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1. Maneuvering Motions.

The subject of ship dynamics is very broad and can be roughly divided into two categories:
maneuverability or controllability, and motions in waves or seakeeping. Maneuvering involves
motions that are inflicted upon the ship as a result of action taken by the autopilot or the
helmsman and their characteristic time length spans over a few minutes. Seakeeping on the
other hand is the study of motions that occur over a characteristic period of a few seconds as
a result of wave action. Since the time scales of the two types of motions are vastly different,
it is permissible to study them separately; i.e, study maneuvering when in calm waters, and
seakeeping while the ship is maintaining straight course. Interactions between the two types
of motions (for example, what happens to the rolling motion characteristics of a ship when
turning in waves), are a matter of current research.

Maneuvering involves conflicting requirements. We wish to be able to steer the vessel
on course and we wish to be able to turn when necessary. The first leads to consideration
of controls fixed course stability. The second leads to consideration of the vessel’s ability
to turn. Slow speed operation and stopping are additional considerations. Course keeping
and turning are conflicting objectives. A vessel which is extremely stable on course will be
difficult to turn. A vessel which is unstable on course will be easy to turn and in fact it may
decide to turn on its own due to external disturbances. Not too long ago the rule of thumb
was that a vessel must be controls fixed course stable. With the development of fuller vessels
and open sterns to improve propeller induced vibration, course unstable vessels have been
built and operated successfully for some time. The question in control theory then is: how
unstable can a ship be and still be controllable by the typical helmsman or by an autopilot?

Consideration of the generic control loop of Figure 1 shows that each of its elements
plays a vital role in the overall response of the ship. The last element of the loop, the
“ship”, will be the main concern of this section, although the human factors present must
be continually reviewed to develop a successful design. In the following sub–sections, we will
attempt to quantify the block named “ship”; i.e, establish the response characteristics of the
vessel due to rudder commands and other external forces. Whereas the directional loop of
the figure functions to determine the path, a second loop of interest, the speed control loop,
functions to regulate the speed along the path. In restricted and congested waters, orders
to both control loops may have to be issued simultaneously, and with the development of
automation, integration of these loops is becoming commonplace.

1.1 Linear equations in the horizontal plane.

The basic dynamics of maneuvering and coursekeeping can be described and analyzed
using Newton’s equations of motion. Basic equations in the horizontal plane can be consid-
ered first with reference to one set of axes fixed relative to the earth, and a second set fixed
relative to the ship.

Figure 2 shows typical fixed and moving axes for a surface ship. The path is usually
defined as the trajectory traced by the ship’s center of gravity or some other reference point.
Heading refers to the direction (ψ, yaw angle) of the ship’s longitudinal axis with respect to
one of the fixed axes. The difference between the heading and the actual course (or direction
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of the velocity vector at the center of gravity) is the drift angle β. Writing Newton’s law in
the inertial (non–accelerating) reference frame (x0, y0) we have

mẍ0 = X0 ,

mÿ0 = Y0 , (1)

Izψ̈ = N ,

where

X0 = total force in the x0 direction ,

Y0 = total force in the y0 direction ,

N = turning moment around the z0 axis ,

m = ship’s mass ,

Iz = mass moment of inertia of the ship about the z0 axis ,

ψ = yaw angle measured with respect to the x0 axis .

In spite of the apparent simplicity of equations (1), the motion of a ship is more conve-
niently expressed when referred to the (x, y) system of coordinates fixed with respect to the
moving ship (the inertial system of coordinates which may have its origin in Kansas becomes
an awkward frame of reference when the ship is not in Kansas any more). The ship fixed
reference frame is always a right hand frame, with the x–axis pointing in the longitudinal
direction, the y–axis positive starboard, and the z–axis positive down. We can transform
coordinate systems using

X = X0 cosψ + Y0 sinψ ,

Y = Y0 cosψ −X0 sinψ ,

ẋ0 = u cosψ − v sinψ ,

ẏ0 = u sinψ + v cosψ .

Differentiating and substituting into equations (1) we obtain, using the fact that ψ̇ = r,

mu̇−mvr = X , surge equation , (2)

mv̇ +mur = Y , sway equation , (3)

Iz ṙ = N , yaw equation , (4)

where u, v, r are the longitudinal or surge, lateral or sway, and rotational or yaw velocities
of the moving ship. It is also convenient to write the above equations of motion with respect
to a ship fixed reference frame at amidships instead of the center of gravity. If this is done
we pick up a few additional terms

mu̇−mvr −mxGr
2 = X ,

mv̇ +mur +mxGṙ = Y , (5)

Iz ṙ +mxG(v̇ + ur) = N ,

3



assuming that yG = 0. Note the existence of centrifugal forces in the above equations which
exist when systems with moving axes are considered, but do not exist for inertial coordinate
frames.

The forces and moments (right hand side) of the equations of motion (2) to (4) are build
up of four types of forces that act on a ship during a maneuver:

1. Fluid forces acting on the hull due to the surrounding water, designated by the subscript
F .

2. Forces due to control surfaces such as rudders, dive planes, bow planes, thrusters;
subscript R.

3. Various environmental forces due to wind, current, or waves; subscript E.

4. Propulsion force, T .

Therefore, in general we can say

X = XF +XR +XE + T , (6)

Y = YF + YR + YE , (7)

N = NF +NR +NE . (8)

The hydrodynamic forces XF , YF , NF depend on the motion of the ship through the water
and are expected to be functions of the ship velocities and accelerations relative to the water.
In other words, we can write

XF = XF (u, v, u̇, v̇, r, ṙ) , (9)

YF = YF (u, v, u̇, v̇, r, ṙ) , (10)

NF = NF (u, v, u̇, v̇, r, ṙ) . (11)

The functional dependence of equations (9) through (11) can be quite complicated; however,
for usual maneuvering studies a significant simplification occurs. We are interested in the
ship response around a nominal equilibrium point designated by the subscript 1. Expanding
the forces in a Taylor series around the nominal point and keeping the first order terms only,
we have

YF = YF (u1, v1, u̇1, v̇1, r1, ṙ1) + (u− u1)
∂YF
∂u

+ (v − v1)
∂YF
∂v

+ · · ·+ (ṙ − ṙ1)
∂YF
∂ṙ

, (12)

where all of the partial derivatives are evaluated at the nominal condition. Similar to (12)
expressions hold for XF and NF as well.

Now the nominal condition is straight line motion at constant speed, or

u1 = U, v1 = u̇1 = v̇1 = r1 = ṙ1 = 0 . (13)

Because of port/starboard symmetry ∂YF/∂u = ∂YF/∂u̇ = 0 since a change in forward
velocity or acceleration will produce no transverse force with ships that are symmetrical
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about the xz–plane. Furthermore, if the ship is in fact in equilibrium in straight line motion,
there can be no YF–force acting on it in that condition, therefore the first term in (12) is
also zero. With these simplifications, equation (12) reduces to

YF =
∂YF
∂v

v +
∂YF
∂v̇

v̇ +
∂YF
∂r

r +
∂YF
∂ṙ

ṙ , (14)

and similarly the surge force and yaw moment can be written as

XF =
∂XF

∂u̇
u̇+

∂XF

∂u
(u− U) +

∂XF

∂v
v +

∂XF

∂v̇
v̇ +

∂XF

∂r
r +

∂XF

∂ṙ
ṙ , (15)

NF =
∂NF
∂v

v +
∂NF
∂v̇

v̇ +
∂NF
∂r

r +
∂NF
∂ṙ

ṙ , (16)

where the cross coupling derivatives ∂YF/∂r, ∂YF/∂ṙ, ∂NF/∂v, and ∂NF /∂v̇ usually have
small nonzero values because most ships are not symmetrical about the yz–plane even if that
plane is at the midlength of the ship (bow and stern shapes are normally quite different).
However, the cross coupling derivatives ∂XF/∂v, ∂XF /∂v̇, ∂XF/∂r, and ∂XF /∂ṙ are zero
because of symmetry about the xz–plane and equation (13). Hence, equation (15) reduces
to

XF =
∂XF

∂u̇
u̇+

∂XF

∂u
(u− U) . (17)

In standard notation, we call ∂YF/∂v = Yv, ∂NF /∂r = Nr, and so on. These are the so called
hydrodynamic derivatives, and besides their mathematical definition in terms of first order
partial derivatives, they carry a rather concrete physical meaning as well: Yr, for example,
is the force in the sway direction due to a unit change in the yaw angular velocity.

Using the above notation, and substituting into equations (5), the linear equations of
motion in the horizontal plane in the absence of environmental disturbances and with the
control surfaces at zero, become

(m−Xu̇)u̇ = Xu(u− U) , (18)

(m− Yv̇)v̇ − (Yṙ −mxG)ṙ = Yvv + (Yr −mU)r , (19)

(Iz −Nṙ)ṙ − (Nv̇ −mxG)v̇ = Nvv + (Nr −mxGU)r , (20)

where we can see that within linearity the surge equation decouples from sway and yaw.
It is important to note that all of the terms of equations (19) and (20) must include the

effect of the ship’s rudder held at zero. On the other hand, if we want to consider the path
of a ship with controls working, the equations of motion (19) and (20) must include terms on
the right hand side expressing the control forces and moments created by rudder deflection
(or any other control devices) as functions of time. Assuming that the rudder force and
moment on the ship are functions of the rudder angle δ only, and not δ̇, we have

XR(δ) = XR(δ = 0) +
∂XR

∂δ
δ = 0 , (21)

YR(δ) = YR(δ = 0) +
∂YR
∂δ

δ = Yδδ , (22)

NR(δ) = NR(δ = 0) +
∂NR
∂δ

δ = Nδδ , (23)
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where δ is the rudder deflection angle (see Figure 3) measured according to the right hand
sign convention of Figure 2; positive rudder deflection corresponds to a turn to port for
rudder located at the stern. Yδ and Nδ are the rudder hydrodynamic derivatives. Including
the rudder forces and moments, the linearized sway, (19), and yaw, (20), equations of motion
become

(m− Yv̇)v̇ − (Yṙ −mxG)ṙ = Yvv + (Yr −mU)r + Yδδ , (24)

(Iz −Nṙ)ṙ − (Nv̇ −mxG)v̇ = Nvv + (Nr −mxGU)r +Nδδ . (25)

Maneuvering work is commonly done in dimensionless form. Using the water density ρ,
the ship length L, and the nominal forward speed U , we can nondimensionalize the variables
as in

v′ =
v

U
, r′ =

rL

U
, v̇′ =

v̇L

U2
, ṙ′ =

ṙL2

U2
,

t′ =
tU

L
, m′ =

m
1
2
ρL3

, I ′z =
Iz

1
2
ρL5

, x′G =
xG
L

,

Y ′
v̇ =

Yv̇
1
2
ρL3

, Y ′
ṙ =

Yṙ
1
2
ρL4

, N ′
v̇ =

Nv̇
1
2
ρL4

, N ′
ṙ =

Nṙ
1
2
ρL5

,

Y ′
v =

Yv
1
2
ρL2U

, Y ′
r =

Yr
1
2
ρL3U

, N ′
v =

Nv
1
2
ρL3U

, N ′
r =

Nr
1
2
ρL4U

,

Y ′
δ =

Yδ
1
2
ρL2U2

, Nδ =
Nδ

1
2
ρL3U2

.

Note that the unit of time is now the time it takes to travel one ship length. The dimensionless
form of the equations then turns out to be identical in the primed variables to that of (24)
and (25) with U ′ = 1. In the following, we will always assume the dimensionless form of the
equations, unless otherwise mentioned, and for convenience we will drop the primes.

In the next three sections, it will be shown how the linearized equations (24) and (25)
can be used to analyze the problems of course stability and steady turning. In order to
make numerical predictions it is necessary to obtain values for the hydrodynamic derivatives
involved, and this is discussed in Section 1.6

1.2 Stability of straight line motion.

The concept of path keeping is strongly related to the concept of course stability or
stability of straight line motion. The various kinds of motion stability associated with marine
vehicles are classified by the attributes of their initial state of equilibrium that are retained
in the final path of their center of gravity. For example, in each of the cases in Figure 4,
a ship is initially assumed to be traveling at constant speed along a straight path. In Case
I, termed straight line or dynamic stability, the final path after release from a disturbance
retains the straight line attribute of the initial state of equilibrium, but not its direction. In
Case II, directional stability, the final path after release from a disturbance retains not only
the straight line attribute of the initial path, but also its direction. Case III is similar to
Case II except that the ship does not oscillate after the disturbance, but passes smoothly
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to the same final path as Case II. This implies complex conjugate characteristic roots with
negative real parts for Case III and real negative for Case II. Finally, in Case IV, positional
motion stability, the ship returns to the original path with the same direction as well as
position.

The foregoing kinds of stability have been defined in a kind of ascending order. A ship
that is directionally stable must also possess straight line stability. A ship that possesses
positional motion stability must possess both directional and straight line stability. Straight
line stability or instability is indicated by the solution to a second order differential equation,
directional stability or instability is indicated by the solution to a third order differential
equation, and positional stability or instability is indicated by the solution to a fourth order
differential equation.

In ship and submarine usage the term stability usually implies controls fixed stability;
however, the term can also have meaning with the controls working. The following examples
indicate the distinctions:

(a) A surface ship on a calm sea possesses positional stability in the vertical plane with
controls fixed. In this case, hydrostatic forces and moments introduce a unique kind of stabil-
ity which in the absence of these forces could only be introduced either by very sophisticated
automatic controls or by manual control.

(b) Hydrofoil boats with submerged foils do not possess this kind of stability with controls
fixed, and must rely on an automatic control system to provide stability in pitch, heave, or
roll.

(c) Neutrally buoyant submarines possess directional stability in the vertical plane with
controls fixed. This is because of the existence of the metacentric restoring moment ∆BG sin θ,
as discussed in Part I. Positional stability can be achieved only with suitable bow and/or
dive plane action.

(d) In the horizontal plane in the open sea, a self propelled ship cannot possess either
positional or directional stability with controls fixed because the changes in buoyancy that
stabilize in the vertical plane are nonexistent in the horizontal plane. However, a ship must
possess both of these kinds of stability with controls working either automatic or manual.

(e) An exception to this is the case of a sailing ship. Sailing ships can possess controls
fixed directional stability (with respect to the wind direction) in the horizontal plane. This
is because their propulsive force, the wind here, can introduce stabilizing forces and mo-
ments which tend to return the path of the ship to its original direction after a momentary
disturbance.

(f) An other exception is the case of a towed ship. A towed ship can possess controls
fixed positional stability (with respect to the tugboat direction of motion) because of the
towline restoring forces and moments.

(g) The only kind of motion stability possible with self propelled ships in the horizontal
plane with controls fixed is straight line stability. As noted in the beginning of Section 1,
this kind of stability is desirable but not mandatory. In fact, many ships do not possess it.
In the remaining of this section, whenever controls fixed stability is mentioned, the intended
meaning is, unless otherwise specified, controls fixed straight line stability.

With each of the kinds of controls fixed stability, there is associated a numerical index
which by its sign designates whether the body is stable or unstable in that particular sense
and its magnitude designates the degree of stability or instability. To show how such an index
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is determined, and to be able to evaluate the dynamic stability of a ship in a quantitative
sense, we must resort to the differential equations of motion (19) and (20). This homogeneous
set of differential equations will have a solution of the form

v(t) = v1e
σ1t + v2e

σ2t , (26)

r(t) = r1e
σ1t + r2e

σ2t , (27)

where the constants v1, v2, r1, r2 are determined from the initial conditions. Differentiation
and substitution of (26) and (27) into (19) and (20) yields the characteristic equation

Aσ2 +Bσ + C = 0 , (28)

where

A = (Iz −Nṙ)(m− Yv̇)− (Yṙ −mxG)(Nv̇ −mxG) , (29)

B = −(Iz −Nṙ)Yv − (m− Yv̇)(Nr −mxGU)

−(Yr −mU)(Nv̇ −mxG)− (Yṙ −mxG)Nv , (30)

C = (Nr −mxGU)Yv − (Yr −mU)Nv , (31)

with roots

σ1, σ2 =
1

2

−B

A
±
√(

B

A

)2

− 4
(
C

A

) . (32)

Stability on course with controls fixed requires that both σ1 and σ2 have negative real
parts. In such a case, it can be seen from (26) and (27) that both v(t) and r(t) will go to
zero for increasing time, which means that the path of the ship will eventually resume a
new straight line direction at a different, in general, heading. This corresponds to Case I of
Figure 4. The stability requirement

�{σ1, σ2} < 0 ,

translates to
A > 0 , B > 0 , C > 0 , (33)

i.e., all coefficients of the quadratic (28) to be positive. To evaluate whether conditions (33)
are satisfied we have to check the signs of the hydrodynamic derivatives that enter in the
definitions of A, B, C in equations (29) through (31). In order to do that we have to resort
to the physical interpretation of the hydrodynamic derivatives as forces or moments acting
on the hull due to the various hull motions with respect to the water.

