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FOREWARD

Seakeeping

There are three things which are too wonderful for me, yea, four which I know not:
the way of an eagle in the air;
the way of a serpent on a rock;
the way of a ship in the midst of the sea;
and the way of a man with a maid. i
Proverbs Chapter 30 verses 18-19

In the days of sail ships were very much more dependent on the weather than they are today.
Square rigged sailing vessels could not sail directly into the wind and were strictly limited in their
ability to go where the master wanted. In severe conditions it was necessary to shorten sail and
even to ride out a storm under bare poles. Many a ship was lost because she was driven ashore
under such circumstances.

Economic pressures often demanded that the ship's master spread as much canvas as he dared in
order to make the best speed. This is nowhere more graphically illustrated than in the stories of
the clipper “races” from China to Europe in the nineteenth century. The first ship home with the
newly harvested tea crop could demand a premium price for her cargo. Speed was of the essence
and these ships sprouted all sorts of additional sails to make the most of every breath of wind
available.

A heavily laden over canvassed ship was an unpleasant home for the sailors and passengers in
rough weather. With the lee gunwale submerged, the decks continually awash, deckhouses damp
and cold, life must have been miserable. Yet even in these circumstances the crew would be
expected to continue to navigate and steer the ship and to go aloft in order to shorten sail or
spread additional canvas as the master demanded.

However, the real problems of seakeeping only came to be recognised with the demise of sail and
the advent of steam as the prime motive power. Now, for the first time, ships could steam
directly into the wind and sea with a consequent increase of pitch and heave motions. The
damaging effects of shipping heavy seas over the bow began to be experienced. The punishing
consequences of high speed in rough weather were not fully understood and at least one ship
(HMS Cobra in 1901) is believed to have been lost after her hull broke in two after slamming
in rough weather.

At the same time the steadying effects of tall masts and a good spread of canvas were lost and
the new steam ships were found to roll heavily. Itis ironic that this beneficial effect of sails has
only recently been rediscovered with the emerging technology of wind assisted propulsion for
low powered merchant ships.

At about this time William Froude, an eminent Victorian engineer, proposed to build the world's
first purpose built model towing tank at Torquay in the United Kingdom. He had recently
developed scaling laws for predicting the resistance of ships from tests on models and he




intended to use the tank for the required scale model experiments. The British Admiralty
accepted Froude's proposal on the condition that he also used the tank to investigate ways of
reducing the rolling motion of ships.

In due course Froude’s Admiralty Experiment Works was moved to Haslar in Gosport and
similar towing tanks were built in many different countries. These were often fitted with wave
makers which allowed the behaviour of model ships in waves to be studied at leisure providing
for the first time, a rudimentary technique for refining a full scale design to ensure adequate
performance in rough weather. These model experiments were usually confined to tests in
regular head or following waves with occasional tests at zero speed in beam waves. Tests at
other headings or in more realistic irregular waves were impossible because of the long narrow
shape of the towing tanks and the simplicity of the wave makers.

These early model experiments allowed some limited developments in the study of seakeeping
but they could not be used to predict the actual performance of ships at sea because no technique
for relating the behaviour of the model in the tank’s regular waves to the behaviour of the ship
in the chaotic environment of the real ocean was available. Graphic evidence for this may be
found in contrasting the performance of many of the Royal Navy’s destroyers of the Second
World War with that of their successors in the postwar period. The specifications for the
wartime ships often calied for speeds as high as 35 knots and the shipbuilder was required to
demonstrate that this could be achieved before the Navy would accept the ship. . Invariably the
trials were done in calm water and service experience soon demonstrated that these “trial” speeds
could hardly ever be achieved in practice despite engines capable of developing as much as
70,000 horse power (50 MW). Commonly occurring moderate wave conditions were usually
enough to limit the speed in one way or another and it became obvious that the powerful engines
were not cost effective.

- The early postwar designs had half the installed power of their war time predecessors but much
more attention was devoted to their performance in rough weather so that their reduced speed
potential of perhaps 30 knots was achievable most of the time. The relationship between hull
form and good seakeeping performance was not well understood and the classic design of the
period, the Type 12 frigate (which evolved into the Leander class), had a superb rough weather
performance as a result of the designer’s intuition rather than any precise science.

This situation prevailed for many years and the study of seakeeping remained in effective limbo
until the publication of a landmark paper by St Denis and Pierson in 1953'. This showed, for the
first time, how the motions experienced in the random waves of the ocean could be calculated
using the techmiques of spectral analysis borrowed from the field of electromagnetic
communications.

At about the same time theoretical methods of predicting the behaviour of ships in regular waves
were being developed. The breakthrough came with Ursell's (1949a,b) theory for predicting the
characteristics of the flow around a circular cylinder oscillating in a free surface. Classical
transformation techniques allowed these results to be applied to a wide range of shapes of ship

! References are listed in the Bibliography in Appendix 3
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like cross-section and the fundamentals of modern ship motion theory were born,

These developments some fifty years ago provided the basic tools required to develop routine
techniques for the prediction of ship motions in something approaching the real irregular wave
environment of the ocean. It was now possible for the first time to predict the rough weather
performance of a ship at the design stage and to allow seakeeping to take its rightful place in the
design process.

Since that time seakeeping has remained an active field of research, but developments have been
in the nature of progressive refinements rather than spectacular advances. Techniques for
designing roll stabilisers, criteria determination, prediction of long term motion statistics and
operational effectiveness have all been added to the naval architect's tool box: seakeeping
performance prediction should now be a routine in any ship design office.

Unfortunately these developments have not been accompanied by much readily obtainable
literature on the subject outside the specialist papers and publications of the learned societies and
research institutions. Although the underlying physical principles of seakeeping theory are not
generally difficult to understand, the intimate details are mathematically complicated. It follows
that calculations of ship motions and related phenomena require access to suitable computer
programs and computers. No real progress can be made without them. Fortunately many
suitable programs are available in educational, research and design establishments as well as
computer:bureaux throughout the world. The PAT-86 suite of seakeeping computer programs
(available:at the Defence Evaluation and Research Agency at Haslar in the United Kingdom)
was used for the examples of ship motion calculations presented in this book.

The first edition of this book (Lloyd, 1989) covered all aspects of the subject in detail, resulting
in a comprehensive, if rather long and expensive text. This edition is shorter and private
publication- by the anthor has allowed the book to be marketed at a realistic price within the
range of the average student of naval architecture. This has been achieved by revising the entire
text and omitting material which can be readily found elsewhere such as the chapter on basic
fluid mechanics and the detailed derivation of the dynamics of the spring mass system.. The
opportunity has been taken to include some new material on the growth of wave heights in the
ocean, the effect of ship motions on crew task performance and the influence of hull form on
seakeeping.

I was privileged to lead the Seakeeping Research Group at the Defence Evaluation and Research
Agency (formerly the Admiralty Experiment Works) at Haslar in the United Kingdom for the
best part of 25 years and this book represents the accumulated knowledge of that period. During
that time I have been helped by many colleagues both within the DERA and outside. In particular
I would like to acknowledge the contributions of Mrs P R Loader, Dr R N Andrew, Dr D Fryer,
the late Mr W B Marshfield, Mr P Crossland, Mr M Johnson and Mr D K Brown as well as
fellow members of the ITTC Seakeeping Committee and colleagues at the United States Naval
Academy. I am also indebted to Mr R E Small and Mrs W E Ball, whose painstaking proof
reading of the manuscript was invaluable. Without their constant support, advice and inspiration
this book would probably have never been written.

ARJIMLloyd
Gosport 1998
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REGULAR WAVES
1.1 INTRODUCTION

The waves which influence the behaviour of ships at sea are generally irregular and more or less
random in nature. No two waves have exactly the same height and they travel across the surface
at different speeds and in different directions. Techniques for coping with the chaotic nature of
these waves on the real sea surface are described in Chapter 2 but it is first necessary to discuss
the characteristics of ideal regular waves. Such waves never occur in the real ocean environment
although they can be produced in laboratory towing tanks and form the basis of many seakeeping
model experiments. Of equal importance is the fact that the theory of irregular waves is based
on the assumption that they can be represented by superposing or adding together a suitable
assembly of regular waves. So itis clear that the characteristics of regular waves have a profound
influence on the behaviour of ships in rough weather even though they are never actually
encountered at sea: an understanding of their nature is one of the vital tools in the study of
seakeeping.

Fig 1.1 - Regular waves
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Figure 1.1 shows a train of regular waves advancing across the surface of a body of water of
constant depth 4. The waves are two dimensional: that is, they advance in the x direction and
the crests are perpendicular to the x axis. The crests may be considered as extending to infinity
on either side of the x axis; alternatively the waves may be imagined to be advancing down a
long narrow tank bounded by vertical walls parallel to the x axis.

The salient characteristics of the waves are:

¢ The instantaneous depression of the water surface below the mean level (y=0) metres
C 0 The wave amplitude or vertical distance from the mean level metres
(3=0) to acrest or a trough; { is always positive.
The wave height: twice the wave amplitude metres
A The wave length: the horizontal distance between one crest {or trough) and the metres
next
c The wave celerity: the velocity of an individual crest in the X direction metres/second
T The wave period: the time interval between successive crests (or troughs) passing | seconds
a fixed point.
o The instantaneous wave slope: the gradient of the surface profile radians
g The maximum wave slope or wave slope amplitude. ¢, is always positive. radians
H/A | The wave steepness -

These waves progress across the surface in a regular orderly fashion. Each wave crest advances
at the same steady velocity ¢ so that the waves never overtake each other and the wave length A
and period T remain constant. The shape of each wave remains the same and the whole wave
train appears to advance like a rigid corrugated sheet.

1.2  THE VELOCITY POTENTIAL

We shall use the potential flow techniques of classical fluid dynamics' to predict the
characteristics and structure of regular waves.

The velocity potential ¢ is defined by the equations

90 _ . 9 L e .1

dx dy
where u and v are the horizontal and vertical velocities and ¢ must satisfy Laplace’s equation
A =0 sec™? (1.2)

if it is to represent a valid fluid flow.

! It is assumed that the reader has a working knowledge of classical fluid dynamics
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It is necessary to find a velocity potential ¢ which describes the fluid flow associated with a
regular wave. Lamb (1932) showed that the velocity potential

m?/sec

(b:gCo cosh [k (d-v)]
W cosh (k d)

is appropriate to the case of the two dimensional regular (sine) wave of small amplitude ¢,
advancing across the surface of a body of fluid of any constant depth d as illustrated in Figure
1.1; % and  are constants whose physical meaning will be derived in Section 1.3.

Almost all calculations of seakeeping performance assume that the water is deep compared to
the wave length. If we assume that the depth of water is infinite* then

cosh [ k(d-y)] _

= e -k
cosh (kd) 2 (k)
and the velocity potential becomes
¢ = 8 % exp (- ky) m¥sec (1.3)

1.3  PRESSURE CONTOURS AND THE SURFACE PROFILE

Bernoulli's equation for the unsteady motion of an ideal fluid is

2
2,9 9. P g e (1.4)
2 ot p
where
g? = u? +v? m%sec? (1.5)
and £ is the force potential defined by
9 : ;0 Y m*sec?
ox dy

Bernoulli’s equation must apply everywhere and can be used to find the surface profile associated

% In practice d > % is an adequate restriction.
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with the velocity potential given by Equation (1.3). The only force applied externally to any fluid

particle is gravity. Hence

X=@=O; Y=£=g misec?
ox dy
so that
Q =gy m¥Ysec?

and Equation (1.4) becomes

(1.6)

2
_@_+@_ +£=0 m?¥sec?
2 a7
Surface profile
¢ /\ X
/Y
gﬂ yp
Sp

Y Constant pressure contour

Fig 1.2 - Constant pressure contour beneath a regular wave

In calm water the pressure at depth ¥, is

P=pgy, kNim?

and a constant pressure contour is a horizontal straight line. Under regular waves this contour

is distorted as shown in Figure 1.2. The depth of a point on this contour is

y=y,+¢, m

where { » is the depression of the contour below the depth ¥,.

Since the pressure everywhere along the contour and the depth y,are both constant the quantity

15




© |~

)
f ( -2, ]dr m?/sec

0

will be a constant on the contour at an}-f given time ¢ . It may be added to the potential without

affecting the velocities in any way (since they are functions of the potential gradients and not of
the potential itself). So we may define a new velocity potential

H

¢ = + f [E - g yp]dt m?/sec
P

i
so that

' _9p P

— = —= -89, m?*/sec?

ot at

and Equation (1.6) becomes

=+ -gl,=0 m¥sec?
EPR

q , 3
2
and the prime may now of course be omitted.
If we now assume that the velocity is small (tantamount to assuming that the wave amplitude ¢,

is small compared with the wave length) we may neglect ¢ ? so that the depression of the
constant pressure surface is

gzl(éﬁz} -
Tog\d)y =y +

or, since Cp is small,

1 { 8¢
(_" S — (_—] m
og\dt]y=y, (1.7)

Substituting the expression for the velocity potential (Equation (1.3)) yields the equation for the
constant pressure contour at depth ¥,

Cp=Coexp (ky,)sin(kx-wt) m (1.8)

16




Surface
\\,///\\\\,///\\ y=0m

Cpl —  ————  ——  y=50m

Botiom

Fig 1.3 - Constant pressure contours beneath a 100 m wave: depth 100m

As an illustration of this equation Figure 1.3 shows typical pressure contours beneath a regular
wave of length 100 metres in water 100 metres deep. These results have been obtained by setting
t = 0 in Equation (1.8).

The surface profile is one of these constant pressure contours (with the pressure equal to the
atmospheric pressure). It is obtained by setting y, = ¢ in Equation (1.8) to give

Q’=C0sin(kx—mt) m (1.9)

which is the equation of a regular wave of small amplitnde {, advancing across the fluid surface.

Equation (1.9) is illustrated in Figure 1.4. Consider first the wave shape in the geographical or
spatial sense. This is tantamount to fixing time at some instant ¢ as, for example, when taking
a photograph. If for simplicity we choose ¢ = 0, Equation (1.9) is reduced to

C=Csin(kx) m

which represents a simple sine wave starting at the x origin. The wave lengthis A and the wave
number k is now seen to be

2T .
k=—m m ! (1.10)

A second photograph taken a short while later at ¢ = ¢, would reveal exactly the same wave
profile with the same amplitude and wave length moved along the x axis a distance (w t, [ k)

17




t=t, Wavq profiles at successive
* time intervals

< RN

Co
i A‘ -
C |
Y kx;/w T
t;
Time history of wave l
depression at x = x; ’ \/ \%‘
t
Sy 7 Y
Co

Fig 1.4 - Regular waves pictured in space and time

metres. This can be seen by recasting Equation (1.9) as

C'—“Cosin[k(x—mktl]} m

and the term wf,/k can be recognised as a phase “lag' which governs the location of the wave
along the x axis. As time passes, the lag increases and the wave advances steadily away from
the origin with velocity

w
c = - misec (1.11)

c is the wave celerity.

An alternative view of events can be obtained by fixing the distance x and allowing time to pass.

18




Physically this can be considered as recording the time history of the rise and fall of the water
surface at some fixed point x = x,. The resulting sine wave of amplitude {_ and period T is
also illustrated in Figure 1.4 and the frequency w is related to the period by

w = Z—TE- radfsec (1.12)

The time history is given by recasting Equation (1.9) as

2]
Wl - -2 m (1.13)

w

¢ = —(, sin

and the term (& x, / w seconds) may now be recognised as a phase “lag' which governs the
temporal location of the sine wave along the ¢ axis.

1.4  WAVE SLOPE
It is sometimes convenient to quantify the severity of the waves in terms of their slope rather than

their height or amplitude. The slope of the pressure contours may be obtained by differentiating
Equation (1.8) with respect to x:

@, =kCyexp (-ky,)cos (kx-wt) (1.14)

@i /k

/\
/\/Clx

>_

/N ;
7T T »

Fig 1.5 - Wave depression and wave slope profiles at t = t,

The wave slope at the surface is obtained by setting y, = 0 to give

@ =0,cos (kx -wt) rad (1.15)




where the wave slope amplitude is

0y = kG, rad (1.16)

So the wave slope varies sinusoidally in both time and space in much the same way as the surface
depression. Figure 1.5 shows the surface profile and the corresponding wave slope at time
t = t,. The wave slope is a maximum when the surface depression is zero and vice versa.

The time history of the wave slope at a certain location x = x; is obtained by recasting Equation
(1.15) as
k x,
& =0,co8 | W| t - — rad
©

and this is compared with the corresponding surface depression time history (Equation (1.13))
in Figure 1.6. The wave slope lags the surface depression by a quarter of a wave period.

fx,/w

7
N
]

Y

Fig 1.6 - Wave slope time history at x = x,
1.5 PARTICLE ORBITS

According to Equation (1.1) the velocities at any point under the wave can be found by
differentiating the velocity potential given by Equation (1.3). This gives

3 _

u=—"F=-usin(kx-wt) misec .17
ox

20




ve—=L-=-ycos(kx-wt) misec (1.18)

where the velocity amplitudes are

k
Uy =V, = 8 mco exp (- ky) misec (1.19)

N
N/
®

Depth
100m

Bottom

Fig 1.7 - Particle orbits under a 100 m wave

— — - Sine wave

——  Trochoid wave

[ Particle at surface

Fig. 1.8 - Orbits of particles at the water surface

Since the wave amplitude is assumed to be small the velocity amplitudes given by Equation
(1.19) must also be small and it follows that a particle of water oscillating about some point
( x, y ) will never stray very far from that point. The path of the particle can therefore be
calculated approximately by assuming that it is always subject to the velocities calculated for the
point ( %, ¥ ). With this assumption the particle’s trajectory is obtained by integrating Equations
(1.17) and (1.18) to give

21




Ax = —xjcos (kx -wt) m (1.20)
Ay = y,sin(kx-wt) m (1.21)

where Ax and Ay are the deviations of the particle from its datum position ( x, ¥ } and the
amplitudes of its displacements are

X =Yy =Cep (-ky) m (1.22)

Figure 1.7 illustrates these formulae and we see that the water particles follow circular orbits
and that the amplitude decays very rapidly with depth. Figure 1.8 shows how the circular orbit
of a particle at the surface results in the wave profile’.

Pressure amplitude - kN/m’

0 0.5 1.0
0

s

oss |/

1.00

Fig 1.9 - Pressure amplitude under a wave: wave length 100 m; wave amplitude 1.0 m

? Figure 1.8 shows that the wave profile generated by particles following circular orbits
at the surface is a trochoid with sharper crests and flatter troughs compared to a sine wave.
However, the trochoid wave approaches a sine wave as the amplitude becomes infinitesimal and
the assumption of sinusoidal waves is adequate for the linear treatment used in this book.
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1.6 PRESSURE FLUCTUATIONS UNDER A WAVE

The pressure at any point under a regular wave may be found from Bernoulli's equation (1.6).
If we assume that the velocity is small we obtain

P=pgy+P kNm?>

so the pressure at any depth y oscillates around the steady hydrostatic pressure P & ¥. The
fluctuating part of the pressure is

P=—Dpglyexp(-ky) sin(kx-wif) kNm? (1.23)

Figure 1.9 shows the variation of the pressure amplitude p g {, exp ( —k y ) beneath a 100
metre long wave. The pressure amplitude decreases with depth and becomes negligible for
depths greater than about half the water depth.

1.7  ENERGY IN A REGULAR WAVE

The energy associated with a train of regular waves includes contributions from both potential
and kinetic energy. Consider a small element of length &x metres and width A metres
(perpendicular to the page) of the regular wave shown in Figure. 1.10. The surface depression ¢
is given by Equation (1.9) and the mass of water over the element is approximately -p ¢ dx A

Mass/unit width
=-pgdx

Fig 1.10 - Potential energy in a regular wave

tonnes. The centre of gravity of this mass is approximately -{/2 metres above the undisturbed
surface level and its potential energy relative to the undisturbed (calm water) state is
(p g ¢*dx A)/2 kI wenow allow dx to become infinitesimally small we may integrate
to obtain the total potential energy in a single wave length:

23




A

2
prfpgc dx
0
2 A A
:pg" fs'nz(kx—cot)aix (1.24)
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Fig 1.11 - Kinetic energy in a regular wave

Consider now a small element of fluid of width A metres beneath a wave as shown in Figure
1.11. The mass of the element is p Ox &y A tonnes and it has a total velocity g given by
Equation (1.5). So the kinetic energy of the elementis ( p g2 &x &y A ) / 2 kI. If we now
allow Ox and Oy to become infinitesimally small we may integrate to obtain the total kinetic
energy of the fluid in one wave length between the surface and the bottom:

A
A
ST | PO
0

Substituting Equations (1.17) - (1.19) in Equation (1.5) gives

22 2 exp (- 2k
g2 8 F G "pz( YD vsec? (1.25)
(0]

and the kinetic energy in one wave length is found to be
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A 2
g -PErN8 (1.26)
4

So the potential and kinetic energies are equal and the total energy in one wave length is

ACEA
+E=P8 o

E=E
K 2

. (1.27)

which leads to the remarkable result that the average energy per square metre of sea surface is
independent of the wave frequency and depends only on the wave amplitude:

pg iy
2

E = klim? (1.28)

1.8 ENERGY TRANSMISSION AND GROUP VELOCITY

The energy associated with a sequence of regular waves is transmitted in the direction of their
propagation. The rate of energy transmission can be found by considering the energy flux across
the plane AA in Figure 1.12. We begin by calculating the rate at which the fluid on the left of
a small element of height 8y and width A is doing work on the fluid on the right of the element.

