10
    &    -7280.0*c**8+7160.0*c**6-1800.0*c**4-1050.0*c**2+225.0)*10.0
    &    /(12288.0*s**11*(6.0*c**2-1.0)*(8.0*c**4-11.0*c**2+3.0))*sk
    &   -(192000.0*c**16-262720.0*c**14+83680.0*c**12+20160.0*c**10
    &    -7280.0*c**8+7160.0*c**6-1800.0*c**4-1050.0*c**2+225.0)
    &    *12.0*c*ckk
    &    /(12288.0*s**10*(6.0*c**2-1.0)**2*(8.0*c**4-11.0*c**2+3.0))
    &  -(192000.0*c**16-262720.0*c**14+83680.0*c**12+20160.0*c**10
    &    -7280.0*c**8+7160.0*c**6-1800.0*c**4-1050.0*c**2+225.0)
    &    *(32.0*c**3-22.0*c)*ckk
    &    /(12288.0*s**10*(6.0*c**2-1.0)*(8.0*c**4-11.0*c**2+3.0)**2)
C.......c1 the same as the concentration
     cc1=(8.0*c**4-8.0*c**2+9.0)/(8.0*s**4)
     c2=(3840.0*c**12-4096.0*c**10+2592.0*c**8-1008.0*c**6+
    &    5944.0*c**4-1830.0*c**2+147.0)/(512.0*s**10*(6.0*c**2-1.0))
     c1k=(4.0*8.0*c**3*ckk-2.0*8.0*c**1*ckk)/(8.0*s**4)
    &    -(8.0*c**4-8.0*c**2+9.0)*4.0*sk/(8.0*s**5)
     c2k=(12.0*3840.0*c**11*ckk-10.0*4096.0*c**9*ckk
    &     +8.0*2592.0*c**7*ckk-6.0*1008.0*c**5*ckk+
    &     4.0*5944.0*c**3*ckk-2.0*1830.0*c**1*ckk)
    &     /(512.0*s**10*(6.0*c**2-1.0))
    &   -(3840.0*c**12-4096.0*c**10+2592.0*c**8-1008.0*c**6+
    &     5944.0*c**4-1830.0*c**2+147.0)*10.0*sk/
    &     (512.0*s**11*(6.0*c**2-1.0))
    &   -(3840.0*c**12-4096.0*c**10+2592.0*c**8-1008.0*c**6+
    &      5944.0*c**4-1830.0*c**2+147.0)*12.0*c*ckk
    &      /(512.0*s**10*(6.0*c**2-1.0)**2)
C.......calculate B coefficient
C.......partial f 1/partial xxk
     bb(1,1)=2.0*pi/(xxk**2*h0)*(amp+amp**3*b33+amp**5*(b35+b55))
    &       -2.0*pi/(xxk*h0)*(amp**3*b33k+amp**5*(b35k+b55k))
C.......partial f 1 /partial amp
     bb(1,2)=-2.0 *pi/(xxk*h0)*
    &      (1.0+3.0*amp**2*b33+5.0*amp**4*(b35+b55))
C.......partial f 2/partial xxk
     bb(2,1)=-h0/(2.0*pi)*tanh(xxk*h0)*(1.0+amp**2*cc1+amp**4*c2)
    &      -xxk*h0/(2.0*pi)*(1.0-(tanh(xxk*h0))**2)*h0*
    &          (1.0+amp**2*cc1+amp**4*c2)
    &      -xxk*h0/(2.0*pi)*tanh(xxk*h0)
    &          *(amp**2*c1k+amp**4*c2k)
C.......partial f 2/partial amp
     bb(2,2)=-xxk*h0/(2.0 *pi)*tanh(xxk*h0)
    &      *(2.0*amp*cc1+4.0*amp**3*c2)
C.......calculate f 1 and f2 (equation 1 and equation 2)
     f1=pi*aa/h0-2.0*pi/(xxk*h0)*(amp+amp**3*b33+amp**5*(b35+b55))
     f2=(2.0*pi*h0)/(-gz*xxt**2)-xxk*h0/(2.0*pi)*tanh(xxk*h0)
    &      *(1.0+amp**2*cc1+amp**4*c2)
C.......check if the criteria are satisfied:
     if ((abs(fl).lt.1.0e-12.and.abs(f2).lt.1.0e-12).or.n.gt.100)
    & goto 1000
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C.......solve the two-equation system Bx=-F
C.......bb(1,1)*xk + bb(1,2)*xa = -f1
C.......bb(2,1)*xk + bb(2,2)*xa = -f2
     xa=(f1*bb(2,1)-f2*bb(1,1))/(bb(1,1)*bb(2,2)-bb(2,1)*bb(1,2))
     xk=(f2*bb(1,2)-f1*bb(2,2))/(bb(1,1)*bb(2,2)-bb(2,1)*bb(1,2))
C.......update xxk and amp
     xxk=xxk+xk
     amp=amp+xa
     n=n+1
    goto 800
1000    continue
    write(*,*)'n=',n,'f1=',f1,'f2=',f2,'xxk=',xxk,'amp=', amp