A careful analysis of the various derivatives, Figure 5, shows the following (the reader
is expected to spend some time studying the figure before reaching some of the conclusions
that folow):

Yv̇ is always negative and large ,

Yv is always negative and large ,

Nṙ is always negative and large ,
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Nr is always negative and large ,

Yṙ is small and of uncertain sign ,

Yr is small and of uncertain sign ,

Nv̇ is small and of uncertain sign ,

Nv is small and of uncertain sign ,

xG is small and of uncertain sign ,

Iz is always positive and large ,

m is always positive and large .

This shows that A and B are always positive for ships, so stability requires

C = (Nr −mxGU)Yv − (Yr −mU)Nv > 0 , (34)

which is the stability criterion. The more positive C is the more stable the ship will be,
and it will be increasingly difficult to turn. The more negative C is the more unstable the
ship, and it will require continuous use of the rudder to keep course. One may observe from
(34) that for stability, it is desirable to have xG > 0; i.e, the center of gravity forward of
amidships, a result which agrees with everyday experience.

The stability condition (34) can also be written in the form

Nr −mxGU

Yr −mU
>

Nv
Yv

, (35)

since Yr − mU < 0 and Yv < 0. Inequality (35) can be viewed as a relationship between
the lever arms of forces due to yaw and due to sway. If Nv is positive, we see that C is
positive and stability is assured. If Nv is negative, however, as is usually the case with ships
due to longer and finer fore bodies and fuller sterns, its magnitude will be the ultimate
determination for ship straight line stability. The weathervane, by comparison, will seek the
wind if Nv is positive, making it useful for its intended purpose. Weathervanes are designed
with large tail surfaces to ensure a positive Nv. Ships have another degree of freedom and,
in any case, could not maneuver well with a large positive value of Nv.

1.3 Stability and control.

Although the previous section arrived at a quantitative index, C, designating the stability
of a ship, it is not always easy to evaluate particularly in a preliminary design phase. For
this reason several simplified models have appeared, most notably Nomoto’s K–T model.
This uses two indices, K and T , which can be easily estimated from standard full scale sea
trials. They are useful in comparing coursekeeping as well as turning abilities.

The steering equations of motion (24) and (25) can be manipulated to produce a pair of
decoupled second order equations in r and v,

T1T2r̈ + (T1 + T2)ṙ + r = Kδ +KT3δ̇ , (36)

T1T2v̈ + (T1 + T2)v̇ + v = Kvδ +KvT4δ̇ . (37)
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The first of these is now commonly called Nomoto’s equation. The coefficients in these two
equations are related to the hydrodynamic derivatives by the following:

T1T2 =
(Yv̇ −m)(Nṙ − Iz)− (Yṙ −mxG)(Nv̇ −mxG)

Yv(Nr −mxGU)−Nv(Yr −mU)
,

T1 + T2 =
(Yv̇ −m)(Nr −mxGU) + (Nṙ − Iz)Yv
Yv(Nr −mxGU)−Nv(Yr −mU)

+
−(Yṙ −mxG)Nv − (Nv̇ −mxG)(Yr −mU)

Yv(Nr −mxGU)−Nv(Yr −mU)
,

T3 =
(Nv̇ −mxG)Yδ − (Yv̇ −m)Nδ

NvYδ − YvNδ
,

T4 =
(Nṙ − Iz)Yδ − (Yṙ −mxG)Nδ

(Nr −mxGU)Yδ − (Yr −mU)Nδ
,

K =
NvYδ − YvNδ

Yv(Nr −mxGU)−Nv(Yr −mU)
,

−Kv =
(Nr −mxGU)Yδ − (Yr −mU)Nδ
Yv(Nr −mxGU)−Nv(Yr −mU)

.

Equation (36) expresses the relationship between the ship turning rate, r, and the rudder
angle, δ, through a second order transfer function

r

δ
=

K +KT3s

T1T2s2 + (T1 + T2)s+ 1
. (38)

Performing the synthetic division in (38), we can arrive at a simplified first order transfer
function

r

δ
=

K

Ts+ 1
, (39)

or in differential equation form
T ṙ + r = Kδ , (40)

where
T = T1 + T2 − T3 . (41)

Equation (40) is the so called Nomoto’s first order equation, which captures the fundamental
turning performance. It requires only two parameters, K and T , instead of the plethora of
hydrodynamic derivatives of more accurate models.

Physically, the indices K and T represent ratios of nondimensional coefficients,

T =
yaw inertia

yaw damping
,

is the time constant of the system, and

K =
turning moment

yaw damping
,
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is related to the rudder effectiveness or strength. For a simple case where the rudder is put
hard over suddenly to an angle δ and held there, the solution for r is given, in terms of K
and T , by

r = Kδ
(
1− e−t/T

)
. (42)

This shows that the yaw rate r increases exponentially with time but at a declining rate
dependent on T and approaches a steady value Kδ. A larger K thus provides greater steady
state turning ability, and a smaller value of T provides a quicker initial response to the helm.
Since quick response is obviously valuable in course keeping (steering), it is thus consistent
with a smaller T . The above discussion of equation (42) shows that T has no effect at all on
steady turning rate, but a small T would reduce the time required to reach a steady turn.
The steady turning radius, R, is by definition

R =
U

r
=

1

r
, (43)

since U = 1 (dimensionless) and, therefore,

R =
1

Kδ
. (44)

This relation shows that with a large value of K a smaller rudder angle may be used in
achieving a given turning radius.

The main maneuvering qualities of a ship using linear analysis can thus be characterized
using only the indices K and T , where increasing values indicate improving performance:

1/T , course stability ,

1/T , responsiveness to rudder ,

K , turning ability .

The parameters of the first order Nomoto’s equation give a good basis for comparison with
similar vessels. They can be estimated early in design and also obtained in standard sea
trial maneuvers. A typical K–T diagram is shown in Figure 6. On the left the rays from
the origin are lines of constant rudder area AR/LT . Suppose you have a ship at point P1

and wish to change it to improve course stability. If you add deadwood near the stern with
no change in rudder area, the ratio K/T will remain constant and the design will shift to
point P2. Course stability will be better but turning will be worse. If the turning is not to
be degraded, rudder area must be added so the design will move to point P3. Notice on the
right that most ships have a linear relationship between AR/KLT and 1/T .

When a ship is course unstable, it is entirely feasible for a man to successfully control the
ship. It all depends upon the speed of the man’s response and the speed of response of the
steering gear, refer to Figure 1. People of course vary considerably but if the system without
the man in the loop is not too unstable, the typical helmsman should be able to successfully
maintain course. Elementary control theory can be used to evaluate the question of “too
unstable”. A common measure of relative stability is the phase margin. In linear models,
control systems are usually designed with 45–50 degrees phase margin. This is selected for
good time response but also to give some margin against going unstable since the linear
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model is only approximate and the assumed parameters will change and degrade in service.
If a ship is course unstable it will have a negative phase margin. A helmsman can make
up for some negative phase margin for the ship and the steering engine if this is not too
excessive. A typical helmsman can overcome 20–30 degrees of negative phase margin, and in
such a case we can have confidence that with the man in the control loop the total system
will be stable.

1.4 Turning characteristics.

The most fundamental ship maneuver is the turning maneuver. The response of the ship
to rudder deflection, and the resulting forces and moments produced by the rudder, can be
divided into two parts:

1. An initial transient in which significant surge, sway, and yaw accelerations occur.

2. A steady turning phase in which rate of turn and forward speed are constant and the
path of the ship is circular.

Figure 7 is a definition diagram for the turning path of a ship. Generally, the turning path
of a ship is characterized by four measures: advance, transfer, tactical diameter, and steady
turning radius. The figure also shows the position of the so called pivot point in a steady
turn. This point is of interest because to an observer aboard a turning ship it appears as
if the ship were pivoting about a point usually somewhat aft of the bow and foreward of
amidships. The bow deviates inward of the turning circle while the stern deviates outward
of it. According to Figure 7, the distance between the pivot point and the center of gravity
of the ship is xc = R sin β, where β is the drift angle. Because small radius turns are
usually associated with large drift angles, the product R sin β does not vary significantly for
different ships or for the same ship at different turning radius. For most ships the pivot point
is somewhere between the bow and about 0.2L of the bow. Based on empirical data, the drift
angle, β, in degrees, generally falls within the following range of values: β = 22.5L/R+1.45
and β = 18L/R. The former relationship yields values of xc from 0.4 to 0.5L depending on
the L/R ratio. The latter relationship yields values of xc = 0.3L.

Suppose that the ship is advancing on a straight path when its rudder is deflected and
held at a fixed angle δ as in Figure 7. The resulting path of the ship can be divided into
three distinct phases.

The first phase starts at the instant that the rudder is placed hard over at δ. During this
period, the ship’s mass and inertia prevent the lateral velocity, v, and rotational velocity, r,
from instantaneously increasing. Therefore, initially v = r = 0, and equations (24) and (25)
can be solved for the initial accelerations

ṙ =
(m− Yv̇)Nδ + (Nv̇ −mxG)Yδ

(m− Yv̇)(Iz −Nṙ)− (Yṙ −mxG)(Nv̇ −mxG)
, (45)

v̇ =
(Iz −Nṙ)Yδ + (Yṙ −mxG)Nδ

(m− Yv̇)(Iz −Nṙ)− (Yṙ −mxG)(Nv̇ −mxG)
. (46)

Looking back at Figure 3, we can see that a positive rudder (clockwise, turn to port for
rudder at the stern) produces a positive sway force (so Yδ > 0) and a negative yaw moment
(so Nδ < 0). In other words, the ship initially turns out of the turn, Figure 7.
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The first phase lasts only momentarily since the accelerations v̇ and ṙ will soon give rise
to velocities v and r. With the introduction of these parameters the ship enters the second
phase of turning. Here accelerations coexist with velocities and all of the terms in equations
(24) and (25) are equally important. Since we are analyzing a starboard turn, negative δ,
we have a positive ṙ and negative v̇, in other words the ship is skidding. A positive drift, or
side slip angle β is developed and a positive (to starboard, same as direction of turn) force
Yvv is developed. Eventually this force overcomes the ruder force Yδδ and v̇ dies out. The
angular acceleration ṙ may persist a bit longer but it eventually it too goes to zero, Figure
8.

After some possible oscillation, the second phase of turning ends with the establishment
of the final equilibrium of forces. When this equilibrium is reached, the ship settles down to
a turn of constant radius R as shown in Figure 7. This is the third, or steady, phase of the
turn. Here v and r have nonzero values, but v̇ and ṙ are zero. Using equations (24) and (25)
the steady state values of v and r are computed as

r = − YvNδ −NvYδ
Yv(Nr −mxGU)−Nv(Yr −mU)

δ , (47)

v = − (Yr −mU)Nδ + (Nr −mxGU)Yδ
Yv(Nr −mxGU)−Nv(Yr −mU)

δ , (48)

and, therefore, within linear theory the final values of the yaw and sway velocities are pro-
portional to the rudder deflection δ. If we consider the signs in equations (47) and (48)
we can see that a negative δ (rudder to starboard) will eventually produce a positive r (to
starboard) and a negative v (to port or out of the turn). The resulting ship speed is

V = U cosβ + v sin β ≈ U , (49)

in other words, within linear theory, there is no speed loss due to turning. The final value
of the side slip angle β is

tan β ≈ β = − v

U
, (50)

with v given by (48). Equation (50) shows that the drift angle, β, is directly proportional
to δ. This, of course, establishes some of the linear theory limitations: high δ means large
β and this implies increased ship resistance with a resulting loss of speed and, therefore,
rudder effectiveness.

Because of the angular velocity r, since the ship speed is constant the ship is executing
a circular path with radius

R =
U

r
, (51)

with r given by (47). It can be seen that the steady turning radius R is inversely proportional
to δ, whereas the drift angle β is directly proportional to δ. This means that the pivot point
mentioned in the beginning of this section

xc = R sin β ≈ Rβ , (52)

remains approximately constant since large R is associated with small β and vice versa. This
pivot point can also be computed from the fact that the total angle of attack is zero there,

v + rxc = 0 ⇒ xc = −v

r
≈ β

r
≈ Rβ . (53)
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It is interesting to note that, using equations (51), (47), and (34),

R = −1

δ
· C

YvNδ −NvYδ
, (54)

where C is the stability index. Now since YvNδ −NvYδ > 0 we can see that for a stable ship
(C > 0), a negative δ (rudder to starboard) will produce a positive R (turn to starboard),
as it should. Furthermore, as C increases so does R; another demonstration of the fact that
a very stable ship is also very sluggish in turning. We can see that if xG is large and positive
(i.e., LCG significantly forward of amidships), the turning radius R will increase for a given
δ. For an unstable ship equation (54) claims that for δ < 0 (rudder to starboard) the ship
ought to turn port side (R < 0), which means that the above analysis is not valid. The
small motions assumption breaks down in such a case and so does our linear model; we need
to resort to nonlinear equations. Before we go nonlinear, though, a look at the roll angle
during a turn is in order.

Heel angle in a turn. While use of the rudder is intended mainly to produce motions only
in the xy–plane, motions are also induced by cross coupling into the pitch (xz) and roll (yz)
planes. The unwanted motions in the roll plane, particularly, are likely to be large enough to
be of significance (although submariners may argue that the pitch angles induced in turning
by the rudder are of greater concern). Consider a ship into a starboard turn, Figure 9.
During the first phase of the turn, equilibrium of forces produces in the sway direction

Yδδ + (Yv̇ −m)v̇ + (Yṙ −mxG)ṙ = 0 .

Now since δ < 0, v̇ < 0 we have Yδδ < 0, Yv̇v̇ > 0, Yṙṙ is small, −mv̇ > 0 (inertial force),
and −mxGṙ is small. Therefore, by considering the moments with respect to CG we can see
that the initial heel angle is inboard (to starboard), Figure 10.

During the third phase, equilibrium of forces produces

Yδδ + Yvv + (Yr −mU)r = 0 ,

and we can see that since the term Yvv+Yrr is much larger than Yδδ in order to maintain the
turn, the roll angle is to port (outboard). For submarines, the bridge fairwater contributes
heavily to both the magnitude and location of the Yvv force of Figure 9, thereby, increasing
the rolling moment. It is clear that if the Yvv + Yrr force is raised sufficiently high, the heel
in the third phase of a turn will be in the same direction as in the first phase, into the turn.

1.5 Nonlinear aspects.

Linear theory as discussed in the previous sections is useful for analyzing the influence of
ship features on controls fixed stability and on the turning ability of directionally stable ships
in the linear range. However, it fails to predict accurately the characteristics of the tight
maneuvers that most ships are capable of performing, and it cannot predict the maneuvers of
directionally unstable ships. Furthermore, it can be seen from equations (18), (19), and (20)
that, within linear models, the surge equation decouples from sway and yaw which means
that the ship forward speed is unaffected by the rest of horizontal plane motions. A speed
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reduction in a turn nevertheless exists and can be relatively small for slow moving tankers
but can reach as much as 40% for high speed destroyers. Figure 11 shows typical speed
reductions while turning for different R/2L and CB values. To evaluate these effects we need
to introduce nonlinear cross coupling between surge, sway, and yaw.

One popular technique of introducing nonlinear terms in the previously derived equations
of motion is to keep second and third order velocity dependent terms in the Taylor expansions
(12). Terms beyond third order and cross coupling of velocity and acceleration terms are
not typically included since their effect is insignificant in practice. This way, equations (24)
and (25) are restated as

(m− Yv̇)v̇ − (Yṙ −mxG)ṙ = Yvv + (Yr −mU)r + Yδδ + f ′
2(u, v, r, δ) , (55)

(Iz −Nṙ)ṙ − (Nv̇ −mxG)v̇ = Nvv + (Nr −mxGU)r +Nδδ + f ′
3(u, v, r, δ) , (56)

where f ′
2 and f ′

3 contain higher order terms in u, v, r, δ. To arrive at an expression for
f ′

2(u, v, r, δ) we observe that because of port/starboard symmetry Y (u) = 0, i.e., Yu = Yuu =
Yuuu = 0, where the same notation as before is adopted Yuu = ∂2Y/∂u2 and so on. Even
powers of v, r, δ are zero, for example Yvv = 0 since the sway force should respect the sign of
the sway velocity. Odd powers will survive only. Therefore, the sway equation (55) becomes

(m− Yv̇)v̇ − (Yṙ −mxG)ṙ = f2(u, v, r, δ) , (57)

where

f2(u, v, r, δ) = Y0 + Y0u(u− U) + Y0uu(u− U)2 + Yvv +
1
6
Yvvvv

3 + 1
2
Yvrrvr

2 +
1
2
Yvδδvδ

2 + Yvuv(u− U) + 1
2
Yvuuv(u− U)2 + (Yr −mU)r + 1

6
Yrrrr

3 +
1
2
Yrvvrv

2 + 1
2
Yrδδrδ

2 + Yrur(u− U) + 1
2
Yruur(u− U)2 + Yδδ +

1
6
Yδδδδ

3 + 1
2
Yδvvδv

2 + 1
2
Yδrrδr

2 + Yδuδ(u− U) + 1
2
Yδuuδ(u− U)2 +

Yvrδvrδ . (58)

Similarly for the yaw equation we have

(Iz −Nṙ)ṙ − (Nv̇ −mxG)v̇ = f3(u, v, r, δ) , (59)

where the expression for f3(u, v, r, δ) is similar to (58) with the exception of (Nr −mxGU)
instead of (Yr−mU). The terms with subscript 0 represent the influence of the propeller on
the lateral force and turning moment.

