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Preface

The first five chapters give an introduction to ship hydrodynamics, which is
in my opinion suitable for teaching at a senior undergraduate level or even at
a postgraduate level. It is thus also suitable for engineers working in industry.
The book assumes that the reader has a solid knowledge of general fluid
dynamics. In teaching, general fluid dynamics and specific ship hydrodynamics
are often mixed but I believe that universities should first teach a course
in general fluid dynamics which should be mandatory to most engineering
students. There are many good textbooks on the market for this purpose. Naval
architects should then concentrate on the particular aspects of their field and
cover material more suited to their needs. This book is organized to support
such a strategy in teaching.

The first chapter is an introduction to computational fluid dynamics, and
Chapters 2 to 5 cover the four main areas of propeller flows, resistance and
propulsion, ship seakeeping and manoeuvring. It is recommended that this
sequence be followed in teaching. The first five chapters try to find a suitable
balance for practical engineers between facts and minimizing formula work.
However, there are still formulae. These are intended to help those tasked
with computations or programming. Readers with a practical interest may
simply skip these passages. The final two chapters involve more extensive
formula work and are more specialized. They may be reserved for graduate and
post-graduate teaching and will help understanding and developing boundary
element codes. Field methods are not covered in depth here, as my colleague
Milovan Peric has already co-authored an excellent book on this particular
topic. I tried in vain to find a similar suitable textbook for boundary element
methods which would be both easy to understand and address the typical
problems encountered in ship flows. As I could not find such a book, I wrote
two chapters intended to support me in my teaching and to be of use for many
colleagues.

The book is supplemented by some public domain software written
in Fortran which is available for downloading in source code on
www.bh.com/companions/0750648511. The software consists of small
programs or subroutines which may help in developing own codes. Some of the
programs have been written by myself, some by Professor Söding, and some
by colleagues. Feel free to download the software, but there is no additional
documentation available except for the in-program comments. I will not answer
questions about the software, but you can comment on which programs you
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felt difficult to understand. We may then either update the documentation or
take the software off the website. There is no guarantee that the programs are
completely debugged and of course neither I nor the publisher will take any
responsibility for what happens if you use these programs. Furthermore, the
software is public domain and you may not sell it to third parties.

Despite all this, I have worked with most of the software myself without
any problems. The website will be updated more often than the book, and
there will be a short read.me file on the web with some information on the
available software.

This book is based largely on lectures for German students. The nucleus of
the book was formed by lectures on ship seakeeping and ship manoeuvring,
which I have taught for several years with Professor Heinrich Söding. I always
felt that we should have a comprehensive textbook that would also cover resis-
tance and propulsion, as ship seakeeping and manoeuvring are both interwoven
strongly with the steady base flow. Many colleagues helped with providing
material, allowing me to pick the best from their teaching approaches. A lot
of material was written and compiled in a new way, inspired by these sources,
but the chapters on ship seakeeping and manoeuvring use extensive existing
material.

Thanks are due to Seehafen-Verlag Hamburg for permission to reprint text
and figures from the Manoeuvring Technical Manual, an excellent book unfor-
tunately no longer in print. Thanks are due to Hansa-Verlag Hamburg for
permission to reprint text and figures from German contributions in Handbuch
der Werften XXIV.

Countless colleagues supported the endeavour of writing this book by
supplying material, proof-reading, making comments or just discussing
engineering or didactic matters. Among these are (in alphabetical order)
Poul Andersen, Kai Graf, Mike Hughes, Hidetsugu Iwashita, Gerhard Jensen,
Meinolf Kloppenburg, Jochen Laudan, Maurizio Landrini, Friedrich Mewis,
Katsuji Tanizawa, Gerhard Thiart, Michel Visonneau, and Hironori Yasukawa.
Most of all, Professor Heinrich Söding has supported this book to an extent that
he should have been named as co-author, but, typically for him, he declined
the offer. He even refused to allow me to dedicate this book to him.

I then dedicate this book to the best mentor I ever had, a role model as a
scientist and a man, so much better than I will ever be. You know who.

Volker Bertram



Models now in tanks we tow.
All of that to Froude we owe.
Will computers, fast and new,
Make us alter Euler’s view?

Marshall Tulin
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Introduction

1.1 Overview of problems and approaches

The prediction of ship hydrodynamic performance can be broken down into
the general areas of

ž resistance and propulsion
ž seakeeping
ž manoeuvring

Propeller flows and propeller design can be seen as a subtopic of resistance
and propulsion, but it is so important and features special techniques that it
is treated as a separate topic in its own right. Morgan and Lin (1998) give a
good short introduction to the historical development of these techniques to
the state of the art in the late 1990s.

The basic approaches can be roughly classified into:

ž Empirical/statistical approaches
Design engineers need simple and reasonably accurate estimates, e.g. of the
power requirements of a ship. Common approaches combine a rather simple
physical model and regression analysis to determine required coefficients
either from one parent ship or from a set of ships. The coefficients may be
given in the form of constants, formulae, or curves.

Because of the success with model testing, experimental series of hull
forms have been developed for varying hull parameters. Extensive series
were tested in the 1940s and the subsequent two decades. These series were
created around a ‘good’ hull form as the parent form. The effect of essential
hull parameters, e.g. block coefficient, was determined by systematic varia-
tions of these parameters. Because of the expense of model construction and
testing, there are no recent comparable series tested of modern hull forms
and the traditional ship series must be considered as outdated by now.

Although empirical and statistical approaches are still popular in design
practice, we will not treat them in detail here, because they are of little rele-
vance to the ship hydrodynamicist. Ship designers are referred to Schneek-
luth and Bertram (1998) for a review of these empirical approaches.

ž Experimental approaches, either in model tests or in full-scale trials
The basic idea of model testing is to experiment with a scale model to
extract information that can be scaled (transformed) to the full-scale ship.

1



2 Practical Ship Hydrodynamics

Despite continuing research and standardization efforts, a certain degree of
empiricism is still necessary, particularly in the model-to-ship correlation
which is a method to enhance the prediction accuracy of ship resistance
by empirical means. The total resistance can be decomposed in various
ways. Traditionally, model basins tend to adopt approaches that seem most
appropriate to their respective organization’s corporate experience and accu-
mulated databases. Unfortunately, this makes various approaches and related
aggregated empirical data incompatible.

Although there has been little change in the basic methodology of
ship resistance since the days of Froude (1874), various aspects of the
techniques have progressed. We now understand better the flow around
three-dimensional, appended ships, especially the boundary layer effects.
Also non-intrusive experimental techniques like laser-Doppler velocimetry
(LDV) allow the measurement of the velocity field in the ship wake to
improve propeller design. Another more recent experimental technique is
wave pattern analysis to determine the wave-making resistance.

In propulsion tests, measurements include towing speed and propeller
quantities such as thrust, torque, and rpm. Normally, open-water tests on the
propeller alone are run to aid the analysis process as certain coefficients are
necessary for the propeller design. Strictly, open-water tests are not essential
for power prediction alone. The model propeller is usually a stock propeller
(taken from a large selection/stock of propellers) that approximates the actual
design propeller. Propulsion tests determine important input parameters for
the actual detailed propeller design, e.g. wake fraction and thrust deduction.

The wake distribution, also needed for propeller design, is measured
behind the ship model using pitot tubes or laser-Doppler velocimetry
(LDV). For propeller design, measured nominal wakes (for the ship without
propeller) for the model must be transformed to effective wakes (for the
ship with working propeller) for the full-scale ship. While semi-empirical
methods for this transformation work apparently well for most hull forms,
for those with considerable flow separation at the stern, i.e. typically full
hulls, there are significant scale effects on the wake between model and
full scale. To some extent, computational fluid dynamics can help here in
estimating the scale effects.

Although the procedures for predicting full-scale resistance from model
tests are well accepted, full-scale data available for validation purposes
are extremely limited and difficult to obtain. The powering performance
of a ship is validated by actual ship trials, ideally conducted in calm seas.
The parameters usually measured are torque, rpm, and speed. Thrust is
measured only as a special requirement because of the difficulty and extra
expense involved in obtaining accurate thrust data. Whenever possible and
appropriate, corrections are made for the effects of waves, current, wind, and
shallow water. Since the 1990s, the Global Positioning System (GPS) and
computer-based data acquisition systems have considerably increased the
accuracy and economy of full-scale trials. The GPS has eliminated the need
for ‘measured miles’ trials near the shore with the possible contamination
of data due to shallow-water effects. Today trials are usually conducted far
away from the shore.

Model tests for seakeeping are often used only for validation purposes.
However, for open-top containerships and ro-ro ships model tests are often
performed as part of the regular design process, as IMO regulations require
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certain investigations for ship safety which may be documented using
model tests.

Most large model basins have a manoeuvring model basin. The favoured
method to determine the coefficients for the equations of motion is through a
planar motion mechanism and rotating arm model tests. However, scaling the
model test results to full scale using the coefficients derived in this manner
is problematic, because vortex shedding and flow separation are not similar
between model and full scale. Appendages generally make scaling more
difficult. Also, manoeuvring tests have been carried out with radio-controlled
models in lakes and large reservoirs. These tests introduce additional scale
effects, since the model propeller operates in a different self-propulsion
point than the full-scale ship propeller. Despite these concerns, the manoeu-
vring characteristics of ships seem generally to be predicted with sufficient
accuracy by experimental approaches.

ž Numerical approaches, either rather analytical or using computational fluid
dynamics (CFD)
For ship resistance and powering, CFD has become increasingly important
and is now an indispensable part of the design process. Typically inviscid
free-surface methods based on the boundary element approach are used to
analyse the forebody, especially the interaction of bulbous bow and forward
shoulder. Viscous flow codes often neglect wave making and focus on the
aftbody or appendages. Flow codes modelling both viscosity and the wave-
making are at the threshold of practical applicability. CFD is still considered
by industry as too inaccurate for resistance or power predictions. Instead, it
is used to gain insight into local flow details and derive recommendation on
how to improve a given design or select a most promising candidate design
for model testing.

For seakeeping, simple strip methods are used to analyse the seakeeping
properties. These usually employ boundary element methods to solve a
succession of two-dimensional problems and integrate the results into a
quasi-three-dimensional result with usually good accuracy.

A commonly used method to predict the turning and steering of a ship is
to use equations of motions with experimentally determined coefficients.
Once these coefficients are determined for a specific ship design – by
model tests or estimated from similar ships or by empirically enhanced
strip methods – the equations of motions are used to simulate the dynamic
behaviour of the ship. The form of the equations of motions is fairly standard
for most hull designs. The predictions can be used, e.g., to select rudder size
and steering control systems, or to predict the turning characteristics of ships.
As viscous CFD codes become more robust and efficient to use, the reliance
on experimentally derived coefficients in the equations of motions may be
reduced. In an intermediate stage, CFD may help in reducing the scaling
errors between model tests and full scale.

Although a model of the final ship design is still tested in a towing tank,
the testing sequence and content have changed significantly over the last few
years. Traditionally, unless the new ship design was close to an experimental
series or a known parent ship, the design process incorporated many model
tests. The process has been one of design, test, redesign, test etc. sometimes
involving more than 10 models each with slight variations. This is no longer
feasible due to time-to-market requirements from shipowners and no longer
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necessary thanks to CFD developments. Combining CAD (computer-aided
design) to generate new hull shapes in concert with CFD to analyse these
hull shapes allows for rapid design explorations without model testing. CFD
allows the preselection of the most promising design. Then often only one or
two models are actually tested to validate the intended performance features in
the design and to get a power prediction accepted in practice as highly accurate.
As a consequence of this practice, model tests for shipyard customers have
declined considerably since the 1980s. This was partially compensated by more
sophisticated and detailed tests funded from research projects to validate and
calibrate CFD methods.

One of the biggest problems for predicting ship seakeeping is determining
the nature of the sea: how to predict and model it, for both experimental
and computational analyses. Many long-term predictions of the sea require a
Fourier decomposition of the sea and ship responses with an inherent assump-
tion that the sea and the responses are ‘moderately small’, while the physics
of many seakeeping problems is highly non-linear. Nevertheless, seakeeping
predictions are often considered to be less important or covered by empirical
safety factors where losses of ships are shrugged off as ‘acts of God’, until
they occur so often or involve such spectacular losses of life that safety factors
and other regulations are adjusted to a stricter level. Seakeeping is largely not
understood by shipowners and global ‘sea margins’ of, e.g., 15% to finely
tuned (š1%) power predictions irrespective of the individual design are not
uncommon.

1.2 Model tests – similarity laws

Since the purely numerical treatment of ship hydrodynamics has not yet
reached a completely satisfactory stage, model tests are still essential in the
design process and for validation purposes. The model tests must be performed
such that model and full-scale ships exhibit similar behaviour, i.e. the results
for the model can be transferred to full scale by a proportionality factor. We
indicate in the following the full-scale ship by the index s and the model by
the index m.

We distinguish between

ž geometrical similarity
ž kinematical similarity
ž dynamical similarity

Geometrical similarity means that the ratio of a full-scale ‘length’ (length,
width, draft etc.) Ls to a model-scale ‘length’ Lm is constant, namely the
model scale �:

Ls D � Ð Lm

Correspondingly we get for areas and volumes: As D �2 Ð Am; rs D �3 Ð rm.
In essence, the model then ‘appears’ to be the same as the full-scale ship.

While this is essential for movie makers, it is not mandatory for naval architects
who want to predict the hydrodynamic performance of a full-scale ship. In fact,
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there have been proposals to deviate from geometrical similarity to achieve
better similarity in the hydrodynamics. However, these proposals were not
accepted in practice and so we always strive at least in macroscopic dimen-
sions for geometrical similarity. In microscopic dimensions, e.g. for surface
roughness, geometrical similarity is not obtained.

Kinematic similarity means that the ratio of full-scale times ts to model-scale
times tm is constant, namely the kinematic model scale �:

ts D � Ð tm
Geometrical and kinematical similarity result then in the following scale factors
for velocities and accelerations:

Vs D �

�
Ð Vm as D �

�2 Ð am

Dynamical similarity means that the ratio of all forces acting on the full-scale
ship to the corresponding forces acting on the model is constant, namely the
dynamical model scale 
:

Fs D 
 Ð Fm

Forces acting on the ship encompass inertial forces, gravity forces, and fric-
tional forces.

Inertial forces follow Newton’s law F D m Ð a, where F denotes force, m
mass, and a acceleration. For displacement ships, m D � Ð r, where � is the
density of water and r the displacement. We then obtain for ratio of the inertial
forces:


 D Fs

Fm
D �s

�m
Ð rs

rm
Ð as

am
D �s

�m
Ð �4

�2

This equation couples all three scale factors. It is called Newton’s law of
similarity. We can rewrite Newton’s law of similarity as:


 D Fs

Fm
D �s

�m
Ð �2 Ð

(
�

�

)2

D �s

�m
Ð As

Am
Ð
(

Vs

Vm

)2

Hydrodynamic forces are often described by a coefficient c as follows:

F D c Ð 1
2� Ð V2 Ð A

V is a reference speed (e.g. ship speed), A a reference area (e.g. wetted surface
in calm water). The factor 1

2 is introduced in analogy to stagnation pressure
q D 1

2� Ð V2. Combining the above equations then yields:

Fs

Fm
D cs Ð 1

2�s Ð V2
s Ð As

cm Ð 1
2�m Ð V2

m Ð Am
D �s

�m
Ð As

Am
Ð
(

Vs

Vm

)2
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This results in cs D cm, i.e. the non-dimensional coefficient c is constant for
both ship and model. For same non-dimensional coefficients Newton’s simi-
larity law is fulfilled and vice versa.

Gravity forces can be described in a similar fashion as inertial forces:

Gs D �s Ð g Ð rs resp. Gm D �m Ð g Ð rm

This yields another force scale factor:


g D Gs

Gm
D �s

�m
Ð rs

rm
D �s

�m
Ð �3

For dynamical similarity both force scale factors must be the same, i.e. 
 D 
g.
This yields for the time scale factor:

� D
p

�

We can now eliminate the time scale factors in all equations above and express
the proportionality exclusively in the length scale factor �, e.g.:

Vs

Vm
D

p
� ���! Vs√

Ls

D Vm√
Lm

It is customary to make the ratio of velocity and square root of length non-
dimensional with g D 9.81 m/s2. This yields the Froude number:

Fn D V√
g Ð L

The same Froude number in model and full scale ensures dynamical similarity
only if inertial and gravity forces are present (Froude’s law). For the same
Froude number, the wave pattern in model and full scale are geometrically
similar. This is only true for waves of small amplitude where gravity is the only
relevant physical mechanism. Breaking waves and splashes involve another
physical mechanism (e.g. surface tension) and do not scale so easily. Froude’s
law is kept in all regular ship model tests (resistance and propulsion tests,
seakeeping tests, manoeuvring tests). This results in the following scales for
speeds, forces, and powers:

Vs

Vm
D

p
�

Fs

Fm
D �s

�m
Ð �3 Ps

Pm
D Fs Ð Vs

Fm Ð Vm
D �s

�m
Ð �3.5

Frictional forces follow yet another similarity law, and are primarily due to
frictional stresses (due to friction between two layers of fluid):

R D � Ð ∂u

∂n
Ð A
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� is a material constant, namely the dynamic viscosity. The partial derivative
is the velocity gradient normal to the flow direction. A is the area subject to
the frictional stresses. Then the ratio of the frictional forces is:


f D Rs

Rm
D �s�∂us/∂ns�As

�m�∂um/∂nm�Am
D �s

�m

�2

�

Again we demand that the ratio of frictional forces and inertial forces should
be the same, 
f D 
. This yields:

�s

�m

�2

�
D �s

�m

�4

�2

If we introduce the kinematic viscosity � D �/� this yields:

�s

�m
D �2

�
D Vs Ð Ls

Vm Ð Lm
���! Vs Ð Ls

�s
D Vm Ð Lm

�m

Rn D V Ð L/� is the Reynolds number, a non-dimensional speed parameter
important in viscous flows. The same Reynolds number in model and full
scale ensures dynamic similarity if only inertial and frictional forces are
present (Reynolds’ law). (This is somewhat simplified as viscous flows are
complicated by transitions from laminar to turbulent flows, microscopic scale
effects such as surface roughness, flow separation etc.) The kinematic viscosity
� of seawater [m/s2] can be estimated as a function of temperature t[°C] and
salinity s [%]:

� D 10�6 Ð �0.014 Ð s C �0.000645 Ð t � 0.0503� Ð t C 1.75�

Sometimes slightly different values for the kinematic viscosity of water may be
found. The reason is that water is not perfectly pure, containing small organic
and inorganic matter which differs regionally and in time.

Froude number and Reynolds number are related by:

Rn

Fn
D V Ð L

�
Ð
√

gL

V
D gL3

�

Froude similarity is easy to fulfil in model tests, as with smaller models also
the necessary test speed decreases. Reynolds’ law on the other hand is difficult
to fulfil as smaller models mean higher speeds for constant kinematic viscosity.
Also, forces do not scale down for constant viscosity.

Ships operating at the free surface are subject to gravity forces (waves) and
frictional forces. Thus in model tests both Froude’s and Reynolds’ laws should
be fulfilled. This would require:

Rns

Rnm
D �m

�s
Ð
√

L3
s

L3
m

D �m

�s
Ð �1.5 D 1



8 Practical Ship Hydrodynamics

i.e. model tests should chose model scale and viscosity ratio of the test fluid
such that ��m/�s� Ð �1.5 D 1 is fulfilled. Such fluids do not exist or at least are
not cheap and easy to handle for usual model scales. However, sometimes the
test water is heated to improve the viscosity ratio and reduce the scaling errors
for viscous effects.

Söding (1994) proposed ‘sauna tanks’ where the water is heated to a temper-
ature of 90°. Then the same Reynolds number as in cold water can be reached
using models of only half the length. Smaller tanks could be used which could
be better insulated and may actually require less energy than today’s large
tanks. The high temperature would also allow similar cavitation numbers as
for the full-scale ship. A futuristic towing tank may be envisioned that would
also perform cavitation tests on propellers eliminating the need for special
cavitation tunnels. However, such ‘sauna tanks’ have not been established yet
and there are doubts concerning the feasibility of such a concept.

For model tests investigating vibrations Froude’s similarity law does not
automatically also give similarity in vibrations. For example, for propeller
blade vibrations, model propellers of the same material as the full-scale
propeller are too stiff under Froude similarity. Similarity in vibrations follows
Cauchy’s scaling law, requiring that the Cauchy number is the same in model
and full scale:

Cn D E Ð I Ð t2

� Ð g Ð L6

E is the modulus of elasticity, I the moment of inertia, t the time, L a length.
The same Cauchy and Froude numbers means that for the same density, the
modulus of elasticity is downscaled by � from full scale to model scale.

1.3 Full-scale trials

Trial tests of the built ship are an important prerequisite for the acceptance of
the ship by the shipowner and are always specified in the contract between
shipowner and shipyard. The problem is that the trial conditions differ from
both model test conditions and design conditions. The contract usually spec-
ifies a contract speed at design load at a given percentage of the maximum
continuous rating of the engine, this at calm sea without wind and current
on deep water. Trial conditions are usually in ballast load, natural seaways,
in the presence of currents and often shallow water. Only on rare occasions
is it possible to perform trial tests under ideal conditions as specified in the
contract. However, upper limits for the wind and sea conditions are usually
defined in the contract and test trials are performed only at times or places
were the actual conditions are within the specified limits.

The difference between contract and trial conditions requires various correc-
tions to correlate trial results to contract conditions. Apart from the difficulties
and margins of uncertainties in the trial measurements, the correlation proce-
dure is plagued by many doubts. The traditional methods are partly empirical,
involving curves with manual interpolation etc. It was not uncommon that the
results of various consultants, e.g. towing tank experts, differed by several
tenths of a knot for the obtainable speed under contract conditions. This
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margin may make a difference between paying and not paying considerable
penalties! Subsequently, trial evaluation was susceptible to disputes between
representatives of shipowners and shipyards. The increasing demand for quality
management and clearly documented procedures, preferably on an international
standard, led to the formation of various panels of experts. The Japan Marine
Standards Association submitted in 1998 a proposal for an ISO standard for the
assessment of speed and power in speed trials. Also, the ‘trial and monitoring’
subcommittee of the ITTC (International Towing Tank Conference) was tasked
with the development of an international standard.

Test trials were traditionally ‘measured mile trials’, as ships were tested
between measured miles near the coast for different ship speeds. The ship
speed can be measured ‘over ground’ (relative to the earth) or ‘in water’ (rela-
tive to the water). The speed in water includes currents and local flow changes.
Historically, various logs have been developed, including devices towed behind
the ship, on long rods alongside the ship, electro-acoustic devices, and pitot
tubes in the ship bottom. The speed over ground was traditionally determined
by electro-acoustic devices, celestial navigation, and radio navigation. The
advent of satellite systems, namely GPS (Global Positioning System) and
DGPS (Differential GPS), has eliminated many of the previous uncertainties
and problems. GPS allows accurate determination of the speed over ground,
although the speed of interest is the speed in water. Trials are usually performed
by repeatedly testing the ship on opposite courses to eliminate the effects of
current. It is best to align the course with the wind and predominant wave
propagation direction to make elimination of these effects in the correlation
procedure easier.

Seakeeping is usually not measured in detail as a normal procedure in ship
deliveries. Full-scale seakeeping tests are sometimes used in research and are
discussed in more detail in section 4.2, Chapter 4.

1.4 Numerical approaches (computational fluid dynamics)

1.4.1 Basic equations

For the velocities involved in ship flows, water can be regarded as incompress-
ible, i.e. the density � is constant. Therefore we will limit ourselves here to
incompressible flows. All equations are given in a Cartesian coordinate system
with z pointing downwards.

The continuity equation states that any amount flowing into a control volume
also flows out of the control volume at the same time. We consider for
the two-dimensional case an infinitely small control volume as depicted in
Fig. 1.1. u and v are the velocity components in x resp. y direction. The
indices denote partial derivatives, e.g. ux D ∂u/∂x. Positive mass flux leaves
the control volume, negative mass flux enters the control volume. The total
mass flux has to fulfil:

�� dyu C � dy�u C ux dx� � � dxv C � dx�v C vy dy� D 0

ux C vy D 0
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y + dy

y

u

v

x x + dx

u + ux dx

v + vy dy

Figure 1.1 Control volume to derive continuity equation in two dimensions

The continuity equation in three dimensions can be derived correspondingly to:

ux C vy C wz D 0

w is the velocity component in z direction.
The Navier–Stokes equations together with the continuity equation suffice

to describe all real flow physics for ship flows. The Navier–Stokes equations
describe conservation of momentum in the flow:

��ut C uux C vuy C wuz� D �f1 � px C ��uxx C uyy C uzz�

��vt C uvx C vvy C wvz� D �f2 � py C ��vxx C vyy C vzz�

��wt C uwx C vwy C wwz� D �f3 � pz C ��wxx C wyy C wzz�

fi is an acceleration due to a volumetric force, p the pressure, � the viscosity
and t the time. Often the volumetric forces are neglected, but gravity can
be included by setting f3 D g �D9.81 m/s2� or the propeller action can
be modelled by a distribution of volumetric forces f1. The l.h.s. of the
Navier–Stokes equations without the time derivative describes convection,
the time derivative describes the rate of change (‘source term’), the last term
on the r.h.s. describes diffusion.

The Navier–Stokes equations in the above form contain on the l.h.s. prod-
ucts of the velocities and their derivatives. This is a non-conservative formu-
lation of the Navier–Stokes equations. A conservative formulation contains
unknown functions (here velocities) only as first derivatives. Using the product
rule for differentiation and the continuity equation, the non-conservative formu-
lation can be transformed into a conservative formulation, e.g. for the first of
the Navier–Stokes equations above:

�u2�x C �uv�y C �uw�z D 2uux C uyv C uvy C uzw C uwz

D uux C vuy C wuz C u �ux C vy C wz�︸ ︷︷ ︸
D0

D uux C vuy C wuz

Navier–Stokes equations and the continuity equation form a system of coupled,
non-linear partial differential equations. An analytical solution of this system
is impossible for ship flows. Even if the influence of the free surface (waves)
is neglected, today’s computers are not powerful enough to allow a numerical
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solution either. Even if such a solution may become feasible in the future,
it is questionable if it is really necessary for engineering purposes in naval
architecture.

Velocities and pressure may be divided into a time average and a fluctu-
ation part to bring the Navier–Stokes equations closer to a form where a
numerical solution is possible. Time averaging yields the Reynolds-averaged
Navier–Stokes equations (RANSE). u, v, w and p are from now on time
averages. u0, v0, w0 denote the fluctuation parts. For unsteady flows (e.g.
manoeuvring), high-frequency fluctuations are averaged over a chosen time
interval (assembly average). This time interval is small compared to the global
motions, but large compared to the turbulent fluctuations. Most computations
for ship flows are limited to steady flows where the terms ut, vt, and wt
vanish.

The RANSE have a similar form to the Navier–Stokes equations:

��ut C uux C vuy C wuz� D �f1 � px C ��uxx C uyy C uzz�

� ���u0u0�x C �u0v0�y C �u0w0�z�

��vt C uvx C vvy C wvz� D �f2 � py C ��vxx C vyy C vzz�

� ���u0v0�x C �v0v0�y C �v0w0�z�

��wt C uwx C vwy C wwz� D �f3 � pz C ��wxx C wyy C wzz�

� ���u0w0�x C �v0w0�y C �w0w0�z�

They contain as additional terms the derivatives of the Reynolds stresses:

� �u0u0 � �u0v0 � �u0w0

� �u0v0 � �v0v0 � �v0w0

� �u0w0 � �v0w0 � �w0w0

The time averaging eliminated the turbulent fluctuations in all terms except the
Reynolds stresses. The RANSE require a turbulence model that couples the
Reynolds stresses to the average velocities. There are whole books and confer-
ences dedicated to turbulence modelling. Recommended for further studies is,
e.g., Ferziger and Peric (1996). Turbulence modelling will not be treated here
in detail, except for a brief discourse in section 1.5.1. It suffices to say that
none of the present models is universally convincing and research continues to
look for better solutions for ship flows. Because we are so far from being able
to solve the actual Navier–Stokes equations, we often say ‘Navier–Stokes’
(as in Navier–Stokes solver) when we really mean RANSE.

‘Large-eddy simulations’ (LES) are located between Navier–Stokes equa-
tions and RANSE. LES let the grid resolve the large vortices in the turbu-
lence directly and only model the smaller turbulence structures. Depending
on what is considered ‘small’, this method lies closer to RANSE or actual
Navier–Stokes equations. So far few researchers have attempted LES compu-
tations for ship flows and the grid resolution was usually too coarse to allow
any real progress compared to RANSE solutions.



12 Practical Ship Hydrodynamics

Neglecting viscosity – and thus of course all turbulence effects – turns the
Navier–Stokes equations (also RANSE) into the Euler equations which still
have to be solved together with the continuity equations:

��ut C uux C vuy C wuz� D �f1 � px

��vt C uvx C vvy C wvz� D �f2 � py

��wt C uwx C vwy C wwz� D �f3 � pz

Euler solvers allow coarser grids and are numerically more robust than RANSE
solvers. They are suited for computation of flows about lifting surfaces (foils)
and are thus popular in aerospace applications. They are not so well suited for
ship flows and generally not recommended because they combine the disadvan-
tages of RANSE and Laplace solvers without being able to realize their major
advantages: programming is almost as complicated as for RANSE solvers, but
the physical model offers hardly any improvements over simple potential flow
codes (Laplace solvers).

A further simplification is the assumption of irrotational flow:

r ð Ev D
{

∂/∂x
∂/∂y
∂/∂z

}
ð Ev D 0

A flow that is irrotational, inviscid and incompressible is called potential flow.
In potential flows the components of the velocity vector are no longer inde-
pendent from each other. They are coupled by the potential &. The derivative
of the potential in arbitrary direction gives the velocity component in this
direction:

Ev D
{

u
v
w

}
D r&

Three unknowns (the velocity components) are thus reduced to one unknown
(the potential). This leads to a considerable simplification of the computation.

The continuity equation simplifies to Laplace’s equation for potential flow:

& D &xx C &yy C &zz D 0

If the volumetric forces are limited to gravity forces, the Euler equations can
be written as:

r
(
&t C 1

2
�r&�2 � gz C 1

�
p

)
D 0

Integration gives Bernoulli’s equation:

&t C 1

2
�r&�2 � gz C 1

�
p D const.

The Laplace equation is sufficient to solve for the unknown velocities. The
Laplace equation is linear. This offers the big advantage of combining elemen-
tary solutions (so-called sources, sinks, dipoles, vortices) to arbitrarily complex
solutions. Potential flow codes are still the most commonly used CFD tools
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in naval architecture. Some elementary solutions frequently used for ship flow
computations will be discussed later in the book.

Boundary layer equations represent a special branch in the development
of hydrodynamics, (see Schlichting (1979)), which are historically important.
The boundary layer equations introduce many simplifications in the physical
model: diffusion in the predominant flow direction is neglected, the thick-
ness of the boundary layer is taken as small, and the pressure is constant
over the thickness. These assumptions are violated near separating boundary
layers. Therefore separation cannot be predicted properly. Of course, neither
is any evaluation of the separated flow possible. But this is the area of interest
for improving aftbodies and designing the propeller. One of the last doctoral
theses on boundary layer methods for ship flows concluded in 1993: ‘With
the present method the practically interesting velocities at the propeller plane
cannot be determined because there is no wall. In order to compute all the
velocity components in a thick boundary layer and at the propeller plane, the
Navier–Stokes equations have to be solved.’

Boundary layer methods had been substituted almost completely by RANSE
solvers by the end of the 1980s. A series of validation workshops demonstrated
that the solution of the equations for thin boundary layers failed in the stern
region because of the rapid thickening of the boundary layer in this zone. The
limited success of generalizations of thin boundary layer equations involving
high order corrections was subsequently demonstrated so that the tendency
towards computing the full solution of the Navier–Stokes equations became
stronger and stronger because increased computer resources became more and
more available at continously decreasing costs.

Basic equations (and flows) are sometimes classified as elliptic, hyperbolic
or parabolic. Consider a two-dimensional differential equation of second order:

A
∂2f

∂x2 C 2B
∂2f

∂x∂y
C C

∂2f

∂y2 C a
∂f

∂x
C b

∂f

∂y
C cf C d D 0

For υ D AC � B2 > 0 the equation is ‘elliptic’, for υ D 0 ‘parabolic’ and for
υ < 0 ‘hyperbolic’. The names are derived from an analogy to the algebraic
equation:

Ax2 C 2Bxy C Cy2 C ax C by C d D 0

This equation describes for υ D AC � B2 > 0 an ellipse, for υ D 0 a parabola,
and for υ < 0 a hyperbola. Behind these rather abstract mathematical defini-
tions lies a physical meaning (Fig. 1.2):

Elliptic Hyperbolic Parabolic

Figure 1.2 A disturbance propagates differently depending on the type of field equation

ž elliptic:
Disturbances propagate in all directions. RANSE and the Laplace equation
are in general elliptic.



14 Practical Ship Hydrodynamics

ž hyperbolic:
Disturbances are limited in their propagation to a conical (or in two dimen-
sions a wedge-shaped) region. Supersonic flow with a Mach cone follows a
hyperbolic field equation. The Kelvin angle in the wave pattern results in a
radiation condition of ‘hyperbolic’ character.

ž parabolic:
The extreme case of a hyperbolic flow is a parabolic flow. Here the
angle of the cone/wedge opens up to 90°. Disturbances propagate only
downstream. ‘Parabolic’ RANSE solvers allow faster solution with reduced
storage requirements. They start the computation at the upstream end and
solve strip after strip marching downstream. Instead of considering the whole
domain at one time, only two adjacent strips have to be considered at any
time. However, local flow reversals could never be captured by such a
method because they violate the assumed parabolic character of the flow.
Parabolic RANSE solvers thus appeared only shortly in the 1980s and were
replaced by fully elliptic solvers when more computer power became widely
available. All unsteady equations are parabolic in time.

1.4.2 Basic CFD techniques

CFD comprises methods that solve the basic field equations subject to boundary
conditions by approaches involving a large number of (mathematically simple)
elements. These approaches lead automatically to a large number of unknowns.
Basic CFD techniques are:

ž Boundary element methods (BEM)
BEM are used for potential flows. For potential flows, the integrals over the
whole fluid domain can be transformed to integrals over the boundaries of
the fluid domain. The step from space (3-d) to surface (2-d) simplifies grid
generation and often accelerates computations. Therefore practical applica-
tions for potential flows about ships (e.g. wave resistance problems) use
exclusively BEM which are called panel methods. Panel methods divide
the surface of a ship (and often part of the surrounding water surface) into
discrete elements (panels). Each of these elements automatically fulfils the
Laplace equation. Indirect methods determine the element strengths so that
at the collocation points (usually centres of the panels) a linear boundary
condition (e.g. zero normal velocity) is fulfilled. This involves the solution
of a full system of linear equations with the source strengths as unknowns.
The required velocities are computed in a second step, hence ‘indirect’
method. Bernoulli’s equation yields then the pressure field. Direct methods
determine the potential directly. They are less suited for boundary condi-
tions involving higher derivatives of the potential, but yield higher accuracy
for lifting flows. Most commercially used codes for ship flows are based on
indirect methods. BEM cannot be used to solve RANSE or Euler equations.
Fundamentals of BEM can be found in, e.g., Hess (1986, 1990).

ž Finite element methods (FEM)
FEM dominate structural analysis. For ship hydrodynamics they play only
a minor role. Unlike in structural analysis, the elementary functions cannot
be used also as weight functions to determine the weighted error integrals
(residuals) in a Galerkin method. This reduces the elegance of the method
considerably. Fundamentals of FEM can be found in, e.g., Chung (1978).
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ž Finite difference methods (FDM)
FDM discretize (like FEM) the whole fluid domain. The derivatives in the
field equations are approximated by finite differences. Discretization errors
can lead to a violation of conservation of mass or momentum, i.e. in the
course of a simulation the amount of water might diminish continously.
While FDM lose popularity and finite volume methods (FVM) gain popu-
larity, FDM give in many cases results of comparable quality.

ž Finite volume methods (FVM)
FVM also employ finite differences for the spatial and temporal discretiza-
tion. However, they integrate the equations for mass and momentum conser-
vation over the individual cell before variables are approximated by values
at the cell centres. This ensures conservativeness, i.e. mass and momentum
are conserved because errors at the exit face of a cell cancel with errors
at the entry face of the neighbour cell. Most commercial RANSE solvers
today are based on FVM. Fundamentals of FVM can be found in Versteeg
and Malalasekera (1995), and Ferziger and Peric (1996).

FEM, FDM, and FVM are called ‘field methods’, because they all discretize
the whole fluid domain (field) as opposed to BEM which just discretize the
boundaries.

Some textbooks on CFD also include spectral methods which use harmonic
functions as elementary solutions. Spectral methods have no practical relevance
for ship flows. The interested reader may find some introduction in Peyret and
Taylor (1985).

1.4.3 Applications

Practical CFD applications for ship flows concentrate mainly on the ship
moving steadily ahead. A 1994 survey at ship model basins showed inviscid
BEM computations for wave-resistance and offshore seakeeping as still the
most important CFD application for commercial projects (ca. 40–50% of the
turnover), followed by RANSE applications (30–40%) and computations for
propellers (10–20%). All other applications combined contribute less than 5%
of the turnover in the commercial sector. This global decomposition is expected
to change slowly as RANSE computation drifts more into commercial appli-
cations, but BEM are expected to remain the workhorse of the industry until
at least the 2020s. Besides global aspects like resistance, sometimes local
flow details are the focus of attention, e.g. the design of shaft brackets, stabi-
lizing fins, or sonar domes (noise reduction), e.g. Larsson et al. (1998) and
Larsson (1997).

The most important applications are briefly discussed in the following.

ž ‘Resistance C Propulsion’
CFD applications are mainly concerned with steadily advancing ships. For
a double-body potential flow, where the wavemaking at the free surface
and the effects of viscosity are neglected, the flow computation is relatively
simple, quick, and accurate. The name ‘double-body flow’ comes from an
interpretation that the ship’s hull is reflected at the waterline at rest. Then the
flow in an infinite fluid domain is computed and the lower half of the flow
gives automatically the flow about a ship with an undeformed (rigid) water
surface. The double-body potential flow is only used as an approximate
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solution for other methods (boundary layer, wave resistance, seakeeping).
The simultaneous consideration of viscosity and wavemaking was subject to
active research in the 1990s reaching the threshold of practical application
by the end of the century. Until then, most viscous flow computations in
practice still neglected wavemaking (viscous double-body flow). For steady
free-surface flows (‘wave resistance problem’), inviscid BEM codes were
and still are the workhorse. The propeller is almost always neglected in BEM
computations for the steady flow (‘resistance problem’). RANSE compu-
tations included the propeller action (‘propulsion problem’) usually by a
applying an equivalent body force in the r.h.s. of the RANSE. The body
forces were traditionally prescribed based on experience or experimental
results. More sophisticated applications used integrated propeller models.
The body forces in both thrust and rotative directions are then estimated,
e.g. by a panel method. The distributions obtained by this approach depend
on the propeller inflow and are determined iteratively using the RANSE
data as input for the propeller computation and vice versa. The approach
converges usually quickly.

ž Manoeuvring
Aspects of manoeuvring properties of ships gain in importance, as public
opinion and legislation are more sensitive concerning safety issues after
spectacular accidents of tankers and ferries. IMO regulations concerning
the (documented) manoeuvrability of ships increased the demand for CFD
methods in this field. Model tests as an alternative method are expensive and
time consuming. Traditional simple simulation methods with hydrodynamic
coefficients gained from analytical approaches or regression analysis (of
usually small databases) are often considered as too inaccurate. However,
CFD applications to simulate manoeuvring model tests were by 1999 still
limited to simplified research applications, e.g. the steady flow about a
ship at a yaw angle. Predicting the flow around the hull and appendages
(including propellers and rudders) is much more complicated than predicting
the steady flow in resistance and propulsion problems. Often, both viscosity
and free-surface effects (e.g. dynamic trim and sinkage) play an important
role. The rudder is most likely in the hull boundary layer, often operating at
high angles of attack and in the propeller wake. The hull forces themselves
are also difficult to predict computationally, because sway and yaw motions
induce considerable crossflows with shedding of strong vortices. Both BEM
and field methods have been employed for selected manoeuvring problems.
Selected problems like side forces and moments in steady yaw are well
predicted, but longitudinal forces and some flow details still showed conside-
rable errors for real ship geometries. Japanese researchers under Professor
Miyata at the University of Tokyo presented the first viscous CFD time
simulations of manoeuvring ships, modelling the complete hull of a sailing
yacht, but no validation data were available and the required effort surpassed
excessively the available resources in usual ship design practice.

ž Ship seakeeping
The 1990s saw the advent of Rankine panel methods for seakeeping. In the
frequency domain, quasi-steady BEMs compute the forces and motions of a
ship in regular waves. However, time-domain methods were more versatile
and were turned first into commercial flow codes, although development on
time-domain codes started several years later. The approaches are similar to
those used for the steady wave-resistance problem, but far less mature. What
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makes seakeeping problems so much more difficult than the steady wave-
resistance problem? BEM discretize the relevant surfaces into elements of
finite size. The necessary grid spacing is determined to a large extent by the
form of the surface resp. by the rate of change in the flow on this surface. At
the water surface, the wavelength determines the necessary grid spacing. The
wave-resistance problem has to discretize one dominating wave system and
can adjust the grid to this wavelength. Seakeeping problems give in addition
several diffraction and radiation wave systems with different wavelengths
and propagating directions. If these wavelengths differ by order of magni-
tudes, one discretization cannot appropriately capture all wave systems. Most
properties of practical relevance are calculated accurately enough for most
cargo vessels by strip methods, although the underlying physical models are
generally considered as crude. The two-dimensional flow calculation for the
individual strips are based today almost always on BEM, namely close-fit
methods.

ž Slamming/water-entry problems
Using suitable space–time transformations, the water entry of a two-
dimensional wedge can also be used to model the hydrodynamics of planing
hulls. We will focus here on the seakeeping aspect of modelling water-
entry problems. Slamming involves local loads changing rapidly in time
and space. Hydroelastic effects, interaction between trapped air pockets and
water, velocities that require consideration of water compressibility with
shockwaves forming and the complex shapes of the water surface forming
jets, make slamming problems already in two dimensions very challenging.
Traditional approaches work well for wedges of suitable deadrise angle
and two-dimensional flows. But usually ship cross-sections do not have
suitable deadrise angles and the phenomena are three dimensional. CFD is
expected to bring substantial progress in this field, but research applications
were still in the early stages by 1999. Earlier attempts to employ BEM
do not appear to allow substantial progress. Far more can be achieved in
principle by employing methods which discretize the fluid volume, not just
its boundaries.

ž Zero-speed seakeeping
For offshore applications, global loads and motions in seakeeping can be
computed quite well by BEM. For zero speed, the steady wave system
vanishes and various diffraction and radiation wave systems coincide. If
the geometry of offshore structure and waves are of the same order of
magnitude BEMs can successfully capture three-dimensional effects and
complex interactions. The employed three-dimensional BEM determine
forces and motions either in the time or the frequency domain. First-order
forces and motions are calculated reliably and accurately. Improvements
over previous computations are sometimes due to finer grids. For practically
required accuracy of first-order quantities, approximately 1000 elements
were typically deemed necessary by 1990. Commercial program packages
(WAMIT, TIMIT) developed at the MIT for hydrodynamical offshore
applications were quickly accepted and are widely used.

ž Propeller flows
Inviscid flow methods have long been used in propeller design as a standard
tool yielding information comparable to experiments. Lifting-surface
methods and BEM are equally popular. Lifting-surface methods (quasi-
continuous method, vortex-lattice method) allow the three-dimensional
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modelling of the propeller. They discretize the mean camber surface of the
propeller blade by individual vortex panels. In addition, the free vortices
are modelled by elements of given strength. Other than the BEM described
below, lifting-surface methods do not fulfil exactly the boundary conditions
at the blade’s lower and upper surfaces. However, the resulting errors
are small for thin blades. BEM represent an improvement concerning
the treatment and modelling of the geometry. BEM model both lift and
displacement of the propeller blades by surface panels and/or dipoles.
They can also model the propeller hub. Despite the theoretical superiority,
BEM results were not clearly better than lifting-surface methods results
in benchmark tests. BEM codes for propeller applications often use only
dipole panels which are distributed over hub, blade surfaces, and the
wakes of each blade. Application of viscous flow CFD methods approached
the threshold from pure research to practical applications by the mid-
1990s.

Further, less frequently found applications of CFD in naval architecture
include:

ž Air flow
Only a few CFD applications are known for the computation of the air flow
around the upper hull and superstructure of ships and offshore platforms.
Topics of interest are:
– Wind resistance (especially of fast ships)

For fast ships the wind resistance becomes important. For example, for
one project of a 50 knot SES (surface effect ship D air-cushion cata-
maran), the wind resistance constituted ca. 25% of the total resistance.
Hull changes limited to the bow decreased the wind resistance by 40%.

– Wind-over-the-deck conditions for helicopter landing
This application concerns both combatants and offshore platforms.

– Wind loads
Wind loads are important for ships with large superstructures and rela-
tively small lateral underwater area, e.g. car transporters, car ferries,
container ships, SES, and air-cushion vehicles.

– Tracing of funnel smoke
This is important for passenger vessels (passengers on deck, paintwork)
and for offshore platforms (safety of helicopter operation).

The comparison of CFD, wind-tunnel tests, and full-scale measurements
shows an overall good agreement, even if large discrepancies appear at
some wind directions. The differences between CFD and model-test results
are not generally larger than between full-scale and model-scale results. In
fact, the differences are not much larger than often found when the same
vessel is tested in different wind tunnels. The determination of wind loads
on ships and offshore structures by CFD is a realistic alternative to the
experimental methods. However, due to the time involved in generating the
computational mesh and in computing the solution, CFD was, at least until
the year 2000, not economically competitive to routine wind-tunnel model
testing.

ž Interior flows
Inner flow problems are seldomly treated by naval architects. Exceptions are
research reports on flow calculations for partially filled tanks in a rolling
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ship. Inner flow computations may be coupled to the outer (global) motions
of a ship. Related problems are flows in a roll damping tank, sloshing, and
water flowing into a damaged ship.

Table 1.1 summarizes an assessment of the maturity of the various CFD appli-
cations.

Table 1.1 Maturity of CFD application on
a scale from – (not applicable, no applica-
tions known) to žžžž (very mature)

Viscous Inviscid

‘Resistance test’ žž žžž
‘Propulsion test’ žž –
Manoeuvring ž ž
Ship seakeeping ž žž
Offshore – žžž
Propeller ž žžžž
Others ž –

1.4.4 Cost and value aspects of CFD

The value of any product (or service) can be classified according to time, cost
and quality aspects. For CFD this means:

ž Time benefits (How does CFD accelerate processes in ship design?)
In the shipbuilding industry, we see the same trends towards ever decreasing
times for product development as in other manufacturing industries. In some
cases, delivery time is the key factor for getting the contract. CFD plays
a special role in this context. A numerical pre-optimization can save time-
consuming iterations in model tests and may thus reduce total development
time. The speed of CFD allows applications already in preliminary design.
Early use thus reduces development risks for new ships. This is especially
important when exploring niche markets for unconventional ships where
design cannot be based on experience. In addition, another aspect related to
turnover has to be realized: CFD improves chances of successful negotia-
tions by supplying hydrodynamic analyses. It has become almost standard
for all high-tech shipbuilders to apply at least inviscid CFD analyses to
proposed hull designs when entering negotiations to obtain a contract for
building a ship.

ž Quality benefits (How does CFD enable superior ships or reduce risks in
new designs?)
Model tests are still far more accurate for power prognosis than CFD. We see
occasionally good agreement of CFD power prediction with measured data,
but these cases may just benefit from fortunate error cancellation or tuning
of parameters to fit a posteriori the experimental data. No ‘blind’ benchmark
test has yet demonstrated the ability of CFD codes to predict, at least with
5% accuracy, consistently the power of ship hulls at design speed. I expect
this to remain so for some more years. Long-term CFD should outperform
model tests, as with growing computational power, accurate simulations at
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full-scale will become available overcoming current uncertainties in corre-
lating model tests to full-scale predictions. For some projects, it is only
important to ensure that a given installed power will enable the ship to
achieve contract speed. In these cases, CFD is of little interest. However,
CFD should be considered in cases where model test results show problems
or the shipowner is willing to pay a higher price for lower operating costs
(due to improved hull). CFD allows insight in flow details not offered by the
standard model tests. Insight in flow details is especially important in cases
where initial model tests show that power requirements for a given hull are
far more than expected. Here CFD also allows the investigation of the flow
far below the waterline and modifications can be quickly analysed to see if
major improvements are to be expected. The model tests and experience of
a towing tank mainly indicate the potential for improvement; CFD indicates
where and how to improve the design.

ž Cost benefits (How does CFD reduce costs in ship designs?)
While the influence of certain decisions and actions on the turnover can be
estimated only qualitatively, costs can usually be quantified directly. This
explains why management prefers investments with a short payback due to
cost reductions even though there is general consent that cost reductions
alone do not ensure the economic future of a company. However, CFD’s
potential for direct cost reductions is small. CFD is still not accurate enough
to substitute the model test for power prognosis. Therefore, one model test is
always performed. In three out of four projects of the Hamburg Ship Model
Basin this was sufficient. It reduces the cost saving potential to the additional
loops in the towing tank which still account for one-third of all tests. In
extreme cases up to 15 additional loops were necessary to achieve the final
hull design. In these cases, CFD could have saved considerable costs. The
average one additional loop will cost about as much as a CFD computation.
Indirect cost savings in other departments are difficult to quantify. Time
benefits of CFD will also affect costs. It is possible to determine 40% to
60% of the total production costs of a ship in the first weeks of design.
Costs for modifications in later stages are higher by order of magnitudes
than those necessary at the conceptual phase. Various decisions concerning
production costs can be made earlier and involve lower risks if CFD is
employed consistently to determine the final hull form at an earlier time.

The benefits discussed so far only cover one-half of a cost-benefit analysis for a
CFD strategy. Understanding the cost structure of CFD is at least as important
and some general management guidelines can be deduced. This requires a
closer look at the work process in CFD. The work process is split into:

ž preprocessing (generation and quality control of grids)
ž computation
ž postprocessing (graphical displays, documentation)

The individual steps sometimes have to be performed several times in itera-
tions. Cost structures will be discussed separately for each step:

1. Preprocessing
Preprocessing requires staff familiar with the special programs for
grid generation, especially on the hull. This requires at least a basic
understanding of the subsequent CFD computation. Grid generation is best



Introduction 21

performed on workstations or fast PCs with high-resolution screens. User
experience and a degree of automation mainly determine time (and labour
costs) in this step. Experienced staff can expect grid generation to be the
major part (30% to 90%) of the man time involved in CFD analyses.
Completely automatic procedures for complex geometries such as ships
are not available and do not seem realistic for the future. Staff training and
software development/adaptation are the main fixed costs which usually
surpass depreciation of hardware and software by an order of magnitude.

2. Computation
The computation involves almost no man time. Computations for inviscid
CFD can usually run on PCs; viscous CFD may prefer more powerful
computer environments up to parallel computers/supercomputers depending
on the problem size. Often workstations are the preferred choice. Computing
costs usually account for less than 1% of total costs. Also software licences
for the flow code are often negligible compared to other costs, especially
those for generating the grid.

3. Postprocessing
The graphics require fast PCs with colour screens, laser printers and colour
plotters/printers. The necessary software is commercially available. Post-
processing requires some time (typically 10% to 20% of the total time), but
can be performed after short training by staff without special qualifications.
User friendliness of the programs determines time and thus labour costs
in this step. Use of postprocessing programs should be kept as simple as
possible minimizing user input. Interpretation of results still requires exper-
tize and is a lengthy process. You pay thus for the interpretation, not the
number of colour plots.

The high fixed costs for training and user-defined macros to accelerate the
CFD process lead to considerable economies of scale. This is often not realized
by management. Experience shows that many shipyards buy CFD software,
because the hardware is available or not expensive, and the software licence
costs may be as much as a few CFD analyses at a consulting company. The
vendors are naturally only too happy to sell the software. Then the problems
and the disillusion start. Usually no initial training is given by the vendor (or
bought by the shipyard). Typical beginners’ mistakes are the consequence:

ž Time is lost in program handling.
ž Unsuitable grids are used requiring repeated analyses or resulting in useless

results.

By the time the management realizes the problems, it is usually too late. The
software licences are all bought, the design engineer has now already invested
(lost) so much time struggling with the code. Nobody wants to admit defeat. So
the CFD analyses are continued in-house with the occasional outsourcing when
problems and time pressures become too large. As a general rule, outsourcing
is recommended for shipyards and design offices with fewer than five projects
per year. In-house CFD makes sense starting from ten projects per year. These
numbers may shift if CFD codes become more user-friendly, i.e. run almost
automatically. However, for finite-element analyses of structures we have seen
a development that after an initial period where shipyards performed the anal-
yses in-house the pendulum swung the other way with shipyards now using
almost exclusively outsourcing as the sensible option.
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The main part of the variable costs and response time is created in grid
generation. There is considerable potential to improve this part of the CFD
process:

ž By making grid generation more user-friendly
Grid generation is largely a matter of experience. The logical deduction
would be to incorporate this experience in the grid generation codes to
improve user-friendliness. The challenge for research will be to automate
human vision (‘the grid should look nice’) and human decision (‘If this
problem occurs I change the grid in such a way’). A fundamental dilemma
found in grid generation is that the procedures should be flexible to cope with
a variety of problems, yet easy to handle with a minimum of input. Existing
grid generators (and flow codes) offer a lot of flexibility often at the cost
of having many options which in turn leave inexperienced (i.e. occasional)
users frustrated and at risk to choose exactly the wrong options for their
problems. Incorporation of expert knowledge in the grid generation program
offering reasonable default options is a good solution to this dilemma. In the
extreme case, a user may choose the ‘automatic mode’ where the program
proceeds completely on its own knowledge. On the other hand, default
values may be overruled at any stage by an experienced user.

ž By making the computation more robust
An easy grid is cheap and fast to generate. Monolithic structured grids are
the least flexible and difficult to generate, keeping constraints like orthogonal
grid intersections, avoidance of highly skewed cells etc. Therefore we see
trends towards:
– block-structured grids
– non-matching boundaries between blocks
– unstructured grids
– chimera grids (overlapping, non-matching blocks)

ž By generating grids only once
Time for grid generation means total time for all grids generated. The philos-
ophy should be ‘Make it right the first time’, i.e. the codes should be robust
enough or the grid generators good enough that one grid suffices. This may
require some sacrifices in accuracy. This should also favour the eventual
development of commercial codes with adaptive grid techniques.

Standard postprocessing could save time and would also help customers in
comparing results for various ships. However, at present we have at best
internal company standards on how to display CFD results.

1.5 Viscous flow computations

Inviscid boundary element methods will be covered in detail in further chap-
ters of this book. Viscous flows will not be treated in similar detail as the
fundamentals are covered in an excellent text by my colleague Milovan Peric
in Ferziger and Peric (1996). I will therefore limit myself here to a naval
architect’s view of the most important issues. This is intended to raise the
understanding of the matter to a level sufficient to communicate and collab-
orate with an expert for viscous flows. I deem this sufficient for the purpose
of this book as viscous flow codes are still predominantly run by dedicated
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experts, while boundary element methods are more widely used. For further
studies, the book by Ferziger and Peric is recommended.

1.5.1 Turbulence models

The RANSE equations require external turbulence models to couple the
Reynolds stresses (terms from the turbulent fluctuations) to the time-averaged
velocities. Turbulence is in general not fully understood. All turbulence
models used for ship flows are semi-empirical. They use some theories about
the physics of turbulence and supply the missing information by empirical
constants. None of the turbulence models used so far for ship flows has been
investigated for its suitability at the free surface. On the other hand, it is
not clear whether an exact turbulence modelling in the whole fluid domain
is necessary for engineering purposes. There are whole books on turbulence
models and we will discuss here only the most primitive turbulence models
which were most popular in the 1990s, especially as they were standard
options in commercial RANSE solvers. ITTC (1990) gives a literature review
of turbulence models as applied to ship flows.

Turbulence models may be either algebraic (0-equation models) or based
on one or more differential equations (1-equation models, 2-equation models
etc.). Algebraic models compute the Reynolds stresses directly by an algebraic
expression. The other models require the parallel solution of additional
differential equations which is more time consuming, but (hopefully) also
more accurate.

The six Reynolds stresses (or more precisely their derivatives) introduce six
further unknowns. Traditionally, the Boussinesq approach has been used in
practice which assumes isotropic turbulence, i.e. the turbulence properties are
independent of the spatial direction. (Detailed measurements of ship models
have shown that this is not true in some critical areas in the aftbody of full
ships. It is unclear how the assumption of isotropic turbulence affects global
properties like the wake in the propeller plane.) The Boussinesq approach then
couples the Reynolds stresses to the gradient of the average velocities by an
eddy viscosity �t:
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k is the (average) kinetic energy of the turbulence:

k D 1
2 �u
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The eddy viscosity �t has the same dimension as the real viscosity �, but
unlike � it is not a constant, but a scalar depending on the velocity field. The
eddy viscosity approach transforms the RANSE to:
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��vt C uvx C vvy C wvz� D �f2 � py � 2
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Turbulence models generally use a reference length scale and reference velocity
scale. Alternatively, the velocity scale can be expressed as the fraction of length
scale and a time scale. To obtain the proper dimension, the eddy viscosity is
expressed proportional to the product of length scale and velocity scale. The
length scale is characteristic for the larger turbulence structures which are
mainly contributing to the momentum transfer in the fluid. The velocity scale
is characteristic for the intensity of the turbulent fluctuations.

All commonly used turbulence models are plagued by considerable uncer-
tainties. Internationally renowned fluid dynamicists have described turbulence
models as follows:

ž ‘Turbulence models are voodoo. We still don’t know how to model turbu-
lence.’

ž ‘The word “model” is a euphemism for an uncertain, but useful postulated
regularity. In the last few decades, scientists have learned to simulate some
aspects of turbulence effects by the invention of “turbulence models” which
purport to represent the phenomena by postulated laws of conservation,
transport and sources for supposed “properties of turbulence” such as its
“energy”, its “frequency” or its “length scale”. These “laws” are highly
speculative.’

Researchers have succeeded in direct numerical simulation of turbulence
for Reynolds numbers several orders of magnitude smaller than ship model
Reynolds numbers and for very simple geometries. These simulations allow
at best to understand phenomena of turbulence better and to test engineering
turbulence models.

The usefulness of a turbulence model for ship flows can only be evaluated in
benchmark tests for similar ships. Sometimes simple models work surprisingly
well, sometimes the same model fails for the next ship. The most popular
turbulence model for ship flow applications in practice in the 1990s was the
standard k-ε model, although its results were not convincing in benchmark
tests for several ship geometries.

By the late 1990s, k-ω models were proposed for ship flows. These models
are like the k-ε models two-equation models and can be seen as a further
evolution of them. ω is proportional to ε/k and can be interpreted as a ‘turbu-
lence frequency’. k-ω models yield better agreement with experiments in many
cases; however, they react more sensitively to grid quality.

Reynolds stress models calculate the individual Reynolds stresses from their
modelled transport equations without recourse to an eddy viscosity hypothesis.
These models require more computational effort than, e.g., the two-equation
k-ε model, but showed in several ship flow applications superior results.
However, it is not yet decided if similarly good results can be obtained
by simple turbulence models with properly adjusted coefficients. Large-eddy
simulations may eventually solve the current debate over turbulence modelling
for engineering applications, but for ship flows we will have to wait at least
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two more decades before realistic LES solutions for even model Reynolds
numbers become available in practice.

Probably the most widely used turbulence model in engineering applications
is the (standard) k-ε model, (Launder and Spalding (1974)). k is the kinetic
energy of the turbulence, ε the dissipation rate of k. The k-ε model expresses
the eddy viscosity �t as a simple function of k and ε:
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ε

0.09 is an empirical constant. k and ε are expressed by two partial differential
equations involving further empirical constants:
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Pk is the production rate of k:

Pk D �t

�
�2uxux C �uy C vx�uy C �uz C wx�uz C �vx C uy�vx C 2vyvy

C �vz C wy�vz C �wx C uz�wx C �wy C vz�wy C 2wzwz�

The substantial derivative is defined as usual:
D

Dt
D ∂

∂t
C u

∂

∂x
C v

∂

∂y
C w

∂

∂z

These equations contain four empirical constants (1.0, 1.2, 1.44, and 1.92)
which were determined (in a best fit approach) for very simple flows in physical
and numerical experiments. The applicability to other turbulent flows (e.g.
around ship geometries) was never explicitly validated.

The k-ε model cannot be applied directly at a wall (ship hull) as it assumes
inherently high (local) Reynolds numbers. If a no-slip condition (zero relative
speed at the hull) is to be enforced directly at the wall, the ε differential equa-
tion must be substituted by an algebraic equation near the wall. This is the
so-called low-Re k-ε model. However, more popular is the introduction of a
wall function coupled to the standard k-ε model. The wall function is empir-
ically determined for two-dimensional flows. One assumes that the velocity
increases logarithmically with distance from the wall:
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0.42 and 9.0 are empirical constants. yC D y�u�/� is a non-dimensional
distance from the wall, u the velocity in longitudinal (parallel to the wall)
direction, u� D p

�w/� with �w the wall shear stress.



26 Practical Ship Hydrodynamics

The centres of the innermost cells should lie within a distance from the wall
where the logarithmic law of the wall function applies, i.e. 100 < yC, 1000.
However, yC contains the wall shear stress which is part of the solution and
not a priori known. It is thus only possible to judge a posteriori if a chosen
wall distance was appropriate. Higher Reynolds numbers require generally
smaller yC.

The fundamental assumptions for the wall function are:

ž velocity gradient in normal direction much larger than in other directions
ž pressure gradient and gravity influence so small that shear stresses in the

boundary layer are constant
ž shear stresses and velocity vectors have the same direction in the whole

boundary layer
ž equilibrium of turbulence generation and dissipation
ž linear variation of the reference length for turbulence

These assumptions are questionable for complex flows as found in the aftbodies
of ships. The standard k-ε model usually overpredicts the turbulent kinetic
energy in the stern region. Also, the model cannot properly account for the
reduction of the turbulent kinetic energy near the wall when the viscous layer
becomes thick over the stern. The wall function approach usually yields worse
results for the wall shear stresses than turbulence models that apply a no-slip
condition directly at the wall. However, the wall function saves many cells
(and thus computational time).

The k-ε model appears suitable for flows with a predominant boundary-layer
character. Problems with defining a reference length, as in many algebraic
models, are avoided and at least the important physical aspect of turbulence
transport is explicitly reflected in the model. The wall function makes the
approach numerically efficient, but the model is in principle not capable of
predicting flow separation for curved surfaces (e.g. ships!).

1.5.2 Boundary conditions

The computational grid can only cover part of the real fluid domain. This
introduces artificial boundaries of the computational domain in addition to the
physical boundaries of the hull and the free surface. In the 1990s computations
often neglected the wavemaking of the free surface and treated it as a rigid
plane of symmetry.

For ships moving straight ahead (as in simulations of resistance or propul-
sion tests), the midship plane is also treated as a symmetry plane. The usual
symmetry of the ship would intuitively suggest that this indeed reflects physical
reality. However, viscous flows with symmetric inflow to symmetric bodies do
not automatically result in symmetric flow patterns at all times. Vortex shed-
ding results in asymmetric flow patterns which only in the time average are
symmetric again. This may result in considerable differences in the resistance.
The following example may illustrate the problem (Fig. 1.3). Behind a circular
cylinder in uniform inflow one would assume intuitively a symmetrical flow
which would hardly be disturbed by a flat plate behind the cylinder. However,
experiments yield a considerably smaller resistance coefficient for the cylinder
with a flat plate. The reason is vortex shedding behind the cylinder with large



Introduction 27

Figure 1.3 A cylinder with a flat plate in the wake
has a considerable lower resistance coefficient than a
cylinder without a plate. Care is required when
assuming symmetry planes for viscous flow
computations

vortices oscillating from one side to the other. These large vortex oscillations
are blocked by the flat plate.

This leaves the inlet, outlet, and side/bottom boundaries. The side and
bottom boundaries may correspond to an actual physical boundary as in a
model tank. In this case, the boundaries may be treated similar to the ship
hull with a no-slip condition. However, one should remember that the outer
boundaries then have a relative velocity to the ship. Usually, the physical
boundaries would be too far away to be considered. Then the side and bottom
boundaries should be sufficiently removed from the ship. Often the side and
bottom boundary forms part of a cylinder (quarter for double-body flow with
symmetry in y), as a cylinder leads usually to better grids (for single-block
grids) than a block-type grid. A typical cylinder radius would be between 0.5
and 1 ship length.

The boundary condition on the hull is a no-slip condition (zero relative
speed) which is either enforced directly or via a wall function depending on
the turbulence model employed.

At the inlet all unknowns are specified. If the inlet is chosen sufficiently
upstream of the ship, uniform flow with corresponding hydrostatic pressure
can be assumed. If the k-ε model is employed, the distribution of k and ε
at the inlet also have to be specified. The influence of the specified values
for k and ε decays rapidly downstream, such that errors have decayed by
some orders of magnitude after several cells. One may then simply specify
zero k and ε. A slightly more sophisticated approach estimates the turbulence
intensity I (turbulent fluctuation component of a velocity component made
non-dimensional with the ship speed V) at the inlet. For isotropic turbulence
we then get:

k D 3
2 �VI�2

In the absence of experimental data for I in a specific case, I D 5% has often
been assumed. The dissipation rate is typically assumed as:

ε D 0.164
k1.5

3

0.164 is an empirical constant and 3 a reference length. For ship flows, there
are few indications as to how to choose this reference length. Own computa-
tions have used 1/100 of the radius of the cylinder forming the computational
domain. However, the initial choice of the quantities does not influence the final
result, but ‘only’ the required number of iterations to obtain this result. If only
the aftbody is considered, then the inlet may be placed, e.g., amidships. In this
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case all unknowns must be specified from experiments (for validation studies)
or simpler computations (e.g. coarse grid computations for the whole domain,
inviscid flow computations coupled with boundary layer computations etc.).

