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Chapter 1

Introduction

These lecture notes present a short introduction in o¤shore hydromechanics on behalf of
the lectures OT3600 and OT3610 for o¤shore technology students.
Use has been made here of relevant parts of the Lecture Notes OT4620 on this subject:

OFFSHORE HYDROMECHANICS
(First Edition)
by: J.M.J. Journée and W.W. Massie
Delft University of Technology
January 2001

For more detailed information on o¤shore hydromechanics the reader is referred to these
extensive notes; reference [Journée and Massie, 2001].
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Chapter 2

Static Floating Stability

The static stability of a ‡oating structure encompasses the up-righting properties of the
structure when it is brought out of equilibrium or balance by a disturbance in the form of
a force and/or a moment. As a result of these (extra) loads, the structure will translate
and/or rotate about its center of gravity. Formally, dynamic as well as static properties
of the structure play a role in this, but only the static properties of the structure will be
considered here.

De…nitions

The body axes and the notations, as used here in static stability calculations, are presented
in …gure 2.1.

Figure 2.1: Body Axes and Notations

So-called hydrostatic forces and moments, caused by the surrounding water, will act on a
structure in still water. The buoyancy of a structure immersed in a ‡uid is the vertical
upthrust that the structure experiences due to the displacement of the ‡uid. The center
of the volume of the ‡uid displaced by a ‡oating structure is known as the center of
buoyancy B, see …gure 2.2-a. The center of gravity, G of a structure is that point
through which, for static considerations, the whole weight of the structure may be assumed
to act, see …gure 2.2-b.
Rotations in the plane of drawing are de…ned here as heel, a rotation about the structure’s
longitudinal horizontal axis. The same principles holds as well for trim, a rotation about
the body’s transverse horizontal axis. Superposition can be used for combinations of heel
and trim - at least if the angles of rotation are not too large.
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CHAPTER 2. STATIC FLOATING STABILITY 3

Figure 2.2: De…nition of Centers and Forces

Vertical Equilibrium

For a ‡oating structure, a vertical downward movement (sinking deeper) results in an
increase of the buoyant force which will tend to force the structure back upwards; it tends
to return the structure to its original state of balance so that the structure is stable for
this type of disturbance.
Archimedes’ principle holds for the vertical equilibrium between buoyancy and gravity
forces:

½gr = gm (2.1)

where ½ is the mass density of the ‡uid, g is the acceleration of gravity, r (nabla) is the
volume of the submerged part of the structure and m is the mass of the structure. For sea
water, the mass density, ½, is in the order of 1025 kg/m3.
If an additional mass, p; is placed on this structure, its original equilibrium will be dis-
turbed. The structure will sink deeper and heel until a new state of balance has been
reached. The new vertical balance is given by:

½g ¢ (r +¢r) = g ¢ (m + p) (2.2)

in which ¢r is the increase of the volume of displacement of the ‡oating structure.
If the mass p has been placed on the structure in such a manner that it only sinks deeper
parallel to the water plane without heel, the change of draft ¢T follows from:

¢r = ¢T ¢ AWL =
p

½
or: ¢T =

p

½ ¢ AWL
(2.3)

Here, AWL is the area of the water plane. It is implicitly assumed that this area is constant
over the draft interval ¢T , by the way.

Rotational Equilibrium

If an external heeling moment acts on the structure as given in …gure 2.3, it follows from
the rotational balance:

MH = ½gr ¢ y = gm ¢ y (2.4)

From this follows too that if no external moment acts on the structure, the lever arm y
should be zero:

MH = 0 results in: y = 0 (2.5)
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Figure 2.3: Heeling Moment

This means that for any ‡oating structure at rest, the center of buoyancyB and the center
of gravity G will be situated on the same vertical line. If this is not so, the structure will
heel or trim until they do become vertically aligned. This means too that the longitudinal
position of the center of gravity can be found easily from the longitudinal position of the
center of buoyancy, which can be derived from the under water geometry of the structure.

Shifting Masses and Volumes

Consider a structure with a mass m. This mass includes a mass p, placed somewhere on
the structure.
One can discover that when this mass, p, will be shifted now over a certain distance, c,
as shown in …gure 2.4-a, the original overall center of gravity G0 will be shifted to G1 -
parallel to this displacement - over a distance equal to:

G0G1 =
p ¢ c
m

(2.6)

Figure 2.4: Shifting Mass and Buoyancy

One can also discover that the center of buoyancy shifts from B to BÁ parallel to a line zezi
through the centers of the volumes of the emerged and the immersed water displacement
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’wedges’ when a ‡oating body heels by an external moment only. The volume of the
emerged ’wedge’, in fact, has been shifted to the immersed ’wedge’; see …gure 2.4-b.
Because these two volumes are equal, two succeeding water planes with a small mutual
di¤erence in angle of heel intersect each other on a line with respect to which the …rst
moments of volume of the two wedges are zero. This is a line through the center of the
water plane. This means that the structure heels and/or trims about a line through the
center of the water plane, the center of ‡oatation. In case of a heeling ship (with
symmetric water planes) this is a line at half the breadth of the water plane.
In case of a structure with vertical walls, the two ’wedges’ become right angle triangles and
the shift of the center of buoyancy from B to BÁ can be calculated easily.

Righting Moment of a Barge

Now we restrict our stability problems here to the case of a rectangular barge with
length L, breadth B and draft T , heeling over a relatively small heel angle, Á. Then, the
volume of displacement, r, and the center of buoyancy, B, can be determined easily. The
emerged and immersed wedges in the cross sections are bounded by vertical lines, so that
these wedges are right angle triangles and the position of its centroids can be calculated
easily.
Initially, the barge is ‡oating in an upright even keel condition. Because of the rotational
equilibrium in this condition, the center of gravity, G, is positioned on a vertical line
through the center of buoyancy, B. If one adds now an (external) heeling moment MH to
this structure, it will heel with an angle Á; see …gure 2.5.

Figure 2.5: Rectangular Barge Stability

As a result of this heeling, the shape of the under water part of the structure will change;
the center of buoyancy shifts from B to BÁ on a line parallel to the line through the centers
of the emerged and immersed wedges zezi.
This shift of ze of the emerged wedge to zi of the immersed wedge can be split in two parts:
a horizontal and a vertical shift. At small angles of heel (Á < 10±), the e¤ect of the vertical
shift on the stability can be ignored. Thus, it is assumed here that the vertical buoyancy
force, ½gr, acts through point B

0
Á in …gure 2.5 (which is true for Á ! 0±).

The so-called initial metacenter, M , is de…ned as the point of intersection of the lines
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through the vertical buoyant forces, ½gr, at a zero angle of heel and at a small angle of
heel, Á.
An equilibrium will be achieved when the righting stability moment MS equals the (exter-
nal) heeling moment MH :

MS = ½gr ¢GZ = ½gr ¢GM ¢ sinÁ =MH (2.7)

The position of the initial metacenter M can be calculated easily in our special case. This
heeling causes a horizontal displacement of the center of buoyancy: BB 0

Á = BM ¢ tan Á.
The …rst moment of volumes with respect to the middle line plane of the barge in the
heeled condition is given by:

fLBTg ¢
©
BM tanÁ

ª
= fLBTg ¢ f0g +2 ¢

½
L
1

2

B

2

B

2
tan Á

¾
¢
½
2

3

B

2

¾

new = old + change (2.8)

so that:

BM =
1
12 ¢ L ¢B3
L ¢B ¢ T =

B2

12 ¢ T (rectangular barge) (2.9)

or - more general - expressed in terms of the moment of inertia (second moment of areas)
of the water plane, IT , with respect to its center line and the displacement volume of the
barge r:

BM =
IT
r (2.10)

The stability lever arm GZ = GM ¢ sinÁ will be determined by the hydrostatic properties
of the submerged structure and the position of the center of gravity of this structure. This
is reason why the following expression for GM has been introduced:

GM =KB + BM ¡KG (2.11)

where K is the keel point of the structure.
The magnitude of KB follows from the under water geometry of the structure; for a
rectangular barge:

KB =
T

2
(rectangular barge) (2.12)

The magnitude of KG follows from the mass distribution of the structure.

Numerical Application

A rectangular pontoon has the following principal dimensions: length L = 60.00 meter,
breadth B = 12.00 meter and depth D = 6.00 meter.
The pontoon is ‡oating at an even keel condition with a draft T0 = 2.50 meter in sea water
(½ = 1.025 ton/m3). The vertical position of the centre of gravity of the pontoon, including
fuel, above the base plane KG0 is 4.00 meter. A sketch of the pontoon in this situation is
given in …gure 2.6.
Then, a mass of p = 65 ton will be hoisted from the quay. When the derrick is turned
outboard fully, the suspension point of the cargo in the derrick lies 13.00 meter above the
base plane and 8.00 meter from the middle line plane of the pontoon.
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Figure 2.6: Lift Operation by a Pontoon

Question
Determine the maximum angle of heel of the pontoon during hoisting this load. The
in‡uence of the mass of the turning derrick may be ignored.