Following similar arguments, the surge equation is written as

(m−Xu̇)u̇ = f1(u, v, r, δ) . (60)

Because of symmetry, f1(u, v, r, δ) contains even powers in v, r, δ. All odd powers are zero,
for example Xvvv = 0 since the same surge force should develop for either port or starboard
motions. Therefore,

f1(u, v, r, δ) = T − R + 1
2
Xvvv

2 +
(

1
2
Xrrr

2 +mxG
)
r2 + 1

2
Xδδδ

2 + 1
2
Xvvuv

2(u− U) +

1
2
Xrrur

2(u− U) + 1
2
Xδδuδ

2(u− U) + (Xvr +m)vr +Xvδvδ +

Xrδrδ +Xvruvr(u− U) +Xvδuvδ(u− U) +Xrδurδ(u− U) . (61)
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The terms T and R represent the propeller thrust and ship resistance, respectively, as devel-
oped in Part III. The rest of the terms in (61) model the added surge force (added resistance)
due to horizontal plane ship motions and rudder action. These terms will cause speed loss
during turning, unless the propulsive thrust changes.

The terms in the right hand side of equations (58) and (61) are usually called “coeffi-
cients of the equations of motion” as opposed to “hydrodynamic derivatives” for the linear
equations. The reason is that they are obtained through curve fitting of actual data and
do not necessarily correspond to an actual derivative at equilibrium in the pure sense of the
term.

Equations (57), (59), and (61) can be solved for the accelerations u̇, v̇, ṙ as

u̇ =
f1(u, v, r, δ)

m−Xu̇

,

v̇ =
(Iz −Nṙ)f2(u, v, r, δ) + (Yṙ −mxG)f3(u, v, r, δ)

(m− Yv̇)(Iz −Nṙ)− (Nv̇ −mxG)(Yṙ −mxG)
, (62)

ṙ =
(m− Yv̇)f3(u, v, r, δ) + (Nv̇ −mxG)f2(u, v, r, δ)

(m− Yv̇)(Iz −Nṙ)− (Nv̇ −mxG)(Yṙ −mxG)
.

Equations (62) can be solved numerically for any possible time history of δ(t) and provide
then a fairly accurate time simulation of the actual ship maneuver. An easy and popular
numerical integration technique is the Euler or rectangular integration in which values of u,
v, r at time t+∆t are obtained from knowledge of the values of u, v, r, δ at time t using a
simple first order expansion; that is

u(t+∆t) = u(t) + u̇(t)∆t ,

v(t+∆t) = v(t) + v̇(t)∆t , (63)

r(t+∆t) = r(t) + ṙ(t)∆t .

This method is found to give adequate accuracy for the present type of differential equations
because the accelerations u̇, v̇, ṙ vary slowly with time, owing to the large mass or inertia
of a ship compared to the relatively small forces and moments produced by its rudder. Any
desired accuracy can be easily obtained computationally by using a smaller time step ∆t.
The so derived u(t), v(t), r(t) can be utilized to obtain the ship orientation ψ(t) and inertial
positions x0(t), y0(t) by using (refer to Figure 2)

ψ̇ = r ,

ẋ0 = u cosψ − v sinψ , (64)

ẏ0 = u sinψ + v cosψ ,

and integrating

ψ(t+∆t) = ψ(t) + ψ̇(t)∆t ,

x0(t+∆t) = x0(t) + ẋ0(t)∆t , (65)

y0(t+∆t) = y0(t) + ẏ0(t)∆t .
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As a final word of caution on the applicability of our maneuvering model, it should be
mentioned that the most basic (and rather bold) assumption of the Taylor series expan-
sions for the hydrodynaic forces and moments is that they can be expressed through the
instantaneous values of motions, velocities and accelerations of the body, neglecting higher
order time derivatives. Although this is not exact when a free surface is present (due to
memory effects), it can be taken as a good approximation provided the motions are “slow”.
This is the reason why the hydrodynamic derivatives are often referred to as “slow motion
derivatives”. The above assumption is no longer valid when dealing with “fast” motions in
waves (seakeeping) and we will not be entitled to using it once this section is over. As the
hydrodynamic forces and moments induced by ship motions are affected by the presence of a
free surface, the coefficients in the equations of motion should be functions of the frequency
of motion. For slow motions (ordinary steering) we can use the values at zero frequency and
consider them constant. Frequency dependence corresponds to incorporating convolution
integrals in the equations of motion. The equations of motion as expressed in the previous
sections contain no convolution integrals, which is equivalent to assuming that the history of
the motion plays no role in the determination of u, v, and r. It has been, in general, shown
that the dominant frequency range to determine the maneuvering response is so slow that
to make use of the constant stability derivatives at very low frequency does not bring any
serious errors in the computations.

1.6 Determination of hydrodynamic derivatives.

Success of the previous models depends heavily on our knowledge of the hydrodynamic
derivatives. There are four main ways to achieve this and we will briefly discuss them here:

1. Experiments with model tests.

2. Full scale sea trials and system identification techniques.

3. Theoretical prediction methods.

4. Regression analysis results from similar designs.

There are five main types of model tests that can be performed

• straight line tests in a towing tank,

• rotating arm tests,

• planar motion mechanism tests,

• oscillator tests,

• free running (radio controlled) tests.

Straight line tests in a towing tank (Figure 12) are used to measure Yv and Nv; the model
is towed at Froude scaling U and at different angles of attack β, and its sway velocity is,
therefore, given by v = −U sin β. A dynamometer is used to measure the force Y and
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moment N at each angle β and these are then plotted versus v. The slopes of these curves
at zero provide Yv, Nv, and with curve fitting we can get nonlinear coefficients as well. Then
nondimensionalize the values as in Section 1.1 and use the same dimensionless coefficients
for the ship. Since the propeller has an effect on the hydrodynamic derivatives, these tests
should be conducted with propellers operating, preferably at the ship propulsion point.
An undeflected rudder model should also be included in the model. Similar tests can be
performed to get Yδ and Nδ. The model is run at zero angle of attack but for different
rudder deflections δ.

The rotating arm technique is used to measure the rotary derivatives Yr, Nr where during
rotation we would like to have v = 0 and r 
= 0 only. The dynamometer will measure Y
and N , and we plot these versus r for a constant reference speed U . Since r = U/R and
U = const. we need to vary the radius R, Figure 12. We then get Yr, Nr by taking the slopes
of Y (r) and N(r) at r = 0. The rotating arm technique has two basic drawbacks:

• The model must be accelerated and data obtained within a single revolution. Other-
wise, the model will be in its own wake and its velocity with respect to the water will
not be accurately known.

• The most useful data points are close to r = 0 and this requires very largeR. Therefore,
expensive set–up and special tanks are needed (we cannot use existing long and narrow
towing tanks).

By performing tests at nonzero drift angles β and cross plotting the results, we can get values
for Yv, Nv, Yδ, Nδ but such predictions are not as reliable as with straight line tests.

The planar motion mechanism tests were developed in order to avoid the large expense of
a rotating arm facility. Say we have a model towed down a towing tank at a constant speed
U — Froude number scaled always — and suppose we can impose a small lateral sinusoidal
motion

y = y0 sinωt ,

as in Figure 13. The resisting hydrodynamic force is then

Y = Yvv + Yv̇v̇ + Yv̈v̈ + · · · ,

and since ẏ = v we have

Y = (Yv − ω2Yv̈ + · · ·)(y0ω cosωt) + (Yv̇ − ω2Yv̈ + · · ·)(−y0ω
2 sinωt)

= Ỹvv + Ỹv̇v̇ .

In the last expression, Ỹvv is the force component of Y at a 90o phase with the motion y,
and Ỹv̇v̇ is the force component in phase with y. Both are measurable using dynamometers.
The usefulness of these sinusoidal coefficients Ỹv and Ỹv̇ is due to the fact

lim
ω→0

Ỹv = Yv and lim
ω→0

Ỹv̇ = Yv̇ ,

according to what was mentioned in the previous section on the frequency dependency of the
hydrodynamic coefficients. This idea of imposing translational and/or rotational motions to
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the model, superimposed on a straight line reference motion, led to the development of the
Planar Motion Mechanism, PMM. It can be used to measure velocity dependent derivatives
Yv, Nv, rotary derivatives Yr, Nr, as well as acceleration derivatives Yv̇, Nv̇, Yṙ, Nṙ. The
PMM consists of two oscillators, one of which produces a transverse oscillation at the bow,
and the other a transverse oscillation at the stern. It also needs transducers to measure the
forces and special instrumentation for the proper resolution of forces. This procedure can
give the hydrodynamic coefficients as functions of frequency, a very useful information for
motions in rough seas and transient maneuvers. The PMM results can be used to determine
nonlinear and cross coupling effects; as well as hydrodynamic coefficients in all six degrees
of freedom motions.

The oscillator technique, Figure 14, is a simpler mechanism than PMM but it requires
more elaborate analysis techniques. The model motion is combined yaw and sway, and
rotation is always combined with translation. The procedure is to measure Yv and Nv by
straight line tests, and then estimate the remaining six derivatives Yr, Nr, Yv̇, Nv̇, Yṙ, Nṙ by
solving a system of simultaneous equations. The results are usually not as reliable as PMM.

Finally, radio controlled model tests are essentially system identification tests and can
be used for full scale sea trials as well. We start with a prescribed input and measure the
output. Then by a systematic trial–and–error procedure we pick values of the coefficients
such that close agreement between predicted and measured output is achieved.
Full scale test techniques are required during ship sea trials and delivery. They are

used not only to evaluate hydrodynamic characteristics but also to check whether design
specifications have been met. The main full scale sea trials are the following:

1. Spiral test: In this we measure the steady turning rate r that corresponds to a specified
rudder angle δ. A steady state r–δ curve is thus constructed and its deviation from a
straight line shows the effect of nonlinearities at high rudder angles, Figure 15. For an
unstable ship the initial slope of the curve is located in the first and third quadrant.
In the reverse spiral test we measure the required rudder angle δ to give a specified
turning rate r. In this way we can get the full r–δ curve for an unstable ship even
within the hysteresis loop.

2. Turning maneuver: The rudder is set at a constant angle and the ship executes a
full 360o heading change. We measure and characterize quantities like the tactical
diameter, advance and transfer, drift angle, heel angle, and speed loss.

3. Zig–zag maneuver: Set the rudder at constant δ0 as quickly and as smoothly as possible
until the ship heading becomes ψ0; then rudder at −δ0 until heading becomes −ψ0, and
repeat, Figure 16. We measure and characterize quantities like the overshoot, period,
and time to overshoot. The traditional zig–zag maneuver is with δ0 = ψ0, for example
20o–20o test. In the case of course unstable ships the results of zig–zag maneuvers at
small rudder angles, say 5o–5o, tend to diverge and will not give steady results. For
this reason we often use the modified zig–zag test with ψ0 < δ0, say 5o–2o or 10o–1o

test.

4. Sinusoidal maneuver: This method involves a sinusoidal change in rudder angle and
is used to obtain frequency response characteristics. It is useful at relatively high
frequencies whereas it is not very practical at low frequencies.
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5. Parallel shift maneuver: The ship is steered to a new course parallel to the original. It
can be used to estimate frequency response characteristics at very low frequencies.

6. System identification techniques: System identification determines, from a given in-
put/output data record of vehicle test response, an estimate of the physical model
which relates to the observed data. The process is schematically shown in Figure 17
and it consists mainly of a dynamic iterative process in which the values of the hydro-
dynamic coefficients are continously changed until convergence between predicted and
actual output.

Theoretical prediction methods are based on the principles of hydrodynamics for the eval-
uation of added mass (acceleration dependent derivatives) and damping (velocity dependent
derivatives) coefficients for three dimensional bodies. Since damping depends to a great
extent on viscous effects, the hydrodynamic calculations (usually based on potential theory)
are more reliable for the acceleration dependent hydrodynamic coefficients. While theoretical
approaches such as slender body and strip theory have had some success in aircraft where
body geometry is dominated by wings and fins, results for ships have not been as accurate
since there are no flat stabilizing surfaces and the flow around the hull is greatly altered by
fluid viscosity. The rudder coefficients Yδ, Nδ, Xδδ can be evaluated from existing lift and
drag coefficient data for standard foil sections.
Empirical regression analysis results have been obtained to express the main hydrody-

namic coefficients as functions of principal dimensions:
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(
T

L
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.

Such formulas have statistical significance only and should be used with caution only when
studying variations from a known similar design.
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2. Sea Waves.

A rather unique feature of ships and floating bodies is the importance of wave effects on
the free surface. The most common and important wave phenomena for our purposes are
the surface waves that exhibit typical periods of a few seconds, Figure 18. Other waves like
subsurface or internal waves are found in internal regions of density stratification beneath
the free surface and are typically of lower frequency with periods on the order of several
minutes. The influence of such waves on ships is generally negligible unless the body has an
unusually low frequency resonance, as mentioned in Part III. Waves of even lower frequencies
exist, including inertial waves associated with the Coriolis acceleration due to the earth’s
rotation, and tides generated by changes in the potential energy of heavenly bodies. At the
high frequency of the spectrum are capillary waves and ripples, but these do not affect large
vessels or structures.

In Ship Motions we are concerned with the effects of surface waves on ships and fixed
structures. The problem is treated here (and in most cases and places) based on the as-
sumptions that the fluid is ideal and that wave and body motions are sufficiently small to
linearize.

2.1 Plane progressive waves.

The simplest free surface wave formation, which nevertheless has great practical signif-
icance, is the plane progressive wave system. This motion is two dimensional, sinusoidal
in time with angular frequency ω, and propagates with phase velocity cp such that to an
observer moving with this velocity the wave appears to be stationary. A Cartesian coor-
dinate system (x, y, z) is adopted, see Figure 19, with z = 0 the plane of the undisturbed
free surface and the z–axis positive upwards. The vertical elevation of any point on the free
surface may be defined by a function z = η(x, y, t). In the special case of two dimensional
fluid motion parallel to the x–z plane, the dependence on y will be deleted. Thus, the free
surface elevation must be of the general form

η(x, t) = A cos(kx− ωt) , (66)

where the positive x–axis is chosen to coincide with the direction of wave propagation. Here
A is the wave amplitude, and the parameter

k =
ω

cp
, (67)

is the wavenumber, the number of waves per unit distance along the x–axis. Clearly

k =
2π

λ
, (68)

where the wavelength λ is the distance between successive points on the wave with the same
phase, Figure 19.

The solution of this problem is expressed in terms of a two dimensional velocity potential
φ(x, z, t) which must satisfy Laplace’s equation

∇2φ = 0 , (69)
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and appropriate boundary conditions. Furthermore, φ must yield the wave elevation (66)
from

η = −1

g
· ∂φ
∂t

. (70)

Equation (70) is the so called linearized dynamic boundary condition on the free surface
and is an expression of the fact, through Bernoulli’s equation, that the pressure on the free
surface must be the same as the ambient atmospheric pressure. An appropriate boundary
condition on the sea bottom is

∂φ

∂z
= 0 , at z = −h , (71)

i.e., the bottom at depth h is a rigid impermeable plane. Finally, the free surface boundary
condition is

∂2φ

∂t2
+ g

∂φ

∂z
= 0 , on z = 0 . (72)

Equation (72) is a combined dynamic and kinematic free surface boundary condition. The
dynamic condition was mentioned before, while the kinematic condition simply states

∂η

∂t
=

∂φ

∂z
, (73)

i.e, the vertical velocities of the free surface and fluid particles are the same. Combining
(70) and (73) we arrive at (72), ignoring the small departures of the free surface η from the
horizontal orientation z = 0.

Clearly the velocity potential φ must be sinusoidal in the same sense as (66); therefore
we seek a solution of the form

φ(x, z, t) = �
{
Z(z)e−ikx+iωt

}
. (74)

Substituting (74) into (69), Z must satisfy the ordinary differential equation

d2Z

dz2
− k2Z = 0 , (75)

throughout the domain of the fluid. The most general solution of (75) is given in terms of
exponential functions in the form

Z = Cekz +De−kz . (76)

For now we assume that the water depth is infinite (deep water), hence (75) must hold for
−∞ < z < 0. To avoid an unbounded motion deep beneath the free surface, the constant
D in (76) must be zero

Z = Cekz , (77)

or, if we substitute into (74)

φ = �
{
Cekz−ikx+iωt

}
. (78)
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Now if we substitute (78) into (70) with z = 0, and compare the result with (66) we can find

C =
igA

ω
,

and

φ =
gA

ω
ekz sin(kx− ωt) . (79)

An additional relation between the wavenumber k and the frequency ω can be obtained by
substituting (79) into (72). This relation, called a dispersion relation is

k =
ω2

g
. (80)

Of course, the frequency ω can be replaced by the wave period T = 2π/ω, just as the
wavenumber k can be replaced by the wavelength λ = 2π/k.