C.......so far, we have obtained the wave number k and the steepness \lambda
C.......Now we calculate the coefficients needed for free surface and velocities
     b22=(2.0*c**2+1.0)*c/(4.0*s**3)



     b24=(c*(272.0*c**8-504.0*c**6-192.0*c**4+322.0*c**2+21.0))
    &      /(384.0*s**9)
     b44=(c*(768.0*c**10-448.0*c**8-48.0*c**6+48.0*c**4+106.0*c**2
    &      -21.0))/(384.0*s**9*(6.0*c**2-1.0))
     amp 1=amp/xxk
     amp2=(amp**2*b22+amp**4*b24)/xxk
     amp3=(amp**3*b33+amp**5*b35)/xxk
     amp4=amp**4*b44/xxk
     amp5=amp**5*b55/xxk
     all=1.0/s
     a13=-c**2*(5.0*c**2+1.0)/(8.0*s**5)
     a15=-(l184.0*c**10-1440.0*c**8-1992.0*c**6+2641.0*c**4-249.0*c**2
    &  +18.0)/(1536.0*s**11)
     a22=3.0/(8.0*s**4)
     a24=(192.0*c**8-424.0*c**6-312.0*c**4+480.0*c**2-17.0)/
    &    (768.0*s**10)
     a33=(13.0-4.0*c**2)/(64.0*s**7)
     a35=(512.0*c**12+4224.0*c**10-6800.0*c**8-12808.0*c**6+
    &   16704.0*c**4-3154.0*c**2+107.0)/(4096.0*s**13*(6.0*c**2-l.0))
      a44=(80.0*c**6-816.0*c**4+1338.0*c**2-197.0)
    &  /1536.0/s**10/(6.0*c**2-1.0)
     a55=-(2880.0*c**10-72480.0*c**8+324000*c**6-432000*c**4+
    & 163470.0*c**2-16245.0)/61440.0/s**11/(6.0*c**2-1.0)/
    & (8.0*c**4-11.0*c**2+3.0)
     write(*,*)'all=',all,'a13=',a13,'a15=',a15
     write(*,*)'a22=',a22,'a24=',a24,'a33=',a33
      write(*,*)'a35=',a35,'a44=',a44,'a55=',a55
     write(*,*) 'amp1=',amp1,'amp2=',amp2,'amp3=',amp3
     write(*,*) 'amp4=',amp4,'amp5=',amp5
C.......find zero crossing using Newton-Raphson' s process so that wave can
C.......start from cold (zero)
C     x(n+1)=x(n)-f(x)/f'(x)
C.......guess when the free surface displacement is zero
     cnf=pi/4.0
     m=0
4000     continue
     coef=ampl*sin(pi/2.0-cnf)+amp2*2.0*sin(2.0*(pi/2.0-cnf))
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    &  +amp3*3.0*sin(3.0*(pi/2.0-cnf))+amp4*4.0*sin(4.0*(pi/2.0-cnf))
    &   +amp5*5.0*sin(5.0*(pi/2.0-cnf))
     f=amp1*cos(pi/2.0-cnf)+amp2*cos(2.0*(pi/2.0-cnf))
    &   +amp3*cos(3.0*(pi/2.0-cnf))+amp4*cos(4.0*(pi/2.0-cnf))
    &   +amp5*cos(5.0*(pi/2.0-cnf))
     if (abs(f).lt.1.0e-12.or.m.gt.100) goto 3200
     xxx=-f/coef
     cnf=cnf+xxx
     goto 4000
C.......summarize the coefficients wavelength, angular frequency, and phase speed
3200   continue
       xx1=2.0d0*pi/xxk
       sigma=2.*pi/xxt
       c0=xxl/xxt
       write(*,*)'xx1=',xx1,'c0=',c0,'cnf=',cnf
     return
     end
Appendix V Fortran source code for a cnoidal wave
c
c      Program to calculate cnoidal waves
c
       PROGRAM MAIN
     implicit real*8 (a-h,o-z)
       common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,ytrough,xmodl
     read(*,*)aa,h0,xxt
     gz=-9.8
     pi=acos(-1.0d0)
     call cnoidal
C.......Calculate free surface displacement within one wave period;
C.......u(z,t) and w(z,t) can be similarly calculated using equations
      do j = 1,101
     t=(j-1)/100*xxt