General Solution
Expecting a small angle of heel, the calculations will be carried out as follows:

1. Place the mass p above the centre of the water plane in a horizontal plane through the
suspension point at the end of the derrick and, as a result of this, let the pontoon sink
deeper parallel to the water plane. Determine in this situation the righting stability
moment MS in relation to the angle of heel Á:

MS = ½gr ¢GM ¢ sinÁ (2.13)

2. Replace the shift of the mass p in a horizontal direction over a distance c to the actual
place by a heeling moment MH , which depends on the angle of heel Á too:

MH = p ¢ g ¢ c ¢ cos Á (2.14)

3. Finally, the equilibrium MS = MH should be ful…lled:

½gr ¢GM ¢ sin Á = p ¢ g ¢ c ¢ cos Á (2.15)

From this all follows:
tan Á =

p ¢ c
½r ¢GM

(2.16)
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Numerical Solution
Displacements of empty and laden pontoon:

r0 = L ¢B ¢T0 = 60:00 ¢ 12:00 ¢ 2:50 = 1800 m3

¢0 = ½ ¢ r0 = 1:025 ¢ 1800 = 1845 ton

¢ = ¢0 + p = 1845 + 65 = 1910 ton

r =
¢

½
=

1910

1:025
= 1863 m3

The under water hull form is a rectangular pontoon at an even keel condition without heel,
so:

T =
r
L ¢B =

1863

60:00 ¢ 12:00 = 2:59 m

KB =
T

2
=
2:59

2
= 1:29 m

BM =
IT
r =

B2

12 ¢ T =
12:002

12 ¢ 2:59 = 4:63 m

The vertical position of the centre of gravity of the laden pontoon follows from the …rst
moment of masses with respect to the base plane:

¢ ¢KG = ¢0 ¢KG0 + p ¢ zp

So:

KG =
¢0 ¢KG0 + p ¢ zp

¢

=
1845 ¢ 4:00 + 65 ¢ 13:00

1910
= 4:31 m

Herewith, the initial metacentric height is known:

GM = KB + BM ¡KG
= 1:29 + 4:63 ¡ 4:31 = 1:61 m

As pointed out before, an equilibrium will be achieved when the righting stability moment
MS equals the heeling moment MH :

tan Á =
p ¢ c

½r ¢GM =
65 ¢ 8:00
1910 ¢ 1:61 = 0:169 thus: Á = 9:6±

Static Stability Curve

The stability lever arm de…nition, GZ = GM ¢sinÁ, used here is valid is valid for structures
with vertical side walls of the hull in the ’zone between water and wind’, having small angles
of heel only.
For practical applications it is very convenient to present the stability in the form of righting
moments or lever arms about the center of gravity G, while the ‡oating structure is heeled
at a certain displacement, Á. This is then expressed as a function of Á. Such a function
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Figure 2.7: Ship Static Stability Curve

will generally look something like …gure 2.7 and is known as the static stability curve
or the GZ-curve.
Because the stability lever arm is strongly dependent on the angle of heel, Á, a graph of
GZ, as given in …gure 2.7 is very suitable for judging the static stability at any angle of
heel. It is obvious that for symmetric forms like ships, the curve of static stability will be
symmetric with respect to Á = 0. In that case, only the right half of this curve will be
presented as in …gure 2.7.
At small angles of heel this GZ-curve follows GZ = GM ¢ sinÁ t GM ¢ Á, as discussed
here. At increasing heel angles, the e¤ect of the vertical shift of the center of buoyancy,
BÁ, starts to play a role; it increases the stability lever arm a bit. At larger angles of heel
the shape of structure becomes important; no vertical side walls, deck enters in the water,
bilge comes out of the water, etc. This deceases the stability lever arm drastically. The
heel angle at point A in this …gure, at which the second derivative of the curve changes
sign, is roughly the angle at which the increase of stability due to side wall e¤ects starts
to be counteracted by the fact that the deck enters the water or the bilge comes above the
water.

Free Surface Correction

Free surfaces of liquids inside a ‡oating structure can have a large in‡uence on its static
stability; they reduce the righting moment or stability lever arm. When the structure
heels as a result of an external moment MH , the surface of the ‡uid in the tank remains
horizontal. This means that this free surface heels relative to the structure itself, so that
the center of gravity of the structure (including liquid) shifts.
This e¤ect can not be ignored when judging a structure’s safety.
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Resistance and Propulsion

3.1 Scaling

Physical model experiments require some form of similarity between the prototype and the
model:

- Geometric similarity: The model must have physical dimensions which are uni-
formly proportional to those of the prototype; it must have the same shape.

- Kinematic similarity: Velocities in the model must be proportional to those in the
prototype.

- Dynamic similarity: Forces and accelerations in the model must be proportional
to those in the prototype.

These three similarities require that all location vectors, velocity vectors and force vectors
in the coincident coordinates of the scaled model and the prototype have the same direction
(argument) and that the magnitude of these vectors (modulus) must relate to each other
in a constant proportion.

Reynolds Scaling

Reynolds scaling is used when inertia and viscous forces are of predominant importance
in the ‡ow. This is the case for pipe ‡ow (under pressure) and for wake formation behind
a body in a ‡ow. Reynolds scaling requires that the Reynolds number in the model be
identical to that in the prototype. This Reynolds number represents the ratio of:

Rn =
inertia forces
viscous forces

=
V ¢ L
º

Reynolds number (3.1)

Froude Scaling

Gravity forces become important when a free surface of a ‡uid is involved. This will be true,
then when the ocean surface or waves are present - very commonly in o¤shore engineering
practice, therefore. This makes it appropriate to keep the ratio of inertia or pressure force
and inertia forces the same in the model as in the prototype. Scaling based upon the square
root of this ratio is called Froude scaling, after Robert Edmund Froude (as distinct from
his father William Froude from the model resistance extrapolation to full scale, treated in
a following section) who has …rst used it. This Froude number represents the ratio of:

10
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Fn =

s
inertia or pressure forces

gravity forces
=

Vp
gL

Froude number (3.2)

Scale E¤ect

As an example, suppose a ship with a length Ls = 100 meter, which sails with a forward
ship speed V of 20 knots in still seawater with a temperature of 15±C. Resistance and
propulsion tests will be carried out in a towing tank with a 1:40 scale physical model
(® = 40).
The temperature of the fresh water in the tank is 20oC. The density and the kinematic
viscosity of sea water are ½ = 1025:9 kg/m3 and º = 1:19 ¢ 10¡6 m2/s. The relevant values
for fresh water are ½ = 998:1 kg/m3 and º = 1:05 ¢ 10¡6 m2/s.
The length of the ship model is:

Lm =
Ls
®
=
100

40
= 2:50 m (3.3)

According to Newton’s law, the inertia forces are de…ned as a product of mass and accel-
eration. From this follows that one can write for these forces:

Fs = C ¢ 1
2
½sV

2
s ¢ L2s and Fm = C ¢ 1

2
½mV

2
m ¢ L2m (3.4)

in which the coe¢cient, C, does not depend on the scale of the model nor on the stagnation
The speed Vs of the ship is:

Vs = 0:5144 ¢ V = 0:5144 ¢ 20 = 10:29 m/s (3.5)

Because gravity waves play the most important role during these tests, but also for practical
reasons, the speed of the model will be obtained using Froude scaling:

Fns =
Vsp
g ¢ Ls

=
10:29p
9:81 ¢ 100 = 0:329 = Fnm (3.6)

So:
Vm = Fnm ¢

p
g ¢ Lm = 0:329 ¢

p
9:81 ¢ 2:50 = 1:63 m/s (3.7)

A consequence of this scaling is that the Reynolds numbers will di¤er:

Rns =
Vs ¢ Ls
ºsalt

=
10:29 ¢ 100
1:19 ¢ 10¡6 = 865 ¢ 106

Rnm =
Vm ¢ Lm
ºfresh

=
1:63 ¢ 2:50
1:05 ¢ 10¡6 = 3:88 ¢ 106 (3.8)

To obtain equal Reynolds numbers, the ”model water” needs a kinematic viscosity which
is 1/223 times its actual value; this liquid is not available!
When experimentally determining the resistance and propulsion characteristics of ships on
the surface of a ‡uid, Froude scaling is still used from a practical point of view. This means,
however, that the viscous forces on the model will still be much more important than those
on the ship. This so called scale e¤ect means that the constant C in the general expression
for the force, (equation 3.4) is not the same for model and prototype. Extrapolation of
model resistance test data to full scale data and the performance of propulsion tests require
special attention, as will be discussed in this chapter.
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3.2 Resistance

It has been the merit of William Froude, 1810 - 1878, (as distinct from his son Robert
Edmund Froude from the Froude number) to distinguish the components of the total
hull resistance, Rt, and to relate them to scaling laws. He distinguished between a
frictional resistance component, Rf , and a residual resistance component, Rr. Then
he made a very drastic simpli…cation, which has worked out remarkably well. Froude’s …rst
hypothesis was that these two components of the resistance are independent of each other.
The determination of these two components was a second problem, but he found a simple
way out of this problem. Froude’s second hypothesis was that the frictional part of the
resistance can be estimated by the drag of a ‡at plate with the same wetted area and length
as the ship or model. In principle, a ‡at plate (towed edgewise) has no wave resistance
and can therefore be investigated over a range of Reynolds numbers (Rn = V L=º) without
in‡uence of the wave-related Froude number (Fn = V=

p
gL).

Resistance Components

The determination of the resistance components of a ship’s hull can be illustrated with the
results of resistance tests with a series of models at various scales, the ”Simon Bolivar”
family of models. Resistance tests were carried out over a certain speed range for each
of the models. Each model had a di¤erent scale factor, ®. The total resistance (in non-
dimensional form) is shown in …gure 3.1.

Figure 3.1: Resistance Coe¢cients of the ”Simon Bolivar” Model Family

The total resistance force on a ship is made non-dimensional by:

Ct =
Rt

1
2
½V 2S

or: Rt =
1

2
½V 2 ¢ Ct ¢ S (3.9)
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in which Ct is the total resistance coe¢cient (-), Rt is the total resistance (N), ½ is the
density of water (kg/m3), V is the ship or model speed (m/s) and S is the wetted surface
of ship or model hull (m2).
Ct is plotted as a function of the logarithm of the Reynolds number, Rn = V L= º. Each
curve of data points has been made with a model of the given scale. The frictional part of
the resistance is given by the Schoenherr plate line, treated in the next section; the other
two curves connects the points for Fn is zero and for Fn is another constant, respectively.
Similar lines can be drawn at other Froude numbers. Such a line of constant Froude number
is approximately parallel to the Schoenherr plate line. If all scaling laws could be satis…ed,
the resistance curves at all model scales would coincide. Because the Reynolds number is
not maintained, this is not the case and each model has a separate curve.