The phase velocity cp can be determined from (67), and using (80) it follows that

cp =
ω

k
=

g

ω
=

√
g

k
=

√
gλ

2π
. (81)

The last equation (81) states that surface waves in deep water are dispersive, longer waves
travel faster than short waves, unlike, for instance, electromagnetic waves in deep space
which travel at the same speed regardless of their color.

While the wave moves with the phase velocity cp, the fluid itself moves with a much
smaller velocity given by the gradient of the potential (79). The velocity components (u, w)
of the fluid are

u =
∂φ

∂x
= ωAekz cos(kx− ωt) , (82)

w =
∂φ

∂z
= ωAekz sin(kx− ωt) . (83)

It can be seen that the fluid particles move through circular orbits, see Figure 19. The
horizontal velocity component is maximum beneath the crest and trough. Beneath the crest
the velocity is positive, in the same direction as the wave propagation, and beneath the
trough the flow is in the opposite direction. The vertical velocity component is a maximum
beneath the nodes η = 0, rising or falling with the free surface. Within linear theory, the
fluid particles move in small circular orbits proportional to the wave amplitude; they remain
in the same mean position as the wave propagates through the fluid with a phase velocity
independent of the wave amplitude. Some nonlinear effects that modify this situation are
discussed in Section 2.4, but for most practical purposes the linear results described here
are extremely accurate. As the depth of submergence beneath the free surface increases, the
fluid velocities (82) and (83) are attenuated exponentially — a hydrofoil boat with its foils
deeply submerged is relatively insensitive to free surface wave action. For a submergence of
half a wavelength, kz = −π, the exponential factor is reduced to 0.04. Thus, waves in deep
water are confined to a relatively shallow layer near the free surface, with negligible motion
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beneath a depth of about 0.5λ. On this basis one can anticipate that if the fluid depth is
finite, but greater than half a wavelength, the effects of the bottom will be negligible.

For a fluid at constant depth h, the boundary condition (71) is imposed. Returning to
the general solution (76), both exponential functions are retained, with the constants C and
D suitably chosen to satisfy (71). In this case, the velocity potential (79) becomes

φ =
gA

ω

cosh k(z + h)

cosh kh
sin(kx− ωt) , (84)

and the dispersion relation (80) is now

k tanh kh =
ω2

g
, (85)

where we can see that as h → ∞ we get the previous deep water results. The fluid velocity
commponents can be computed as in (82), (83), and for finite depth it follows that

u =
∂φ

∂x
=

gAk

ω

cosh k(z + h)

cosh kh
cos(kx− ωt) , (86)

w =
∂φ

∂z
=

gAk

ω

sinh k(z + h)

cosh kh
sin(kx− ωt) . (87)

It can be seen that now the trajectories of the fluid particles are elliptical. The major axis
of the ellipses is horizontal, and the velocity distribution is also shown in Figure 19.

From (67) and (85) the phase velocity for finite depth can be expressed in the form

cp =
ω

k
=

√
g

k
tanh kh . (88)

This tends to the deep water limit (81) for kh � 1. The opposite limit, where kh � 1, is
the regime of shallow water waves. In this case (88) can be approximated using the Taylor
series expansion for the hyperbolic tangent, and the leading order approximation for the
phase velocity is

cp =
√
gh , for kh � 1 . (89)

As we mentioned before, water waves are generally dispersive, long waves travel faster than
shorter waves. The shallow water limit (89) is an exception, where the phase velocity depends
only on the depth, and the resulting wave motion is nondispersive.

A very interesting, for those of us who live along the coast of California, shallow water
wave is the tsunami. “Tsunami” is a Japanese word for sea waves produced by earthquakes.
A typical such wave has a frequency of 10−3 Hz (10–20 minute period) and a wave length
of about 100 km, see Figure 18. At such wave numbers the ocean is effectively “shallow”
and waves are no longer dispersive but travel at a unique speed

√
gh where h is the ocean

depth, see equation (89). A typical speed of such a wave is 800 km/h. These waves are
only a few centimeters high in mid ocean, and are therefore very difficult to detect; they are
also very harmless at that stage. However, they contain tremendous energy and can build
up to amplitudes of 30 m when slowed down by a shelving beach or focussed by off shore
topography. This is because of the “dragging” of water particles close to land at the sea bed
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(see Figure 19, shallow water case) there is a net transfer towards the beach regardless of
the original wave direction; the wave length decreases and, by continuity, the wave height
will increase until breaking. Tsunamis can echo around the oceans with decreasing energy
levels for many days after their initial generation.

The plane progressive wave described so far is a single, discrete wave system, with a
prescribed monochromatic component of frequency ω and wavenumber k, moving in the
postive x–direction. More general wave motions, which are no longer monochromatic, can
be obtained by superimposing plane waves of different k and ω. In the two dimensional case
we can begin by forming a discrete sum of waves

η =
N∑
n=1

�{An exp(−iknx+ iωt)} , (90)

where n refers to the n–th sinusoidal wave component. If the total number of discrete waves
N tends to infinity, while the difference between adjacent frequencies and wave numbers
reduces to zero, the sum (90) will become an integral over the continuous spectrum of
frequencies

η(x, t) = �
∫ ∞

−∞
A(ω) exp[−ik(ω)x+ iωt] dω . (91)

Here k(ω) > 0 must satisfy the appropriate dispersion relation, and negative values of
frequency have been admitted under the integral to allow for the possibility of plane waves
moving in the negative x–direction. These distributions of wave systems can be extended
from two to three dimensions by introducing an oblique wave and summing or integrating
over all possible directions θ (see Figure 19). In the most general case of a continuous
distribution, a two dimensional integral representation follows of the form

η(x, y, t) = �
∫ ∞

0
dω
∫ 2π

0
dθA(ω, θ) exp[−ik(ω)(x cos θ + y sin θ) + iωt] . (92)

This expressin can be used to analyze ship generated waves (the Kelvin wave system men-
tioned in Part III), and this is done in Section 2.3. It can also be utilized, with A(ω, θ) being
a random variable, to represent a spectrum of ocean waves, and this is discussed in Section
2.5.

2.2 Group velocity and wave energy.

Consider a group of two adjacent components of the discrete wave system (90)

η = �{A1 exp(−ik1x+ iω1t) + A2 exp(−ik2x+ iω2t)}
= �

{
A1 exp(−ik1x+ iω1t)

[
1 +

A2

A1
exp(−iδkx + iδωt)

]}
, (93)

where δk = k2 − k1 and δω = ω2 − ω1. Here, the factor in brackets represents an amplitude
modulation which is slowly varying in space and time. The wave form (93) is similar to
the beat–frequency effect in electromagnetic wave motions, where one refers to the first
exponential factor in (93) as the carrier wave. The wavelength and period of the carrier are
the usual parameters λ = 2π/k1 and T = 2π/ω1. By analogy, the wavelength of the group is
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2π/δk, and its period in time is 2π/δω. Of particular interest is the group velocity cg, given
by the ratio

cg =
δω

δk
. (94)

In the limiting case where δω → 0 and δk → 0, (93) will tend to a monochromatic wave but
if x and t are large, the amplitude modulation in (93) will persist so long as the products
xδk and tδω are finite. Under this condition, the group velocity (94) will approach the finite
limit

cg =
dω

dk
, (95)

in accordance with the classical definition of a derivative. Thus, a group of waves of nearly
equal frequency and wavenumber will propagate with the group velocity cg = dω/dk as
opposed to the phase velocity cp = ω/k of the individual wave components in the group.

In general, the phase and group velocities differ, unless ω/k = dω/dk. This exception
occurs in the shallow water limit kh � 1. In deep water, the group velocity can be evaluated
by solving the dispersion relation (80) for ω(k) and substituting this into (95). Thus

cg =
1

2

√
g

k
=

1

2

ω

k
=

1

2
cp , (96)

and the group velocity is precisely half of the phase velocity. In finite depth, the dispersion
relation (85) can be combined with (95) to give

cg =

(
1

2
+

kh

sinh 2kh

)
cp . (97)

This expression reduces to (96) if kh is large, whereas in the shallow water limit the factor
in parenthesis in (97) reduces to unity.

That individual waves move faster than the group implies that in a wave system with a
front, propagating into otherwise calm water, the individual waves will overtake the front and
vanish. At first glance it appears that the energy within the wave system is destroyed in some
sense, contrary to the principle of conservation of energy. In fact there is no contradiction,
since the wave energy moves not with the phase velocity but with the group velocity as we
discuss in the following. For all it matters, the phase velocity can exceed the speed of light,
this won’t bother Einstein a bit as long as the group velocity does not exceed it.

In order to confirm the last statement we have to look at the wave energy and an alterna-
tive approach to the group velocity based upon the rate of energy flux in a plane progressive
wave system. Water waves are the result of balance between kinetic and potential energy in
the fluid, and the total energy is the sum of these two components. Thus, in a prescribed
volume V , the total energy is given by the integral

KE + PE = ρ
∫∫∫

V

[
1
2
(u2 + w2) + gz

]
dV . (98)

If we focus our attention on a vertical column, extending throughout the depth of the fluid
and bounded above by the free surface, the energy density E, per unit area of the mean free
surface above this column, is given by

E = ρ
∫ η
−h

[
1
2
(u2 + w2) + gz

]
dz = 1

2
ρ
∫ η
−h

(u2 + w2) dz + 1
2
ρg(η2 − h2) . (99)
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Substituting the deep water expressions (82), (83) in (99) and neglecting the term −1/2ρgh2

(the potential energy of the fluid below z = 0 is of no interest since it is a constant unrelated
to wave motion) we get

E =
ρω2A2

4k
e2kη + 1

2
ρgη2 . (100)

For small amplitude waves, the exponential in (100) may be set equal to one, and using the
dispersion relation (80) and wave elevation (66) we get

E = 1
4
ρgA2 + 1

2
ρgA2 cos2(kx− ωt) . (101)

The first and second terms on the right hand side of (101) represent the kinetic and potential
energies, respectively. If these are averaged with respect to time over one cycle of wave
motion, their contributions are identical, and the total mean energy density is given by the
expression

E = 1
2
ρgA2 , (102)

where a bar denotes the time average.
A vertical control surface is then employed to measure the rate of energy flux. Utilizing

Bernoulli’s equation, the final result is that the rate of energy flux across a fixed control
surface is the product of the energy density and the group velocity,

dE

dt
= cgE . (103)

Equations (102) and (103) can be used to predict the change in height of a sinusoidal wave
as it propagates through a region of gradually changing depth. Provided the change in depth
is small over distances on the order of a wavelength, these relations can be applied locally at
each depth, and it can be assumed that the reflected energy is negligible. It then follows that
the energy flux (103) is constant for all depths, and since the frequency ω remains constant,
the local wave height must be inversely proportional to the square root of the group velocity.
Simultaneously, the wavelength and phase velocity will decrease with depth (why?). Taking
both effects into account, the steepness of the waves will increase as the waves near the
beach, leading ultimately to wave breaking when the wave height is comparable to the local
depth. Of course, every surfer knows this even without the supporting mathematics.

Since the group velocity is less than the phase velocity, the energy in a plane progressive
wave system will be propagated at a slower speed than the individual wave crests and will
be “left behind” in the fluid. This seems physically reasonable and explains why ship waves
are observed downstream of the disturbance that generates them.

2.3 The ship wave system.

Now that we are better equipped we can briefly go back to the wave system generated
by a moving ship; the Kelvin wave pattern discussed in Part III. The most general wave
distribution in three dimensions is given by the double integral (92). If this is transformed
to a reference system moving with the ship in the positive x–direction with steady velocity
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U , the appropriate expression with x replaced by x+ Ut is given by

η(x, y, t) = �
∫ ∞

0
dω
∫ 2π

0
dθ A(ω, θ) exp[−ik(x cos θ + y sin θ)

+i(ω − kU cos θ)t] . (104)

Here k(ω) is the wavenumber corresponding to a given frequency ω in accordance with the
dispersion relation (80) for infinite depth.

If the ship motion is steady state in the reference system that moves with the ship, the
expression (104) must be independent of time. This requires that

kU cos θ − ω = 0 , (105)

which means that the phase velocity of each amplitude wave component is given by

cp =
ω

k
= U cos θ . (106)

In this sense (see Figure 19), a system of plane progressive waves moving at an oblique angle
θ with respect to the x–axis will appear to be stationary to an observer moving along the
x–axis with velocity cp/ cos θ. We can use equation (105) to eliminate one of the variables
of integration in (104) and thereby replace it by a single integral

η(x, y) = �
∫ π/2
−π/2

dθ A(θ) exp [−ik(θ)(x cos θ + y sin θ)] , (107)

where for the deep water case we have from (80) and (105)

k(θ) =
g

U2 cos2 θ
. (108)

Expression (107) is known as the free wave distribution of a given ship. This is char-
acterized by the amplitude and phase of the complex function A(θ) which depends on the
hull shape and its forward velocity, and is ultimately related to the wave making resistance,
refer to equation (28) of Part III. If the distance downstream from the position of the ship
is large (far field), the integral (107) can be simplified and the classical ship wave pattern
can be obtained. Kelvin did this in 1887 rigorously using the method of stationary phase,
but here we do it in a heuristic manner using the previous concept of group velocity.

If x′ is a local coordinate, normal to the wave crests as in Figure 19 and defined with
respect to a fixed reference frame, the significant waves will travel in groups such that
x′/t = cg is determined by

d

dk
(kx′ − ωt) = 0 . (109)

If this expression for the derivative of the phase of the local waves is transformed into the
frame of reference of (107), the significant waves will satisfy the equation

d

dk
[k(θ)(x cos θ + y sin θ)] = 0 . (110)
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Since k and θ are related by (108), condition (110) is equivalent to

d

dθ

(
x cos θ + y sin θ

cos2 θ

)
= 0 , (111)

except for the isolated points θ = 0,±π/2 where dθ/dk is infinite or zero, respectively.
Ignoring these singular points and evaluating the derivatives in (111) yields

x sec2 θ sin θ + y sec3 θ(1 + sin2 θ) = 0 . (112)

Thus, the significant waves, moving in a direction θ, will be situated along the radial line

y

x
= −cos θ sin θ

1 + sin2 θ
. (113)

A plot of (113) is shown in Figure 20, where the maximum value of the ratio y/x is
defined by

y

x
= 2−3/2 ≈ tan(19o28′) , (114)

and this maximum occurs when the wave angle is

θ = ± sin−1

(√
3

3

)
= ±35o16′ . (115)

Thus, the waves are confined to a sector symmetrical about the negative x–axis, with included
semiangles of 19o28′. Within this sector, for a given point (x, y) two solutions of (113) exist;
hence two waves with distinct angles θ move in different directions. By requiring that the
phase function in parentheses in (111) be a constant, we can calculate the loci of the crests
as shown in Figure 20.

The waves on the negative x–axis move in the same direction as the ship with θ = 0. As
the lateral coordinate y is increased, the angle of these transverse waves changes, in accor-
dance with (113) and Figure 20, reaching a value of ±35o on the boundaries. Larger values
of θ correspond to diverging waves; these have shorter wavelength and converge towards the
origin as shown in Figure 20. A departure from the above linearized far field potential theory
that appears in practical ship wave systems is a pronounced breaking wave, originating at
the bow and trailing aft on either side of the ship into the wake. The effect of this break-
ing wave on the resistance of a ship, a particularly interesting topic in contemporary naval
architecture, was discussed in Part III of the notes.

2.4 Second order Stokes waves.

In this section we consider briefly some of the simpler effects that were neglected in the
linearized theory. The most significant nonlinearities enter through the free surface boundary
conditions. The linearized kinematic condition was stated in equation (73) where the free
surface elevation η was assumed to be sufficiently small so that it does not differ much from
the undisturbed position z = 0. The exact kinematic free surface boundary condition can
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be obtained by requiring that the substantial derivative of the quantity (z − η) vanish on
the free surface

D

Dt
(z − η) = 0 . (116)

The substantial derivative D/Dt is defined by

D

Dt
=

∂

∂t
+∇φ · ∂

∂x
, (117)

and it expresses the rate of change of a quantity in a moving coordinate frame following the
fluid particles. Using the definition (117), equation (116) becomes

∂φ

∂z
− ∂η

∂t
− ∂φ

∂x
· ∂η
∂x

− ∂φ

∂z
· ∂η
∂z

= 0 . (118)

The last two terms in (118) are of second order, and upon linearization, equation (118)
reduces to (73).