At the outlet usually the derivatives in longitudinal direction are set for
all unknowns to zero and the flow leaving the domain is determined such that
continuity is preserved for the whole fluid domain. The longitudinal derivatives
are in reality not really zero, but this boundary condition prevents upstream
propagation of any reflections of disturbances created by the numerical method.
Numerical experiments show that these boundary conditions affect results only
in a small local region near the outlet.

At symmetry planes normal velocity and all derivatives in the normal direc-
tion are set zero. Since the normal derivatives of the tangential velocities
vanish, the shear stresses are zero. The outer boundary of the computational
domain (side and bottom) may be treated as ‘symmetry plane’, i.e. on each
outer cell face normal velocity and all normal derivatives are set zero. In this
case, the outer boundary must be far away from the ship such that virtually
uniform flow is encountered. Another possibility is to specify values computed
by inviscid codes at the outer boundary which allows much smaller computa-
tional domains, but not much fewer cells as most cells are concentrated near
the ship hull.

If a propeller is modelled in RANSE computations for ship flows (propulsion
test condition), the propeller is generally simplified by specifying the propeller
effect as body forces. Often, only the longitudinal body forces are specified in
the cells covering the location of the propeller. This simulates the acceleration
of the flow by the propeller. The sum of all body forces yields the thrust.
The distribution is often assumed to be parabolic in the radial direction and
constant in the circumferential direction. Alternatively, the distribution of the
body forces for the propeller may be specified from:

ž experience with similar ships
ž experiments for the actual ship
ž alternating computations for the propeller loading with non-uniform inflow

from the RANSE computation. The propeller loading is then computed every
10 or 20 iterations in the RANSE computation as the propeller loading
converges much faster than the other properties of the RANSE computation
(Bertram and Ishikawa (1996)). Convergence for the propeller loading is
usually obtained with five or seven iterations.

1.5.3 Free-surface treatment

Most viscous flow computations for ships in design projects in the 1990s still
assumed the free surface to be a symmetry plane. In reality this is not true.
The free surface forms waves which break locally at the bow, and the ship
changes trim and sinkage (squat) due to the free surface. By the late 1990s only
few research applications included trim and sinkage, while many included the
wavemaking of the free surface. The problem of turbulence models (and their
specific boundary conditions) near the free surface has not been addressed in
ship flows and generally the same conditions as for symmetry planes are used.

A variety of methods exists to capture wavemaking with various degrees of
success. Eventually, only methods also capable of modelling breaking waves
should survive. The difficulty with the unknown free surface position is usually
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resolved by considering the problem transient, starting from rest. The hull is
thus accelerated to the requested Froude number and the time integration is
continued until steady state conditions have been achieved. (This procedure
corresponds to usual practice in towing tank experiments.) The free surface
position is updated as part of the iterative process.

The methods for computing flows with a free surface can be classified into
two major groups:

ž Interface-tracking methods define the free surface as a sharp interface which
motion is followed. They use moving grids fitted to the free surface and
compute the flow of liquid only. Problems are encountered when the free
surface starts folding or when the grid has to be moved along walls of a
complicated shape (like a real ship hull geometry).

ž Interface-capturing methods do not define a sharp boundary between liquid
and gas and use grids which cover both liquid- and gas-filled regions. Either
marker particles or a transport equation for the void fraction of the liquid
phase are used to capture the free surface.

Interface tracking is bound to dominate in the long term for ship flow as the
ability to model complex geometries of hull and water surface is essential for
real ship flows. Interface-tracking methods may also solve the flow in the air
above the water, but for most ship flows this is not necessary. Ferziger and
Peric (1996) present results for a Wigley hull, comparing an interface-capturing
method with an interface-tracking method.

A typical approach uses a volume-of-fluid (VOF) formulation introducing
an additional scalar function, which describes the volume concentration of
water, to identify the position of the free surface.

So far problems persist with numerical damping of the ship wave propa-
gation. This minor blemish – for practical purposes it suffices to know the
wave profile close to the hull – should be overcome in time by better spatial
resolution or by using higher-order schemes.

1.5.4 Further details

The vector equations for conservation of momentum yield three scalar equa-
tions for three-dimensional computations. These determine the three velocity
components for a given pressure. Usually these velocities do not fulfil the conti-
nuity equation. The introduction of a pressure correction equation derived from
the continuity equation allows a correction of pressure and velocities. Popular
methods for such pressure–velocity coupling are:

ž SIMPLE (semi-implicit pressure l inked equations) and related methods
ž PISO (pressure implicit with splitting of operators)

In the 1990s most RANSE codes used for ship flows employed SIMPLE or
related pressure–velocity coupling. The SIMPLE method is fast, but tends to
slow convergence for suboptimal grids. Figure 1.4 gives a simple flow chart for
the SIMPLE algorithm. PISO like SIMPLE is based on a predictor–corrector
method, but employs several corrector steps while SIMPLE uses only one.
This makes the PISO method more stable, but less efficient. In personal expe-
rience, the computation time for one tanker was increased by a factor of 5
switching from SIMPLE to PISO. For unsteady problems, however, the PISO
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for momentum equations
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Figure 1.4 Flow chart for SIMPLE algorithm

method is generally preferred to the SIMPLE method due to its better stability.
The discretization of the fundamental differential equations leads to very large
systems of linear equations which are usually sparse, i.e. most of the elements
of the matrix are zero. (This is fundamentally different from boundary element
methods where full matrices with an often not dominant main diagonal need
to solved.) Direct solvers like Gauss elimination or matrix inversion have
prohibitively excessive computational time and storage requirements. In addi-
tion, the solution of the system of equations is embedded in an outer iteration
which requires only an approximate solution, because the coefficients due to the
non-linearity of the differential equations and the pressure–velocity coupling
require further corrections. Therefore field methods generally employ iterative
solvers:

ž Gauss–Seidel method (point iterative)
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ž LSOR (line successive overrelaxation), ADI (alternating direction implicit)
(line iterative)

ž ILU (incomplete lower upper) decomposition, e.g. SIP (strong implicit
procedure)

ž CG (conjugate gradient) method

The various iterative methods differ in their prerequisite (dominant main diag-
onal, symmetry etc.), convergence properties, and numerical effort per itera-
tion. Strongly implicit schemes such as SIP feature high convergence rates.
The convergence is especially high for multigrid acceleration which today is
almost a standard choice.

1.5.5 Multigrid methods

Multigrid methods use several grids of different grid size covering the same
computational fluid domain. Iterative solvers determine in each iteration (relax-
ation) a better approximation to the exact solution. The difference between the
exact solution and the approximation is called residual (error). If the residuals
are plotted versus the line number of the system of equations, a more or less
wavy curve appears for each iterative step. A Fourier analysis of this curve
then yields high-frequency and low-frequency components. High-frequency
components of the residual are quickly reduced in all solvers, but the low-
frequency components are reduced only slowly. As the frequency is defined
relative to the number of unknowns, respectively the grid fineness, a given
residual function is highly frequent on a coarse grid, and low frequent on a
fine grid. Multigrid methods use this to accelerate overall convergence by the
following general procedure:

1. Iteration (relaxation) of the initial system of equations until the residual is
a smooth function, i.e. only low-frequent components are left.

2. ‘Restriction’: transforming the residuals to a coarser grid (e.g. double the
grid space).

3. Solution of the residual equation on the coarse grid. Since this grid contains
for three-dimensional flow and grid space halving only 1/8 of the unknowns
and the residual is relatively high frequent now, only a fraction of the
computational time is needed because a further iteration on the original
grid would have been necessary for the same accuracy.

4. ‘Prolongation’: interpolation of the residuals from the coarse grid to the
fine grid.

5. Addition of the interpolated residual function to the fine-grid solution.

This procedure describes a simple two-grid method and is recursively repeated
to form a multigrid method. If the multigrid method restricts (stepwise) from
the finest grid to the coarsest grid and afterwards back to the finest grid, a
V-cycle is formed. If the prolongation is only performed to an intermediate
level, again before restriction is used, this forms a W-cycle (Fig. 1.5).

The multigrid method accelerates the overall solutions considerably,
especially for grids with many unknowns. Multigrid algorithms obtain
computational times which are almost proportional to the number of cells,
while single-grid solvers yield computational times proportional approximately
to the square of the number of cells. Multigrid methods are relatively easy
to combine with all major iterative solvers. The considerable speed-up of
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Figure 1.5 Multigrid cycles: V-cycle (left), W-cycle (right), h: grid spacing

computations more than justifies the additional expense of programming and
storage requirements. Therefore most newer developments for RANSE codes
for ship flows include multigrid methods.

1.5.6 Numerical approximations

Finite-volume methods require values (and derivatives) of various variables at
the cell faces, when they are originally only known at the cell centres. The
flow direction is often considered when these quantities are determined for
convective terms. Time derivatives are also numerically approximated.

Consider, e.g., the convective fluxes in the x direction. One determines
in general the value of a variable (e.g. pressure of velocity) at the location
x by employing an interpolation polynomial through the neighbouring cell
centres xi:

f�x� D a1 C a2�x � x1� C a3�x � x1��x � x2� C Ð Ð Ð
The coefficients ai are determined by inserting the known function values
fi D f�xi�. The most simple case uses just the value of the next cell centre
upstream (upwind differencing scheme, UDS ):

f�x� D fi�1 u > 0

f�x� D fi u < 0

u is the flow velocity in the x direction. This is a first-order approximation, i.e.
for fine grids halving the grid size should halve the error in approximating the
derivative. The order of an approximation is derived from a Taylor expansion
for equidistant grids. For non-equidistant grids, an additional error appears
that depends on the ratio of adjacent cell lengths. This error may dominate
for coarse to moderately coarse grids, but vanishes in the theoretical limit
of infinitely fine grids. The approximation depends thus on the direction of
the velocity in the cell centre. UDS is unconditionally stable, but plagued
by large numerical diffusion. Numerical diffusion smoothes the derivatives
(gradients) and may thus easily lead to wrong results. The numerical diffusion
becomes maximum for an angle of 45° between grid lines and flow direction.
Grid refinement reduces the numerical diffusion, but increases of course the
computational effort.

The central differencing scheme (CDS) uses the adjacent upstream and
downstream points:

f�x� D fi�1 C fi

2
This is a second-order approximation, i.e. halving the grid size will reduce the
error by 1/4 for fine grids. The approximation is independent of the sign of the
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flow direction. CDS tends to numerical instabilities and is therefore for usual
discretizations and speeds unsuited for the approximation of the convective
fluxes; the diffusive terms are usually approximated by CDS.

The linear upwind differencing scheme (LUDS) uses the cell centres of the
next two upstream points:

f�x� D fi�2 � fi�1

xi�2 � xi�1
�x � xi�1� C fi�1 u > 0

f�x� D fi � fiC1

xi � xiC1
�x � xi� C fi u < 0

This second-order approximation considers again the flow direction. LUDS is
more stable than CDS, but can yield unphysical results. This is sometimes
referred to as ‘numerical dispersion’.

Three points allow quadratic interpolation. The QUICK (quadratic upstream
interpolation for convective kinematics) uses two adjacent points upstream and
one downstream:

f�x� D fi C fi�1

2
� 1

8
�fi�2 C fi � 2fi�1� u > 0

f�x� D fi C fi�1

2
� 1

8
�fiC1 C fi�1 � 2fi� u < 0

This third-order approximation may also produce unphysical results due to
overshoots and requires of course a higher computational effort than the other
schemes presented so far.

Blended schemes combine the basic schemes in weighted averages. Optimum
weight factors depend on the problem. Blending combines the advantages
(stability, accuracy) of the individual schemes, but requires more effort in
each iteration. For an optimum weight the reduced number of iterations should
more than compensate for this. However, for ship flows our experience is still
insufficient to give general recommendations for blending schemes. Ideally,
the weighting factors are chosen depending on the local flow. This usually
involves the Peclet number, i.e. a local Reynolds number based on the local
velocity and the grid size. Even more sophisticated techniques use a basic
scheme (e.g. CDS) unless local instabilities (wiggles) are diagnosed automat-
ically. These instabilities are then smoothed or filtered. These schemes do not
require (error-prone) user input as do the simpler blending schemes. However,
no applications of such sophisticated schemes to ship flows were known in
the 1990s.

For the approximation of time derivatives implicit or explicit schemes may
be used. In explicit schemes, the variables (e.g. derivatives of velocities)
depend in each point in space only on known values of previous time steps.
They can thus be computed directly (explicitly). Implicit schemes couple
the unknowns to neighbouring values (in time) and require the solution of
a system of equations. Explicit schemes can usually not be employed for
ship flows, because they require very small time steps for the necessary very
fine spatial discretization. A popular implicit scheme is the Crank–Nicholson
scheme.
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1.5.7 Grid generation

Grid generation for CFD computations, especially RANSE computations,
accounts for the major part of the total time needed in a CFD project. For
complex three-dimensional simulations it is not uncommon for more than
80% of the man-hours required to perform a simulation to be spent on model
generation. Grids must capture the changes in the geometries of hull and
free surface (if included), but also all changes in the flow, with sufficient
accuracy. For reasons of computational accuracy and efficiency (convergence
rate), one should try to avoid extreme side ratios of cells and skewed angles
in individual cells. However, for ship flows the flow changes drastically in the
normal direction to the hull and little in the tangential longitudinal direction.
One would like to have a similar good resolution for all changes in the flow
direction. This automatically forces us to use cells with extreme side ratios,
e.g. 1:1000.

The numerical (non-physical) diffusion can be reduced by aligning grid
lines along streamlines. However, flow separation and flow recirculation in
ship flows allow this only to a limited extent.

Cartesian grids consist of elements with cell edges parallel to the axes of a
Cartesian coordinate system. They are thus easy to generate, but unsuited for
capturing complex geometries like ship hulls.

Therefore in practice curvilinear grids (body-fitted grids) are generally
employed. These grids may be orthogonal or non-orthogonal. Orthogonal grids
employ grid lines which intersect orthogonally. Since real ship geometries do
not intersect the water surface orthogonally, at least some non-orthogonal grid
lines have to be accepted. Otherwise, orthogonal grids are preferred since they
facilitate the description of the discretized equations.

Curvilinear orthogonal grids require considerable effort in grid generation,
but keep the complexity of the discretized equations relatively low. The
velocity components may be grid oriented (local) or Cartesian (global). A
general trend or preference is not yet apparent, but a formulation in Cartesian
coordinates seems to react less sensitively to small deviations from smoothness
in the grid.

Grid generation starts with specifying the cell faces on the boundaries (hull,
water surface, inlet, outlet, outer boundary). Then the internal cell nodes are
interpolated. Various techniques exist for this interpolation:

ž Algebraic grid generation uses algebraic transformation and interpolation
functions to create the grid geometry. For complex geometries (like real
ship hulls), the resulting grid is often not smooth enough.

ž Conformal mapping has been used for ships where the original mapping was
enhanced by additional transformations to ensure that for real ship geome-
tries the grids (within each two-dimensional section) were (nearly) orthog-
onal. However, this technique is fundamentally limited to two dimensions,
i.e. for cross-sections. Smoothness and orthogonality in the longitudinal
direction cannot be ensured automatically. Therefore, these grid generation
techniques have been replaced largely by methods that solve (a simple)
three-dimensional differential equation.

ž Grid generation based on differential equations solve first a (relatively
simple) differential equation subject to certain user-specified control
functions or boundary conditions. The most popular choice is the Poisson
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equation, i.e. the Laplace equation with a specified non-zero function on
the r.h.s. Thompson et al. (1985) describe such a method in detail which
allows the user to control distance and orientation of the grid lines by
specifying control functions. However, the process involves trial and error
requiring either patience or experience from the user. Poisson solvers
create automatically smooth and orthogonal grids. Subsequent algebraic
interpolation may speed up the process to find an appropriate grid. Solving
the Poisson equation can be interpreted physically as determining lines of
constant temperature in the fluid where the ship is a heat source with heat
distribution specified by the control functions.

Staggered grids specify, e.g., the pressure at the cell centre and the veloci-
ties at the cell faces. This improves automatically the numerical stability of
the scheme, but is particularly unsuited for multigrid acceleration. Therefore
staggered grids are becoming increasingly unpopular. Instead, other numerical
techniques are employed to avoid pressure oscillations from cell to cell.

Grid generation is vital for the economic success of a CFD method. Grid
techniques have successively developed to allow more flexibility and faster
grid generation:

ž Single-block structured grids
Structured grids arrange cells in a simple nx Ð ny Ð nz array where each
cross-section has the same number of cells, even though the cell shape
and size may differ arbitrarily. Structured grids allow easy automation of
grid generation and can easily be coupled with multigrid methods. They
were traditionally employed because they allow simple program structures.
Neighbouring cells can be determined by a simple mathematical formula
avoiding the necessity for storing this information. However, this approach
to grid generation does not allow the arrangement of additional cells in
areas where the flow is changing rapidly. The choice is then either to accept
insufficient accuracy in some areas or unnecessarily many cells (and thus
computational effort) for areas where the flow is of little interest. In addition,
complex ship geometries involving appendages are virtually impossible to
model with such a grid. At least, the resulting grid is usually not smooth or
involves highly skewed cells. As a result convergence problems are frequent.

ž Block-structured grids
Block-structured grids combine various single-block grids. Each block is
then structured and easily generated. But the block-structured approach
allows some areas to discretize finer and others coarser. Blocks are also
more easily adapted to local geometries allowing smoother grids with largely
block-like cells which improve convergence. The interpolation of results at
each block requires some care, but techniques have been developed that
allow accurate interpolation even for non-matching block interfaces, i.e.
block interfaces where grid lines do not coincide.

ž Chimera grids
Chimera was a fire-breathing (female) mythological monster that had a lion’s
head, a goat’s body, and a serpent’s tail. Chimera grids are arbitrarily assem-
bled blocks of grids that overlap. They thus pose even fewer restrictions on
grid generation and appear to be a very good choice for grid generation in
ships, even though the interpolation between blocks is more complicated
than for block-structured grids.
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ž Unstructured grids
Unstructured grids allow the largest flexibility in grid generation, but require
far more effort and are therefore not popular for ship flows. However,
unstructured grid programs can also handle structured or block-structured
grids. One may then generate a simple grid and use adaptive grid techniques
which automatically generate unstructured grids in the computation.

Grids should be rather fine in regions of high velocity or pressure gradients.
The curvature of the ship hull and the experience with similar ship hull forms
give some indications where such regions are to be expected, but often one
identifies only after computations regions where the grid should have been
finer. Ideally the computation should refine the grid in these regions auto-
matically during a computation. Such adaptive grid techniques are subject
to research for ship flows. They should bring considerable progress in accu-
racy without increasing computational effort excessively, but require usually
unstructured grid capabilities of the code.
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Propellers

2.1 Introduction

Ships are predominantly equipped with ‘simple’ screw propellers. Special
means of propulsion include:

ž nozzled propellers
ž waterjets
ž surface-piercing propellers
ž contra-rotating propellers (almost exclusively for torpedoes)
ž azimuthing propellers
ž Voith–Schneider propellers

These are discussed in more detail by Schneekluth and Bertram (1998). In the
past, paddle-wheels played a large role for river boats, but have been largely
replaced now by propellers or waterjets. We will limit ourselves here to ships
equipped with propellers. Waterjets as alternative propulsive systems for fast
ships, or ships operating in extremely shallow water are discussed by, e.g.,
Allison (1993), Kruppa (1994), and Terswiga (1996). The Royal Institution
of Naval Architects has in addition hosted dedicated conferences on waterjet
propulsion in 1994 and 1998 and the ITTC has a subcommittee reviewing the
continuing progress on waterjets.

Propellers turning clockwise seen from aft are ‘right-handed’. In twin-screw
ships, the starboard propeller is usually right-handed and the port propeller
left-handed. The propellers are then turning outwards.

The propeller geometry is given in technical drawings following a special
convention, or in thousands of offset points or spline surface descriptions,
similar to the ship geometry. The complex propeller geometry is usually char-
acterized by a few parameters. These include (Fig. 2.1):

ž propeller diameter D
ž boss (or hub) diameter d
ž propeller blade number Z
ž propeller pitch P

A propeller may be approximated by a part of a helicoidal surface which in
rotation screws its way through the water. A helicoidal surface is generated
as follows. Consider a line AB perpendicular to a line AA0 as shown in
Fig. 2.2. AB rotates around the axis of AA0 with uniform angular velocity

37
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while moving along AA0 with uniform speed. AB then forms a helicoidal
surface. Its pitch is the distance AA0. A propeller with a flat face and radially
constant pitch would trace out a helicoidal surface. In reality, ship propellers
often have neither a radially constant pitch nor a flat face. Then averaging
in a circumferential direction creates a flat reference line to define the pitch
as a function of the radius. Again averaging in a radial direction may define
an average pitch P used to describe the propeller globally. Alternatively,
the pitch at one radial position, typically 0.7R D 0.35D, is taken as a single
value to represent the radial pitch distribution.

ž disc area A0 D � Ð D2/4
ž projected area AP

The blade area can be projected on to a plane normal to the shaft yielding
the projected outline. Usually the area of the boss is not included.

ž expanded blade area AE
The expanded outline is obtained if the circumferential chord of the blade
is set out against the radius. The area of the formed outline is AE.

ž skew (back)
The line of the half chord length of each radial cross-section of the propeller
is usually not a straight line, but curved back relative to the rotation of the
blade. Skew is usually expressed as the circumferential displacement of
the propeller tip made non-dimensional by the propeller diameter. Skew
back evens out to some extent the influence of a highly non-uniform wake
field and reduces peak values of propeller-induced vibrations. Modern ship
propellers always have some skew back.
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ž rake iG
The face of the propeller may be tilted versus the normal plane on the
propeller shaft. The tilt is usually backwards to increase the clearance
between the blade tip and the hull.

ž profile shape
A propeller section at a given radius is the intersection between the blade and
a circular cylinder of that radius. The section is then laid out flat (devel-
oped) and displayed as a two-dimensional profile. Historically, the early
propeller designs had a flat face and circular cross-sections which were then
completely described by the blade width and maximum thickness. Today’s
profiles are far more complicated, but again usually characterized by a few
parameters. The camber line is the line through the mid-thickness of the
profile. If this line is curved, the profile is ‘cambered’. The chord is the line
joining the leading edge and the trailing edge. The camber is the maximum
distance between the camber line and the chord. Profile sections are often
defined by specifying the ordinates of the face and back as measured from
the camber line.

Some of these data are often given as non-dimensional ratios:

ž d/D
ž AE/A0
ž P/D
ž iG

The blade number Z is an important parameter for propeller-induced vibra-
tion. In general, odd numbers Z feature better vibration characteristics than
even numbers. High blade numbers reduce vibration problems (due to less
pronounced pressure peaks), but increase manufacturing costs. For large ships,
blade numbers of 4 to 7 are typical. For small boats, blade numbers of 2 to
4 are typical. The propellers for large ships are always tailored towards the
specific ship and involve extensive hydrodynamic analyses. The propellers for
boats are often mass-produced.

Typical extended blade area ratios are 0.3 < AE/A0 < 1.5. Area ratios above
1 mean overlapping blades which are expensive to manufacture. AE/A0 is
chosen such that the blade load is kept low enough to avoid unacceptable
cavitation. Therefore AE/A0 increases with propeller load (thrust per propeller
area A0). The propeller efficiency decreases with AE/A0 since the increased
area also increases frictional losses. Larger AE/A0 also often demand higher
blade numbers to avoid too small side ratios for the blades.

2.2 Propeller curves

Thrust T and torque Q are usually expressed as functions of rpm n in non-
dimensional form as:

KT D T

� Ð n2 Ð D4

KQ D Q

� Ð n2 Ð D5
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The force T is made non-dimensional by the propeller disk area times the
stagnation pressure based on the circumferential speed, omitting a factor �2/8.
The moment Q is made non-dimensional by the additional length D, i.e. the
propeller diameter.

The advance number J is defined as J D VA/�nD�. VA is the average inflow
speed to the propeller. The propeller open-water efficiency is derived from
thrust and torque coefficients and the advance number:

�0 D T Ð VA
2� Ð n Ð Q D KT Ð � Ð n2 Ð D4

KQ Ð � Ð n2 Ð D5 Ð VA
2� Ð n D KT

KQ
Ð J

2�

KT, KQ, and �0 are displayed over J. The curves are mainly used for propeller
optimization and to determine the operation point (rpm, thrust, torque, power)
of the ship. While the use of diagrams in education is still popular, in practice
computer programs are almost exclusively used in propeller design. These
represent traditionally the curves as polynomials in the form:

KT D
∑

CT Ð Js Ð
(
P

D

)t
Ð
(
AE
A0

)u
Ð Zv

with tables of coefficients:

CT s t u v

0.00880496 0 0 0 0
�0.20455403 1 0 0 0

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
�0.00146564 0 3 2 2

For standard Wageningen propellers the table consists of 49 coefficients for KT
and 56 coefficients for KQ. While this may appear tedious, it is easy to program
and fast to evaluate either by higher programming languages or spreadsheets.
Diagrams are still popular in practice for documentation and visualization of
tendencies.

Another important open-water parameter is the thrust loading coefficient:

CTh D T

� Ð V2
A Ð D2 Ð �

8

This coefficient makes the thrust non-dimensional with the propeller disk area
times stagnation pressure based on the propeller inflow velocity. Sometimes
CTh is also plotted explicitly in propeller characteristics diagrams, but some-
times it is omitted as it can be derived from the other quantities.

Figure 2.3 shows a typical propeller diagram. KT and KQ decrease
monotonously with J. The efficiency �0 has one maximum.

The open-water diagrams are based on stationary flow. They are only suited
for the case when the ship moves steadily ahead. For cases where the speed is
changed, so-called four-quadrant diagrams are used. The name derives from a
classification into four possible combinations:

ž ship has forward speed, propeller delivers forward thrust
ž ship has forward speed, propeller delivers reverse thrust
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ž ship has reverse speed, propeller delivers forward thrust
ž ship has reverse speed, propeller delivers reverse thrust

The results of corresponding open-water tests are displayed in diagrams as
shown in Fig. 2.4. The abscissa is the effective advance angle ˇ defined by:

tan ˇ D VA
0.7 Ð � Ð n Ð D
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Displayed are non-dimensional modified thrust and torque coefficients:

CŁ
Th D T

�V2
R�D

2/8

CŁ
Q D Q

�V2
R�D

3/8

four-quadrant diagrams require considerably higher experimental effort than
regular open-water diagrams. They are only available for some selected
propellers. Four-quadrant diagrams are mainly used in computer simulations
of ship manoeuvres.

2.3 Analysis of propeller flows

2.3.1 Overview of methods

Propellers create thrust as each of the blades is subject to local lift forces.
Ideally, this lift is created with minimum drag losses. This basic goal is the
same for other foil flows, e.g. airfoils, ship rudders etc. Each propeller section
resembles a cross-section of a foil. However, unlike aeronautical foils, ship
propellers feature short and stubby blades with a much smaller span-to-chord
ratio than in aeronautical foils. The reason is that the limited diameter and the
danger of cavitation impose more severe restrictions on ship propellers.

The small span-to-chord ratio of a ship propeller blade is one of the reasons
why ship propeller flows are so complex. All two-dimensional approaches to
model the flow around a propeller blade (like lifting-line theories) introduce
considerable errors that must be corrected afterwards. Lifting-line approaches
are still popular in propeller design as a preliminary step, before more powerful,
but also more expensive, three-dimensional methods are employed. Many
lifting-line codes in use today can be traced back to a fundamental formulation
given by Lerbs (1952, 1955).

The advent of high-skew propellers necessitated truly three-dimensional
theories to model the flow around the propeller. Empirical corrections for the
lifting-line method could no longer be applied satisfactorily to the new and
more complex propeller geometries. The approach was then to use lifting-line
methods for an initial design serving as a starting point for more sophisticated
methods which could then serve to answer the following questions:

ž Will the propeller deliver the design thrust at the design rpm?
ž What will be the propeller (open-water) efficiency?
ž How will the propeller perform at off-design conditions?
ž Will the pressure distribution be such that the propeller features favourable

cavitation characteristics?
ž What are the time-dependent forces and moments from the propeller on the

propeller shaft and ultimately the shaft bearings?
ž What are the propeller-induced pressures at the ship hull (exciting vibrations

and noise)?

These more sophisticated three-dimensional propeller theories used in practical
propeller design today are lifting-surface methods, namely vortex-lattice
methods, which do not consider the blade thickness, and boundary element
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methods or panel methods, which do consider the blade thickness. Field
methods were still subject to research by the end of the 1990s.

The main methods in increasing complexity are listed below with their
respective advantages and disadvantages:

ž Momentum theory
The propeller is reduced to an actuator disk which somehow creates a
pressure jump in the flow. Thrust and corresponding delivered power are
expressed by increased velocities in the propeller plane and the contracted
wake downstream of this plane. This simple model is unsuited for propeller
design, but popular as a simple propeller model in RANSE ship computa-
tions and useful in understanding, some basic concepts of propeller flows.
C Simple and fast; yields ideal efficiency �i
� Rotative and viscous losses not modelled; momentum theory is no

method to design propellers or analyse given propeller designs
ž Lifting-line method

Propeller blade is reduced to radially aligned straight vortices (lifting lines).
The vortex strength varies over the radius. Free vortices are shed in the
flow.
C Proven in practice; suitable for initial design of propellers, rotative losses

reflected in model; viscous losses incorporated by empirical corrections
� Does not yield complete propeller geometry; cross-sections found, but

angle of incidence and camber require corrections; no simple way to
consider skew

ž Lifting-surface method, especially vortex-lattice method
Propeller blade is reduced to a grid of horseshoe vortices; pressure distribu-
tion on the blade follows from Bernoulli’s law from the induced velocities;
pressure distribution yields forces and moments for the whole propeller.
C Blade modelled three dimensionally; corrections only necessary for

viscous effects; good convergence to grid-independent solutions with
grid refinement

� More complex programming; pressure distribution must be corrected at
the propeller hub

ž Boundary element method/panel method
Exact formulation of the potential theory problem with source or dipole
panels.
C No simplifications besides the potential flow assumption; finite velocities

in the hub region
� Programming complex, especially for the Kutta condition; relatively large

number of dipole and/or source panels necessary; flow near propeller tip
still not well captured

ž RANSE method
Field method formulation of the three-dimensional viscous flow.
C Effective wake easily incorporated; viscous effects decreasing propeller

efficiency directly captured; flow well captured also near hub and tip of
propeller

� Grid generation expensive; computation expensive; turbulence model
questionable

Dedicated treatment of propeller flow analysis methods, predominantly based
on lifting-surface and panel methods, can be found in, e.g., Breslin and
Andersen (1993), Kinnas (1996), and Streckwall (1993, 1999).
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2.3.2 Momentum theory

Momentum theory models the propeller as a simple actuator disk accelerating
the flow in the axial direction by somehow creating a pressure jump in the
propeller plane. The propeller is then seen as a continuous circular disk with
infinite blades and AE/A0 D 1. The model is too crude to be of any value
in propeller design, but allows some valuable insight into the global mecha-
nisms of a propeller. The momentum theory regards inflow and outflow of the
propeller plane as the flow through a tube of varying cross-section, but always
of circular shape. Only the longitudinal velocity component is considered, i.e.
the velocity is a scalar quantity.

The inflow to the propeller is given by � Ð uA Ð AA where AA is the cross-
sectional area of the considered propeller plane. The propeller induces a
velocity jump to the outflow velocity uj and the cross-sectional area of the
‘flow tube’ is Aj. The thrust T is the change in the momentum:

T D � Ð uA Ð AA Ð �uj � uA�

Continuity requires Aj Ð uj D AA Ð uA, i.e. the flow contracts after the propeller
due to the higher velocity (Fig. 2.5).

The velocity in the propeller plane is the average between the velocities
far upstream and far downstream of the propeller in this model. Bernoulli’s
law couples the pressure to the velocity yielding qualitatively the distribution
shown in Fig. 2.5.

The actuator disk yields an ideal efficiency for the propeller of:

�i D 2uA
uj C uA

Ship

p

uj

uA

x

x

Figure 2.5 Momentum theory considers propeller flow as one-dimensional flow with sudden
pressure jump accelerating velocity from uA to uj
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This formula can be interpreted as follows. The smaller increase in velocity
due to the propeller, the better is the efficiency. If the velocity downstream
is the same as the velocity upstream, the efficiency would be an ideal �i D 1.
(But no thrust would be produced.) The ideal efficiency can also be expressed
in terms of the thrust loading coefficient cTh as:

�i D 2

1 C
√

1 C cTh

Thus a large thrust loading coefficient decreases the efficiency.
The conclusion for practical propeller design is that usually the propeller

diameter should be chosen as large as possible to increase the efficiency.

2.3.3 Lifting-line methods

Lifting-line methods still form a vital part of practical propeller design. They
find the radial distribution of loading optimum with respect to efficiency as
a first step to determine the corresponding blade geometry. Alternatively, the
radial distribution of loading may be specified to determine the corresponding
blade geometry (Lerbs (1952, 1954)). Of course, this approach works only
within limits. If unrealistic or too demanding pressure distributions are speci-
fied, either no solution is found or the error in framework of the theory is so
large that the solution does not reflect reality.

Lifting-line methods for propellers were adapted from lifting-line theory
for straight foils. We shall therefore briefly review the lifting-line theory for
straight foils.

A straight line of vorticity creates lift orthogonal to the direction of the
vortex line and the direction of the inflow, (Fig. 2.6). Helmholtz’s first and
second laws state:

1. The strength of a vortex line is constant along its length.
2. A vortex line must be closed, it cannot end in the fluid.

As a consequence, the vortex lines on a foil are bent downstream at the end
of the foil. Far downstream these vortex lines are closed again, but often ‘far

Horseshoe
vortex Foil

Inflow

Lift

Γ

Figure 2.6 Lifting-line theory is based on representing the foil by bound vortex and trailing
vortices
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downstream’ is interpreted as ‘at infinity’, i.e. the vortex line forms a semi-
infinite horseshoe vortex. The vortex segment representing the foil is called
the ‘bound’ vortex, as it stays always with the foil. The two vortex segments
swept downstream are the ‘trailing vortices’, also denoted as axial vortices
or tip vortices. The closing vortex segment far downstream is the ‘starting’
vortex.

In reality, the lift and thus the vorticity (vortex strength) are not constant
over the foil span. This can be considered by approximating the continuous lift
by a number of discrete, piecewise constant vortex segments. Each of these
will then produce trailing vortices (Fig. 2.7). In sum, the vortex segments form
a ‘lifting line’ of (stepwise) variable vorticity. The trailing vortices induce a
flow at the foil which is downward for positive lift. This velocity is therefore
called downwash and changes the effective inflow angle experienced by each
section of the foil.

Bound
vorticity

Trailing vorticity
x

z
y

Figure 2.7 A better model represents the foil by a distribution of horseshoe vortices

The strengths of the individual vortex elements (each forming a closed or
semi-infinite loop) are determined by requiring that there is no flow through the
foil at a corresponding number of collocation points. This results in a system
of linear equations which is solved numerically. Once all vortex strengths are
known, the velocities and pressures can be evaluated everywhere. Lift and
drag can then be computed.

For propellers, each blade is represented by one lifting line extending from
hub to blade tip. Typically the lifting lines are straight with skew and rake
being neglected at this point in the analysis. The proper end condition for the
lifting line at the hub is unclear. Usually, the hub is neglected and the vorticity
is required to go to zero as at the blade tip. This is called the ‘hubless propeller
assumption’. Lerbs has argued that near the hub, the blades are close enough
together such that the positive pressure on the face of one blade is cancelled by
the negative pressure on the back of the adjacent blade. However, in practice
the lifting-line results near the hub, but also often near the blade, are unrealistic
and are then manually corrected (smooth connection to the rest of the lift
distribution based on human insight).

2.3.4 Lifting-surface methods

The discussion to substitute the lifting-line approach by lifting-surface theo-
ries dates back to the 1950s, but the realization of this goal was initially
impossible for real ship propeller geometries due to insufficient computing
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power. The earliest lifting-surface attempts were based on mode functions
which prescribed continuous distributions of surface singularities. At that time,
the mode function approach was the ordinary procedure for solving lifting-line
or two-dimensional wing section problems and naturally it was tried first. For
lifting surfaces that had to fit propeller blades these mode functions needed
a careful and complicated mathematical treatment. Their ability to describe
arbitrary blade geometries was poor. The second generation of lifting-surface
methods was developed around the late 1970s when sufficient computer power
became widely available (Kerwin (1978)). These methods used vortex lattices.
Vortex-lattice methods are characterized by comparably simple mathematics.
They can handle arbitrary blade geometries, but neither consider the true
blade thickness, nor the propeller hub. This makes the theory of vortex-lattice
methods more complicated than panel methods, but reduces the number of
unknowns and thus the computational effort considerably. Despite the theo-
retical inferiority, vortex-lattice methods gave in benchmark tests of the ITTC
for propellers with moderate skew-back results of comparable quality as panel
methods. Figure 2.8 shows a typical discretization of the propeller blades and
the wake. The hub is not modelled which leads to completely unrealistic results
in the immediate vicinity of the hub.

Vortex-lattice methods were in the 1990s extended to rather complicated
propeller geometries, e.g. contra-rotating propellers, and unsteady propeller
inflow (nominal wake computations). Cavitation may be simulated by addi-
tional singularities of both source and vortex type, but this remains a rather
coarse approximation of the real phenomenon.

Figure 2.8 Vortex-lattice model of a propeller and trailing wakes



48 Practical Ship Hydrodynamics

A complete vortex-lattice method (VLM) can be established on the basis of
the lifting-line method just described. The lifting-line model was used to find a
circulation  that corresponds to a given resultant flow direction at the lifting
line and is able to provide the predetermined (design) thrust. With a vortex
lattice instead of a lifting line, a model for the material blade is inserted. One
can now really investigate whether a given geometry corresponds to a desired
thrust, a task that is beyond the scope of a lifting-line theory.

Figure 2.9 shows a vortex-lattice system. The flow is generated by span-
wise and (dependent) streamwise line vortices. Control points are positioned
inside the loops of the vortex system. For steady flow, the vortex elements
in the wake have the same strength in each spanwise segment. The vertical
vortex lines then cancel each other and a semi-infinite horseshoe vortex results.
The most downstream control point is located at the trailing edge behind the
last streamwise vortex which is a very robust measure to enforce the Kutta
condition.

Collocation point
Vortex line segment

Figure 2.9 Allocation of vortex-lattice elements on propeller blade

The kinematic boundary condition (zero normal velocity in a blade-fixed
coordinate system) together with some basic relations between blade vortices
and trailing vortices is sufficient to calculate blade surface pressures and thus
propeller thrust and torque. Although the kinematic condition is fulfilled on a
zero thickness blade, the influence of the blade thickness is not excluded. The
thin wing theory provides a simple formula to derive a source system from the
slope of the section contours. This source system already enters the kinematic
conditions and serves to correct the angle of attack of the blade sections for
the displacement effect of the neighbouring blades.

In most applications a ‘frozen’ vortex wake is used, i.e. the trailing vortex
geometry is fixed from the start. A more or less empirical relation serves to
prescribe the pitch of the helical lines. Since surface friction effects are not
part of the solution, the forces and moments from the vortex lattice must be
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corrected subsequently. This is usually achieved by local section drag coeffi-
cients using empirical relations to express the Reynolds number dependence.

Figure 2.10 shows a typical pressure distribution for a propeller blade cross-
section. The pressure coefficient can be decomposed into a mean value between
both sides of the profile and a difference cp. The pressure on the suction
side is then obtained by subtracting cp from the mean value; the pressure on
the other side by adding cp. Lifting-surface methods arrange the vortex and
source elements on the mean chord surface of the blade. Following Bernoulli’s
law, the pressure can be computed from the velocities. This yields pressure
distributions which usually reproduce the actual pressure distributions quite
well except for a narrow region at the leading edge which may extend to a
length of approximately twice the nose radius. The sources yield the average
pressure distribution and the vortex elements induce the pressure difference
cp. As the source strengths are explicitly derived from the change of the
profile thickness in longitudinal direction, the main problem is to determine
the vortex strengths.

Back (suction side)
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Figure 2.10 Pressure distribution on a propeller blade profile

2.3.5 Boundary element methods

Panel methods were developed to overcome the disadvantage of an incomplete
geometry model. Panel methods also model the blade thickness and include the
hub in the numerical model. The development of panel methods for propellers
was apparently not an easy task. After the ship hull flow could be treated by
panel methods it took another decade until in the late 1980s before the first
successful panel approaches were established for propellers. The implementa-
tion of a robust Kutta condition is a decisive element of each propeller panel
code, since it controls torque and thrust. In principle, there exist many possi-
bilities to create panel codes, depending on panel type and the formulation of
the problem, e.g. Kerwin et al. (1987). The following panel types are found:

ž dipole panels
ž source panels
ž mix of dipole panels and source panels
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The problem may be formulated as

ž direct formulation (potential formulation); potential itself is the unknown
ž indirect formulation (velocity formulation); source or dipole strength is

unknown

For indirect formulations, Kerwin et al. (1987) show how a dipole-based
formulation can be transformed to an equivalent vortex-based formulation.

The majority of the panel codes used for propellers follows Morino’s
approach (Morino and Kuo (1974), Morino (1975)). Morino’s approach is
a direct formulation, i.e. it solves directly for the potential and determines
velocities by numerical differentiation. The approach uses exclusively dipole
panels which discretize the surfaces of the propeller blades, the hub, and part of
the wakes of each blade. The Kutta condition demands that at the trailing edge
the pressure difference between face and back should vanish. This couples the
dipoles on the wake to the dipoles on the propeller. The panels in the wake
all have the same strength for steady flow conditions. The pitch of the wake is
either specified by largely empirical relations or determined iteratively as part
of the solution. The Kutta condition enforcing a vanishing pressure jump at
the trailing edge is a non-linear condition requiring an iterative solution. The
numerical implementation of the Kutta condition requires great care, since
simplifications or conceptual errors in the physical model may strongly affect
the computed lift forces.

The main problems of these methods lie in:

ž numerical realization of the Kutta condition (stagnation point at the trailing
edge)

ž numerical (accurate) determination of velocity and pressure fields

In the 1990s, panel methods were presented that were also capable of
solving the problem for time-dependent inflow and ducted propellers, e.g.
Kinnas (1996).

2.3.6 Field methods

The common procedure to run unsteady propeller vortex-lattice or panel
methods contains an inherent weakness. The ship is usually represented by
the velocity field measured without the propeller at the propeller plane, i.e.
the nominal wake. But in a real ship, the propeller rearranges the streamlines
that reach the propeller plane, i.e. the propeller operates in the effective wake.
There are measures to correct the nominal wake, but it is at least doubtful if
these treat the details of the wake correctly.

No such complications arise in theory if viscous flow computations are
employed. It is possible to interactively couple viscous flow computations
for the ship based on RANSE solvers with potential flow computations for
the propeller, e.g. vortex-lattice or panel methods, and research is active to
solve also the flow around propellers using RANSE solvers. The flow can
then be specified once at an inlet area upstream of the propeller and from
there to the propeller plane the flow develops in agreement with the equations
for mass and momentum. The viscous flow representation for the propeller
may ultimately be embedded in a viscous model for the ship, so that all
problems from decoupling ship flow and propeller flow will vanish. Viscous



Propellers 51

flow computations are able to deliver accurate flow details in the tip region of
the propeller blade.

Typical propeller geometries require careful grid generation to assure
converged solutions. The warped propeller geometry makes grid generation
particularly difficult especially for high-skew propellers. By the late 1990s,
most RANSE applications for propellers were still for steady flow (open-water
case), but first unsteady computations in the ship wake appeared. However, the
excessive effort in grid generation limited the calculations to research projects.

2.4 Cavitation

High velocities result in low pressures. If the pressure falls sufficiently low,
cavities form and fill up with air coming out of solution and by vapour. This
phenomenon is called cavitation. The cavities disappear again when the pres-
sure increases. They grow and collapse extremely rapidly, especially if vapour
is filling them. Cavitation involves highly complex physical processes with
highly non-linear multi-phase flows which are subject to dedicated research
by specialized physicists. We will cover the topic only to the extent that any
naval architect should know. For a detailed treatment of cavitation for ship
propellers, the reader is referred to the book of Isay (1989).

For ship propellers, the velocities around the profiles of the blade may be
sufficiently high to decrease the local pressures to trigger cavitation. Due to
the hydrostatic pressure, the total pressure will be higher on a blade at the
6 o’clock position than at the 12 o’clock position. Consequently, cavitating
propellers will then have regions on a blade where alternatingly cavitation
bubbles are formed (near the 12 o’clock position) and collapse again. The
resulting rapid succession of explosions and implosions on each blade will
have various negative effects:

ž vibration
ž noise (especially important for navy ships like submarines)
ž material erosion at the blade surface (if the bubble collapse occurs there)
ž thrust reduction (Fig. 2.11)

Cavitation occurs not only at propellers, but everywhere where locally high
velocities appear, e.g. at rudders, shaft brackets, sonar domes, hydrofoils etc.

Cavitation may be classified by:

ž Location
tip cavitation, root cavitation, leading edge or trailing edge cavitation,
suction side (back) cavitation, face cavitation etc.

ž Cavitation form
sheet cavitation, cloud cavitation, bubble cavitation, vortex cavitation

ž Dynamic properties of cavitation
stationary, instationary, migrating

Since cavitation occurs in regions of low pressures, it is most likely to occur
towards the blade tips where the local inflow velocity to the cross-sections
is highest. But cavitation may also occur at the propeller roots near the hub,
as the angle of incidence for the cross-sections is usually higher there than
at the tip. The greatest pressure reduction at each cross-section profile occurs
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Figure 2.11 Influence of cavitation on propeller characteristics
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Figure 2.12 Vapour pressure as function of temperature

usually between the leading edge and mid-chord, so bubbles are likely to form
there first.

In ideal water with no impurities and no dissolved air, cavitation will occur
when the local pressure falls below vapour pressure. Vapour pressure depends
on the temperature (Fig. 2.12). For 15° it is 1700 Pa. In real water, cavitation



Propellers 53

occurs earlier, as cavitation nuclei like microscopic particles and dissolved gas
facilitate cavitation inception. The cavitation number # is a non-dimensional
parameter to estimate the likelihood of cavitation in a flow:

# D p0 � p
1
2�V

2
0

p0 is an ambient reference pressure and V0 a corresponding reference speed.
p is the local pressure. For # < #v (the cavitation number corresponding to
vapour pressure pv) the flow will be free of cavitation in an ideal fluid. In
reality, one introduces a safety factor and sets a higher pressure than vapour
pressure as the lower limit.

Cavitation is predominantly driven by the pressure field in the water. Cavita-
tion avoidance consequently strives to control the absolute pressure minimum
in a flow. This is achieved by distributing the thrust on a larger area, either
by increasing the diameter or the blade area ratio AE/A0.

The most popular approach to estimate the danger of cavitation at a propeller
uses Burill diagrams. These diagrams can only give a rough indication of
cavitation danger. For well-designed, smooth propeller blades they indicate a
lower limit for the projected area. Burill uses the coefficient $c:

$c D T
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Figure 2.13 Burill diagram
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VR is the absolute value of the local velocity at 0.7 of the propeller radius. VA
is the inflow velocity to the propeller plane. Ap is the projected propeller area.
Burill uses as reference pressure the atmospheric pressure plus the hydrostatic
pressure at the propeller shaft:

p0 D patm C �gh

The Burill diagram then yields limiting curves (almost straight) to avoid cavi-
tation (Fig. 2.13). The curves have been transformed into algebraic expressions
and are also included in propeller design programs. The upper limit for $c yields
indirectly a minimum Ap which yields (for Wageningen B-series propellers)
approximately the expanded blade area:

AE ³ Ap
1.067 � 0.229�P/D�

2.5 Experimental approach

2.5.1 Cavitation tunnels

Propeller tests (open-water tests, cavitation tests) are usually performed in
cavitation tunnels. A cavitation tunnel is a closed channel in the vertical plane
recirculating water by means of an impeller in the lower horizontal part. This
way the high hydrostatic pressure ensures that even for reduced pressure in
the tunnel, the impeller itself will not cavitate. The actual test section is in the
upper horizontal part. The test section is provided with observation glass ports.
The tunnels are designed to give (almost) uniform flow as inflow to the test
section. If just the propeller is tested (with the driving shaft downstream), it
is effectively tested in open water. Larger circulation tunnels also include ship
models and thus testing the propeller in the ship wake. The ship models are
sometimes shortened to obtain a thinner boundary layer in the aftbody (which
thus resembles more the boundary layer in a large-scale model). Alternatively,
sometimes grids are installed upstream to generate a flow similar to that of a
full-scale ship wake. This requires considerable experience and is still at best
a good guess at the actual wake field.

Vacuum pumps reduce the pressure in the tunnel and usually some devices
are installed to reduce the amount of dissolved air and gas in the water. Wire
screens may be installed to generate a desired amount of turbulence.

Cavitation tunnels are equipped with stroboscopic lights that illuminate the
propeller intermittently such that propeller blades are seen always at the same
position. The eye then perceives the propeller and cavitation patterns on each
blade as stationary.

Usual cavitation tunnels have too much background noise to observe or
measure the noise making or hydro-acoustic properties of a propeller which
are of great interest for certain propellers, especially for submarines or anti-
submarine combatants. Several dedicated hydro-acoustic tunnels have been
built worldwide to allow acoustical measurements. The HYKAT (hydro-
acoustic cavitation tunnel) of HSVA is one of these.
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2.5.2 Open-water tests

Although in reality the propeller operates in the highly non-uniform ship wake,
a standard propeller test is performed in uniform flow yielding the so-called
open-water characteristics, namely thrust, torque, and propeller efficiency.

The model scale ' for the model propeller should be the same as for the ship
model in the propulsion tests. For many propulsion tests, the ship model scale
is determined by the stock propeller, i.e. the closest propeller to the optimum
propeller on stock at a model basin. The similarity laws (see section 1.2,
Chapter 1) determine for geometrical and Froude similarity:(

VA
n Ð D

)
s

D
(
VA
n Ð D

)
m

In other words, the advance number J D VA/�nD� is the same for model and
full scale. J has thus a similar role for the propeller as the Froude number
Fn has for the ship. VA is the average inflow speed to the propeller, n the
propeller rpm, and D the propeller diameter. � Ð n Ð D is the speed of a point
at the tip of a propeller blade in circumferential direction.

The Reynolds number for a propeller is usually based on the chord length
of one blade at 0.7 of the propeller radius and the absolute value of the local
velocity VR at this point. VR is the absolute value of the vector sum of inflow
velocity VA and circumferential velocity:

VR D
√
V2
A C �0.7�nD�2

Propeller model tests are performed for geometrical and Froude similarity. It
is not possible to keep Reynolds similarity at the same time. Therefore, as in
ship model tests, corrections for viscous effects are necessary in scaling to full
scale. ITTC 1978 recommends the following empirical corrections:

KTs D KTm � 0.3 Ð Z Ð
( c
D

)
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Ð P
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D
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c is the propeller blade chord length at 0.7R, R the propeller radius, CD D
CDm � CDs is a correction for the propeller resistance coefficient with:
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Here t is the (maximum) propeller blade thickness, Rn is the Reynolds number
based on VR, both taken at 0.7R. kp is the propeller surface roughness, taken
as 3 Ð 10�5 if not known otherwise.
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2.5.3 Cavitation tests

Cavitation tests investigate the cavitation properties of propellers. Experiments
usually observe the following similarity laws:

ž Geometrical similarity making the propeller as large as possible while still
avoiding tunnel wall effects.

ž Kinematical similarity, i.e. same advance number in model and ship JmD Js.
ž Dynamical similarity would require that model and full-scale ship have

the same Froude and Reynolds numbers. Reynolds similarity is difficult
to achieve, but the water speed is chosen as high as possible to keep the
Reynolds number high and reduce scaling effects for the friction on the
blades. Gravity effects are negligible in propeller flows, i.e. waves usually
play no role. Thus the Froude number may be varied.

ž Cavitation similarity requires same cavitation numbers in model and full-
scale ships. The tunnel pressure is adjusted to give the same cavitation
number at the propeller shaft axis to approximate this condition.

ž For similarity in bubble formation in cavitation, the Weber number should
also be the same in model and ship:(

� Ð V2 Ð l
Te

)
m

D
(
� Ð V2 Ð l
Te

)
s

Te is the surface tension. This similarity law is usually violated.

The cavitation tests are performed for given inflow velocity and cavitation
number, varying the rpm until cavitation on the face and back of the propeller
is observed. This gives limiting curves # D #�J� for cavitation-free operation.
The tests are often performed well beyond the first inception of cavitation
and then the extent and type of cavitation is observed, as often designers are
resigned to accept some cavitation, but individual limits of accepted cavitation
differ and are often subject to debate between shipowners, ship designers
and hydrodynamic consultants. The tests are usually completely based on
visual observation, but techniques have been developed to automatically detect
and visualize cavitation patterns from video recordings. These techniques
substitute the older practice of visual observation and manual drawings,
making measurements by various persons at various times more objectively
comparable.

2.6 Propeller design procedure

Traditionally, propeller design was based on design charts. These charts were
created by fitting theoretical models to data derived from actual model or
full size tests and therefore their number was limited. By and large, propeller
design was performed manually. In contrast, contemporary propeller design
relies heavily on computer tools. Some of the traditional propeller diagrams,
such as for the Wageningen B-series of propellers, have been transformed into
polynomial expressions allowing easy interpolation and optimization within
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the traditional propeller geometries. This is still a popular starting point for
modern propeller design. Then, a succession of ever more sophisticated anal-
ysis programs is employed to modify and fine-tune the propeller geometry.

Propeller design is an iterative process to optimize the efficiency of a
propeller subject to more or less restrictive constraints concerning cavitation,
geometry, strength etc. The severeness of constraints depends on the ship
type. For example, submarine propellers have strict constraints concerning
cavitation-induced noise. Subsequently the efficiencies of these propellers are
lower than for cargo ships, but the primary optimization goal is still effi-
ciency. A formal optimization is virtually impossible for modern propellers as
the description of the final geometry involves typically some hundred offsets
and the evaluation of the efficiency based on numerical hydrodynamics codes
requires considerable time. Thus, while the word ‘optimization’ is often used,
the final design is rather ‘satisficing’, i.e. a good solution satisfying the given
constraints.

Additional constraints are inherently involved in the design process, but
often not explicitly formulated. These additional constraints reflect the personal
‘design philosophy’ of a designer or company and may lead to considerably
different ‘optimal’ propellers for the same customer requirements. An example
for such a ‘design philosophy’ could be the constraint that no cavitation should
occur on the pressure side of the propeller. The following procedure will reflect
the design philosophy of HSVA as detailed in Reich et al. (1997). The overall
procedure will, however, be similar to any other state-of-the-art propeller
design process. The main engine influences the propeller design primarily
through the propeller rpm and delivered power. Modern turbo-charged diesels,
almost exclusively used for cargo ships today, are imposing a rather narrow
bandwidth for the operating point (rpm/power combination) of the propeller.
We limit ourselves therefore to such cases where the rpm, the ship’s speed,
and an estimated delivered power PD are specified by requirement. This covers
more than 90% of the cases in practice.

The procedure follows a few main steps which involve model tests, analyt-
ical tools of successive sophistication and power, and some experience in
deciding trade-offs in conflict situations:

1. Preparation of model experiments
Known at this stage: rpm of the full-scale propeller ns

ship speed Vs
estimate of delivered power for the ship PD
ship hull form (lines plan)
classification society
often: number of blades Z
often: diameter of propeller D

Generally, the customer specifies within small margins what power PD has
to be delivered at what speed Vs and what is the rpm of the (selected)
main engine. While in theory such a combination may be impossible to
realize, in practice the shipyard engineers (i.e. the customers) have sufficient
experience to estimate a realistic power for a shipowner specified speed and
rpm. The shipyard or another department in the model basin will specify
a first proposal for the ship lines. Often, the customer will also already
determine the number of blades for the propeller. A few simple rules gained
from experience will guide this selection, e.g. if the engine has an even
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number of cylinders, the propeller should have an odd number of blades.
The propeller of optimal efficiency can then be automatically determined
based on the Wageningen-B-Series by computer codes. The performance
of these older propellers is insufficient for today’s expectations and the
propeller thus determined will only be used as a starting point for the
actual design. This procedure yields the average (or representative) pitch-to-
diameter ratio Pm/D and the diameter D. An upper limit for the diameter is
specified from the ship geometry. Sometimes the customer already specifies
the diameter, otherwise it is a result of the optimization. The expanded area
ratio AE/A0 is usually part of the optimization result, but may be restricted
with respect to cavitation if problems are foreseen. In this case, a limiting
value for AE/A0 is derived from Burill diagrams.

Then, from a database of stock propellers, the most suitable propeller is
selected. This is the propeller with the same number of blades, closest in
Pm/D to the optimized propeller. If several stock propellers coincide with
the desired Pm/D, the propeller closest in AE/A0 among these is selected.
A selection constraint comes from upper and lower limits for the diameter
of the stock propeller which are based on experience for the experimental
facilities. For example, for HSVA, the ship models may not exceed 11
metres in length to avoid the influence of canal restrictions, but should be
larger than 4 metres to avoid problems with laminar flow effects. As the
ship length is specified and the model scale for propeller and ship must be
the same, this yields one of the constraints for upper and lower values of
the diameter of the stock propeller. Usually, the search of the database is
limited to the last 300 stock propellers, i.e. the most recent designs.

The selected stock propeller then determines the model scale and the ship
model may be produced and tested. The output of the model tests relevant
for the propeller designer is:
– nominal wake distribution (axial, tangential and radial velocities in the

propeller plane)
– thrust deduction fraction t
– effective wake fraction w
– relative rotative efficiency �R
– delivered power PD
The delivered power PD is of secondary importance (assuming that it is
close to the customer’s estimate). It indicates how much the later propeller
design has to strive for a high efficiency. If the predicted PD is considerably
too high, then the ship form has to be changed and the tests repeated.

2. Estimate effective wake distribution full scale
Known at this stage: all of the above and . . .

number of blades Z
diameter of propeller D
blade area ratio AE/A0
thrust deduction fraction t
effective wake fraction w
relative rotative efficiency �R
nominal wake field (axial, tangential, radial velocity

components)
Ship–propeller interaction is difficult to capture. The inflow is taken from
experiments and based on experience modified to account for scale effects
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(model/full-scale ship). The radial distribution of the axial velocity compo-
nent is transformed from the nominal (without propeller action) value for the
model to an effective (with propeller) value for the full-scale ship. The other
velocity components are assumed to be not affected. Several methods have
been proposed to perform this transformation. To some extent, the selection
of the ‘appropriate’ method follows usually rational criteria, e.g. one method
is based on empirical data for full ships such as tankers, another method for
slender ships such as container ships. But still the designer expert usually
runs several codes, looks at the results and selects the ‘most plausible’ based
on ‘intuition’. The remaining interaction effects such as thrust deduction
fraction t and relative rotative efficiency �R are usually taken as constant
with respect to the results of ship model tests with propellers.

3. Determine profile thickness according to classification society
Known at this stage: all of the above
Classification societies have simple rules to determine the minimum thick-
ness of the foils. The rules of all major classification societies are usually
implemented in programs that adjust automatically the (maximum) thick-
ness of all profiles to the limit value prescribed by the classification society.

4. Lifting-line and lifting-surface calculations
Known at this stage: all of the above and . . .

max. thickness at few radii
As additional input, default values are taken for profile form (NACA series),
distribution of chord length and skew. If this step is repeated at a later stage,
the designer may deviate from the defaults. At this stage, the first analyt-
ical methods are employed. A lifting-line method computes the flow for
a two-dimensional profile, i.e. the three-dimensional flow is approximated
by a succession of two-dimensional flows. This is numerically stable and
effective. The method needs an initial starting value for the circulation
distribution. This is taken as a semi-elliptical distribution. The computa-
tion yields then the optimal radial distribution of the circulation. These
results are directly used for a three-dimensional lifting-surface program.
The lifting-surface code yields as output the radial distribution of profile
camber and pitch.

5. Smoothing results of Step 4
Known at this stage: all of the above and . . .

radial distribution of profile camber (estimate)
radial distribution of pitch (estimate)

The results of the three-dimensional panel code are generally not smooth
and feature singularities at the hub and tip of the propeller. The human
designer deletes ‘stray’ points (point-to-point oscillations) and specifies
values at hub and tip based on experience.

6. Final hydrodynamic analysis
Known at this stage: all of the above (updated)
The propeller is analysed in all operating conditions using a lifting-surface
analysis program and taking into account the complete wake distribution.
The output can be broadly described as the cavitational and vibrational
characteristics of the propeller. The work sometimes involves the inspec-
tion of plots by the designer. Other checks are already automated. Based
on his ‘experience’ (sometimes resembling a trial-and-error process), the
designer modifies the geometry (foil length, skew, camber, pitch, profile
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form and even, as a last resort, diameter). However, the previous steps are
not repeated and this step can be treated as a self-contained module.

7. Check against classification society rules
Known at this stage: all of the above (updated)
A finite-element analysis is used to calculate the strength of the propeller
under the pressure loading. The von-Mises stress criterion is plotted and
inspected. As the analysis is still limited to a radially averaged inflow,
a safety margin is added to account for the real inflow. In most cases,
there is no problem. But if the stress is too high in some region (usually
the trailing edge), the geometry is adjusted and Step 6 is repeated. The
possible geometry modifications at this stage are minor and local; they
have no strong influence on the hydrodynamics and therefore one or two
iterations usually suffice to satisfy the strength requirements.

2.7 Propeller-induced pressures

Due to the finite number of blades the pressure field of the propeller is unsteady
if taken at a fixed point on the hull. The associated forces induce vibrations
and noise. An upper limit for the maximum pressure amplitude that arises on
the stern (usually directly above the propeller) is often part of the contract
between shipyard and owner.

For many classes of ships the dominant source for unsteady hull pressures is
the cavitation on the propeller-blades. The effect of cavitation in computations
of propeller-induced pressures is usually modelled by a stationary point source
positioned in the propeller plane. To assure similarity with the propeller cavita-
tion, the source must be given an appropriate volume amplitude, a frequency of
oscillation, and a suitable position in the propeller plane specified by a radius
and an angle. As the propeller frequency is rather high, the dominant term in
the Bernoulli equation is the time-derivative term. If mainly fluctuating forces
from propeller-induced hull pressures are of interest, the pressure is therefore
usually sufficiently well approximated by the term ��/t, where / denotes the
potential on the hull due to the perturbations from the propeller.

If pressures and forces induced by a fluctuating source on solid boundaries
are to be considered, the point source may be positioned underneath a flat
plate to arrive at the simplest problem of that kind. The kinematic boundary
condition on the plate is ensured via an image source of the same sign at the
opposite side of the plate. For the pressure field on a real ship, this model
is too coarse, as a real ship aftbody does not look like a flat plate and the
influence of the free surface is neglected. Potential theory is still sufficient
to solve the problem of a source near a hull of arbitrary shape with the free
surface present. A panel method (BEM) easily represents the hull, but the free
surface requires special treatment. The high frequency of propeller rpm again
allows a simplification of the treatment of the free surface. It is sufficient to
specify then:

/�x, y, z D 4, t� D 0

at the free surface z D 4. If the free surface is considered plane (4 D 0), / D 0
can be achieved by creating a hull image above the free surface and changing
the sign for the singularities on the image panels. An image for the source that
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represents the cavity (again of opposite sign in strength) has to be introduced
as well. The free surface can be considered in good approximation as a plane
for low Froude numbers, such as typically encountered for tankers and bulkers,
but it is questionable for moderate and high Froude numbers. A pronounced
stern wave will have a significant effect on the wetted areas at the stern.

The main problem of the above procedure is the reliability of calculated
cavity volumes.



3

Resistance and propulsion

3.1 Resistance and propulsion concepts

3.1.1 Interaction between ship and propeller

Any propulsion system interacts with the ship hull. The flow field is changed by
the (usually upstream located) hull. The propulsion system changes, in turn,
the flow field at the ship hull. However, traditionally naval architects have
considered propeller and ship separately and introduced special efficiencies
and factors to account for the effects of interaction. While this decomposition
is seen by many as an important aid in structuring the complex problems
of ship hydrodynamics, it also hinders a system approach in design and can
confuse as much as it can help. Since it is still the backbone of our experimental
procedures and ingrained in generations of naval architects, the most important
concepts and quantities are covered here. The hope is, however, that CFD will
in future allow a more comprehensive optimization of the ship interacting with
the propeller as a whole system.

The general definition ‘power D force Ð speed’ yields the effective power

PE D RT Ð Vs

RT is the total calm-water resistance of the ship excluding resistance of
appendages related to the propulsive organs. Sometimes the rudder is also
excluded and treated as part of the propulsion system. (This gives a glimpse
of the conceptual confusion likely to follow from different conventions
concerning the decomposition. Remember that in the end the installed power
is to be minimized. Then ‘accounting’ conventions for individual factors do
not matter. What is lost in one factor will be gained in another.) Vs is the
ship speed. PE is the power we would have to use to tow the ship without
propulsive system.

Following the same general definition of power, we can also define a power
formed by the propeller thrust and the speed of advance of the propeller, the
so-called thrust power:

PT D T Ð VA

The thrust T measured in a propulsion test is higher than the resistance RT
measured in a resistance test (without propeller). So the propeller induces an
additional resistance:

62
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1. The propeller increases the flow velocities in the aftbody of the ship which
increases frictional resistance.

2. The propeller decreases the pressure in the aftbody, thus increasing the
inviscid resistance.

The second mechanism dominates for usual propeller arrangements. The thrust
deduction fraction r couples thrust and resistance:

t D 1 � RT

T
or T
1 � t� D RT

t is usually assumed to be the same for model and ship, although the friction
component introduces a certain scale effect. Empirical formulae for t can be
found in Schneekluth and Bertram (1998), but are all plagued by large margins
of uncertainty.