Frictional Resistance Component To determine the frictional resistance coe¢cient,
William Froude’s approach yielded that the frictional resistance coe¢cient was related to
the resistance coe¢cient of a ‡at plate with the same length and wetted surface as the ship
or model hull:

Cf =
Rf

1
2½V

2S
or: Rf =

1

2
½V 2 ¢ Cf ¢ S (3.10)

in which Cf is the frictional resistance coe¢cient (-), Rf is the frictional resistance (N), ½
is the density of water (kg/m3), V is the ship or model speed (m/s) and S is the wetted
surface of ship or model hull (m2).
He did numerous experiments to determine the resistance coe¢cients of a ‡at plate as
a function of the Reynolds number. He himself did not …nd a single relationship as a
function of the Reynolds number due to laminar ‡ow and edge e¤ects in his measurements.
His results not only depended on the Reynolds number but also on the length of the
plate. Several friction lines based only on the Reynolds number were developed later, both
theoretically using boundary layer theory and experimentally.
So-called plate lines were developed for turbulent boundary layer ‡ows from the leading
edge. These lines were extended to include full scale Reynolds numbers. They have rela-
tively simple formulations, such as the Schoenherr Mean Line or the ITTC-1957 Line,
which are de…ned as:

Schoenherr:
0:242p
Cf

= log10 (Rn ¢ Cf) (3.11)

ITTC-1957: Cf =
0:075

(log10 (Rn) ¡ 2)2
(3.12)

The latter one is accepted as a standard by the International Towing Tank Conference
(ITTC). As a matter of fact it is not too important that a ‡at plate with a certain length
and wetted surface has a resistance coe¢cient exactly according to one of the mentioned
lines. The Froude hypothesis is already very crude and correlation factors are required
afterwards to arrive at correct extrapolations to full scale values. These correlation factors
will depend on the plate line which is used.

Residual Resistance Component The residual resistance coe¢cient, Cr, at a certain
Froude number is now the vertical distance between the plate line and the line for that
Froude number. When the plate line and the line of constant Froude number are parallel,
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this means that the residual resistance component is indeed independent of the Reynolds
number. This is assumed to be always the case in Froude’s method and the residual
resistance at each Froude number is determined by subtracting the calculated frictional
resistance coe¢cient of a ‡at plate according to equations 3.11 or 3.12 from the measured
total resistance.

Extrapolation of Resistance Tests

Given the components of the total resistance of the model, one must extrapolate this data
to full scale. The resistance of the model is generally measured from a low speed up to the
design speed. The model design speed is set by maintaining the full scale Froude number.
Equation 3.9 is used to express the total resistance in dimensionless form. Froude scaling
is maintained during the model test. This means that the residual resistance coe¢cient,
Cr, at model scale and at full scale are the same.
The total resistance coe¢cient of the ship, Ct ship, can therefore be found from:

Ct ship = Cf plate line + Cr model (3.13)

and the total resistance of the ship follows from:

Rt ship =
1

2
½V 2 ¢ Ct ship ¢ S (3.14)

Resistance Prediction Methods

A number of methods to determine the still water resistance coe¢cients of ships, based
on (systematic series of) model test data, are given in the literature. A very well known
method, developed at MARIN, is described by [Holtrop, 1977], [Holtrop and Mennen, 1982]
and [Holtrop, 1984]. The method is based on the results of resistance tests carried out by
MARIN during a large number of years and is available in a computerized format. The
reader is referred to these reports for a detailed description of this method, often indicated
by the ”Holtrop and Mennen” method.
An example for a tug of the correlation between a resistance prediction method and a
prediction with model test results is given in …gure 3.2.

3.3 Propulsion

The basic action of propulsors like propellers is to deliver thrust. In fact, a propulsor is
an energy transformer, because torque and rotation, delivered to the propulsor, will
be transformed into thrust and translation, delivered by the propulsor. A consequence
is that the propulsor also generates water velocities in its wake, which represent a loss of
kinetic energy. It is obvious that this will e¤ect the e¢ciency of the propulsor, de…ned
by:

´ =
Pout
Pin

=
PE
PD

=
T ¢ Ve
Q ¢ 2¼n (3.15)

in which ´ is the propulsive e¢ciency (-), PD is the delivered power, delivered to the
propulsor (Nm/s = W), PE is the e¤ective power, delivered by the propulsor (Nm/s =
W), Q is the torque delivered to the propulsor (Nm), n is the number of revolutions (1/s),
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Figure 3.2: Comparison of Resistance Prediction with Model Test Results

T is the thrust delivered by the propulsor (N) and Ve is the mean entrance speed of water
in propeller disk,also called advance velocity with notation Va (m/s).
The e¢ciency varies widely between various types of propulsors, but the screw propeller
has not yet been equalled in most cases and is therefore the most commonly used propulsor.
The propulsor is generally mounted behind the hull. This is because of e¢ciency; the water
which is brought into motion by the friction along the ship is reversed by the propeller
action and as a result less energy is left behind in the water.
A risk for every propulsor operating at high rotational velocities is cavitation. This occurs
when the local pressure, associated with high local velocities in the ‡uid, is lower than
the vapor pressure. When these vapor-…lled (not air-…lled) cavities in the wake arrive in
regions with a higher pressure they collapse violently, causing local shock waves in the
water that can erode the nearby surface. This dynamic behavior of large cavities can also
generate vibrations in the ship structure.

Propulsors

The most important propulsors used for shipping and o¤shore activities include:
² Fixed Pitch Propellers, see …gure 3.3-a.

The most common propulsor is the …xed pitch open screw propeller (FPP) which,
as all propellers, generates a propulsive force by lift on the propeller blades. These
blade sections are similar to those of airfoils, operating at some angle of attack in
the ‡ow. The geometry of the propeller blades is quite critical due to the occurrence
of cavitation. Therefore, a speci…c propeller is generally designed for the speci…c
circumstances of each ship and its engine. The thrust, and consequently the speed
of the ship, is controlled by the propeller rotational speed - often called revolutions
or rpm (for revolutions per minute).

² Controllable Pitch Propellers, see …gure 3.3-b.
In case of a controllable pitch propeller (CPP) the thrust is controlled by changing the
pitch of the blades. In this case the shaft often has a constant rotational speed. Such a
propeller is often used when the propeller has to operate at more than one condition
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Figure 3.3: Di¤erent Propulsion Con…gurations

- such as free running and towing. It is also e¤ective when rapid manoeuvering
is required or when shaft generators, which require a constant rpm, are present.
Reversing the thrust occurs by changing the pitch with constant revolutions in the
same direction. This signi…cantly decreases the time required to change the direction
of the thrust. It is important to keep in mind that the CPP has only one design
pitch; changing the pitch always reduces the e¢ciency.

² Ducted Propellers, see …gure 3.3-c.
At high propeller loadings a duct increases the propeller e¢ciency. A duct generates
part of the total thrust due to its interaction with the propeller. This is the case with
an accelerating duct, in which the ‡ow velocity is increased due to the duct. Ducted
propellers are used in a wide range of applications with heavily loaded propellers,
such as for tugs. Several types of ducts, sometimes asymmetric and sometimes at
some distance upstream of the propeller, have been designed to make the propeller
in‡ow more uniform.



CHAPTER 3. RESISTANCE AND PROPULSION 17

² Thrusters, see …gures 3.3-d and 3.3-e.
A propeller can be driven from above by a vertical shaft. This makes it possible
to rotate the propeller along the vertical axis and to generate thrust in any chosen
direction. These con…gurations are called thrusters. They can have an open propeller,
but very often a duct is also used. The right angle drive of a thruster makes it more
complicated and thus more expensive and vulnerable than a normal propeller shaft.
Also the hub diameter is larger, which slightly decreases e¢ciency. On the other
hand, a thruster has advantages too. The propeller can be in front of the vertical
shaft (towing) as well as behind it (pushing). In the towing mode the in‡ow is
more uniform; this decreases vibrations and cavitation. A steerable or azimuthing
thruster may rotate around a vertical axis which makes it possible to steer with it.
This makes it easier to manoeuver, especially at low speeds. They are common for
dynamic positioning; the steerable direction of its thrust is fully utilized in that case.

² Cycloidal or Voiht-Schneider Propellers, see …gures 3.3-f and 3.3-h.
A very special propulsor is the cycloidal propeller, also called Voiht-Schneider pro-
peller after its main developer. It consists of a number of foils on a rotating plate.
These foils can rotate relative to this plate and their position is such that they are
always perpendicular to the radii from a moving center point, P , as shown in …gure
3.3-h. When this center point is in the center of the blade circle, there is no resulting
force. When this center point is moved, a thrust is generated perpendicular to the
direction in which the center point is shifted. Thus thrust can be applied in any
direction just by moving the center point; rudders can be omitted. This propulsive
system can be used for tugs and supply boats, for which maneuvering is important.
Its e¢ciency, however, is lower than that of an open propeller due to the fact that the
blades generate thrust over a part of their revolution only, while viscous resistance
is present over the whole revolution. Voith-Schneider propellers must be mounted
under a ‡at bottom; a bottom cover is sometimes provided for protection (see …gure
3.3-f).

² Water Jets, see …gure 3.3-g.
This propulsor accelerates water using a pump inside the hull, instead of a propeller
outside the hull. The water is drawn in from the bottom of the ship, is accelerated
inside the ship by a pump and leaves the ship at the stern. This has many advantages
when a propeller is too vulnerable to damage, or when a propeller is too dangerous
as is the case for rescue vessels. Rudders can be omitted because of the rotating
possibilities of the outlet and excellent manoeuvering qualities can be obtained, as
for instance are required for pilot vessels. A pump jet can be useful in shallow water.
However, the inner surface of the pump system is large and the velocities inside are
high; the viscous losses are high, too. The e¢ciency is therefore lower than that of
an open propeller.

Propeller Geometry

Consider now an arbitrary propeller as drawn in …gure 3.4-a. The intersection of a cylinder
with radius r and a propeller blade, the blade section has the shape of an airfoil. Such
a shape is also called just a foil or a pro…le. The blade sections of the propeller have a
certain pitch. The chord line or nose-tail line of the blade section - a helix on the cylinder -
becomes a straight pitch line, if the cylinder is developed on to a ‡at surface. The propeller
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Figure 3.4: Propeller Geometry

pitch, P , is de…ned as the increase in axial direction of the pitch line over one full revolution
2¼r at each radius r. The dimension of the pitch is a length. The ratio P=D is the pitch
ratio. The pitch angle, µ = arctan (P=2¼r), is the angle between the pitch line and a plane
perpendicular to the propeller shaft.
Figure 3.4-b shows the axial velocity Ve and rotational velocity 2¼nr of the water particles
at a radius r from the propeller axis. As a propeller is rotating in water, it can not advance
P ¢ n and a certain di¤erence occurs. The di¤erence between P ¢ n and Ve is called the slip
of the propeller.
A signi…cant radius, which is often used as representative for the propeller, is the radius
at r=R = 0:7. If a pitch is given in the case of a variable pitch distribution it is usually the
pitch at 0:7R. Note that half the area of the propeller disk is within a circle with radius
0:7R and that, consequently, the other half is outside this region; so the pressure at this
circular line is ”more or less” the average pressure over the full propeller disk.
Another important parameter of the propeller is the expanded blade area ratio, given as
the ratio between the expanded area, AE , of all blades and the area of the propeller plane,
A0 = 0:25¼D2.