Bottom

Fig 1.12 - Energy transmission in a regular wave

Since the element is small the pressure and velocity acting on its face may be regarded as
constant (at a given time) and the force exerted by the fluid on the leftis P 6y A kN. The work
done by the fluid on the leftis u P &y A kI /sec. If we now allow 8y to become infinitesimal
the total rate of transmission of energy across the plane AA is obtained by integrating over the
depth of the fluid.
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Neglecting the small contribution due to the portion of fluid above the undisturbed surface level
( ¥ = 0 ), the rate of transmission of energy is

d
E=A f uPdy klisec (1.29)
1]

Using Equations (1.17) and (1.23) we find that for very deep water the energy is transmitted at
arate

2 . 9
) c Asin“(kx-wt
Eng %o 2( ) klisec

The rate of transmission of energy evidently fluctuates with time but we are concerned with its
mean value. Over a long period of time (or an integral number of wave periods) the mean value
of sin® ( k x - @ t ) is 0.5. So the mean rate of energy transmission is

EngcCEA (1.30)

kl/sec

Now the total energy is given by Equation (1.27) and this energy is transmitted at a mean velocity
given by

(1.31)

Ug = misec

bt | -
i
(Y K

We may interpret this result by considering the progression of a group of regular waves down a
laboratory tank. If the mean energy associated with each wave length is E kJ per square metre
the amplitude of the waves is, from Equation (1.28),

G=2E m (1.32)
pg

Each individual wave within the group is propagating forward at the celerity ¢ (Equation (1.11))
but the energy is only propagating at ¢/2 m/sec (Equation (1.31)). So after one wave period each
wave will have moved forward one wave length, taking half of its associated energy with it. The
other half of the energy is left behind to be added to the energy brought forward by the next
wave. In this way the total energy per square metre within the group is kept constant.

At the leading edge of the group the first wave will be propagating into calm water. So the
orderly exchange of energy from wave to wave does not happen and after one wave period the
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TABLE 1.1
REGULAR WAVE FORMULAE FOR DEEP WATER
(d>2
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energy of the leading wave is halved. The wave amplitude is reduced and this process continues
as the leading edge of the wave train propagates down the tank at the wave celerity.

The leading edge of the group proper (defined as the position of the first wave of full amplitude
given by Equation (1.32)) propagates down the tank at velocity u,, and this is called the group
velocity. Individual waves within the group propagate at the wave celerity ¢, which is twice the
group velocity (see Equation (1.31)).
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TABLE 1.1 (continued)

REGULAR WAVE FORMULAE FOR DEEP WATER

A
d> —
( 2)
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2 ~(
W 0= @ 1y =V =CpW e.:gu( “ﬂ) %=Yo=Co exp( M“ZZ']
g 8 &
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k o, =kC,, 1y=v,=C, YEk exp(-ky) xp=y,=C, exp(=ky)
2ng,
bl - - 2'Eg “ZTEy
A 0"y 1y =vy=C, : exp[ T )
c muzg_co uozvoz.gf:.?. exp( iy.) xD zyO:CO exp( :T-]
¢ c? c”
1.9 SUMMARY OF THE CHARACTERISTICS OF REGULAR WAVES

The equations derived above may be combined in various ways to produce a multitude of
different formulae which are listed for easy reference in Tabie 1.1. Figure 1.13 shows how wave
frequency and celerity depend on wave length. As might have been expected long waves have
very low frequencies and vice versa. As if to compensate, the celerity increases with wave length.
For example the celerity of a 1000 metre wave is almost 40 metres/second (over 75 knots)
compared with only about 4 metres/second (about 8 knots) for a 10 metre wave. This dependency
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of celerity on wave length distinguishes surface waves from most other types of wave motion
(notably electromagnetic radiation) and we shall see that it is responsible for some peculiar
effects when the waves are encountered by a moving ship.

Wave frequency w (radians/second)
2
l
Celerity ¢ (metres/second)

[T I T TR T I A
1 2 4 10 2040 100 200 1000

Wave length A (metres)

Fig 1.13 - Wave frequency, length and celerity in deep water
1.10 ENCOUNTER FREQUENCY AND HEADING

Although the wave frequency « has some influence on ship motions in regular waves, the
motions are more closely dependent on the frequency with which the moving ship encounters
the waves.

Before deriving expressions for the encounter frequency we must adopt the convention for
defining the ship’s heading p shown in Figure 1.14 and Table 1.2. The ship is assumed to be
attempting to maintain a straight line track at a constant speed I/ (metres/second) across the sea
surface. The waves will cause deviations from the intended course and track, but a directionally
stable ship in the hands of an experienced helmsman (or an autopilot) will usually be able to
follow a sensibly straight mean course so that the heading angle p can be readily defined as the
angle between the intended track of the ship and the direction of wave propagation.

Since the wave crests are A metres apart, a crest will meet the ship every T, seconds, where
the encounter period is given by

T -4 sec 1.33
* ¢ -Ucospu (1-33)

The component velocity of the ship in the direction of wave propagation is U/ cos . and the
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Following
p=0°

Starboard beam
p=9° —

Head
p=180°

Fig 1.14 - Heading definitions

waves will overtake the ship with a relative velocity ¢ - U cos p metres/second. The
corresponding encounter frequency , is defined as

_2n _ 2m -
®, = —T_E = (c ~Ucosp) radlsec (1.34)
or
w, =w-kUcosp
2
= - 2 v cos u rad/sec (1:33)
8

and this is illustrated in Figure 1.15.

In head and bow waves (90° < B <270°) the ship is heading into the waves and the encounter
frequency is always greater than the wave frequency. In beam waves (p = 90° or 270°) the
encounter frequency is equal to the wave frequency and is unaffected by ship speed.

On headings abaft the beam ( 0° < p < 90° or 270° < p < 360° ) the encounter frequency
is reduced and high values are never experienced, whatever the wave frequency. The encounter
frequency is negative for higher values of w. These high frequency waves advance only slowly
and the negative encounter frequency means that the ship is overtaking the waves. A positive
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encounter frequency means that the waves are overtaking the ship.

When U cos u = ¢ the ship remains stationary relative to the waves and the encounter
frequency is zero.

These definitions and observations are summarised in Table 1.2.

1}
i Head waves
9 W, >w
s
N
=
&3
Y]
&, Beam waves
L —
5 W, =W
=
=
Q
L% )
=
)

- W, (5) TN Wave frequency w

Following and
quartering waves
W, < W

Fig 1.15 - Encounter frequency and heading

In following and guartering waves a given (absolute) value of encounter frequency may be
experienced in three different wave systems. Two of these wave systems will give positive
encounter frequencies and the third will give a negative encounter frequency. The corresponding
wave frequencies can be obtained by rearranging Equation (1.34) to give

- 4w
w=—958 f1+|1- £ U cos p rad/sec (1.36)
2U cos p g

The physical interpretation of this phenomenon is best illustrated with a numerical example.
Consider a ship steaming at 20 knots ( U= 10.3 m/sec} in regular following waves. Suppose that
the ship encounters the wave system at a frequency |w,| = 0.2 rad/sec. It is required to find the
wave systems which could be responsible. Possible results, obtained from Equation (1.36), are
given in Table 1.3 together with corresponding celerities and wave lengths.
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TABLE 1.2

HEADING AND ENCOUNTER FREQUENCY

Heading p (degrees)

Wave direction

Encounter frequency

Following waves. The waves travel
in the same direction as the ship.

W, < .
w, can be negative.

0 I.ong waves with high celerity The same w, can occur
overtake the ship. The ship overtakes in three different wave lengths.
short waves with low celerity,

w, < .
0-90 Quartering waves encountering the w, can be negative.
ship on the starboard side, The same ), can occur
in three different wave lengths.
. w, = w

90 Beam-waves encountermg' w, corresponds to a single
the ship on the starboard side wave length
Bow waves encuuptering the ship ®, > ©
on the starboard side. d il

90 - 180 w, corresponds o a single
wave length
) w, > w
Head waves. The waves travel in the w comesponds to a snele
180 opposite direction to the ship ¢ P &
wave length
B tering the shi Pe > @
ow waves encountering the ship on :
180 - 270 the port side £ P w, corresponds to a single
- ' wave length
B ing the shi D =
270 ogaﬂi‘gsﬁfzixcomwmg e sip w, corresponds to a single
wave length
W, < W
w can b ative.
Quartering waves encountering the TIEJ ¢ nepanve
270 - 360 ship on the port side. € same W, can occur

in three different wave
leneths.

32




Wave A has crests about 0.75 kilometres apart, but its celerity is very high and it overtakes the
ship with a relative velocity of nearly 47 knots. So the high celerity compensates for the distant
crests and results in the required encounter frequency. Wave B is much shorter and slower and
overtakes the ship with a relative velocity of only about 8.5 knots. However, the closer crests
compensate for the lower relative velocity and the wave again gives the required encounter
frequency. Wave Cis very short and the celerity is only 8.8 m/sec. The ship overtakes this wave
with a relative velocity of about 3 knots, giving the required encounter frequency. Again the very
low relative velocity compensates for the short wave length. Wave D is a trivial result: negative
wave frequencies have no physical meaning.

TABLE 1.3

REGULAR WAVE SYSTEMS GIVING |o_| = 0.2 RAD/SEC
SHIP SPEED 20 KNOTS: FOLLOWING WAVES.

Lo, W c U-c A
Wave (rad/sec) (rad/sec) (m/sec) (knots) (m)
A 0.2 0.285 34.4 -46.8 759
B 0.2 0.667 14.7 -8.5 139
C -0.2 1.12 8.8 +2.9 49
D (-0.2) (-0.17) - - -
Using the identity
3 = 2ng
mz

(see Table 1.1), Equation (1.36) is plotted in Figure 1.16. The diagram may be used to find the
wave length corresponding to any given encounter frequency for a particular speed and heading.
As already demonstrated, a particular encounter frequency is experienced at only one wave length
(or wave frequency) in head or bow waves; but in following and quartering waves up to three
different wave systems will yield the same absolute encounter frequency. Figure 1.16 also
demonstrates another peculiar property of regular waves. In following and quartering waves a
wide range of wave lengths may produce virtually the same encounter frequency. For example,
a ship steaming at 20 knots in quartering waves (1=45°)has a component velocity U cos p of
about 7.0 metres/second. In this condition all the wave lengths from about 50 metres to about
400 metres yield an encounter frequency close to about 0.3 radians/second. Heavy rolling will
occur if the ship’s natural roll frequency is close to this common encounter frequency.
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Fig 1.16 - Encounter frequency and wave length.
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2

OCEAN WAVE SPECTRA AND STATISTICS

“Great fleas have littler fleas
upon their backs to bite ‘em.
And little fleas have lesser fleas
and so on ad infinitum”

Augustus de Morgan: “A budget of paradoxes” ¢ 1850.

21  WAVE GENERATION

As explained in Chapter 1, a knowledge of the characteristics of regular waves is an important
asset to the naval architect. However, such waves do not occur in the real ocean environment and
this chapter is concerned with the characteristics of naturally occurring “real” waves. The waves
which are of the most concern are those which arise in the ocean through the action of the natural
wind. Other wave generation mechanisms exist but are of little practical importance except in
special circumstances.

The average reader of this book need not concern himself with the detailed study of the way
wind driven waves are formed. Suffice it to say that a steady wind blowing over an open stretch
of calm water will create ripples which will travel across the surface in more or less the same
direction as the wind (see Figure 2.1).

If the wind continues to blow for long enough and sufficient length of water or fetch is available,
the ripples will advance and grow in length and height until they can more properly be called
waves. At the same time, the wind generates new ripples on the surface of the growing waves
and these ripples will eventually grow into waves themselves. The process is of course
continuous and the observed waves at any particular place and time will consist of a mixture of
wave lengths and heighis superimposed on each other.

It is assumed that the individual (regular) wave components still behave in the same way as they
would in ideal conditions, uncontaminated by waves of other lengths. Thus the fast moving long
waves continually overtake the slow moving short waves and the shape of the surface is changing
all the time as the waves progress through each other.

Clearly the waves are absorbing energy from the wind. This energy absorption is countered by
two principal decay mechanisms: wave breaking and viscosity. If the wind continues to blow at
constant velocity for long enough and sufficient fetch is available, the rate at which energy is
absorbed by the waves will eventually be exactly balanced by the rate of energy dissipation and
a steady state fully developed wave system will exist. Such wave systems are rare because the
required steady conditions do not often persist for long enough and the fetch may be limited by
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Fig 2.1 - Wind generated waves
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Fig 2.2 - Typical wave record: analysis of peaks and troughs
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the local geography. If the wind ceases to blow, the wave system it has created will decay as the
energy in the waves is dissipated. Wave breaking is a powerful decay mechanism and the
short, steep waves, which are more likely to break, decay first leaving the longer waves to be
dissipated by the relatively weak forces of viscosity. This decay process may last several days,
during which these fast moving long waves may travel several thousand kilometres and be
recognised at some distant location as a swell. Swells are generally of long period and
comparatively regular. Locally generated wave systems may therefore be contaminated by
swells generated elsewhere. These swells will, of course, bear no relationship to the local
wind.

2.2 STATISTICAL ANALYSIS OF TIME HISTORIES OF IRREGULAR WAVES!

Whatever the complexities of local geography and the vagaries of the wind, an observer at sea
will see a confused (and confusing) pattern of ever changing wave crests and troughs travelling
in different directions. For many years this apparent chaos (and the resulting unpredictable
nature of ship motions) provided an insurmountable obstacle to progress in the field of
seakeeping. However, considerable progress has now been made in the application of
statistical methods to quantify the characteristics of the waves on the sea surface, and these
methods form one of the foundations of the modern theory of seakeeping.

Figure 2.2 shows part of a typical record of wave elevation obtained from a wave sensing
device in the ocean. The record lasis for 7', seconds. As expected, the record is irregular in
nature and no coherent pattern is obvious. The mean values (averaged over many samples) of
four basic measurements are used to quantify the characteristics of the wave record:

ol
n

Mean wave metres  The mean value of many measurements of the vertical distance

amplitnde from the mean water level to a peak or a trough (a peak below the
mean level or a trough above the mean level gives a negative
amplitude; otherwise amplitudes are always positive).

Mean wave Ha meires The mean value of many measurements of the vertical distance

height from a trough to a preceding or succeeding peak (always
positive).

Mean period TP seconds  The mean value of many measurements of the ime between two

of the peaks successive peaks (or troughs).

Mean zero T 2 seconds  The mean value of many measurements of the time between two

crossing successive upward or downward zero crossings.

period

! The spectral analysis techniques and the derivation of the spectral moments in this
chapter are written in the context of waves on the sea surface. However with appropriate changes
of units these techniques can be equally well applied to any continuous irregular time history
such as pitch, heave, roll, vertical acceleration, lateral velocity etc.
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Two additional quantities are also used:

- Significant The mean value of the highest third®
4 13 single of many measurements of ¢ a
amplitude
g Significant The mean value of the highest third
13 wave height of many measurements of H

They are related as follows:

I-:"Im =20 —Cm m

In addition to the statistical measures associated with peaks, troughs and zero crossings,
another class of measurements is used to quantify the characteristics of an irregular wave
record. Here the time history is sampled at discrete (short) intervals of time to obtain
successive measurements of the surface depression ¢ relative to some arbitrary datum as
shown in Figure 2.3. For a typical irregular wave record an appropriate time interval would
be of the order of 0.5 or 1.0 second.

or

|A\m\‘ [ -
I W\U

Fig 2.3 - Typical wave record: analysis at successive time intervals

£ (metres)

> The “highest third” is defined as follows: Suppose that there are N measurements of
wave amplitude. They are arranged in order of magnitude from the highest to the lowest. Then
the significant amplitude is the mean value of the highest N/3 measurements.
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These measurements enable three important quantities to be defined:

The mean surface depression:

- N
= 2t oom 2.1
{ X; ~ 2.1)
(where N is the number of observations of surface depression)
The variance of the surface depression relative to the mean:
(g, -7)
m, = E ("—) m2 (2.2)
n=1 N

The standard deviation or root mean square (rms) of the surface depression relative to the mean:

0y = [y m | 23)

In passing it should be noted that a sensible analysis using either of these techniques requires a
wave record containing at least 100 pairs of peaks and troughs. Such a record will be typically
of about 20-30 minutes duration. Shorter records run the risk of yielding unreliable results
becanse they may, by chance, be unusually severe or unusually moderate. The record illustrated
in Figures 2.2 and 2.3 would therefore not be of adequate length for analysis. Very long records
of, say, several hours should also be avoided. This is because it is quite likely that real changes
in the wave statistics would occur in this time due to changes in the wind speed or the arrival of
swells from distant storms.

23 FOURIER ANALYSIS

The continuous process of wave generation (and the typical form of an irregular wave record)
suggests that any given time history of length T, seconds might reasonably be represented by
the Fourier series

(W =C+) A cos(w f) +B sin(w ) m 24)
n=1

where the equally spaced frequencies are given by

W = T " radisec (2.5)

with n=1, 2, 3....0°
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The coefficients are given by

(O cos(w, t)d m

n

) sin (w, t)dt m

mﬂ|‘° mﬂl“’
oy 2 ot

g

p g x areq = energy
in frequency band § v

7

Wave spectral ordinate S (0)
(metres * /(radian/second))

L

Wave frequency w (radians/second)

Y

Fig 2.4 - Definition of wave energy spectrum

Equation (2.4) may be written as
o0
46 =_C+z_; {pcos (w t+€ ) m
where the coefficients are
Co = A2+ B m
and the phase angles are given by

. _n
tan €, = ——

n

(2.6)

2.7

(2.8)

(2.9)

(2.10)

In physical terms Equation (2.8) may be interpreted as representing the irregular record by the
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sum of an infinite number of sine waves of amplitude { , and frequency w,. These frequencies
have been chosen (using Equation (2.5)) so that one period of the lowest frequency w,
corresponds to the length T, seconds of the record. Similarly the record length corresponds to
two cycles of the second sine wave, three of the third and so on. The fixed interval between the
frequencies is

dw = w, = ZT_TE rad/sec (2.11)
H

and dw becomes very small as T,, becomes very large.

The individual sine waves are staggered with respect to each other. The phase angles €, which
define the stagger are related to the time origin. {, the mean value of the record, is often made
zero by judicious choice of the datum level of the measurements.

24  THE WAVE ENERGY SPECTRUM

The relative importance of the component sine waves making up an irregular wave time history
(Equation (2.8)) may be quantified in terms of a wave amplitude energy density spectrum
(usually abbreviated to the more easily managed wave energy spectrum). The energy per square
metre of the sea surface of the nth wave componentis ( p g Cio Y/ 2  kiim? (Equation
(1.28)). The wave energy spectrum is defined so that the area bounded by a frequency range (say w,
10 w, , as shown in Figure 2.4) is proportional to the total energy (per square metre of sea surface)
of all the wave components within that range of frequencies. It follows that the total area
enclosed by the spectrum is proportional to the total energy per square metre of the complete
wave system.

We set

W =W - 6_0) radlsec

and

w
w, =W + —— radlsec
2

where dw is the frequency interval.

There will be only one component frequency w, in the range w, - 0, and the wave amplitude
spectral ordinate S,(w,) corresponding to the frequency w, is defined by

2
p g Sfw,) dw = P gzcna kJim?
so that the spectral ordinate is
S(w) = oo m2l(radlsec) (2.12)
& 2 8w
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Fig 2.5 - Wave energy spectra: (a) Typical spectrum from Fourier analysis of an
irregular wave time history and (b) Typical line spectrum for a time history
synthesised by summing sine waves.

An energy spectrum corresponding to any irregular time history can be derived in this way and
a typical example is shown in Figure 2.5(a). The spectrum is discontinuous and consists of a
series of rectangles of width 6w. The area of each rectangle is proportional to the energy
attributed to that frequency band and represented by the corresponding single sine wave
component.

2.5 GENERATING A TIME HISTORY FROM A SPECTRUM

If the energy spectrum is known it is possible to reverse the spectral analysis process and generate
a corresponding time history by adding a large number of component sine waves according to
Equation (2.8). In principle an infinite number of sine wave components is required but
acceptable results can be obtained with a limited number (say 50). The form of the wave energy
spectrum can be used as a guide to choosing an appropriate range of frequencies. Clearly

Yilp}




components corresponding to large spectral ordinates must be included but little will be lost by
omitting very high and very low frequencies if their contributions to the spectrum are smatl.

The use of a limited number of component sine waves may give an apparently acceptable time
history but it should be remembered that the energy spectrum actually being realised is not the
original spectrum but a series of infinitely high spikes of infinitesimal width at each of the chosen
frequencies as shown in Figure 2.5(b). The synthesised time history contains no energy at
frequencies between those chosen for the synthesis.

The amplitude of each component sine wave is given by recasting Equation (2.12) as

Coo = o 2 Sp(w) B m (2.13a)

It is also necessary to specify the phase angles €, . One possible choice is the set derived from
the original wave time history using Equation (2.10) and this will recreate the original time
history. Other (randomly chosen) phases will give different time histories but all will have the
original energy spectrum.