      ccn1=cn(cnf*0.5*ck(xmod1)+2.0*ck(xmod1)*(-t/xxt),xmod1)
      csn1=sqrt(1.0-ccn1**2)
      cdn1=sqrt(1.0-xmod1*(1-ccn1**2))
      ccn2=cn(cnf*0.5*ck(xmod1)+2.0*ck(xmod1)*(-t/xxt),xmod1)
      csn2=sqrt(1.0-ccn2**2)
      cdn2=sqrt(1.0-xmod1*(1-ccn2**2))
       eta=ytrough+aa*cn(cnf* 0.5 *ck(xmod1)+2.0 *ck(xmod1)*
    &     (-t/xxt),xmod1)**2
     end do
     end
C---------------------------------------------------
     SUBROUTINE cnoidal
    implicit real*8 (a-h,o-z)
     common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,ytrough,xmodl
C.....This subroutine finds parameter y_t (ytrough) and modulus k (xmodl)
    external ck,ce,cn
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C.....Newton-Raphson iteration to determine the parameter m
    xmod=0.99999999d0
    n=0
40  n=n+1
    xa=xmod*h0+2.0d0*aa-xmod*aa-3.0d0*aa*



    &  ce(xmod)/ck(xmod)-16.0d0 *h0 * * 3 *xmod* * 2 *ck(xmod)* * 2/
    &  3.0d0/(-gz)/aa/xxt**2
    if (abs(xa).le.1.0e-8.or.n.gt.1000) goto 50
    xb=h0-aa+3.0d0*aa/2.0d0/xmod/(1.0d0-xmod)/ck(xmod)**2*
    &  ((1.0d0-xmod)*ck(xmod)**2+ce(xmod)**2-2.0d0*(1.0d0-xmod)*
    &  ck(xmod)*ce(xmod))-16.0d0*h0**3*xmod*ck(xmod)/3.0d0/(-gz)/
    &  (1.0d0-xmod)/aa/xxt**2*((1.0d0-xmod)*ck(xmod)+ce(xmod))
    xmod=xmod-xa/xb
    goto 40
50  continue
C.....after sobey el at (1987, J.Waterway)
    xx1=4.0d0*ck(xmod)*h0*sqrt(xmod*h0/aa/3.0)
C.....after Mei (1983) or simply c=L/T
    xtemp=-xmod+2.0d0-3.0d0 *ce(xmod)/ck(xmod)
     c0=sqrt(-gz*h0*(1.0d0+aa/h0/xmod*xtemp))
    ytrough=aa/xmod*(1.0d0-xmod-ce(xmod)/ck(xmod))
    write(*,*)'ytrough=',ytrough,'xmod=',xmod,'c0=',c0
    xmod1=xmod
C.....find the wave parameters and check the validity of theory
     xxk=2.*pi/xx1
     sigma=2.*pi/xxt
    if (xx1.gt-1.0e6) then
          write( *, * ) 'no cnoidal wave exists for given parameters. '
    stop
    endif
C.....iterative method to find zero-cross point of the cnoidal wave
             zup=1.0
             zlow=0.0
             zmid=(zup+zlow)/2.0d0
             nzero=0
3000          nzero=nzero+1
             zerol=ytrough+aa*cn(zmid*0.5*ck(xmod1),xmod1)**2
             if (abs(zerol).1e.1.0e-6) goto 3100
             if (nzero.gt.1000) then
                   write (*,*)' too many iterations; stop'
                   stop
             endif
             if (zerol.1t.0.0) then
                   zup=zmid
                   zmid=(zup+zlow)/2.0d0
                   goto 3000
             else
                   zlow=zmid
                   zmid=(zup+zlow)/2.0d0
                   goto 3000
             endif
3100           continue
     cnf=zmid
     write(*,*) 'xxl=',xxl,'ytrough=',ytrough,'xmodl=',xmodl
     write(*,*) 'xxk=',xxk,'c0=',c0
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     write(*,*) 'cnf=',cnf,'zerol=',zerol
     return
     end
c    ..................................................................................................