Open Water Characteristics

Suppose an open water propeller translating with a constant forward speed, Ve, and a
constant number of revolutions per second, n, is immersed in a homogeneous initially
stationary ‡uid without any currents or waves. Then, two velocity components can be
de…ned for this propeller: a rotational velocity, 2¼nr, at a certain radius, r, and an axial
translation velocity, Ve. The hydrodynamic pitch angle, ¯, of the ‡ow relative to the blade
sections is generally taken at r = 0:7R, just as was done to de…ne the pitch:

¯0:7R = arctan

µ
Ve

0:7¼ ¢ nD

¶
(3.16)
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An important parameter to describe the angle of attack, and therefore the lift and drag, is
the advance ratio, J , de…ned by:

J =
Ve
nD

(3.17)

The resistance of a ship was made non-dimensional in equation 3.9 by:

Ct =
R

1
2
½V 2S

=
R

1
2
½ ¢ (velocity)2 ¢ (area)

(3.18)

When using the rotational velocity at for instance 0:7R as a characteristic velocity and the
area of the propeller disk as a characteristic area, the thrust of a propeller can be made
non-dimensional in the same way by:

CT =
T

1
2
½ ¢ (0:7¼ ¢ nD)2 ¢

¡
¼
4
D2

¢ ¼ 16:33

¼3
¢ T

½D4n2
(3.19)

The constant 16:33=¼3 can be included in the constant CT and so the thrust coe¢cient
becomes:

KT =
T

½D4n2
or: T = KT ¢ ½D4n2 (3.20)

and the torque coe¢cient can be written in a similar way as:

KQ =
Q

½D5n2
or: Q =KQ ¢ ½D5n2 (3.21)

in which KT is the thrust coe¢cient (-), KQ is the torque coe¢cient (-), T is the thrust
(N), Q is the torque (Nm), ½ is the density of water (kg/m3), D is the diameter (m) and
n is the revolution speed (1/s.
These propeller performance characteristics, KT and KQ, in a uniform ‡ow are given in
…gure 3.5.
The power delivered to the propeller is the delivered power PD :

PD = Q ¢ 2¼n (3.22)

The power delivered by the thrust is the e¤ective power PE :

PE = T ¢ Ve (3.23)

The e¢ciency of the open water propeller is the ratio between e¤ective and delivered
power:

´O =
PE
PD

=
T ¢ Ve
Q ¢ 2¼n or: ´O =

KT

KQ
¢ J
2¼

(3.24)

In addition to the thrust and torque coe¢cients, KT and KQ, the propulsive e¢ciency of
the open water propeller, ´O, is shown in …gure 3.5 too.

Ship Propulsion

This section treats the behavior of the propeller behind the ship and its interaction
with the ship.
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Figure 3.5: Open Water Propeller Diagram

Wake Fraction The velocity de…cit behind the ship is a measure of its still water re-
sistance. The velocity de…cit in the propeller plane (without the propeller present) can
be integrated and averaged over the propeller plane. This velocity is the average entrance
velocity, Ve, in the propeller plane when the propeller is absent. It is de…ned in terms of
the ship speed, Vs, by the nominal wake fraction, wn:

wn =
Vs ¡ Ve
Vs

(3.25)

This de…nition is a non-dimensional form of the velocity de…cit, Vs ¡ Ve, in the propeller
plane. Unsteady e¤ects will be neglected now and the (average) nominal wake fraction will
be used to obtain the (constant) open water propeller in‡ow, which yields the entrance
velocity:

Ve = Vs ¢ (1 ¡ w) with: w = wn (3.26)

Thrust Deduction Fraction The propeller has an e¤ect on the ship’s resistance, how-
ever. It increases the resistance of the ship by increasing the velocity along the hull (gen-
erally a small e¤ect) and by decreasing the pressure around the stern. The increase of
resistance due to the propeller action is expressed as the thrust deduction fraction, t:

t =
T ¡R
T

(3.27)

where T is the thrust needed to maintain a certain design speed and R is the resistance
without propeller at that speed, as found from resistance tests.
With this, the relation between resistance and thrust is:

R = T ¢ (1¡ t) (3.28)
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Propulsive E¢ciency The total e¢ciency is the ratio of the useful energy delivered
by a system (output) and the energy supplied to the system (input). For the ship with
propeller the output is R ¢ Vs and the input is Q ¢ ! = Q ¢ 2¼n.
This total propulsive e¢ciency can be divided into parts which are related to the propeller
performance without the hull and to the hull without the propeller:

´T =
R ¢ Vs
Q ¢ 2¼n

=
T (1 ¡ t) ¢ Ve

1¡w
Q
QO

¢QO ¢ 2¼n

=

µ
T ¢ Ve
QO ¢ 2¼n

¶
¢
µ
1 ¡ t
1 ¡ w

¶
¢
µ
QO
Q

¶

=

µ
KT
KQ

¢ J
2¼

¶
¢
µ
1¡ t
1¡ w

¶
¢
µ
QO
Q

¶
(3.29)

or:
´T = ´O ¢ ´H ¢ ´R

in which, at the same thrust, QO is the torque of the open water propeller in a uniform
‡ow and Q is the torque of the propeller in the wake behind the ship.

The total propulsive e¢ciency is thus divided into three components:

² Open Water E¢ciency:

´O =
T ¢ Ve
QO ¢ 2¼n =

KT
KQ

¢ J
2¼

(3.30)

This is the e¢ciency of the propeller alone in the mean (homogeneous) in‡ow, Ve. It
can be derived from open water diagrams of propellers.

² Hull E¢ciency:

´H =
R ¢ Vs
T ¢ Ve

=
1¡ t
1¡ w (3.31)

Old but convenient rough approximations of the wake fraction and the thrust deduc-
tion fraction of full scale ships are given by:

w ¼ 0:5 ¢ CB ¡ 0:05 and t ¼ 0:6 ¢ w (3.32)

where CB is the block coe¢cient of the ship.
A fast slender container vessel with CB = 0:55 will have ´H ¼ 1:12 while for a crude
oil carrier with CB = 0:85, ´H ¼ 1:24. So the e¤ect of a hull with its wake before
the propeller increases the propulsive e¢ciency considerably. The propeller diameter
therefore has to be such that the wake is going through the propeller disk as much
as possible.
When using model data, it should be noted that - contrarily to the thrust deduction
fraction - the wake fraction is very sensitive for scale e¤ect.
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² Relative Rotative E¢ciency:

´R =
QO
Q

(3.33)

This e¢ciency re‡ects the di¤erence in torque in the wake and in open water at the
same thrust. The relative rotative e¢ciency is generally close to one; ´R = 0:98¡1:00
for single-screw ships and ´R = 1:00¡ 1:02 for twin-screw ships.

3.4 Propulsion versus Resistance

A very practical o¤shore engineering application of the information from the latter sections
of this chapter involves the prediction of the speed at which a barge (or other ‡oating
object) will be towed by a given tugboat. Such information can be invaluable for the
logistic planning of a major o¤shore operation.
A tugboat will of course be able to deliver more thrust than it needs to overcome its
own frictional and wave making resistance. In general, the available towing force which a
tugboat can deliver will be a function of its towing speed. This function, which decreases
with increasing speed, will be known for the tug selected. In general, each tug will have
a family of curves depending upon the speed of its engine. On the other hand, only one
engine speed will deliver the highest overall e¢ciency for any given speed.
The resistance for the towed object should be known as well. This resistance force will
generally be an increasing function of towing velocity. Superposition of the two curves -
one for the tugboat and one for the towed object will yield the optimum towing speed.
This is the speed corresponding to the intersection point of the two curves; see …gure 3.6.

Figure 3.6: Free Running and Towing Speed of a Tug



Chapter 4

Summary of Ocean Surface Waves

Ocean surface waves cause periodic loads on all sorts of man-made structures in the sea. It
does not matter whether these structures are …xed or ‡oating and on the surface or deeper
in the sea. A summary of the most relevant phenomena is given here.

4.1 Regular Waves

Figure 4.1 shows a harmonic wave as seen from two di¤erent perspectives. Figure 4.1-a
shows what one would observe in a snapshot photo made looking at the side of a (trans-
parent) wave ‡ume; the wave pro…le is shown as a function of distance x along the ‡ume
at a …xed instant in time. Figure 4.1-b is a time record of the water level observed at one
location along the ‡ume; it looks similar in many ways to the other …gure, but time t has
replaced x on the horizontal axis.