This classic procedure has a major flaw: the resulting synthesised time history repeats itself at
intervals of T, seconds ? and its statistical characteristics will be unrealistic: in particular there
will be one maximum wave amplitude which will be repeated at intervals of T, seconds and the
probability of the wave amplitude exceeding this value will be zero. Real ocean waves never
repeat themselves and there is a finite probability of greater wave amplitudes being exceeded (see
Chapter 11).

This can be avoided by synthesising the time history using randomly chosen frequencies. The
frequencies are selected as follows. Let us suppose that there are to be N frequencies in the
range from w, to w,.Excluding the highest and lowest frequencies we choose N - 2 frequencies
using the equation

w=w +R(w, -w )} radlsec

where R is a random number in the range from O to 1. The frequencies (including w, and w,,)
are then arranged in ascending order and the N - I (random) frequency intervals calculated:

? Rearrange Equation (2.5) to give

=21i:n

(o?l

Ty

sec

and substitute in Equation (2.8) to show that
W) =C+Ty)=Ct+2Ty,) 1

etc
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dw =w , - w radlsec (n=1, N-1)

The random frequencies . are then recalculated as the centre frequency of each frequency
interval:

- Ow
w, = ) 8w, + 2" radlsec; (n=2, N-1)

Finally the associated sine wave amplitudes are calculated using a version of Equation (2.13a)*:

0 = \/ 2 S(w,) dw, m (2.13b)

where 0w is the frequency interval associated with the nth frequency w, .

2.6 SPECTRAL MOMENTS

The definition of variance given in Equation (2.2) can be written as

TH
f L@?* dt m? (2.14)
0

L
T,

if the time history has a zero mean and the number of observations is very large. A time history
represented by Equation (2.8) therefore has a variance

T,

2
m, = 1 (Ecnﬂ cos (W, t + €, )J da m? (2.15)
TH n=1
0

Since the frequencies are chosen in accordance with Equation (2.5) this reduces to

* If the spectrum is defined at equally spaced frequencies it will be necessary to
interpolate the spectral ordinates at the randomly spaced frequencies.
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Y2 m? (2.16)

mo =

and, from Equation (2.13a),

[+¢]

m, = ) S(w) dw = [ S() do m® (2.17)
n=l 0

So the variance of the irregular wave time history is equal to the area under the wave energy
spectrum.

The time history given by Equation (2.8) can be differentiated to obtain the vertical velocity and
acceleration of the sea surface:

[» o}

L = E - Lo, 5in (w t+e€ ) mlsec (2.18)
n=1
o0

o = Z - L0 w: cos (@, t + €, ) misec? (2.19)
n=1

These can be regarded as irregular wave time histories in their own right and can be analysed to
obtain statistics of velocity and acceleration in exactly the same way as for the surface
depression. The amplitudes of the component sine waves for velocity and acceleration are now
(C,p @,) and (C,, (oi ) respectively.

These velocity and acceleration time histories can be analysed to produce corresponding velocity
and acceleration specira. By analogy with Equation (2.12) the spectral ordinates are respectively

2
w
Sw, ) = 2" ;ﬂﬂ = mi Sp(w, ) m2/sec? per radisec (2.20)
®
o 4
S(w, } = 2"6"0 = W S/{w, ) m?sec* per radlsec (2.21)
W

So the velocity and acceleration speciral ordinates can be obtained by multiplying the
displacement spectral ordinates by the second and fourth powers of the frequency.

By analogy with Equation (2.17) it is clear that the area under the velocity and acceleration
spectra must be equivalent to the variances of velocity and acceleration respectively. The
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variance of velocity is

o e ]

m, = f Sp(w) dw = f w? 5/w) dw m?sec? (2.22)
0 0

and the variance of acceleration is

oo oo

m, = f Sp(w) dw = f w* S(w) do  m¥sec* (2.23)
0 0

m, and m, are called spectral moments since they can be considered as moments of area of the
energy spectrum about the vertical axis. In general

o

m_ = f @" SAw) do  msec” (2.24)
0

and n may take any positive integer value (n =0, 1, 2, ..).

2.7 MEAN PERIODS

The mean frequency can be found by taking moments about the spectral ordinate axis and
determining the centre of area of the spectrum from

m
= — radlsec (2.25)

mg

and the corresponding mean period is

T:ano

sec (2.26)

m,

(The spectral moment i, in these formulae may be obtained by setting » = 1in Equation
(2.24) ).

Ochi and Bolton (1973) showed that the mean period of the peaks is

- .,
T, =271 |— sec (2.27)
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Fig 2.6 - (a) Narrow band and (b) wide band time histories

and the mean zero crossing period is

- m,
T =27mn |— sec (2.28)
m,

Strictly speaking Equations (2.27) and (2.28) are valid only if the surface depression measured
at equal intervals of time is normally distributed (see Chapter 11). In practice this assumption
is invariably true for real ocean waves.

2.8 SPECTRUM BANDWIDTH

Figure 2.6 shows two irregular wave time histories, and sketches of the corresponding wave
energy spectra are shown in Figure. 2.7. The narrow band time history of Figure 2.6{a) could
loosely be described as a sine wave of varying amplitude, and the origin of the terminology is
clear from the appearance of the spectrum: the wave energy is concentrated in a narrow band of
frequencies and little or no energy is present at other frequencies. A peak is nearly always
followed in orderly succession by a downward zero crossing, a trough, an upward zero crossing
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and another peak. Peaks below the datum level are rare and it follows that the average period of
the peaks is almost the same as the average zero crossing period.

The wide band time history contains energy over a wider band of frequencies as shown in Figure
2.7. In this case there are many peaks and troughs which are not immediately followed by zero
crossings and the average period of the peaks is much less than the average zero crossing period.
There are many peaks below the datum level and many troughs above the datum level.

Narrow

band \

Spectral ordinate 8, (©) (meires */(rad/sec))

Frequency w (rad/sec)

Fig 2.7 - Narrow and wide band specira

The ratio between the average period of the peaks and the average zero crossing period can be
regarded as a measure of the “parrow bandedness” of the time history and its wave energy
spectrum. The bandwidth parameter is defined as

(2.29)

and values of € liein therange Oto 1: € = O corresponds to a very narrow banded spectrum
with

T =T  sec
p z

and € = 1 corresponds to a very wide banded spectrum with

'ITP=O sec
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It is customary to assume that the spectra associated with waves and ship motions are narrow
banded with € = 0.

Cartwright and Longuet-Higgins (1956) showed that the significant wave height can be related
to the area under the wave energy spectrum by the equation

_ 2
Hyy = 400 \Jm, ‘1—% m (2.30)

if € = 0 this reduces to

[20]

Hys = 400 fm, = 4.00 f S@) do m 2.31)
0

(see Equation (2.17))

So the significant wave height can be estimated by integrating the wave energy spectrum.

2.9 IDEALISED WAVE SPECTRA

2.9.1 Introduction

In general the wave energy spectrum derived from an analysis of an irregular wave record
obtained at a particular place and time in the ocean will be a unique result that will never be
exactly repeated. Although it may be a useful guide to likely wave conditions, its use for ship
design purposes is strictly limnited and it is customary to rely instead on families of idealised wave
spectra. Current practice is to use different formulae for open ocean and coastal (limited fetch)
conditions.

2.9.2 Open ocean conditions

The International Towing Tank Conference (ITTC) has adopted the Bretschneider spectrum
(1952, 1957) as the standard wave energy spectrum to represent the conditions which occur in
the open ocean. It is often called the ITTC two-parameter spectrum to distinguish it from an
earlier standard spectrum. It is given by

A -B
Spr(w) = — e (——4) m?/(radisec) (2.32)
) w
where
— 2 .
H
A =17275 22 m¥Ysect (2.33)
T
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and

B = o1 sec ™

j:.4

(2.34)

The “two parameters™ are the significant wave height ﬂ'l ;s and the average period T (Equation

(2.26)).

The area under the Bretschneider spectrum is

o0
m0=f~—45—e}.p(_—f) dw
W W

0
A

i 2
5 - 00625 Ay m?

]

(2.35)

which confirms Equation (2.31). The moments are

EZ
= é L 2916 2 m¥Ysec?
4 \'B T2

(2.36)

and

T = oo m¥sect

(2.37)

where I' is the gamma function.

The mean zero crossing period (Equation (2.28)) is
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T =27 | — = = 0927 sec (2.38)

T,=27n | 2 =0 sec (2.39)

The modal period T, of the spectrum corresponds to the frequency w,, of the peak, which may
be obtained by differentiating Equation (2.32) and setting the result to zero. It is found that

4
w, = | 2B _ 489 dsec (2.40)

and the modal period is

T, = =129 T = 141 T. sec (2.41)

b

2w -
w

0

(see Equation (2.38)).

Equations (2.38) and (2.41) may now be used to define the constants A and B more fully:

=2 =2 2
H H H
A =487 1B =173 28 - 123 B %000t (2.42)
4 = 4 = 4
T, T T,
B = 1949 _ 691 _ 495 sec
T: 7 T: (2.43)

It should be emphasised that the relationships between the periods (Equation (2.41)) are not
general and apply only to the special case of the Bretschneider spectrum. Figure 2.8 shows
some specimen Bretschneider wave energy spectra for a significant wave height of 4 metres
and various modal periods. As expected from Equation (2.35), the area under each spectrum
is the same since the significant wave height is the same in each case. The position and height
of the peaks depend on the modal period.
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Spectral ordinate S ¢ (@) (metres */ (vad/sec))

Fig 2.8 - Bretschneider wave energy spectra: Significant wave height 4.0 metres

2.9.3 Coastal waters
In coastal waters with limited fetch the Joint North Sea Wave Project spectrum is used *
{(Ewing(1975)). In the form accepted by the ITTC the spectral ordinates are defined by

Sy (@) = 0.658 C Sy (@)  m*(radisec) (2.44)

where Sy (w) is the Bretschneider wave spectral density ordinate (Equation (2.32)). The
factor C is given by

C =33/
where

where v = 007 for w< %:TE and y = 0.09 for w > 2r

0 TO

! Commonly known as the JONSWAP spectrum
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Figure 2.9 shows a comparison between the two spectra for a significant wave height of 4

metres and modal period of 10 seconds.

2.10  WAVE SLOPE SPECTRA

An irregular record of wave slope can be analysed to produce an energy spectrum in the same
way as an irregular record of wave depression. There are now an infinite number of component
sine waves of the form given in Equation (1.15) and the wave number of the nth sine wave

component is

P
I

= | £,
3

=1

JONSWAP

Bretschneider

1 R 4 6 £ 10 12 14

Spectral ordinate S, (0} (metres® /(rad/sec))

Frequency o (radians/second)

1.6 18 20

Fig 2.9 - JONSWAP and Bretschneider wave energy spectra: significant wave height 4.0 metres;

modal period 10 seconds.

The wave slope amplitude of the nth sine wave is given by Equation (1.16):

2
w
g =k, Cp = — Cro rad (2.45)
g
and the wave slope spectral ordinates are given by
2 2 4
o @
§(w) = 5 g‘:ﬂ = zc"ﬂz a"
s 8% (2.46)
W
== Sc(m) rad */(rad/sec)
g "7

(see Equation (2.12)).
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Fig 2.10 - Wave slope spectra: significant wave height 4.0 metres; modal period 10 seconds

So the wave slope energy specirum can be obtained by multiplying the wave amplitude spectral
ordinates by (ﬂ: /g 2,

The Bretschneider and JONSWAP wave slope spectra are then

Sy, (W) = A exp (;E) rad*(radlsec) (2.47)
w g2 wt
and
S, @) =0658 CS, () rad*(radisec) (2.48)

Figure 2.10 shows examples of these wave slope spectra. The JONSWAP spectrum is very
sharply peaked but the most striking comparison with the shapes of the corresponding wave
amplitude spectra (Figure 2.9) is the much greater comparative importance of high wave
frequencies. This corresponds with practical observations: short high frequency waves are
often very steep even though their amplitudes are very small.

All the relationships derived for wave amplitude spectra (Equations (2.12)-(2.30)) have
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analogous relationships for wave slope spectra. Thus, for example, the variance of wave slope
can be obtained by integrating the wave slope spectrum. :

2.11 WAVE SPREADING AND SHORT CRESTED WAVES

In ideal conditions in the open ocean all the waves might be expected to travel in the same
direction. However, these long crested waves in which the wave crests remain straight and
parallel are never experienced outside the artificial confines of the laboratory towing tank,
although approximations may occasionally be found at sea. It is much more likely that the real
waves in the ocean will be travelling in many different directions, although an easily
recognised “primary” direction, often more or less aligned with the local wind, may be
discernible. Changes in wind direction, the influence of coastlines and bottom topography and
the presence of wave systems originally generated elsewhere will all conspire to ensure that
the true long crested wave system is at least a rarity and probably a myth.

Primary wave ..
direction Limit of

spreading

Secondary wave
direction 500

Ship's course
Y

Limit of
spreading

Fig 2.11 - Primary and secondary wave directions.

The presence of more than one long crested wave system results in alternate enhancement and
cancellation of wave crests and troughs, and this phenomenon gives rise to the term short
crested to describe the appearance of a wave system with a spread of wave directions.

The wave energy spectrum derived from a record of surface elevations obtained at a particular
point in the ocean will invariably contain contributions from several different wave directions.
It is often convenient to ignore this fact and assume that the wave system is long crested, and for
many purposes this may give acceptable results. However, the degree of wave spreading does
have a profound influence on some ship motions (particularly roll) and its effect cannot always
be ignored (see Chapter 8).
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Fig 2.12 - Directional wave spectrum

0.156 5; () 0.167 5; (o)

0.125 5; () \Ba 01565, @)
0.083 5; (o)

0.042 S (@)
-agt

0.0i1 5, (@)

0.042 5, (®)

0.011 §; (@)

Frequency w

Fig 2.13 - Representation of a directional wave spectrum by thirteen long crested spectra at
discrete heading intervals of 15° : cosine squared spreading over + 90°.

An infinite number of possibilities exist, but for design purposes it is usual to assume that if the
primary wave direction is p relative to some fixed datum (usually the ship’s course: see Figure
2.11), the secondary wave directions v are distributed intherange - w2 < (v - p } < /2.
The directional wave spectrum is defined such that the quantity p g Sy (,v) 6w &v is
equivalent to the wave energy contained in the frequency band &w and the direction band &v as
shown in Figure 2.12, Hence the directional speciral density ordinate, by analogy with Equation

56




(2.12), is given by

2

S{w,v) = ch:ﬂjg\; m?(radfsec) per rad (2.49)

where Cnﬁ) is now the amplitude of the component sine wave appropriate to the nth frequency
and the jth direction. For ship design purposes it is assumed that the directional wave spectral

ordinates are related to the ordinates of the equivalent total wave energy spectrum S{®) by

S(w,v) = 2 cos*(v - u) S (w) m*(radfsec) per rad (2.50)
T

Trials evidence (Cummins and Bales (1980)) suggests that this cesine squared spreading is
appropriate for typically occurring conditions in the open ocean.

TABLE 2.1
WEIGHTING FACTORS FOR
CALCULATIONS OF SHIP MOTIONS IN
SHORT CRESTED WAVES.
Cosine squared spreading over + 90°
&v = 15°
vV - U w
+ 90° 0.000
x 75° 0.011
+ 60° 0.042
+ 45° 0.083
+ 30" 0.125
+ 15° 0.156

0 0.167

Equation (2.50) is of little direct use in practical computations of ship motions in short crested
seas. These calculations (see Chapter 8) require the spread wave spectrum to be represented
by a discrete (long crested) contribution from each of a finite number of secondary wave
directions within the range of the spreading. Each contribution is essentially a scaled down
version of the total wave energy spectrum as shown in Figure 2.13. If the secondary wave
directions are spaced at intervals of &v the appropriate wave energy spectrum at each
secondary direction is given by

W S{w) m%(radlsec)

where the weighting factor W is
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W= 2 cos? (v -p)bv (2.51)
'

Table 2.1 lists the weighting factors for intervals of &v = 157,
2.12 OCEAN WAVE STATISTICS

2.12.1 Introduction

We have seen how an idealised wave energy spectrum may be defined in terms of the significant
wave height and various measures of the average wave period. This allows representative spectra
to be constructed for any point in the ocean provided these quantities are known. Of course many
different combinations of significant wave height and average period may occur at any particular
location. For practical ship design purposes we need to choose appropriate values for the sea
areas and seasons in which the ship is expected to operate.

2.12.2 Visual Observations of Wave Height and Period

The description of the mechanism of wave generation given at the start of this chapter shows that
there can be no unique correlation between wind speed and wave height. Nevertheless mariners
have traditionally used the visual appearance or "state" of the sea as an indication of the local
wind speed. This led to the concept of a numerical scale of sea sfafe as a measure of the severity
of the waves and different scales were evolved by different national authorities. These scales
have often been used to report sea conditions in preference to more precise estimates of wave
height and period.

TABLE 2.2
WORLD METEOROLOGICAL ORGANISATION (WMO)
SEA STATE CODES
Sea state code Significant wave Mean significant wave Description
height range (m) height (m)
0 0 0 Calm (glassy)
1 0-0.1 0.05 Calm (rippled)
2 0.1-0.5 0.3 Smooth (wavelets)
3 05-1.25 0.875 Slight
4 1.25-2.5 1.875 Moderate
5 25-40 3.25 Rough
6 4.0-6.0 5.0 Very rough
7 6.0-9.0 7.5 High
8 9.0-14.0 11.5 Very high
o Over 14.0 Over 14.0 Phenomenal
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In 1970 the World Meteorological Organisation (WMO) agreed the standard sea state code given
in Table 2.2. Each sea state namber corresponds to a range of significant wave heights but there
is no indication of period.

As such the sea state can be regarded, at best, as a rather vague and indeterminate indication of
wave conditions which is of only limited use in reporting sea conditions. Nevertheless its use is
so well established and wide spread in the seafaring community that naval architects and
.oceanographers must sometimes tolerate its deficiencies.

With encouragement from oceanographers sailors now often report sea conditions in more detail
by estimating the "average" wave height and period. Hogben and Lumb (1967) compared these
visual observations with values measured by wave buoys and other suitable instruments and
obtained the following approximate relationships:

H

s = 106 Hy o m (2.52)
T =0737T, sec (2.53)
T, = 112 T,  sec (2.54)

Nordenstrom (1969) derived alternative expressions:

3 7073
H,~168H" m (2.55)

obs

T = 0827T," sec (2.56)

obs
It we assume the Bretschneider spectrum period relationships (Equations (2.41)), Nordenstrém's
period relationship can also be written as

T, = 116 T, sec 2.57)

abs

These relationships are illustrated in Figures 2.14 and 2.15. It may be concluded that observer's
estimates of average wave height correspond reasonably closely to the significant wave height®.
Average visual estimates of wave period apparently agree quite well with the modal period but
Hogben and Lumb (1967) found that individual estimates were often widely scattered and could
not be regarded as reliable.

2.12.3 Wave Atlases

A very comprehensive atlas based on over 55 million visual observations from ships on passage
between 1854 and 1984 was published as "Global Wave Statistics" by Hogben, Dacunha and
Olliver (1986). This superseded the earlier work by Hogben and Lumb (1967).

% Since the true mean wave height must, by definition, be less than the significant wave
height this implies that observers ignore the smaller waves when making their estimates.
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Fig 2.15 - Observed, modal and mean zero crossing periods
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The reliability of the raw visual observations of wave height was enhanced by correlating them
with simultaneous observations of wind speed. This allowed obviously unrealistic estimates of
wave height to be eliminated from the data base. The unreliable visual estimates of the wave
period were not used at all. Instead, wave period statistics were constructed from correlations
with measured data.

Data were collected for the sea areas shown in Figure 2.16. Table 2.3 shows a typical set of data
for Area 9 (west of the British Isles) in winter. The data are subdivided into different wave
directions and are presented in the form of scatter diagrams, giving the joint frequency of
occurrence (in parts per thousand) of particular combinations of significant wave height and zero
crossing period occurring simultaneously.

For example the probability of occurrence of wave heights from all directions in the range 4 - 5
metres with periods in the range 9 - 10 seconds is 58/1000 = 0.058.

The frequency of occurrence of waves from each of the specified directions is given as
"percentage of observations" at the top of each scatter diagram. Also shown at the right hand side
of each diagram is the frequency of occurrence of each significant wave height range for all
periods. The frequency of occurrence of each period range for all wave heights is shown at the
top of each diagram. For example the probability of waves of any period from the West having
a significant wave height falling in the range 4 - 5 metres is 149/1000 = 0.149,

We shall see in Chapter 17 that a proper assessment of seakeeping performance shouid take
account of all the wave conditions the ship might experience during its service life. Data sources
like those presented in Table 2.3 provide a basis for such an assessment. However a less
comprehensive evaluation is sometimes more appropriate (say in the early stages of a new
design) and the calculations may then be restricted to a range of significant wave heights and
their associated most probable modal periods. Figure 2.17 gives data in the required form, taken
from Table 2.3.°

Figure 2.18 shows the probability of exceeding specified significant wave heights for four
different sea areas. Clearly Area 9 has one of the most severe wave environments in the world,
closely followed by the North Sea. The Gulf of Mexico is particularly benign.

A similar wave atlas based on visual observations for the North Pacific, with particular emphasis
on the seas around Japan, was published by Takaishi, Matsumoto and Ohmatsu (1980).

