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XI 

INTRODUCTION 

Knowledge of the motion of the ocean, adjacent and marginal seas 

and of estuarial waters has always been of great importance for sea- 

going people and for coastal zone dwellers. 

Many attempts have been made to understand dynamic processes, such 

as tides, storm surges and ocean currents. Such considerations have 

to be based upon the results of observations and measurements. 

Starting from the theory of hydrodynamics, the problem is to 

develop numerical methods which can be used to reproduce the observed 

or measured data. The numerical results of such a reproduction - or 
hindcasting - have to be compared with the results of measurements. 
If a close correlation demonstrates the validity of the theory, this 

hydrodynamic-numerical method may finally be used to forecast the 

dynamic processes of the sea, thus finding its practical application. 

Frequently, the purpose of coastal engineering is to influence or 

to control the actual conditions of the motion in the sea. Here, the 

hydrodynamic theory delivers the necessary basic information for 

technical planning and helps to find the most effective solution to 

the problem. 

Investigations have been carried out in many countries in order 

to solve the problems mentioned above. The main purpose of these 

investigations has been the development of methods which make possible 

a numerical simulation or physical reproduction of measured sea-levels 

and ocean currents and other physical phenomena of oceans and seas. 

In the following chapters, the progress of these investigations 

during the past years will be described. 

Generally speaking three kinds of motion in the sea will be con- 

s idered : 

1 .  Steady motion caused by wind action or density gradients 

2 .  Unsteady motion due to wind and tide-generating forces which vary 

in time and space 

3 .  Stationary motion where the seiche-like phenomena will be described. 

In addition the transport processes are analyzed and characterized in 

one chapter, since they play an important role in sea engineering. 

All these types of motion have been treated numerically. Therefore 

the numerical methods are discussed and presented in sufficient detail 

for the aims of this book. Of course it is not the purpose of this 

book to describe all the numerical problems but rather to give prac- 



tical methods and to discuss the salient and up-to-date aspects of 

the numerical approach. 

The solved problems will start usually with the meso-scale motion 

in the adjacent sea (mainly the North Sea and the Baltic). After this 

problems of motion with smaller scales such as river inflows and 

shallow-water-phenomena will be considered. 

It should be noted that, according to recent results, especially 

in shallow water areas, there is a strong nonlinear interaction 

between different types of motion, which can have such an influence 

that a separate treatment by simple superposition is not allowed 

anymore. The accuracy of the reproduction of the motion in the sea 

by means of the hydrodynamic theories can only be tested if measured 

sea-levels and current velocities are given for a comparison. To a 

certain degree the tides comply with this requirement. The harmonic 

tidal constituents for coastal stations and measurements of tidal 

currents in some places of the open sea are available. Sea-level 

data for storm surges have been recorded in the North Sea and in the 

Baltic which are suitable for a comparison with the results of the 

hydrodynamic-numerical method. 

Measurements of currents, and especially those caused by density 

gradients, are not available in sufficient quantities to compare them 

with the results of the theory. For this type of motion only qualita- 

tive comparisons seem to be possible at present. 
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Chapter / GENERAL EQUATIONS 

The system of hydrodynamic differential equations consists of four 

equations in four unknown functions, namely the three components of 

velocity and the pressure. These are functions of the three space- 

variables and of time. In its general form the system of equations 

is nonlinear. Uniquely determined solutions of this system can only 

exist if, in addition, boundary and initial values are specified. 

Closed analytical solutions of this system of hydrodynamic 

differential equations in its general form have not yet been derived. 

Analytical solutions have only been obtained in special cases where 

extensive simplification and linearization of the equations has been 

introduced. When applying these hydrodynamic differential equations 

to problems of physical oceanography, one meets the following diffi- 

culties: 

The geometry of the depth distribution and the coastline of the 

sea under consideration are part of the system of differential 

equations. Since the topography is in general very complicated, every 

effort should be made to represent these parameters analytically. 

For this reason, rectangles or channels of constant, linear or 

similarly simple depth distribution have always been used for the 

mathematical treatment of the problem. 

Beside these simplifications of the geometry, the following 

assumptions have been made to bring the general system of hydrodynamic 

equations into a more manageable form: 

a) By vertical integration of the equations from the bottom to the 

surface of the sea, the number of independent variables and unknown 

functions can both be reduced by one. Consequently there remain 

the two horizontal components of mass transport or average velocity 

and the sea-level. The knowledge of these functions is sufficient 

to answer many practical questions. 

b) It is supposed that the velocity and the sea-level do not depend 

on time, i.e. the motion is steady. This supposition, of course, 

means a very strong restriction, but it will help us to investigate 

the three-dimensional distribution of current in the sea. 

c) When investigating oscillating processes, time can be eliminated 

from the equations by introducing an imaginary time factor. So 

the number of independent variables is reduced by one. This proce- 

dure is often applied in investigations of tides and other waves. 
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d) One-dimensional channels are investigated instead of two-dimen- 

sional areas. 

All these simplifications restrict, of course, the generality of 

the solutions obtained. As is known today, the depth distribution 

and the coastline essentially influence the motion in the sea. 

The results of geometrically simple models obviously do not present 

a satisfactory approximation of current velocities and sea-levels 

measured in natural areas. On the other hand the advantage of these 

simple models is evident for investigations of general principles 

and of the influence of single parameters on the motion in the sea. 

The solutions can be used to determine the accuracy of the numerical 

methods. For the representation of currents and sea-levels in nature 

they are of no use. 

5 1 .  The hydrodynamic differential equations of motion and continuity 

Consider the space-time motion of the sea. We shall proceed with 

the help of the equations of the averaged turbulent motion on the 

rotating Earth (Proudman 1 9 5 3 ;  Defant 1 9 6 1 ) :  

The equations are derived in a Cartesian coordinate system which is 

taken in such a way that the origin and the (x,y)-plane lie on the 

undisturbed water surface. (Fig. 1 . )  The x and the y-axes are directed 

to east and north respectively; the z-axis is vertically upwards. 

The velocity components in the direction of x, y and z are denoted 

by u, v and w respectively. Besides, in the equations of motion the 
following quantities appear: 

t - time f - Coriolis parameter ( 2  usin$) 

w - Earth's angular velocity (equal to 7 . 2 9  x 

$ - latitude p - sea water density 
p - pressure g - gravity acceleration 
k - vertical eddy viscosity coefficient or coefficient of exchange of 

momentum in the vertical direction 
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A - lateral eddy viscosity coefficient or coefficient of exchange of 
momentum in horizontal direction 

a 2  a 2  
ax2 ay2 

A = - + - - two-dimensional Laplace-operator. 

Ll 

Fig. 1. CO-ORDINATE SYSTEM 

The rectangular system of co-ordinates is appropriate for describ- 

ing the motion in small basins where the curvature of Earth is very 

small. In other cases the spherical system of co-ordinates will be 

introduced. 

Since sea water may be considered as an incompressible fluid we 

now add the continuity equation to the above system of equations in 
the form 

The unknown quantities in equations (1.1) - ( 

ponents of velocity and pressure. Density of the 

. 4 )  are three 

sea water ( 0 )  

com- 

is 
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assumed to be known, for example, from the measurement of temperature 

and salinity. In case the thermohaline processes play an important 

role, an additional equation for density determination must be added. 

In what will follow we shall use a compact form of the equations 

of motion by changing the variables to the column vectors 

and the matrix 

B =  

a a a u z  + v-+ w-- k a L  - A,  - f, 0 a~ az az2 

a - A ,  0 f, U- + V- + W-- k- a a 
ax ay az az2 

( 1 . 5 )  

In this notation the system (1.1) - ( 1 . 3 )  is rewritten as one 

vector equation: 

We shall now discuss thoroughly the dynamical phenomena which will 

be of interest to us. In this way we shall derive from the general 

system of equations a simplified system in order to describe the 

currents and sea-level as functions of independent variables x, y, 

z ,  t. To calculate a current in any point of the sea, we first of all 

have to understand the phenomenon of momentum exchange in the vertical 

direction, which is usually characterized by the eddy viscosity 

coefficient k. On the other hand this knowledge is unnecessary in 

setting up the equation for the free surface. It is sufficient to 

have information on the values and directions of frictional stresses 

at the bottom and at the surface of the sea. This knowledge conside- 

rably simplifies the calculation of the free surface shape. 



5 

Bearing in mind these general remarks let us approach the detailed 

analysis of the equation of motion and continuity. As is usual in 

hydrodynamics we shall use dimensional analysis (Birkhoff, 1950) in 

order to obtain particular equations from the general equations. 

To begin with, the characteristic values which describe the variab- 

les of the considered problem must be introduced. In the case of the 

Baltic or the North Sea the characteristic depth is H = 100 m = 10 cm 

and the characteristic length L = lo3 km = 10 

the equation of motion one can derive certain information from the 

equation of continuity (1.4). Rewriting (1.4) in a dimensional form 

4 

cm. Before examining 8 

and-taking u = v = P, we obtain 

Hence in the seas being considered the vertical velocity (w) is 

small compared to the horizontal one, and we may conclude that in 

the equations the expressions with vertical velocity may be ignored. 

The conclusion, of course, is wrong in the case when dimensions of 

horizontal and vertical motion are of the same order. 

With the above simplifications the equations (1.1) - (1.3) are 

(1.10) 

(1.11) 

(1.12) 

To proceed with the dimensional analysis, let us introduce the 

characteristic horizontal velocity u = v = P = 100 cm/sec, vertical 

and horizontal eddy viscosity of k = lo3 cm /sec and A = lo7 cm /sec 
respectively. With these values we can evaluate the individual terms 

2 2 

in 

1. 

the above equations as follows: 

Nonlinear terms. Since the velocity and the horizontal dimensions 

are equal along the x and y directions, it is sufficient to ana- 

lyse one of the nonlinear expressions only. Considering uax, then 

uau = E = 10-4 (1.13) 

ba 

2 

ax L 
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We can see that nonlinear terms are important when the velocity 

is changing within a very short horizontal distance (L). 

2. Coriolis term 

P = lo2 = 

3. Vertical friction term 

(1.14) 

(1.15) 

Again this term may be very big in very thin vertical layers, so- 

called friction layers. 

4. Horizontal friction term 

A P = 107 x lo3 x 1 0 - l ~  = (1.16) 
L 

aw 
at 5. Vertical acceleration term -. 

To estimate its value we should know the characteristic time of the 

considered phenomenon. This time may be found by comparing the 

horizontal acceleration 7 with any term in the equation of hori- 
zontal motion. If it is compared with the Coriolis term (1.141, 

then T = 10 

vertical acceleration may be ignored in (1.12). 

Finally it is of definite interest to determine the horizontal 

P 

4 aw 
sec. From this we may conclude that at << g, and the 

dimensions of flow when the horizontal friction term is of the same 

order as the Coriolis term: 

A 2  P = Pf; and L 3.2 km (1.17) 

Therefore the horizontal friction forces are important only in the 

narrow near-shore zone. 

Dimensional analysis reveals that in the equations of motion the 

pressure gradient is balanced by the Coriolis force and the exchange 

of momentum in the vertical direction. Hence, the equations of motion 

are transformed to: 

(1.18) 

(1.19) 

(1.20) 
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These equations describe motion in the horizontal plane only, since 

the equation for the vertical component of velocity is simplified to 

the hydrostatic state. It is important to underline that the frictio- 

nal terms in the above equations are important only in the surface 

layer of the sea, down to a depth of approximately 1 0 0  m. Below this 

depth the currents may be described with the help of the geostrophic 

equation (Defant, 1 9 6 1 )  , 

(1 .21 )  

( 1 . 2 2 )  

when the Coriolis force is in a dynamic balance with the pressure 

gradient. 

In the study which follows we shall mainly consider the steady 

current. This is due to certain difficulties, since firstly the compu- 

tation of current in three dimensional space occupies a big part of 

operational computer memory and one additional variable (time) makes 

the computation very much more time consuming. Secondly, our knowledge 

on time variation of vertical momentum exchange is far from satisfac- 

tory. 

of motion. With this aim (1 .20 )  is integrated from the arbitrary depth 

(z) up to the free surface (z = 5 1 ,  assuming also that the free sur- 

face pressure is equal to the atmospheric pressure pa (x, y,t), 

P = Pa + P g ( 5  - 2)  

Using (1 .20 )  let us make a further transformation of the equations 

(1 .23 )  

Substituting (1 .23 )  into (1 .18 )  and (1 .19 )  the new form of the 

equations for the horizontal components of current in an unstratified 

sea is obtained 

(1 .24 )  

(1 .25 )  

These equations cannot be solved without suitable boundary and 

initial conditions. When studying the special problems we shall charac- 

terise the conditions in a more detailed way. 
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In the Baltic and North Sea two kinds of currents are observed - 
the current due to the wind stress and the density current caused by 

water exchange, mainly due to the horizontal salinity differences. 

Generation of the wind-driven currents takes place at the free sur- 

face of the sea. Here the strongest currents of an order of 10 cm/sec 

to 100 cm/sec are observed. 

Density-driven currents may appear in any layer of the sea. Their 

values are one or  two orders of magnitude smaller than that of the 

wind-driven current. Assuming that the density p is an unknown variable 

we rearrange the equations of motion in such a way that the current 

due to the horizontal density stratification will appear. To obtain 

the new equations of motion we expand all dependent variables into 

series of the following form 

P = Po + P1 + P2 + .-. 
P = Po + P1 + P2 + -.- 
u = u1 + u2 + u3 + 

v = v1 + v2 + v3 + ... 
... (1.26) 

Here the basic state of the liquid is the hydrostatic one, described 

by PO' Po. 

Substituting (1.26) into (1.201, we have 

(1.27) 

Assuming that the current due to density may be described by a term 

proportional to 

we integrate equation (1.27) in the vertical direction from the arbi- 

trary depth ( z )  to the sea surface (z = 5 ) .  

p,  and rejecting all remaining terms as very small, 

0 
P = Pa + Po9 ( 5  - z) + g Spl dz 

Z 
(1.28) 

Substituting (1.28) into the equations of motion (1.18) and (1.19) 

provides the equations, which describe the currents, in a density 

stratified sea. 
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(1.29) a2u 

P ax az2 

0 

& - f v = - l &  axa - 9. ga% - 9 .fpl dz + k- at 

In this system of equations four unknowns are present. Even when 

we add the continuity equation we still have only three equations. 

This is the consequence of our assumption that density is a variable 

and is unknown. There are two possible ways of solving this problem. 

In the first case the density is taken to be known from the field 

measurements of salinity and temperature. Such a solution is admissible 

for the steady state problem or for very slow changes in time. Since 

measurements of density in time and space, with the speed and accuracy 

required for our problem, are practically impossible, this approach 

may not be used for dynamic problems. 

In the second case the above system of equations is extended by 

adding the equation of density diffusion. This procedure introduces 

a great many mathematical obstacles (Sarkisyan, 1977). 

52. The mass transport and free surface equations 

We shall now seek to develop the equations describing the geometri- 

cal shape of the free surface. The construction of these equations 

will be performed so that the process of momentum exchange will not 

affect the final result. To achieve this aim let us introduce instead 

of u and v the components of mass transport 

5 5 

-H 
M = S p v d z  Mx = pu dz; 

-H 
(1.31) 

Substituting expression (1.23) for pressure in equations (1.10) and 

(1.11) and integrating them in the vertical direction from the bottom 

at z = -H to the surface at z = 5 we find 

(1.32) 
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( 1 . 3 3 )  

Since the components of stress at the lateral surface are expressed 

in the form 

( 1 . 3 4 )  

. The the term k z  (and k z )  may be written as T 

values of the stresses are known from experiments but this problem will 

be discussed more closely, later on. The nonlinear (convective) terms 

in (1 .32)  and (1 .33)  are usually small if compared with other terms. 

Considering a flow in the sea basin we can disregard them except when 

shallow water regions are considered and where S'H. 

(XI - T  au av (XI 

s (urface) b (ottom) 

Since the equations of mass transport contain three dependent variab- 

les Mx, M 

gration, in the vertical direction, of the continuity equation ( 1 . 4 ) :  

S ,  the additional equation is introduced through an inte- 
Y' 

( 1 . 3 5 )  

The first term on the left side is the difference of vertical veloci- 

ties at the surface and at the bottom 

Taking, as before, the equation of the free surface in the form 

z = <(x,y,t) and differentiating it with respect to time, the value 

of the vertical velocity at the surface is defined as 

(1 .37)  

The vertical velocity at the bottom is found in the same way by 

considering the equation of the bottom shape, 

aH aH 
dt aY 

w(z=-H) = - - dH - - - z u  + -v ( 1 . 3 8 )  
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The second and third expressions on the left side of (1.35) are 

analogous and may be written as, 

(1.39) 

(1.40) 

The final equation of continuity for the mass transport is obtained 

through the introduction of (1.36) - (1.40) into (1.35). 

(1.41) 

Further computations of free surface and mass transport variations 

in time and space will be performed with the help of (1.321, (1.33) 

and (1.41). It is possible, of course, on the basis of these equations, 

to build up one equation of higher order for 5 ,  but this way is rather 

difficult since the boundary conditions for the sea level are usually 

unknown. The above system of equations, on the other hand, has a very 

simple boundary condition, which in this case is that the component 

of mass transport normal to the coast equals zero. 

Quite often in the oceanographic literature the equations presented 

above are formulated through another set of variables. One of them is 

the volume transport Q, whose components 

5 5 

-H -H 

Q, = J u dz; Qy = .f v dz (1.42) 

do not differ from the components of mass transport, since the density 

of the sea water p = I  g/cm . 3 

More often the notion of mean velocity is used 

(1.43) 

Let u s  arrange the equations of mass transport and continuity 
through the average velocity notion. Because 

5 5 
Mx = J pu dz = .f u dz 

-H -H 
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therefore 

U(H + r ; )  = M and V(H + 5) = 
X 

Introducing these quantities into ( 

M .  
Y 

.32), (1.33) and (1.4 

,(Y) (Y) 
- -  Tb + A AV + U- av + V-+ av fu = - g p G  ar; - %a + 

at ax ay H+ 5 

) ,  we obtain 

(1.44) 

(1.45) 

(1.46) 

In the process of deriving the equations of mass transport and mean 

velocities a number of simplifications and assumptions have been made. 

Now we shall discuss the implications of such procedures. It is quite 

clear that these simplifications are connected with the nonlinear 

terms. The question which remains is how to obtain from the term 

au 
ax u -  

by integration in the vertical direction the terms 

au 
~ + r ;  ax ax 
- Mx .- aMx and u- ? 

In the first approach the situation is rather obvious. Average velo. 

city U may be introduced into the nonlinear terms only when the ver- 

tical distribution of velocity is nearly constant, that is 

and when the average velocity does not differ much from the velocity 

at an arbitrary depth. This distribution is met in the sea only in 

special situations, namely, in the storm surge phenomena in a coastal 

zone (where nonlinear terms are important) , and, as a general rule, 
in tidal waves. 

Several attempts have been made to present the vertical distribu- 

tion of velocity in such a special situation. Prandtl (1942) assumed 

a constant bottom friction and a linear change of the eddy viscosity 

coefficient k with depth, 

k % =  ‘I = const., when k = X Z .  
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From this result the so-called logarithmic velocity distribution fol- 

lows 

T z u ( z )  = u ( z o )  + -log 7 
0 X 

(1.47) 

where ~ ~ 0 . 4  is the Karman constant. 

Another possible solution leads to the empirical potential law of 

velocity distribution, 

(1.48) 

An example of the velocity distribution approximated by the poten- 

tial and logarithmic laws is plotted in fig. 2.Now with the fairly 

general potential law we may analyse the condition that U = u, by 

establishing the proper value of the exponent q and next comparing 

the empirical distribution of velocity and empirical magnitude of q. 

First of all let us rewrite (1.48) in the co-ordinate system from 

fig. 1 ,  with the following conditions at the surface z = <, u = u 

and at the bottom z = -HI u = 0, thus, 
0 

z + H  1 /q 
u = u  (-) o H + <  

Integrating (1 .49 )  from 

( 1 . 4 9 )  

the bottom to the surface the mean velocity 

/q 
dz 

-H 

is expressed as a function of the surface velocity uo, 

u = u  A- 
0 l+q 

(1.50) 

(1.51) 

The value of exponent q found from the empirical data varies from 

5 to 7 (Dronkers, 1975). We may conclude here, with a good order of 

approximation, that U = uo. 

53. One-dimensional motion 

By one-dimensional motion we mean flow in straight channels and 

narrow seas. Directing the x co-ordinate along the axis of flow, in- 

stead of two equations (1.32) and (1.33) the following equation is 

written, 
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4 

numerical computation "Bd AZ 
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f = - - = 0.3 ) 

---- potential law ( 4 ~ 5 )  

. . . . . . . . . . . logarithmic law 

Fig. 2. COMPARISON OF THE OBSERVED CURRENT PROFILE IN THE TIDAL WAVl 
(CONTINUOUS LINE) WITH THE LOGARITHMIC LAW (BROKEN L1NE)'AND THE 
POTENTIAL LAW (q = 5) - ACCORDING TO SUNDERMA" (1971). 
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(1.52) 

To this equation we may add the following comment; although we know 

that the meaning of eddy viscosity coefficient A in one-dimensional 

flow is not quite clear and that there is no data on its empirical 

value, we leave it in (1.52) since in the numerical forms the coeffi- 

cient may improve the computational stability. 

The continuity equation (1.41) could not be transformed as easily 

as the equation of motion. The co-ordinate perpendicular to the axis 

will be represented by the width of channel B (See fig. 3 ) .  To derive 

the equation of continuity let us consider two cross-sections in the 

channel. The distance between the sections is dx, the width of the 

first section is B., and of the second one B2. The depths are H1 and 

H2 respectively. The flow of mass through the first section in time dt 

equals ml = p u, H1 B1 dt. The flow through the second section in the 

same time is m2 - - p u2 H2 B2 dt. If m2 ml the inflow of mass between 

the sections is observed, it will cause the free surface to change by 

d< . Therefore the law of mass conservation can be written as 
m2 - m = B dx d< = -dm = - dt(pu2H2B2 - pu H B ) 

= - pdt dx (1.53) 

1 1 1  

In (1.53) the quantity puH expresses the mass transport Mx, and thus 

(1.54) 

An analogue of equation (1.41) is obtained only if the width of the 

channel is constant (B = constant) 

aM 

ax at- 
x+ +- 0 (1.55) 

In the following section we shall study one-dimensional motion with 

the help of equations (1.52), (1.54) and with appropriate boundary and 

initial conditions. 

54. 2- U 

The equations of motion include expressions which describe the 
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stresses at lateral surfaces due to external forces. On the sea sur- 

face wind stress causes a motion of the water but at the bottom the 

stress leads to decay of motion. Theoretically both have the same form 

They depend on the eddy viscosity and the vertical gradient of velo- 

city, but their empirical forms differ strongly. Investigations of 

bottom stress lead to quite different laws: one expresses the stress 

as a linear function of the average veloctiy; the other expresses a 

quadratic dependence. In the second case the equations of motion are 

nonlinear and their study is very complicated. The measurements of 

the bottom stress run already for many years under the different flow 

conditions.G.1. Taylor ( 1 9 2 0 )  showed that the bottom stress is propor- 

tional to the square of the average velocity 

2 1 / 2  (x) = ru(~’ + v 
‘b (1 .56 )  

The dimensionless friction coefficient r depends on many different 
factors, but mainly on the bottom roughness. In the enclosed table 

some measurements of this coefficient, obtained by different authors, 

are presented 

author 

Taylor ( 19’1 8 

Grace ( 1 9 3 6  

( 1 9 3 7  

Bowden and 
Fairbairn 

( 1 9 5 2  

place 

Irish Sea 

Br i s to1 - 
Channel 

English 
Channel 

Wharf Bay, 
Anglese y 

method 3 r x 10 

range 

1.6 - 2.0 

1.4 - 4.1 

2 .4  -21.3 

0.57- 2.04 

., 
r x 10’ 

mean value 

2 .4  

2.4 

2.6 

9.3 

1.8 

A general mean value of r used in computation is usually taken as 

r = 3.3 x 
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The various methods for the estimation of r may be subdivided as 

follows : 

a) 

b) 

C) 

d) 

Transference of a formula for the bottom friction on a river bed 

(Bazin) to a maritime basin 

Investigation of the amount of energy dissipated at the sea bottom 

Application of the equations of open-channel theory to the harmonic 

constants found by Doodson and Corkan and to the current velocities 

given by the tidal current tables 

Application of the simplified hydrodynamic equations of motion to 

measurements of water level and velocity in the open sea. 

One of the simplest methods of stress determination is connected 

with the velocity distribution given by equation (1.47). Measuring the 

velocities at two depths Z1, Z 2  and with help of equation (1.47) we 

get 

n 

(1.58) 

(1.59) 

Subtracting (1.59) from (1.58) the following expression for determin- 

ing stress is easily obtained 

The logarithmic distribution of velocity allows us to calculate 

the friction coefficient as 

r = 32 Log (14.8H/Zf<] -2 (1.61) 

Here Z *  is the roughness length equal to one thousand times the grain 

size. 

In order to examine the characteristic magnitude of the friction 

term in the equations of motion rb/H, we calculate it for different 

velocities and depths. 
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2 0  4 0  6 0  8 0  100 cm/sec 

- 
I 0  m 1 2  48  1 0 8  1 9 2  300 x cm/sec 

50  m 2 10 22  38 6 0  x cm/sec 

100  m 1 5 11 1 9  30  x cm/sec 

From this we conclude that the friction term is relatively unimpor- 

tant in deep water, but for shallow water areas it has the same magni- 

tude as the other terms of the integrated equations. 

In hydraulics, instead of the coefficient r the coefficient of 

de Chezy C is sometimes introduced 

r = g C  ( 1 . 6 2 )  
-2 

If in turn linear dependence on the mean velocity is taken 

( 1  - 6 3 )  

the friction coefficient R may be found as r J U 2  + V2 
relation (Uusitalo, 1 9 6 2 )  

or from the 

R = -  ka 
4H (1 .64 )  

Here k is eddy viscosity at the bottom. The value of R is in the 

range of to CGS units. 

Generally speaking the coefficient of bottom friction is a variable 

parameter. Later on we shall present some solutions to this problem 

for the shallow water. Interesting ideas in this respect may be found 

in Kagan's works ( 1 9 7 2 ) .  

The tangential stress at the sea surface is due to the wind. Experi- 

ments show that stress is a complicated function of wind velocity 

and the aerodynamic properties of the sea surface, namely 

2 
Ts= Pa cz wz (1 .65 )  

where pa is the air density, Cz the coefficient of aerodynamic resis- 

tance at a height z above the sea, and Wz the wind velocity at the 

same level. 

The determination of the coefficient Cz constitutes one of the 

most important problems of sea dynamics (Kitajgorodski, 19701,  since 
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the free surface is itself in motion. The results of many years' mea- 

surements obtained under different conditions and at different geogra- 

phical locations have been gathered by Wilson ( 1 9 6 0 ) .  The data show a 

big scattering and clear dependence on the wind velocity. Usually the 

wind measurements are performed at the level z = 10 m, therefore we 

shall use later this value as a subscript on the quantities Cl0 and 

Wl0. Wilson showed that C,o for small and moderate winds ( 2  - 8 m/sec) 
is equal to 1.1 x and for strong winds ( 2 0  m/sec) Cl0 is equal 

to 2.6 x Using the data gathered by Wilson and his own new set 

of data, the dependence of Cl0 on wind speed is plotted in fig. 4 .  

I I I I I I I I I I I I c 

0 ro 20 Wl, h ~ s e c ]  

Fig. 4 .  COEFFICIENT OF AERODYNAMIC RESISTANCE C,o AT 10 m ABOVE SEA-LEW. 
AGAINST WIND VELOCITY Wl0. 



21 

Coefficient Cl0 in this figure is a linear function of wind 

cl0 = (0.9 + 0.08 10-2w)x (1.66) 

Here wind is given in cm/sec. 

In the recent review of the drag coefficients over oceans and 

continents Garrat (1971) obtained 

Cl0 = (0.75 + 0.067 x10-2w)x (1.67) 

To calculate the wind stress at the sea surface with the help of 

equation (1.65) the wind velocity Wz is needed. Since measurements at 

sea of the true wind are rather scarce, charts of the pressure distri- 

bution over the sea are used instead as a practical expedient. 

Very often the geostrophic wind which can be calculated from the 

isobaric charts is used. This is done by means of the formulae analo- 

gous to (1.21) and (1.22) 

(1.68) 

(1.69) 

whereby p and p are the density and pressure in the atmosphere. The 

geostrophic wind can be considered as a good approximation of the true 

wind at the sea surface. It is has been shown, by meteorological in- 

vestigations, that certain corrections should be made. 

For instance according to Hasse and Wagner (1971) the relationship 

a a 

between surface and geostrophic wind may be classified as a function 

of a stability condition in the near water layer 

unstable W = 0.56 W + 3.0 (m/sec) 
9 

W = 0.56 W + 2 . 4  (m/sec) 
9 

near stable 

w = 0.56 W + 1.5 (m/sec) 
9 

stable 

(1.70) 

Furthermore, often a correction for the wind direction is added,e.g. 

Duun-Christensen (1971) has used a value of 18O (counter-clockwise) . 
Beside these corrections experiences obtained from the prediction of 

storm surges in Leningrad (Orlenko, 1971) indicated the influence of 

nongeostrophic deviations of the true wind. 
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So the different corrections though they complicate the final predic- 

tion of the wind field are worth-while, since the results of numerical 

computations are strictly related to the exactness of the meteorologi- 

cal data input. 
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Chapter I /  STEADY MOTION - NUMERICAL METHODS 

This chapter is devoted to the numerical treatment of a steady-in- 

time flow which is described by a stream function and the steady distri- 

bution of a substance which is characterized by the diffusion equation. 

A general equation for this problem is the second order nonhomo- 

geneous elliptical equation. The coefficients of the first derivatives 

vary in space, whereas the coefficients of the second derivatives are 

often very small. This creates the problem of proper numerical appro- 

ximation up to the second order in space and leads frequently to the 

creation of additional terms in the difference equation which are not 

related to the differential form and are expressed as so-called 

numerical friction. 

The construction of a difference equation on a given numerical grid 

provides a set of algebraic equations. Therefore when choosing a 

finite difference form we have to take into account the method which 

is to be used to solve the algebraic equations. Iterative methods 

are the most suitable with the space matrix which usually occurs in 

the problem of steady motion. The simplest methods of iteration are 

discussed in this chapter. 

The criteria of convergence, in terms of the coefficients of the 

matrix, are given. The general properties of matrices and operators, 

especially the positive definite property which is very suitable in 

iterative schemes, are also discussed. From the many possible methods 

of solution of finite difference equations we discuss thoroughly the 

line inversion method. We believe that it has a great many applications 

and possesses useful properties such as convergence and self-correction. 

That is to say, any error appearing in the course of computation is 

suppressed by the use of this method. 

91. Numerical approximation of steady phenomena 

Steady motion in the sea (Chapter 111) and steady transport pheno- 

mena (Chapter VIII) are described by the second order differential 

equation 

where L = L1 + L3 and 
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As the boundary condition we take 

$(XlY) = 0 

for the problem of steady motion, and 

w = o  
an 

for the transport problem, where n is the 

the boundary. 

Here 

> 0, r2 > 0, la(< C, <m,(bl< C2< m l  If rl 

(2.3) 

direction perpendicular to 

The quantities r, a, b, f are continuous and known functions in the 

closed domain B ,  where 6 = ( 0 S x I l1;0 2 y C 12). 

In this way the closed net space Bh=(x.=jh;yk=kh) is 

In the domain b we introduce an equally spaced net (grid) with the 
step distance h. 

obtained. Here j = 1, 2, 3, ..., J; k = 1, 2, 3 ,  ..., K. The boundary 
of domain 5 is denoted as r and the boundary of Eh as Th. Now let us 

introduce the relationship between the difference and differential 

expressions for the first and second derivatives. This step is neces- 

sary for establishing the difference analog of differential equation 

(2.1) and its boundary condition (2.3). Using (a) the well known 

Taylor theorem for the arbitrary 2-point net of (j,k) and (j+l,k) and 

(b) the fact that $ is everywhere analytic in (Ref. to proof for 

2nd order elliptic operators), we may write the forward difference 

of the function $ in the x-direction as 

3 

For the points j,k and j-1,k in a similar way the backward difference 

in the x-direction is defined as 

A l l  analytical derivatives in (2.5) and (2.6) are taken at the point 
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(j,k). These differences allow us to describe three types of first 

order derivatives in the x-direction 

a) Forward derivative 

b) Backward derivative 

C\ C O D ~ l o O ~  3 - - - :  1 1  

c Central derivative 

(2.7) 

(2.8) 

(2.9) 

The last formula was obtained by adding the expressions (2.5) and 

(2.6) and subsequent division by 2h. Subtracting (2.6) from (2.5) we 

derive an expression for the second order derivative in the form 

(2.10) 

In the above expressions O(h) and O(h2) describe the order of the 

remaining terms (error) in the Taylor series in relation to the grid 

step h. The power of h indicates the order of approximation of the 

differential derivatives by the difference derivatives; where the 

power of h is highest, the best approximation or the greatest accuracy 

is obtained. It is seen from the Taylor approximation method that the 

accuracy can be increased by refining the net or by the consideration 

of more terms in the Taylor series. NOW, for the arbitrary grid points 

of Dh, the difference form of (2.1) may be written down. The selection 
of proper difference forms has to take into account not only the best 

order of approximation but also the convergence of the numerical 

solution to the analytical solution, and the properties of the nume- 

rical method chosen for the solution. If we introduce the iteration 

method of solution, the difference form of (2.1) must comply with the 

convergence criteria of the iterative method. A derivation of the 

full numerical form of (2.1) will proceed term by term. Firstly the 

operator 

(2.11) 
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is considered with constant coefficients r 

case (2.11) simplifies to 

= r2 = r = const. In this 
1 

2 

L2$ = r { Q  + a2J, 1 (2.12) 
axz ay2 

and its numerical form may be written down on the grid as 

Substituting into (2.13) expression (2.10) for the second derivative 

along the x direction and the analogous formula for the y-co-ordinate 

we see that 

(2.14) 

where R < - I and does not depend on the grid step h. 

In order for the condition R<m to hold, we must assume that the 

fourth order derivatives of $ exist and are bounded. This result is 

part of a general theorem due to Gershgorin (Collatz, 1955). 

The approximation of L1 (the differential equation (2.11)) with 

second order accuracy is carried out by means of an expression which 

possesses a spatial symmetry in relation to the term $ 
j ,k 

(2.15) 

where the coefficients are denoted by 

+ r  

2 
‘iIj+l,k + ‘l1j,k RFY = r21 jlk+l 2,jIk 

I 2 

lljlk + rllj-l,k 

RFX = 

(2.16) 

r21j1k + r21j,k-1 
I RBY = 2- 

r 

2 RBX = 

The greatest problems occur in the approximation of the operator 

(2.17) 

because the coefficients a and b in the domain 15 change their values 
in an arbitrary way from positive to negative. On the grid points in 

domain we shall write down the difference equation in such a way 
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that the forward or backward derivatives are chosen in agreement with 

the signs of coefficients a or b in order to comply with the conver- 

gence demands of the iteration process. 

where 

(2.18) 

(2.19) 

Substituting into (2.18) the relations (2.7) and (2.8) we observe 

that, as h -t 0, the operator L 3 h ~  approximates the operator L J1 ,  and 3 

where R1 

a 2 '  and - exist and are bounded. 
, subject to the condition that the second derivatives 

- 3% 

ax2 aY2 

In all, the expressions (2.15) and (2.18) approximate the differen- 

tial equation (2.1) up to first-order accuracy. The second-order 

accuracy in this equation can be obtained with the difference scheme 

below. To avoid very long algebraic expressions we shall consider 

only the part of equation which is dependent on the variable x (the 

expression along the y-co-ordinate will be analogous) 

(2.21) 

The above approximates the equation (2.1) with second-order accuracy 

in h, since the error is equal to 

(2.22) 
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h2a2 but in this special case the errqr depends also on the parameter i-q 
and is of order O(h ) only if j q  

cient. Since usually rl = 0, we find 

a < 1. 2 

In a steady motion rl plays the role of a bottom friction coeffi- 

2 

16rl 
a>> 1 (2.23) 

This inequality shows that this difference scheme (2.21) does not 

provide a second order approximation and is not appropriate to study 

the steady current in the sea. 

when expressed in terms of the coefficients of the governing differen- 

tial equation (Chapter VII) takes the form 

However, in two-dimensional transport processes the above inequality 

2 

1 6Kx 
<<  1 (2.24) 

In this case u is the horizontal velocity and Kx the eddy diffusion 
coefficient. Since the order of magnitude of u is lo2 cm/sec and of K 
is lo8 cm/sec, it follows from (2.24) that (2.21) 
order accuracy when used in the description of transport phenomena. 

Finally let us consider the following problem connected with the 

possesses second- 

question of accuracy. The approximation of (2.1) by means of expres- 

sions (2.12) and (2.18) leads to an error which is proportional to h. 

As h is finite that error may play an important role in the distortion 

of the solution. Taking the difference equation 

(2.25) 

and introducing the derivatives from formulae (2.7) , (2.8) and (2.9) 
we find 

Comparing expressions (2.1) and (2.26) it is obvious that in the latter 

case, besides the physical coefficient of friction r, there are two 
new coefficients 
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These we shall call the coefficients of 'numerical friction'. They are 

a function of the space step and the coefficients a and b of the first 

derivatives. It is clear that in this case the order of approximation 

is increased, since the effects of 'numerical friction' will decay. 

But as the iteration processes involved are not always in the solution 

(due to the convergence criteria) higher approximation is possible 

Let us evaluate the value of the numerical friction coefficient q. 

and because usually r <<  f, therefore we find that 

The conclusion is that the effects of numerical friction occur in 

those parts of the domain rh where the depth H changes abruptly over 
very short horizontal distances and thereby distorts the computational 

results in a fundamental way. 

52. Conversence and choice of qrid step 

A proper approximation with high accuracy is an important step 

towards obtaining a solution. The study of the convergence of the 

numerical solution to the analytical solution is based on the method 

proposed by Gershgorin (Collatz, 1 9 5 5 ) .  In this method it is assumed 

that the analytical solution exists together with its derivatives up 

to the fourth order. 

To estimate the accuracy of the difference equation we introduce 

the error zh = JI - JIh. 
lowing problem 

Here $is the analytical solution of the fol- 

LJI = f(x,y); x,y E 6 
(2.27) 

JI = Const.; xty E r 

and JIh is the numerical solution of the problem 

(2.28) 



30 

Subtracting (2.28) from (2.27) we find that the error zh due to the 

approximation must satisfy 

(2.29) 

As an example, the error of approximation of the operator L3$, consi- 

dered above with the help of inequality (2.201, can be estimated as 

(2.30) 

But this expression provides an estimation for the operator which 

operates on zh. We are more interested in the estimation of the error 

itself. Since we are dealing with an elliptical operator which has the 

positive definite property we may proceed from (2.30) straight to the 

error zh (Young and Gregory, 1973). For equation (2.13) the error is 

equal to 

(2.31) 

where 

mension of Dh. It is seen from (2.31) that the error is estimated 

by the fourth order analytical derivative. The derivative can, of 

course, be changed into a numerical one, but such a procedure seems 

to be dubious. 

p= Max(ll,12) is the length which is equal to the maximum di- 

From a practical point of view we are interested in obtaining from 

this estimation some information on the choice of the grid distance h. 

The inequality (2.31) leads only to the information that h < p ;  this 

is not really very much. Of course, we may look for another way of 

solving this problem. Since we are dealing with a positive definite 

operator this property is fulfilled only with a grid distance chosen 

in such a way (Young and Gregory, 1973) that 

2r 2r 
0 < h I Min(-- -1 

lal' Ibl 
(2.32) 

Again for the steady motion this inequality is somewhat disappointing, 
f aH because a = --. Therefore 
H aY 

2rH h < -  f aH (2.33) 

Replacing ay by h we obtain the condition for aH rather than for the 

grid distance, thus is aH f' This means that for the solvability 2rH 
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of the problem the depth cannot change abruptly. 

In contrast this information is very valuable for the transport 

phenomena in the horizontal plane. Since r = Kx and a = u, we may 

write (2 .32 )  as 

( 2 . 3 4 )  

This indicates that in the description of large scale diffusion pro- 

cesses a grid size smaller than 2 0  km should be chosen. 

From the above we may conclude that the method of choosing a grid 

size in an elliptical problem so that it complies with a high order 

of accuracy in the numerical solution is not clear at all. A more 

practical way lies in comparing a simple analytical solution with 

a numerical one, and on this basis the final choice of h is made. 

§ 3 .  Boundary conditions 

In cases where the steady current is studied the boundary values 

of the stream function are known and there is no problem if all grid 

points lie exactly on an analytical boundary r .  If the boundaries r 
and rh do not coincide, one may use an interpolation formula to deter- 
mine $ at the net points which belong to the neighbourhood of r .  
Another solution to this problem consists in the introduction to 

the grid of different space steps in these parts of the domain Dh 

where r and Th lie apart. Next the derivatives should be written on 
the new grid - see Collatz (1955). 

Steady transport phenomena are characterized by a more complicated 

boundary condition, namely = 0. This derivative is usually ex- 

pressed on the right coast by forward differences and on the left 

coast by backward differences. In this way the derivatives have only 

first-order accuracy of approximation. We shall now present Samars- 

ki's (1971) useful method for increasing the order of approximation 

by retaining information from the differential equation. Again to 

simplify algebraic expressions we shall consider (2.1) along the 

x-axis only 

an 

(2 .35)  

f , fl =-. a here al = - - 
r1 rl 
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The boundary conditions are 

2l x= 1 = O  

%I = 0; 

x=o 

(2.36) 

The numerical form of the boundary condition on the left boundary is 

taken as a backward difference 

(2.37) 

ha2$o The error of approximation in (2.37) is equal to 7~ If we 

subtract from the right side of (2.37) the term due to the error, 

the order of approximation will be proportional to h . In order to 
achieve this aim, we rewrite condition (2.37) as 

2 

(2.38) 

a 2$o as fl - a , F  a$, and introduce it into (2.38) Via (2.35) we express - 
ax2 

(2.39) 

Again, the analytical derivative 3 in (2.39) can be altered to the 
difference form 

ax 

and finally the derivative with second-order accuracy is derived 

$1 -$o hal hf 
( 1 + - ) = - - 1  2 2 

(2.40) 

The order of approximation obtained in the above formula is easily 

proved by the introduction of the difference form of $ from (2.37) 
and fl from (2.35). Then 

(2.41) 2 0 + O(h 
ax 
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It is worth noting that the second order is obtained here with the 

directed (backward) derivative. 

54. Some general properties of the differential operators 

Differential equation (2.1) may be solved numerically or analyti- 

cally under fairly general conditions related to the coefficients of 

the equation. One of the most important properties of a differential 

operator is its positiveness. We shall call the operator (difference 

or differential) positive definite, if the scalar product of expres- 

sions -Lf and $* in domain is positive, 

2 
In (2.24) $ is the column vector and J, is a transposed vector (that 

is a row vector). In the net domain the scalar product (2.42) acquires 

the form 

(2.43) 

Since the scalar product is considered in the closed domain Bh it 
is important to take into account the boundary conditions at those 

points on the boundary. 

on a very simple example. Let us take the homogeneous equation to 

describe one dimensional flow 

We shall explain the notions of scalar product and positive operator 

To this we ascribe the following numerical form 

Irlj+l + Jlj-l - 2Qj Jlj+l - Jlj 
r - a  = o  

h2 h 
- -Lh$h - - 

(2.44) 

(2.45) 

with the boundary conditions Jlo = 0, Jl, = 0. The coefficients in 

the above equations are strictly positive. 

coefficients and a column vector f which represents the values of 
the unknown function at the grid points. 

The operator -LhJlh will be arranged in the form of a matrix A of 
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-r+ah 0 

2r+ah -r+ah 

-r 2r+ah 

-r - 2r+a4 

11 
$J-I 

(2.46) 

First of all we may observe that the elements of the above matrix 

are not symmetrical on both sides of the main diagonal. Next, if we 

add the moduli of all elements of the matrix in any row or column 

(omitting a diagonal element), then it is clear that the modulus of 

the diagonal element is greater or equal to the sum of the moduli of 

the non-diagonal elements. Now we shall construct a scalar product 

(-L$,$*) in agreement with the multiplication rule of a matrix by a 

vector, thus 

(2.47) 

Since (2.47) is always positive we may state that the operator 

(2.45) is a positive definite one. In the case when the first deri- 

vative in (2.45) is chosen, not as a forward but as a backward or 

central difference, the positive property of the operator will not 

hold. Generally the positive definite property of an operator is 

strictly connected with the dominance of the main diagonal of 

coefficients in the matrix form of the difference equation. Sometimes 

the operator of an elliptical equation is called self-adjoint and 

then the equation (2.1) is written as(Young and Gregory, 1973) 

a ( p w )  + L ( q W )  = f 
ax ax ay ay (2.48) 

subject to the condition that the coefficients in (2.1) are related 

as follows 

(2.49) 

We have already written a numerical form (2.15) for equation (2.48). 

This is a numerical form of which the matrix of coefficients is 
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wholly symmetrical and therefore for such a matrix the required 

memory and amount of computation is greatly reduced. The self-adjoint 

operators and symmetrical matrices play a special role in the compu- 

tational processes. 

55. Numerical methods of solution of partial differential equations 

of steady state 

Let us again consider equation (2.1) in the next domain Bh with 
boundary condition $ = 0. The five-point difference equation is 

rearranged as follows 'h 

(2.50) 
ao$j,k = j rk 

- 
al'j+l,k + a2'j-l,k + a3$j,k+l + a4'j,k-l 

Assuming that the number of internal grid points in Eh is equal to 
N, and that in all points equation (2.1) has the form of (2.50) we 

come to N linear equations which we set in the matrix-vector form 

A$ = ? (2.51) 

The matrix A contains only real quantities. On its diagonal the ele- 

ments a. are nested: the vector $ is a column vector with N elements 
(co-ordinates) . 

The methods of solution of this system may be subdivided into 

direct and iterative ones. The direct methods, such as the Gauss eli- 

mination procedure, give a solution in a finite number of steps, but 

they require big computer storage and are very time consuming (Ralston, 

1965). The iterative methods contain simple algorithms which are 

easily repeated. They are very useful when applied to a sparse matrix 

like (2.46), where the elements are clustered around the main diagonal, 

but the solution is obtained as the limit of an iterative process. 

In case the iterative method is applied, the equation (2.50) is 

rewritten as 

where n denotes successive iterative steps. The simplified form of 

(2.52) in the matrix-vector notation is 

;L(n) = Aj(n-l) + (2.53) 
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The necessary and sufficient condition for the convergence of the 

iterative process (2 .53)  demands that the eigenvalues (proper numbers) 

of matrix A should be smaller than the modulus of unity (Faddeeva, 

1959). Since, generally, the eigenvalues belong to the set of complex 

numbers we may state again the above condition in a geometrical form. 

Thus to fulfil the convergence condition, the eigenvalues should be 

confined within the unit circle in the plane of complex numbers. In 

what will follow the sufficient conditions desciribed by the norm of 

a matrix or related cOnditions will be used. For the equation ( 2 . 5 0 )  

and (2 .52 )  the following inequalities should hold in order to fulfil 

the sufficient condition 

a 2 9  am (2 .54)  
O m=l 

and 

4 
1 L c am/ao 

m= 1 
(2 .55 )  

Therefore the diagonal elements of matrices A and A dominate the 

remaining elements in each row or column. Returning to the difference 

equation constructed in 51 of this chapter it is worth noticing that 
it was constructed in such a way as to retain the property of the 

dominant diagonal for the elements related to the function J, 

Although we ought to say that the study of the two-dimensional set 

of equations through the application of the vector-matrix notion is 

not obvious unlike the one-dimensional problem (2 .46 )  which we have 

done already. A special way of indexing will be introduced in chapter 

VIII to effect the change from two-dimensional indexing j,k to one- 

dimensional indexing. 

j ,k' 

We can find a great number of iterative methods and procedures 

for accelerating the computations (Collatz, 1955;  Ralston, 19651, 

but a theoretical basis has been worked out only for the simply con- 

nected domain of integration. In oceanographical problems where the 

domain is often multiply connected it is worth-while to start with 

simple iteration methods. In case the same problem has to be solved 

many times (for example with different external forces) as standard 

procedure, the method of acceleration is worth applying. 
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56. Simple iteration method 

The method is expressed by equation (2.53) and consists of con- 

structing the sequence of column vectors which have N co-ordinates 

(components) 

(2.56) 

Here the primes are omitted to make the notation simpler. If the ele- 

ments of matrix A fulfil the sufficient condition (2.551, then the 

iteration process (2.56) converges to the analytical solution 

$ = A $ + z  (2.57) 

For the arbitrary initial approximation $(O) we shall find the 

condition for convergence of the iteration sequence to the analytical 

solution of (2.1). First we describe the error by the difference 

between the n-th iterative approximation $(n) and the exact solution 

(2.58) +(n) V = $ - $(n) 

It is clear that v ( ~ )  satisfies equation (2.52) with f = 0. Secondly 

we introduce the definition of the vector norm which we need for 

the following discussion (Faddeeva, 1959) 

(2.59) 

Thus we may say that in this specific case it is the maximum modulus 

of the difference (2.58) taken over all points of the net. Generally 

this is a co-ordinate of a vector (in our case v(~)) with a maximum 

absolute value. 

Denoting the elements of matrix A as a ,k, where j stands for 

rows and k for columns. we define the matrix norm 
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Here N1 denotes the number of columns in the matrix A. 

of the elements in the first row, next in the second row etc. is 

checked. The maximum sum is chosen to be a norm. For example the norm 

related to equation (2.52) is given by the expression 

We may say that by means of (2.60) the sum of the absolute values 

Returning to the convergence problem of the iterative sequence 

(2.56) we subtract (2.57) from the last equation in the sequence (2.561 

and applying the matrix and vector norms we obtain 

+(n-l) I I  IIAlI IIV 
-+(n-l) I I;(n) I I = IIAv 

If the norm of the initial value vector 

I 1 1  = Q < m ,  

; (O) is bounded 

(2.64) 

then convergence is based on the existence of the limit of the se- 

quence (2.62 ) 

liml Iv -+(n) I I < lim u n ~  (2.65) 
n-+m 

The iterative process (sequence) (2.56) is convergent if p <  1 ,  that 

is to say the norm of matrix A has to be smaller than the modulus of 

unity. In the case of (2.52) the norm is expressed by (2.61). There- 

fore we may conclude that the condition ~ < 1  is analogous to the con- 

dition of dominance of diagonal elements in a matrix of coefficients. 

5 7 .  Gauss-Seidel method 

The simple iterative method is based on the values of$ computed 

during the previous step of the iteration. The central idea of the 

Gauss-Seidel method is to accelerate this process by using, in the 

course of the computation, the values recently derived during the 

same step. Thus at any grid point m, the values computed at the pre- 

vious m-1 points are utilised. The Gauss-Seidel method of iteration 

is described by 



or in the developed form 

39 

(2.66) 

(2.67) 

Introducing matrix and vector norms in expression (2.66) we find 

(2.68) 

where 

lJ1 = 

lJ2 = 

m- 1 
lAllI = Max C lajk 

j k=l 
N 

lajk lA21 I = Max Z 
j k=m 

(2.69) 

(2.70) 

The inequality (2.68) is easily transformed to 

If the initial values are bounded I I $ ( 0 )  I I = B<m the convergence of 

the Gauss-Seidel iterative scheme is assured when 

(2.72) 

58. Line inversion method 

Although this method is best suited for solving ordinary diffe- 

rential equations of second order (Samarski,1972), the method of 

splitting up the operator gives a new way of obtaining from the par- 

tial differential equation a system of ordinary differential equations 

(Marchuk, 1974; Janenko, 1967). 

Let us therefore consider the ordinary differential equation 

(2.73) 

with q(y) positive and p(y) to be defined later on. 

in the numerical form 

Introducing the net with grid distance h, (2.73) may be written 



40 

(2.74) 

The index k runs from 0 on the left boundary to N on the right one. 

It is important to understand that the approximation of the first 

derivative in the above equation is rather general. The real method 

of approximation depends here on many possibilities and the best 

situation arises when (2.73) is self-adjoint, when instead of 

one may write 

dP 

dY 
This takes place only if 1= p. 

If it is not the case the appropriate results may give the ex- 

pression (2.21). Either way the approximation should be written down 

to make the diagonal terms in the matrix of coefficients dominate 

over the nondiagonal terms. 

To equation (2.73) we add the boundary conditions 

on the left, and 

= B  'N - 'N-1 
Bo'N+ B1 h 

on the right respectively. 

Here A and B are known functions. ao,a,,80,~1 

(2.75) 

re equ 

(2.76) 

1 to zero 

or unity depending on what kind of boundary conditions are stated, 

i.e. the Dirichlet condition ( given function), the Neumann condition 

(given derivatives of the function) and the mixed condition respec- 

tively. 

rearrange equation (2.74) to three-point form 

the following considerations we assume that bk > 0, ak> 0 ,  

The diagonal dominance condition provides 



bk 2 ck + ak 

In matrix form (2.77) represents N-1 equations 

1 1; b2 

-C 

2 --c 

bN-2 

aN- 1 
- 
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(2.78) 

(2.79) 

The main part of the solution of (2.77) consists of a transfor- 

mation from three-point to two-point form given by the expression 

In equation (2.80) the matrix of coefficients (2.79) has been trans- 

formed into upper triangular form. To solve our problem the new 

coefficients sk and e 

dk. To do this the equation (2.80) is written down for the grid 

point k-1 

must be expressed in terms of akl bkl ck and 
k 

Introducing next (2.81) into (2.77) we obtain 

yielding the following relation between Q k  and $k+l 

- dk + akek-l + Ckqk+l 

b k - a s  k k-1 $k - b k - a s  k k-I 
(2.83) 

Comparing (2.83) and (2.80) we derive the following recursion formulae 

k C 
s =  

bk - aksk-l 

dk + akek-l 

bk - aksk-l 
ek = 

(2.84) 

(2.85) 
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They give the method for computing the coefficients sk and ek in all 

grid points starting from the left boundary value (2.75). This process 

is called forward elimination. The method is completed by a second 

process, backward elimination, whereby the values of J, are calculated 

using expression (2.80) beginning from the right boundary condition 

(2.76). 