The dynamic free surface boundary condition can be obtained from Bernoulli’s equation.
For an unsteady, irrotational flow this is

∂φ

∂t
+

1

2
∇φ · ∇φ+

p

ρ
+ gz = const. (119)

If we require that the pressure on the free surface is the same as the atmospheric pressure
pa, which is assumed to be independent of the actual position on the free surface, we get
from (119)

−1

ρ
(p− pa) =

∂φ

∂t
+

1

2
∇φ · ∇φ+ gz . (120)

Substituting the free surface elevation η for z, and solving for η

η = −1

g

(
∂φ

∂t
+

1

2
∇φ · ∇φ

)
. (121)

If we neglect the last term, which is a second order quantity in the fluid velocity, the linearized
condition (70) can be obtained. If (121) is substituted into (118), the combined free surface
boundary condition becomes

∂2φ

∂t2
+ g

∂φ

∂z
+ 2∇φ · ∇∂φ

∂t
+ 1

2
∇φ · ∇(∇φ · ∇φ) = 0 . (122)

Of course it is not necessary to memorize this! We can see that upon linearization, the
first two terms of (122) will survive only, and the linearized condition (72) follows. The free
surface boundary condition (122) is exact and explicit, except that it must be applied on the
unknown surface z = η defined by (121) instead of z = 0 as in the linear case.

With the exception of the above two boundary conditions, the procedure for solving the
problem is similar, to a certain extent, to the linear case of Section 2.1, and it follows the
so called Stokes expansions. The unknown velocity potential can be expanded in a Taylor
series around the undisturbed plane z = 0

φ(x, η, y, t) = φ(x, 0, y, t) + η

(
∂φ

∂z

)
z=0

+ 1
2
η2

(
∂2φ

∂z2

)
z=0

+ · · · , (123)
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and using this perturbation scheme we can obtain, by substituting into (121) and (122), a
sequence of boundary conditions valid on the known plane z = 0. Keeping up to second
terms only, the final result for the wave profile in deep water is

η = A cos(kx− ωt) + 1
2
kA2 cos 2(kx− ωt) . (124)

The last term in (124), which represents the second order correction to the free surface
profile, is positive both at the crests (kx−ωt) = 0, 2π, 4π, . . . and at the troughs (kx−ωt) =
π, 3π, 5π, . . . As a result of this nonlinear correction the crests will be steeper and the troughs
flatter, a water waves feature that is easily detectable in practice, see Figure 21.

From the early days of naval architecture it has been customary to make use of a tro-
choidal wave in some ship design problems. The trochoidal wave, shown in Figure 22, rep-
resents the trace of a point on a rolling circle, it has a convenient form from the geometrical
point of view and it is much easier to analyze than the previous Stokes waves. Naturally it is
nothing more than a trick, and it cannot be derived from the principles of hydrodynamics; a
neat trick, we have to admit though, since its profile is almost identical to the second order
Stokes wave.

The deep water dispersion relation (80) corrected for second order effects is

ω2 = gk(1 + k2A2) . (125)

This can be combined with (67) to obtain the corresponding correction for the phase velocity

cp =
(
g

k

)1/2 (
1 + 1

2
k2A2

)
+O(k3A3) . (126)

It can be seen that the phase velocity depends weakly on the wave amplitude, and waves of
large height travel faster than small waves. By analogy with the more significant dependence
of the phase velocity on wave length, this dependence on amplitude is known as amplitude
dispersion.

Finally, one of the more interesting nonlinear features of plane progressive waves is the
occurrence of a second order mean drift of the fluid particles. The orbital motion of a
particular fluid particle can be computed in terms of the Lagrangian coordinates [x0(t), z0(t)]
which define the position of a particle. These must satisfy the relations

dx0

dt
= u(x0, z0, t) , (127)

dz0

dt
= w(x0, z0, t) . (128)

If x0 and z0 differ by a small amount, of order A, from the fixed position (x, z), Taylor series
can be used to expand (127), (128) in the form

dx0

dt
= u(x, z, t) + (x0 − x)

∂u

∂x
+ (z0 − z)

∂u

∂z
, (129)

dz0

dt
= w(x, z, t) + (x0 − x)

∂w

∂x
+ (z0 − z)

∂w

∂z
. (130)
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Now it can be shown that the deep water velocity potential (79) is exact to second order in
the wave amplitude, and if we integrate (82) and (83) with respect to time we get the first
order trajectories

x0 − x =
∫
u dt = −Aekz sin(kx− ωt) , (131)

z0 − z =
∫
w dt = −Aekz cos(kx− ωt) . (132)

If these expressions are substituted with (82), (83) in (129), (130), it follows that

dx0

dt
= ωAekz cos(kx− ωt) + ωkA2e2kz , (133)

dz0

dt
= ωAekz sin(kx− ωt) . (134)

It can be seen that the second order vertical motion of a given particle of fluid is strictly
periodic, with the velocity given by (134), but the horizontal velocity (133) contains a steady
Stokes’ drift. Integrating (133) vertically with respect to all particles of fluid −∞ < z0 < 0
yields the total mean flux

Q = 1
2
ωA2 = 1

2
kA2cp . (135)

The presence of a mean drift is obvious from the observation of small vessels floating in waves
and it may become a serious consideration for accurate positional control of large floating
offshore platforms. In the latter case, computation of the steady or slowly varying drift is a
much more complex problem.

2.5 Description of the seaway.

Wave patterns in an open sea are ever changing with time and space, in a manner that
appears to defy analysis be it linear or second order Stokes. Ambient waves on the surface
of the sea are dispersive as well as random. The generating mechanism is, predominantly,
the effect upon the water surface of wind in the atmosphere. The wind is itself random,
especially when viewed from the standpoint of the turbulent fluctuations and eddies which
are important in generating waves. The randomness of sea waves is subsequently enhanced
by their propagation over large distances in space and time and their exposure to the random
nonuniformities of the water and air.

In principle, one could use the superposition principle in the form of equation (92) and
attempt a description of the seaway deterministically accounting for each one of the indi-
vidual wave components. Leaving aside the issue of whether such an approach is possible or
not (advocates of chaos theory may well argue that it is impossible), it is clearly a highly
impractical task. Fortunately, it is not required either. It would suffice to represent sea
waves in a probabilistic manner.

If X(t) represents a random process, say the wave elevation at a particular observation
station, all we will be able to record is one form of X(t) as it unfolds over time. We call this
a realization X(1)(t) of the random process X(t). Notice that it is not possible to observe the
random process itself — only one realization of it. From Figure 23 it can be seen that there
exist two possible ways of defining the statistical properties of the random process X(t). We
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can consider the statistical properties taken “across the ensemble” at fixed values of time
t = t1, t = t2, etc., or we may consider the properties of the random process taken “along
the ensemble” where t1, t2, etc., are assumed to vary. Description of a random process so
general would require an enormous amount of information. Fortunately, for certain random
processes such as sea waves, it is possible to assume that the process is of a special form:
it is “stationary”, “homogeneous”, and “ergodic”. For sea waves it should be adequate to
describe the wave environment over a period of a few hours (or before the next weather
report comes in), and to assume that the wave motion is stationary (its statistics remain
the same over time) during this interval of time. Likewise, we have no interest in describing
the wave environment simultaneously throughout the world, a small area of operations is
all we need, and we can assume that the wave motion is homogeneous (its statistics remain
the same in that area) in space over the area in question. These statements have meaning
only in a statistical sense, since for a random wave system it would be funny to suggest
that the precise wave motion is the same at different points in space or time. Finally, it is
reasonable to assume that the statistical properties of the waves measured over time, should
be “typical” of the random process; i.e., they should be the same even if we were able to
sample all possible realizations of the wave motion at a fixed time. Such random processes
are said to be ergodic.

To arrive at a statistical description of the seaway we start with the general representation
(92), which we write in the form

η(x, y, t) = �
∫∫

dA(ω, θ) exp[−ik(x cos θ + y sin θ) + iωt] . (136)

Here the wave number k is defined in terms of the frequency ω by the appropriate dispersion
relation, and the differential wave amplitude dA is a complex quantity of random phase and
magnitude proportional to the square root of the differential energy dE, see equation (102).
The average energy density can be computed by squaring (196) and taking its average value.
The only contribution to this average will be from combinations of the form (ω, θ) = (ω′, θ′),
with the final result

η2 = 1
2

∫∫
dA(ω, θ)dA∗(ω, θ) ≡

∫ ∞

0

∫ 2π

0
S(ω, θ) dω dθ , (137)

where (∗) denotes the complex conjugate. This approach to random sea waves is motivated by
the deterministic distribution of plane waves and the desire to extend that representation to
the random case. The function S(ω, θ) is called the spectral density and more rigorously can
be defined as the Fourier transform of the correlation function for the free surface elevation.
Comparing (137) and (102) we can see that the total mean energy of the wave system per
unit area of the free surface is equal to

E = ρg
∫ ∞

0

∫ 2π

0
S(ω, θ) dθ dω . (138)

It is customary to ignore the factor ρg and to refer to the function S(ω, θ) as the spectral
energy density or simply the energy spectrum. More specifically, this is a directional energy
spectrum; it can be integrated over all wave directions to give the frequency spectrum

S(ω) =
∫ 2π

0
S(ω, θ) dθ . (139)
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If it is desired to visualize the amplitudes Ai of the wave components we can use

1
2
A2
i = S(ωi) δωi ,

so that a component amplitude is

Ai =
√
2S(ωi) δωi , (140)

in the limit as δωi → 0. Of course, this cannot be evaluated directly, but it can be approx-
imated when δωi is taken to be very small, see Figure 24. Using equations (138) and (139)
we can see that

E =
∫ ∞

0
S(ω) dω , (141)

i.e., the area under the spectrum S(ω) of Figure 24 is equal to (within the constant ρg) the
mean energy stored in that particular wave system.

If one attempts to find the sea wave spectrum from measurements of the free surface
elevation at a single point in space, for instance by recording the heave motion of a buoy, the
directional characteristic of the waves will be lost. Only the frequency spectrum (139) can be
determined from such a restricted set of data. A limited amount of directional information
follows if one measures the slope of the free surface, for example by measuring the angular
response of the buoy as well as its heave. A complete description of the directional wave
spectrum requires an extensive array of measurements at several adjacent points in space,
and there are practical difficulties associated with task.

As a simpler alternative, one can assume that the waves are unidirectional, with the
energy spectrum proportional to a delta function in θ. Wave spectra of this form are called
long crested, since the fluid motion is two dimensional and the wave crests are parallel. If one
assumes that the spectrum is of this character, with the direction prescribed, the frequency
spectrum (139) is sufficient to describe the wave environment.

If the waves are generated by a single storm, far removed from the point of observation,
it might be presumed that these waves would come from the direction of the storm in a long
crested manner. The limitations of this assumption are obvious to anyone who has observed
the sea surface. While a preferred direction may exist, especially for long swell that has
traveled large distances, even these long waves will be distributed in their direction, and for
short steep waves the directional variation is particularly significant. Since the superposition
of such waves from a range of different directions appears in space as a variation of the free
surface elevation in all directions, these waves are known as short crested waves.

Usually in the fields of ocean engineering and naval architecture it is customary to assume
that the waves are long crested. With such a simplification it is possible to use existing
information for the frequency spectrum (139), which is based on a combination of theory
and full scale observations. Sea wave spectra depend on the velocity of the wind as well
as its duration in time and the distance over which the wind is acting on the free surface.
This distance is known as the fetch. Wave spectra that have reached a steady state of
equilibrium, independent of the duration and fetch are said to be fully developed. A semi–
empirical expression for the frequency spectrum of fully developed seas is

S(ω) =
αg2

ω5
exp

[
−β

(
g

Uω

)4
]
. (142)
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Here α and β are nondimensional parameters defining the spectrum, and U is the wind
velocity at a standard height of 19.5 meters above the free surface. This two parameter
spectrum is sufficiently general to fit quite a few observations and is consistent with theo-
retical predictions of the high frequency limit. The most common values for the parameters
in (142) are

α = 8.1× 10−3 and β = 0.74 , (143)

and with these values, (142) is known as the Pierson–Moskowitz spectrum. the resulting
family of curves is shown in Figure 25 for wind speeds of 20 to 50 knots. It can be seen that
the energy in the wave system increases as the wind speed increases. A typical actual wave
spectrum, fetch limited, is also shown in Figure 25 where it can be observed that the main
difference with (142) is the existence of a twin peak — usually associated with swells where
two distinct wave systems dominate.

Directional characteristics can be introduced into the fully developed spectrum (142) by

S(ω, θ) = S(ω)Θ(θ) , (144)

where Θ(θ) is an appropriate spreading function typically of the form

Θ(θ) =
2

π
cos2 θ . (145)

A comparison between such an idealized and an actual directional specrtum is also shown
in Figure 25.

Now that we are equipped with a suitable description of the sea we can proceed with
the statistical properties of the sea waves. If the spectrum is assumed to be of narrow
bandwidth, the wave amplitudes follow a Rayleigh distribution. The probability that the
wave amplitude A lies within the differential increment (A,A + dA) is p(A) dA, where the
normalized probability density function is given by

p(ζ) = ζ exp(−ζ2/2) . (146)

Here ζ = A/m
1/2
0 is the normalized wave amplitude, and m0 is the total energy of the

spectrum, or the integral of S(ω) over all frequencies. More generally, the moments mi of
the spectrum are defined by

mi =
∫ ∞

0
ωiS(ω) dω , i = 0, 1, 2, . . . (147)

Statistics for the wave height H = 2A can be derived using the probability density
function (146). Thus, the average wave height H is given by

H = 2
∫ ∞

0
Ap(ζ) dζ = (2m0)

1/2 . (148)

For most purposes, however, we are interested primarily in the larger waves. The most
common parameter that takes this into account is the significant wave height, H1/3, defined
as the average of the highest one third of all waves. This is computed by

H1/3 =
2
∫∞
ζ0
Ap(ζ) dζ∫∞

ζ0
p(ζ) dζ

, (149)
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where the lower limit of the integration is defined by∫ ∞

ζ0
p(ζ) dζ =

1

3
. (150)

Using (150) we can find
H1/3 = 4.0(m0)

1/2 . (151)

Other important parameters of the wave system are defined in Figure 26 and can be
computed as follows. An average frequency of the spectrum can be defined as the expected
number of zero upcrossings per unit time, that is, the number of times the wave amplitude
passes through zero with positive slope. The final result here is

ωz =
(
m2

m0

)1/2

. (152)

The momentsm0 andm2 can be computed without difficulty for the two parameter spectrum
(142), and it follows that

H1/3 = (2.0)
U2

g

(
α

β

)1/2

, (153)

and

ωz = (πβ)1/4
(
g

U

)
. (154)

Substituting the values (143) for the Pierson–Moskowitz spectrum gives the results shown in
the table that accompanies Figure 26. Also shown in the table is the approximate Beaufort
scale of the sea states for each wind speed and the average value of the wave length. The
results shown in the table are based on the assumption of a fully developed sea. It is unusual
for a storm of 50 knots intensity to last long enough for the sea to develop fully. Thus, while
wind speeds of this intensity are not uncommon, the corresponding wave height and length
shown in the table are rare.

The average period between zero upcrossings is

Tz =
2π

ωz
= 2π

√
m0

m2

, (155)

while the average period between peaks (maxima) or hollows (minima) is computed by

Tc =
2π

ωc
= 2π

√
m2

m4

. (156)

For a narrow banded process, Tc and Tz do not differ by much.
Much of the uncertainty regarding the process by which the wind speed is related to

the waves can be avoided by identifying the Pierson–Moskowitz spectrum in terms of the
significant wave height rather than the wind speed or sea state. However, if the sea is
not fully developed, the corresponding wave lengths will be shorter since dispersion has
less opportunity to occur. Thus, the Pierson–Moskowitz spectrum underestimates the peak
frequency for the higher spectra and conversely for smaller waves. To account for this
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problem, the two parameter spectrum (142) is used together with full scale observations
of the significant wave height and period. The parameters α and β are then determined
from (153) and (154). The significant wave height, H1/3, and the frequency ωz can be easily
computed from an experimental record of wave elevations at a given point. It is interesting
to note that H1/3 and Tz are closely correlated to human observations from the deck of a
ship; the human mind disregards the smaler waves and pays closer attention to the largest.

The significant wave height is relevant as an indication of the most likely waves to be
encountered, but for design purposes a more conservative estimate is needed. Thus we are
led to consider the statistics of extreme values.