Wave statistics based on visual observations must always be considered less reliable than direct
measurements of wave conditions even if the reliability has been enhanced as described above.
However, a more serious criticism of visually observed wave data lies in the fact that ship's
masters generally try to avoid bad weather and this is likely to introduce a fair weather bias into
the results. So the published tables will tend to underestimate the probability of extremely severe

* The zero crossing periods have been translated into modal periods using Equation
(2.41) although this is strictly valid only for the Bretschneider spectrum.
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TABLE 2.3
WAVE HEIGHT AND PERIOD STATISTICS;
December - February ; Sea Area 9
(After Hogben, Dacunha and Qlliver (1986)
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weather conditions. It may be argued that this bias makes the statistics applicable to ships which
have freedom to avoid bad weather.Vessels which must remain on station such as warships,
weather ships and offshore platforms may well experience bad weather more frequently than
these statistics would imply.

Bales, Lee and Voelker (1981) published a wave atlas for the North Atlantic, North,

Mediterranean, Black and Baltic Seas. They used measured wind data obtained over a period of
twenty years for the sea areas in question to "hindcast” the waves which would have occurred as
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a result of the measured winds. The prediction technique used was devised by Pierson, Tick and
Baer (1966) and calculations of wave spectra were made at six hourly intervals for the period
1959 - 1969 for the sea areas shown in Figure 2.19. A total of over 133,000 wave spectra were
calculated and compiled to produce statistics in much the same way as shown in Table 2.3.

In addition to data on wave heights and periods Bales' atlas gives information on wind speed and
wind and wave direction. The atlas also contains limited data on visibility, cloud cover,
precipitation, relative humidity, air and water temperatures, sea level pressure and ice. Table 2.4
shows an example of a scatter diagram for wind speed and significant wave height for the entire
North Atlantic.

8 Sea area 9; all seayons; all

6 — directions (after Hogben, —
4 L Dacunha and Olliver (1986))
3

]

Most probable modal period

(seconds)

] I 1 1 H ] |
1] 2 4 [ 8 10 12 14 16

Significant wave height (metres)

Fig 2.17 - Most probable modal periods
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Fig 2.18 - Probability of exceeding specified significant wave heights in four sea areas. (After
Hogben, Dacunha and Olliver (1986))
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TABLE 2.4

ANNUAL WIND SPEED AND WAVE HEIGHT STATISTICS
FOR THE NORTH ATLANTIC

(Probabilities in parts per thousand)
(After Bales, Lee and Voelker (1981))

g WIND SPEED (Knots)

13 0-4 4.7 7-11 11-17 1722 2228 28-34 34-41 41-48 48-55 >335 Total
metres

>24
20-24
16-20 + + +
14-16 + + + + +
12-14 + + + + + i + 1
10-12 + + + + + + 1 2 i + 4
9-10 + + + + + 1 2 2 + + 6
8-9 + + + + + 1 2 5 2 + + 11
7-8 + + + 1 1 2 5 8 1 + 18
6-7 + + 1 2 3 K 11 8 + + 32
5-6 + 1 1 5 7 14 21 3 + + 52
4-5 1 12 4 12 16 30 15 i + 80
3-4 2 4 10 28 37 43 2 + 125
2-3 5 12 26 66 67 10 + + + 187
1-2 17 34 6% 23 16 + + 259
0-1 41 68 92 24 + + 225

+ indicates less than one part per thousand.

Lee, Bales and Sowby (1985) have published a similar atlas for the Pacific Ocean.

The hindcast technique avoids the problems of accuracy and fair weather bias associated with
visually observed wave data but depends, of course, on the reliability of the mathematical model
used to predict the wave conditions.
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If both visnally estimated and hindcast wave data are subject to uncertainties, direct
measurements of wave spectra must provide the most reliable data of all. However, measuring
wave data over a protracted period (years) is an expensive and complicated undertaking and few
attemnpts at systematic data collection have been made. Probably the most comprehensive is that
organised by the US National Oceanographic and Atmospheric Administration (NOAA) and
published by Gilhousen et al (1983). The measurement buoys were deployed for at least three
years and some were in continuous operation for as long as nine years at various locations around
the United States. They recorded information on air and sea temperature and atmospheric
pressure as well as wind and waves. The waves were sampled every three hours and a wave
spectrum derived from the recorded time history. The significant wave height and mean zero
crossing period were derived using Equations 2.31 and 2.28 and scatter diagrams similar to those
shown in Table 2.3 prepared.

Many other measurements of wave conditions have been made for specific purposes at various
locations throughout the world. Typically these are short term studies intended to provide data
on the local environment for use in research or specific projects such as ship seakeeping trials
or the design of offshore or harbour installations. Much of the data have been acquired by
commercial organisations who regard them as proprietary information not available to the general
public. However, in 1982 the United Kingdom Marine Information and Advisory Service (MIAS)
published a catalogue listing the data sources open to general use. Over 1350 entries were
catalogued. The majority of the measurements were made in the coastal waters around the British
Isles and in the North Sea, but a significant quantity of data are also available for North
American and Australian waters.

00

11

5

Fig 2.19 - Sea areas used by Bales, Lee and Voelker (1981)
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2.12.4 Annual growth of wave heights

Bacon and Carter (1991) and Barrat (1991) showed that the wave heights measured and observed
on ocean weather ships in the North Atlantic have been increasing for at least the last thirty years.
Hogben (1994) summarised the data and showed that the mean significant wave height appears
to be growing at a rate of about 1.5% per year, as shown in Figure 2.20. This implies that the
wave heights derived from wave atlas data should be increased by a factor F to take account of
the time lapse between data collection and the time when the ship is expected to be in service:

[ 13 ]
service

= 1.015% (2.58)
[ ] data

where A is the elapsed time in years between the time the wave data were collected and the time
the ship is to enter service.

ows Charl:e/ >
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3 |- T OWS Juliet ]
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Fig 2.20 - Increase of mean significant wave heights in the North Atlantic
(After Bacon and Carter (1991) and Barrat (1991))
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3

LINEARISED EQUATIONS FOR SMALL AMPLITUDE SHIP MOTIONS IN
REGULAR WAVES

3.1 INTRODUCTION

Ships do not, in the normal course of events, experience regular waves at sea. So the study of
ship motions in regular waves appears at first sight to be an academic exercise of no practical
significance. Yet it is an essential first step in the calculation of ship motions in a realistic
irregular seaway; moreover, an appreciation of regular wave motions will give the reader an
insight which will prove invaluable in understanding the general nature of the motions of ships
in rough weather.

32  AXES AND SHIP MOTION DEFINITIONS

A ship in rough weather experiences a complex sequence of motions as it twists and turns its way
across the ocean surface. The motions seem to defy any rational analysis, particularly by those
who suffer from their effects on board the ship. Nevertheless, it is possible to make some
observations on the characteristics of ship motions which will heip to clarify their nature and will
form a basis for the modern theory of seakeeping.

Let us suppose that the ship is attempting to maintain a straight course at a constant speed U
metres/second. Waves continually cause the ship to deviate from its course and track and the
helmsman may find it necessary to take corrective action. In addition the ship will rise and fall
in response to the changing water level and the deck will seldom be truly horizontal. The ship
will generally follow some kind of spiral path which is more or less aligned with the intended
course. Finally the ship's speed will be continually varying around the nominal speed U as the
ship surges along its track in response to the waves.!

Any particular ship's track and motion time history can be represented by a combination of the
time histories of three linear* and three angular displacements. These six displacements are
defined using the right handed axis system shown in Figure 3.1.

! The ship speed will generally be about the same as it would be at the same engine power
setting in calm water: in head waves it will be reduced and in following waves it will be
increased.

* “Linear” here means a displacement along an axis as opposed to a rotation about an
axis. For the time being there is no necessary implication that the motions are linear in the sense
that they are directly proportional to a force or moment.
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The axis system Exy has its origin fixed at E at the mean water level and regular waves
propagate along the Ex axis. A second axis system E x,, X,, X, also has its origin at E but
is rotated through the heading angle p so that Ex,, coincides with the mean track of the ship.?

] - Ys Xg3
Body axis system
Xaz
X2
xB" ‘-—-__— .
Earth axis systems
Xp3 X3
G
X5 Y

Fig 3.1 - Axes and ship motion definitions

A point O, lying at the mean water level, moves along Ex,, at the mean speed of the ship, U
metres/second. The mean position of the ship's centre of gravity G, lies vertically above O and
is taken as the origin of a third axis system G, x, x, x;. Atany instant of time the position of

the ship's centre of gravity G relative to the moving origin G, is defined by three linear
displacements:

Motion | Notation | Units Positive
surge %! metres | forward
sway Xy metres | to starboard
heave Xy meires | down

The attinde of the ship is defined by three angular rotations about the axes
Gy x4 Gy x, and G x5:

? See Chapter 1 for the definition of heading angle.
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Motion Notation Units Positive

roll Xy radians starboard side down
pitch X5 radians | bow up

yaw Xg radians bow to starboard

Most ships have port/starboard symmetry and so surge, heave and pitch, which lie in the plane
of symmetry, are called vertical plane or symmetric motions. Sway, roll and yaw are termed
lateral plane or antisymmetric motions. The motions are often referred to as “degrees of
Jreedom”.

Another right handed set of axes G xj, x, x;, is fixed in the ship and is used to define locations

on (or in) the ship's structure. The origin of this body axis system is at the (moving) centre of
gravity G and the axes rotate as the ship rolls, pitches and yaws. Locations are defined as:

Location Notation | Units Positive
Longitudinal Xg; metres forward
Lateral ) metres to starboard
Vertical Xp3 metres down

The wave depression at any point x is, according to Equation (1.9),
C=Csn(kx-wt) m

where the time ¢ is measured from an arbitrary datum. Transforming to the axis system aligned
with the ship's track we find that the wave depression at any point ( x;, , x5, ) is

C=Cysin(kxgcosp ~kxgsinp -wt) m
If we choose a datum time such that the moving origin O is at E at time

T
SEC

_kUCO.S'].l

the moving and Earth fixed frames of reference are related by
T
X, =x, +U |t - —— m
&l ! [ k U cos p]
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Then the wave depression at ( x; , x, ) in the moving frame of reference is

C=Cysin(w t-kxcosp+kx,sinp) m (3.1)

33 GENERAL EQUATIONS FOR SHIP MOTIONS IN REGULAR WAVES

3.3.1 Mass and moments of inertia

The ship may be regarded as being composed of a large nurnber of very small masses 6 tonnes.
Figure 3.2 shows one of these masses located at ( x5, , x5, , x5; ) (relative to the centre of
gravity of the ship). If the ship has linear accelerations %, %, and %, m/sec’ and angular
accelerations %,, ¥, and X rad/sec® the mass dm will have linear accelerations

2

X =X o+ xp X - xp, X, misec forwards

i B3 *s ~ *m2 A
T " - 2
Xy =&, - xpy X, + x5, & misec” to starboard

o o . 2
Ky = Ey +xp, X, - oxp, X misec downwards

From Newton’s second law of motion, the forces and moments necessary to
sustain these accelerations are

6F, = dm %/ kN surge force forwards

OF, = dm le kN  sway force to starboard

2

/

OF &ém %, kN heave force downwards

3

OF, = dm xp, ;i:‘; - Om xg, xzj KN m  roll moment to starboard
OF, = dm x,, % - om Xy J'c'; kN m  pitch moment bow up

6F, = 8m xy, % - om X % kN m yaw moment to starboard
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Fig 3.2 - Accelerations experienced by the mass om
The forces and moments required to sustain the linear and angular accelerations of the whole ship

are obtained by allowing &m to approach zero and integrating over the volume of the ship.
Bearing in mind that by definition of the centre of gravity

fxmdm fx dm = fx dn =0
we obtain

mx =F kN

mi, =F, kN

mi =F, N

3 3

L3, - Ik - Lk, =F, kNm
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—Is4x4 + Issxs - L,x, =F, kNm

T Xy - I X v I X = F, kNm
where F), F, and F,are the surge, sway and heave forces and F, , F, and F are the roll,

pitch and yaw moments required to sustain the accelerations of the ship. m is the total mass in
tonnes and /,, , I, and I . are the moments of inertia of the ship defined by

2 2 .
I, = f (Xxg + xp3 ) dm tm?> about the x,, axis

(%]

2 2 :
I, = f (xg; + xpz ) dm t m* about the x,, axis

[} ]

I = f (xg; + x5 ) dm tm® about the X, axis

In passing we note that it is often more convenient for practical engineering purposes to calculate
the moments of inertia using the equations

L,=mik tm? (3.22)
ILy=mkl tm? (3.2b)
I,=mbki tm? (3.20)

where the radii of gyration for conventional ships may be estimated using the approximate
equations:

k,= 03B m
ks = 0225L m
k.= 0225L m

where B is the maximum waterline beam and L is the waterline length.

The product moments of inertia are defined by
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_ _ 2
I45 = I54 = fxm Xpy dmn tm
2

I45 =IG4 = fxm Xps dm tm

_ _ 2
Is& = I65 = fsz Xps dan tm

For conventional ships the product moments of inertia are usually small and are invariably
neglected. The equations of motion then reduce to

B
at
[

F. kN, (i=1,3) . (3.3a)

Py
R
[

F, lNm; (i=4,6) (3.30)

3.3.2 Motions in regular waves
The forces and moments in Eguations (3.3) may be applied by any external means, but we are
here concerned with the forces and moments applied to the ship by a train of regular waves.

For a given hull shape at a particular speed and heading in waves of a particular length the forces
and moments F, are assumed to be functions of the displacement, velocity and acceleration of
the surface depression and the six possible motions. So we may write

Fo=F 060 (x. 4,5 (i=13)] & (3.42)

F,

F LGt (x5, %; (i=46)] Wm (3.4b)

If the wave amplitude is small compared with the wave and ship lengths the motions will also
be small and we may use a Taylor series expansion to obtain linear approximations to Equations
3.4):

Fo=a, 0 +b{+c ¢
6
+ ), (e X -b % -c.x) KN; (i=13) (3.52)
j=1
Fi=a;{ +b,(+¢ ¢

3]
+;(—aﬁjc’j—bﬁ:&j*chj) KNm; (i=4,6) (3.5b)
J:

The coefficients a, b,and c, are functions of the wave length and amplitude, heading angle, ship
speed and hull form, and quantify the effect of the waves on the forces and moments. The other
coefficients ay bt.j and c; quantify the forces and moments required to sustain the motions of
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the ship: these will be considered in detail in Section 3.4.

Substituting Equations (3.5) into the six Equations (3.3) we obtain six general linearised
equations for small amplitude motions in regular waves:

6
Z(Ag;zj+bg.x'j+cijxj)=F. KN ;(i=1,3) (3.6a)

wi
i=1

Zl(Aﬁjfj+bU.ij+cijxj):Fwi KNm; (i=4,6) (3.6b)

where
Aj=a; (j=1,6; i=16;j=+1)

and the virtual masses and moments of inertia for each degree of freedom are
Aﬁ=m+aij(j=1,3;i=1,3;jzi) (3.7a)
Ay =L +a,(j=46; i=46; j=1) (3.7h)
The exciting forces and moments due to the waves are

F

wi

a,{+b(+c¢{ KN;(i=1,3) (3.8a)

F

wi

a; 0 +b,{+c,{ KNm;(i=46) (3.8b)

The regular wave ship motions are related to the nominal wave depression which would have
been experienced at the moving origin O in the absence of the hull (in practice O will usuaily
be within the hull so that the actual surface depression with the hull present cannot be defined).

Setting x;, = x, = 0 in Equation (3.1) gives for this nominal surface depression at O
C=Csin(w,t) m (3.9)

and the nominal vertical velocity and acceleration of the sea surface perceived by an observer on
the ship at O are

¢ = w, {yeos (w,t) misec (3.10)
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= —(1)3 Cq Sin (w, t) misec?

Substituting Equations (3.9)-(3.11) in Equations (3.8) we obtain

F,=Fsin(w,t+y,) kN;(i=13)
F.=F_ ,sin(w,t+7Y,) KNm;(i=46)

where the excitation amplitudes are

Fup= oy (ci-a @) P+ (b, BN;(i=1,3)

FwiUZCOJ(C,’_afmi)z'*'(bime)z KNm;(i=4,6)

and the phases are given by

tan’yi:—l—e—-; (i=1,6)

The generalised equations of motion (3.6) may now be written as

6

'ZI(A,.J.;;. +hy ¥ +cyx ) = Foosin (@, t+y;) kN ;
J:
(i=1,3)
6
Z (A % + b&.:éj +e; %) = Fysin (@, t Y;) kKN m ;
j=1
(i=4,6)
Solutions to these equations have the form
X, =x,sin (0w, t+8) m; (i=1,3)

X;

xysin(w,t+06,) rad; (i=4,6)

(3.11)

(3.12a)

(3.12b)

(3.132)

(3.13b)

(3.14)

(3.15a)

(3.15b)

(3.16a)

(3.16b)

So small amplitude regular sine waves impose sinusoidal exciting forces and moments

on the ship and these result in sinusoidal motion time histories.
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The motion amplitudes are directly proportional to the excitation amplitudes, which are in turn
proportional to the wave amplitude. The phase angles y, and 8, relate the excitation and motion
time histories to the time history of the wave depression at O as shown in Figure 3.3. The peak
excitation occurs 7y, /w, seconds before the maximum wave depression. Similarly the peak
(positive) motion occurs &, /w, seconds before the maximum wave depression.

at 0 4

Wave depression “[[_\ F#,{

Fy,
Exciting Fy, I\ Ti/o > }«— wio
oree or
; - /4.\_I e %

mo ti - -
NOMERL 7T \_/ Q:_// T'\_,

Motion i X, /J-\
] E \

Fig 3.3 - Time histories of wave depression, exciting force and motion in regular waves

3.4  COEFFICIENTS IN THE EQUATIONS OF MOTION

3.4.1 Introduction

An understanding of the physical significance of the coefficients in the equations of motion can
be gained by considering an experiment in which a model of the ship is forced to oscillate in a
single degree of freedom (say heave) while being towed at constant speed in calm water. The
model is constrained so that all other motions (pitch, roll, yaw etc) are suppressed. The forces and
moments normally applied by the waves are replaced by externally applied forces and moments
which are just sufficient to sustain the sinusoidal motion of the model in the chosen degree of
freedom. We need not concern ourselves with how these forces and moments are generated,
measured or applied, only with their magnitudes and effects.

In general (for an arbitrary hull shape) it will be necessary to apply forces and moments in all six
degrees of freedom i to sustain the single motion x;- The required forces and moments can be
found from six equations analogous to the equations of motion (3.15):

6

D (A % + b,k +c,x)=Fysin(w,t)kN; (=1,3)  (3.17a)

i=1
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]
,-; (A; % + by % +c;x,) = Fysin (o, t) kN m; (i=4, 6) (3.17b)

where F, are the amplitudes of the applied forces and moments. All the motions except for x;
are set to zero and the single motion x; leads the forces and moments by g radians:

X, = Xy sin (@, t + & ) m or rad (3.18)

Equations (3.17) then reduce to six much simpler equations:

A!.j E+ b,.j Jéj +Cy X = Fgsin (w, t) kN (i=1, 3) (3.19a)

Az}‘ X+ b:‘j sz +c,x; = Fosin(w,t)kNm; (i=4, 6) (3.19b)

and these may be recognised as the equations of motion of six second order linear damped spring
mass systerns with sinnsoidal excitation (see Appendix 1). The equations express the six forces
and moments required to sustain the single motion oscillation x.. The in phase and quadrature
components of each force and moment are given by Equations (A1.12) and (Al1.13):

_ 2y ) o
c; ~ Ay w, = — cos € kNim ; (i=1,3) (3.20a)
X
_ 2 _ Py . -
€y Aij W, = — COS € kN mfrad , (i=4,6) (3.20b)
)
Fm i
bij w, = - — sin € kNim ; (i=1,3) (3.21a)
X
Fyo .
b, w, = - — sin g KNmm; (i=4,6) (3.21b)
X
10

The components of the six applied forces and moments which are in phase with the motion are
therefore associated with the stiffness and inertia coefficients, while the quadrature components
are associated with damping.

3.4.2 Heave coefficients :
Ifweset j = 3 in Equations (3.20) and (3.21) and use Equations (3.7) we may find expressions
for the heave coefficients @33 » D33 3 €33 5 Gs3 » D53 and Cs3. The most important coefficients
are a,, , by; and €33 which relate the heave motion (j = 3 ) to the applied heave force
(i = 3 ). Figure 3.4 shows the physical mechanisms responsible for these coefficients.
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At zero frequency the vessel has no heave velocity or acceleration and the heave force is related
to the heave displacement through the single coefficient ;. This arises because a steady
downward heave force produces a steady downward heave displacement and an additional
displaced volume of water. The heave force is required to oppose the resulting additional
buoyancy force and sustain the heave displacement (see Figure 3.4(c)).

A typical relationship between the heave displacement and the heave force required to sustain
it is shown in Figure 3.5(a). Provided that the heave displacement is small, this may be
approximated by a straight line whose slope is ¢;;. ¢, is specifically defined as the gradient of
the curve at the origin.

At higher frequencies the in phase component of the applied heave force includes a contribution
from the heave inertia or virtual mass A,; (see Equation (3.7a)).This is made up of contributions
from the so called added mass a,, as well as the real mass m of the vessel.