In order to start this recurrence process it is necessary to find 

the initial coefficients s 1  and el. From (2.75) Q0 is defined as 

Ah - a1q1 
J,o = aoh - a l  (2.86) 

Next substituting $, into (2.77), written down on the grid point k=l 

(2.87) 

we find a relationship between J, and J,2. By comparing (2.87) and (2.81: 

at the grid point k=l, the coefficients required to start the recursion 

process may be defined in the following way 

1 

c1 (soh - 
bl (soh - a , )  + alal s1 = (2.88) 

dl (soh - a,) + alAh 
el - bl (aoh - al) + alal 

- (2.89) 

The method of line inversion has a very good computational proper- 

ty. First of all the iterative processes based on this method show the 

tendency to self-correction and they converge quite fast. The self- 

correction is related to the stability since any error introduced in 

the course of computation (say round-off error) is not amplified. The 

main condition to be fulfilled is formulated by (2.78). The method of 

line inversion was extended by Lindzen and Kuo (1969) to a wide class 

of ordinary and partial differential equations. 

$9. Application of line inversion in the alternating-direction method 

The line inversion method is applied to the elliptical equation 

in alternate directions. First the inversion is performed along the 

x-axis and then along the y-axis (or vice-versa). Each iteration step 

consists of two substeps. The method will be used to solve the equation 

(2.50). 
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Let us assume that the 1-th iteration is already computed. In 

is evaluated 
j ,k 

the first substep the function $ 

) 
1+1/2 - 1 1+1/2 1+1/2 - 1+1/2 - Jf1+1/2 
'j,k - $j,k -+ P(al$j+l,k + a2$j-l,k 2 $j,k 2 jrk 

The line inversion method in this substep is applied to the 

j-co-ordinate. The unknown function $1+1/2 is computed from known 

values of $ irk. In the second substep the following algorithm is 
used 

j ,k 

In this substep the inversion method is applied to the k-co- 

ordinate, and the function is calculated from the known function 

Q$:i'2. The quantity p is a positive constant called the iteration 

parameter. Its optimum choice is rather difficult, but if we observe 

that the iteration process is analogous to the equation which depends 

on time, then p is closely related to the time step T. To show this 

analogy let us introduce into (2.1) the time parameter then 

j ,k 

9 = r A$ + a 2  + b g  - f (2.92) at 

Here r=r =r =constant and A is the Laplacian operator. Equation (2.92) 

with a suitable boundary condition gives the solution to the steady 

problem expressed by (2.11, when t+m. 

1 2  

Using the methods described by Janenko(l967) we split up the 

equation (2.92) into a system of equations 

(2.93b 124 = _r *Q+ S U  + ku! - f 
2at 2 2ax 2ay 2 

Considering this system on two substeps 1, 1+1/2 and 1+1/2, 1 it may 

be written down on the first substep as 
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and on the second substep as 

1+1 - $1+1/2 2 1+1 - ra J ,  
T- + J ,  - 

It is clear from the above that equation (2.94) is related to 

equation (2.90) and (2.95) to (2.911, thus the iteration parameter is 

analogous with time in physical processes. The methods for choosing 

the time step T will be described in the course of analysing the un- 

steady phenomena (Chapter IV, 513). 
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Chapter 111 STEADY MOTION - OCEANOGRAPHICAL EXAMPLES 

In this chapter the system of equations ( 1 . 2 4 )  and (1 .25 )  is applied 
a to study steady currents (at = 01, when the nonlinear phenomena are of 

no importance. Since the equations are now linear and if we take the 

bottom friction in the linear form (1 .63 )  , it is possible to obtain 
an analytical solution in a simple-shaped sea area. We shall briefly 

introduce such solutions here, since they play an important rale in 

testing the numerical calculation. 

The main part of this chapter is devoted to the numerical descrip- 

tion of the three-dimensional current distribution in the sea. The 

current distribution in the vertical direction is solved using the 

superposition principle. The currents due to wind stress, sea-level 

variations and density distribution are found in a different way and 

afterwards are superposed. The central problem of this chapter is the 

elliptical nonhomogeneous equation for the stream function of mean 

current which results from the search for the current component due 

to sea-level variations. 

The presented pattern of mean barotropic flow shows a clear depen- 

dence on the interaction between the wind stress and the bottom slope. 

The interaction of the baroclinic component of flow with the 

bottom relief plays the main role in establishing the circulation 

when density stratification exists. 

91. Motion in channels - analytical solution 

To construct an analytical solution in a channel in order to 

describe the steady flow we start from the system of equations (1 .41 ,  

(1 .24)  and (1 .251,  assuming that 

a) the Coriolis force does not play any role, 

b) the depth H is constant, 

c) the transverse velocity v is very small, and 

Then the equations take the form 

and 

- au a x + - = O  aw 
az 
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Since at the bottom, due to the friction, the velocity disappears, 

the following set of boundary conditions will be valid 

UI = 0, w\ = 0 (3.3) 
z=-H z=-H 

At the sea surface the wind acts causing the stress 

( 3 . 4 )  - (XI 
- fS 

For the vertical velocity the kinematic condition ( 1 . 3 7 )  provides 

at the sea surface 

Firstly the equation of motion ( 3 . 1 )  is integrated over z 

uk = iggz2 + az + b ( 3 . 6 )  

The integration constants a and b can be determined from the boundary 

conditions ( 3 . 3 )  and ( 3 . 4 ) .  Therefore 

In the above does not depend on the vertical co-ordinate z ,  but it 

is unknown. The usual way of solving this problem is to construct an 

additional equation by integrating ( 3 . 1 )  from the bottom z=-H up to 

the surface z = 5 

When 5 <<  H, the sea-level along the x-axis is 

(XI 
+5 

9H 
5 = 5, ( 3 . 9 )  

This simple formula says that the sea-level is proportional to the 

tangential wind stress T A ~ )  and the path x, but inversely proportional 
to the depth. With constant depth and wind stress the free surface 

is a plane. We can see from this that even simple eqautions lead to 

convenient results that reproduce the natural conditions qualitatively, 

It is worth noticing that in ( 3 . 8 )  and ( 3 . 9 )  the sea-level does no t  
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depend on t h e  bottom stress, s i n c e  t h e  m a s s  t r a n s p o r t  i n  one-dimen- 
s i o n a l  s t e a d y  f low i s  e q u a l  t o  zero .  

Hansen (1950) p r e s e n t e d  a n o n l i n e a r  e q u a t i o n  r e l a t i n g  t h e  s e a - l e v e l  
t o  t h e  wind stress 

1 / 2  H + c = H + < F + 3 T s  ( X I  ] 
0 4 ( H + c O )  (3 .10)  

For t h e  l a r g e  d e p t h s  w e  may develop  t h e  s q u a r e r o o t  a c c o r d i n g  t o  
t h e  Taylor  series and w r i t e  approximate ly  

H + c = H +  (3 .11)  

W e  s h a l l  
a c t i n g  i n  a 

proceed w i t h  t h e  a n a l y s i s  of  t h e  a c t i o n  of  a s t e a d y  wind 
channel .  I n  t h e  case o f  a sha l low w a t e r  channel  w i t h  a 

c o n s t a n t  d e p t h  (3 .8)  may be r e w r i t t e n  i n  a s p e c i a l  form 

( H + C ) ~  = S = c o n s t a n t  = c 
( X I  T 

dx gH 

and i t s  s o l u t i o n  is 

(3.12)  

(3.13) 

i f  x < L  
0 

5 = -H 

Here Lo is  t h e  co-ord ina te  of  t h e  w a t e r  l i n e  which c o n s i s t s  of  t h e  
boundary between t h e  areas covered and uncovered by water (F ig .  5 ) .  
The v a l u e  o f  Lo is  found f r o m  t h e  s t a t e m e n t  of  t h e  p r o f i l e  

L 
0 

which can be r e a r r a n g e d  i n  t h e  form 

3 HL 2 / 3  
Lo = - [TA i f  Lo > 0 

(3.14)  

(3.14a) 

The f o l l o w i n g  f i g u r e s  p r e s e n t  a comparison between t h e  a n a l y t i c a l  
and numerical  s o l u t i o n s  under d i f f e r e n t  wind and d e p t h  c o n d i t i o n s  i n  
a channel  of  36 km l e n g t h .  The d i f f e r e n c e ,  as  p l o t t e d  i n  t h e  f i g u r e s ,  
can be i n t e r p r e t e d  as a measure of  t h e  accuracy  of  t h e  numer ica l  
method used i n  t h e  computat ion.  
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xO x =  Lo x =  L 

Fig. 5. SEA-LEVEL VARIATIONS UNDER THE ACTION OF WIND W 
IN ONE-DIMENSIONAL GEOMETRY. 
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Figs. 6. SLOPE OF THE SEA SURFACE UNDER THE ACTION OF A 
HOMOGENEOUS AND CONSTANT WIND. 
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52. Wind-driven currents in a shallow sea 

We have just studied the wind-driven motion in a simplified physi- 

cal situation. Now let us approach the three-dimensional motion. Al- 

though this kind of motion can be described by means of several 

dynamic models that of Ekman (1905,1923) seems to have the most physi- 

cally-sound base. The main external force, i.e. wind stress, will 

cause a drift current and a transfer of momentum in the vertical 

direction. At the same time the presence of the coast will change the 

level of the sea, and so the second type of current, due to the slope 

of the sea surface, is observed. 

In the linear Ekman model the current is a simple superposition of 
the two types of current, that is the result of the superposition of 

the solutions of homogeneous and nonhomogeneous differential equations. 
-+ 

The current u can be written as 

-P 
u = f (;) + f2 (VC) 1 (3.15) 

-+ + 
where fl ( T )  is the current due to the wind stress T ,  and f2(VS) is 

the current due to the slope of the sea surface VC. 

The first part of the solution is strictly defined because the 

wind stress is a known function of the wind speed and the direction 

across the sea. The second part is unknown, and an additional equation 

for the slope should be given. The difficulties which arise here fit 

into two categories; the first is connected with a compensation of 

the surface slope by the vertical gradient of density (this effect 

gives V< = 0 at a certain depth) and the second is due to the lack of 
sufficient knowledge about the vertical eddy viscosity coefficient 

being a function of depth, wind, etc. These difficulties usually 

force the use of the method of vertical integration of the horizontal 

current and lead to the computation of the mass transport instead of 

the current. 

In a shallow sea where the baroclinic effect does not seem to be 

very important, the slope of the sea surface should not change with 

depth. The fulfilment of the above supposition clarifies our definition 

of a shallow sea. Thus in this chapter a shallow sea is a sea where 

the baroclinic effect is negligible. One can vertically integrate the 

Ekman equations for current and in this way obtain an additional 

equation for determining the slope. This allows us to obtain the 

current field through equation (3.15). 
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In many cases finding the slope of the sea surface from the diffe- 

rential equation of the water level variation is a rather difficult 

task, because the boundary conditions for this problem are not always 

clear. To overcome this obstacle one usually uses a stream function 

and looks for the solution of an elliptical differential equation for 

this stream function. 

In a real sea, additional problems arise in connection with islands. 

The region of integration is changed from a simply- to a multiply- 

connected domain and auxiliary boundary conditions must be introduced 

to obtain values of the stream function inside the region. The ideas 

for such conditions can be found in the theory of elasticity but it 

seems that Kamenkovitch ( 1 9 6 1 )  was the first to give such conditions 

for the dynamic problems in the sea. It should be added that the Ekman 

theory has undergone many changes and the works of Felzenbaum ( 1 9 6 0 ) ,  

Saint-Guily (1959 ,1962)  and Welander ( 1 9 5 7 )  are of extreme importance 

in this connection. 

53. Ekman equations 

The Ekman equations for steady wind-driven currents can be written 

on the basis of the equations (1 .24 )  and (1 .25 )  

and 

( 3 . 1 6 )  

(3 .17 

The boundary conditions are usually taken as follows: at the 

face of the sea ( z =  p0) 

( 3 . 1 8 )  

and at the bottom (z=-H) 

u = v = o  (3 .19 )  

sur- 

To find the solution of the system ( 3 . 1 6 ) ,  ( 3 . 1 7 )  with boundary 

conditions (3 .18 )  , ( 3 . 1 9 )  one multiplies ( 3 . 1 7 )  by the complex number 

i = fl and adds (3 .16 )  to ( 3 . 1 7 ) .  The solution of the resulting 
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differential equation is a sum of solutions of the homogeneous and 

nonhomogeneous equations 

(3.20) 

where 

Now, in equation (3.20) the part with the water level variation K 

is unknown. To find this component we assume that in a shallow sea 

water level variations are not compensated by the vertical gradient 

of density. In this case the value of K in (3.20) is taken as constant 

and does not depend on depth. With this assumption we involve the addi 

tional equation for obtaining the value of K by vertical integration 

of (3.16) and (3.17). 

5 4 .  The mass transport and stream function equations 

Integrating equations (3.16) and (3.17) over the depth from the 

bottom z = -H to the surface z = r; one finds 

-fM = -pgHZ + ‘cS (XI - RIMx 
Y 

(3.21) 

(3.22) 

are taken in the 
z=-H 

The bottom stress components p k z  
au I z=-H 

linearized form as RIMx and R M 

tional coefficient R1 is assumed to be constant and will be given 

later, but it is related to the expression (1.631, since R1 = E. 

respectively. The value of the fric- 
1 Y  

R 

In obtaining the solution (3.20) and equations (3.211, (3.22) an 

additional assumption is involved, namely, the sea-level variations 1 

have to be smaller than the depth of the sea H at a given point. This 

excludes the very shallow part of the sea from further consideration. 

Equations (3.18) and (3.19) account for two boundary conditions, 

one at the surface and the other at the bottom. In addition, with the 

aid of the mass transport scheme, one can establish a boundary 

condition at the sea coast. The mass transport component normal to 

the coastline is taken as zero: 

Mn = 0 (3.23) 
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The principal aim in computing the field of current by means of 

equation (3.20) will be achieved if the components of the mass trans- 

port are known, since one can then obtain the components of the slope 

!% from (3.21) and (3.22). Now a new problem arises,that of 
finding the mass transport in the sea. First of all we observe that 

the continuity equation for the horizontal mass transport is valid 

axi ay 

aMx aM 
- +- = o  
ax ay 

(3.24) 

This equation is satisfied if we define the stream function by setting 

From equations (3.21) and (3.22) by cross differentiation and by 

using (3.24) and (3.25) we can eliminate 

equation (Kowalik, 1969) 

a and come to the final ax’ ay 

where the symbols are defined as follows 

the two-dimensional Laplacian operator a 2  a 2  
ax ay A = - + -  

the Jacobian operator a H u  - zu 
J(H,JI) = G a y  ayax 

v = la + +a the two-dimensional nabla operator ax Jay 
(VHVJI) the two-dimensional scalar product 

+ 
(rotT) the vertical z-components of rot; 

the latitudinal variation in the Coriolis 
parameter f 

The 8-term will be neglected in subsequent calculations. 

Boundary conditions for equation (3.26) can be found by assuming 

that the coast of the sea is described by an analytical curve To(x,y). 

One can choose two directions, normal 

curve, as shown in fig. 7. With this assumption the boundary condition 

( 3.2 3 ) becomes 

and tangential 2 to this 
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= = 0; $ ( s )  = const. = c Mn as 0 Lo (3.27)  

Fig. 7. INTEGRATION CONTOUR IN THE MULTIPLY- 
CONNECTED DOMAIN. 

Thus the problem of finding the mass transport is transformed into 

the elliptical equation for the stream function ( 3 . 2 6 )  which, with 

boundary conditions ( 3 . 2 7 ) ,  constitutes the Dirichlet problem. It 

appears that the task of computing the field of horizontal current is 

now formulated. We have proceeded through the sequence of equations 

beginning with equation ( 3 . 2 0 )  and ending with equation ( 3 . 2 6 ) .  But 

additional difficulties arise when island structures are to be incor- 

porated into the solution. LetT1, r2, ...., rn be the contours 
characterizing the islands inside the main contour ro as shown in 
fig. 7. Then the conditions (3 .27 )  hold on every contour as 

( 3 . 2 8 )  

At this point the problem is unspecified because the values of the 

integration constant are not known. When there are no islands (simply 

connected domain) one can take $ = c as zero and obtain the solu- 

tion of equation ( 3 . 2 6 ) .  This is not the case for the multiply- 

connected domain. It is possible to assign a definite value to one of 

the arbitrary constants of integration co, cl, 

later use we take the value co on contour ro as zero. And thus we 
come to the problem of finding a solution for (3 .26 )  in the multiply- 

connected domain with the following boundary conditions 

ro O 

..., c and for our n 
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55. Solution of the Dirichlet problem for elliptical equations in the 

multiDlv-connected domain 

Let us assume for the moment that the constants c1,c2,...,c are 

known. Equation (3.26) is linear and so are the boundary conditions 

(3.29). This gives us an opportunity to use the principle of super- 

position in constructing the solution of (3.26) as the sum of solu- 

tions of the nonhomogeneous equation (3.26) with homogeneous boundary 

conditions co = c1 - ... = c n 
nonzero boundary conditions c 

In accordance with above the solution of (3.26) is 

n 

- = 0 and the homogeneous equation with 

= 0, c1 # 0 or c2 # 0 or ... or c 
0 n f 0. 

n 
$ = $  + c 

k= 1 'k'k 0 

where $o is the solution of (3.26) with homogeneous 

tions 

(3.30) 

boundary condi- 

(3.31) 

and $k is the solution of the homogeneous part of equation (3.26) with 

boundary conditions 

= 1, Jlj = 0 with j # k, j = 1, ... r n pkl 'k I r j  
(3.32) 

When looking for the solution of the Dirichlet problem in the form 

of the sum (3.301, the boundary values on the contours r l ,  r2, . . . , T  
are defined as 1; however, the values of the constants cl, c2, ..., c 
are still unknown. In order to find them we introduce some auxiliary 

conditions connected with integration along a contour in a multiply- 

connected domain. Suppose we move along the closed contour Tk. On 

arriving at the same point we started from, we observe that the values 

of the field variables have not changed, since there is a steady state. 

Suppose for the stream function that d$ 

level variations that dr; = 0. The last condition in the integral 

form is 

n 

n 

= 0 along rk, and for the 

6 2 ds = 6 (VSds) = 0 

rk rk 

(3.33) 
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The value of such an integral depends on the direction of motion along 

contour rk, as shown in fig. 7. If one performs such an integration 

along every contour rl, r2, ..., Tn, it transpires that there are n 
conditions for determining the n arbitrary constants c 1, C2' ... I cn. 

For this reason one can 

form 

rewrite equations (3.21) and (3.22) in vector 

(3.34) 

Multiplying (3.34) by dt using scalar products and integrating along 

the contour Tk one finds 

(3.35) 

Taking into account the boundary condition for mass transport (3.23) 

and expression (3.33) , equation (3.35) becomes 

I G d s = I  s I M  a s = &  Lwds 

kC rk c2 rk c2an 
(3.36) 

where T ~ , M ~  are the components of wind stress and transport in the 

s direction and c2 = gH 
-t 

At last inserting (3.30) in (3.36) we obtain the final system of 

equations for defining the arbitrary constants cl, c2, ..., c n 
(3.37) 

where k = 1, 2, ..., n. 

s6. Determination of eddy viscosity 

The most important parameter in the problem being considered is 

the eddy viscosity coefficient k. The knowledge of this coefficient 

as a function of wind speed W, density of water p, depth of the sea 

H and the Coriolis parameter f is essential for the calculation of 

the current (since it does not appear appropriate to develop an 

analytical solution). Later we take k from the range 1 to lo3 CGS 

units to obtain the best agreement with observation. 
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The eddy viscosity coefficient's dependence on the above-stated 

parameters was published by Felzenbaum (1960). We will use two ex- 

pressions: 

1. for the shallow sea (in the Ekman sense), when the Coriolis force * 
does not play a significant role 

(3.38) 

2. for the deep sea, when a current does not depend on depth 

(3.39) 2 k2 -8 W = - = ( 4.7 10 = (4.7 w2 2 0  

Equating (3.38) and (3.39) yields 

(3.40) -4 w H, = (8.7 x 10 ) T 

the depth which seperates the two regions for which (3.38) and (3.39) 

are developed. Thus, if the depth of the sea at a given point is H I  

one can use (3.38) or (3.39) according to the following criterion 

if H1 7 H then k = k l ;  if H1 < H then k = k2 (3.41) 

In section 4 the constant R1 was involved in connection with 

bottom stress. This constant for small depth can be calculated by 

means of the Ekman results (1905) 

(3.42) 
ak k 

R 1 = 2 = 7  

The order of magnitude of R, is usually to CGS units. In 

this calculation we experimented with some values of R1 over the range 

(19621, that the small changes in R1 do not play a serious role in 

the final value of mass transport. 

to CGS units and came to the same conclusion as Lauwerier 

57.  Some simplified models 

To begin with let us take a rectangular sea with the sides a=200 km 

along the x-axis and b=100 km along the y-axis. Our purpose is to 

learn about current distributions in connection with different winds, 

bottom slopes and the presence of islands in the sea. 

"Note that our original definition of the shallow sea is connected 
with the absence of a baroclinic effect. 
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A. Analytical solution 

For simplified conditions - constant depth and a not very much 
complicated wind field - an analytical solution may be derived. 
Assuming a steady and uniform wind acting in the positive x-direction 

equation ( 3 . 2 6 )  takes the  form 

R,AJ, = 0 (3.43) 

With the boundary condition (3.27) the mass transport components in 

the domain of integration are Mx = 0, My = 0 and the system of 

equations (3.21) , (3.22) simplifies to 

(3.44) 

From (3.44) the water elevation is described by 

~ (XI 

(3.45) s a  c = -  'z - x) 
gH 

If one assumes a constant depth of H = 5 0  m and steady winds blowing 

in the positive x-direction but with speed varying along the y-axis 

(Fig. 81, the equation (3.26) for the stream function takes the form 

(3.46) 

with boundary conditions 

Taking the wind speed W = Wx = qy, equation (3.46) can be rewritten 

as 

AJ, = k'y (3.481 

where k' = T. The solution of (3.48) has already been found in 
elasticity (see Kac, 1956) as 

2 

W 

nr nr nr 
b 2b X (-'In sinh-x sinhFy /sinhg-a (3.49) J, = k'd(y2 - b2) - k'Fn=o 7 

At the same time a numerical solution of equation (3.46) can be 

found by transforming the equation into finite difference form with 

the help of expression (2.13) 
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- R1 1 (XI ) (3.50) 
h 
2 (' j+l , k+' j-1 , k" j , k+l+'j, k- r4' j , k) = 2h ( = s  , j , k+l-'s , j , k-I 

where x = y = k is the mesh size and j,k the mesh point with the co- 

ordinates x and y respectively. The solution of equation (3.50) can 

be obtained by the iteration method if one takes (3.50) in the form 

This iteration scheme will be convergent since condition (2.55) is 

fulfilled here. 

The results of the computation are plotted in fig. 8. The a-symmetry 

in the distribution of the streamlines is at once seen to be associated 

with the wind distribution along the y-axis. 

Since the mass transport is known, we can now find and ay as from 
equations (3.21) and (3.22). Inserting these values in equation (3.20) 

one obtains the current. The surface current, calculated in such a way, 

is given in fig. 9. Maximum values of current (up to 150 cm/sec) are 

observed in that part of the sea where the wind is strongest. The 

strong currents are not only due to the action of the wind, but also 

to the slope which is large. This can be seen at the bottom of fig. 9 

where the currents appear to be due only to the slope, with values up 

to 70 cm/sec. The dependence of the current on depth is shown in 

fig. 10. This is at the point with co-ordinates x = 120 km and 

y = 20 km in fig. 8. 

The vertical distribution of the current apparently has no connection 

with the Coriolis force. To complete this analysis we would like to 

stress the fact that such a strong curl of wind stress is rather un- 

usual for steady state conditions in nature. 

B. Constant wind stress and non-uniform depth 

Assume that the depth of the sea is varying along the x-axis as 

H = (2.5 x 10-4)~ + (25 x 10 ) cm, and wind is blowing to the north 

with the constant speed of W = W = 8 m/sec. Equation (3.26) is now 

changed into 

2 

Y 

(3.52) 

In this equation we retain for the moment expression BE a$ to show 
the well-known fact that the variations of the depth can give rise 
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IN A RECTANGULAR SEA WITH CONSTANT DEPTH. THE NUMBERS ARE IN MILLIONS OF TONS PER SECOND. 

8. STREAMLINES OF THE VERTICALLY INTEGRATED HORIZONTAL MASS TRANSPORT OF THE WIND-DRIVEN CIRCULATION 
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Fig. 9. SURFACE CURRENT CORRESPONDING TO THE WIND PATTERN IN FIG. 8. 
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CURRENT VELOCITY 
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Fig. 10. CURRENT VELOCITY AS A FUNCTION OF DEPTH AT THE POINT 
x = 120 km, y = 20 km IN FIG. 9. 

to an intensification of the current at the coast (Neumann,1958; 

Garner et al., 1962). Stommel (1948) explained the western intensi- 

fication by using 62, but from equation (3.52) it is seen that the 
6-effect can be compensated when 

(3.53) 

Thus if the depth is varying as H = H exp(e) we should not observe 
O R1 any intensification of the current at the coast. Further on we will 

put 6% = 0, and will study the a-symmetry in the flow due to the 

non-uniform depth. 
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Fig. 11 .  STREAMLINES OF THE VERTICALLY INTEGRATED HORIZONTAL MASS TRANSPORT OF THE WIND-DRIVEN 
CIRCULATION IN THE SEA WITH NONUNIFORM DEPTH H, H = 2500 + 0.00025~ (cm). THE NUMBERS ARE GIVEN 
IN MILLIONS OF TONS PER SECOND. 
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It is observed also that in the equation ( 3 . 5 2 )  wind stress T L ~ )  

is coupled with bottom slope and so the sign of the forcing function 

is dependent on the bottom slope. 

A difficulty arises at once if one wishes to obtain the solution 

of equation ( 3 . 5 2 )  by the iteration method, because the coefficients 

of the first derivatives are variable. We shall use here the method 

of forward-backward derivatives described by equation ( 2 . 1 8 ) .  

The computed stream function is given in figure 11. Since wind is 

constant one can combine the non-uniform distribution of the stream 

function with the bottom slope. In fig. 12 the surface current is 

shown.The intensification of the surface current is observed at the 

southern shore. At the same time a comparison of fig. 11  and fig. 12 

shows how the direction of the. surface current and the direction of 

the vertically-integrated flow differ from each other. This feature 

gives rise to the rapid change of the current direction with depth 

as shown in fig. 1 3  ( at the point with co-ordinates x = 1 2 0  km, 

y = 2 0  km in figures 11  and 1 2 ) .  

CURRENT VELOCITY 
(em /sec) 

SOL 
DEPTH ( m )  

Fig. 1 3 .  CURRENT VELOCITY AS A FUNCTION OF DEPTH AT 
THE POINT x = 1 2 0  km, y = 2 0  km IN FIGS. 11,12.  
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Fig. 14. STREAMLINES OF THE VERTICALLY INTEGRATED HORIZONTAL MASS TRANSPORT OF THE WIND-DRIVEN CIRCULATION 
IN THE SEA WITH AN ISLAND. WIND PATTERN AND DEPTH AS IN FIG. 
SECOND. 
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C. Uniform depth, strong curl of the wind stress and the presence 

of an island 

Here we take again case A but with an island introduced within 

the main contour (figs. 14 and 15). The domain of integration is no 

longer simply connected, and the solution of equation (3.46) is 

J, = 6 ,  + C1Q1 

where c1 can be found from equation (3.37) as 

(3.54) 

(3.55) 

The results of the computation of the stream function are shown 

in fig. 14. The flow is similar to that in fig. 8 ,  but the island 

gives a certain local redistribution in pattern. Of particular in- 

terest is the pattern on the downcurrent side of the island. The 

change in the streamline pattern gives the change in direction and 

speed of the surface current around the island (fig. 151, and also 

gives the change in vertical distribution of current, as shown in 

fig. 16 (at the point with the co-ordinates x = 120 km, y = 20 km 

in figs. 14 and 15). This probably signifies a special type of flow 

around an island as was predicted by Stockman (1966). 

§8.  Steady wind-driven circulation in the Baltic Sea 

Let us turn to the more realistic case and calculate currents in 

the Central and Southern Baltic (neglecting the Gulf of Bothnia). 

If we take a mesh size equal to 2 0  km, we will be able to take into 

account two islands: Bornholm (B) and Gotland (G) (figs. 17 and 18). 

Two cases are examined, one for a constant wind of 10 m/sec 

blowing towards the east and a second with a constant wind of 10 m/sec 

blowing towards the south. In these cases for the nonhomogeneous 

part of equation (3.26) only the terms due to coupling between wind 

stress and bottom slope are present. The solution for the stream 

function of the horizontal mass transport is a sum of three terms 

(3.56) 
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Fig. 1 6 .  CURRENT VELOCITY AS A FUNCTION OF DEPTH 
AT THE POINT x = 120 km, y = 20 km IN FIG. 14. 

Constants c1 and c2 can be found by the solution of two linear 

equations ( see equation 3.37) 

(3.57a) 

(3.5713) 

The main difference between solution (3.56) and the solutions ob- 

tained in section 7 is not only due to the presence of a second island, 

but also to the more complicated bottom slope. The bottom slope in 

the Baltic (and in every real sea) changes from positive to negative 



A CONSTANT WIND IS BLOWING 
TOWARDS EAST (W = 10 m/sec). 

TONS PER SECOND. 
THE NUMBERS .ARE IN MILLIONS OF 
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0 

GERMANY POL A N D  

Fig. 17. STREAMLINES OF VERTICALLY INTEGRATED 
MASS TRANSPORT OF THE WIND-DRIVEN CIRCULATION 



Fig.  18. SURFACE CURRENT I N  THE CENTRAL AND 
SOUTHERN BALTIC. A CONSTANT W I N D  I S  BLOWING 
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values and coupling with the wind stress (see equation ( 3 . 2 6 ) )  gives 

a complicated form for the solution of the equation for the stream 

function. 
(X)%L thus 

ay HI The coupling term in equation ( 3 . 2 6 )  has the form T~ 
aH the sign of this term will depend on -. This can be seen in fig. 17, 

since, roughly speaking, the depth of the Baltic Sea is increasing 

towards Gotland Island from both the southerly and northerly directions. 

Close to the island aH = 0, and thus there are two large gyres in 

fig. 17. The gyre in the northern part of the sea rotates in a clock- 

wise direction and the other in the southern part rotates in an anti- 

clockwise direction. There are also small gyres connected with local 

changes in the bottom slope. Now that we have the value of the stream 

function we can compute the surface current by means of our usual 

method. The result is presented in fig. 18. 

aY 

aY 

The magnitude of the current speed is generally in the range of 

10 cm/sec to 2 0  cm/sec, but near to Bornholm Island and the southern 

coast of the Baltic one observes that the magnitude varies from 

5 cm/sec to 40 cm/sec; here the directions of the velocity vectors 

indicate also an anti-clockwise circulation. 

The vertical distribution of current (Fig. 1 9 )  at the points 1, 2 

and 3 in fig. 18 shows additional features. 

At.the points 1 and 2 the strong variation in current direction and 

speed with depth is noted. This is probably caused by the difference 

in behaviour of the two current components ( the current due to the 

wind stress is decaying faster with depth than the current due to the 

slope). 

does not change from the surface to the bottom. 

At point 3 where the water is shallow (40 m) the current direction 

Next the computation for the second case was carried out (wind 

blowing towards the south). Here the wind stress was coupled with the 

east-west component of the bottom slope g .  Again two large gyres 
appeared (Fig. 20); one in the eastern part of the sea rotating in 

a clockwise direction and the other in the western part rotating in 

an anti-clockwise direction. 

The flows around Bornholm Island and in the Gulf of Finland have 

a different appearance associated with the local changes in the bottom 

slope. The surface velocity is shown in fig. 21. 

Again, in general, values of the current are in the range of 10cm/aec 
to 20 cm/sec, but in the Bornholm Basin they change from 5 cm/sec to 

50 cm/sec. The current pattern indicates here a clockwise circulation. 





Fig. 21. SURFACE CURRENT IN THE CENTRAL AND SOUTHERN 
BALTIC. A CONSTANT WIND IS BLOWING TOWARDS THE SOUTH 
(W = 10 m/sec). 

GERM ANY POLAND 
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It should be mentioned that there may possibly be an abnormal flow 

around Bornholm, as may be seen from figs. 1 7  and 20, but our numeri- 

cal results should be considered very carefully here, since the size 

of the island is near the chosen mesh size ( 2 0  km), and therefore the 

numerical evaluation of the contour integrals (3.57) may involve a 

considerable error. 

To complete the above description, the vertical distribution of 

current is shown in fig. 22  (at the points 1 and 2 in fig. 2 1 ) .  As 

before the current undergoes large changes in direction and magnitude 

over the depth. To clarify this phenomenon we split the current into 

its two components, one due to the wind stress vT and the other due 

to the surface slope vs. Absolute values of these components are shown 
in fig. 23. We observe here the important feature of Ekman's theory, 

the existence of two boundary layers: one for the vT component at the 

surface and the other for the vs component at the bottom. 
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It is worth-while noticing that the surface boundary layer in 

Ekman's theory is connected with friction depth D where 

2k 
Pf 

D = (-) (3 .58 )  

Since the depths H are 110 m and 1 6 5  m at points 1 and 2 respectively, 

and the wind speed is 10 m/sec, we can use expression (3 .39 )  for 

determining the eddy viscosity coefficient k and find D = 97 m. At 

this depth the component vT is practically negligible (see fig. 2 3 ) .  

The boundary layer at the bottom which governs the vs component 

can be characterized by the 'bottom' friction depth. To find this 

friction depth by means of (3 .58)  one must know the eddy viscosity, 
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but to determine the eddy viscosity coefficient we need to know the 

wind speed (since the depth is already known). The wind speed can be 

determined through an experimental relation (see Ekman, 1905; Felzen- 

baum, 1 9 6 0 )  between surface current velocity v and the wind speed 

above the sea W 

-2 v= 1.5 x 1 0  
W 

( 3 . 5 9 )  

Now let us imagine for a moment that the current components due to 

the slope in fig. 2 3  were caused by a wind acting at the bottom of 

the sea and that the surface of the sea takes the r61e of the bottom. 

By this reversal of fig. 2 3  the value of the 'surface' current is 

7 cm/sec at point 1. Therefore by (3 .59 )  the wind speed is W = 4.7 

cm/sec and the friction depth ( 3 . 5 8 )  is D = 45 m. At point 2 the 

value of the 'surface' current is 5 cm/sec which results in a friction 

depth of D = 32  m. These values of friction depth are in fair agree- 

ment with the vs components in fig. 23. 

59. The influence of density stratification on the vertical distri- 

bution of current 

To solve this problem we assume that the eddy viscosity coefficient 

is no longer a known and a priori given quantity but is an unknown 

factor to be found in the process of integration of a system of equa- 

tions in which the equation of turbulent energy plays the central 

r61e. By means of this equation the influence of density stratifica- 

tion is also taken into account through the Archimedian force term. 

The density distribution for such a calculation is taken from the 

'in situ' measurements. After the stream function (to compute the 

sea-level components 

equations (3 .16 )  and ( 3 . 1 7 )  one unknown, and that is the eddy visco- 

sity coefficient k. To find it we introduce first of all the equation 

of turbulent energy, for the case of the mean motion in the horizon- 

tal direction and the exchange of momentum in the vertical direction. 

This was presented by Phillips ( 1 9 6 6 )  and Zilitinkievich ( 1 9 7 0 )  as 

f 01 lows 

and x) has been found, we still observe in 
ax aY 

(3 .60 )  

In ( 3 . 6 0 )  b2 is a turbulent 

and kb, k the coefficients 
P 

energy, E denotes the dissipation term 

of exchange of energy and the mass re- 
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spectively. In order to find the relationship of the unknown parame- 

ters k,k ,k and E ,  the Kolmogoroff hypothesis of similarity is used. 

In this way all unknowns are expressed by the turbulent energy b 

and the scale of turbulence 1. 

b p  2 

When analysing the dimensions of the above parameters we obtain 

1-3 u 
1 1  k = colb; K =a k; kb = abk; E = C  

P P  
(3.61) 

where cl, c a ab are non-dimensional universal constants. 
0' 0'  

But again we have a new unknown 1 in equation 

magnitude the expression proposed by von Karman 

(3.61). To find its 

is used 

(3.62) 

where x= 0.4. 
In equation (3.60) the density of the sea water p plays an important 

r61e, and thus it influences the vertical current distribution. The 

density itself can be treated as unknown and then it can be found 

from the equation of diffusion with suitable boundary conditions. 

Or it can be taken as a known value from the 'in situ' measurements. 

The second case is considered in this work. 

The values of the universal constants which appear in equation 

(3.60) were chosen by Zilitinkievich, Lajchtman and Monin (1967) as 

c1 = co4 = c = 0.046; ab = 0.73 (3.63) 

For obvious reasons the information about a is poor and its value 

is only known approximately. In our computations a takes four diffe- 

rent values a = 0, 0.01, 0.1, 1. 

P 

P 

P 
Now we add the relevant boundary conditions to the equations (3.60) 

and (3.62). The simplest boundary condition for equation (3.60) is 

that the decay of the flow of turbulent energy and mass occurs at the 

surface and at the bottom of the sea 

According to the above 

(3.64) 

condition equation (3.60) simplifies to 

(3.65) 
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If the stresses at the bottom and the surface are known, the value of 

the turbulent energy at the boundaries can be found easily. For equa- 

tion (3.62) the boundary condition results from the known fact that 

the scale of turbulence in the vicinity of the bottom is a linear 

function of the distance ( Monin and Jaglom,1965), and so we have at 

the bottom 

(3.66) 
0 

1 = xz 

where zo is a roughness parameter. 

shallow sea is closed. To solve it we proceeded through a set of 

equations, where the main ones were (3.16) and (3.17) which are 

equations of motion with two unknowns: sea-level slope and eddy 

viscosity coefficient. In the first part we found the components of 

the sea-level slope by means of the mass transport equation. In the 

second part the equations (3.60) and (3.62) with suitable boundary 

conditions were introduced to find the eddy viscosity coefficient k 

The integration of the system of equations developed in the second 

part was performed by the iteration method. 

Thus we may say that the problem of a wind-driven circulation in a 

In order to initiate a computational process, the arbitrary value 

of k = k(z) was taken and next the equations (3.16) and (3.171, and 

(3.62) were solved and a new value of k was obtained by means of 

(3.61). The iteration process runs until the following inequality 

takes place 

where j is the iteration index. The solution of the equations (3.161, 
(3.17) and (3.60) in the iteration process was performed by the line 

inversion method (Ch.11, 5 8 ) .  The nonlinear term in the energy equa- 

tion c=coclb /k on every iteration step j was taken in a linearised 
form as 

4 

E = coclbjbj-l 2 2  /kj 
j 

(3.67) 

Let us apply the equations developed above to find the vertical 

distribution of the horizontal current component in the Baltic at the 

position $ = 54°50',X = 19°12', where the depth is about 100 m. 
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We shall use our previous computation of mass transport for a souther- 

ly wind of 10 m/sec. 

Tlie current distribution is analysed as a function of water density 

and of the nondimensional parameter a = k /k which is the reciprocal 

of Richardson's parameter Ri. 
P P  

For the density distribution at the point shown in fig. 2 4  a typical 

summer profile was chosen. As usual two layers of water are present 

here due to the horizontal water exchange with the North Sea. This 

density profile will be used later on for the computation of the 

expression _sap  in equation (3.60). 
P Z  

As in many computations of the wind-driven circulation the eddy 

viscosity coefficient is taken as constant. It seems reasonable to 

compare such a value with the results of the work presented here where 

the coefficient varies with depth. 

Fig. 2 4 .  A SIMPLIFIED SUMMER DENSITY DISTRIBUTION IN THE BALTIC 
SEA AToTHE POINT WITH GEOGRAPHICAL CO-ORDINATES X = 1 9 O 1 2 ' ,  
(J = 54 5 0 ' .  



In fig. 2 5  the v component was computed with constant k equal to 
2 470 cm /sec (dashed line) and is compared with the v component for 

the case when a = 0.1 (continuous line). In the figure a smooth 

curve for the velocity is observed when k = 470 cm /sec. In the case 

where the velocity is computed by taking into account the turbulent 

processes of energy exchange instead of using a constant k strong 

gradients of velocity can be seen. Such a phenomenon in water masses 

is connected with the decay at a certain depth of the components of 

the drift current. The below distribution shows that in the case of 

a constant eddy viscosity coefficient the processes of turbulent ex- 

change are taking place in the total water volume, i.e. from the sur- 

face to the bottom. In reality, these processes should decay at a cer- 

tain depth, due to the action of the Archimedian force and revive 

anew in the very thin layer above the bottom. In conclusion it seems 

important to acknowledge the law of decay of the current in the boun- 

dary layer at the bottom. In the case of a constant coefficient linear 

decay is observed, whereas in the case of a variable coefficient the 

logarithmic law takes place. This last phenomenon is confirmed by 

laboratory experiments. 
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510. The wind- and density-driven currents 

When considering the interrelation of density- and wind-driven pheno- 

mena a natural question arises. Why did we previously consider the 

barotropic component only and reject the baroclinic one? The possibi- 

lity of ignoring the baroclinic component in a shallow sea can be 

deduced simply from the time of development of the wind current and 

the baroclinic current. Drift currents develop in about two days where- 

as baroclinic currents require about 2 0 0  days for full development 

because of the non-uniform horizontal density distribution. This can 

be shown easily using dimensional analysis. Thus it is obvious that 

in a study of wind-driven currents for intervals of up to two days 

the baroclinic component can be ignored. 

The purpose of the present model is to provide an approach when the 

wind-driven and the density currents can be treated as one conjoint 

phenomenon. However, considering that the interrelations between both, 

at the various time periods, are rather complicated, we shall here 

consider those currents that can be called the mean climatic ones. 

Our aim is to investigate the Baltic water circulation during the 

summer season, from the averaged multi-year observations of a) at- 

mospheric pressure fields at sea-level and b) the water density. AS 

the water density distribution will depend on the cyclonic activity 

in the atmosphere, the pre-setting of average data on density in a 

stationary model involves the necessity to pre-set an appropriately 

averaged distribution of wind or atmospheric pressure. 

Generally, we shall base our model on that presented by Sarkisyan 

( 1 9 6 6 )  and the computation performed by Kowalik and Staskiewicz ( 1 9 7 6 ) .  

Proceeding from the equations of motion (1 .29 )  and (1 .30 )  and assuming 
au the steady state at = 0 

describe the horizontal 

a o  
-0  fv = -Po9E - g z  s p  

z 0 

- =  :: 0 we set the following equations to 

velocities in a stratified sea 

(3 .68 )  

0 

ac a a2v 
(3 .69 )  p fu = - p  g-- g - . f p ,  dz + p k 7  

0 0 aY aY z o az 

The wind acting at the surface will cause the stress 

(3 .70 )  
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At the bottom, due entirely to the friction, the velocity decays 

zero 

u = v = o  (3.71 

to 

The solution of the stated problem is easily obtained in the complex 

form 

T sinha(z+H) + =( coshcrz + 1 )  + F(~) 
ka coshaH f coshaH 

s = u + i v = -  

- coshaz - -- sinha (z+H) 
coshaH A zz l z C 0  coshaH z=-H 

(3.72) 

In (3.72) the following notation is used 

0 0 0 
F = - 1 2(- a Spldz + i- a Spldz)sinha(z-rl)dn 

a z P a x , ,  ay n 

As the sea-level slope K is unknown, in order to proceed further, 

we shall integrate (3.68) and (3.69) in the vertical direction to 

obtain the mass transport equations 

(3.73) as -fM = -pgH- + - RIMx - F1 Y ax s 

fMx = -pgH-+ as T$') - RIMy - F2 (3.74) 
aY 

By cross differentiation of these equations and through the appli- 

cation of the continuity equation ( 3 . 2 4 )  we derive the equation of the 

stream function 

aH aF2 aF1 1 aH + H(F - - F2z) + ax - - 
1 aY aY 

where 

0 0 

(3.75) 

0 0 

F1 = g S [E a S pldn]dz : F2 = g S[ ay a S pldn]dz 
-H z -H z 
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In the computational model of the entire area of the basin, we pre- 

set the mean multiyear density distribution for the month of August 

(data elaborated by Kowalik and Taranowska ( 1 9 7 4 ) )  which is the most 

typical summer month. As boundary conditions we take that the normal 

component of mass transport taking into account the water exchange 

with the North Sea and the discharges of the main rivers is known. 

The numerical solutions of (3.75) were performed by means of the 

Gauss-Seidel method (Ch. 11, 57) .  The approximation problem was solved 

by the approach presented in Chapter 11, $1. In the derived pattern of 

circulation a central r61e is played by the baroclinic component of 

the current interacting with the bottom shape. This is due partly 

to the rather small wind velocities during the period concerned (the 

maximum is around 5rn/sec). In fig. 26 we present the distribution of 

sea-level height in the Baltic, since it can be used as a criterion 

to check the correctness of the computations. 

the water level increases from the Danish Straits to the extreme 

limits of the Gulf of Finland. Some weak tendencies to form a closed 

circulation in the horizontal plane are observed only in the Bornholm 

Deep and the Gulf of Gdansk (anticyclonic gyre) and the Gotland Deep 

area (cyclonic gyre) . 

The amplitude of the sea-level is equal to 17 cm. Generally speaking, 

Since water level observations at coastal stations in the Baltic 

have been conducted for many years, it was possible to prepare, among 

others, the average monthly water level distributions along the coast. 

Fig. 27 presents the observed multi-year average distribution of 

sea-levels for the month of August (Lazarenko,l961). 

The water level calculated from our model largely coincides with 

the averaged measurement data from the coastal stations. 

The horizontal current distributions were computed on 15 levels. 

An example in fig. 28 shows the current at the sea surface. The maxi- 

mum speed is distributed as follows: at Om - 9cm/sec, at 3 0  m - Scm/sec, 
at 1 0 0  m - 3 cm/sec, at 140m - 2cm/sec and at 1 8 0  m - 1 cm/sec. Since 

the current caused entirely by the wind penetrates down to a depth of 

100 m, we may conclude that the characteristic density-driven velocity 

is in a range of 1 to 3 cm/sec. This is in fairly good agreement 

with the values which can be derived from dimensional analysis. 

The results presented enable us to say that the diagnostic model 

of climatic circulation, based upon measured density and wind fields 

(or the atmospheric pressure distribution) is a valuable tool for the 

description of real conditions. 
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Fig. 26. CALCULATED SEA-LEVEL, THE NUMBERS ARE GIVEN IN CM. 



Fig. 27. OBSERVED SEA-LEVEL ACCORDING TO LAZARENKO 
(1960), THE NUMBERS ARE GIVEN IN CM. 

511. Different methods to estimate the exchange of momentum in the 

Ekman laver 

The aim of the following paragraphs is to present systematically 

what knowledge exists on eddy viscosity as a decisive parameter in 

current computation. 

In our search for the vertical distribution of the eddy viscosity 

coefficient we shall deal mainly with steady, uniform and horizontal 

flow in the absence of stratification in a horizontally infinite 

and vertically bounded layer of rotating fluid. 

The different ways of description of eddy viscosity and their under- 

The comparison concerns four methods: 

lying hypotheses will be compared and studied. 

a) Eddy viscosity as a function of nondimensional parameters 

b) Constant eddy viscosity based on an empirical relation between 

the wind velocity and the surface current velocity 
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Fig. 2 8 .  WIND-AND DENSITY-DRIVEN CURRENTS AT THE SEA SURFACE. 
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c) A statistical method based on the equations of turbulent energy 

and the scale length 

d) A statistical method based on the equations of turbulent energy 

and the dissipation function. 

Numerical computations show certain differences between methods c) 

and d). They are related to the scale length definition at the larger 

distance from the sea surface. Method d), though the most promising, 

needs further elaboration with regard to the different boundary 

conditions, since the results derived by this method can be well 

apart from what has traditionally been anticipated. 

When speaking about boundary layers in the sea we are dealing with 

two layers, one appears close to the bottom, and in this way reminds 

of flow types occuring in pipes or channels, the other exists at the 

sea surface, where often no analogy to pipe flow exists. 

The consideration throughout will be usually related to a) shallow 

sea, i.e. the depth is small compared with the Ekman depth, accordingly 

bottom and surface boundary layers merge into one layer, b) deep 

sea, i.e. the depth is greater than the Ekman depth. 

explain the different expressions derived for the eddy viscosity 

coefficient as given in $6 and $9. 

The different approaches to be studied will allow us to clarify and 

$12. Dimensional analysis 

Relating the properties of a turbulent boundary layer under neutral 

conditions to nondimensional parameters proved to be very successful 

in the past, see e.g. Csanady (19671,  Blackadar and Tennekes (19681 ,  

Zilitinkevich ( 1 9 7 0 )  . 
To apply the dimensional analysis one may state the following set 

of parameters which determine the flow within the planetary boundary 

layer: 

V, = friction velocity 

f Coriolis parameter 

z vertical co-ordinate. 

z roughness of the bounding 
O surface 

V molecular kinematic vis- 
cosity 

With these parameters it is possible to construct three indepen- 

dent, nondimensional numbers. To give a proper description of diffe- 

rent portions of the flow in the boundary layer the numbers can be 
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constructed in different ways. First of all we may reject the molecu- 

lar viscosity as a parameter by using the Reynolds number 

In natural flows Re >>  1, therefore in agreement with the s-theorem 

(Kline, 1965) these flows do not depend on Re, and the molecular 

viscosity can be omitted from the set of defining parameters. This 

is, of course, true, except when z + 0, or V, + 0,i.e. near bounding 

surfaces. 

Beside the Reynolds number defined above a possibility exists to 

set a 'surface' Reynolds number as Res = V,zo/v. 

to be more appropriate for the scaling of flow close to sea surface 

or bottom. 

Re = V,zh. 

Such a number seems 

With the remaining dimensional parameters two nondimensional numbers 

can be constructed, i.e. the Rossby number Ro = V,/fz, and the ratio 

z/zo. Again one may introduce a 'surface' Rossby number Ro = V,/fzo 

to resolve the properties of the flow in the vicinity of the bounding 

surfaces. 

S 

Therefore, in general, the eddy viscosity k can be described by a 

function of two nondimensional parameters 

In further considerations the origin of our system of co-ordinates 

will be placed at the sea surface (since we shall deal predominantly 

with the surface boundary layer) and the z-axis will be directed 

towards the Earth's centre (left system of co-ordinates). Though in 

the whole book we prefer the right hand system of co-ordinates, we 

deviate from this convention now, since the values of co-ordinates 

related to the sea are negative (Fig. 1). Therefore, e.g., the 

Reynolds number should be written as Re = - V,z/v. To avoid such a 

situation we shall change the direction of the z-axis; in all pre- 

viously derived expressions one has to change z to -z accordingly. 

when z + 0, thus Ro +w and 

Let us first study an asymptote of (3.76) close to the sea surface, 

k/V,z = F1 (z/zo) (3.77) 

A careful analysis of the experimental data shows that in a very 

thin surface layer the molecular forces may play a substantial r61e 

in the exchange of momentum (Kitajgorodski, 1970). Since we do not 

intend to resolve that thin layer in which z o / z  = 1, we shall simply 
assume that beneath a molecular layer z / z  >> 1, and from (3.77) we 

0 



k = CsV,z 
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(3.78) 

where Cs denotes a constant. 

sity coefficient is changing in a linear way with depth. This layer 

is commonly called a constant flux layer (constant flux of momentum). 

Since the stress T is related to velocity by (1.34) the logarithmic 

dependence of velocity on depth in a surface layer follows from (3.78). 

The same holds for the bottom boundary layer. 

From (3.78) follows that in the near surface layer the eddy visco- 

In turn we may put z -t m ,  then from (3.76) follows 

k = V,zF2(V,/fz) (3.79) 

or, because z +. m ,  

2 2 k = c v*z €/V, = CdZ f d (3.80) 

Assuming z in (3.80) as the depth of the Ekman layer D and defining 

the dependence of D on the Rossby number 

D/z = F3(V,/fz) (3.81) 

the Ekman depth is obtained as 

D = CeV*/f (3.82) 

By inserting (3.82) into (3.80) the eddy viscosity coefficient at 

the great depth is derived 

(3.83) 
2 k = CiV, /f 

In (3.80), 

universal constants to be defined later on. 

(3.82) and (3.83) the coefficients Cd, Ce and Ci denote 

From the two derived asymptotes of the general law for the dependence 

of eddy viscosity on depth the following picture emerges: In the 

layers near the bottom and the free surface the exchange of momentum 

can be described by the eddy viscosity coefficient k which is a linear 

function of depth. The rest of the Ekman layer is characterized by 

the constant eddy viscosity coefficient. 
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It is easy to see that this general picture possesses the inherent 

flaws. On one hand in the layers situated close to the bounding sur- 

faces the molecular forces may play a definite r61e, and on the other 

hand between the surface boundary layer, where the linear law prevails, 

and the 'outer' boundary layer of constant eddy viscosity a matching 

layer with an intermediate law should also exist. 

513. Constant eddy viscosity 

Though this approach seems to be a step backward compared with the 

dimensional analysis it may serve two aims, on one side it sets a 

definite magnitude to the eddy viscosity and on the other side the 

vertical distribution of current can be derived in a comparatively 

simple way. 

baum (1960); see also Kowalik (1969). 

The approach we shall present here is the modified idea of Felzen- 

Our aim is to justify the expressions used in 56. To find the eddy 

viscosity distribution we shall base upon the Ekman solution (3.20) 

and on an empirical relation between the current velocity at the sea 

surface Uo and the wind velocity W 

6 = uo/w (3.84) 

The coefficient B is often called 'wind factor'. The knowledge of 
this factor is very obscure. The old data relating surface velocity 

and wind velocity are shortly summarized by Defant (1961). Theore- 

tically from the Ekman solution for an unbounded ocean follows 

uo = T / S  (3.85) 

Assuming -i to be proportional to the wind velocity W 

uo = g l w / m q  = wg (3.86) 

Thus (3.86) shows the variation of g along the geographical lati- 

tude @. The data gathered by Krasiuk and Sauskan (1970) and the 

measurements performed by Tomczak (1964) display a dependence of g 

on wind speed. At small wind speeds 6 1  0.015: its magnitude grows 

up to 0.03 - 0.04 at 30 m/sec wind speed. 
Based on available data we have set a tentative expression to take 

into account the dependence on the wind velocity at mean latitudes as 
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B = 0.013 + 7 x 10-6W (cm/sec) (3.87) 

By introducing the velocity from (3.20) in (3.84) the implicit 

equation to define an unknown value k is obtained 

(ss*)1/2 = uo = WB (3.88) 

* 
In (3.88) S is a complex conjugate of S. 

A general implicit equation which follows from (3.88) was solved by 

Felzenbaum (1960). We approach the problem by notions of the deep and 

shallow sea, since these cases can be treated analytically. 

A Shallow sea case (H -+ 0, or equivalently f +. 0) 

Equation (3.20) is simplified 

Integrating (3.89 ) and (3.90) 

and then introducing the stream 

components are obtained 

to the following form 

3-L (3.89) ax 

(3.90) - ac 
aY 

from the sea surface to the bottom 

function through (3.25) the sea slope 

(3.91) 

(3.92) 

The aim of the above procedure is to introduce the components of slope 

in (3.89) and (3.90) so that eventually the current at the free sur- 

face will be a function of stress and some other parameters but not 

of the slope, which is difficult to obtain. 