The propeller inflow, i.e. the speed of advance of the propeller VA, is
generally slower than the ship speed due to the ship’s wake. The wake is
usually decomposed into three components:

ž Friction wake
Due to viscosity, the flow velocity relative to the ship hull is slowed down
in the boundary layer, leading in regions of high curvature (especially in
the aftbody) to flow separation.

ž Potential wake
In an ideal fluid without viscosity and free surface, the flow velocity at the
stern resembles the flow velocity at the bow, featuring lower velocities with
a stagnation point.

ž Wave wake
The steady wave system of the ship changes locally the flow as a result
of the orbital velocity under the waves. A wave crest above the propeller
increases the wake fraction, a wave trough decreases it.

For usual single-screw ships, the frictional wake dominates. Wave wake is only
significant for Fn > 0.3. The measured wake fraction in model tests is larger
than in full scale as boundary layer and flow separation are relatively larger in
model scale. Traditionally, correction formulae try to consider this overpredic-
tion, but the influence of separation can only be estimated and this introduces a
significant error margin. So far CFD also largely failed to reproduce the wake
even in model scale probably due to insufficient turbulence modelling. The
errors in predicting the required power remain nevertheless small, as the energy
loss due to the wake is partially recovered by the propeller. However, the
errors in predicting the wake propagate completely when computing optimum
propeller rpm and pitch.

The wake behind the ship without propeller is called the nominal wake.
The propeller action accelerates the flow field by typically 5–20%. The wake
behind the ship with operating propeller is called the effective wake. The wake
distribution is either measured by laser-Doppler velocimetry or computed by
CFD. While CFD is not yet capable of reproducing the wake with sufficient
accuracy, the integral of the wake over the propeller plane, the wake fraction
w, is predicted well. The wake fraction is defined as:

w D 1 � VA

Vs
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Schneekluth and Bertram (1998) give several empirical formulae to estimate
w in simple design approaches. All these formulae consider only a few main
parameters, but actually the shape of the ship influences the wake considerably.
Other important parameter like propeller diameter and propeller clearance are
also not explicitly represented in these simple design formulae.

The ratio of the effective power to the thrust power is called the hull effi-
ciency:

�H D PE

PT
D RT Ð Vs

T Ð VA
D 1 � t

1 � w

The hull efficiency can thus be expressed solely by thrust deduction factor t
and wake fraction w. �H can be less or greater than 1. It is thus not really an
efficiency which by definition cannot be greater than 100%.

The power delivered at the propeller can be expressed by the torque and
the rpm:

PD D 2� Ð n Ð Q
This power is less than the ‘brake power’ directly at the ship engine PB due
to losses in shaft and bearings. These losses are comprehensively expressed
in the shafting efficiency �S: PD D �S Ð PB. The ship hydrodynamicist is not
concerned with PB and can consider PD as the input power to all further
considerations of optimizing the ship hydrodynamics. We use here a simpli-
fied definition for the shafting efficiency. Usually marine engineers decompose
�S into a shafting efficiency that accounts for the losses in the shafting only and
an additional mechanical efficiency. For the ship hydrodynamicist it suffices
to know that the power losses between engine and delivered power are typi-
cally 1.5–2%.

The losses from delivered power PD to thrust power PT are expressed in
the (propeller) efficiency behind ship �B: PT D �B Ð PD.

The open-water characteristics of the propeller are relatively easy to measure
and compute. The open-water efficiency �0 of the propeller is, however,
different to �B. Theoretically, the relative rotative efficiency �R accounts for
the differences between the open-water test and the inhomogeneous three-
dimensional propeller inflow encountered in propulsion conditions: �B D �R Ð
�0. In reality, the propeller efficiency behind the ship cannot be measured
and all effects not included in the hull efficiency, i.e. wake and thrust deduc-
tion fraction, are included in �R. �R again is not truly an efficiency. Typical
values for single-screw ships range from 1.02 to 1.06. Schneekluth and Bertram
(1998) give again simple empirical formulae for design purposes.

The various powers and efficiencies can be expressed as follows:

PB > PD > PT > PE

PE D �H Ð PT D �H Ð �B Ð PD D �H Ð �0 Ð �R Ð PD D �H Ð �0 Ð �R Ð �S Ð PB

D �D Ð �S Ð PB

The propulsive efficiency �D collectively expresses the hydrodynamic effi-
ciencies: �D D �H Ð �0 Ð �R. Schneekluth and Bertram (1998) again give simple
design estimates for �D.
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3.1.2 Decomposition of resistance

As the resistance of a full-scale ship cannot be measured directly, our knowl-
edge about the resistance of ships comes from model tests. The measured calm-
water resistance is usually decomposed into various components, although
all these components usually interact and most of them cannot be measured
individually. The concept of resistance decomposition helps in designing the
hull form as the designer can focus on how to influence individual resis-
tance components. Larsson and Baba (1996) give a comprehensive overview
of modern methods of resistance decomposition (Fig. 3.1).

Total resistance RT

Residual resistance RR

Form effect on skin friction

Pressure resistance RP Friction resistance RF

Wave resistance RW Viscous pressure resistance RPV

Wavemaking
resistance RWM

Wavebreaking
resistance RWM

Viscous resistance  RV

Total resistance  RT

Skin friction resistance RFO
(equivalent flat plate)

Figure 3.1 Resistance decomposition

The total calm-water resistance of a new ship hull can be decomposed into:

ž Friction resistance
Due to viscosity, directly at the ship hull water particles ‘cling’ to the
surface and move with ship speed. A short distance away from the ship, the
water particles already have the velocity of an outer, quasi-inviscid flow.
The region between the ship surface and the outer flow forms the boundary
layer. In the aftbody of a container ship with Rn ³ 109, the boundary layer
thickness may be 1 m. The rapid velocity changes in normal direction in the
boundary layer induce high shear stresses. The integral of the shear stresses
over the wetted surface yield the friction resistance.

ž Viscous pressure resistance
A deeply submerged model of a ship will have no wave resistance, but its
resistance will be higher than just the frictional resistance. The form of the
ship induces a local flow field with velocities that are sometimes higher and
sometimes lower than the average velocity. The average of the resulting
shear stresses is then higher. Also, energy losses in the boundary layer,
vortices and flow separation prevent an increase to stagnation pressure in
the aftbody as predicted in an ideal fluid theory. Full ship forms have a
higher viscous pressure resistance than slender ship forms.
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ž Wave resistance
The ship creates a typical wave system which contributes to the total
resistance. In the literature, the wave system is often (rather artificially)
decomposed into a primary and a secondary wave system:
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Figure 3.2 ‘Primary’ wave system

1. Primary wave system (Fig. 3.2)
In an ideal fluid with no viscosity, a deeply submerged body would have
zero resistance (D’Alembert’s paradoxon). The flow would be slower
at both ends of the body and faster in the middle. Correspondingly
at each end the pressure will be higher than average, reaching at
one point stagnation pressure, and the pressure in the middle will
be lower than average. Now imagine a body consisting of the ship
hull below the calm-water surface and its mirror image at the calm-
water surface (Fig. 3.3). This double body would create a certain
pressure distribution at the symmetry plane (calm-water surface) in an
infinite ideal fluid. Following Bernoulli’s equation, we could express
a corresponding surface elevation (wave height) distribution for this
pressure distribution, yielding wave crests at the ship ends and a long
wave trough along the middle. This is called the primary wave system.
The shape of the primary wave system is speed independent, e.g. the
locations of maxima, minima, and zero crossings are not affected by
the speed. The vertical scale (wave height) depends quadratically on the
speed.

2. Secondary wave system (Fig. 3.4)
At the free surface, a typical wave pattern is produced and radiated down-
stream. Even if we assume an ideal fluid with no viscosity, this wave
pattern will result in a resistance. The wave pattern consists of trans-
verse and divergent waves. In deep water, the wave pattern is limited to
a wedge-shaped region with a half-angle of 19.5°. This angle is inde-
pendent of the actual shape of the ship. On shallow water, the half-angle
widens to 90° (for depth Froude number Fnh D 1.0) and then becomes
more and more narrow for supercritical speeds above Fnh D 1. The ship
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Figure 3.4 ‘Secondary’ wave system

produces various wave patterns which interfere with each other. The main
wave patterns are created where strong changes in the geometry near
the water surface occur, i.e. at the bulbous bow, the bow, the forward
shoulder, the aft shoulder, and the stern. The wave length � depends
quadratically on the ship speed. Unfavourable Froude numbers with
mutual reinforcement between major wave systems, e.g. bow and stern
waves, should be avoided. This makes, e.g., Fn D 0.4 an unfavourable
Froude number. The interference effects result in a wave resistance curve
with humps and hollows. If the wave resistance coefficient is consid-
ered, i.e. the wave resistance made non-dimensional by an expression
involving the square of the speed, the humps and hollows become very
pronounced.

In reality, the problem is more complex:
– The steepness of waves is limited. The pressure in the ‘primary

wave system’ changes rapidly at the ship ends enforcing unrealistically
steep waves. In reality, waves break here and change the subsequent
‘secondary wave pattern’. At Froude numbers around 0.25 usually
considerable wavebreaking starts, making this Froude number in reality
often unfavourable although many textbooks recommend it as favourable
based on the above interference argument for the ‘secondary wave
pattern’.
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– The free surface results also in a dynamic trim and sinkage. This also
changes the wave pattern. Even if the double-body flow around the
dynamically trimmed and sunk ship is computed, this is not really the
ship acting on the fluid, as the actually wetted surface (wave profile)
changes the hull. The double-body flow model breaks down completely,
if a transom stern is submerged, but dry at the ship speed. This is the
case for many modern ship hulls.

The wave resistance cannot be properly estimated by simple design
formulae. It is usually determined in model tests. Although efforts to
compute the wave resistance by theoretical methods date back more than 100
years, the problem is still not completely solved satisfactorily. The beginning
of computational methods is usually seen with the work of the Australian
mathematician Michell who in 1898 proposed an integral expression to
compute the wave resistance. Today, boundary element methods have
become a standard tool to compute the ‘wave resistance problem’, but the
accurate prediction of the wave resistance came only close to a satisfactory
solution by the end of the 1990s. Even then, problems remained with
breaking waves and the fundamental dilemma that in reality ship resistance
exists only as a whole quantity. Its separation into components is merely
a hypothesis to facilitate analysis, but the theoretically cleanly divided
resistance components interact and require a comprehensive approach for
a completely satisfactory treatment.

Computational methods for the analysis of the wave resistance will be dis-
cussed in detail in section 3.5.1.

3.2 Experimental approach

3.2.1 Towing tanks and experimental set-up

Despite the ever increasing importance of numerical methods for ship hydro-
dynamics, model tests in towing tanks are still seen as an essential part in
the design of a ship to predict (or validate) the power requirements in calm
water which form a fundamental part of each contract between shipowner and
shipyard.

We owe the modern methodology of predicting a ship’s resistance to William
Froude, who presented his approach in 1874 to the predecessor of the RINA in
England. His hypothesis was that the ship resistance is divisible into frictional
and wavemaking resistance, with the wavemaking resistance following his ‘law
of comparison’ (Froude similarity). This ingenious concept allowed Froude
to show, for the first time, how the resistance of a full-scale ship may be
determined by testing scale models. His success motivated building the first
model basin in 1879 in Torquay, England. Soon further model basins followed
in Europe and the USA.

Tests are usually performed in towing tanks, where the water is still and the
model is towed by a carriage. (Alternatively, tests can also be performed in
circulating tanks, where the model is still and the water moves.) The carriage
in a towing tank keeps its speed with high precision. The model is kept on
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course by special wires at the ship ends. Usually, models are free to trim and
sink. After the initial acceleration, some time has to pass before a stationary
state is reached. Then the remaining measuring time is determined by the
remaining towing tank distance and the deceleration time of the carriage.
Therefore, towing tanks are usually several hundred metres long to allow
sufficient measuring time (in most cases).

The model size is determined by a number of boundary conditions:

ž The model should be as large as possible to minimize viscosity scale effects,
especially concerning laminar/turbulent flow and flow separation.

ž The model should be small enough to avoid strength problems (both internal
strength of the model and loads on the test carriage).

ž The model should be small enough such that the corresponding test speed
can be achieved by the carriage.

ž The model should be small enough to avoid noticeable effects of restricted
water in the test basin.

This leads to a bandwidth of acceptable model sizes. Typically models for
resistance and propulsion tests have a size 4 m � Lm � 10 m. Model scales
range between 15 � � � 45. In practice, often the selected stock propeller
decides the exact model scale.

Tests are performed keeping Froude similarity, i.e. Froude number of model
and full scale are the same. The Reynolds numbers differ typically by two
orders of magnitude. The scale effect (error of not keeping the Reynolds simi-
larity) is then compensated by empirical corrections.

The models are made of special paraffin wax or special tropical wood that
hardly changes volume and shape with time or temperature. Wax models are
cheaper, but less robust. Wooden models receive a smooth finish of paint.
Yellow is the preferred colour for regular models as this colour contrasts
nicely with the (blackish) water which is important for visual observations,
e.g., of the wave profile. For icebreakers, often for similar purposes red is the
preferred colour as it appears to be a good compromise for contrasts of water
and ice.

Models operate at considerably lower Reynolds numbers. (Typically for
models Rn ³ 107 and for full-scale ships Rn ³ 109.) This means that in the
model the transition from laminar to turbulent flow occurs relatively further aft.
As a consequence, the resistance would be more difficult to scale. Therefore,
the model is equipped with artificial turbulence stimulators (sand strip, studs,
or trip wire) in the forebody. One assumes that the transition from laminar
to turbulent flow occurs at a length corresponding to Rn D 0.5 Ð 106 from the
stem. In practice, often the turbulence stimulators are located somewhat further
aft. Then the reduced resistance due to the longer laminar flow compensates
(at least partially) the additional resistance of the turbulence stimulators.

3.2.2 Resistance test

Resistance tests determine the resistance of the ship without propeller (and
often also without other appendages; sometimes resistance tests are performed
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for both the ‘naked’ hull and the hull with appendages). Propulsion tests
are performed with an operating propeller and other relevant appendages. A
problem is that the forces on appendages are largely driven by viscosity effects
with small to negligible gravity effects. As Reynolds similarity is violated, the
forces cannot be scaled easily to full scale. For ships with large and unusual
appendages, the margins of errors in prediction are thus much larger than for
usual hulls where experience helps in making appropriate corrections.

The model is towed by weights and wires (Fig. 3.5). The main towing force
comes from the main weight G1. The weight G2 is used for fine tuning:

RT D G1 š G2 sin˛

Course
keeper

Measuring
mass

Measuring scale

Sand strip
(turbulence stimulator)

V

RT

RT

G1 G2

G2

Figure 3.5 Experimental set-up for resistance test

The sign is positive if the vertical wire moves aft. The angle ˛ is determined
indirectly by measuring the distance on the length scale. Alternatively, modern
experimental techniques also use strain gauges as these do not tend to oscillate
as the wire-weight systems.

The model test gives the resistance (and power) for towing tank conditions:

ž (usually) sufficiently deep water
ž no seaway
ž no wind
ž fresh water at room temperature

This model resistance has to be converted for a prediction of the full-scale ship.
To do this conversion several methods are outlined in the following chapters,
namely:

ž Method ITTC 1957
ž Method of Hughes/Prohaska
ž Method ITTC 1978
ž Geosim method of Telfer

The most important of these methods in practice is the method ITTC 1978.
Resistance tests are also used to measure the nominal wake, i.e. the wake

of the ship without propeller. Measurements of the nominal wake are usually
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limited to the propeller plane. The local velocities were traditionally measured
by pitot tubes. Currently, Laser-Doppler velocimetry also allows non-intrusive
measurements of the flow field. The results are usually displayed as contour
lines of the longitudinal component of the velocity (Fig. 3.6). These data play
an important role in the design of a propeller. For optimizing the propeller
pitch as a function of the radial distance from the hub, the wake fraction is
computed as a function of this radial distance by integrating the wake in the
circumferential direction:

w
r� D 1

2�
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Figure 3.6 Results of wake measurement

The wake field is also used in evaluating propeller-induced vibrations.

3.2.3 Method ITTC 1957

The resistance of the hull is decomposed as:

RT D RF C RR

RF is the frictional resistance, RR the residual resistance. Usually the resistance
forces are expressed as non-dimensional coefficients of the form:

ci D Ri
1
2"V

2
s S
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S is the wetted surface in calm water, Vs the ship speed. The resistance coef-
ficient of the ship is then determined as:

cTs D cFs C cR C cA D cFs C 
cTm � cFm� C cA

The index s again denotes values for the full-scale ship, the index m values
for the model. cR is assumed to be independent of model scale, i.e. cR is the
same for model and full scale. The model test serves primarily to determine
cR. The procedure is as follows:

1. Determine the total resistance coefficient in the model test:

cTm D RTm
1
2"m Ð V2

m Ð Sm

2. Determine the residual resistance, same for model and ship:

cR D cTm � cFm

3. Determine the total resistance coefficient for the ship:

cTs D cR C cFs C cA

4. Determine the total resistance for the ship:

RTs D cTs Ð 1
2"sV

2
s Ss

The frictional coefficients cF are determined by the ITTC 1957 formula:

cF D 0.075


log10 Rn � 2�2

This formula already contains a global form effect increasing the value of cF
by 12% compared to the value for flat plates (Hughes formula).

Historically cA was a roughness allowance coefficient which considered
that the model was smooth while the full-scale ship was rough, especially
when ship hulls where still riveted. However, with the advent of welded ships
cA sometimes became negative for fast and big ships. Therefore, cA is more
appropriately termed the correlation coefficient. cA encompasses collectively
all corrections, including roughness allowance, but also particularities of the
measuring device of the model basin, errors in the model–ship correlation line
and the method. Model basins use cA not as a constant, but as a function of the
ship size, based on experience. The correlation coefficient makes predictions
from various model basins difficult to compare and may in fact be abused to
derive overly optimistic speed prediction to please customers.

Formulae for cA differ between various model basins and shipyards. Exam-
ples are Table 3.1 and:

cA D 0.35 Ð 10�3 � 2 Ð Lpp Ð 10�6

cA D 0.11 Ð 
Rn Ð 10�9 � 2.1 � a�2 � a C 0.62 with

a D max
0.6,min
CB, 0.8��



Resistance and propulsion 73

Table 3.1 Recommended values
for CA

Lpp (m) cA

50–150 0.00035–0.0004
150–210 0.0002
210–260 0.0001
260–300 0
300–350 �0.0001
350–4000 �0.00025

3.2.4 Method of Hughes–Prohaska

This approach decomposes the total resistance (coefficient) as follows:

cT D 
1 C k� Ð cF0 C cw

Both form factor 
1 C k� and wave resistance coefficient cw are assumed to
be the same for model and full scale, i.e. independent of Rn. The model test
serves primarily to determine the wave resistance coefficient. The procedure
is as follows:

1. Determine the total resistance coefficient in the model test as for the ITTC
1957 method:

cTm D RTm
1
2"m Ð V2

m Ð Sm

2. Determine the wave resistance coefficient, same for model and ship:

cw D cTm � cF0m Ð 
1 C k�

3. Determine the total resistance coefficient for the ship:

cTs D cw C cF0s Ð 
1 C k� C cA

4. Determine the total resistance for the ship:

RTs D cTs Ð 1
2"sV

2
s Ss

The frictional coefficients cF0 for flat plates are determined by Hughes’
formula:

cF0 D 0.067


log10 Rn � 2�2

The correlation coefficient cA differs fundamentally from the correlation coef-
ficient for the ITTC 1957 method. Here cA does not have to compensate for
scaling errors of the viscous pressure resistance. ITTC recommends universally
cA D 0.0004.

The Hughes–Prohaska method is a form factor method. The form factor

1 C k� is assumed to be independent of Fn and Rn and the same for model
and ship. The form factor is determined by assuming:

cT
cF0

D 
1 C k� C ˛
F4

n

cF0
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Figure 3.7 Extrapolation of form factor

Model test results for several Froude numbers (e.g. between 0.12 and 0.24)
serve to determine ˛ in a regression analysis (Fig. 3.7).

3.2.5 Method of ITTC 1978

This approach is a modification of the Hughes–Prohaska method. It is gener-
ally more accurate and also considers the air resistance. The total resistance
(coefficient) is again written in a form factor approach:

cTs D 
1 C k�cFs C cw C cA C cAA

cw is the wave resistance coefficient, assumed to be the same for model and
ship, i.e. independent of Rn. cFs is the frictional coefficient, following the
ITTC 1957 formula. cA is the correlation coefficient which depends on the
hull roughness:

cA Ð 103 D 105 Ð 3

√
ks
Loss

� 0.64

ks is the roughness of the hull, Loss is the wetted length of the full-scale ship.
For new ships, a typical value is ks/Loss D 10�6, i.e. cA D 0.00041.

cAA considers globally the air resistance as follows:

cAA D 0.001 Ð AT

S

AT is the frontal area of the ship above the waterline, S the wetted surface.
The model test serves primarily to determine the wave resistance coeffi-

cient. The procedure is similar to the procedure for Hughes–Prohaska, but the
frictional coefficient is determined following the ITTC 1957 formula instead
of Hughes’ formula. The form factor is also determined slightly differently:

cT
cF

D 
1 C k� C ˛ Ð F
n
n

cF

Both n and ˛ are determined in a regression analysis.
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3.2.6 Geosim method of Telfer

Telfer proposed in 1927 to perform model tests with families of models which
are geometrically similar, but have different model scale. This means that tests
are performed at the same Froude number, but different Reynolds numbers.
The curve for the total resistance as a function of the Reynolds number is then
used to extrapolate to the full-scale Reynolds number.

Telfer plotted the total resistance coefficient over logR�1/3
n . For each model,

a curve of the resistance is obtained as a function of Fn. Points of same Froude
number for various model scales are connected by a straight line which is easily
extrapolated to full scale.

Telfer’s method is regarded as the most accurate of the discussed predic-
tion methods and avoids theoretically questionable decomposition of the total
resistance. However, it is used only occasionally for research purposes as the
costs for the model tests are too high for practical purposes.

3.2.7 Propulsion test

Propulsion tests are performed to determine the power requirements, but also to
supply wake and thrust deduction, and other input data (such as the wake field
in the propeller plane) for the propeller design. The ship model is then equipped
with a nearly optimum propeller selected from a large stock of propellers, the
so-called stock propeller. The actual optimum propeller can only be designed
after the propulsion test. The model is equipped with a propulsive drive, typi-
cally a small electro-motor (Fig. 3.8).

Acceleration and
retardation clutch

Mechanical
dynamometer

FD

Trim
meter

FP

Model

AP

Propeller
dynamometer

Electr.
motor

Carriage

Figure 3.8 Experimental set-up for propulsion test

The tests are again performed for Froude similarity. The total resistance
coefficient is then higher than for the full-scale ship, since the frictional resis-
tance coefficient decreases with increasing Reynolds number. This effect is
compensated by applying a ‘friction deduction’ force. This compensating force
is determined as follows (see section 3.2.5):

FD D 1
2" Ð V2

m Ð Sm Ð 

1 C k�
cFm � cFs� � cA � cAA�

The propeller then has to produce a thrust that has to compensate the total resis-
tance RT minus the compensating force FD. The propulsion test is conducted
with constant speed. The rpm of the propeller is adjusted such that the model
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is in self-propelled equilibrium. Usually the speed of the towing tank carriage
is kept constant and the rpm of the propeller varied until an equilibrium is
reached. A propeller dynamometer then measures thrust and torque of the
propeller as a function of speed. In addition, dynamical trim and sinkage
of the model are recorded. The measured values can be transformed from
model scale to full scale by the similarity laws: speed Vs D p

� Ð Vm, rpm
ns D nm/

p
�, thrust Ts D Tm Ð 
"s/"m� Ð �3, torque Qs D Qm Ð 
"s/"m� Ð �4. A

problem is that the propeller inflow is not geometrically similar for model and
full scale due to the different Reynolds number. Thus the wake fraction is also
different. Also, the propeller rpm should be corrected to be appropriate for the
higher Reynolds number of the full-scale ship.

The scale effects on the wake fraction are attempted to be compensated by
the empirical formula:

ws D wm Ð cFs

cFm
C 
t C 0.04� Ð

(
1 � cFs

cFm

)

t is the thrust deduction coefficient. t is assumed to be the same for model and
full scale.

The evaluation of the propulsion test requires the resistance characteris-
tics and the open-water characteristics of the stock propeller. There are two
approaches:

1. ‘Thrust identity’ approach
The propeller produces the same thrust in a wake field of wake fraction w
as in open-water with speed Vs
1 � w� for the same rpm, fluid properties
etc.

2. ‘Torque identity’ approach
The propeller produces the same torque in a wake field of wake fraction w as
in open-water with speed Vs
1 � w� for the same rpm, fluid properties etc.

ITTC standard is the ‘thrust identity’ approach. It will be covered in more
detail in the next chapter on the ITTC 1978 performance prediction method.

The results of propulsion tests are usually given in diagrams as shown
in Fig. 3.9. Delivered power and propeller rpm are plotted over speed. The
results of the propulsion test prediction are validated in the sea trial of the
ship introducing necessary corrections for wind, seaway, and shallow water.
The diagrams contain not only the full-load design condition at trial speed, but
also ballast conditions and service speed conditions. Service conditions feature
higher resistance reflecting the reality of the ship after some years of service:
increased hull roughness due to fouling and corrosion, added resistance in
seaway and wind.

3.2.8 ITTC 1978 performance prediction method

The ITTC 1978 performance prediction method (IPPM78) has become a
widely accepted procedure to evaluate model tests. It combines various aspects
of resistance, propulsion, and open-water tests. These are comprehensively
reviewed here. Further details may be found in section 3.2.5, section 3.2.7
and section 2.5, Chapter 2. The IPPM78 assumes that the following tests have
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Figure 3.9 Result of propulsion test

been performed yielding the corresponding results:

resistance test RTm D f
Vm�

open-water test Tm D f
VAm, nm�

Qm D f
VAm, nm�

propulsion test Tm D f
Vm, nm�

Qm D f
Vm, nm�

RT is the total resistance, V the ship speed, VA the average inflow speed to
the propeller, n the propeller rpm, KT the propeller thrust coefficient, KQ the
propeller torque coefficient. Generally, m denotes model, s full scale.

The resistance is evaluated using the ITTC 1978 method (for single-screw
ships) described in section 3.2.5:

1. Determine the total resistance coefficient in the model test:

cTm D RTm
1
2"m Ð V2

m Ð Sm

2. Determine the frictional resistance coefficient for the model following ITTC
1957:

cFm D 0.075


log10 Rnm � 2�2

The Reynolds number of the model is Rnm D VmLosm/+m, where Los is the
wetted length of the model. Los is the length of the overall wetted surface,
i.e. usually the length from the tip of the bulbous bow to the trailing edge
of the rudder.
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3. Determine the wave resistance coefficient, same for model and ship:

cw D cTm � 
1 C k�cFm

The determination of the form factor 
1 C k� is described below.
4. Determine the total resistance coefficient for the ship:

cTs D cw � 
1 C k�cFs C cA C cAA

cFs is the frictional resistance coefficient following ITTC 1957, but for the
full-scale ship. cA is a correlation coefficient (roughness allowance). cAA
considers the air resistance:

cA D
(

105 3

√
ks
Loss

� 0.64

)
Ð 10�3

ks is the roughness 
D1.5 Ð 10�4 m� and Loss the wetted length of the ship.

cAA D 0.001
AT

Ss

AT is the frontal area of the ship above the water, Ss the wetted surface.
5. Determine the total resistance for the ship:

RTs D cTs Ð 1
2"sV

2
s Ss

The form factor is determined in a least square fit of ˛ and n in the function:

cTm
cFm

D 
1 C k� C ˛ Ð Fn
n

cFm

The open-water test gives the thrust coefficient KT and the torque coefficient
KQ as functions of the advance number J:

KTm D Tm

"mn
2
mD

4
m

KQm D Qm

"mn
2
mD

5
m

J D VAm

nmDm

Dm is the propeller diameter. The model propeller characteristics are trans-
formed to full scale (Reynolds number correction) as follows:

KTs D KTm C 0.3Z
c

Ds

Ps

Ds
Ð CD

KQs D KQm � 0.25Z
c

Ds
Ð CD

Z is the number of propeller blades, Ps/Ds the pitch-diameter ratio, Ds the
propeller diameter in full scale, c the chord length at radius 0.7D.

CD D CDm � CDs

This is the change in the profile resistance coefficient of the propeller blades.
These are computed as:

CDm D 2
(

1 C 2
tm
cm

)(
0.044

R1/6
nco

� 5

R2/3
nco

)
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t is the maximum blade thickness, c the maximum chord length. The Reynolds

number Rnco D Vcocm/+m at 0.7Dm, i.e. Vco D
√

V2
Am C 
0.7�nmDm�2.

CDs D 2
(

1 C 2
ts
cs

)(
1.89 C 1.62 log10

cs
kp

)�2.5

kp is the propeller blade roughness, taken as 3 Ð 10�5 if not otherwise known.
The evaluation of the propulsion test requires the resistance and open-water

characteristics. The open-water characteristics are denoted here by the index
fv. The results of the propulsion test are denoted by pv:

KTm,pv D Tm

"m Ð D4
m Ð n2

m

KQm,pv D Qm

"m Ð D5
m Ð n2

m

Thrust identity is assumed, i.e. KTm,pv D KTm,fv. Then the open-water diagram
can be used to determine the advance number Jm. This in turn yields the wake
fraction of the model:

wm D 1 � JmDmnm

Vm

The thrust deduction fraction is:

t D 1 C FD � RTm

Tm

FD is the force compensating for the difference in resistance similarity between
model and full-scale ship:

FD D 1
2" Ð V2

m Ð S Ð 

1 C k�
cFm � cFs� � cA � cAA�

With known Jm the torque coefficient KQm,fv can also be determined. The
propeller efficiency behind the ship is then:

�bm D KTm,pv

KQm,pv
Ð Jm

2�

The open-water efficiency is:

�0m D KTm,fv

KQm,fv
Ð Jm

2�

This determines the relative rotative efficiency:

�R D �bm

�0m
D KQm,fv

KQm,pv

While t and �R are assumed to be the same for ship and model, the wake
fraction w has to be corrected:

ws D wm
cFs

cFm
C 
t C 0.04�

(
1 � cFs

cFm

)
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A curve for the parameter KT/J2 as function of J is introduced in the open-
water diagram for the full-scale ship. The design point is defined by:(

KT

J2

)
s

D Ts

"s Ð D2
s Ð V2

As

D Ss

2D2
s

Ð cTs

1 � t�
1 � ws�

2

The curve for KT/J2 can then be used to determine the corresponding Js.
This in turn determines the torque coefficient of the propeller behind the
ship KQs D f
Js� and the open-water propeller efficiency �0s D f
Js�. The
propeller rpm of the full-scale propeller is then:

ns D 
1 � ws� Ð Vs

JsDs

The propeller torque in full scale is then:

Qs D KQs

�R
"s Ð n2

s Ð D2
s

The propeller thrust of the full-scale ship is:

Ts D
(
KT

J2

)
s
Ð J2

s Ð "s Ð n2
s Ð D4

s

The delivered power is then:

PDs D Qs Ð 2� Ð ns

The total propulsion efficiency is then:

�Ds D �0 Ð �R Ð �Hs

3.3 Additional resistance under service conditions
The model test conditions differ in certain important points from trial and
service conditions for the real ship. These include effects of

ž Appendages
ž Shallow water
ž Wind
ž Roughness
ž Seaway

Empirical corrections (based on physically more or less correct assumptions)
are then used to estimate these effects and to correlate measured values from
one state (model or trial) to another (service). The individual additional resis-
tance components will be briefly discussed in the following.

ž Appendages
Model tests can be performed with geometrically properly scaled
appendages. However, the flow around appendages is predominantly
governed by viscous forces and would require Reynolds similarity.
Subsequently, the measured forces on the appendages for Froude similarity
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are not properly scaled up to the real ship. Appendages may be tested
separately and often the resistance of the appendages is scaled separately and
added in a prediction for the full-scale ship. Unfortunately, this procedure
does not account for interaction between hull and appendages and also
introduces considerable error margins. Fortunately, most ships have only a
few appendages and errors in estimating their resistance can be accepted. For
unconventional ships with many and complex appendages, the difficulties
in estimating the resistance of the appendages properly leads to a larger
margin of uncertainty for the global full-scale prediction.

Schneekluth and Bertram (1998) compile some data from shipbuilding
experience: properly arranged bilge keels contribute only 1–2% to the total
resistance of ships. However, trim and ship motions in seastates increase the
resistance more than for ships without bilge keels. Thus, in evaluation of
model tests, a much higher increase of resistance should be made for ships
in ballast condition. Bow thrusters, if properly designed and located, do
not significantly increase resistance. Transverse thrusters in the aftbody may
increase resistance by 1–6%. Shaft brackets and bossings increase resistance
by 5–12%. For twin-screw ships with long propeller shafts, the resistance
increase may be more than 20%. Rudders increase resistance little 
¾1%� if
in the neutral position and improve propulsion. But moderate rudder angles
may increase resistance already by 2–6%.

ž Shallow water
Shallow water increases friction resistance and usually also wave resistance.
Near the critical depth Froude number Fnh D V/

p
gH D 1, where H is the

water depth, the resistance is strongly increased. Figure 3.10 allows one
to estimate the speed loss for weak shallow-water influence. The figure
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Figure 3.10 Percentage loss of speed in shallow water (Lackenby (1963))
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follows Schlichting’s hypothesis that the wave resistance is the same if
the wave lengths of the transversal waves are the same. Similar, but more
sophisticated, diagrams are still popular in practice. For strong shallow-
water influence a simple correction is impossible as wavebreaking, squat
and deformation of the free surface introduce complex physical interactions.
In this case, only model tests or CFD may help.

In numerical simulations (CFD), the inclusion of shallow water is rela-
tively simple. Boundary element methods based on Rankine elements use
mirror images of the elements with respect to the water bottom. The image
elements have the same strength as the original elements. This automati-
cally yields zero normal velocity on the water bottom due to symmetry.
The analytical inclusion of the bottom in Green function methods is more
difficult, but also feasible. Field methods discretize the fluid domain to the
water bottom and enforce a suitable boundary condition there. However,
shallow-water flows feature often stronger non-linearities than deep-water
flows making them in turn more difficult to solve numerically. Nevertheless,
in future CFD may be used to convert shallow-water results to deep-water
results capturing more of the actual physics and thus reducing some of the
inherent uncertainties introduced by assuming, e.g., that the form factor is
not affected by the water depth.

ž Wind
Wind resistance is important for ships with large lateral areas above the
water level, e.g. containerships and car ferries. Fast and unconventional
ships, e.g. air-cushioned vehicles, also require the contribution of wind or
air resistance. Schneekluth and Bertram (1998) give simple design estimates
with empirical formulae. Usually wind tunnel tests are the preferred choice
for a more accurate estimate, as they are fast and cheap to perform. CFD
is not yet competitive, as grid generation is so far too time consuming and
expensive for most applications. However, several prototype applications
have shown the capability of CFD to compute air flow about complex ship
and offshore geometries with good results. As cost for grid generation will
decrease, CFD may also substitute increasingly wind tunnel tests.

ž Roughness
The friction resistance can increase considerably for rough surfaces. For
new ships, the effect of roughness is included in the ITTC line or the
correlation constant. A rough hull surface (without fouling) increases the
frictional resistance by up to 5%. Fouling can increase the resistance by
much more. However, modern paints prevent fouling to a large extent and
are also self-polishing, i.e. the paint will not become porous as did old
paints in use before the 1970s. The problem of correlating roughness and
resistance is insufficiently understood. Model tests try to produce a hull
surface as smooth as possible. As a rule, CFD does not consider roughness
at all.

ž Seaway
The added resistance of a ship in a seaway is generally determined by
computational methods and will be discussed in more detail in the chap-
ters treating ship seakeeping. Such predictions for a certain region or route
depend on the accuracy of seastate statistics which usually introduce a larger
error than the actual computational simulation. Ship size is generally more
important than ship shape. Schneekluth and Bertram (1998) give simple
design estimates for the speed loss due to added resistance in waves.
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3.4 Simple design approaches

In early design stages, the power requirements have to be estimated to judge
the weight and volume requirements of the main engine and fuel. As this has
to be done repeatedly in design loops, model tests are no suitable solution
for reasons of time and costs. Instead, simple, largely empirical methods are
employed which only require a few global design parameters. These methods
are discussed in more detail by Schneekluth and Bertram (1998).

The main approaches are:

ž estimate from parent ship, e.g. by admiralty or similar formulae
ž systematical series, e.g. Taylor–Gertler, Series-60, SSPA
ž regression analysis of many ships, e.g. Lap–Keller, Holtrop–Mennen,

Hollenbach

The estimate from a parent ship may give good estimates if the parent ship is
close enough (in geometrical properties and speed parameters) to the design
ship. The admiralty formula is very coarse and not recommended, but an
estimate based on a form factor approach is popular in practice. Here, it is
usually assumed that the parameter cw/F4

n and the form factor remain constant
in the conversion from parent ship to design ship. Such a more or less sophis-
ticated plus/minus conversion from a parent ship is currently the preferred
choice for a quick estimate.

All of the systematical series and most of the regression analysis approaches
are outdated. They often underestimate the actual resistance of modern ship
hulls. It may come as a surprise that older ships were apparently better in
terms of resistance. There are several explanations:

ž suitability for container stowage plays a larger role in modern ships;
ž modern ships often have a higher propulsive efficiency compensating

partially for the higher resistance;
ž more severe safety regulations, e.g. concerning stability, pose additional

constraints on the hydrodynamic optimization.

Nevertheless, some of the old estimation methods are still popular as they are
easy to program. Thus they are embedded in naval architectural CAD systems
or more recently in design expert systems. However, they are fundamentally
limited to global predictions, as they represent the hull shape by few global
parameters.

3.5 CFD approaches for steady flow

3.5.1 Wave resistance computations

The wave resistance problem considers the steady motion of a ship in initially
smooth water assuming an ideal fluid, i.e. especially neglecting all viscous
effects. The ship will create waves at the freely deformable water surface.
The computations involve far more information than the mere resistance
which is of minor importance in many applications and usually computed
quite inaccurately. But the expression ‘wave resistance problem’ is easier than
‘steady, inviscid straight-ahead course problem’, and thus more popular.
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The work of the Australian mathematician J. H. Michell in 1898 is seen
often as the birth of modern theoretical methods for ship wave resistance
predictions. While Michell’s theory cannot be classified as computational fluid
dynamics in the modern sense, it was a milestone at its time and is still
inspiring mathematicians today. Michell expressed the wave resistance of a
thin wall-sided ship as:

Rw D 4

�
"V2+2

∫ 1

1

�2√
�2 � 1

jA
��j2 d�

with:

A
�� D �i+�
∫
S

e+�
2zCi+�xf
x, z� dz dx

V is the ship speed, " water density, + D g/V2, g gravity acceleration, f
x, z�
halfwidth of ship, x longitudinal coordinate (positive forward), z vertical coor-
dinate (from calm waterline, positive upwards), S ship surface below the
calm waterline. The expression gives realistic results for very thin bodies
(width/length ratio very small) for arbitrary Froude number, and for slender
ships (width/length ratio and depth/length ratio very small) for high Froude
numbers. Michell’s theory (including all subsequent refinements) is in essence
unacceptable for real ship geometries and ship speeds. However, on occasion
it is still useful. An example may be the prediction of the wave resistance
of a submarine near the free surface with a streamlined snorkel piercing the
free surface. While CFD can discretize the main submarine, it will neglect all
appendages of much smaller scale. Then Michell’s theory can be applied to
analyse the additional influence of the snorkel which will have a very large
Froude number based on the chord length of its profile cross-section. Söding
(1995) gives a Fortran routine to compute Michell’s integral.

The classical methods (thin ship theories, slender-body theories) introduce
simplifications which imply limitations regarding the ship’s geometry.
Real ship geometries are generally not thin or slender enough. The
differences between computational and experimental results are consequently
unacceptable. Practical applications in industry are based almost exclusively
on boundary element methods. These remain the most important tools for naval
architects despite the recently increased application of viscous flow tools.

These boundary element methods represent the flow as a superposition of
Rankine sources and sometimes also dipoles or vortices. Classical methods
using so-called Kelvin or Havelock sources fulfil automatically a crude approx-
imation of the dynamical and kinematical free surface conditions. Kelvin
sources are complicated and require great care in their numerical evaluation.
Rankine sources on the other hand are quite simple. The potential of a Rankine
point source is a factor divided by the distance between the point source and the
considered point in the fluid domain. The factor is called the source strength.
The derivative of the potential in arbitrary spatial direction gives the velocity
in this direction. This mathematical operation is simple to perform for Rankine
sources. Chapter 6 will discuss Rankine elements in detail.

Boundary element methods discretize surfaces into a finite number of
elements and corresponding number of collocation points. A desired (linear)
condition is fulfilled exactly at these collocation points by proper adjustment
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of the initially unknown source strengths. One hopes/claims that between
these points the boundary condition is fulfilled at least in good approximation.
Laplace’s equation and the decay condition (far away the ship does not disturb
the flow) are automaticaly fulfilled. Mirror images of the panels at the bottom
of the fluid domain walls may enforce a no-penetration condition there for
shallow-water cases. Repeated use of mirror images at vertical canal walls can
enforce in similar fashion the side-wall condition. For numerical reasons, this
is preferable to a treatment of the side walls as collocation points similar as
for the ship hull.

In the wave resistance problem, we consider a ship moving with constant
speed V in water of constant depth and width. For inviscid and irrotational
flow, this problem is equivalent to a ship being fixed in an inflow of constant
speed. The following simplifications are generally assumed:

ž Water is incompressible, irrotational, and inviscid.
ž Surface tension is negligible.
ž There are no breaking waves.
ž The hull has no knuckles which cross streamlines.
ž Appendages and propellers are not included in the model. (The inclusion

of a propeller makes little sense as long as viscous effects are not also
included.)

The governing field equation is Laplace’s equation. A unique description of
the problem requires further conditions on all boundaries of the modelled fluid
domain:

ž Hull condition: water does not penetrate the ship’s surface.
ž Transom stern condition: for ships with a transom stern, we generally assume

that the flow separates and the transom stern is dry. Atmospheric pressure
is then enforced at the edge of the transom stern. The condition is usually
linearized assuming that the water flows only in the longitudinal direction.
This can only approximately reflect the real conditions at the stern, but
apparently works well as long as the transom stern is moderately small as
for most container ships. For fast ships which have a very large transom
stern, several researchers report problems. For submerged transom sterns at
low speed, the potential flow model is inapplicable and only field methods
are capable of an appropriate analysis.

ž Kinematic condition: water does not penetrate the water surface.
ž Dynamic condition: there is atmospheric pressure at the water surface.

Beneath an air cushion, this conditions modifies to the air cushion pressure.
The inclusion of an air cushion in wave resistance computations has been
reported in various applications. However, these computations require the
user to specify the distribution of the pressure, especially the gradual decline
of the pressure at the ends of the cushion. In reality, this is a difficult task
as the dynamics of the air cushion and the flexible skirts make the problem
more complicated. Subsequently, the computations must be expected to be
less accurate than for conventional displacement hulls.

ž Radiation condition: waves created by the ship do not propagate ahead.
(This condition is not valid for shallow water cases when the flow becomes
unsteady and soliton waves are pulsed ahead. For subcritical speeds with
depth Froude number Fnh < 1, this poses no problem.)

ž Decay condition: the flow is undisturbed far away from the ship.
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ž Open-boundary condition: waves generated by the ship pass unreflected any
artificial boundary of the computational domain.

ž Equilibrium: the ship is in equilibrium, i.e. trim and sinkage are changed
in such a way that the dynamical vertical force and the trim moment are
counteracted.

ž Bottom condition (shallow-water case): no water flows through the sea
bottom.

ž Side-wall condition (canal case): no water flows through the side walls.
ž Kutta condition (for catamaran/SWATH): at the stern/end of the strut the

flow separates. The Kutta condition describes a phenomenon associated with
viscous effects. Potential flow methods use special techniques to ensure that
the flow separates. However, the point of separation has to be determined
externally ‘by higher insight’. For geometries with sharp aftbodies (foils),
this is quite simple. For twin-hull ships, the disturbance of the flow by
one demi-hull induces a slightly non-uniform inflow at the other demi-hull.
This resembles the flow around a foil at a very small angle of incident. A
simplified Kutta condition suffices usually to ensure a realistic flow pattern
at the stern: Zero transverse flow is enforced. This is sometimes called the
‘Joukowski condition’.

The decay condition substitutes the open-boundary condition if the boundary of
the computational domain lies at infinity. The decay condition also substitutes
the bottom and side wall condition if bottom and side wall are at infinity,
which is the usual case.

Hull, transom stern, and Kutta condition are usually enforced numerically
at collocation points. Also a combination of kinematic and dynamic condition
is numerically fulfilled at collocation points. Combining dynamic and kine-
matic boundary conditions eliminates the unknown wave elevation, but yields
a non-linear equation to be fulfilled at the a priori unknown free surface
elevation.

Classical methods linearize the differences between the actual flow and
uniform flow to simplify the non-linear boundary condition to a linear condi-
tion fulfilled at the calm-water surface. This condition is called the Kelvin
condition. For practical purposes this crude approximation is nowadays no
longer accepted.

Dawson proposed in 1977 to use the potential of a double-body flow
and the undisturbed water surface as a better approximation. Double-body
linearizations were popular until the early 1990s. The original boundary
condition of Dawson was inconsistent. This inconsistency was copied by
most subsequent publications following Dawson’s approach. Sometimes this
inconsistency is accepted deliberately to avoid evaluation of higher derivatives,
but in most cases and possibly also in the original it was simply an oversight.
Dawson’s approach requires the evaluation of terms on the free surface
along streamlines of the double-body flow. This required either more or less
elaborate schemes for streamline tracking or some ‘courage’ in simply applying
Dawson’s approach on smooth grid lines on the free surface which were
algebraically generated.

Research groups in the UK and Japan proposed in the 1980s non-linear
approximations for the correct boundary condition. These non-linear methods
should not be confused with ‘fully non-linear’ methods that fulfil the correct
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non-linear boundary condition iteratively. They are not much better than
Dawson’s approach and no longer considered state of the art.

The first consistently linearized free surface condition for arbitrary approx-
imations of the base flow and the free surface elevation was developed in
Hamburg by Söding. This condition is rather complicated involving up to
third derivatives of the potential, but it can be simply repeated in an iterative
process which is usually started with uniform flow and no waves. Section 7.3,
Chapter 7, will derive this expression for the wave resistance problem.

Fully non-linear methods were first developed in Sweden and Germany
in the late 1980s. The success of these methods quickly motivated various
other research groups to copy the techniques and apply the methods commer-
cially. The most well-known codes used in commercial applications include
SHIPFLOW-XPAN, SHALLO, RAPID, SWIFT, and FSWAVE/VSAERO. The
development is very near the limit of what potential flow codes can achieve.
The state of the art is well documented in two PhD theses, Raven (1996) and
Janson (1996). Despite occasional other claims, all ‘fully non-linear’ codes
have similar capabilities when used by their designers or somebody well trained
in using the specific code. Everybody loves his own child best, but objectively
the differences are small. All ‘fully non-linear’ codes in commercial use share
similar shortcomings when it comes to handling breaking waves, semi-planing
or planing boats or extreme non-linearities. It is debatable if these topics should
be researched following an inviscid approach in view of the progress that
viscous free-surface CFD codes have made.

Once the unknown velocity potential is determined, Bernoulli’s equation
determines the wave elevation. In principle, a linearized version of Bernoulli’s
equation might be used. However, it is computationally simpler to use the
non-linear equation. Once the potential is determined, the forces can also be
determined by direct pressure integration on the wetted hull. The wave resis-
tance may also be determined by an analysis of the wave pattern (wave cut
analysis) which is reported to be often more accurate. The z-force and y-
moment are used to adjust the position of the ship in fully non-linear methods.

Waves propagate only downstream (except for rare shallow-water cases).
This radiation condition has to be enforced by numerical techniques. Most
methods employ special finite difference (FD) operators to compute second
derivatives of the potential in the free surface condition. Dawson proposed
a four-point FD operator for second derivatives along streamlines. Besides
the considered collocation point, the FD operator uses the next three points
upstream. Dawson’s method automatically requires grids oriented along
streamlines of the double-body flow approximate solution. Dawson determined
his operator by trial and error for a two-dimensional flow with a simple Kelvin
condition. His criteria were that the wave length should correspond to the
analytically predicted wave length and the wave amplitude should remain
constant some distance behind the disturbance causing the waves.

Dawson approximated the derivative of any function H with respect to 5 at
the point i numerically by:

H5i ³ CAiHi C CBiHi�1 C CCiHi�2 C CDiHi�3

H5i is the derivative with respect to 5 at point Pi. Hi to Hi�3 are the values
of the function H at points Pi to Pi�3, all lying on the same streamline of the
double-body flow upstream of Pi. The coefficients CAi to CDi are determined
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from the arc lengths Lj (j D 1 to i � 3) of the streamline between point Pi
and point Pj:

Lj D
∫ Pj

Pi

d5 on the streamline

CAi D �
CBi C CCi C CDi�

CBi D L2
i�2L

2
i�3
Li�3 � Li�2�
Li�3 C Li�2�/Di

CCi D �L2
i�1L

2
i�3
Li�3 � Li�1�
Li�3 C Li�1�/Di

CDi D L2
i�1L

2
i�2
Li�2 � Li�1�
Li�2 C Li�1�/Di

Di D Li�1Li�2Li�3
Li�3 � Li�1�
Li�2 � Li�1�
Li�3 � Li�2�

ð 
Li�3 C Li�2 C Li�1�

This four-point FD operator dampens the waves to some extent and gives
for usual discretizations (about 10 elements per wave length) wave lengths
which are about 5% too short. Strong point-to-point oscillations of the source
strength occur for very fine grids. Various FD operators have been subsequently
investigated to overcome these disadvantages. Of all these, only the spline
interpolation developed at MIT was really convincing as it overcomes all the
problems of Dawson (Nakos (1990), Nakos and Sclavounos (1990)).

An alternative approach to FD operators involves ‘staggered grids’ as devel-
oped in Hamburg. This technique adds an extra row of source points (or panels)
at the downstream end of the computational domain and an extra row of collo-
cation points at the upstream end (Fig. 3.11). For equidistant grids this can also
be interpreted as shifting or staggering the grid of collocation points vs. the grid
of source elements. This technique shows absolutely no numerical damping or
distortion of the wave length, but requires all derivatives in the formulation to
be evaluated numerically.

++ + + + + + + + + + + + + + + + + + + + + + +

+
Panel (centre marked by dot)

Collocation point
v

Figure 3.11 ‘Shifting’ technique (in 2d)

Only part of the water surface can be discretized. This introduces an artificial
boundary of the computational domain. Disturbances created at this artificial
boundary can destroy the whole solution. Methods based on FD operators
use simple two-point operators at the downstream end of the grid which
strongly dampen waves. At the upstream end of the grid, where waves should
not appear, various conditions can be used, e.g. the longitudinal component
of the disturbance velocity is zero. Nakos (1990) has to ensure in his MIT
method (SWAN code) based on spline interpolation that waves do not reach
the side boundary. This leads to relatively broad computational domains. Time-
domain versions of the SWAN code use a ‘numerical beach’. For the wave
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resistance problem, the time-domain approach seems unnecessarily expen-
sive and is rarely used in practice. Norwegian researchers tried to reduce
the computational domain by matching the panel solution for the near-field
to a thin-ship-theory solution in the far-field. However, this approach saved
only little computational time at the expense of a considerably more compli-
cated code and was subsequently abandoned. The ‘staggered grid’ technique
is again an elegant alternative. Without further special treatment, waves leave
the computational domain without reflection.

Most methods integrate the pressure on the ship’s surface to determine the
forces (especially the resistance) and moments. ‘Fully non-linear’ methods
integrate over the actually wetted surface while older methods often take the
CWL as the upper boundary for the integration. An alternative to pressure
integration is the analysis of the wave energy behind the ship (wave cut anal-
ysis). The wave resistance coefficients should theoretically tend to zero for low
speeds. Pressure integration gives usually resistance coefficients which remain
finite for small Froude numbers. However, wave cut analysis requires larger
grids behind the ship leading to increased computational time and storage.
Most developers of wave resistance codes have at some point tried to incor-
porate wave cut analysis to determine the wave resistance more accurately.
So far the evidence has not yet been compelling enough to abandon the direct
pressure integration.

Most panel methods give as a direct result the source strengths of the panels.
A subsequent computation determines the velocities at the individual points.
Bernoulli’s equation then gives pressures and wave elevations (again at indi-
vidual points). Integration of pressures and wave heights finally yields the
desired forces and moments which in turn are used to determine dynamical
trim and sinkage (‘squat’).

Fully non-linear state of the art codes fulfil iteratively an equilibrium condi-
tion (dynamical trim and sinkage) and both kinematic and dynamic conditions
on the actually deformed free surface. The differences in results between ‘fully
non-linear’ and linear or ‘somewhat non-linear’ computations are considerable
(typically 25%), but the agreement of computed and measured resistances
is not better in ‘fully non-linear’ methods. This may in part be due to the
computational procedure or inherent assumptions in computing a wave resis-
tance from experimental data (usually using a form factor method), but also
due to computational errors in determining the resistance which are of similar
magnitude as the actual resistance. One reason for the unsatisfactory accuracy
of the numerical procedures lies in the numerical sensitivity of the pressure
integration. The pressure integration involves basically subtracting forces of
same magnitude which largely cancel. The relative error is strongly propa-
gated in such a case. Initial errors stem from the discretization. For example,
integration of the hydrostatic pressure for the ship at rest should give zero
longitudinal force, but usual discretizations show forces that may lie within
the same order of magnitude as the wave resistance. Still, there is consensus
that panel methods capture the pressure distribution at the bow quite accurately.
The vertical force is not affected by the numerical sensitivity. Predictions for
the dynamical sinkage differ usually by less than 5% for a large bandwidth of
Froude numbers. Trim moment is not predicted as well due to viscous effects
and numerical sensitivity. This tendency is amplified by shallow water.
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Panel methods are still the most important CFD instrument for form
improvement of ships. Worldwide research aims at faster methods, wider
applications, and higher accuracy:

ž Faster methods
Cluster or multigrid techniques could make existing methods faster by
one order of magnitude (Söding (1996)). The price is a more complicated
program code. At present, the actual computation in practice accounts for
less than 10% of the total response time (from receiving the hull description
to delivering the CFD report) and even less of the cost. So the incentive to
introduce these techniques is low in practice.

ž Wider applications
Non-Linear solutions are limited today to moderate non-linearities. Ships
with strong section flare close to the waterline and fast ships still defy
most attempts to obtain non-linear solutions. Planing boats feature complex
physics including spray. Panel methods as described here will not be applied
successfully to these ships for some years, although first attempts in this
direction appeared in the early 1990s. State of the art computations for
planing boats are based on special non-CFD methods, e.g. slender-body
approaches.

ž Higher accuracy
The absolute accuracy of the predicted resistance is unsatisfactory. Patch
methods as proposed by Söding and discussed briefly in section 6.5.2,
Chapter 6, may overcome this problem to some extent. But the intersection
between water surface and ship will remain a problem zone, because the
problem is ill-posed here within a potential flow model. The immediate
vicinity of the bow of a ship always features to some extent breaking waves
and spray not included by the currently used methods. The exact simulation
of plunging waves is impossible for panel methods. Ad-hoc solutions are
subject to research, but no convincing solution has been published yet. One
approach of overcoming these limitations lies in methods discretizing the
fluid volume rather than boundary element methods. Such methods can
simulate flows with complicated free surface geometries (breaking waves,
splashes) allowing the analyses of problems beyond the realm of BEM
applications.

3.5.2 Viscous flow computations

RANSE solvers are state of the art for viscous ship flows. A computational
prediction of the total calm-water resistance using RANSE solvers to replace
model tests would be desirable, but so far the accuracy of the RANSE predic-
tions is largely perceived as still insufficient. Nevertheless, RANSE solvers
are widely applied to analyse:

ž the flow around aftbodies of ships
ž the flow around appendages

The first research applications for RANSE solutions with wavemaking for ships
appeared in the late 1980s. By the late 1990s various research groups also
presented results for ships free to trim and sink. However, most computations
for actual ship design projects in practice still neglected all free-surface effects
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(double-body flow). Most computations, especially those for practical design
applications, were limited to Reynolds numbers corresponding to model tests.
Sometimes, potential flow computations were used as preprocessors to deter-
mine trim and sinkage and the wave elevation, before RANSE computations
started with fixed boundaries.

The basic techniques of RANSE codes have been discussed in section 1.5,
Chapter 1. Various applications to ship design and research applications are
found in the literature. Representative for the state of the art for ship design
applications are surveys by leading companies in the field such as Flowtech
(Larsson (1997, 1998)), or HSVA (Bertram and Jensen (1994)), Bertram
(1998a). The state of the art in research is documented in validation workshops
like the Tokyo 1994 workshop and the Gothenborg 2000 workshop. RANSE
computations require considerable skill and experience in grid generation and
should therefore as a rule be executed by experts usually found in special
consulting companies or by using modern towing tanks.

3.6 Problems for fast and unconventional ships

Model testing has a long tradition for the prediction and optimization of ship
performance of conventional ships. The scaling laws are well established and
the procedures correlate model and ship with a high level of accuracy. The
same scaling laws generally apply to high-speed craft, but two fundamental
problems may arise:

1. Physical quantities may have major effects on the results which cannot be
deduced from classical model tests. The physical quantities in this context
are: surface tension (spray), viscous forces and moments, aerodynamic
forces, cavitation.

2. Limitations of the test facilities do not allow an optimum scale. The most
important limitations are generally water depth and carriage speed.

Fast and unconventional ships are often ‘hybrid’ ships, i.e. they produce the
necessary buoyancy by more than one of the three possible options: buoyancy,
dynamic lift (foils or planing), aerostatic lift (air cushion). For the propulsion
of fast ships, subcavitating, cavitating, and ventilated propellers as well as
waterjets with flush or pitot-type inlets are used. Due to viscous effects and
cavitation, correlation to full-scale ships causes additional problems.

Generally we cannot expect the same level of accuracy for a power predic-
tion as for conventional ships. The towing tank should provide an error estimate
for each individual case. Another problem arises from the fact that the resis-
tance curves for fast ships are often quite flat near the design point as are the
curves of available thrust for many propulsors. For example, errors in predicted
resistance or available thrust of 1% would result in an error of the attainable
speed of also about 1%, while for conventional cargo ships the error in speed
would often be only 1/3%, i.e. the speed prediction is more accurate than the
power prediction.

The main problems for model testing are discussed individually:

ž Model tank restrictions
The physics of high-speed ships are usually highly non-linear. The positions
of the ship in resistance (without propeller) and propulsion (with propeller)
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conditions differ strongly. Viscosity and free surface effects, including spray
and overturning waves, play significant roles making both experimental and
numerical predictions difficult.

Valid predictions from tank tests for the resistance of the full-scale ship
in unrestricted water are only possible if the tank is sufficiently large as
compared to the model to allow similarity in flow. Blockage, i.e. the ratio
of the submerged cross-section of the model to the tank cross-section, will
generally be very low for models of high-speed ships. However, shallow-
water effects depend mainly on the model speed and the tank water depth.
The depth Froude number Fnh should not be greater than 0.8 to be free of
significant shallow-water effects.

The frictional resistance is usually computed from the frictional resistance
of a flat plate of similar length as the length of the wetted underwater body
of the model. This wetted length at test speed differs considerably from
the wetted length at zero speed for planing or semi-planing hull forms. In
addition the correlation requires that the boundary layer is fully turbulent.
Even when turbulence stimulators are used, a minimum Reynolds number
has to be reached. We can be sure to have a turbulent boundary layer for
Rn > 5 Ð 106. This gives a lower limit to the speeds that can be investigated
depending on the used model length.

Figure 3.12 illustrates, using a towing tank with water depth H D 6 m and
a water temperature 15°, how an envelope of possible test speeds evolve
from these two restrictions. A practical limitation may be the maximum
carriage speed. However, at HSVA the usable maximum carriage speed
exceeds the maximum speed to avoid shallow-water effects.
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min. speed at 15 degrees water

max. speed in 6 m tank

Figure 3.12 Possible speed range to be safely investigated in a 6 m deep towing tank at 15°
water temperature

ž Planing hulls
In the planing condition a significant share of the resistance is frictional
and there is some aerodynamic resistance. At the design speed, the residual
resistance, i.e. the resistance component determined from model tests, may
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only be 25% to 30% of the total resistance. In model scale, this part is even
smaller. Therefore the measurements of the model resistance must be very
accurate. Resistance of planing hulls strongly depends on the trim of the
vessel. Therefore a careful test set-up is needed to ensure that the model is
towed in the correct direction. The most important problem, however, is the
accurate determination of the wetted surface and the wetted length which is
needed to compute the frictional resistance for both the model and the ship.
The popular use of side photographs are not adequate. Preferably underwater
photographs should be used. In many cases, the accurate measurement of
trim and sinkage may be adequate in combination with hydrostatic compu-
tation of wetted surface and length. As the flotation line of such vessels
strongly depends on speed, proper arrangement of turbulence stimulation is
needed as well.

Depending on the propulsion system, planing vessels will have
appendages like rudders and shafts. For typical twin-screw ships with shafts,
one pair of I-brackets and one pair of V-brackets, the appendage resistance
could account for 10% of the total resistance of the ship. As viscous
resistance is a major part in the appendage resistance and as the Reynolds
number of the appendages will be small for the model in any case or the
appendage may be within the boundary layer of the vessel, only a crude
correlation of the appendage resistance is possible: the resistance of the
appendage is determined in model scale by comparing the resistance of
the model with and without appendages. Then an empirical correction for
transferring the appendage resistance to the full-scale ship is applied. In
many cases, it may be sufficient to perform accurate measurements without
any appendages on the model and then use an empirical estimate for the
appendage resistance.

ž Craft with hydrofoils
Hydrofoils may be used to lift the hull out of the water to reduce resistance.
Besides classical hydrofoils which are lifted completely out of the water and
are fully supported by foil lift, hybrid hydrofoils may be used which are
partially supported by buoyancy and partially by foil lift, e.g. catamarans
with foils between the two hulls. When performing and evaluating resistance
and propulsion tests for such vessels, the following problems have to be kept
in mind:
– The Reynolds number of the foils and struts will always be very low.

Therefore the boundary layer on the foil may become partially laminar.
This will influence the lift and the frictional resistance of the foils in a way
requiring special correlation procedures to compensate at least partially
these scaling errors. The uncertainty level is still estimated as high as 5%
which is definitely higher than for conventional craft.

– Cavitation may occur on the full-scale hydrofoil. This may not only
cause material erosion, but it will also influence the lift and drag of
the foils. Significant cavitation will certainly occur if the foil loading
exceeds 105 N/m2. With configurations not fully optimized for cavitation
avoidance, significant cavitation is expected for foil loadings in excess of
6 Ð 104 N/m2 already. Another important parameter is the vessel’s speed.
Beyond 40 knots, cavitation has to be expected on joints to struts, flaps,
foil tips and other critical parts. At speeds beyond 60 knots, cavitation
on the largest part of the foil has to be expected. When model testing
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these configurations in model tanks, no cavitation will occur. Therefore
similarity of forces cannot be expected. To overcome this problem, resis-
tance and propulsion tests could be performed in a free surface cavitation
tunnel. However, due to the usually small cross-sections of these tunnels,
shallow-water effects may be then unavoidable. Therefore HSVA recom-
mends the following procedure:
1. Perform tests in the towing tank using non-cavitating foils from stock,

varying angle of attack, and measure the total resistance and the resis-
tance of the foils.

2. Test the foils (including struts) in a cavitation tunnel varying angle of
attack, observe cavitation and measure forces.

3. Combine the results of both tests by determining the angle of attack
for similar lift of foils and summing the resistance components.

In the preliminary design phase, the tests in the cavitation tunnel may be
substituted by corresponding flow computations.

ž Surface effect ships (SES)
SES combine aerostatic lift and buoyancy. The wave resistance curve of SES
exhibits humps and hollows as in conventional ships. The magnitude of the
humps and hollows in wave resistance depends strongly on the cushion L/B
ratio. Wavemaking of the submerged hulls and the cushion can simply be
scaled according to Froude similarity as long as the tank depth is sufficient
to avoid shallow-water effects. Otherwise a correction based on the poten-
tial flow due to a moving pressure patch is applied. Due to the significant
influence of trim, this method has some disadvantages. To determine the
wetted surface, observations inside the cushion are required with a video
camera. The frictional resistance of the seals cannot be separated out of the
total resistance. The pressure distribution between seals and cushion has to
be controlled and the air flow must be determined. Also the model aero-
dynamic resistance in the condition under the carriage has to be determined
and used for separating the wave resistance. Generally separate wind tunnel
tests are recommended to determine the significant aerodynamic resistance
of such ships.

ž Propulsion with propellers
– Conventional propellers

Most of the problems concerning the scaling of resistance also appear in
the propulsion test, as they determine the propeller loading. The use of a
thrust deduction fraction is formally correct, but the change in resistance is
partially due to a change of trim with operating propellers. For hydrofoils,
the problem is that cavitation is not present at model scale. Therefore,
for cases with propeller loading where significant cavitation is expected,
additional cavitation tests are used to determine the thrust loss due to
cavitation. Z-drives which may even be equipped with contra-rotating
propellers are expensive to model and to equip with accurate measuring
devices. Therefore propulsion tests with such units are rarely performed.
Instead the results of resistance and open-water tests of such units in a
proper scale are numerically combined.

– Cavitating propellers
Certain high-speed propellers are designed to operate with a controlled
extent of cavitation on the suction side of the blades. They are called
super-cavitating or partially cavitating (Newton–Rader) propellers. These
propulsors cannot be tested in a normal towing tank. Here again either
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resistance tests or propulsion tests with non-cavitating stock propellers
are performed and combined with open-water tests in a cavitation tunnel.

– Surface-piercing propellers
Surface-piercing or ventilated propellers operate directly at the free
surface. Thus the suction side is ventilated and therefore the collapse of
cavitation bubbles on the blade surface is avoided. Due to the operation at
the free surface, Froude similarity has to be maintained in model tests. On
the other hand, thrust and torque, but more important also the side and
vertical forces, strongly depend on the cavitation number. The vertical
force may amount up to 40% of the thrust and therefore will strongly
influence the resistance of planing vessels or SES, ships where this type
of propeller is typically employed.