¢A33 %3
(a) Heave B . ¢ i o
acceleration \L 3 J/
¢ by; X,
(b) Heave ¢ i N
veloei
Y 3 Waves radiate
energy away
—— —_—
*Csa *3
{c) Heave — | Additienal displacement| —
displacement *
\—/ x3

Fig 3.4 - Effects of heave motion

The former arises because the accelerating hull causes changes in the fluid velocities adjacent to
its surface as shown in Figure 3.4(a). The additional force required to accelerate this water as
well as the hull is included in the inertia coefficient and the ship behaves as though it has an
increased mass. The heave damping coefficient b,; arises because the oscillating ship generates
waves which radiate ontward and dissipate energy as shown in Figure 3.4(b). A small amount
of energy is also dissipated by friction.

The pitch moment required to sustain the heave oscillation yields estimates of the coefficients
sy 5 by and cg; (seti = 5 and j = 3 in Equation (3.19b)). These coefficients quantify the
inflnence of heave on pitch in the equations of motion (3.15) and they occur because local
inertia, damping and stiffness forces everywhere along the hull exert pitching moments about the
centre of gravity.

79




TABLE 3.1

ADDED MASS AND DAMPING COEFFICIENTS IN THE EQUATIONS
OF MOTION FOR A SHIP WITH PORT/STARBOARD SYMMETRY

Velocity surge sway heave roll pitch yaw
and force force force maoment moment moment
acccleration i=1 i=2 i=3 i=4 i=3 i=6
surge v zero, small zero, small zero,
=1
sway zero, v zero, - Zero, v
=2
heave small zero, v zero, v zero,
=3
roll zero, v Zero, v Zeroy v
j=4
pitch small Zero, v zero, v zZero,
j=5
yaw zero, v Zero, v Z€ero, v
j=6
TABLE 3.2
STIFFNESS COEFFICIENTS IN THE EQUATIONS OF MOTION
FOR A SHIF WITH PORT/STARBOARD SYMMETRY
surge sway heave roll pitch yaw
Displacement force force force moment moment moment
i=1 i=2 i=3 i=4 i=3 i=6
surge zero, zero, zero, zero, zero, zero,
j=1
sway zero, zero, zero; zero, zero, zero,
j=
heave small zero, v zero, v zero,
j=
rall zero, small zero, v/ zero, small
j=4
pitch small zera, s zero, v
j:
yaw Zero; v zero v ZErO, v
j=6

Key:

v': significant value

zero,: zero by geography
zero; : zero for small moticns
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If the ship has fore and aft symmeitry like a canoe, the moments arising from the forces on the
forward half of the ship will almost exactly balance those arising from the after half of the ship,
and these “coupling’ coefficients will be very small. For more orthodox forms residual
moments, which may not be negligible, will remain.

For arbitrary shaped hull forms forces and moments in the other four degrees of freedom (surge,
sway, roll and yaw) will also be required to sustain a pure heave oscillation and the relevant
coefficients can be identified in a similar way. However, most practical ship forms have
port/starboard symmetry so that the forces and moments generated by the pressure changes on
the starboard side of the hull are exactly balanced by those on the port side. So all lateral plane
excitations associated with motions in the vertical plane are zero. In other words the relationships
between the lateral plane forces and moments and vertical plane motions have the form shown
in Figure 3.5(b) and all the associated coefficients are zero.

(@) Heave force F 4 iy

Heave displacement x,

Keel emerges

Lateral plane A
: force or mament
{b) Slope = 0

-

Vertical plane motion

Vertical plane
force or moment g Slope = 0

- YT

Lateral plane motion

Fig 3.5 - Typical heave motion relationships
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3.4.2 Pitch coefficients

We now consider an experiment in which the model is forced to undergo a pitch oscillation by
setting j = 5 in Equations (3.20). The analysis proceeds along lines exactly similar to those
used in the heave oscillation experiment and yields the term$ a.s , by » Cg5 5 Gz 2 bsy aNA €.
Again all the lateral plane forces and moments and associated coefficients are zero if the hull has

port/starboard symmetry.

The pitch oscillations cause local vertical motions everywhere along the hull so that each section
of the hull experiences local inertia, damping and stiffness forces analogous to those experienced
by the whole model in the heave oscillation experiment. These forces exert moments about the
centre of gravity and are responsible for the coefficients a.; , by and cg. The local forces
distributed over the forward part of the hull oppose those on the after part of the hull so that the
residual heave forces associated with the coefficients a.; , bg; and cg,are usually small. Indeed
they would be zero on a hull with fore and aft symmetry at zero speed.

The pitch virtual inertia coefficient A, includes contributions from the so called “added moment
of inertia™ as well as the true moment of inertia of the ship's structure. This is analogous to the
heave added mass already discussed. The true mass moment of inertia may be calculated from
Eguation (3.2b).

3.4.3 Lateral plane coefficients

Expressions for the lateral plane coefficients may be determined in a similar way by setting
J = 2, 4 and 6in Equations (3.20).

In general, vertical plane forces and moments will always be required to sustain motions in the
lateral plane even for ships with port/starboard symmetry. However, the relationship between
the vertical plane excitation and the lateral plane motion for ships with lateral symmetry will
have the symmetrical U shaped form shown in Figure 3.5 (c). In other words the vertical plane
excitation will have the same magnitude and direction regardless of the direction of the lateral
plane motion. Since we are concerned only with small motions and our linearisation requires the
coefficients to be determined from the slope at the origin, all such coefficients are zero.

3.4.4 ‘Geographical’ coefficients

We have seen that some coefficients are zero or small if the ship has port and starboard
symmetry. Another class of coefficients are always zero regardless of the hull form. These are
all stiffness coefficients associated with the ship's geographical location with respect to the origin

G, . No forces or moments are required to sustain surge and sway displacements x, and x, so
that

c, =¢,=0; (i=1,6)

3.4.5 Summary of zero value coefficients

Tables 3.1 and 3.2 list 60 coefficients (out of a total of 108) which are zero for a ship with
port/starboard symmetry. A further 12 coefficients are usually negligible and are invariably
neglected. This results in six much simpler equations for small amplitude motions of a ship with
lateral symmetry. These are listed in Section 3.5.
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3.5  SIMPLIFIED EQUATIONS OF MOTION FOR A SHIP WITH PORT/STARBOARD

SYMMETRY.
Surge: (m +a;, )X +b, % =F ,sin(w,t+7v ) kN (3.22a)
Sway: (m + ay ) X, + by + ayy X, + by X, + Gy Ky + byg X + Cp Xy
) (3.22b)
=Fpsin (0, t+Y,) KN
Heave: (m + Gyy ) X3 + byg Xy + Cg3 Xy + Gy5 X5 + Dy X5 + Oy X,
) (3.220)
=Fpsin(w t+v3) kN
Roll: a42.‘56'2+b42362+(144+a44)jc'4+b44i4+c‘44x4
' (3.224)
t Gy K t by X T e xg = F ysin (0, t+y,) KNm
Pitch: Qgy Xy + by Xy + €53 %3 + (Is5 + Qg5 ) X5 + bgg X5 + €55 X5
’ (3.22e)
=F qosin(w,t+Ys5) kKN m
Qg Xy + by X, + ag X, + by X,
Yaw:
(I + agg ) ¥ + byg X + cge Xg (3.226)
=Fgsn(w t+Yy.) kKNm

3.6 COUPLING

As we have already seen, the vertical plane equations (heave and pitch) are coupled. In other
words the heave equation includes terms dependent on pitch so that heave is influenced by pitch
and vice versa. However, the surge equation is uncoupled and independent of the other motions.
The lateral plane equations are also coupled so that these motions are affected by each other.
There is, however, no coupling between the vertical plane motions and the lateral plane motions.
This allows the vertical and lateral plane motions to be considered independently.*

4 This is not necessarily true if the motions are large.
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4

STRIP THEORY

4.1 INTRODUCTION

Solving the equations of motion (3.22) requires the evaluation of the coefficients and the
excitation amplitudes and phases. These may be determined by experiment but this method is
laborious and hardly practical for routine calculations. In any case, if experimental methods are

to be used, it is more appropriate to measure ship motions directly as described in Chapters 9 and
10.

Considerable effort has therefore been devoted to developing theoretical methods of determining
the coefficients and excitations to allow ship motions to be calculated without recourse to
experiment. Various authors, including Tasai (1959), Gerritsma and Beukelman (1967),
Salvesen, Tuck and Faltinsen (1970) and Schmitke (1978), have made significant contributions.
Their theories are generally similar, differing only in detail and mathematical rigour. They are
complicated and a complete description is beyond the scope of this book. This chapter is
therefore intended to give an abbreviated presentation of the main features of strip theory in
general and is largely based on the methods proposed by Gerritsma and Beukelman.

All the theories assume that

(a) The ship is slender (ie the length is much greater than the beam or the draught and
the beam is much less than the wave length).

()] The hull is rigid so that no flexure of the structure occurs.
(© The speed is moderate so there is no appreciable planing lift.
(d) The motions are small.

(e) The ship hull sections are wall sided.

® The water depth is much greater than the wave length so that deep water wave
approximations may be applied.

(g)  The presence of the hull has no effect on the waves (the so called Froude-Kriloff
hypothesis).

The theories are grouped under the general heading of strip theory since they all represent the
three dimensional underwater hull form by a series of two dimensional slices or strips as shown
in Figure 4.1. Each strip is of length &x,, metres (assumed to be small).
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Each strip has associated local hydrodynamic properties (added mass, damping and stiffness)
which contribute to the coefficients for the complete hull in the equations of motion. Similarly
the wave excitations experienced by the hull are composed of contributions from all the strips.

Waterplane

Fig 4.1 - Representation of underwater hull section shapes by an infinite cylinder

Strip theory assumes that these local hydrodynamic properties are the same as would be
experienced if the strip were part of an infinitely long cylinder of the same cross sectional
shape, as shown in Figure 4.1. In other words three dimensional effects, such as mutual
interference between the strips, flow leakage around the ends of the ship and effects due to
changes in the shape of the strip over the length dx,,, are ignored.

4.2  STRIP MOTIONS

Let us first suppose that the ship is undergoing a generalised forced oscillation in all degrees
of freedom except surge. If the pitch and yaw oscillations are small the motions of each strip
will be essentially confined to the plane of the strip. If the strip is located x,, metres forward
of the centre of gravity the motions of a point on the Gx,, axis will be

/ .
Xog = X, + Xp; SN X = X, + Xp, X, m to starboard 4.1)
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X3g = Xy ~ Xy, Sin Xg = X, - Xp, X, m downwards 4.2)

X

, Tad starboard side down (4.3)

£
3
1

Consider an observer stationed at some fixed point alongside the FEx,, axis in Figure 3.1.
The oscillating ship passes him at a steady velocity I/ metres/second. At some instant of time
a certain strip is adjacent to the observer and his perception of its lateral velocity is given by
the total differential of Equation (4.1):

.fﬂD(/)_.+ .y /
Y6 = oy Vhag) T Ko T Xy Xg 7 Xpy Xg HUSEC

Now the distance x, from the strip to the approaching centre of gravity is diminishing at the
rate
g, = ~ U misec 4.4)

Hence the lateral velocity perceived by the observer is

./ . .
Xog = Xy *+ Xp, X - U x,  misec (4.5a)

Waterling ——2 e i -

Fig 4.2 - Velocities of a strip
and by a similar argument the perceived lateral acceleration is
Xy = X, + xp, K - 2U %, misec? (4.5b)
Similarly the perceived vertical velocity and acceleration are

./ . .
Fag = Xy ~ xg X + U x,  misec (4.6a)
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Ky = &y - xp, %ot 2U % misec? (4.6b)
and the roll velocity and acceleration are simply

= X, radlsec (4.7a)

_F}:g.
Q
|

%, rad/sec” (4.7b)

An origin O in the waterplane, shown in Figure 4.2, is chosen for calculations of the local
hydrodynamic properties of each strip. The velocities and accelerations of this point are

x = -‘:'2/6 - 0G x; mlsec (4.8a)

=i
1t

lec- - 0G 3'54/ misec? (4.8b)

Vertical motions and roll motions are unaffected by this change of origin.

4.3 COEFFICIENTS IN THE EQUATIONS OF MOTION

4.3.1 General considerations

Consider a strip embedded in the infinitely long cylinder lying in calm water as shown in
Figure 4.1. The excitations required to sustain the motions in the three possible degrees of
freedom may be obtained from equations analogous to the sway, heave and roll equations for
the complete ship (Equations (3.22)). Note that we are only concerned with that part of the
excitation necessary to oppose the hydrodynamic and hydrostatic reactions to the motions. In
other words the effects of the real mass and inertia of the strip are excluded from the
calculation. For a strip with port/starboard symmetry we have

Il il ./ il 2

Bi

TR TN 1_5F3
faz A3 33 X3 T C33 X3 =

kNIm (4.9b)

dxy,

[ !

Y Y R /
Ay X + by % + ay X

;o r
+ by Xy +cyy xy

(SF4
— KN mim
BxB ;

(4.9¢)

where all the motions and t;xcitations are referred to an origin O in the waterplane. The
primed coefficients @y » by, etc. are all local values (per metre length of strip) analogous to
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the corresponding coefficients for the complete hull (with due allowance for the change of
origin). These local coefficients are functions of the size and shape of the section and may be
determined using the equations given in Chapter 5.

4.3.2 Coefficients in the heave and pitch equations
Consider a ship undergoing simultaneous forced heave and pitch motions in calm water. The
momentum of the surrounding water in the plane of the strip is

/ T
M, = a,; %, t misec

per metre length of the strip. The force required to oppose the hydrodynamic reactions and
sustain the motions of the strip is composed of the rate of change of this momentum together
with contributions from the damping and stiffness:

D / il /
oF, = Dr (M3 ) + by %5 + ¢35 x;] ﬁxBI N

As successive strips pass the observer stationed alongside the Ex., axis he will perceive a
changing local added mass a3f3. S0 the rate of change of momentum is

D / A Il

per metre length of strip.

Now we may write for the rate of change of added mass

./ d . d
aaszdx (a3f3)xB]=-U———(a3/3)
Bi BI

per metre length of strip (see Equation (4.4}). Using Equations (4.5) and (4.6) the downward
vertical force on the strip becomes

/ . n .
6F3=[a33(x3—xm X+ 2U Ay )
/

da
+ [ by - de33

‘Bl

(% = %y %5 + U xg) (4.10)

ooy (% - X %) ] Oxg, KN
The total heave force and pitch moment required to balance the hydrodynamic reactions and
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sustain the heave and pitch motions of the ship are obtained by allowing &x,, to approach zero
and integrating over the length of the huil:

Fy = [dF, &N (4.11)

Fy =~ [ x5 dFy WNm (4.12)
We note the following identities

/
das; o
dxy, = az, tim
Bl

/
dag, /

fxwdx dig, = Xp , 03, 1

Bi

da!
2 a33dx 2 !
xmdx w1 T Xpra B33 IM

Bl

I, . . )
where a3, is the local added mass at the stern in tonnes per metre and Xg,; , is the distance
of the stern (negative) from the centre of gravity'. Note that @33 , will be zero if the ship has
no transom.>

We also note that the local heave force required to sustain a steady downward heave
displacement x; metres is

f / !
Cj3% = p g B dxy, xy kN
and it follows that

fc;3 dig, = p g Ay kN/m

/
f Cy3 Xy, dxg; = p g M, kN mim

f Coy Xpy dxy, = p gl KN m¥m

where the waterplane area and its first and second moments about a transverse axis under the

. . . /
! Tt is assumed that the cross sectional area at the stem is zero and a@s; 5 = 0.

% Tt is sometimes argned that the local added mass (and damping) at the stern must be
nearly zero because of flow leakage effects whatever the shape of the stern.
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cenire of gravity are given by
Ay = fB’del m?>
M, = fB’xm dxg, m?
I, = fB’xjm2 dx,, m*

Substituting Equation (4.10) in Equations (4.11) and (4.12) and comparing term by term with
Equations (3.22c¢) and (3.22e) enables us to obtain expressions for each coefficient in the
equations of motion for pitch and heave. The coefﬁcients/for tl/lc complete huill are then
obtained in terms of the local two dimensional coefficients (233 » P13) and are listed in Tables
4.1 and 4.2.

4.3.3 Coefficients in the lateral plane equations

A similar approach is used to determine the coefficients in the lateral plane equations of motion
((3.22b, 3.22d and 3.22f). We now consider a ship undergoing simultaneous sway, roll and
yaw motions in calm water and the lateral motions of a strip are /given by Equations (4.7) and
(4.8).in terms of the local two dimensional coefficients (233 » 33) and are listed in Tables 4.1
and 4.2.

The horizontal momentum of the surrounding water in the plane of the strip is

/ . Il
M, = (ay X, + ay %, ) t misec

per metre length of strip.

The lateral force required to balance the hydrodynamic reactions and sustain the motions of the
strip includes contributions from the rate of change of momentum, the lateral motion damping
and the lateral force required to sustain the roll velocity:

SF. =( Domly+bh i + bl 3

2 Dr ) 0xy, KN

The rate of change of momentum perceived by our stationary observer is

/ /
D " da . da
E—(M;)=[a?_’2xzj—l] zzx2+a2!4x4 U 24x4/] Ox,, KN
d BI BI

and the lateral force is
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OF, =

L = | ay (& + xy % - 2U % - OG %, )

/
da,,

+(b,f2—U

Bl

da
/. / 24
t gy Xy +( by - U

The angular momentum of the water in the plane of the strip includes a contribution due to the

L
lateral velocity X;:
/ . .
M| = aj, % + agp % t mYsec
per metre length of sirip.

The roll moment about the axis through G required to balance the hydrodynamic reactions and
sustain the motions includes contributions from the rate of change of this angular momentum as
well as contributions associated with the roll damping and the moment required to sustain the
lateral velocity. In addition there are contributions associated with the roll stiffness €44 and the

moment due to the lateral force 8F, acting through O:

5}:‘4:(%(1%{)+b4’;x;+b;2x;+c4;x;) 5x51-ﬁ6F2 KN m

Expanding as before, we obtain

5F, =

/
da
o / 4 | /
a44x4+[ by ~U —— | X% +cux,

] (%, + x5 % - Uxﬁ—%x4)}axgj
B

—mﬁFZ KN m

The total sway force, roll and yaw moments are obtained by allowing dx, to approach zero and
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integrating over the length of the ship:

F, = f dF, kN (4.13)
F, = f dF, kNm (4.14)
F, = f xp dF, KN m (4.15)

Comparing these equations with Equations (3.22b), (3.22d) and (3.22f) allows us to obtain
expressions for the lateral plane hydrodynamic coefficients for the complete hull in terms of the
local values (az”z, bzf2 etc). Again we note that for conventional ships with zero cross section
area at the forward perpendicular

/
day, !
dxp, = ay, thm

de.l

/
D /
Xpi Bl T XpraBma 1
B

d."

p) azzdx 2 /

Xpj Bl - ABia Oy L m
deI

o . . L
where @57 , is the local added mass for horizontal motions in tonnes/metre at the stern. Agam,, Ay g
wif]l be zero for ships with no transom.? Similar expressions are valid for the coefficients @4 and
Gy,

We also note that the roll moment required to sustain a steady roll angle X, radians to starboard
is

CyyXy =m g GM . x, kNm
so that
Cyy =m g GM, kN mirad (4.16)

where GM . is the fIuid metacentric height (ie the metacentric height corrected for free surface
effects: see any text book on basic naval architecture.) Equating terms in equations (4.13) - (4.15)
and (3.22b,), (3.22d) and (3.22f) we obtain the expressions listed in Tables 4.3 - 4.5.

* Again it is sometimes argued that the added mass and damping coefficients at the stern
must be negligible because of three dimensional effects even when the ship has a transom.
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44  EXCITATIONS IN REGULAR WAVES

4.4.1. General considerations

The linearisation of the equations of motion in Chapter 3 allows the wave excitations to be
considered independent of any ship motions and to be expressed as functions of the wave
amplitude alone. In other words the wave excitations are assumed to be the same as the ship
would experience if it were rigidly restrained and allowed no motions at all.