An equation for the unknown function JI in (3.91) and (3.92) is deriv- 
ed by cross-differentiation and subsequent subtraction of these equa- 

tions 
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In the case of riX) = const., 'iy) = const. and H = const. (3 .93 )  
reduces to 

A$ = 0 (3 .94)  

The boundary condition for this problem follows from the impermeability 

of the coast 

$ = O  (3 .95)  

With such a condition the solution to (3 .94 )  is $ = constant. The slope 

components (3 .9  1 ) and (3 .92 )  are therefore 

When (3 .96 )  is introduced in (3 .89 )  and (3 .90 )  the components of the 
velocity at the free surface result in 

Finally inserting (3 .97 )  into (3 .88 )  

the eddy viscosity coefficient is expressed as 

.. 1 / 2  

Assuming the dependence of T~ on the wind W in the form 

2 
TS = yw 

(3 .97 )  

(3 .98 )  

(3 .99)  

(1 .65 )  

the above expression can be rewritten as 

k = yWH/4B (3 .100)  

In the case of a horizontally unbounded sea (==O, ar, s = O )  the eddy visco- 
aY 

sity coefficient is equal to 

k = yWH/ f3 (3 .101)  
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Comparing (3.101) with the previously derived expression (3.78) it 

is observed that the actual depth in (3.78) is superseded by the over- 

all depth H in (3.101), while the wind velocity W and friction velo- 

city V, remain for the same parameter. Therefore in principle the model 

with constant eddy viscosity can be applied to define the C constant s 
in expression (3.78 . 

B. Deep sea case (H * 

In this case expression (3.20) is expressed as 

u=cllkJZ e x p ( - a l z ) - [ ~ ~ X ) s i n ( . i r / 4  - alz) + T ~ ~ ) c o s ( . ~ ~ / ~  - alZ)] 

(3.102 

Again by integrating from the surface to the bottom and subsequently 

introducing the stream function the sea slope components are obtained 

(3.104) 

(3.105) 

Implying the cross-differentiation techn que and solving as we did Y 
before an equation for the stream function’in a basin of uniform depth 

the same result is obtained, i.e. 

Therefore the system (3.1041, (3.105) reduces to 
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( 3 . 1 0 6 )  

but in this case if ( 3 . 1 0 6 )  is inserted into ( 3 . 1 0 2 )  and ( 3 . 1 0 3 )  respec- 

tively, it will not give any input, because, when H + m, the slope 

components ( 3 . 1 0 6 )  disappear. 

Thecomponents of the current at the sea surface based on ( 3 . 1 0 2 )  and 

( 3 . 1 0 3 )  

( 3 . 1 0 7 )  

can therefore be introduced in ( 3 . 8 8 )  

In order to derive the eddy viscosity coefficient in the deep sea, 

we get then 

k = (y/B)2-W2/f ( 3 . 1 0 9 )  

Again ( 3 . 1 0 9 )  is quite similar to expression (3 .831 ,  though it is 

quite clear that cD is not equal to the constant used in ( 3 . 1 0 9 )  , 
because the underlying phenomena are of a different nature. 

Ekman layer, while ( 3 . 8 3 )  does only hold in the outer portion of the 

same layer. 

Expression (3 .109 )  describes the exchange of momentum in the whole 

Since ( 3 . 1 0 0 )  holds in the shallow sea and (3 .109 )  in the deep one, 

it is possible to compare both expressions and to find (Kowalik, 1969)  

the depth which divides the regions where ( 3 . 1 0 0 )  and (3 .109 )  can be 

applied respectively. If H < HCr, (3 .100 )  should be used, if on the 

other hand H > HCr, (3 .109 )  is appropriate. 

5 1 4  A statistical method based on the equation of turbulent energy b2 

and the scale length 1 

The method is known as the closure of the set of equations of mo- 

tion and continuity with the additional hypotheses which follow from 

the statistical theory of turbulence (Launder and Spalding, 1 9 7 2 ) .  
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At first we consider an equation for the turbulent energy. This 

equation like many others arises from the general transport equation 

for a scalar as a dependent variable. The aim is to include a wide 

range of turbulent processes in a simple equation with a certain number 

of unknown parameters which subsequently can be defined by experimental 

results. In all equations isotropy is usually assumed (Willebrand, 

1974)  and the flow conditions are set in close proximity to an equi- 

librium regime characterized by the inertial range of turbulent flow. 

An intermittent laminar-turbulent or an internal wave flow can be 

described by the transport equation but still some work is required 

to apply the postulates taken from the near-wall turbulence into 

oceanic conditions. 

The general transport equation for the quantity Q can be written 

as 

- :t = Production (Q) - Dissipation (Q) + Diff. (Q) (3 .11 1 )  

From this simple principle the equations of energy dissipation are 

derived, see e.g. Daly and Harlow (19701, Nakayama ( 1 9 7 0 ) .  The purpose 

of building an equation in the above form is not to learn something 

about detailed features of turbulence but to find possibly the quan- 

tities that are characteristic for the mean flow, i.e. the distribution 

of velocity and stresses. The idea behind equation (3.111) is to relate 

the local properties of mean turbulence to nonlocal effects such as 

diffusion and advection. The local hypotheses which are sufficient 

in describing the laminar motion and on which the idea of the virtual 

eddy viscosity is based are not adequate to describe the turbulent 

flow consisting of the broad spectra of eddies. 

The basic equation for the kinetic energy b2 of turbulent flow 

(3.60) we take in simplified form 

(3 .112)  

It is usually considered together with the additional relationships 

which follow from the Kolmogorov hypothesis of similarity (3.61) and 

the scale of turbulence obtained from Karman's hypothesis (Kline, 1965)  

(3.113) 

If the x-axis is directed along the surface velocity, expression (3.113) 

takes the simplified form 
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(3 .114 )  

Omitting the diffusion term in ( 3 . 1 1 2 )  the length scale is also easily 

described by the energy 

(3 .115 )  

Though the formula (3 .114 )  is closing the system of equations, from 

the numerical point of view the second derivative in the denominator 

makes Karman's hypothesis useless: nevertheless, analytically still 

some consequences can be sought. 

steady flow and negligible molecular viscous effects (Kline, 1 9 6 5 ) .  

Therefore only under very stringent conditions formula ( 3 . 1 1 3 )  may be 

applied to an unsteady or oscillatory flow. To comply with the re- 

quirement of small viscous effects it is enough to deal with big 

Reynolds numbers 

On the other hand in the derivation of (3 .113 )  von Karman assumed 

Re = Vl/ V ( 3 . 1 1 6 )  

At the wall where 1 + 0 and v + 0 ( 3 . 1 1 6 )  cannot hold, thus at a 

small distance from the wall the similarity law developed by von 

Karman must be superseded by a different approximation. 

Now we can add the relevant boundary conditions to the equations 

( 3 . 1 1 2 )  and ( 3 . 1 1 3 ) .  These conditions are formulated by equations 

( 3 . 6 4 ) ,  ( 3 . 6 5 )  and ( 3 . 6 6 ) .  

The magnitudes of the universal constants in the similarity rela- 

tionships ( 3 . 6 1 )  are usually determined by means of a hypothesis found 

by Blackadar ( 1 9 6 2 ) ,  the assumption of the neutral velocity profile,i.e, 
a distribution of velocity is related to a non-stratified fluid. Such 

an assumption leads to dependence ( 3 . 6 3 ) .  Some time ago Zilitinkevich 

et al. ( 1 9 6 7 )  estimated c as 0 .046 ,  recent values obtained through 

the examination of tube flows give c = 0.08, therefore co = 0.532 

and c, = 0 . 1 5 0 .  

515.  Shallow, horizontally unbounded sea 

By directing the x-axis along the wind and, as in the shallow sea 

H + 0, the equation of motion with variable eddy viscosity reduces to 

(3 .117 )  
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The proper boundary conditions are set by (3.18). The equation of 

energy we shall use in a simplified form assuming the process of 

energy diffusion being of secondary importance. This allows us on one 

hand to solve the problem analytically, and on the other hand to ex- 

plain the way of choosing the universal constants through the neutral 

velocity distribution as expressed by (3.63). 

As a solution of (3.117) with boundary condition 

inserted into the energy equation 

n 

together with (3.61) we get 

b = / ; s / p q i  

Next , (3.1 14) together with (3.11 8) provides 

ak - =  
dz -Xcob 

thus 

(3.118) 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

Comparing (3.122) with the distribution in neutral flow (Blacka- 

dar , 1962 ) 

we find 

c o / 4 q  = 1 
0 

or denoting cocl = c it follows 

c4 = c and c3 = c1 
0 0 

(3.123) 

(3.124) 

(3.125) 

From the above consideration it is clear that the neutral distribution 

is strongly based on the rejection of the diffusion term in (3.112). 
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We shall see later on that such a procedure is not quite valid. 

The length scale from (3 .122 )  and (3 .61 )  is expressed as 

1 = k/c b = x( H - Z )  (3 .126 )  
0 

Finally, integrating ( 3 . 1 1 7 )  with the eddy viscosity given by (3.123) 

we arrive at 

(3.1271 

where z denotes a bottom roughness parameter. 
0 

To our disposal we still have an empirical boundary condition, 

(3.88). It can be used to find a bottom roughness, or at least to 

clarify which zo should be used to derive the proper value of velocity 

(Kuftarkov and Felzenbaum, 1 9 6 8 ) .  

Thus inserting (3 .127 )  into (3.88) at z = 0 we obtain 

z = H exp(-*) = H exp(-F) 
TS 

0 
(3 .128)  

2 Setting in ( 3 . 1 2 8 )  H = 5 0 0  cm, W = 10 m/sec and 'I = 2 g/cmsec 

the bottom roughness becomes equal to 1.75 cm. 

The main conclusion from the formulae derived above is that in t he  
shallow sea the turbulent energy is constant throughout depth. This 

leads to the linear dependence of the eddy viscosity and the scale 

length on depth and the logarithmic velocity distribution. 

Now we shall turn to the complete case of the energy equation w i t h  

the diffusion term included and we shall check our previous conclu- 

sions. 

The system of equations (3 .112 )  and (3 .117 )  has now to be solved 

by a numerical method. To this we include the time term in (3 .112)  

and integrate this equation in time together with the equations of 

motion until the steady state occurs. The nonlinear terms are appro- 

ximated by the explicit numerical scheme 

1 
(B*) a l a d  2 1  

gl+l - B 1 au av 
= k [(GI + (z) ] - c c -+ -(k -) ( 3 . 1 2 9 )  T o 1 ki az az 

here 

B = b  2 

t = 1T 

T = time step of numerical integration 

1 = 1, 2 ,  3, ... 
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A difficulty appears, as we stated previously, in the numerical 

integration of ( 3 . 1 1 4 ) .  Therefore we take the scale length of turbu- 

lence as 

l = C z  ( 3.1 3 0 )  1 

with posteriori choice of C1 from condition ( 3 . 8 4 ) .  

by ( 3 . 6 1 ) .  The results are plotted in fig. 29, here the value of 

energy b is constant throughout depth and the distribution of eddy 

viscosity is almost linear, while the development of the steady 

state solution is presented by plots after 5 min., 2 h and 5 h of 

integration. The results are compared with the previous analytical 

solution which is shown in fig. 29 by broken lines. 

The eddy viscosity coefficient and the dissipation were calculated 

In both cases the distribution of velocity and energy is quite 

close, but in the pattern of eddy viscosity displays a pronounced 

difference, especially in the vicinity of the free surface. 

The presence of the diffusion term involves therefore the definite 

difference in the solution. 

516. Two-layer model 

From the above considerations emerges a notion of two layers with 

different laws of momentum exchange, i.e. a near surface layer and 

an outer layer. We shall explore the idea through the set of equations 

introduced in the previous paragraphs. 

As before, the x-axis will be directed alongside the wind, so that 

the equation of motion in the surface boundary layer will simplify 

to (3 .117 )  with boundary condition ( 3 . 1 1 8 ) .  At the bottom of the sur- 

face layer z =6 the continuity of velocity and stress holds. By assum- 

ing in the surface layer the linear law for the eddy viscosity and 

in the outer layer the constant eddy viscosity k6, the overall law 

can be represented as 

The solution of (3 .11  7) 

(3.131 

(3.132)  

is therefore a modified logarithmic law. 
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AT THE BOTTOM K = 1 cm /sec, zo = 1 . 7  cm. 
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Solving next the system (3.16) and (3.17) (with % =  0, % =  0) 
aY 

in the outer Ekman layer from z = 6 to z + m ,  we arrive at 

u = u exp[-al (z-6)].cosal (2 -6 )  6 
(3.133) 

v = v6exp[-al (z-6)]*sinal (2 -6 )  

In (3.133) u6 is the velocity (3.132) at z = 6. 

Due to continuity of stress at z = 6 

(3.134) 

6’  one can calculate k6 or u 

the way of calculating a constant eddy viscosity coefficient. Let us 

make therefore a proper modification of (3.109) to obtain the constant 

eddy viscosity in the outer Ekman layer. Since 

In case the upper boundary layer is absent we have discussed above 

(3.135) 

one may think along the following lines; throughout the logarithmic 

surface layer the stress is constant, therefore at z = 6 the stress 

is equal to the wind stress, but the surface current U in (3.135) 

at depth z = 6 should be superseded by u6, therefore (3.135) can be 
rewritten as 

0 

2 4  2 2 2  k = y W /u6f = rs/u6f 6 (3.136) 

This expression follows, of course, straightforward from (3.134). 

Though (3.136) may help to understand the increase of exchange of 

momentum due to the presence of the logarithmic surface boundary layer 

(u, < Uo, thus k6 > k), it does not take us nearer to the overall 

solution of the problem. 

Introducing u6 from (3.134) in (3.132) leads to 

(3.137) 

at z = 6. Here still two unknowns occur, i.e. the thickness of the 

logarithmic layer 6, and the eddy viscosity in the outer Ekman layer 

k6’ 



104 

One possibility is to apply (3.61) to express the eddy viscosity 

coefficient as 

k = c i 5  (3.138) 
0 

where i and; are the scale length and the energy averaged over the 

depth. The vertical integration will be carried out from z = 6 to 

z = H, where H - 6 = D is the Ekman depth. 

First, taking for 1 von Karman's expression (3.114) we obtain 

Secondly, by integrating (3.112) the energy is estimated as 

(3.139) 

(3.140) 

Finally, introducing (3.139) and (3.140) in (3.138) the eddy viscosity 

in the outer layer is obtained 

(3.1411 

This allows us together with (3.137) to find k6 and 6. The values 

derived in this way are much in excess of what is usually anticipated 

for the wind W = 10 m/sec, F 2; because k6 = 2555 cm /sec and 

6 = 4176 m. One may therefore conclude that the whole Ekman layer is 

included in the logarithmic layer. 

The coefficient (3.141) compared with the case of constant eddy 

2 

viscosity (3.135) gives a completely distorted picture of current 

distribution. 

The most probable error is due to the length scale assumption; the 

von Karman's hypothesis - though useful in the surface boundary layer. 
is providing an overestimated length scale in the outer layer. 

Such a conclusion can also be anticipated from the fact that the 

von Karman's relationship is based on the Reynolds number similarity 

(Kline, 19651, while the dynamics of the outer layer are governed by 

the Rossby number. 

Another possibility is to apply a different hypothesis for the 

length scale. We shall assume here the expression of Mellor and Durbin 

(1975) / H  - 
1 = 0.1 '.flzlb2dz/ J'b'dz 

6 6 
(3.142) 
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Our choice follows from the actual fact that Mellor’s and Durbin‘s 

( 1 9 7 5 )  formula for the eddy viscosity in a non-stratified fluid sets 
the coefficient 0 . 1  in ( 3 . 1 4 2 )  when compared with the formulae of 
constant eddy viscosity ( 3 . 1 0 1 )  or ( 3 . 1 0 9 ) .  Therefore we may assume 
that (in a non-stratified fluid) the approach taken by Mellor and 

Durbin is consistent with the approach of Felzenbaum ( 1 9 6 0 ) .  
From ( 3 . 1 1 2 ) ,  by means of ( 3 . 6 1 )  and (3 .1331,  the turbulent energy 

distribution in the outer layer can be derived as 

( 3 . 1 4 3 )  

Inserting ( 3 . 1 4 3 )  into ( 3 . 1 4 2 )  the length scale follows as 

( 3 . 1 4 4 )  

Taking ( 3 . 1 4 4 )  as the new length in ( 3 . 1 3 8 )  and next checking ( 3 . 1 3 9 )  
we see that in ( 3 . 1 4 1 )  should be superseded by 0 . 1  

( 3 . 1 4 5 )  

For the wind W = 1 0  m/sec (T = 2 )  and f = 
2 sity is equal to 159.7 cm /sec. The thickness of the logarithmic 

layer derived from ( 3 . 1 3 7 )  

sec-’ , the eddy visco- 

( 3 . 1 4 6 )  

provides 6= 6.4  m, while the Ekman depth calculated from the expres- 
sion a l D  =T is equal to 56.1  m. 
The general picture is plotted in fig. 30.  Here the results of a 

two-layer model (broken line) are compared with the model of a con- 

stant eddy viscosity coefficient (continuous line). 

517.  A statistical method based on the equations of energy and 

dissipation 

The weakness of the methods presented above lies mainly in the scale 

length notion. Therefore in this paragraph we shall explore shortly 

the possibility of closure through the turbulent dissipation equation. 

To the set of equations, instead of the scale length, the dissipation 

equation is adjoined (Jones and Launder, 1 9 7 2 )  
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EDDY VISCOSITY - k 

DEPTH (m) 

Fig. 30. DISTRIBUTION OF EDDY VISCOSITY 
IN THE TWO-LAYER MODEL (DASHED LINE) AND 
IN THE ONE-LAYER MODEL (CONTINUOUS LINE). 

2 2 2 
L(k% + c k- [ (=) 
a z  a z  b2 ‘b2 

- 0  + (s) 3 - c - - E au 

where 

c = 2.0(1.0 - 0.3exp(-Re ) )  
2 

E 

(3.147) 

(3.148a) 

k = ~~0.08:~; ck = exp(-2.5/(1.0 + Re/50)) (3.148b) 

c2 = 1.55 (3.148~) 

The local Reynolds number in (3.148) is estimated by 

(3.149) Re = *  b4 
Practically in natural flows the local Reynolds number is always large 

so that 

cE= 2.0; Ck = 1.0 (3.150) 

result. Equation (3.147) was used to predict the near-wall boundary 

layer. Judging from our previous experience it may predict properly 

the logarithmic boundary layer in the sea. 
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To describe the whole Ekman layer a modification of the above 

equation is surely needed. To resolve the flow in the deep sea Marchuk 

et al. (1976) proposed 

(3.151 1 

We start again by solving the problem in the shallow sea by includ- 

ing the dissipation (3.147) in the set of equations. For the numerical 

solution of (3.147) we shall develop an explicit numerical scheme in 

the way it has been done for the energy equation (3.129). To start 

with the unknown equation, it is good to compare the results derived 

by (3.147) and the previous result from the scale length hypothesis. 

The main problem which arises is to formulate a proper set of boun- 
dary conditions. To comply with (3.611, energy and length should be 

specified at the bounding surfaces. The magnitude of energy can be 

estimated by (3.65), but one may have a quite difficult problem to 

define the scale length. In order to find at least in the family of 

solutions given by (3.147) one related to the hypotheses mentioned 

above, we fix in every numerical experiment the eddy viscosity at the 

free surface as ks = 211 cm /sec and allow the eddy viscosity at the 

bottom to be variable. The numerical solutions for the velocity, the 

energy, the eddy viscosity and the dissipation are presented in 

fig. -31. 

2 

They show that also the energy and the eddy viscosity distribution 

is quite close to the results obtained by the energy scale method, 

although the velocity distribution is not completely identical. 

Still, to close the overall problem, the surface boundary condition 

should be specified. 

To equation (3.151) one may propose at the free surface 

i.e. a decay 

At the lower 

E’O 

in the flux of dissipation (whatever it may 

boundary in the sea which is deep enough 

(3.152) 

mean!). 

(3.153) 

In this somehow obscure way the overall problem is closed. 

The method to choose the coefficients in (3.151) for the flow in 

the sea is neither clear nor fully proved through a comparison with 

observed data. Still much work on the experimental and the numerical 
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side is to be done. The results derived by (3 .147 )  are far more in- 

teresting than those calculated by means of the linear length scale 

hypothesis. 

When the flow is calculated by (3 .147 )  with the slip condition at 

the bottom, neither the scale nor the eddy viscosity are linear func- 

tions of depth, they show a maximum inside the water column (Ignatova 

and Kvon, 1 9 7 8 ) .  

s18. Influence of the density stratification 

Finally, the possible way of solving the eddy viscosity problem 

in a density stratified fluid should shortly be mentioned. A general 

solution is possible with the set of equations presented above, in- 

cluding the effects of the Archimedian force. 

This approach we have already explored in 99.  

The nondimensional parameters' approach which may help to compre- 

hend the physics is well developed in the description of near-surface 

dynamics of the atmosphere (Lajchtman, 1970;  Turner, 1 9 7 3 ) .  A theory 

of similarity related to the names of Monin and Obukchov ( 1 9 5 4 )  is 

widely exploited there. Though the theory provides certain hints in 

understanding the steady motion, the treatment of nonsteady processes 

is still very unclear. 

layer of a stratified sea in the way it has been done in 511. Here 

we may put aside of V,, z I z o ,  f the additional parameters related to 

a flux of density Q = -p'W' and the Archimedian force gpyp(see eq. 

1 .27 ) .  

We can define a set of parameters to describe motion in the Ekman 

With these parameters we may construct the three nondimensional 

numbers 

(3 .154 )  

In the near-surface layer the number of parameters can be reduced to 

V,, z ,  z 0 ,  g-$, Q, accordingly the flow is there governed by 

Here LM-o denotes the Monin-Obukchov length 

(3 .155 )  

(3 .156 )  

In case the influence of roughness is of secondary importance the 

flow is governed exclusively by Z / L ~ -~. 
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Chapter IV UNSTEADY MOTION - NUMERICAL METHODS 

Mathematical models represent a certain approximation of natural 

conditions. With this idealization, however, the modelling is not 

completed. It is usually found that the solution to these problems 

cannot be obtained in an analytical way. The reasons for this are, on 

the one hand, the nonlinearity of the basic equations and, on the other 

hand, the complicated topography of natural sea areas. Thus, one can 

either introduce further simplifications and schematizations (linea- 

rization of the equations, assumption of an elementary geometry) or 

solve the equations numerically. The first way leads to important basic 

insights. For practical applications only the second way is suitable. 

This last type of model is called a hydrodynamic-numerical model. 

The first step in applying a numerical procedure is the discreti- 

zation of the given continuum (for both, the space and time dimension). 

A numerical computation always produces only a finite amount of in- 

formation at representative points of this continuum. 

The discretization is, in principle, always carried out by covering 

the continuum under consideration (e.g. a tidal period in an estuary) 

with a space-time grid which is one-, two- or three-dimensional depend- 

ing on the model. The grid is characterized by certain grid distances 

for this finite number of grid points: Ax, Ay, Az, At. The unknown 

physical quantities are calculated for each point. In order to do this 

the governing basic equations in the continuous variables are trans- 

formed into difference equations (finite difference technique) or 

normal equations ( finite element method). 

This means that in each case a system of algebraic equations is 

derived with the physical properties at the grid points as the un- 

knowns. 

The solution to this system of algebraic equations is connected 

with new (mathematical) problems. The discretization leads unavoidably 

to approximation errors. This raises the question of the quality of 

a numerical solution. 

In particular two mathematical questions have to be investigated: 

- the agreement of the exact analytical solution and the exact solu- 
tion of the corresponding system of algebraic equations, 

- the agreement of the numerical solution of the system of algebraic 
equations and the exact solution of this system. 

The first question concerns the approximation method, the second 
one the finite accuracy of the numerical calculation (round off 
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errors). There are two important quantitative measures for these 

errors: the rate of convergence and the numerical stability of the 

method. 

The requirements of convergence and stability, when applied to 

the numerical solution of models, result in a series of criteria which 

interrelate the space distances and the time step. Generally, the 

discretization of the spatial and the time dimensions cannot be chosen 

independently. This restriction may increase the numerical efforts 

considerably. 

The derivation of the stability criteria governing the difference 

equations is usually carried out by a Fourier-transformation of the 

discretized equations. 

In discussing the numerical procedures, we distinguish between 

explicit and implicit methods. A method is called explicit if a new 

value at a certain grid point is calculated only from the known values 

at other grid points. This means that we always treat one equation 

at a time. A method is called implicit if some new unknown values are 

coupled by a set of equations whdch must be solved simultaneously. 

Both methods are fundamentally different with respect to the numerical 

procedure and stability. Explicit methods are unstable if the criteria 

of stability are not fulfilled. On the contrary implicit methods 

allow one to exceed the criteria, but at the expense of accuracy. 

Nevertheless, the latter is sometimes prefered due to the smaller 

computational effort. 

51. Principal equations and their difference form 

The study of the sea level S(x,y,t) as a function of wind velocity 

and direction will be carried out with the help of a system of equa- 

tions (1.321, (1.33) and (1.411, assuming that the convective terms 

and the exchange of momentum in the horizontal direction are negligible 

in relation to other terms 

as 
fMy = - P g H z +  TLx) - RMx 

- -  aMX 
at (4.1) 

aMx aM az; 
ax ay 
- + -+ p a t  = 0 ( 4 . 3 )  



114 

To simplify the notation we set everywhere the density of water 
3 as p = 1 g/cm . The boundary condition to the above system is analo- 

gous to (3.23), i.e. the normal component of mass transport vanishes 

at the coast 

Mn = 0 (4.4) 

To facilitate the following considerations we introduce again the 

vector-matrix notation which proved very useful 

+ 
M =  

MX 

M 
Y 

5 

-t 
; T =  : B =  

R 

f a 
R gHay 

0 a a 
ax aY 

(4.5) 

With the help of (4.5) the system of equations takes the compact 

form 

-+ $ + , g  at = T 

The solution of this system of equations with the boundary con- 

dition (4.41, for real anemometric situations and the real geometry 

of the basin, may be derived only by using the numerical approach. 

Introducing suitable time-space grids, with the step T along the time- 

axis and h along the x and y space directions, we obtain instead of 

continuous functions the set of discrete values given at the grid 

points (Fig. 32-34b). A discrete co-ordinate along the x-axis is set 

in the form x = jh, where j is an integer in the range 0 i j I J. 

Similarly along the y-axis yk = kh, 0 i k < K, and along the t-axis 
tl = lT, 0 I 1 I L. When the grid step diminishes the numerical solu- 

tion should approach the analytical one. Thus we first intend to give 

the measure of approximation of the analytical solution by the nume- 

rical one. Assume that the analytical solution of the above system 

c(x,y,t) and the numerical solution c1 j rk 
analytical values to the grid points j,k,l and denote them by c(j,k,l). 

The modulus of the difference c(j,k,l) - 
approximation of the analytical solution by the numerical one. For 

the quantitative description of the difference we shall apply the 

notion of a norm. Here the definition of a norm is analogous to that 

j 

are known. We relate the 

is a measure of the 
‘j ,k 
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X 

Fig. 32. A SYMMETRICAL COMPUTATIONAL GRID. IT 
IS SELDOM USED. 

X 

Fig. 33. STAGGERED COMPUTATIONAL GRID, 
CONVENIENT IN THE PRESENCE OF HORIZONTAL 
FRICTION. 
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t 

31 

21 

1 '  

l = O  

- - 
I I 
I I 
/ W 

+ = Y  - = M x  / = M y  
Fig. 34a.  
NUMERICAL GRID. THE GRID IS CONVENIENT FOR THE BOUNDARY CONDITION 
Mn = 0. 

THE ORDER OF COMPUTATIONS IN TIME t ON THE STAGGERED 



117 

presented already in expression (2.59). It is the maximum norm, i.e. 

the maximum value of the modulus of the difference taken over all 

grid points 

(4.7) 

In the same way the norm which describes the order of the appro- 

ximation of the differential operator B (4.6) by the difference 

operator B’ is defined as 
j ,k 

Y 

k +2 

k +  I 

k 

k - l  

k -2 

Fig. 34b. THE COMPUTATIONAL GRID FROM FIG. 34a PLACED IN THE 
x, y PLANE. 

Now let us recall briefly the method of approximation of a diffe- 

rential equation by the difference equation. (Forsythe and Wasow, 

1 9 6 0 ) .  Instead of the system (4.1) - (4.3) let us use for illustrative 
purposes the simplified set of equations which is obtained rejecting 

the external forces (T = 0) and the Coriolis force (f = 01, since 

the approximation of these terms does not present any problems. 
S 

(4.9) 
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_ -  aMx a”Y as 
at ax ay 
_ -  (4.11) 

The description of the differential derivatives in terms of finite 

differences will be done by using the Taylor series. The function 5 

given at an arbitrary grid point j,k,l together with its derivatives 

is described at the adjacent point j,k,l+l as follows 

In 

can be 

(4.12) 

the same way the space derivatives along the x- and y-axes 

easily approximated with the help of expressions (2.71, (2.8) 

and (2.9). Finally, the system (4.9) - (4.11) can be written in the 
numerical form 

T h 

T h 

1 
yrjrk + O(h) = 0 

- M  + Mir j ,k+l 
h 

(4.13) 

(4.14) 

(4.15) 

When analysing the derived system of equations it is obvious that 

a first-order approximation only in space and time has been obtained. 

Generally speaking, since the difference equations contain (im- 

plicitly) a certain method of solution,they should satisfy a number 

of requirements which seem to be essential, both for deriving a 

proper solution and for a sufficiently high order of approximation. 

Let us list some of these requirements 

a) Consistency: if the mesh width h and the time step T vanish, the 

difference equations should approach the differential equations. 
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The deviation between the differential and difference equations 

is called the truncation error. For consistency, therefore, the 

truncation error should vanish when h and T vanish. This property 

is closely connected with the degree of approximation. 

b) Stability: inevitably errors are introduced into the computation 

by round-off and by truncation. A method is called stable if these 

errors do not grow with time. 

c) Convergence: even if the difference equations approach the diffe- 

rential equations for vanishing h and T (consistency), their solu- 
tions do not necessary approach each other. If they do, the method 

is called convergent. Then the discretization error between the 
solutions of the difference and differential equations vanishes. 

The 'equivalence theorem' by Lax and Richtmyer ( 1 9 5 6 )  states that 

consistency and stability are necessary and sufficient for conver- 

gence, when the initial value problem is properly posed and there 

are no turbulent discontinuities (Abbott, 1 9 7 9 ) .  This means that 

a separate analysis of convergence is generally not necessary. 

5 2 .  Stability of the numerical solution 

In order to ensure a proper order of approximation for hydrody- 

namic processes dependent on time it is not sufficient for the solu- 

tion of the numerical problem to be close enough to the analytical 

solution. The question arises: if a small error is introduced during 

an arbitrary time step, will it be amplified (unstable system) or 

will it decay (stable system)? Stability of linear equations is usually 

studied by the Fourier method. O'Brien, Hyman and Kaplan ( 1 9 5 1 )  im- 

plemented this method to study computational stability by observing 

the effect of an error. We shall proceed in the same way. We begin 

by assuming that at a moment in time t an error €id is imposed on the 
solution vector M = (M ,M ,< ) .  Such an error arises from truncation 

and rounding in a finite-word-length computer. 

Let us present this error in the form of one harmonic wave (com- 

+ 
X Y  

ponent) and study its behaviour from the moment t to t + T. Although 
the error should be presented as a sum of different component waves, 

the linearity of the equations and the principle of superposition 

allow us to consider only one wave. We can then apply the results 

to each wave component. The mathematical form of 6% is 

+* iwt iulx.eiun~ sk = M e .e ( 4 . 1 6 )  
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where 8" is a column vector of amplitudes, w denotes the frequency, 

and u1 and u 2  are the wave numbers along the x- and y-axes respective- 

ly. In differential form, the domain of integration is discretized 

as x = jh, yk = kh and t = 1T. Therefore ( 4 . 1 6 )  is described by 
j 

d = M X  +* T1 ,ioljh ,iu~kh ( 4 . 1 7 )  

where A= eiw will often be called 'stability parameter'. In further 

considerations we shall omit6 in denoting the error. If at an arbi- 

trary moment 1x1 < 1 ,  then it is evident that the error is not ampli- 

fied with time. If on the other hand 1x1 > 1 ,  the growth of an error 

with time is observed and indicates the unstable behaviour of the 

numerical scheme. Let us give some examples of stability in the 

problems pertaining to sea dynamics. 

The equation of the sea-level in a one-dimensional basin (Lamb, 

1 9 3 2 )  

may be solved numerically through the form 

( 4 . 1 8 )  

( 4 . 1 9 )  

T2 h2 

Since the same equation characterizes the error propagation we 

introduce here ( 4 . 1 7 )  and obtain the following expression for the 

stability parameter X 

( A  + - -  1 2 )  = -g- HTL 4.sin 2 ( a l h ,  2 h2 

Rearranging ( 4 . 2 0 )  in a more convenient form 

X 2  + X(4 2 - 2 )  + 1 = 0 

where $2 denotes the right side of ( 4 . 2 0 ) .  

The roots are easily derived as 

( 4 . 2 0 )  

( 4 . 2 1 )  

- 2 ) 2  - 4 ) 2 - -  % , 2  - 2 ( 2  - 4 f h2 ( 4 . 2 2 )  
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The stability condition11 1 I 1 provides 
112 

(4.23) 1 

h2 
- ~HT’ < 1 

and therefore the choice of time or space steps in the course of 

numerical computation should comply with this inequality. 

Let us indicate a second method which in many cases can guarantee 

the stability of the numerical computation. In expression (4.19) the 

derivative along the x-axis is written at moment 1; this is the so- 

called explicit (in time) form. If the same derivative is set at 

moment 1+1, we obtain an implicit form. Then, instead of (4.19) we 

find 

= gH 1+1 1+1) 
+ Cj-1 - 2Cj 

T2 h2 j+l 
(4.24) 

The equation to derive the stability parameter takes the form 

(4.25) 1 2 
x x + - -  2 = -14 

and its roots are 

This result proves that 111 is always smalle tha 

(4.26) 

unity. The I- 

fore the difference equation chosen in the described manner shows 

unconditional stability which allows us an arbitrary choice of time 

and space steps. 

Let us consider in turn the diffusion equation (Chapter VII) in 

the simplest form 

(4.27) 

Here c denotes a concentration and k is the eddy diffusivity coeffi- 

cient. 

The difference analogue of (4.27) is written down in two different 

ways; the explicit 

c1+1 - cl kT + c;-l - 2c.) 1 
j j = 7 (‘j+l 3 

(4.28) 
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and the implicit 

1+1 - 1 - kT 1+1 + cl+l - 2c1+1) 
C j ‘j - ~ ( ~ j + l  j-1 j 

(4.29) 

Introducing in (4.28) the expression for an error (4.17) yields 

(4.30) 

Since stability occurs when 1 x 1  I 1, from (4.30) the following in- 

equality is derived 

kT 

h 
0 s 2 1  1/2 (4.31) 

This shows again that in order to preserve numerical stability 

the time and space steps cannot be chosen in an arbitrary way but 

have to be within the limits imposed by (4.31 ) . 

to be 

The stability parameter for the implicit form (4.29) is found 

2 oih x = 1 / 1 1  + - 4kT sin (--+I 
h2 

(4.32) 

Since there 1 x 1  I 1, we find again that if the implicit expression 

is implemented unconditional stability is assured. 

53. Stability of a system of equations 

The simple example of the stability problem given above was appli- 

cable to one equation with one dependent variable. Let us turn now 

to a system of difference equations. To analyse stability we shall 

use the theoretical works of Neuman, Lax, Richtmyer and Morton (1967) 

and many others who have contributed to this field. As previously 

stated the aim is to find out if a perturbation (error) introduced 

at an arbitrary moment of time into a system of equations will be 

amplified or dampened with increasing time. Since we shall deal with 

a system of equations the vector-matrix notation (4.6) will be used 

to facilitate further considerations. Let us start on the basis of 

(4.1) - (4.3) and consider the simplest system describing the pro- 
pagation of long waves along the x-axis 
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(4.33b) aMX - -- a5 
at ax 
- -  

This system in the vector-matrix form is 

-+ 
(4.34) a3 - + B M = O  

at 1 

A numerical solution of (4.33) will be realized through the algorithm 

(4.35a) 1 

1 ,  (4.35b) 1 T 1  
'1 = - -  2h (Mx,j+l - Mx,j-l 

To this system the following vector-matrix form is ascribed 

3"' = (4.36) 

B =  r 1  
i sinalh 

(4.37) 

1 

The matrix B is usually called the amplification matrix. The stabili- 

ty properties of a numerical equation depend on the eigenvalues Ai 
of B. 

According to Neuman the sufficient condition for stability is 

(Lax and Richtmyer, 1956 

The eigenvalues of B can 

VIII) 

B - A E = O  

(4.38) 

be derived by the equation (see chapter 

(4.39) 

In (4.39) E denotes the unit matrix, that is the one which has units 

on the main diagonal and where the other elements are equal to zero. 
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Introducing B from (4.37) in (4.39) a determinant which speci- 

fies the eigenvalues is obtained 

I - a  - gET i sinolh 
IB - XEI = 

1 - 1  
T 
-h i sinol h 

= 0 (4.40) 

In the ensuing work the study of stability will not be carried 

out by the above method, since it is often very difficult to build 

the amplification matrix B. Therefore we shall proceed by the 

straight introduction of expression (4.17) into a numerical system. 

In the case of (4.35) the system to derive X is 

* Ti 
M x h s i n u l h  + (1-1) 5 *  = o (4.41b) 

The unique solution of this homogeneous system is only possible 

in the case where the determinant of this system becomes equal to 

zero. Thus for X two values are given 

X l I 2  = 1 f i *m sinalh (4.42) 

'Lne main resuic wnicn allows us ro use expression ( 4 . 1 1 1  1 s  tnat 

the determinant of system (4.41) is analogous to the determinant 

(4.40). Therefore the examination of the error propagation in the 

system of equations is equivalent to the study of the amplification 

matrix. 

Coming back to the result expressed by (4.42) it is clear that 

the absolute value of one root is always greater than unity and the 

system of equations (4.35) is always unstable. 

As we know already the numerical form developed above is not the 

only one. Let us alter (4.35) to a somewhat different form, which 

is implicit 

1+1 - 1+ 1 
= - % (5j+l 5 j-1) 

M1+ 1 
xlj - Mxrj (4.43a) 

(4.43b) 
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When (4.17) is introduced into (4.43) the values of X are described 

by 

(4.44) 

Therefore in (4.44) IXlI21 I 1 and the numerical system (4.43) is un- 

conditionally stable. Analyzing both these algorithms we find in each 

case that the approximation is of second order with respect to space 

O(h ) and of first order with respect to time O(T) . 2 

With this order of approximation appearing in the equations a 

certain systematic error exists and leads to the effect of numerical 

friction (2.26). The central derivatives may be used to obtain a 

second order approximation but such numerical schemes are usually 

unstable. One of the possible solutions to this problem is to split 

the system of equations into a more complicated one. In the above 

system we split the time step T into two substeps and instead of one 

equation we obtain two equations. 

The equation of one-dimensional motion 

- -  aMX - -gH -% 
at ax 

can be split into 

(4.45) 

(4.46a) 

The continuity equation may be treated in the same way. Instead of 

time step 1, 1+1 we introduce two time steps 1, 1+1/2 and 1+1/2, 1+1. 

Finally, the system of equations ( 4 . 3 3 )  is set in the following 

numerical form 

(4.47a) 

(4.47b) 

on the first time step T/2  and 



126 

1+1 1+1/2 1+1 - 1+ 1 
Mx, j - Mx, j = -  gH'j+l 'j-1 

T 2 2h 

1+1 - 1+1/2 M1+' d M1+ 1 
' j  ' j  - 1 x,j+l x,j-I _ - -  

T 2 2h 

(4.48a) 

(4.48b) 

on the second time step. 

formed by substituting Mx '+'I2 
Then for the parameter A we obtain two values 

The investigation of the stability of (4.47) and (4.48) is per- 

1+1/2 from (4.47) into (4.48). and 5 
j ,j 

A l I 2  = [l - A f. 2iaI/[1 + A1 

where 

2 2 T 
2h A = (-) gH sin (olh) 

(4.49) 

(4.50) 

Since [ A  I C  1 the system is always stable and the approximation 

in space and time attains the second order. This result is due entirely 

to the splitting-method. It seems desireable to retain some general 

properties in the course of splitting (Marchuk, 1974). 
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Considering equation 

S + L @ = O  at 

and allowing it to be split into the following system 

1% 
Nat + L2 = O 

(4.51) 

(4.52) 

then the following properties are important (according to Marchuk, 

1974) : 

1. The additive property of the operators 

N 

i = l  
L = c L i  
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2. If L is positive definite, (L$,@) 2 0, then for every L the same i 
property should hold, (Li$,$)2 0. 

Here, as usual, the parenthesis denotes scalar multiplication. 

$4. Wave deformation 

In this part we shall use, following Leendertse (19671, a practi- 

cal approach to the description of a numerical system. The amplitude 

and phase of a wave as given by the analytical solution can be compared 

with the amplitude and phase of the same wave derived from the numeri- 

cal solution. 

Using this we can draw certain conclusions about wave deformation, 

as well as the properties of the system of finite difference equations. 

Let us again consider the system (4.33) which describes the simplified 

one-dimensional motion. The analytical solution (in an infinite do- 

main) may be represented as a sum of elementary waves such as 

Mx = M;e iwt ,iolx 

(4.53a) 

(4.53b) 

Substituting this form of solution into (4.33) we obtain the expres- 

sion 

which describes the celerity of long-wave propagation (phase velocity) 

in the positive and negative directions of the x-axis. Deriving a 

solution of the same problem using the finite difference analogue 

(4.43) we can rearrange (4.53) as 

< i = < e  * iwlT eiuljh (4.55a) 

The eigenvalues have been determined already by (4.44) as 

(4.55b) 

(4.56) 

Hereafter w denotes the numerically computed frequency, whereas 
112 

w is given by the analytical consideration. The absolute value11 I 112 
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is a measure of the amplification (or decay) of a wave when it pro- 

pagates in time from moment 1 to 1+1. The phase change we describe 

from ( 4 . 5 6 )  by 

whence 

w T = arctan (?A)  ( 4 . 5 8 )  
1,2 

Now let us analyze ( 4 . 5 8 )  under the assumption that A < 1 .  Develop- 

ing ( 4 . 5 8 )  in the series (taking +A) we obtain 

( 4 . 5 9 )  

Taking into account the form of A =?;a 1 T sinulh we also develop 

sinolh as a series and arrive at 

(oih) ( O m 4  ... 1[1 - A 2 + -  A 4  --+... A' 1 ( 4 . 6 0 )  
3 5 7  

W = u1W[l-- + ~- 3!  5 !  

Both series in ( 4 . 6 0 )  are smaller than unity and are equal to 1 

when h + 0 and T -t 0. Thus we may say that for all values of the 

parameter ~m the solution obtained from ( 4 . 4 3 )  has a frequency 

smaller than the frequency computed in the analytical way by ( 4 . 5 4 ) .  

The celerity of wave propagation which is calculated numerically will 

be smaller than the real celerity. This is the phenomenon of wave 

deformation by the numerical system of difference equations. 

T 

Now let us briefly describe the wave amplitude's behaviour by 

means of the parameter / A 1 , 2 ) .  On the basis of ( 4 . 5 6 )  it follows that 

( 4 . 6 1 )  

and the wave amplitude decays when it propagates in time from 1 to 

1+1. Only in the limiting case of A + 0 will the amplitude be constant 

in time. The dampening of the amplitude in the implicit difference 

scheme ( 4 . 4 3 )  after N time steps is expressed by 

IA1,21 = ( 1  + A 2 )  ( 4 . 6 2 )  
-N/2 N 

We observe from expressions ( 4 . 4 4 )  and ( 4 . 5 6 )  that for arbitrary 

values of the ratio T/h the numerical scheme is always stable (con- 

vergent). This feature is very important from the point of view of 
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Fig. 35. CHARACTERISTICS OF IMPLICIT SCHEME ACCORDING TO LEENDERTSE (1967). 
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the practical application of numerical systems, especially implicit 

ones. However the real physical phenomena are only described in the 

same way by both the analytical and the numerical solutions when 

This feature we shall consider once more in 59 of this chapter. There 

the same physical process will be treated by both the explicit and 

implicit algorithms. The corresponding solutions will be obtained 

and compared. This feature can also be presented in a very illumina- 

ting graphical fashion, see fig. 35. If the wave length of a wave is 

denoted by L, then the quotient L/h indicates what sort of grid should 

be chosen for the true description of a wave with wave length L. 

The other parameters introduced in fig. 35 express a) the relation- 

ship between the celerity derived from a numerical scheme and the 

analytical celerity and b) the phase difference (shift) between a 

wave calculated numerically and the corresponding analytical solution. 

From this figure we may draw the conclusion that, if L/h < 10 and 

$&@ < 2 the results from the numerical scheme will contain only 

errors which are inherent. 

55. Physical and numerical solutions 

In certain numerical schemes parasitic solutions are observed. 

Together with solutions characterizing the physical processes we also 
find numerical (parasitic or false) solutions which have nothing to 

do with reality. Usually the numerical solutions are related to the 

symmetrical numerical systems. In such schemes the space derivatives 

are taken at the centre of the time interval. Let us start with the 

example of Miyakoda (1962) and consider the equation 

Taking a symmetrical numerical scheme 

(4.63) 

( 4 . 6 4 )  

we shall seek the solution in the form of 

(4.65) 
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where X is derived by introducing (4.65) into (4.64). Hence 

(4.66) 

and 

0 = U $  sinolh 

The case 0 2 1 is unstable. On the other hand if 0 1 the two values 

of X are 

(4.67) -ie. ie X1  = e , X2 = -e 

where e = arcsin 0. 
These values when substituted into (4.65) provide two solutions. 

The first one 

(4.68) 

represents the wave which describes the physical process.. The second 

solution 

(4.69) 

represents the numerical wave. The main characteristic in (4.69) is 

the alternating sign showing whether 1 is odd or even. The same fea- 

ture may be observed in the system (4.33) when written in the follow- 

ing numerical form 

1+1 - M1-l 1 -  1 
cj+l cj-1 

2h = -gH Mx, j x, J 
2T 

1+1 - 1- 1 1 1 
5 .  5 .  - _ -  Mx, j+l - Mx, j-1 

2T 2h 

(4.70a) 

(4.70b) 

Analyzing the stability with the help of (4.17) we obtain the equa- 

tion 

A4 - 2X2[l - 2(T/h) 2 gHsin 2 olhl + 1 = 0 (4.71) 

which has the following roots 
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(4.72) 

subject to the condition that I A l  L 1 where 

As in equation (4 .66 )  the numerical solutions in (4 .72 )  are due 

to the roots X with negative real part. Evidently these solutions 
could effect the computed solution, since during the computation the 

numerical (false) solution and physical solution may have common 

areas. Due to this fact the numerical scheme may provide the physical 

wave during a certain step and on the next step it may jump to the 

false solution. Generally speaking, this feature leads to erroneous 

solutions. We shall return to this problem later on, in the course 

of treating methods which remove the numerical (false) solutions by 

filtering. 

56.  Nonlinear equations 

The main obstacle in solving numerical problems is the nonlinearity 

of the equations. In the following consideration we shall start with 

one-dimensional movement described by the equations ( 1 . 5 2 )  and (1.55) 

where the nonlinear terms are due to advection and bottom stress. 

aMx MxaMx ac a 2MX 
at H ax ax H2 x x -+--= -gH-+ - M IM I +  A s  

General methods for solving the nonlinear 

state of development, see e.g. Ames ( 1 9 6 5 ) .  

In practical application the great number 

are met and this indicates that none of them 

(4 .73 )  

(4 .74 )  

equations are still in a 

of different methods 

is really good enough. 
One of the most useful approaches is based on the 'linearization' of 

the nonlinear terms. Usually such a term is altered so as to give a 

product of two terms which are related individually to different time 

steps. Let us consider only one nonlinear term pertinent to the above 

system, when the motion of water takes place under the influence of 

bottom friction alone. Then ( 4 . 7 3 )  simplifies to 

aMx r -= --I# IM at H2 x x (4 .75 )  
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We apply to this equation the following numerical scheme 

1+1 - 1 
Mx, j Mx*j = -rlMxlMx, 1 

T H 
(4.76) 

IMxI can be taken at different moments in time 1-1, 1, 1+1. In the 

course of stability analysis that value cannot be taken as explicit, 

since the methods applied in verifying the stability are essentially 

linear. We shall, therefore, set the expression Mx r/H2 equal to a 

positive coefficient W. 

From (4. 

X - 1 = -TW 

whence IXI= 

O c W T 1 2  

6) we derive by using (4.17) 

(4.77) 

1 - TWI and the quantity WT is confined to the range 

(4.78) 

Unconditional stability for the arbitrary quantity WT is obtained 

in the numerical scheme when the right side of (4.76) is taken at 

1+1 time step, whence 

1x1 = l- 1 < 1  1 + WT (4.79) 

This method of linearization is often used in the iteration process, 

see e.g. (3.67). 

Let us consider other problems which appear in (4.73). First of 

all it is not quite obvious how to approximate the advection term 

-- Mx aMx 
H ax . 
Even if Mx/H is treated as a coefficient of the first derivative it 

will vary in space and time, and in applying any stable method we 

ought to take into account this feature. Let us approach the solution 

of system (4.73) , (4.74) using the Crank-Nicholson (1947) method. 

In this scheme the space derivatives are written as a sum of two 

expressions at two time steps, say 1, 1+1. In the nonlinear terms 

the additional time step 1 + 1/2 is also introduced. The equation 
of mass transport (4.73) in Crank-Nicholson notation becomes 

M1+l 1 1+1/2aM5;+1 aM; 1 

x -Mx + Mx +--]+W- a'l+l+ac qH - 
T 2H [ax ax 2ax ax 2 (4.80) 
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- - -LlM1+1/2 A a2wS; 
I ( M i  + M F 1 )  + -[ 2 ax + ax 2H2 

and the continuity equation 

aM; aMz1 

ax I =  0 
l 1  5 +- [ -+-  

1+1 - 
T 2 ax; (4.81) 

Assuming in (4.80) that Mx '+'I2 is known, the stability of the system 

(4.80) and (4.81) may be investigated with the help of expression 

(4.17). Since 1x1 = 1 we can draw the conclusion that the algorithm 

is unconditionally stable. The Crank-Nicholson scheme, in spite of 

second-order approximation and stability, is rather troublesome in 

practical applications. First of all the presented algorithm does 

not show the method of computation, since the variables at the 1+1/2 

time step remain unknown. Secondly, the method of computing these 

variables will surely influence the overall order of approximation. 

To understand the basis of the Crank-Nicholson approach we use the 

splitting method. Thus the equation of mass transport is splitted 

into 

X 
T 2H x 

(4.82) 

(4.83) 

The continuity equation we leave in the previous (4.81) form. 

The general idea of the above algorithm is to calculate from 

equation (4.82) M in order to compute the nonlinear terms in 

( 4 . 8 3 ) .  Since the value of 5 '+'I2 does not take part in the compu- 

tation, we need only one equation for the sea-level. 

X 

In (4.83) gl+' is an unknown but it may be expressed through (4.81) 

Thus substituting it into ( 4 . 8 3 ) ,  the equation for the mass transports 

on the second substep becomes 

1+1 1+1/2 M1+1/2 aM; 
X +-[-+- Mx - Mx 

T 2H ax ax I =  (4.84) 
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The method for 

is 

implementing the above equation at every time step 

1. Solve the explicit equation (4.82) 

2. Solve the implicit equation (4.84) 

3 .  Calculate cl+l from (4.81) 

The best approach for solving the implicit equation (4.84) is 

the method of factorisation (Ch. 11, 58). For each iterative method 

(and time integration is fully analogous to an iterative process) 

the matrix of coefficients should satisfy the condition of diagonal 

predominance (2.78). In equation (4.84) the coefficients on the main 

diagonal are those with index j. Therefore the first derivative in 

the advective term cannot be taken as symmetrical (centred in space), 

but it ought to be altered to the directional derivative (backward 

or forward), as was explained in (2.18). Therefore we have 

where 

1 1+1/2 a = - M  2hH x . 
1+ 1 In (4.851, independently of the sign, the coefficient of Mx 

is always positive and thus it strengthens the diagonal terms. 
rj 

Now we introduce other methods of describing the nonlinear terms. 

The well-known Lax-Wendroff scheme (Richtmyer and Morton, 1967) , 
when applied to a nonlinear equation of motion, provides good results 

only in one-dimensional motion. Therefore there is no need to analyse 

this method. Instead of that we introduce two other methods which 

are quite useful. Leaving only the terms pertinent to advection in 

the equation of motioh, the following numerical algorithm based on 

central derivatives can be proposed 

1+1 1-1 1 1 

= o  Mx Mx,j+l - Mx,j-l 
2h Mxrj - Mxrj +- 2T H (4.86) 

With the help of (4.17) the equation for finding the stability para- 

meter is found to be 
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(4.87) 2 X + i s X - l = O  

Here IX1,21 = 1, if the inequality s =- M Tsinolh < 1 holds. 

two problems 

1. How to reject the numerical (false) solution, since as we know 

Hh x 
This is a scheme of second-order accuracy, but here we have to solve 

from previous consideration (Ch. IV, 5 5 )  one root of (4.87) pro- 

vides an additional solution. 

2. The overall algorithm has to be organised in such a way as to de- 

liver the value of the coefficient Mx/H before starting the com- 

putation with (4.86). 

The last method which we would like to present was proposed by 

Roberts and Weiss (1966). It is based on the notion of the angular 

derivative 

1+ 1 1 1+ 1 1 1 1+ 1 

T 2 2 
MXlj + Mx,j-l 

Mx, j - Mx, j + Mxrj + Mx,j+l - ] = 0 (4.88) 

The main idea of the method lies in the assumption that at the 
1 moment 1+1 at grid point J the values of Mx are known at the grid 

points with an index j which is smaller than J. The distribution of 
variables in space and time in (4.88) is presented in fig. 3 6 .  
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\ 

j +  7 

Fig. 3 6 .  THE METHOD TO CONSTRUCT THE ANGULAR DERIVATIVES. 

It can be seen that the angular derivative is defined in the centr 

of the rectangle, on its diagonal. Using (4.17) it is easily verified 



131 

that 1x1 = 1 and there is no computational (false) solution in (4.88). 

The practical realisation of the algorithm with an angular derivative 

is usually performed in two steps as in the system (4.82) and (4.83). 