     function ck(xmod)
     implicit real*8 (a-h,o-z)
      common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,ytrough,xmodl
     xmod2=1.0d0-xmod
     ck=0.0d0
     a0=1.0d0
     b0=sqrt(xmod2)
     c00=sqrt(xmod)
     n=1
15   if (abs(c00).It.1.0e-15.or.n.gt.1000) then
         goto 20
     else
        n=n+1
        al=(a0+b0)/2.0dO
        b1=sqrt(a0*b0)
        c11=(a0-b0)/2.0d0
        a0=a1
        b0=b1
        c00=c11
        goto 15
     endif
20   ck=pi/2.0d0/a0
     return
     end
c    ..................................................................................................
     function ce(xmod)
     implicit real*8 (a-h,o-z)
      common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,ytrough,xmodl
      dimension ccc (1000 )
     ce=0.0d0
     xmod2=1.0d0-xmod
     a0=1.0d0
     b0=sqrt(xmod2)
     c00=sqrt(xmod)
     n=1
     ccc(n)=c00
15   if (abs(c00).lt.1.0e-15.or.n.gt.1000) then
      goto 20
     else



          n=n+1
          al=(a0+b0)/2.0d0
          b1=sqrt(a0*b0)
          c11=(a0-b0)/2.0d0
          a0=a1
          b0=b1
          c00=c11
          ccc(n)=c00
          goto 15
     endif
20   ck=pi/2.0d0/a0
     sum=0.0d0
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     do 30 k1=1,n
       sum=sum+2.0d0**(k1-2)*ccc(k1)**2
30   continue
     ce=ck*(1.0d0-sum)
     return
     end
c    ..................................................................................................
     function cn(u,xmod)
     implicit real*8 (a-h,o-z)
      common aa,h0,xxt,amp,xxk,xxl,sigma,c0,cnf,gz,pi,ytrough,xmodl
     dimension yy(1000),c(1000),a(1000)
     xmod2=1.0d0-xmod
     a0=1.0d0
     b0=sqrt(xmod2)
     c00=sqrt(xmod)
     n=1
     a(n)=a0
     c(n)=c00
15   if (abs(c00).lt.1.0e-15.or.n.gt.1000) then
       goto 20
     else
       n=n+1
       al=(a0+b0)/2.0
       b1=sqrt(a0*b0)
       c11=(a0-b0)/2.0
       a0=a1
       b0=b1
       c00=c11
       a(n)=a0
       c(n)=c00
       goto 15
     endif
20   yy(n)=2.0**(n-1)*a(n)*u
     do 10 i=n-1,1,-1
       yy(i)=(yy(i+1)+asin(c(i+1)/a(i+1)*sin(yy(i+1))))/2.0
10   continue
     cn=cos(yy(1))
     return
     end
Appendix VI Matlab script for wave diffraction behind a semi-infinite breakwater
clear;
[XX]=load('Yspec.dat');
N=100;
mm=N;
X=(XX(1:mm)+XX(2:mm+1))/2-1500; %change y according to equation
Y=[1.62, 6.50, 19.50]; %set the section position x/L
k=0.068059;
L=2*pi/k;
Y=Y*L;

page_427

Page 428
for ii=1:N
  for jj=1:3
      x=X(ii);      %position of x
      Y=Y(jj);
      r=sqrt(x*x+y*y);
      Beta =sqrt(4/L*(r-y));
      Beta_=sqrt(4/L*(r+y));
      i=sqrt(-1);
      if(x>=0 && y>0)
      Fxy=(1+i)/2*(exp(-i*k*y)*(0.5-0.5*i-(mfun('Fresnelc',Beta).