Figure 4.1: Harmonic Wave De…nitions

Notice that the origin of the coordinate system is at the still water level with the positive
z-axis directed upward; most relevant values of z will be negative. The still water level
is the average water level or the level of the water if no waves were present. The x-axis
is positive in the direction of wave propagation. The water depth, h, (a positive value) is
measured between the sea bed (z = ¡h) and the still water level.
The highest point of the wave is called its crest and the lowest point on its surface is the
trough. If the wave is described by a sine wave, then its amplitude ³a is the distance from
the still water level to the crest, or to the trough for that matter. The subscript a denotes

23
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amplitude, here. The wave height H is measured vertically from wave trough level to the
wave crest level, it is the double amplitude.
The horizontal distance (measured in the direction of wave propagation) between any two
successive wave crests is the wave length, ¸. The distance along the time axis is the wave
period, T: The ratio of wave height to wave length is often referred to as the dimensionless
wave steepness, H=¸:
Since the distance between any two corresponding points on successive sine waves is the
same, wave lengths and periods are usually actually measured between two consecutive
upward (or downward) crossings of the still water level. Such points are also called zero-
crossings, and are easier to detect in a wave record.
Since sine or cosine waves are expressed in terms of angular arguments, the wave length
and period are converted to angles using:

k¸ = 2¼ or: k =
2¼

¸

!T = 2¼ or: ! =
2¼

T
(4.1)

in which k is the wave number (rad/m) and ! is the circular wave frequency (rad/s).
Obviously, the wave form moves one wave length during one period so that its speed or
phase velocity, c, is given by:

c =
¸

T
=
!

k
(4.2)

If the wave moves in the positive x-direction, the wave pro…le - the form of the water
surface - can now be expressed as a function of both x and t as follows:

³ = ³a cos(kx¡ !t) (4.3)

Potential Theory

In order to use the potential linear theory, it will be necessary to assume that the water
surface slope is very small. This means that the wave steepness is so small that terms in the
equations of motion of the waves with a magnitude in the order of the steepness-squared
can be ignored.
The pro…le of a simple wave with a small steepness looks like a sine or a cosine and the
motion of a water particle in a wave depends on the distance below the still water level.
This is reason why the wave potential is written as ©w(x; z; t) = P (z) ¢ sin (kx ¡ !t) in
which P (z) is a function of z.
This velocity potential ©w(x; z; t) of the harmonic waves has to ful…ll four requirements:

1. Continuity condition or Laplace equation, which means that the ‡uid is homogeneous
and incompressible.

2. Sea bed boundary condition, which means that the sea bed - at in…nity here - is
impervious.

3. Free surface dynamic boundary condition, which means that the pressure in the
surface of the ‡uid is equal to the atmospheric pressure.

4. Free surface kinematic boundary condition, which means that a waterparticle in the
surface of the ‡uid remains in that surface, the water surface is impervious too.
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These requirements lead to a more complete expression for the velocity potential in deep
water:

©w =
¡³ag
!

¢ ekz ¢ sin(!t¡ kx) (4.4)

and the dispersion relation becomes:

!2 = k g (4.5)

Pressure

The pressure, p, in …rst order wave theory follows from the linearized Bernoulli equation:

@©w
@t

+
p

½
+ gz = 0 or: p = ¡½@©w

@t
¡ ½gz (4.6)

With the wave potential the expression for the linearized dynamic part of the pressure in
deep water becomes:

pdyn = ½g³a ¢ ekz ¢ cos(kx¡ !t) (4.7)

Wave Energy

The energy in the waves consists of a potential and a kinetic part and the total wave energy
can be written as:

E =
1

2
½g³2a per unit horizontal sea surface area (4.8)

4.2 Irregular Waves

Wind generated waves can be classi…ed into two basic categories:

² Sea
A sea is a train of waves driven by the prevailing local wind …eld. The waves are
short-crested with the lengths of the crests only a few (2-3) times the apparent wave
length. Also, sea waves are very irregular; high waves are followed unpredictably
by low waves and vice versa. Individual wave crests seem to propagate in di¤erent
directions with tens of degrees deviation from the mean direction. The crests are
fairly sharp and sometimes even small waves can be observed on these crests or there
are dents in the larger wave crests or troughs. The apparent or virtual wave period,
eT , varies continuously, as well as the virtual or apparent wave length, ȩ.

² Swell
A swell is waves which have propagated out of the area and local wind in which they
were generated. They are no longer dependent upon the wind and can even propagate
for hundreds of kilometers through areas where the winds are calm. Individual waves
are more regular and the crests are more rounded than those of a sea. The lengths
of the crests are longer, now several (6-7) times the virtual wave length. The wave
height is more predictable, too. If the swell is high, 5 to 6 waves of approximately
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equal heights can pass a given point consecutively. If the waves are low, they can
stay low for more than a minute even though the surface elevation remains irregular.

Wind waves, especially, are very irregular. Even so, they can be seen as a superposition
of many simple, regular harmonic wave components, each with its own amplitude, length,
period or frequency and direction of propagation. Such a concept can be very handy
in many applications; it allows one to predict very complex irregular behavior in terms
of much simpler theory of regular waves. This so-called superposition principle, …rst
introduced in hydrodynamics by [St. Denis and Pierson, 1953], is illustrated in …gure 4.2.

Figure 4.2: A Sum of Many Simple Sine Waves Makes an Irregular Sea

Energy Density Spectrum

Figure 4.3: Registration and Sampling of a Wave
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Figure 4.4: De…nition of Spectral Density

Suppose a time history, as given in …gure 4.3, of the wave elevation during a su¢cient long
but arbitrary period:

¿ = N ¢¢t
The instantaneous wave elevation has a Gaussian distribution and zero mean.
The amplitudes ³an can be obtained by a Fourier analysis of the signal. However, for each
little time shift of the time history one will …nd a new series of amplitudes ³an. Luckily, a

mean square value of ³an can be found: ³2an .

When ³(t) is an irregular signal without prevailing frequencies, the average values ³2an close

to !n will not change much as a function of the frequency; ³2a is a continuous function.
The variance ¾2³ of this signal equals:

¾2³ = ³2

=
1

N

NX

n=1

³2n =
1

N ¢¢t

NX

n=1

³ 2n ¢¢t

=
1

¿

¿Z

0

³2(t) ¢ dt = 1

¿

¿Z

0

(
NX

n=1

³an cos(!nt¡ knx+ "n)
)2

¢ dt

=
NX

n=1

1

2
³2an (4.9)

The wave amplitude ³an can be expressed by a wave spectrum S³(!n):

S³ (!n) ¢¢! =
!n+¢!X

!n

1

2
³2an(!) (4.10)

where ¢! is a constant di¤erence between two successive frequencies. Multiplied with ½g,
this expression is the energy per unit area of the waves in the frequency interval ¢! see
…gure 4.4.
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Letting ¢! ! 0, the de…nition of the wave energy spectrum S³(!) becomes:

S³(!n) ¢ d! = 1
2
³2an (4.11)

and the variance ¾2³ of the water surface elevation is simply equal to the area under the
spectrum:

¾2³ =

1Z

0

S³ (!) ¢ d! (4.12)

Figure 4.5: Wave Record Analysis

Figure 4.5 gives a graphical interpretation of the meaning of a wave spectrum and how
it relates to the waves. The irregular wave history, ³(t) in the time domain at the lower
left hand part of the …gure can be expressed via Fourier series analysis as the sum of a
large number of regular wave components, each with its own frequency, amplitude and
phase in the frequency domain. These phases will appear to be rather random, by the way.
The value 1

2
³2a(!)=¢! - associated with each wave component on the !-axis - is plotted

vertically in the middle; this is the wave energy spectrum, S³ (!). This spectrum, S³ (!),
can be described nicely in a formula; the phases cannot and are usually thrown away.

Wave Height and Period

Relationships with statistics can be found from computing the moments of the area under
the spectrum with respect to the vertical axis at ! = 0.



CHAPTER 4. SUMMARY OF OCEAN SURFACE WAVES 29

If m denotes a moment, then mn³ denotes the nth order moment given in this case by:

mn³ =

1Z

0

!n ¢ S³ (!) ¢ d! (4.13)

This means that m0³ is the area under the spectral curve, m1³ is the …rst order moment
(static moment) of this area and m2³ is the second order moment (moment of inertia) of
this area.
As has already been indicated, m0³ is an indication of the variance squared, ¾2³ , of the water
surface elevation. Of course this m0³ can also be related to the various wave amplitudes
and heights:

¾³ = RMS =
p
m0³ (Root Mean Square of the water surface elevation)

³a1=3 = 2 ¢ p
m0³ (signi…cant wave amplitude)

H1=3 = 4 ¢ p
m0³ (signi…cant wave height) (4.14)

Characteristic wave periods can be de…ned from the spectral moments:

m1³ = !1 ¢m0³ with !1 is spectral centroid

m2³ = !22 ¢m0³ with !2 is spectral radius of inertia (4.15)

as follows:

T1 = 2¼ ¢ m0³

m1³
(mean centroid wave period)

T2 = 2¼ ¢
r
m0³

m2³
(mean zero-crossing wave period) (4.16)

The mean zero-crossing period, T2, is sometimes indicated by Tz. One will often …nd the
period associated with the peak of the spectrum, Tp, in the literature as well.

Rayleigh Distribution

Expressed in terms of m0³ , the Rayleigh distribution is given by:

f(x) =
x

m0³
¢ exp

½
¡ x2

2 ¢m0³

¾
(Rayleigh distribution) (4.17)

in which x is the variable being studied and m0³ is the area under the spectral curve.
With this distribution, the probability that the wave amplitude, ³ a, exceeds a chosen
threshold value, a, can be calculated using:

P f³a > ag =

1Z

a

f (x) ¢ dx

=
1

m0³

1Z

a

x ¢ exp
½

¡ x2

2 ¢m0³

¾
¢ dx

= exp

½
¡ a2

2 ¢m0³

¾
(4.18)
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As an example, the probability that the wave height, Hw, in a certain sea state exceeds
the signi…cant wave height, H1=3, is found by:

P
©
Hw > H1=3

ª
= P

n
³a > ³ a1=3

o

= exp

(
¡
³2a1=3
2m0³

)

= e¡2 t 0:135 t 1

7
(4.19)

Standard Wave Spectra

Investigators have attempted to describe a wave frequency spectrum in a standard form.
Two important ones often found in the literature are described here. The mathematical
formulations of these normalized uni-directional wave energy spectra are based on two
parameters: the signi…cant wave height, H1=3, and average wave periods T = T1, T2 or Tp:

S³ (!) =H
2
1=3 ¢ f

¡
!; T

¢
(4.20)

Note that this de…nition means that the spectral values are proportional to the signi…cant
wave height squared; in other words S³(!)=H2

1=3 is a function of ! and T only.