Since in the expression 

nonlinear interactions ?an give rise to an instability in the shortest 

waves, it is desirable to control the stability by representing the 

coefficient Mx/H as a filter in the form ~(Mx,j-1+2MxIj+Mx,j+1)- This 
approach will lead (eventually) to a dampening of the shortest waves 

on a numerical grid. 

1 

§ I .  Numerical filtering in time and space 

We have proved, in certain numerical schemes, the existence of 

numerical (false) solutions. This may lead to a splitting of the 

solution into two independent branches. These unwanted solutions will 

be removed by 'numerical filtering'. 

Another problem arises when considering stability. As was shown 

by Phillips (1959) an instability is often related to the shortest 

waves whose wave length is equal to twice the grid-spacing. 

Applying a numerical filter to the space of grid points separated 

by 2h leads to an improvement in the stability conditions. Computa- 

tions performed in real basins show that such an instability is caused 

by the non-uniform coast-line, the bottom shape and especially by 

the nonlinearities. The general solution of these problems fits into 

three connected categories: 

1. By using numerical filters for modifying the time-space characte- 

ristics of sea-level 5 and mass transport M. 

2. By developing special forms of difference equations with the nume- 

rical filter encorporated directly in the equations of motion and 

continuity. 

3 .  By introducing a pseudo-viscosity as an additional term in the 

equations in a manner analogous to the horizontal friction term. 
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A Numerical filter for the modification of variables in processes 

of time integration 

The well-known three-point-filtering of a variable F which depends 

on time is expressed by (Shuman, 1 9 5 7 )  

( 4 . 8 9 )  

where v denotes a filter parameter, and Y is the filtered value. 
Assuming F is a periodically alternating function 

we define the response of filter Rc as 

Fl - 1 - ~ ( l  - COSUT) Rc =- -  F 

( 4 . 9 0 )  

( 4 . 9 1 )  

It follows from ( 4 . 9 1 )  that only in the limiting cases, when v = 0, 

or wT + 0, does the function remain unchanged after filtering. When 

the filtering is performed consecutively in time, at a time step 1 

we already have at hand the filtered value at the 1 - 1  time step. There 

fore it is much simpler to use, instead of ( 4 . 8 9 1 ,  the altered expres- 

sion proposed by Asselin ( 1 9 7 2 )  

1 1+1 F1 = F1 + O.5v(F1-’  - 2F + F ) 

though the response function becomes more complicated 

i6 ( 2  - v12  + 2 v  2 ( 1  - cosu~) e i wT = 

( 2  - v ) ~  + 4 v  ( 1  - coswT) 
- - 

Rc 

( 4 . 9 2 )  

( 4 . 9 3 )  

Here R is the amplitude of the response function and 6 expresses the 

phase shift. This sort of filtering acts on the amplitude of the wave 

and at the same time introduces a phase difference. The dependence of 
R and 6 on the filter parameter and on cos T is plotted in figs. 31 

and 38 according to Asselin ( 1 9 7 2 ) .  

We shall study now the effect of a filter when used in conjunction 

with a symmetrical numerical scheme on the removal of the computational 

mode of solution. 

TO the differential equation 

( 4 . 9 4 )  
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Fig. 37. AMPLITUDE RESPONSE DUE TO THE APPLICATION OF A TIME 
FILTER TO A PERIODIC FUNCTION FOR A FEW VALUES OF THE FILTER 
PARAMETER v, ACCORDING TO ASSELIN (1972). 
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Fig. 3 8 .  PHASE SHIFT 6 DUE TO THE APPLICATION OF A TIME FILTER 
TO A PERIODIC FUNCTION, ACCORDING TO ASSELIN (1972). 
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we ascribe the finite-difference analogue 

F1+l - $-1 1 
= iwF 2T 

Analysing the stability of (4.95) using (4.17) we find 

A 2  - 2TwiA - 1 = 0 

Two values of A are derived as 

A , , 2  = iwT f 

Assuming 1 > ( T u ) ~  the two different roots are 

(4.95) 

(4.96) 

(4.97) 

= iwT + l1 

which represents the physical mode of solution and 

A 2  = iwT - 

which describes the computational mode. 

Our aim is to choose the filter parameters in such a manner that 

l A 2 1  +. 0. To this end let us take (4.95) with a built-in filter in 

order to control the computational and physical mode, thus 

F1+l - +-1 1 = iwF 2T (4.98) 

The filtered value F1-l in (4.98) is calculated from (4.92). If the 
amplification factor (or stability parameter) is defined as A=F1+l/F1, 

then (4.98) yields 

A l r 2  = v / 2  + iwT f J(1 - v / 2 I 2  - (wT)~' (4.99) 

If v = 0, we return to the previous solution expressed by (4.97) and 

1 A l r 2 1  = 1.If v # 0 it follows that 

] A l l  = { [ V / 2  + A1 - V / 2 ) 2  - (uT)~; 

l A 2 1  = I [ v / 2  - 41 - "/212 - (wT)2i 

2 1 /2  

2 1 / 2  

- (uT)~} 

- (wT12) 

(4.100) 

(4.101) 
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Instead of filtering the data, the filter may be used in conjunc- 

tion with the finite-difference equation itself. According to Shuman 

(1962) we consider a nonlinear equation 

i 

( 4 . 1 0 2 )  
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With the notation 

FX = 1/2 (fj+l/2 + fj-1/2 1 

fx = l/h (fj+l/2 - fj-1/2) 

the difference form of (4.102) becomes 

(4.103) 

(4.104) 

The nonlinear term in (4.105) represents the smoothed function 

t 2 u  + u  1 -x 1 1 
px(uj+l + 2uj + Uj-1) = E(Uj+l - uj-1) T‘Uj+l j j-1 

(4.106) 1 - - _  2h(uj+l - Uj-1)U? 
3 

Similar expressions can be constructed in a two-dimensional space for 

a function 

1 1 1  + 2f“ + f” 1 
fX j,k * = -(f* 4 j,k-1 jrk j,k+l) = dz(fj-lrk-l + 2fjrk-1 + ‘j+Irk-l 

11 
1 

+ 2f j,k + fj+lrk) + T(fj-lrk+l + 2fjrk+l + fj+lrk+l 
2 + -(f 4 j-lrk 

(4.107) 

and also for the derivatives 

(4.108a) 

(4.108b) 

Substituting (4.107) and (4.108) into the equations of motion and 

continuity gives the following special form 

ar; * 1+1 - M1- 1 
Mxfj,k xrjfk = - g H ~  + fM 1: 

M1+’ - M1- 1 
fMX,;,C 

2T ax Yrlr 

act 
Yr j rk vrjtk = -9H+& - 

2T 

(4.109) 

(4.110) 
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‘ilk ‘ j , k  - _ -  aMx, . ,; aMy, f , k 
1+1 - 1-1 

2T ax aY 
(4.111) 

To explain the action of a filter in conjunction with a difference 

scheme, we return to the scalar wave equation (4.102). 

The numerical form of (4.102) when constructed with a central deri- 

vative and without filtering has the amplification factor (4.87) 

1x1 = 1, subject to the condition that the inequality 

T 
h u-sinolh < 1 (4.112) 

is fulfilled. Solving the same problem with the help of (4.105) we 

find 1x1 = 1, but (4.112) changes to 

(4.113) 
T 1 
u-sinulh-T(l h + cosolh) < 1 

2 
Only when alh = yrh -+ 0 do we obtain (4.112). Such a situation 

arises for a very long wave. If the wave length L is comparable to 

the grid step h, then in the limiting case of the shortest wave L=2h 

Therefore the additional expression in (4.113) alters the stability 

criterion only in the range of the shortest wave when L is close to 

2h. 

C The introduction of viscosity 

Real hydrodynamic processes which take place in the sea and in the 

ocean are influenced by the turbulent cascade of energy from the large- 

scale motion into motion on the smaller meso- and micro-scales. At 

the smallest scale the energy is dissipated into heat. This natural 

process when described numerically is distorted by the imposed grid 

system, especially at the shortest scale, since the length of the 

gridspacing h is usually much greater than the scale at which the 

dissipation takes place. In this way the possibility arises that in 

a numerical grid energy will tend to grow in the shortest waves which 

can be resolved by the grid. 

A common procedure for removing this effect is the introduction of 

a so-called pseudo-viscosity (Richtmyer and Morton, 1967) which 
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smoothes the numerical solution imitating the sub-grid-scale dissi- 

pation. In our case we add the following viscosity terms to the left 

side of the equations 

2 
- (a  1 - 1 ) w U  = - A AU 4 (4.1 143) 

(4.114b) 1 (21) q(a - 1 ) m V  = - A AV 

2 1 - 1 ) W c  = - A A5 (4.114~) 

where 0 < . a  < 1. 

The same effect can be achieved with a proper choice of the hori- 

zontal eddy viscosity coefficients. By means of these coefficients 

the turbulent interaction is parameterised for the scales not repre- 

sented by the average quantities (sub-grid interaction). This scale, 

of course, depends on the discretization due to the limited resolution 

of the adopted grid. This means that the eddy coefficients have to 

be chosen in relation to the grid distances. As was shown by Brett- 

schneider ( 1  967) the formula 

(4.115) hL 
T A 0.01 - 

delivers a good approximafion of the eddy viscosity coefficient for 

numerical computation. Sometimes valuable hints on the eddy viscosity 

problem may be found in the researches on the general circulation of 

the atmosphere, see e.g. Smagorinsky, Manabe and Holloway (1965). 

5 8 .  Boundary and initial conditions 

Study of the motion and sea-level variations will be performed 

with the system of equations (4.1 ) , (4.2) and (4.3) . The proper 
boundary conditions for this system may be chosen depending on the 

practical situation 

Mn = 0 

Mn = al(r) on water (open) boundary 

Ms = 0 on land boundary 

5 ( r )  = Q2 (I') on water boundary 

on land boundary 

(4.116) 
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Here M 

transport at the coast;@l(r) and @2(r) are known functions of space 

and time. At the initial moment the dependent variables are taken as 

zero in the whole domain of integration 

and Ms denote the normal and tangential components of mass n 

c(x,y,t=O) = Mx(x,y,t=O) = M (x,y,t=O) = 0 x,y E 5 (4.117) 
Y 

Such conditions result from the lack of data with which to describe 

the sea-level and mass transport (or average velocity) in the whole 

of the studied basin at the initial moment. On the other hand it is 

easy to see that a solution of the presented system of equations does 

not depend on the initial conditions. To explain this feature we shall 

seek a solution which is periodical in space. We also set the external 

force 

under consideration. The assumption of space periodicity simplifies 

the algebra, because the solution obtained does not depend on the 

boundary conditions. Seeking a solution in the form of 3 = 8 ,  (t)' 
.exp(iax + igy) we obtain by virtue of (4.6) 

T(~)= 0, T:~) = 0, since it is not pertinent to the problem 
S 

aH 
at + Bl% 

where the 

B 1  =[; 

= o  

matrix B1 becomes 

agiH 

BgiH I -f 

R 

iB 0 

(4.118) 

(4.119) 

The operator B1 may be described by the set of eigenvalues X 

related eigenfunctions . 

linear combination of the eigenfunctions 4, 

and 
j 

'j 
We decompose the vector solution M1 of equation (4.118) into a 

m 

M 1  = k= ' 1 'kck (4.120) 

Here c are the unknown coefficients to be found. 
k 

Related to the operator B1 there is a spectral problem which may 

be defined as (Ch. VIII) 

(4.121) 
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We now seek a solution for the eigenvectors Jk, since it is related 

Introducing (4.120) into (4.1 18) yields 

to M I  through (4.120) . 

- + B $  = O  at I k  for every k 

Taking next into account (4.121) we find 

- + A T  = o  k k  
a 'k 
a t  for every k 

(4.122) 

(4.123) 

therefore $, = e-'kt, 
This result provides a unique answer to the problem of the depen- 

dence of the solution on the initial conditions. Since it is obvious 

from (4.123) that if every eigenvalue Xk possesses a positive real-part 

then ;bk will decay with time, and in such a situation the solution d 
will be independent of the initial condition (after an appropriate 

span of time has elapsed). If on the other hand Xk has a negative real 

part,the solution is strongly influenced by the initial condition 

(but is also unstable). This requirement related to the eigenvalues 

is easily verified by calculating all the eigenvalues of the matrix 

B1 
(4.119). The choice of proper boundary conditions from (4.116) 

depends on the type of equation used. Generally, we shall deal with 

the mixed type, but when the expressions with horizontal friction are 

present in the whole time-space domain, then the system of equations 

is usually a hyperbolic one. As was proved by Marchuk et al. (1972) 

a unique solution of the hyperbolic set of equations exists if the 

normal and tangential components of mass transport are given on the 

boundary (rigid or liquid). On the other hand when the equations 

show hyperbolic properties we ought to use the other type of boundary 

condition. 

But first of all we present the method to prove the hyperbolic 

properties of a set of equations in domain E(x,y,t). First the simpli 

fied system of equations (4.91, (4.10) and (4.11) is set in the vectoq 

matrix form 

- ak ak 
ax ay 

it + A-+ B-= 0 (4.124) 

where 
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(4.125) 

For the system (4.124) to be hyperbolic at a point P(x,y,t) of the 
2 2  domain E(x,y,t) the eigenvalues A of the linear combination a A+a2B 1 

(given that a1 + a2 = 1) should be real and different at the point 

P E 5 (Courant and Hilbert, 1962). The eigenvalues of this linear 
combination are derived from the determinant 

2 2  

Det(alA + a2B - AE) = 0 (4.126) 

whence 

XI = 0; A2,3 = +m (4.127) 

The number of boundary conditions required for a unique solution 

of the hyperbolic system is equal to the number of negative eigen- 

values. It follows that for the problem defined by (4.124) one boun- 

dary condition already provides the solution. 

In physical reality the overall situation is much more complicated. 

Generally, two problems are important: 

1. Very often we require the operators in the equations to be positive- 

definite. This in turn strongly influences the possible choice of 

boundary conditions. 

2. A sufficient number of boundary conditions is very difficult to 

acquire. Usually at the liquid boundaries the velocities are un- 

known (for example in the tidal problem), but the sea-level is 

known. With this sort of condition the solution of the parabolic 

problem is impossible. The practical approach is to solve the 

hyperbolic problem at grid points on the nearest line to the 

liquid boundary by using sea-level boundary conditions and then 

after deriving the mass transport (or mean velocities) to solve 

the parabolic problem in the whole domain. 

Due to this and other problems as well the so-called staggered net 

is usually introduced for carrying out numerical calculations. The 

values of Mx, M 

The grid distance for the same variable is 2h and time step is 2T. 

This allows us to overcome many obstacles, i.e. very often it is 

difficult to define sea-level at the coast. Then, as in fig.34, sea- 

level < may be computed at the distance h from the coast. On the 

and 5 are defined at different grid points (fig.34). 
Y 
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coast the velocity is defined, since the normal component vanishes 

there. 

59. The explicit numerical scheme 

Equations (4.1), (4.2) and (4.3) are defined on the numerical grid 

as plotted in fig. 34 as follows 

1+ 1 1- 1 
1- 1 Mx,j+l,k - Mx,j+l,k 1 

-zf(Myrj+2rk+l 1-1 + M1-l y,j,k+l + M1-l y,j,k-1 + My,j+2,k-li 2T 

1 
A 1-1 1- 1 1- 1 1- 1 

+-(M 2 X, j+3,k + Mi:l-l ,k + Mx, j+l ,k+2 + Mx, j+l ,k-2 - 4Mx,j+l,k 
4h 

1+ 1 1- 1 

1 
My, j ,k+l - My,j,k+l 1 1-1 1-1 1-1 1-1 

2T +zf(Mx,j+l,k+2 + Mx,j-l,k+2 +Mxrj-l,k + Mx,j+llk 

(4.129) 
= - A H  1 1 - R1-l M1-l 

2h jrk+1(‘j,k+2 - ‘j,k) + ‘ ~ ~ ~ , k + l  j,k+l j,k+l 

+ M1-‘ - 4Ml-l 1 
ylj rk+l 

1- 1 + M  A 1-1 1- 1 
+4h2(My,j+2,k+l + My,j-2,k+l ylj,k+3 y,j,k-I 

1+2 1 
1+1 ) - M  

‘j,k - ‘j,k - 1 1+1 1+ 1 1 1+1 
2T --z(Mx,j+l,k - Mx,j-l,k) -z(‘ylj,k+l y,j,k-I 

(4.130) 

where 

(4.131) 

This algorithm is well known and was described by Fischer (1959) and 

Kagan (1970). The order of approximation differs for different terms, 

of course. For example the Coriolis force is derived as a mean value 

from the four surrounding grid points 



+ M1-l + M1-l 1 1-1 
3(M$Ti+21k+l + My, j+2,k-1 y,j,k+l y, j,k-l 

If the exact value of this component is taken as 
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(4.132) 

(4.133) 

then the difference between (4.132) and (4.133) is equal to 

o.5h2fm + O(h2) (4.134) 
Y 

In the same way the component along the y-axis may be analysed. It 

is obvious that (4.134) is in the limit equal to zero, but, since h 

is of finite magnitude in the difference scheme a numerical friction 

analogous to the physical friction is observed. It is worth under- 

lining that the effects of horizontal friction which are physical 

and numerical play a secondary r61e in the stnm surge phenomena 

(this conclusion follows from dimensional analysis). 

The order of approximation of the Coriolis force may be improved 

according to Fischer (1965). To simplify the notation we shall draw 

attention only to the development of the scheme in time 

M1+l - M1-l 
X X f 1+1 - -M 

2T 2 Y  

M1+l - M1-l 
f 1+1 f-M Y 

2T 2 x  

5 +- + 
2T ax 

(4.135) 1-1 - RM1-l 1 
= - g H k  + A mX 

X 
f 1-1 - -M 
2 Y  

(4.136) a 2 1-1 - RM1-l + 2Ml-l = -gH- + A AM 
2 x  ay Y Y 

We rearrange the first equation in the form 

and the second equation as 

+ fT M F 1  = F2 
Y 

(4.137) 

(4.138) 

(4.139) 

F1 and F2 denote all the terms which are related to the 1 and 1-1 

time steps. From (4.138) and (4.139) we derive the components of 
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mass transport at the moment 1+1 

F + F f T  
M1+l = 
X + (2fT)2 

and 

F2 - FlfT 
M1+l = 
Y 1 + (fT)* 

(4.140) 

(4.141) 

In the course of computation we calculate firstly F1 and F2, and 

next and M1+l by (4.140) and (4.1411,and finally from (4.137) 

the sea-level 

difficulties due to the implicit form of (4.135) and (4.136). 

z1+2 at the instant 1+2. In this way we by-pass all 
Let us study now the stability properties of the explicit form 

(4.1281, (4.129) and (4.130). 

Introducing an error array in the form of (4.17) into the system 

of equations the result is obtained in the matrix-vector form 

X 2 + a , 2 -b, i c X s i n u l ~  . [::I = 1 ] (4.142) 

I, b, X + a, icXsina2h 

,A - 1/A ic sinulh ic sino7h 

where 

2TA 2 a = 2 RT - 1 + -(sin olh + sin 2u2h) 
h2 

2 T gH 
h c =  

A unique solution to the uniform equation (4.142) is obtained only 

if the determinant of the matrix is equal to zero which leads to an 

equation of sixth order for the parameter X. The result obtained in 

this manner is very general and difficult to interpret. Therefore 

we consider at first a simplified system of equations when the frictioi 

and Coriolis forces are neglected (R = 0, A = 0, f = 0). As a result 

of this simplification the stability parameter X is defined by the 
determinant in which a = -1, b = 0 and c = 

gH 2T 
h '  



Ix 2 - 1  0 icXsinolh I 
0 x2 - 1 ic Xsinazh 

ic sinalh ic sino.h 23 m m x 

= o  
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(4.143) 

ic x2 - 1 [ +  JgH. x 

from which we find a biquadratic equation for A. Its roots are 

- Q)' = ~ ( 2  - Q f iJQ(4 2 1 (4.144) 

where 

9H 2 2  2 
Q =F (2T) (sin olh + sin u2h) 

2 
From (4.144) and inequality Q < 4 it follows thatlhl121= 1. The inequa- 

lity on the other hand relates time and space steps to the parameters 

of the difference equation 

2 h2 T I- 
2 9H 

(4.145) 

This is the well-known Courant, Friedrich and Lewy condition. In one- 

dimensional flow this condition is described by (4.23). When Coriolis 

and friction forces in the equations of motion are of influence the 

analysis of the determinant is rather complicated. To omit the diffi- 

culty we assume, following Phillips(1959), that an instability is 

generated in the numerical system at the shortest wave length which 

can be resolved on the grid. On the grid plotted in fig. 34 the 

shortest wave is double the grid size, i.e. 4h. Because the wave 

number along the x-axis is equal to u1= 9 when the shortest wave 
length is introduced (Lmin = 4h), the arguments of the expressions in 

(4.142) become 

Therefore in (4.1421 sinalh and sina2h equal unity: cosalh and c o s o z h  
both vanish and the determinant of (4.142) simplifies to 

(4.147) 
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The determinant (4.147) may be rearranged as a biquadratic equation 

and from it one of the roots is easily derived as 

Its absolute value is 

1x1 = 1/1 - 2RT - 4AT/h2 I i 1 

(4.148) 

(4.149) 

(4.150) 

This inequality states the criterion for the time step 

T L 1/(R + 2A/h2) (4.151) 

This somewhat strange condition, from a physical point of view, 

states that the stronger the friction in the system the smaller the 

time step that should be chosen in a difference scheme has to be. 

The remaining roots of (4.148) provide an additional criterion for 

the limits imposed on the time and space steps 

(4.152) 

Summarising the results obtained from Phillips' conjecture on the 

generation of an instability at the shortest resolvable wave length 

it should be stressed that this is the most probable mechanism but 

the possibility cannot be excluded that an instability may appear a t  

wave lengths L > Lmin. I 
analysis of the properties of the difference equation inside the grid 

region. Additionally the stability is influenced by the boundary 

conditions and by the external forces. To study the action of the 

boundary conditions and the way of approximating these conditions 

we rely upon the definition of the positive definite operator in the 

closed domain n(x,y) (Ch. 11, 54). That is, we shall take the boundar 

condition in such a manner as to comply with this definition. 

The study of stability by the Neuman method is confined to an 

The system of equations in vector-matrix form becomes 

- -  BG + :s _ -  ad 
at 

(4.153) 
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The vector and the matrix in ( 4 . 1 5 3 )  are defined as 

( 4 . 1 5 4 )  

where a = . 
As always B will be called a positive-definite operator in the 

domain E(x,y) if the scalar product is positive 

( 4 . 1 5 5 )  

Rearranging ( 4 . 1 5 5 )  in Cartesian co-ordinates we find 

2 2  2 aM - 5  aM .5 
1 [R (Mx + M ) - AMxAMx - AM AM + a (*+ e l d x d y  > 0 n Y Y Y  - 

(4 .156)  

It is obvious that the first expression under the integral is positive. 

The integral 

- s (MxAAMx + M AAM ) dxdy ( 4 . 1 5 7 )  
Y Y  - 

D 

and is therefore also positive. 

The last expression 

( 4 . 1 5 8 )  

( 4 . 1 5 9 )  

may be altered into an integral along the boundary r .  When the condi- 
tion on a rigid boundary M = 0 ( 4 . 1 1 6 )  is given then c = 0 .  If,on 

the other hand, part of the boundary is liquid then c1 < 0.  Therefore 

a possibility arises that the operator B will be negative-definite 

and the iteration process and time-integration do not converge. It 

should be underlined that condition ( 4 . 1 5 6 )  is an integral. Thus it 

is possible that the influence of an open boundary on the overall 

n 3 
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solution is negligible when the ratio of the length of the liquid 

boundaries to the closed boundaries is small. 

Nevertheless, the boundary condition at the liquid boundary should 

not be taken in an arbitrary way but in agreement with (4.155). In 

the case of numerical approximation the fulfilment of (4.156) has to 

be checked in every case. In a symmetrical lattice one can write 

(4.159) as 

M M 1 1 
= h2a2 " h('j+l,k x,j+l,k - 'j-1,k x,j-1,k lh 

jk 

M M ) 
1 

+ h2a2 " %('j,k+l y,j,k+l - 'j,k-l y,j,k-1 
jk 

(4.160) 

Therefore, with the condition M = 0, (4.160) does not vanish along n 
the boundaries. In a-symmetrical lattices the vanishing can be 

achieved by a special combination of backward and forward differences. 

510. An implicit numerical scheme 

An implicit form of difference equation is introduced to bring 

about the possibility of increasing the time step and saving computer 

time in this way, As usual the system of equations (4.11, (4.2) and 

(4.3) will be considered under the additional assumption that the 

horizontal friction term can be neglected A = 0. This simplification 

does not change the physics of the flow, because the horizontal 

friction term is at least one order of magnitude smaller than the other 

terms. But from the mathematical point of view we pass from the para- 

bolic system of equations to a hyperbolic one. The boundary and initia 

conditions are taken from the set defined by (4.116) and (4.117). 

According to Sielecki (1968) and Kowalik (1975) we take the implicit 

difference scheme as 

1+ 1 1+1 1 
Mx - Mx = fM1+l - gH;k (x)l+l - RM1+l 

T Y + TS X 
(4.161) 

(4.162) 

(4.163) 



155 

Although this system is unconditionally stable (as we shall demon- 

strate later on) it has to be solved at each time step by an iterative 

procedure due to its implicit structure. It is, of course, possible 

to consider a great number of methods, though the main problem is the 

fulfilment of sufficient criteria for the convergence of a chosen 

method. Let us consider first the above system without any alteration. 

Introducing an index of iteration q we shall solve it through the 

following numerical scheme 

(4.164) 

(4.165) 

(4.166) 

Forgetting for the time being the index 1+1 we build the amplifi- 

cation matrix from an iteration step q to step q+l (by introducing 

(4.17) and changing 1 to q) 

- 
0 fT/(1 + RT) TgH i sinulh/(h + hRT) 

0 -TgH i sinuzh/(h + hRT) 
0 

1 -hT i sinunh 

(4.167) 

The eigenvalues A of this matrix are given by the equation 

-A 3 + A{[fT/(1+RT)I2 + gH(sin 2 ulh + sin 2 uzh) ( h m  L)2}=  0 (4.168) 

Hence 

T 2 1’2 
h m )  I (4.169) A1,2 = +{[fT/(1+RT)I2 + gH(sin ulh + sin uzh)(---- 2 2 

If we simplify the set of equations by neglecting the Coriolis 

term (f = 0) and frictional forces (R = O ) ,  (4.169) becomes 

1 / 2  
( 4.1 70) 

T 2 2 A1,2 = T;- {gH(sin olh + sin uzh)} 

As has been shown in chapter I1 an iteration process is convergent 

when the modulus of its eigenvalues is less than or equal to unity. 

Thus IX2,31 = T m / h  I 1  (4.171) 
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expresses the well-known criteria for stability of an explicit scheme. 

Generally one may say that there is no stability condition whatso- 

ever which limits the time step in an implicit method. However, due 

to application of an iteration method ( at each time step) and the 

requirements of the convergence criteria in the iteration process 

itself we arrive finally at an additional condition for the time-space 

step (see expression (4.171 ) ) . 
Our aim is to find an iteration scheme which does not include such 

severe restrictions as (4.171). To do this we transform the general 
system of equations by introducing cl+' from (4.163) into (4.161) 

and (4.162) 

(4.172) 

(4.173) 

Introducing space indices j,k these equations may be rearranged 

in a form suitable for computation by an iterative method 

1+1 2 2 1+1 1+ 1 - 1+ 1 
= fTM ytjtk + gHT /(4h )(My,j+l,k+l + My,j-l,k-l My,j-l,k+l 

1+ 1 2 2 1+1 1+ 1 - 1+ 1 =-fTMx, j,k + gHT /(4h (Mx, j+l ,k+l ' Mx, j-1 ,k-I Mx,j-l ,k+l 

The above equations are given on a symmetrical lattice, where < I 

M and M are computed at the same grid points (fig. 32). At each 

time step these equations can be solved by an arbitrary iterative 
X Y 
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method. The computation will run until the proper accuracy is reached 

and then we proceed to the next time step. The application of an 

iterative method at each time step is evidently the result of the 

implicit notation, since the left side of (4.174) and (4.175) taken 

at the 1+1 moment in time is a function of the right side which in 

turn also depends on the time step. Therefore during the computation 

both (4.174) and (4.175) have to be considered together. When (4.174) 

is solved its right side is assumed to be known from the previous 

iteration of (4.175) and vice-versa. 

The factorisation method (Ch. 11, g8) is best suited for the appli- 

cation . (4.174) is taken thereby along the x-axis and (4.175) along 
the y-axis. The convergence condition of an iterative method is 

fulfilled in Dh, since in the matrix of coefficients in (4.174) and 

(4.175) the diagonal element 1 + RT + 2gHT2/h 
sum of the non-diagonal elements 2gHT /h . 

2 prevails over the 
2 2  

The stability properties of the implicit system of equations 

(4.161), (4.162) and (4.163) will be analysed by inserting an array 

of errors (4.17) into the system. The result takes the form of a 

cubic equation in 

2 2 2 2 2 
[h(l+RT) - I] ( A -  1) + h (T/h) gH(sin aih + sin u2h) [A(I+RT) - 1 1  

+ A2(h- 1) (fT)2 = 0 (4.176) 

The Neuman criterion for numerical stability states that all roots 

of (4.176) should be inside or (and) on the unit circle in the com- 

plex plane. For further consideration let us represent (4.176) in 

a somewhat different form denoting 

2 2  2 
y1 = 1 + RT; y = gH(T/h) (sin olh + sin a2h) 

2 

thus 

h 3 2  [y, + y1y2 + (fTl21 - 2 [2Y1 + Y1 2 + Y 2  + (fTl2] 

+ h(1 + 2y1) - 1 = 0 

(4.177) 

(4.178) 

The parameters T, h, sinalh and sina2h may change over a wide range. 

The full solution or explicit derivation of A is of course impossible 

in such a general case. Therefore let us consider some simplified 

cases : 
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A .  Let T + 0, h < OJ, then y1 = 1, y2 = 0, fT = 0 and equation (4.178) 

becomes 

( A  - = 0 (4.179) 

1 
2 2 

‘1 x 2  A 3  
T 1 / 2 ( s i n  alh+sin u2h) 

lo3 0 1 1 1 

1 o6 0 1 0 0 

106 1 0 0.5 0 

lo3 1 0.292 0.146-0.496i 0.146-0.496i 

B. Let T + then using the properties of the roots of the cubic 

equation we obtain 

(4.180) 

and hence XI = x 2  = x 3  = 0 .  (4.183) 

C. Let us consider for 0 < T < m the following parameter values 
3 6 4 T = 10 sec-’, H = 10 

and r = 10-6sec-1. The results are given in the following table 

sec and lo6 sec with h = 10 cm, f = 

D. Since the instabilities usually start from the waves of minimum 

length (Lmin = ah) on a numerical grid of spacing h, we find 

u l h  = 02h = 7 1 ,  y2 = 0 and equation (4.178) takes the form 

(xy, - 1)2(X - 1) + X2(X - 1) (fTI2 = 0 (4.184) 

Three roots of the equation are 

ca 
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To equation (4.178) we also apply the straightforward method for 

the analysis of the stability properties by proving the inequality 

1x1 < 1. Let us rewrite (4.178) as 

A 3 + a ~ ’ + a ~ ~ + a  = O  
1 3 (4.186) 

(4.187) 

(4.188) 

(4.189) 

By the substitution A = l/u the polynomial (4.186) is transformed 

to 

1 + alu + a2u2 + a3u3 = o (4.190) 

Next (4.190) is rearranged through the introduction of a new variable 
u = -  1 - v  

+ v. Therefore, if the root of the cubic equation (4.186) is a 

complex number, the root of (4.190) is also complex and its value is 

u = a + i b  (4.191) 1 

or expressed through the new variable 

1 - a2 - b2 - 2ib 
1 + a2 + b2 + 2a 

v1 = (4.192) 

2 2  Here we may conclude that if 1x1 < 1, then lull > 1 and since u , = K  

the real part of (4.192) is in the negative half-plane, that is 

Re(vl) < 0. Using this property we shall not proceed by the previous 
way, i.e. by solving equation (4.186). But instead we shall analyse 

the roots with the aim of showing that 1x1 i 1. In this method it is 

sufficient to prove that all the roots of the polynomial have a nega- 

tive real part. To find the roots with such properties we shall apply 

the Routh-Hurwitz condition to equation (4.186) (Gantmacher, 1959) 

(4.193) 3 A v + A1v2 + A2v + A3 = 0 
0 
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i =  

where 

A o = l - a  1 + a 2 - a 3  

A,  = 3 - al - a2 + 3a3 

A2 = 3 + al - a2 - 3a3 

A1 A3 A5 

AO A2 A4 

0 A1 A 3  

AO A2 0 

A 3 = 1 + a l + a 2 + a  3 

The following determina t plays a central r81e. It i 

the coefficients of (4.194) 

(4.194) 

built from 

(4.195) 

The Routh-Hurwitz theorem states that the necessary and sufficient 

condition for the existence of roots with negative real parts in the 

polynomial (4.193) is the positiveness of the following subdeterminants 

S1 = A1 > o  

S 3  = A3S2 > o  

S2 = A1A2 - AoA3 > 0 

with the assumption 

(4.196a) 

(4.196b) 

(4.196~) 

A. > 0 (4.196d) 

Introducing into (4.196) the values (4.187) to (4.189) we find 

that all inequalities hold. This in turn implies that all the roots 

of (4.186) are within the unit circle in the imaginary plane and the 

system of equations (4.161), (4.162) and (4.163) is unconditionally 

stable for an arbitrary time-space step. 
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511. Computational example to compare explicit and implicit properties 

Since the method of implicit time integration allows us to intro- 

duce an arbitrary time step, it should find frequent application. 

plicit method ( M  11) we consider a rectangular sea basin where the 

dimension along the x-axis is 200 km and along the y-axis is 100 km 

and with a complicated bottom shape. Wind of 1 0  m/sec acts parallel 

to the y direction from the moment t = 0 up to t -+ m. The flow is 

studied in time until a steady state occurs (Kowalik, 1 9 7 5 ) .  The 

results of the computation at the point P with co-ordinates x = 6 0  km 

To compare the results obtained by the explicit (M I) and the im- 

and y = 20 km are presented in the form of a stream function 

and plotted in fig. 40. Computations were performed by means 

with constant time step T = 6 0  sec and by means of M I1 with 
rent time steps from T = 5 x lo2 sec up to T = 5 x lo4 sec. AS may 
be seen from these considerations the results of the implicit scheme 

depend on T and with the growth of the time step the absolute value 

of I) diminishes. 

When the time step in the implicit method is close to the time 

step of the explicit method, the results of both computations are 

comparable. Therefore we may say that the implicit method is stable 

for any time step, but the physical properties of the hydrodynamic 

processes limit the time step. 

Nevertheless, increasing the time step T in an implicit method i 
is possible in relation to the explicit time step Te. As follows 

from our calculations it is possible over the range T,<lOT . 
1 e 

$ 1  

of M I 

dif fe- 

512. A numerical system with mixed explicit-implicit properties 

A numerical system with mixed properties was developed by Leen- 

dertse ( 1 9 6 7 )  and by Marchuk et al. ( 1 9 6 9 )  for obtaining a high order 

of approximation. In the following we shall present the method 

proposed by Marchuk et al. To begin with we split the equation of 

motion into two similar parts 



Stream 
function 
@ I 4  
Y - I0 72 - 

- f0" - 

-loO"- 

-loQ - 

- lo8 r 

I0 1 h  b 4 
Fig. 40. STREAM FUNCTION COMPUTED BY THE EXPLICIT METHOD WITH TIME STEP T = 60 sec (M I) 
AND BY THE IMPLICIT METHOD WITH DIFFERENT TIME STEPS (M 11). 
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(4.197a 

(4.19733 

Next introducing the half time step T/2 the following implicit numeri- 

cal form is proposed 

on the first substep and on the second substep 

X X - J g H L  - 
T 2 ax 

(4.200) 

(4.201) 

In (4.200) and (4.201) the value of the sea-level is unknown, there- 

fore we use the equation of continuity to express this variable. 

The equation of continuity will be arranged in three different forms 

in order to do this. 

A. TO calculate cl+l we use 

1+1 - 1 aM1+l aM1+1/2 2 - 1 aMx x ) - y T - -Z(ax 
+ ax aY 

(4.202) 

(4.203) 
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C .  TO calculate a5 we use 
1+ 1 

aY 

(4.204) 

1+ 1 
After calculating from (4.203) we introduce it into (4.201) and 

h) from (4.204) is introduced into (4.200). The in a similar way 

new form of equations (4.200) and (4.201) becomes 
aY 

a 2~: a ZM1+l /2 1 
Mx - Mx = &I+' - $gH[% - T ( A +  --)I (4.206) 
1+1 1+1/2 

T 2 Y  axay 2 ax 

2 1+1/2 
1+1/2 1+1 a 2  

IMX 
+ -  Aa Mx + [$(? + A)= - R 2 ax2 

The problem of deriving the mass transport and sea-level is solved 

with the help of equations (4.198), (4.1991, (4.2051, (4.206) and 

(4.202). 

The equations of mass transport are integrated at each time step 

by the factorisation method. 

In (4.198) the factorisation is performed for variable Mx '+'I2 along 

the y direction and in (4.199) M 1+1/2 is factorised along the x direc 

tion, and so on. 
Y 

Therefore, from this point of view the method of computation is an 

explicit one. The stability of the system depends on the stabilities 

of the two substeps. An analysis involves quite long algebraic expres 

sions, but finally a criterion is found which is close to the well- 

known criterion for an explicit scheme T < h / m .  

Compating these three different methods which are considered above, 

that is explicit, implicit and mixed one, we may conclude that 

A. The explicit method is the simplest in practical realisation. 

B. The best approximation, second order in time and space, is given 

by the mixed method. 
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513. Steady state processes from a point of view of numerical methods 

used for solving an unsteady problem 

The contents of this final paragraph are closely related to the 

discussion in chapter 11. For a steady state process described by an 

equation 

A$ = f(x,y); x,y E D (4.207) 

with boundary condition $ I r  = C we set up the related non-stationary 

problem 

(4.208) 

The solution of (4.208) when t +. m coincides with the solution of the 

problem stated by (4.207). Introducing a numerical scheme to integrate 

the unsteady problem we can obtain in the limit a distribution for $ 

under steady state conditions. As an example of application of this 

method let us consider the one-dimensional problem 

1 
1 1 1 ,t+l - $ .  ' =-$$j+l + UJj-l - 2qJ.) - fj 

T 3 
(4.209) 

Hence the stability condition from (4.17) provides the constraint on 

step size 

0 i T/h2 I 1/2 (4.210) 

Continuing from this partial result we return to the problems considered 

in chapter 11, where the general method of solution was the iterative 

method. It is obvious that the iterative process is quite analogous 

to the above described method of deriving a steady state solution 

through an equation of unsteady motion. 

Now, analysing the iterative solution on step 1 (of the iteration) 

and comparing it with the previous step we find in certain parts of 

the domain D the differences (errors) between the two steps. Our aim 

is to diminish this error, that is, to accelerate the convergence of 

the iterative scheme. Among the many acceleration methods proposed 

we present the method of Richardson (Thompson, 1961). 

Denoting the difference between the iterative solution of (4.207) 
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at step 1 and the right side of (4.207) as 

Richardson's algorithm is stated as follows 

(4.211) 

(4.212) 

where 

(4.213) 

and CY is an iterative parameter. The choice of the optimum value 

an iterative parameter is a difficult but not a hopeless task as 

was shown by Carre (1961) and O'Brien (1968). 

of 

if 

We present here only the range of variability of CY using the analog 

with the unsteady problem. For equation (4.212) stability takes place 

when (compare with (4.210)) 

0 I CY 11/2 (4.214) 

The two-dimensional operator in (4.212) provides 

01 CY s 1/4 (4.215) 

and finally in the three-dimensional case 

0 1  a i 1/6 

Therefore, we may apply Richardson's method of accelerating an itera- 

tive process by setting CY to any value within these ranges of varia- 

bility. 

REFERENCES 

Ames, W.F., 1965. Nonlinear Partial Differential Equations in Engi- 
neering. Academic Press, New York, London. 

Asselin, R., 1972. Frequency Filter for Time Integrations. Monthly 
Weather Review v. 100, N. 6. 

BrettschnCider, G., 1967. Anwendung des hydrodynamisch-numerischen 
Verfahrens zur Ermittlung der M2-Mitschwingungsgezeit in der Nord- 
see. Mitteilungen des Instituts fiir Meereskunde der Universitat 
Hamburg, V I I .  



167 

Carrk, B.A., 1961.  The Determination of the Optimum Accelerating 

Courant, R. and Hilbert, D., 1962 .  Methods of Mathematical Physics. 

Crank, J. and Nicholson, P., 1947.  A Practical Method for Numerical 

Factor for Successive Over-Relaxation. Computer Journal. v. 4, N.1. 

Interscience Publishers Inc., New York. 

Integration of Solutions of Partial Differential Equations of Heat 
Conduction Type. Proc. Cambridge Phil. SOC. 43, 50 .  

stau und Gezeiten in Randmeeren. Tellus v. 11, N. 1. 

Nonlinear Primitive Equations for a Barotropic Fluid with Applica- 
tion to the Boundary Current Problem. Tellus v. 17, N. 4 .  

Forsythe, G.E. and Wasow, W.R., 1960 .  Finite Difference Methods for 
Partial Differential Equations. John Wiley and Son Inc., New York. 

Gantmacher, F.R., 1959.  The Theory of Matrices. Chelsea Publishing 
Company, New York. 

Hansen, W., 1956 .  Theorie zur Errechnung des Wasserstandes und der 
Strijmungen in Randmeeren nebst Anwendungen. Tellus v. 8, N. 3. 

Hansen, W., 1962.  Proc. of Symposium on Math.-Hydrod. Methods in 
Phys. Oceanogr., Mitteilungen des Instituts fiir Meereskunde der 
Universitat Hamburg, I. 

Kagan, B.A., 1970 ,  On the Features of Some Finite-Difference Schemes 
Used in Numerical Integration of Tidal Dynamics Equations. Atmos- 
pheric and Oceanic Physics N. 7 .  

Kowalik, Z., 1975.  On the Numerical Solution of a Steady Circulation 
in the Sea. Acta Geophysica Polonica N.4. 

Lamb, H. 1932 .  Hydrodynamics. Cambridge University Press. 

Lax, P.D. and Richtmyer, R.D., 1956 .  Survey of the Stability of Linear 

Fischer, G., 1959.  Ein numerisches Verfahren zur Errechnung von Wind- 

Fischer, G., 1965 .  On a Finite-Difference Scheme for Solving the 

Finite-Difference Equations. Communications on Pure and Applied 
Mathematics v. IX: 267-293 .  

Leendertse, J.J., 1967 .  Aspects of a Computational Model for Long- 
Period Water-Wave Propagation. Rand Corporation, California. 

Marchuk, G.I.; Kagan, B.A.; Tamsalu, R.E., 1969 .  Numerical Methods 
to Compute Tidal Motion in Adjacent Seas. Atmospheric and Oceanic 
Physics T. 5, N. 7. 

Marchuk, G.; Gordiejev, R.; Kagan, B.A.; Rivkind, W., 1972 .  Numerical 
Method to Solve Tidal Dynamics Equation and the Results of its 
Testing (in Russian). Published by Compntaitonal Centre, Novosybirsk. 

Marchuk, G., 1974 .  Numerical Solution of Sea and Atmospheric Dynamics 
Problems. Gidrometeoizdat, Leningrad. 

Miyakoda, K., 1962 .  Contribution to the Numerical Weather Prediction - 
Computation with Finite-Differences. Japanese Journal of Geophysics 
v. 3, N. 1. 

O'Brien, G.G.; Hyman, M.A.; Kaplan, S., 1951 .  A Study of the Numerical 
Solution of Partial Differential Equations. Journal of Mathematics 
and Physics v. 29, N.4. 

O'Brien, J.J., 1968 .  Comments on "The Over-Relaxation Factor in the 
Numerical Solution of the Omega Equation". Monthly Weather Review 
v. 96,  N. 2.  

Phillips, N.A., 1959 .  An Example of Nonlinear Computational Instability. 
The Atmosphere and Sea in Motion. Rockefeller Ins. Press, New York. 



168 

Richtmyer, R.D. and Morton, K.W., 1967 .  Difference Methods for Initial 
Value Problems. Interscience Publishers. 

Roberts, K.V. and Weiss, N.O., 1 9 6 6 .  Convective Difference Schemes. 
Mathematics of Computation v. 20, N . 9 4 .  

Shuman, F.G., 1957 .  Numerical Methods in Weather Prediction: I1 - 
Smoothing and Filtering. Monthly Weather Review v. 85:357-361.  

Shuman, F.G., 1962 .  Numerical Experiments with Primitive Equations. 
Proc. of the International Symposium on Numerical Weather Prediction 
in Tokyo, Nov. 7-13,1960.  Meteorological SOC. of Japan, Tokyo. 

Sielecki, A., 1968.  An Energy-Conserving Difference Scheme for the 
Storm Surge Equations. Monthly Weather Review v. 96,  N. 3. 

Smagorinsky, J.; Manabe, S.; Holloway, J.L., 1965.  Numerical Results 
from a Nine-Level General Circulation Model of the Atmosphere. 
Monthly Weather Review v. 93,  N. 12. 

Sundermann, J., 1 9 6 6 .  Ein Vergleich zwischen der analytischen und der 
numerischen Berechnung winderzeugter Stromungen und Wasserstande 
in einem Modellmeer mit Anwendungen auf die Nordsee. Mitteilungen 
des Instituts fur Meereskunde der Universitat Hamburg, IV. 

Macmillan Company, New York. 
Thompson, P.D., 1 9 6 1 .  Numerical Weather Analysis and Prediction. 



169 

Chapter V NUMERICAL TREATMENT OF TIDES 

51 .  Introduction 

The classical problem of the tides of the world ocean can be formu- 

lated as follows: 

Determine the tides and tidal currents by means of the hydrodynamic 

equations, introducing only the tide-generating forces and the geometry 

of the bottom topography and coastline which are presumed to be known. 

In principle, it is possible to compute quantitatively the tides 

and tidal currents at each point of the world ocean using the hydro- 

dynamic differential equations without consulting measurements of tides 

and tidal currents, whether from the coast or from the open sea. 

Since the times of Newton mathematicians and physicists, like Ber- 

noulli, Laplace, Hough, Darwin, Poincari? and others, have studied 

the tidal problem. The goal of their efforts was to set up analytical 

solutions of the hydrodynamic differential equations. These could be 

found, however, only for geometrically simple oceans. The knowledge 

gained by these studies is summarized by Lamb ( 1 9 4 5 )  and Defant ( 1 9 6 1 ) .  

Proceeding in this way it is impossible to seize quantitatively the 

phenomena in a natural basin. To obtain analytical solutions for such 

phenomena is extremely difficult. Even for the relatively simple example 

of a rectangular basin with Coriolis force and tidal stimulation, no 

closed solution exists. These difficulties lead to the search for a 

numerical solution to the tidal problem. It seems that Defant ( 1 9 1 9 ,  

1924,  1 9 3 2 )  was the first to apply the numerical method to the so-called 

narrow-sea-problem where the domain of integration could be considered 

as a one-dimensional channel. The application of the numerical proce- 

dure (with the boundary condition 5 = 0 on the open boundary and U = 0 

at the closed boundary) allowed Defant to derive several solutions 

for elongated basins such as the Red Sea, the English Channel, the 

Mediterranean Sea and the Atlantic Ocean. 

The first application of the two-dimensional set of equations is 

due to Hansen ( 1 9 4 9 ) .  He applied them to the tide problem in the nor- 

thern part of the Atlantic Ocean, and afterwards to the North Sea 

problem (Hansen, 1 9 5 2 ) .  

Generally speaking, two different approaches to the tide problem 

are feasable. The first approach is based on the well-known fact that 

the harmonic (in time) boundary conditions generate harmonic motion 

and therefore all variables in the equations of motion and continuity 

may be set in the form eiwt. Consequently the time variable can be 
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removed and the final equation of sea-level is obtained from the 

primary system of equations. This equation with proper boundary con- 

ditions is usually solved by iteration methods. 

On the other hand, one can solve the system of primary equations 

by time-integration with the periodical boundary condition. The inte- 

gration in time is continued until the stationary state occurs, i.e. 

the shape of the tidal curve is repeated in time without any distortion. 

The latter method, although very valuable in the treatment of non- 

linear equations, needs more computer time than the former procedure. 

Accordingly, the first method has found widespread application when 

studying the distribution of the tides. It is very often called the 

boundary value method. For this reason it is very difficult to mention 

all the contributors to this approach. The most conspicuous results 

were obtained by Bogdanov et al. (1964) for the tides of the Pacific 

Ocean and for different basins of the World Ocean (Bogdanov, 1975). 

A slightly different approach to the boundary value problem has been 

presented by Pekeris and Accad (1967) who computed the M2-tide in the 

Atlantic Ocean. 

The methods of solution are related here to the system of algebraic 

equations (see chapter 11). The overall iteration process depends 

strongly on the bottom friction coefficient. This leads, in deep basins, 

to very slow convergence and sometimes to divergence of the solution. 

On the other hand, the time dependent integration or the hydrodynamic 

method has also been initiated by Hansen (1956) and was subsequently 

developed by his colleagues. The best results with this approach ob- 

tained Zahel (1973, 1977). The system of equations is written on a 

staggered net in the explicit form (as demonstrated in chapter IV,59). 

Another form of an explicit scheme has been widely used by Heaps 

(1969,1972) for the tide and storm surge problem in adjacent seas. 

In the Soviet Union a group of people associated with Marchuk (see 

Marchuk et al. (1969)) has developed a semi-implicit method related 

to the small step method. This seems to be the only numerical scheme 

for the computation of the tide which has a second order approximation 

in space and time with the horizontal and vertical friction terms 

included. Application of this scheme yielded several interesting re- 

sults for the main parts of the World Ocean (Marchuk and Kagan, 1977) 

5 2 .  A system of equations for the study of the tides 

The problem of tide prediction is usually studied by the linearized 

form of equations (1.44) - (1.46) 



IX) 
au 'b - - fV + ga5 + - - AAU = Kx at ax H + C  

(Y) 
'b + fU + ga5 + - - AAV = K 

at aY H + C  Y 
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(5.1) 

(5.2) 

On the right hand side of the equations of motion, Kx and K 

the components of the tide generating force. This set of equations, 

with proper boundary conditions, can be applied to solve the tidal 

problem in an adjacent sea of small horizontal dimensions when the 

curvature of Earth can be neglected. If, on the other hand, the dimen- 

sions of the basin are big, the above equations can be formulated in 

the spherical system of co-ordinates 

a v - f V + L ? L + L  at R COsQaA H + C  + GA = Kx 

describe 
Y 

( 1 )  

(5.4) 

Here X denotes the geographical longitude, @ the geographical latitude 

and R Earth's radius. The horizontal eddy viscosity terms are expressed 

in the following way 

I )  (5.7) 2 tan@av 
G~ = -AIAU + R-~[-u(I + tan - 2- cos@ a x 

11 (5.8) 
2 tan@ au G = -A{AV + R-2[-V(l + tan @ )  + 2cos9ah 

@ 

The components of the tide generating force Kx and K 

the tide potential 8 (Lamb, 1945) as 

are related to 
@ 

The tide potential for the M2 constituent (moon semidiurnal) depends 

on latitude and longitude, and becomes negligibly small at high lati- 

tudes 



(5.10) 

where 

C = 0.761 x u = 1.405 x sec-I 

The quasistatic response of the free surface of the ocean to (5.10) is 

equal to 

(5.11) 2 5, = $R cos $cos(ut + 2x1 

Therefore the tide potential is related to the surface elevation in 

the following way 

1 
9 
-e = 5 (5.12) 

The elevation of the free surface due to tidal forcing is evaluated 

with respect to the fixed sea bottom. However, when the bottom itself 

is in a state of motion due to the elastic yielding of the solid Earth, 

the sea-level will also change for the same reason. The motion of the 

sea bottom arises from (Hendershott, 1977; Kagan, 1977) 

A .  The attraction of the solid Earth by the Moon or/and the Sun, 

B. The pressure of the water column above the sea bottom, 

c. The attraction between the ocean and the solid Earth. 

All these reasons should be accounted for in a redefinition of the 

tidal forces responsible for tidal motion in the ocean. We shall dwell 

only upon point A which seems to be the most important. 

The total tidal potential 8 containing the tidal potential 0 and 
the additional gravitational potential due to the elastic yielding 

of the solid Earth can be written as 

* e = (1 + k ) e  

The bottom displacement y ,  in term of 

is equal to 

6 = h <  

(5.13) 

the free surface variation 5 ,  

(5.14) 

In (5.13) and (5.14) k and k denote Love's numbers and are equal to 
0.302 and 0.612 respectively. 
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The total sea-level elevation 3 ,  should contain the sea-level varia- 

tions relative to the bottom 5 and the bottom displacement 6. Such 

an approach causes a redefinition of all terms in the equations of 

motion and continuity which contain the sea-level. For example in 

equation ( 5 . 5 )  the pressure term 3% should be changed, in terms of 
the total sea-level so, to - 

written in the form 

Ra 9 g aso 
R 39 

Since tide gauges record the value of 5 the expression is usually 

(5 .15 )  

a6 
a+ If the solid Earth's tide is static in character,- is related in 

a straightforward manner to the gravitational Earth potential by (5 .14 )  

and ( 5 . 1 2 ) .  

Therefore, leaving the left hand side of (5 .4 )  and ( 5 . 5 )  unchanged, 

we introduce the factor y = 1 + k - h to account for the additional 
term due to so and 6, and rewrite the expressions for the tidal force 
as 

(5 .16 )  

This result is easily obtained by introducing a) the total sea-level 

so into ( 5 . 4 )  and ( 5 . 5 )  instead of 5 and b) the total potential 

instead of 0. Observe also that from (5 .15 )  we find 

It is evident that the system ( 5 . 4 )  - (5 .6 )  can be integrated only 

in an area which excludes the Earth's pole (since there cos$ = 0). 

For hydrodynamic problems in polar regions it is necessary to write 

a new system of equations, the solution to which is unique in the 

polar region. To this end a stereographic projection can be applied. 

The projection is obtained by setting a plane Q ( Fig. 411, which 

passes through the parallel of latitude $o (usually 4 = 60°). That 

part of the spherical sheet above the latitude $o is projected onto 

the surface Q. The new system of equations is written in the plane Q. 

Its form is similar to the one derived in the Cartesian system of 

co-ordinates with the scale factor m (see e.g. Kowalik and Nguyen 

Bich Hung, 1 9 7 7 ) :  

0 



(5 .18 )  

(5 .19)  

The new system of  c o - o r d i n a t e s  ( x , y )  h a s  i t s  o r i g i n  a t  t h e  n o r t h  
p o l e .  The x -ax i s  i s  d i r e c t e d  a l o n g  0' l o n g i t u d e  and y r u n s  a l o n g  90°E 

l o n g i t u d e .  