      -i*mfun('FresnelS',Beta)))+exp(i*k*y)*(0.5-0.5*i-...
      (mfun('Fresne1c',Beta_)-i*mfun('Fresne1S',Beta_) )));
      elseif(x<0 && y>0)
      Fxy=(1+i)/2*(exp(-i*k*y)*(0.5-0.5*i+(mfun('Fresnelc',Beta).
      -i*mfun('Fresne1S',Beta)))+exp(i*k*y)*(0.5-0.5*i-...
      (mfun('Fresne1c',Beta_)-i*mfun('Fresne1s',Beta_))));
      end
    HH(jj,ii)=abs(Fxy);
   end
end
for ii=1:N
   for jj=1:3
      H(jj,N-ii+1)=HH(jj,ii);
   end
end
plot(X/L,H)
save('ExactSolution.dat','H','-ASCII')
%===========================================================%
%The above calculation makes use of the following conversion%



 
Appendix VII Matlab script for wave diffraction around a large vertical circular cylinder
%This script calculates time history of wave profile around a large vertical
%circular cylinder, from which the diffraction coefficients are derived,
format long
%USER INPUT AREA%
   %DISC PARAMETERS IN SI UNITS%
   r0=5.0;       %Disc radius in meters%
   teta0=0.0;
   %WAVE PROPERTIES (LINEAR WAVE ONLY) %
   g=9.81;       %Gravitational acceleration%
   rho2=1000;     %Density of water%
   h=80;        %Still water depth%
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   period=2.0;     %Wave period%
   WH=0.5;       %Wave height; insignificant for diffraction coef. %
%END OF USER INPUT%
%TO DETERMINE WAVE NUMBER%
   omega=2 *pi/period;
   k=0.0;
   beta2=0.0;
   beta=omega^2/g;
   while (k<1000)
         if (beta2<beta+1E-4)&(beta2>beta-1E-4)
           break
         else
           beta2=k*tanh(k*h);
           k=k+0.00001;
         end
   end
kh=k*h;  %Check for intermediate to deep water range%
% START OF MAIN LOOP OF COMPUTATION
      num1=1;
      for teta=pi:-pi/200:0
         Fmax(num1)=0.0;
         Fmin(num1)=0.0;
         num1=num1+1;
      end
      num=1;
      for t=period/50:period/50:period
         r=r0;
         num1=1;
         for teta=pi:-pi/200:0
            bwc=0.0;
             for m=1:1:100;
               if (m==1)
                  delta=1;
               else
                  delta=2;
               end
              JP=(k/2)*(besse1j(m-2,k*r0)-besse1j(m,k*r0));
              HP=(k/2)*(besse1h(m-2,k*r0)-besse1h(m,k*r0));
              bwc=bwc+(delta*(i^(m))*(besselj(m-1,k*r)-((JP/HP)*..