From the Rayleigh distribution (146), the cumulative probability of a single wave being
less than A = ζ(m0)

1/2 is

P (ζ) =
∫ ζ
0
p(ζ ′) dζ ′ = 1− exp(−ζ2/2) . (157)

The probability that the amplitudes of N statistically independent waves are all less than A
is PN , and the probability that at least one wave amplitude will exceed this value is

1− PN = 1− [1− exp(−ζ2/2)]N . (158)

The negative derivative of (158) gives the probability density of the extreme value in N
cycles, in the form

g(ζ) = Np(ζ)[P (ζ)]N−1 . (159)

The wave amplitude for which this probability density function is a maximum can be found
by setting the derivative of (159) equal to zero. Simplifying the resulting expression for
N � 1, the most probable extreme value in N waves is given by

A = (2m0 lnN)1/2 . (160)

It has been shown that the probability of exceeding (160), for large N , is 1 − e−1 = 0.632.
Thus a more conservative criterion is required, and for this purpose we define the design
extreme value as the wave amplitude that will be exceeded in N encounters with a probability
of only 1 percent. From (158) it follows that

1− PN = 0.01 , (161)

so that

P = (0.99)1/N = e(1/N) ln(0.99) � e−0.01/N � 1− 0.01

N
. (162)

Combining (162) with (157) and solving for the wave amplitude, we get

A =
(
2m0 ln

N

0.01

)1/2

. (163)

This is the design extreme value, or the maximum wave amplitude in N encounters that
will not be exceeded with probability 99%. Since the significant wave amplitude is half the
wave height (151), the design extreme value exceeds the significant value by the ratio

Design Extreme

Significant
=
(
1

2
ln

N

0.01

)1/2

. (164)
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This factor is not sensitive to the value of N , nor to the arbitrary choice of 0.01 as the
probability that the extreme wave will exceed this value. For example, with N = 100, (164)
is equal to 2.15; for N = 106 this factor increases to 2.63. Since (162) is much more sensitive
to the value of m0 than to (N/0.01), the most important factor to estimate correctly is the
total wave energy.

3. Ship Motions in Waves.

A subject of great concern to us is the effect suffered by a ship or a near–surface submarine
in the presence of sea waves. The most common responses of concern are ship motions and
structural loading. In the simplest case it may be assumed that the waves incident upon
the body are plane progressive waves oof small amplitude, with sinusoidal time dependence,
as described in the previous Section. Ship motions are assumed to be sufficiently small so
that linear theory holds. In the context of these notes we will try to keep the discussion at a
rather informal level, and after a general inrtoduction to the problem we will study the heave
and pitch motions of a floating body in regular waves coming from the bow in Section 3.1.
Derived responses such as velocities, accelerations, added resistance in waves, and bending
moments in waves are discussed in Section 3.2. The results that are obtained in regular waves
are not without physical interest, but their practical value might be questioned given the
highly irregular nature of actual waves in the sea. Fortunately, the statistical description of
the seaway of Section 2.5 makes the study of ship motions in irregular seas a rather straight
forward extension of the regular waves case, and this is done in Section 3.3. A discussion
of computational aspects of the problem is the subject of Section 3.4, and some seakeeping
considerations in ship design are delayed until Section 3.5.

3.1 Motions in regular waves.

In the problem to be formulated here, plane progressive waves of amplitude A and di-
rection θ are incident upon a stationary body, which moves in response to these waves, in
general, with six degrees of freedom as illustrated in Figure 27. We define three translational
motions parallel to (x, y, z) as surge, heave, and sway, and three rotational motions about
the same axes as roll, yaw, and pitch, respectively. The corresponding velocities Uj(t) will
be sinusoidal in time, with the same frequency (for linear motions) as the incident waves,
therefore

Uj(t) = �
(
iωηje

iωt
)
, j = 1, 2, . . . , 6 . (165)

Here the complex amplitude is employed in preference to the body velocity, since the hydro-
static restoring forces that will be encountered are proportional to the amplitudes of heave,
roll, and pitch. These restoring forces are analogous to the familiar “spring constant” of a
mechanical oscillator.

If the incident wave is sufficiently small in amplitude and the ship is stable, the resulting
motion will be proportionally small, so we can utilize linear theory. The total velocity
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potential φ can be written, using the superposition principle, in the form

φ(x, y, z, t) = �

 6∑
j=1

ηjφj(x, y, z) + AφA(x, y, z)

 eiωt

 . (166)

In this decomposition, the function φj represents the velocity potential of a rigid body motion
with unit amplitude, in the absence of the incident waves. For example, if the body is forced
by an external mechanism to oscillate in heave with unit amplitude, in otherwise calm water,
the resulting fluid motion will be represented by the potential φ2. A similar interpretation
applies for each mode of rigid body motion. The appropriate boundary conditions to be
imposed on the ship surface S are obtained by equating the normal derivative of (166) to
the normal component of the body velocity

∂φj
∂n

= iωnj , j = 1, 2, 3, (167)

∂φj
∂n

= iω(r × n)j−3 , j = 4, 5, 6, (168)

on S. Here n is the unit normal vector on the body surface, directed into the body, and r is
the position vector (x, y, z). The forced motion potentials φj, j = 1, 2, . . . , 6, are generally
known as solutions of the radiation problem.

The remaining potential represented by the last term in (166) is due to the incident
waves and their interaction with the body. Given the assumption of linear superposition,
this potential is independent of the body motions and may be defined with the body fixed
in position. The appropriate boundary condition on the body surface is

∂φA
∂n

= 0 , on S . (169)

The problem so defined is known as a wave diffraction problem.
The presence of the body in the fluid results in diffraction of the incident wave system and

the addition of a disturbance to the incident wave potential associated with the scattering
effect of the body. This process can be emphasized by the additional decomposition

φA = φ0 + φ7 , (170)

where φ0 is the incident wave potential and φ7 is the scattering potential that must be
introduced to represent the disturbance of the incident waves by the fixed body. The inci-
dent wave potential is known, from (79) for infinite depth or (84) for finite depth, and the
scattering potential must satisfy the boundary condition

∂φ7

∂n
= −∂φ0

∂n
, on S . (171)

In addition to the above body boundary conditions, each potential φj must satisfy
Laplace’s equation

∇2φj = 0 , j = 0, 1, . . . , 7 , (172)
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throughout the domain of the fluid, and condition (71) on the bottom for finite depth, or
alternatively φj → 0 as z → ∞ for deep water. On the free surface, the linearized boundary
condition follows from (72) and (166) in the form

−ω2

g
φj +

∂φj
∂z

= 0 , on z = 0 , j = 0, 1, . . . , 7 . (173)

Finally, an appropriate radiation condition at infinity is imposed, which states that the
waves on the free surface, other than those due to the incident potential itself, are due
to the presence of the body; and, therefore, the waves associated with the potentials φj,
j = 1, 2, . . . , 7 must be radiating away from the body.

At this stage the problem formulation is complete and the velocity potential φ in (166)
can be found. A general discussion of some popular solution techniques can be found in
Section 3.4. Once the velocity potential is determined we can obtain the oscillatory force
and moment acting on the body by substituting (166) into Bernoulli’s equation. Retaining
only the first order linear terms in (119), the total pressure is given by

p = −ρ
(
∂φ

∂t
+ gz

)

= −ρ�

 6∑
j=1

ηjφj + A(φ0 + φ7)

 iωeiωt

− ρgz . (174)

The force F and moment M on the body can then be determined by integrating the fluid
pressure (174) over the wetted surface S

F =
∫∫
S
pn dS , (175)

M =
∫∫
S
p(r× n) dS . (176)

Substituting (174) into (175) we get an expression of the form

F = −ρg
∫∫
S
nz dS

−ρ�
 6∑
j=1

iωηje
iωt
∫∫
S
nφj dS


−ρ�iωAeiωt

∫∫
S
n(φ0 + φ7) dS . (177)

The three integrals in (177) represent distinctly different contributions to the total force; the
development for the moment is similar. The first is the hydrostatic component and produces
terms that are proportional to body displacements. The second produces components that
are proportional to body velocities (these are called damping terms) and body accelerations
(called added mass terms). Finally, the third integral represents the wave exciting force which
is further broken down into the Froude–Krylov force (the contribution from the incident
potential φ0 alone), and the diffraction force (the contribution from the scattering potential
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φ7). These forces and moments are substituted then into Newton’s law and the six degree
of freedom equations for the body motions are obtained.

As a more down to earth case, consider the motions of a body that is allowed to heave
and pitch only. Such motions are usually decoupled, for typical ships, from the horizontal
plane motions in sway or yaw. The final coupled form of the heave and pitch equations of a
ship in regular waves is then

(m+ A33)η̈3 +B35η̇3 + C33η3 + A35η̈5 +B35η̇5 + C35η5 = F3e
iωt , (178)

(I55 + A55)η̈5 +B55η̇5 + C55η5 + A53η̈3 +B53η̇3 + C53η3 = F5e
iωt , (179)

where m is the ship’s mass and I55 the mass moment of inertia with respect to the y axis.
The Ajk terms correspond to added mass, in phase with vertical accelerations, and physically
Ajk represents the force component in the j–th mode of motion per unit acceleration in the
k–th mode of motion. The Bjk terms correspond to hydrodynamic damping, in phase with
vertical velocity, and physically Bjk represents the force component in the j–th mode of
motion per unit velocity in the k–th mode of motion. Terms involving the coefficients Cjk
are the restoring forces and moments, representing the net hydrostatic buoyancy effects of the
ship motions. These terms are related to the hydrostatic coefficients used in the calculations
of Part I; i.e., C33, C35, and C55 are related to tons per cm immersion, change in displacement
per cm, and moment to trim one cm, respectively. The right hand side represent the heave,
F3, and pitch, F5, Froude–Krylov and diffraction excitation forces as mentioned before. F3

and F5 are taken to be the complex exciting force and moment amplitudes, containing both
amplitude and phase information. Expressions for the above coefficients are presented in
Fig. 28.

The previous equations of motion are valid for a ship with zero forward speed. If the
ship possesses a forward speed U , this can be assumed, within linearity, constant. The only
change in such a case is in the frequency ω due to a Doppler shift effect. If we consider the
case of head seas, or waves from directly ahead, we can assume that both the wave excitation
forces and the resultant oscillatory motions are linear and harmonic, acting at the frequency
of wave encounter

ωe = ω +
2π

λ/U
= ω + kU = ω +

ω2

g
U . (180)

For the general case of waves at a direction θ, where θ = 180o corresponds to head seas and
θ = 0o to following seas, the frequency of encounter ωe becomes

ωe = ω − ω2

g
U cos θ = ω − kU cos θ . (181)

In linear theory, the harmonic responses of the vessel, ηj(t), will be proportional to the
amplitude of the exciting forces and at the same frequency, which is now ωe instead of ω.
Consequently, the ship motions will have the form

ηj(t) = ηje
iωet ,

η̇j(t) = iωeηje
iωet , j = 3, 5 , (182)

η̈j(t) = −ω2
eηje

iωet ,
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where ηj is the complex response amplitude, and j = 3 for heave and j = 5 for pitch.
Substituting equations (182) in (178) and (179), the eiωet terms cancel out and the resulting
equations are

[−ω2
e(m+ A33) + iωeB33 + C33]η3 +

(−ω2
eA35 + iωeB35 + C35)η5 = F3 , (183)

[−ω2
e(I55 + A55) + iωeB55 + C55]η5 +

(−ω2
eA53 + iωeB53 + C53)η3 = F5 , (184)

where Ajk is the added mass coefficient in j–th direction due to k–th motion, Bjk is the
damping coefficient in j–th direction due to k–th motion, Cjk is the hydrostatic restoring
force coefficient in j–th direction due to k–th motion, and Fj is the complex exciting force
amplitude in j–th direction. Note than in equations (183) and (184) the origin is at the
center of gravity, which is assumed to lie on the waterline. In the more general case, the
term mη̈3 is substituted by mη̈3 −mxGη̈5, and the term I55η̈5 by I55η̈5 +m(zGη̈1 − xGη̈3),
where η1 is the surge motion amplitude. In other words, a coordinate coupling is introduced
similar to the maneuvering case.

Equations (178) and (179) are similar to the coupled equations of motion for a classical
two degree of freedom spring–mass–damper system. This similarity is only on the surface
though, and the analogy should not be pushed too far. The coefficients and the excitation
terms in the equations of motion here are functions of the frequency of motion. This in-
troduces memory effects and the correct solution of these equations of motion in the time
domain requires the addition of complicated convolution integrals. Only in slowly moving
reference motions we can assume the coefficients effectively constant and equal to their zero
frequency limit, and thus eliminate such convolution integrals in the differential equations.
This was the case during the maneuvering motions in the first section of this part. In order
to overcome this difficulty here it is necessary to consider the equations in the frequency
domain as was done in (183) and (184). Note that this is valid for linear motions though;
nonlinear seakeeping is not a straightforward extension of linearized motions as in the case
of ship maneuvering.

The determination of the coefficients and exciting forces and moments amplitudes rep-
resents the major problem in ship motion calculations. The problem can be simplified by
applying a strip theory (see Section 3.4) approach, where the ship is divided into transverse
strips, or segments. The added mass and damping for each strip are relatively easily calcu-
lated, using two dimensional potential theory or by suitable two dimensional experiments (in
which case the results for damping are contaminated by viscous damping too). The sectional
values are then appropriately combined to yield values for Ajk, Bjk, Cjk, and Fj . For the
case of heave and pitch in head seas the table on page 203 lists the formulas for calculating
the coefficients and the exciting forces.

As we mentioned previously, the exciting forces and moments are usually subdivided into
the Froude–Krylov and diffraction excitations. The Froude–Krylov excitations represent the
integration of the pressure over the body surface that would exist in the incident wave system
if the body were not present. The diffraction exciting forces and moments are caused by
the diffraction or modification of the incident waves due to the presence of the vessel. The
Froude–Krylov forces and moments are sometimes used to approximate the total exciting
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forces, and this is a considerably simpler task than diffraction force computations. This is
a good approximation if the wave length is much larger than the vessel length, such as in
the case of a small underwater vehicle in waves. For shorter wave lengths the approximation
is increasingly inaccurate because the diffraction force becomes significant, for example in
the case of a near surface submarine. For short waves the diffraction force may become
approximately one–half of the total exciting force. For the expressions in the table, the terms
in brackets proportional to c33 are the Froude–Krylov exciting force and moment, and the
terms involving a33 and b33 represent the hydrodynamic diffraction forces. That these forces
are given in terms of the same added mass and damping coefficients used in calculating the
radiation force coefficients, Aij and Bij, is the result of the so called Haskind relations. These
relations relate the diffraction exciting force to the incident wave and radiation potentials.
They allow the computation of the diffraction force without having to solve for the diffraction
potential. This is important because it means substantial savings in computer time for ship
motion prediction programs.

The factor eikx in the expressions accounts for the wave profile along the length of the
ship. Both the Froude–Krylov and diffraction parts of the exciting forces and moments are
multiplied by the term e−kT

∗(x), where k is the wave number and T ∗(x) is the mean draft for
the section, assumed to be S(x)/B(x), where S(x) is the sectional area and B(x) is the local
beam at the waterline. This is the result of the exponential decay of the dynamic pressure
in the incident wave as one moves deeper below the free surface. This effect is often called
the Smith Effect. For depths greater than approximately one wave length no variation in
pressure due to the incident waves can be felt. This decay in the incident wave dynamic
pressure results in an equivalent reduction in the magnitude of the exciting forces.

To solve equations (183) and (184) for the complex amplitudes, the equations are written
in the form

Pη3 +Qη5 = F3 , (185)

Rη3 + Sη5 = F5 , (186)

where

P = −ω2
e(m+ A33) + iωeB33 + C33 ,

Q = −ω2
eA35 + iωeB35 + C35 ,

R = −ω2
eA53 + iωeB53 + C53 ,

S = −ω2
e(I55 + A55) + iωeB55 + C55 .

The solution to the coupled equations (185) and (186) is then given by

η3 =
F3S − F5Q

PS −QR
, (187)

η5 =
F5P − F3R

PS −QR
. (188)

The limiting forms of the solutions for η3 and η5 are easily determined from (187) and
(188). At the high frequency limit, the exciting forces go to zero (a large number of very
short waves give individual contributions that cancel out when integrated along the length
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of the hull), and therefore the motions must also approach zero. Thus, a ship in waves can
be viewed as a low pass filter. In the low frequency limit, P , Q, R, and S approach the
values of their hydrostatic restoring force coefficients. The low frequency limit of F3 and F5

are found by using only the Froude–Krylov terms and expanding the eikx term for small k.
The net result is that in the limit of low frequency

η3 → ζ , (189)

η5 → −ikζ . (190)

Thus, for very long waves the heave amplitude approaches the wave amplitude (the ship is
riding the waves) and the pitch amplitude is the same as the maximum wave slope. The
phasing is such that the ship contours the waves. At intermediate frequencies the ship
motions may peak. Depending on hull form and speed, as well as wave direction, typical
peak values are in the range of 1 to 2 times the wave amplitude for heave and 1 to 1.5 times
the wave slope for pitch.