N 

s 

Fig .  4 1 .  STEREOGRAPHIC PROJECTION 

The s c a l e  f a c t o r  m f o r  a map p r o j e c t i o n  re la tes  a s u r f a c e  a r e a  on 
t h e  s t e r e o g r a p h i c  map t o  i t s  image on a u n i t  s p h e r e  

@o i s  u s u a l l y  t h e  60° l a t i t u d e  and t h u s  t h e  magnitude o f  m i n  t h e  
p o l a r  r e g i o n s  i s  c l o s e  t o  u n i t y .  

To o b t a i n  a unique s o l u t i o n  t o  t h e  above system of  e q u a t i o n s  w e  
s h a l l  s p e c i f y ,  later on ,  t h e  p rope r  set o f  i n i t i a l  and boundary con- 
d i t i o n s .  I n  d e r i v i n g  t h e s e  c o n d i t i o n s  w e  s h a l l  f o l l o w  t h e  l i n e  presented 
i n  c h a p t e r  I V ,  $8. 
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53.  The boundary-value problem 

A s  we know already a solution to the tide problem in an adjacent 

sea can be sought using two different methods. On the one hand, it may 

be solved as an initial-value problem with presribed boundary condi- 

tions on each time step. The numerical integration proceeds until a 

stationary oscillatory motion occurs in the domain of integration. On 

the other hand, Sknce the phenomenon being considered is of an oscil- 

latory character in time, one may assume that the dependent variables 

change with time in the following manner 

( 5 . 2 2 )  

In the primary set of equations ( 5 . 1 )  - ( 5 . 3 )  we shall introduce 
certain simplifications. Firstly the bottom friction term is taken in 

the linear form ( 1 . 6 3 ) .  Secondly the lateral exchange of momentum is 
assumed to be negligible. The latter assumption, though generally true, 

is somewhat artificial in coastal zones, where big horizontal diffe- 

rences in the current velocity are present. The simplification is also 

motivated by the desire to obtain a final equation ( 5 . 2 7 )  of the 
elliptical type: if the Laplacian operator is left in equations ( 5 . 1 )  
and ( 5 . 2 )  , the final equation for the sea-level will be of the bi- 
harmonic type. 

From now on we shall assume that the dependent variables 7, and 

r, are complex functions of x and y. Introducing ( 5 . 2 2 )  into the system 
( 5 . 1 )  - ( 5 . 3 )  a new set of equations without the time variable is 
obtained 

- 

( 5 . 2 3 )  

( 5 . 2 4 )  

( 5 . 2 5 )  

where R1 R/(H+5). 

Introducing and from the first and second equation into the 

third one, the equation which describes the sea-level is obtained. 

To explore such a possibility we compute the determinant on the basis 

of ( 5 . 2 3 )  and ( 5 . 2 4 )  
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(5.26) 

In case (5.26) is equal to zero the transformation proposed above 
R is impossible. It is clear that in a sufficiently deep sea R =- -+ 0, 

and, if w2 = f , the determinant2 is equal to zero. This happens where 
the period of oscillation is equal to the pendulum period r, i.e. on 
the so-called 'critical latitude'. For the M2-tide the 'critical lati- 

tude' is 74O30'. From the above discussion the conclusion may be 

drawn that the proposed method is erroneous in the vicinity of the 

'critical latitude'. Hence, to improve the situation at the 'critical 

latitude' the term describing the lateral exchange of momentum must 

be introduced into the set of equations. 

1 H+< 2 

2Tl 

The problem of the 'critical latitude' does not appear at all when 

the solution is derived by an analytical method (Stretensky, 1947; 

Racer-Ivanova, 1956). Two solutions are initially obtained, one valid 

for each side of the 'critical latitude'. These are then 'matched'. to- 

gether by ensuring that the continuity of the solution and its deri- 

vatives is satisfied at the 'critical latitude'. 

Let us now return to the transformation proposed above. We shall 

apply it only outside the region of the 'critical latitude'. The final 

equation for sea-level oscillation then takes the form 

(From now on we shall omit the bar over 5 1 ,  

where 

aH aH -1 1 1 
H ( R ~  - iw) ax ay 

- -  B = -[ 

y = &[ (R1 - iw) 2 + f2]/(Rl - iw) 
9H 

(5.27) 

The numerical solution to (5.27) was given by Hansen (1952) for 

the case where 5 is known on the whole boundary. If the boundary of 

an adjacent sea consists of rl part water and r2 part land, the ampli- 
tude will be prescribed only on rl 
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= +(X,Y) (5.28) 

On r2 the perpendicular component of velocity is equal to zero. Apply- 
ing (5.23) and (5.24) we obtain (see also chapter VIII, equation 8.9) 

az; a c  [(R1 - iw) + fzlcosa + [ ( R 1  - iw) - - fs]cosB = 0 (5.29) aY aY 

Here a and B are the angles between the direction perpendicular to 

the coast and the x- and y-axis respectively. Representing 5 as a 

sum of real 5, and imaginary Gi parts, we find two elliptic equations 

with the pertinent boundary conditions 

on I',,and on r2 

a', a', a' aci a ci 
aY aY ax 1 aY ax [ajc + d-Icos a+ [% - dL]cosB = d coscx - - dlcosB - 

(5.324 

aci aci aci a', a 'r a'r + d cosB - 
ax aY aY ax 1 ax 1 aY 

[- + ~-]COSCX + [- + d-]cosB = d coscx - 

(5.32b) 

-(- 1 aH -- fR1 aH 
2 2-1 ax R ~ - W  ay 

2 2-4 aY R ~ + W  ax 
1 aH 1 aH -(- +- 

fR 

w 2 2  2 2 2 
-(R1 + f + w )/(w2 + R1) 
gH 
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- wf Rf . - 
dl R2 + w2 2 2 ’  d =  

R + w  

To obtain F(Cr) in the above equation replace Ci with 5,. 

The solution of the system (5.30) with boundary conditions (5.31) 

and (5.32) can be derived for natural basins by the numerical method 

only. 

Because 5 in (5.30a) is dependent on Ci and the reverse situation 

occurs in (5.30b) , both equations should be solved at the same time. 
This reminds us somewhat of the situation in the implicit set of 

equations (4.172) and (4.173). Therefore, we introduce a) a finite- 

difference grid with space step h and b) an iterative index n and 

c) the elliptical operator (5.30) L. We may state the following 

r 

(5.33b) n+ 1 
Lh ‘i = F2(5:) 

Applying an iterative procedure to (5.33) consisting of successive 

approximations with a suitable convergence condition (Ch. 11,§5), 

a solution to the system (5.30) can be derived. 

In case the boundary conditions are given in terms of velocities 

it is possible to solve the above problem through the elimination 

of sea-level from the equations (5.23) - (5.25). The final set of 
steady state equations for the U and V components can again be solved 

by the iteration method. 

54. The hydrodynamic-numerical method 

Integrating in time the set of nonlinear tide equations by means 

of the numerical method using the h.armonic boundary condition has 

already found widespread application. The works of Hansen (1956) and 

others gradually disclosed the manifold problems, either related to 

numerical stability and convergence or to various hydrodynamic aspects 

such as the r61e of vertical and horizontal friction. 

Frequently a numerical analogue of the differential equations, 

which was applied by Hansen, is formulated on the staggered grid 

shown in fig. 34. There U, V and 5 are calculated on different grid 
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points. An explicit numerical scheme defined on this grid was discussed 

extensively in chapter IV, 59. Therefore we shall not dwell upon such 

a numerical approach here. 

Instead, let us consider a numerical grid as plotted in fig. 33. 

There, both velocity components are calculated on the same grid point 

but the sea-level is set apart. The aim of using different numerical 

grids is clear enough. They enable us to arrive at a better approxima- 

tion of the equations and at the same time they can ease the formula- 

tion of boundary conditions, which, as we know from chapter IV, 58, are 

not a well-posed problem in the numerical formulation. 

The grid in fig. 33 has been applied by Lauwerier and Damsti! (1963) 

and subsequently by Heaps (1969, 1972) in the study of tides and storm 

surges. 

We prescribe the following numerical analogue of the continuous 

system (5.1) - (5.3) 

1+1 ul-l 1 1 1 1 
r ‘j+l ,k+l+ ‘j+l ,k-1 - ‘j-l,k+l - ‘j-1 ,k-1 u .  - 

irk - fvl-l = -9 
2T jrk 2 2h 

l-l) (5.34a) 
R1-lul-l A 1-1 1-1 + u ,  1-1 +ul-l 

- 1 j,k +z(uj+2,k+uj-2,k j,k+2 j,k-2-4uj,k 

(5.34b) 
R1-l”l-l + A ( + - 1  1-1 +v 1-1 1-1 -4vl-l) 

- 1 j,k 4h2 j+2,k+vj-2,k jrk+2+’j,k-2 j,k 

1+2 1 

, k+ (HU1+l j , k-2 - (HU1+l ) j-2,k 
‘j-1 ,k-l - ‘j-1 ,k-l 1 1+ 1 

2T = - E [  (HU 

1 (5.34c) 

The stability properties of the system (5.34) can be checked by taking 

all dependent variables in the form (4.17). The resulting set of equa- 

tions for the amplitudes U , V , 5 is of homogeneous form 
t * ?: 
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U* (A2-1) - 2TfV* + y ~ * c o s o ~ h  sinolh + R 1 2TU* 

+ V"AT(sin o,h + sin u2h) = 0 
.L 2T 2 2 

h 

V'(A2-1) + 2TfU * + g i T X *  * 5 sina2h cosolh + R12TV 

(5.35a) 

(5.35b) 
* 2T 2 2 + V AT(sin olh + sin a2h) = 0 
h 

2 "  T *  
( A  -1) 5 + $AiHU** sinolh-cosozh + -AiHV.sinu2h.cosalh = 0 

(5.35c) h 

Therefore its solution is possible if the determinant of (5.35) is 

equal to zero. This condition leads to a characteristic equation for 

the parameter A,which is of order of six 

(A2-l+a)2(A2-1) + A a ( A  -l+a) + ( A  -1)b2 = o (5.36) 2 2  2 2 

where 

a = 2R,T 

2 
2- ElHT a -  

h2 

2AT 2 2 
t -(sin ulh + sin azh) 

h2 

2 2 2 2 sin alh cos o2h + sin o'ph cos olh) 

R R = -  
1 H+C 

2 
By changing, in (5.36), A to 6, a third order equation is obtained 

and in this way the method presented in chapter IV, equation (4.1931, 

may be applied to study the properties of the roots of (5.36). The 

general solution is quite complicated. Essentially it involves certain 

restrictions on the magnitude of the coefficients in (5.36) through 

the inequalities (4.196). 

Let us proceed by assuming an extremely simplified case of wave 

propagation in a frictionless medium with vanishing Coriolis force. 

The roots of the characteristic equation (5.36) are 

1 Xo = 1 and X l I 2  = 2(2 - p k Jp(p-2)') (5.37) 
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The value of (5.37) will lie within the unit circle in the complex 

plane 

p < 2 ;  a q < 2  2 T2 (5.38) 

This is the basic condition which appears in all stability analyses 

of the explicit numerical scheme in chapter IV. 

One may essentially improve the order of approximation of the Corio- 

lis and bottom friction terms in system (5.34) by expressing the velo- 

city as a sum over two time steps ;(V1+l + V1-') and +(U1+' + U1-l ) .  

Then the equations of motion (5.34a) and (5.34b) can be written in 

the following manner 

1+ 1 1 + RT) - fTVjrk = p 

1 CRT) + fTU1+l = Q 
j ,k 

(5.39) 

1 pl = ftvl-l + T d - 1  - 1 1 1 
irk irk 2h j+l,k+l+Sj+l,k-l-5j-l,k+l-cj-lrk-1 

4hL. 

Solving the 

1 U1+l = [p ( 
jrk 

A 1-1 +v 1-1 ++-I 
j+2,k j-2,k j,k+2fvj,k-2 

system (5.39) for the unknowns U1+l and V1+l yields 

+RT) + fTQ1]/[(1+RT)2 + (fT)2] 

+ Y I V  

j ,k jrk 

(5.40a 

V1+' = [Q1(l+RT) - ~TP~]/[(I+RT)~ + (fTl2I (5.40b) 
j rk 

These expressions together with (5.34~) complete the system for calcu- 

lating the velocities and the sea-level. 
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55. Calculating the M2-tide in the Arctic Ocean - an example 

In this paragraph we shall mainly follow the results presented by 

Kowalik and Untersteiner (1978). Our aim is to consider point by point 

as many questions as possible which are pertinent to the tide compu- 

tation. When studying tidal motion in a system of spherical co-ordi- 

nates the difficulty arises in the proximity of the pole. Although 

an analytical solution can be constructed in such a region, a numerical 

solution is rather cumbersome and therefore we turn to the stereographic 

system of co-ordinates and apply the system (5.18) - (5.20). 
To derive a unique solution of this system in the domain of integra- 

tion, it is sufficient to set everywhere on the boundary the values 

of the normal and tangential mass transport equal to zero, as was 

proved by Marchuk et al. (1972). 

Initially the dependent variables are taken as zero in the domain - 
D 

r;(x,y,t=O) =U(x,y,t=O) =V(x,y,t=O) = 0 (5.41) 

In an adjacent sea connected to the ocean the boundary condition 

can be easily stated on an impermeable coast (rc) due to the nonslip 

condition. But on the open boundary ( r  ) usually only a sea-level 

distribution is known. With these boundary conditions, by virtue of 

the result derived by Marchuk et al. (19721, the solution to the above 

set of equations cannot be found. Therefore the numerical solution 

shall be constructed as follows. On the boundary between an adjacent 

sea and the ocean the hyperbolic problem (with the horizontal friction 

neglected, i.e. AU = 0, AV = 0 )  is solved, and the velocity distribu- 

tion is found. With these data a new boundary is formed and the full 

system (the lateral friction included) of equations can be solved in 

the whole domain a. 

0 

Such an approach is quite appropriate since the uniqueness of the 

solution to a hyperbolic problem is guaranteed when the sea-level is 

given as boundary condition (Ch. IV, 581. With the above restriction 

in mind, the boundary conditions pertinent to the system (5.18) - 
(5.20) can be stated as 

u = v = o  on rc (5.42a) 

(5.42b) 
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In addition conservation of mass is assumed in the domain 5. This 
property will be checked by an integral taken over the tidal period 

T and along the open boundary ro 
P 

T L  

1 1 (UHcosa + VHsina) ds dt 
P 

0 0  

( 5 . 4 3 )  

Herela denotes an angle between the perpendicular direction to the 

boundary To and the x-axis: L is the length of ro. 
To derive a numerical solution to system (5 .18 )  - (5 .20 )  with the 

boundary conditions ( 5 . 4 2 )  the staggered space grid, as presented in 

fig. 34, is introduced and applied to the Arctic with a mesh size 

h = 7 5  km and time step T = 6 2 . 1  sec. 

Before applying the proper numerical form to the basic equations 

it is worth noticing that each numerical scheme, due to the finite 

values of time and space steps, is distorting the physical parameters 

of the computed wave. The wave distortion by a numerical scheme may 

be estimated only in rather simple numerical schemes as was shown 

by Leendertse (see chapter IV, 5 4 ) .  To avoid the problem (at least 

partly) we solved the tidal problem by two different numerical methods 

with different approximations and, by comparing the results, we in- 

tended to find a possible source of error. 

Firstly, the explicit numerical scheme analogous to the one dis- 

cussed in chapter IV, 59, equations (4 .128 )  - ( 4 . 1 3 0 ) , i s  applied. 

The only difference which arose was due to the presence of the scale 

factbr m in the system (5 .18)  - (5.20). 
In the numerical system ( 4 . 1 2 8 )  - ( 4 . 1 3 0 )  the overall approximation 

in space and time is only of first order. This is clearly seen from 

the time index, that is to say on the right hand side of equation 

(4 .128 )  where the horizontal friction term is set at the point in 

time 1-1 and the sea surface slope at time 1. Since the step sizes 

h and T possess finite magnitudes, the first order of approximation 

leads to numerical friction which is analogous to the horizontal 

friction in the equations. In the case of an unsuitable choice of 

grid size, this can cause wave distortion. 

The stability of the above numerical scheme could be, of course, 

studied by the von Neumann method, but there is no need for that, 

because we may easily implement the results obtained in chapter IV, 

5 9  and by Kowalik and Nguyen Bich Hung ( 1 9 7 7 ) .  Under quite general 

conditions the time and space steps are related by the following 

stability criterion 
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T 5 h / m m  (5.44) 

If the friction and Coriolis forces play an important r61e, the for- 

mulation of a more general criterion is difficult. However, in the 

case of the shortest waves on the net, whose wave length is equal to 

double the space step and where instabilities usually start, by analogy 

with (4.151) we may write 

2mLA‘ ) T 1/(R + - 
h2 

(5.45) 

We shall not dwell upon the stability problems too long but it 

seems important to stress that the criteria which result from the 

application of the von Neumann method do not take into account the 

boundary conditions and nonlinear properties of the differential 

equations. Therefore inequalities (5.44) and (5.45) are only guide- 

lines for establishing the magnitudes of the space and time step in 

order to preserve the stability of the numerical computation. 

Now we shall turn to the second numerical scheme which was applied 

in computing the tides in the Arctic. The scheme presented in chapter 

IV, 512 will be used. It possesses a second-order approximation in 

space and time, and has mixed explicit-implicit properties. 

To derive a unique solution of both numerical systems we adjoin 

the boundary conditions (5.42). Condition (5.42b) is prescribed on 

the open boundary between Northern Norway and Central Greenland. The 

complete set of data on the open boundary was established mainly on 

the basis of Nekrasov’s work (1975) 

(5.46) 

where 

H and go denote harmonic constants of the M2-constituent taken 
j ,k j,k 

on the grid points situated at the open boundary 

a denotes the angular velocity of the M2-constituent, 

equal to 1.405 x sec-’ . 
The computed results are presented in the next section. We shall 

not present individual results for the two methods, because they 

agree in amplitude to within a few millimeters; the greatest phase 

error was equal to go. From the comparison of the two methods with 

different degrees of approximation we may infer that wave deformation 

due to the numerical scheme is rather small. 
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56. The results of the computation of the tides in the Arctic Ocean 

The aim of this paragraph, though it is confined to the Arctic tide, 

is to accustom the reader to the variety of problems which arise and 

which can be clarified by relating the computed tide to local conditions 

The Arctic Ocean consists of a very deep basin (Hmax = 5.1 km) with 

a strong variation of bathymetry and the greatest shelf in the World 

Oceans. Therefore both, bottom and horizontal friction, play an impor- 

tant r61e. This concerns in a particular way the horizontal friction 

due to the presence of the critical latitude. In the course of different 

numerical experiments it was found that the stable picture of a tide 

wave appears with A = 5 x lo8 up to lo9 cm /sec. 2 

The Arctic Ocean is almost permanently and completely covered by 

a layer of ice. Due to friction there exists a loss  of energy against 
this layer, but it should be stressed that the ice cover does not 

effect the amplitude of a very long wave, as was shown by Kagan (1968). 

When comparing the numerical results with gauge measurements one 

has to understand that many phenomena in relation to the tides, espe- 

cially those in the coastal region, cannot be properly resolved, since 

the grid we use is unable to represent such features which belong to 

the subgrid scale. 

To our understanding one of the most important phenomena, not includ- 

ed in the basic set of equations (5 .1)  - (5.3), is the density strati- 
fication. It not only influences the tides but also makes it possible 

for internal waves to be generated, thus causing a transfer of energy 

from tides to internal tides. 

The results of computations for the Arctic Ocean in the form of 

co-tidal and co-range lines, obtained by the numerical schemes mention- 

ed above, are plotted in figs. 42 and 43. The phase is referred to 

Greenwich and is expressed in degrees. 

Since the amplitude of the equilibrium M2-tide is negligible in the 

Arctic Ocean, we may draw the conclusion from the above figures that 

the tide in question is the co-oscillating tide of the Atlantic Ocean. 

The M2-wave penetrates the Arctic Ocean mainly through the Green- 

land Sea. It propagates and slowly decreases from around 4 0  cm at 

Spitzbergen down to 2 - 3 cm at the extremities of the East-Siberian 
and Chukchi Sea. At the same time, the tidal wave due to the rotation 

of the Earth undergoes certain modifications; the motion is no longer 

alternating but rotating. The set of co-tidal lines plotted in fig.42 

show the rotation around the amphidromic point ( @  = 8I030'N, A =133OW) , 
off the coast of Canada. This picture is typical for a standing Kelvin 
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Flq. 4 3 ,  CO-TIDAL LINES OF THE M -TIDE IN THE ARCTIC OCEAN. PHASE 
ANGLES IN DEGREES ARE REFERRED T6 GREENWICH (SOLAR TIME). 
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F i g .  
I N  CM. 

4 3 .  CO-RANGE L I N E S  OF THE M2-TIDE I N  THE ARCTIC OCEAN, AMPLITUDES 
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wave resulting from the superposition of an incident and reflected 

wave in a semi-enclosed channel - the way it was deduced by Taylor 
(1921). The general character of the M2-wave, if compared with the 

map of co-tidal lines from the Ocearographic Atlas (1958) and with 

Zahel's map (1977), is reproduced properly. However, one has to under- 

stand that the co-tidal lines plotted in the Oceanographic Atlas are 

to a large extent hypothetical, especially in the open waters. Due to 

the extreme difficulty in the development and maintenance of tide 

gauges in the polar seas, even today, the distribution of the ampli- 

tude and phase of the tide in these regions is still obscure. 

When approaching the shelf zone of Siberia the co-tidal lines be- 

come parallel to the depth contour, as can be inferred from fig. 44. 

Instead of one-dimensional motion along the line of propagation, rotary 

motion is observed to the East of the North Siberian Islands. This 

type of motion was explained by Sverdrup (1926) through the introduction 

of waves on an unlimited rotating disc. 

The wave which turns to the Siberian Shelf is obviously dissipated 

there to a large extent. It becomes clear by inspection of the wave 

amplitude (Fig. 43) on the shelf and in the coastal region; for example 

the amplitude is of the order of 10 - 15 cm at the entrance to the 
shelf and slowly decreases to 2 - 3 cm at the extremities of Siberia. 

The other M2-tide entering the Polar Seas from the Atlantic Ocean 

between Spitzbergen and Norway produces the high tide in the southern 

part of the Barents Sea and in the White Sea, decreasing slowly in 

the direction of Novaya Zemlya. We were unable to reproduce the White 

Sea area exactly with our net. Therefore the tides in the western part 

of the Barents Sea and around Novaya Zemlya are somewhat distorted, 

as may be seen in table 5.1. 

Nevertheless, these tides die out on the shelf around the Islands 

of Novaya Zemlya and they do not influence the general picture in the 

Arctic Ocean. This conclusion is inferred from the following two nume- 

rical experiments. In the first experiment the White Sea was closed 

and at the southern part of Novaya Zemlya the amplitude rose up to 

2 m. The second computation with the White Sea present is shown in 

fig. 42 and fig. 43. It shows that the phase and amplitude off the 

shelf area in the proper Arctic Ocean remain unchanged in both experi- 

ments. 

Below, we compare the data derived from the numerical computations 

with gauge observations published by the International Hydrographic 

Bureau in Monaco. 
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TABLE 5.1 

Comparison of the data derived from the numerical computations with 
gauge observations published by the International Hydrographic Bureau 
at Monaco 

Location 

$ =  , A =  

Spitzbergen 

78O58 

80°00 

79O43 

Green 

82O11 

76O46 

83O40 

Norwa 

69O38 

SSSR 

N, 12O06'E 

N, 16O52'E 

N, 10°52'E 

and 

N, 3Oo30'W 

N, 18'46'W 

N, 33'35'W 

(TromsZ) 

8 'N, 18O52 'E 

69O55'NI 32'02'E 

69O05 'N, 36O18 'E 

Novaya Zemlya 

76O 1 6 ' N , 6 3OO 3 ' E 

Ayon Island 

69°52'N, 167O43'E 

T-3 Island 

71°55'N, 16Oo20'W 

Point Barrow 

7I018'N, 156O4O'W 

Ampli 

observed 

49.9 

27.9 

41.5 

10.6 

50.8 

4.2 

87.6 

99.1 

130.8 

15.2 

1.8 

4.5 

4.5 

ide (cm) 

calculated 

48 

29 

41 

12 

53 

5 

84 

97 

125 

30 

4 

3.3 

3.1 

Phase 

observed 

26' 

93,2' 

45O 

356' 

307O 

307O 

39O 

151° 

2 20° 

283O 

347O 

311° 

31 3O 

deg. 1 

calculated 

22O 

4 3O 

70° 

20° 

1 oo 
50° 

1 oo 

145O 

1 goo 

1 40° 

340° 

300° 

305O 

The set of equations (5.18) - (5.20) also presents the possibility 
of studying the velocity distribution of the M2-tide. The flow changes 

periodically with the tide, rotating slowly through an ellipse. The 

velocities along the major and minor axes of the ellipse are plotted 

in fig. 44. The major axis is usually parallel to the direction of 
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Fig. 44. PRINCIPAL AXES OF THE M2 TIDAL ELLIPSES IN THE ARCTIC OCEAN 
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propagation of the tidal wave in the basin. The greatest velocities 

are associated with the shelf areas of the Barents Sea and around the 

New Siberian Islands. The motion in the deep portion of the Arctic 

Ocean, when compared with the Norwegian and Chukchi Sealis not only 

dampened out but also changes its character from alternating to rota- 

ting. Although we did not present the directions of rotation in fig.44, 

the feature is very valuable, because it helps to identify the type 

of wave. 

Propagation over a long path without reflection is usually accompa- 

nied by a uniform direction of rotation; on the other hand, the reflec- 

ted wave, when it couples with an incident wave, provides a very 

complicated pattern of rotation. In general, the properties of an 

ellipse can be expressed through the components U and V (e.g. Hansen, 

1952). Defining U and V as 

U = Ulcoswt + U2sinwt (5.47a) 

V = V coswt + V sinwt (5.4713) 
1 2 

the length of the major and minor axes is equal to 
1 

2 
1 2  
n 1  

2 + v1 2 + v2 2 + L U I  2 2  + u2 + v; + V,) 2 - 4(U1V2- U2Vl) A = - U  + U  

(5.48a) 

(5.48b) 

The direction of rotation is defined by the sign of the magnitude 

U1V2 - U2V1. The positive sign indicates an anti-clockwise rotation. 
Likewise the negative sign is due to clockwise rotation. Zero means 

an absence of rotation of flow. 

Since the Arctic Ocean is covered by ice, it is of interest to con- 

sider the possible action of tidal current on it. If a continuous and 

stationary ice cover occurs it is reasonable to assume that the tidal 

current does not affect the ice very much. If, on the other hand, the 

ice cover consists of ice floes one may suppose that due to the tidal 

current periodic variations in the ice distribution and compactness 

may occur. The study of such an action by the tides will be performed 

with the help of 

-t QU av 
ax + a~ div U = -  
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Fig. 45. MAXIMUM ABSOLUTE VALUES OF VELOCITY DIVERGENCE. TO DERIVE 

ACTUAL VALUES OF DIV 6, THE NUMBERS GIVEN SHOULD BE MULTIPLIED BY lo-'' 
DIV 6 IN SEC-'. 
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Fig. 46. DIVERGENCE OF HORIZONTAL, ENERGY FLUX IN ERG/SEC, AVERAGED 
OVER ONE M2 TIDAL PERIOD. 
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It is clear that div 6 < 0 shows the zones of flow divergence and 

div 6 > 0 indicates the reverse situation. At the same time, the ice 

floes will undergo a concentration in the case of div U < 0 and will 

disperse if div 3 > 0. Due to the tide's periodicity, alternating half 

periods of convergence and divergence are encountered. Therefore it is 

of interest to produce a map of the maximum value of the modulus of 

the divergence over one period (Fig. 4 5 ) .  In this way the areas of 

possibly pronounced horizontal motion can be specified. A short inspec- 

tion of fig. 45 shows that the respective zones are confined to the 

Barents Sea, the Novaya Zemlya Islands and the New Siberian Islands. 

-+ 

§ I .  The energy balance equation 

From the system of primary equations ( 5 . 1 )  - (5 .3 )  we shall derive 

an equation for the energy balance of a tide wave in domain E. Multi- 
plying ( 5 . 1 )  by HU, ( 5 . 2 )  by HV and ( 5 . 3 )  by gr;, and adding the result- 

ing equations side by side we find 

(5 .49 )  

In ( 5 . 4 9 )  the following vectors have been introduced 

Integrating (5 .49 )  over the domain an equation for the energy balance ~ 

is obtained 

l a  +2 2 2 ~ ;  (HU +gC ) dD + .f Tb6 dD + g .fV (H6r;) dD - J AHdAd dD = - .f Hbd dD 

( 5 . 5 0 )  

'f, l5 D 
- 
D 

Let us describe equation (5 .50 )  term by term: 

denotes the kinetic energy of the tide wave - +2 Ekin - &.f HU dD 

E = LJ gc2 dD is the potential energy of the tide wave 

i3 

pot 2 a t -  D 
+ - +  

ED., = .f T ~ U  dD 
ri 

describes the dissipation of tidal energy 

due to bottom friction 
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ED2 = - .f AHdA8 dD the dissipation of tidal energy due to the ex- 

change of momentum in the horizontal direction 

is the horizontal flux of energy from the sources 

to the sinks 

describes the production of tidal energy due to 

the tide generating force. 

D 

Ef = =!' gV (dHc) dD 
D 

E = .f Hgd dD 
Pr 

If the domain 6 is bounded by the contour r on which condition 
C 

(5.42a) is fulfilled, the rate of production of tidal energy E should 

be precisely balanced by the dissipation term. 
Pr 

D' 
This follows from the fact that, after averaging over tide period T 

rn rn 

(5.51) 

The horizontal flux of energy through the boundary is equal to zero, 

Ef = 
gV(dH<) dD = .f gr;HUn dD = 0, (5.52) 

D r 
due to the boundary condition (5.42a). 

Therefore we obtain 

1 TP 
T 

.f ED, dt = - S E  dt 
Pr 

- 1 p  

P o  P o  

(5.53) 

In (5.53) ED2 is neglected since usually ED1 >>  ED2. 

impermeable part r 
(5.42) are prescribed. Since an adjacent sea is ordinarily of small 

area the energy-producing term E is of negligible importance, but on 

the open boundary the flux of energy due to Ef appears 

If the domain D represents an adjacent sea then r consists of an 
and an open part ro on which the boundary conditions 

C 

Pr 

T L 
T 1 p  Y g [ .f <UnH dl]dt = Ef 

P 
(5.54) 

0 0 

where L denotes the length of To and Un the component of velocity 

perpendicular to To. Assuming a simplified form of velocity U =U n o  
.cos(ut - a) and sea-level variation 5 = c,cos(at - 6 )  along the 

boundary ro, the time average in (5.54) leads to 

Ef = 5HUocog cos(a - 6 )  (5.55) 
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In this case the energy flux through the open boundary To is balanced 

by the dissipation due to the bottom friction. 

From all the terms considered above, the tidal dissipation due to 

the bottom friction plays the most intricate r61e in an explanation 

of the secular decrease in the rate of rotation of the Earth. To 

estimate the mean energy dissipated in unit time we shall average ED1 

over the tidal period T 
P 

T i 3  T E  

1 T J”J ;,d dD dt = f SpS i m  (U2 + V2) dD dt (5.56) 

P o 0  P o 0  

Due to the depth in (5.56) the highest rate of dissipation is associat- 

ed with the shallow coastal areas. 

The first estimate of overall loss of energy on the shelf of the 

World Ocean was made by Jeffreys (1921) and Heiskanen (1921). Recently 

the problem has been reconsidered, see e.g. Kagan (1977) and Hender- 

shot (1977). 

The estimates reported in these papers are very different from each 

other and this is mainly because the knowledge of the tide distribution 

over open waters is still far from being complete. 

We shall illustrate this with reference to the example of the Arctic, 

The magnitude of the energy dissipation in the Arctic area as computed I 

by (5.56) is equal to 5.1 x 1017 erg/sec. 

Since the Arctic M2-tide is considered to be co-oscillating, the 

general flow of wave energy is directed from the Atlantic to the Arctic 

Basin. In studying the flux of energy it is useful to calculate firstly 

F1 = J gV(H6r;) dt 

T 

(5.57) 1 p  

P 
0 

that is, the value of divergence of the horizontal energy flux related 

to an arbitrary point of domain b. 

The map of F1 is presented in fig. 46. The most intense sinks of 

energy are found at the entrance to the White Sea and near the New 

Siberian Islands, where the tidal amplitudes are largest. According 

to the general reasoning the field of horizontal energy flux should 

show no sources. It must be assumed that the sources appearing in 

fig. 46 are the result of truncation errors inherent in the numerical 

schemes employed. The total horizontal flux of energy over the Arctic 

( 7 x 1017 erg/sec) is comparable to the energy dissipated by the 
bottom friction. 
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58. Numerical models to study the vertical distribution of velocity 

in the tide waves 

Assuming that the distribution of velocity along the vertical axis 

can be calculated from the linear equations (1.24) and (1.25) (with 

atmospheric pressure pa = 01, namely 

av + f u  = -gx + k s  a 2v 
at aY 

(5.58a) 

(5.58b) 

It is seen from (5.58) that the velocity is a superposition of two 

components. One is due to the surface slope, which is completely inde- 

pendent of depth, and the other component is a function of the exchange 

of momentum in the vertical direction. 

The overall surface slope in the tide wave's slope 5, is set as a 

difference 5 - 5,. Here 5, is the elevation due to the tidal force 

and is defined by (5.12). 

Since the frictional force acts on the tide wave only at the bottom, 

the components of current due to the momentum exchange are confined 

to the bottom boundary layer only. 

The equations (5.58) are linear andlapplying the superposition 

principle, the system (5.58) can be split into 

a 5, fVl = - g a x  au1 
at 
- -  

avl a 5, 
+ = - gay at 

- 

and 

a 2 ~ 2  
+ fu2 = k a22 - av2 

at 

(5.59a) 

(5.59b) 

(5.60a) 

(5.60b) 

In (5.59) and (5.60) the components of velocity due to the surface 

slope are denoted by the subscript 1 and the velocity due to the tur- 

bulent stress by subscript 2. 
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The sea-level distribution in (5.59) can be derived through the 

solution of the tide problem, as presented in the previous paragraphs, 

and afterwards, a solution to (5.59) can be easily obtained. The real 

problem is posed by the system (5.60). As a boundary condition we 

assume at the free surface z = H + r ;  a) that u = ul, v = v1 and b) that 

u2 = v2 = 0 ;  at the bottom owing the nonslip condition u = 0, v = 0, 

thus u2 = -ul, v2 = -vl. Additionally, since at the free surface the 

horizontal stress vanishes, the relevant boundary conditions may be 

set as-= 0, - =  0. 
a u  av 
a z  az 

We shall proceed further by implementing an explicit numerical 

analogue to (5.60), introducing the indices 1 for time and j for the 

z-co-ordinate 

(5.61a) 

(5.61b) 

Setting the dependent variables in (5.61) as X e i51Jh (see e.g. 4.17)~ 

the stability of the numerical scheme is assured if 

T < 2$k/[f2 + ($kI2] (5.62) 

where 

2 h  $ = -  42 sin 512 

h 
(5.63) 

In case the eddy viscosity coefficient k is a function of depth, a 

more appropriate numerical analogue of (5.60) is 

1 

1 - fvj -x[T(kj+l + k.) (uj+l - u.) - -(k. + kj-l) (uj - 1 1  u1+1 - u 1 1 1  1 1 1  
T h 3 7 2 3  

= o  (5.64a) 

= o  (5.64b) 
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If the turbulent motion is decaying (k -$ 01, the inequality (5.62) 

can be difficult to fulfil. The time step which follows from it is 

so short that the overall time of computation may be unrealistic. 

Therefore a fully-implicit numerical scheme should be employed taking 

into consideration the discussion on this subject in chapter IV, 511. 
Writing (5.60) in the implicit form 

through the application of (4.17) one obta 

the characteristic equation 

= o  (5.6533) 

ns the fol owing root of 

(5.66) 

From (5.66) we may conclude that (5.65) is 

choice of the space and time step. 

Both methods which have been presented, 

stable for an arbitrary 

i.e. explicit and implicit, 

have only first-order approximation in time. Often better results 

can be attained with second-order approximation (but not always). We 

shall use a splitting method to build up a second-order scheme for 

(5.60). Instead of a time step T between the moments in time 1 and 1+1, 

we consider two substeps T/2 related to the points in time 1, 1+1/2 

and 1+1, thus 

1+1/2 - u1 
U 
i i  - Lvl - KAul = 

T 2 j  2 (5.67a) 

(5.67b) 

(5.67~) 

(5.67d) 

a 2  where A = g. 
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Introducing u1+ll2 and v '+'I2 from (5.67a) and (5.67b) into (5.67~) 
j j 

and (5.67d) the system of equations is obtained 

(5.68a) 

which is much simpler than (5.67). 

The stability of (5.68) if examined by expression (4.17) leads to 

the following roots of the characteristic equation 

2 2 X l I 2  = (1  - S /2 - CN /4 ?I s kN2/4 - 1 + s4/4')/(1 + CN/2)2 
(5.69) 

The result is a function of the two parameters 

s = fT and CN = sin UI-. 2 h  
2 h Considering the magnitudes of s and CN we can consider, first of 

all, the case s < CN. Equation (5.69) then simplifies to 

= (1 - CN2/4)/(1 + CN/2)2 = (1 - CN/2)/(1+CN/2) 
1,2 

(5.70) 

and therefore stability is always assured. 

to the condition / A  I < 1. 

If, on the other hand, s = CN, the inequality CN2 + s2 < 4 leads 

1,2 
Assuming in turn the dominance of the Coriolis term s > CN, equation 

(5.69) leads to a stable numerical scheme when 

fT < 2 (5.71) 

We may conclude that the splitting method described by the system 

(5.67) is stable under a fairly wide variation in the physical para- 

meters.Such a property seems to be very important, when, for example, 

the eddy-viscosity coefficient k is varying in the tide wave from 

zero up to lo3 cm /sec. Thus, if the stability condition depends on 

this parameter k (as in the case of (5.62)),one may face insurmountable 

difficulties in satisfying stability. In this respect an application 

of a completely implicit numerical scheme saves us very often from 

such a surprise. 

2 
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9 9 .  A treatment of the boundary layer in the tide wave 

The bottom boundary layer is the place where laminar flow is trans- 

ferred into turbulent flow. The conditions under which a turbulent 

regime appears can be found in principle from the stability of a pre- 

scribed vertical distribution of velocity and density. An initial 

instability is confined to the region where gradients of velocity 

and density achieve a certain critical value. Usually such regions 

are situated in the vicinity of the bottom. A proper description of 

the boundary layer at the bottom can only be made by a suitable des- 

cription of the transfer of momentum in the vertical direction. We 

shall suppose, therefore, that the eddy viscosity is an unknown variable 

and, to close the usual set of equations, an equation for the turbu- 

lent energy is added. Firstly, a simplified problem without density 

stratification will be treated. We shall use the set of equations 

already applied in chapter 111, $9 to study the vertical distribution 
of the wind-driven current 

where 

k = colb 
3 and E = clb /1 

(5.72) 

(5.73a , b) 
The parameter of the turbulence scale 1 occuring in this system 

is expressed by von Karman's formula 

It is customary to solve the system (5.72), (5.731, but it is also 

possible to eliminate one variable from this set. Expressing the 

scale of turbulence from (5.73a) as 1 = k/c b and introducing this 

into (5.73b) we find 
0 

(5.75) 
4 

E = coclb /k 

Substituting 1 into (5.74) we obtain 

(5.76) 
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Clearly the overall solution may proceed through the system (5.72), 

(5.761, which does not contain the parameter 1. To obtain a unique 

solution of this system the following boundary conditions are assumed 

2 
a k a b = O  a t z = z  a n d z = H  (5.77) b az 0 

because a turbulent flow of energy disappears at the sea bottom and 

at the free surface. 

The scale of turbulence at the bottom of roughness z = zo goes to 

the limiting value 

(5.78) 

Thus the eddy viscosity coefficient from (5.73a) at z = zo is equal 

to 

k = c bxz (5.79) 
0 0  

In the considered boundary layer the source of instability was confined 

to the bottom roughness. When a density stratification is present it 

may combine with the current distribution to give a complicated pattern 

to the vertical stability properties. These can be estimated with the 

help of the Richardson number. To model this combined effect the equa- 

tion of density conservation is added to the overall system of equa- 

tions as 

(5.80) 

where we follow the notation of chapter 111, 99. 

Assuming that the flux of mass at the surface and at the bottom 

vanishes, then the relevant boundary condition for (5.80) is 

a k % = O  a t z = z  a n d z = H  P az 0 
(5.81) 

In (5.80) and (5.81) p denotes the fluctuation of the density around 

a mean value p . Therefore the density of water p1 is expressed as 
follows 

PI = P o ( z )  + p(x,y,z,t) (5.82) 

0 

In the case of a density-stratified medium an additional term is intro- 

duced on the right side of the energy balance equation (5.72) to 

describe the production or loss of turbulent energy due to the buoyancy 

force, namely 
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.l 

(5.83) 

When the objective is to describe the boundary layer using the set of 

equations (5.72), (5.76) and (5.80), then clearly they should be 

linked to the system (5.60). We shall shortly consider the numerical 

treatment of this complicated set. Although an explicit approach is 

possible, we shall confine ourselves to a) an implicit numerical scheme 

and b) the splitting method. 

Though we expect from the latter a higher order of approximation, 

the former method is not bounded by any stability criterion and there- 

fore may be easily implemented. The best approach seems to be an 

application of several numerical schemes.Such a procedure may at least 

shed some light on the approximation errors in the different methods. 

If the implicit method is applied the set of equations, apart from 

equation (5.65) 

equation (5.72) 

1 
B1+l. 1 

- B  = k (  
T 

will contain a numerical 

- c c BIB1+l/kl 
0 1  

analogue of the energy 

(5.84) 

2 where B = b . 
Approximating B2 in time as BIB1+’we imply that in the course of 

the calculation B 2 0 .  

The eddy viscosity occuring in (5.84) is derived from (5.76) by 

the following numerical scheme 

thus 

A more subtle approach is required if the sp3itting method is consi- 

dered. It is also obvious that the proof of the numerical stability 

is impossible with conventional techniques due to the nonlinear pro- 

perties of the energy equation. 
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In implementing the splitting method we shall follow the deriva- 

tion in system (5.67). Corresponding to the first subset of equations, 

(5.67a) and (5.67b), the relevant form of the energy equation is 

and corresponding to the second subset (5.67~) and (5.67d) we have 

/kl 
1+1 /2B1+1 B 

(5.86b) 

The eddy viscosity in (5.86) is computed with the expression (5.85b). 

It does not require splitting since formally it is not a function of 

time. 
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Chapter VI  MODELS OF SHALLOW COASTAL AREAS AND TIDAL RIVERS 

This chapter will be devoted to the modelling of the hydrodynamic 

processes in semi-enclosed seas, rivers and estuaries. Dynamic processes, 

as described by the general equations derived in chapter I, take a 

new and different form, due mainly to the one-directional character 

of flow in rivers and estuaries. In addition, in shallow water,where 

variations of the water level are of the same order as the depth, the 

nonlinear effects start to play an important rble. Because of this, 

we shall reconsider certain results obtained in chapter I, especially 

those related to the bottom stress. 

The model of storm surges in semi-enclosed seas is also discussed 

since it delivers a set of boundary conditions to the nested models 

of coastal oceanography. 

To compute a dynamic phenomenon in small areas such as bays and 

estuaries, one is usually lacking the boundary condition on the open 

boundary, through which an external domain exerts an influence. The 

best solution is to use observed values, for example tide gauge data. 

This is not always possible. Therefore a chain of nested models on 

decreasing grids is usually constructed. The first step is a model of 

storm surge or tide which includes the mesoscale basins like the North 

Sea or the Baltic Sea. In the course of the work done by Hansen (1956 ,  

1962 ,  1 9 6 6 ) ,  Platzman ( 1 9 5 8 , 1 9 6 3 )  ,Uusitalo ( 1 9 6 2 )  , Jelesniansky (1965 ,  

1 9 6 6 ) ,  Heaps ( 1 9 6 9 ) ,  Reid and Bodine ( 1 9 6 8 )  and many others (i.e. 

Volcinger and Piaskovski, 1 9 6 8 )  , many important questions related to 
the physical and numerical problems of vertically-integrated equations 

were eludicated. The numerical reproduction of the tide and storm surger 

is now at a level where it can be used in a forecasting system, there- 

fore we shall not dwell on such models. In studying the dynamic pheno- 

mena in shallow coastal waters and rivers we shall depend a great deal 

on the well-known model of the North Sea developed by Hansen ( 1 9 5 6 ) .  

The model with a grid distance of 37  km is very well suited to problems 

concerning large scale processes provided the topographic approximation 

is guaranteed. But as soon as more specific questions arise, due to 

the local vertical or horizontal nature, a refinement of the grid seems 

to be the best solution. One of the most promising applications of the 

small scale models is the prediction of dynamic processes in the areas 

of planned engineering constructions. A refinement of the grid is neces 

sary there to reproduce in the model the optimum resemblance to nature. 

On the other hand, a numerical model of this kind is needed to forecast 

the storm surges and tides in basins screened from the open sea by 
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islands and sandbanks located at the end of narrow channels. 

Of course when one has access to a computer of great memory size 

and the cost of computation is of no importance, the grid refinement 

problem may be solved to a large extent. 

51. Some remarks on one-dimensional models 

In this chapter the dynamics of flow will be considered using the 

notion of the average velocity. The one-dimensional flow will be studi- 

ed with the help of equations (1 .52 )  and ( 1 . 5 4 ) ,  namely 

B Z + N = ,  ax 

where B denotes the width of the channel, Q = B ( H + < )  is a cross-sec- 

tional area and = r U  IUI. b 
As is usual in estuaries, one cross-section is very different in its 

structure and magnitude from the next. As the slope of the river bed 

is not constant along the length of the river we can speak of an 

asymmetry of the profile which is due to changes in the geometry of 

the width, depth and cross-sectional area. 

If the influence of this asymmetry on the flow is small compared 
au 
ax with the friction of the bed, the nonlinear term U- in (6 .2 )  may be 

neglected. But generally this is not the case, especially in the middle 

and the upper parts of the river, where usually great changes occur 

in subsequent cross-sectional areas. 

The convective term has to be considered as a measure of the asym- 

metry in the equation of motion. If the rate of change of cross-section 
- is great, it must be expected that the velocity changes substantial- 
ax au ly as well. To estimate its magnitude, ax has to be computed from the 
generally valid equation of continuity ( 6 . 1 ) .  

It follows from (6.11, that the advection term can be expressed as 

Introducing (6 .3 )  into the equation of motion (6.21, where the 

term due to the surface stress T L ~ )  is omitted, gives 
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We now investigate the term in parentheses 

( 6 . 5 )  

as a generalised expression for the total resistance to motion. It 

can be seen that the share of U- in the total resistance is always 

important. This is especially true in the case of great velocities - 
small depth and extended width, as well as in the case of pronounced 

changes of the cross-sectional area --. 

au 
ax as 

at, 

1 aQ 
Q ax u aa B a c  

Q ax Q at 
Since the terms --and --change their signs during one tidal 

period they influence the total resistance irregularly. at generally 
reaches its maximum shortly after low water and in this way reduces 

the relative influence of the friction term. Subsequently the reduction 

decreases, the change of the sign takes place roughly half way between 

high (hwt) and low water time (lwt), an increase of energy dissipation 

occurs accordingly. 

a r  

The cross-sectional area diminishes up-stream. When U is greater 

than zero (flood), the term --increases the total resistance, while 

the negative sign of U at the ebb reduces it. It follows that both 

terms --and - -have opposite signs outside the times between high 

water and the turning point Kf as well as between low water and turning 

point Ke. Kf and Ke denote in this instance the turning points between 

flood and ebb and between ebb and flood respectively. 

u aa 
Q ax 

u aa B a r  
Q ax Q at 

Reduced friction forces cause higher velocities and, thus, a further 

increase in the water level. 

convective term U -has its 

particularly, because Q then 

of the water level cannot be 

U- during that period. 

au 
ax 

au 
ax 

Therefore it can be concluded that the 

greatest influence between lwt and Ke, 

is minimum. Actually the real elevation 

approximated without including the term 

In the equation of one-dimensional motion the Coriolis force does 

not appear. However, it may play an important r61e in the case of 

flow in the mouth of a river. 

If we set v = 0 in the hydrodynamic equations, we obtain the equatic 

of geostrophical motion for one-directional flow from (1 .22 )  

a c  - fu = g- 
ay 

( 6 . 6 )  

where %describes the lateral slope at the mouth. Taking approximate 

values of the parameters g = 10 m/sec2, u = 1 m/sec and f = 10 

and using a grid distance of h = 10 km, we obtain from the difference 

aY - 4  -1 sec , 
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form of the geostrophic equation 

the value of 10 cm for A<. From this result it may be concluded that 

the Coriolis force cannot be disregarded even in one-dimensional flow. 

Finally let us consider the r61e of variable density (Heaps, 1 9 7 2 ) .  

Due to the influence the density gradient has on the distribution of 

the current in the area of the mouth of a river, the hydrodynamic 

differential equations of motion have to be specified in such a way 

that a simple relation between current and mass distribution will hold. 

These equations will only provide the average current velocities, i.e. 

it will not be possible to depict a vertical distribution, except 

through the application of the equation of continuity in a non-averaged 

f orm . 
We may begin to account for the effects of variable density by using 

a simplified equation of motion (1 .1 )  

(6 .8)  

where the terms which will not play a r81e in the following discussion 

are omitted from (1  . I ) .  
The pressure in (6 .8)  is calculated with the help of expression 

(1 .28 )  

p = pa + p,g(< - z) + g S p1 dn 
0 

(6 .9 )  
Z 

As we saw in chapter I the density in ( 6 . 9 )  is a sum of an average 

part po and a variable part pl. 

ed from the bottom -H to the sea surface <, thus 

To ascertain the mean vertical velocity, equation ( 6 . 8 )  is integrat- 

(6 .10 )  

The influence of the density distribution on the mean velocity along 

the longitudinal axis of river is stated in ( 6 . 1 0 )  by the term 

(6 .11)  
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An investigation of the density term in the equation of motion 

shows that the mean flood-current velocity is naturally accelerated 

in the presence of a density gradient, while the ebb-current velocity 

is decelerated. 

52. River models 

Further development will be based on the equations (6.1) and (6.2) 

in the form 

(6.12) l a  + ~ C B U ( H + C ) I  = o 

(6.13) 

These equations form a hyperbolic system and in order to obtain a 

unique solution to the system we adjoin suitable boundary conditions. 

The boundary conditions for the channel problem can be formulated in 

the terms of sea-level, velocity or mass transport, namely 

< (x=O,t) = a1 (t) <(x=L,t) = c12(t) (6.14a) 

U(x=O,t) = Bl(t) U(x=L,t) = B2(t) (6.14b) 

QU(x=O,t) = y (t) QU (x=L,t) = y2 (t) (6.14~) 1 

Here L is the length of the channel and a ,  B and y are given func- 

tions of time. The initial conditions, as was shown in chapter IV, 

depend on the type of equation. To demonstrate the equation-type of 

system (6.121, (6.13) it is first of all transformed to the standard 

form (4.124). To do this, we define a vector 6 with co-ordinates U 
and H+<. Assuming the width B to be constant, the above system is 

rewritten as a single vector equation 

a6 a3 + 
at ax - + A - = T  

where 

A = L l  ' U 
L -  

+ 
: T =  : H1 = H + 5 

(6.15) 

(6.16) 
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To prove that ( 6 . 1 5 )  is of the hyperbolic type we introduce a deter- 
minant 

Det(A - AE) = 0 ( 6 . 1 7 )  

which provides two eigenvalues A = U ? m. 
1 1 2  

theorem stated in chapter IV, the system of equations is hyperbolic. 

The number of initial conditions for the unique solution of the posed 

problem is equal to the number of negative eigenvalues. Assuming that 

U < it follows from the result above that one initial condition 

is satisfactory for a unique solution. 

Since both eigenvalues are different and real, in virtue of the 

A numerical solution will be sought through equations ( 6 . 1 2 )  and 
( 6 . 1 3 )  in a slightly changed form 

This system will be transformed into a difference form with the 

help of the grid plotted in fig. 47.  

h h  
U 3 U . 3  *+ 
)e-+-x-+-x-i--x-- 

j-2, j -1 ,  j j +  I, j + 2  

x - u point 

-+ -5 point 

Fig. 47:GRID FOR A ONE-DIMENSIONAL PROBLEM. 
The differential quotients in ( 6 . 1 8 )  and ( 6 . 1 9 )  are replaced with 

central differences to give 

( 6 . 2 0 )  
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If the geometry of the river is so complicated that the above 

approach leads to an erroneous result, a more complicated model of 

two-dimensional flow could be introduced easily through the system 

derived in chapter I 

_ -  av - - g ay as - - L - v 6 7  - fu 
at H+ 5 

(6.22) 

6.23) 

6.24) 

The numerical form of (6.22) - (6.24) has to take into account the 
difference in the geometry of the one-dimensional flow. It leads first 

of all to different grids across the cross-section and along the main 

flow. Since for a proper reproduction of the motion a cross-sectional 

grid will have an extremely small step in space, this in turn will 

influence the magnitude of the time step. To avoid this obstacle an 

implicit form of the equations across the cross-sections will be intro 

duced. From now on we shall direct an axis parallel to the cross- 

section. The numerical scheme of (6.22) - (6.24) will therefore be of 
an implicit form along the y direction and of explicit form along the 

x-axis. We shall work only with (6.23) and (6.24) to derive the im- 

plicit part of the overall system, because the explicit form has been 

developed already and was thoroughly discussed in chapter IV 

If the terms along the x-axis in the above equations are ignored 

for a moment, it is easily seen, with the help of (4.17), that the 

system is unconditionally stable. To derive an algorithm for a 
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numerical solution we collect on the left hand side of the equations 

the implicit terms, and on the right hand side, the explicit terms as 

f 01 lows 

(6.27) 

1-1 - 1 
+ ‘j,k - F2,j,k ) - cr(H U1 - U1 vl- 1 

- Hj,k-l j,k-I h j,k j,k Hj-l,k j-1,k 

(6.28) 

Comparing the method of approximation in this system with numerical 

forms (6.20) and (6.21) we may see that previously U and V were taken 

at different space points. Now the points U, V and 5 from the vicinity 

are brought together and placed under the same space index. This pro- 

cedure will be explained later on. 