ž Waterjet propulsion
A common means of propulsion for high-speed ships is the waterjet.
Through an inlet in the bottom of the craft water enters into a bent duct to the
pump, where the pressure level is raised. Finally the water is accelerated and
discharged in a nozzle through the transom. Power measurements on a model
of the complete system cannot be properly correlated to full scale. Only the
inlet and the nozzle are built to scale and an arbitrary model pump with
sufficient capacity is used. The evaluation of waterjet experiments is difficult
and involves usually several special procedures involving a combination of
computations, e.g. the velocity profile on the inlet by boundary layer or
RANSE computations, and measured properties, e.g. pressures in the nozzle.
The properties of the pump are determined either in separate tests of a larger
pump model, taken from experience with other pumps, or supplied by the
pump manufacturer. A special committee of the ITTC was formed to cover
waterjet propulsion and latest recommendation and literature references may
be found in the ITTC proceedings.

3.7 Exercises: resistance and propulsion

Solutions to the exercises will be posted on the internet (www.bh.com/com-
panions/0750648511)

1. A 6 m model of a 180 m long ship is towed in a model basin at a speed of
1.61 m/s. The towing pull is 20 N. The wetted surface of the model is 4 m2.
Estimate the corresponding speed for the ship in knots and the effective
power PE using simple scaling laws, i.e. assuming resistance coefficients
to be independent of scale.

2. A ship model with scale � D 23 was tested in fresh water with: RT,m D
104.1 N, Vm D 2.064 m/s, Sm D 10.671 m2, Lm D 7.187 m.

Both model and ship are investigated at a temperature of 15°.
(a) What is the prediction for the total calm-water resistance in sea water

of the full-scale ship following ITTC’57? Assume cA D 0.0002.
(b) What would be the prediction following ITTC’78 with a form factor

k D 0.12? Assume standard surface roughness. Neglect air resistance.
3. A base ship (Index O) has the following main dimension: Lpp,O D 128.0 m,

BO D 25.6 m, TO D 8.53 m, CB D 0.565 m. At a speed VO D 17 kn, the ship
has a total calm-water resistance of RT,O D 460 kN. The viscosity of water
is + D 1.19 Ð 10�6 m2/s and " D 1025.9 kg/m3.
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What is the resistance of a ship with Lpp D 150 m if the ship is geometri-
cally and dynamically similar to the base ship and the approach of ITTC’57
is used (essentially resistance decomposition following Froude’s approach)?

The wetted surface may be estimated by (Schneekluth and Bertram
(1998), p. 185):

S D 
3.4r1/3 C 0.5Lwl�r1/3

Lwl may be estimated by Lwl D 1.01Lpp.
The Reynolds number shall be based on Lpp. The correlation coefficient

can be neglected.
4. A sailing yacht has been tested. The full-scale dimensions are Lpp D 9.00 m,

S D 24.00 m2, r D 5.150 m3. The yacht will operate in sea water of " D
1.025 t/m3, + D 1.19 Ð 10�6 m2/s.

The model was tested with scale � D 7.5 in fresh water with " D
1000 kg/m3, + D 1.145 Ð 10�6 m2/s.

The experiments yield for the model:

Vm (m/s) 0.5 0.6 0.75 0.85 1.0 1.1 1.2
RT,m (N) 0.402 0.564 0.867 1.114 1.584 2.054 2.751

(a) Determine the form factor following Hughes–Prohaska.
(b) Determine the form factor following ITTC’78. For simplification

assume the exponent n for Fn to be 4 and determine just the ˛ and k
in regression analysis.

5. A container ship shall be lengthened by adding a parallel midship section
of 12.50 m length (400 container and space between stacks). At full engine
power (100% MCR D maximum continuous rating), the ship is capable of
V D 15.6 knots.

Ship data (original):

Lpp 117.20 m
Lwl 120.00 m
B 20.00 m
T 6.56 m
rbilge 1.5 m
CB 0.688
lcb 0.0

Wake fraction and thrust deduction shall be given by:

w D 0.75 Ð CB � 0.24 t D 0.5 Ð CB � 0.15

+ D 1.19 Ð 10�6 m2/s, " D 1025 kg/m3.
The ship is equipped with a propeller with �0 D 0.55. The relative rota-

tive efficiency is �R D 1.
What is the power requirement after the conversion, if the propeller is

assumed to remain unchanged? Base your prediction on Lap–Keller (Lap
(1954), Keller (1973)) with a correlation coefficient cA D 0.35 Ð 10�3.

6. A ship of 150 m length sails with 15 kn on water of 12 m depth. It experi-
ences a dynamic sinkage amidships of 1 m and a trim (bow immerses) of
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1°. Slender-body theories give the relation that both trim and sinkage are
proportional to:

F2
nh√

1 � F2
nh

How much is then according to this theory the dynamic sinkage at the bow
for 12 kn on 13 m water depth?



4

Ship seakeeping

4.1 Introduction

Seakeeping of ships is investigated with respect to the following issues:

ž Maximum speed in a seaway: ‘involuntary’ speed reduction due to added
resistance in waves and ‘voluntary’ speed reduction to avoid excessive
motions, loads etc.

ž Route optimization (routing) to minimize, e.g., transport time, fuel consump-
tion, or total cost.

ž Structural design of the ship with respect to loads in seaways.
ž Habitation comfort and safety of people on board: motion sickness, danger

of accidental falls, man overboard.
ž Ship safety: capsizing, large roll motions and accelerations, slamming, wave

impact on superstructures or deck cargo, propeller racing resulting in exces-
sive rpm for the engine.

ž Operational limits for ships (e.g. for offshore supply vessels or helicopters
landing on ships).

Tools to predict ship seakeeping are:

ž Model tests.
ž Full-scale measurements on ships at sea.
ž Computations in the frequency domain: determination of the ship reactions

to harmonic waves of different wave lengths and wave directions.
ž Computations in the time domain (simulation in time): computation of the

forces on the ship for given motions at one point in time; based on that
information the computation of the motions at a following point in time etc.

ž Computations in the statistical domain: computation of statistically signifi-
cant seakeeping values in natural (irregular) seaways, e.g. average frequency
(occurrence per time) of events such as exceeding certain limits for motions
or loads in a given seaway or ocean region.

For many seakeeping issues, seakeeping is determined as follows:

1. Representation of the natural seaway as superposition of many regular
(harmonic) waves (Fourier decomposition).

2. Computation (or sometimes measurement in model tests) of the ship reac-
tions of interest in these harmonic waves.

98
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3. Addition of the reactions in all these harmonic waves to a total reaction
(superposition).

This procedure assumes (respectively requires) that the reaction of one wave
on the ship is not changed by the simultaneous occurrence of another wave.
This assumption is valid for small wave heights for almost all ship reactions
with the exception of the added resistance.

This procedure is often applied also for seaways with large waves. However,
in these cases it can only give rough estimates requiring proper corrections.
One consequence of the assumed independence of the individual wave reac-
tions is that all reactions of the ship are proportional to wave height. This is
called linearization with respect to wave height.

The computations become considerably more expensive if this simplification
is not made. Non-linear computations are usually necessary for the treatment
of extreme motions (e.g. for capsizing investigations); here simulation in the
time domain is the proper tool. However, for the determination of maximum
loads it often suffices to apply corrections to initially linearly computed loads.
The time-averaged added resistance is in good approximation proportional to
the square of the wave height. Here the effect of harmonic waves of different
lengths and direction can be superimposed as for the linear ship reactions.

To determine global properties (e.g. ship motions and accelerations) with
sufficient accuracy, simpler methods suffice than for the determination of local
properties (pressures, relative motions between water and ship).

Further recommended reading includes Faltinsen (1993) and Lewis (1990).

4.2 Experimental approaches (model and full scale)

Seakeeping model tests usually employ self-propelled models in narrow towing
tanks or broad, rectangular seakeeping basins. The models are sometimes
completely free being kept on course by a rudder operated in remote control or
by an autopilot. In other cases, some degrees of freedom are suppressed (e.g.
by wires). If internal forces and moments are to be determined, the model
is divided into a number of sections. The individual watertight sections are
coupled to each other by gauges. These gauges consist of two rigid frames
connected by rather stiff flat springs with strain gauges. Model motions are
determined either directly by or by measuring the accelerations and inte-
grating them twice in time. Waves and relative motions of ships and waves are
measured using two parallel wires penetrating the water surface. The change
in the voltage between the wires is then correlated to the depth of submergence
in water. The accuracy of ultrasonic devices is slightly worse. The model posi-
tion in the tank can be determined from the angles between ship and two or
more cameras at the tank side. Either lights or reflectors on the ship give the
necessary clear signal.

The waves are usually created by flaps driven by hydraulical cylinders. The
flaps are inclined around a horizontal axis lying at the height of the tank bottom
or even lower. Traditionally, these flaps were controlled mechanically by shaft
mechanisms which created a (nearly) sinusoidal motion. Modern wavemakers
are computer controlled following a prescribed time function. Sinusoidal flap
motion creates harmonic waves. The superposition of many sinusoidal waves
of different frequency creates irregular waves similar to natural wind seas.
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Some wavemakers use heightwise segmented flaps to simulate better the
exponential decay of waves with water depth. Sometimes, but much less
frequently, vertically moved bodies or air cushions are also used to generate
waves. These facilities create not only the desired wave, but also a near-field
disturbance which decays with distance from the body or the air cushion. More
harmful is the generation of higher harmonics (waves with an integer multiple
of the basic wave frequency), but these higher harmonics can be easily filtered
from the measured reactions if the reactions are linear. In computer controlled
wavemakers they can be largely eliminated by proper adjustment of the flap
motions.

In towing tanks, waves are generated usually by one flap at one tank
end spanning the complete tank width. The other tank end has a ‘beach’ to
absorb the waves (ideally completely) so that no reflected waves influence the
measurements and the water comes to rest after a test as soon as possible.
If several, independently controlled flaps are used over the tank width waves
with propagation direction oblique to the tank longitudinal axis can be gener-
ated. These waves will then be reflected at the side walls of the tank. This is
unproblematic if a superposition of many waves of different direction (‘short-
crested sea’) is created as long as the distribution of the wave energy over the
propagation direction is symmetrical to the tank longitudinal axis. In natural
wind seas the energy distribution is similarly distributed around the average
wind direction.

Rectangular wide seakeeping basins have typically a large number of wave-
making flaps at two adjacent sides. An appropriate phase shift in the flap
motions can then create oblique wave propagation. The other two sides of
such a basin are then equipped with ‘beaches’ to absorb waves.

Seakeeping model tests are usually only performed for strongly non-linear
seakeeping problems which are difficult to compute. Examples are roll motion
and capsizing, slamming and water on deck. Linear seakeeping problems are
only measured for research purposes to supply validation data for computa-
tional methods. In these cases many different frequencies can be measured at
the same time. The measured data can then be decomposed (filtered) to obtain
the reactions to the individual wave frequencies.

Seakeeping tests are expensive due to the long waiting periods between
tests until the water has come to rest again. The waiting periods are espe-
cially long in conventional towing tanks. Also, the scope of the experiments
is usually large as many parameters need to be varied, e.g. wave length, wave
height, angle of encounter, ship speed, draught and trim, metacentric height etc.
Tests keep Froude similarity just as in resistance and propulsion tests. Gravity
and inertia forces then correspond directly between model and full-scale ship.
However, scale effects (errors due to the model scale) occur for forces which
are due to viscosity, surface tension, compressibility of the water, or model
elasticity. These effects are important, e.g., for slamming pressure, water on
deck, or sway, roll and yaw motions of catamarans. However, in total, scale
effects play a lesser role for seakeeping tests than for resistance and propulsion
tests or manoeuvring tests.

Seakeeping can also be measured on ships in normal operation or during
special trial tests. Ship motions (with accelerometers and gyros) and some-
times also global and local loads (strain gauges), loss of speed, propeller rpm
and torque are all measured. Recording the seaway is difficult in full-scale
measurements. The options are:
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1. No recording of actual seaway during trial; instead measurements of seaway
over many years such that, e.g., the expected maximum values during the
lifetime of the ship can be extrapolated from the recorded distribution of
long-term measured values (long-term measurement). The random variation
of the actual seastate encountered by the ship introduces considerable
inaccuracies for the predicted extreme values even if several years of
measurements are available.

2. Computation of the seaway from the ship motions based on computed or
model-test measured response amplitude operators for the motions. This
allows only a rather rough estimate of the seaway. In following seas this
method is hardly applicable. Nevertheless, averaging over, e.g., 10 to 100
half-hour measurements yields usually good estimates for the correlation
of loads and seaway (medium-term measurement) for example.

3. Parallel measurement of the seaway. Options are:
– Using seastate measuring buoys (brought by the ship).
– Performing the sea trials near a stationary seaway measuring installation.
– Measuring the ship motions (by accelerometers) and the relative motion

between water and ship (by pressure measurements at the hull or water
level measurements using a special radar device); based on these data
indirect determination of the absolute motion of the water surface is
possible.

– Measuring the wave spectrum (energy distribution over frequency and
propagation direction) by evaluating radar signals reflected by the waves.

– Computation or estimation of the seaway from the wind field before and
during the experiments.

– Estimation of significant wave height and period from ‘experienced’
seamen. This common practice is to be rejected as far too inaccurate:
the correlation coefficient between measured (actual) and estimated wave
period is typically <50%! This holds also if the estimates are used to
derive statistical distributions. For most extreme values of interest the
errors in the estimates do not cancel, but are rather concentrated around
the extreme values.

4.3 Waves and seaway

4.3.1 Airy waves (harmonic waves of small amplitude)

Wind-induced seaways can be approximated by the superposition of regular
waves of small wave height (elementary waves, Airy waves). Each elementary
wave has a sinusoidal profile with an infinite number of wave troughs and wave
crests (Fig. 4.1). The wave troughs and crests are perpendicular to the direction
of wave propagation. Such elementary waves are an important building block
for all computational methods for linear seakeeping problems. Steep regular
waves can be computed by, e.g., Stokes’ theory or panel methods. However,
the superposition principle no longer applies to these waves. Therefore they
play virtually no role at all for the prediction of ship seakeeping and are
rather of academical interest for naval architects. Unfortunately, in using the
superposition principle for elementary waves, all properties of the seaway
which are non-linear with wave steepness (Dwave height/wave length) are lost.
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Figure 4.1 Elementary waves

These are, e.g., the broader wave troughs and steeper wave crests, the higher
celerity of steeper waves which results in a tendency to form wave groups
in natural wind seas: groups of waves with low wave height are followed by
groups of waves with larger wave heights.

For ship seakeeping, the relevant waves are dominated by gravity effects and
surface tension, water compressibility and (for deep and moderately shallow
water) viscosity can be neglected. Computations can then assume an ideal
fluid (incompressible, inviscid) without surface tension. Consequently potential
theory can be applied to describe the waves.

Generally, regular waves are described by a length parameter (wave length �
or wave number k) and a time parameter (wave period T or (circular) frequency
ω). k and ω are defined as follows:

k D 2�

�
; ω D 2�

T

The celerity c denotes the speed of wave propagation, i.e. the speed of an
individual wave crest or wave trough:

c D �

T
D ω

k

For elementary waves, the following (dispersion) relation holds:

k D ω2

g
on deep water k tanh	kH� D ω2

g
on finite depth

g D 9.81 m/s2 and H is the water depth (Fig. 4.1).
The above equations can then be combined to give the following relations

(for deep water):

c D
√
g

k
D g

ω
D
√

g�

2�
D gT

2�

The potential  of a wave travelling in the Cx direction is:

 D Re	�ic Ohe�kzei	ωt�kx�� for deep water

D Re

(
�ic Oh

sinh	kH�
cosh	k	z � H��ei	ωt�kx�

)
for finite depth
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Re denotes the real part of a complex quantity; i D p�1; z as in Fig. 4.1;
Oh denotes as usual a complex amplitude; Oh D the complex amplitude of the
wave. h D jOhj is the (real-valued) wave amplitude, i.e. half the wave height
(from wave trough to wave crest). The real part of Oh gives the distance of
the wave trough from the calm-water level at time t D 0 at x D 0; the imag-
inary part gives the same value at 1

4 period earlier. The deep-water formulae
are applicable with errors of < 1

2 % if the water depth is larger than half a
wave length.

The velocity is obtained by differentiation of the potential, e.g. for deep
water:

vx D ∂

∂x
D x D Re	�ω Ohe�kzei	ωt�kx��

vz D ∂

∂z
D z D Re	iω Ohe�kzei	ωt�kx��

The complex amplitudes of the velocities have the same absolute value and
a phase shift of 90°. A water particle thus follows a circular track or orbital
motion (from Latin orbis D circle). In water of finite depth, the motion of a
water particle follows an ellipse. The vertical axis of each ellipse decreases
with depth until at the water bottom z D H the motion is only in the horizontal
direction.

If we excite a group of waves (not elementary waves, but, e.g., 10 wave
crests and troughs) in initially calm water we will notice that the front of the
wave crests decay while at the end of the wave packet new wave crests are
formed (Fig. 4.2). The wave packet thus moves slower than the wave crests,

X

t

Group

C C/2

Figure 4.2 Celerity and group velocity
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i.e. with a speed slower than celerity c, namely with group velocity cgr:

cgr D 1
2c for deep water

cgr D c

(
1

2
C kH

sinh	2kH�

)
for finite depth

The linearized Bernoulli equation

p C �
∂

∂t
� �gz D p0

and the wave potential give the difference pressure to atmospheric pressure at
a point below the water surface (for deep water):

p � p0 D �gz � �gRe	 Ohe�kzei	ωt�kx��

p0 is the atmospheric pressure, � the water density, z the depth of the point
below the calm-water surface. The first term represents the hydrostatic pressure
in calm water. The second term represents the pressure change due to the wave.
As with all wave effects, it decays exponentially with depth. The pressure
gradient ∂p/∂z is for the hydrostatic case equal to the specific weight of the
fluid and causes a buoyant lifting force on the immersed body that equals
the weight of the displaced water. This lifting force changes in a wave! The
lifting force is lower in a wave crest, higher in a wave trough. This is called
the Smith effect.

The mechanical energy E per area of the water surface is composed of
potential and kinetic energy. Let � be the momentary elevation of the free
surface. Then the potential energy (per area) is:

Epot D � �

2
�g	��� D 1

2
�g�2

The potential energy is positive both in wave troughs and wave crests and
oscillates in time and space between 0 and �gjOhj2. The time average is

Epot D 1
4�gjOhj2

The kinetic energy per area is:

Ekin D
∫ 1

�

1

2
�	v2

x C v2
z � dz D

∫ 1

�

1

2
�ω2jOhj2e�2kz dz ³

∫ 1

0
. . . dz D 1

4
�gjOhj2

Here the formulae for vx and vz have been used and in a linearization the wave
elevation � was substituted by 0. The kinetic energy is constant in time and
space. The time-averaged total energy per area for a deep-water wave is then:

E D 1
2�gjOhj2

The average energy travels with cgr in the same direction as the wave. For
finite-depth water the average energy remains the same but the kinetic energy
oscillates also in time and space.

The elementary wave was so far described in an earth-fixed coordinate
system. In a reference system moving with ship speed V in the direction of
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the ship axis xs under an angle of encounter � (Fig. 4.3), the wave seems
to change its frequency. The (circular) frequency experienced by the ship is
denoted encounter frequency:

ωe D jω � kV cos�j D
∣∣∣∣∣ω � ω2V

g
cos�

∣∣∣∣∣

y

y
s

m

c

v

xs

x

Figure 4.3 Definition of angle of encounter

Figure 4.4 illustrates this phenomenon. For course against the sea (� > 90°)
the encounter frequency is higher than the incident wave frequency ω. For
course with the sea (� < 90°) the encounter frequency is usually lower than

104 103 102 50 40 l (m)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

we

(s−1)

Ship passes waves

−2
5 

kn
−2

0 
kn

−1
0 

kn
−5

 k
n

0

F
ol

lo
w

in
g

he
ad

 w
av

es

5 kn

15 kn

30. kn0.2 0.4 0.8 1.0 1.4 w (s−1)

25 kn

20 kn

v.cos(m) = 10 kn

−1
5 

kn

v.
co

s(
m

) 
= 

− 
30

 k
n

Figure 4.4 Relation between wave frequency, wave length and encounter frequency



106 Practical Ship Hydrodynamics

the incident wave frequency ω. An exception are short following seas which
are passed by the ship. The condition for the ship passing the waves is:

Fn >
0.4

cos�

√
�

L

An important parameter in this context is:

! D ωeV

g
D ωV

g
�
(
ωV

g

)2

cos�

For following sea for cases with ! cos� < 0.25, for given speed V, encounter
angle �, and encounter frequency ωe three possible ω values exist:

ω1 D g

2V cos�
	1 C

√
1 C 4! cos��

ω2 D g

2V cos�
	1 C

√
1 � 4! cos��

ω3 D g

2V cos�
	1 �

√
1 � 4! cos��

The potential of a deep-water wave in a coordinate system moving with ship
speed is:

 D Re	�ic Ohe�kze�ik	xs cos��ys sin��eiωet�

The above formulae for velocities and pressures can correspondingly be derived
in the coordinate system moving with ship speed.

4.3.2 Natural seaway

Wind-excited seaway can be approximated with good accuracy as the super-
position of many elementary waves of different wave lengths and propagation
directions. The phase shifts between these elementary waves change with
time and location and are taken as random quantities for the origin and time
t D 0. The randomness of the phases – which corresponds to the randomness
(irregularity) of the natural seaway – means that only statistical statements
can be made, e.g. what the probability is that the wave height exceeds a
given limit.

The initial assumptions are:

1. The seaway is stationary, i.e. its statistical properties (e.g. average wave
height, average wave period etc.) do not change within the considered time
frame.

2. The seaway is not too steep so that linearized equations are still accurate
enough. Then any linear superposition of two or more waves with the same
or differing frequency or propagation direction will again be a possible
form of the water surface.

Only those seaway properties which do not change for small variations of the
registration location or the registration time are of interest for ship seakeeping.
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The procedure to obtain these properties is as follows: Assume we have a
record of the wave elevation �	t� at a given point for the time interval t D 0
to T. Then � is decomposed in a Fourier analysis, i.e. the complex constants
OAj are determined in a finite series:

�	t� D A0 C
J∑

jD1

Re	 OAjeiωjt� with ωj D jω, ω D 2�/T

The average wave elevation A0 is of no interest here. The phase angle εj of the
complex amplitudes OAj D j OAjjei2j would be different at a different (near-by)
location and are therefore also of no interest here. The absolute value of OAj
depends on the registration time T. Only the sea spectrum remains as constant
and of interest in the above sense:

S�	ωj� D Average value of j OAjj2
2ωj

The averaging can be done:

ž over many records of statistically equivalent seaways (e.g. at various loca-
tions spaced by a few kilometres at the same time), or

ž over many records of time intervals of the total registration time T, or
ž over several (10 to 30) ‘neighbouring’ j OAjj2 (preferred choice in practice);

e.g. for j D 1 to 10, 11 to 20, 21 to 30 etc., an average j OAj2 can be found
as the arithmetic average of ten j OAjj2 in each case.

The ωj in the argument of the sea spectrum S� is the (circular) frequency (in
the last case the average frequency) on which the average is based.

The wave energy per horizontal area in an elementary wave is:

E D 1
2�gj OAj2

�gS� is thus the average seaway energy per frequency interval and area.
Therefore S� is also called the energy spectrum of a seaway. It describes
the distribution of wave energy over the frequency ω. Its dimension is, e.g.,
m2 Ð s.

The spectrum can be used to reconstruct the time function �	t� given earlier
in this section:

�	t� D
J∑

jD1

√
2S�	ωj�ωj Ð cos	ωjt C εj�

(Instead of Re ei˛ we simply write here cos ˛.) We substituted here j OAjj2 by
its average value; this usually has no significant effect. As the phase angle
information is no longer contained in the spectrum (and we usually only have
the spectrum information to reconstruct a seaway) the phase angles εj are
chosen as random quantities equally distributed in the interval [0, 2�]. This
creates various functions �	t� depending on the actual choice of εj, but all these
functions have the same spectrum, i.e. the same characteristic (non-random)
properties as the original seaway.
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If all phase angles are chosen to zero the extremely unlikely (but not
impossible) case results that all elementary waves have a wave trough at the
considered location at time t D 0. The number of terms in the sum for �	t� in
the above equation is taken as infinite in theoretical derivations. In practical
simulations, usually 30 to 100 terms are taken.

Each elementary wave in a Fourier decomposition of natural seaway depends
on time and space. The superposition of many elementary waves all propa-
gating in the x direction, but having different frequencies, yields long-crested
seaways as depicted in Fig. 4.5 (left). Long-crested seaway is described by:

�	t� D
J∑

jD1

√
2S�	ωj�ωj Ð cos	ωjt C kjx C εj�

c

y y
x x

z, x z, x

Figure 4.5 Long-crested (left) and short-crested (right) seaways

kj D ω2
j/g is the wave number corresponding to frequency ωj.

Short-crested seaway, Fig. 4.5 (right), is a better approximation to wind-
excited seaway. Short-crested seaway is described if the wave energy is
distributed not only over frequency, but also over wave propagation direction
�. The corresponding description is:

�	t� D
J∑

jD1

L∑
lD1

√
2S�	ωj, �l�ωj�l

ð cos[ωjt � kj	x cos�l � y sin�l� C εjl]

S�	ωj, �l� is the directional or two-dimensional spectrum as opposed to the
one-dimensional spectrum S�	ωj�.

At a ship, the wave elevation oscillates in a regular wave with encounter
frequency ωe. The encounter spectrum S�e	ωe� describes the distribution of the
wave energy in a seaway over ωe instead of ω. The energy must be independent
of the reference system:

S�	ω� Ð jωj D S�e	ωe� Ð jωej
This yields:

S�e	ωe� D S�	ω�

dωe/dω
D S�	ω�

/∣∣∣∣1 � 2ω

g
V cos�

∣∣∣∣
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If several ω result in the same ωe the contributions of all three frequencies are
added on the r.h.s. of this equation (Fig. 4.6). Correspondingly an encounter
directional spectrum can also be determined. Because of the several possible
contributions on the r.h.s. and the singularity at S�e – where the denominator
on the r.h.s. in the above equation becomes zero – the encounter spectrum is
not used in seakeeping computations. However, it is needed for the analysis
of data if these were measured from a ship with forward speed.

0 0 0.25 g /u
w we

w0

s(w) s(we)

Figure 4.6 Sea spectrum and corresponding encounter spectrum

4.3.3 Wind and seaway

We distinguish between swell and wind sea. Swell waves have a celerity higher
than the present wind speed (e.g. measured in 10 m height above mean sea
level; only the component in wave propagation direction is considered). Swell
has been excited originally by some stronger winds at some other location
and propagates without significant damping or excitation until it is damped
in shallow-water regions or excited again to wind sea in stronger winds. By
definition, wind sea has celerity less or equal to the wind speed. Due to the
gustiness of wind and other factors, the distinction between swell and wind
sea is not sharp.

Swell, sometimes also wind sea (for winds changing rapidly in time or
space), can change the form of the spectrum considerably. On the other hand,
a rather uniform form of a wind sea spectrum is achieved within 1

2 to 1 hour
if the wind is constant in time and space. The relevant area in this context
extends over a distance of ( 1

2 to 1 hour)/group velocity of waves in a downwind
direction. In the following, we will consider only spectra developed in constant
wind. The spectrum parameters, especially wave height and period, converge
only after many hours or several days to constant values. The form of the
spectrum is determined by the physical processes of:

ž wave generation (e.g. the wind resistance of wave crests)
ž dissipation (wavebreaking; in shallow water also friction at the ocean

bottom)
ž convection (transport of wave energy with group velocity)
ž non-linear interaction between waves of different frequencies and direction

The directional spectrum is described as the product of a one-dimensional
spectrum S�	ω� with a function f. f describes the distribution of the wave
energy over the propagation direction � assumed to be symmetrical to a main
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propagation direction �0:

S�	ω, �� D S�	ω� Ð f	� � �0�

Söding and Bertram (1998) give a more modern form than the often cited
Pierson–Moskowitz and JONSWAP spectra. The older spectra assume a stro-
nger decay of the wave energy at higher frequencies (proportional to ω�5,
while more recent measurements indicate a decay proportional to ω�4).

The one-dimensional spectrum S�	ω� must be zero for small frequencies
(where the wave celerity is much higher than the wind speed) and converge to
zero for high frequencies, because high frequency means short waves which
in turn can only have small height as the wave steepness before breaking
is limited. In between, there must be a maximum. The (circular) frequency
where the spectrum assumes its maximum is called modal frequency or peak
frequency ωp. The function S�	ω� contains as an important parameter Uc/cp.
Uc is the component of the wind velocity in the main direction of wave
propagation, measured in 10 m height. cp is the celerity of elementary waves
of frequency ωp. cp is computed using the formula cp D g/ωp which is valid
for elementary waves. In reality, waves of frequency ωp travel some 5 to 10%
faster due to their larger steepness. The ratio Uc/cp lies usually between 1
(fully developed seaway) and 5 (strongly increasing seaway).
S�	ω� is written as the product of three factors:

ž an initial factor ˛g2/ω5
p

ž a ‘base form’ containing the ω dependency (corresponding to the Pierson–
Moskowitz spectrum widely used previously)

ž a peak enhancement factor . independent of Uc/cp:

S�	ω� D ˛g2

ω5
p

Ð
(ωp

ω

)4
exp

[
�
(ωp

ω

)4
]

Ð .

with:

˛ D 0.006	Uc/cp�
0.55

Figure 4.7 illustrates ˛, Fig. 4.8 the base form, and Fig. 4.9 the peak
enhancement for three representative values of Uc/cp. The peak enhancement
makes the maximum of the spectrum very pointed for a not fully developed
seaway (Uc/cp > 1), while fully developed seaways feature broader and less
pronounced maxima. . describes the maximum of the peak enhancement over
ω. It occurs at ωp and increases the ‘base form’ by a factor of:

. D 1.7 C max[0, 6 log10	Uc/cp�]

 describes how the enhancement factor decays left and right of the model
frequency ωp; for this purpose a formula corresponding to a normal (Gaussian)
distribution is chosen (but without a forefactor; thus the maximum of  is 1):

 D exp

(
� 	ω/ωp � 1�2

202

)
with

0 D 0.08[1 C 4/	Uc/cp�
3]
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The distribution of the wave energy over the propagation direction f	� � �0�
is independent of Uc/cp. Instead, it depends on the non-dimensional frequency
ω/ωp:

f	� � �0� D 0.5ˇ/cosh2[ˇ	� � �0�] with

ˇ D max	1.24, 2.61	ω/ωp�
1.3� for ω/ωp < 0.95

ˇ D max	1.24, 2.28	ω/ωp�
�1.3� for ω/ωp ½ 0.95

Figure 4.10 illustrates f	� � �0�. Figure 4.11 illustrates ˇ	ω/ωp�.
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Figure 4.10 Angular distribution of seaway energy
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Figure 4.11 Angular spreading ˇ

Since short waves adapt more quickly to the wind than long waves, a
changing wind direction results in a frequency-dependent main propagation
direction �0. Frequency-dependent �0 are also observed for oblique offshore
wind near the coast. The wave propagation direction here is more parallel to
the coast than the wind direction, because this corresponds to a longer fetch.
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The (only statistically defined) wave steepness D wave height/wave length
does not depend strongly on the wind velocity, Uc/cp, or ω/ωp. The wave
steepness is so large that the celerity deviates noticeably from the theoretical
values for elementary waves (of small amplitude) as described above. Also,
the average shape of the wave profiles deviates noticeably from the assumed
sinusoidal wave forms of elementary waves. However, non-linear effects in the
waves are usually much weaker than the non-linear effects of ship seakeeping
in the seaway.

The significant wave height H1/3 of a seaway is defined as the mean of
the top third of all waves, measured from wave crest to wave trough. H1/3 is
related to the area m0 under the sea spectrum:

H1/3 D 4
p
m0 with m0 D

∫ 1

0

∫ 2�

0
S�	ω, �� d� dω

For the above given wind sea spectrum, H1/3 can be approximated by:

H1/3 D 0.21
U2

c

g

(
Uc

cp

)�1.65

The modal period is:

Tp D 2�/ωp

The periods T1 and T2, which were traditionally popular to describe the
seaway, are much shorter than the modal period. T1 corresponds to the
frequency ω where the area under the spectrum has its centre. T2 is the average
period of upward zero crossings.

If we assume that water is initially calm and then a constant wind blows
for a duration t and over a distance x, the seaway parameter Uc/cp becomes
approximately:

Uc

cp
D max	1, 183�3/10, 1104�3/7�

3 is the non-dimensional fetch x, 4 the non-dimensional wind duration t:

3 D gx/U2
c ; 4 D gt/Uc

The fetch is to be taken downwind from the point where the seaway is consid-
ered, but of course at most to the shore. In reality, there is no sudden and then
constant wind. But the seakeeping parameters are not very sensitive towards x
and t. Therefore it is possible to estimate the seaway with practical accuracy
in most cases when the wind field is given.

Table 4.1 shows how the above formulae estimate the seaway parameters
H1/3 and Tp for various assumed wind durations t for an exemplary wind
velocity Uc D 20 m/s. The fetch x was assumed to be so large that the centre
term in the ‘max’-bracket in the above formula for Uc/cp is always smaller
than one of the other two terms. That is, the seaway is not fetch-limited, but
either time-limited (for 1104�3/7 > 1) or fully developed.

Figure 4.12 shows wind sea spectra for Uc D 20 m/s for various fetch values.
Figure 4.13 shows the relation between wave period Tp and significant wave
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Table 4.1 Sea spectra for various wind duration times for Uc = 20 m=s

Quantity Case 1 Case 2 Case 3

Assumed wind duration time t (h) 5 20 50
Non-dimensial duration time 4 8 830 35 000 88 000
Maturity parameter Uc/cp 2.24 1.24 1
Significant wave higher H1/3(m) 2.26 6.00 8.56
ωp D g/cp D g/Uc Ð Uc/cp 	s�1� 1.10 0.61 0.49
Modal period 2�/ωp (s) 5.7 10.3 12.8
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Figure 4.12 Wind sea spectra for uc D 20 m/s for various fetch values
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height H1/3 for various values of Uc/cp. cp (lower scale) and Uc/cp together
yield the wind velocity Uc that has excited the wind sea characterized by H1/3
and Tp. For swell, we can assume Uc ³ cp. Figure 4.14 shows the relation
between various seaway parameters, the ‘wind force’ and the wind velocity Uc.
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Figure 4.14 Key wind sea parameters depending on the wind speed Uc (component in wave
propagation direction in 10 m height

Programs to compute the given wind sea spectrum from either Uc, t and x
or H1/3 and Tp are given by Söding (1997).

4.3.4 Wave climate

Predictions of maximum loads, load collectives for fatigue strength analyses
etc. require distributions of the significant seaway properties in individual
ocean areas. The best sources for such statistics are computations of the seaway
based on measured wind fields. ANEP-II (1983) gives such statistical data
extensively for North Atlantic, North Sea, Baltic Sea, Mediterranean Sea and
Black Sea. Based on these data, Germanischer Lloyd derived distributions
for H1/3 and T1 for all of the Atlantic between 50 and 60 longitudinal and
the western Atlantic between 40 and 50 longitudinal (Table 4.2). The table is
based on data for a period of 10 years. T1 is the period corresponding to the
centre of gravity of the area under the sea spectrum. The modal period is for
this table:

Tp D T1/0.77

The values in the table give 106 the time share when T1 was in the given time
interval and H1/3 in the interval denoted by its mean value, at an arbitrary
point in the sea area. FCUM denotes the cumulated share in per cent. Similar
tables can be derived from ANEP-II and other publications for special seaway
directions, seasons and other ocean areas.

Table 4.2 can also be used to approximate other ocean areas by comparing
the wind field in the North Atlantic with the wind field in another ocean area,



Table 4.2 Relative occurrence · 106 of combinations of H1=3 and T1 in the North Atlantic

T1 	s� H1/3 	m�

from to FCUM 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 11.0 13.0 15.0 17.0 19.0 21.0 24.0

1.9 3.1 0.2 2 040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.1 4.3 0.6 2 343 1 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.3 5.3 5.3 21 165 25 562 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.3 6.2 14.3 17 770 51 668 20 543 308 0 0 0 0 0 0 0 0 0 0 0 0 0
6.2 7.1 26.4 14 666 38 973 58 152 8 922 0 0 0 0 0 0 0 0 0 0 0 0 0
7.1 7.9 41.6 15 234 29 453 52 102 49 055 6 093 304 0 0 0 0 0 0 0 0 0 0 0
7.9 9.0 57.0 9 918 21 472 33 742 43 660 36 809 7 464 715 0 0 0 0 0 0 0 0 0 0
9.0 10.1 75.9 7 894 21 221 26 655 37 214 39 675 36 189 17 120 2 768 307 0 0 0 0 0 0 0 0

10.1 11.1 85.4 3 062 8 167 11 945 14 497 15 621 15 314 13 579 9 188 3 369 714 0 0 0 0 0 0 0
11.1 12.1 91.3 1 672 4 094 6 034 7 374 8 208 8 467 8 121 6 955 4 845 2 120 822 0 0 0 0 0 0
12.1 13.2 95.2 981 2 185 3 140 3 986 4 659 4 948 4 947 4 726 4 117 3 062 2 318 215 0 0 0 0 0
13.2 14.6 97.7 547 1 038 1 527 2 122 2 418 2 633 2 788 2 754 2 632 2 385 3 043 784 78 0 0 0 0
14.6 16.4 99.1 269 412 719 942 1 069 1 259 1 312 1 374 1 358 1 325 2 246 1 303 378 44 0 0 0
16.4 18.6 99.8 110 124 290 314 424 451 516 534 559 557 1 072 908 544 197 43 3 0
18.6 21.0 100.0 32 32 71 86 106 126 132 151 154 162 327 314 268 187 86 27 5

FCUM 9.8 30.3 51.9 68.7 80.2 87.9 92.9 95.7 97.4 98.5 99.5 99.8 99.9 100.0 100.0 100.0 100.0
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using data of Blendermann (1998), and employing the relation between wind
and sea as given in the previous chapter.

4.4 Numerical prediction of ship seakeeping

4.4.1 Overview of computational methods

If the effect of the wave amplitude on the ship seakeeping is significantly non-
linear, there is little sense in investigating the ship in elementary waves, since
these waves do not appear in nature and the non-linear reaction of the ship in
natural seaways cannot be deduced from the reaction in elementary waves. In
these non-linear cases, simulation in the time domain is the appropriate tool
for numerical predictions.

However, if the non-linearity is weak or moderate the seakeeping properties
of a ship in natural seaways can be approximated by superposition of the reac-
tions in elementary waves of different frequency and direction. In these cases,
the accuracy can be enhanced by introducing some relatively simple corrections
of the purely linear computations to account for force contributions depending
quadratically on the water velocity or considering the time-dependent change
of position and wetted surface of the ship, for example. Even if iterative correc-
tions are applied the basic computations of the ship seakeeping is still based
on its reaction in elementary waves, expressed by complex amplitudes of the
ship reactions. The time dependency is then always assumed to be harmonic,
i.e. sinusoidal.

The Navier–Stokes equation (conservation of momentum) and the
continuity equation (conservation of mass) suffice in principle to describe all
phenomena of ship seakeeping flows. However, we neither can nor want to
resolve all little turbulent fluctuations in the ship’s boundary layer and wake.
Therefore we average over time intervals which are long compared to the
turbulent fluctuations and short compared to the wave periods. This then yields
the Reynolds-averaged Navier–Stokes equations (RANSE). By the late 1990s
RANSE computations for ship seakeeping were subject to research, but were
still limited to selected simplified problems.

If viscosity is neglected the RANSE turn into the Euler equations. Euler
solvers do not have to resolve the boundary layers (no viscosity D no boundary
layer) and allow thus coarser grids and considerably shorter computational
times. By the late 1990s, Euler solvers were also still limited to simplified prob-
lems in research applications, typically highly non-linear free surface problems
such as slamming of two-dimensional sections.

In practice, potential flow solvers are used almost exclusively in seakeeping
predictions. The most frequent application is the computation of the linear
seakeeping properties of a ship in elementary waves. In addition to the assump-
tion for Euler solvers potential flow assumes that the flow is irrotational. This
is no major loss in the physical model, because rotation is created by the water
adhering to the hull and this information is already lost in the Euler flow model.
Relevant for practical applications is that potential flow solvers are much faster
than Euler and RANSE solvers, because potential flows have to solve only
one linear differential equation instead of four non-linear coupled differential
equations. Also potential flow solvers are usually based on boundary element
methods and need only to discretize the boundaries of the domain, not the
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whole fluid space. This reduces the effort in grid generation (the main cost
item in most analyses) considerably. On the other hand, potential flow methods
require a simple, continuous free surface. Flows involving breaking waves and
splashes can hardly be analysed properly by potential flow methods.

In reality, viscosity is significant in seakeeping, especially if the boundary
layer separates periodically from the hull. This is definitely the case for roll and
yaw motions. In practice, empirical corrections are introduced. Also, for flow
separation at sharp edges in the aftbody (e.g. vertical sterns, rudder, or tran-
soms) a Kutta condition is usually employed to enforce a smooth detachment
of the flow from the relevant edge.

The theoretical basics and boundary conditions of linear potential methods
for ship seakeeping are treated extensively in the literature, e.g. by Newman
(1978). Therefore, we can limit ourselves here to a short description of the
fundamental results important to the naval architect.

The ship flow in elementary waves is described in a coordinate system
moving with ship speed in the x direction, but not following its periodic
motions. The derivatives of the potential give the velocity of water relative to
such a coordinate system. The total velocity potential is decomposed:

t D 	�Vx C s� C 	w C I�

with t potential of total flow
�Vx potential of (downstream) uniform flow with ship speed V
s potential of the steady flow disturbance
w potential of the undisturbed wave as given at the end of

section 4.3.1
I remaining unsteady potential

The first parenthesis describes only the steady (time-independent) flow, the
second parenthesis the periodic flow due to sea waves. The potentials can be
simply superimposed, since the fundamental field equation (Laplace equation,
describing continuity of mass) is linear with respect to t:

t D
(

∂2

∂x2 C ∂2

∂y2 C ∂2

∂z2

)
t D 0

Various approximations can be used for s and I which affect computational
effort and accuracy of results. The most important linear methods can be
classified as follows:

ž Strip method
Strip methods are the standard tool for ship seakeeping computations. They
omit s completely and approximate I in each strip x D constant indepen-
dently of the other strips. Thus in essence the three-dimensional problem
is reduced to a set (e.g. typically 10 to 30) of two-dimensional boundary
value problems. This requires also a simplification of the actual free surface
condition. The method originated in the late 1950s with work of Korvin-
Kroukovsky and Jacobs. Most of today’s strip methods are variations of
the strip method proposed by Salvesen, Tuck and Faltinsen (1970). These
are sometimes also called STF strip methods where the first letter of each
author is taken to form the abbreviation. The two-dimensional problem
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for each strip can be solved analytically or by panel methods, which are
the two-dimensional equivalent of the three-dimensional methods described
below. The analytical approaches use conform mapping to transform semi-
circles to cross-sections resembling ship sections (Lewis sections). Although
this transformation is limited and, e.g., submerged bulbous bow sections
cannot be represented in satisfactory approximation, this approach still yields
for many ships results of similar quality as strip methods based on panel
methods (close-fit approach). A close-fit approach (panel method) to solve
the two-dimensional problem will be described in section 7.4, Chapter 7.
Strip methods are – despite inherent theoretical shortcomings – fast, cheap
and for most problems sufficiently accurate. However, this depends on many
details. Insufficient accuracy of strip methods often cited in the literature is
often due to the particular implementation of a code and not due to the strip
method in principle. But at least in their conventional form, strip methods
fail (as most other computational methods) for waves shorter than perhaps
1
3 of the ship length. Therefore, the added resistance in short waves (being
considerable for ships with a blunt waterline) can also only be estimated by
strip methods if empirical corrections are introduced. Section 4.4.2 describes
a linear strip method in more detail.

ž Unified theory
Newman (1978) and Sclavounos developed at the MIT the ‘unified theory’
for slender bodies. Kashiwagi (1997) describes more recent developments
of this theory. In essence, the theory uses the slenderness of the ship hull
to justify a two-dimensional approach in the near field which is coupled
to a three-dimensional flow in the far field. The far-field flow is generated
by distributing singularities along the centreline of the ship. This approach
is theoretically applicable to all frequencies, hence ‘unified’. Despite its
better theoretical foundation, unified theories failed to give significantly and
consistently better results than strip theories for real ship geometries. The
method therefore failed to be accepted by practice.

ž ‘High-speed strip theory’ (HSST)
Several authors have contributed to the high-speed strip theory after the
initial work of Chapman (1975). A review of work since then can be
found in Kashiwagi (1997). HSST usually computes the ship motions in an
elementary wave using linear potential theory. The method is often called
2 1

2 dimensional, since it considers the effect of upstream sections on the
flow at a point x, but not the effect of downstream sections. Starting at the
bow, the flow problem is solved for individual strips (sections) x D constant.
The boundary conditions at the free surface and the hull (strip contour) are
used to determine the wave elevation and the velocity potential at the free
surface and the hull. Derivatives in longitudinal direction are computed as
numerical differences to the upstream strip which has been computed in the
previous step. The computation marches downstream from strip to strip and
ends at the stern resp. just before the transom. HSST is the appropriate tool
for fast ships with Froude numbers Fn > 0.4. For lower Froude numbers,
it is inappropriate.

ž Green function method (GFM)
ISSC (1994) gives a literature review of these methods. GFM distribute
panels on the average wetted surface (usually for calm-water floating posi-
tion neglecting dynamical trim and sinkage and the steady wave profile) or
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on a slightly submerged surface inside the hull. The velocity potential of
each panel (Green function) fulfils automatically the Laplace equation, the
radiation condition (waves propagate in the right direction) and a simplified
free-surface condition (omitting the s completely). The unknown (either
source strength or potential) is determined for each element by solving
a linear system of equations such that for each panel at one point the
no-penetration condition on the hull (zero normal velocity) is fulfilled.
The various methods, e.g. Ba and Guilbaud (1995), Iwashita (1997), differ
primarily in the way the Green function is computed. This involves the
numerical evaluation of complicated integrals from 0 to 1 with highly oscil-
lating integrands. Some GFM approaches formulate the boundary conditions
on the ship under consideration of the forward speed, but evaluate the Green
function only at zero speed. This saves a lot of computational effort, but
cannot be justified physically and it is not recommended.

As an alternative to the solution in the frequency domain (for excitation
by elementary waves), GFM may also be formulated in the time domain
(for impulsive excitation). This avoids the evaluation of highly oscillating
integrands, but introduces other difficulties related to the proper treatment of
time history of the flow in so-called convolution integrals. Both frequency
and time domain solutions can be superimposed to give the response to arbi-
trary excitation, e.g. by natural seaway, assuming that the problem is linear.

All GFMs are fundamentally restricted to simplifications in the treatment
of s. Usually s is completely omitted which is questionable for usual
ship hulls. It will introduce, especially in the bow region, larger errors in
predicting local pressures.

ž Rankine singularity method (RSM)
Bertram and Yasukawa (1996) give an extensive overview of these methods
covering both frequency and time domains. RSM, in principle, capture s

completely and also more complicated boundary conditions on the free
surface and the hull. In summary, they offer the option for the best approx-
imation of the seakeeping problem within potential theory. This comes at
a price. Both ship hull and the free surface in the near field around the
ship have to be discretized by panels. Capturing all waves while avoiding
unphysical reflections of the waves at the outer (artificial) boundary of the
computational domain poses the main problem for RSM. Since the early
1990s, various RSM for ship seakeeping have been developed. By the end
of the 1990s, the time-domain SWAN code (SWAN D Ship Wave ANalysis)
of MIT was the first such code to be used commercially.

ž Combined RSM–GFM approach
GFM are fundamentally limited in the capturing the physics when the steady
flow differs considerably from uniform flow, i.e. in the near field. RSM have
fundamental problems in capturing the radiation condition for low ! values.
Both methods can be combined to overcome the individual shortcomings
and to combine their strengths. This is the idea behind combined approaches.
These are described as ‘Combined Boundary Integral Equation Methods’ by
the Japanese, and as ‘hybrid methods’ by Americans. Initially only hybrid
methods were used which matched near-field RSM solutions directly to far-
field GFM solutions by introducing vertical control surfaces at the outer
boundary of the near field. The solutions are matched by requiring that
the potential and its normal derivative are continuous at the control surface
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between near field and far field. In principle methods with overlapping
regions also appear possible.

4.4.2 Strip method

This section presents the most important formulae for a linear frequency-
domain strip method for slender ships in elementary waves. The formulae will
be given without derivation. For a more extensive coverage of the theoretical
background, the reader is referred to Newman (1978).

Two coordinate systems are used:

ž The ship-fixed system x, y, z, with axes pointing from amidships forward,
to starboard and downwards. In this system, the ship’s centre of gravity is
time independent xg, yg, zg.

ž The inertial system 3, 8, �. This system follows the steady forward motion of
the ship with speed V and coincides in the time average with the ship-fixed
system.

The main purpose of the strip method is to compute the ship’s rigid-body
motions, i.e. the three translations of the origin of ship-fixed system in the 3,
8, � direction and the three rotations around these axes. We denote, (Fig. 4.15):

u1 surge u4 roll

u2 sway u5 pitch

u3 heave u6 yaw

u6
u4

u2

u3
u1

u5

Figure 4.15 Six degrees of freedom for motions

The motions are combined in a six-component vector Eu. The forces and
moments acting on the ship are similarly combined in a six-component vector
EF. Eu and EF are harmonic functions of time t oscillating with encounter
frequency ωe:

EF D Re	 OEFeiωet�Eu D Re	 OEueiωet�



122 Practical Ship Hydrodynamics

The fundamental equation of motion is derived from EF D M Ð REu:

[�ω2
e 	M C A� C iωeN C S]OEu D OEFe

Here M, A, N and S are real-valued 6 ð 6 matrices. For mass distribution
symmetrical to y D 0 the mass matrix M is:

M D




m 0 0 0 mzg 0
0 m 0 �mzg 0 mxg
0 0 m 0 �mxg 0
0 �mzg 0 4xx 0 �4xz
mzg 0 �mxg 0 4yy 0

0 mxg 0 �4xz 0 �4zz




The mass moments of inertia 4 are related to the origin of the ship-fixed
coordinate system:

4xx D
∫
	y2 C z2� dm; 4xz D

∫
xz dm; etc.

If we neglect contributions from a dry transom stern and other hydrodynamic
forces due to the forward speed of the ship, the restoring forces matrix S is:

S D




0 0 0 0 0 0
0 0 0 0 0 0
0 0 �gAw 0 ��gAwxw 0
0 0 0 gmGM 0 0
0 0 ��gAwxw 0 gmGML 0
0 0 0 0 0 4zzω2

g




Here Aw is the waterline area, xw the x coordinate of the centre of the waterline,
GM the metacentric height, GML the longitudinal metacentric height, ωg the
circular eigenfrequency of yaw motions. ωg is determined by the control char-
acteristics of the autopilot and usually has little influence on the yaw motions
in seaways. In computing GML, the moment of inertia is taken with respect
to the origin of the coordinate system (usually amidships) and not, as usual,
with respect to the centre of the waterline. For corrections for dry transoms
and unsymmetrical bodies reference is made to Söding (1987).
N is the damping matrix; it contains mainly the effect of the radiated waves.

A is the added mass matrix. (Readers unfamiliar with the concept of added
mass should now read the discourse on added mass.) The decomposition of
the force into hydrostatic (S) and hydrodynamic (A) components is somewhat
arbitrary, especially for the ship with forward speed. Therefore, comparisons
between computations and experiments often are based on the term �ω2

eA C S.
EFe is the vector of exciting forces which a wave would exert on a ship

fixed on its average position (diffraction problem). The exciting forces can be
decomposed into a contribution due to the pressure distribution in the undis-
turbed incident wave (Froude–Krilov force) and the contribution due to the
disturbance by the ship (diffraction force). Both contributions are of similar
order of magnitude.

To determine A and N, the flow due to the harmonic ship motions Eu must
be computed (radiation problem). For small frequency of the motion (i.e. large
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wave length of the radiated waves), the hydrostatic forces dominated and
the hydrodynamic forces are almost negligible. Therefore large relative errors
in computing A and N are acceptable. For high frequencies, the crests of the
waves radiated by the ship motions are near the ship almost parallel to the ship
hull, i.e. predominantly in longitudinal direction. Therefore the longitudinal
velocity component of the radiated waves can be neglected. Then only the
two-dimensional flow around the ship sections (strips) must be determined.
This simplifies the computations a great deal.

For the diffraction problem (disturbance of the wave due to the ship hull),
which determines the exciting forces EFe, a similar reasoning does not hold:
unlike radiation waves (due to ship motions), diffraction waves (due to partial
reflection at the hull and distortion beyond the hull) form a similar angle
(except for sign) with the hull as the incident wave. Therefore, for most inci-
dent waves, the diffraction flow will feature also considerable velocities in
longitudinal direction. These cannot be considered in a regular strip method,
i.e. if we want to consider all strips as hydrodynamically independent. This
error is partially compensated by computing the diffraction flow for wave
frequency ω instead of encounter frequency ωe, but a residual error remains.
To avoid also these residual errors, sometimes EFe is determined indirectly from
the radiation potential following formulae of Newman (1965). However, these
formulae are only valid if the waterline is also streamline. This is especially
not true for ships with submerged transom sterns.

For the determination of the radiation and (usually also) diffraction
(Dexciting) forces, the two-dimensional flow around an infinite cylinder of
same the cross-section as the ship at the considered position is solved,
(Fig. 4.16). The flow is generated by harmonic motions of the cylinder
(radiation) or an incident wave (diffraction). Classical methods used analytical

y

z

x

Figure 4.16 Principle of strip method
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solutions based on multipole methods. Today, usually two-dimensional panel
methods are preferred due to their (slightly) higher accuracy for realistic ship
geometries. These two-dimensional panel methods can be based on GFM or
RSM, see previous chapter.

The flow and thus the pressure distribution depends on

ž for the radiation problem:
hull shape, frequency ωe, and direction of the motion (vertical, horizontal,
rotational)

ž for the diffraction problem:
hull shape, wave frequency ω, and encounter angle �

For the radiation problem, we compute the pressure distributions for unit ampli-
tude motions in one degree of freedom and set all other motions to zero and
omit the incident wave. For the diffraction problem, we set all motions to
zero and consider only the incident wave and its diffraction. We denote the
resulting pressures by:

p̂2 for horizontal unit motion of the cylinder
p̂3 for vertical unit motion of the cylinder
p̂4 for rotational unit motion of the cylinder around the x axis
p̂0 for the fixed cylinder in waves (only the pressure in the undisturbed wave)
p̂7 for the fixed cylinder in waves (only the disturbance of the pressure due to

the body)

Let the actual motions of the cylinder in a wave of amplitude Ohx be described
by the complex amplitudes Ou2,0x, Ou3,0x, Ou4,0x. Then the complex amplitude of
the harmonic pressure is:

Opi D Op2 Ou2,0x C Op3 Ou3,0x C Op4 Ou4,0x C 	 Op0 C Op7�Ohx
The amplitudes of the forces per length on the cylinder are obtained by
integrating the pressure over the wetted surface of a cross-section (wetted
circumference):


Of2
Of3
Of4


 D

∫ l

0

{
n2
n3

yn3 � zn2

}
Ð Opi d<

D
∫ l

0

{
n2
n3

yn3 � zn2

}
Ð 	 Op2, Op3, Op4, Op0 C Op7� d< Ð




Ou2,0x
Ou3,0x
Ou4,0x
Ohx




f0, n2, n3g is here in the inward unit normal on the cylinder surface. The index
x in the last vector indicates that all quantities are taken at the longitudinal
coordinate x at the ship, i.e. the position of the strip under consideration. < is
the circumferential length coordinate of the wetted contour. We can write the
above equation in the form:

OEf D OH Ð fOu2,0x, Ou3,0x, Ou4,0x, OhxgT
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The elements of the matrix OH, obtained by the integrals over the wetted surface
in the above original equation, can be interpreted as added masses aij, damping
nij and exciting forces per wave amplitude Ofei:

OH D

ω2

ea22 � iωen22 0 ω2
ea24 � iωen24 Ofe2

0 ω2
ea33 � iωen33 0 Ofe3

ω2
ea42 � iωen42 0 ω2

ea44 � iωen44 Ofe4




For example, a22 is the added mass per cylinder length for horizontal motion.
The added mass tends towards infinity as the frequency goes to zero.

However, the effect of the added mass also goes to zero for small frequencies,
as the added mass is multiplied by the square of the frequency.

The forces on the total ship are obtained by integrating the forces per length
(obtained for the strips) over the ship length. For forward speed, the harmonic
pressure according to the linearized Bernoulli equation contains also a product
of the constant ship speed �V and the harmonic velocity component in the x
direction. Also, the strip motions denoted by index x have to be converted to
global ship motions in 6 degrees of freedom. This results in the global equation
of motion:

[S � ω2
e 	M C OB�]Ou D OEh

OB is a complex matrix. Its real part is the added mass matrix A. Its imaginary
part is the damping matrix N:

ω2
e

OB D ω2
eA � iωeN D

∫
L

V	x� Ð
(

1 C iV

ωe

∂

∂x

)
	 OHB Ð W	x�� dx

This equation can be used directly to compute OB, e.g. using the trapezoidal
rule for the integrals and numerical difference schemes for the differentiation
in x. Alternatively, partial integration can remove the x derivatives. The new
quantities in the above equations are defined as:

OEE D
OEFE

h
D
∫
L

V	x�

(
OHE C iV

ω

∂ OHE7

∂x

)
eikx cos� dx

W	x� D
[

0 1 0 tx 0 x � V/	iωe�
0 0 1 0 �x C V/	iωe� 0
0 0 0 1 0 0

]

tx is the z coordinate (in the global ship system) of the origin of the reference
system for a strip. (Often a strip reference system is chosen with origin in
the waterline, while the global ship coordinate system may have its origin on
the keel.)

V	x� D




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 tx 0 1 0

�tx 0 �x 0 1
0 x 0 0 0
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OHB D




0 0 0
ω2
ea22 � iωen22 0 ω2

ea24 � iωen24

0 ω2
ea33 � iωen33 0

ω2
ea42 � iωen42 0 ω2

ea44 � iωen44

0 0 0




OHE D




�i�gkAx cos�
Ofe2

Ofe3

Ofe4

�i�gkAxsx cos�




Ax is the submerged section area at x; sx is the vertical coordinate of the centre
of the submerged section area in the global system. OHE contains both the
Froude–Krilov part from the undisturbed wave (Index 0) and the diffraction
part (Index 7), while OHE7 contains only the diffraction part.

The formulae for OB and OEE contain x derivatives. At locations x, where
the ship cross-section changes suddenly (propeller aperture, vertical stem,
submerged transom stern), this would result in extremely high forces per
length. To a large extent, this is actually true at the bow, but not at the stern.
If the cross-sections decrease rapidly there, the streamlines separate from the
ship hull. The momentum (which equals added mass of the cross-section times
velocity of the cross-section) remains then in the ship’s wake while the above
formulae would yield in strict application zero momentum behind the ship as
the added mass OH is zero there. Therefore, the integration of the x derivatives
over the ship length in the above formulae has to end at such locations of flow
separation in the aftbody.

The global equation of motion above yields the vector of the response ampli-
tude operators (RAOs) (Dcomplex amplitude of reaction/wave amplitude) for
the ship motions:

Ou
h

D 	S � ω2
e [M C OB]��1 Ð OEE

The effect of rudder actions due to course deviations (yaw oscillations) was
already considered in the matrix S. In addition, there are forces on the rudder
(and thus the ship) due to ship motions (for centrally located rudders only due
to sway, yaw, and roll) and due to the incident wave. Here it is customary to
incorporate the rudder in the model of the rigid ship filling the gaps between
rudder and ship. (While this is sufficient for the computation of the ship
motions, it is far too crude if the forces on the rudder in a seaway are to
be computed.)

Accurate computation of the motions, pressures, internal forces etc. requires
further additions and corrections, e.g. to capture the influence of non-linear
effects especially for roll motion, treatment of low encounter frequencies,
influence of bilge keels, stabilizing fins etc. The special and often empirical
treatment of these effects differs in various strip methods. Details can be found
in the relevant specialized literature.
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4.4.3 Rankine singularity methods

Bertram and Yasukawa (1996) give an extensive survey of these methods.
A linear frequency-domain method is described briefly here to exemplify the
general approach. Section 7.5, Chapter 7, treats this panel method in more
detail.

In principle, RSM can completely consider s. If s is completely captured
the methods are called ‘fully three dimensional’ to indicate that they capture
both the steady and the harmonic flow three dimensionally. In this case, first
the ‘fully non-linear’ wave resistance problem is solved to determine s and its
derivatives, including second derivatives of s on the hull. The solution yields
also all other steady flow effects, namely dynamic trim and sinkage, steady
wave profile on the hull, steady and the wave pattern on the free surface. Then
the actual seakeeping computations can be performed considering the interac-
tion between steady and harmonic flow components. The boundary conditions
for I are linearized with regard to wave amplitude h and quantities propor-
tional to h, e.g. ship motions. The Laplace equation (mass conservation) is
solved subject to the boundary conditions:

1. Water does not penetrate the hull.
2. Water does not penetrate the free surface.
3. At the free surface there is atmospheric pressure.
4. Far away from the ship, the flow is undisturbed.
5. Waves generated by the ship radiate away from the ship.
6. Waves generated by the ship are not reflected at the artifical boundary of

the computational domain.
7. For antisymmetric motions (sway, roll, yaw), a Kutta condition is enforced

on the stern.
8. Forces (and moments) not in equilibrium result in ship motions.

For ! D ωeV/g > 0.25 waves generated by the ship travel only downstream,
similar to the steady wave pattern. Thus also the same numerical techniques
as for the steady wave resistance problem can be used to enforce proper radi-
ation, e.g. shifting source elements relative to collocation points downstream.
Values ! < 0.25 appear especially in following waves. Various techniques have
been proposed for this case, as discussed in Bertram and Yasukawa (1996).
However, there is no easy and accurate way in the frequency domain. In the
time domain, proper radiation follows automatically and numerical beaches
have to be introduced to avoid reflection at the outer boundary of the compu-
tational domain.

We split here the six-component motion vector of the chapter for the strip
method approach into two three-component vectors. Eu D fu1, u2, u3gT describes
the translations, Ę D fu4, u5, u6gT D f˛1, ˛2, ˛3gT the rotations. The velocity
potential is again decomposed as in section 4.4.1:

t D 	�Vx C s� C 	w C I�

The steady potential s is determined first. Typically, a ‘fully non-linear’ wave
resistance code employing higher-order panels is used also to determine second
derivatives of the potential on the hull. Such higher-order panels are described
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in the section on boundary elements. w is the incident wave as in section 4.3:

w D Re	�ic Ohe�kze�ik	x cos��y sin��eiωet�

The wave amplitude is chosen to Oh D 1.
The remaining unknown potential I is decomposed into diffraction and

radiation components:

I D d C
6∑
iD1

iui

The boundary conditions 1–3 and 7 are numerically enforced in a collocation
scheme, i.e. at selected individual points. The remaining boundary conditions
are automatically fulfilled in a Rankine singularity method. Combining 2 and
3 yields the boundary condition on the free surface, to be fulfilled by the
unsteady potential 	1� D w C I:

	�ω2
e C Biωe� O	1� C 	[2iωe C B]r	0� C Ea	0� C Eag�rO	1�

C r	0�	r	0�r�rO	1� D 0

With:

	0� D �Vx C s steady potential

Ea D 	r	0�r�r	0� steady particle acceleration

Eag D Ea � f0, 0, ggT

B D �	1/ag3�∂	r	0�Eag�/∂z
r D f∂/∂x, ∂/∂y, ∂/∂zgT

The boundary condition 1 yields on the ship hull

EnrO	1� C OEu	 Em � iωeEn� C OĘ[Ex ð 	 Em � iωeEn� C En ð r	0�] D 0

Here the m terms have been introduced:

Em D 	Enr�r	0�

Vectors En and Ex are to be taken in the ship-fixed system.
The diffraction potential d and the six radiation potentials i are determined

in a panel method that can employ regular first-order panels. The panels are
distributed on the hull and on (or above) the free surface around the ship.
The Kutta condition requires the introduction of additional dipole (or alter-
natively vortex) elements. The preferred choice here are Thiart elements, see
section 6.4.2, Chapter 6.

Test computations for a container ship (standard ITTC test case S-175) have
shown a significant influence of the Kutta condition for sway, yaw and roll
motions for small encounter frequencies.

To determine d, all motions (ui, i D 1 to 6) are set to zero. To determine
the i, the corresponding ui is set to 1, all other motion amplitudes, d and w



Ship seakeeping 129

to zero. Then the boundary conditions form a system of linear equations for
the unknown element strengths which is solved, e.g., by Gauss elimination.
Once the element strengths are known, all potentials and derivatives can be
computed.

For the computation of the total potential t, the motion amplitudes
ui remain to be determined. The necessary equations are supplied by the
momentum equations:

m	 REu C RĘ ð Exg� D �Ę ð EG C
∫ (

p	1� � �[EuEag C Ę	Ex ð Eag�]) En dS

m	Exg ð REu� C I RĘ D �Exg ð 	 Ę ð EG� C
∫
	p	1� � �[EuEag C Ę	Ex ð Eag�]�

ð 	Ex ð En� dS

G D gm is the ship’s weight, Exg its centre of gravity and I the matrix of the
moments of inertia of the ship (without added masses) with respect to the
coordinate system. I is the lower-right 3 ð 3 sub-matrix of the 6 ð 6 matrix
M given in the section for the strip method.