Bretschneider Wave Spectra One of the oldest and most popular wave spectra was
given by Bretschneider. It is especially suited for open sea areas. It is given mathematically
by:

S³ (!) =
173 ¢H2

1=3

T 41
¢ !¡5 ¢ exp

½¡692
T 41

¢ !¡4
¾

(4.21)

JONSWAP Wave Spectra In 1968 and 1969 an extensive wave measurement program,
known as the Joint North Sea Wave Project (JONSWAP) was carried out along a line
extending over 100 miles into the North Sea from Sylt Island. Analysis of the data yielded
a spectral formulation for fetch-limited wind generated seas.
The following de…nition of a Mean JONSWAP wave spectrum is advised by the 17th ITTC
in 1984 for fetch limited situations:

S³(!) =
320 ¢H2

1=3

T 4p
¢ !¡5 ¢ exp

½¡1950
T 4p

¢ !¡4
¾

¢ °A (4.22)

with:

° = 3:3 (peakedness factor)

A = exp

8
<
:¡

Ã
!
!p

¡ 1
¾
p
2

!2
9
=
;

!p =
2¼

Tp
(circular frequency at spectral peak)

¾ = a step function of !: if ! < !p then: ¾ = 0:07

if ! > !p then: ¾ = 0:09
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Taking °A = 1.522 results in the formulation of the Bretschneider wave spectrum with the
peak period Tp. Sometimes, a third free parameter is introduced in the JONSWAP wave
spectrum by varying the peakedness factor °.

Wave Spectra Comparison Figure 4.6 compares the Bretschneider and mean JON-
SWAP wave spectra for three sea states with a signi…cant wave height, H1=3, of 4 meters
and peak periods, Tp, of 6, 8 and 10 seconds, respectively. The …gure shows the more
pronounced peak of the JONSWAP spectrum.
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Figure 4.6: Comparison of Two Spectral Formulations

Wave Prediction and Climatology

In 1805, the British Admiral Sir Francis Beaufort devised an observation scale for measuring
winds at sea. His scale measures winds by observing their e¤ects on sailing ships and waves
and is still used today by many weather stations. A de…nition of this Beaufort wind force
scale is given in …gure 4.7. The pictures in …gure 4.8 give a visual impression of the sea
states in relation to Beaufort’s scale.
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Figure 4.7: Beaufort’s Wind Force Scale
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Figure 4.8: Sea State in Relation to Beaufort Wind Force Scale

Storm Wave Data

An entire storm can be characterized by just two numbers: one related to the wave period
and one to the wave height. It now becomes important to predict these values from other
data - such as geographical and meteorological information. Figure 4.9 for ”Open Ocean
Areas” and ”North Sea Areas” gives an indication of an average relationship between the
Beaufort wind scale and the signi…cant wave height H1=3 and the average wave periods T1
and T2, de…ned before.
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Figure 4.9: Wave Spectrum Parameter Estimates

Long Term Wave Data

Longer term wave climatology is used to predict the statistical chance that a given wave-
sensitive o¤shore operation - such as lifting a major topside element into place - will be
delayed by sea conditions which are too rough. Sets of characteristic wave data values can
be grouped and arranged in a table such as that given below for all wave directions in the
winter season in areas 8, 9, 15 and 16 of the North Atlantic Ocean. A ’storm’ here is an
arbitrary time period - often of 3 or 6 hours - for which a single pair of values has been
collected. The number in each cell of this table indicates the chance that a signi…cant wave
height is between the values in the left column and in the range of wave periods listed at
the top of the table.

Winte r Data o f Are as 8, 9, 15 and 16 o f the North Atlant ic (Globa l Wave Statist ics)

T2 (s)

3 .5 4 .5 5 .5 6.5 7 .5 8 .5 9 .5 10 .5 11 .5 12 .5 13 .5
Hs (m )

14 .5 0 0 0 0 2 30 154 362 466 370 202
13 .5 0 0 0 0 3 33 145 293 322 219 101
12 .5 0 0 0 0 7 72 289 539 548 345 149
11 .5 0 0 0 0 17 160 585 996 931 543 217
10 .5 0 0 0 1 41 363 1200 1852 1579 843 310
9 .5 0 0 0 4 109 845 2485 3443 2648 1283 432
8 .5 0 0 0 12 295 1996 5157 6323 4333 1882 572
7 .5 0 0 0 41 818 4723 10537 11242 6755 2594 703
6 .5 0 0 1 138 2273 10967 20620 18718 9665 3222 767
5 .5 0 0 7 471 6187 24075 36940 27702 11969 3387 694
4 .5 0 0 31 1586 15757 47072 56347 33539 11710 2731 471
3 .5 0 0 148 5017 34720 74007 64809 28964 7804 1444 202
2 .5 0 4 681 13441 56847 77259 45013 13962 2725 381 41
1 .5 0 40 2699 23284 47839 34532 11554 2208 282 27 2
0 .5 5 350 3314 8131 5858 1598 216 18 1 0 0



Chapter 5

Behavior of Structures in Waves

The dynamics of rigid bodies and ‡uid motions are governed by the combined actions of
di¤erent external forces and moments as well as by the inertia of the bodies themselves.
In ‡uid dynamics these forces and moments can no longer be considered as acting at a
single point or at discrete points of the system. Instead, they must be distributed in a
relatively smooth or a continuous manner throughout the mass of the ‡uid particles. The
force and moment distributions and the kinematic description of the ‡uid motions are in
fact continuous, assuming that the collection of discrete ‡uid molecules can be analyzed
as a continuum.

5.1 Behavior in Regular Waves

When a ship moves with a forward speed in waves with a frequency ! and a wave direction
¹, the frequency at which it encounters the waves, !e, becomes important. The relation
between the frequency of encounter and the wave frequency becomes:

!e = ! ¡ kV cos¹ (5.1)

Note that ¹= 0 for following waves.

Motions of and about CoG

The ship motions in the steadily translating O(x; y; z) system are de…ned by three trans-
lations of the ship’s center of gravity (CoG) in the direction of the x-, y- and z-axes and
three rotations about them as given in …gure 5.1:

Surge : x = xa cos(!et+ "x³)

Sway : y = ya cos(!et+ "y³)

Heave : z = za cos(!et+ "z³)

Roll : Á = Áa cos(!et+ "Á³)

Pitch : µ = µa cos(!et+ "µ³)

Yaw : Ã = Ãa cos(!et+ "Ã³) (5.2)

in which each of the " values is a di¤erent phase angle.

35
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Figure 5.1: De…nition of Ship Motions in Six Degrees of Freedom

Knowing the motions of and about the center of gravity, G, one can calculate the motions
in any point on the structure using superposition.
The phase shifts of these motions are related to the harmonic wave elevation at the origin
of the steadily translating O(x; y; z) system, the average position of the ship’s center of
gravity - even though no wave can be measured there:

Wave elevation at O or G: ³ = ³a cos(!et) (5.3)

Displacement, Velocity and Acceleration

The harmonic velocities and accelerations in the steadily translating O(x; y; z) coordinate
system are found by taking the derivatives of the displacements.
For roll:

Displacement : Á = Áa cos(!et+ "Á³)

Velocity : _Á = ¡!eÁa sin(!et+ "Á³) = !eÁa cos(!et+ "Á³ ¡ ¼=2)
Acceleration : ÄÁ = ¡!2eÁa cos(!et+ "Á³) = !2eÁa cos(!et+ "Á³ ¡ ¼) (5.4)

Figure 5.2: Harmonic Wave and Roll Signal



CHAPTER 5. BEHAVIOR OF STRUCTURES IN WAVES 37

The phase shift of the roll motion with respect to the wave elevation, "Á³ in …gure 5.2,
is positive, here because when the wave elevation passes zero at a certain instant, the
roll motion already has passed zero. Thus, if the roll motion, Á, comes before the wave
elevation, ³, then the phase shift, "Á³, is de…ned as positive. This convention will hold for
all other responses as well of course.
Figure 5.3 shows a sketch of the time histories of the harmonic angular displacements,
velocities and accelerations of roll. Note the mutual phase shifts of ¼=2 and ¼.

Figure 5.3: Displacement, Acceleration and Velocity

5.1.1 Equations of Motion

Consider a seaway with irregular waves of which the energy distribution over the wave
frequencies (the wave spectrum) is known. These waves are input to a system that possesses
linear characteristics. These frequency characteristics are known, for instance via model
experiments or computations. The output of the system is the motion of the ‡oating
structure. This motion has an irregular behavior, just as the seaway that causes the
motion. The block diagram of this principle is given in …gure 5.4.

Figure 5.4: Relation between Motions and Waves

The …rst harmonics of the motion components of a ‡oating structure are often of interest,
because in many cases a very realistic mathematical model of the motions in a seaway can
be obtained by making use of a superposition of these components at each of a range of
frequencies; motions in the so-called frequency domain will be considered here.
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In many cases the ship motions have mainly a linear behavior. This means that, at each
frequency, the ratios between the motion amplitudes and the wave amplitudes and also the
phase shifts between the motions and the waves are constant. Doubling the input (wave)
amplitude results in a doubled output amplitude, while the phase shifts between output
and input does not change.
As a consequence of the linear theory, the resulting motions in irregular waves can be
obtained by adding together results from regular waves of di¤erent amplitudes, frequencies
and possibly propagation directions. With known wave energy spectra and the calculated
frequency characteristics of the responses of the ship, the response spectra and the statistics
of these responses can be found.

Kinetics

A rigid body’s equation of motions with respect to an earth-bound coordinate system follow
from Newton’s second law. The vector equations for the translations of and the rotations
about the center of gravity are respectively given by:

~F =
d

dt

³
m~U

´
and ~M =

d

dt

³
~H

´
(5.5)

in which ~F is the resulting external force acting in the center of gravity (N), m is the
mass of the rigid body (kg), ~U is the instantaneous velocity of the center of gravity (m/s),
~M is the resulting external moment acting about the center of gravity (Nm), ~H is the
instantaneous angular momentum about the center of gravity (Nms) and t is the time (s).
The total mass as well as its distribution over the body is considered to be constant during
a time which is long relative to the oscillation period of the motions.

Loads Superposition

Figure 5.5: Superposition of Hydromechanical and Wave Loads

Since the system is linear, the resulting motion in waves can be seen as a superposition
of the motion of the body in still water and the forces on the restrained body in waves.
Thus, two important assumptions are made here for the loads on the right hand side of
the picture equation in …gure 5.5:

a. The so-called hydromechanical forces and moments are induced by the harmonic
oscillations of the rigid body, moving in the undisturbed surface of the ‡uid.
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b. The so-called wave exciting forces and moments are produced by waves coming
in on the restrained body.

The vertical motion of the body follows from:

d

dt
(½r ¢ _z) = ½r ¢ Äz = Fh +Fw (5.6)

in which ½ is the density of water (kg/m3), r is the volume of displacement of the body
(m3), Fh is the hydromechanical force in the z-direction (N) and Fw is the exciting wave
force in the z-direction (N).
This superposition will be explained in more detail for a circular cylinder, ‡oating in still
water with its center line in the vertical direction, as shown in …gure 5.6.