The cross coupling between heave and pitch results from the coefficients with subscripts
35 or 53. For a fore and aft symmetric ship, such as a barge, at zero forward speed the
cross coupling is zero; heave and pitch occur independent of each other. Even though typical
ships are almost fore and aft symmetric, the cross coupling between heave and pitch is very
important and must be retained in order to correctly predict the motions in head seas at
some forward speed. Although in hydrostatics we were able to treat parallel sinkage and
trim independently, for small displacements, we cannot in general do the same in seakeeping
due to the forward speed coupling effects.

The previous equations of motion for a floating body can be generalized for the six degree
of freedom case. In general, the equations will take the following form, where the overbars
have been dropped for brevity,

6∑
j=1

ηj [−ω2
e(Mij + Aij) + iωeBij + Cij ] = AFi , (191)

where Fi is the exciting force per unit wave amplitude A and Mij the appropriate mass
matrix element. These are six simultaneous linear equations, which can be solved for the
body motions ηj by standard matrix inversion techniques. Thus, in general, the body motion
ηj will be given by an expression of the form

ηj = A
6∑
j=1

[Dij ]
−1Fi , (192)

where Dij denotes the total matrix in square brackets on the left side of (191). The ratio
(ηj/A) is a quantity of fundamental significance, and is defined separately by

Zj(ω, U, θ) ≡ ηj
A

=
6∑
j=1

[Dij ]
−1Fi . (193)

Physically, this is the complex amplitude of body motion in the j–th mode, in response to
an incident wave of unit amplitude, frequency ω, and direction θ. The body itself moves
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with forward speed U . This ratio is generally known as the transfer function, or the response
amplitude operator, RAO. The RAO can be calculated from (193) once the added mass,
damping, exciting, and hydrostatic forces are known.

To illustrate the nature of the RAO, we return to the special case of heave for a body
with port/starboard and fore/aft symmetry at zero forward speed in head seas. Here there
are no cross coupling effects, and equation (187) reduces to

Z3(ω) =
F3

D33

=
F3

−ω2(m+ A33) + iωB33 + C33

. (194)

We can see from (194) that Z3(ω) → 1 as ω → 0, and Z3(ω) → 0 as ω → ∞, as we mentioned
before. For intermediate frequencies, the most significant feature of the motions will be a
resonant response at approximately the natural frequency where

ωn =
(

C33

m+ A33

)1/2

. (195)

At or near this resonant frequency, the body will experience a response of large amplitude
and a phase shift increasing from zero for lower frequencies to 180 degrees for ω � ωn.

As in the case of a classical mechanical oscillator, the resonant response will be inversely
proportional to the damping coefficient, but once more we must point out that this analogy
is a bit deceptive. Unlike a mechanical oscillator, here there is a connection between the
exciting force and the damping coefficient (this comes from the Haskind relations). Small
exciting forces are associated with light damping as well. In particular, for a two dimensional
or axisymmetric body the damping coefficient is proportional to the square of the exciting
force, and the resonant response will then be inversely proportional to the exciting force!
Thus, bodies deliberately designed with small exciting forces (small waterplane areas for
instance) will experience a large resonant response, in a highly tuned manner. Vertical spar
buoys are important examples of this category, as well as SWATH ships.

As a final remark on equation (194), we can see that for very long waves (low frequency ω)
the problem is predominantly hydrostatics: the response is dominated by the hydrostatics
coefficient C33 and the exciting force F3. In the other extreme case of short waves the
response is dominated by the exciting force F3, the virtual mass (m+A33), and the damping
B33; this is in the realm of ship vibrations. Ship motions in waves concentrate mainly on the
intermediate regime where F3, A33, B33, and C33 are all equally important. A typical plot of
the exciting forces and motions in heave and pitch is shown in Figure 28. This corresponds
to a particular RAO for a fixed ship forward speed and wave direction. A typical sketch
of how the heave RAO may vary with the ship Froude number is shown in Figure 29. For
certain ranges of speed and wave lengths there may be resonance with the development of
excessive ship motions. This leads to a voluntary speed reduction in a seaway, as discussed
in Section 3.5.

3.2 Derived responses.

Several aspects of ship response to waves are generally of greater importance in evaluating
the seakeeping performance of the ship. These are responses that can in principle be derived
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from the basic six modes of motion analyzed in the previous section. They include linear
motions such as

• Vertical and/or lateral motions, velocities, and accelerations at specific points.

• Relative motions between a location in the ship and the encountered waves.

Nonlinear effects arise in connection with

• Steering and maneuvering in waves.

• Added resistance and powering in waves.

• Wave bending moments and loads on the ship.

The absolute vertical displacement at a point x along the length of the hull, due to heave
and pitch, is given by

ξV A = η3 − xη5 , (196)

and since η3 and η5 are the complex amplitudes in heave and pitch motion, respectively, ξV A
contains both magnitude and phase information. The absolute vertical velocity is computed
from

ξ̇V A = iωeξV A , (197)

and the acceleration
ξ̈V A = −ω2

eξV A . (198)

From equations (196) to (198) we can find the response amplitude operator for motion,
velocity, or acceleration at a particular point once the RAO’s for heave Z3(ωe) and pitch
Z5(ωe) are known. For this we only need the magnitude of the corresponding complex
quantity. It should be mentioned that equations (197) and (198) are valid for zero forward
speed. For a nonzero forward speed U , they become

ξ̇V A = iωe(η3 − xη5) + Uη5 , (199)

ξ̈V A = −ω2
e(η3 − xη5) + 2iωeUη5 . (200)

Also of interest is the relative vertical motion between a point in the ship and the surface
of the encountered wave. This relative motion in regular waves is found by subtracting the
free surface motion from the vertical ship motion at the desired point, taking account of their
phase relationship. The free surface motion is composed of the incident wave, the diffracted
wave, the radiated wave, and the Kelvin wave due to the ship’s steady forward speed. The
traditional assumption is that the principal component is the incident wave; i.e., the incident
wave is not distorted by the presence of the ship. Then the amplitude of the relative vertical
motion in general is given by

ξV R = ξV A −Aeikx , (201)

where A is the wave amplitude and k the wave number. Then the RAO which requires only
the scalar or absolute magnitude is∣∣∣∣∣ξV RA

∣∣∣∣∣ =
∣∣∣∣η3 − xη5

A
− eikx

∣∣∣∣ . (202)
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The significance of the relative motion response is that, as we will see in the next section, the
moments of their spectrum provide probability measures related to anticipated deck wetness,
bow slamming, and propeller racing.

The problem of steering and maneuvering in waves depends upon systems for ship path
control as well as the ship sway, yaw, and roll motions including important nonlinear behav-
ior. Analysis of the problem goes beyond the scope of these notes and we briefly mention
here some of the potential dangers. In order to analyze the resulting motions we have to
include the wave exciting forces and moments for the horizontal plane in the maneuver-
ing equations of Section 1, and to take into account the important memory effects through
complicated convolution integrals. Furthermore, in the horizontal modes of motion the ship
will experience steady drift motions in addition to periodic motions, because of the lack of
hydrostatic restoring forces and moments in the horizontal plane. Similarly, in irregular seas
the ship will experience slowly varying surge, sway, and yaw motions with non zero means
in addition to motion with frequency components equal to the frequency of encounter of the
individual wave components. In quartering seas, the wave encounter frequencies are much
lower and good steering is particularly important. At very low encounter frequencies, i.e,
when the wave and ship speeds are nearly equal, the danger of loss of control and broaching
arises. Here the pressures may actually turn the ship broadside to the waves, and excessive
rolling or structural damage, or even the capsizing of small vessels, may result. In general,
broaching is more probable for a ship that is unstable on course in calm water than for one
that is stable.

The increase in required power resulting from ship motions in heavy seas arises from the
combined effect of several factors:

1. Added resistance caused by

(a) Direct wind and wave action.

(b) Indirect effects associated with ship motions.

2. Reduced propulsive efficiency caused by

(a) Increased propeller loading.

(b) Propeller racing.

(c) Unsteady propeller effects.

(d) Reduced hull efficiency.

When a ship is subject to heaving and pitching, the effect of the motions on resistance may
be significant. The added resistance in head seas may be considered to be made up of three
components:

1. One corresponding to that experienced by a ship forced to oscillate in calm water,
generating damping waves that dissipate energy.

2. Another caused by the phase shift between wave excitation and ship motions.

3. One resulting from the reflection and refraction of the incident waves by the ship.
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The following conclusions are generally considered to be valid for head seas

1. The added resistance is independent of the still water resistance.

2. The added resistance is proportional to the square of the wave height.

3. The pitching motion has a dominating effect upon the resistance increase.

4. The direct effect of the reflection of sea waves is relatively small.

5. The maximum added resistance occurs at a higher speed than that for pitch resonance,
if the natural pitching period is longer than the natural heaving period.

Equating added resistance to energy radiated by the pitching and heaving ship, we can
arrive at a simple expression for the mean added resistance of a ship in regular head seas

δR =
π

Lwωe

∫
b(x)|ξ̇V R|2(x) dx , (203)

where

b(x) = b33(x)− U
da33(x)

dx
,

and where a33(x) and b33(x) are the sectional heave added mass and damping coefficients, re-
spectively. Assuming that a33 goes to zero at the ends of the ship, after partial differentiation
and substitution, the mean added resistance at U and ωe becomes

δR =
π

Lwωe

∫ [
b33(x)|ξ̇V R|+ 2Ua33(x)

d|ξ̇V R|
dx

]
|ξ̇V R| dx . (204)

Since |ξ̇V R| represents the amplitude of relative velocity, it must be calculated by combining
the effects of pitch, heave, and wave elevation, considering their phase relationships, as
discussed previously. Figure 30 gives a broad overall picture obtained from service records
of speed versus power relationships in rough seas for a large containership. It shows a series
of average power curves corresponding to different degrees of sea severity. The limit lines
indicate the upper limits of attainable speed (based on wet decks, slamming, etc.) that
provide cut–off points for each power curve. The plot also shows the effect of the ship’s
heading to the waves.

Although wave loads enter implicitly into the calculation of ship motions, they are con-
sidered here under the heading of derived responses because, in order to determine the loads
at a particular instant of time, a solution to the ship motions must first be obtained. There
are three different levels at which wave loads may be needed for structural design purposes:

1. Instantaneous local hydrodynamic pressures on the surface of the hull as a result of
ship motions and ship wave interactions. These pressures may be needed over the
entire hull surface or only some portion of it.

2. Integrated instantaneous pressures yielding the longitudinal and torsional bending mo-
ments and shear force at amidships or other stations.
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3. Impulsive pressures on local areas of the hull which can cause vibratory hull response.

The vertical shear force on the ship is given by

V3(x) = I3(x)−HS
3 (x)−HD

3 (x)− F3(x) , (205)

where
I3(x) =

∫ x
0
m(x)(η̈3 − xη̈5) dx ,

is the inertial force;

HS
3 (x) = −ρg

∫ x
0
B(x)(η̈3 − xη̈5) dx ,

is the hydrostatic restoring force;

HD
3 (x) = −

∫ x
0
[a33(x)(η̈3 − xη̈5) + b33(η̇3 − xη̇5)] dx ,

is the hydrodynamic radiation (added mass and damping) force; and F3(x) is the wave
exciting (Froude–Krylov and diffraction) force, as discussed previously. Equation (205) is
valid for zero forward speed. A similar expression holds for nonzero forward speed as well as
bending moment in waves. These relations can be used to obtain a rational determination
of the loading of a ship’s hull and its structural response in regular waves.

3.3 Motions in a seaway.

Any conclusions drawn on the seakeeping behavior of a ship based on the critical exami-
nation of motion response in regular waves can, at best, assume only academic significance.
The establishment of the seakeeping behavior of a ship and the determination of explicit de-
sign parameters such as bending moments or added resistance, has to be done in a realistic
seaway. With the spectral description of sea waves given in Section 2.5, we can return to the
subject of body motions and generalize the results of the previous two sections in regular
harmonic waves. If the sea waves are described by the random distribution (136), and if the
response of the body to each component wave is defined by a response amplitude operator
Z(ω, θ), the body response will be

ηj(t) = �
∫∫

Zj(ω, θ)e
iωt dA(ω, θ) . (206)

The principal assumption here is that linear superposition applies, as it must in any event
for the underlying development of the RAO and the spectrum.

Like the waves themselves, the response (206) is a random variable. The statistics of the
body response are identical to the wave statistics as analyzed in Section 2.5, except that the
wave energy spectrum S is multiplied by the square of the RAO (this is a property of linear
systems). Thus, if the subscript R represents any body response, we have

SR(ω) = |ZR(ω)|2S(ω) , (207)

where ZR(ω) is the RAO of the response R, and S(ω) the spectrum of the seaway. Equation
(207) can then be utilized to obtain the spectrum of the response R, and the formulas of
Section 2.5 can be used to provide the statistics of this response in the particular sea state.
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To a large extent, equation (207) provides the justification for studying regular wave
responses. The transfer function ZR(ω) is valid not only in regular waves, where it has been
derived, but also in a superposition of regular waves, and ultimately in a spectrum of random
waves. Generally speaking, a vessel with favorable response characteristics in regular waves
will be good in irregular waves, and vice versa. This statement is oversimplified, however,
and the relative shape of the energy spectrum and the transfer function is very crucial. For
example, a large resonant response of the body will be of importance only if the resonant
frequency is located close to the peak of the wave energy spectrum, and vice versa.

The average period between zero upcrossings was determined by equation (155), and the
number between zero upcrossings per unit time is

NR
z =

1

2π

√√√√mR
2

mR
0

, (208)

where mR
0 , m

R
2 are the moments of the particular response R, whose spectral density is

given by (207). Equation (208) can be generalized for the case of the average number of
upcrossings above a specified level α as in

NR
z,α =

1

2π

√√√√mR
2

mR
0

exp

(
− α2

2mR
0

)
. (209)

Equation (209) can be utilized to determine such events as propeller emergence, deck wetness,
and bow slamming. If f represents the available freeboard (see Figure 31) at the wetness
station (say Station 1), the number of deck wetness events per hour is

Np = 3600 · 1

2π

√
m2

m0

exp

(
− f 2

2m0

)
, (210)

where m0, m2 are the moments of the vertical relative motion spectrum at Station 1. Nat-
urally, we can use a different parameter in equation (210), for instance f ′ = 1.25f and find
how often there will be excessive water on deck. The same equation can be used to estimate
the frequency of propeller racing, with f substituted by the depth at the propeller h. Of
course, m0, m2 are now the moments of the relative motion spectrum at the propeller. A
similar equation can be used to evaluate the frequency of bow slamming in a seaway. For
bow slamming to occur two things must happen simultaneously: the ship bottom at the
slamming station (say Station 1) must be out of the water and the relative velocity of the
ship bottom must exceed a certain threshold Uth, which is usually determined by experience.
In this case, the number of bow slammings per hour is given by

Nsp = 3600 · 1

2π

√
m2

m0
exp

[
−
(
H2

2m0
+

U2
th

2m2

)]
, (211)

where m0, m2 are the moments of the vertical relative motion spectrum at the slamming
station.

Equation (210) is based on the fact that the probability of event 1 to exceed the threshold
value f1 is

P1 = exp

(
− f 2

1

2m0,1

)
, (212)
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where m0,1 is the area under the spectrum of event 1. Equation (211) is based on the fact
that the probability that two statistically independent events 1 and 2 exceed the thresholds
f1 and f2, respectively is

P1,2 = P1P2 = exp

[
−
(

f 2
1

2m0,1
+

f 2
2

2m0,2

)]
, (213)

and

m0,velocity = m2,motion , (214)

m0,acceleration = m4,motion . (215)

This is because the spectrum of the derivatives of a random process is given in terms of the
spectrum of the process by

S(n)(ω) = ω2nS(ω) . (216)

In case where the ship has a nonzero forward speed equation (207) is still valid with the
frequency of encounter ωe substituted for ω

SR(ωe) = Z2
R(ωe)S(ωe) . (217)

Now the RAO spectrum of the response ZR(ωe) is derived precisely at the frequency of
encounter, while the spectrum of the seaway is known as S(ω) at the original frequency
ω. We can convert S(ω) to S(ωe) by noting that the energy of the seaway must remain
unchanged regardless of whether is viewed from a stationary point or from a moving ship,
in other words

S(ω) dω = S(ωe) dωe . (218)

Using equation (218) and the definition for the frequency of encounter (181), we can write
equation (217) as

SR(ωe) = Z2
R(ωe)S(ω)

(
1− 2ω

g
U cos θ

)−1

. (219)

The process by which S(ω) is transformed to S(ωe)

S(ωe) = S(ω)

(
1− 2ω

g
U cos θ

)−1

, (220)

is schematically depicted in Figure 32 for the case of head (θ = 180o) and following (θ = 0o)
seas.