The integrals extend over the average wetted surface of the ship. The
harmonic pressure p	1� can be decomposed into parts due to the incident wave,
due to diffraction, and due to radiation:

p	1� D pw C pd C
6∑
iD1

piui

The pressures pw, pd and pi, collectively denoted by pj, are determined from
the linearized Bernoulli equation as:

pj D ��	jt C r	0�rj�
The two momentum vector equations above form a linear system of equations
for the six motions ui which is easily solved.

The explicit consideration of the steady potential s changes the results for
computed heave and pitch motions for wave lengths of similar magnitude as
the ship length – these are the wave lengths of predominant interest – by as
much as 20–30% compared to total neglect. The results for standard test cases
such as the Series-60 and the S-175 agree much better with experimental data
for the ‘fully three-dimensional’ method. For the standard ITTC test case of the
S-175 container ship, in most cases good agreement with experiments could
be obtained (Fig. 4.17). Only for low encounter frequencies, the antisymmetric
motions are overpredicted, probably because viscous effects and autopilot were
not modelled at all in the computations.

If s is approximated by double-body flow, similar results are obtained as
long as the dynamic trim and sinkage are small. However, the computational
effort is nearly the same.

Japanese experiments at a tanker model indicate that for full hulls the diffrac-
tion pressures in the forebody for short head waves (�/L D 0.3 and 0.5) are
predicted with errors of up to 50% if s is neglected (as typically in GFM or
strip methods). Computations with and without consideration of s yield large
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Figure 4.17 Selected response amplitude operators of motions for the container ship S-175 at
fn D 0.275; experiment, computation surge (top left) for � D 180°; roll (top right) for
� D 120°; heave (bottom left) for � D 150°; pitch (bottom right) for � D 150°

differences in the pressures in the bow region for radiation in short waves and
for diffraction in long waves.

4.4.4 Problems for fast and unconventional ships

Seakeeping computations are problematic for fast and unconventional ships.
Seakeeping plays a special role here, as fast ships are often passenger ferries,
which need good seakeeping characteristics to attract passengers. This is the
reason why, e.g., planing boats with their bad seakeeping are hardly ever used
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for commercial passenger transport. For fast cargo ships, the reduced speed in
seaways can considerably influence transport efficiency. A hull form, which
is superior in calm water, may well become inferior in moderate seaways.
Warships also often require good seakeeping to supply stable platforms for
weapon systems, helicopters, or planes.

Unfortunately, computational methods for conventional ships are usually
not at all or only with special modifications suitable for fast and unconven-
tional ships. The special ‘High-speed strip theory’, see section 4.4.1, has been
successfully applied in various forms to both fast monohulls and multihulls.
Japanese validation studies showed that for a fast monohull with transom stern
the HSST fared much better than both conventional strip methods and three-
dimensional GFM and RSM. However, the conventional strip methods and
the three-dimensional methods did not use any special treatment of the large
transom stern of the test case. This impairs the validity of the conclusions.
Researchers at the MIT have shown that at least for time-domain RSM the
treatment of transom sterns is possible and yields good results also for fast
ships, albeit at a much higher computational effort than the HSST. In most
cases, HSST should yield the best cost-benefit ratio for fast ships.

It is claimed often in the literature that conventional strip methods are only
suitable for low ship speeds. However, benchmark tests show that strip methods
can yield good predictions of motion RAOs up to Froude numbers Fn ³ 0.6,
provided that proper care is taken and the dynamic trim and sinkage and the
steady wave profile at the hull is included to define the average submergence
of the strips. The prediction of dynamic trim and sinkage is relatively easy for
fast displacement ships, but difficult for planing boats. Neglecting these effects,
i.e. computing for the calm-water wetted surface, may be a significant reason
why often in the literature a lower Froude number limit of Fn ³ 0.4 is cited.

For catamarans, the interaction between the hulls plays an important role
especially for low speeds. For design speed, the interaction is usually negligible
in head seas. Three-dimensional methods (RSM, GFM) capture automatically
the interaction as both hulls are simultaneously modelled. The very slender
form of the demihulls introduces smaller errors for GFM catamaran compu-
tations than for monohulls. Both RSM and GFM applications to catamarans
can be found in the literature, usually for simplified research geometries. Strip
methods require special modifications to capture, at least in good approxima-
tion, the hull interaction, namely multiple reflection of radiation and diffraction
waves. Simply using the hydrodynamic coefficients for the two-dimensional
flow between the two cross-sections leads to strong overestimation of the
interaction for V > 0.

Seakeeping computations for air-cushioned vehicles and surface effect ships
are particularly difficult due to additional problems:

ž The flexible skirts deform under the changing air cushion pressure and the
contact with the free surface. Thus the effective cushion area and its centre
of gravity change.

ž The flow and the pressure in the cushion contain unsteady parts which
depend strongly on the average gap between free surface and skirts.

ž The dynamics of fans (and their motors) influences the ship motions.

Especially the narrow gaps between skirts and free surface result in a strongly
non-linear behaviour that so far excludes accurate predictions.
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4.4.5 Further quantities in regular waves

Within a linear theory, the velocity and acceleration RAOs can be directly
derived, once the motion RAOs are determined. The relative motion between
a point on the ship and the water surface is important to evaluate the danger of
slamming or water on deck. The RAOs for relative motion should incorporate
the effect of diffraction and radiation, which is again quite simple once the
RAOs for the ship motions are determined. However, effects of flared hull
shape with outward forming spray for heave motion cannot be modelled prop-
erly within a linear theory, because these depend non-linearly on the relative
motion. In practice, the section flare is important for estimating the amount of
water on deck.

Internal forces on the ship hull (longitudinal, transverse, and vertical forces,
torsional, transverse, and longitudinal bending moment) can also be determined
relatively easily for known motions. The pressures are then only integrated up
to a given cross-section instead of over the whole ship length. (Within a strip
method approach, this also includes the matrix of restoring forces S, which
contains implicitly many hydrostatic pressure terms.) Also, the mass forces
(in matrix M) should only be considered up to the given location x of the
cross-section. Stresses in the hull can then be derived from the internal forces.
However, care must be taken that the moments are transformed to the neutral
axis of the ‘beam’ ship hull. Also, stresses in the hull are of interest often for
extreme loads where linear theory should no longer be applied.

The longitudinal force on the ship in a seaway is to first order within a
linear theory also a harmonically oscillating quantity. The time average of
this quantity is zero. However, in practice the ship experiences a significantly
non-zero added resistance in seaways. This added resistance (and similarly
the transverse drift force) can be estimated using linear theory. Two main
contributions appear:

ž Second-order pressure contributions are integrated over the average wetted
surface.

ž First-order pressure contributions are integrated over the difference between
average and instantaneous wetted surface; this yields an integral over the
contour of the waterplane.

If the steady flow contribution is completely retained (as in some three-
dimensional BEM), the resulting expression for the added resistance is rather
complicated and involves also second derivatives of the potential on the hull.
Usually this formula is simplified assuming

ž uniform flow as the steady base flow
ž dropping a term involving x-derivatives of the flow
ž considering only heave and pitch as main contributions to added resistance

4.4.6 Ship responses in stationary seaway

Here the issue is how to get statistically significant properties in natural
seaways from a response amplitude operator Yr	ω, �� in elementary waves
for an arbitrary response r depending linearly on wave amplitude. The seaway
is assumed to be stationary with known spectrum S�	ω, ��.
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Since the spectrum is a representation of the distribution of the amplitude
squared over ω and �, and the RAO OYr is the complex ratio of rA/�A, the
spectrum of r is given by:

Sr	ω, �� D jYr	ω, ��j2S�	ω, ��
Values of r, chosen at a random point in time, follow a Gaussian distribution.
The average of r is zero if we assume r ¾ �A, i.e. in calm water r D 0. The
probability density of randomly chosen r values is:

f	r� D 1p
2�0r

exp

(
� r2

202
r

)

The variance 02
r is obtained by adding the variances due to the elementary

waves in which the natural seaway is decomposed:

02
r D

∫ 1

0

∫ 2�

0
Sr	ω, �� d� dω

The sum distribution corresponding to the frequency density f	r� above is:

F	r� D
∫ r

�1
f	�� d� D 1

2
[1 C 	r/0r�]

The probability integral  is defined as:

 D 2/
p

2� Ð
∫ x

�1
exp	�t2/2� dt

F	r� gives the percentage of time when a response (in the long-term average) is
less or equal to a given limit r. 1 � F	r� is then the corresponding percentage
of time when the limit r is exceeded.

More often the distribution of the amplitudes of r is of interest. We define
here the amplitude of r (differing from some authors) as the maximum of
r between two following upward zero crossings (where r D 0 and Pr > 0).
The amplitudes of r are denoted by rA. They have approximately (except for
extremely ‘broad’ spectra) the following probability density:

f	rA� D rA
02
r

exp

(
� r2

A

202
r

)

The corresponding sum distribution is:

F	rA� D 1 � exp

(
� r2

A

202
r

)

0r follows again the formula given above. The formula for F	rA� describes a
so-called Rayleigh distribution. The probability that a randomly chosen ampli-
tude of the response r exceeds rA is:

1 � F	rA� D exp

(
� r2

A

202
r

)
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The average frequency (occurrences/time) of upward zero crossings and also
as the above definition of amplitudes of r is derived from the r spectrum to:

f0 D 1

2�0r

√∫ 1

0

∫ 2�

0
ω2
eSr	ω, �� d� dω

Together with the formula for 1 � F	rA� this yields the average occurrence of
r amplitudes which exceed a limit rA during a period T:

z	rA� D Tf0 exp

(
� r2

A

202
r

)

Often we are interested in questions such as, ‘How is the probability that during
a period T a certain stress is exceeded in a structure or an opening is flooded?’
Generally, the issue is then the probability P0	rA� that during a period T the
limit rA is never exceeded. In other words, P0	rA� is the probability that the
maximum amplitude during the period T is less than rA. This is given by the
sum function of the distribution of the maximum or r during T. We make two
assumptions:

ž z	rA� − Tf0; this is sufficiently well fulfilled for rA ½ 20r .
ž An amplitude rA is statistically nearly independent of its predecessors. This

is true for most seakeeping responses, but not for the weakly damped ampli-
tudes of elastic ship vibration excited by seaway, for example.

Under these assumption we have:

P0	rA� D e�z	rA�

If we insert here the above expression for z	rA� we obtain the ‘double’ expo-
nential distribution typical for the distribution of extreme values:

P0	rA� D e�Tf0 exp	�r2
A/	20

2
r ��

The probability of exceedence is then 1 � P0	rA�. Under the (far more limiting)
assumption that z	rA� − 1 we obtain the approximation:

1 � P0	rA� ³ z	rA�

The equations for P0	rA� assume neither a linear correlation of the response r
from the wave amplitude nor a stationary seaway. They can therefore also be
applied to results of non-linear simulations or long-term distributions.

4.4.7 Simulation methods

The appropriate tool to investigate strongly non-linear ship reactions are
simulations in the time domain. The seaway itself is usually linearized,
i.e. computed as superposition of elementary waves. The frequencies of the
individual elementary waves ωj may not be integer multiples of a minimum
frequency ωmin. In this case, the seaway would repeat itself after 2�/ωmin
unlike a real natural seaway. Appropriate methods to chose the ωj are:
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ž The ωj are chosen such that the area under the sea spectrum between ωj
and ωjC1 is the same for all j. This results in constant amplitudes for all
elementary waves regardless of frequency.

ž The frequency interval of interest for the simulation is divided into intervals.
These intervals are larger where S� or the important RAOs are small and
vice versa. In each interval a frequency ωj is chosen randomly (based on
constant probability distribution). One should not choose the same ωj for
all the L encounter angles under consideration. Rather each combination of
frequency ωj and encounter angle �l should be chosen anew and randomly.

The frequencies, encounter angles, and phase angles chosen before the simu-
lation must be kept during the whole simulation.

Starting from a realistically chosen start position and velocity of the ship,
the simulation computes in each time step the forces and moments acting
from the moving water on the ship. The momentum equations for transla-
tions and rotations give the translatory and rotational accelerations. Both are
three-component vectors and are suitably expressed in a ship-fixed coordi-
nate system. The momentum equations form a system of six scalar, coupled
ordinary second-order differential equations. These can be transformed into a
system of 12 first-order differential equations which can be solved by standard
methods, e.g. fourth-order Runge–Kutta integration. This means that the ship
position and velocity at the end of a small time interval, e.g. one second, are
determined from the corresponding data at the beginning of this interval using
the computed accelerations.

The forces and moments can be obtained by integrating the pressure distri-
bution over the momentary wetted ship surface. Three-dimensional methods
are very, and usually too, expensive for this purpose. Therefore modified strip
methods are most frequently used. A problem is that the pressure distribution
depends not only on the momentary position, velocity, and acceleration, but
also from the history of the motion which is reflected in the wave pattern.
This effect is especially strong for heave and pitch motions. In computations
for the frequency domain, the historical effect is expressed in the frequency
dependency of the added mass and damping. In time-domain simulations, we
cannot consider a frequency dependency because there are many frequencies
at the same time and the superposition principle does not hold. Therefore, the
historical effect on the hydrodynamic forces and moments EF is either expressed
in convolution integrals (Eu contains here not only the ship motions, but also
the incident waves):

EF	t� D
∫ t

�1
K	!�Eu	!� d!

or one considers 0 to n time derivatives of the forces EF and 1 bis 	n C 1� time
derivatives of the motions Eu:

B0 EF	t� C B1
PEF	t� C B2

REF	t� C Ð Ð Ð D A0
PEu	t� C A1

REu	t� C A2
REu	t� Ð Ð Ð

The matrix K	!� in the first alternative and the scalars Ai, Bi in the second
alternative are determined in potential flow computations for various sinkage
and heel of the individual strips.

The second alternative is called state model and appears to be far superior to
the first alternative. Typical values for n are 2 to 4; for larger n problems occur
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in the determination of the constants Ai and Bi resulting, e.g., in numerically
triggered oscillations. Pereira (1988) gives details of such a simulation method.
The simulation method has been extended considerably in the mean time and
can also consider simultaneously the flow of water through a damaged hull,
sloshing of water in the hull, or water on deck.

A far simpler and far faster approach is described, e.g., in Söding (1987).
Here only the strongly non-linear surge and roll motions are determined by a
direct solution of the equations of motion in the time-domain simulation. The
other four degrees of freedom are linearized and then treated similarly as the
incident waves, i.e. they are computed from RAOs in the time domain. This
is necessary to couple the four linear motions to the two non-linear motions.
(Roll motions are often simulated as independent from the other motions,
but this yields totally unrealistic results.) The restriction to surge and roll
much simplifies the computation, because the history effect for these degrees
of freedom is negligible. Extensive validation studies for this approach with
model tests gave excellent agreement for capsizing of damaged roro vessels
drifting without forward speed in transverse waves (Chang and Blume (1998)).

Simulations often aim to predict the average occurrence z	rA� of incidents
where in a given period T a seakeeping response r	t� exceeds a limit rA. A new
incident is then counted when after a previous incident another zero crossing
of r occurred. The average occurrence is computed by multiple simulations
with the characteristic data, but other random phases Ejl for the superposition
of the seaway. Alternatively, the simulation time can be chosen as nT and the
number of occurrences can be divided by n. Both alternatives yield the same
results except for random fluctuations.

Often seldom (extremely unlikely) incidents are of interest which would
require simulation times of weeks to years to determine z	rA� directly if the
occurrences are determined as described above. However, these incidents are
expected predominantly in the presence of one or several particularly high
waves. One can then reduce the required simulation time drastically by substi-
tuting the real seaway of significant wave height Hreal by a seaway with larger
significant wave height Hsim. The periods of both seaways shall be the same.
The following relation between the incidents in the real seaway and in the
simulated seaway exists (Söding (1987)):

H2
sim

H2
real

D ln[zreal	rA�/z	0�] C 1.25

ln[zsim	rA�/z	0�] C 1.25

This equation is sufficiently accurate for zsim/z	0� < 0.03. In practice, one
determines in simulated seaway, e.g. with 1.5 to 2 times larger significant
wave height, the occurrences zsim	rA� and z	0� by direct counting; then the
above equation is solved for the unknown zreal	rA�:

zreal	rA� D z	0� exp

(
H2

sim

H2
real

fln[zsim	rA�/z	0�] C 1.25g � 1.25

)

4.4.8 Long-term distributions

Section 4.4.6 treated ship reactions in stationary seaway. This chapter will
cover probability distributions of ship reactions r during periods T with
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changing sea spectra. A typical example for T is the total operational time
of a ship. A quantity of interest is the average occurrence zL	rA� of cases
when the reaction r	t� exceeds the limit rA. The average can be thought of
as the average over many hypothetical realizations, e.g. many equivalently
operated sister ships.

First, one determines the occurrence z	rA;H1/3, Tp,�0� of exceeding the
limit in a stationary seaway with characteristics H1/3, Tp, and �0 during total
time T. (See section 4.4.6 for linear ship reactions and section 4.4.7 for non-
linear ship reactions.) The weighted average of the occurrences in various
seaways is formed. The weighing factor is the probability p	H1/3, Tp,�0�
that the ship encounters the specific seaway:

zL	rA� D
∑

all H1/3

∑
all Tp

∑
all �0

z	rA;H1/3, Tp, �0�p	H1/3, Tp, �0�

Usually, for simplification it is assumed that the ship encounters seaways with
the same probability under n� encounter angles �0:

zL	rA� D 1

n�

∑
all H1/3

∑
all Tp

n�∑
iD1

z	rA;H1/3, Tp, �0i�p	H1/3, Tp�

The probability p	H1/3, Tp� for encountering a specific seaway can be esti-
mated using data as given in Table 4.2. If the ship would operate exclusively in
the ocean area for Table 4.2, the table values (divided by 106) could be taken
directly. This is not the case in practice and requires corrections. A customary
correction then is to base the calculation only on 1/50 or 1/100 of the actual
operating time of the ship. This correction considers, e.g.:

ž The ship usually operates in areas with not quite so strong seaways as given
in Table 4.2.

ž The ship tries to avoid particularly strong seaways.
ž The ship reduces speed or changes course relative to the dominant wave

direction, if it cannot avoid a particularly strong seaway.
ž Some exceedence of rA is not important, e.g. for bending moments if they

occur in load conditions when the ship has only a small calm-water bending
moment.

The sum distribution of the amplitudes rA, i.e. the probability that an amplitude
r is less than a limit rA, follows from zL:

PL	rA� D 1 � zL	rA�

zL	0�

zL	0� is the number of amplitudes during the considered period T. This distri-
bution is used for seakeeping loads in fatigue strength analyses of the ship
structure. It is often only slightly different from an exponential distribution,
i.e. it has approximately the sum distribution:

PL	rA� D 1 � e�rA/r0

where r0 is a constant describing the load intensity. (In fatigue strength anal-
yses, often the logarithm of the exceedence probability log	1 � PL� is plotted
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over rA; since for an exponential distribution the logarithm results in a straight
line, this is called a log-linear distribution.)

The probability distribution of the largest loads during the period T can be
determined from (see section 4.4.6 for the underlying assumptions):

P0	rA� D e�z	rA�

The long-term occurrence zL	rA� of exceeding the limit rA is inserted here
for z	rA�.

4.5 Slamming

In rough seas with large relative ship motion, slamming may occur with large
water impact loads. Usually, slamming loads are much larger than other wave
loads. Sometimes ships suffer local damage from the impact load or large-scale
buckling on the deck. For high-speed ships, even if each impact load is small,
frequent impact loads accelerate fatigue failures of hulls. Thus, slamming loads
may threaten the safety of ships. The expansion of ship size and new concepts
in fast ships have decreased relative rigidity causing in some cases serious
wrecks.

A rational and practical estimation method of wave impact loads is thus one
of the most important prerequisites for safety design of ships and ocean struc-
tures. Wave impact has challenged many researchers since von Karman’s work
in 1929. Today, mechanisms of wave impacts are correctly understood for the
2-d case, and accurate impact load estimation is possible for the deterministic
case. The long-term prediction of wave impact loads can be also given in the
framework of linear stochastic theories. However, our knowledge on wave
impact is still far from sufficient.

A fully satisfactory theoretical treatment has been prevented so far by the
complexity of the problem:

ž Slamming is a strongly non-linear phenomenon which is very sensitive to
relative motion and contact angle between body and free surface.

ž Predictions in natural seaways are inherently stochastic; slamming is a
random process in reality.

ž Since the duration of wave impact loads is very short, hydro-elastic effects
are large.

ž Air trapping may lead to compressible, partially supersonic flows where the
flow in the water interacts with the flow in the air.

Most theories and numerical applications are for two-dimensional rigid bodies
(infinite cylinders or bodies of rotational symmetry), but slamming in reality
is a strongly three-dimensional phenomenon. We will here briefly review the
most relevant theories. Further recommended literature includes:

ž Tanizawa and Bertram (1998) for practical recommendations translated from
the Kansai Society of Naval Architects, Japan.

ž Mizoguchi and Tanizawa (1996) for stochastical slamming theories.
ž Korobkin (1996) for theories with strong mathematical focus.
ž SSC (1995) for a comprehensive compilation (more than 1000 references)

of slamming literature.
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The wave impact caused by slamming can be roughly classified into four types
(Fig. 4.18):

(1) Bottom slamming (2) 'Bow-flare' slamming

(4) Wetdeck slamming(3) Breaking wave impact

Catamaran

Figure 4.18 Types of slamming impact of a ship

1. Bottom slamming occurs when emerged bottoms re-enter the water surface.
2. Bow-flare slamming occurs for high relative speed of bow-flare to the water

surface.
3. Breaking wave impacts are generated by the superposition of incident wave

and bow wave hitting the bow of a blunt ship even for small ship motion.
4. Wet-deck slamming occurs when the relative heaving amplitude is larger

than the height of a catamaran’s wet-deck.

Both bottom and bow-flare slamming occur typically in head seas with large
pitching and heaving motions. All four water impacts are 3-d phenomena,
but have been treated as 2-d for simplicity. For example, types 1 and 2 were
idealized as 2-d wedge entry to the calm-water surface. Type 3 was also studied
as 2-d phenomenon similar to wave impact on breakwaters. We will therefore
review 2-d theories first.

ž Linear slamming theories based on expanding thin plate approximation
Classical theories approximate the fluid as inviscid, irrotational, incompress-
ible, free of surface tension. In addition, it is assumed that gravity effects
are negligible. This allows a (predominantly) analytical treatment of the
problem in the framework of potential theory.

For bodies with small deadrise angle, the problem can be linearized. Von
Karman (1929) was the first to study theoretically water impact (slamming).
He idealized the impact as a 2-d wedge entry problem on the calm-water
surface to estimate the water impact load on a seaplane during landing
(Fig. 4.19). Mass, deadrise angle, and initial penetrating velocity of the
wedge are denoted as m, ˇ and V0. Since the impact is so rapid, von Karman
assumed very small water surface elevation during impact and negligible
gravity effects. Then the added mass is approximately mv D 	 1

2 ���c
2. � is

the water density and c the half width of the wet area implicitly computed
from dc/dt D V cotˇ. The momentum before the impact mV0 must be equal
to the sum of the wedge momentum mV and added mass momentum mvV,
yielding the impact load as:

P D V2
0/ tanˇ(

1 C ��c2

2m

)3 Ð ��c
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Figure 4.19 Water impact models of von Karman (left) and Wagner (right)

Since von Karman’s impact model is based on momentum conservation,
it is usually referred to as momentum impact, and because it neglects the
water surface elevation, the added mass and impact load are underestimated,
particularly for small deadrise angle.

Wagner derived a more realistical water impact theory in 1932. Although
he assumed still small deadrise angles ˇ in his derivation, the theory was
found to be not suitable for ˇ < 3°, since then air trapping and compress-
ibility of water play an increasingly important role. If ˇ is assumed small
and gravity neglected, the flow under the wedge can be approximated by
the flow around an expanding flat plate in uniform flow with velocity V
(Fig. 4.19). Using this model, the velocity potential  and its derivative
with respect to y on the plate y D 0C is analytically given as:

 D
{
V

p
c2 � x2 for x < c

0 for x > c

∂/∂y D
{

0 for x < c
V/

√
1 � c2/x2 for x > c

The time integral of the last equation gives the water surface elevation and
the half width of the wetted area c. The impact pressure on the wedge is
determined from Bernoulli’s equation as:

p	x�

�
D ∂

∂t
� 1

2
	r�2 D

√
c2 � x2

dV

dt
C V

c√
c2 � x2

dc

dt
� 1

2

V2x2

c2 � x2

Wagner’s theory can be applied to arbitrarily shaped bodies as long as the
deadrise angle is small enough not to trap air, but not so small that air
trapping plays a significant role. Wagner’s theory is simple and useful, even
if the linearization is sometimes criticized for its inconsistency as it retains
a quadratic term in the pressure equation. This term is indispensable for the
prediction of the peak impact pressure, but it introduces a singularity at the
edge of the expanding plate (x D šc) giving negative infinite pressure there.
Many experimental studies have checked the accuracy of Wagner’s theory.
Measured peak impact pressures are typically a little lower than estimated.
This suggested that Wagner’s theory gives conservative estimates for prac-
tical use. However, a correction is needed on the peak pressure measured by
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pressure gauges with finite gauge area. Special numerical FEM analyses of
the local pressure in a pressure gauge can be used to correct measured data.
The corrected peak pressures agree well with estimated values by Wagner’s
theory. Today, Wagner’s theory is believed to give accurate peak impact
pressure for practical use.

The singularity of Wagner’s theory can be removed taking spray into
account. An ‘inner’ solution for the plate is asymptotically matched to an
‘outer’ solution of the spray region, as, e.g., proposed by Watanabe in Japan
in the mid-1980s (Fig. 4.20). The resulting equation for constant falling
velocity is consistent and free from singularities. Despite this theoretical
improvement, Watanabe’s and Wagner’s theories predict basically the same
peak impact pressure (Fig. 4.21).

c

c

x

y

V

LW

z = x + iy

dc/dt

Figure 4.20 Water impact model of Watanabe
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Figure 4.21 Spatial impact pressure distribution

ž Simple non-linear slamming theories based on self-similar flow
We consider the flow near the vertex of a 2-d body immediately after water
penetration. We can assume:
– Near the vertex, the shape of the 2-d body can be approximated by a

simple wedge.
– Gravity accelerations are negligible compared to fluid accelerations due

to the impact.
– The velocity of the body v0 is constant in the initial stage of the impact.
Then the flow can be considered as self-similar depending only on x/v0t and
y/v0t, where x, y are Cartesian coordinates and t is time. Russian scientists
have converted the problem to a 1-d integral equation for f	t�. The resulting
integral equation is so complicated that it cannot be solved analytically.
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However, numerically it has been solved by Faltinsen in Norway up to
deadrise angles ˇ ½ 4°. The peak impact pressure for ˇ D 4° was almost
identical (0.31% difference) to the value given by Wagner’s theory.

ž Slamming theories including air trapping
So far slamming theories have neglected the density of air, i.e. if a deforma-
tion of the, free surface was considered at all it occurred only after the body
penetrated the water surface. The reality is different. The body is preceded
by an air cushion that displaces water already before the actual body entry.
The density of air plays an even bigger role if air trapping occurs. This
is especially the case for breaking wave impacts. In the 1930s, Bagnold
performed pioneering work in the development of theories that consider
this effect. Bagnold’s impact model is simply constructed from added mass,
a rigid wall, and a non-linear air cushion between them (Fig. 4.22). This
model allows qualitative predictions of the relation between impact velocity,
air cushion thickness, and peak impact pressure. For example, the peak
impact pressure is proportional to V and

p
H for slight impact and weak

non-linearity of the air cushion; but for severe impact, the peak impact
pressure is proportional to V2 and H. These scaling laws were validated by
subsequent experiments.

V

B m mk

k

Trapped air
Added mass DK

Figure 4.22 Bagnold’s model

Trapped air bottom slamming is another typical impact with air cushion
effect. For two-dimensional bodies, air trapping occurs for deadrise angles
ˇ � 3°. Chuang’s (1967) experiment for 2-d wedges gave peak impact pres-
sures as in Table 4.3. The impact velocity V is given in m/s.

Table 4.3 Chuang’s (1967) relation for peak impact pressures

ˇ 0° 1° 3° 6° 10° 15° ½18°

Ppeak (kPa) 102V 115V1.4 189V1.6 64.5V2 31V2 17.8V2 Wagner’s theory

For ˇ D 0° air trapping is significant and the peak impact pressure is
proportional to V. Increasing the deadrise angle reduces the amount of air
trapping and thus the non-linearity. For practical use, the peak impact pres-
sure is usually assumed to be proportional to V2 for all ˇ. This results in a
conservative estimate.

Johnson and Verhagen developed 2-d theories for bottom impact with
air trapping considering 1-d air flow between water surface and bottom to
estimate the water surface distortion and the trapped air volume (Fig. 4.23).
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Figure 4.23 One-dimensional air flow model of Verhagen

The peak impact pressure thus estimated was much higher than measured.
This disagreement results from the boundary condition at the edge of the
flat bottom, where a jet emits to the open air. The theory assumes that
the pressure at the edge is atmospheric pressure. This lets the air between
water surface and bottom escape too easily, causing an underestimated
trapped air volume. Experiments showed that the pressure is higher than
atmospheric. Yamamoto has therefore proposed a modified model using a
different boundary condition.

Experiments at the Japanese Ship Research Institute have observed the
trapped air impact with high-speed cameras and measured the initial thick-
ness of air trapping. It was much thicker than the estimates of both Verhagen
and Yamamoto. The reason is that a mixed area of air and water is formed
by the high-speed air flow near the edge. Since the density of this mixed
area is much higher than that of air, this area effectively chokes the air flow
increasing air trapping.

The mechanism of wave impact with air trapping is in reality much more
complicated. Viscosity of air, the effect of air leakage during compression,
shock waves inside the air flow, and the complicated deformation of the
free surface are all effects that may play an important role. Computational
fluid dynamics may be the key to significant success here, but has not yet
progressed sufficiently yet as discussed below.

ž Effect of water compressibility
When a blunt body drops on calm water or a flat bottom drops on a smooth
wave crest, usually no air trapping occurs. Nevertheless, one cannot simply
use Wagner’s theory, because at the top of such a blunt body or wave
crest the relative angle between body and free surface becomes zero. Then
both Wagner’s and Watanabe’s theories give infinite impact pressure. In
reality, compressibility of liquid is important for a very short time at the
initial stage of impact, when the expansion velocity of the wet surface
dc/dt exceeds the speed of sound for water cw ³ 1500 m/s producing a
finite impact pressure. Korobkin (1996) developed two-dimensional theories
which consider compressibility and free-surface deformation. For parabolic
bodies dropping on the calm-water surface, he derived the impact pressure
simply to P D �cwV. Korobkin’s theory is far more sophisticated yielding
also the time history of the pressure decay, but will not be treated here.

ž 3-d slamming theories
All slamming theories treated so far were two dimensional, i.e. they were
limited to cross-sections (of infinite cylinders). In reality slamming for ships
is a strongly three-dimensional phenomenon due to, e.g., pitch motion and
cross-sections in the foreship changing rapidly in the longitudinal direction.
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For practical purposes, one tries to obtain quasi three-dimensional solutions
based on strip methods or high-speed strip methods. At the University of
Michigan, Troesch developed a three-dimensional boundary element method
for slamming. However, the method needs to simplify the physics of the
process and the geometry of body and free surface and failed to show signif-
icant improvement over simpler strip-method approaches when compared to
experiments.

Limiting oneself to axisymmetric bodies dropping vertically into the water
makes the problem de facto two dimensional. The study of 3-d water impact
started from the simple extension of Wagner’s theory to such cases. The
water impact of a cone with small deadrise angle can then be treated in
analogy to Wagner’s theory as an expanding circular disk. A straightfor-
ward extension of Wagner’s theory by Chuang overpredicts the peak impact
pressure. Subsequent refinements of the theory resulted in a better estimate
of the peak impact pressure:

p	r� D 1

2
�V2

(
2

�

)2

 4 cotˇ√

1 � r2/c2
� r2/c2

1 � r2/c2




r and c correspond to x and c in Fig. 4.19. This equation gives about 14%
lower peak impact pressures than a straightforward extension of Wagner’s
theory. Experiments confirmed that the impact pressure on a cone is lower
than that on a 2-d wedge of same deadrise angle. So the 3-d effect reduces
the impact pressure at least for convex bodies. This indicates that Wagner’s
theory gives conservative estimates for practical purpose. Since the impact
on a ship hull is usually a very local phenomenon, Wagner’s equation
has been used also for 3-d surfaces using local relative velocity and angle
between ship hull and water surface.

Watanabe (1986) extended his two-dimensional slamming theory to three-
dimensional oblique impact of flat-bottomed ships. This theory was vali-
dated in experiments observing three-dimensional bottom slamming with a
high-speed video camera and transparent models. Watanabe classified the
slamming of flat-bottomed ships into three types:
1. Slamming due to inclined re-entry of the bottom. The impact pressure

runs from stern to bow. No air trapping occurs.
2. Slamming due to vertical (orthogonal) re-entry of the bottom to a wave

trough with large-scale air trapping.
3. Slamming due to vertical (orthogonal) re-entry of the bottom to a wave

crest with only small-scale, local air trapping.
Type 1 (typical bottom impact observed for low ship speed) can be treated
by Watanabe’s 3-d theory. Type 3 (typical for short waves and high ship
speed) corresponds to Chuang’s theory for very small deadrise angle. Type 2
(also typical for short waves and high ship speed) corresponds to Bagnolds’
approach, but the air trapping and escaping mechanisms are different to
simple 2-d models.

The three-dimensional treatment of slamming phenomena is still subject
to research. It is reasonable to test and develop first numerical methods for
two-dimensional slamming, before one progresses to computationally more
challenging three-dimensional simulations. Until such methods are available
with appropriate response times on engineering workstations, in practice
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computations will be limited to two-dimensional estimates combined with
empirical corrections.

ž Hydro-elastic approaches in slamming
It is important to evaluate not only peak impact pressures but also structural
responses to the impact, to consider the impact pressure in the design of
marine structures. Whipping (large-scale, weakly dampened oscillations of
the longitudinal bending moment) is a typical elastic response to impact. In
the late 1960s and 1970s, slamming and whipping resulted in some spectac-
ular ship wrecks, e.g. bulkers and container ships breaking amidships. The
disasters triggered several research initiatives, especially in Japan, which
eventually contributed considerably to the development of experimental and
numerical techniques for the investigation of slamming and whipping.

Let us denote the slamming impact load as Z	t� and the elastic response
of a ship as S	t�. Assuming a linear relation between them, we can write:

S	t� D
∫ 1

0
h	t � !�Z	!� d!

h	!� is the impulse response function of the structure. An appropriate
modelling of the structure is indispensable to compute h	!�. For example,
the large-scale (whipping) response can be modelled by a simple beam,
whereas small-scale (local) effects can be modelled as panel responses. For
complicated structures, FEM analyses determine h	!�.

When the duration of the impact load is of the same order as the natural
period of the structure, the hydro-elastic interaction is strong. The impact
load on the flexible bottom can be about twice that on the rigid bottom.
Various theories have been developed, some including the effect of air trap-
ping, but these theories are not powerful enough to explain experimental
data quantitatively. However, numerical methods either based on FEM or
FVM could be used to analyse both fluid and structure simultaneously and
should improve considerably our capability to analyse hydro-elastic slam-
ming problems.

ž CFD for slamming
For most practical impact problems, the body shape is complex, the effect of
gravity is considerable, or the body is elastic. In such cases, analytical solu-
tions are very difficult or even impossible. This leaves CFD as a tool. Due
to the required computer resources, CFD applications to slamming appeared
only since the 1980s. While the results of boundary element methods for
water entry problems agree well with analytical results, it is doubtful whether
they are really suited to this problem. Real progress is more likely to be
achieved with field methods like FEM, FDM, or FVM. Various researchers
have approached slamming problems, usually employing surface-capturing
methods, e.g. marker-and-cell methods or level-set techniques. Often the
Euler equations are solved as viscosity plays a less important role than for
many other problems in ship hydrodynamics. But also RANSE solutions
including surface tension, water surface deformation, interaction of air and
water flows etc. have been presented. The numerical results agree usually
well with experimental results for two-dimensional problems. Due to the
large required computer resources, few really three-dimensional applications
to ships have been presented.
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4.6 Exercises: seakeeping

Solutions to the exercises will be posted on the internet (www.bh.com/com-
panions/0750648511)

1. Solve the following two problems for seakeeping:
(a) A surfboard travels with Froude number Fn D 0.4 on a deep water

wave of 4 m length. How long must the surfboard be to ‘ride’ on the
wave, i.e. have the same speed as the wave?

(b) Wavebreaking occurs theoretically when the particle velocity in the x
direction is larger than the celerity c of the wave. In practice, wave-
breaking occurs for wave steepness h/� exceeding 1

14 . What are the
theoretical and practical limits for h concerning wavebreaking in a
deep water wave of � D 100 m?

The potential of a regular wave on shallow water is given by:

 D Re
( �ich

sinh	kH�
cosh	k	z � H��ei	ωt�kx�

)
The following parameters are given:
wave length � D 100 m
wave amplitude h D 3 m
water depth H D 30 m
Determine velocity and acceleration field at a depth of z D 20 m below
the water surface!

2. A ship travels at 28.28 knots in deep sea in regular sea waves. The ship
travels east, the waves come from the southwest. The wave length is
estimated to be between 50 m and 300 m. The encounter period Te is
measured at 31.42 seconds.
(a) What is the wave length of the seaway?
(b) There has been a storm for one day in an area 1500 km southwest

of the ship’s position. Can the waves have their origin in this storm
area?

seaway

V = 28.28 kn
W E

S

N

3. The position of two buoys is given by their (x, y) coordinates in metres as
sketched below. The buoys are excited by a regular wave of � D 62.8 m,
amplitude h D 1 m, and angle � D �30° to the x-axis.
(a) What is the maximum vertical relative motion between the two buoys

if they follow the waves exactly?
(b) What is the largest wave length � to achieve maximum vertical relative

motion of twice the wave amplitude?

x wave propagation

x

y

P1(0,0)

•P2(30,10)
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4. Derive the potential of a regular wave on finite water of depth H and
the dispersion relation coupling ω and k. Start with the Laplace equation,
the kinematic and dynamic conditions on the free surface, the condition of
wave celerity, and no-penetration condition at water depth H. Use an x–z-
coordinate system with z pointing down. The origin lies in the calm-water
surface. A coordinate transformation into a quasi-steady coordinate system
moving with wave celerity c is useful. Assume a solution for the potential
in this transformed coordinate system of the form  D f	x� Ð h	z�. Assume
small wave height h and linearize all expressions (potential and surface
elevation) accordingly. Use ω D k Ð c.

5. Derive the potential and the dispersion relation (coupling between k and
ω) of a regular wave on deep water as the limit of H ! 1 for the
finite-water expressions.

6. A wavemaker is to be designed for a towing tank of width B D 4 m and
depth H D 2.5 m. The wavemaker shall be designed for a wave of 5 m
length and 0.2 m amplitude.
(a) What is the power requirement for the motor of the wavemaker, if

we assume 30% total efficiency between motor and wave. (For the
considered wave length, the depth can be regarded as ‘deep’. The
power requirement of the wave is energy/length Ð group velocity, as
the energy in a wave is transported with group velocity.)

(b) After switching the wavemaker off, for a long time there is still a
wave motion with period 40 s observed in the tank. How long is the
tank, if the motion is due to the lowest eigenfrequency of the tank?

7. Consider a pontoon with a heavy-lift derrick as sketched. The pontoon has
L D 100 m, B D 20 m, D D 10 m, mp D 107 kg. The load at the derrick has
mass ml D 106 kg. The height of the derrick over deck is 10 m. This is
where the load can be considered to be concentrated in one point. The
longitudinal position of the derrick is 20 m before amidships. A force
F D 106 N acts on the forward corner. We assume homogeneous mass
distribution in the pontoon.
(a) Consider the pontoon ‘in air’ (without hydrodynamic masses) and

determine the acceleration vector Ru!
(b) Consider the pontoon statically in water and determine u!

F F K
View from abaft View from starboard

8. An infinite cylinder of width B D 2 m, draft T D 1 m and cross-section
coefficient Cm D 0.8 with Lewis cross-section floats in equilibrium. Then
a harmonic force per length with period Te D 3.14 s and amplitude Fa D
1 kN/m is applied. What motion results after a long time (when the initial
start-up has decayed)?

9. A cylinder of Lewis cross-section (L D 10 m, B D 1 m, T D 0.4 m, Cm D
0.8) floats parallel to the wave crests of regular waves (� D 5 m, h D
0.25 m) which excite heave motions. Assume that the form of the free
surface is not changed by the cylinder. What is the amplitude of relative
motion between cylinder and free surface?
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10. A raft consists of two circular cylinders with D D 1 m diameter and L D
10 m length. The two cylinders have a distance of 3 m from centre to
centre. The raft has no speed and is located in regular waves coming
directly from abeam. The waves have � D 3�m and wave amplitude h D
0.5 m. Assume the two cylinders to be hydrodynamically independent. The
raft has a draft of 0.5 m, centre of gravity in the centre of the connecting
plate, radius of moment of inertia for rolling is ikx D 1 m. The Cm is close
enough to 0.8 to use the Lewis section curves for this Cm. Help: The
centre of gravity of a semicircle is 4/	3�� its radius from the flat baseline.
What is the maximum roll angle?

z y

G

11. A ship sails in a natural seaway of approximately Te D 6 s encounter
period between ship and waves. The bridge of the ship is located
forward near the bow. During 1 hour, a downward acceleration exceeding
gravity acceleration g was observed 6 times. For downward accelerations
exceeding 1.5g, severe injuries to the crew have to be expected. What is
the probability for this happening if the ship continues sailing with same
speed in the same seaway for 12 hours?

Discourse: hydrodynamic mass

A body oscillating in water encounters hydrodynamic forces that in turn influ-
ence its motion behaviour. For ideal fluids for some simple geometries this
hydrodynamic interaction can be computed analytically. For real ship geome-
tries, it is usually determined by panel methods.

For constant velocity there is no force on a deeply submerged body.
However, for instationary motions there is a resulting force even in ideal
fluids. As an example we consider a circular cylinder of infinite length, i.e. a
two-dimensional problem (Fig. 4.24.)

u (t ) = x(t )·

x

R

j

Figure 4.24 Cylinder in harmonic oscillation

The cylinder moves with u	t� D Px	t�. In a body-fixed coordinate system we
describe the potential in cylindrical coordinates as:

	r, ϕ, t� D �A
cosϕ

r
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The free constant A is determined by the boundary condition: no water pene-
trates the cylinder wall. In other words, the radial velocity of a particle at the
cylinder wall must equal the velocity of the cylinder in this direction:

∂

∂r

∣∣∣∣
rDR

D A
cosϕ

r2

∣∣∣∣
rDR

D u	t� cos ϕ ���! A D u	t�R2 D Px	t�R2

The pressure is given by the linearized Bernoulli equation:

pinst D ��
∂

∂t

∣∣∣∣
rDR

D � PuR cosϕ

This antisymmetric pressure distribution on the body surface results in a force
in the x direction (per unit length) which is directed opposite to the acceleration
Pu D Rx:

fx D �
∫ 2�

0
pinst cos ϕR dϕ D �� PuR2

∫ 2�

0
cos2 ϕ dϕ D �� PuR2� D ��RxR2�

The hydrodynamic force is proportional to the acceleration. In essence, the
body becomes ‘more sluggish’ than in air, just as if its mass has increased.
The factor of proportionality has the dimension of mass per length:

fx D �m00

l
Pu with m00 D �R2�l

m00 is the added mass, also called hydrodynamic or virtual mass. In this case
it is of the same magnitude as the displacement of the cylinder. For reasons of
symmetry the hydrodynamic mass for this body is the same for all accelerations
normal to cylinder axis.

For two-dimensional cross-sections, analytical solutions exist for semicir-
cles. Conformal mapping then also yields solutions for Lewis sections which
resemble ship sections (Lewis (1929)). Usually added mass and damping are
given as non-dimensional coefficients, e.g. the heave added mass m33 (per
length of an infinite cylinder) is divided by the mass displaced by a semicircle
of the same width as the section:

m33 D Cz
�B2

8
�

m22 correspondingly denotes the sway added mass. The cause for the damping
lies in the radiated waves. The energy per time and cylinder length of the
radiated waves of complex amplitude h is:

2 Ð �g1

2
jhj2 Ð cgr D �gjhj2 1

2

√
g

k
D �g

2ωe
jhj2

The initial factor 2 accounts for waves radiated to both sides. This energy must
be supplied by the motion of the cylinder:

time average of n33 Pu3 Pu3 D 1
2n33ωeju3j2
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Az denotes the ratio of amplitude of the radiated waves and the motion ampli-
tude:

A
2
z D jhj2

ju3j2 D ω3
e

�g2n33
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Figure 4.25 Coefficient Cz of hydrodynamic mass, ratio of amplitudes Az and coefficients of
exciting force for Lewis section of fullness Cm D 0.8 for various ratios of width to draft. The
coefficients are given for vertical force and motion

This ratio is used for the non-dimensional description of the damping constant
n33 and in similar form for n22. Figure 4.25 gives curves for hydrodynamic
coefficients for vertical force and motions over a non-dimensional frequency
parameter ωeB/2g for Lewis sections of fullness Cm D 0.8 for a parameter
variation of H D B/2T. The hydrodynamic mass tends to infinity for frequency
going towards zero. This is no problem as the accelerations in this case
go faster towards zero. So the force (mass times acceleration) vanishes in
the limiting case of zero frequency. The real part of the exciting force
OfE3 tends towards the hydrostatic expression �gBh which is used to non-
dimensionalize OfE3.
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Ship manoeuvring

5.1 Introduction

Ship manoeuvring comprises

ž course keeping (this concerns only the direction of the ship’s longitudinal
axis)

ž course changing
ž track keeping (important in restricted waters)
ž speed changing (especially stopping)

Manoeuvring requirements are a standard part of the contract between ship-
yard and shipowner. IMO regulations specify minimum requirements for all
ships, but shipowners may introduce additional or more severe requirements
for certain ship types, e.g. tugs, ferries, dredgers, exploration ships. Important
questions for the specification of ship manoeuvrability may include:

ž Does the ship keep a reasonably straight course (in autopilot or manual
mode)?

ž Under what conditions (current, wind) can the ship berth without tug
assistance?

ž Up to what ratio of wind speed to ship speed can the ship still be kept on
all courses?

ž Can the ship lay rudder in acceptable time from one side to the other?

Ship manoeuvrability is described by the following main characteristics:

ž initial turning ability: ability to initiate a turn (rather quickly)
ž sustained turning ability: ability for sustained (rather high) turning speed
ž yaw checking ability: ability to stop turning motion (rather quickly)
ž stopping ability: ability to stop (in rather short distance and time)
ž yaw stability: ability to move straight ahead in the absence of external

disturbances (e.g. wind) at one rudder angle (so-called neutral rudder angle)

The sustained turning ability appears to be the least important, since it describes
the ship behaviour only for a time long after initiating a manoeuvre. The
stopping ability is of interest only for slow speeds. For avoiding obstacles at
high ship speed, it is far more effective to change course than to stop. (Course
changes require less distance than stopping manoeuvres for full speed.)
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Understanding ship manoeuvring and the related numerical and experimental
tools is important for the designer for the choice of manoeuvring equipment
of a ship. Items of the manoeuvring equipment may be:

ž rudders
ž fixed fins (e.g. above the rudder; skeg)
ž jet thrusters
ž propellers (including fixed pitch, controllable pitch, slewable, and cycloidal

(e.g. Voith–Schneider propellers)
ž adjustable ducts for propellers, steering nozzles
ž waterjets

Both manoeuvring and seakeeping of ships concern time-dependent ship
motions, albeit with some differences:

ž The main difficulty in both fields is to determine the fluid forces on the hull
(including propeller and rudder) due to ship motions (and possibly waves).

ž At least a primitive model of the manoeuvring forces and motions should
be part of any seakeeping simulation in oblique waves.

ž Contrary to seakeeping, manoeuvring is often investigated in shallow (and
usually calm) water and sometimes in channels.

ž Linear relations between velocities and forces are reasonable approximations
for many applications in seakeeping; in manoeuvring they are applicable
only for rudder angles of a few degrees. This is one reason for the following
differences.

ž Seakeeping is mostly investigated in the frequency domain; manoeuvring
investigations usually employ time-domain simulations.

ž In seakeeping, motion equations are written in an inertial coordinate system;
in manoeuvring simulations a ship-fixed system is applied. (This system,
however, typically does not follow heel motions.)

ž For fluid forces, viscosity is usually assumed to be of minor importance
in seakeeping computations. In manoeuvring simulations, the free surface
is often neglected. Ideally, both free surface and viscous effects should be
considered for both seakeeping and manoeuvring.

Here we will focus on the most common computational methods for manoeu-
vring flows. Far more details, especially on manoeuvring devices, can be found
in Brix (1993).

5.2 Simulation of manoeuvring with known coefficients

5.2.1 Introduction and definitions

The hydrodynamic forces of main interest in manoeuvring are:

ž the longitudinal force (resistance) X
ž the transverse force Y
ž the yaw moment N

depending primarily on:

ž the longitudinal speed u and acceleration Pu
ž transverse speed v at midship section and acceleration Pv
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ž yaw rate (rate of rotation) r D P (rad/time) and yaw acceleration Pr D R ,
where  is the yaw angle

ž the rudder angle υ (positive to port)

For heel angles exceeding approximately 10°, these relations are influenced
substantially by heel. The heel may be caused by wind or, for Froude numbers
exceeding approximately 0.25, by the manoeuvring motions themselves. Thus
at least for fast ships we are interested also in

ž the heeling moment K
ž the heel angle 	

For scaling these forces and moments from model to full scale, or for esti-
mating them from results in similar ships, X, Y, K, and N are made non-
dimensional in one of the following ways:

X0
Y0
K0
N0


 D 1

q Ð L2




X
Y
K/L
N/L


 or



CX
CY
CK
CN


 D 1

q Ð L Ð T




X
Y
K/L
N/L




with q D � Ð u2/2, � water density. Note that here we use the instantaneous
longitudinal speed u (for u 6D 0) as reference speed. Alternatively, the ship
speed at the begin of the manoeuvre may be used as reference speed. L is the
length between perpendiculars. The term ‘forces’ will from now on include
both forces and moments unless otherwise stated.

The motion velocities and accelerations are made non-dimensional also by
suitable powers of u and L:

v0 D v/u; r0 D r Ð L/u; Pu0 D Pu Ð L/u2; Pv0 D Pv Ð L/u2; Pr0 D Pr Ð L2/u2

5.2.2 Force coefficients

CFD may be used to determine some of the coefficients, but is not yet estab-
lished to predict all necessary coefficients. Therefore the body forces are
usually determined in model experiments, either with free-running or captured
models, see section 5.3. The results of such measurements may be approxi-
mated by expressions like:

Y0 D Y0
Pv Ð Pv0 C Y0

Pr Ð Pr0 C Y0
v Ð v0 C Y0

v3 Ð �v0�3 C Y0
vr2 Ð v0�r0�2 C Y0

vυ2 Ð v0υ2

C Y0
r Ð r0 C Y0

r3 Ð �r0�3 C Ð Ð Ð
where Y0

Pv . . . are non-dimensional coefficients. Unlike the above formula, such
expressions may also involve terms like Y0

ru Ð r0 Ðu0, where u0 D �u	 V�/u.
V is a reference speed, normally the speed at the begin of the manoeuvre.
Comprehensive tables of such coefficients have been published, e.g. Wolff
(1981) for models of five ship types (tanker, Series 60 CB D 0.7, mariner,
container ship, ferry) (Tables 5.1 and 5.2). The coefficients for u are based
on u D u	 V in these tables. Corresponding to the small Froude numbers,
the values do not contain heeling moments and the dependency of coefficients
on heel angle. Such tables together with the formulae for X, Y, and N as
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Table 5.1 Data of four models used in manoeuvring experiments (Wolff (1981))

Tanker Series 60 Container Ferry

Scale 1:35 1:26 1:34 1:16
Lpp 8.286 m 7.034 m 8.029 m 8.725 m
B 1.357 m 1.005 m 0.947 m 1.048 m
Tfp 0.463 m 0.402 m 0.359 m 0.369 m
Tm 0.459 m 0.402 m 0.359 m 0.369 m
Tap 0.456 m 0.402 m 0.359 m 0.369 m
CB 0.805 0.700 0.604 0.644
Coord. origin aft of FP 4.143 m 3.517 m 4.014 m 4.362
LCG 	0.270 m 0.035 m 	0.160 m 	0.149 m
Radius of gyration iz 1.900 m 1.580 m 1.820 m 1.89 m
No. of propellers 1 1 2 2
Propeller turning right right outward outward
Propeller diameter 0.226 m 0.279 m 0.181 m 0.215
Propeller P/D 0.745 1.012 1.200 1.135
Propeller AE/A0 0.60 0.50 0.86 0.52
No. of blades 5 4 5 4

given above may be used for time simulations of motions of such ships for an
arbitrary time history of the rudder angle.

Wolff’s results are deemed to be more reliable than other experimental
results because they were obtained in large-amplitude, long-period motions of
relatively large models (L between 6.4 and 8.7 m). Good accuracy in predicting
the manoeuvres of sharp single-screw ships in full scale from coefficients
obtained from experiments with such models has been demonstrated. For
full ships, for twin-screw ships, and for small models, substantial differences
between model and full-scale manoeuvring motions are observed. Correction
methods from model to full scale need still further improvement.

For small deviations of the ship from a straight path, only linear terms in
the expressions for the forces need to be retained. In addition we neglect heel
and all those terms that vanish for symmetrical ships to obtain the equations
of motion:

�X0
Pu 	 m0�Pu0 C X0

uu
0 C X0

nn
0 D 0

�Y0
Pv 	 m0�Pv0 C �Y0

Pr 	 m0x0
G�Pr C Y0

vv
0 C �Y0

r 	 m0�r0 D 	Y0
υυ

�N0
Pv 	 m0x0

G�Pv0 C �N0
Pr 	 I0xx�Pr CN0

vv
0 C �N0

r 	 m0x0
G�r

0 D 	N0
υυ

Izz is the moment of inertia with respect to the z-axis:

Izz D
∫
�x2 C y2� dm

m0 D m/� 1
2�L

3� is the non-dimensional mass, I0zz D Izz/�
1
2�L

5� the non-
dimensional moment of inertia coefficient.

If we just consider the linearized equations for side forces and yaw moments,
we may write:

M0 PEu0 C D0Eu0 D Er0υ
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Table 5.2 Non-dimensional hydrodynamic coefficient of four ship models (Wolff (1981));
values to be multiplied by 10−6

Model of Tanker Series 60 Container Ferry
Initial Fn 0.145 0.200 0.159 0.278

m0 14 622 11 432 6 399 6 765
x0Gm0 365 57 	127 	116
I0zz 766 573 329 319
X0Pu 	1 077 	1 064 0 0
X0

Puu2 	5 284 0 0 0
X0
u 	2 217 	2 559 	1 320 	4 336
X0
u2 1 510 0 1 179 	2 355
X0
u3 0 	2 851 0 	2 594
X0
v2 	889 	3 908 	1 355 	3 279
X0
r2 237 	838 	151 	571
X0
υ2

	1 598 	1 346 	696 	2 879
X0
v2u

0 	1 833 	2 463 	2 559
X0
υ2u

2 001 2 536 0 3 425
X0
r2u

0 0 	470 	734
X0
vr 9 478 7 170 3 175 4 627
X0
vυ 1 017 942 611 877
X0
rυ 	482 	372 	340 	351
X0
vu 745 0 0 0
X0
vu2 0 0 	207 0
X0
ru 0 	270 0 0
X0
r 48 0 0 	19
X0
υ 166 0 0 0
X0
υu2 0 150 0 0
X0
v2υ

	4 717 0 0 0
X0
r2υ

	365 0 0 0
X0
v3 1 164 2 143 0 0
X0
r3 	118 0 0 0
X0
υ3u

	278 0 0 0
X0
υ4

0 621 213 2 185
X0
v3u

0 0 	3 865 0
X0
r3u

0 0 	447 0

Model of Tanker Series 60 Container Ferry

Y0Pv 	11 420 	12 608 	6 755 	7 396
Y0

Pvv2 	21 560 	34 899 	10 301 0
Y0Pr 	714 	771 	222 	600
Y0

Prr2 	468 166 	63 0
Y0

0 	244 26 0 0
Y0
u 263 	69 	33 57
Y0
v 	15 338 	16 630 	8 470 	12 095
Y0
v3 	36 832 	45 034 0 	137 302
Y0
vr2 	19 040 	37 169 	31 214 	44 365
Y0
vυ2

0 0 	4 668 2 199
Y0
r 4 842 4 330 2 840 1 901
Y0
r2 0 152 85 0
Y0
r3 1 989 2 423 	1 945 	1 361
Y0
ru 0 	1 305 2 430 	1 297
Y0
ru2 0 0 4 769 0
Y0
rv2 22 878 10 230 	33 237 	36 490
Y0
rυ2

1 492 0 0 	2 752
Y0
υ 3 168 2 959 1 660 3 587
Y0
υ2

0 0 0 98
Y0
υ3

3 621 	7 494 0 0
Y0
υ4

1 552 613 	99 0
Y0
υ5

	5 526 4 344 	1 277 	6 262
Y0
υv2 0 0 13 962 0
Y0
υr2 1 637 0 2 438 0
Y0
υu 	4 562 	4 096 0 	5 096
Y0
υu2 0 974 0 0
Y0
υ3u

2 640 4 001 0 3 192
Y0
vjvj 	11 513 	19 989 	47 566 0
Y0
rjrj 	351 0 1 731 0
Y0
υjυj 	889 2 029 0 0
Y0
v3r

12 398 0 0 0
Y0
r3u

0 2 070 0 0

Longitudinal forces X

Model of Tanker Series 60 Container Ferry

N0Pv 	523 326 239 426
N0

Pvv2 2 311 1 945 5 025 10 049

N0Pr 	576 	461 	401 	231
N0

Prr2 	130 	250 132 0

N0
0 67 9 0 0

N0
u 	144 37 8 	36

N0
v 	5 544 	6 570 	3 800 	3 919

N0
v2 	132 0 0 0

N0
v3 	2 718 	16 602 	23 865 	33 857

N0
vu 0 	1 146 	2 179 	3 666

N0
vr2 3 448 4 421 	4 586 0

N0
vυ2

2 317 0 1 418 570

N0
r 	3 074 	2 900 	1 960 	2 579

N0
r2 0 	45 0 0

N0
r3 	865 	1 919 	729 	2 253

N0
ru 0 0 	473 0

N0
ru2 913 0 0 0

N0
rv2 	16 196 	20 530 	27 858 	60 110

Transverse forces Y

Model of Tanker Series 60 Container Ferry

N0
rυ2

	324 0 	404 237

N0
υ 	1 402 	1 435 	793 	1 621

N0
υ2

0 	138 0 	73
N0
υ3

	1 641 3 907 0 0
N0
υ4

	536 0 0 0
N0
υ5

2 220 	2 622 652 2 886
N0
υv2 0 0 	6 918 	2 950

N0
υr2 	855 0 	1 096 	329

N0
υu 2 321 1 856 0 2 259

N0
υu2 0 	568 0 0

N0
υ2u

316 0 0 0
N0
υ3u

	1 538 	1 964 0 	1 382
N0
vjvj 0 5 328 8 103 0

N0
rjrj 0 0 	1 784 0

N0
vr 	394 0 0 0

N0
υjυj 384 	1 030 0 0

N0
v3u

	27 133 	13 452 0 0
N0
r3u

0 	476 0 	1 322
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with:

M0 D
[ 	Y0

Pv C m0 	Y0
Pr C m0xG

	N0
Pv C m0xG 	N0

Pr C Izz

]
; Eu0 D

{
v0
r0
}

D0 D
[	Y0

v 	Y0
r C m0

	N0
v 	N0

r C m0x0
G

]
; Er0 D

{
Y0
υ

N0
υ

}
M0 is the mass matrix, D0 the damping matrix, Er0 the rudder effectiveness
vector, and Eu0 the motion vector. The terms on the right-hand side thus describe
the steering action of the rudder. Some modifications of the above equation of
motion are of interest:

1. If in addition a side thruster at location xt is active with thrust T, the
(non-dimensional) equation of motion modifies to:

M0 PEu0 C D0Eu0 D Er0υC
{
T0
T0x0

t

}
2. For steady turning motion ( PEu0 D 0), the original linearized equation of

motion simplifies to:

D0Eu0 D Er0υ

Solving this equation for r0 yields:

r D Y0
υNv 	 YvNυ

Y0
v�Y

0
r 	 m0�C0 υ

C0 is the yaw stability index:

C0 D N0
r 	 m0x0

g

Y0
r 	 m0 	 N0

v

Y0
v

Y0
v�Y

0
r 	 m0� is positive, the nominator (almost) always negative. Thus C0

determines the sign of r0. Positive C0 indicate yaw stability, negative C0
yaw instability. Yaw instability is the tendency of the ship to increase the
absolute value of an existing drift angle. However, the formula is numeri-
cally very sensitive and measured coefficients are often too inaccurate for
predictions. Therefore, usually more complicated analyses are necessary to
determine yaw stability.

3. If the transverse velocity in the equation of motion is eliminated, we obtain
a differential equation of second order of the form:

T1T2 Rr C �T1 C T2� Ð r C r D 	K�υC T2 Pυ�
The Ti are time constants. jT2j is much smaller than jT1j and thus may be
neglected, especially since linearized equations are anyway a (too) strong
simplification of the problem, yielding the simple ‘Nomoto’ equation:

TPr C r D 	Kυ

T and K denote here time constants. K is sometimes called rudder effec-
tiveness. This simplified equation neglects not only all non-linear effects,
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but also the influence of transverse speed, longitudinal speed and heel. As
a result, the predictions are too inaccurate for most practical purposes. The
Nomoto equation allows, however, a quick estimate of rudder effects on
course changes. A slightly better approximation is the ‘Norrbin’ equation:

TPr C r C ˛r3 D 	Kυ

˛ is here a non-linear ‘damping’ factor of the turning motions. The constants
are determined by matching measured or computed motions to fit the equa-
tions best. The Norrbin equation still does not contain any unsymmetrical
terms, but for single-screw ships the turning direction of the propeller intro-
duces an unsymmetry, making the Norrbin equation questionable.

The following regression formulae for linear velocity and acceleration coeffi-
cients have been proposed (Clarke et al. (1983)):

Y0
Pv D 	*�T/L�2 Ð �1 C 0.16CB Ð B/T	 5.1�B/L�2�

Y0
Pr D 	*�T/L�2 Ð �0.67B/L 	 0.0033�B/T�2�

N0
Pv D 	*�T/L�2 Ð �1.1B/L 	 0.041B/T�

N0
Pr D 	*�T/L�2 Ð �1/12 C 0.017CB Ð B/T	 0.33B/L�

Y0
v D 	*�T/L�2 Ð �1 C 0.40CB Ð B/T�
Y0
r D 	*�T/L�2 Ð �	0.5 C 2.2B/L 	 0.08B/T�

N0
v D 	*�T/L�2 Ð �0.5 C 2.4T/L�

N0
r D 	*�T/L�2 Ð �0.25 C 0.039B/T	 0.56B/L�

T is the mean draft. These formulae apply to ships on even keel. For ships
with draft difference t D Tap 	 Tfp, correction factors may be applied to the
linear even-keel velocity coefficients (Inoue and Kijima (1978)):

Y0
v�t� D Y0�0� Ð �1 C 0.67t/T�

Y0
r�t� D Y0

r�0� Ð �1 C 0.80t/T�

N0
v�t� D Nv�0� Ð �1 	 0.27t/T Ð Y0

v�0�/N
0
v�0��

N0
r�t� D Nr�0� Ð �1 C 0.30t/T�

These formulae were based both on theoretical considerations and on model
experiments with four 2.5 m models of the Series 60 with different block
coefficients for 	0.2 < t/T < 0.6.

In cases where u and/or the propeller turning rate n vary strongly during
a manoeuvre or even change sign as in a stopping manoeuvre, the above
coefficients will vary widely. Therefore, the so-called four-quadrant equations,
e.g. Sharma (1986), are better suited to represent the forces. These equations
are based on a physical explanation of the forces due to hull, rudder and
propeller, combined with coefficients to be determined in experiments.
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5.2.3 Physical explanation and force estimation

In the following, forces due to non-zero rudder angles are not considered. If
the rudder at the midship position is treated as part of the ship’s body, only
the difference between rudder forces at the actual rudder angle υ and those
at υ D 0° have to be added to the body forces treated here. The gap between
ship stern and rudder may be disregarded in this case. Propeller forces and
hull resistance in straightforward motion are neglected here.

We use a coordinate system with origin fixed at the midship section on
the ship’s centre plane at the height of the centre of gravity (Fig. 5.1). The
x-axis points forward, y to starboard, z vertically downward. Thus the system
participates in the motions u, v, and r of the ship, but does not follow the ship’s
heeling motion. This simplifies the integration in time (e.g. by a Runge–Kutta
scheme) of the ship’s position from the velocities u, v, r and eliminates several
terms in the force formulae.

N
r,

x, u,

y, v, Y

f, K
X

Figure 5.1 Coordinates x, y; direction of velocities u, v, r, forces X, Y, and moments K, N

Hydrodynamic body forces can be imagined to result from the change of
momentum (Dmass Ð velocity) of the water near to the ship. Most important in
manoeuvring is the transverse force acting upon the hull per unit length (e.g.
metre) in the x-direction. According to the slender-body theory, this force is
equal to the time rate of change of the transverse momentum of the water
in a ‘strip’ between two transverse planes spaced one unit length. In such a
‘strip’ the water near to the ship’s side mostly follows the transverse motion
of the respective ship section, whereas water farther from the hull is less
influenced by transverse ship motions. The total effect of this water motion
on the transverse force is the same as if a certain ‘added mass’ per length m0
moved exactly like the ship section in transverse direction. (This approach is
thus similar to the strip method approach in ship seakeeping.)