The solution to the system (6.27) and (6.28) can be easily derived 

using the line factorization method as presented in chapter 11. To apply 

the method we must reduce the system of equations to one equation of a 

three-point form. Starting with (6.28) we set 

(6.29) 
rjrk+l 

V1”) + F2 = --(H T vl+ 1 
‘jrk+l 2h j,k+2 j,k+2 - Hj,k irk 

(6.30) 

Next substituting it into (6.27) 

1 vl+ 1 
jrk jrk 

V1+’ - 2H vl+ 1 2 
V1+l - E ( H  
j,k 4h2 j,k-2 j,k-2 Hj,k+2 j,k+2 

a three -point formula 

factorization method. 

(6.31) 
F2,j,k+l) + F1 rj,k 

is obtained, suitable for treatment by the line- 
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After the distribution of velocity has been derived we may proceed 

in two directions: either through (6.28) to perform the straightforward 

calculations of 5 or to set a three-point algorithm for 5 and after 

that performing the calculation. 

It is obvious from chapter I1 that (6.31) will lead to a convergent 

solution if the diagonal terms prevail over the nondiagonal ones. The 

condition of convergence is expressed as 

(6.32) 

therefore we again have to choose the time and space steps to comply 

with this inequality. As we know from chapter IV it is possible to 

bypass this obstacle using an implicit algorithm. 

53. A one-dimensional treatment of river flow: the multi-channel system 

In this paragraph we shall return again to a one-dimensional des- 

cription of the river flow because that approach, though not very 

sophisticated, may provide a fast and correct answer to a great number 

of dynamic problems. Let us consider the cross-section plotted in 

fig. 4 8 .  The overall cross-section can be split into two parts: the 

'conveyance cross-section' and the 'reservoir'. The boundary line 

between these cross-sectional areas cannot be fixed without further 

consideration, but a tentative boundary can be drawn from the structure 

of the cross-section. For example, such a line can easily be drawn if 

a profile possesses the geometrical structure presented in fig. 49. 

Nevertheless, the procedure does not give any information about the. 

real magnitude of either cross-section or of the flow through it, but 

it provides the range wherein conditions of flow or storage predominate 

In equations (6.1) and (6.2) the velocity can be regarded as a 

mean value related to the cross-sectional area. Let us shortly consider 

the problems which appear as soon as we try to derive the velocity 

distribution due to the dual structure of the cross-section in the one. 

dimensional model. 

Consider a rectangular cross-section of width B and depth H. Water 

flows through it with average velocity U. 

Imagine that we add to this a cross-section of width b and depth h 

with the flow velocity u. In both longitudinal profiles the same sur- 

face gradient appears, therefore 

(6.33) 
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The total amount of water flow is given by 

F = BUH + buh (6.34) 

Setting 

of simplicity that B = b we find 

as = c2, U = c g ,  u = c a ,  H/h = n and assuming for the sake r ax 

(6.35) 

If on the other hand the geometry of the cross-section is neglected 

and only its total area is considered, the mean value of depth E=(H+h)/2 

and velocity Umay be related to it. Thus in a similar way to (6.33) 

we find 

(6.36) 

and 

- 
u = cJ(H+h)/2’ (6.37) 

Setting again B=b and H/h = n we derive the total mean flow 

p = 2B6(H+h)/2 

and - F = c B ( H + ~ ) ~ / ~ ( ~  + l/n3/2)/23/2 

(6.38a 

(6.38b 

In order to compare the possible magnitudes of F and F w e  put 

h = H/4 and find 

F = 1.14 F (6.39) 

Therefore, the water transports are not necessarily equal when the 

cross-sectional areas are of the same magnitude. They only approach 

each other when h approaches H. The difference in transport is pro- 

portional to the difference in depth. From this it can be inferred 

that the flow dynamics are not only a function of the cross-sectional 

area but also of its morphological structure. 

A special method has been developed to model the flow in rivers 

with complicated bottom topography, the multi-channel system (Ramming, 

1971). For this purpose the cross-section is divided into a number of 

unequal vertical strips which form a lattice of grid points for the 
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Fig. 49. CROSS-SECTIONAL AREA OF THE RIVER ELBE (678 km DOWNSTREAM), CLOSE TO GLUCKSTADT. 
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numerical calculations. An example of such a calculation is shown in 

fig. 11 where the cross-section of the River Elbe at the point 678 km 

is considered as a sum of 10 strips. Now, introducing an index of enu- 

meration k across the section and an index j of successive cross-sec- 

tions along the river, we may write the expression for the transport 

of water in the form (see fig. 49) 

LY 

(6.40) 

This method was tested extensively on the River Eider (Ramming,l971) 

where the flow is driven by the incoming tides from the North Sea. The 

river shows very irregular cross-sections and a remarkably variable 

depth distribution. In an early computation the cross-sectional areas 

were taken as a function of the water elevation and the depth was cal- 

culated as the ratio of the area over the width for an average water 

level. The numerical results obtained by this simplified method, when 

compared with the measured data, were far from satisfactory. In parti- 

cular, we were not able to reproduce the steep part of the tidal curve 

during the flood tide. The computations took into account only an 

overall area for the cross-sections but not their complex geometry. 

Such a procedure mainly distorts the friction and nonlinear advective 

terms in the equations of motion and continuity which are responsible 

for the nonharmonic behaviour of tidal curves. Since the tidal range 

and depth can be of the same order, the nonlinear processes are of 

special importance for the very shallow part of a river. 

To include in a model the effects described above we must include 

the fine structure of the depth distribution of the River Eider. To 

do this, the strips from one cross-section to another are connected 

together, forming parallel channels of different widths and depths. 

Having computed a transport for a single channel which passes through 

all cross-sections of the river, the total transport is determined as 

the sum of the transports in the adjacent channels. The overall proce- 

dure is explained in fig. 49. The cross-section of the River Eider on 

93.45 kin was divided into 10 strips (Fig. 50) of different widths and 

then the velocity pertinent to each strip is calculated. The greatest 

velocity occ rs in the deepest part of the cross-section. The velocity 

in the very shallow part, though very small, changes in a highly non- 

linear manner. The tidal curve on 96.46 km of the river as computed 

by this method (Fig. 51) shows a remarkable agreement with gauge obser- 

vations. 

Y 
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Fig. 50. VELOCITY DISTRIBUTION OF TIDAL CURRENTS, COMPUTED FOR EVERY STRIP OF A 
CROSS-SECTION OF THE RIVER EIDER ON 93.45 km , 26./27. MAY 1958. 
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Fig. 51. WATER LEVEL IN THE RIVER EIDER (96.46 km DOWNSTREAM, 26. /27.  MAY 1958). 
THIN CONTINUOUS LINE - DIFFERENCE BETWEEN OBSERVED AND COMPUTED VALUES. 
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54. A two-dimensional model of the River Elbe covering the area between 

Seemannshbft and Cuxhaven 

A one-dimensional flow model as described by equations (6.18) and 

(6.19) with an adequate approximation of the cross-section may give an 

answer to many problems, see e.g. Ramming (1971). However, the depth 

varies considerably in the River Elbe and especially in the mouth of 

its complicated estuary. The islands in the Elbe, which certainly 

influence the currents, cannot be treated even by a network of channels 

with one-dimensional flow. The same is true of the drying banks which 

are characteristic of this estuarine region. In shallow water the 

influence of the nonlinear interactions on the dynamics of the boundary 

layers (at the bottom and surface) of the water column is of conside- 

rable importance. 

A plot of water levels is very often extremely nonharmonic and the 

wave amplitudes may be of the same order as the depth. The water 

motion due to the very irregular bottom and coastal shape is rather 

complicated. Therefore, the channel approximation in a network model 

may reproduce this flow only up to the first order of approximation. 

A l s o ,  the Coriolis force and the cross-sectional component of velocity 

cannot be taken into account in a one-dimensional representation of 

the channel geometry. 

It is evident that, in order to gain a deeper insight into the 

hydrodynamic processes, a two-dimensional system of equations and a 

grid with a small step size is required. This leads inevitably to an 

excessive demand on the storage capacity of the computer. To illustrate 

the situation let us take a grid spacing of 2hx = 2h 

depth H + 5 = 24.2 m. From the Courant-Friedrich-Lewy criterion 

(Chapter IV, 4.145) for an explicit numerical scheme we find 

= 670 m and a 
Y 

2T -? 2hx/J2g(H + c ) ’  (6.41) 

and 

T 15 sec 

It would be necessary to use a grid of 36,000 points in the River 

Elbe to describe in a satisfactory manner all the geometrical irregu- 

larities of the river bed and banks. 

Therefore a model has been developed which a) determines the water 

level 5 and the V component of velocity by means of an implicit diffe- 
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rence method described by equations (6 .25 )  and (6 .261 ,  and b)calculates 

the U component of velocity by the usual explicit method. Since in the 

river the depth changes very rapidly across the river, a very fine 

mesh for water level and velocity has been chosen. The implicit forms 

of the equation were written along the same direction (here V is direct- 

ed across the river). 

The grid points in the direction of the main flow (U direction) 

were chosen with a much bigger step. Since the stability condition 

for the implicit method is less stringent than the condition for the 

explicit scheme, the overall time step was defined by the larger space 

distance along the main direction of flow in the river. Remarkable 

savings in computer time were achieved. Running times for the semi- 

implicit model were 1/5 to 1/10 of those for the fully explicit method. 

Two-dimensional variables are usually placed in computer memory 

as a rectangular array with indices j,k. Such an approach makes very 

inefficient use of computer storage in our problem. To diminish the 

storage requirements we proceed as follows: First of all we organise 

5 ,  U and V into triples even though they are defined at different grid 

points. Each triple is labelled as shown below. 

One 5 -, U- and V-point each are forming a triple of the following 
form: 

where 

M index of the actual triple + 5-point 

K index-difference concerning x u-point 

L index-difference concerning . v-point 

the triple over M 

the triple below M 

Next, we shall use, instead of two-dimensional indices, which lead 

to a large rectangular array with many points outside the river domain, 

one-dimensional enumeration, as will be described in chapter VIII,53. 
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We shall enumerate all triples in succession along each line in the 

y direction starting at Cuxhaven. The point with label P will have 

the obvious numeration for the neighbouring points on the left and 

right hand side, but, in order to identify the triples above and below, 

information on a serial number of line and the overall number of triples 

in each line should be given. 

The numerical solution of the flow problem in the River Elbe as 
presented by equations (6.28) and (6.31) can be carried out by the 

line-factorization method. As Ramming (1971) demonstrated, Banachiewiecz’ 

method (1938) is better than the line-factorization method. 

95. Approximation of the coast-line 

The coast-line of the River Elbe, because of its complicated shape 

and enormous changes in river width, could hardly be approximated by 

a boundary with a grid step of several hundred meters. Such a boundary 

as presented in fig. 52(upper part) does not reproduce a natural coast- 

line correctly. The rectangular grid region is either too large and 

includes a land area, or it is so small that part of the water region 

is neglected. Therefore, at the boundary, instead of a grid distance 

defined by x = jhx, y = kh 

of j,k will be taken. Usually j,k is taken as 0.25, 0.50 or 0 . 1 5 .  In 

this manner, the refined approximation of the coast line will be 

achieved. The parallel shifting of the boundary will cause a change 

of position of the U- and V-points at the margins. However, the modi- 

fied grid distance between the points of velocity at the boundary and 

the nearest distance to the boundary points do not enter the equation, 

since the normal component of velocity disappears at the boundary. In 

the numerical computations equations (6.25) and (6.26) are used, though 

at the boundary the equation of continuity is set in a special form 

to account for the variable grid 

where j,k = 1,2,..., noninteger values 
Y’ 

U1 1+1 1- 1 
“j ,k-1 + ‘j ,k-1 + ‘)j+l,k j+l,k 

(6.42) 

where L1 and L2 

or greater than 

or greater than 

are nondimensional numbers which take values smaller 

1 when the grid distance at the boundary is smaller 

hx and h respectively. 
Y 
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?ig. 52 .  MODEL OF THE RIVER ELBE BETWEEN CUXHAVEN AND SEEMANNSH6FT. 
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those grid points H + 5 > 0. Again in the calculations a water level 

from the neighbouring point is implemented. In the above consideration 

it is assumed that the depth between the grid. points is known. If this 

is not the case, we imply the linear variations of the depth. 

PJ’ 
+ 

Fig. 53.A SKETCH TO ILLUSTRATE PROCESSES ON TIDAL FLATS. 

With regard to this at each time step the water depth and the 

morphology of the neighbourhood of an actual grid point (U,V,<) must 

be proved concerning the physical possibility of transport directions. 

Furthermore, it must be observed that an overflowing or backflowing 

process of extreme shallow water is not dependent on the grid distance, 

but is proceeding according to physical laws and will be introduced 

into the numerical treatment by gathering the progress of the water- 

line. 

In explanation regarding conditions to be set up the following 

sketch may be given 

5 (m) U (m) 5 (m+l) U (m+l ) 
+ X + X 

Hz (m) HU (m) Hz (m+l ) HU (m+l) 

For the following examinations it must be observed that the depths 

HU and Hz beyond the undisturbed sea surface must have a positive 
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Let us note that if the boundary is normal to the x-axis, the 

equation of motion at the boundary in the x direction simplifies to 

f V = g a L ;  
ax ( 6 . 4 3 )  

and the component of the slope at the boundary can be easily estimated 

from ( 6 . 4 3 )  at any time step on the assumption that the V component 
of velocity is known from the equation 

( 6 . 4 4 )  

On the other hand, if a section of the boundary is perpendicular 

to the y-axis, the equation of motion yields 

a5 fU = -g - 
aY 

6 . 4 5 )  

6 . 4 6 )  

The new (shifted) boundaries, when applied to the River Elbe, are 

plotted in fig. 5 2  (lower part). 

s 6 .  Modelling the flooding and uncovering of tidal flats 

In areas of shallow water in the coastal zone the flooding and 

uncovering of islands, tidal flats and coast-lines is an important 

feature. The area under water varies with time in response to tide, 

wind, river flow and bottom topography. The edge or boundary of this 

area appears, expands, coalesces with its parts, contracts and dis- 

appears in a periodic fashion. Clearly, the topology of this feature 

can be very complex when considered as a continuum. However, when it 

is represented on a grid of points, it is simplified considerably. 

To explain the procedure let us consider the one-dimensional case 

depicted in fig, 53. Point P on the coast divides the 'wet' region, 
where the water depth H+r, is positive, from the 'dry' region with 

H + r, < 0. Point P is moving in time along the coast and its position 

can be found from equation H + r, = 0. Actually we do not know the 

value of r, in point P and therefore the water level from the nearest 

grid point, i.e. < j + 2  ,is taken. If we intend to compute a current at 
the point Uj+, or U j + 3  a check is first done to make sure that in 
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sign and below the undisturbed niveau down to the bottom it must have 

a negative sign. 

( 5 (m) , 5 (m+ 1 1 ) min > 

then U(m) will be determined by the equation of motion, and the 

depth for the friction term will be ascertained by 

(Hz (m) r Hz (m+ 1 , HU (m) max (6 .47  

i 5 (m) , r, (m+ 1 1 ) max - (Hz (m) r Hz (m+ 1 r HU (m) ) max ( 6 . 4 8  

actual 

Multiplying this water depth determined by U(m) the transporL 

to be considered in the equation of continuity is gained. If the 

condition ( 6 . 4 7 )  is not fulfilled, then it has to be proved, whether 

( 6 . 4 9 )  

If the maximum depth is larger or equal to the minimum of the two 

neighbouring sea-levels, in the first instance it follows that U(m)=O, 

however the possibility cannot be excluded that the depth of transport 

to set up as agreed upon 

In this case the length of the water flow sn has to be checked 

and whether the next grid point of the water-line has been reached in 

such a case. 

If sn < grid distance, then sn will be storaged and added to the 

distance newly determined at the next time step. This addition will 

be repeated time step by time step until s 2 grid distance. Only in 

this case U(m) will be determined. 
n 

The appertaining direction of the velocity is resulting from the 

slope of the sea surface between the two neighbouring <points. 

It is necessary to distinguish all thinkable cases, because it 

is possible that from time to time in some points there will be no 

water. One has to check the neighbourhood of each grid point from time 

step to time step with regard to the actual water depth, the depth 

distribution and the physical possibility of transports and directions 

of transports. It is also necessary to pay attention to the velocity 

of the overflow and the draining processes of extremely shallow water 

in order to make sure that the process in nature is in a good agree- 

ment with the process in the hydrodynamic-numerical model. The covered 
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distance of water is computed and it will be checked if the next grid 

point has been reached. With this simple method one can find out the 

motion of the water-line. 

During the treatment of the continuity equation it should be check- 

ed whether? + < < 0. It will be sensible to select 0.02 m as a coef- 
ficient datum. If H + I0.02, then the area represented by this point 

will be considered as dry and 5 = -H is applied. The values H +< i0.02 
will be stored by points and are then again transported to the point 

if H + < > 0.02, i.e. if the actual water depth exceeds this value. 

Thus it will be possible that mass deviations may occur in time steps, 

but over a tidal cycle, the masses will be maintained. 

Let us first consider a simplified example of a basin which is ope? 

at one side and has a bottom slope of 1.6 % and is 13,200 m in length ' 
(Fig. 54). At the closed end of the basin the velocity vanishes and 

along the open boundary the water level is prescribed as 

5 = 50.0 cos wt (in cm) (6.51) 

where w = 2r/43200 sec-l. 

The grid distance is equal to 1200 m, and the equations (6.207) 

and (6.21) with r = 3 x are applied. In fig. 54 the free surface 

shape in the vicinity of the coast at 0, 3 ,  6 and 9 hours is plotted. 

The next example concerns the 'Neuwerker Watt', including the 

isle of 'Scharhorn', near the estuary of the River Elbe. The domain 

is shown in fig. 55 and is covered by a rectangular grid of step 

size 670 m. The depth distribution of this region is very complicated. 

and the tidal amplitude reaches 3.0 m. The height of the dike near 

'Neuwerk' is 5.4 m. From the observed sea-level data taken from gauge 

records at the points A ,  B and C in fig. 8, we chose the periods 

2gth September to 3rd October and 15th to 17th October 1967. 

A comparison of the computed and observed sea-level as a function 

of time is presented in fig. 56. The differences in amplitude are less 

than +6 cm. Such a good reproduction of the tidal processes in the 

region of the 'Neuwerker Watt' and other derived results show that 

the hydrodynamic-numerical method is able to reproduce very complex 

hydrodynamic processes in extremely shallow areas with remarkable 

accuracy. 
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Fig. 54. WATER LEVEL DISTRIBUTION IN A CHANNEL WITH SLOPING BOTTOM. 
x - LEVEL AT THE OPEN BOUNDARY, 0 - POINT WHERE 5 = -H. 
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57. A special treatment of the bottom friction in extremely shallow 

waters 

The dependence of bottom stress on the velocity and depth is con- 

firmed by a great deal of research under a variety of field conditions 

(Chapter I, 5 4 ) .  However in storm surges and in the behaviour of long 

waves knowledge of the bottom stress is still far from satisfactory. 

This situation is due entirely to the complicated hydrodynamics of 

turbulent flow in the bottom boundary layer, see e.g. Collins ( 1 9 6 3 ) ,  

Kitajgorodski ( 1 9 7 0 ) .  In the study of this problem the early work of 

Reid ( 1 9 5 7 )  is also relevant. He assumed that the bottom stress is a 

function of surface stress with a nondimensional constant. Iamada 

( 1 9 5 9 )  derived an analogous expression 

( 6 . 5 2 )  3k 

H 
Tb = 7 u - Ts/2 

In ( 6 . 5 2 )  knowledge of the vertical eddy viscosity k is presumed. 

A general solution to the problem may be approached through the 

integration in time of the nonaveraged equations of motion and after 

that describing the bottom stress through the definition 

dU 
dz T~ = -pk - . 

This leads to a very complicated but not insoluble problem as was 

shown by Jelesnianski ( 1 9 6 7 ) .  A recent attempt has been made by Nihoul 

( 1 9 7 7 ) .  An interesting relationship between the nonlinear and linear 

expressions of the stress in tidal flow was demonstrated by i.e. 

Provost ( 1 9 7 4 ) .  

A new unresolved problem arises in very shallow areas when the 

free surface oscillations are of the same order as the depth. In these 

natural conditions a new modified expression for the bottom friction 

coefficient will be presented based on the comparison of observed and 

calculated water level and on numerical stability considerations. But, 

first,let us try to estimate the magnitude of the friction coefficient 

and its time fluctuation during one tidal period at an arbitrary place 

on the river. The following simplified method can be applied. With the 

help of water levels recorded by tide gauges and the known geometry of 

a cross-section the average velocity is calculated by cubature. Then 

the equation of motion (6 .19 )  is used to present the friction coeffi- 

cient in the form 
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a8 - 
06 - 
04 - 
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00- 

-02 - 
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AT 24.957 KM 

Lo 
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W 

Fig. 57. FRICTION COEFFICIENT r CALCULATED BY EXPRESSION (6.59) BY MEANS OF RECORDED WATER LEVELS AND VELOCITIES 
DERIVED FROM THE EQUATION OF CONTINUITY. 
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( 6 . 5 3 )  

With the possible exception of time intervals around the points 

K and K when the velocity U is zero, the true value of r is derived. 

The magnitude of r as calculated by this method is not constant through- 

out the tidal period, but it varies, mainly due to the unsteadiness 

of the river geometry. An example of the computed variation of the 

friction coefficient, together with the water level and calculated 

velocity for the cross-section of the River Eider near Friedrichstadt, 

is plotted in fig. 57.  

e f 

It should be stressed that the overall value of the coefficient 

is an average of all existing coefficients, and sometimes it may be 

very far from a local condition. The possibility of such averaging 

depe ds strongly on the assumption of small variations of bottom 

roughness along the river length and that the effects of resistance 

due to the geometry of the river are considered by an additional term 

in the equation of motion. 

2 

Returning for the moment to fig. 57, it may be observed that a) 

the time of maximum velocity does not correspond exactly with the 

time of zero water level, and b) the time of zero velocity is not 

exactly in phase with the maximum (or minimum) water level. This phase 

difference a is due entirely to the bottom friction. The bottom stress 

can be defined in terms of a in the following manner (Ippen and Harle- 

man, 1 9 6 6 )  

Tb = $U tan 2a ( 6 . 5 4 )  

Let us now consider the numerical problems which arise in connec- 

tion with shallow water dynamics. An application of the friction term 

in the equations of motion leads to proper results when the depth is 

more than 1 0  m. In shallow water with an actual depth of 3 - 4 m the 

stability of the numerical scheme is difficult to handle. To present 

the problem let us consider a one-dimensional system of equations 

( 6 . 5 5 )  

( 6 . 5 6 )  
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The explicit mixed difference-differential form of (6 .55 )  is 

( 6 . 5 7 )  

which shows that the first term on the right hand side of (6 .57 )  des- 

cribes a dissipation due to the bottom friction. The numerical stability 

is preserved if 

Otherwise a flow of energy is present and this leads to numerical in- 

stability. 

It is obvious that this important condition is violated in very 

shallow water, for instance when H + z; = 0.1 m and U # 0 m/sec. There- 
fore, the difference scheme has to be modified in such a way that the 

physical law of energy conservation is not violated in very shallow 

water. 

The simplest ad-hoc solution is to set the friction term in an 

implicit form 

(6 .59 )  

( 6 . 6 0 )  

From ( 6 . 6 0 )  stability follows,but in the case of (H + z;) being very 

small, the situation becomes obscure. 

dition (6 .58 )  is violated, the expression ( 6 . 5 7 )  can be 'reduced to 

Analysing ( 6 . 5 7 )  one may come to the conclusion that whenever con- 

( 6 . 6 1 )  

By means of the following arguments one can show that this neglect 

leads to a non-acceptable result: 

a) the neglect of the whole term is not correct, because in that case 

the velocity is, only determinated by the gradient term 9% without 

consideration of the velocity in the time step before 

b) if we consider the equation of continuity ( 6 . 5 6 )  and substitute u 
ac by g s  then it follows 



Z) = 0 (6.62) 

simple transformations and neglects of terms which 

have a second deviation it comes out the equation 

(6.63) 

The variation of depth at the flats and sands is very small, that 

is equivalent to - aH = 0, and one can say as a first approximation 

a I ; ,  0 (6.64) 

ax 

at 

This means a stop of the water motion at those areas or in those 

discrete points of the model where the bottom friction term had been 

neglected because of the small actual water depth. The sands and 

flats are not uncovered because the given condition is incorrect. 

The results obtained are not satisfactory. In nature these water 

masses flow with relatively high velocity into the narrow channels 

so-called 'Priele'. In the numerical model these water masses are 

missing, they are not present at other discrete points which now 

have a phase displacement. 

It is also possible to solve an explicit numerical scheme by vary- 

ing the time step in order to preserve the inequality in (6.58). To 

avoid such a complicated procedure the expression for the friction 

term will be modified in such a manner that stability will hold at an 

arbitrary depth. 

The depth variation of the friction coefficient r can be inferred 
1 -2  by setting r = =(loglo 14.8H/10.0) 

(Chapter I) with an assumed size at the bottom equal to 0.1 mm. 

. 
The latter follows from the logarithmic distribution of velocity 

Another approach consists of the introduction of a generalized 

function to describe the dependence of the bottom friction coefficient 

on depth (Ramming, 1976) 

(6.65) 

The parameters Ho and H 1 ,  which have the dimensions of depth, can be 

set in an arbitrary way. Numerical experimentation showed that the best 

results may be obtained with Ho = H1 = 1 m. The exponential parameter 

p is taken from the range 0.5, 1 ,  2, ..., 10. Usually' p = 1 was taken. 

A comparison of the different expressions for the dependence of 
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23
8
 

-. .. 
.. 

.. 
.. 

I 
1
 

I 

- H
 

H
 

X
 

B
 

a
 

w
 
a
 
z
 
0
 

Y
 

z W E
l 

z
 

E.l 
U

 
H

 
!x E

 

H
 

z
 

w 
I% w r=! ZLI 
H

 
a
 

E
 
3
 

W
 

U
 

z
 

w a 
z
 

w 
a
 

W
 
P
 

W
 

m
 

B
 

Q
\ 

m
 

R rn 
4
 

E
 



239 

0.06 -r 

0.05 - 

0.04 - 

0.03 - 

Fig. 60. 
SCALE. 

I 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

r 80.003 

H =h+C 

- 
I I I 1 

ODEPTH ME- O*= 1.0 L5 THE DEPENDENCE OF DIFFERENT FRICTION TERMS ON DEPTH (II), SMALLER 



240 

COMPUTATION WITH R I # - 

TOTAL LENGTH = 4000 m 

I 
1 2 3 4 5 6 7 8  

Fig. 61. COMPUTED SEA-LEVEL VARIATION AT DIFFERENT POINTS 1 - 8. 
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bottom stress on depth in very shallow water is given in figs. 58 - 60. 
A uniform channel which is closed at one end (point 8) and forced 

sinusoidally at the other end (point 1) was used. The distance between 

the sections was 500m. The computed water levels at the eight points 

are shown in fig. 61. 

To investigate the validity of (6.65) computations were performed 

with two different laws of bottom friction at 80 points in the German 

Bight. The results at two selected points are presented and compared 

with the tide gauge observations in fig. 62. 

Generally, the new expression leads to a better description of 

amplitude and phase in the regions of high and low water. Returning 

for the moment to our starting point, i.e.,to the condition (6.58) we 

may write it now as 

1 - rT(U( (H+<+H e-PH)/(H+j+H1) > 0 
0 

(6.66) 

Through a proper choice of Ho, H1 and p, (6.66) may hold for the 

arbitrary values of H -+ 5. It seems that further study is still required 

to clarify all the physical and mathematical aspects of this problem. 

58. Residual currents 

When planning hydraulic works it may be of use to consider not only 

the periodic changes of current but also the possible existence of a 

residual value of current when the process is regarded over a tidal 

period. A residual circulation is formed when the nonlinear terms due 

to the bottom stress and advection are included in the equation.This 

kind of motion, presented for the North Sea by Nihoul (1976) and 

Maier-Reimer (1977),shows a good agreement with measurements. Although 

the overall current is rather small, it may influence the exchange of 

water masses and the motion of particles suspended in the water. The 

residual current or mean transport velocity is defined in the following 

manner for a one-dimensional case 

u = J (H+<) u dt / (H+5) dt (6.67) 
T T 

0 
0 

where T is the tidal period. Assuming that the tide wave propagates 

along the x direction, we take the velocity as 

27l 271 
0 T L u = u cos (-t - -x) (6.68) 
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From the equation of continuity, expression (6.68) yields for the 

water level variations 

5 = u - HT cos (+ 2 - X X )  2Tl O L  
(6.69) 

Finally introducing (6.69) and (6.68) into (6.67) , the following 
expression for the residual current is derived 

(6.70) 2 
u = u 0 / 2 m  

We shall apply equation (6.67) to produce a picture of residual current 

distribution in the German Bight (Ramming,,1978). The amplitude and 

current distribution were calculated for the normal-tide 1971. The 

residual current was estimated using expression (6.60). The results 

are plotted in fig. 63. The main features of the current distribution 

can be summarized as follows. Between Seemannshoft and Stadersand strong 

residual currents appear which are directed down-stream. The different 

directions of the residual flow in the region of Grauerort are possibly 

due to the influence of the islands. A remarkably high level of resi- 

dual current (up to 30 cm/sec) occurs near Kolmar. In this part of the 

River Elbe pronounced slopes in the water surface as well as high velo- 

cities occur in the tide wave. 

The region of negligible residual currents is situated between 

Gliickstadt and Brunsbuttelkoog. This part of the river is marked by a 

turbidity zone and a zone of high seston concentration (Fig. 64). 

In the navigable waters near Otterndorf and Cuxhaven the currents 

of 5 - 10 cm/sec are directed towards the estuary. Otherwise the distri- 

bution of current in this region is very varied, probably due to the 

complicated morphological structure. An extremely large value of current 

(30 - 40 cm/sec) is observed towards the north from Otterndorf and it 
may contribute to the permanent morphological variations in this part 

of the estuary. 

The pattern of residual currents presented above suggests the possi- 

bility of a deeper insight into the dynamic processes which are modelled 

by the hydrodynamic-numerical method. 

$9. The application of the grid refinement and the irregular grid 

When the area of integration is a complex one, it is obvious that 

the topography cannot be approximated in a satisfactory manner, when 

the resolution of the grid is coarse. Details, like narrow channels, 
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G r a u e r o r t  

Fig. 64. RESIDUAL CURRENTS IN THE 
RIVER ELBE. 
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waterways, constructions influencing the velocity field and the exact 

location of water gauges in the shallow areas, will not be included 

in the model and the computations. 

In this respect there exist several possible solutions, two of 

which will be presented here. Firstly, a coarse grid may be connected 

to a fine grid in the region where higher resolution is needed. Second- 

ly, a grid with irregular steps may be employed, using the smallest 

grid distance in the region of primary interest while the grid size 

increases and accuracy decreases with increasing distance from the 

region of high resolution. We shall dwell upon the second approach. 

Let us consider three points situated in an irregular grid along the 

x-axis with the grid distances x x = hl, x x = h2 in fig. 65. 
1 2  2 3  

. 0 

x7 x2 x3 

Fig. 65. IRREGULAR ONE-DIMENSIONAL GRID. 

Starting from the expressions (2.5) and (2.6) we use the Taylor 

series to define the derivatives of 

point x2 in fig. 65 as follows 

the function f(x) at the central 

Subtracting (6.71) from (6.72) yields the first derivative 

(6.71) 

(6.72) 

(6.73) 

a2f . If is of bounded magnitude the above derivative approximates the 

differential form only up to first-order accuracy in relation to the 

grid distance. The second-order approximation is attained in (6.73) 

in an equidistant grid where h = h2. Substituting (6.66) and other 

similar expressions into (6.1) and (6.2) we derive the finite-differencei 

analogue on an irregular grid. 

The system is much more complicated when it is compared with the 

1 

system of equations set on an equidistant grid. However, quite often, 

various spurious effects are generated, resulting from the poor appro- 

ximation. 
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Therefore the distortion of the solution may remove all the ad- 

vantages we expected by introducing the grid refinement. One possible 

way to remove this effect is using a method which assures smooth 

variation of the functions and their derivatives from one grid point 

to another. If, instead of an irregular grid, the coarse equidistant 

grid is considered, and in certain regions the fine grid is superim- 

posed, we have to cope with transition phenomena from a fine to a 

coarse grid. A great number of numerical experiments show that the 

transition is related to distortion in a smooth variation of flow. 

Koss (1971) presented a vortex system which is due to numerical appro- 

ximation. Generally speaking, the different grids act like different 

media; in this way waves passing through t.he transition zone are reflect- 

ed and distorted. 

Relating the process of propagation to the idea of characteristic 

and defining the characteristic direction as Ax/At, one may observe 

the change in Ax/At. It is quite obvious that the change will not occur 

if the time-space interval is changed on both sides of the transition 

zone accordingly, that is in the smooth way. 

One of the best methods of fitting smooth curves or surfaces to a 

set of data is the method of splines. When the method is applied to 

a system of difference equations on an irregular grid, it results in 

a considerable increase in spatial accuracy. 

In this way we not only gain a smoothing effect but also a tool for 

obtaining higher accuracy in numerical integration. Usually one works 

with cubic splines (Ahlberg et al., 1967). The cubic spline S(x) is a 

cubic interpolation of the variable S given only at grid points 

j = 1 ,  2, ..., J. Through an appropriate set of equations continuous 
values of S '  (x) and S"(x) are ensured. In this way the transition effects 

at the boundary between coarse and fine grids are smoothed out since 

they are essentially due to the discontinuity in S '  (x)  and S" (x) at 

the grid points on the boundary. 

j 

Simpler methods than the spline technique very often provide quite 

satisfactory results. Ramming (1976) has presented a method of refining 
a grid using a factor of refinement l/n where n is an odd number 

(l/n = 1/3, 1/5, 1/7, ... ) .  The so-called one-third refinement was found 

to be satisfactory. With this technique the transition between coarse 

and fine grids can be coped with numerically and additional refine- 

ments-if required - can be easily implemented in a nested sequence 
(see fig. 66). The left side of fig. 66 shows the grid when the neigh- 

bourhood points U, V and 5 are taken as one triple point. The system 

of node numbering used here is obtained by abandoning the two-dimensional 
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(j,k) co-ordinate system and replacing it with a one-dimensional num- 

bering of points. Such an approach facilitates the use of the refinement 

technique and makes the model applicable to many different problems. 

The right hand side of fig. 66 shows each U, V and < point separately. 
The method of calculating each finite difference in the transition 

zone is also indicated. In order to calculate - the values of V and 
< from the coarse grid and fine grid respectively should be taken into 
account. The first and second derivatives can be calculated at these 

points on the basis of (6.65) and (6.66). In numerical experiments with 

n = 3 the results obtained at the transition points were steady to 

within the limits of practical accuracy wherever they were analysed. 

Through the introduction of the following expression for the second 

derivative from (6.72) 

au 
at 

(6.74) 

into (6.711,we arrive at the numerical form for the first derivative 

+O(h2) + O(h h ) + O(h2) 2 
1 1 2  

(6.75) 

which is of the second order of approximation. 

The addition of (6.74) and (6.75) results in the expression for 

the second derivative at the point x2 

These finite expressions and the computation of the missing values 

of U, V and 5 by linear interpolation interrelate the two areas of 

coarse and fine resolution and guarantee the proper interaction of 

variables in the transition zone. 

510. Some results and conclusions derived from the nested model of the 

North Sea 

The model was first tested in the area of the German Bight with a 

grid step 2h = 37 km (Fig. 68). The boundary conditions at the open 

boundary were taken from the earlier calculations of tides for the 
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whole basin of the North Sea (the classical model developed by Hansen - 
see fig. 6 7 ) .  The results, when compared with the gauge observations, 
depict a maximum difference in phase up to 20 min. and in amplitude 

of up to 1 5  cm. This remarkable agreement opens the possibility of 
further applications of this model in engineering practice. Through 

the refining of the grid it is possible to include in the model minor 

variations in the bottom and coastal morphology and also planned 

coastal engineering constructions. The refinement procedure is feasible 

if the parts of the basin which are of interest are treated separately 

and provided the boundary conditions are known from previous calcu- 

lations. 

We begin with the uniform 3 7  km-grid which was used by Hansen in 
his treatment of the North Sea problem. Since we were interested in 

the fine scale motion of the River Elbe we expanded Hansen's grid into 

a telescopic nest of four subgrids in the coastal area of the German 

Bight and River Elbe. The final grid within the river had a grid spacing 

of ( 1 / 3 ) ~  x 37  km = 457  m (see fig. 6 8 ) .  
Fig. 6 9  displays the mean mass transport during one tidal cycle 

computed for the area of the German Bight with grid steps 2h = 1 2 3 3 3  m 
(area 2), 2h = 4111  m (area 3 )  and 2h = 1 3 7 0  m (area 4 )  - see fig. 6 8  
for the location of the respective areas. 

In area 4 with the finest resolution, the details of the flow and 
the distribution of velocity in the Elbe estuary due to the fresh water 

input can be seen. While the areas 2 and 3 lack the necessary small 
scale detailment, they show stream-splitting, that is, the development 

of vorticity due to the merging of the river transport with the flow 

of the German Bight. 

It is possible to check the appearance of the flow due to a small 

island and the existence of temporarily dry areas in proceeding from 

the large scale grid to small scale grid. In the areas of extremely 

shallow water where the nonlinear terms are of the greatest importance 

and where large horizontal differences in velocity are present we 

have introduced the advective terms and moving boundaries. 

5 1 1 .  Some examples of the application of hydrodynamic-numerical models 

on coastal engineering 

In the planning considerations for engineering structures in tidal 

rivers or in coastal areas in general, a detailed knowledge on possible 

consequences of the changing dynamic processes are essential to arrive 
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at optimum solutions. The model considered here is based on the equa- 

tions of motion and continuity already described extensively in the 

preceeding chapters; it enables the interested scientist to investi- 

gate possible influences of several structural changes at different 

locations at the same time. Accordingly it renders possible to examine 

whether the changes in the dynamic processes are caused by a certain 

engineering structure (such as breakwater, dike etc.) or by the inter- 

action of different buildings. The knowledge of possible connections 

between large-scale motions and local changes in the coastal topography 

then may be of some assistance in the planning procedures, too. 

A further development of the already very large and complicated 

numerical models depends heavily on the memory capacity and efficiency 

of the available computer. Furthermore, the necessary lucidity sets 

a certain limit to the 'improvement' of a computer program. 

A The basic model 

In the following a North-Sea-Model with an extensively refined grid 

in shallow water areas is presented as an example of the application 

on both coastal research and engineering, a section of which is shown 

in fig. 70 ,  The refinement of the grid enables without difficulty the 

attachment of tidal rivers and their respective estuaries to deliver 

boundary conditions for local investigations in accordance with dynamic 

processes in the open sea. A better approximation of the coast line 

and the very complicated bottom topography may also be of some advan- 

tage for the research of scientific problems in the sea as a whole. 

The computation of sea-level variations and the mass transport in the 

extremely shallow parts almost totally depends on the quality of the 

approximation of tidal flats and drifting sandbanks, which have such 

an influence on the motion of water in coastal areas. Here the pheno- 

menon of uncovering and flooding of extensive parts of the coast due 

to the existence of very intricate patterns in the tidal currents is 

simulated by a physically appropriate numerical technique. 

The mode1,including the North Sea area, comprises 7216  point triples, 

i.e. 2 1 6 4 8  points altogether, in each of which a mean water depth 

according to nautical charts approximates the existing bottom topo- 

graphy. In the Elbe estuary a grid refinement takes place from a 

distance between computation points of 4111  m to approximately 457  m 

(i.e. 1/9)  towards the south and east respectively. In this way the 

grid is refined from the northern North Sea entrance (between Aberdeen 

and Bergen) with a grid distance of 37,000 m towards the German Bight 

by a factor of 1 / 8 1 .  
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The similarity with dynamic processes in nature was checked by the 

comparison of computed and measured sea-level variations in the area 

taken on the 6th of June in 1 9 7 1 .  

The horizontal and vertical motions are determined by the applied 

boundary conditions, the bottom topography and the choice of the 

parameters r and Ah respectively. The dimensionless coefficient of 

bottom friction r is taken as constant over the whole model as 2.5x10-? 

The horizontal eddy diffusion coefficient Ah is assumed to be repre- 

sentative for the influence of turbulent motion, which otherwise could 

not have been included in this model. A further calibration by variable 

parameters r and Ah in time and space did not take place in order to 

ensure a homogeneous treatment of all grid points. 

A total agreement of the computations with observations or measure- 

ments cannot be expected in any case, since 

1. the equations of motion deliver vertically integrated velocities; 

2. the approximation of bottom topography is dependend on the grid. 

In coastal areas despite a grid distance of 4 5 7  m certain generali- 

sations are indispensable. 

3. the numerical model includes some built-in simplifications and para- 

metrizations, which are only able to describe complex physical 

processes in nature in a linear and integrated form. 

The following boundary conditions were applied: 

a) at the entrance to the northern North Sea and the English Channel 

- _  !i - 0 ,  == 0 normal to the open boundary 
aY 

b) at the closed boundaries 

u = 0 and v = 0 respectively 

where 

( 3 . 7 8 )  

(3 .79 )  

A amplitude of the main lunar tide M2 

CI frequency of the main lunar tide M2 

I$ phase of the main lunar tide M2 

m space index 

c see explanation beneath. 
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The frequency and phase of the main lunar tide M2 was not changed, 

however the corresponding amplitude A(m) was multiplied by a factor 

c(m) > 1 in order to parametrisize the time- and space-dependent 

amplitudes of other important tides. Apart from this, the water level 

variations at Seemannshoft in the River Elbe on 6th of June 1 9 7 1  bet- 

ween 05 .30  M.E.T. and 17 .55  M.E.T. were taken as boundary conditions. 

The application of the afore-mentioned boundary conditions is ad- 

missable for the reproduction of sea-levels and velocities as long as 

tides are concerned which are almost wholly undisturbed by wind action. 

The considered model allows practically further refinements in 

every section of the coast line to investigate the influences of 

topographical changes, whether caused by natural or technical reasons, 

on the dynamic processes. However, although the elevations of sea-level 

could be reproduced fairly well in the check mentioned above, in a 

comparison with measurements of current meters, for some reason possible 

only in a qualitative way, a reproduction of the tendency of flow 

could only be achieved. The figs. 7 1  - 7 4  display the velocity distri- 

bution every three hours in the considered period at the 6th of June 

1 9 7 1  in the Elbe estuary. The uncovering and flooding of tidal flats, 

as well as the accordingly highly variable flow pattern around them, 

is clearly seen. 

B First example: The effect of a structural change due to a breakwater 

on movement processes 

The breakwater considered here is situated at the west coast of 

the island of Wangerooge and has an approximate length of 1 4 0 0  m and 

present height of NN - 1.40 m. The breakwater, commonly called ‘Buhne 

H’ is a neuralgical point of the investigation area. The existence 

of this structure, its height and length as well as its direction 

determine considerably the course of the dynamic processes at the 

north of Wangerooge, in the Harle as well as in the tidal flats behind 

Spiekeroog and Wangerooge. It should be mentioned that possible 

morphological changes were not taken into consideration in these in- 

vestigations. 

The following three cases were investigated: 

Model I breakwater, actual state 

Model I1 breakwater, height NN + 1 . 5 0  m 

Model I11 breakwater, actual height, half length. 

These marks are also valid for all figures within this paper. 
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Before starting the investigations it had to be checked firstly: 

a) How large should the model area be selected? 

b) How is a further screen-grid dissolution to be effected in accor- 

dance with the tasks of the investigation? 

c) How far can or should a reduction of the screen-grid distance be 

carried out so that the peculiarities of the morphology and the 

breakwater can be well approximated? 

d) How great will the time step be depending on the screen distance 

and the depth? Will such a caused computation expenditure be 

supportable? 

e) What tide should be selected for the investigations and what sort 

of boundary values will be available? 

to a) 

The size of the model area to be selected will depend at first on 

the numerical investigations to be carried out and upon the nature of 

the given questions. In the present case,the influence of a construc- 

tion upon the dynamic processes must be investigated. It is also to 

be checked, which alterations of these vertical and horizontal move- 

ment processes will have to be expected in case of a possible construc- 

tional interference. Therefore, the size of the investigation area 

should be selected so that the open boundary of the numerical model 

cannot be influenced by the change of movement processes to be expected 

Based on the available floating measures and the morphology north of 

Wangerooge and Spiekeroog, the model area was selected as shown in 

fig. 75. 

From the later obtained results it can be seen that the open boun- 

daries are sufficiently far away from the range influenced by the break 

water. 

to b) 

The selection of the screen grid and the degree of solution depends 

on the morphology and to the same extent upon the necessary accuracy 

of reproduction of the changes of movement to be expected. 

Available was a part model with a mesh size of 4 5 7  m. The area north 

of Wangerooge offers itself for a further screen-grid solution. Changes 

in the dynamic processes can be expected for certain in the so-called 

remote range in relation to the breakwater because of constructional 

measures of the building which had to be investigated. 

A screen distance of 153 m was selected in this part area. In this 

manner, the topography could be reproduced in a fineness which conforms 

to the available maps. This part area is illustrated in figs. 75 and 76 
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Fig. 75. AREAS A, B AND C WITH DIFFERENT GRID DISTANCES. 
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A further solution - the one-third-refinement method - was naturally 
required in the close range of the breakwater. A screen distance of 

51 m between points of equal importance ( < / < ,  u/u, v/v) has for the 

approximation of the morphology in the numerical model the consequence 

of a depth indication every 25.5 m since the 5- as well as the u- and 

v-points are available. Unfortunately, the breakwater does not run 

parallel to the screen. 

But the necessary deviations in the reproduction of the location 

in the numerical model should be considered as unimportant. 

to c) 

From the explanations under b) it can be concluded that the solution 

is an optimum one. The results which will be later explained add to 

this a multiple number of hints. In this connection it should be 

mentioned also, that to our knowledge, for investigations of this 

principal importance such extreme screen solutions have been applied 

for the first time and, apart from this, an interaction between areas 

of different grid distance was ensured. 

to d) 

The area with the lowest screen distance is bordered in the west by 

the breakwater’s head. The further in the west situated deep channel 

has already a grid distance of 153 m. A further screen resolution in 

this range also would bring hardly better results and would lead to 

a not anymore supportable computation expenditure. 

The condition of the numerical stability according to Courant, 

Friedrich and Lewy (1928) 

2T (time step) < 2h (smallest grid distance)/J2gHmax(greatest depth)’ 

leads because of the great depths in the above mentioned case to a 

very short time step. 

From the given screen refinements and the morphological conditions 

follows the necessity for the numerical model to use a time step of 

3 seconds. This means for a tidal period of 44700 sec = 12 25 min 

an amount of 14900 time steps. 

h 

This computation expenditure is considered as supportable. The 

periodic stationarity was obtained after two computed periods, this, 

however, only because an approximated initial distribution was at our 

disposal. This model will be available for other possible investigations 

and is programmed to an optimum. The obtained results justify this 

computation expenditure. 
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Fig. 76. LOCATION OF THE BREAKWATER AND THE APPLIED GRID RESOLUTION IN ITS VICINITY. 
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to e) 

An extensively undisturbed, i.e. a not wind-influenced tidal period 

was selected for the investigations. The author has water level obser- 

vations at various points from an investigation series from the June 

20, 1969  at hand. Naturally, any other tide can be used, but it should 

be as free as possible from wind influence and the measuring period 

should not be in the range of the nipp- or spring-time. 

Since this model area is a part of the North Sea model, by the aid 

of which the movement processes in the Weser-Jade-Regime were deter- 

mined to a task-orientated screen resolution, the necessary water level 

values could be taken in the points at the open model boundary as f(t) 

from the available model. After completing the timely linear inter- 

polation and subsequently smoothing the curvature (this is absolutely 

permissible because of the very short time step), the water level 

values for the intermediate points were also obtained by linear inter- 

polation (this is also permissible because of the short grid distance). 

Model I 

Here the remark should be permitted that the solution of the grid 

within this area - as far as illustrated in the area A - is insuffi- 
cient. With a point distance of 457  m, the locally extremely compli- 

cated current movements cannot be reproduced satisfactorily. A nesting 

in the areas B ( 1 5 3  m) and C ( 5 1  m) will provide a much better infor- 

mation on the in- and overflowing processes (see fig. 7 5 ) .  

The duration of the tidal current vf is usually longer than the 

duration of the low-tide current ve. The high tidal current velocities 

with vmax 

noticing. 

Model I1 

1.8 m/sec in the southern part of the Harle are worth 

The velocities at the breakwater's head are greater and retain this 

order of magnitude also over a longer period in comparison to model I. 

The time of inflow is also longer. Both of the afore-mentioned processes 

are of importance for the interpretation of the numerically determined 

average transports of a tidal cycle and they will find here their 

confirmation. 

Extremely high tidal current velocities (1 .5  - 2.1 m/sec) occur in 

the Harle at the south of the breakwater, whereas the low-tide veloci- 

ties appear to be low. These high velocities can - when the water is 
running up on the flat, i.e. with the occurrence of morphological 

barriers - lead to strong eddy formations and may change the morpho- 
logical structure. 
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The water level changes in the points of the investigation area at 

the north of the breakwater and remains, when compared with those of 

model I, in the centimetre range. The high water, however, in the 

Harle and south of the breakwater lies at a phase difference of 

approximately 3 0  minutes clearly lower, about 2 5  to 3 0  cm. This in- 

fluence is effective up to 3 1 0 0  m south of the breakwater. 

Model I11 

Apart from the changes which result solely on account of conditions 

shortening of the breakwater by 5 0  % - there is a strong similarity 
between the results of model I and model 111. This local change is 

obviously of no special importance for the total process - with the 
exception of one phenomenon to be mentioned: The through-current flows 

more uniformly as has been expected, but the turning of the current 

takes place further west in comparison with the present condition of 

the breakwater. 

Model I, 11, I11 

The effect of the alteration of the breakwater towards the position 

of the current dividing area is of special interest. From the lines 

of the directions of maximum velocity in each model the turning point 

can be located of the current path in the near vicinity of the island. 

The further this point moves to the east, the greater the strand- 

parallel running tide and low-tide velocities are, which cause simul- 

taneously the transport of solid particles. The following result is 

on hand: By a rise of the breakwater to NN + 1 . 5 0  m, the turning point 

is displaced by 3 5 0 0  m to the east and by shortening the breakwater 

by 5 0  % at the present height of NN - 1 . 4 0  m, it will be displaced 

by 1 0 0 0  m to the west (Fig. 79). 

The distribution of tidal currents in all three investigations 

permits the conclusion that in the case of a rise of the breakwater 

to NN + 1 . 5 0  m, the water masses in front of Wangerooge will shift 

at first very far to the east - further than at the present condition 
of the breakwater - and will be involved in the dynamic processes in 
front of the breakwater with large streams directed parallel to the 

strand and in the Harle (Fig. 7 7 ) .  

In a comparison of the average transports of a tidal cycle in the 

three cases to be investigated, the amounts should also be checked by 

measurements. Important for the judgements of the results, however, 

should be qualitative relations (Fig. 78). 

In order to give a deeper insight in the applied models, some re- 

marks on the horizontal turbulent eddy viscosity and the advective 
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Fig. 77. AREA C - DISTRIBUTION OF VELOCITIES 9 HOURS AFTER MOON'S 
TRANSIT THROUGH THE MERIDIAN OF GREENWICH (20.6.79 - 14.02 h). 
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terms should be made. The advective terms as an important part of the 

description of dynamic processes in shallow water cannot be neglected 

in the numerical model. ,Unfortunately, they cause numerical disturbances 

in the model which have to be stabilised by using a time step and grid 

size dependent coefficient \, which describes the horizontal turbulent 

eddy viscosity. 

Shoal areas are often cut through by a narrow channel with depths up 

to 5 m and more. On the grid points on the edges of such a channel as 

well as on points where the shallow water area borders on navigable 

channels or waterways respectively, instabilities occur on account of 

the large ;5;;. Here also, the coefficient mentioned above will have a 

stabilizing effect. 

If one considers the following equation (Brettschneider, 1967) 

aH 

2 
Ah--- 4 2T - 1 - (2h) 

(3.80) 

A can be generalized by a dependency to the bottom slope to h 

and simplified to 

(3.81) 

(3.82) 

where 2h denotes the respective grid distance in x or y direction. 

In the submitted investigations, the smoothing factor c1 was set 

equal to 0.98 and Ah takes up values between 2.5 to 170 m /sec accor- 

ding to grid distance. It is easily recognisable that by medium forma- 

tion at a strong bottom slope a stronger dampening will occur. 

2 

au au av av 
ax ay ay ax 

The advective terms u-, v-, v- and u- will be treated on the 

boundaries of the numerical model as follows 

au av - ax or - = 0 on the open boundary. 
aY (3.83) 

au av 
av ax aY 

On the closed boundaries the terms u-and v- cause no difficulties. 

v-and u- are treated in the same way as in the centre of the area, 

since the components of velocity will disappear at the respective 

boundaries in accordance to the presuppositions, therefore, they will 

also be equal to zero outside the area. 

au 
aY ax 
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C Second example: The influence of river normalization on the distri- 

bution of tidal currents in the River Elbe 

The area under investigation between Brunsbuttel and Stadersand was 

taken as a numerical part model from a North-Sea-German-Bight-Elbe model 

developed during the last few years, with a very extensive screen-grid 

division of 37,000 m in the North Sea down to 457 m in the River Elbe 

(see part B of this chapter), and was prepared for the planned investi- 

gations (Figs.80aI 80b). Only numerical results obtained with the 

numerical model under different conditions compared with observations 

will be discussed here. 

The investigation model has altogether 536 point triples, i.e. 536 

<-points, in which the water level distribution is computed, and 536 

u-points and 536 v-points, by which the time expiration of the velocity 

components is determined or given at the open boundaries. 

On the open north west boundary and on the open south east boundary 

of the investigation area, the water levels as well as the velocities 

of components were given as f(t) which were taken from the above describ- 

ed model, the natural similarity of which was examined (2T = 20 sec). 

A possible transport of solids is not included in the numerical 

model. The point of departure is an unaltered morphology irrespective 

of the construction changes incorporated into the model. 

It must be said beforehand that the area of the lower Elbe in the 

region of Rhinplatte, Schwarztonnensand and Pagensand certainly belongs 

to the critical zones which require special attention and observation. 

The flow cross-section bottle-necks to the north west and south east 

of the Schwarztonnensand contribute to relatively high velocities and, 

thereby, to an overall unstable dynamic equilibrium condition in this 

region and particularly in the river areas downstream. Possible morpho- 

logical changes as further components remained unconsidered. 

The following four investigations were carried out: 

1) Reproduction of the time dependent movement (water levels and velo- 

cities) at the present condition, i.e. with the depth distribution 

of 1971 (Model 801). 