                 besselh(m-1,k*r)))*cos((m-1)*(teta)));
             end
             eta=bwc;
             F(num1)=(eta)*WH/2*exp((-i)*omega*t);
        num1=num1+1;
       end
       num1=1;
       for teta=pi:-pi/200:0
         if(F(num1)>Fmax(num1))
            Fmax(num4)=F(num1);
         end
         if(F(num1)<Fmin(num1))
            Fmin(num1)=F(num1);
         end
         num1=num1+1;
        end
     progress=t/period*100
     num=num+1;
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   end
%END OF COMPUTATION LOOP%
%Determine x-axis for plotting graph%
num1=1;
for teta=pi:-pi/200:0
   xp(num1)=teta;
   num1=num1+1;
end
num1=1;
for teta=pi:-pi/200:0
   Falt(num1)=Fmax(num1)-Fmin(num1);
   num1=num1+1;
end



%PLOTTING FOR RESULTS%
F1=real(Falt);
Fplot=F1/WH;
plot(xp,Fplot')
axis( [0 pi 0 2.1] )
xlabel '\theta (rad)'
ylabel 'Diffraction coefficient H/H_0'
%END OF FILE%
Appendix VIII Matlab script for long-wave reflection and transmission through a submerged breakwater or a trench
% This Matlab script calculates reflected and transmitted wave heights over
% a submerged trapezoidal breakwater or trench (Lin and Liu, 2005)
% using long wave approximation. The input data include incident
% wave height and period, wave depths in front of, above and behind the
% crown, the length of the crown, and the frontal and back slopes.
clear ;
h0=2;         %Water depth in front of the breakwater
h1=4;          %Water depth on the crown (or h1>h0 for trench)
h2=2;        %Water depth behind the breakwater
T=50 ;        %Incident wave period
FrontSlope =.1;  %Frontal slope tan(thetal)
BackSlope =.1;  %Back slope tan (theta2 )
CrownLength=10;  %Length of the Crown
HI=1 ;        %Incident wave height.
g=9.81;        %Gravity
Lambda=T*sqrt(g*h0 ); % incident wave Length in front of the breakwater
M1=abs(h1-h0)/FrontSlope/Lambda;
M2=CrownLength/Lambda;
M3=abs(h2-h1)/BackSlope/Lambda;
s01=sqrt(h0/h1);
s21=sqrt(h2/h1);
a0=4*pi*M1*s01^2/(s01^2-1);
a1=4*pi*M1*s01/(s01^2-1);
b1=4*pi*M3*s01/(s21^2-1);
b2=4*pi*M3*s01*s21/(s21^2-1);
FI=2*pi*M2*s01;
c00a=det([besselj(0,a0),besselj(0,a1);bessely(0,a0),bessely(0,a1)]);
c01a=det([besselj(0,a0),besselj(1,a1);bessely(0,a0),bessely(1,a1)]);
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c10a=det([besselj(1,a0),besselj(0,a1);bessely(1,a0),bessely(0,a1)]);
c11a=det([besse1j(1,a0),besse1j(1,a1);bessely(1,a0),bessely(1,a1)]);
c00b=det([besselj(0,b1),besselj(0,b2);bessely(0,bl),bessely(0,b2)]);
c01b=det([besselj(0,b1),besselj(1,b2);bessely(0,b1),bessely(1,b2)]);
c10b=det([besselj(1,b1),besselj(0,b2);bessely(1,b1),bessely(0,b2)]);
c11b=det([besselj(1,b1),besselj(1,b2);bessely(1,b1),bessely(1,b2)]);
P=c01b+i*c00b;
Q=c11b+i*c10b;
z1=c11a*(P*cos(FI)+Q*sin(FI))+c10a*(Q*cos(FI)-P*sin(FI));
z2=c01a*(P*cos(FI)+Q*sin(FI))+c00a*(Q*cos(FI)-P*sin(FI));
HR_HI=-(z1-i*z2)/(z1+i*z2)*exp(-i*a0);
KR=abs(HR_HI)          %Reflection coefficient
HR=KR*HI             %Reflection wave height
Cgd=sqrt(g*h0 );         %Group veloctiy at h0
Cgs=sqrt(g*h2 );         %Group velocity at h1
HT=sqrt((Cgd*HI^2-Cgd*HR^2)/Cgs) %Transmitted wave height
HT_HI=HT/HI;           %Transmitted coefficient
Appendix IX Abbreviation list
ABS American Bureau of Shipping
ACM artificial compressibility method
ADI alternating direction implicit
ALE arbitrary Lagrangian-Eulerian
ANN artificial neural network
ASM algebraic stress model
BEM boundary element method
BGK Bhatnagar-Gross-Krook
BIEM Boundary integral equation method
BV Bureau Veritas France
CFD computational fluid dynamics
CFL Courant-Friedrichs-Lewy
CG conjugate gradient
COHERENS COupled Hydrodynamical Ecological model for REgioNal Shelf seas
COMCOT COrnell Multigrid COupled Tsunami
CSM Chebyshev spectral method