3.4 Computational aspects.

Obtaining the RAO of a ship in regular waves is a relatively easy task, provided the body
added mass and damping coefficients, and the exciting forces and moments are known as
functions of frequency of motion. Computation of these coefficients is the most difficult part
of the problem. As we mentioned in Section 3.1, a popular solution technique is the strip
theory.
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While the details of the mathematical formulation of strip theory are still being debated,
the physical motivations are relatively easy to describe. First, it must be assumed that the
ship is a slender body (i.e., its beam and draft are much less than the length and changes
in cross section vary gradually along the length). Restricting the discussion to zero forward
speed and high frequencies, we would find that the fluid flow velocities in the transverse
direction are much greater than the longitudinal direction. Consequently, the flow field at
any cross section of the ship may be approximated by the two dimensional flow in that
“strip”. To obtain the total effect on the ship, the effects of each strip are integrated along
the length. For example, the strip theory approximation for the heave added mass is

A33 =
∫
L
a33(x) dx , (221)

where a33(x) is the two dimensional added mass, and L denotes that the integration is over
the entire ship length. Expressions similar to (221) were presented in the table on page 203
for heave and pitch motions. The sectional added mass, a33, is computed by solving a two
dimensional hydrodynamic problem. The essence of strip theory is thus to reduce a three
dimensional hydrodynamic problem to a series of two dimensional problems which are easier
to solve.

For low frequencies and ships with forward speed the strip theory approximation is no
longer straight forward and different initial assumptions lead to different formulations. A
mathematically consistent analysis using slender body theory has revealed that the leading
order terms involve only the zero speed pure strip theory coefficients. The effects of forward
speed are of a slightly higher order and are present only in the cross coupling coefficients.

The key to a successful strip theory computer program for ship motions is to have a good
method to solve the corresponding two dimensional problem, the evaluation of integrals such
as (221) is trivial. In ship hydrodynamics the two most popular methods for solving the two
dimensional problem are boundary integral and multipole methods.

A typical boundary integral method is Frank’s method which consists of dividing the ship
section into a series of straight line segments. Over each segment fluid sources with constant,
but unknown, strengths are distributed. The form of the source potential is chosen so that
the boundary conditions on the free surface and at infinity are met. The unknown source
strengths are found by satisfying the body boundary conditions at the center point of each
segment. Knowing the source strength, the velocity potential can be found, and the sectional
added mass and damping coefficients by appropriate integrations around the section.

The advantages of Frank’s method are that it is computationally fast and any ship cross
section can be approximated with as much accuracy as desirable. Typically, 8 to 10 segments
on a half section are enough to get accurate added mass and damping coefficients for heave
and pitch motions. Slightly more segments seem to be needed for the transverse motions,
particularly for roll. The primary disadvantage of Frank’s method is the presence of the so
called irregular frequencies. Most of the boundary integral methods are plagued by irregular
frequencies when the cross section penetrates the free surface. The irregular frequencies are a
set of discrete frequencies at which the solution obtained from the boundary integral method
is not unique or “blows up”. For most ship types the irregular frequencies are often above
the range of practical interest. However, for certain section types such as transom sterns or
offshore transport barges, the irregular frequencies can cause calculation difficulties. Several
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techniques for circumventing the problem of the irregular frequencies have been proposed,
and research in the subject is continuing.

The multipole method consists of the superposition of potential functions that all satisfy
the Laplace equation, the free surface boundary condition, and the condition at infinity.
The potential functions represent a source and dipole at the origin, which give the radiated
waves at infinity, and a series of multipole potentials that die off rapidly as one moves away
from the origin. The strengths of the source, dipole, and multipoles are all determined
such that the body boundary condition is met. The problem can be solved for the circular
section case, and for sections that are not circular in shape conformal mapping is used. In
conformal mapping the actual section is mapped through a change in variables in a circular
section, the problem is solved there, and then the solution is transferred back to the original
section through the inverse mapping. The difficulty of the technique here is to determine
the appropriate mapping function for each section. The most common mapping uses the
so called Lewis forms. This uses a two parameter mapping function based on the sectional
beam to draft ratio, B(x)/T (x), and the sectional area coefficient βn = S(x)/(T (x)B(x)).
Lewis forms turn out to be ship–like, and the principal dimensions of each section (beam and
draft) and its sectional area (and hence the ship’s displacement) remain the same through the
transformation. Figure 33 shows the section shapes for various Lewis sections for different
beam to draft ratios and sectional area coefficients. In the same figure it can be seen how
well Lewis forms approximate the sections of a Mariner–type hull. Note that most of the
stations are fairly well approximated. The bottom is not exactly flat, but this makes little
difference in the added mass and damping. The bulb sections near the bow and the wine
glass sections near the stern are not well approximated, however.

Lewis forms cannot fit all ship sections. For any given beam to draft ratio there is a
permissible range for the sectional area coefficient. For ship sections outside of the permissible
range, modifications must be made. Some ship motions programs artificially modify B/T or
βn until it fits into the range. This may sound alarming, but for strip theory calculations this
approach is not too bad because the final computed motions are hardly affected. Another
approach is to alter the mapping function slightly to give a different section shape for the
same two parameters. Such a modification exists and is used for mapping bulbous–type
sections. A different technique involves the use of a third parameter in the family, the local
centroid of each section. We have then a three parameter extended Lewis family which can
map either U or V–shaped sections for the same area and beam to draft ratio. An example
of this extended Lewis family is shown in Figure 34 where two extreme variations of the same
parent hull for a general purpose corvette are created with the same section dimensions and
areas and different values of the vertical center of buoyancy. This allows comparative studies
of changes in the underwater hull geometry while keeping the ship’s displacement the same.

In summary, Frank’s method and conformal mapping techniques are the two most com-
mon approaches to computing the two dimensional coefficients for use in strip theory. Of
course it should be borne in mind that in all of these models the problem is formulated in
the frequency domain leading to equations that have meaning only if the body motions are
sinusoidal in time. In more general situations, such as a ship performing a maneuver with
varying speed, the frequency domain approach is meaningless. An alternative approach here
is to formulate the problem directly in the time domain. The flow created by the body
motions is represented by a singularity (source and sink) distribution on the body surface.

53



The body surface is usually approximated by an ensemble of plane quadrilateral elements
of constant strength. The resulting integral equations are satisfied at selected collocation
points giving a system of algebraic equations for the singularity strengths. The technique is
used to compute the impulse response function of the body, and then the dynamic equations
of motion can be solved for any initial conditions or excitation by convolution. As a closing
remark of this section, we must point out a rather important peculiarity of the problem.
Since the ultimate goal is to find the hydrodynamic forces on the hull, we only need the val-
ues of the velocity potential and its derivatives on the hull (this through Bernoulli’s equation
will yield pressures and when integrated forces and moments). The values of the velocity
potential inside the fluid domain are of no immediate interest as far as ship motions are
concerned. This feature combined with the fact that the fluid domain may well extend to
infinity explains why finite difference or finite element techniques are rarely used in this type
of problem. What is considered more efficient is replacing the body by a suitable distribution
of source singularities.

3.5 Seakeeping considerations in design.

Unfortunately, seakeeping design is not generally carried out well, if any attention is
given to it at all in a preliminary design phase. There is no excuse for this situation, as the
tools are at hand to do an excellent job. Furthermore, a preliminary investigation of the
seakeeping qualities of a ship at a given sea environment does not demand a geometric hull
description as accurate as other aspects of ship design, for example hydrostatic calculations.
Using for example Lewis forms, all that one needs is sectional beams, drafts, and areas; the
particular geometry associated with these quantities being of no interest. There is no reason
for there to ever be any surprise in the seakeeping qualities of a ship. The experimental and
computational tools, while having some important deficiencies, are sufficiently advanced so
that the designer can can have a clear idea of the seakeeping qualities of his ship. Further,
he can direct his design in the very critical early stages in such a way as to avoid some of
the most serious problems. The subject of “Design for seakeeping” can be roughly divided
into three areas:

• Habitability

• Operability

• Survivability

Habitability is concerned with providing the crew with an environment which permits
them to function effectively and without performance degrading. Operability may include
some spects of habitability, but the concern here goes further: the ability of the ship with all
of its mechanical equipment to be operated by the crew to carry out the assigned mission in
the ocean environments in which it is expected to function. This includes such things as gun
accuracy, helicopter take–off and landing operations, keeping instruments operating, towing
devices for oceanographic research, ensuring the safety of deck equipment, holding course in
quartering seas, and so on. Survivability takes us beyond operability. It is concerned with
what happens to the ship when conditions become so rough that the ship or any of its major

54



subsystems is in danger of damage or destruction. The environment is now one of those very
severe storms (or Exocets) that a ship sees only once or twice in its lifetime. Habitability is
no longer a factor of primary concern and operability is important only with respect to the
most essential subsystems.

Even though these three qualities are quite different in nature, they are all affected by
the following:

• Average or characteristic motions in all 6 degrees of freedom.

• Characteristic accelerations in all 6 degrees of freedom.

• Extreme motions and accelerations.

• Increase in required power.

• Green water and spray.

• Stability on course including tendency to broach.

• Slamming and slamming loads.

• Hull girder bending moments.

• Wave induced vibrations.

• Local sea loads.

• Hull deflection.

• Propeller racing and tail shaft loading.

The list is quite extensive and every item has its own effect. As an example, standard NATO
criteria for comparative assessment of frigate seakeeping qualities in joint operations, with
regard to helicopter operations are shown in Fig. 36.

The criteria levels for continuous responses are given as significant single amplitudes. It
can be seen that each of the items in the table can be calculated according to the discussion in
the previous sections. The results are usually presented in the following form: Suppose that
the ship will be operating in a sea environment characterized by a significant wave height
and a certain modal period, so that the sea spectrum is defined. For all around the clock
ship headings and for ship speeds up to 30 knots, a polar plot similar to the one in Figure
35 is prepared. The shaded areas in the plot show that one or more of the performance
criteria is exceeded. Letting the polar area of the disk in the figure be A0 and the subset
of A0 within which the ship can conduct helicopter operations be A, a performance index
characterizing the ability of the ship to perform this specific operation in the specified sea
condition can be defined by 100(A/A0). For the case of the figure, this performance index is
44%. Such computations can be performed for different sea spectra, for example varying the
significant wave height within the observed limits for the particular area. The performance
indices can then be added (in a weighted sum to account for the probability of occurrence
of a particular wave height in the area) so that a combined performance index is obtained.
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If this is repeated for a number of different ships or design options, an optimal hull with
respect to some critical seakeeping related operation can be obtained. It should be clear
now that such computations can be routinely performed using the principles in the previous
sections and a good regular waves hydrodynamics solver.

Assuming that the designer can establish acceptable ranges for the parameters of his
design, it is possible for him to determine at a very early stage what the range in seakeeping
qualities will be, and what influence he can exert over these qualities. There are three critical
phases in the design process, which are:

1. The definition of the environment in which the ship is expected to operate.

2. Establishing quantitative and qualitative requirements for seakeeping performance
based on the intended mission of the ship.

3. The evaluation of the design to establish whether or not it meets the requirements,
and to modify the design if it should become necessary.

Most ships are expected to operate in a relatively well defined portion of the ocean, and sea
statistics are generally available throughout the world. The conversion of the mission profile
for a ship design into hard quantitative and qualitative measures, such as those presented in
the previous table, is one of the most difficult problems the ship designer will face. Not only
experience is limited here, but people and weapon systems change all the time, which makes
the establishment of universally accepted criteria a task next to impossible. Fortunately, for
comparative evaluations this does need to be exact. The evaluation of the design can only
be performed by taking into account the crucial operational restrictions and specifications of
the ship and its mission. As an example, suppose that the Navy needs a small aircraft carrier
intended to have as its primary operating area the waters between northern Great Britain
and Iceland. Assume that the hull shape and size have been selected and the designer is
concerned with one final problem, the plan form of the flight deck. Because of the small size
of the carrier, space on the flight deck is at a premium, and the operators consider that the
carrier will be far more usable if the flight deck maintains its midship width all the way to
the bow. However, this would imply a very large flare at the bow and suggests that flare
slamming could affect both operability and survivability. The designer has the option of
tapering the flight deck in order to reduce the flare at the bow and greatly reduce the danger
of damage if slam occurs. Tapering is clearly a solution to slamming, but would not be
accepted by the operators unless they are convinced that the rectangular plan form would
seriously compromise the ship. Deck operations is not the only reason for keeping an amount
of bow flare, though. A sufficient amount of flare is helpful in deflecting water outward as
the bow moves downward into a wave to decrease the occurrences of deck wetness and to
increase effective freeboard. The final form of the flight deck in this case would have to be
determined from a rational examination of which criterion is the most limiting factor in the
particular sea environment.

Besides ship motions, another factor that influences the behavior of a ship in waves is
the speed loss. Speed loss in waves takes one of the two forms that are schematically shown
in Figure 36. The involuntary speed reduction is due to the added drag in waves and the
decrease in propulsive efficiency due to the interactions of the propulsor and the waves. The
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attainable speed of large low–powered ships in rough seas is determined primarily by this
involuntary speed reduction. In fact, large supertankers are usually slowed down sufficiently
by rough seas to avoid problems of severe motions. But for moderate to high–speed ships
there is also a voluntary speed reduction related to ship motions. Figure 36 shows how
attainable speed varies with head seas of different significant wave heights. It illustrates
both the involuntary speed reduction, caused by added required power and reduced available
power, and the voluntary speed reduction caused by slamming (at the lighter draft) and by
deck wetness (at the deep draft).

An easy to compute in a preliminary design stage index which ranks destroyer type hulls
with regards to their seakeeping behavior is Bales’ seakeeping rank estimator, R. The basis
for this is that ship motions are not usually very sensitive to details of the ship form. Section
characteristics as used in strip theory are essentially determined by beam, draft, and area.
The actual shape of the section has only secondary significance. Therefore, quite crude
representations of the section shape can result in good estimates of ship behavior in waves.
In the seakeeping rank estimator only a few crucial parameters are used to tie down the
magnitude of the ship motions. These parameters in dimensionless form are:

1. Waterplane coefficient forward of amidships, CWF = 2AWF/LB.

2. Waterplane coefficient aft of amidships, CWA = 2AWA/LB.

3. Draft to length ratio, T/L.

4. Cut–up ratio, c/L, where c is the distance from the forward perpendicular to the cut–up
point, typically close to the stern.

5. Vertical prismatic coefficient forward of amidships, CV PF = VF/AWFT .

6. Vertical prismatic coefficient aft of amidships, CV PA = VA/AWAT .

By a systematic series of numerical calculations and experiments, the following expression
for R was established

R = 8.422 + 45.104CWF + 10.078CWA − 378.465(T/L) + 1.273(c/L)

−23.501CV PF − 15.875CV PA .

A value of R close to 10 corresponds to the best hull from the seakeeping point of view and
a value close to 1 for the worst. Although the seakeeping rank estimator does not substitute
detailed calculations it might be useful as a tool in preliminary design for destroyers, light
cruisers, and frigates. Naturally, a seakeeping optimal hull may be far from an overall
successful design, for its still water resistance for instance may be too high. Nevertheless,
seakeeping is a very important factor in an overall ship design methodology as is evident
by the many ships that have become white elephants because they cannot perform their
missions effectively due to a deficiency in seakeeping qualities.
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Figure 1: Ship controllability and maneuverability loop.

Figure 2: Orientation of fixed axes and moving axes.

Figure 3: Rudder induced forces and moments.
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Figure 4: Various kinds of motion stability.
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Figure 5: Explanation of signs of hydrodynamic derivatives.
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Figure 6: K–T diagram.

Figure 7: Turning path of a ship.
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Figure 8: The three phases of a turn.

Figure 9: Forces in the yz–plane in a turn.
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Figure 10: Heel angle for a starboard turn.

Figure 11: Speed reduction in a turn.

Figure 12: Straight line and rotating arm model tests.
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Figure 13: Planar motion mechanism tests.

Figure 14: Oscillator tests.
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Figure 15: Spiral test maneuver results.
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Figure 16: Zig–zag maneuver.

Figure 17: System identification.
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Figure 18: Energy versus frequency characteristics of wave systems.
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Figure 19: Definitions and velocity fields in waves.
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Figure 20: The Kelvin ship wave system.

Figure 21: Sine wave and Stokes wave.

Figure 22: Trochoidal wave.
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Figure 23: Two realizations of a random process.

Figure 24: Typical spectrum of waves with individual components.
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Figure 25: Typical sea spectra.
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Figure 26: Typical wave record at a fixed point.

Figure 27: Definition sketch of body motions in six degrees of freedom.
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Figure 28: Expressions for the coefficients in the equations of motion.
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Figure 29: Heave and pitch exciting forces and motions in regular waves.
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Figure 30: Influence of forward speed on heave RAO.

Figure 31: Typical service performance of a ship in rough seas.
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Figure 32: Definitions for propeller emergence and deck wetness.

Figure 33: Transformations of sea spectrum.
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Figure 34: Lewis form representations.
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Figure 35: Extended Lewis form representations.
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Figure 36: Typical seakeeping criteria.
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Figure 37: Typical performance assessment of helicopter landing.
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Figure 38: Speed reduction in rough seas.
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