2) Link-up of the Schwarztonnensand to the westbank with a simultaneous 

accretion to the level NN + 4.00 m with a water side slope to NN. 
The Schwarztonnensand lies roughly between Elbe-km 662 and 668, i.e. 

Grauerort and Gliickstadt (Model 802). 

3) The same model as 802 under 2) but with an additional high-water 

free area to NN + 4.00 m at the north west of the Schwarztonnensand - 
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AREA OF 
INVESTIGATIONS 

Fig. 80a. RIVER ELBE, ELBE ESTUARY AND THE AREA OF INVESTIGATIONS. 



214 

. . . . . .  

. . . . . .  . . . . . .  . . . . . . . 

. . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

@ GLUECKSTRDT 

DEPOSIT OF SAND . . , . 

. . . . . .  

I : : : : :  
L 

GRAUERORT a 
- . ... .... .... . . . .  . . . .  . . . .  . . . .  . . . .  . . .  7.. . ... 

Fig. 80b. THE INVESTIGATION AREA, THE BOUNDARY POINTS, THE DEPOSIT 
SAND, THE SCHWARZTONNENSAND AND THE LINK-UP TO THE WEST RIVER BANK 
OF THE ELBE. 

OF 



215 

sealed from the Elbe side and built into the numerical model (Model 

804) . 
4) The Schwarztonnensand accreted to a height of NN f 4.00 m but not 

linked to the west bank. The area free at high water at the north 

west of the Schwarztonnensand, however, remains (Model 805). 

The investigations were necessary for examining the influence of the 

planned measures with regard to the dynamic occurences. The Schwarz- 

tonnensand serves as a deposit for dredged material. Because of its 

favourable location as a natural sandbank it is well suited to take 

up the sand dredged by the continuous deepening of the waterway in the 

River Elbe. 

The figures 80a and b show the lower Elbe with the investigation 

region. The sands and the shallow water area are fairly well approximat- 

ed. The planned deposit of dredged material on the Schwarztonnensand 

as well as the high-water free accretion on the west bank are also 

fairly well reproduced. 

The reproduction of natural similarity - the calibration of the 
numerical model - could be obtained without difficulty by the given 
boundary and initial values from an existing larger model. It is known 

that analytical solutions in a compact form cannot be provided for the 

system of partial differential equations used. Thus only a comparison 

by means of water level observations inside the model region remains. 

The differences of high-water and low-water times within the investi- 

gation area were a maximum 10 minutes, the deviations in the water 

level 5 cm. If an accordance is obtained with water level measurements 

at discrete points, it can be supposed that the appropriate space and 

time distribution of the vertically integrated velocities also corres- 

ponds to the real conditions in nature. 

For prognostic investigations the accordance is an irrevocable 

assumption, whereby the deviations must be permitted within the scope 

of the numerically possible accuracy. This will not exclude the fact, 

however, that there will quite often be critical areas which require 

closer investigation and examination. 

For the reproduction of the separate movements in extremely shallow 

river bank areas and sometimes partly dry sandbanks, the onset already 

proved was used again for the bottom friction (Ramming, 1976). 

The dynamic processes in the area at that time were determined by 

means of the model 801 and so well reproduced that further investiga- 

tions are permissible and a comparison may result in realistic predic- 

tions. 



A very remarkable result with regard to numerical reproductions of 

the average current velocities is that at discrete points relatively 

great values I partly more than 1.0 m/sec,were determined. This fact 

indicates high surface velocities such as have been measured by Lucht 

( 1 9 6 3 ) .  The time expiration of velocities with regard to a curve form 

(high-tidal break) is in good accordance with the determinations of 

Klein ( 1 9 6 0 )  and Lucht ( 1 9 6 3 ) .  Here it becomes evident how sensitively 

the velocities react upon the morphological structure of the river bed. 

The description of the results is limited to significant features 

which must be considered as worth noticing, essential or also critical. 

Some of these results are so evident and also physically understandable 

that they require no special description. 

1 )  Influence of the accretion of the Schwarztonnensand and its link-up 

to the western bank of the River Elbe. In the figures 8 1  to 83  the 

velocity fields of the models 8 0 1  and 805  are illustrated. The direc- 

tion changes of the velocity vectors as a consequence of the building 

measures are partly considerable and amount not very seldom to 35'- 

4 5 O .  Increases in the amounts are often up to 35 %. Particularly 

noticeable is the magnitude range or the size of the area in which 

such changes occur. The range of influence includes a sector of the 

lower Elbe which extends from the Rhinplatte up to the north of 

Grauerort. It can be concluded that this part of the River Elbe is 

a critical area which reacts sensitively to constructional changes. 

As a consequence, alterations of the dynamic balance may occur and 

particularly so if long periods of time are observed or if morpho- 

logical changes are included. The influences in the near vicinity 

are already considerable. Here it should be particularly mentioned 

that already with a screen-grid resolution of 4 5 7  m eddy formation 

can be clearly recognized on the south-eastern point of the accreted 

Schwarztonnensand. Here and in the area between Schwarztonnensand 

and the west river bank phase delays will occur as this area is 

partly (at least) cut off from the present process of movement. The 

velocities at the east river bank near Kollmar and south of the 

Rhinplatte are also effected. The magnitude of the sector of influence 

remains almost unaltered during a tidal period. The figures 8 1  to 

86 show clearly that even the Gliickstadt waterway and the area at 

the east of the Rhinplatte show changes of velocities in amount 

and direction. The considerable changes in the high waters and low 

waters in the area between Schwarztonnensand and the west banks of 

the river are typical for regions which are only partially and with 

much delay involved in the total movement processes. If the ground 
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conditions permit, morphological changes may occur here which will 

possibly permit a lessening of the strongly increased tidal rises. 

2 )  Influence of an additional accretion of a flat surface free at high 

water on the west bank of the River Elbe. Even these seemingly in- 

significant construction measures may cause changes which can be 

worth noticing: 

a) the velocities in the Gliickstadt waterway to the east of the 

Rhinplatte will be influenced: 

b) in the narrowed flow cross-section between the Rhinplatte and 

the accretion occur clearly recognizable higher velocities: 

c) higher velocities occur also at the east river bank whereas the 

velocities at the west river bank are slightly reduced. 

With regard to the water levels it should be noted that the range 

of influence extends from 1 km south east of Kollmar up to 4 km south 

east of Brokdorf and has a total extension of approx. 1 5  km. The 

maximum increase of the high water amounts to approx. 3 cm, north 

of the Rhinplatte still to 2 cm and south of the Rhinplatte to 

approx. 1 cm. If one adds to these values the lowering of the low 

water of 2 to 3 cm and the increase of the tidal rise as a conse- 

quence of the accretion and the link-up of the Schwarztonnensand of 

8 cm, an increase of the tidal rise of approx. 1 2  to 1 4  cm will 

result. Even if these values indicate only a tendency and the order 

of magnitude, it remains to be taken into consideration that it is 

not only a change in a small sector of the River Elbe, but in an 
2 area of approx. 4 0  to 50 km so that consequences with regard to 

the dynamic balance of the River Elbe cannot be avoided. 

3 )  Consequences if no link-up of the Schwarztonnensand with the west 

river bank exists. The velocity vectors for the River Elbe region 

Gliickstadt - Grauerort give an extensively homogeneous and physically 
clear picture in a confined investigation area. The area between 

the Schwarztonnensand and the west river bank takes part in the 

dynamic processes in so far as the morphology will permit. The eddy 

formations to the south and west of the Schwarztonnensand will there- 

fore be strongly reduced - as far as reproducable by the selected 
screen distance. An increase in the high-tide and low-tide velocity 

between Gliickstadt and Grauerort - the region of influence - is still 
to be understood as a consequence of the cross-section narrowing 

and the change of the dynamic balance. The current directions paral- 

lel to the bank of the Schwarztonnensand may contribute to the up- 

keep of waterway depth. By not linking the Schwarztonnensand to the 
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Fig. 85. DISTRIBUTION OF VELOCITIES 4 HOURS AFTER MOON'S TRANSIT THROUGH 
THE MERIDIAN OF GREENWICH 
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Fig. 86. DISTRIBUTION OF VELOCITIES 8 HOURS AFTER THE MOON'S TRANSIT 
THROUGH THE MERIDIAN OF GREENWICH. 



284 

west river bank, a reduction in the tidal rise will be obtained 

despite the insignificant high-water free accretion to the north 

west of the dredged material deposit. The region of influence will 

be only insignificantly altered. The impairment of the dynamic 

balance in model 805 is not so incisive as in model 804. The compa- 

rison between model 801 - present condition - and model 805 - no 
link-up but accretion to the north west of the deposit - shows that 
the construction change is naturally an interference which will 

effect the dynamic balance but a better adaptation to the present 

river current picture will be obtained. 

From the results described above the following conclusions can be drawn: 

a) Before starting building-construction measures on or in tidal waters 

or rivers it will be sensible to carry out an investigation into 

the sphere of influence by using appropriate methods. 

b) The local influences within a close range as well as the imaginable 

changes over a more distant range and the effect of measures in other 

river sectors should also be considered in these investigations. 

c) The effect of interaction and the dynamic balance can only be dealt 

with by large-scale investigation (i.e. comprising the entire River 

Elbe). Particularly in rivers with a tidal character, the dynamic 

balance can be considerable disturbed by varioas construction mea- 

sures which may not be adapted to each other. In this connection 

time is also an important component which must not be neglected. 

d) Cross-section narrowings as a consequence of construction measures 

in tidal rivers - although they are of great advantage to shipping - 
severely interfere with the balance of dynamic processes. Even with 

regard to tidal waves they should be carefully considered. 

e) In this example it has been demonstrated that a numerical model can 

be one device for investigating coastal engineering problems. 
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Chapter VII THE APPLICATION OF THE TRANSPORT EQUATIONS 

91. The basic concepts 

A finely divided substance, released into a body of water, will 

immediately tend to spread out uniformly throughout the whole basin. 

This tendency, e.g. of salt or pollutants, to disperse is caused by 

different factors such as molecular and turbulent processes or advec- 

tive motion. Turbulent dispersion is influenced by the velocity field 

and characterized by a more or less uniform spectrum extending from 

small scale motion of the order of a centimetre up to the largest 

scales of horizontal motion with dimensions equal to those of the 

ocean itself. It is customary to classify the turbulent motion by a 

set of eddies of different dimensions. Using Fourier analysis, time 

series of velocity at a certain point are decomposed. Then the ergodic 

hypothesis is involved in trying to extend the statistics spatially. 

Observing a cloud of substance in the sea we find that those eddies 

of length greater than the dimensions of the cloud 'advect' it. In 

other words the cloud is transported or 'advected' as an integral 

object (a reversible process). On the other hand, those eddies with 

dimensions smaller than the cloud effect the'dispersion' of the cloud 

itself (an irreversible process). As the size of a cloud of substance 

grows with time, the relative importance of dispersion and advection 

processes is constantly changing. Therefore we come to the conclusion 

that turbulent diffusion is a function of time and space. This con- 

trasts sharply with molecular diffusion which has constant length and 

time scales. 

The following equation which is based on the work of Fick ( 1 8 5 5 )  is 

the usual expression for the rate of change of substance concentration 

due to molecular diffusion and advection: 

( 7 . 1 )  

where c is the concentration (defined by mass of substance per unit 

mass of water) and ui are the components of velocity along the x 

co-ordinates (here x1 = x, x2 = y, x3 = z). The molecular diffusion 

coefficient is taken as constant in each direction, i.e. D =D =D =D. 

A solution of equation (7.1) is possible for constant values of ui 

and a fairly wide range of initial and boundary conditions. The results 

of such computations, however, differ quite strongly from the observed 

i 

1 2 3  
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state in natural basins. Accordingly the constancy of ui and the 

molecular diffusion concept as a whole were abandoned long ago as 

means of describing diffusion in the ocean. Turbulent diffusion shows 

a far more complicated pattern of variability. It is fairly obvious 

that such a situation calls for a statistical approach, since only 

the averaged values of variables are stable and meaningful. 

Suppose that the velocity field can be described by a mean value - 
ui and a varying (turbulent) component u;, i.e. 

- 
ui = u + u! i (7.2) 

In the same way the concentration is taken as 

c = C + c '  (7.3) 

We can introduce (7.2) and (7.3) into (7.1). Assuming that either 

u(t) or c(t) is only slowly varying with time, the Reynolds rules for 

averages (Hinze, 1959) can be applied. Averaging accordingly the result 

ing equation in time, we obtain the following equation which describes 

the mean concentration: 

3 
a aF am 

ax. laxi 1 

3 
aF c u.- = c -1 + ' ~ ~ ( ~ i  7) ac + 

at 
- 

i= 1 i=l i= 1 

(7.4) 

- 
The averaged values of the varying components, e.g. u' are equal to 

zero. In (7.4) 75 and are not steady values in time, since the ave- 

raging encompasses the finite span of time T, thus 

it 

-r=t+T/2 

'r=t+T/2 

ui(x,,x2,x3,-r) d.r 
- 1 
U. (t,T)= - T 

~=t-T/2 

(7.5) 

Such an expression is commonly called a moving (with time) average. 

In (7.4) the new expression u;c' describes the flux of substance 

due to turbulent motion. Mathematically it represents a new unknown 

quantity, therefore the problem is not closed and cannot be solved 

in a unique way. Using the Boussinesq hypothesis, Taylor (1915) and 

Schmidt (1917) assumed that the turbulent flux of a substance is 

- 
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proportional to the gradient of the mean concentration 

- aF 

j 
ij ax U!C' = -K . - (7.6) 

where K is the eddy diffusivity tensor. This coefficient represents 

the participation of turbulence in the overall transport process and 

describes the intensity of turbulent mixing which is generally much 

greater than molecular diffusion Di. Usually the nondiagonal terms 

of K. are assumed to be negligibly small (Monin and Jaglom, 1965). 

Therefore the general equation to describe transport phenomena in a 

turbulent medium is the following 

ij 

a j  

(7.7) 
- ac ac ac a ac a ac a ac 

ax ay az ax xax ay yay az zaz :: + U- + V- + W- = -(K -) + -(K -) + - ( K  -) 

From now on we omit the overbar denoting the mean value to simplify 

the notation. 

A second approach to the same problem is also possible. Since tur- 

bulence is a random process, diffusive mixing can also be treated as 

a random process. To describe the transport of a particle Kolmogoroff 

(1 931 ) derived the equation for the probability density p (M, t [ Mo, to) 
of the displacement of a particle from the point MO(~O,yO,~O) to the 

point M(x,y,z) in time t-to 

3 3 3  

where 

(7.9) 

mean the average velocity and the eddy diffusion coefficient. 

The concentration c in a turbulent cloud emitted from a point 

source and the probability density are connected as follows (Hinze, 

1959) 
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In (7.11) Q is the mass of substance released instantaneously from 

the source. Multiplying (7.8) by Q we arrive at an equation for the 

concentration c instead of the probability density p. When the co- 

ordinates of the particle being observed are changing in accordance 

with a Markov process, Kij can be expressed in terms of the dispersion 

or variance of the displacement as follows 

(7.12~) K~ 2 dt 

These expressions often serve as a means of relating observed values 

of the dispersion rate of tagged particles with the eddy diffusion 

coefficient. 

Taylor (1921) started the statistical approach by considering dif- 

fusion by continuous movement. When a tagged particle is observed in 

its movement, it possesses velocity ut at time t and velocity u ~ + ~  

at time t+T respectively. The mean square displacement during time 

is specified as 

t+T 2 

S U(Y) dy 1 
- 
x2 = 

L 
1. 

or 

t+T t+T - 
x2 = s [ s U(Yl)U(Y2) dYl]dY2 

t o  

Introducing the Lagrangian coefficient of correlation 

1- 
R L ( + 2  - Y,) = ~u(Y,)u(Y,) ==ptut+T 

U U 

(7.14) is changed to 

x2 = 2 
t+T - 
S ( T - Y ) R ~  dy 
t 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

where y1 - y 2  = y. 
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The eddy diffusion coefficient for the x-axis in agreement with 

(7.12) is set as 

Kx = u S RL(y) dy (7.17) 
- t+T 

t 

The further development is wholly dependent on the coefficient of 

Lagrangian correlation (Hinze, 1959). Two obvious cases are apparent: 

for a small time step T the coefficient RLh) is very close to unity, 

therefore 

- -  
2 2  x 2 = u T  (7.18) 

It is reasonable to assume that velocities which are sufficiently 

far apart in time are uncorrelated and RL = 0, thus 

- 
x2 = 2 K x ~  (7.19) 

In addition to the approaches presented above,Richardson (1926) 

also introduced the concept of neighbour separation to represent the 

percentage of pairs of particles which are the same distance apart. 

The diffusion problem is described there in terms of the separation 

of particles and not of a concentration. Instead of the usual concept 

of the diffusion coefficient the neighbour diffusion coefficient F(1) 

is introduced. If the probability density for the separation distance 

1 between the pair of particles is q ( l ) ,  then 

(7.20) 

The concept of neighbour diffusion is still very popular for two 

reasons: firstly, it is a relatively simple way of performing experi- 

ments with tagged particles and secondly the dependence of F against 

distance as proposed by Richardson (1926) 

F(1) = kl 4 / 3  (7.21) 

holds also for the usual diffusion coefficient K. Following Ozmidov 

(1968) we set F = 3K. 

52. Two-dimensional turbulent diffusion 

The process of turbulent diffusion is more or less non-isotropic 

depending on the scale being considered. Non-isotropy is indicated 

by different intensities of turbulent diffusion in the horizontal 
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and vertical directions. The observed horizontal orientation of 

turbulent motion is due mainly to 

a) big differences in the characteristic horizontal and vertical 

dimensions of natural basins (the typical ratio of these dimensions 

is 1OOO:l) , 

b) the non-isotropic flow of energy out of the biggest eddies, which 

is the generating mechanism for establishing smaller eddies in 

agreement with the Kolmogoroff theory (Ozmidov, 1968). 

Vertical diffusion, on the other hand, is dependent on the action 

of the Archimedian force, since due to the density stratification the 

vertical exchange of momentum and matter decays. A great number of 

publications has been devoted to the problem of vertical diffusion 

(e.g. Bowden, 1962; Zeidler, 1975). Vertical eddy diffusion is usually 

related to the Richardson number 

(7.22) 

For the vertical diffusion coefficient KZ Munk and Anderson (1948) 

proposed the following form 

where 

B = 3.33 

m = 3/2 

(7.23) 

(7.24) 

is the mixing length (sometimes called 'scale of turbulence') 

is the eddy diffusion coefficient when there is no density 

stratification (Ri = 0 )  

I0 

AO 

- 
U is the mean velocity. 

The overall problem of vertical exchange may be solved through 

the application of the equation of turbulent energy and the simila- 

rity hypothesis of Kolmogoroff as stated in chapter 111, equations 

(3.601, (3.61) and (3.62). It is seen from (3.61) that the eddy dif- 

fusion coefficient is related to the eddy viscosity by the constant 

parameter up. In the computation of the current we took a 

while at the sea surface, where the well-mixed layer exists, the 

value c1 = 1 is more probable. Therefore, in choosing a vertical 

= 0.1, 
P 

P 
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eddy diffusion coefficient we may start. from the value of the eddy 

viscosity. 

Very often, in the sea or in a river, a strong one-directional 

shear flow is observed which causes the advection of a substance 

and at the same time transverse dispersion or mixing. Transverse 

dispersion is a factor which can be related to the diffusion by 

expression (7.12). In general the dispersion (turbulent diffusion) 

coefficient depends on the shape of the cross-section (river, channel), 

the water depth and the mean velocity. We present some results for 

different flows of special types as follows 

a) Steady pipe flow (Taylor, 1954) 

= 10.1 a m  (7.25) 
KZ 

In this equation a is the pipe's radius and T the shear stress at 

the wall (Hereafter all units are expressed in metres, seconds and 

grams). 

b) Steady open-channel flow of a homogeneous fluid with constant depth 

(Elder, 1959) 

KZ = 5.9 (H + <)m (7.26) 

Assuming that the stress at the bottom is given by rUlUl it follows 

(Bowden, 1963) 

KZ = 0.324 (H + 5 )  (U( (7.27) 

With the help of this relation, which considers both, the spatial 

as well as, implicitly, the time change of KZ, .Bowden (1963) 

successfully investigated the diffusion processes in several estua- 

ries. It is a great consolation that KZ as computed by (7.27) is 

close to the value obtained using a quite different approach, which 

considered the currents in a shallow sea (3.38). 

c) Steady flow in an open channel (Fischer, 1967) 
b z  z 

KZ = $: q IS EZ/H'( S qda) dBldl 

where 

q rate of flow per unit width (m /sec) 

b uidth of the channel 

A cross-sectional area 

EZ coefficient of diffusion given by EZ = 0 . 2 3 4 H m  

0 0 

2 

(7.28) 
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Let us now consider horizontal mixing with an assumption of hori- 

zontal isotropy. The equation governing this process can be written 

in polar co-ordinates as 

(7.29) 

where r is a radius with its origin at the source. The horizontal eddy 

diffusion coefficient K1 is a function of the radial distance (and 

of time). 
Depending on the assumed functional dependence of K1 on r, two 

solutions of (7.29) are possible. Joseph and Sender (1958) proposed 

a solution in which 

K1 = Pr/2 (7.30) 

P is called a diffusion velocity and is equal to 1 f 0.5 cm/sec. 

This approach is based on the natural concept that the change in 

dispersion (7.13) should depend on a certain characteristic velocity. 

Another approach is based on the concept of energy transfer by 

the turbulent eddies from big to small scales and the supposition 

that the turbulent diffusion takes place mainly in the inertial sub- 

range where local isotropy exists. In this subrangt all characteristics 

of turbulence depend on the rate of transfer of turbulent energy 

(Landau and Lifshitz, 1959), therefore 

(7.31) 

The dependence of the radial eddy diffusivity K1 on the horizontal 

scale of the process r is presented in fig. 87 . The data for this 
figure were gathered by Okubo and Ozmidov (1970). Their data cover 

different scales but were taken only in a surface layer which was 

well-mixed.Experiments in the deeper layers show that the intensity 

of horizontal mixing is smaller than that in the surface layer. Hori- 

zontal mixing in the thermocline was studied by Kullenberg (1970) 

and provides a typical value for the diffusion velocity P of 0.1 cm/sec 

compared with 1 cm/sec in the surface layer. It should be stressed 

that in the basins of limited depth, the intensity of horizontal 

diffusion decreases with depth. Ozmidov (1968) proposed on the basis 

of his own experiments a corrected expression for the neighbour 

diffusion coefficient (7.21) 
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Fig. 87. DEPENDENCE OF HORIZONTAL EDDY DIFFUSION K 

OZMIDOV ( 1  970) . ON THE SCALE OF PHENOMENON r ACCORDING TO OKUBO  AN^ 

Fig. 88. CORRECTION f(r/H) TO THE 4/3 LAW FOR THE 
SMALL DEPTHS H ACCORDING TO OZMIDOV (1968). 
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F = k r4l3 f(r/H) (7.32) 

The dependence of f on r/H is plotted in fig. 88. 
1 

Finally, we shall briefly describe the boundary and initial con- 

ditions. Initially, if the basin is free from any passive mixture, 

then c(t=O,x,y) = 0. It is also conceivable that when there is a 

background concentration the computed concentration can be related 

to the difference between this background concentration and the concen- 

tration of the mixture. 

The boundary condition for the diffusion problem may be stated in 

the following general form 

ac 
an a - + BC = Q(t) (7.33) 

where Q(t) is a given function of time, n denotes a normal to the 

boundary and a and B are prescribed parameters. 

If the source of the mixture is placed at the boundary, the follow- 

ing conditions are possible: 

a) Given that a quantity Q1 (t) of a substance is released from a 

source, then at that fluid part of the boundary contourcrz =Q,(t) 

and at the coast (everywhere e1se)a - = 0. 

b) Given a concentration at the boundary Q2 (t) , then Bc = Q2 (t) at 

the fluid contour and a s  = 0 at the coast. 

It should be stressed that the boundary condition at the coast may 

depend to a large extent on the nature of the coast and its absorbing 

properties. The coastal properties as related to the given mixture 

are characterized by an absorption factor y .  In case of complete 

absorption the concentration vanishes at the coast, i.e. c = 0. Partial 

coastal absorption may be modelled by the expression 

ac 

ac 
an 

ac 

(7.34) 

where K denotes the eddy diffusion coefficient at the grid point 

nearest to the coast. 

When the source is placed in the open basin the boundary condition 

expresses the requirement that the mixture vanishes with increasing 

distance from the point of release 

(7.35) 
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53. Numerical methods of solvinq the transport equation 

We shall start with the horizontal diffusion, neglecting the advec- 

tion , thus 

a c =  
at KAc (7.36) 

The result obtained in chapter IV allows us to write (7.36) in a finite 

difference form with second-order accuracy in space and time. The time 

step T 

in the 

Lac = 
2 at 

-- 1 ac = 
2 at 

is divided into two substeps and the operator in (7.36) is split 

following way 

(7.37a) K - Ac 2 

K 7 AC (7.37b) 

For this system we can write down the mixed implicit-explicit form as 

follows 

1+1 - c1+1/2 2 1+1/2 2 1+1 
= x  (a ; + a ( ; .  ) 

T 2 ax ay 
C (7.38b) 

The computation at every time step can be performed with the help of 

the factorization method (Chapter II), along the x-axis for (7.38a) 

and along the y-axis for (7.3633). 

The overall stability is a function of the stabilities of the indi- 

vidual substeps. To analyse the stability along with expression (4.17) 

we shall use a simplified form 

1 .ioljh .iu2kh c = c  (7.39) 

Substituting (7.39) into (7.38a) we find after some manipulation that 
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From (7.3813) it follows that 

- c1+1/c1+1/2 = [I - sin2(lalh)] /[1 + -sin 2KT 2 (-u*h)l 1 (7.41) 
2 X2 - h2 2 h2 

Hence the overall stability parameter for the time step T is 

1+1 1 x =X1h2 = c /c (7.42) 

(7.43) 

Since the modulus of X in (7.43) is always smaller than unity, the 

system (7.38) is unconditionally stable for an arbitrary choice of 

time and space steps. As we know from the considerations presented 

in chapter IV, the accurate reproduction of the physical phenomena 

limits the time step to a value which is close to that required for 

stability in the explicit method. On the other hand, as practical 

computations show, the time step in implicit schemes for transport 

phenomena may be taken to be much longer than that in the correspond- 

ing explicit schemes. 

Let us consider now the explicit numerical scheme applied to (7.36) 

1 1 1+1 - c 
= KAc C 

T 

Hence from (7.39) it follows that 

4KT 2 1 2 1  A = 1 - -[sin (plh) + sin (2u2h)l 
h2 

(7.44) 

(7.45) 

The stability criterion I h [  i 1 provides the inequality 

0 i T i h2/4K (7.46) 

We may therefore state that the time step in the explicit method is 

a function of the diffusion coefficient K and the grid distance h. 

We shall consider now a more complicated case of lateral transport 

while advection is present 

(7.47) 
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The simplest numerical scheme is, of course, the explicit one, but 

we have to take into account the variability of the coefficients u 

and v of the first derivatives. Such a numerical scheme has a rather 

weak approximation and, additionally, severely limits the time step. 

For this reason we shall seek more flexible numerical schemes. Firstly 

we introduce an implicit form which will be part of the general algo- 

rithm 

C - c1 + u - lUl+ 1+1 + u + lu[, J+1 + v - lvl; cl+l 
T 2 OxC 2 x  2 Y  

The stability parameter calculated 

X = cl+’/cl = 1/{1 + -[sin (-olh 4KT 2 1 
2 h 

( 7 . 4 8 )  

with the help of ( 7 . 3 9 )  is equal to 

+ sin 2 1  (3ozh)l 

( 7 . 4 9 )  
+ g [ u  sin 2 1  (-olh) + v sin 2 1  (To2h) 11 

h 2 

It follows from ( 7 . 4 9 )  that 1x1 5 1 and therefore ( 7 . 4 8 )  is uncon- 

ditionally stable, although the approximation is only of the first 

order in space and time. Now we propose a general algorithm which 

possesses partly the properties of an implicit algorithm but is a 

Y X X T ~ ~  YSS~~W apPro2baYmn t h a n  ‘13 .hQ). Splitting (7 .47 )  into a system 
of two equations we obtain 

( 7 . 5 0 )  

(7 .51 )  
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where V, V and V denote backward, forward and central differences 

respectively. The stability parameters of (7.50) and (7.51) are respec- 

tively 

- +  'L 

2 1  ivT 2KT 2 1 
A 1  = c1+ll2 /C = [ l - F s i n  (Tu2h) - sinu2hl/[l+~ sin (Tulh) 

h h 

+ % sinolh] (7.52) h 
+ 

2 1  sin (Za2h) 

7.53) 

1+1 1 The resulting overall stability is equal to A = X l A 2  = c /c . Its 
absolute value is difficult to analyse in general, but it indicates 

stability for a much wider range of time-space steps than the explicit 

scheme (7.46). In the system of equations (7.50) and (7.51) second- 

order approximation in time O(T and in space O(h ) is obtained, 

but the advection term possesses an accuracy of the order of O(h . 
Since the transport-diffusion equation satisfies the inequality 

(2.24), we may propose a stable algorithm of second-order accuracy 

in time and space. Using the method for approximating the operators 

given in chapter 11, we get 

2 2 

312) 

1 1+1/2 - cl 
C T = 1(L1C1+1/2 2 + L2c ) 

1+1) 1+1 - c1+1/2 
C = 1,L c1+1/2 + L2c 

T 2 1  

(7.54) 

(7.55) 

where 

L c = ~ { ( m  1 + u h / 4 m )  2 (cj+l,k - cjrk) - (m - ~ h / 4 = ) ~ ( c ~ , ~  
' h  

1 1  (7.56) j - 1  ,k - c  

1 1  (7.57) j,k-l - c  
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RFX = L(K j+l,k + Kjlk) : RBX = I ( K  2 j,k + Kj-l,k 1 (7.58) 

1 (7.59) 1 
2 j,k j,k-I 

+ K  1 RFY = -(K 2 j,k+l j,k); RBY = -(K + K 

The system of equations in (7.54) and (7.55) may also be represented 

as one equation in the Crank-Nicholson form 

1+ 1 1 

T 2 
C l+l - c = LLCCl + ) (7.60) 

where L = L + L2. 1 
A difficulty arises at once if the stability of (7.60) or both, 

(7.54) and (7.55),is analysed, since the operator L contains variable 

coefficients. We shall use instead the property of the positive-defi- 

nite operator mentioned in chapter 11. Assuming that the operator L 

is characterized by the set of eigenvalues An > 0 and related eigen- 

functions $n, which are the solution of the problem (see chapter VIII), 

LJ, + A $  = 0, (7.61) 

the dependent variable in (7.60) may therefore be expanded in terms 

of the eigenfunctions $n 

1 
Cl - - c CnVJn 

n 
(7.62) 

where C: are the Fourier coefficients of the expansion. They can be 

found by substituting (7.62) in (7.60) to give 

or rearranged in terms of the time index 1 

Assuming that the first term in the above recurrence relation is bounded 

Cz = I$ < m ,  the coefficient at time step 1 becomes 

1 1 1 1 - -A T) 2 n  /(1 + 7AnT) 1 cn = @(I 

The series is convergent on condition that 

I(1 - ?AnT)/(1 + yAnT) I < 1 1 1 

(7.65) 

(7.66) 
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which leads to the inequality 

0 < hnT ( 7 . 6 7 )  

Since An > 0 for the positive definite operator, the convergence of 

( 7 . 6 5 )  follows from (7 .67 )  and the unconditional stability of (7 .60 )  

is proved. In the same way the stability of the system ( 7 . 5 4 )  and 

( 7 . 5 5 )  may be proved. 

54. The application of the transport equation in a multi-channel model 

In the numerical examples which we shall now present we shall dwell 

mainly upon the diffusion processes in the River Elbe so as to illu- 

strate the capabilities of the hydrodynamic-numerical model. These 

examples are not intended to yield a general knowledge of the compli- 

cated pattern of diffusion, dispersion and salt mixing processes which 

are encountered in rivers and estuaries (see e.g. Ippen, 1 9 6 6 ) .  The 

hydrodynamics of a salt-water wedge and the mixing in such a region 

may necessitate a completely different approach to the eddy diffusion 

processes. The problems occuring at the interface between fresh and 

salt water in rivers needs further laboratory experiments and in-situ 

measurements (Ozturk, 1 9 7 0 )  together with numerical computations. 

The extremely high bottom velocity in rivers and estuaries leads 

to very intensive erosion and sedimentation processes and results in 

a fast rebuilding of the river cross-section, which in turn influences 

the hydrodynamics of river flow. To ascertain possible variations, 

Harleman and Ippen ( 1 9 6 9 )  have presented the effects of salinity 

intrusion on shoaling in the different estuaries. 

Due to the complicated pattern of flow in rivers and estuaries, as 

presented in 52, the expressions for the eddy diffusion coefficient 

which were derived for channels of simple geometry often failed when 

applied to natural conditions. Sooky ( 1 9 6 9 )  attempted to improve the 

situation through the consideration of a complicated channel geometry. 

Because in the domain of integration the initial and boundary con- 

ditions are very far from being analytical, the numerical method has 

been applied to the dispersion problem with some success, e.9. Harle- 

man et al. ( 1 9 6 8 ) .  

In our consideration of diffusion processes we shall depend a great 

deal on the multi-channel model derived in chapter VI. 
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J-J J-  7 

k+2 + x + x + x + x + 
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k 

-- 
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$. = 3 -point 

x - u-,H-, c-point 

Fig. 89. A SECTION OF A GRID IN THE MULTI-CHANNEL MODEL 

A section of the grid for the multi-channel model is plotted in 

fig. 89. Directing the x-axis along the longitudinal axis of the chan- 

nel, assuming K = K = K and transverse velocity v = 0, the equation 

(7.7) becomes 
X Y  

(7.68) 

The handling of the general equations of transport to examine horizon- 

tal diffusion processes in seas and rivers is only possible when the 

hydrodynamic-numerical method is applied to the hydrodynamic equations. 

It allows us to consider the morphological structure as well as the 

shape of the shore and to give the velocity and water level as a func- 

tion of place and time (see chapter VI). 

Accordingly, the above equation is transformed into a difference 

equation. The partial derivative with respect to time is replaced with 

a forward difference, while the spatial derivatives are replaced with 

central differences. It is further assumed that the time step T = 2AT 

and the mesh spaces 2 A x  = hx 

be equal. Hence 

and 2Ay = h need not necessarily 
,j y,j,k 
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(7.69) 

1 
C - c  1 - c. 1 

ac 1 ‘j+l,k 1, + jrk j- 

hxrj hx, j-1 
- ax = 71 

(7.70) T I  

(7.71) 

Considering the above expressions, the difference equation, solved 

for c 1+ 1 
j k 

The coefficients of (7.73) are replaced by the following abbreviations 

2 AT 2AT (hx, j - hXr j-1) . - 2AT - aj+l - -2h: aj = 1 aj-1 2hx, j-1 
xr 3 2hx, jhx, j-1 
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(7.74) 

Applying the above notation the numerical form of (7.68) becomes 

) 
1+1 = 1 -  1 1  1 1 

C j,k j,k Uj,k(cj+l,kaj+l + cj,k aj - Cj-l,kaj-l 
1 1 ’ d  1 

+ Cj+l,k ’ b  j+l - ‘j,kbj + Cj-l,kbj-l + ‘j,k+l j,k+l- ‘jrkdj,k 

+ c  ’ d  j,k-l j,k-l (7.75) 

The slight asymmetry in the notation is due to the fact that along the 

y-axis the grid distance hx is constant, but h 

so as to approximate the cross-section of the channel with greater 

accuracy. 

varies along the x-axis, 
Y 

According to Richtmyer (1957) the following criterion for the nume- 
ac 
ax rical stability is given, on condition that the advective term u-is 

neglected, 

2ATK(hi + h2) 
2 2  < 1  

hx hy 

(7.76) 

For h 

to 

2ATK < 

<< hx - as is the case in this model - the criterion simplifies 
Y 

9 (7.77) 
hL 
Y 

Therefore the choice of the time step AT depends on the maximum eddy 

diffusion coefficient K and the smallest step along the width h The 

calculation procedure starts with the equation of motion at time t 

in order to find the velocity distribution u which appears in the ad- 

vective term. Then the water levels are computed from the equation of 

continuity and the concentration from the convective-diffusion equa- 

tion. The condition for numerical stability of the explicit form of 

the equation of motion and continuity 

Y’ 
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2 A T c  
max < 1 

hX 
( 7 . 7 8 )  

is often satisfied if ( 7 . 7 7 )  holds. 

If the horizontal and vertical motions are periodical, it is advi- 

sable to calculate the periodic state at every inner point of the 

domain at first and then to treat the equation of exchange numerically 

for a convenient number of periods. But it has to be assumed that the 

effect of the horizontal exchange of the mixture on the water levels 

and velocities is negligibly small. 

Let us check both criteria presented above in the case of the flow 

in the River Elbe, to which we have already applied the hydrodynamic- 

numerical method in chapter VI. 

The minimum and maximum values of the geometrical quantities used 

in the Elbe model and the horizontal coefficient of exchange can be 

= 1 0  m, H = 25.6 m and assumed to be hxImin - 6000 m, hyImin 

K = 1 0 0  m /sec (Ramming, 1 9 7 1 ) .  On the basis of these magnitudes the 

following upper bounds for the choice of 2AT must be considered: 

2AT < 375 sec from (7 .78 )  and 

2AT < 1 sec from ( 7 . 7 7 ) .  

Therefore, if an explicit method is applied, the time step is of the 

order of 1 sec. This essential restriction is due entirely to the 

shortest space step found in the grid domain, which is equal to 1 0  m. 

A time step of 1 sec demands a considerable amount of computer time 

to derive any meaningful results. The equations give short-term varia- 

tions of water level and velocity which are of no importance to the 

overall phenomenon. In order to maintain all the information on the 

fine morphological structure of the multi-channel system and in order 

to be independent of the time step restriction, an implicit difference 

scheme was chosen instead in the direction of the y-axis. To compute 

the concentration in the x direction an explicit difference method iuas 

still applied. 

- 
max 2 

We shall adapt the following implicit scheme for the convective- 

diffusion equation (7 .68 )  

( 7 . 7 9 )  
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The terms depending on the time step 1 are grouped together and called 

R. Hence (7.79) yields 

(7.80) 

By changing the partial derivatives to finite differences and taking 

into account the given coefficients as well as the boundary condition, 

(7.80) may be formulated as 

1 = R  1+ 1 1+1 cl+l (1 + 2e. j ,k Irk) - Cj,k+lejlk+l- 'j,k-l j,k-1 j,k 
(7.81) 

The most suitable methods of solving this equation are the line facto- 

rization method presented in chapter I1 as well as the method of 

Banachiewicz (1 938) . 
We observe that in (7.81) the elements of the coefficients' matrix 

possess the property of diagonal predominance over the nondiagonal 

elements, i.e. 

1 + 2 e  j ,k > lej,k+lI + lejlk-l I (7.82) 

This leads, on the one hand, to the convergence of (7.81) in time, as 

was proved in chapter 11, and, on the other hand, it is possible to 

choose the time step in a less restricting fashion. 

Another implicit-explicit procedure can be initiated with the 

equation 

(7.83) 

and by suitable manipulation we may obtain a numerical form similar 

to (7.81). 

We have performed several numerical experiments in a geometrically 

simple model of a channel with the two methods described above (Ramming, 

1971). 

The two solutions differed from each other by at most 0.002% E .  In 

the problems which will be presented further on the first method will 

usually be applied. Generally, it allows us to increase the time step 

considerably as compared with the purely explicit method. At first 

glance this behaviour of the model is somewhat astonishing, because 

as can be seen from (7.791, the scheme is not completely implicit. 

The predominance of the implicit over the explicit properties follows 
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from the space discretization and the choice of h >>  h Let us ana- 

lyse this feature with the help of (7.791, neglecting the advective 

term 

X Y' 

Applying the expression (7.39) and taking into account the unequal 

steps along the x- and y-axes, we derive the following expression for 

the parameter of stability 

2 8KAT sin2(a2h )I (7.85) sin (ulhx)l/[l + - 
Y 

= cl+l/cl = [ I  - 
h2 

hX Y 

The overall stability depends on the relations between hx, h 

sin (olhx) and sin (a2h ) .  However, since h >>  h X will take values 

smaller than unity over a wide range of the above parameters. Actually 

the most unfavourable case arises when the denominator in (7.85) 

attains its smallest value, i.e. 1. This leads to the following con- 

dition for the time step 

AT, 
2 2 Y' 

Y X Y' 

AT < h:/4K (7.86) 

§5. A comparison between an analytical and a numerical solution 

The convective-diffusion equation is a differential equation of the 

parabolic type (unless K = 0). Generally, an analytical solution in 

the complete form cannot be given. Therefore, we shall investigate one 

special case to show whether the results of the difference method agree 

with the solution of the differential equation, or moreover, whether 

they lie in a certain range of accuracy. We start with the simple 

problem of a channel open at both ends; the velocity U and the cross- 

section are constant. As the volume is constant as well, the cross- 

sectional area may be omitted and the convective-diffusion equation 

becomes 

(7.87) 
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The following analytical solution can be derived subject to the boun- 

dary condition ac = 0 at both open ends (Frank and von Mises, 1961 ) ax 

Ux nnx 
c = c1 exp {-t (Kn2n2/L2 + U2/4K) + + s i n 7  - % cosnT) 1 + c 2 

(7.88) 

Where c1 and c2 are constants, n is any integer number (n = 1,2,...) 

and L is the length of the channel. 

To obtain a solution to the same problem by numerical means, the 

explicit difference form is introduced 

(7.89) 1 - 2c.) 1 KAT 1 
j-1 3 

Cj-1) +-pj+l + c 
1+1 - 1 UAT 1 - 

C - cj - ax(Cj+l 
2 (Ax) j 

The initial and final distribution of the concentration is plotted in 

fig. 90. The initial distribution from the solution of the transport 

equation at t = 0 is found to be 

(7.90) Ux nnx 
2 

c = c1 expI-(sin-r;- - cosn>)}+ c 
0 2K L 

4 with the following values of parameters: U = 0.1 m/sec, L = 10 m, 

c1 = 100 O/oo, c = 10 O/oo, n = 1, K =lo0 m /sec. The number of grid 
points in the channel is equal to 101 and Ax = 100 m. When t + *, the 
concentration is the same at each point of the channel as can be seen 

from the solution (7.88). For example, at the grid point 31 the expect- 

ed solution c = 10 O/oo appears after 973 time steps according to the 

analytical solution. The difference scheme leads to a stationary 

concentration with c = 9.569 O/oo after 1056 time steps of integration. 

Hence the difference solution deviates 4.31 % from the differential 

solution. Checking not only point 31 but also point 61, as depicted 

in fig. 91, we reach the conclusion that the numerical treatment of 

the transport equation gives not only the solution to the stationary 

state, but also describes in a satisfactory manner the time-dependent 

course of the process. 

This observation is of some importance for the problems to be handled 

later on, in natural channels, when, due to the absence of an analytical 

solution, the quality of the numerical investigation has to be judged 

by comparing predicted and measured concentrations. The proper repro- 

duction of the transport processes by the numerical model gives us a 

tool with which to study a variety of problems related to the physical 

and geometrical properties of the model. We confine ourselves to the 

2 
2 
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TABLE 7.1 

Periods 

w 
CI 
N 

Grid point 

1 2 3 4 5 6 7 8 9 1 0  

Distribution of concentration along the channel after 0, 50, 100, 1 5 0  and 2 0 0  tidal periods of 
numerical integration 

0 

5 0  

1 0 0  

1 5 0  

2 0 0  

0.00 0.00 0.00 0.00 

0.01 

0 

5 0  

100 

1 5 0  

2 00 

2 Iorizontal eddy viscosity A = 10 m /sec 

0.00 0.00 0.00 0.00 

0 . 0 1  

2 
I 

:orizontal eddy viscosity A = 1 0 0  m /sec 

0 

5 0  

100 

1 5 0  

2 00 

0.00 0.00 0.00 0.00 

0 .05  

0 .01  0 . 3 2  

0 . 4 7  

0 .60  

0.00 

0.00 

0 . 1 1  

0 . 3 0  

0 . 4 0  

0 .45  

0.00 

1.16 

2 . 6 0  

3.32 

3.54 

0.00 

0 . 6 5  

0 .37  

0 .07  

0.00 

2 . 2 0  

3.22 

3.71 

3.89 

0.00 

6 . 4 0  

7.52 

7 .63  

7.34 

1 0 . 0 0  

7.92 

5.53 

2.95 

2.91 

1 0 . 0 0  

12 .97  

12.38 

11 .65  

10 .89  

10 .00  

14 .33  

13.24 

11.96 

10.80 

35 -00 

32 .50  

30.16 

27 .79  

25 .43  

35 .00  

25 .21  

21.84 

19.34 

17.32 

3 5 . 0 0  

21.93 

18 .01  

15 .32  

13.36 

35 -00 0.00 

36.61 u.00 

37.49 0.00 

37.78 0.00 

37.54 0.00 

35 -00 0.00 

32 - 0 1  0.00 

27 .53  0.00 

23 .94  0.00 

21.10 0.00 

35 .OO 0.00 

26.84 0.00 

0.00 2 1  .oo 
17 .42  0.00 

14.95 0.00 
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study of an impact of a variable horizontal eddy viscosity on the 

distribution of concentration along the channel. We shall consider 

again the same channel but with grid steps ten times greater, i.e. 

instead of 1 0 1  points only 1 0  will be present. Three different values 

of the horizontal eddy viscosity will be taken: 1 0  m /sec, 5 0  m /sec 

and 100 m /sec. In each case, the same initial distribution is taken 

with a maximum concentration at points 8 and 9 (see table 7 .1 )  When 

the equation of transport is.integrated in time over a sufficiently 

large number of tidal periods , i.e. several days, the increased magni- 

tude of eddy viscosity leads to two characteristic phenomena. Firstly, 

the maximum concentration diminishes with increasing eddy viscosity 

(the case of 1 0  m /sec shows a small increase of concentration), and 

secondly, the concentration of the mixture is dispersed over a greater 

number of grid points when compared to the initial spread. 

2 2 

2 

2 

56. The turbidity zone of the River Elbe 

Starting with the transport equation in the form 

ac ac ac a2c a2c 
at ax ay x ax Y F  
- + u - + v - = K  - + K  ( 7 . 9 1 )  

the horizontal dispersion of suspended matter in the River Elbe was 

investigated. 

The phenomenon of horizontal dispersion is a turbulent transport 

process which depends on the bottom topography and on the motion of 

water in the horizontal as well as in the vertical direction. Due to 

the high velocities, the water in the river can be assumed to be 

well-mixed in the vertical direction, and therefore the processes 

governed by the vertical stratification are of negligible importance. 

In such a case, as we have seen in $2 of this chapter, the coefficient 

of eddy diffusion may be identified with the coefficient of eddy vis- 

cosity. In the following calculations expression ( 7 . 2 7 )  will be applied. 

It is assumed that the mixture - which, in our case, is the seston - 
is dispersed equally from the bottom to the surface and remains in 

suspension all the time. The mixture is of such a quantity that it 

does not essentially change the water density. The investigated con- 

centrations reproduce the averaged distribution of the material at 

the grid points. Together with the numerical form of equation (7.911, 

the two-dimensional model of the River Elbe described in chapter VI 

was applied. Observed water levels and the time-dependent concentration 
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of suspended material as given by the measurements of Nothlich ( 1 9 6 7 )  
are used as the boundary conditions at the open boundary near Cuxhaven. 

Nothlich specified the average quantity of seston during these measure- 

ments as 28.6 mg/l of dry weight at high water and 5 6 . 4  mg/l of dry 

water weight at low water at one point within the Elbe estuary. The 

boundary condition taken as 

2T c = 0 .0424  + 0 . 0 1 4 1  cos T t  ( 7 . 9 2 )  

reproduces the above values at high and low water with insignificant 

errors. It was assumed that (7 .92 )  is valid for the whole cross-section 

at the mouth of the river. The computations were started at low water 

and the tide averaged over the years 1 9 5 1  - 1 9 5 5  (normal-tide) was 

used. Because simultaneous measurements were unavailable it was only 

possible to compare the numerical results with measurements from the 

year 1967.  

It is well known that the dispersion of suspended matter in tidal 

rivers varies with the seasons and depends on meteorological factors, 

the fresh water input and the salinity of the incoming water to the 

estuary. We have proceeded on the assumption that, as a first appro- 

ximation, the main components of the transport of suspended material 

during the time when the measurements were made were the same as 

during the normal-tide 1951 /55 .  

A comparison between a computed and a measured mean concentration 

of seston in five sections of the River Elbe is shown in figure 92.  

It must be noted that the measurements were made at several places 

and at different tidal phases. Therefore, while reproducing the nume- 

rical data, at the grid points situated near the observational points, 

we have always specified maximum and minimum concentration. 

The essential numerical results are presented in figs. 9 3  and 94. 

They show the distribution of seston due to the dynamic processes in 

the River Elbe between Otterndorf and Stadersand. In the first figure, 

the distribution during the time of maximum seston concentration, and 

in the second figurerthe distribution during the time of minimum seston 

concentration in Cuxhaven is shown. At high water as well as at low 

water at Cuxhaven, a zone of high seston concentration(ab0ut 2 0 0  mg/l) 

exists near Brunsbuttel. During high water this zone is broader than 

at low water while there is no essential difference in the length of 

the zone. This turbidity zone is a typical phenomenon in the River 

Elbe and results from the interaction of several processes. Relying 

upon the qualitative reproduction of this turbidity zone by means of 
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DISTRIBUTION OF SUSPENDED MATTER 
DUE TO DYNAMIC PROCESSES IN THE 
RIVER ELBE BETWEEN KOLLMAR 
AND SI PAULI 
48 HOURS AFTER RELEASE OF 120 g / I  AT ST. PAULI 

Fig. 93. DISTRIBUTION OF SUSPENDED MATTER DUE TO DYNAMIC PROCESSES IN THE RIVER ELBE BETWEEN KOLLMAR 
AND ST. PAULI - 48 HOURS AFTER RELEASE OF 120 g/1 AT ST. PAULI. 
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DUE TO DYNAMIC PROCESSES IN THE 
RIVER ELBE BETWEEN GLUCKSTADT AND 
ST. PAULI 
96 HOURS AFTER RELEASE OF 120g/l AT ST. PAULI 

Fig. 94. DISTRIBUTION OF SUSPENDED MATTER DUE TO DYNAMIC PROCESSES IN THE RIVER ELBE BETWEEN 
GLUCKSTADT AND ST. PAULI - 96 HOURS AFTER RELEASE OF 120 g/1 AT ST. PAULI. 
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the hydrodynamic-numerical method as presented in chapter VI, it can 

be concluded that the existence of this zone is determined mainly by 

the hydrodynamics of the river. In this section of the estuary the 

residual currents are very small. These results suggest various possi- 

bilities for the application of the numerical method, and they contri- 

bute to the development of a model which can be extended to include 

other, e.g. hydrobiological, components. It is also possible to use 

models of this kind for the problems of pollution. The first example 

of such an application is the location of the turbidity zone in the 

River Elbe due to the exceptionally small residual currents.Smal1 

values of the residual currents in a stretch of the estuary also imply 

a large residence time for wastes in this area. It is therefore impor- 

tant in certain coastal engineering projects not only to compute the 

velocities and their directions but also to consider the variation 

in the residual currents. 

57.  The transport of pollutants 

Based upon the results of the preceeding chapter it is possible to 

handle practical and actual problems of pollution. For that purpose the 

equation of transport (7 .7 )  together with the system of hydrodynamic- 

numerical equations derived in the previous chapters are applied. To 

show the capacity of this approach to handle the problem of pollutant 

dispersion, a pollutant is released at t=O which gives rise immediately 

to a uniform 

Brokdorf (Fig. 9 5 ) .  With the help of the above equations the process 

of dispersion of this cloud of material was computed for a period of 

1 4 4  hours, using the normal-tides of 1951 /55 .  The run of the lines 

c = 0 gives the extension of the area in which the released amount 

of matter is located. At first, the material disperses quickly because 

of the steep gradient due to the initial distribution. But after 

24 - 72  hours there is no essential change in the limitation of the 

area as is shown in fig. 95.  Even when a time-dependent increase of 

material in the source area is assumed at the beginning of the investi- 

gations, the extension and location of the dispersion area corresponds 

to the one shown in fig. 95.  This long residence time of the pollutant, 

as we know, is mainly due to the negligible residual currents in the 

area of Brunsbiittel. After 1 2 0  - 144  hours the area grows, especially 

in the direction of Cuxhaven and mainly in the water way, and expands 

insignificantly upstream. This small example of the many investigations 

performed shows that the dynamically-conditioned distribution of sus- 

concentration of 2 0  O/oo between Brunsbiittelkoog and 
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Fig. 95. TIME DEPENDENT PROCESS OF SPREADING MATTER IN THE RIVER ELBE 
WITH THE INITIAL CONCENTRATION 20 O/oo AND A SOURCE FUNCTION AS COMPUTED 
BY THE HYDRODYNAMIC-NUMERICAL MODEL. 
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pended matter and its transport can be examined numerically with a 

model, provided that the above conditions are fulfilled. These results 

may help to solve certain problems in coastal engineering. 
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Chapter Vlll  PERIODIC MOTION 

91. Introduction 

The study of oscillatory motion in natural basins can be separated 

into two interconnected fields: 

1. The spectral method of analysis, when a proper time series of the 

parameter of interest has been recorded. 

2. The solution of differential (or difference) equations which describe 

the set of eigenvalues and eigenfunctions. 

We shall study an oscillatory motion in a sea by the latter method, 

since the first one is generally connected with the technical problem 

of obtaining a satisfactorily long and stationary series of data 

(Bendat and Piersol, 1971). Our primary 

like motion in closed and semi-enclosed 

tions 

aM 
at + fMx = -gHg 

aM aM i ! L + x + Y = o  
at ax ay 

aim is to describe a seiche- 

basins with the set of equa- 

(8.3) 

This is the linearized form of (1.32), (1.33) and (1.41), assuming 

that the external forces can be neglected. The condition at a rigid 

boundary states that the component of mass transport normal to the 

coast must vanish 

For the case of an open boundary, the necessary condition will be in- 

troduced later on. 