According to Equation (3.1) the wave depression at any point (¥, . X, ) related to the moving
origin O is

C=Cysin(w, t-kx cospu +kx,sinp) m
Since the ship is allowed no motions, the centre of gravity remains above O and we may write
X, =Xg m
The wave depression varies across each strip but we assume the ship to be slender (that is, the
waterline beam of all strips is much less than the wavelength) and this allows us to calculate the

wave depression with sufficient accuracy by setting

x, =0 m

The wave depression experienced at each strip is then

C=Csin(w,t-Q) m (4.17a)
where
Q =k xp, cos (4.17b)

The excitation experienced by each strip is related to the pressures, velocities and accelerations
in the water beneath the wave surface. These quantities vary with depth (see Equations (1.17) -
(1.23)) and itis usual to simplify the calculations by taking their values at a mean local draught
defined by

D=" m (4.18)

where A’ is the cross sectional area of the strip in square metres and B’ is the waterline beam
of the strip in metres.*

* Note that D is a function of x, .
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Referring to Equation (1.23) we find that the pressure fluctuation at the mean draught D is

P=-pglyexp(-kD)sin(kx-wt) kNm? (4.19)

relative to the local hydrostatic pressure p g D and, with the assumptions described above, this
can be written as

P=-pgliep(-kD)sin(w,t-Q) kNIm> (4.20)
Similarly the vertical velocity of the water at the mean draught is, from Equation (1.18),

v=w{,ep(-kD)cos(w,t-0Q) misec (4.21)
and the corresponding vertical acceleration is

v=-wl{,ep(~kD)sin(wt-0) mlsec? (4.22)

The horizontal velocity at the mean dranght is, from Equation (1.17),

=
It

~wlyexp(-kD)sin(w,1-0Q)

1l

~wlep(~-kD) misec

along the Ex, axis. The athwartships component of this horizontal velocity is

u, =wlexp(-kD)sinp mlsec (4.23)
and the corresponding athwartships component of the horizontal acceleration is

i, = @ v sinp misec? (4.24)

The slope of the pressure contour at depth D is, from Equation (1.15),

w v

a5 = k{,exp(~kD)cos(w,t -Q)=-— rad
8
and this has an athwartships component given by
WV .
Qps = — Sin L rad (4.25)
g

The angular velocity of the water in the plane normal to the ship’s axis is equivalent to the rate
of change of this component of the pressure contour slope:

94




Gy = ~k w exp ( ~ kD) {sinp radlsec (4.26)
and the corresponding angular acceleration is
b5 = —k @ vsinp  radlsec? (4.27)

4.4.2 Vertical excitation _
If we assume that the beam of the strip at the mean draught D is approximately the same as the
local waterline beam, the vertical force due to the pressure fluctuation is

—Bﬁﬁxm kN

In addition there are contributions arising from the rate of change of the vertical momentum of
the water surrounding the strip and a force associated with the vertical velocity of the water. The
total vertical force on the strip is then

oF D

/ / 5
wi Dt(Mws)*bssv"BPJ Oxy, KN

where the vertical momentum is

/ /

M, =ay vt misec

w3
per metre length of strip.

Our stationary observer perceives the rate of change of momentum as

D / L I
i (M) =dg v + ag v
da3!3 e
= -U V +a;n v kNim
Bl

Obtaining P, v and v from Equations (4.20) - (4.22) we find that the vertical force on each
strip and the associated pitch moment about the centre of gravity are

OF ; = (, [ P sin(fwt-0) + Py, cos(w t-Q) ] Oxy, KN (4.28)

6Fw5 = Cl.0 { PSS an(u)et—Q)+ Psc COS(&)J—Q) :| 6—7‘-'31 kN m (4.29)

where

95




"
I

35 _(pr/_w2a3/3) exp ( -k DY t/ (m/sec?)

/
day,

3c=m(b3/3”U ]elp(“kﬁ) t | (misec?)

Bi

and

P

55 P

s KNI m

Xp;

Py = Xy,

P, KN/ m

The total heave force and pitch moment amplitudes F,, and F, ., and phases (relative to the

maximum wave depression at Q) are then obtained using the equations given in Appendix 2.

4.4.3 Sway and yaw excitation

Figure 4.3 shows the hydrostatic force experienced by a restrained strip in waves. The inclined
water surface causes a lateral shift of the centre of buoyancy from B to B, and the buoyancy force
vector is assumed to act normal to the pressure contour at the mean draught D. The buoyancy
force is

pgAdx, KN
and it has a horizontal component

pgA’dx, oy kN to starboard

In addition there are contributions due to the rate of change of horizontal momentum of the
water surrounding the strip and forces associated with the lateral and rotational velocities of the
water.

S5F D

/ / !l .
w2 = Dt (sz ) + b22 uz + b24 0"'52 + P & A/ mﬁ.”. 6xBJ kN

The horizontal momentum is

! ! I
M, = ay u, + ay Gp; 1t misec

per metre length of strip.

96




pgAbxy
Water surface
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R| bye o | T
it . -
~ —-L — . &5

Pressure contour at depth D

Fig 4.3 - Lateral plane hydrostatic force and moment on a restrained strip

The total horizontal force on the strip is then

D / ! day, ! day,
E(sz)“azz u, — U U, + gy Gy — U B KN
Bl Bl
per metre length of strip.

Obtaining ¥, Uy, etc, from Equations (4.23) - (4.27) we find that the total sway force on the
strip and the yaw moment it exerts about the centre of gravity are

OF , = (, [ P, sin (w, t - Q) + Py cos (&, t - Q) ] Oxg,
kN

(4.30)

OF ¢ = CO[PGS sin (W, t = Q) + Pgocos (w, t - 0) ] Bx,,
KN m

(4.31)

where
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/
day,

~N s / )90
st=mexp(—kD)smp[bz2—U —k[b24—de ” kN I 'm

B

chﬁmzexp(—kﬁ)sinp( azjz+pA’—ka2f4) kN [ m

s KN [ m

o
I
o

P, kKNIm

The amplitudes F ,, and F ., and phases v, and vy, of the sway force and yaw moment are
found using the Equations given in Appendix 2.

4.4.4 Roll excitation

If the strip shown in Figure 4.3 is wall sided the two triangular wedges ORS and OTU will have
equal volumes and identical shapes. Their centres of buoyancy will be at b, and b, and the strip's
centre of buoyancy will move from B to B, such that the line BB, is parallel to the line &,b, and

— BA e
BB = = Db, m

where 04 is the area of each wedge in square metres. For small values of the slope of the

pressure contour @,

—— BB, _bAbS,
aﬁ?. A[ aﬁz

The area of each wedge is

’2 B’y
6A=8 o sin u = D2 2

/
and the centre of buoyancy of each wedge is % metres from the centreline.

Hence

and
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B’ = B
1247

m 4.32)

The buoyancy force exeris a roll moment about O:
B'®
P g TZ—- - OB A ! O, KN m

per metre length of strip.

The total roll moment exerted on the strip about O also includes contributions from the rate of
change of the angular momentum of the water surrounding a strip as well as contributions
associated with the rate of rotation and the horizontal velocity of water. The equations of motion
(3.22) require the roll moment to be related to an axis through the centre of gravity. The lateral
force F,, acting through O exerts a moment about G and this is included to give

/3

éF,, = (M ,4) 44 Gpn *+ P8

—A/aB_) aﬁzﬂ-b;zuz]&x

- OG8F, kNm

The roll momentum is

/ r /
My = ay Oy + ag U,

The rate of change of momentum perceived by the fixed observer is

D N day, /o dag,
'5'; ( Mw4 ) = Ay Opy ~ U—o 0’.32 + Gy Uy — U
Bl B1

KN m

u

per metre length of strip and the roll moment becomes
OF ,, = (o | Pys sin(wt-Q) + P, cos( wi-Q) | Ox,, kN m (4.33)

where
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!
da,, / day,

P4S=mexp(—k15)sinp[ —k[b4/4—U
BI -

da. da.. -
—%[bzg-u 2 k| by, v 2 ” KN/m
del dxfu'

_ 3 —_—
P4C=co2sin].texp(—kD)(—kai4+p[%—A’OB]+a,,f2

- 0G [az{zi-pAf—kazj,,f]] KN/ m

The roll moment amplitude F, ., and phase vy, are obtained using the equations given in
Appendix 2.

TABLE 4.1
COEFFICIENTS IN THE HEAVE EQUATION OF MOTION
ay, = [ay dxy (4.342)
b, = f by, dxp, - U ay, kNI(mlsec) (4.34b)
ey = [ diy = p g Ay, KNIm (434c)
Ay = - f Xp, a;3 dx,, kN/(rad/sec® ) (4.34d)

/ /
by, = 2U f ay diy; - f Xy byy g

(4.34e)
+U xp; , asfs . KNl(radfsec)

3]
1]

/ !
15 U f by dx,, -~ Utay, - pgM, KNirad (4.34f)
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TABLE 4.2

COEFFICIENTS IN THE PITCH EQUATION OF MOTION

a5 = =[x ayy dry, kN mi(misec?) (4.352)
by, = f bss + U xp, a;s o KkNml(misec) (4.35b)
Cy = f - Can deI =pgM, kN mm (4.35¢)
o2 2
ass = f Xy Qa3 dxg, kN mi(rad/sec ) (4.35d)
!
bss = -2U [xy aas f Xpy b T (4.35¢e)
kN mi(rad/sec)
_ / 2 /
Cs5 = fom by dxy + p gl + U xp, a3,
kN mirad (4.350)
TABLE 4.3
COEFFICIENTS IN THE SWAY EQUATION OF MOTION
Gy = f azlz dxy, t (4.36a)
b, f by, dxg, - U ay,, kNi(nisec) (4.36b)
Gy = [ a5y dxy - OG [ ay dxy,  kNi(radisec? ) (4.36c)
by = [ ba diy - OG [ by duy + OG U ay,, (4.36d)
-U a2]4 o  KNl(radl/sec)
Gy = fxm ay, dx,, kNI(radisec? ) (4.36¢)
b B / dx - ! - 2 /
26 f xpy by dxgy — U xgy, ay, u f Gy iy, 4.360)
kN/(radlsec)
= - U f by, dxy, + U* ay, kNirad (4.36g)
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TABLE 4.4
COEFFICIENTS IN THE ROLL EQUATION OF MOTION

a, = f 54’2 dxg, - oG f a.jz dx,, kN ml(misec? ) (4.37a)

/ / eYal /
by = f by dxp ~U ayp, - OG f by, dxp,
L (4.37b)
+0G U azf2 o« KN mi(ml/sec)
/ == / - /
Oy =fa44dxm - 06[4:142(1’.7«:JBJ - OGfadeBI
(4.37c)

+0G > f a:,_/2 dxy, kN mi(rad/sec? )

byy =fb4f4dxm - Uay, + 0G U ay, ‘%fbc{zdxl
~OG [ by dxyy + OG” [ by, dxy, (4.37d)
-0G* U a2/2 , +tOGU az'; 2 KN mi(radlsec)

¢, =mg GM, kN mirad | (4.37¢)

/ == /
Qs = f Xp; Qg dxg; - OG f Xp; Op dXp,

(4.376)
kN m/(radisec?® )
/ / /
by = - ZUf Ay dxpy — U Xp; gy q + fxBI by, dxy,
- I —_— /
-0G f gy by dxy, + OG x5, U ay,
+ 20G U f azl,_ dxy, kN mi(radlsec) (4.37g)
Co = U agy, - Ufbjzdxm +ﬁUsz’2dxm
(4.37h)

-0G U?a,,, kN mirad
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TABLE 4.5
COEFFICIENTS IN THE YAW EQUATION OF MOTION

ag = [ %y az diy KN miuisecy’ (4.38a)
be = [ %y by drgy - Uy, ap, KN mi(misec)  (4.38b)
/ ==l /
a64 = fxm oy deI - 0G xBJ Iy de] (4_380)
kN mf(rad/sec? )
! eyt !
Doy = [xp by dxgy = OG [ xp by dry w350

+ OG U Xp o az';a - Uxy, "12/4;; kN mi(rad/sec)

ag, = fx§1 ay, dxy, kN mi(radsec? ) (4.38¢)

2 ! 2 /
bes = fx,,, by dxg, — U xg, . Gy 4

4,38
-2U f Xg, az"2 dx,, kN ml(radlsec) ¢ g

o=~ U f X by digy + U %y, 0y, kN mirad  (4.38g)

3]
[E}
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5

LEWIS FORMS AND THEIR HYDRODYNAMIC PROPERTIES
5.1 INTRODUCTION

Progress with strip theory requu‘es the evalnation of the local (two dimensional) added mass and
damping coefficients a,JT and bg in Equations (4.34) - (4.38). Methods of solution have been
developed by Ursell (1949a, 1949b), Tasai (1959, 1960), Grim (1959), Porter (1960) and others.
The techniques used are involved and laborious, requiring devious and intricate methods of
solution for even the simplest cases. Their application is quite impractical without the aid of a
computer.

Heave oscillation

Waves radiate
away

Waves radiate
away

Fig 5.1 - Circular cylinder oscillating in the free surface

Fortunately computer routines for the calculation of these properties are widely available and
naval architects need not usually concern themselves with the details of the complex mathematics
involved. It is, however, important to understand the broad nature of the calculations and to
appreciate their limitations. This chapter therefore discusses the properties of the commonly used
Lewis form approximations for conventional hull cross- sections and gives the expressions for
the added mass and damping coefficients, without proof, taken from a comprehensive paper by
de Jong (1973).

The methods mentioned above generally begin by examining the properties of an infinitely long
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semicircular cylinder' of radius a metres floating in the free surface of the water as shown in
Figure 5.1. The heaving cylinder is shown in the figure, but sway and roll motions (about the
longitudinal axis through the origin O) are also considered. Small motion amplitudes are
assumed. The oscillating cylinder generates surface waves which radiate away in the * x
directions . The coefficients are calculated with the usual potential flow assumptions of
negligible viscosity and compressibility, no flow separation and no skin friction.

Ship’s hulls do not, as a general rule, have semicircular cross-sections and conformal
transformation techniques® are used to extend the results for the circle into solutions for more
realistic hull shapes. In this technique the circle and the flow around it (stream and potential
functions) are calculated in the complex z plane where

z=x+iy=ire’® m (5.1

These results are mapped into the flow around a hull section in the complex € plane (the hull
cross section plane) as shown in Figure 5.2.°

¢=fz)
—
; . x‘; Free surface > gy
6 [/
iy yiFm
Y
z plane { plane

Fig 5.2 - Conformal transformation from the z (circle) plane to the ((ship) plane
{ is defined as
C = xg *+ gy m (5.2)

and the two complex planes are related by the transformation

'The calculation relates only to the half cylinder below the free surface. The shape above
the surface has no effect on the results.

* See any advanced text book on fiuid dynamics.
? The mapping relates only to the underwater shape of the hull cross section.
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C=f@

The functional form of the transformation equations must be determined for every individual
case, depending on the size and shape of the section in the {plane.

5.2 LEWIS FORMS

The transformation

(=f@=aa|l =+ e + ]
a < z z z

will map any point on a semicircle of radius a metres in the z plane into a corresponding point
on a given shape in the { plane if appropriate values of the coefficients a,, a,, a,, a5 etc are
chosen. The absence of even terms like @,. @, etc. ensures that the transformed shapes have
port/starboard symmetry like conventional ship sections.

It is usnal to truncate the transformation series to only three terms:

ada a3a
C=a0a[5~+ Ly 2 3| m (5.3)

[#) Z z3

We shall see that this allows a wide variety of ship like cross sections to be generated from the
semicircle. These forms will not be exact replicas of any given hull cross section, but the match
can usually be made sufficiently close to allow adequate estimates of the hydrodynamic
coefficients for ship motion calculation. The resulting family of forms are known as Lewis
Jorms, after F M Lewis who first proposed their use (for ship vibration studies) in 1929.

Lewis forms are defined by the values of the section area coefficient

and we now derive expressions for the transformation coetfficienis a, , a, and a,in terms of
these two quantities.
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Since we are here concerned with points on the semicircle of radius ¢ metres we may set
r=a m

Substituting Equations (5.1) and (5.2) into Equation (5.3) and separating real and imaginary
parts we obtain a pair of parametric equations in 6 describing the shape of the Lewis form in
the { plane:

Xy aua[(l+a1)sin8—aasin(36)] m (5.44)
xM:aoa[(l—al)cas6+a3cas(36)] m (5.4b)

Substituting 6 = 0 in Equations (5.4) we obtain the bottom of the semicircle and the keel of
the Lewis form:

_ ! _
xBj—D—aoa(l a1+a3) m

Substituting 6 = 7/2 in Equations (5.4), we obtain the intersections of the semicircle and the
Lewis form with the water surface:

'f .
xm:u-z-—:aoa(l%»al-%aa) m

Xgs =0 m
The beam}draught ratio of the Lewis form is

B’ 2(1+a +ay)
H=F= (5.5)

1—1'114-a3

The cross sectional area of the Lewis form is

Substituting Equations (5.4) we obtain

2 2
T a; a

Afz_z.__(l—af—saf) m?

and the section area coefficient is
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A _ = 1 -a - 3“32
/ ,_Z 2 2 (5.:6)
B'D 1 -a; +2a, +ayg

g =

Explicit equations for the coefficients a,and a, may be obtained by rearranging Equations
(5.5) and (5.6) to give

) (1+a3)(H_2) (5.72)

R
It

(5.7b)

where

a, is simply a scale factor governing the overall size of the Lewis form.

H=05 a=05 H=2

a=09 o =098

Xpy |

Fig 5.3 - Examples of Lewis forms
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{a) Area coefficient too large (b) Area coefficient tao small

Fig 5.4 - Examples of invalid Lewis forms

The Lewis form corresponding to a real hull cross-section may therefore be defined in terms
of its beam/draught ratio H and section area coefficient o. Figure 5.3 shows a range of Lewis
forms for various values of H and c*.

There is no limit to the permissible beam/dranght ratio but only a limited range of section area
coefficients are possible. Clearly the formula for 45 (Equation (5.7b)) becomes invalid when C > 9/2
and this will happen if

T g
og>—(H" + 20H + 4
64H ¢ ) (58

Lewis forms having section area coefficients greater than this cannot exist. In practice section
area coefficients approaching this limit have rather angular shapes of the type shown in Figure
5.4(a). They are not representative of conventional hull forms: more to the point is the fact
that such section shapes would probably experience flow separation around the sharp bilges,
and the potential flow techniques employed for predicting the hydrodynamic coefficients would
not be expected to give very reliable results. To avoid forms of this nature it is usual to
suggest that the Lewis forms should lie completely within the circumscribing rectangle so that

B/ ;
Xp < ?, Xpo < D

If the section area coefficient is too small the Lewis form will adopt physically impossible
shapes with negative values of x,, and x;, as shown in Figure 5.4(b). We therefore also
insist that

X 2 0, xp 2 0

Applying these limits to Equations (5.4) with

* Only the right hand side of each section is shown.
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o
[Fa
@
1A
(SRS

allows permissible ranges for the section area coefficient o to be determined:

ir
4 -H)Y<
64( )

!
Q
[

<" (24 v HY) forH<?2
256

(5.9)

31t(H-1) 371:(1+6H
== $ 08§ — | —~

< for H > 2
16 H 64 H ]

These limits are shown, together with the ideal upper limit given by the inequality (5.8), in
Figure 5.5.

Section area coefficient o

Beam/Draught ratio H

Fig 5.5 - Permissible ranges of Lewis forms
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5.3 ADDED MASS AND DAMPING COEFFICIENTS FOR A HEAVING LEWIS
FORM

According to de Jong (1973) the added mass and damping coefficients for the heaving Lewis
form are given by °

,  PB'P(A N, +B, M)

Cl33 it r 5.10
2 (A% + B?) .10

/ B'? @ x?
by = P

kN/(misec)
4 (A + BZ)

(5.11)

where

18

A =Y (0, Z)+
2 =1

3

Py (-1 ™! kB'Q, } m*sec
20,

m?/sec

18

B, =W (0 ,g) - ‘qm(-l)’"" kB'Q,

20,

3
KN

=

2

T
2
@,
0,0)—=—4do
0 [(bs( )Q
a

-+

oQ
— E[qzm“”"‘" 0, [+ FkB Qs | m¥sec
Q2 m=1 8Q2

? All expressions given for the hydrodynamic coefficients of two dimensional sections
in this chapter are per metre length of cylinder.
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2

T
P
Nozfcpc(o,e)—gide
0

oo
- Z {sz(_l) " Q, ] * M m?/sec
Q2 m=1 8Q2

The stream and potential functions are given by

Yo =T exp (- kxp)sin (k|xg,| ) msec

tl

e

Texp (- kxp)cos (kxg) m?/sec

Yo =-Texp (- kxg)cos ( kxp)

o0
e - VX
. IP( IB.?‘) vsin(Vx33)+kcos(va3) dv
vZ o+ k2
0
m?/sec
bs = 7 exp ( ~k xp; ) sin (k |xg,] )
o0
e - Vix
. xp ( |%5,] ) Vcos (Vg )+ ksin(Vixg)|dv
V2+k2
0
m/sec

The weighting coefficients P,, and 4,, are obtained by approximate solution for a finite
number of unknowns of the simultaneous equations

N
wc(1,9)~%1|rc(1,n/2)zzp2mf2m m¥sec
5 m=1

N
ws(l,e)—%ws(l,nlz)zz%fzm m?/sec
2 m=1

where
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k B' k B’
o, + >
20, 20,

for = - | siR(2m 0 ) + (-1)" Qg O,

1 a, 3a,
2m -1 2m + 1 Zm + 3

g =1+a +a

Q,=(1+a,)cos O - 3a, cos (30)
Q4= 1+a1 + 9a3

4m? - 1 4m? - 9
Q;=(1+a ~-aa,)q, -0a59,
Qg =(1+a )sin -a,sin (36)
0 :sin(2m~1)9+6118in(2m+1)6
? 2m -1 2m + 1

3a, sin (2m + 3 )6

2m + 3
1 a 3a

ng _ 1 3

2m -1 2m+1d2m+3

e (7. 8), g (7, 8), etc in these formulae imply values calculated at ( r , 6 ) in the
circle plane.

5.4 ADDED MASS AND DAMPING COEFFICIENTS FOR A SWAYING LEWIS
FORM

The added mass and damping coefficients for a swaying Lewis form are

pB'?