Figure 5.6: Heaving Circular Cylinder

Hydromechanical Loads

First, a free decay test in still water will be considered. After a vertical displacement
upwards (see 5.6-b), the cylinder will be released and the motions can die out freely. The
vertical motions of the cylinder are determined by the solid mass m of the cylinder and
the hydromechanical loads on the cylinder.
Applying Newton’s second law for the heaving cylinder:

mÄz = sum of all forces on the cylinder

= ¡P + pAw ¡ b _z ¡ aÄz
= ¡P + ½g (T ¡ z)Aw ¡ b _z ¡ aÄz (5.7)

With Archimedes’ law P = ½gTAw, the linear equation of the heave motion becomes:

(m+ a) Äz + b _z + cz = 0 (5.8)
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in which z is the vertical displacement (m), P = mg is the mass force downwards (N),
m = ½AwT is the solid mass of cylinder (kg), a is the hydrodynamic mass coe¢cient
(Ns2/m = kg), b is the hydrodynamic damping coe¢cient (Ns/m = kg/s), c = ½gAw is the
restoring spring coe¢cient (N/m = kg/s2), Aw = ¼

4D
2 is the water plane area (m2), D is

the diameter of the cylinder (m) and T is the draft of the cylinder at rest (s).
The terms aÄz and b _z are caused by the hydrodynamic reaction as a result of the movement
of the cylinder with respect to the water. The water is assumed to be ideal and thus to
behave as in a potential ‡ow.
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Figure 5.7: Mass and Damping of a Heaving Vertical Cylinder

The vertical oscillations of the cylinder will generate waves which propagate radially from
it. Since these waves transport energy, they withdraw energy from the (free) buoy’s oscilla-
tions; its motion will die out. This so-called wave damping is proportional to the velocity of
the cylinder _z in a linear system. The coe¢cient b has the dimension of a mass per unit of
time and is called the (wave or potential) damping coe¢cient. Figure 5.7-b shows the
hydrodynamic damping coe¢cient b of a vertical cylinder as a function of the frequency of
oscillation. In an actual viscous ‡uid, friction also causes damping, vortices and separation
phenomena. Generally, these viscous contributions to the damping are non-linear, but they
are usually small for most large ‡oating structures; they are neglected here for now.
The other part of the hydromechanical reaction force aÄz is proportional to the vertical
acceleration of the cylinder in a linear system. This force is caused by accelerations that
are given to the water particles near to the cylinder. This part of the force does not dissipate
energy and manifests itself as a standing wave system near the cylinder. The coe¢cient
a has the dimension of a mass and is called the hydrodynamic mass or added mass.
Figure 5.7-a shows the hydrodynamic mass a of a vertical cylinder as a function of the
frequency of oscillation.
It appears from experiments that in many cases both the acceleration and the velocity
terms have a su¢ciently linear behavior at small amplitudes; they are linear for practical
purposes. The hydromechanical forces are the total reaction forces of the ‡uid on the
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oscillating cylinder, caused by this motion in initially still water:

mÄz = Fh with: Fh = ¡aÄz ¡ b _z ¡ cz (5.9)

and the equation of motion of the decaying cylinder in still water becomes:

(m+ a) ¢ Äz + b ¢ _z + c ¢ z = 0 (5.10)

Wave Loads

Waves are now generated in the test basin for a new series of tests. The object is restrained
so that one now measures (in this vertical cylinder example) the vertical wave load on the
…xed cylinder. This is shown schematically in …gure 5.6-c.
The classic theory of deep water waves yields:

wave potential : © =
¡³ag
!

ekz sin(!t¡ kx)
wave elevation : ³ = ³a cos(!t¡ kx) (5.11)

so that the pressure, p, on the bottom of the cylinder (z = ¡T) follows from the linearized
Bernoulli equation:

p = ¡½@©
@t

¡ ½gz
= ½g³ae

kz cos(!t ¡ kx) ¡ ½gz
= ½g³ae

¡kT cos(!t¡ kx) + ½gT (5.12)

Assuming that the diameter of the cylinder is small relative to the wave length (kD t 0),
so that the pressure distribution on the bottom of the cylinder is essentially uniform, then
the pressure becomes:

p = ½g³ae
¡kT cos(!t) + ½gT (5.13)

Then the vertical force on the bottom of the cylinder is:

F =
©
½g³ae

¡kT cos(!t) + ½gT
ª

¢ ¼
4
D2 (5.14)

where D is the cylinder diameter and T is the draft.
The harmonic part of this force is the regular harmonic wave force, which will be considered
here. More or less in the same way as with the hydromechanical loads (on the oscillating
body in still water), this wave force can also be expressed as a spring coe¢cient c times a
reduced or e¤ective wave elevation ³¤:

FFK = c ¢ ³¤ with: c = ½g
¼

4
D2 (spring coe¤.)

³¤ = e¡kT ¢ ³a cos (!t) (deep water) (5.15)

This wave force is called the Froude-Krilov force, which follows from an integration of
the pressures on the body in the undisturbed wave.
Actually however, a part of the waves will be di¤racted, requiring a correction of this
Froude-Krilov force. Using the relative motion principle described earlier in this chapter,
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one …nds additional force components: one proportional to the vertical acceleration of the
water particles and one proportional to the vertical velocity of the water particles.
The total wave force can be written as:

Fw = aÄ³
¤
+ b _³

¤
+ c³¤ = Fa cos(!t+ "F³) (5.16)

in which the terms aÄ³
¤

and b _³
¤

are considered to be corrections on the Froude-Krilov force
due to di¤raction of the waves by the presence of the cylinder in the ‡uid.
The ”reduced” wave elevation is given by:

³¤ = ³ae
¡kT cos(!t)

_³
¤
= ¡³ae¡kT! sin(!t)

Ä³
¤
= ¡³ae¡kT!2 cos(!t) (5.17)

The wave force amplitude, Fa, is proportional to the wave amplitude, ³a, and the phase
shift "F³ is independent of the wave amplitude, ³a; the system is linear.
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Figure 5.8: Vertical Wave Force on a Vertical Cylinder

Figure 5.8 shows the wave force amplitude and phase shift as a function of the wave
frequency. For low frequencies (long waves), the di¤raction part is very small and the wave
force tends to the Froude-Krilov force, c³¤. At higher frequencies there is a small in‡uence
of di¤raction on the wave force on this vertical cylinder. There, the wave force amplitude
remains almost similar to the Froude-Krilov force. Di¤raction becomes relatively important
after the total force has become small; an abrupt phase shift of ¡¼ occurs quite suddenly,
too.

Equation of Motion

The addition of the exciting wave loads from equation 5.16 to the right hand side of equation
5.8, gives the equation of motion for this heaving cylinder in waves:

(m + a) Äz + b _z + cz = aÄ³
¤
+ b _³

¤
+ c³¤ (5.18)
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The heave response to the regular wave excitation is given by:

z = za cos(!t+ "z³ )

_z = ¡za! sin(!t+ "z³ )
Äz = ¡za!2 cos(!t+ "z³ ) (5.19)

Some algebra results in the heave amplitude:

za
³a
= e¡kT

s
fc¡ a!2g2 + fb!g2

fc ¡ (m+ a)!2g2 + fb!g2
(5.20)

and the phase shift:

"z³ = arctan

½ ¡mb!3
(c¡ a!2) fc¡ (m+ a)!2g + fb!g2

¾
with : 0 · "z³ · 2¼ (5.21)

The requirements of linearity is ful…lled: the heave amplitude za is proportional to the
wave amplitude ³a and the phase shift "z³ is not dependent on the wave amplitude ³a.

5.1.2 Frequency Characteristics

Generally, the amplitudes and phase shifts in the previous section are called:

Fa
³a
(!) and za

³a
(!) = amplitude characteristics

"F³(!) and "z³ (!) = phase characteristics

¾
frequency characteristics

The response amplitude characteristics za
³a
(!) are also referred to as Response Amplitude

Operator (RAO).
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Figure 5.9: Heave Motions of a Vertical Cylinder

Figure 5.9 shows the frequency characteristics for heave together with the in‡uence of
di¤raction of the waves. The annotation ”without di¤raction” in these …gures means that
the wave load consists of the Froude-Krilov force, c³¤, only. A phase shift of ¡¼ occurs at
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the natural frequency. This phase shift is very abrupt here, because of the small damping
of this cylinder. A second phase shift appears at a higher frequency. This is caused by a
phase shift in the wave load.

Equation 5.20 and …gure 5.10 show that with respect to the motional behavior of this
cylinder three frequency areas can be distinguished:
- the low frequency area (!2 ¿ c=(m+a)), with motions dominated by the restoring spring
term,
- the natural frequency area (c=(m + a) . !2 . c=a), with motions dominated by the
damping term and
- the high frequency area(!2 À c=a), with motions dominated by the mass term.
Also, equation 5.20 shows that the vertical motion tends to the wave motion as the fre-
quency decreases to zero.

Figure 5.10: Frequency Areas with Respect to Motional Behavior

Figure 5.11 shows the speed dependent transfer functions of the roll motions in beam
waves and the pitch motions in head waves of a container ship. Notice the opposite e¤ect
of forward speed on these two angular motions, caused by a with forward speed strongly
increasing lift-damping of the roll motions.

Figure 5.12 shows the speed dependent transfer functions of the absolute and the relative
vertical bow motions of a container ship in head waves. Note the opposite characteristics
of these two motions in very short and in very long waves.

The resonance frequency of a motion does not necessarily coincides with the natural fre-
quency. A clear example of this is given by [Hooft, 1970], as shown in …gure 5.13, for a
semi-submersible platform with di¤erent dimensions of the under water geometry. This
geometry has been con…gured in such a way that the responses are minimal at the natural
frequency.
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Figure 5.11: RAO’s of Roll and Pitch of a Containership
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Figure 5.12: Absolute and Relative Vertical Motions at the Bow

Figure 5.13: Heave Responses of Semi-Submersible Platforms in Waves
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5.2 Behavior in Irregular Waves

When information on the irregular waves is available, now …rst as well as second order
motions can be determined.