We start by considering one differential equation from the above 

system and discuss eventual obstacles in the way of obtaining a solu- 

tion. Assuming that the variables which appear in the equations change 

periodically, like the function eiwtl we arrive by means of cross- 

differentiation of (8.1) and (8.2) and by virtue of the continuity 
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equation ( 8 . 3 )  at 

( 8 . 5 )  

The boundary condition ( 8 . 4 )  ought also to be expressed with the help 
o f  the sea-level variation. By introducing the angle a between the 
vector "n (normal to the coast) and the x-axis and the angle B between 

n and the y-axis, (8 .4 )  becomes + 

M cos ci + M cos B = 0 ( 8 . 6 )  
X Y 

Next, from (8 .1 )  and ( 8 . 2 )  the components of mass transport are ex- 
pressed in terms o f  the sea-level 

( 8 . 8 )  

Finally substituting ( 8 . 7 )  and ( 8 . 8 )  into ( 8 . 6 )  the appropriate bounda- 
ry condition for ( 8 . 5 )  is derived 

as as as 
aY ax aY ax (f - + iw -) cosci + (iw -- f c o s ~  = o (8 .9 )  

Thus the study of the natural oscillations can be carried out using 

the system of primary equations ( 8 . 1 ) ,  ( 8 . 2 )  and (8.3)or by consulting 
the equation of second order ( 8 . 5 ) .  

This approach to the problem of oscillatory motion has been known 

for many years. The history of the problem and valuable partial solu- 

tions can be found in Lamb's 'Hydrodynamics' or in 'Physical Oceano- 

graphy' by Defant. 

Our aim is to give a description of the recent numerical methods 

worked out by Platzman ( 1 9 7 2 ) ,  Rao and Shwab (1976)  and others. Gene- 
rally speaking, two classes of oscillatory motion can be discovered 

in equation ( 8 . 5 ) .  
Firstly, when the Earth's rotation is neglected (f=O) , equation 

(8 .5 )  simplifies to 

2 
w 5 + gV(HVC) = 0 (8 .10)  

which characterizes the long gravitational waves. 
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Secondly, in the case of rotational motion, another class of periodic 

oscillations appears and, as follows from (8.5),it is strongly in- 

fluenced by the coupling between depth and sea-level due to the Jaco- 

bian expression J(H,<). 

Let us study now the properties of (8.10) assuming a periodic solu- - 
tion 5, = 5, exp(iwnt). Here 5- is an eigenfunction related to the 
eigenfrequency w Introducing this form of solution into (8.10) we 

obtain 

n 

n' 

which together with (8.9) describes the set of eigenfrequencies {an] 
and the set of eigenfunctions IFn). From the practical point of view 
the most important oscillations are those with the longest period 

(w -+ 0). Obviously the existence of periodic oscillations in (8.11) 

is assured when w2 are both real and positive numbers. This property 

can be easily proved by the fact that, in the absence of rotation, 

(8.9) simplifies to = 0 .  Multiplying (8.11) by and subsequently 

integrating over the domain 5 = {O I x I 1 

n 

an 
0 i y L 12), we have 1' 

(8.12) 

0 0  0 0  

which is transformed by elementary manipulation of the right hand 

side of (8.12) to give 

This expression, often called Rayleigh's form, is used to calculate 

the frequency when the eigenfunctions of the problem are known. When 

the domain of integration D is simple, for example a rectangular 

basin with constant depth, the solution of (8.11) is easy. A set of 

natural eigenperiods possesses an infinite (but countable) number of 

periods Tn in the range of Tmax2 Tn > 0. A basin with a complicated 

geometry cannot be treated in such an analytical way. We start the 

numerical approach to the problem by analysing one-dimensional motion. 

In this case (8.11) simplifies to 

(8.14) 



325 

(from here on the overbar and the index n are omitted to clarify the 

notation). 

The symmetrical numerical form of (8.14) on a homogeneous grid, with 

grid step h, may be written as follows 

5 
and 

+ H.) Hj+l 3 

is related to the form (2.15) presented in chapter 11. Rearranging 

(8.15) as a three-point operator 

and introducing the column vector with co-ordinates 5 j=l , 2 , 3,. . . ,n 
and a matrix of coefficients A, the new form of (8.15) becomes 

jr 

(8.17) 

2 
where X = wn. Alternatively expressing (8.17) in the vector-matrix 

form we find 

Since aj+l = b the matrix A is symme- where I is the unit matrix. 

trical. This property results from the symmetrical numerical form of 

(2.15). When an analytical solution is obtained, an infinite number 

of eigenperiods and corresponding eigenfrequencies are present. On 

the other hand, a numerical solution provides only 2n eigenperiods. 

To derive these values the homogeneous equations (8.18) and (8.17) 

must be solved. This is possible on condition that the determinant 

of A is equal to zero. The solution may proceed by the direct (exact) 

or iterative methods as,described by Wilkinson (1965). The direct 

methods can still be applied to the above-presented one-dimensional 
2 3  motion, when the number of grid points is of the order of 10 -10 . 

j r  
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However, in the more complicated cases only the iterative methods 

can provide the required solution. 

52.  The general properties of eigenvalues 

Before we embark on a deeper analysis of the problem, let us recall 

the basic properties of a matrix A and the parameter X involved in 

the eigenvalue problem. The elements of the matrix A will be denoted 

as ajk (j stands for the row number and k for the column number). Let 

us recall the following theorem (Ralston, 1 9 6 5 ) :  

If the coefficients of A are both symmetrical (a = a ) and real, 

all eigenvalues and eigenvectors related to A are real. Eigenvectors 

related to the different eigenvalues are mutually orthogonal. As 

regards equation ( 8 . 1 0 )  certain parts of the theorem have already been 

proved. Assuming that the eigenvectors z1 and 5, are related to the 

eigenvalues X 

jk kj 

+ 

and Am, we have the two equations 
1 

+ 
A C1 = hlZ1 

and 

( 8 . 1 9 )  

( 8 . 2 0 )  

Next, multiplying (as a scalar) ( 8 . 1 9 )  by 

obtain 

and (8 .20 )  by Zl, we m 

( 8 . 2 1 )  

( 8 . 2 2 )  

Observe that the multiplication is performed on the left hand side. 

This is important due to the fact that this property is not commuta- 

tive in general. 
+ T+ A is symmetrical due to the above theorem, that is A=A.C =A; 1 1 1' 

Thus we may change the order of multiplication in ( 8 . 2 2 )  in this 

way 

( 8 . 2 3 )  

T .  
kj) ' 

Here A is a transposed matrix (one with coefficients a 
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Subtracting ( 8 . 2 3 )  from (8 .2  

+ +  
(A1 - A m )  (cmrcl) = 0 

which shows that if X1 # Am, 
and z1 are orthogonal. 

) we obtain 

( 8 . 2 4 )  

-+ 
5, # 0 and t1 # 0, the eigenvectors zm 

Let us now prove that the eigenvalues related to the matrix A are 

real (Faddeeva, 1 9 5 9 ) .  
+* 

First the conjugate values C1 and X i  are introduced. In the case of 

and 

and if the same operations as above are performed with the 

that t1 # 0, the following expression is derived 

This shows that 

* 
A1 = A1 

8 .25 )  

8 .26)  

assumption 

8 .27 )  

( 8 . 2 8 )  

and implies that X1 is a real quantity. 

In the case of positive-definite operators (matrices), which play 

such a special r61e in the development of numerical methods, it can 

easily be deduced that the eigenvalues are real and positive. Multi- 

plying (as scalars) both sides of ( 8 . 1 9 )  by el, it follows that 

(8 .29 )  

and hence 

+ +  
The definition of a positive-definite operator (AS1,51) > 0 and the 

fact that the scalar multiplication (<l,cl) > 0 establishes that 

X > 0 in expression ( 8 . 3 0 ) .  

+ +  
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Considering a matrix A with its elements complex and symmetrical 

= akj), we shall prove that the eigenvalues (in the sense that a 

related to this matrix are real. 
jk 

Starting from the equation 

and 

( 8 . 3 1 )  

( 8 . 3 2 )  

-+* 
multiplying ( 8 . 3 1 )  by ck and ( 8 . 3 2 )  by zkl subtracting the resulting 
equations from each other and taking next into account that A = A 

and (ck,ck) > 0, we obtain 

T* 
* *<: 

(8 .33 )  

On condition that zk # 0, z; # 0 it follows from (8 .33 )  that Xk - - A; 

and X is a real number. 

Finally, we would like to pay particular attention to some special 

questions of a general nature. The computational methods for eigen- 

values and eigenfunctions form a large part of linear algebra, and 

the best presentation of these is given in Wilkinson's treatise ( 1 9 6 5 )  

For this problem a certain optimum approach is needed, since it is 

possible for a given differential equation to construct different 

numerical forms and consequently different matrices. Among the set of 

matrices, the symmetrical ones are to be preferred. This is due to a 

relatively easy way of solving symmetrical determinants and partly 

due to the possibility of saving computer memory, for it is sufficient 

to store in only half of a symmetrical matrix. Furthermore we intend 

to provide a method of constructing symmetrical matrices which will 

describe two-dimensional oscillations. 

53. Eigenvalues in two-dimensional oscillations: The construction of 

a svmmetrical matrix 

Equation ( 8 . 1 0 )  describes the gravitational oscillation in a two- 

dimensional domain. If a suitable numerical form on a finite difference 

grid is given for it, we may seek a solution to the eigenvalue pro- 

blem. Introducing, as usual, a grid step h and indices along the 

x- and y-axes j and k respectively, we derive the symmetrical nume- 
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+ W'CjIk = 0 (8.34) 

(8.34) can be rearranged in the form 

+H. 15 z"Hj+l,k + Hjlk)Cj+l,k + (Hj,k + Hj-l,k 15 j-Ilk + (Hj,k+l 
g 

ilk j,k+l 

+ Hjlk+l + H. ~,k-I)~'j,k = (8.34b) 

It is easy to observe that (8.34) and (8.34b) cannot be written as 

the product of a matrix by a vector in the same way as (8.17) or (8.18). 

Nevertheless, to use the methods of linear algebra we are compelled 

to introduce a vector-matrix notation. In order to do this, we con- 

struct from the two-dimensional enumeration (j,k) a one-dimensional 

enumeration in which every grid point will have a consecutive number. 

We shall present this new method of enumeration in equation (8.3433). 

The numerical grid is plotted in fig. 96. It shows, together with the 

(j,k)-enumeration, the new one-dimensional enumeration. When the latter 

is considered, the boundary points are disregarded, since it follows 

from the condition %= 0 that all points adjacent to the boundary 

possess the same values of the sea-level as points on the boundary. 

Additionally, we set H = 0 at all boundary grid points. In the net 

in fig. 96 there are 6 internal grid points. To seek a solution for 

the eigenvalues and eigenvectors we write down at every grid point 

a difference equation, namely 

C3H3+C2 (H2+H3)+C6 (H3+H6)+C3H3+C3 (2h2w2/g- (4H3+H2+H6) ) = 0 
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2 2  
5 5  (H4+H5)+54H4+54H4+51 (H1+H4)+C4 (2h w / g -  (4H4+H5+H1) ) = 0 

2 2  c6 (H5+H6)+C4 (H4+H5)+C5H5+C2 (H2+H5)+C5 (2h w /g-(4H5+H6fH4+H2) ) = 0 

2 2  
L6H6+S5 (H5+H6)+56H6+S3 (H3+H6)+C6 (2h w /g - (4H6+H5+H3) = 0 

These equations we rearrange in a vector-matrix form,since it helps 

to analyse the property of the coefficients' matrix. 

-H -H L 3  

2 6  

2h2w2 
3H5 

-- 
0; H2+H 5; 0; H +H 

5;-H -H -H 
2 4 6  

H5; 0 

H6+H5 

2 2hLw 
2H6 

-- 
0 ;  0; H3+H6; 0; H 5 +H 6 ;  9 

-H -H 
- 3 5  

5 1  

52 

53 

54 

5 5  

'6 

(8.35) 

Analysing the matrix of coefficients it is obvious at once that all 

the elements are real and that the property of symmetry holds, because 

a = akj. This form of matrix is closely related with the symmetrical 

form of the difference equation discussed in chapter I1 or,speaking 

more generally, to the self-adjoint properties of difference operators. 

In order to obtain a symmetrical matrix, special precautions should 

jk 

be taken at the boundary grid points, i.e. 

1. The one-dimensional enumeration does not include the boundary grid 

points. 

2. Apart from the boundary condition, the depth is always set equal to 

zero at the boundary. 



331 

“I 
4 

3 

2 

1 

7 2 3 4 5  J 

Fig. 96. PLACING OF POINTS TO CONSTRUCT ONE-DIMENSIONAL 
ARRAY IN TWO-DIMENSIONAL PLANE 

The method presented above of ensuring symmetry is somewhat like 

the method proposed by Loomis ( 1 9 7 3 ) .  The further derivation of a 

set of eiqenvalues and eigenfunctions consists simply in the appli- 

cation of standard procedures for solving a symmetrical matrix for 

example the Jacobi method (Ralston, 1 9 6 5 ) .  

5 4 .  Galerkin’s method and its application to the problem of eiqen- 

values and eigenvectors 

Let us consider a linear boundary problem (the following method may 

also be applied to nonlinear problems): 

L3 = f(x) (8.36) 

with the boundary condition 

L 5 = 0  (8.37) 1 

Here L1 and L denote differential operators and x the co-ordinate. 

Introducing a system of functions @.(x), j =1 ,2 ,  ..., m(often called 
7 
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basic functions) which are linearly independent and part of the com- 

plete set of functions, we may represent the function r ; ,  the solution 
of ( 8 . 3 6 ) ,  as a linear combination of @ with the coefficients a 

j j 

m 

r; = c a.@.(x) 
7 3  

j=l 

( 8 . 3 8 )  

In addition it is assumed that the functions I$ satisfy the boundary 

condition ( 8 . 3 7 ) .  Referring to the known theorem on the orthogonality 

of arbitrary continuous functions (given in the domain [ a,b] ) to the 

complete set of functions @ (Collatz, 1 9 6 4 )  we may seek the unknown 

coefficients a from the orthogonality condition 

j 

j 

j 

( (Lr;-f (x) ) ,@k) = 0 

k = 1,2, ... rm. 
(8 .39 )  

Here the brackets and commata denote scalar multiplication in the 

sense 

b 

1 (L -f (x) )@k dx = 0 ( 8 . 4 0 )  

a 

Taking into account the expression for 5 (8 .38 )  the condition of 

orthogonality is stated as 

m 

C 

j=l 

(a.L@. ,I$k) = (f (x) ,I$k) ; k = 1,2,. . . ,m 
3 3  

(8 .41 )  

Therefore a system of m equations which determines the m unknown 

coefficients a is obtained. When these coefficients are introduced 

into (8 .381,  the function 5 is determined as the solution of the 

boundary problem ( 8 . 3 6 ) ,  ( 8 . 3 7 ) .  If equation ( 8 . 3 6 )  is set for an 

eigenvalue problem 

j 

Lr; = A r ;  (8 .42 )  

then the eigenvalues and eigenfunctions can be found using Galerkin's 

method (Kantorovich and Krylov, 1958 ;  Kaliski, 1 9 6 6 ) .  Substituting 

( 8 . 4 2 )  in the orthogonality condition ( 8 . 4 1 )  
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C (a .L@. , @k) =XI+. , @k) ; k =1,2,. . . ,m 
3 3  3 

j=1 
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(8.43) 

again a system of m algebraic equations is obtained. The vanishing of 

the determinant of this homogeneous system, under condition that 

a # 0 (a consequence of the assumption that the set of @ is a com- 

plete one), provides the set of eigenvalues. When the eigenvalues 

have all been found, the coefficients a can be determined from (8.43) 

and then from (8.38) the eigenvectors may be obtained. 

j j 

j 

Before applying Galerkin's method in the general case, a simplified 

numerical example will be considered to illustrate the ideas stated 

above. Let us suppose that gravitational oscillations are observed 

in a one-dimensional basin of length 1 = 50 km along the x-axis. The 

depth varies linearly as H = H + kx, so H(x=O) = 50 m and H(x=1)=55m. 

The differential equation which yields the eigenvalues and eigen- 
0 

functions is given by (8.14) 

(8.44) 

Substituting into (8.44) the depth dependence and the new variable y 

defined by the expression H + kx = Wy, we find 
0 

(8.45) 

The solution of this equation is easily formulated in terms of Bessel's 

functions Jo and No (Mc Lachlan, 1948) 

Next, by utilizing the boundary condition a = 0, the eigenfrequencies 

wk are defined. 

functions + have to be chosen first. Here we shall use the characte- 

ristic properties of these functions, i.e. completeness and fulfilment 

of the boundary condition. For equation (8.44) the functions @.(XI 

= c o s F a r e  chosen since they satisfy the above properties and in the 

computations we take j = 1,2, so that (8.38) is taken in the follow- 

ing form 

aY 

In seeking a solution of (8.44) by Galerkin's method the basic 

j 

3 

ITX 2 ITX 
5 = al cos 1 + a2 cos - 1 (8.47) 
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Substituting (8.47) into (8.43) we obtain the system of two equations 

1 2  
a 2 7lX f { C a.g k((Ho+kx)-Q.) + w a.Q 

o j=l 

cos- 1 }dx = 0 
7 ax I i j  

1 2  

1 C C ajg &((Ho+kx)-Q.) a + w 2 a 9 c o s y d x  = 0 
ax 7 j j  

o j=l 

(8.48a) 

(8.48b) 

and by integration it becomes 

(8.49a) 2 2 2 algk-16/9 + a2(lw /2 - 27~ H g/1 - kgx ) = 0 

al(w 1/2 - Hogn /21 - gk.rr /4) + a2kg.64/9 = 0 

0 

(8.49b) 2 2 2 

These equations provide two values for the eigenvalues or for the 

periods of oscillation TI = 271/wl = 4900.75 sec and T2 = 2n/w2=2216.12 

sec. As a comparison we calculate the two longest periods by the 

usual expression for a one-dimensional basin with constant depth H 

(Defant, 1961) 
0 

TI = 21/% = 4515.23 sec ; T2 = T1/2 = 2257.61 sec. 

The final numerical problem of Galerkin's method is the system of 

equations (8.43) (or in the considered example (8.49)) from which, 

through the vanishing of a determinant, the set of eigenvalues is 

calculated. On the other hand, the direct method of determining the 

eigenvalues from a difference equation as presented in the previous 

paragraph also leads to a determinant. The following question may be 

asked: Why use Galerkin's method instead of the direct method? The 

answer is that Galerkin's method leads to a much faster solution than 

the direct method. This follows from the fact that in the difference 

method we have to consider, in the one-dimensional case, around 100 

grid points, that is 100 equations or a determinant with 100 unknowns. 

Using Galerkin's method we can quite often obtain the same answer by 

choosing a small number (m=2 to 5) of suitable basic functions and 

by solving 2 to 5 equations. 

Let us direct our attention now to the major problem, i.e. to the 

description of two-dimensional free oscillations on the rotating 

Earth. 



335 

The main difficulty in applying Galerkin's method here lies in the 

construction of a set of orthogonal functions in two-dimensional 

space which satisfies the boundary condition, since this condition 

in the general case ( 8 . 9 )  is quite complicated. 

In addition the problem, as defined by ( 8 . 5 ) ,  is posed in a complex 

space. All these obstacles compel us to study the eigenoscillations 

through the system of primary equations ( 8 . 1 ) ,  (8 .2 )  and (8 .3 )  instead 

of using one equation of higher order ( 8 . 5 ) .  

In the following two methods of solving the eigenvalue problem, 

using the primary system of equations, will be presented, namely 

Platzman's ( 1 9 7 2 )  method and Galerkin's method. 

Firstly, we shall describe Galerkin's method. The major question 

is the construction of an orthogonal set of functions. This problem 

was solved by Rao and Shwab ( 1 9 7 6 ) .  The velocity field (mass trans- 

port $) is split into a potential component $@ and a rotational com- 
ponent $+. In this way $ = $@ + gJ,. Next, recalling the definition 
of a stream function @ and a potential function @, we may write 

(8 .50 )  

Employing ( 8 . 5 0 )  the rotor and divergence of the vector $ can be 
expressed by the second-order differential equations 

div 3 = -V(HV@) ( 8 . 5 1 )  

If the mass transport 3 is known, (8 .51 )  and (8 .52 )  can be solved 

as a nonhomogeneous elliptical problem (at every instant). However 

the problem is usually the reversed, i.e. since M is unknown, the 

solution will be constructed as a sum related to the set of orthogonal 

functions J, and @ .  With this aim in mind ( 8 . 5 1 )  and ( 8 . 5 2 )  will be 

solved as homogeneous equations. The two derived sets of eigenfunc- 

tions will establish two sets of orthogonal or basic functions for 

Galerkin's solution. The boundary conditions for the problem are 

obvious and follow from ( 8 . 4 )  

-+ 

(3.;) = (s@ + kJ,).;f = 0 and therefore $@.; = 0 and = 0 (8 .53 )  



336 

The same condition may be expressed with the help of the stream and 

potential functions as 

H * = O  and $ = O  ( 8 . 5 4 )  an 

The homogeneous part of (8 .51 )  and ( 8 . 5 2 )  together with the boundary 

conditions (8 .54 )  have a unique solution, but it seems that this is 

only true in a simply connected domain. Let us therefore start by 

considering the equations for the eigenproblems. By virtue of ( 8 . 5 1 )  

and (8 .52 )  it follows that 

( 8 . 5 5 )  

and 

Here 0 and $a denote the eigenfunctions and A and p the correspond- 

ing eigenvalues. The operators in ( 8 . 5 5 )  and ( 8 . 5 6 )  are self-adjoint. 

Thus all the eigenvalues are real and the eigenfunctions 0, and $a 

belong to two complete and orthogonal sets of functions. The condition 

of orthogonality may be stated in the following way 

a a 

Taking into account (8 .511,  

L l ~ a  = - V8: 
Using the expression ( 8 . 5 0 ) ,  the condition becomes 

and .f$BL1$a dD = -1 0 V$1° dD = .f %ZV$ dD 
B a  B 

Here D denotes the domain of integration and 

I i f a = B  

O i f a # B  
6 = {  

( 8 . 5 7 )  

are derived. 

( 8 . 5 8 )  

A similar orthogonality condition may be defined for the rotational 

component i?' 
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s i/n-ii: %; a D  = p a  s q . J ,  

D 

We now can prove that the problems ( 8 . 5 5 )  and (8 .561 ,  with boundary 

condition ( 8 . 5 4 ) ,  are characterized by real and positive eigenvalues, 

and that the eigenfunctions are mutually orthogonal. For two different 

eigenfunctions, ( 8 . 5 5 )  yields 

dD = J 6 (8 .59 )  
a B  2 a8 

b - 

(8.60 )  

and 

V (HV@ ) = - A $ (8 .61 )  
B B B  

Multiplying (8 .60 )  by $ *  and ( 8 . 6 1 )  by $ m  , subtracting the equations 
from each other and integrating 

find 

u 

the result over the domain D(x,y), we 

Aa - A@) s @, @ B  dD 
D 

(8 .62 )  
- 

To prove that $, and @ 

to show that the left hand side of ( 8 . 6 2 )  is equal to zero when A,#A 
We shall now rearrange the left hand side of (8 .62 )  with the help of 

the boundary condition ( 8 . 5 4 )  to yield 

I [V($BHV$,) - HV$B V$a - V($aHV@B) + H V@aV$Bl dD 
b 

are orthogonal to each other it is sufficient 
B 

B '  

With the orthogonality condition it 

through the multiplication of ( 8 . 5 5 )  

s easy to show that Aa > 0. Again 

by 6, we have 

dD = - S H dD 
- 
D 

and therefore 

(8 .63 )  

Let us return again to the problem of eigenoscillation of free 

standing waves in a basin of arbitrary shape. The set of eigenfunctions 
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defined by ( 8 . 5 5 )  and ( 8 . 5 6 )  allows us to construct the solution for 
the vector of mass transport as a linear combination in the same way 

as ( 8 . 3 8 )  was constructed, namely 

( 8 . 6 4 )  

( 8 . 6 5 )  

The sea-level variations are set in a similar form 

As can be deduced from the continuity equation, 5, is closely related 

to the eigenfunctions $ a ,  since 

5, = $am ( 8 . 6 7 )  

To find the unknown expansion coefficients Pa, Q, and R, the primary 

equations and orthogonality conditions will be employed. Expressing 

the equations of motion and continuity ( 8 . 1 )  - ( 8 . 3 )  in the vector 
form 

- -  " [? X '1 = - g H  V r ;  ( 8 . 6 8 )  
at 

% + v A = o  ( 8 . 6 9 )  
at 

we insert ( 8 . 6 4 1 ,  ( 8 . 6 5 )  and ( 8 . 6 6 )  into ( 8 . 6 8 ) .  Hence 

ap 

B at -t$ %- C P B [ ?  x i$t] - C QB[? x G B ]  = -gH C R V 5  C '' + M B  at B B  B B B 

= -m H C RBVQB = Jxg'C R B  't ( 8 . 7 0 )  
B B 

Multiplying ( 8 . 7 0 )  by '2 using scalar products and next by 

equations are obtained which define the coefficients 

two 

dPa 
PB - ; BaB QB = J I R T  B J1 dt- ( 8 . 7 1 )  

( 8 . 7 2 )  
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A third equation is derived from the continuity equation (8.69) through 

multiplication by 3' 
R 

dRc, dt + P a  q = o  (8.73) 

The nonlinear terms in the preceeding equations are expressed in this 

These coefficients possess intrinsically the property of 

namely 

(8.74) 

(8.75) 

(8.76) 

(8.77) 

symmetry, 

(8.78) 

We introduce a new notation in order to write down equations (8.71) - 
(8.73) in vector-matrix form setting 

The equations (8.71) 

equation 

where a =  

- (8.73) 

- 
-B -v 
-D 0 

0 - 0 

(8.79) 

may be written simply as one vector 

(8.80) 

(8.81) 
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+ + iwt Assuming that the periodic oscillation is of the form S = S1 e , 
equation ( 8 . 8 0 )  becomes 

(ia - w )  ?il = o ( 8 . 8 2 )  

The element of the complex matrix ia satisfies the symmetry condition, 

since ajk = acj. Therefore ( 8 . 3 3 )  leads to the conclusion that all 

eigenvalues are real. When the eigenvalues have been found, ( 8 . 8 2 )  may 

be employed to determine the components of $. Subsequently Pa, Q, and 

R will be inserted into (8 .641,  ( 8 . 6 5 )  and (8 .66 )  to find the distri- 

bution of the sea-level and the mass transport in the basin being 

considered. 

a 

55. A method of resonance iterations 

In 1 9 7 2  Platzman presented a method to solve the eigenvalue problem 

which is related to a method proposed much earlier by Lanczos ( 1 9 5 6 ) .  

The method itself is rather time consuming but on the other hand quite 

simple and may be generalized easily to solve many other problems. 

The method is based on the observation that resonance will only occur 

in a dynamic system, if the period of an applied force is equal to 

any eigenperiod of the system. Hence a fictitious external force is 

introduced into the system of equations which describes the motion of 

a sea basin. The system is then integrated in time. 

After a certain interval of time has elapsed (usually one period), 

the integration is stopped and the frequency of oscillation is com- 

puted from the distribution of U, V and 5 with the help of Rayleigh's 

formula ( 8 . 1 3 ) .  The new frequency value is introduced into the expres- 

sion for the external force and again the system of equations is 

integrated in time. The iterative process of fitting the frequency of 

the external force in this way ensures convergence to the eigenfrequen- 

cy of the dynamic system. 

Let us again consider the primitive set of equations ( 8 . 1 )  - ( 8 . 3 )  

without the friction term. To simplify the problem the Coriolis force 

is also omitted. Introducing new dependent variables 

M /H = U = ul@; M /H = V = Vim; 5 = C 1  
X Y 

(8 .83 )  

we make the system of equations more symmetrical 



a51 
= -@- 

at ax 
- aul 

The same system in the vector-matrix form becomes 

axl 
at 
- = iB Z1 

where 

we 

on 

(2 
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(8 .84 )  

( 8 . 8 5 )  

( 8 . 8 6 )  

( 8 . 8 7 )  

(8 .88 )  

recall the notation of the scalar product which shall be used later 

The vector 8: is transposed to Z I r  that is a row vector. 

tion in (8 .87 )  we find 

Seeking an oscillatory solution in the form 8, = 2 eiwt by inser- 

iws = iB2 (8.90) 

Multiplying ( 8 . 9 0 )  by the vector 8*T (conjugated and transposed to 8 )  
an expression analogous to Rayleigh's formula ( 8 . 1 3 )  is obtained 

We introduce finite differences into the system ( 8 . 8 4 )  - ( 8 . 8 6 )  t o  

obtain the symmetrical numerical form 
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a,' 1+1/2 - 1-1/2 

u 1  u 1  = -r-1 
T gHax 

1 a c l  
1+1/2 - vl-l/2 

V 
= -rJ- 

T gHay 

(8.92) 

(8.93) 

(8.94) 

We rewrite this difference-differential equation in the vector-matrix 

form in order to reveal an intrinsic property of the transition opera- 

tor from time step 1-1 to 1 

s; = 

where 

1 
V 

0 0 D = l  0 0 - 

(8.95) 

(8.96) 

0 

0 

0 

(8.97) 

With this notation we can express the transition operator as 

-1 
- DT) (1 - D+T) 

9 5 1 becomes 

21- 1 
1 

(8.98) 

(8.99) 
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Now we shall take the second step in seeking the solution, namely 

we construct an analogous equation to (8.99) when an external force 

is present. The expression S;(t) for a fictitious force is added to 

equation (8.99) 

(8.100) 

The non-homogeneous equation corresponding to (8.99) is therefore 

written in the form 

Now we can return to the scalar form of (8.101) which is suitable 

for’a numerical treatment 

(8.102) 

(8.103) 

(8.104 = v1-’I2 - T,@fa(c; - 5; 1 ) + v; 1+1/2 
1 1 aY 

V 

The external force is taken as periodic in time 

S ;  = S ’  exp(i2at/T1) = s” exp(i2alT/T1) + -+ 
(8.105 

where 1 is a time index, 1 = 0, 1, 2, ..., n; T denotes the time step 
of integration and T1 is the period of oscillation. T, is set initial- 

ly in an arbitrary way but in the vicinity of the presumed period. 

We can start with the computation of the above system of equations, 

but we are still 

b, = b eiwt with 
(8.99), yields 

lacking the numerical form of (8.91). The vector 

t = lT, when introduced into the homogeneous equation 

(8.106) 
1-l)T 
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M u l t i p l y i n g  bo th  s i d e s  by z'T, 
(s"T,s eiwT) = (8.107) 

( 8 . 1 0 6 )  becomes 

I n s e r t i n g  (8 .98 )  i n  ( 8 . 1 0 7 ) ,  w e  d e f i n e  t h e  f r equency  o f  f r e e  osc i l -  
l a t i o n  

e ioT - - (fT, ( I - T D ) ~ ) / ( ~ * ~ ,  ( I - T D + ) s )  (8 .108)  

The s c a l a r  p r o d u c t s  a p p e a r i n g  i n  (8 .108)  can  be  d e s c r i b e d  as a sum 
t a k e n  ove r  a l l  g r i d  p o i n t s  

(8 .109)  

(8 .111)  

The o v e r a l l  c a l c u l a t i o n  of  a set o f  e i g e n v e c t o r s  and e i g e n f r e q u e n c i e s  
w i l l  be performed by t h e  f o l l o w i n g  system of  e q u a t i o n s :  (8.1021, 

(8 .103)  , (8 .104)  and ( 8 . 1 0 8 ) .  
Taking an a r b i t r a r y  v a l u e  o f  ampl i tude  3'  and p e r i o d  T I  of  t h e  ex- 

t e r n a l  f o r c e  v e c t o r  i n  (8 .105)  a t  t h e  i n i t i a l  moment 1=0, t h e  system 
of  e q u a t i o n s  ( 8 . 1 0 2 )  - (8 .104)  can  be  i n t e g r a t e d  i n  t i m e  from 0 t o  t. 
I n  t h i s  way t h e  v e c t o r  zl  ( t )  is  d e r i v e d .  I f  i n  t h e  n e x t  c a l c u l a t i o n s  
s l ( t )  is  t a k e n  as t h e  ampl i tude  o f  t h e  e x t e r n a l  f o r c e  5 ;  and t h e  new 
p e r i o d  i s  o b t a i n e d  by (8.1081, t h e n  t h e  components o f  t h e  e x t e r n a l  
f o r c e  approach t h e  set  o f  e i g e n v a l u e s .  

Assuming t h a t  t h e  approximate v a l u e  o f  t h e  e i g e n p e r i o d  T is  known, 
t h e  number of  i n t e g r a t i o n  s t e p s  i n  t i m e  can  be  t a k e n  as T1/T = L. 

The a r b i t r a r y  e x t e r n a l  f o r c e  ( w i t h  a p e r i o d  T I )  i nvo lved  i n  t h e  system 
(8.102) - (8 .104)  is i n t e g r a t e d  L - t i m e s  u n t i l  t h e  v a l u e  3: is  ob ta ined .  
Th i s  v a l u e  is  used t o  c a l c u l a t e  from (8.108) UI: and T I .  Changing i n  L 
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+L 
l (8.105) T1 to T: and 2' to S 

tition of this procedure leads to exact values of eigenvalues and 

eigenperiods. 

we again perform integration. The repe- 

56. A method of computing the longest period of free oscillation 

Let us begin by considering the system of equations (4.1) I (4.2) 

and (4.3) with f = 0. The variables in this system will be presented 

in the form f(t) ei('lX + 

part of the solution is unknown and the equations (4.1) - (4.3) can 

be stated as 

I therefore only the time dependent 

X 
+ RMx + igHal< = T 

5 
at 

aM 
+ RM + igHu2< = T 

at Y Y 

=+ iolMx + ia2M = 0 
at Y 

or in the vector-matrix form 

a %  -+ 
at - +  BZ = T 

where oland u 2  denote the 
tively . 

The formal solution to 

t 
+ +  
S = S + 7 J' epA dp 

0 
0 

(8.112) 

(8.113) 

(8.114) 

(8.115) 

wave numbers along the x- and y-axes respec- 

(8.115) is 

(8.116) 

where x0 is the initial value. Depending on the properties of the 
eigenvalues of the matrix A,different solutions are possible. We are 

interested in a solution for an external force constant in timelthen 

(8.11 6) becomes 

t 

0 

+ 
S = z0 + J' epA dp 

and 

s = s + +  + :/A. (1 - 
0 

(8.117) 

(8.118) 
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The solution to (8.118) attains a steady state if each of the eigen- 

values possesses a negative real part. 

The eigenvalues of A are equal to 

(8.119) 

2 2 2 Here H = u 1  + u 2  . 
If at the initial moment t=O the force :, which is constant in time, 

begins to act, then the dynamic system will need a certain period of 

time to reach a new equilibrium. Three forms of solution are possible 

there : 

1. The sea-level variations take place from 5 = 0 to the steady state 

level 5 without any periodic oscillations (Fig. 97). st 

2. The change of sea-level from 5 = 0 to 5 = cst occurs with oscilla- 
tions which diminish in time. 

3 .  The sea-level does not attain a steady state and it changes periodi- 

cally around the mean value. 

The first case is realised if the friction in a dynamic system is large 

(R -P - ) .  The second case appears when R is rather small. When R + 0, 

then, in agreement with (8.119), the motion is dependent on the matrix 

whose eigenvalues are 

= ? i H m  (8.120) 

Let us study thoroughly the solution of system (8.112) - (8.114) for 

the case R = 0 by rearranging the system to one equation in terms of 

the sea-level 

(8.121) 

Assuming as before that the expression F(t) which is related to an 

external force is constant in time and that the initial value of the 

sea-level is <(t=0) = 0, the solution of (8.121) is 

which corresponds to case 3 in fig. 97. 

It is obvious that the frequencies of oscillation are equal to 

H~ = HW. Therefore H~ represents the set of frequencies and (8.122) 

the solutions related to them. Among all possible external forces the 
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2 
system responds to the one of greatest amplitude F(t)/H . 

Fig. 97. THREE CHARACTERISTIC CASES OF RESPONSE OF A MECHANICAL 
SYSTEM UNDER THE ACTION OF A TIME-INDEPENDENT FORCE 

2 Because the parameter H2 = H gH= gH(21r/L) is smallest for the longest 

wave (L -+ m ) ,  it follows that the greatest amplitude is due to the 

longest wave: that is, the one with. the longest period. Finally, we 

may state that the system, in which friction forces are negligible, 

oscillates with the longest characteristic period of the dynamic system 

or with the longest eigenperiod under the influence of a constant ex- 

ternal force. 

1 

51. A method of computing a set of eigenperiods 

The approach presented above will now be generalized to the set of 

eigenperiods so as to describe an oscillatory system in a complete way. 

We shall begin by reconsidering the solution (8.115) expressing it 

through a set of eigenvalues and eigenfrequencies. Starting with the 

solution to the homogeneous system (Hurewicz, 1966) 

-+ -+ -At S = S o e  (8.123) 
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we set it in the form 

tA S = U e  (8.124) 

where 

A =  (8.125) 

is the matrix composed of the set of eigenvalues X . .  Inserting (8.124) 

into the homogeneous part of (8.115) yields 

+ 
UA + A6 = 0 (8.126) 

From this equation, through multiplication on the right hand side by 
+T 
U , the matrix A is obtained as a function of the eigenvectors 6, dT 
and the matrix A 

(8.127) + +T 
A = - UAU 

+ +T In the above the identity (U,U ) = I is implied. Finally, inserting 

(8.127) into (8.123) , we derive the required solution 

S = e  dAfiT ‘So + - - (8.128) 

In order to make this process very clear we shall obtain the same 

solution by a somewhat different approach. Suppose the matrix A in 

(8.123) possesses n different eigenvalues Xi, i = 1,2,...,n. Expressing 

the solution (8.123) as a linear combination of n partial solutions 

+ + Xit 
S = C u . e  (8.129) 

where z. is an eigenvector related to X 
into the homogeneous part of (8.115) we have 

and then substituting (8.129) i‘ 

C(ziXi + A ti) = 0 
i 

(8.130) 
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+T 
To find the matrix A we again multiply (8.130) by ui 

+ +T 
1 iui A = - C u . A  

i 
(8.131) 

Finally, substituting (8.131) into (8.123) a solution which is analogous 

ved to (8.128) is der 

'It +T + 3 = (GI e u4 

where 

eAt = 

+ 'nt +T + At+T 3 
0 

... + u e un) so = u e u n 

- 
XIt e 

X2t 
e 

. 'nt 
e 

(8.132) 

(8.133) 

The solution of the homogeneous problem expressed either as (8.128) or 

(8.132) vanishes in time, when all the eigenvalues Xi possess negative 

real parts. If the nonhomogeneous part of (8.115) is included, then the 

overall solution is 

(8.134) 

Let us assume that the external force in (8.134) is periodic in time 

and consists of a random superposition of the frequencies ak 

(8.135) 

In this case the explicit solution of (8.134) yields 

Iak - A) 

8.136) 

Analysing (8.136) we obtain the general result that resonance will occur 

when any eigenvalue of A coincides with an arbitrary forcing frequency 

ak. This can be confirmed by the inversion of the matrix (Iak-A) 

terms of the eigenvalues and eigenfunctions of the homogeneous problem. 

Firstly, by multiplying the denominator of (8.136) by the left and right 

in 
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eigenvector I we find 

+T 
U (Iok - A) 8 = I o k  + A 

Then inverting both sides of (8.137) yields 

+T U ( I o k  - A)-’ 8 = (Iok + A )  -1 

and finally multiplying by 8 on the left and by 8T on the right hand 
side, the inversion is completed to discover that 

( I o k  - A)-’ = + U(Iok + A )  U (8.138) 

where the matrix ( I o k  + A )  possesses the diagonal form 

-1 +T 

-1 

-1 
(Iok+ A )  = (8.139) 

Therefore the right hand side of (8.138) leads to (Lancaster, 1966) 

n ~~ 

c fi/(Uk+Xi) (8.140) 
i= 1 

-+ +T 
where f. = (uilui) . 

The solution of the nonhomogeneous problem (8.136) takes the follow- 

ing final form 

(8.141) 

Due to the random value of ok the coincidence of ok with Xi will cause 

resonance. If the friction is present, it will cause only an increase 

in the amplitude. A random force acting on a physical system will 

eventually lead to a random steady state in which the vector 3 has 
strongly resonant characteristics in the neighbourhood of the eigen- 

periods. Treating the obtained solution as a stationary time series, 

the spectral method can be applied to define the set of eigenperiods 

(Bendat and Piersol, 1971). 
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Generally speaking, sea-level and velocity should be treated sepa- 

rately. Certain modes of oscillation are more pronounced in the varia- 

tions in sea-level due to the greater magnitude of potential energy. 

Other methods can be better ascertained in velocity spectra due to the 

greater magnitude of kinetic energy. 

Seiche-like motion is usually characterized by high potential energy 

and a rotational mode of oscillation, which is present in ( 8 . 5 )  through 

the Jacobian operator, is described by increased kinetic energy when 

compared to the gravitational mode, see e.g. Platzman ( 1 9 7 2 ) .  

58 .  The influence of friction and small variations of frequency 

Until now, we have not mentioned the influence of friction in alter- 

ing the eigenfrequencies of the oscillating system. The problem, when 

formulated in all its complexity, leads to the so-called lambda matrices 

(Lancaster, 1 9 6 6 ) .  We shall present the influence of friction by a 

simplified version of the perturbation method (see e.9. Lanczos, 1 9 5 6 ) .  

Taking as a starting point the set of equations (8 .1 )  - ( 8 . 3 )  in the 

vector-matrix form 

a3 
at - =  A 3  

where 

( 8 . 1 4 2 )  

( 8 . 1 4 3 )  

Assuming that the dependent variables in (8 .142 )  are changing in time 

according to 3 = zo eiRtl it yields 
-f 
Soin = A 3o ( 8 . 1 4 4 )  

From ( 8 . 1 4 4 )  the matrix of eigenfrequencies is easily obtained 

( 8 . 1 4 5 )  

It may be assumed that due to small variations in the parameters in 

(8 .1421,  n is also subject to small variations. A general approach to 
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this problem, the so-called perturbation method, may be found in 

Lancaster (1966). To explain the idea behind this method we shall consi- 

der a simplified problem and shall assume that the variations are due 

entirely to the bottom friction. This force can easily be inserted into 

(8.142) by the mere addition of 

(8.146) 

The expression for the eigenfrequency (8.145) changes to 

R + 6R = [-i(z:Tr A30) + i(2:T, 

Since the variables considered are of a complex character, in 

(8.147) is transposed and the conjugate value taken to give so, i.e. 

A20)]/(2*T, 2) (8.147) 

2:kT , 

(8.148) 

From (8.146),by virtue of the scalar product definition (5.155), we 

derive the expression for the perturbed frequency 

This result may be clarified if one considers (8.149) as a product 

(8.150) 

related to all N grid points of the two-dimensional net (j,k). Accumu- 

lating (8.150) over all grid points, yields 

(8.151 1 
N N 
C 6Rn = i C 

n= 1 n= 1 
6R = 



353 

Since 652 is a real value, it follows from ( 8 . 1 5 1 )  that the small 
changes of frequency are not related to the bottom friction. On the 

other hand, observations have shown that seiche periods change in the 

presence of friction. 

Clearly something is wrong in this approach. The assumption that 

the bottom friction has a constant and real value cannot be taken as 

a proven fact. Taking the friction coefficient in ( 8 . 1 5 1 )  as a real 
value excludes the possibility that the bottom velocity and stress are 

out of phase. Observations confirm this phenomenon. To express this 

fact, one may put (Thijsse, 1 9 6 5 )  

( 8 . 1 5 2 )  2 R = R  + i R  1 

Inserting ( 8 . 1 5 2 )  into ( 8 . 1 5 1 )  , yields 

( 8 . 1 5 3 )  

This expression ( 8 . 1 5 3 )  indicates that bottom friction reduces the 
frequency or increases the period of free oscillation. Hence we have 

successfully resolved the paradox created by an incorrect assumption. 

59.  Numerical schemes describing frictionless motion 

We shall now consider certain numerical schemes for describing the 

general motion in a medium where friction is usually of no importance, 

since oscillatory motion in such a medium has already been considered 

in this chapter. 

The numerical schemes presented will be strictly related to those 

derived in chapter IV. We shall start with a numerical analogue of the 

differential equations ( 8 . 1 1 ,  ( 8 . 2 )  and ( 8 . 3 )  which uses the explicit 
scheme ( 4 . 1 2 8 1 ,  ( 4 . 1 2 9 )  and ( 4 . 1 3 0 ) .  Putting the horizontal and vertical 
friction terms equal to zero, we derive a scheme which has a second- 

order approximation in space but the approximation in time is distorted 

due to the Coriolis term. It is possible to build a fully symmetrical 

scheme in space and time by averaging the Coriolis term in time as 

+ M1-' ) . This term is now centred in time around the moment 1, 2 
and a second-order approximation is achieved. But if the practical 

realization of such an approach is dealt with, it may be quite diffi- 

cult to follow. The Coriolis force in the staggered net is taken as a 

mean value of the four neighbouring points and therefore when this 

term is taken in the implicit form it will demand an inversion of the 

- f (M1+l 
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two-dimensional o p e r a t o r .  The o p e r a t o r ,  f o r  example a l o n g  t h e  x -ax i s ,  
p o s s e s s e s  t h e  form, a c c o r d i n g  t o  (4 .132)  

1- 1 + M I - '  + M I - '  ) (8 .154)  OM' Y = 0.25(M$y:+2,k+l + My, j+2 ,k - l  y , j , k + l  y , j , k - I  

Platzman ( 1 9 7 2 )  i n  h i s  numer i ca l  development used an even more compli-  
c a t e d  box o p e r a t o r  

4 
O M  = 0 . 5  c (qo + q k )  ~ ~ , ~ / 4 q ~  

Y k= 1 
(8 .155)  

H e r e ,  t h e  index  o r e f e r s  t o  t h e  c e n t r a l  g r i d  p o i n t  and k = 1 ,  2 ,  3 ,4  
t o  t h e  ne ighbour ing  p o i n t s ;  q = f / H .  I t  i s  of  i n t e r e s t  t o  unde r s t and  
what t h e  box o p e r a t o r  does t o  t h e  f r i c t i o n l e s s  numer i ca l  scheme. When 
t h e  s t a b i l i t y  of  t h e  e x p l i c i t  scheme was a n a l y s e d ,  i n  t h e  m a t r i x  ( 4 . 1 4 2 )  
t h e  C o r i o l i s  t e r m  w a s  e x p r e s s e d  a s  

The re fo re  a long  t h e  x and y d i r e c t i o n s  t h e  box o p e r a t o r  r e s u l t s  i n  a 
c o s i n e  f i l t e r  and i t s  r6 le  is  e x p l a i n e d  i n  f i g .  89. The l e n g t h  o f  t h e  
wave i n  t h e  numer i ca l  system changes i n  t h e  r ange  4h i L I m. There fo re  
t h e  ampl i tude  of  t h e  s h o r t e s t  waves (L = 4h) is  s t r o n g l y  suppres sed  
and t h e  long  waves p a s s  th rough  t h e  f i l t e r  p r a c t i c a l l y  w i t h o u t  any 
d i s t o r t i o n .  The c o n c l u s i o n  i s  s imple  enough, and though t h e r e  i s  no 
' p h y s i c a l '  f r i c t i o n  i n  t h e  dynamic system, t h e  box o p e r a t o r  produces 
a s i m i l a r  e f f e c t  due t o  t h e  a t t e n u a t i o n  of  t h e  s h o r t  wave o s c i l l a t i o n s .  

Now u s i n g  t h e  s p l i t t i n g  method p r e s e n t e d  i n  c h a p t e r  I V ,  5 1 2 ,  w e  
s h a l l  b u i l d  a numer i ca l  scheme on t h e  g r i d  i n  f i g .  34. 

1 + 1 / 2  - 1 
Mx f 1 I ar;' - 3nMy = -z gH ax 

MX 
T 

1 + 1 / 2  
1 + 1 / 2  I 

- M 
T 2 x  = -- 2 gHay + - O M  

1+1 1 + 1 / 2  
Mx - Mx -zoMy f 1 + 1  = - 2 g H r  I a r ; l + I  

T 

(8.157a) 

(8.157b) 

( 8 . 1 5 7 ~ )  

(8.157d) 
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Let us check the numerical stability of system (8.157). To do this 

we insert (8.157a) into (8.157d) and (8.157b) into (8.157~) and thus 

we arrive at the system 

(8.158a) 

(8.158b 

1 
51+1 - 5 =-la (M~+' + Mi) - ++-(M:+' + M 1 ) (8.157e)=(8.158c 

Y T 2 ax x 

In the above equations the space derivatives will be approximated 

Now assuming that each dependent variable changes in the manner 

described by (4.17) we derive a characteristic equation for the stabi- 

lity parameter 

with central differences. 

(h-1)MZ - (X+1)2Tcosolhcoso2h f MB+%(X+l) i sinolh <*= 0 (8.159a) 
Y 

(X-1)M" + (X+1)2Tcosolhcoso2h f Mx+x(X+l) ?k gHT i sino2h t,*= 0 (8.159b) 
Y 

iT 
(X-l)c" + (X+l)h(sinolh Mi + sino2h M*) = 0 (8.159~) 

Y 

A nontrivial solution to this homogeneous set of equations exists on 

condition that the determinant vanishes,and this leads to the equation 

(A-1)2 + (X+1)2($+s)2 = 0 (8.160) 

where 

@ = gHT (sin olh + sin 02h)/2h 2 2  2 2 

The solution of (8.160) is I h l  = 1. Therefore the numerical system of 

(8.157) is unconditionally stable. The system of equations (8.158) 

follows the so-called Crank-Nicholson approach. With such a system 



356 

numer ica l  c a l c u l a t i o n s  are ex t r eme ly  d i f f i c u l t  t o  perform,  s i n c e  t h e  
system i s  i m p l i c i t  a l o n g  b o t h ,  t h e  x- and t h e  y -ax i s .  Now l e t  u s  observe 
a p o s s i b l e  way around t h i s  o b s t a c l e .  F i r s t l y ,  t h e  two e q u a t i o n s  i n  t h e  
system (8.157)  are e x p l i c i t  and t h u s  t h e i r  c a l c u l a t i o n  i s  s t r a i g h t -  
forward.  Coming t o  t h e  t h i r d  e q u a t i o n  it i s  found t h a t  t h e  v a l u e  of 
a<’+’/ay i s  unknown, so  it must be  e x p r e s s e d  somehow th rough  t h e  va r i ab -  
les  on t h e  1 and 1-1 t i m e  s t e p s .  The same i s  t r u e  f o r  (8 .157d) .  I n  
t h e s e  e q u a t i o n s  w e  se t  t h e  new form of  

a<’+’ and - acl+’  
a Y  ax 

u s i n g  t h e  e q u a t i o n  of  c o n t i n u i t y  i n  t w o  e q u i v a l e n t  ways. To o b t a i n  t h e  
f i r s t  d e r i v a t i v e  w e  p u t  

and t o  o b t a i n  t h e  second d e r i v a t i v e  w e  p u t  

Now i n s e r t i n g  from (8 .  

M1+l - M1+1/2 
1+1/2 - - + $OMx - 

T 

(8.161a) 

(8.161b) 

6 1 a )  i n t o  ( 8 . 1 5 7 ~ )  y i e l d s  

(8 .162)  

Rearranging (8.162)  i n  t h e  form 

a 2M1 

+ +a+ 

t h e  s o l u t i o n  of  (8 .163)  may 
y -ax i s .  

With t h e  h e l p  of  (8.161b 
s i m i l a r  form 

(8.163) 

be d e r i v e d  by f a c t o r i z a t i o n  a l o n g  t h e  

e q u a t i o n  (8.157d) can be  b rough t  t o  a 
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1 
a / 2  1 2M: + -- 1 2 y  

+ PHT (axay 2ax2 (8.164) 

The solution of (8.164) can also be derived by the factorization 

method, but this time along the x-axis. In this way the construction 

of the numerical scheme is achieved. The overall solution proceeds 

through equations (8.157a) , (8.15733) , (8.163) , (8.164) and (8.157e). 
The application of the factorization method saves us from the inver- 

sion of the two-dimensional operators, which usually takes a great 
deal of computer time. The speed of computation in the presented scheme 

is comparable to that of an explicit method. 
A s  we have shown the stablity of the system (8.157) is unconditional, 

i.e. the scheme is stable f o r  an arbitrary choice of time-space steps. 
In that sense, the method is more flexible than one in which the choice 

of time-space steps is restricted by a stability condition. Such con- 
ditions impose usually a very short time step. When dealing with gravity 

waves one can describe them within a reasonable amount of computer time. 
If, on the other hand, the aim is to study long-period phenomena, a 

very short time step may cause an unnecessary lengthening of compu- 

tation time. 

Let us now construct a numerical scheme related to fig. 33, where 

are computed at the same grid point. In this case there is Mx and M 

no need to introduce the box operator, therefore 
Y 

M1+l - M1-l 
1- 1 a c1 

+ My ) = -gH - f 1+1 
ax 

- -(M X 

T 2 Y  
(8.165a) 

(8.165b) 

(8.165~) 

The numerical scheme above possesses second-order accuracy in time as 

well as in space. The only obstacle when it comes to practical compu- 

tation is the implicit form of the Coriolis term. To solve this problem 

one can write (8.165a) as 
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and (8.165b) as 

MI+’ + fTMs;’’ = F2 
Y 

(8.166b) 

where F1 and F2 contain only the dependent variables calculated at the 

1 and 1-1 time steps. 

Substituting MI+’ from (8.166b) into (8.166a) and M Y 1  from (8.166a) 
Y 

into (8.16633) we f i n d  

(8.167a) M r l  = (F1 + fTF2)/(1 + f 2 2  T ) 

(8.167b) 2 2  
MI+’ = (F2 - fTF1)/(l + f T ) 
Y 

The computation algorithm includes therefore the expressions (8.167a), 

(8.167b) and (8.165~). 

The computational stability of the system (8.165) studied on the 

basis of (4.17) leads to the following characteristic equation 

(h-1)2 + s2(h2+1)2 + $I2h2 = 0 (8.168) 

2 2 2  2 2 2 where S = fT and @ =gHT (sin olhcos a,h+sin uphcos alh)/h2. Setting 

A 2  = 6, brings (8.168) to the form 

62(1+s2) + 6{2(S2-1) + + 1 + s2 = 0 (8.169) 

The roots of (8.169) are 

6,,2 = { - [ 2 ( S  2 -I)+@ 2 l+l/j2(S 2 -1)+@212 - 4(l+Sz)2)/2(l+S2) (8.170) 

which provides 16 I = 1 if 

4(1+S2I2 > [2(S2-1)+@212 (8.171) 

112 

2 2 2 2 Denoting the minimum value of (sin olh cos o2h + sin ozh cos olh) as 

w, the above inequality gives the following relationship between the 
time and space steps for a stable numerical calculation 

, ‘ m w <  2 (8.172) 
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In the range of the shortest waves in the system (5lh = ~ / 2 ,  

a,h = ~ / 2 )  W = 0 and therefore ( 8 . 1 7 2 )  is always true and the uncon- 

ditional stability is achieved. 
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