The added mass m0 may be determined for any ship section as:

m0 D 1
2* Ð � Ð T2

x Ð cy
Tx is the section draft and cy a coefficient. cy may be calculated:

ž analytically if we approximate the actual ship section by a ‘Lewis
section’(conformal mapping of a semicircle); Fig. 5.2 shows such solutions
for parameters (Tx/B) and ˇ D immersed section area/�B Ð Tx)

ž for arbitrary shape by a close-fit boundary element method as for ‘strips’ in
seakeeping strip methods, but for manoeuvring the free surface is generally
neglected

ž by field methods including viscosity effects
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Figure 5.2 Section added mass coefficient Cy for low-frequency, low-speed horizontal
acceleration

Neglecting influences due to heel velocity p and heel acceleration Pp, the time
rate of change of the transverse momentum of the ‘added mass’ per length is:(

∂

∂t
	 u Ð ∂

∂x

)
[m0�v C x Ð r�]

∂/∂t takes account of the local change of momentum (for fixed x) with time
t. The term u Ð ∂/∂x results from the convective change of momentum due to
the longitudinal motion of the water ‘strip’ along the hull with appropriate
velocity 	u (i.e. from bow to stern). v C x Ð r is the transverse velocity of the
section in the y-direction resulting from both transverse speed v at midship
section and the yaw rate r. The total transverse force is obtained by integrating
the above expression over the underwater ship length L. The yaw moment is
obtained by multiplying each force element with the respective lever x, and
the heel moment is obtained by using the vertical moment zym0 instead of m0,
where zy is the depth coordinate of the centre of gravity of the added mass.
For Lewis sections, this quantity can be calculated theoretically (Fig. 5.3).
For CFD approaches the corresponding vertical moment is computed directly
as part of the numerical solution. Söding gives a short Fortran subroutine to
determine cy and zy for Lewis sections in Brix (1993), p. 252.

Based on these considerations we obtain the ‘slender-body contribution’ to
the forces as:

X
Y
K
N


 D

∫
L




0
1
1
x


 Ð

(
∂

∂t
	 u Ð ∂

∂x

)
�m0�v C x Ð r��

Ð






0
m0

	zym0
m0


 �v C x Ð r�


 dx
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Figure 5.3 Height coordinate Zy of section added mass m0

The ‘slender-body contribution’ to X is zero. Several modifications to this
basic formula are necessary or at least advisable:

1. For terms involving 	∂/∂t, i.e. for the acceleration dependent parts of
the forces, correction factors k1, k2 should be applied. They consider the
lengthwise flow of water around bow and stern which is initially disregarded
in determining the sectional added mass m0. The acceleration part of the
above basic formula then becomes:

X1
Y1
K1
N1


 D

∫
L




0
	k1m0
zym0

	k2xm0


 Ð �k1 Pv C k2x Ð Pr� dx

k1 and k2 are approximated here by regression formulae which were derived
from the results of three-dimensional flow calculations for accelerated
ellipsoids:

k1 D
√

1 	 0.245ε	 1.68ε2

k2 D
√

1 	 0.76ε	 4.41ε2

with ε D 2Tx/L.
2. For parts in the basic formula due to u Ð ∂/∂x, one should distinguish terms

where ∂/∂x is applied to the first factor containing m0 from terms where the
second factor v C x Ð r is differentiated with respect to x (which results in r).
For the former terms, it was found by comparison with experimental values
that the integral should be extended only over the region where dm0/dx is
negative, i.e. over the forebody. This may be understood as the effect of
flow separation in the aftbody. The flow separation causes the water to
retain most of its transverse momentum behind the position of maximum
added mass which for ships without trim may be taken to be the midship
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section. The latter terms, however, should be integrated over the full length
of the ship. This results in:

X2
Y2
K2
N2


 D u




0
	m0

m
zymm0

m	xmm0
m


 Ð �v C xm Ð r�

C u Ð r
∫ xm

xa




0
m0

	zym0
xm0


 dx 	 u

∫ xf

xm




0
0
0
m0


 �v C x Ð r� dx

xa is the x coordinate of the aft end, xf of the forward end of the ship. The
index m refers to the x coordinate where m0 is maximum. For negative u
the differences in treating the fore- and aftbody are interchanged.

3. The slender-body theory disregards longitudinal forces associated with the
added mass of the ship in the longitudinal direction. These additional
terms are taken from potential-flow theory without flow separation
(Newman (1977)):

X3
Y3
K3
N3


 D




	mx Ð Pu
	mx Ð u Ð r

0
mx Ð u Ð v




mx is the added mass for longitudinal motion; it may be approximated by
a formula which was also fitted to theoretical values for ellipsoids:

mx D m

*
√
L3/r 	 14

r denotes here the volume displacement. Theoretically additional terms
proportional to r Ð v and r2 should appear in the formula for X. According to
experiments with ship models, however, the r Ð v term is much smaller and
the r2 term may even have a different sign than the theoretical expression.
Therefore these terms which are influenced substantially by flow separation
have been omitted. Further, some theoretical terms of small magnitude
involving heeling motion or referring to the heeling moment have also
been omitted in the above formula for X3 etc.

4. Because slender-body theory neglects flow separation in transverse flow
around ship sections (only longitudinal flow separation is roughly taken
into account), an additional ‘cross-flow resistance’ of the ship sections has
to be added. The absolute value of this resistance per unit length is:

1
2� Ð Tx Ð v2

x ÐCD
vx D v C x Ð r is the transverse velocity of the section. CD is a cross-flow
resistance coefficient. The direction of the resistance is opposite to the
direction of vx. Thus for arbitrary direction of motion, the term 	vxjvxj
is required instead of v2

x . Therefore the cross-flow resistance adds the
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following contributions to the body forces:

X4
Y4
K4
N4


 D 1

2
�
∫
L




0
	1
zD
	x


 �v C x Ð r�jv C x Ð rjTxCD dx

zD is the z coordinate (measured downward from the centre of gravity G of
ship’s mass m) of the action line of the cross-flow resistance. For typical
cargo ship hull forms, this force acts about 65% of the draft above the keel
line. Thus a constant (mean) value over ship length of:

zD D KG	 0.65T

may be applied to the formula for X4 etc. For tug models values of 1.0 š 0.1
instead of the above 0.65 were found.
CD is estimated as 1.0 averaged over the whole ship length for cargo

vessels like container ships with bilge keels. For fuller hulls values between
0.5 and 0.7 may be suitable. The CD values are generally higher in the
aftbody than in the forebody due to stronger flow separation in the aftbody.

Results of transverse towing tests (at zero speed) with and without heel
with large models are presented in Table 5.3. These results differ from the
situation at considerable forward speed.

Table 5.3 Results of transverse towin tests with large models upright and
with 10◦ heel; models were equipped with rudder and propeller but without
bilge keels

Cargo Container Twin-screw
ship Tanker Tanker ship salvage tug

L/B 6.66 5.83 6.11 7.61 5.21
B/T 2.46 2.43 2.96 2.93 2.25
CB 0.66 0.84 0.81 0.58 0.58
CD 0.562 0.983 0.594 0.791 0.826
CD10° 0.511 1.151 – 1.014 –

The sum of contributions 1 to 4 constitutes the total body force:

X
Y
K
N


 D
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C



X3
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C



X4
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K4
N4




For steady traversing or pure yaw motion without forward speed, only terms
listed under 4 above are relevant.

The yaw stability is very sensitive to small changes in the body forces.
Therefore a reliable prediction of yaw stability based on the slender-body
theory or regression analysis of model tests is not possible. Substantial
improvements of theoretical calculations seem possible only if the flow
separation around the hull is determined in detail by computational simulation
of the viscous, turbulent flow in a RANSE code or even LES simulations.
RANSE simulations were in the late 1990s subject to research and not yet
established for practical applications. Three-dimensional boundary element
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methods have been applied to achieve improvements over the slender-body
approach, especially capturing free-surface effects (waves, trim and sinkage).
However, the slender-body approach described here appears to be useful and
sufficient in most cases in deep water. Extensions of the theory to shallow
water exist.

5.2.4 Influence of heel

For exact motion predictions including the coupling of manoeuvring motions
with heel one should take account of:

ž the heeling moments due to weight and mass moments, hydrostatic and
hydrodynamic moments on hull, rudder and propeller, and possibly wind
heeling moments or other external influences

ž the dependence of X, Y and N on heel angle, heel velocity and heel
acceleration

Details may be drawn from Bohlmann’s (1989, 1990) work on submarine
manoeuvring.

By choosing our coordinate origin at the height of the ship’s centre of
gravity, many of these influences are zero, others are small in cargo ships. For
example, the dependence of X, Y and N on the heel rate and heel acceleration
can be neglected if the interest is not in the rolling motions themselves, but
only in their influence on manoeuvring motions. In this case, the heel angle
may be determined by the equilibrium resulting from the manoeuvring heel
moment K as stated before, the hydrostatic righting moment, and possibly the
wind- and propeller-induced moments. However, the dependence of X, Y and
N on the heel angle may be substantial.

The following procedure is recommended to evaluate the influence of heel:

1. In the equations for X1 etc., m0 is determined taking into account the heel
angle. This leads to larger m0 values in the midship range due to increase of
draft with heel for the full midship sections. Capturing the influence of heel
in the computations of m0 is straightforward in CFD computations, but also
a Lewis transformation approach can be extended to include heel (Söding
(1984)).

2. In the equations for X1, instead of v the expression v 	 u Ð ∂yB/∂x should be
used, where yB is the y coordinate of the centre of gravity of the immersed
section area due to heel. The term takes account of the curvature of the
‘centreline’ of the heeled hull.

3. The cross-flow resistance coefficient CD depends on the heel angle. CD
may decrease by 1% to 3% per degree of heel in the direction of drift
motion. Due to the increase of section draft (at least in the midship region)
with heel, however, the actual cross-flow resistance may increase with heel
angle.

4. For larger heel angles exceeding approximately 25°, the cross-flow velocity
in the equation for X4 etc. should be determined with respect to the curved
line being composed of the points of maximum draft of the ship sections.
If this line has transverse coordinate yT�x�, instead of v C x Ð r the expres-
sion v C x Ð r 	 ∂yT/∂x Ð u has to be used in the equation for X4 etc. for
heel angles exceeding 25°. For smaller heel, a linear interpolation of the
correction term 	∂yT/∂x Ð u over heel is recommended.
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This procedure improves predictions, but still has substantial deficiencies for
larger heel angles.

5.2.5 Shallow water and other influences

Body forces not only depend on the actual acceleration, speed and (in case of
heel) state of the vessel, but also on the previous time history of body motion.
This is due to vortex shedding and waves generated by the ship. However, these
‘memory effects’ are very small in ordinary manoeuvring motions. Exceptions
where memory effects may be important are:

ž PMM experiments with the usual too small amplitudes
ž self-induced motions of a moored ship

Shallow water, non-uniform current and interactions with other ships may
substantially influence the body forces as discussed in detail in Brix (1993).
The influence of shallow water can be roughly described as follows. If the ship
keel is just touching the sea bottom, the effective side ratio of the ship hull is
increased from approximately 0.1 (namely 2T/L; factor 2 due to mirror image
at waterplane) to 1. This increases the transverse forces approximately by a
factor 40 (following the simple estimate formula for rudder lift in section 5.4).
The rudder itself increases its effective side ratio from approximately 2 for
deep water to 1 for extremely shallow water. The rudder forces are then
increased by a factor of approximately 2.5. The hull forces for a yaw stable
ship decrease the course-changing ability, the rudder forces increase the course-
changing ability. Since the hull forces increase more than the rudder forces on
shallow water, the net result for yaw stable ships is

ž increased radius of turning circle
ž increased turning time
ž increased yaw checking time

For yaw instable ships, this may be different, especially if the yaw stability
changes drastically. Shallow water may increase or decrease yaw stability. One
of several effects is the change of trim. Boundary element methods, namely
‘wave resistance’ codes may be used to predict trim and sinkage of real ship
geometries with usually good accuracy on shallow water. The results of such
computations have been used to estimate the amount of yaw instability.

5.2.6 Stopping

The rudder behind a reverse turning propeller is almost without effect. The
track of a stopping ship is thus largely determined by the manoeuvring forces
of the propeller(s) and wind. For yaw instable ships, the track can be largely
influenced by small initial port or starboard motions. For sister ships (large
tankers) under ‘same’ conditions, stopping times vary between 12 and 22
minutes with largely differing tracks. The differences are attributed to such
small (random) initial differences in yaw motions.

For low speeds, the stopping times and distances can be determined as
follows. One assumes that between two points in time t1 and t2 the reverse
thrust (minus thrust deduction) T is approximately constant and that the
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resistance R is proportional to speed u:

R

u2 D R0

U0
D k

k is the stopping constant. The index 0 denotes the values at the beginning
of the manoeuvre. If we assume a straight stopping track, the fundamental
equation of motion is:

m Ð u D 	�u2 C u2
T�

The mass m includes the hydrodynamic added mass m00 for longitudinal motion
which may be estimated by the empirical formula:

m00

m0
D 1

*
√
�L3/r�	 14

Here r is the volume displacement. uT D U0
p
T/R0 is the speed the ship

would have after a long time if the thrust T would be directed forward. The
above differential equation can be solved (by separation of variables) to yield:

t D t2 	 t1 D m

kuT

[
arctan

u1

uT
	 arctan

u2

uT

)
The distance is given by multiplying the above differential equation by u D
ds/dt and solving again (by separation of variables) to yield:

s D s2 	 s1 D m

2k
ln

(
u2

1 C u2
T

u2
2 C u2

T

)

These two equations for t and s can be used to compute stepwise the
stopping process by splitting the process into time intervals where the thrust T
can be assumed to be constant. The reverse thrust is best determined by using
four-quadrant diagrams for the propellers, if these diagrams are available.

5.2.7 Jet thrusters

Transverse jet thrusters consist of a transverse pipe through the ship hull
located usually at the bow or at the stern. The pipe contains a screw propeller
which pumps water either to port or starboard thus creating a side thrust (and
moment). The purpose of a jet thruster is to increase manoeuvrability at low
speeds, allowing the ship to manoeuvre with no or less tug assistance. As
the rudder astern already supplies manoeuvring forces, jet thrusters are more
effective at the bow and usually placed there (‘bow thrusters’). Also stern jets
need to cope with potential collision problems in arranging both jet pipe and
propeller shaft. Jet thrusters may also serve as an emergency backup for the
main rudder. Backups for rudders are needed for ships with dangerous cargo.
Jet thrusters are less attractive for ships on long-distance routes calling at few
ports. The savings in tug fees may be less than the additional expense for fuel.

For ocean going ships, side thrusts of 0.08–0.12 kN per square metre under-
water lateral area are typical values. These values relate to zero forward speed
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of the ship. Installed power P, cross-section area of the pipe A, and flow
velocity v in the jet thruster are related by:

T D � Ð A Ð v2

P D 1

5
Ð 1

2
�Av2

5 is here the efficiency of the thruster propeller. These equations yield:

P

T
D v

25

T

A
D �v2

5 D 0.8 and v D 11 m/s yield typical relations: approximately 120 kN/m2 thrust
per thruster cross-section area and 7 kW power per kN thrust.

With increasing speed, jet thrusters become less effective and rudders
become more effective. The reason is that the jet is bent backwards and may
reattach to the ship hull. The thrust is then partially compensated by an opposite
suction force. This effect may be reduced by installing a second (passive) pipe
without a propeller downstream of the thruster (Brix (1993)).

5.2.8 CFD for ship manoeuvring

For most ships, the linear system of equations determining the drift and yaw
velocity in steady turning motion is nearly singular. This produces large rela-
tive errors in the predicted steady turning rate especially for small rudder angles
and turning rates. For large rudder angle and turning rate, non-linear forces
alleviate these problems somewhat. But non-linear hull forces depend crucially
on the cross-flow resistance or the direction of the longitudinal vortices, i.e.
on quantities which are determined empirically and which vary widely. In
addition, extreme rudder forces depend strongly on the rudder stall angle
which – for a rudder behind the hull and propeller – requires at least two-
dimensional RANSE simulations. Thus large errors are frequently made in
predicting both the ship’s path in hard manoeuvres and the course-keeping
qualities. (The prediction of the full ship is fortunately easier as at the higher
Reynolds numbers stall rarely occurs). In spite of that, published comparisons
between predictions and measurements almost always indicate excellent accu-
racy. A notable exception is Söding (1993a). The difference is that Söding
avoids all information which would not be available had the respective model
not been tested previously. The typical very good agreement published by
others is then suspected to be either chosen as best results from a larger set of
predictions or due to empirical corrections of the calculation method based on
experiments which include the ship used for demonstrating the attained accu-
racy. Naturally, these tricks are not possible for a practical prediction where
no previous test results for the ship design can be used. Thus the accuracy of
manoeuvring predictions is still unsatisfactory, but differences between alter-
native designs and totally unacceptable designs may be easily detected using
the available methods for manoeuvring prediction. With appropriate valida-
tion, it may also be possible to predict full-scale ship motions with sufficient
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accuracy, but the experience published so far is insufficient to establish this as
state of the art.

The simplest approach to body force computations is the use of regression
formulae based on slender-body theory, but with empirical coefficients found
from analysing various model experiments, e.g. Clarke et al. (1983). The next
more sophisticated approach would be to apply slender-body methods directly,
deriving the added mass terms for each strip from analytical (Lewis form) or
BEM computations. These approaches are still state of the art in ship design
practice and have been discussed in the previous chapters.

The application of three-dimensional CFD methods, using either lift-
generating boundary elements (vortex or dipole) or field methods (Euler or
RANSE solvers) is still predominantly a matter of research, although the
boundary element methods are occasionally applied in practical design. The
main individual CFD approaches are ranked in increasing complexity:

ž Lifting surface methods
An alternative to slender-body theory, applicable to rudder and hull (sepa-
rately or in combination), is the lifting surface model. It models the inviscid
flow about a plate (centre plane), satisfying the Kutta condition (smooth
flow at the trailing edge) and usually the free-surface condition for zero Fn
(double-body flow). The flow is determined as a superposition of horseshoe
vortices which are symmetrical with respect to the water surface (mirror
plane). The strength of each horseshoe vortex is determined by a colloca-
tion method from Biot–Savart’s law. For stationary flow conditions, in the
ship’s wake there are no vertical vortex lines, whereas in instationary flow
vertical vortex lines are required also in the wake. The vortex strength in
the wake follows from three conditions:
1. Vortex lines in the wake flow backwards with the surrounding fluid

velocity, approximately with the ship speed u.
2. If the sum of vertical (‘bound’) vortex strength increases over time

within the body (due to larger angles of attack), a corresponding negative
vorticity leaves the trailing edge, entering into the wake.

3. The vertical vortex density is continuous at the trailing edge.
Except for a ship in waves, it seems accurate enough to use the stationary
vortex model for manoeuvring investigations.

Vortex strengths within the body are determined from the condition that
the flow is parallel to the midship (or rudder) plane at a number of collo-
cation points. The vortices are located at 1/4 of the chord length from
the bow, the collocation points at 3/4 of the chord length from the bow.
This gives a system of linear equations to determine the vortex strengths.
Transverse forces on the body may then be determined from the law of
Kutta–Joukowski, i.e. the body force is the force exerted on all ‘bound’
(vertical) vortices by the surrounding flow.

Alternatively one can smooth the bound vorticity over the plate length,
determine the pressure difference between port and starboard of the plate,
and integrate this pressure difference. For shallow water, reflections of the
vortices are necessary both at the water surface and at the bottom. This
produces an infinite number of reflections, a subset of which is used in
numerical approximations. If the horizontal vortex lines are arranged in the
ship’s centre plane, only transverse forces depending linearly on v and r are
generated. The equivalent to the non-linear cross-flow forces in slender-body
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theory is found in the vortex models if the horizontal vortex lines are oblique
to the centre plane. Theoretically the position of the vortex lines could
be determined iteratively to ensure that they move with the surrounding
fluid flow which is influenced by all other vortices. But practically this
procedure is usually not applied because of the high computing effort and
convergence problems. According to classical foil theory, the direction of
the horizontal vortices should be halfway between the ship longitudinal
direction and the motion direction in deep water. More modern procedures
arrange the vortices in longitudinal direction within the ship length, but in an
oblique plane (for steady motion at a constant yaw angle) or on a circular
cylinder (for steady turning motion) in the wake. The exact direction of
the vortices is determined depending on water depth. Also important is the
arrangement of vortex lines and collocation points on the material plate.
Collocation points should be about halfway between vortex lines both in
longitudinal and vertical directions. High accuracy with few vortex lines is
attained if the distance between vertical vortices is smaller at both ends of
the body, and if the distance between horizontal vortices is small at the keel
and large at the waterline.

ž Lifting body methods
A body with finite thickness generates larger lift forces than a plate. This
can be taken into account in different ways:
1. by arranging horseshoe vortices (or dipoles) on the hull on both sides
2. by arranging a source and a vortex distribution on the centre plane
3. by arranging source distributions on the hull and a vortex distribution on

the centre plane
In the third case, the longitudinal distribution of bound vorticity can be
prescribed arbitrarily, whereas the vertical distribution has to be determined
from the Kutta condition along the trailing edge. The Kutta condition can
be approximated in different ways. One suitable formulation is: the pres-
sure (determined from the Bernoulli equation) should be equal at port and
starboard along the trailing edge. If the ship has no sharp edge at the stern
(e.g. below the propeller’s axis for a stern bulb), it is not clear where the
flow separation (and thus the Kutta condition) should be assumed. This
may cause large errors for transverse forces for the hull alone, but when the
rudder is modelled together with the hull, the uncertainty is much smaller.

Forces can be determined by integrating the pressure over the hull surface.
For a very thin body, the lifting surface and lifting body models should
result in similar forces. In practice, however, large differences are found.
The lifting-body model with source distributions on both sides of the body
has difficulties if the body has a sharp bow. Assuming a small radius at
the bow waterline produces much better results. For a ship hull it seems
difficult to obtain more accurate results from lifting-body theory than using
slender-body theory. For the rudder and for the interaction between rudder
and hull, however, lifting surface or lifting body theory is the method of
choice for angles of attack where no stall is expected to occur. Beyond the
stall angle, only RANSE methods (or even more sophisticated viscous flow
computations) may be used.

By the early 1990s research applications for lifting body computations
including free surface effects appeared for steady drift motions. The
approach of Zou (1990) is typical. First the wave resistance problem is
solved including dynamic trim and sinkage. Assuming small asymmetry,
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the difference between symmetrical and asymmetrical flow is linearized.
The asymmetrical flow is then determined by a lifting body method with an
additional source distribution above the free surface.

ž Field methods
In spite of the importance of viscosity for manoeuvring, viscous hull force
calculations appeared in the 1990s only as research applications and were
mostly limited to steady flow computations around a ship with a constant
yaw angle. Difficulties in RANSE computations for manoeuvring are:
– The number of computational cells is much higher than for resistance

computations, because both port and starboard sides must be discretized
and because vortices are shed over nearly the full ship length.

– The large-scale flow separation makes wall functions (e.g. in the standard
k-ε turbulence model) dubious. But avoiding wall functions increases the
necessary cell numbers further and deteriorates the convergence of the
numerical solution methods.

State of the art computations for ship hulls at model scale Reynolds numbers
were capable of predicting transverse forces and moments reasonably well
for steady flow cases with moderately constant yaw angle, but predicted
the longitudinal force (resistance) with large relative errors. Flow details
such as the wake in the aftbody were usually captured only qualitatively.
Either insufficient grid resolutions or turbulence models were blamed for the
differences with model tests. By the late 1990s, RANSE results with free-
surface deformation (waves) were also presented, but with the exception
of Japanese research groups, none of the computations included dynamic
trim and sinkage, although for shallow water these play an important role
in manoeuvring.

Despite these shortcomings, RANSE computations including free-surface
effects will grow in importance and eventually also drift into practical
applications. They are expected to substantially improve the accuracy of
manoeuvring force predictions over the next decade.

5.3 Experimental approaches

5.3.1 Manoeuvring tests for full-scale ships in sea trials

The main manoeuvring characteristics as listed in the introduction to manoeu-
vring are quantified in sea trials with the full-scale ship. Usually the design
speed is chosen as initial speed in the manoeuvre. Trial conditions should
feature deep water (water depth > 2.5 ship draft), little wind (less than Beau-
fort 4) and ‘calm’ water to ensure comparability to other ships. Trim influences
the initial turning ability and yaw stability more than draft. For comparison
with other ships, the results are made non-dimensional with ship length and
ship length travel time (L/V).

The main manoeuvres used in sea trials follow recommendations of the
Manoeuvring Trial Code of ITTC (1975) and the IMO circular MSC 389
(1985). IMO also specifies the display of some of the results in bridge posters
and a manoeuvring booklet on board ships in the IMO resolution A.601(15)
(1987) (Provision and display of manoeuvring information on board ships).
These can also be found in Brix (1993).
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The main manoeuvres in sea trials are:

1. Turning circle test
Starting from straight motion at constant speed, the rudder is turned at
maximum speed to an angle υ (usually maximum rudder angle) and kept at
this angle, until the ship has performed a turning circle of at least 540°. The
trial is performed for both port and starboard side. The essential information
obtained from this manoeuvre (usually by GPS) consists of (Fig. 5.4):
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Figure 5.4 Definitions used on turning circle

– tactical diameter
– maximum advance
– transfer at 90° change of heading
– times to change heading 90° and 180°
– transfer loss of steady speed
Typical values are tactical diameter of 4.5–7L for slender, 2.4–4 for short
and full ships. Decisive is the slenderness ratios L/ 3

pr, where r is the
volume displacement.

Fast displacement ships with Fn > 0.25 may feature dangerously large
heel angles in turning circles. The heel is always outwards, i.e. away from
the centre of the turning circle. (Submarines and boats with dynamic lift
like hydrofoils are exceptional in that they may heel inwards.) The heel
is induced by the centrifugal force m Ð u Ð r acting outwards on the ship’s
centre of gravity, the hull force Yvv C Yrr acting inwards, and the much
smaller rudder force Yυυ acting outwards. For manoeuvring predictions
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it is important to consider that the ship is faster at the beginning of the
turning circle and slower at sustained turning. The heeling angle exceeds
dynamically the statical heel angle due to forces listed above.

The turning circle test is used to evaluate the turning ability of the ship.
2. Spiral manoeuvres

We distinguish between:
– ‘Direct’ spiral manoeuvre (Dieudonne)

With the ship on an initial straight course, the rudder is put hard to one
side until the ship has reached a constant rate of change of heading.
The rudder angle is then decreased in steps (typically 5°, but preferably
less near zero rudder angle) and again held until a steady condition is
reached. This process is repeated until the rudder has covered the whole
range to the maximum rudder angle on the other side. The rate of turn
is noted for each rudder angle. The test should be performed at least for
yaw unstable ships going both from port to starboard and from starboard
to port.

– ‘Indirect’ (reverse) spiral manoeuvre (Bech)
The ship is steered at a constant rate of turn and the mean rudder angle
required to produce this yaw rate is measured. This way, points on the
curve rate of turn vs. rudder angle may be taken in any order.

The spiral test results in a curve as shown in Fig. 5.5. The spiral test is used
to evaluate the turning ability and the yaw stability of the ship. For yaw
unstable ships, there may be three possible rates of turn for one given rudder
angle as shown in Fig. 5.5. The one in the middle (dotted line) represents
an instable state which can only be found by the indirect method. In the
direct method, the rate of turn ‘switches’ at the vertical sections of the
curve suddenly to the other part of the curve if the rudder angle is changed.
This is indicated by the dotted arrows in Fig. 5.5.
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Figure 5.5 Results of spiral tests for yaw stable and yaw unstable ship

The spiral test, especially with the direct method, is time consuming and
sensitive to external influences. The results show that a linearization of the
body force equations is acceptable only for small jrj (Fig. 5.5). For yaw
stable ships, the bandwidth of acceptable rudder angles to give small jrj is
small, e.g. š5°. For yaw unstable ships, large jrj may result for any υ.
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3. Pull-out manoeuvre
After a turning circle with steady rate of turn the rudder is returned to
midship. If the ship is yaw stable, the rate of turn will decay to zero for
turns both port and starboard. If the ship is yaw unstable, the rate of turn
will reduce to some residual rate of turn (Fig. 5.6).
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Figure 5.6 Results of pull-out manoeuvre

The pull-out manoeuvre is a simple test to give a quick indication of a
ship’s yaw stability, but requires very calm weather. If the yaw rate in a
pull-out manoeuvre tends towards a finite value in single-screw ships, this
is often interpreted as yaw unstability, but it may be at least partially due
to the influence of unsymmetries induced by the propeller in single-screw
ships or wind.

4. Zigzag manoeuvre
The rudder is reversed alternately by a rudder angle υ to either side at a
deviation  e from the initial course. After a steady approach the rudder is
put over to starboard (first execute). When the heading is  e off the initial
course, the rudder is reversed to the same rudder angle to port at maximum
rudder speed (second execute). After counter rudder has been applied, the
ship continues turning in the original direction (overshoot) with decreasing
turning speed until the yaw motion changes direction. In response to the
rudder the ship turns to port. When the heading is  e off the initial course
to port, the rudder is reversed again at maximum rudder speed to starboard
(third execute). This process continues until a total of, e.g., five rudder
executes have been completed. Typical values for  e are 10° and 20°. The
test was especially developed for towing tank tests, but it is also popular
for sea trials. The test yields initial turning time, yaw checking time and
overshoot angle (Fig. 5.7).

For the determination of body force coefficients a modification of the
zigzag manoeuvre is better suited: the incremental zigzag test. Here, after
each period other angles υ and  e are chosen to cover the whole range of
rudder angles. If the incremental zigzag test is properly executed it may
substitute all other tests as the measured coefficients should be sufficient
for an appropriate computer simulation of all other required manoeuvring
quantities.

Figure 5.8 shows results of many model zigzag tests as given by Brix
(1993). These yield the following typical values:
– initial turning time ta: 1–1.5 ship length travel time
– time to check starboard yaw ts: 0.5–2 ship travel length time (more for

fast ships)
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Figure 5.7 Scheme of zigzag manoeuvre; tu initial turning time, ts yaw checking time, ˛s
overshoot angle; rudder angle υ, course angle  

– starboard overshoot angle ˛s: 5° –15°
– turning speed to port r (yaw rate): 0.2–0.4 per ship travel length time

5. Stopping trial
The most common manoeuvre in stopping trials is the crash-stop from
full ahead speed. For ships equipped with fixed-pitch propellers, the
engine is stopped and then as soon as possible reversed at full astern.
Controllable-pitch propellers (CPP) allow a direct reversion of the propeller
pitch. Sometimes the rudder is kept midships, sometimes one tries to
keep the ship on a straight course which is difficult as the rudder
effectiveness usually decreases drastically during the stopping manoeuvre
and because the reversing propeller induces substantial transverse forces on
the afterbody. The reaction to stopping manoeuvres is strongly non-linear.
Thus environmental influences (e.g. wind) and slight changes in the initial
conditions (e.g. slight deviation of the heading to either port or starboard)
may change the resulting stopping track considerably.

The manoeuvre ends when u D 0. Results of the stopping manoeuvre are
(Fig. 5.9):
– head reach (distance travelled in the direction of the ship’s initial course)
– lateral deviation (distance to port or starboard measured normal to the

ship’s initial course)
– stopping time
Crash-stops from full speed are nautically not sensible as turning usually
offers better avoidance strategies involving shorter distances. Therefore
stopping manoeuvres are recommended also at low speed, because then
the manoeuvre is of practical interest for navigation purposes.

Single-screw ships with propellers turning right (seen from abaft clock-
wise) will turn to starboard in a stopping manoeuvre. For controllable-pitch
propellers, the propeller pitch is reversed for stopping. Since according to
international nautical conventions, collision avoidance manoeuvres should
be executed with starboard evasion, single-screw ships should be equipped
with right-turning fixed-pitch propellers or left-turning CPPs.

Simulations of stopping manoeuvres use typically the four-quadrant
diagrams for propellers to determine the propeller thrust also in astern
operation, see section 2.2, Chapter 2.
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Figure 5.8 Non-dimensional data obtained from zigzag model tests (Brix (1993))
A D non-dimensional initial turing times ˇ D B D non-dimensional times to check starboard
yaw C D non-dimensional turning speed to port ˛s starboard overshoot angle

6. Hard rudder test
With the ship on an initially straight course, the rudder is put hard to
35° port. As soon as this rudder angle is reached (i.e. without waiting
for a specific heading or rate of turning), the rudder is reversed to hard
starboard. The time for changing the rudder angle from 35° on one side
to 30° on the other side must not exceed 28 seconds according to IMO
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Figure 5.9 Results of stopping trial

regulations (SOLAS 1960). This regulation is rightfully criticized as the
time limit is independent of ship size. The IMO regulation is intended to
avoid underdimensioning of the rudder gear.

7. Man-overboard manoeuvre (Williamson turn)
This manoeuvre brings the ship in minimum time on opposite heading and
same track as at the beginning of the manoeuvre, e.g. to search for a man
overboard. The rudder is laid initially hard starboard, at, e.g., 60° (relative
to the initial heading) hard port, and at, e.g., 	130° to midship position
again (Fig. 5.10). The appropriate angles (60°, 	130°) vary with each ship
and loading condition and have to be determined individually such that at
the end of the manoeuvre the deviation in heading is approximately 180°
and in track approximately zero. This is determined in trial-and-error tests
during ship trials. However, an approximate starting point is determined in
computational simulations beforehand.

5.3.2 Model tests

Model tests to evaluate manoeuvrability are usually performed with models
ranging between 2.5 m and 9 m in length. The models are usually equipped
with propeller(s) and rudder(s), electrical motor and rudder gear. Small models
are subject to considerable scaling errors and usually do not yield satisfactory
agreement with the full-scale ship, because the too small model Reynolds
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Figure 5.10 Man-overboard manoeuvre (Williamson turn)

number leads to different flow separation at model hull and rudder and thus
different non-dimensional forces and moments, especially the stall angle (angle
of maximum lift force shortly before the flow separates completely on the
suction side), which will be much smaller in models (15° to 25°) than in
the full-scale ship (>35°). Another scaling error also contaminates tests with
larger models: the flow velocity at the rudder outside the propeller slipstream
is too small (due to a too large wake fraction in model scale) and the flow
velocity inside the propeller slipstream is too large (because the too large model
resistance requires a larger propeller thrust). The effects cancel each other
partially for single-screw ships, but usually the propeller effect is stronger.
This is also the case for twin-screw twin-rudder ships, but for twin-screw
midship-rudder ships the wake effect dominates for free-running models. For
a captured model, propeller thrust minus thrust deduction does not have to
equal resistance. Then the propeller loading may be chosen lower such that
scale effects are minimized. However, the necessary propeller loading can only
be estimated.

Model tests are usually performed at Froude similarity. For small Froude
numbers, hardly any waves are created and the non-dimensional manoeuvring
parameters become virtually independent of the Froude number. For Fn < 0.3,
e.g., the body forces Y and N may vary with speed only by less than 10%
for deep water. For higher speeds the wave resistance changes noticeably and
the propeller loading increases, as does the rudder effectiveness if the rudder
is placed in the propeller slipstream. Also, in shallow water, trim and sinkage
change with Fn influencing Y and N. If the rudder pierces the free surface or is
close enough for ventilation to occur, the Froude number is always important.

Model tests with free-running models are usually performed indoors to avoid
wind effects. The track of the models is recorded either by cameras (two or
more) or from a carriage following the model in longitudinal and transverse
directions. Turning circle tests can only be performed in broad basins and
even then usually only with rather small models. Often, turning circle tests are
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also performed in towing tanks with an adjacent round basin at one end. The
manoeuvre is then initiated in the towing tank and ends in the round basin.
Spiral tests and pull-out manoeuvres require more space than usually available
in towing tanks. However, towing tanks are well suited for zigzag manoeuvres.
If the ship’s track is precisely measured in these tests, all necessary body force
coefficients can be determined and the other manoeuvres can be numerically
simulated with sufficient accuracy.

Model tests with captured models determine the body force coefficients
by measuring the forces and moments for prescribed motions. The captured
models are also equipped with rudders, propellers, and electric motors for
propulsion.

ž Oblique towing tests can be performed in a regular towing tank. For various
yaw and rudder angles, resistance, transverse force, and yaw moment are
measured, sometimes also the heel moment.

ž Rotating arm tests are performed in a circular basin. The carriage is then
typically supported by an island in the centre of the basin and at the basin
edge. The carriage then rotates around the centre of the circular basin. The
procedure is otherwise similar to oblique towing tests. Due to the distur-
bance of the water by the moving ship, only the first revolution should be
used to measure the desired coefficients. Large non-dimensional radii of
the turning circle are only achieved for small models (inaccurate) or large
basins (expensive). The technology is today largely obsolete and replaced
by planar motion mechanisms which can also generate accelerations, not
just velocities.

ž Planar motion mechanisms (PMMs) are installed on a towing carriage. They
superimpose sinusoidal transverse or yawing motions (sometimes also sinu-
soidal longitudinal motions) to the constant longitudinal speed of the towing
carriage. The periodic motion may be produced mechanically from a circular
motion via a crankshaft or by computer-controlled electric motors (comput-
erized planar motion carriage (CPMC)). The CPMC is far more expensive
and complicated, but allows the extension of model motions over the full
width of the towing tank, arbitrary motions and a precise measuring of the
track of a free-running model.

5.4 Rudders
5.4.1 General remarks and definitions

Rudders are hydrofoils pivoting on a vertical or nearly vertical axis. They
are normally placed at the ship’s stern behind the propeller(s) to produce a
transverse force and a steering moment about the ship’s centre of gravity by
deflecting the water flow to a direction of the foil plane. Table 5.4 gives offsets
of several profiles used for rudders depicted in Fig. 5.11. Other profile shapes
and hydrodynamic properties are available from Abbott and Doenhoff (1959),
and Whicker and Fehlner (1958).

Rudders are placed at the ship’s stern for the following reasons:

ž The rudder moment turning the ship is created by the transverse force on
the rudder and an oppositely acting transverse force on the ship hull acting
near the bow. This moment increases with distance between the rudder force
and the hull force.
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Table 5.4 Offsets of rudder profiles

x

y

t

c

ymax

c (m) D chord length of foil
x/c (	) D dimensionless abscissa
y/c (	) D dimensionless half ordinate

Note: last digits of profile designation correspond to the thickness form e.g. 25 for t/c D 0.25.
For differing thickness t0 the half ordinates y0 to be obtained by multiplication

y0

c
D t0

t
Ð y
c

IFS62- IFS61- IFS58- HSVA- HSVA- NACA NACA
TR 25 TR 25 TR 15 MP71-20 MP73-20 00-20 643-018

x/c y/c y/c y/c y/c y/c y/c y/c

0.0000 0.0000 0.0000 0.0000 0.0000 0.04420Ł 0.04420Ł 0.02208Ł
0.0125 0.0553 0.0553 0.0306 0.0230 0.03156 0.03156 0.02177
0.0250 0.0732 0.0732 0.0409 0.0306 0.04356 0.04356 0.03005
0.0500 0.0946 0.0946 0.0530 0.0419 0.05924 0.05924 0.04186
0.1000 0.1142 0.1142 0.0655 0.0583 0.07804 0.07804 0.05803
0.1500 0.1226 0.1226 0.0715 0.0706 0.08910 0.08910 0.06942
0.2000 0.1250 0.1250 0.0743 0.0801 0.09562 0.09562 0.07782
0.2500 0.1234 0.1226 0.0750 0.0881 0.09902 0.09902 0.08391
0.3000 0.1175 0.1176 0.0740 0.0939 0.10000 0.10000 0.08789
0.4000 0.0993 0.1002 0.0669 0.0996 0.09600 0.09672 0.08952
0.4500 – – – 0.1000 – – 0.08630
0.5000 0.0742 0.0766 0.0536 0.0965 0.08300 0.08824 0.08114
0.6000 0.0480 0.0533 0.0377 0.0766 0.06340 0.07606 0.06658
0.7000 0.0263 0.0357 0.0239 0.0546 0.04500 0.06106 0.04842
0.8000 0.0123 0.0271 0.0168 0.0335 0.02740 0.04372 0.02888
0.9000 0.0080 0.0250 0.0150 0.0140 0.01200 0.02414 0.01101
1.0000 0.0075 0.0250 0.0150 0.0054 0.00540 0.00210 0.00000

Łradius

NACA
643018

NACA
0020

HSVA
MP 73-20

HSVA
MP 71-20

IFS
58-TR15

IFS
61-TR25

IFS
62-TR25

Figure 5.11 Some rudder profiles, offsets given in Table 5.4
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ž Rudders outside of the propeller slipstream are ineffective at small or
zero ship speed (e.g. during berthing). In usual operation at forward
speed, rudders outside of the propeller slipstream are far less effective.
Insufficient rudder effectiveness at slow ship speed can be temporarily
increased by increasing the propeller rpm, e.g. when passing other ships.
During stopping, rudders in the propeller slipstream are ineffective.

ž Bow rudders not exceeding the draft of the hull are ineffective in ahead
motion, because the oblique water flow generated by the turned rudder
is redirected longitudinally by the hull. Thus, transverse forces on a bow
rudder and on the forward moving hull cancel each other. The same
generally applies to stern rudders in backward ship motion. The yaw
instability of the backward moving ship in one example could not be
compensated by rudder actions if the drift angle exceeded ˇ D 1.5°. To
improve the manoeuvrability of ships which frequently have to move
astern (e.g. car ferries), bow rudders may be advantageous. In reverse
flow, maximum lift coefficients of rudders range between 70% and 100%
of those in forward flow. This force is generally not effective for steering
the ship astern with a stern rudder, but depending on the maximum astern
speed it may cause substantial loads on the rudder stock and steering gear
due to the unsuitable balance of normal rudders for this condition.

The rudder effectiveness in manoeuvring is mainly determined by the
maximum transverse force acting on the rudder (within the range of
rudder angles achievable by the rudder gear). Rudder effectiveness can be
improved by:

ž rudder arrangement in the propeller slipstream (especially for twin-screw
ships)

ž increasing the rudder area
ž better rudder type (e.g. spade rudder instead of semi-balanced rudder)
ž rudder engine which allows larger rudder angles than the customary 35°
ž shorter rudder steering time (more powerful hydraulic pumps in rudder

engine)

Figure 5.12 defines the parameters of main influence on rudder forces and
moments generated by the dynamic pressure distribution on the rudder surface.
The force components in flow direction ˛ and perpendicular to it are termed
drag D and lift L, respectively. The moment about a vertical axis through the
leading edge (nose) of the rudder (positive clockwise) is termed QN. If the
leading edge is not vertical, the position at the mean height of the rudder is
used as a reference point.

The moment about the rudder stock at a distance d behind the leading edge
(nose) is:

QR D QN C L Ð d Ð cos˛C D Ð d Ð sin˛

The stagnation pressure:

q D �

2
Ð V2

and the mean chord length cm D AR/b are used to define the following non-
dimensional force and moment coefficients:
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Figure 5.12 Definition sketch of rudder geometry and
rudder forces AR D rudder area; b D rudder height;
c D chord length; d D rudder stock position; D D drag;
L D lift; QR D rudder stock torque ;
t D rudder thickness v D flow velocity; z D vertical
rudder coordinate at b/2; ˛ D angle of attack;
υ D rudder angle; ; D b2/AR D aspect ratio

lift coefficient CL D L/�q Ð AR�
drag coefficient CD D D/�q Ð AR�
nose moment coefficient CQN D QN/�q Ð AR Ð cm�
stock moment coefficient CQR D QR/�q Ð AR Ð cm�

The stock moment coefficient is coupled to the other coefficients by:

CQR D CQN C d

cm
�CL Ð cos˛CCD Ð sin˛�

For low fuel consumption of the ship (for constant rudder effectiveness), we
want to minimize the ratio CL/CD for typical small angle of attacks as encoun-
tered in usual course-keeping mode. Due to the propeller slipstream, angles of
attack of typically 10° to 15° (with opposing sign below and above the propeller
shaft) occur for zero-deflected rudders. Reducing the rudder resistance by 10%
in this range of angles of attack improves the propulsive efficiency by more
than 1%. Various devices to improve ship propulsion by partial recovery of
the propeller’s rotative energy have been proposed in the course of time, e.g.
Schneekluth and Bertram (1998). However, the major part of this energy,
which accounts only for a few per cent of the total engine power, is recovered
anyhow by the rudder in the propeller slipstream.

Size and thus cost of the rudder engine are determined by the necessary
maximum torque at the rudder stock. The stock moment is zero if the centre
of effort for the transverse rudder force lies on the rudder stock axis. As the
centre of effort depends on the angle of attack, this is impossible to achieve
for all angles of attack. Rudder shapes with strongly changing centres of effort
require therefore larger rudder engines. The position of the centre of effort



Ship manoeuvring 181

behind the leading edge (nose) is:

cs D c ÐCQN
CL cos˛CCD sin˛

The denominator in this formula is the non-dimensional force coefficient for
the normal force on the rudder.

5.4.2 Fundamental hydrodynamic aspects of rudders and simple
estimates

CL, CD and CQN can be determined in wind tunnel tests or computations.
Extensive wind tunnel measurements have been published by Thieme (1992),
and Whicker and Fehlner (1958).

Figure 5.13 shows an example. Practically these data allow rough estimates
only of rudder forces and moments of ships, because in reality the flow to
the rudder is irregular and highly turbulent and has a higher Reynolds number
than the experiments, and because interactions with the ship’s hull influence
the rudder forces. For angles of attack smaller than stall angle ˛s (i.e. the
angle of maximum CL) the force coefficients may be approximated with ample
accuracy by the following formulae:

CL D CL1 CCL2 D 2*
 Ð �C 0.7�

�C 1.7�2
Ð sin˛C CQ Ð sin˛ Ð j sin˛j Ð cos˛

CD D CD1 CCD2 C CD0 D C2
L

* Ð C CQj sin˛j3 CCD0

CQN D 	�CL1 Ð cos˛CCD1 Ð sin˛� Ð
(

0.47 	 C 2

4�C 1�

)
	 0.75 Ð �CL2 Ð cos˛C CD2 Ð sin˛�

1.2
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0
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Figure 5.13 Force and moment coefficients of a hydrofoil ; D 1; rudder stock position
d/cm D 0.25; NACA-0015; Rn D 0.79c Ð 106; QN D nose moment; QR D rudder stock torque
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Figure 5.14 illustrates the CL formula. The first term in the CL formula follows
from potential thin-foil theory for the limiting aspect ratios  D 0 and  D 1.
For other aspect ratios it is an approximation to theoretical and experimental
results. The first term in the CD formula is the induced resistance due to the
generation of trailing vortices behind the foil. The equation includes a 10%
increase of the minimum induced drag which occurs for an elliptical load
distribution over the rudder height. The first term in the CQN formula would
be a good approximation of the theoretical moment in ideal fluid if 0.5 were
used instead of the empirical value 0.47. The second terms in the formulae
for CL and CD follow from the assumption of an additional resistance-like
force depending quadratically on the velocity component V Ð sin˛ which is
perpendicular to the rudder plane. A resistance coefficient CQ ³ 1 may be
used for rudders with a sharp upper and lower edge. Rounding the edges
(which is difficult in practice) would lead to much smaller CQ values. The
second term in the CQN formula follows from the assumption that this force
component acts at 75% chord length from the leading edge. CD0 in the formula
for CD approximates the surface friction. We may approximate:

CD0 D 2.5 Ð 0.075

�logRn 	 2�2
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Figure 5.14 Lift coefficient CL versus angle of attack ˛ with the aspect ratio ; as parameter

This is 2.5 times the frictional resistance coefficient following the ITTC 1957
formula. CD0 refers to the rudder area which is about half the wetted area of
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the rudder. In addition a form factor has to be taken into account to yield the
factor 2.5.

For hydrofoils the Reynolds number is defined as:

Rn D V Ð c
=

where V is the inflow velocity (for rudders usually VA), c the mean chord
length and = ³ 1.35 Ð 10	6 m2/s the kinematic viscosity of water at 10°C.

Table 5.5 shows the good agreement of the approximate formulae with
model test measurements of Whicker and Fehlner (1958) (columns 1 to 6)
and Thieme (1958) (other columns). Thieme’s results suffer somewhat from
small Reynolds numbers. Rudder Reynolds numbers behind a large ship are in
the vicinity of Rn D 5 Ð 107. Too small Reynolds numbers result in larger drag
coefficients, a backward shift of the centre of effort of the rudder force and
smaller stall angles ˛s (by up to a factor of 2) than in reality. The Reynolds
number of column 13 corresponds approximately to the conditions in model
manoeuvring experiments. However, the strong turbulence behind a ship model
and its propeller act similarly to a larger Reynolds number in these experiments.

Table 5.5 Measured (M) and computed (C) force and moment coefficients of different
profiles (Thieme (1958), Whicker and Fehlner (1958)); Y: independent from profile shape;
∗: uncertain values, probably due to experimental technique

NACA NACA NACA
Profile –C 0015 –C 0015 –C 0015

^ 1 1 2 2 3 3
�t/c�max C 15 C 15 C 15
at x/c 30 30 30
Rn/106 2.7 2.7 2.7 2.7 2.7 2.7
CL at ˛ D 10° 0.27 0.27 0.44 0.44 0.55 0.55
CL at ˛ D 20° 0.59 0.60 0.92 0.93 1.14 1.10
CL at ˛ D ˛s 1.17 1.26 1.33 1.33 1.32 1.25
˛s[°] 38.5 28.7 23.0
CL/CD at ˛ D 10° 8.11 7.26 10.45 10.35 12.28 12.40
CL/CD at ˛ D 20° 4.62 4.25 5.70 5.79 6.63 7.05
CL/CD at ˛ D ˛s 2.28 2.20 3.88 4.00 5.76 6.00
cs/c at ˛ D 10° 0.17 0.16 0.18 0.19 0.19 0.18
cs/c at ˛ D ˛s 0.30 0.31 0.24 0.25 0.23 0.23

NACA NACA IFS62 IFS61 IFS58 Plate NACA
Profile 0015 0025 TR 25 TR 25 TR 15 t/c D 0.03 0015

^ 1 1 1 1 1 1 1
�t/c�max 15 25 25 25 15 3 15
at x/c 30 30 20 20 25 – 30
Rn/106 0.79 0.78 0.78 0.79 0.79 0.71 0.20
CL at ˛ D 10° 0.29 0.27 0.33 0.32 0.32 0.34 0.35
CL at ˛ D 20° 0.62 0.59 0.71 0.69 0.67 0.72 0.55
CL at ˛ D ˛s 1.06 1.34 1.48 1.34 1.18 1.14 0.72
˛s[°] 33.8 46.0Ł 46.0Ł 41.0Ł 33.5 40Ł 35.0
CL/CD at ˛ D 10° 7.20 5.40 4.70 4.00 6.40 3.80 2.80
CL/CD at ˛ D 20° 4.40 4.20 3.60 3.60 3.90 2.50 1.75
CL/CD at ˛ D ˛s 2.30 1.70 1.50 1.80 2.40 1.30 1.19
cs/c at ˛ D 10° 0.18 0.20 0.27 0.26 0.25 0.28 0.28
cs/c at ˛ D ˛s 0.35 0.35 0.36 0.25 0.33 0.41 0.43
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The formulae for CL, CD, and CQN do not take into account the profile
shape. The profile shape affects mainly the stall angle ˛s, the maximum lift
and the cavitation properties of the rudder, but hardly the lift at a given angle
of attack below ˛s. Table 5.5 shows that, compared to the ‘standard’ NACA
profiles, concave profiles with thickness maximum in front of the standard
value of 30% of the chord length (measured from the leading edge) produce
larger maximum lift and less change of the centre of effort of the rudder
force. The latter fact allows a smaller steering gear if the rudder is properly
balanced. On the other hand, these profiles have higher drag coefficients, thus
requiring more propulsive power for the same ship speed. (For a rudder behind
a propeller, the slipstream rotation causes angles of attack of typically 10° to
15°. A 10% increase of the rudder resistance in this angle-of-attack range
accounts for approximately 1% increase in the necessary propulsion power).
For ship speeds exceeding 22 knots and the rudder in the propeller slipstream,
profiles with the opposite tendency (backward-shifted maximum thickness) are
preferred because they are less prone to cavitation.

Greater profile thickness produces greater maximum lift at the (correspond-
ingly greater) stall angle ˛s, but it increases the rudder drag, and in most
cases the danger of cavitation in high-speed ships. Thus, the smallest thick-
ness possible to accommodate the rudder post and bearing is normally used.
For rudders of small aspect ratio, the greater maximum lift of thick rudders
is realized only in yaw checking, but not at all if the steering gear allows the
normal υ D 35° rudder angle only (Fig. 5.14). A trailing edge of substantial
thickness decreases the change of the centre of effort cs with angle of attack ˛,
but it causes substantially increased drag; thus, because of too large drag, the
application of these profiles should be avoided at least in long-range vessels.

The approximate formulae for the force coefficients are only valid for angles
of attack ˛ < ˛s. Beyond the stall angle ˛s the flow separates near the profile
leading edge (nose) on the suction side of the profile without reattachment.
Then the lift decreases strongly and the drag increases (Fig. 5.13). The sudden
drop in lift beyond the stall angle ˛s is not found for certain other profiles and
in rudders behind a propeller.

The stall angle ˛s depends primarily on:

ž the aspect ratio 
ž the profile shape and thickness
ž the Reynolds number
ž probably the surface roughness
ž the turbulence of the inflow
ž the spatial distribution of the inflow velocity

Because of the last four parameters, an exact prediction of maximum rudder lift
from wind tunnel or towing tank experiments is impossible. Whereas a greater
aspect ratio  (height-to-chord ratio b/cm) increases the lift for a given angle
of attack ˛ < ˛s, the maximum lift coefficient (typically 1.2 < CL,max < 1.4)
is practically independent of the aspect ratio (Fig. 5.14). Thus increasing the
rudder area by increasing the chord length is of equal effect as by increasing
the rudder height with respect to the maximum rudder force if the stall angle
is reached by the steering gear; otherwise, an increase in rudder height is
much more effective than a corresponding increase in chord length. (A rudder
angle υ D 35° relative to the ship’s longitudinal axis corresponds to angles of



Ship manoeuvring 185

attack ˛ of nearly the same size in initial turning, of smaller size during steady
turning and of larger size in the yaw checking phase.)

Because of the different stall angles ˛s and lift curve slopes of rudders of
different aspect ratios it would be advantageous to use an effective rudder
angle υeff instead of the geometrical rudder angle υ for rules, e.g., about the
maximum rudder angle and the rudder rate of the steering gear, as well as
for nautical use. This would be ‘fairer’ for rudders of different aspect ratio;
it would also make better use of rudders of smaller aspect ratio (today their
greater stall angle ˛s is frequently not realized because of a too small maximum
rudder angle υ) and would lead to more equal response of different ships on
(effective) rudder angles. If geometric and effective rudder angles are defined
to coincide for a normal aspect ratio of  D 2, their relationship is (Fig. 5.15):

υeff D 2.2 Ð
C 2.4

Ð υ

1.5

δ e
ff
/δ

ge
om

1.0

0.5

0
1 2 3

L

Figure 5.15 Ratio between effective and geometrical angle of attack

For aspect ratios  < 3 which are typical for ship rudders, the vertical distri-
bution of the lift force in homogeneous, unbounded flow is practically elliptic:

lift per length D L

b
Ð 4

*
Ð
√

1 	
(
z

b/2

)2

Here z is the vertical distance from the mean height between the lower and
upper edge of the rudder. The distribution is hardly influenced by the rudder
shape if the usual trapezoidal shape with a taper ratio 0.5 < cmin/cmax < 1.0.
Thus, for a free-running rudder of trapezoidal shape the lift centre is nearly
at half the rudder height, not at the centre of gravity of the shape. This effect
is even more pronounced for lower aspect ratios. If there is only a small gap
between the upper edge of the rudder and fixed parts of the hull (at the rudder
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angles concerned), the centre of effort moves up a little, but never more than
7.5% of b, the value for a rudder without a gap at its upper edge.

Air ventilation may occur on the suction side of the rudder if the rudder
pierces or comes close to the water surface. The extent of the ventilation may
cover a large part of the rudder (even the whole rudder height) decreasing the
rudder effectiveness drastically. This is important for manoeuvres at ballast
draft for full speed, e.g. at ship trials.

The dynamic pressure along the profile of a rudder depends on the local
velocity v according to Bernoulli’s law:

pdyn D �

2
Ð �V2 	 v2� D q Ð

(
1 	 v2

V2

)

For the usual straight profiles v/V is decomposed into two components:

1. Component vt/V due to the profile thickness t. This component is equal on
both sides of the profile. vt/V may be taken from Table 5.6. For different
profile thickness t, the velocity ratio vt/V must be corrected by[(

vt

V

)
actual

	 1
]

D
[(

vt

V

)
table

	 1
]

Ð tactual

ttable

Table 5.6 vt =V ; flow speed vt along the profile over inflow velocity V as a function of
the profile abscissa x , a = 0◦

NACA NACA HSVA HSVA IFS58 IFS61 IFS62
x/c (%) 643-018 0020 MP73-20 MP71-20 TR15 TR25 TR25

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.77 0.69 0.69 0.57 0.79 0.67 0.68
1.25 0.96 0.91 0.91 0.88 1.06 0.95 0.94
2.5 1.05 1.03 1.08 1.00 1.20 1.09 1.18
5.0 1.11 1.17 1.22 1.10 1.29 1.47 1.48
7.5 1.15 1.25 1.27 1.12 1.30 1.52 1.53
10 1.17 1.27 1.29 1.14 1.28 1.50 1.52
15 1.20 1.30 1.31 1.18 1.26 1.47 1.48
20 1.22 1.29 1.30 1.20 1.23 1.43 1.44
30 1.25 1.26 1.27 1.24 1.20 1.31 1.33
40 1.26 1.21 1.24 1.28 1.16 1.18 1.21
50 1.20 1.17 1.17 1.30 1.08 1.06 1.08
60 1.13 1.13 1.07 1.14 1.00 0.96 0.97
70 1.06 1.08 1.01 1.04 0.94 0.90 0.90
80 0.98 1.03 0.95 0.96 0.93 0.90 0.87
90 0.89 0.96 0.88 0.87 0.96 0.94 0.90
95 0.87 0.91 0.89 0.87 0.97 0.95 0.93

Information on other profiles may be found in Abbott and Doenhoff (1959)
or computed by CFD (e.g. boundary element method).

2. Component va/V due to the angle of attack ˛. This component has opposite
sign on both sides of the profile. It is practically independent from the profile
shape. Only in the front part does it depend on the profile nose radius.
Figure 5.16 illustrates this for a lift coefficient CLl ³ 1. The values given
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in the Fig. 5.16 have to be multiplied by the actual local lift coefficient:

CLl D lift per length

c Ð q D CL Ð 4

*
Ð
√

1 	
(
z

b/2

)2

where CL�� is estimated by the usual formula for the force coefficients
as given at the beginning of this chapter.

The dynamic pressure is then:

pdyn D
[

1 	
(
vt

V
š va

V
ÐCLl

)2
]

Ð q

Due to the quadratic relationship in this equation, the pressure distribution will
generate the given CLl only approximately. For better accuracy, the resulting
local lift coefficient should be integrated from the pressure difference between
both sides of the profile. If it differs substantially from the given value, the
pressure distribution is corrected by superimposing the va/V distribution in the
above formula for pdyn with a factor different from CLl such that the correct
CLl is attained by the integration of the pressure difference.

The dynamic pressure is negative over most of the profile length, for
moderate lift coefficients even on the pressure side of the rudder. This is
illustrated in Fig. 5.17 for an NACA0021 profile. The curve for CLl D 0
corresponds to the component due to the profile thickness alone. For other
CLl values, the upper and lower curves refer to the pressure and suction
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Figure 5.17 Distribution of the non-dimensional dynamic pressure along a NACA0021 profile
as a function of the local lift coefficient CLl (Riegels (1958))

sides, respectively. For profiles with a curved mean line, an additional velocity
component has to be added. It may be taken from Abbott and Doenhoff (1959),
pp. 77ff and App. II, or it may be determined by a two-dimensional potential-
flow calculation for which various methods and codes are available. Brix
(1993), p. 84, gives a sample calculation for the NACA643-018 profile for
˛ D 15°.

5.4.3 Rudder types

Various rudder types have been developed over the years (Fig. 5.18):

Simplex rudder Spade rudder Semi-balanced
rudder

Flap rudder

Figure 5.18 Various rudder types
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ž Rudder with heel bearing (simplex)
The most common rudder type formerly built was a rectangular profile
rudder with heel bearing. The heel has to have considerable width to with-
stand the horizontal forces. Flow separation at the heel increases resistance
and the non-homogenity of the wake field at the propeller plane which in
turn increases propeller-induced vibrations. Therefore modern single-screw
ships are usually equipped with other rudder types, but the rudder with heel
bearing is still popular for small craft and some fishery vessels, because it
is cheap.

ž Spade rudder
This type of rudder is commonly applied, especially on ferries, ro-ro ships,
and special craft. The rudder stock is subject to high bending moments,
especially for high ship speed and large rudder height. For stock diameters
larger than 1 m, this design becomes impractical.

ž Semi-balanced rudders
For semi-balanced rudders, a fixed guide-head (sometimes called rudder
horn) extends over the upper part of the rudder. This type of rudder has the
following properties:
– decreased rudder bending moment compared to spade rudders
– reduced rudder effectiveness compared to spade rudders. For steady turning

circles, the semi-balanced rudder produces only approximately half the
transverse force than a spade rudder of the same area (including the area
of the rudder horn). The reasons for the reduced transverse force are:
* The horizontal gap between horn and rudder opens wide for large

rudder angles. Sometimes horizontal plates are attached at the horn
along the gap as a remedy for this problem (rudder scissors).

* Unfavourable angle of attack for the rudder horn (fixed guide-head).
– drag/lift ratio of the rudder about twice as high as for spade rudders

ž Flap rudders
Flap rudders (e.g. Becker rudders) consist of a movable rudder with a trailing
edge flap activated by a mechanical or hydraulical system, thus producing
a variable flap angle as a function of the rudder angle. This system works
like an airfoil with a flap. Flap rudders give a much higher lift per rudder
angle and a 60% to 70% higher maximum lift compared to a conventional
rudder of same shape, size and area.

Less frequently, the following rudder types are employed:

ž Rudders with rotating cylinders
These rudders have a rotating cylinder at the leading edge. Whereas the
freely arranged rotating cylinder works according to the Magnus effect,
the combination of a rotating cylinder and a conventional rudder shifts the
stall to a much higher angle of attack by eliminating the boundary layer
at the separation-prone leading edge. However, at full scale the stall angle
of conventional rudders is often so high that the added complexity of this
rudder is not justified.

ž Active rudder/rudder propellers
Rudder propellers are azimuthing ducted or free-running propellers in a fixed
or hinged vertical position. They are active control devices with directed
thrust. The ‘active propeller’ is a special solution of a motor-driven ducted
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propeller integrated in the main rudder. Thus besides auxiliary propulsion
qualities, a directed thrust is available within the range of the main rudder
angles. This increases the manoeuvring qualities of the ship especially at
low speeds.

ž Steering nozzle with rudder
Steering nozzle may be fitted with flapped or unflapped rudders. This highly
effective steering device is sometimes fitted to tugs, research or fishery ships.

A fixed fin above the rudder improves the yaw checking stability as much as if
the area of the fixed fin would be included in the movable rudder. However, for
course-changing ability only the movable rudder is decisive. In fact, a fixed fin
has a course-stabilizing property and increases, e.g., the turning circle diameter.
A gap between the rudder top and the hull increases the rudder resistance at
centre position due to the induced resistance of the oblique inflow of the
propeller slipstream and the resistance of the rudder.

Twin-screw ships may be fitted with spade or semi-balanced rudders, either
behind the propellers or as midship rudders. For fast ships with a rudder
arrangement on the centreplane cavitation problems are avoided, but this
arrangement is less effective than rudders in the propeller slipstream especially
on shallow water.

5.4.4 Interaction of rudder and propeller

Rudders are normally placed in the propeller slipstream for the following
reasons:

ž A profiled rudder increases the propulsive efficiency by utilizing a part of
the rotational energy contained in the propeller slipstream.

ž In steady ahead motion, the rudder forces are typically more than twice
those of a rudder outside of the propeller slipstream.

ž Even for a stationary or slowly moving ship, substantial rudder forces may
be generated by increasing the propeller rpm (especially to provide increased
rudder effectiveness during transient manoeuvres).

Because the rudder forces are proportional to the flow speed squared at the
rudder, an accurate determination of the speed in the propeller slipstream at
the rudder position is required to correctly predict rudder forces. According to
the momentum theory of the propeller, the mean axial speed of the slipstream
far behind the propeller is

V1 D VA
√

1 CCTh

where CTh is the thrust loading coefficient:

CTh D 8

*
Ð KT
J2 D T

�

2
V2
AAP

VA is the mean axial speed of inflow to the propeller, AP the propeller area.
The theoretical slipstream radius r1 far behind the propeller flows from the
law of continuity, assuming that the mean axial speed at the propeller is the
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average between VA and V1:

r1 D r0

√
1

2

(
1 C VA

V1

)

Here r0 is half the propeller diameter D.
Normally the rudder is in a position where the slipstream contraction is not

yet completed. The slipstream radius and axial velocity may be approximated
by (Söding (1982)):

rx D r0 Ð 0.14�r1/r0�3 C r1/r0 Ð �x/r0�1.5
0.14�r1/r0�3 C �x/r0�

1.5

and:

Vx D V1 Ð
( r1
r

)2

Here x is the distance of the respective position behind the propeller plane. To
determine rudder force and moment, it is recommended to use the position of
the centre of gravity of the rudder area within the propeller slipstream.

The above expression for rx is an approximation of a potential-flow calcu-
lation. Compared to the potential flow result, the slipstream will increase in
diameter with increasing the distance x from the propeller plane due to turbu-
lent mixing with the surrounding fluid. This may be approximated (Söding
(1986)) by adding:

r D 0.15x Ð Vx 	 VA
Vx C VA

to the potential slipstream radius and correcting the slipstream speed according
to the momentum theorem:

Vcorr D �Vx 	 VA�

(
r

r Cr

)2

C VA

The results of applying this procedure are shown in Fig. 5.19. Vcorr is the mean
value of the axial speed component over the slipstream cross-section.