5.2.1 First Order Motions

The wave energy spectrum was de…ned by:

S³ (!) ¢ d! =
1

2
³2a(!) (5.22)

Analogous to this, the energy spectrum of the heave response z(!; t) can be de…ned by:

Sz(!) ¢ d! =
1

2
z2a(!)

=

¯̄
¯̄za
³a
(!)

¯̄
¯̄
2

¢ 1
2
³2a(!)

=

¯̄
¯̄za
³a
(!)

¯̄
¯̄
2

¢ S³(!) ¢ d! (5.23)

Thus, the heave response spectrum of a motion can be found by using the transfer function
of the motion and the wave spectrum by:

Sz(!) =

¯̄
¯̄ za
³a
(!)

¯̄
¯̄
2

¢ S³(!) (5.24)

The principle of this transformation of wave energy to response energy is shown in …gure
5.14 for the heave motions being considered here.
The irregular wave history, ³(t) - below in the left hand side of the …gure - is the sum of
a large number of regular wave components, each with its own frequency, amplitude and
a random phase shift. The value 1

2³
2
a(!)=¢! - associated with each wave component on

the !-axis - is plotted vertically on the left; this is the wave energy spectrum, S³(!). This
part of the …gure can be found in chapter 5 as well, by the way.
Each regular wave component can be transferred to a regular heave component by a mul-
tiplication with the transfer function za=³a(!). The result is given in the right hand side
of this …gure. The irregular heave history, z(t), is obtained by adding up the regular heave
components, just as was done for the waves on the left. Plotting the value 1

2
z2a(!)=¢!

of each heave component on the !-axis on the right yields the heave response spectrum,
Sz(!).
The moments of the heave response spectrum are given by:

mnz =

1Z

0

Sz(!) ¢ !n ¢ d! with: n = 0; 1; 2; ::: (5.25)

where n = 0 provides the area, n = 1 the …rst moment and n = 2 the moment of inertia of
the spectral curve.
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Figure 5.14: Principle of Transfer of Waves into Responses

The signi…cant heave amplitude can be calculated from the spectral density function of
the heave motions, just as was done for waves. This signi…cant heave amplitude, de…ned
as the mean value of the highest one-third part of the amplitudes, is:

¹za1=3 = 2 ¢RMS = 2 ¢ p
m0z (5.26)

in which RMS (=
p
m0z) is the Root Mean Square value.

A mean period, T1z, can be found from the centroid of the spectrum or a period, T2z,
equivalent to the average zero-crossing period, found from the spectral radius of gyration:

T1z = 2¼ ¢ m0z

m1z
and T2z = 2¼ ¢

r
m0z

m2z
(5.27)

Figure 5.15 shows an example of the striking in‡uence of the average wave period on a
response spectrum. This response is the heave motion of a 175 meter container ship, sailing
with a speed of 20 knots in head waves with a signi…cant wave height of 5.0 meters.
For the wave spectrum with an average period of 6.0 seconds, the transfer function has
very low values in the wave frequency range. The response spectrum becomes small; only
small motions result. As the average wave period gets larger (to the right in …gure 5.15),
the response increases dramatically.
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Figure 5.15: E¤ect of Wave Period on Heave

A similar e¤ect will be obtained for a larger range of average wave periods if the transfer
function of the motion shifts to the low frequency region. A low natural frequency is
required to obtain this. This principle has been used when designing semi-submersibles,
which have a large volume under water and a very small spring term for heave (small water
plane area). However, such a shape does not make much of a wave when it oscillates; it has
little potential damping. This results in large (sometimes very large) RAO’s at the natural
frequency. As long as there is (almost) no wave energy at this frequency, the response
spectrum will remain small.

Figure 5.16 shows a wave spectrum with sketches of RAO’s for heave of three di¤erent
types of ‡oating structures at zero forward speed:

² The pontoon has a relatively large natural frequency and as a result of this signi…-
cant RAO values over a large part of the normal wave frequency range. Almost all
wave energy will be transferred into heave motions, which results in a large motion
spectrum. An extreme example is the wave buoy, which has (ideally) an RAO of
1.0 over the whole frequency range. Then the response spectrum becomes identical
to the wave spectrum, which is of course the aim of this measuring tool. It should
follow the water surface like a sea gull!

² The ship, with a lower natural frequency, transfers a smaller but still considerable
part of the wave energy into heave motions.

² The semi-submersible however, with a very low natural frequency (large mass and
small intersection with the water line), transfers only a very small part of the wave
energy; very low …rst order heave motions will appear; it remains essentially stable
in the waves.

One can conclude that the natural frequency is a very important phenomenon which dic-
tates (to a signi…cant extent) the behavior of the structure in waves. Whenever possible,
the natural frequency should be shifted out of the wave frequency region.
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Figure 5.16: E¤ect of Natural Period on Heave Motions

5.2.2 Second Order Motions

The e¤ects of second order wave forces are most apparent in the behavior of anchored
or moored ‡oating structures. In contrast to what has been handled above, these are
horizontally restrained by some form of mooring system. Analyses of the horizontal motions
of moored or anchored ‡oating structures in a seaway show that the responses of the
structure on the irregular waves includes of three important components:

1. A mean displacement of the structure, resulting from a constant load component.
Obvious sources of these loads are current and wind. In addition to these, there is
also a so-called mean wave drift force. This drift force is caused by non-linear
(second order) wave potential e¤ects. Together with the mooring system, these loads
determine the new equilibrium position - possibly both a translation and (in‡uenced
by the mooring system) a yaw angle - of the structure in the earth-bound coordinate
system. This yaw is of importance for the determination of the wave attack angle.

2. An oscillating displacement of the structure at frequencies corresponding to those of
the waves; the wave-frequency region.
These are linear motions with a harmonic character, caused by the …rst order wave
loads. The principle of this has been presented above for the vertically oscillating
cylinder. The time-averaged value of this wave load and the resulting motion com-
ponent are zero.

3. An oscillating displacement of the structure at frequencies which are much lower than
those of the irregular waves; the low-frequency region.
These motions are caused by non-linear elements in the wave loads, the low-frequency
wave drift forces, in combination with spring characteristics of the mooring system.
Generally, a moored ship has a low natural frequency in its horizontal modes of mo-
tion as well as very little damping at such frequencies. Very large motion amplitudes
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can then result at resonance so that a major part of the ship’s dynamic displacement
(and resulting loads in the mooring system) can be caused by these low-frequency
excitations.

[Maruo, 1960] showed for the two-dimensional case of an in…nitely long cylinder ‡oating in
regular waves with its axis perpendicular to the wave direction that the mean wave drift
force per unit length satis…es:

¹F
0
=
1

2
½g ¢ ³ar2 (5.28)

in which ³ar is the amplitude of the wave re‡ected and scattered by the body in a direction
opposite to the incident wave.
Generally only a part of the incident regular wave will be re‡ected; the rest will be trans-
mitted underneath the ‡oating body. Besides the re‡ected wave, additional waves are
generated by the heave, pitch and roll motions of the vessel. The re‡ected and scattered
waves have the same frequency as the incoming wave, so that the sum of these compo-
nents still has the same frequency as the incoming wave. Their amplitudes will depend on
the amplitudes and relative phases of the re‡ected and scattered wave components. The
amplitudes of these components and their phase di¤erences depend on the frequency of
the incident wave, while the amplitudes can be assumed to be linearly proportional to the
amplitude of the incident wave. This is because it is the incident wave amplitude which
causes the body to move in the …rst place. In equation form: ³ar = R(!) ¢ ³a in which
R(!) is a re‡ection coe¢cient. This means that the mean wave drift force in regular waves
per meter length of the cylinder can be written as:

F
0
d =

1

2
½g ¢ fR(!) ¢ ³ag2 (5.29)

This expression indicates that the mean wave drift force is proportional to the incident
wave amplitude squared.
[Hsu and Blenkarn, 1970] and [Remery and Hermans, 1971] studied the phenomenon of the
mean and slowly varying wave drift forces in a random sea from the results of model tests
with a rectangular barge with breadth B. It was moored in irregular head waves to a …xed
point by means of a bow hawser. The wave amplitudes provide information about the slowly
varying wave envelope of an irregular wave train. The wave envelope is an imaginary curve
joining successive wave crests (or troughs); the entire water surface motion takes place with
the area enclosed by these two curves.
A very simple explanation of the low-frequency behavior is based on individual waves in
an irregular wave train. Assume that the irregular wave train is made up of a sequence of
single waves of which the wave amplitude is characterized by the height of a wave crest or
the depth of a wave trough, ³ai, while the period, Ti, (or really half its value) is determined
by the two adjacent zero crossings (see …gure 5.17).
Each of the so obtained single waves (one for every crest or trough) is considered to be one
out of a regular wave train, which exerts (in this case) a surge drift force on the barge:

Fi =
1

2
½g ¢ fR(!i) ¢ ³aig2 ¢B with: !i =

2¼

Ti
(5.30)

When this is done for all wave crests and troughs in a wave train, points on a curve
representing a slowly varying wave drift force, F (t), will be obtained. This drift force
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Figure 5.17: Wave Drift Forces Obtained from a Wave Record

Figure 5.18: Low-Frequency Surge Motions of a Barge

consists of a slowly varying force (the low-frequency wave drift force) around a mean value
(the mean wave drift force); see …gure 5.17.
These low-frequency wave drift forces on the barge will induce low-frequency surge motions
with periods of for instance over 100 seconds. An example is given in …gure 5.18. The
period ratio, ¤ = 1:23, in this …gure is the ratio between the natural surge period of the
system (ship plus mooring) and the wave envelope or wave group period. As can be seen
in this …gure the …rst order (wave-frequency) surge motions are relatively small, when
compared with the second order (low-frequency) motions. This becomes especially true
near resonance; ¤! 1:0.
Thus, resonance may occur when wave groups are present with a period in the vicinity of
the natural period of the mooring system. Due to the low natural frequency for surge of the
bow hawser - barge system and the low damping at this frequency, large surge motions can
result. According to [Remery and Hermans, 1971], severe horizontal motions can be built
up within a time duration of only a few consecutive wave groups. Obviously, information
about the occurrence of wave groups will be needed to predict this response. This is a
question for oceanographers.
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