/
a
22
2

(5.12)

P0N0+9'0M0} ;

2 2
Py T g
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pu MO - qﬂ NO
: S kN/(m/sec) (5.13)
Py *t 4y

I melz
2

o
ny
N

]

a3l X & Y
a;=93 Py : %'* kN mi(misec? ) (5.14)
Py t dy
B3 py ¥, - gy X
bi,_ _Pp - 0 ’; 02 R kN mf(misec) (5.15)
| Po t o
where
E
37:
o fore oz
2 (5.16)
co
- E Do Q1o K B/ (-1ym
207
T
2
it a
‘%:—f%(Oﬁ)ng——?j&
A 2 2 (5.17)
o0
_ E Pom Qo k B' (-1)
m=1 2Q22

X
2
b (0, G)Qn “kB!(alpl_%p“)
c 0, 16 Q7
U (5.18)

ad _1y m+l
+ Epzn Qu( 1)
m =1 sz
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x
Z
b (0, B)Qn “kB’(alpz'assz)
’ 0, 16 02
0 (5.19)

oo

+ E Gop, le (_1) ml
m=1 Q22

b, (7r.08), &g (7, 8 ), etc, in these formulae imply values calculated at ( r , 0 ) in the
circle plane.

The stream and potential functions are

b = -wexp ( — kxy )sin (kxg) mZsec

Uo=nexp (-kxy)ceos (kxg,) misec

Uy =T exp (- kxg ) sin ( -k |xg|)
[+ @]
e
—f w (- zl)[VCos(va3)—ksin(VxE3)]dv
k2 o+ v?
#]
X

- B2 m?/sec

2 2
k (xg + xp3)

by =7 exp (- kxg)eos (k|xgl)
0o
e FV |x
* P ¢ 22l ) keos (vVx,,)+vsin{vx,)|dv
B2 ‘B3
k2+V2
0
X
+ B2 m*sec

2 2
k (xgy + xg)

The weighting coefficients p, and g, are found by approximate solution for a finite
number of unknowns of the simultanecus equations

N
Uo(0,0) - (0,nR2) =Y p, fo, misec

m=1
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N
U (0,8) -9, (0, m2) =) g, fo, moisec
1

m =

where

/ ! +1
kB'Q, kB (-1t Q.

fog =cos [(2m + 1) 0] + 20, 20,

and the stream function for the multipoles is given by

cos [(2m +1)0 ] kBcos(2mB)

Im+1 Zm
r 4Q2 mr

Uy, (r,0) =

+alcos[(_’Zm+2)6]

(2m + 2 ) rom2

(5.20)

“3aycos [ (2m +4)0]

m?/sec
Cm + 4 ) roms
The following definitions are used in these formulae:
Q,=(1-a,)sin 0 + 3a, sin (30)
1 a, 3a,
O = 2 - 2 - 5
dm= - 1 (2m +2)" -1 (2m +4)° -1
3
+ 3a, 1 - ! - dy
4m.2-9 (2m +2)%2 -9 (2m +4)?2 -9
0, - 2a, (1 + ay) . 8a,
(2m +1)%2 -4 (2m +1)2-16
Q;=(1-a,)cos B8 +a, cos (38)
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cos(2m6)+a1003[(2"‘T-+1)9]

Qs = 2m 2m + 2
3a, cos [(2m +4) 8]
2m + 4
1 a, 3a,
Qs = —

2m-2m+2_2m+4

5.5 ADDED MASS AND DAMPING COEFFICIENTS FOR A ROLLING LEWIS FORM

‘The added mass and damping coefficients for a rolling Lewis form are

4 X, + Y
i _ pB'" Py Xp * gy Yy 2
G4y = 2 2 tm (5.21)
16 Pl + g

;_ pwB't Py Ypt gy Xy

bl = = : . kN m/(rad/sec) (5.22)
Py *t o4
; _pB'? Mya, + Nyp,
ay, = B2 : kN/(rad/sec? ) (5.23)

2
Py * 4

B'? Mypy, - Ny q
b2l4 - pPw 070 ; 0 kN{(rad/sec) (5.24)

2
16 e+ g

Xp . Y, , M, and N, are defined in Equations ( 5.16) - (5.19). However P,,, and 4,,, are now
obtained by approximate solution for a finite number of unknowns N of the simultaneous
equations

N
Yo (1,0) -9 (1, m2) = p, [, mYsec
m=0
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N
Yo (1,0)-W, (1,m2) =Y g, f,, mYsec
m=0
where
x5 (1,0)+x%(1,8)

fo =4 IYE -1

Jop =Wp, (1, W2) -9, (1,0) m=0

U, in these formulae is given by Equation (5.20).

5.6 MEASUREMENTS OF LOCAL HYDRODYNAMIC PROPERTIES

Accurate calculation of the hydrodynamic properties of cylinders of ship-like cross-section is
clearly of paramount importance in the prediction of ship motions in waves. It is therefore

somewhat surprising to find that relatively few experiments to verify these calculations have
been carried out.

Waves radiate away

Heave motion

Two dimensional
hull section

Side of tank

Side of tank

Waves radiate away

Fig 5.6 - Experiment to measure hydrodynamic coefficients for heave motion
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Vugts published the results of the classic experiments in this field in 1968. He tested a number
of cylinders in a towing tank at the Delft Shipbuilding Laboratory. Figure 5.6 shows, in
simplified form, the arrangement he used. The cylinders were mounted across the tank and an
oscillation mechanism was used to impose sinusoidal heave, sway and roll motions in turn. The
waves generated by the cylinder motions radiated away and were absorbed by beaches at each
end of the tank, some 70 metres from the cylinder. The forces and moments necessary to sustain
the cylinder motions were measured and used to determine the added mass, damping and cross
coupling coefficients for each motion. Some of his results are shown in Figures 5.7 - 5.10.

Cylinder A was circular with (by definition) H = 2 and o = w/4 while cylinders B and C had
ship like cross-sections but the same values of H and o. Figure 5.7 shows that their heave
added mass and damping coefficients were virtnally identical, confirming that these are
essentially functions only of beam/draught ratio and section area coefficient. Small local
differences in the shape have little influence on the results. The heave added mass is generally
of the same order as the displaced mass p A and rises towards infinity at zero frequency. The
coefficients are predicted quite well by the theory.

Cylinders D, E and F were all rectangular (except for a small radius at the bilge corners) with
o = 1 and beam/draught ratios H = 2 , 4 and 8. Figure 5.8 shows how the heave added mass
and damping increase with beam/draught ratio. The triangular cylinder H generally had the
lowest coefficients. The opposite trend is shown for the sway coefficients in Figure 5.9.

Finally, Figure 5.10 shows some results for the rolling motion of rectangular cylinder D
(o6 = 1 ; H = 2). These experiments were conducted using two roll amplitudes of 0.05 and
0.15 radians respectively. The results show that roll motion coefficients depend on the amplitude
of the motion: in other words the roll response is non linear, contrary to the assumptions made
in the theory described in Chapter 3.

1.35
= T T T
g
E._a L0 A T2 O Circle
% Key 8 < [J Ship
-
675 [ c T A\ Ship_|
050 | _
0.25 _
@)
J 0 1 !
0 05 10 1.5 20 0 65 18 15 20
w vfB72g) w vfB72g)

Fig 5.7 - Hydrodynamic coefficients (a} added mass and (b) damping for three heaving cylinders.
All cylinders have H=2, g=n/4.(After Vugts (1968)).
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R
2 10
1 [1%)
0 | | | o

o 05 10 15 20 0 .05 10 15 20

wv{B¥2g) wv{B72g)
Key
Form H o Symbaol
Rectangle D 2 1.0 n
Rectangle E 4 1.0 —
Rectangle F 8 1.0 | N—
Triangle G 1155 05 v

Fig 5.8 - Hydrodynamic coefficients (a) added mass and (b} damping for four heaving cylinders.
(After Vugts (1968)).

% 20 13
{u) .
Q
:\R 15— ] :‘_E: 1.0
w10 —] <
g
05| — i
0 | En ! - 0
0 0.5 1.0 1.5 2.0 o 0.5 1.0 1.5 2.0
w v{B72g) w {B/2g)
Key
Form H o  Symbol
Rectangle D 2 1.0 L]
Rectangle E o] 1.0 —

Fig 5.9 - Hydrodynamic coefficients (a) added mass and (b) damping for two swaying cylinders.
(After Vugts (1968)).
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& (a) g 015 (b) -

R _ . Xy = 0.05 rad
S 04— X4 = 0.05 rad | A | 40 —]
N 0.0 —
gy 3
N - _
021 — ¥ 0.05L Xy = 0.15 rad

Xy =015 rad n |

0 | | | 0 = ] I

0 0.5 1.0 1.5 2.0 0 0.5 1.0 15 2.0
w V(B /2g) wv{B /2g)

Fig 5.10 - (a} Added moment of inertin and (b) damping for a rolling rectangular cylinder
showing the effect of roll amplitude (H=2; o=1). (After Vugts (1968))
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6

ROLL DAMPING

Signal from one corvette to another in full Atlantic gale:
Have just seen down your funnel. Fire is burning brightly.

From “Make a Signal” by Jack Broome. Douglas-Boyd Books 1994

6.1  SOURCES OF ROLL DAMPING

According to strip theory the motion damping arises because the osciliating hull radiates energy
in the form of waves away from the ship. For most motions this constitutes the major mechanism
for the dissipation of energy. So strip theory estimates of motion damping are generally adequate
and reasonable motion predictions are usually obtained.

Rolling is unfortunately an exception to this general rule. The wave making damping b,
predicted for the potential flow around most hull forms is only a small fraction of the total roll
damping which is experienced in reality. Additional important contributions are illustrated in -
Figure 6.1.

A ~A
A B
oA
s ) A
e — Eddies st ——= Appendage =—
U ‘t} Jorces
YO N

Fig 6.1 - Sources of roll damping

Hull forms with relatively sharp corners at the bilges and/or at the keel will shed eddies as the
ship rolls. This absorbs a good deal of energy and is a significant source of additional roll
damping. Skin friction forces on the surface of the rolling hull may also be significant and any
appendages will generate forces which oppose the rolling motion.

Eddy shedding, skin friction and the appendage forces experienced at low forward speed arise
because of the influence of viscosity which is neglected in strip theory.
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6.2  NON LINEAR ROLL DAMPING: EQUIVALENT LINEARISATION

Wave making roll damping and the damping due to the appendage forces at high forward speed
are linear (thatis, the roll damping moment is directly proportional to the roll velocity). Viscous
roll damping is, however, non linear and generally proportional to the square of the roll velocity.
This means that the pure sinusoidal roll response to a sinusoidal wave input (Equation (3.16b))
given by the linear theory is no longer valid. Moreover, the linear spectral calculation for
motions in irregular waves, which will be described in Chapter 8, is not applicable.

In order to circumvent these unwelcome problems we may calculate an equivalent linear damping
coefficient which allows for the effects of the non linearities but is used in a linear way. This
allows us to continue using the linear equations of motion and the spectral techniques for
irregular wave calculations. The equivalent linear damping coefficient is chosen so that the
calculated energy dissipated by this term in the equation of motion is the same as that which is
actually dissipated by the non linear damping. In general this means that the equivalent linear
damping coefficient depends on the roll motion being experienced and a new value of the
damping must be calculated for every situation.

Since the predominant rolling motions experienced at sea occur at the natural roll frequency w _,,
we may simplify the treatment of roll damping non linearities by considering only motions at that
frequency.. Suppose then that the rolling motion is given by

Xy = Xy Sin (W, 1) rad (6.1}

Then the roll moment exerted about the centre of gravity by the equivalent linear damping term
will be b,,.%, kN m. In one roll period the work done and energy E dissipated by this linearised
damping term will be the integral of the moment times the angular distance moved:

Xy w2,
. 2 2
E=4 f b, %, dx, = 4 W, b, Xy f cos*w 1) dt
0 0

2
=T ©,, by x;g KN m

and the equivalent linearised roll damping coefficient is therefore related to the dissipated energy
by

E
b, = —_— N mi{(rad/sec)
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6.3 EDDY ROLL DAMPING

Tanaka (1960) conducted a series of model experiments to determine the eddy shedding roll
damping characteristics of a number of different hull section shapes as shown in Figure 6.2.
Schmitke (1978) used these results to develop expressions for the eddy making damping
coefficients for each type of hull section. He postulated that the force due to the eddy shedding
acts at the relevant sharp corner at a radius r, metres from the centre of gravity. The local force
resisting the roll motion is expressed in the form

F=20p@,x)sCbxy kN

1
2

where s and dx,, are the girth and length of the hull section and C, is an eddy drag coefficient
depending on the hull form. Now for sinusoidal rolling motion (Equation (6.1)) the force F'
exerts a moment about G given by

1

1'*"4=Frb=2

.3 12 2 .
pry, s Cpxyw,cos® (0,1 0, kN m

and the energy dissipated by this moment in one roll period is

E=4 F, dx4z%pr,f’xfo mi4sCE bxg, kN m

U/V or triangle Rectangle or full Round bilge
or circular

Fig 6.2 - Classification of section shapes and definitions of radius r, for eddy roll damping
calculations

Using Equation (6.2) we see that the equivalent linearised local damping coefficient attributed
to eddy making is

4p w
b;4E = p3ﬂ: o X4 r,f s Cp 0xp, kN mi(rad/sec)
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The total equivalent linearised roll damping coefficient for the complete huli is obtained by
integrating along the length of the hull:

4p o, x2
by = fb;w = p—?,:—iq fr,f s Cy dx,, kN m/(rad/sec) (6.3)

It remains to determine the drag coefficient C, which varies along the hull. Schmitke (1978)
gave the following empirical formula:

C, =2 Z exp(-ur,/D") (6.4)

where Z, and Z, are given as functions of B/KG, v (the inclination of the hull section at the
waterline) and r, 1D / in Figure 6.3; D' is the local draght and r , 1s the effective radius at the

keel given by

S
d
H

—_— 2 J—
E 4.12 - 2.69 E + 0.823 gg— m for K—G< 2.1
2 _ B B B

KG
0 for — > 2.1
% B

=~
I

and
u=14.1 - 46.7 x,, + 61.7 xj | (6.5)
with X0 in radians.

Tanaka (1960) found that Equations (6.4) and (6.5) also applied to very full almost rectangular
sections (typical of the midship sections of merchant vessels) with 7, now equal to the radius of
curvature of the bilge and Z, = 1.

For triangular sections at the aft end of cruiser stern ships Schmitke fitted the following quadratic
to Tanaka's data:

C, = 0.438 - 0.449 2+ 0.236

KG

B

KG

Round bilge sections have negligible eddy shedding roll damping and

C,=0
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for these forms. Figure 6.2 shows the definition of r, for each of the classes of section shape
considered.

0.8
. Z

0.6 — —

0.4 |— —

02— — —

0 l I ] 0 I I I

0 1 2 3 4 0 005 010 015 020

B/KG o/ D'

Fig 6.3 - Z, and Z, for U/V sections (After Tanaka (1960) and Schmitke (1978))

6.4 SKIN FRICTION ROLL DAMPING

The water flowing past the ship's hull exerts frictional forces on the hull surface. It is usual to
express the force acting on a small element of the hull surface in terms of a non dimensional local
skin friction drag coefficient defined as

C. = [rictional force on element
F

% p X (local velocityy X area of element

Consider a girthwise element 8s of length dx,, metres as shown in Figure 6.4. Let the element
be positioned at (xg,, xB3) , adistance r metres from the centre of gravity. If the roll velocity is X,
radians/second the velocity at the element will be 7 X, metres/second and the component velocity
tangential to the surface of the hull will be

rx, sin (8, +86,) msec

6, and 8, are the polar location of the element and the slope of the hull surface so that:

] x Xpy
sin 8, = 13, cos B, = M
r r
&x Ox,,
sin 0, = —E, cos O, = 52
‘ Os os
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%, (* I A
3, Xp2

G r 1 Xp3

Y

os
rx,sin (0,40, )— r,

Xp3

Y

Fig 6.4 - Roll damping due to skin friction.

Then the frictional force acting on the element &s will be

BF = CF-;— p [r %, sin (B, +8)F ds dx,, &N (6.6)

and the moment about the centre of gravity is

kKN m 6.7)

8F, = Cp = p r* 2] sin® (8, + 0,) 8s bx,,

The work done by the moment in a complete roll cycle is

Lo

E=4f6F45x4 kN m
0

and using Equations (6.1), (6.6) and (6.7) this becomes

2

4C
F 203
E = 3 P @t X3

0x 5, Bxpsl”
Y - Xp, 55 os me kN m

Then the equivalent linearised roll damping coefficient for skin friction is obtained from
Equation (6.2) by allowing &x,, and 8s to approach zero and integrating along the hull and
around the girth:
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L &

4C dx i, VP
B = —t pw , x Pl xp—22 - x B ds dx
wF T 3 PW, 4 Xyup f f [ B B g, Bl 6.9

0 0

kN mi(radisec)

It remains to determine the local skin friction coefficient C,. Schmitke (1978) suggested that
the Schoenherr formula for the average skin friction coefficient for “smooth turbulent' flow used
in calculations of ship resistance is appropriate:

C. = 0.0004 + [3.36 log,,R, - 5.6]7

where the Reynolds number is based on the forward speed and length of the ship:

p UL
Ju‘w

Ry =

This is clearly inappropriate if the forward speed is zero, and Kato's (1958) formula may then be
used:

C, = 1.328 R>® + 0.014 R

where R, is now a Reynolds number based on the average rolling velocity and the average
distance from the centre of gravity:

=32
) 0.512 p (r x,)" w,,

N
’L“‘J

r= 1 [(0.887 + 0.145 C, )( 1.7D + B C, )
)

+2(KEG-D) m
C B is the block coefficient of the hull defined as

A
) Length X BeamX Draught

Cy

where Ais the hull displacement in cubic metres.
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6.5 APPENDAGE ROLL DAMPING

6.5.1 Drag forces on appendages
At zero forward speed the incidence induced on the appendages by the roll motion is 90° and the
resulting drag force provides a contribution to the roll damping as illustrated in Figure 6.5(a).

If the roll velocity is X, radians/second and the appendage is located at a radius r, metres
(measured from the centre of gravity to the mid span of the appendage) the roll motion will
impart a transverse velocity 7, X, metres/second to the appendage. The resulting drag force on
the appendage will be

1 .
Fp =Gy 5 p (ry xa)zAA kN (6.9)

where C), is the non dimensional drag coefficient.

?'Ax4

Tax,
Tax, fa) U=0 () U>0
F=F, F=F,cosau+ Fysing

=F,

Fig 6.5 - Roll damping due to a lifting surface

The drag force yields a roll damping moment

F, = C, lprA 42 4 N m
and the energy dissipated in one roll cycle is
*an

E=4 [ Fdy kNm

Using Equation (6.9) this becomes

E =% D|:)AAr:x430uﬁ4 kN m
and Equation (6.2) then gives the equivalent linearised damping coefficient due to appendage
drag forces at zero speed as

4
by = o Cp P Xy 0, W, Y A, 3 kN m/(radlsec) (6.10)
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where the summation is over all appendages. According to Hoerner (1965) a suitable value for
the drag coefficient for appendages like rudders or stabiliser fins is

C, = 1.17

6.5.2 Lift forces on appendages
If the forward speed is not zero the rolling motion induces an angle of incidence on each
appendage as shown in Figure 6.5(b). The angle of incidence is

¥, X
tan ™! ( AU4] rad

FyXy

13
I

rad if FaX, e U
£

and the total velocity experienced by each appendage is

5.3
g =y U?+r % mise

= U misec if Ty X, « U

The appendage develops lift and drag forces which are respectively normal and parallel to the
local velocity vector as shown in Figure 6.5(b). The total force normal to the ship's longitudinal
axis is

F=FLcoso¢+FDsz’no¢ KN

= FL EN if @ is small

Hence if the induced angle of incidence « is small the total roll moment applied to the ship by
the appendage is

dcp 1 2,
F4=FI'A=EOTEpUAAI‘Ax4 kN m

and the roll damping coefficient attributable to the lift force developed by the appendages is

dcC, .
buar p U N A, ry kN mi(rad/sec) 6.11)
o

1
2

where the summation is for all appendages. It should be noted that this damping coefficient is
independent of roll angle and no special linearisation techniques are necessary.

The lift curve slope dC,/do. may be obtained from Whicker and Fehlner’s (1938) formula
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dacC 1.8% a -
dL = = rad ™! (6.12)
& 1.8 + ya“ + 4

where the equivalent aspect ratio of the appendage is
2b 4b
a =

c Cr+C.r

and b is the outreach, ¢ is the mean chord, c, is the root chord and ¢, is the tip chord.

6.6 TOTAL ROLL DAMPING

The total roll damping is obtained by adding the contributions from the individunal roll damping
sources discussed above:

by = byytbptb by, KN mi(radisec) for U = 0 (6.13a)

byy = byuwtbyptbyyetby,,, kN mi(rad/sec) for U > 0 (6.13b)
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7

SHIP MOTIONS IN REGULAR WAVES
7.1 INTRODUCTION

The strip theory outlined in previous chapters may be used to estimate the motions a ship would
experience in regular sinusoidal waves of small amplitude. For conventional ships at moderate
speeds these estimates are usually found to be of adequate accuracy for everyday engineering
purposes. As an example, this chapter gives the results of a specimen set of calculations of the
motions of a frigate of length 125 metres and explains the physical reasons for their nature. Ship
motions are of course functions of hull shape and size, and the results given here should not be
used to give numerical estimates of the motions of other hull forms. Nevertheless, the same
general characteristics will be found to apply to the motions of all conventional monohull ships.