The rudder generates a lift force by deflecting the water flow up to consider-
able lateral distances from the rudder. Therefore the finite lateral extent of the
propeller slipstream diminishes the rudder lift compared to a uniform inflow
velocity. This is approximated (Söding (1982)) (based on two-dimensional
potential flow computations for small angles of attack) by multiplying the
rudder lift determined from the velocity within the rudder plane by the correc-
tion factor ; determined from:

; D
(
VA
Vcorr

)f
with f D 2 Ð

(
2

2 C d/c

)8

Here VA is the speed outside of the propeller slipstream laterally from the
rudder. d is the half-width of the slipstream. For practical applications, it is
recommended to transform the circular cross-section (radius r Cr) of the



192 Practical Ship Hydrodynamics

3.0

V
co

rr
 / 

V
A

2.5

2.0

1.7

1.5
1.4
1.3
1.2

1.1

1.0

1.0

0.9

0.8

(r
 +

 D
r)

 / 
r 0

0

X / D

7.5
C Th

C Th

10.0

5.0
4.0

3.0
2.5
2.0
1.5

1.0
0.75
0.5

0.5
2
5
20

50

0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

X / D

Figure 5.19 Mean axial slipstream speed as a function of propeller approach speed VA and
slipstream radius �r Cr�/r0 due to potential flow and turbulent mixing at different positions
x/D behind the propeller

propeller slipstream to a quadratic one (edge length 2d) of equal area. This
leads to the relation:

d D
√
*

4
�r Cr� D 0.886 Ð �r Cr�

The inflow velocity in the rudder plane varies along the rudder height due to
the wake distribution and the propeller slipstream. The effect of this variation
may be approximated by using the mean squared velocity:

V2 D 1

AR

∫ b

0
V2 Ð c Ð dz

for the determination of the rudder lift. However, lifting-surface calculations
show that, compared to a uniform distribution, the lift coefficient (defined with
reference to V2) is some 5% higher for rudders extending downward beyond
the lower edge of the propeller slipstream (Fig. 5.20). Hence it is recommended
to extend the rudder as far to the base line of the ship as possible.
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A simple global correction for the lift force of a rudder behind a propeller
(to be added to the lift computed by the usual empirical formulae for rudders
in free stream) is (Söding (1998a, b)):

L D T Ð
(

1 C 1√
1 C CTh

)
Ð sin υ

The additional drag (or decrease in propeller thrust) is:

D D T Ð
(

1 C 1√
1 C CTh

)
Ð �1 	 cos υ�

5.4.5 Interaction of rudder and ship hull

If the hull above the rudder is immersed, it suppresses the flow from the
pressure to the suction side around the upper edge of the rudder. This has
effects similar to an increase of the rudder aspect ratio :

ž It decreases the induced drag.
ž It increases the slope of the lift curve versus angle of attack ˛.
ž It hardly influences the maximum lift at the stall angle ˛s.

The magnitude of this effect depends on the size of the gap between the upper
edge of the rudder and the hull. For very small gaps, the aspect ratio eff is
theoretically twice the nominal value, in practice eff ³ 1.6 Ðgeom. To close
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the gap between hull and rudder at least for small rudder angles υ – and thus
increasing the rudder effectiveness – a fixed fin above the rudder is advanta-
geous for small–rudder angles. If the hull above the rudder is not immersed
or if the rudder intersects the water surface, the free surface may also increase
somewhat the effective aspect ratio eff. However, this effect decreases with
increasing ship speed and may turn to the opposite at higher speed by rudder
ventilation drawn from the surface along the suction side of the rudder. To
decrease rudder ventilation, a broad stern shape sufficiently immersed into the
water especially above the front part of the rudder is advantageous.

The wake of the hull decreases the inflow velocity to the rudder and increases
the propeller load. Differences in wake and propeller load between model and
ship are the main cause of scale effects in model manoeuvring experiments.
Whereas the wake due to hull surface friction will be similar at the rudder and
at the propeller, the potential wake – at least for small Froude numbers, i.e.
without influence of the free surface – is nearly zero at the rudder, but typically
amounts to 10% to 25% of the ship’s speed at the propeller of usual single-
screw ships. It amounts nearly to the thrust deduction fraction t. Thus the flow
outside of the propeller slipstream is accelerated between the propeller and the
rudder by about t Ð V. This causes a pressure drop which also accelerates the
propeller slipstream to approximately:

Vx D �V2
corr C t Ð V2�/Vcorr

The corresponding slipstream contraction is:

rx D �r Cr� Ð
√
Vcorr/Vx

For non-zero rudder angle and forward ship speed, an interaction between
the flow around rudder and hull occurs which decreases the lift force at the
rudder; however, an additional transverse force of equal direction is generated
at the aftbody. Compared to the rudder lift without hull interaction, the total
transverse force is increased by the factor 1 C aH Ð aH may be approximated
(Söding (1982)):

aH D 1

1 C �4.9 Ð e/TC 3 Ð c/T�2

Here T is the draft of the ship, e the mean distance between the front edge
of the rudder and the aft end of the hull, and c the mean rudder chord length.
Compared to the free-running rudder, the centre of effort of the total transverse
force is shifted forward by approximately:

x D 0.3T

e/TC 0.46

Potential flow computations show that x may increase to up half the ship’s
length in shallow water if the gap length e between rudder and hull tends
to zero, as may be the case for twin-screw ships with a centre rudder. This
would decrease the ship’s turning ability on shallow water. For a non-zero
drift velocity v (positive to starboard, measured amidships) and a non-zero
yaw rate r (positive clockwise if seen from above) of the ship, the hull in
front of the rudder influences the flow direction at the rudder position. Without
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hull influence, the transverse flow velocity v relative to the hull at the rudder
position xR is:

vR D 	�v C xR Ð r�
where xR is the distance between rudder and midship section, negative for
stern rudders. However, experiments of Kose (1982) with a freely rotating,
unbalanced rudder behind a ship model without propeller indicated a mean
transverse velocity at the rudder’s position of only:

vR D 	�0.36 Ð v C 0.66 Ð xR Ð r�
From the rudder angle υ (positive to port side), the mean longitudinal flow
speed Vx (positive backward) and the mean transverse flow speed vR at the
rudder position, the angle of attack follows:

˛ D υC arctan
vR

Vcorr

5.4.6 Rudder cavitation

Rudder cavitation may occur even at small rudder angles for ship speed’s
exceeding 22 knots with rudder(s) in the propeller slipstream and:

P

D2*/4
> 700 kW/m2

Here P is the delivered power, D the propeller diameter.
Rudder cavitation – as with propeller cavitation – is caused by water evapo-

ration where at points of high flow velocity the pressure locally drops below the
vapour pressure of the water. Cavitation erosion (loss of material by mechan-
ical action) occurs when small bubbles filled with vapour collapse on or near
to the surface of the body. During the collapse a microscopic high-velocity jet
forms, driven by surface tension and directed onto the body surface. It causes
small cracks and erosion, which in seawater may be magnified by corrosion
(galvanic loss of material). Paint systems, rubber coatings, enamel etc. offer
no substantial resistance to cavitation, but austenitic steel and some types of
bronze seem to retard the erosion compared to the mild steel normally used
for rudders.

The cavitation number B (Fig. 5.21) is a non-dimensional characteristic
value for studying cavitation problems in model experiments:

B D p	 pv

�

2
V2

where p is the pressure in undisturbed flow, i.e. atmospheric pressure plus
hydrostatic pressure, pv vaporization pressure, V ship speed, � density of
water.

There are different types of rudder cavitation:

1. Bubble cavitation on the rudder side plating
For large rudder angles, cavitation is unavoidable in ships of more than
about 10 knots. It will decrease the rudder lift substantially if the cavitation
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Figure 5.21 Cavitation numbers B as a function of the ship speed V with the submersion h
(depth below water surface) as parameter

causes a complete separation of flow from the suction side. Otherwise its
influence on rudder forces is small (Kracht (1987)). Cavitation erosion is of
interest only if it occurs within the range of rudder angles υ D š5° used for
course keeping. Evaluation of model experiments shows that the onset of
cavitation is indeed observed if the pressure determined by potential-flow
theory is smaller than the water vaporization pressure pv. pv lies typically
between 1% and 3% of the atmospheric pressure. It may therefore (not in
model tests, but for full-scale ships) simply be taken as zero. Thus, to test
for blade side cavitation in the design stage of ships, one may proceed as
follows:
– Determine the slipstream radius r Cr and the inflow speed to the rudder
Vcorr from Fig. 5.19 or the corresponding formulae at about 80% of the
propeller tip radius above and below the propeller axis.

– Correct these values to obtain Vx and rx by (see above):

Vx D �V2
corr C t Ð V2�/Vcorr

rx D �r Cr� Ð
√
Vcorr/Vx

– Because of non-uniform distribution of the slipstream velocity, add 12%
of V to obtain the maximum axial speed at the rudder:

Vmax D Vx C 0.12 Ð �Vcorr 	 VA�
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– Estimate the inflow angle ˛ to the rudder due to the rotation of the
propeller slipstream by

˛ D arctan

(
4.3 Ð KQ

J2 Ð
√

1 	 w

1 	 wlocal
Ð VA
Vmax

)

w is the mean wake number and wlocal the wake number at the respective
position. The equation is derived from the momentum theorem with an
empirical correction for the local wake. It is meant to apply about 0.7 to
1.0 propeller diameter behind the propeller plane. The position relevant
to the pressure distribution is about 1/2 chord length behind the leading
edge of the rudder.

– Add υ D 3° D 0.052 rad as an allowance for steering rudder angles.
– Determine the maximum local lift coefficient CLlmax from Fig. 5.22,

where ˛C υ are to be measured in radians. c is the chord length of
the rudder at the respective height, rx the propeller slipstream radius (see
above):

rx D ro Ð
√
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(
1 C VA

V1

)
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Figure 5.22 Diagram for determining the local values, of maximum lift coefficient CLlmax

Figure 5.22 is based on lifting-line calculations of a rudder in the propeller
slipstream. It takes into account the dependence of the local lift coefficient
on the vertical variation of inflow velocity and direction.

– Determine the extreme negative non-dimensional pressure on the suction
side depending on profile and local lift coefficient CLlmax. For this we
use Fig. 5.23 derived from potential flow calculations.

– Add to pdyn (negative) the static pressure pstat D 103 kPa C � Ð g Ð h. h
is the distance between the respective point on the rudder and the water
surface, e.g. 80% of the propeller radius above the propeller axis.
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Figure 5.23 Extreme negative dynamic pressure of the suction side as a function of the local
lift coefficient CLl and the profile

If the resulting minimum pressure on the suction side is negative or slightly
positive (less than 3 kPa), the side plating of the rudder is prone to cavita-
tion. For a right-turning propeller (turning clockwise looking forward) the
cavitation will occur:
– on the starboard side in the upper part of the rudder relative to the

propeller axis
– on the port side in the lower part of the rudder relative to the propeller

axis
Brix (1993), pp. 91–92, gives an example for such a computation. Measures
to decrease rudder side cavitation follow from the above prediction method:
– Use profiles with small pdyn at the respective local lift coefficient. These

profiles have their maximum thickness at approximately 40% behind the
leading edge.

– Use profiles with an inclined (relative to the mean rudder plane) or curved
mean line to decrease the angle of attack (Brix et al. (1971)). For a right-
turning propeller, the rudder nose should be on the port side above the
propeller axis, on the starboard side below it.

2. Rudder sole cavitation
Due to the pressure difference between both sides of the rudder caused,
e.g., by the rotation of the propeller slipstream, a flow component around
the rudder sole from the pressure to the suction side occurs. It causes a
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rudder tip vortex (similar to propeller tip vortices) which may be filled by
a cavitation tube. This may cause damage if it attaches to the side of the
rudder. However, conditions for this are not clear at present. If the rudder
has a sharp corner at the front lower edge, even for vanishing angles of
attack the flow cannot follow the sharp bend from the leading edge to
the base plate, causing cavitation in the front part of the rudder sole. As
a precaution the base plate is bent upward at its front end (Brix et al.
(1971)). This lowers the cavitation number below which sole cavitation
occurs (Fig. 5.24). For high ship speeds exceeding, e.g., 26 knots cavitation
has still been reported. However, it is expected that a further improvement
could be obtained by using a smoothly rounded lower face or a baffle plate
at the lower front end (Kracht (1987)). No difficulties have been reported
at the rudder top plate due to the much lower inflow velocity.
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Figure 5.24 Cavitation number B below which rudder sole cavitation occurs as a function of
the angle of attack ˛ and the rudder sole construction

3. Propeller tip vortex cavitation
Every propeller causes tip vortices. These are regions of low pressure, often
filled with cavitation tubes. Behind the propeller they form spirals which are
intersected by the rudder. Therefore, cavitation erosion frequently occurs at
the rudder at the upper and sometimes lower slipstream boundaries, mainly
(for right-turning propellers) on the upper starboard side of the rudder.
This problem is not confined to high-speed ships. The best means to reduce
these effects is to decrease gradually the propeller loading to the blade tips
by appropriately reduced pitch, and to use a high propeller skew. These
methods also reduce propeller-induced vibrations.

4. Propeller hub cavitation
Behind the propeller hub a vortex is formed which is often filled by a
cavitation tube. However, it seems to cause fewer problems at the rudder
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than the tip vortices, possibly due to the lower axial velocity behind the
propeller hub.

5. Cavitation at surface irregularities
Surface irregularities disturbing the smooth flow cause high flow velocities
at convex surfaces and edges, correspondingly low pressures and frequently
cavitation erosion. At the rudder, such irregularities may be zinc anodes and
shaft couplings. It is reported that also behind scoops, propeller bossings
etc. cavitation erosion occurred, possibly due to increased turbulence of
the flow. Gaps between the horn and the rudder blade in semi-balanced
rudders are especially prone to cavitation, leading to erosion of structurally
important parts of the rudder. For horizontal and vertical gaps (also in flap
rudders) the rounding of edges of the part behind the gap is recommended.

5.4.7 Rudder design

There are no regulations for the rating of the rudder area. The known recom-
mendations give the rudder area as a percentage of the underwater lateral area
L Ð T. Det Norske Veritas recommends:

AR
L Ð T ½ 0.01 Ð

(
1 C 25

(
B

L

)2
)

This gives a rudder area of approximately 1.5% of the underwater lateral
area for ships of usual width; for unusually broad ships (large mass, low yaw
stability) a somewhat larger value is given. This corresponds to typical rudder
designs and can serve as a starting point for further analyses of the steering
qualities of a ship.

Recommended minimum criteria for the steering qualities of a ship are:

ž Non-dimensional initial turning time in Z 20°/10° manoeuvres: t0a D 1 C
1.73Fn.

ž Non-dimensional yaw checking time in Z 20°/10° manoeuvres: t0s D 0.78 C
2.12Fn.

ž The rudder should be able to keep the ship on a straight course with a rudder
angle of maximum 20° for wind from arbitrary direction and vw/V D 5. vw
is the wind speed, V the ship speed.

ž The ship must be able to achieve a turning circle of less than 5 Ð L at the
same vw/V for maximum rudder angle.

The criteria for initial turning time and yaw checking time were derived by
Brix using regression analysis for 20°/10° zigzag test results for many ships
(Fig. 5.8). The time criteria are critical for large ships (bulkers, tankers),
while the wind criteria are critical for ships with a large lateral area
above the water (ferries, combatants, container ships). An additional criterion
concerning yaw stability would make sense, but this would be difficult to check
computationally.

The rudder design can be checked against the above criteria using computa-
tions (less accurate) or model tests (more expensive). A third option would be
the systematically varied computations of Wagner, described in Brix (1993),
pp. 95–102. This approach yields a coefficient CYυ for rudder effectiveness
which inherently meets the above criteria. The method described in Brix
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(1993) uses design diagrams. For computer calculations, empirical formulae
also derived by Wagner exist.

5.4.8 CFD for rudder flows and conclusions for rudder design

The determination of forces on the rudder is important for practical design
purposes:

ž The transverse force is needed to evaluate the manoeuvrability of ships
already in the design stage as required by IMO.

ž The longitudinal force influences noticeably the propulsive efficiency.
ž The shaft torsional moment is decisive for selecting a suitable rudder gear.

In principle, there are three sources of information for these forces:

ž Model experiments which produce accurate forces at model Reynolds
numbers, but suffer from severe scale effects when predicting the maximum
lift at full scale.

ž RANSE computations appear to be the most reliable source of information
and should gain in importance also for practical design of rudders.

ž BEM computations can often give sufficiently accurate results with a
minimum of effort if some empirical relationships and corrections are
applied.

Söding (1998a, b) described the state of the art for BEM comparing the
results to RANSE and experimental results. The RANSE computations used for
comparison were finite-volume methods employing a standard k-ε turbulence
model with wall function.

Söding’s BEM approach for rudder flows introduces some special features:

ž Special adaptations of the BEM take the irrotational inflow to the rudder
induced by hull and propeller into account.

ž The propeller slipstream is averaged in circumferential direction. The radial
thrust distribution is assumed such that it approaches gradually zero at the
outer limit and is zero in the hub region.

ž The ship hull above the rudder can either be modelled as horizontal mirror
plane or as a separate body discretized by boundary elements.

The BEM results were compared to RANSE and experimental results for
various rudders. According to potential theory, a thin foil in two-dimensional
flow (i.e. for aspect ratio  D 1) at a small angle of attack ˛ produces lift
nearly linearly increasing with ˛ corresponding to:

dCL
d˛

D 2*

In three-dimensional flow, the lift gradient is decreased by a reduction factor
r�� which is well approximated by:

r�� D 
C 0.7

�C 1.7�2
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Except for , details of the rudder shape in side view (e.g. rectangular or
trapezoidal) have hardly any influence on dCL/d˛. However, the profile thick-
ness and shape have some influence. Computations and measurements of the
lift coefficient corrected for infinite aspect ratio by the formula above yield
the following conclusions:

ž All values differ from the theoretical value 2* by less than š17%.
ž For the same profile, measurements and computations by any method differ

generally by only a few per cent, except for NACA profiles with thickness
ratio greater than 25%.

ž Two-dimensional and three-dimensional RANSE computations hardly differ
from each other except for thick NACA profiles.

ž The Reynolds number based on axial inflow velocity and mean rudder chord
length has relatively little effect on the lift gradient.

ž The BEM fails to predict the low lift gradient of profiles with large opening
angle of the trailing edge. For such profiles, the Kutta condition used in
potential flow is a poor approximation.

ž Substantial thickness at the trailing edge increases the lift slope.

Further detailed investigations based on RANSE computations produced the
following insight into the effect of profile thickness:

ž Thick profiles produce more lift than thinner ones if they have a sharp end
(concave sides), and a lower lift if they end in a larger angle (convex or flat
sides).

ž The mostly used NACA00 profiles are worse than the other profiles inves-
tigated, both with respect to lift slope and to the ratio between lift and
drag.

ž For all profiles, the lift/drag ratio decreases with increasing thickness. There-
fore, for a good propulsive efficiency, one should use the thinnest possible
profile.

ž The IFS profile generates the largest lift. However, when compared to the
HSVA MP73-25 profile the difference is small and the lift/drag ratio is worse
than for the HSVA profile. The IFS profile is also more liable to suffer from
cavitation due to its very uneven pressure distribution on the suction side.

BEM is not capable of predicting the stall angle because stall is inherently a
viscous phenomenon. For hard-over manoeuvres, the stall angle and its associ-
ated maximum lift may be more important than dCL/d˛. RANSE computations
show that higher Reynolds numbers produce larger maximum CL. Thus experi-
mental values without extrapolation to actual Reynolds numbers are misleading
with respect to maximum lift forces. Other conclusions for the maximum lift
at stall angle from RANSE computations are:

ž The maximum CL ranges between 1.2 and more than 2. This upper limit is
substantially larger than assumed in classification rules.

ž The aspect ratio  is of minor influence only. Larger aspect ratio produces
somewhat smaller CL,max.

ž Small  yield large stall angles. (They also yield small dCL/d˛, hence little
change in the maximum CL.)

ž The taper ratio of the rudder has practically no influence on the
maximum CL.
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ž Profiles with concave sides produce larger CL,max than those with flat or
convex sides.

Three-dimensional RANSE computation give slightly lower maximum CL
than two-dimensional RANSE computations. The relation between the two-
dimensional and three-dimensional values approximately determines the
maximum lift while avoiding the complexities (and cost) of three-dimensional
RANSE computations especially for complex configurations and non-uniform
inflow.

The recommended procedure is then:

ž Perform a two-dimensional RANSE computation for the actual profile and
Reynolds number in uniform flow to determine the maximum CL.

ž Perform a panel calculation for the three-dimensional arrangement.
ž Convert the computed lift to CL using an average inflow velocity. The

averaged velocity is the root mean square axial velocity averaged over the
rudder height.

ž Determine the approximate stall angle as that where the three-dimensional
CL in potential flow amounts to 95% of the maximum CL,2d in the two-
dimensional RANSE computation.

ž Truncate the computed lift forces at that angle, but not drag and stock
moment.

In practice, the aftbody arrangement with propeller and rudder is rather more
complicated and may even involve additional complexities such as nozzles,
fins and bulbs. These make grid generation for field methods (and even BEM)
complicated. No RANSE computations for such complex arrangements were
known by 1999 and only few BEM attempted.

5.5 Exercise: manoeuvring

Solutions to the exercises will be posted on the internet (www.bh.com/com-
panions/0750648511)

1. A motor yacht of 10 000 kg displacement is equipped with a 1 m2 profile
rudder with  D 1.2. The yacht is a twin-screw ship with central rudder.
The rudder lies outside the propeller slipstream. The yacht has a speed of
13.33 m/s. For the central position of the rudder we can assume a velocity
of 0.75 ship speed due to the wake. The ‘glide ratio’ (ratio of propeller
thrust to ship weight) is ε D 0.15.

The yacht is to be converted to waterjet propulsion. For this purpose
propeller and rudder will be dismantled and waterjets installed. Waterjets
are used to manoeuvre the ship by turning the jets a maximum of 35°,
just as previously the maximum rudder angle was 35°. The speed may be
assumed to be unaffected by the conversion.

Will the yacht react faster or slower after its conversion? Why?
2. A tanker of 250 000 t displacement sails at 15 knots at a delivered power
PD D 15 000 kW. The overall efficiency is

5 D R ÐU
PD

D 0.7
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The tanker performs a soft stop manoeuvre. The engine is reducing linearly
the torque Q within one minute to zero. The next three minutes are used to
brake the shaft and to prepare the engine for reverse operation. During the
following two minutes the engine is started and accelerated again linearly
to full reverse torque.

How long will be the stopping distance for the tanker if it sails exactly
straight ahead? Quantities not given are to be estimated!

Hints:
(a) During the short periods of acceleration and deceleration of the engine,

the ship speed is virtually constant.
(b) The linear deceleration and acceleration shall be approximated by step

functions covering the same ‘area’ of Q Ð t, where t is the time:

1' 2' 3' 4' 5' 6'
t

Q

(c) The added mass in longitudinal motion may be approximated by

m00

m
D 1

*
√
�L3/r�	 14

where L is the length, r the displacement of the ship.
(d) In reverse propeller operation the ratio of thrust to resistance shall be

jT/Rj D 0.945.
3. (a) A ship lays rudder according to sine function over time alternating

between port and starboard with amplitude 10° and 2 minutes period.
The ship performs course changes of š20°. The maximum course devi-
ation to port occurs 45 seconds after the maximum rudder angle to
port has been reached. Determine from these data the parameters of the
Nomoto equation:

T R C P D 	Kυ
The ship is yaw stable for K > 0. Is the ship yaw stable?

(b) The ship speed is reduced to 50% of the value in (a). The rudder action
is the same as in (a). How large is the amplitude of course changes
and what is the delay between maximum rudder angle and maximum
course deviation?

(c) The rudder height is kept constant at 6 m. The rudder area is increased
from 18 m2 in (a) to 24 m2. The speed is kept as in (a). How large now
is the course amplitude and the delay between maximum rudder angle
and maximum course deviation?

Hint: For constant rudder angle, the Nomoto equation has the solution:
P D ae˛t C b.

4. A ship follows the ‘Norrbin’ equation:

T R C P C ˛ P 3 D 	Kυ
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The ship performs a pull-out manoeuvre and the following curve for P is
recorded:

10 20

t (s)

0.007

0.010

0.020
y (rad/s)

•

(a) Determine the constants T and ˛!
(b) Sketch a corresponding curve of P for the case that at t D 0, P D

0.002 rad/s instead of P D 0.02 rad/s.
5. Determine the rudder lift at 10° rudder angle for the semi-balanced rudder

behind a propeller and hull of a ferry as shown below. The ship speed is
30 kn, the propeller thrust 4000 kN. The wake fraction is w D 0.25. Correct
the rudder lift for the propeller loading according to Söding (1998a, b).

Following Goodrich and Mooland (1979) we may assume that at 10°
rudder angle a semi-balanced rudder as the one depicted may have 79.2%
of the lift of a ‘normal’ rudder.

Dimensions are to be taken from the sketch (see p. 206).
6. The container ship in Tables 5.1 and 5.2 sails in a turning circle with rudder

in the centre position using just its bow thruster at maximum power. The
bow thruster is located 4 m aft of the forward perpendicular. The power of
the thruster is 4000 kW. The pipe diameter is 2.5 m. The ship speed is 5 kn.
The efficiency of the bow thruster is 5 D 0.8.

Compute the radius of the turning circle R assuming linear correlation
between hull forces and motions. The radius of the turning circle follows
from the relation U D r Ð R, where r is the yaw rate.

Forward speed changes the thrust of a bow thruster T from the value at
zero speed T0:

−5 5 10

1

U (kn)

T/T0
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Boundary element methods

6.1 Introduction

The Laplace equation is a linear differential equation, i.e. arbitrary linear
combinations (superpositions) of elementary solutions of the Laplace equa-
tion will again form a possible solution. This chapter is devoted to various
elementary solutions used in the computation of ship flows. It is not really
necessary to understand the given formulae, but the concepts should be under-
stood. Fortran subroutines for elements are public domain and may be obtained
on the internet, see Preface.

Consider the case if still water is seen from a passing airplane with speed
V, or from a razor blade ship not disturbing the flow. Here the water appears
to flow uniformly in the negative direction x with the speed V. The water has
no velocity component in the y or z direction, and everywhere uniformly the
velocity �V in the x direction. The corresponding potential is:

� D �Vx

Another elementary potential is that of an undisturbed incident wave as given
in section 4.3.1, Chapter 4.

Various elements (elementary solutions) exist to approximate the disturbance
effect of the ship. These more or less complicated mathematical expressions
are useful to model displacement (‘sources’) or lift (‘vortices’, ‘dipoles’). The
common names indicate a graphical physical interpretation of the abstract
mathematical formulae and will be discussed in the following.

The basic idea of all the related boundary element methods is to superimpose
elements in an unbounded fluid. Since the flow does not cross a streamline just
as it does not cross a real fluid boundary (such as the hull), any unbounded
flow field in which a streamline coincides with the actual flow boundaries in
the bounded problem can be interpreted as a solution for the bounded flow
problem in the limited fluid domain. Outside this fluid domain, the flow cannot
(and should not) be interpreted as a physical flow, even though the computation
can give velocities, pressures, etc. everywhere.

The velocity at a field point Ex induced by some typical panel types and some
related formula work is given in the following. Expressions are often derived in
a local coordinate system. The derivatives of the potential are transformed from
the local x-y-z system to a global x-y-z system. In two dimensions, we limit
ourselves to x and z as coordinates, as these are the typical coordinates for a

207
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strip in a strip method. En D �nx, nz	 is the outward unit normal in global coor-
dinates, coinciding with the local z vector. Et and Es are unit tangential vectors,
coinciding with the local x and y vectors, respectively. The transformation
from the local to the global system is as follows:

1. Two-dimensional case

�x D nz Ð �x C nx Ð �z
�z D �nx Ð �x C nz Ð �z
�xx D �n2

z � n2
x	 Ð �xx C �2nxnz	 Ð �xz

�xz D �n2
z � n2

x	 Ð �xz � �2nxnz	 Ð �xx
�xxz D nz�1 � 4n2

x	 Ð �xxz � nx�1 � 4n2
z 	 Ð �xzz

�xzz D nx�1 � 4n2
z 	 Ð �xxz C nz�1 � 4n2

x	 Ð �xzz
2. Three-dimensional case

�x D t1 Ð �x C s1 Ð �y C n1 Ð �z
�y D t2 Ð �x C s2 Ð �y C n2 Ð �z
�z D t3 Ð �x C s3 Ð �y C n3 Ð �z
�x x D t21�xx C s2

1�yy C n2
1�zz C 2�s1t1�xy C n1t1�xz C n1s1�yz	

�x y D t1t2�xx C t1s2�xy C t1n2�xz C s1t2�xy C s1s2�yy C s1n2�yz

C n1t2�xz C n1s2�yz C n1n2�zz

�x z D t1t3�xx C t1s3�xy C t1n3�xz C s1t3�xy C s1s3�yy C s1n3�yz

C n1t3�xz C n1s3�yz C n1n3�zz

�y y D t22�xx C s2
2�yy C n2

2�zz C 2�s2t2�xy C n2t2�xz C n2s2�yz	

�y z D t2t3�xx C t2s3�xy C t2n3�xz C s2t3�xy C s2s3�yy C s2n3�yz

C n2t3�xz C n2s3�yz C n2n3�zz

�x x z D t21�t3�xxx C s3�xxy C n3�xxz	 C s2
1�t3�xyy C s3�yyy C n3�yyz	

C n2
1�t3�xzz C s3�yzz C n3�zzz	 C 2�s1t1�t3�xxy C s3�xyy C n3�xyz	

C n1t1�t3�xxz C s3�xyz C n3�xzz	C n1s1�t3�xyz C s3�yyz C n3�yzz		

�x y z D t1t2�t3�xxx C s3�xxy C n3�xxz	 C �t1s2 C s1t2	

ð �t3�xxy C s3�xyy C n3�xyz	 C s1s2�t3�xyy C s3�yyy C n3�yyz	

C �t1n2 C n1t2	�t3�xxz C s3�xyz C n3�xzz	

C n1n2�t3�xzz C s3�yzz C n3�zzz	 C �s1n2 C n1s2	

ð �t3�xyz C s3�yyz C n3�yzz	

�x z z D t1t3�t3�xxx C s3�xxy C n3�xxz	 C �t1s3 C s1t3	

ð �t3�xxy C s3�xyy C n3�xyz	 C s1s3�t3�xyy C s3�yyy C n3�yyz	
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C �t1n3 C n1t3	�t3�xxz C s3�xyz C n3�xzz	

C n1n3�t3�xzz C s3�yzz C n3�zzz	 C �s1n3 C n1s3	

ð �t3�xyz C s3�yyz C n3�yzz	

�y y z D t22�t3�xxx C s3�xxy C n3�xxz	 C s2
2�t3�xyy C s3�yyy C n3�yyz	

C n2
2�t3�xzz C s3�yzz C n3�zzz	 C 2�s2t2�t3�xxy C s3�xyy C n3�xyz	

C n2t2�t3�xxz C s3�xyz C n3�xzz	C n2s2�t3�xyz C s3�yyz C n3�yzz		

�y z z D t2t3�t3�xxx C s3�xxy C n3�xxz	 C �t2s3 C s2t3	

ð �t3�xxy C s3�xyy C n3�xyz	 C s2s3�t3�xyy C s3�yyy C n3�yyz	

C �t2n3 C n2t3	�t3�xxz C s3�xyz C n3�xzz	

C n2n3�t3�xzz C s3�yzz C n3�zzz	 C �s2n3 C n2s3	

ð �t3�xyz C s3�yyz C n3�yzz	

6.2 Source elements

The most common elements used in ship flows are source elements which are
used to model the displacement effect of a body. Elements used to model the
lift effect such as vortices or dipoles are in addition employed if lift plays a
significant role, e.g. in yawed ships for manoeuvring.

6.2.1 Point source

1. Two-dimensional case
The coordinates of the source are �xq, zq	. The distance between source
point and field point �x, y	 is r D √

�x � xq	2 C �z � zq	2. The potential
induced at the field point is then:

� D �

2�
ln r D �

4�
ln��x � xq	

2 C �z � zq	
2	

This yields the velocities:

Ev D
{
�x
�z

}
D �

2�r2

{
x � xq
z � zq

}
The absolute value of the velocity is then:

v D �

2�r2

√
�x � xq	2 C �z � zq	2 D �

2�r

The absolute value of the velocity is thus the same for all points on a radius
r around the point source. The direction of the velocity is pointing radially
away from the source point and the velocity decreases with distance as
1/r. Thus the flow across each concentric ring around the source point is
constant. The element can be physically interpreted as a source of water
which constantly pours water flowing radially in all directions. � is the
strength of this source. For negative �, the element acts like a sink with
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Figure 6.1 Effect of a point source

water flowing from all directions into the centre. Figure 6.1 illustrates the
effect of the element.

Higher derivatives are:

�xx D ��zz D �

2�

1

r2 � �x Ð 2�x � xq	

r2

�xz D ��x Ð 2�z � zq	

r2

�xxz D ��zzz D �2 Ð
(
�x � xq	

r2 �xz C �z � zq	

r2 �xx

)

�xzz D �2 Ð
(
�x � xq	

r2 �zz C �z � zq	

r2 �xz

)
2. Three-dimensional case

The corresponding expressions in three dimensions are:

r D
√
�x � xq	2 C �y � yq	2 C �z � zq	2

� D ��
1

4�r

�x D �
1

2�r3 �x � xq	

�y D �
1

2�r3 �y � yq	

�z D �
1

2�r3 �z � zq	
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�xx D ��3�x�x � xq	 � �	/r2

�xy D ��3�x�y � yq		/r
2

�xz D ��3�x�z � zq		/r
2

�yy D ��3�y�y � yq	 � �	/r2

�yz D ��3�y�z � zq		/r
2

�xxz D ��2��/r2	 C 5�xx	 dz/r2

�xyz D �5�xy dz/r2

�xzz D �5�xz dz/r2 � 3�x/r
2

�yyz D ��2��/r2	 C 5�yy	 dz/r2

�yzz D �5�yz dz/r2 � 3�y/r
2

6.2.2 Regular first-order panel

1. Two-dimensional case
For a panel of constant source strength we formulate the potential in a local
coordinate system. The origin of the local system lies at the centre of the
panel. The panel lies on the local x-axis, the local z-axis is perpendicular
to the panel pointing outward. The panel extends from x D �d to x D d.
The potential is then

� D
∫ d

�d

�

2�
Ð ln
√
�x � xq	2 C z2 dxq

With the substitution t D x � xq this becomes:

� D 1

2

∫ xCd

x�d

�

2�
Ð ln�t2 C z2	 dt

D �

4�

[
t ln�t2 C z2	 C 2z arctan

t

z
� 2t

]xCd

x�d

Additive constants can be neglected, giving:

� D �

4�

(
x ln

r1

r2
C d ln�r1r2	 C z2 arctan

2 dz

x2 C z2 � d2 C 4d
)

with r1 D �x C d	2 C z2 and r2 D �x � d	2 C z2. The derivatives of the
potential (still in local coordinates) are:

�x D �

2�
Ð 1

2
ln
r1

r2

�z D �

2�
Ð arctan

2 dz

x2 C z2 � d2
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�xx D �

2�
Ð
(
x C d

r1
� x � d

r2

)

�xz D �

2�
Ð z Ð

(
1

r1
� 1

r2

)

�xxz D �

2�
Ð ��2z	 Ð

(
x C d

r2
1

� x � d

r2
2

)

�xzz D �

2�
Ð
(
�x C d	2 � z2

r2
1

� �x � d	2 � z2

r2
2

)

�x cannot be evaluated (is singular) at the corners of the panel. For the
centre point of the panel itself �z is:

�z�0, 0	 D lim
z!0

�z�0, z	 D �

2
If the ATAN2 function in Fortran is used for the general expression of �z,
this is automatically fulfilled.

2. Three-dimensional case
In three dimensions the corresponding expressions for an arbitrary panel are
rather complicated. Let us therefore consider first a simplified case, namely
a plane rectangular panel of constant source strength, (Fig. 6.2). We denote
the distances of the field point to the four corner points by:

r1 D
√
x2 C y2 C z2

r2 D
√
�x � �	2 C y2 C z2

r3 D
√
x2 C �y � h	2 C z2

r4 D
√
�x � �	2 C �y � h	2 C z2

1

4

3

s

2

x

y

Figure 6.2 Simple rectangular flat panel of constant
strength; orgin at centre of panel

The potential is:

� D � �

4�

∫ h

0

∫ �

0

1√
�x � �	2 C �y � �	2 C z2

d� d�
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The velocity in the x direction is:

∂�

∂x
D �

4�

∫ h

0

∫ �

0

x � �√
�x � �	2 C �y � �	2 C z2

3 d� d�

D �

4�

∫ h

0
� 1√

�x � �	2 C �y � �	2 C z2
C 1√

x2 C �y � �	2 C z2
d�

D �

4�
ln
�r3 � �y � h		�r1 � y	

�r2 � y	�r4 � �y � h		

The velocity in the y direction is in similar fashion:

∂�

∂y
D �

4�
ln
�r2 � �x � �		�r1 � x	

�r3 � x	�r4 � �x � �		

The velocity in the z direction is:

∂�

∂z
D �

4�

∫ h

0

∫ �

0

z√
�x � �	2 C �y � �	2 C z2

3 d� d�

D �

4�

∫ h

0
� z�x � �	

��y � �	2 C z2	
√
�x � �	2 C �y � �	2 C z2

C zx

��y � �	2 C z2	
√
x2 C �y � �	2 C z2

d�

Substituting:

t D � � y√
x2 C �� � y	2 C z2

yields:

∂�

∂z
D �

4�

[∫ �h�y	/r4

�y/r2

�z�x � �	

z2 C �x � �	2t2
dt C

∫ �h�y	/r3

�y/r1

zx

z2 C x2t2
dt
]

D �

4�

[
� arctan

x � �

z

h � y

r4
C arctan

x � �

z

�y

r2

� arctan
x

z

�y

r1
C arctan

x

z

h � y

r3

]
The derivation used:∫

1√
x2 C a2

dx D ln�x C
√
x2 C a2	 C C

∫
x√

x2 C a2
3 dx D � 1√

x2 C a2
C C
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1√

x2 C a2
3 dx D x

a2
√
x2 C a2

C C

∫
1

a C bx2 dx D 1p
ab

arctan
bxp
ab

for b > 0

The numerical evaluation of the induced velocities has to consider some
special cases. As an example: the finite accuracy of computers can lead to
problems for the above given expression of the x component of the velocity,
when for small values of x and z the argument of the logarithm is rounded
off to zero. Therefore, for (

p
x2 C z2 − y) the term r1 � y must be substi-

tuted by the approximation �x2 C z2	/2x. The other velocity components
require similar special treatment.

Hess and Smith (1964) pioneered the development of boundary element
methods in aeronautics, thus also laying the foundation for most subsequent
work for BEM applications to ship flows. Their original panel used constant
source strength over a plane polygon, usually a quadrilateral. This panel is
still the most popular choice in practice.

The velocity is again given in a local coordinate system (Fig. 6.3). For
quadrilaterals of unit source strength, the induced velocities are:

∂�

∂x
D y2 � y1

d12
ln
(
r1 C r2 � d12

r1 C r2 C d12

)
C y3 � y2

d23
ln
(
r2 C r3 � d23

r2 C r3 C d23

)

C y4 � y3

d34
ln
(
r3 C r4 � d34

r3 C r4 C d34

)
C y1 � y4

d41
ln
(
r4 C r1 � d41

r4 C r1 C d41

)
∂�

∂y
D x2 � x1

d12
ln
(
r1 C r2 � d12

r1 C r2 C d12

)
C x3 � x2

d23
ln
(
r2 C r3 � d23

r2 C r3 C d23

)

C x4 � x2

d34
ln
(
r3 C r4 � d34

r3 C r4 C d34

)
C x1 � x4

d41
ln
(
r4 C r1 � d41

r4 C r1 C d41

)

1

4

3
3

2

11

4 4

s

2

x

y

−s /2

−s /2

s /2 s /2

s /2

s /2

−s /2 −s /2

Figure 6.3 A quadrilateral flat panel of constant strength is represented by Hess and Smith as
superposition of four semi-infinite strips
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∂�

∂z
D arctan

(
m12e1 � h1

zr1

)
� arctan

(
m12e2 � h2

zr2

)

C arctan
(
m23e2 � h2

zr2

)
� arctan

(
m23e3 � h3

zr3

)

C arctan
(
m34e3 � h3

zr3

)
� arctan

(
m34e4 � h4

zr4

)

C arctan
(
m41e4 � h4

zr4

)
� arctan

(
m41e1 � h1

zr1

)

xi, yi are the local coordinates of the corner points i, ri the distance of the
field point �x, y, z	 from the corner point i, dij the distance of the corner
point i from the corner point j, mij D �yj � yi	/�xj � xi	, ei D z2 C �x �
xi	2 and hi D �y � yi	�x � xi	. For larger distances between field point and
panel, the velocities are approximated by a multipole expansion consisting
of a point source and a point quadrupole. For large distances the point
source alone approximates the effect of the panel.

For real ship geometries, four corners on the hull often do not lie in
one plane. The panel corners are then constructed to lie within one plane
approximating the four points on the actual hull: the normal on the panel
is determined from the cross-product of the two ‘diagonal’ vectors. The
centre of the panel is determined by simple averaging of the coordinates of
the four corners. This point and the normal define the plane of the panel.
The four points on the hull are projected normally on this plane. The panels
thus created do not form a closed body. As long as the gaps are small, the
resulting errors are negligible compared to other sources of errors, e.g. the
assumption of constant strength, constant pressure, constant normal over
each panel, or enforcing the boundary condition only in one point of the
panel. Hess and Smith (1964) comment on this issue:

‘Nevertheless, the fact that these openings exist is sometimes disturb-
ing to people hearing about the method for the first time. It should
be kept in mind that the elements are simply devices for obtaining
the surface source distribution and that the polyhedral body. . . has
no direct physical significance, in the sense that the flow eventually
calculated is not the flow about the polyhedral-type body. Even if
the edges of the adjacent elements are coincident, the normal velocity
is zero at only one point of each element. Over the remainder of the
element there is flow through it. Also, the computed velocity is infinite
on the edges of the elements, whether these are coincident or not.’

6.2.3 Jensen panel

Jensen (1988) developed a panel of the same order of accuracy, but much
simpler to program, which avoids the evaluation of complicated transcendental
functions and in it implementation relies largely on just a repeated evaluation
of point source routines. As the original publication is little known and difficult
to obtain internationally, the theory is repeated here. The approach requires,
however, closed bodies. Then the velocities (and higher derivatives) can be
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computed by simple numerical integration if the integrands are transformed
analytically to remove singularities. In the formulae for this element, En is the
unit normal pointing outward from the body into the fluid, c

∫
the integral over

S excluding the immediate neighbourhood of Exq, and r the Nabla operator
with respect to Ex.

1. Two-dimensional case
A Rankine source distribution on a closed body induces the following poten-
tial at a field point Ex:

��Ex	 D
∫
S
��Exq	G�Ex, Exq	 dS

S is the surface contour of the body, � the source strength, G�Ex, Exq	 D
�1/2�	 ln jEx � Exqj is the Green function (potential) of a unit point source.
Then the induced normal velocity component is:

vn�Ex	 D En�Ex	r��Ex	 D C
∫
S
��Exq	En�Ex	rG�Ex, Exq	 dS C 1

2
��Exq	

Usually the normal velocity is given as boundary condition. Then the impor-
tant part of the solution is the tangential velocity on the body:

vt�Ex	 D Et�Ex	r��Ex	 D C
∫
S
��Exq	Et�Ex	rG�Ex, Exq	 dS

Without further proof, the tangential velocity (circulation) induced by a
distribution of point sources of the same strength at point Exq vanishes:

C
∫
S�Ex	

rG�Ex, Exq	Et�Ex	 dS D 0

Exchanging the designations Ex and Exq and using rG�Ex, Exq	 D �rG�Exq, Ex	,
we obtain:

C
∫
S
rG�Ex, Exq	Et�Exq	 dS D 0

We can multiply the integrand by ��Ex	 – which is a constant as the inte-
gration variable is Exq – and subtract this zero expression from our initial
integral expression for the tangential velocity:

vt�Ex	 D C
∫
S
��Exq	Et�Ex	rG�Ex, Exq	 dS � C

∫
S
��Ex	rG�Ex, Exq	Et�Exq	 dS︸ ︷︷ ︸

D0

D C
∫
S

[��Exq	Et�Ex	 � ��Ex	Et�Exq	]rG�Ex, Exq	 dS

For panels of constant source strength, the integrand in this formula tends to
zero as Ex ! Exq, i.e. at the previously singular point of the integral. Therefore
this expression for vt can be evaluated numerically. Only the length S of
the contour panels and the first derivatives of the source potential for each
Ex, Exq combination are required.
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2. Three-dimensional case
The potential at a field point Ex due to a source distribution on a closed body
surface S is:

��Ex	 D
∫
S
��Exq	G�Ex, Exq	 dS

� the source strength, G�Ex, Exq	 D ��4�jEx � Exqj	�1 is the Green function
(potential) of a unit point source. Then the induced normal velocity compo-
nent on the body is:

vn�Ex	 D En�Ex	r��Ex	 D C
∫
S
��Exq	En�Ex	rG�Ex, Exq	 dS C 1

2
��Exq	

Usually the normal velocity is prescribed by the boundary condition. Then
the important part of the solution is the velocity in the tangential directions Et
and Es. Et can be chosen arbitrarily, Es forms a right-handed coordinate system
with En and Et. We will treat here only the velocity in the t direction, as the
velocity in the s direction has the same form. The original, straightforward
form is:

vt�Ex	 D Et�Ex	r��Ex	 D C
∫
S
��Exq	Et�Ex	rG�Ex, Exq	 dS

A source distribution of constant strength on the surface S of a sphere does
not induce a tangential velocity on S:

C
∫
S
Et�Ex	rG�Ex, Ek	 dS D 0

for Ex and Ek on S. The sphere is placed touching the body tangentially at
the point Ex. The centre of the sphere must lie within the body. (The radius
of the sphere has little influence on the results within wide limits. A rather
large radius is recommended.) Then every point Exq on the body surface
can be projected to a point Ek on the sphere surface by passing a straight
line through Ek, Exq, and the sphere’s centre. This projection is denoted by
Ek D P�Exq	. dS on the body is projected on dS on the sphere. R denotes the
relative size of these areas: dS D R dS. Let R be the radius of the sphere
and Ec be its centre. Then the projection of Exq is:

P�Exq	 D Exq � Ec
jExq � EcjR C Ec

The area ratio R is given by:

R D En Ð �Exq � Ec	
jExq � Ecj

(
R

jExq � Ecj
)2

With these definitions, the contribution of the sphere (‘fancy zero’) can be
transformed into an integral over the body surface:

C
∫
S

Et�Ex	rG�Ex, P�Exq		R dS D 0
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We can multiply the integrand by ��Ex	 – which is a constant as the inte-
gration variable is Exq – and subtract this zero expression from our original
expression for the tangential velocity:

vt�Ex	 D C
∫
S
��Exq	Et�Ex	rG�Ex, Exq	 dS � C

∫
S
��Ex	Et�Ex	rG�Ex, P�Exq		R dS︸ ︷︷ ︸

D0

D C
∫
S

[��Exq	Et�Ex	rG�Ex, Exq	 � ��Ex	Et�Ex	rG�Ex, P�Exq		R] dS

For panels of constant source strength, the integrand in this expression
tends to zero as Ex ! Exq, i.e. at the previously singular point of the integral.
Therefore this expression for vt can be evaluated numerically.

6.2.4 Higher-order panel

The panels considered so far are ‘first-order’ panels, i.e. halving the grid
spacing will halve the error in approximating a flow (for sufficiently fine grids).
Higher-order panels (these are invariably second-order panels) will quadrati-
cally decrease the error for grid refinement. Second-order panels need to be
at least quadratic in shape and linear in source distribution. They give much
better results for simple geometries which can be described easily by analyt-
ical terms, e.g. spheres or Wigley parabolic hulls. For real ship geometries,
first-order panels are usually sufficient and may even be more accurate for the
same effort, as higher-order panels require more care in grid generation and
are prone to ‘overshoot’ in regions of high curvature as in the aftbody. For
some applications, however, second derivatives of the potential are needed on
the hull and these are evaluated simply by second-order panels, but not by
first-order panels.

1. Two-dimensional case
We want to compute derivatives of the potential at a point �x, y	 induced
by a given curved portion of the boundary. It is convenient to describe the
problem in a local coordinate system (Fig. 6.4). The x- or �-axis is tangent
to the curve and the perpendicular projections on the x-axis of the ends of
the curve lie equal distances d to the right and the left of the origin. The y-
or �-axis is normal to the curve. The arc length along the curve is denoted
by s, and a general point on the curve is ��, �	. The distance between �x, y	

d d
s x, x

x ,h

y, h x , y

r

r0

Figure 6.4 Coordinate system for higher-order panel (two dimensional)
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and ��, �	 is:

r D
√
�x � �	2 C �y � �	2

The velocity induced at �x, y	 by a source density distribution ��s	 along
the boundary curve is:

r� D 1

2�

∫ d

�d

{
x � �
y � �

} ��s	

r2

ds

d�
d�

The boundary curve is defined by � D ���	. In the neighbourhood of the
origin, the curve has a power series:

� D c�2 C d�3 C Ð Ð Ð
There is no term proportional to �, because the coordinate system lies
tangentially to the panel. Similarly the source density has a power series:

��s	 D ��0	 C ��1	s C ��2	s2 C Ð Ð Ð
Then the integrand in the above expression for r� can be expressed as a
function of � and then expanded in powers of �. The resulting integrals
can be integrated to give an expansion for r� in powers of d. However,
the resulting expansion will not converge if the distance of the point �x, y	
from the origin is less than d. Therefore, a modified expansion is used for
the distance r:

r2 D [�x � �	2 C y2] � 2y� C �2 D r2
f � 2y� C �2

rf D √
�x � �	2 C y2 is the distance �x, y	 from a point on the flat element.

Only the latter terms in this expression for r2 are expanded:

r2 D r2
f � 2yc�2 C O��3	

Powers O��3	 and higher will be neglected from now on.

1

r2 D 1

r2
f � 2yc�2 Ð r

2
f C 2yc�2

r2
f C 2yc�2 D 1

r2
f

C 2yc�2

r4
f

1

r4 D 1

r4
f

C 4yc�2

r6
f

The remaining parts of the expansion are straightforward:

s D
∫ �

0

√
1 C

(
d�

d�

)2

d� D
∫ �

0

√
1 C �2c�	2 d�

³
∫ �

0
1 C 2c2�2 d� D � C 2

3
c2�3

Combine this expression for s with the power series for ��s	:

��s	 D ��0	 C ��1	� C ��2	�2
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Combine the expression of s with the above expression for 1/r2:

1

r2

ds

d�
D
(

1

r2
f

C 2cy�2

r4
f

)
�1 C 2c2�2	 D

(
1

r2
f

C 2cy�2

r4
f

C 2c2�2

r2
f

)

Now the integrands in the expression for r� can be evaluated.

�x D 1

2�

∫ d

�d
�
�x � �	

r2

ds

d�
d�

D 1

2�

∫ d

�d
���0	 C ��1	� C ��2	�2	�x � �	

(
1

r2
f

C 2cy�2

r4
f

C 2c2�2

r2
f

)
d�

D 1

4�
[��0	x ��0	 C ��1	x ��1	 C c��c	x ��0	 C ��2	x ���2	 C 2c2��0		]

��0	x D
∫ d

�d

2�x � �	

r2
f

d� D
∫ xCd

x�d

2t

t2 C y2 dt D [ln�t2 C y2	]xCd
x�d D ln�r2

1/r
2
2	

with r1 D
√
�x C d	2 C y2 and r2 D

√
�x � d	2 C y2

��1	x D
∫ d

�d

2��x � �	

r2
f

d� D 2
∫ xCd

x�d

t�x � t	

t2 C y2 dt D x��0	x C y��0	y � 4d

��c	x D
∫ d

�d

4�x � �	y�2

r4
f

d� D 4y
∫ xCd

x�d

t�t � x	2

�t2 C y2	2 dt�2��1	y C �2d	3xy

r2
1r

2
2

��2	x D
∫ d

�d

2�x � �	�2

r2
f

d� D 2
∫ xCd

x�d

t�t � x	2

t2 C y2 dt D x��1	x C y��1	y

Here the integrals were transformed with the substitution t D �x � �	.

�y D 1

2�

∫ d

�d
�
�y � �	

r2

ds

d�
d�

D 1

2�

∫ d

�d
���0	 C ��1	� C ��2	�2	�y � c�2	

ð
(

1

r2
f

C 2cy�2

r4
f

C 2c2�2

r2
f

)
d�

D 1

4�
[��0	y ��0	 C ��1	y ��1	 C c��c	y ��0	 C ��2	y ���2	 C 2c2��0		]

��0	y D
∫ d

�d

2y

r2
f

d� D 2
∫ xCd

x�d

y

t2 C y2 dt

D 2
[

arctan
t

y

]xCd

x�d
D 2 arctan

2dy

x2 C y2 � d2
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��1	y D
∫ d

�d

2�y

r2
f

d� D 2y
∫ xCd

x�d

�x � t	

t2 C y2 dt D x��0	y � y��0	x

��c	y D
∫ d

�d
4y2 �

2

r4
f

� 2�2

r2
f

d�

D 4y2
∫ xCd

x�d

�t � x	2

�t2 C y2	2 dt � 2
∫ xCd

x�d

�t � x	2

t2 C y2 dt

D 2��1	x � 4d3 x
2 � y2 � d2

r2
1r

2
2

��2	y D
∫ d

�d

2y�2

r2
f

d� D 2y
∫ xCd

x�d

�t � x	2

t2 C y2 dt D x��1	y � y��1	x

The original formulae for the first derivatives of these higher-order panels
were analytically equivalent, but less suited for programming involving
more arithmetic operations than the formulae given here. Higher derivatives
of the potential are, e.g., given in Bertram (1999).

2. Three-dimensional case
The higher-order panels are parabolic in shape with a bi-linear source distri-
bution on each panel. The original procedure of Hess was modified by
Hughes and Bertram (1995) to include also higher derivatives of the poten-
tial. The complete description of the formulae used to determine the velocity
induced by the higher-order panels would be rather lengthy. So only the
general procedure is described here. The surface of the ship is divided into
panels as in a first-order panel method. However, the surface of each panel
is approximated by a parabolic surface, as opposed to a flat surface. The
geometry of a panel in the local panel coordinate system is described as:

) D C C A� C B� C P�2 C 2Q�� C R�2

The �-axis and �-axis lie in the plane tangent to the panel at the panel
control point, and the )-axis is normal to this plane. This equation can be
written in the form:

) � )o D P�� � �o	
2 C 2Q�� � �o	�� � �o	 C R�� � �o	

2

The point ��o, �o, )o	 is used as a collocation point and origin of the
local panel coordinate system. In the local panel coordinate system, terms
depending on A, B, and C do not appear in the formulae for the velocity
induced by a source distribution on the panel. R and P represents the local
curvatures of the ship in the two coordinate directions, Q the local ‘twist’
in the ship form.

The required input consists of the coordinates of panel corner points lying
on the body surface and information concerning how the corner points are
connected to form the panels. In our implementation, each panel is allowed
to have either three or four sides. The first and third sides of the panel should
be (nearly) parallel. Otherwise, the accuracy of the panels deteriorates. For
a given panel, the information available to determine the coefficients A . . . R
consists of the three or four panel corner points of the panel and the corner
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points of the panels which border the panel in question. For a quadrilateral
panel with neighbouring panels on all sides, eight ‘extra’ vertex points
are provided by the corner points of the adjacent panels (Fig. 6.5). For
triangular panels and panels lying on the edges of the body, fewer extra
vertex points will be available. The panel corner points will be listed as
xi, yi, zi, i D 1 . . . 4, and the extra vertex points as Qxj, Qyj, Qzj, j D 1 . . . Nv,
where Nv is the number of extra vertex points (3 < Nv < 8). For triangular
panels four corner points are also specified, but either the first and second
or the third and fourth corner points are identical (i.e. the first or third
side of the panel has zero length). The curved panel is required to pass
exactly through all of its corner points and to pass as closely as possible to
the extra vertex points of the neighbouring panels. The order in which the
corner points are specified is important, in that this determines whether the
normal vector points into the fluid domain or into the body. In our method,
the corner points should be ordered clockwise when viewed from the fluid
domain, so that the normal vector points into the fluid domain.

x1y1z1
~ ~ ~

x8y8z8
~ ~ ~

x7y7z7
~ ~ ~

x4y4z4
~ ~ ~

x6y6z6
~ ~ ~

x5y5z5
~ ~ ~

x3y3z3
~ ~ ~

x2y2z2

x1y1z1 x4y4z4

x3y3z3

x2y2z2
~ ~ ~

Figure 6.5 Additional points used for computing the local surface curvature of a panel (seen
from the fluid domain)

The source strength on each panel is represented by a bi-linear distribution,
as opposed to a constant distribution as in a first-order method:

���, �	 D �0 C �x�� � �o	 C �y�� � �o	

�x and �y are the slopes of the source strength distribution in the � and
� directions respectively. In the system of linear equations set up in this
method, only the value of the source strength density at the collocation
point on each panel, the �0 term, is solved for directly. The derivatives of
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the source density (�x and �y terms) are expressed in terms of the source
strength density at the panel collocation point and at the collocation points
of panels bordering the panel in question. First the collocation points of the
adjacent panels are transformed into the local coordinate system of the panel
in question. Then the above equation for the source strength is fitted in a
least squares sense to the values of source density at the collocation points of
the adjacent panels to determine �0, �x, and �y . For a four-sided panel which
does not lie on a boundary of the body, four adjacent panel collocation
points will be available for performing the least squares fit, (Fig. 6.6). In

(xo2, ho2)

(xo0, ho0)(xo3, ho3)
(xo4, ho4)

(xo1, ho1)

3 0

1

4

2

Figure 6.6 Adjacent panels used in the least-squares fit for the source density derivatives

other cases only three or possibly two adjacent panels will be available. The
procedure expresses the unknown source strength derivatives in terms of the
source density at the collocation point of the adjacent panels. If the higher-
order terms are set to zero, the element reduces to the regular first-order
panel. A corresponding option is programmed in our version of the panel.

6.3 Vortex elements

Vortex elements are useful to model lifting flows, e.g. in the lifting-line method
for propellers and foils, see section 2.3, Chapter 2.

1. Two-dimensional case
Consider a vortex of strength  at xw, zw and a field point x, z. Denote
x D x � xw and z D z � zw. The distance between the two points is
r D p

x2 C z2. The potential and velocities induced by this vortex are:

� D � 

2�
arctan

z � zw
x � xw
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�x D 

2�

z

r2

�z D � 

2�

x

r2

The absolute value of the velocity is then �/2�	1/r, i.e. the same for each
point on a concentric ring around the centre xw, zw. The velocity decays
with distance to the centre. So far, the vortex has the same features as the
source. The difference is the direction of the velocity. The vortex induces
velocities that are always tangential to the concentric ring (Fig. 6.7), while
the source produced radial velocities. The formulation given here produces
counter-clockwise velocities for positive .

Figure 6.7 Velocities induced by vortex

The strength of the vortex is the ‘circulation’. In general, the circulation
is defined as the integral of the tangential velocities about any closed curve.
For the definition given above, this integral about any concentric ring will
indeed yield  as a result.

This point vortex of strength  leads to similar expressions for velocities
and higher derivatives as a point source of strength �. One can thus express
one by the other as follows:

2�


x D 2�

�
�z

2�


z D �2�

�
�x

2�


xx D 2�

�
�xz
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2�


xz D �2�

�
�xx

2�


xxz D 2�

�
�xzz

2�


xzz D �2�

�
�xxz

 is the potential of the vortex, � the potential of the source. The same
relations hold for converting between vortex panels and source panels
of constant strength. It is thus usually not necessary to program vortex
elements separately. One can rather call the source subroutines with a suit-
able rearrangement of the output parameters in the call of the subroutine.

A vortex panel of constant strength – i.e. all panels have the same stre-
ngth – distributed on the body coinciding geometrically with the source
panels (of individual strength), enforces automatically a Kutta condition,
e.g. for a hydrofoil.

2. Three-dimensional case
The most commonly used three-dimensional vortex element is the horseshoe
vortex. A three-dimensional vortex of strength , lying on a closed curve
C, induces a velocity field:

Ev D r� D 

4�

∫
C

dEs ð ED
D3

We use the special case that a horseshoe vortex lies in the plane y D
yw D const., from x D �1 to x D xw. Arbitrary cases may be derived from
this case using a coordinate transformation. The vertical part of the horse-
shoe vortex runs from z D z1 to z D z2, (Fig. 6.8). Consider a field point
�x, y, z	. Then: x D x � xw, y D y � yw, z1 D z � z1, z2 D z � z2,

t1 D
√
x2 C y2 C z2

1 and t2 D
√
x2 C y2 C z2

2.

(xw, z2)

(xw, z1) Figure 6.8 Horseshoe vortex

The horseshoe vortex then induces the following velocity:

Ev D 

4�

[(
z1

t1
� z2

t2

)
1

x2 C y2

{�y
x
0

}
C
(

1 � x

t1

)

ð 1

y2 C z2
1

{
0

�z1
y

}
i �

(
1 � x

t2

)
1

y2 C z2
2

{
0

sdz2
y

}]
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The derivation used
∫
�t2 C a2	�3/2 dt D t/�a2

p
t2 C a2	. For x2 C y2 −

jz1jjz2j or y2 C z2
1 − x2 special formulae are used. Bertram (1992)

gives details and expressions for higher derivatives.

6.4 Dipole elements

6.4.1 Point dipole

The dipole (or doublet) is the limit of a source and sink of equal strength
brought together along some direction (usually x) keeping the product of
distance and source strength constant. The result is formally the same as differ-
entiating the source potential in the required direction. The strength of a dipole
is usually denoted by m. Again, r denotes the distance between field point Ex
and the dipole at Exd. We consider a dipole in the x direction here. We define
Ex D Ex � Exd.

1. Two-dimensional case
The potential and derivatives for a dipole in the x direction are:

� D m

2�r2x

�x D m

2�r2 � 2�
x

r2

�z D �2�
z

r2

�xx D
(

�6 C 8
x2

r2

)
Ð �

r2

�xz D �2
z Ð �x C x Ð �z

r2

The streamlines created by this dipole are circles, (Fig. 6.9).
2. Three-dimensional case

The three-dimensional point dipole in the x direction is correspondingly
given by:

� D � m

4�r3x

�x D � m

4�r3 � 3�
x

r2

�y D �3�
y

r2

�z D �3�
z

r2
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Figure 6.9 Velocities induced by point dipole

�xx D �5�xx � 4�

r2

�xy D �5�xy C 2y Ð ��m/4�r3	

r2

�xz D �5�xz C 2z Ð ��m/4�r3	

r2

�yy D �5�yy � 3�

r2

�yz D �5�zy

r2

�xx D �5�xx � 4�

r2

The expressions for the dipole can be derived formally by differentiation of
the corresponding source expression in x. Therefore usually source subrou-
tines (also for distributed panels) are used with a corresponding redefinition
of variables in the parameter list of the call. This avoids double program-
ming. Dipoles like vortices can be used (rather equivalently) to generate lift
in flows.

6.4.2 Thiart element

The ship including the rudder can be considered as a vertical foil of consid-
erable thickness and extremely short span. For a steady yaw angle, i.e. a
typical manoeuvring application, one would certainly enforce a Kutta condi-
tion at the trailing edge, either employing vortex or dipole elements. For
harmonic motions in waves, i.e. a typical seakeeping problem, one should
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similarly employ a Kutta condition, but this is often omitted. If a Kutta condi-
tion is employed in frequency-domain computations, the wake will oscillate
harmonically in strength. This can be modelled by discrete dipole elements
of constant strength, but for high frequencies this approach requires many
elements. The use of special elements which consider the oscillating strength
analytically is more efficient and accurate, but also more complicated. Such a
‘Thiart element’ has been developed by Professor Gerhard Thiart of Stellen-
bosch University and is described in detail in Bertram (1998b), and Bertram
and Thiart (1998). The oscillating ship creates a vorticity. The problem is
similar to that of an oscillating airfoil. The circulation is assumed constant
within the ship. Behind the ship, vorticity is shed downstream with ship speed
V. Then:(

∂

∂t
� V

∂

∂x

)
4�x, z, t	 D 0

4 is the vortex density, i.e. the strength distribution for a continuous vortex
sheet. The following distribution fulfils the above condition:

4�x, z, t	 D Re� O4a�z	 Ð ei�ωe/V	�x�xa	 Ð eiωet	 for x � xa

Here O4a is the vorticity density at the trailing edge xa (stern of the ship).
We continue the vortex sheet inside the ship at the symmetry plane y D 0,
assuming a constant vorticity density:

4�x, z, t	 D Re� O4a�z	 Ð eiωet	 for xa � x � xf

xf is the leading edge (forward stem of the ship). This vorticity density is
spatially constant within the ship.