DEM discrete element method
DES detached eddy simulation
DHI Danish Hydraulic Institute
DNS direct numerical simulation
DNV Det Norske Veritas
DOF degree of freedom
DRBEM dual reciprocity boundary element method
DVM discrete vortex method
EBM energy balance model
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EFGM element-free Galerkin method
EMSE elliptic mild-slope equation
ENO essentially nonoscillatory
ED finite difference
FDM finite difference method
FEM finite element method
F–K Froude-Krylov
FPM finite point method
FPSO floating production storage and offloading
FSI fluid-structure interaction



FSM Fourier spectral method
FTCS forward-time and central-space
FVM finite volume method
GA Genetic algorithm
GFDM generalized finite difference method
GLM generalized Lagrangian mean
GRA global response analysis
IB immersed boundary
ICCG incomplete Cholesky conjugate gradient
ISSC International Ship Structures Congress
JONSWAP JOint North Sea WAve Project
KC Keulegan-Carpenter
KdV Korteweg-de Vries
KP Kadomtsev-Petviashvili
LBE Lattice Boltzmann equation
LBM Lattice Boltzmann method
LDA Laser Doppler anemometer
LES Large eddy simulation
LG lattice gas
LHS left-hand side
LRS locally relative stationary
LS least-squares
LSM Legendre spectral method
MAC marker-and-cell
ME mortar element
MLPG meshless local Petrov-Galerkin
MLS moving least-squares
MMSE modified mild-slope equation
MOSES Multioperational Structural Engineering Simulator
MOST Method Of Splitting Tsunami
MPS Moving Particle Semi-implicit
MSE mild-slope equation
NCEP National Centers for Environmental Prediction
NEM natural element method
NEWTANK NumErical Wave TANK
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NLS nonlinear Schrödinger equation
NOAA National Oceanic & Atmospheric Administration
NSE Navier-Stokes-equation
NSEs Navier-Stokes equations
ODE ordinary differential equation
PCT partial-cell treatment
PDE partial differential equation
PIC particle-in-cell
PISO pressure implicit with splitting of operators
PIV particle image velocimetry
P–M Pierson-Moskowitz
PMSE parabolic mild-slope equation
POM Princeton Ocean model
PPE Poisson pressure equation
QUICK Quadratic Upwind Interpolation for Convective Kinematics
QUICKEST Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms
RANS Reynolds-averaged Navier-Stokes
RAO response amplitude operator
RBF radial basis function
RHS right-hand side
RKPM reproducing kernel particle method
RNG or RG renormalization group
RTD reflection, transmission, and dissipation
SANS spatially-averaged Navier-Stokes
SGS subgrid scale
SHG second harmonic generation
SIMPLE Semi-Implicit Method for Pressure-linked Equations
SIMPLEC SIMPLE Consistent
SIMPLEM SIMPLE Modified
SIMPLER SIMPLE Revised
SIMPLEST SIMPLE Shortened
SM spectral method
SOLA A numerical SOLution Algorithm for transient fluid flows
SOR Successive over-relaxation
SPH smoothed particle hydrodynamics
SSH sea surface height
SUMMAC the Stanford-University-Modified-Marker-And-Cell method
SVD singular-value decomposition
SWAN Simulating WAves Nearshore
SWE shallow water equation
TDV total variation diminishing
TE truncation error
TLP tension-leg platform
TUMMAC Tokyo-University-Modified-Marker-And-Cell method
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ULTIMATE Universal Limiter for Transport Interpolation Modeling of the Advective Transport Equation
USAGE the United States Army Corps of Engineers
VBF virtual boundary force
VIV vortex-induced vibration
VLFS very large floating structure
VOF volume of fluid
WAM WAve Simulation Model
WAMIT Wave Analysis at Massachusetts Institute of Technology
WENO Weighted ENO
WKB Wentzel-Kramers-Brillouin
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