A vortex distribution is equivalent to a dipole distribution if the vortex
density 4 and the dipole density m are coupled by:

4 D dm

dx

The potential of an equivalent semi-infinite strip of dipoles is then obtained
by integration. This potential is given (except for a so far arbitrary ‘strength’
constant) by:

�x, y, z	 D Re
(∫ xf

�1

∫ zo

zu

Om��	 y
r3 d� d)eiωet

)
D Re�ϕ�x, y, z	 Ð eiωet	

with r D p
�x � �	2 C y2 C �z � )	2 and:

Om��	 D
{ xf � � for xa � � � xf

V
iωe

(
1 � ei�ωe/V	���xa	

)C �xf � xa	 for � 1 � � � xa
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It is convenient to write ϕ as:

ϕ�x, y, z	 D y
∫ zo

zu

∫ xf

xa

x � �

r3 d� d) C �xf � x	
∫ zo

zu

∫ xf

xa

y

r3 d� d)

C
(

V

iωe
C �xf � xa	

)∫ zo

zu

∫ xa

�1

y

r3 d� d)

�
(

V

iωe
e�iωexa/V

)
y
∫ zo

zu

∫ xa

�1
eiωe�/V

1

r3 d� d)

The velocity components and higher derivatives are then derived by differen-
tiation of , which can be reduced to differentiation of ϕ. The exact formulae
are given in Bertram (1998b), and Bertram and Thiart (1998). The expres-
sions involve integrals with integrands of the form ‘arbitrary smooth func-
tion’ Ð ‘harmonically oscillating function’. These are accurately and efficiently
evaluated using a modified Simpson’s method developed by Söding:

∫ x1C2h

x1

f�x	eikx dxD eikx1

k

[
e2ikh

(
0.5f1 � 2f2 C 1.5f3

kh
� i

(
f3 � 2f

k2h2

))

C1.5f1 � 2f2 C 0.5f3

kh
C i

(
f1 � 2f

h2k2

)]

where f1 D f�x1	, f2 D f�x1 C h	, f3 D f�x1 C 2h	, 2fD f1 � 2f2 C f3.

6.5 Special techniques

6.5.1 Desingularization

The potential and its derivatives become singular directly on a panel, i.e.
infinite terms appear in the usual formulae which prevent straightforward eval-
uation. For the normal velocity, this singularity can be removed analytically
for the collocation point on the panel itself, but the resulting special treatment
makes parallelization of codes difficult. When the element is placed somewhat
outside the domain of the problem, (Fig. 6.10), it is ‘desingularized’, i.e. the
singularity is removed. This has several advantages:

ž In principle the same expression can be evaluated everywhere. This facili-
tates parallel algorithms in numerical evaluation and makes the code gener-
ally shorter and easier.

ž Numerical experiments show that desingularization improves the accuracy
as long as the depth of submergence is not too large.

The last point surprised some mathematicians. Desingularization results in a
Fredholm integral equation of the first kind. (Otherwise a Fredholm equation
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Figure 6.10 Desingularization

of second kind results.) This can lead in principle to problems with unique-
ness and existence of solutions, which in practice manifest themselves first
by an ill-conditioned matrix for the unknowns (source strengths or directly
potential). For engineers, the problems are directly apparent without going
into mathematical classification:

ž If the individual elements (sources) are too far from the collocation points,
they will all have almost the same influence. Then they will not be able to
represent arbitrary local flow patterns.

ž If the individual elements are somewhat removed, the individual sharp local
steepness in flow pattern (singularity) will smooth out rapidly forming a rela-
tively smooth flow distribution which can relatively smoothly approximate
arbitrary flows.

ž If the individual elements are very close, an uneven cobblestone flow distri-
bution results due to the discontinuity between the individual elements.

Thus the desingularization distance has to be chosen appropriately within a
bandwidth to yield acceptable results. The distance should be related to the
grid size. As the grid becomes finer, the desingularized solution approaches
the conventional singular-element solution. Fortunately, several researchers
have shown that the results are relatively insensitive to the desingularization
distance, as long as this ranges between 0.5 and 2 typical grid spacings.

The historical development of desingularization of boundary element
methods is reviewed in Cao et al. (1991), and Raven (1998).

Desingularization is used in many ‘fully non-linear’ wave resistance codes
in practice for the free-surface elements. Sometimes it is also used for the hull
elements, but here narrow pointed bows introduce difficulties requiring often
special effort in grid generation. Some close-fit routines for two-dimensional
seakeeping codes (strip-method modules) also employ desingularization.

6.5.2 Patch method

Traditional boundary element methods enforce the kinematic condition (no-
penetration condition) on the hull exactly at one collocation point per panel,
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usually the panel centre. The resistance predicted by these methods is for usual
discretizations insufficient for practical requirements, at least if conventional
pressure integration on the hull is used. Söding (1993b) proposed therefore a
variation of the traditional approach which differs in some details from the
conventional approach. Since his approach uses also flat segments on the hull,
but not as distributed singularities, he called the approach ‘patch’ method to
distinguish it from the usual ‘panel’ methods.

For double-body flows the resistance in an ideal fluid should be zero. This
allows the comparison of the accuracy of various methods and discretizations
as the non-zero numerical resistance is then purely due to discretization errors.
For double-body flows, the patch method reduces the error in the resistance
by one order of magnitude compared to ordinary first-order panel methods,
without increasing the computational time or the effort in grid generation.
However, higher derivatives of the potential or the pressure directly on the
hull cannot be computed as easily as for a regular panel method.

The patch method introduces basically three changes to ordinary panel
methods:

ž ‘patch condition’
Panel methods enforce the no-penetration condition on the hull exactly at
one collocation point per panel. The ‘patch condition’ states that the integral
of this condition over one patch of the surface is zero. This averaging of
the condition corresponds to the techniques used in finite element methods.

ž pressure integration
Potentials and velocities are calculated at the patch corners. Numerical
differentiation of the potential yields an average velocity. A quadratic
approximation for the velocity using the average velocity and the corner
velocities is used in pressure integration. The unit normal is still considered
constant.

ž desingularization
Single point sources are submerged to give a smoother distribution of the
potential on the hull. As desingularization distance between patch centre
and point source, the minimum of (10% of the patch length, 50% of the
normal distance from patch centre to a line of symmetry) is recommended.

Söding (1993) did not investigate the individual influence of each factor,
but the higher-order pressure integration and the patch condition contribute
approximately the same.

The patch condition states that the flow through a surface element (patch)
(and not just at its centre) is zero. Desingularized Rankine point sources instead
of panels are used as elementary solutions. The potential of the total flow is:

� D �Vx C
∑
i

�iϕi

� is the source strength, ϕ is the potential of a Rankine point source. r is the
distance between source and field point. Let Mi be the outflow through a patch
(outflow D flow from interior of the body into the fluid) induced by a point
source of unit strength.
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1. Two-dimensional case
The potential of a two-dimensional point source is:

ϕ D 1

4�
ln r2

The integral zero-flow condition for a patch is:

�V Ð nx Ð l C
∑
i

�iMi D 0

nx is the x component of the unit normal (from the body into the fluid),
l the patch area (length). The flow through a patch is invariant of the
coordinate system. Consider a local coordinate system x, z, (Fig. 6.11). The
patch extends in this coordinate system from �s to s. The flow through the
patch is:

M D �
∫ s

�s
�z dx

A B

z

xq,zq

x

Figure 6.11 Patch in 2d

A Rankine point source of unit strength induces at x, z the vertical velocity:

�z D 1

2�

z � zq
�x � xq	

2 C �z � zq	
2

Since z D 0 on the patch, this yields:

M D
∫ s

�s

1

2�

zq
�x � xq	

2 C z2
q

dx D 1

2�
arctan

lzq
x2
q C z2

q � s2

The local zq transforms from the global coordinates:

zq D �nx Ð �xq � xc	 � nz Ð �zq � zc	

xc, zc are the global coordinates of the patch centre, xq, zq of the source.
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From the value of the potential � at the corners A and B, the average
velocity within the patch is found as:

Ev D �B � �A
jExB � ExAj Ð ExB � ExA

jExB � ExAj
i.e. the absolute value of the velocity is:

�

s
D �B � �A

jExB � ExAj
The direction is tangential to the body, the unit tangential is �ExB � ExA	/
jExB � ExAj. The pressure force on the patch is:

Ef D En
∫

p dl D En;
2

(
V2 Ð l �

∫
Ev2 dl

)

Ev is not constant! To evaluate this expression, the velocity within the patch
is approximated by:

Ev D a C bt C ct2

t is the tangential coordinate directed from A to B. EvA and EvB are the
velocities at the patch corners.The coefficients a, b, and c are determined
from the conditions:
ž The velocity at t D 0 is EvA: a D EvA.
ž The velocity at t D 1 is EvB: a C b C c D EvB.
ž The average velocity (integral over one patch) is Ev: a C 1

2b C 1
3c D Ev

This yields:

a D EvA
b D 6Ev � 4EvA � 2EvB
c D �6Ev C 3EvA C 3EvB

Using the above quadratic approximation for Ev, the integral of Ev2
over the

patch area is found after some lengthy algebraic manipulations as:∫
Ev2 dl D l

∫ 1

0
Ev2 dt D l Ð

(
a2 C ab C 1

3
�2ac C b2	 C 1

2
bc C 1

5
c2
)

D l Ð
(

Ev2 C 2

15
��EvA � Ev	 C �EvB � Ev		2 � 1

3
�EvA � Ev	�EvB � Ev	

)
Thus the force on one patch is

Ef D �En Ð l Ð
(
�Ev2 � V2	 C 2

15
��EvA � Ev	 C �EvB � Ev		2

�1

3
��EvA � Ev	�EvB � Ev		

)
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2. Three-dimensional case
The potential of a three-dimensional source is:

ϕ D � 1

4�jEx � Exqj �1	

Figure 6.12 shows a triangular patch ABC and a source S. Quadrilateral
patches may be created by combining two triangles. The zero-flow condition
for this patch is

�V
�Ea ð Eb	1

2
C
∑
i

�iMi D 0

S
C

A
Bc

b
a

Figure 6.12 Source point S and patch ABC

The first term is the volume flow through ABC due to the uniform flow; the
index 1 indicates the x component (of the vector product of two sides of
the triangle). The flow M through a patch ABC induced by a point source
of unit strength is �˛/�4�	. ˛ is the solid angle in which ABC is seen
from S. The rules of spherical geometry give ˛ as the sum of the angles
between each pair of planes SAB, SBC, and SCA minus �:

˛ D ˇSAB,SBC C ˇSBC,SCA C ˇSCA,SAB � �

where, e.g.,

ˇSAB,SBC D arctan
�[�EA ð EB	 ð �EB ð EC	] Ð EB
�EA ð EB	 Ð �EB ð EC	jEBj

Here EA, EB, EC are the vectors pointing from the source point S to the panel
corners A, B, C. The solid angle may be approximated by AŁ/d2 if the
distance d between patch centre and source point exceeds a given limit.
AŁ is the patch area projected on a plane normal to the direction from the
source to the patch centre:

Ed D 1
3 �

EA C EB C EC	

AŁ D 1

2
�Ea ð Eb	

Ed
d

With known source strengths �i, one can determine the potential �and its
derivatives r� at all patch corners. From the � values at the corners A, B,
C, the average velocity within the triangle is found as:

Ev D r� D �A � �C
En2
AB

EnAB C �B � �A
En2
AC

EnAC
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with:

EnAB D Eb � Ec Ð Eb
Ec2 Ec and EnAC D Ec �

Eb Ð Ec
Eb2

Eb

With known Ev and corner velocities EvA, EvB, EvC, the pressure force on the
triangle can be determined:

Ef D En
∫

p dA D En;
2

(
V2 Ð A �

∫
Ev2 dA

)

where Ev is not constant! A D 1
2 jEa ð Ebj is the patch area. To evaluate this

equation, the velocity within the patch is approximated by:

Ev D Ev C �EvA � Ev	�2r2 � r	 C �EvB � Ev	�2s2 � s	 C �EvC � Ev	�2t2 � t	

r is the ‘triangle coordinate’ directed to patch corner A: r D 1 at A, and
r D 0 at the line BC. s and t are the corresponding ‘triangle coordinates’
directed to B resp. C. Using this quadratic Ev formula, the integral of Ev2

over the triangle area is found after some algebraic manipulations as:∫
Ev2 dA D A Ð

[
Ev2 C 1

30
�EvA � Ev	2 C 1

30
�EvB � Ev	2 C 1

30
�EvC � Ev	2

� 1

90
�EvA � Ev	�EvB � Ev	 � 1

90
�EvB � Ev	�EvC � Ev	

� 1

90
�EvC � Ev	�EvA � Ev	

]
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Numerical example for BEM

7.1 Two-dimensional flow around a body in infinite fluid

One of the most simple applications of boundary element methods is the
computation of the potential flow around a body in an infinite fluid. The
inclusion of a rigid surface is straightforward in this case and leads to the
double-body flow problem which will be discussed at the end of this chapter.

7.1.1 Theory

We consider a submerged body of arbitrary (but smooth) shape moving with
constant speed V in an infinite fluid domain. For inviscid and irrotational flow,
this problem is equivalent to a body being fixed in an inflow of constant speed.
For testing purposes, we may select a simple geometry like a circle (cylinder
of infinite length) as a body.

For the assumed ideal fluid, there exists a velocity potential � such that
Ev D r�. For the considered ideal fluid, continuity gives Laplace’s equation
which holds in the whole fluid domain:

� D �xx C �zz D 0

In addition, we require the boundary condition that water does not penetrate
the body’s surface (hull condition). For an inviscid fluid, this condition can be
reformulated requiring just vanishing normal velocity on the body:

En Ð r� D 0

En is the inward unit normal vector on the body hull. This condition is mathe-
matically a Neumann condition as it involves only derivatives of the unknown
potential.

Once a potential and its derivatives have been determined, the forces on the
body can be determined by direct pressure integration:

f1 D
∫
S
pn1 dS

f2 D
∫
S
pn2 dS

236
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S is the wetted surface. p is the pressure determined from Bernoulli’s equation:

p D 


2
�V2 � �r��2�

The force coefficients are then:

Cx D f1



2
V2S

Cz D f2



2
V2S

7.1.2 Numerical implementation

The velocity potential � is approximated by uniform flow superimposed by
a finite number N of elements. These elements are in the sample program
DOUBL2D desingularized point sources inside the body (Fig. 6.10). The
choice of elements is rather arbitrary, but the most simple elements are selected
here for teaching purposes.

We formulate the potential � as the sum of parallel uniform flow (of speed
V) and a residual potential which is represented by the elements:

� D �Vx C
∑

�iϕ

�i is the strength of the ith element, ϕ the potential of an element of unit
strength. The index i for ϕ is omitted for convenience but it should be
understood in the equations below that ϕ refers to the potential of only the
ith element.

Then the Neumann condition on the hull becomes:

N∑
iD1

�i�En Ð rϕ� D Vn1

This equation is fulfilled on N collocation points on the body forming thus
a linear system of equations in the unknown element strengths �i. Once the
system is solved, the velocities and pressures are determined on the body.

The pressure integral for the x force is evaluated approximately by:

∫
S
pn1 dS ³

N∑
iD1

pin1,isi

The pressure, pi, and the inward normal on the hull, ni, are taken constant
over each panel. si is the area of one segment.

For double-body flow, an ‘element’ consists of a source at z D zq and its
mirror image at z D �zq. Otherwise, there is no change in the program.
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7.2 Two-dimensional wave resistance problem

The extension of the theory for a two-dimensional double-body flow problem
to a two-dimensional free surface problem with optional shallow-water effect
introduces these main new features:

ž ‘fully non-linear’ free-surface treatment
ž shallow-water treatment
ž treatment of various element types in one program

While the problem is purely academical as free surface steady flows for ships
in reality are always strongly three dimensional, the two-dimensional problem
is an important step in understanding the three-dimensional problem. Various
techniques have in the history of development always been tested and refined
first in the much faster and easier two-dimensional problem, before being
implemented in three-dimensional codes. The two-dimensional problem is thus
an important stepping stone for researchers and a useful teaching example for
students.

7.2.1 Theory

We consider a submerged body of arbitrary (but smooth) shape moving with
constant speed V under the free surface in water of constant depth. The depth
may be infinite or finite. For inviscid and irrotational flow, this problem is
equivalent to a body being fixed in an inflow of constant speed.

We extend the theory given in section 7.1 simply repeating the previously
discussed conditions and focusing on the new conditions. Laplace’s equation
holds in the whole fluid domain. The boundary conditions are:

ž Hull condition: water does not penetrate the body’s surface.
ž Kinematic condition: water does not penetrate the water surface.
ž Dynamic condition: there is atmospheric pressure at the water surface.
ž Radiation condition: waves created by the body do not propagate ahead.
ž Decay condition: far ahead and below of the body, the flow is undisturbed.
ž Open-boundary condition: waves generated by the body pass unreflected

any artificial boundary of the computational domain.
ž Bottom condition (shallow-water case): no water flows through the sea

bottom.

The decay condition replaces the bottom condition if the bottom is at infinity,
i.e. in the usual infinite fluid domain case.

The wave resistance problem features two special problems requiring an
iterative solution:

1. A non-linear boundary condition appears on the free surface.
2. The boundaries of water (waves) are not a priori known.

The iteration starts with approximating:

ž the unknown wave elevation by a flat surface
ž the unknown potential by the potential of uniform parallel flow
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In each iterative step, wave elevation and potential are updated yielding
successively better approximations for the solution of the non-linear problem.

The equations are formulated here in a right-handed Cartesian coordinate
system with x pointing forward towards the ‘bow’ and z pointing upward. For
the assumed ideal fluid, there exists a velocity potential � such that Ev D r�.
The velocity potential � fulfils Laplace’s equation in the whole fluid domain:

� D �xx C �zz D 0

The hull condition requires vanishing normal velocity on the body:

En Ð r� D 0

En is the inward unit normal vector on the body hull.
The kinematic condition (no penetration of water surface) gives at z D �:

r� Ð r� D �z

For simplification, we write ��x, y, z� with �z D ∂�/∂z D 0.
The dynamic condition (atmospheric pressure at water surface) gives at z D

�:

1
2 �r��2 C gz D 1

2V
2

with g D 9.81 m/s2. Combining the dynamic and kinematic boundary condi-
tions eliminates the unknown wave elevation z D �:

1
2 r� Ð r�r��2 C g�z D 0

This equation must still be fulfilled at z D �. If we approximate the potential
� and the wave elevation � by arbitrary approximations  and �, linearization
about the approximated potential gives at z D �:

r Ð r� 1
2 �r�2 C r Ð r�� ���C r�� �� Ð r� 1

2 �r�2�C g�z D 0

 and � � are developed in a Taylor expansion about �. The Taylor expan-
sion is truncated after the linear term. Products of � � � with derivatives of
� � are neglected. This yields at z D �:

r Ð r� 1
2 �r�2 C r Ð r�� ���C r�� �� Ð r� 1

2 �r�2�C g�z

C [ 1
2 r Ð r�r�2 C gz]z�� � �� D 0

A consistent linearization about  and � substitutes � by an expression
depending solely on �, ��� and ����. For this purpose, the original expression
for � is also developed in a truncated Taylor expansion and written at z D �:

� D � 1

2g
���r�2 C 2r Ð r� C 2r Ð rz�� � ��� V2�

� � � D � 1
2 �2r Ð r� � �r�2 � V2�� g�

gC r Ð rz
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Substituting this expression in our equation for the free-surface condition gives
the consistently linearized boundary condition at z D �:

rr[��r�2 C r Ð r�] C 1
2 r�r�r�2 C g�z C [ 1

2 rr�r�2 C gz]z
gC r Ð rz

ð �� 1
2 [��r�2 C 2r Ð r� � V2] � g�� D 0

The denominator in the last term becomes zero when the vertical particle
acceleration is equal to gravity. In fact, the flow becomes unstable already at
0.6 to 0.7g both in reality and in numerical computations.

It is convenient to introduce the following abbreviations:

Ea D 1

2
r��r�2� D

{
xxx Czxz
xxz C Czzz

}

B D [ 1
2rr�r�2 C gz]z
gC r Ð rz

D [rEaC gz]z
gC a2

D 1

gC a2
�2

xxxz C2
zzzz C gzz

C 2[xzxzz Cxz Ð a1 Czz Ð a2]�

Then the boundary condition at z D � becomes:

2�Ear� Cxz�xz�C2
x�xx C2

z�zz C g�z � Brr�
D 2Ear� B� 1

2 ��r�2 C V2�� g��

The non-dimensional error in the boundary condition at each iteration step is
defined by:

ε D max�jEarC gzj�/�gV�
Where ‘max’ means the maximum value of all points at the free surface.

For given velocity, Bernoulli’s equation determines the wave elevation:

z D 1

2g
�V2 � �r��2�

The first step of the iterative solution is the classical linearization around
uniform flow. To obtain the classical solutions for this case, the above equation
should also be linearized as:

z D 1

2g
�V2 C �r�2 � 2rr��

However, it is computationally simpler to use the non-linear equation.
The bottom, radiation, and open-boundary conditions are fulfilled by the

proper arrangement of elements as described below. The decay condition – like
the Laplace equation – is automatically fulfilled by all elements.
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Once a potential has been determined, the force on the body in the x direction
can be determined by direct pressure integration:

f1 D
∫
S
pn1 dS

S is the wetted surface. p is the pressure determined from Bernoulli’s equation:

p D 


2
�V2 � �r��2�

The force in the x direction, f1, is the (negative) wave resistance. The non-
dimensional wave resistance coefficient is:

CW D �f1

/(

2
V2S
)

7.2.2 Numerical implementation

The velocity potential � is approximated by uniform flow superimposed by a
finite number of elements. These elements are in the sample program SHAL2D:

ž desingularized point source clusters above the free surface
ž desingularized point sources inside the body

The choice of elements is rather arbitrary, but very simple elements have been
selected for teaching purposes.

The height of the elements above the free surface is not corrected in
SHAL2D. For usual discretizations (10 elements per wave length) and
moderate speeds, this procedure should work without problems. For finer
discretizations (as often found for high speeds), problems occur which require
a readjustment of the panel layer. However, in most cases it is sufficient to
adjust the source layer just once after the first iteration and then ‘freeze’ it.

We formulate the potential � as the sum of parallel uniform flow (of speed
V) and a residual potential which is represented by the elements:

� D �Vx C
∑

�iϕ

�i is the strength of the ith element, ϕ the potential of an element of unit
strength. The expression ‘element’ refers to one source (cluster) and all its
mirror images. If the collocation point and source centre are sufficiently far
from each other, e.g. three times the grid spacing, the source cluster may be
substituted by a single point source. This accelerates the computation without
undue loss of accuracy.

Then the no-penetration boundary condition on the hull becomes:∑
�i�En Ð rϕ� D Vn1

The linearized free-surface condition becomes:∑
�i�2�Earϕ Cxzϕxz�C2

xϕxx C2
z ϕzz C gϕz � Brrϕ�

D 2�EarC a1V�� B� 1
2 ��r�2 C V2�� g� C Vx�
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These two equations form a linear system of equations in the unknown element
strengths �i. Once the system is solved, the velocities (and higher derivatives
of the potential) are determined on the water surface. Then the error ε is
determined.

For shallow water, mirror images of elements at the ocean bottom are used.
This technique is similar to the mirror imaging at the still waterplane used for
double-body flow in section 7.1.

The radiation and open-boundary conditions are fulfilled using ‘staggered
grids’. This technique adds an extra row of panels at the downstream end
of the computational domain and an extra row of collocation points at the
upstream end (Fig. 3.11). For equidistant grids, this can also be interpreted as
shifting or staggering the grid of collocation points vs. the grid of elements,
hence the name ‘staggered grid’. However, this name is misleading as for non-
equidistant grids or three-dimensional grids with quasi-streamlined grid lines,
adding an extra row at the ends is not the same as shifting the whole grid.

The pressure integral for the x force is evaluated approximately by∫
S
pn1 dS ³

NB∑
iD1

pin1,isi

NB is the number of elements on the hull. The pressure, pi, and the inward
normal on the hull, ni, are taken constant over each panel. si is the area of
one segment.

7.3 Three-dimensional wave resistance problem

The extension of the theory for a two-dimensional submerged body to a three-
dimensional surface-piercing ship free to trim and sink introduces these main
new features:

ž surface-piercing hulls
ž dynamic trim and sinkage
ž transom stern
ž Kutta condition for multihulls

The theory outlined here is the theory behind the STEADY code (Hughes and
Bertram (1995)). The code is a typical representative of a state of the art ‘fully
non-linear’ wave resistance code of the 1990s.

7.3.1 Theory

We consider a ship moving with constant speed V in water of constant depth.
The depth and width may be infinite and is in fact assumed to be so in most
cases. For inviscid and irrotational flow, this problem is equivalent to a ship
being fixed in an inflow of constant speed.

For the considered ideal fluid, continuity gives Laplace’s equation which
holds in the whole fluid domain. A unique description of the problem
requires further conditions on all boundaries of the fluid resp. the modelled
fluid domain:

ž Hull condition: water does not penetrate the ship’s surface.
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ž Transom stern condition: for ships with a transom stern, we assume that the
flow separates and the transom stern is dry. Atmospheric pressure is then
enforced at the edge of the transom stern.

ž Kinematic condition: water does not penetrate the water surface.
ž Dynamic condition: there is atmospheric pressure at the water surface.
ž Radiation condition: waves created by the ship do not propagate ahead.

(This condition is not valid for transcritical depth Froude numbers when the
flow becomes unsteady and soliton waves are pulsed ahead. But ships are
never designed for such speeds.)

ž Decay condition: far away from the ship, the flow is undisturbed.
ž Open-boundary condition: waves generated by the ship pass unreflected any

artificial boundary of the computational domain.
ž Equilibrium: the ship is in equilibrium, i.e. trim and sinkage are changed

such that the dynamic vertical force and the trim moment are counteracted.
ž Bottom condition (shallow-water case): no water flows through the sea

bottom.
ž Kutta condition (for multihulls): at the end of each side floater the flow

separates smoothly. This is approximated by setting the y velocity to zero.

The decay condition replaces the bottom condition if the bottom is at infinity,
i.e. in the usual infinite fluid domain case.

The problem is solved using boundary elements (in the case of STEADY
higher-order panels on the ship hull, point source clusters above the free
surface). The wave resistance problem features two special problems requiring
an iterative solution approach:

1. A non-linear boundary condition appears on the free surface.
2. The boundaries of water (waves) and ship (trim and sinkage) are not a

priori known.

The iteration starts with approximating:

ž the unknown wave elevation by a flat surface
ž the unknown potential by the potential of uniform parallel flow
ž the unknown position of the ship by the position of the ship at rest

In each iterative step, wave elevation, potential, and position are updated
yielding successively better approximations for the solution of the non-linear
problem (Fig. 7.1).

The equations are formulated here in a right-handed Cartesian coordinate
system with x pointing forward towards the bow and z pointing upward. The
moment about the y-axis (and the trim angle) are positive clockwise (bow
immerses for positive trim angle).

For the assumed ideal fluid, there exists a velocity potential � such that
Ev D r�. The velocity potential � fulfils Laplace’s equation in the whole
fluid domain:

� D �xx C �yy C �zz D 0

A unique solution requires the formulation of boundary conditions on all
boundaries of the modelled fluid domain.
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Input; initialize flow
field with uniform folw

Compute geometry
information for panels

Set up system of equations
for unknown source strengths

Solve system of equation

Error decreased?

Compute new wave height

Compute velocity on hull

Pressure integration

New sinkage and trim

Iteration end?

Out put

STOP

Compute velocity etc.
on new free surface

Compute velocity etc. (up to 2
derivatives) on free surface

N

N

Underrelax unknown
source strengths

Figure 7.1 Flow chart of iterative solution

The hull condition (no penetration of ship hull) requires that the normal
velocity on the hull vanishes:

En Ð r� D 0

En is the inward unit normal vector on the ship hull.
The transom stern condition (atmospheric pressure at the edge of the transom

stern z D zT) is derived from Bernoulli’s equation:

1
2 �r��2 C gzT D 1

2V
2

with g D 9.81 m/s2. This condition is non-linear in the unknown potential. We
assume that the water flows at the stern predominantly in the x direction, such



Numerical example for BEM 245

that the y and z components are negligible. This leads to the linear condition:

�x C
√
V2 � 2gzT D 0

For points above the height of stagnation V2/2g, this condition leads to a
negative term in the square root. For these points, stagnation of horizontal
flow is enforced instead. Both cases can be combined as:

�x C
√

max�0, V2 � 2gzT� D 0

The Kutta condition is originally a pressure condition, thus also non-linear.
However, the obliqueness of the flow induced at the end of each side floater is
so small that a simplification can be well justified. We then enforce just zero
y velocity (Joukowski condition):

�y D 0

The kinematic condition (no penetration of water surface) gives at z D �:

r� Ð r� D �z

For simplification, we write ��x, y, z� with �z D ∂�/∂z D 0.
The dynamic condition (atmospheric pressure at water surface) gives at z D

�:
1
2 �r��2 C gz D 1

2V
2

Combining the dynamic and kinematic boundary conditions and linearizing
consistently yields again at z D �, see section 7.2:

2�Ear� Cxy�xy Cxz�xz Cyz�yz�C2
x�xx C2

y�yy C2
z �zz

C g�z � Brr� D 2Ear� B� 1
2 ��r�2 C V2�� g��

with

Ea D 1

2
r��r�2� D

{
xxx Cyxy Czxz
xxy Cyyy Czyz
xxz Cyyz Czzz

}

B D [ 1
2rr�r�2 C gz]z
gC r Ð rz

D [rEaC gz]z
gC a3

D 1

gC a3
�2

xxxz C2
yyyz C2

zzzz C gzz C 2[xyxyz

Cxzxzz Cyzyzz Cxz Ð a1 Cyz Ð a2 Czz Ð a3]�

The bottom, radiation, and open-boundary conditions are fulfilled by the proper
arrangement of elements as described below. The decay condition – like the
Laplace equation – is automatically fulfilled by all elements.
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Once a potential has been determined, the forces can be determined by
direct pressure integration on the wetted hull. The forces are corrected by the
hydrostatic forces at rest. (The hydrostatic x force and y moment should be
zero, but are non-zero due to discretization errors. The discretization error is
hoped to be reduced by subtracting the value for the hydrostatic force):

f1 D
∫
S
pn1 dS�

∫
S0

psn1 dS

f3 D
∫
S
pn3 dS�

∫
S0

psn3 dS

f5 D
∫
S
p�zn1 � xn3� dS�

∫
S0

ps�zn1 � xn3� dS

S is the actually wetted surface. S0 is the wetted surface of the ship at rest.
ps D �
gz is the hydrostatic pressure, where 
 is the density of water. p is
the pressure determined from Bernoulli’s equation:

p D 


2
�V2 � �r��2�� 
gz

The force in the x direction, f1, is the (negative) wave resistance. The non-
dimensional wave resistance coefficient is:

CW D �f1

/(

2
V2S
)

The z force and y moments are used to adjust the position of the ship. We
assume small changes of the position of the ship. z is the deflection of the
ship (positive, if the ship surfaces) and ! is the trim angle (positive if bow
immerses) (Fig. 7.2).

z

x

f3

f1
f5q

Figure 7.2 Coordinate system; x points towards bow, origin is
usually amidships in still waterline; relevant forces and moment

For given z and !, the corresponding z force and y moment (necessary
to enforce this change of position) are:{

f3
f5

}
D
[
AWL Ð 
 Ð g �AWL Ð 
 Ð g Ð xWL
�AWL Ð 
 Ð g Ð xWL IWL Ð 
 Ð g

] {
z
!

}
AWL is the area, IWL the moment of inertia, and xWL the centre of the still water-
plane. IWL and xWL are taken relative to the origin which we put amidships.
Inversion of this matrix gives an equation of the form:{

z
!

}
D
[
a11 a12
a21 a22

]{
f3
f5

}
The coefficients aij are determined once in the beginning by inverting the
matrix for the still waterline. Then during each iteration the position of the ship
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is changed by z and ! giving the final sinkage and trim when converged.
The coefficients should actually change as the ship trims and sinks and thus
its actual waterline changes from the still waterline. However, this error just
slows down the convergence, but (for convergence) does not change the final
result for trim and sinkage.

7.3.2 Numerical implementation

The velocity potential � is approximated by parallel flow superimposed by
a finite number of elements. These elements are for STEADY higher-order
panels lying on the ship surface, linear panels (constant strength) in a layer
above part of the free surface, and vortex elements lying on the local centre
plane of any side floater. However, the choice of elements is rather arbitrary.
If just wave resistance computations are performed, first-order elements are
sufficient and actually preferable due their greater robustness.

The free-surface elements are again usually ‘desingularized’. We place them
approximately one panel length above the still-water plane �z D 0�.

We formulate the potential � as the sum of parallel uniform flow (of speed
V) and a residual potential which is represented by the elements:

� D �Vx C
∑

�iϕ

�i is the strength of the ith element, ϕ the potential of an element of unit
strength. The index i for ϕ is omitted for convenience but it should be under-
stood in the equations below that ϕ refers to the potential of only the ith
element. The expression ‘element’ refers to one panel or vortex and all its
mirror images.

Then the no-penetration boundary condition on the hull becomes:∑
�i�En Ð rϕ� D Vn1

The Kutta condition becomes:∑
�iϕy D 0

The transom stern condition becomes:∑
�iϕx D V�

√
max�0, V2 � 2gzT�

The linearized free surface condition becomes then:∑
�i�2�Earϕ Cxyϕxy Cxzϕxz Cyzϕyz�C2

xϕxx

C2
yϕyy C2

z ϕzz C gϕz � Brrϕ�
D 2�EarC a1V�� B� 1

2 ��r�2 C V2�� g� C Vx�

These four equations form a linear system of equations in the unknown element
strengths �i. Once the system is solved, the velocities (and higher derivatives of
the potential) are determined on the water surface and the error ε is determined.
A special refinement accelerates and stabilizes to some extent the iteration
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process: if the error εiC1 in iteration step iC 1 is larger than the error εi in the
previous ith step the source strengths are underrelaxed:

�iC1,new D �iC1,old Ð εi C �i Ð εiC1

εi C εiC1

Velocities and errors are evaluated again with the new source strengths. If the
error is decreased the computation proceeds, otherwise the underrelaxation is
repeated. If four repetitions still do not improve the error compared to the
previous step, the computation is stopped. In this case, no converged non-
linear solution can be found. This is usually the case if breaking waves appear
in the real flow at a location of a collocation point.

Mirror images of panels are used (Fig. 7.3):

Plane of symmetry in y direction

Bottom of water

`Original'
points / panels

1 2

3 4

Figure 7.3 Mirror images of panels are used

1. In the y direction with respect to the centre plane y D 0.
2. For shallow water in the z direction with respect to the water bottom z D
zbottom: z0 D �2jzbottomj � z.

The computation of the influence of one element on one collocation point uses
the fact that the influence of a panel at A on a point at B has the same absolute
value and opposite sign as a panel at B on a point at A. Actually, mirror images
of the collocation point are produced and the influence of the original panel
is computed for all mirror points. Then the sign of each influence is changed
according to Table 7.1.

The radiation and open-boundary conditions are fulfilled using ‘staggered
grids’ as for the two-dimensional case. No staggering in the y direction is
necessary.

For equidistant grids and collocation points along lines of y D const., this
can also be interpreted as shifting or staggering the grid of collocation points
vs. the grid of elements, hence the name ‘staggered grid’. However, for three-
dimensional grids around surface-piercing ships the grids are not staggered in
a strict sense as, with the exception of the very ends, collocation points always
lie directly under panel centres.

The pressure integral for the x force – the procedure for the z force and the
y moment are corresponding – is evaluated approximately by
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Table 7.1 Sign for derivatives of
potential due to interchanging source
and collocation point; mirror image
number as in Fig. 7.4

1 2 3 4

�x C C C C
�y C � C �
�z C C C C
�xx C C C C
�xy C � C �
�xz C C C C
�yy C C C C
�yz C � C �
�xxz C C C C
�xyz C � C �
�xzz C C C C
�yyz C C C C
�yzz C � C �

∫
S
pn1 dS ³ 2

NB∑
iD1

pin1,isi

NB is the number of elements on the hull. The pressure, pi, and the inward
normal on the hull, ni, are taken constant over each panel. The factor 2 is due
to the port/starboard symmetry.

The non-linear solution makes it necessary to discretize the ship above the
still waterline. The grid can then be transformed (regenerated) such that it
always follows the actually wetted surface of the ship. However, this requires
fully automatic grid generation which is difficult on complex ship geometries
prefer to discretize a ship initially to a line z D const. above the free waterline.
Then the whole grid can trim and sink relative to the free surface, as the grids
on free surface and ship do not have to match. Then in each step, the actually
wetted part of the ship grid has to be determined. The wetted area of each
panel can be determined as follows.

A panel is subdivided into triangles. Each triangle is formed by one side of
the panel and the panel centre. Bernoulli’s equation correlates the velocity in
a panel to a height zw where the pressure would equal atmospheric pressure:

zw D 1

2g
�V2 � �r��2�

If zw lies above the highest point of the triangle, si is taken as the triangle area.
If zw lies below the lowest point of the triangle, si D 0. If zw lies between the
highest and the lowest point of the triangle, the triangle is partially submerged
and pierces the water surface (Fig. 7.4).

In this case, the line zw divides the triangle into a subtriangle ABC and the
remaining trapezoid. If the triangle ABC is submerged (left case) si is taken
to the area of ABC, otherwise to the triangle area minus ABC. The value of
z in the pressure integral (e.g. for the hydrostatic contribution) is taken from
the centre of the submerged partial area.

If a panel at the upper limit of discretization is completely submerged, the
discretization was chosen too low. The limit of upper discretization is given
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C

C

B
B

A

A
zw

zw

Figure 7.4 Partially submerged triangle with subtriangle ABC submerged (left) or surfaced
(right)

for the trimmed ship by:

z D msymx C nsym

7.4 Strip method module (two dimensional)

Strip methods as discussed in section 4.4.2, Chapter 4, are the standard tool
in evaluating ship seakeeping. An essential part of each strip method is the
computation of hydrodynamic masses, damping, and exciting forces for each
strip. This computation was traditionally based on conformal mapping tech-
niques, where an analytical solution for a semicircle was transformed to a
shape resembling a ship section. This technique is not capable of reproducing
complex shapes as found in the forebody of modern ships where possibly cross-
section may consist of unconnected parts for bulbous bow and upper stem.
Numerical ‘close-fit’ methods became available with the advent of computers
in naval architecture and are now widely used in practice. In the following,
one example of such a close-fit method to solve the two-dimensional strip
problem is presented. The Fortran source code for the method is available on
the internet (www.bh.com/companions/0750648511).

We compute the radiation and diffraction problems for a two-dimensional
cross-section of arbitrary shape in harmonic, elementary waves. As usual, we
assume an ideal fluid. Then there exists a velocity potential � such that the
partial derivatives of this potential in an arbitrary direction yield the velocity
component of the flow in that direction. We neglect all non-linear effects in
our computations. The problem is formulated in a coordinate system as shown
in Fig. 7.5. Indices y, z, and t denote partial derivatives with respect to these
variables.

We solve the problem in the frequency domain. The two-dimensional
seakeeping potentials will then be harmonic functions oscillating with
encounter frequency ωe:

��y, z, t� D Re� O��y, z�eiωet�
The potential must fulfil the Laplace equation:

�yy C �zz D 0

in the whole fluid domain �z < 0� subject to following boundary conditions:

1. Decaying velocity with water depth:

lim
z!1 r� D 0
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Figure 7.5 Coordinate system used; sources i are located inside contour

2. There is atmospheric pressure everywhere on the free surface z D �
(dynamic condition). Then Bernoulli’s equation yields

�t C 1
2 �r��2 � g� D 0

3. There is no flow through the free surface (kinematic condition), i.e. the
local vertical velocity of a particle coincides with the rate of change of the
surface elevation in time:

�z D �t

4. Differentiation of the dynamic condition with respect to time and combi-
nation with the kinematic condition yields

�tt C �y�yt C �z�zt � g�z D 0

This expression can be developed in a Taylor expansion around z D 0.
Omitting all non-linear terms yields then

�tt � g�z D 0

5. There is no flow through the body contour, i.e. the normal velocity of the
water on the body contour coincides with the normal velocity of the hull
(or, respectively, the relative normal velocity between body and water is
zero):

En Ð r� D En Ð Ev
Here Ev is the velocity of the body, En is the outward unit normal vector.

6. Waves created by the body must radiate away from the body:

lim
jyj!1

� D Re� Oϕe�kzei�ωet�kjyj��

Oϕ is here a yet undetermined, but constant, amplitude.

Using the harmonic time dependency of the potential, we can reformulate
the Laplace equation and all relevant boundary conditions such that only the
time-independent complex amplitude of the potential O� appears:
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Laplace equation:

O�yy C O�zz D 0 for z < 0

Decay condition:

lim
z!1 rO� D 0

Combined free surface condition:

ω2
e

g
O� C O�z D 0 at z D 0

The body boundary condition is here explicitly given for the radiation problem
of the body in heave motion. This will serve as an example. The other motions
(sway, roll) and the diffraction problem are treated in a very similar fashion.
The body boundary condition for heave is then:

EnrO� D iωen2

n2 is the z component of the (two-dimensional) normal vector En.
The radiation condition for O� is derived by differentiation of the initial

radiation condition for � with respect to y and z, respectively. The resulting
two equations allow the elimination of the unknown constant amplitude Oϕ
yielding:

i O�z D sign �y� Ð O�y
O� can be expressed as the superposition of a finite number n of point source
potentials, see section 6.2.1, Chapter 6 . The method described here uses desin-
gularized sources located (a small distance) inside the body and above the free
surface. The grid on the free surface extends to a sufficient distance to both
sides depending on the wavelength of the created wave. Due to symmetry,
sources at yi, zi should have the same strength as sources at �yi, zi. (For sway
and roll motion, we have anti-symmetrical source strength.) We then exploit
symmetry and use source pairs as elements to represent the total potential:

O��y, z� D
n∑
iD1

�iϕi

ϕi D 1

4-
ln[�y � yi�

2 C �z � zi�
2] C 1

4-
ln[�y C yi�

2 C �z � zi�
2]

This formulation automatically fulfils the Laplace equation and the decay
condition. The body, free surface, and radiation conditions are fulfilled numer-
ically by adjusting the element strengths �i appropriately. We enforce these
conditions only on points yi > 0. Due to symmetry, they will then also be
fulfilled automatically for yi < 0.

The method described here uses a patch method to numerically enforce the
boundary conditions, see section 6.5.2, Chapter 6. The body boundary condi-
tion is then integrated over one patch, e.g. between the points k and k C 1 on
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the contour (Fig. 7.5):

n∑
iD1

�i

∫ pkC1

pk

rϕiEnk dS D iωe

∫ pkC1

pk

n2 dS

As n2 can be expressed as n2 D dy/ds, this yields:

n∑
iD1

�i

∫ pkC1

pk

rϕiEnk dS D iωe�ykC1 � yk�

The integral on the l.h.s. describes the flow per time (flux) through the patch
(contour section) under consideration due to a unit source at yi, zi and its
mirror image. The flux for just the source without its image corresponds to
the portion of the angle ˛ik (Fig. 7.5):∫ pkC1

pk

rϕiEnk dS D ˛ik
2-

Correspondingly we write for the elements formed by a pair of sources:∫ pkC1

pk

rϕiEnk dS D ˛C
ik

2-
C ˛�

ik

2-

The angle ˛C
ik is determined by:

˛ik D arctan
(ExkC1 ð Exk

ExkC1 Ð Exk

)
1

The index 1 denotes here the x component of the vector.
The other numerical conditions can be formulated in an analogous way.

The number of patches corresponds to the number of elements. The patch
conditions form then a system of linear equations for the unknown element
strengths �i which can be solved straightforwardly. Once the element strengths
are known, the velocity can be computed everywhere. The pressure integra-
tion for the patch method described in section 6.5.2, Chapter 6, then yields the
forces on the section. The forces can then again be decomposed into exciting
forces (for diffraction) and radiation forces expressed as added mass and
damping coefficients analogous to the decomposition described in section 4.4,
Chapter 4. The method has been encoded in the Fortran routines HMASSE
and WERREG (see www.bh.com/companions/0750648511).

7.5 Rankine panel method in the frequency domain

7.5.1 Theory

The seakeeping method is limited theoretically to 1 > 0.25. In practice, accu-
racy problems may occur for 1 < 0.4. The method does not treat transom
sterns. The theory given is that behind the FREDDY code (Bertram (1998)).

We consider a ship moving with mean speed V in a harmonic wave of
small amplitude h with 1 D Vωe/g > 0.25. ωe is the encounter frequency,
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g D 9.81 m/s2. The resulting (linearized) seakeeping problems are similar to
the steady wave resistance problem described previously and can be solved
using similar techniques.

The fundamental field equation for the assumed potential flow is again
Laplace’s equation. In addition, boundary conditions are postulated:

1. No water flows through the ship’s surface.
2. At the trailing edge of the ship, the pressures are equal on both sides. (Kutta

condition.)
3. A transom stern is assumed to remain dry. (Transom condition.)
4. No water flows through the free surface. (Kinematic free surface condition.)
5. There is atmospheric pressure at the free surface. (Dynamic free surface

condition.)
6. Far away from the ship, the disturbance caused by the ship vanishes.
7. Waves created by the ship move away from the ship. For 1 > 0.25, waves

created by the ship propagate only downstream. (Radiation condition.)
8. Waves created by the ship should leave artificial boundaries of the compu-

tational domain without reflection. They may not reach the ship again.
(Open-boundary condition.)

9. Forces on the ship result in motions. (Average longitudinal forces are
assumed to be counteracted by corresponding propulsive forces, i.e. the
average speed V remains constant.)

Note that this verbal formulation of the boundary conditions coincides virtually
with the formulation for the steady wave resistance problem.

All coordinate systems here are right-handed Cartesian systems. The inertial
Oxyz system moves uniformly with velocity V. x points in the direction of the
body’s mean velocity V, z points vertically upwards. The Oxyz system is fixed
at the body and follows its motions. When the body is at rest position, x, y,
z coincide with x, y, z. The angle of encounter 4 between body and incident
wave is defined such that 4 D 180° denotes head sea and 4 D 90° beam sea.

The body has 6 degrees of freedom for rigid body motion. We denote corre-
sponding to the degrees of freedom:

u1 surge motion of O in the x direction, relative to O
u2 heave motion of O in the y direction, relative to O
u3 heave motion of O in the z direction, relative to O
u4 angle of roll D angle of rotation around the x-axis
u5 angle of pitch D angle of rotation around the y-axis
u6 angle of yaw D angle of rotation around the z-axis

The motion vector is Eu and the rotational motion vector Ę are given by:

Eu D fu1, u2, u3gT and Ę D fu4, u5, u6gT D f˛1, ˛2, ˛3gT

All motions are assumed to be small of order O�h�. Then for the three angles ˛i,
the following approximations are valid: sin�˛i� D tan�˛i� D ˛i, cos�˛i� D 1.

The relation between the inertial and the hull-bound coordinate system is
given by the linearized transformation equations:

Ex D Ex C Ę ð Ex C Eu
Ex D Ex � Ę ð Ex � Eu
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Let Ev D Ev�Ex� be any velocity relative to the Oxyz system and Ev D Ev�x� the
velocity relative to the Oxyz system where Ex and Ex describe the same point.
Then the velocities transform:

Ev D Ev C Ę ð Ev C � Ęt ð Ex C Eut�
Ev D Ev � Ę ð Ev � � Ęt ð Ex C Eut�

The differential operators rx and rx transform:

rx D f∂/∂x, ∂/∂y, ∂/∂zgT D rx C Ę ð rx

rx D f∂/∂x, ∂/∂y, ∂/∂zgT D rx � Ę ð rx

Using a three-dimensional truncated Taylor expansion, a scalar function trans-
forms from one coordinate system into the other:

f�Ex� D f�Ex�C � Ę ð Ex C Eu�rxf�Ex�
f�Ex� D f�Ex�� � Ę ð Ex C Eu�rxf�Ex�

Correspondingly we write:

rxf�Ex� D rxf�Ex�C �� Ę ð Ex C Eu�rx�rxf�Ex�
rxf�Ex� D rxf�Ex�� �� Ę ð Ex C Eu�rx�rxf�Ex�

A perturbation formulation for the potential is used:

�total D ��0� C ��1� C ��2� C Ð Ð Ð
��0� is the part of the potential which is independent of the wave amplitude
h. It is the solution of the steady wave resistance problem described in the
previous section (where it was denoted by just �). ��1� is proportional to h,
��2� proportional to h2 etc. Within a theory of first order (linearized theory),
terms proportional to h2 or higher powers of h are neglected. For reasons of
simplicity, the equality sign is used here to denote equality of low-order terms
only, i.e. A D B means A D BC O�h2�.

We describe both the z-component of the free surface � and the potential in a
first-order formulation. ��1� and ��1� are time harmonic with ωe, the frequency
of encounter:

�total�x, y, z; t� D ��0��x, y, z�C ��1��x, y, z; t�

D ��0��x, y, z�C Re� O��1��x, y, z�eiωet�
�total�x, y; t� D ��0��x, y�C ��1��x, y; t�

D ��0��x, y�C Re�O��1��x, y�eiωet�
Correspondingly the symbol O is used for the complex amplitudes of all other
first-order quantities, such as motions, forces, pressures etc.

The superposition principle can be used within a linearized theory. Therefore
the radiation problems for all 6 degrees of freedom of the rigid-body motions
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and the diffraction problem are solved separately. The total solution is a linear
combination of the solutions for each independent problem.

The harmonic potential ��1� is divided into the potential of the incident wave
�w, the diffraction potential �d, and 6 radiation potentials:

��1� D �d C �w C
6∑
iD1

�iui

It is convenient to decompose �w and �d into symmetrical and antisymmetrical
parts to take advantage of the (usual) geometrical symmetry:

�w�x, y, z� D �w�x, y, z�C �w�x,�y, z�
2︸ ︷︷ ︸
�w,s

C �w�x, y, z�� �w�x,�y, z�
2︸ ︷︷ ︸
�w,a

�d D �d,s C �d,a D �7 C �8

Thus:

��1� D �w,s C �w,a C
6∑
iD1

�iui C �7 C �8

The conditions satisfied by the steady flow potential ��0� are repeated here
from section 7.3 without further comment.

The particle acceleration in the steady flow is: Ea�0� D �r��0�r�r��0�
We define an acceleration vector Eag Eag D Ea�0� C f0, 0, ggT

For convenience I introduce an abbreviation: B D 1

ag3

∂
∂z �r��0�Eag�

In the whole fluid domain: ��0� D 0

At the steady free surface: r��0�Eag D 0
1
2 �r��0��2 C g��0� D 1

2V
2

On the body surface: En�Ex�r��0��Ex� D 0

Also suitable radiation and decay conditions are observed.
The linearized potential of the incident wave on water of infinite depth is

expressed in the inertial system:

�w D Re
(

� igh

ω
e�ik�x cos4�y sin4��kzeiωet

)
D Re� O�weiωet�

ω D p
gk is the frequency of the incident wave, ωe D jω � kV cos4j the

frequency of encounter. k is the wave number. The derivation of the expres-
sion for �w assumes a linearization around z D 0. The same formula will be
used now in the seakeeping computations, although the average boundary is
at the steady wave elevation, i.e. different near the ship. This may be an
inconsistency, but the diffraction potential should compensate this ‘error’.

We write the complex amplitude of the incident wave as:

O�w D � igh

ω
eExEd with Ed D f�ik cos4, ik sin4,�kzgT
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At the free surface �z D �total� the pressure is constant, namely atmospheric
pressure �p D p0�:

D�p� p0�

Dt
D ∂�p� p0�

∂t
C �r�totalr��p� p0� D 0

Bernoulli’s equation gives at the free surface �z D �total� the dynamic boundary
condition:

�total
t C 1

2
�r�total�2 C g�total C p



D 1

2
V2 C p0




The kinematic boundary condition gives at z D �total:

D�total

Dt
D ∂

∂t
�total C �r�totalr��total D �total

z

Combining the above three equations yields at z D �total:

�total
tt C 2r�totalr�total

t C r�totalr� 1
2 r�total�2�C g�total

z D 0

Formulating this condition in ��0� and ��1� and linearizing with regard to
instationary terms gives at z D �total:

��1�tt C 2r��0�r��1�t C r��0�r� 1
2 �r��0��2 C r��1�r��0��

C r��1�r� 1
2 �r��0��2�C g��0�z C g��1�z D 0

We develop this equation in a linearized Taylor expansion around ��0� using the
abbreviations Ea, Eag, and B for steady flow contributions. This yields at z D ��0�:

��1�tt C 2r��0�r��1�t C r��0�Eag C r��0��r��0�r�r��1�

C r��1��Ea C Eag�C Bag3�
�1� D 0

The steady boundary condition can be subtracted, yielding:

��1�tt C 2r��0�r��1�t C r��0��r��0�r�r��1� C r��1��EaC Eag�C Bag3�
�1� D 0

��1� will now be substituted by an expression depending solely on ��0�, ��0����0��
and ��1����0��. To this end, Bernoulli’s equation is also developed in a Taylor
expansion. Bernoulli’s equation yields at z D ��0� C ��1�:

�total
t C 1

2 �r�total�2 C g�total D 1
2V

2

A truncated Taylor expansion gives at z D ��0�:

��1�t C 1
2 �r�total�2 C g��0� � 1

2V
2 C �r�totalr�total

z C g���1� D 0

Formulating this condition in ��0� and ��1�, linearizing with regard to insta-
tionary terms and subtracting the steady boundary condition yields:

��1�t C r��0�r��1� C ag3�
�1� D 0
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This can be reformulated as:

��1� D ���1�t C r��0�r��1�
ag3

By inserting this expression in the free-surface condition and performing the
time derivatives leaving only complex amplitudes, the free-surface condition
at z D ��0� becomes:

��ω2
e C Biωe� O��1� C ��2iωe C B�r��0� C Ea�0� C Eag�rO��1�

C r��0��r��0�r�rO��1� D 0

The last term in this condition is explicitly written:

r��0��r��0�r�rO��1� D ���0�x �2��1�xx C ���0�y �2��1�yy C ���0�z �2��1�zz

C 2 Ð ���0�x ��0�y ��1�xy C ��0�x ��0�z ��1�xz C ��0�y ��0�z ��1�yz �

Complications in formulating the kinematic boundary condition on the body’s
surface arise from the fact that the unit normal vector is conveniently expressed
in the body-fixed coordinate system, while the potential is usually given in the
inertial system. The body surface is defined in the body-fixed system by the
relation S�Ex� D 0.

Water does not penetrate the body’s surface, i.e. relative to the body-fixed
coordinate system the normal velocity is zero, at S�Ex� D 0:

En�Ex� Ð Ev�Ex� D 0

En is the inward unit normal vector. The velocity transforms into the inertial
system as:

Ev�Ex� D Ev�Ex�� Ę ð Ev�Ex�� � Ęt ð Ex C Eut�
where Ex is the inertial system description of the same point as �Ex�. Ev is
expressed as the sum of the derivatives of the steady and the first-order
potential:

Ev�Ex� D r��0��Ex�C r��1��Ex�
For simplicity, the subscript x for the r operator is dropped. It should be
understood that from now on the argument of the r operator determines its
type, i.e. r��Ex� D rx��Ex� and r��Ex� D rx��Ex�. As ��1� is of first order small,
��1��Ex� D ��1��Ex� D ��1�.

The r.h.s. of the above equation for Ev�Ex� transforms back into the hull-bound
system:

Ev�Ex� D r��0��x�C �� Ę ð Ex C Eu�r�r��0��Ex�C r��1�

Combining the above equations and omitting higher-order terms yields:

En�Ex��r��0��x�� Ę ð r��0� C �� Ę ð Ex C Eu�r�r��0� C r��1�
� � Ęt ð Ex C Eut�� D 0
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This boundary condition must be fulfilled at any time. The steady terms give
the steady body-surface condition as mentioned above. Because only terms of
first order are left, we can exchange Ex and Ex at our convenience. Using some
vector identities we derive:

EnrO��1�C OEu[�Enr�r��0��iωeEn] C OĘ[Enð r��0�CEx ð ��Enr�r��0� � iωeEn�]D 0

where all derivatives of potentials can be taken with respect to the inertial
system.

With the abbreviation Em D �Enr�r��0� the boundary condition at S�Ex� D 0
becomes:

EnrO��1� C OEu� Em � iωeEn�C OĘ�Ex ð � Em � iωeEn�C Enð r��0�� D 0

The Kutta condition requires that at the trailing edge the pressures are equal
on both sides. This is automatically fulfilled for the symmetric contributions
(for monohulls). Then only the antisymmetric pressures have to vanish:

� 
��it C r��0�rO�i� D 0

This yields on points at the trailing edge:

iωe O�i C r��0�rO�i D 0

Diffraction and radiation problems for unit amplitude motions are solved inde-
pendently as described in the next section. After the potential O�i �i D 1 . . . 8�
have been determined, only the motions ui remain as unknowns.

The forces EF and moments EM acting on the body result from the body’s
weight and from integrating the pressure over the instantaneous wetted surface
S. The body’s weight EG is:

EG D f0, 0,�mggT

m is the body’s mass. (In addition, a propulsive force counteracts the resistance.
This force could be included in a similar fashion as the weight. However,
resistance and propulsive force are assumed to be negligibly small compared
to the other forces.)

EF and EM are expressed in the inertial system (En is the inward unit normal
vector):

EF D
∫
S
�p�Ex�� p0�En�Ex� dSC EG

EM D
∫
S
�p�Ex�� p0��Ex ð En�Ex�� dSC Exg ð EG

Exg is the centre of gravity. The pressure is given by Bernoulli’s equation:

p�Ex�� p0 D �
� 1
2 �r�total�Ex��2 � 1

2V
2 C gz C �total

t �Ex��
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D �
� 1
2 �r��0��Ex��2 � 1

2V
2 C gz�︸ ︷︷ ︸

p�0�

�
�r��0�r��1� C ��1�t �︸ ︷︷ ︸
p�1�

The r.h.s. of the expressions for EF and EM are now transformed from the inertial
system to the body-fixed system. This includes a Taylor expansion around the
steady position of the body. The normal vector En and the position Ex are readily
transformed as usual:

Ex D Ex C Ę ð Ex C Eu
En�Ex� D En�Ex�C Ę ð En�Ex�

The steady parts of the equations give:

EF�0� D
∫
S�0�
p�0�En dSC EG D 0

EM�0� D
∫
S�0�
p�0��Ex ð En� dSC Exg ð EG D 0

The ship is in equilibrium for steady flow. Therefore the steady forces and
moments are all zero.

The first-order parts give (r.h.s. quantities are now all functions of Ex):
EF�1� D

∫
S�0�

[�p�1� C rp�0�� Ę ð Ex C Eu�]En dS� Ę ð EG

EM�1� D
∫
S�0�

[�p�1� C rp�0�� Ę ð Ex C Eu�]�Ex ð En� dS� Exg ð � Ę ð EG�

where � Ę ð Ex�ð EnC Ex ð � Ę ð En� D Ę ð �Ex ð En� and the expressions for EF�0�
and EM�0� have been used. Note: rp�0� D �
Eag. The difference between instan-
taneous wetted surface and average wetted surface still has not to be considered
as the steady pressure p�0� is small in the region of difference.

The instationary pressure is divided into parts due to the incident wave,
radiation and diffraction:

p�1� D pw C pd C
6∑
iD1

piui

Again the incident wave and diffraction contributions can be decomposed into
symmetrical and antisymmetrical parts:

pw D pw,s C pw,a

pd D pd,s C pd,a D p7 C p8

Using the unit motion potentials, the pressure parts pi are derived:

pi D �
��it C r��0�r�i�
pw D �
��wt C r��0�r�w�
pd D �
��dt C r��0�r�d�
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The individual terms in the integrals for EF�1� and EM�1� are expressed in terms
of the motions ui, using the vector identity � Ę ð Ex�Eag D Ę�Ex ð Eag�:

EF�1� D
∫
S�0�
�pw C pd�En dSC

6∑
iD1

(∫
S�0�
piEn dS

)
ui

C
∫
S�0�

�
�EuEag C Ę�Ex ð Eag��En dS� Ę ð EG

EM�1� D
∫
S�0�
�pw C pd��Ex ð En� dSC

6∑
iD1

(∫
S�0�
pi�Ex ð En� dS

)
ui

� Exg ð � Ę ð EG�C
∫
S�0�

�
�EuEag C Ę�Ex ð Eag���Ex ð En� dS

The relation between forces, moments and motion acceleration is:

EF�1� D m�Eutt C Ętt ð Exg�
EM�1� D m�Exg ð Eutt�C IĘtt

I is the matrix of moments of inertia:

I D

 x 0 �xz

0 y 0
�xz 0 z




where mass distribution symmetrical in y is assumed. x etc. are the moments
of inertia and the centrifugal moments with respect to the origin of the body-
fixed Oxyz system:

x D
∫
�y2 C z2� dm; xy D

∫
xy dm; etc.

Combining the above equations for EF�1� and EM�1� yields a linear system of
equations in the unknown ui that is quickly solved using Gauss elimination.

7.5.2 Numerical implementation

Systems of equations for unknown potentials

The two unknown diffraction potentials and the six unknown radiation poten-
tials are determined by approximating the unknown potentials by a superposi-
tion of a finite number of Rankine higher-order panels on the ship and above
the free surface. For the antisymmetric cases, in addition Thiart elements,
section 6.4.2, Chapter 6, are arranged and a Kutta condition is imposed on
collocation points at the last column of collocation points on the stern. Radia-
tion and open-boundary conditions are fulfilled by the ‘staggering’ technique
(adding one row of collocation points at the upstream end of the free-surface
grid and one row of source elements at the downstream end of the free-surface
grid). This technique works only well for 1 > 0.4.
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Elements use mirror images at y D 0 and for shallow water at z D zbottom.
For the symmetrical cases, all mirror images have the same strength. For
the antisymmetrical case, the mirror images on the negative y sector(s) have
negative element strength of the same absolute magnitude.

Each unknown potential is then written as:

O�i D
∑

O�iϕ

�i is the strength of the ith element, ϕ the potential of an element of unit
strength. ϕ is real for the Rankine elements and complex for the Thiart
elements.

The same grid on the hull may be used as for the steady problem, but the
grid on the free surface should be created new depending on the wave length
of the incident wave. The quantities on the new grid can be interpolated within
the new grid from the values on the old grid. Outside the old grid in the far
field, all quantities are set to uniform flow on the new grid.

For the boundary condition on the free surface, we introduce the following
abbreviations:

fq D �ω2
e C iωeB

fqx D �2iωe C B���0�x C 2a1

fqy D �2iωe C B���0�y C 2a2

fqz D �2iωe C B���0�z C 2a3

fqxx D ��0�x Ð ��0�x � ��0�z Ð ��0�z
fqxy D 2 Ð ��0�x Ð ��0�y
fqxz D 2 Ð ��0�x Ð ��0�z
fqyy D ��0�y Ð ��0�y � ��0�z Ð ��0�z
fqyz D 2 Ð ��0�y Ð ��0�z

Then we can write the free surface condition for the radiation cases �i D
1 . . . 6�:∑

O�i�fqϕ C fqxϕx C fqyϕy C fqzϕz C fqxxϕxx C fqxyϕxy

C fqxzϕxz C fqyyϕyy C fqyzϕyz� D 0

where it has been exploited that all potentials fulfil Laplace’s equation. Simi-
larly, we get for the symmetrical diffraction problem:∑

O�i�fqϕ C fqxϕx C fqyϕy C fqzϕz C fqxxϕxx C fqxyϕxy C fqxzϕxz

C fqyyϕyy C fqyzϕyz�C fq O�w,s C fqx O�w,sx C fqy O�w,sy C fqz O�w,sz

C fqxx O�w,sxx C fqxy O�w,sxy C fqxz O�w,sxz C fqyy O�w,syy C fqyz O�w,syz D 0
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The expression for the antisymmetrical diffraction problem is written corre-
spondingly using O�w,a on the r.h.s.

Hull condition

For the hull conditions for the 8 radiation and diffraction problems, we intro-
duce the following abbreviations, where the auxiliary variable h is used as
a local variable with different meaning than further below for the system of
equations for the motions:

fh1, h2, h3gT D Em� iωeEn
fh4, h5, h6gT D Ex ð � Em � iωeEn�C Enð r��0�

h7 D rO�w,s Ð En
h8 D rO�w,a Ð En

Then the hull condition can be written for the jth case �j D 1 . . . 8�:∑
O�i�En Ð ϕ�C hj D 0

The Kutta condition is simply written:∑
O�i�iωeϕ C r��0�rϕ� D 0 for case j D 2, 4, 6∑
O�i�iωeϕ C r��0�rϕ�C iωe O�w,s C r��0�rO�w,s D 0 for case j D 8

The l.h.s. of the four systems of equations for the symmetrical cases and the
l.h.s. for the four systems of equations for the antisymmetrical cases share
the same coefficients each. Thus four systems of equations can be solved
simultaneously using a Gauss elimination procedure.

System of equations for motions

We introduce the abbreviations:

fh1, h2, h3gT D �
Eag
fh4, h5, h6gT D �
Ex ð Eag

h7 D pw,s D �
�iωe O�w,s C r��0�rO�w,s�
h8 D pw,a D �
�iωe O�w,a C r��0�rO�w,a�

Recall that the instationary pressure contribution is:

pi D �
�iωe O�i C r��0�rO�i�
Then we can rewrite the conditions for EF�1� and EM�1�:

� m�Eutt C Ętt ð Exg�C
8∑
iD1

(∫
S�0�
�pi C hi�En dS

)
ui � Ę ð EG D 0

� m�Exg ð Eutt�� IĘtt
8∑
iD1

(∫
S�0�
�pi C hi��Ex ð En� dS

)
ui � Exg ð � Ę ð EG� D 0
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The weight terms �Ę ð EG and �Exg ð � Ę ð EG� contribute with W D mg:


0 0 0 0 W 0
0 0 0 �W 0 0
0 0 0 0 0 0
0 0 0 zgW 0 0
0 0 0 0 zgW 0
0 0 0 �xgW 0







u1
u2
u3
u4
u5
u6




The mass terms �m�Eutt C Ętt ð Exg� and �m�Exg ð Eutt�� IĘtt contribute:

�m ∂2

∂t2




1 0 0 0 zg 0
0 1 0 �zg 0 xg
0 0 1 0 �xg 0
0 �zg 0 k2

x 0 �k2
xz

zg 0 �xg 0 k2
y 0

0 xg 0 �k2
xz 0 k2

z







u1
u2
u3
u4
u5
u6




where the radii of inertia k have been introduced, e.g. x D mk2
x etc.
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Söding, H. (1986). Kräfte am Ruder. Handbuch der Werften XVIII, Hansa-Verlag, pp. 47–56
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Söding, H. (1996a). Advances in panel methods. 21. Symp. Naval Hydrodyn., Trondheim,

pp. 997–1006
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