7.2  TRANSFER FUNCTIONS

We define the wave depression at the moving origin O (Equation (3.9)) as

(=Csin(w,t) m ' (7.1)
and the resulting ship motions (Equations (3.16)) are taken to be

x, = x,8n (w,t+8) m =173 (7.22)

x,=x,5n(w, t+98) rad, (i=4,0) (7.2b)

The motion amplitudes x,, and the phases &, are functions of the speed U/, heading p and
encounter frequency «,. The amplitudes are assumed to be proportional to the wave amplitude
{, and it is usual to express them in non dimensional form: linear motion amplitudes x5, x,,
and x,, are non dimensionalised by dividing by the wave amplitude - {; ; angular motion
amplitudes x,,, x5, and x, (in radians) are divided by the wave slope amplitude kG,

Graphs of the resulting non dimensional amplitudes plotted as a function of encounter frequency
are called transfer functions'; they give the proportion of wave amplitude or wave slope
amplitude “transferred” by the ship “system” into the ship motions.?

! Transfer functions are often wrongly called response amplitude operators (RAOs).
Actually the RAO is the square of the transfer function.

2 Transfer functions may also be plotted as a function of wave frequency or wave length.
Each form of presentation has its merits, as discussed in section 7.6.
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The phase angles &. give the phase relationship between the motion and the wave. A positive
value means that the maximum positive motion occurs 8, / w, seconds before the maximum
wave depression is experienced at 0. Negative values imply that the motion lags the wave
depression at O.

7.3  VERTICAL PLANE MOTIONS IN REGULAR HEAD WAVES

We begin by considering the simplest case of ship motions in regular head waves (1 = 180°).
Symmetry ensures that roll, sway and yaw are absent and the motions are confined to surge,
heave and pitch.

The heave and pitch Equations (3.22c) and (3.22e) are coupled so that heave motions are
influenced by pitch and vice versa. However, the coupling is usually fairly weak and to a first
approximation we may regard the equations as independent. The heave and pitch motions then
approximate to the motions of two independent second order spring mass systems as described
in Appendix 1. The analogy is not rigorous because the coefficients in the equations are
frequency dependent, in contrast to the constant coefficients assumed in the classical equations.
Nevertheless, we may define approximate natural frequencies for heave and pitch using Equation
(A1.6):

o = €33
3 = |——— radlsec (7.3a)
N m + ag
B Css
W = | ————— radlsec (7.3b)
N Lss + ass

where the heave added mass a,, and the pitch added inertia a.; are to be evaluated at the
respective natural frequencies (see Equation (3.2b) for the definition of I.;). Since the natural
frequencies are unknown and a,, and a. are functions of frequency it is necessary to guess an
initial value, estimate a,, and a.., and compute second estimates of the natural frequencies.
These second estimates are then used to compute third estimates of a,; and a., and the natural
frequencies and so on until the results of the iteration converge. Alternatively an approximate
estimate of the natural frequencies may be obtained by assuming '

~ . — 2
Ayy =M L] a55~I55 tm
The surge equation (3.22a) is independent of all the other equations and has no stiffness term
¢;; X;. Surge motions would therefore be expected to be approximately analogous to those of

a damped system with no stiffness and there is no natural surge frequency (see Appendix 1).
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Fig 7.1 - Maximum heave and pitch excitations in very long head waves

In very long waves the encounter frequency w, is very low and dynamic effects associated with
added mass and damping are virtually negligible. So the excitations and motion responses
experienced by the ship are almost wholly attributable to the buoyancy changes as the waves pass
the hull. Maximum pitch moment occurs at the wave nodes and maximum heave force occurs
at the wave crests and troughs as shown in Figure. 7.1.

I t=0
: Maximum heave down
= Te /4
Maximum surge forward;
Maximum pitch bow up
! t= Te /2
|
Maximum heave up
t=3T,/4
. e -~J_
=1 G
| Maximum surge forward;
: Maximum pitch bow down

Fig 7.2 - Motions in very long head waves.

These large excitations in very long waves result in the large motion amplitudes illustrated in
Figure 7.2. For moderate ship speeds the wave celerity is very much greater than the ship speed
and the vessel may be regarded as virtually stationary as the wave passes by. The ship will behave
more or less like a particle of water at the surface, following a circular orbit of radius £, given
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by Equation (1.22). So maximum heave (equal to * ;) will occur at the wave crests and
troughs and maximum surge (also equal to + {,,) will be experienced at the wave nodes. The
ship surges towards the approaching crests and recedes after the crest has passed by.

T e e ——]

a) Long waves - A >> L

i S RS ———

b) Medium waves - . =L

NNNFA e NNANNNA Ay B N\ N\

¢) Short waves - A << L

Fig 7.3 - Buoyancy forces on a restrained ship in regular head waves

An observer will see the ship appearing to crawl like a tiny ant over a succession of very long
shallow hills. The ship will always be aligned with the wave surface so that maximum pitch
(equal to the wave slope amplitude + k ) will occur at the wave nodes.

Smith measured the total excitations experienced by a restrained model of the Friesland Class
destroyer in regular head waves in 1966. Some of his results are shown in Figure 7.4. These
show that the ship only experiences significant excitations in head waves when they are longer
than about three quarters of the ship length. In shorter waves the buoyancy forces alternate along
the ship's hull as shown in Figure 7.3. This, together with the growing importance of dynamic
effects at the higher encounter frequencies, results in a general reduction in excitation in shorter
waves.

Typical calculated heave and pitch transfer functions are shown for the frigate (see Introduction:
Section 7.1) at various speeds in head waves in Figures 7.5 and 7.6. As expected, all responses
approach unity at zero encounter frequency, corresponding to the long wave case discussed
above.

At a given speed the responses are generally reduced at very high encounter frequencies because,
as we have seen, short (high frequency) waves do not excite the ship very much. However, as
the speed is increased, the wave lengths which do excite the ship are encountered over an ever
widening range of frequencies (see the wave length scales in Figures 7.5 and 7.6). At very high
speeds this range of frequencies may be wide enough to inciude the natural frequencies of heave
and pitch given by Equations (7.3). The responses may then exhibit resonant peaks as shown at
30 knots in Figure 7.5. Pitch and heave motions are, however, invariably heavily damped and
the resonant peaks are never very pronounced.
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Fig 7.4 - Heave and pitch excitations in regular head waves: Friesland class destroyer.
(After Smith (1966))

Wave length / ship length :A /L
0o 5 2 1
I I | | |
. Y — —— = 30knots
L ] ! /7 -~ -
S 7 * —= — 20 knots
N a— = " 10 knots
N o154 o < =~ Oknots
E " | | | |
=
=
s 10 30 kmots
-
s
Z 051 -
2 0 knots
3 0 | ]
ey
200 | I | 10
0 knaors //———20
g o ——
A
&Oh 30 knots
2-200 [ N
<
& | ] l |
-400 ;
0 05 10 15 20 25
Encounter frequency w, - rad/sec

Fig 7.5 - Heave transfer functions for the frigate in regular head waves.
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Fig 7.6 - Pitch transfer functions for the frigate in regular head waves

Figs 7.5 and 7.6 also show the heave and pitch phases. In very long waves the heave phase
5, = Y and this indicates that the heave motion is synchronised with the wave motion and that
maximum heave (down) occurs in the wave troughs.

The pitch phase 8 = - 9QY at zero encounter frequency. This indicates that maximum positive
{bow up) pitch motion occurs at the wave node (one quarter of an encounter period after the wave
trough has passed the ship's centre of gravity (see Figure 7.2)).

At higher frequencies these simple phase relationships are somewhat modified by dynamic
effects and coupling with the other motions. Nevertheless, they remain largely true over much
of the range of frequencies at which appreciable motions are experienced.

7.4  VERTICAL PLANE MOTIONS IN REGULAR FOLLOWING WAVES

In following waves the motions are again confined to surge, heave and pitch. Figures 7.7 and 7.8
show calculated heave and pitch transfer functions in regular following waves. These again
approach unity when the waves are very long and the encounter frequency approaches zero. Only
a limited range of (positive) frequencies can be encountered at any given speed for the reasons
discussed in Chapter 1. The transfer functions consequently adopt the shapes shown with two
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Fig 7.7 - Heave transfer functions for the Fig 7.8 - Pitch transfer functions for the frigate
frigate in regular following waves. in regular following waves.

possible motion responses (corresponding to different wave lengths) at any one positive
encounter frequency.

A third motion response occurs at the corresponding negative encounter frequency (when the ship
overtakes the waves). For moderate ship speeds this will only occur in very short waves and the
excitations and resulting responses are usually very small.

The heave phase 8, is close to zero over most of the range of encounter frequencies for which
the response is significant, indicating that the heave motion is again nearly synchronised with the
wave motion. The pitch phase G, is now approximately - 270° (or + 90 °) over most of the
significant range of encounter frequencies. Maximum positive (bow up) pitch motion now leads
the maximum wave depression at the centre of gravity by approximately one quarter of the
encounter period.

7.5  VERTICAL PLANE MOTIONS IN REGULAR OBLIQUE WAVES

In obligue waves the ship motions are no longer confined to the vertical plane. Roll, sway and
yaw motions also occur. However, the vertical plane equations of motion (3.22a), (3.22¢) and
(3.22e) for a symmetrical ship are independent of those for the lateral plane ((3.22b), (3.22d) and
(3.22f). So the lateral plane motions in oblique waves of small amplitude will have no effect on
the vertical plane motions and these may therefore be considered in isolation.
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Fig 7.9 - Heave and pitch motions in very long obligue waves.

In very long oblique waves the ship again appears to be crawling over a succession of long
shallow hills as shown in Figure 7.9. At the crests and troughs the heave motion will again equal
the wave amplitude, exactly as in head and following waves.
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Fig 7.10 - Heave transfer functions for the Fig 7.11 - Pitch transfer functions for the
frigate at 20 knots in regular oblique waves frigate at 20 knots in regular oblique waves

The “effective wave length” measured along the ship's track is A sec 1 metres and the
corresponding effective wave slope amplitude in the pitch plane is therefore reduced to

2r ¢,
By =

= —— =k {,cos u rad (7.4) |
A sec p
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(see Equation (1.16)). In these long oblique waves the ship will again align itself with the wave
surface, and the maximum pitch, equal to + & Co cos p, will occur at the wave nodes.

Figures 7.10 and 7.11 show typical oblique wave transfer functions for the frigate at 20 knots.
On headings forward of the beam (90° < pu < 180°) the responses are broadly similar to the
head wave responses already discussed, but the pitch responses at zero encounter frequency (very
long waves) now approach cos | (see Equation (7.4)). Only one response is possible at any
given encounter frequency and the motions generally decrease with increasing encounter
frequency. The heave responses increase as the heading approaches 90° and the wave excitation
becomes synchronised along the entire length of the hull.

The pitch response decreases as the heading approaches 90° and is usually negligible in beam
waves.

On headings abaft the beam (0° < p < 90°) the responses adopt the general form of those
already described for following waves. The range of possible encounter frequencies is reduced,
depending on the heading, and more than one response is possible at any given encounter
frequency.

Heave phase 8, is always zero in very long waves, indicating that heave is synchronised with
wave depression at all headings. Pitch phase &, is - 90" on headings forward of the beam and
- 270° (or + 90° ) on headings abaft the beam. '

Heave /wave
amplitude x,, / {,

1.5

1.0

0.5

Pitch / wave slope
amplitude xg /K §,

p=290°
0 o 1 1

0 0.5 1.0 1.5 20 ] 0.5 1.0 15 2.0 2.5
Wave frequency w - rad/sec Wave length / ship length : L/ L

Fig 7.12 - Alternative presentations of transfer functions for the frigate at 20 knots in oblique
waves.
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7.6 ALTERNATIVE TRANSFER FUNCTION PRESENTATIONS

It is sometimes more convenient to present the motion responses as functions of wave frequency’
or non dimensional wave length. Figure 7.12 shows the frigate's oblique wave transfer functions
plotted in these forms. They have the singular advantage that the responses are now all single
valued and the complications of multi valued responses at a given encounter frequency are
avoided.

Each form of presentation has its own advantages: Plotting responses as a function of A/L allows
a physical picture of the ship and wave to be easily visualised: plotting responses as a function
of w, allows an appreciation of the importance of natral frequencies (particularly for roll
motions) and gives a true indication of the frequency of the motions experienced by the
occupants of the ship; plotting responses as a function of w is often more convenient for
calculations of motions in irregular waves (see Chapter 8).

=0
Maximum heave down
t=T,/4
Maximum sway to
starboard; Maximum
T roll to port
t=7_/2
e
Maximum heave up
i = I
t=3T,/4 ¥
7
Maximum sway to port;
Maximum roll to starboard
|
!
i

Fig 7.13 - Motions in very long beam waves

! Sometimes the wave frequency is made non dimensional as , ’ L
g
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7.7  LATERAL PLANE MOTIONS IN REGULAR BEAM WAVES

In beam waves pitch motions are, as we have already seen, usually very small. Yaw is usnally
also negligible and the ship motions are essentially confined to heave, sway and roll. Figure
7.13 illustrates these motions in very long waves. The ship again follows the circular orbit of a
particle of water at the surface. The heave and sway motions are therefore equal to the wave
amplitude + {;: maximum heave motion occurs at the wave crests and troughs and maximum
sway occurs at the wave nodes. The ship sways towards the approaching wave crest and recedes

after the crest has passed by.

If there are no internal free surface effects to reduce the effective metacentric height® the ship's
deck will always be aligned with the wave surface. Maximum roll, equal to the wave slope

amplitude * k (,, will occur at the wave nodes.

Figure 7.14 shows the sway transfer function in beam waves. The sway equation (3.22b) has no
stiffness term ¢, x, so there is no sway resonance (see Appendix 1). Sway amplitudes decrease
with increasing encounter frequency but the phase 8, remains essentially constant at about - 9Q°
indicating that maximum positive sway (to starboard) occurs one quarter of an encounter period

after the wave trough has passed by (see Figure 7.13).

e 2 2 -
2P @ m ©
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-100 |— -]

Phase &, (deg) Sway /wave amplitude x,, / (,
(e}

-150
0.4 0.8 1.2 1.6 2,0

Wave frequency w - rad/sec

Fig 7.14 - Sway transfer function for the frigate at 20 knots in regular beam waves

% See any text book on naval architecture
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Figure 7.15 shows roll transfer functions for the frigate in beam waves. Roll motion is affected
by the sway and yaw motions (see Equation (3.22d)) but in beam waves the yaw coupling is
negligible because there are practically no yaw motions. The sway coupling, though of
significant proportions, does not alter the basic second order spring mass system characteristics
of the roll motion. The roll motion is usually lightly damped so that there is a pronounced
resonance close to the natural roll frequency, given by

C
—*  radisec (7.5a)

+4 =
Iy +ay

6 = I I 1 1
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Fig 7.15 - Roll transfer functions for the frigate in beam waves:
no free surface effects on metacentric height.

(See Equation (A1.6)). The natural roll frequency may then be determined using Equations
(3.2a), (4.37c), and (4.37e). Alternatively an approximate estimate of the natural roll frequency
may be obtained as follows.

The well known formula®

* See any text book on basic naval architecture
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0 >> (.l)-4 b

Fig 7.16 - Rolling motion in regular beam waves
— 1
BM =-L m

A

may be used to calculate the location of the metacentre M relative to the centre of buoyancy B.
In this formula the transverse second moment of the waterplane area is

1 3
ITzﬁfBl de.I m4

and A is the displaced volume in cubic metres. If the location of the cenire of gravity has been
determined the solid metacentric height GM; may be calculated from

GM, = BM - BG m

and the fluid metacentric height GM,. , allowing for any free surface effects, may then be
estimated. For preliminary design purposes we may also assume that the added roll inertia is
given approximately by

ay = 0.25 144 t m?

and the natural roll frequency is then given approximately by
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radfsec (7.5b)

The roll damping increases with forward speed. This gives a general reduction in the peak roll
response and a slight reduction in the frequency at which the peak roll response occurs. At zero
frequency the roll phase 6, is + 90° indicating that positive roll (to starboard) leads the maximum
wave depression by one quarter of a period as shown in Figures 7.13 and 7.16. At the natural roll
frequency the roll phase is zero and the maximum roll is then synchronised with wave crests and
troughs as shown in Figure 7.16. At very high frequencies 8, approaches -90° and the ship then
rolls in opposition to the wave slope. Roll motions are then, however, quite small.

The responses shown in Figure 7.15 were calculated with no allowance for free surface effects
on the metacentric height. If these effects are significant the reduction in the roll stiffness
reduces the natural roll frequency and increases the roll response at low frequencies as shown in
Figure 7.17.

7.8 LATERAL PLANE MOTIONS IN REGULAR OBLIQUE WAVES

Figure 7.18 shows roll transfer functions for the frigate in regular oblique waves. These are
plotted in the alternative wave frequency form and the fluid and solid metacentric heights are
assumed to be equal. In bow waves the forward speed of the ship increases the frequency of
encounter and the roll resonance is excited at lower wave frequencies. In quartering waves
the range of encounter frequencies is limited. At p = 30° in the case shown the waves are
never encountered at the roll natural frequency and the roll resonance is mever excited.
However;*at p = 60° a very wide range of wave lengths (and wave frequencies) is
encountered at frequencies close to the natural roll frequency (see Figure 1.16) and the roll
response is significantly increased. For this reason roll motion is often a maximum in
guartering seas, particularly at high speed.

In very long waves (w = 0) the roll motion amphtude approaches the effective wave slope
amplitude «,, given by Equation (7.4).

Figures 7.19 and 7.20 show the sway and yaw transfer functions in oblique waves. In very
long waves (w = 0) the sway amplitude approaches the athwartships component of the wave
orbit radius {; sin p. On headings forward of the beam both sway and yaw amplitudes
decrease rapidly with increasing wave frequency. Maximum responses occur in quartering
seas and rise to very high vafues when the encounter frequency approaches zero. Strip theory
predictions are likely to be inaccurate in these circumstances. In practice the ship would be
steered by a helmsman or an autopilot and this would effectively limit these large motion
amplitudes.
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Fig 7.17 - Roll transfer functions for the frigate at 20 knots in regular beam waves:
effect of fluid metacentric height.
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Fig 7.18 - Roll transfer functions for the frigate at 20 knots in regular oblique waves.

146




25 !

2.0

1.5

Sway/ wave amplitude x,, / {,

1.0

0.5

0 0.5 10 15 20
Wave frequency w - rad/sec

Fig 7.19 - Sway transfer functions for the frigate at 20 knots in regular oblique waves
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Fig 7.20 - Yaw transfer functions for the frigate at 20 knots in regular obligue waves.
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7.9  ABSOLUTE MOTIONS

The six motions considered so far completely define the possible movements of a ship in a
seaway. However, seakeeping studies often call for assessments of the motions experienced
at some particular point on the ship, such as the bridge or the flight deck of a warship or the
dining room in a passenger ferry. These can be calculated from a knowledge of the six
motions we have already defined with respect to the centre of gravity.

The angular motions are the same everywhere in the ship but the local linear motions depend
on the location within the ship. Let us consider a location defined by the coordinates
( xg; » Xg, » Xp, ) with respect to the centre of gravity. The longitudinal displacement of this
point includes contributions from the surge of the whole ship as well as the products of the
lever arms and the pitch and yaw motions. If the angular motions are small the linear
displacements relative to the moving origin O are

§; =X, " Xgy, X ¥ Xp, x, m (positive forward) (7.6)
S, =Xy — Xpg X, * X, x, m (positive to starboard) 1.7)
Sy = X3 + Xpy X, ~ Xy, X; m  (positive d (7.8)

Substituting Equations (7.2) we find that each motion is sinusoidal with

§; =8y8in (w, t+8,) m (i=1,3) 7.9

where the amplitudes are

50 = VPT + Pg m (7.10a)

S =\Ps + Py m (7.10b)

Sy P121 + P122 m (7.10¢)
where

P, = x5 008 0, — Xp, Xy €OS B + xp, xgy cOS O, m (7.122)

Py = x, 5in 8, - xp, Xg, Sin 8 + x,, X Sin O m (7.12b)

Py = x, cos 8, - x5, x,9 cO5 8, + xp, X, cos &, m (7.12c)

Py = Xy sin 8, - xpy x,0 8in 8, + Xp, Xgy SN O, m (7.12d)
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Py = x35 €08 05 + Xy, x5 cO8 O, — Xy Xy cO5 O, m (7.12e)
Py = Xy Sin Oy + Xp, X0 SN O, — xp, Xy 5in 85 m (7.120)
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Fig 7.21 - Absolute vertical motion transfer Fig 7.22 - Relative vertical motion transfer
Junctions at the bridge of the frigate in Junctions at the bow of the frigate in
regular head waves regular head waves

The form of the absolute motion transfer function depends on the position in the ship. Figure
7.21 shows some typical head wave absclute vertical motion transfer functions for a point on
the bridge of the frigate. In very long waves (w = Q) the transfer functions approach unity
as the ship contours the waves. At very high frequencies the motions become negligible; but
at intermediate frequencies the motion phases are such that the contributions from pitch and
heave are synchronised and large absolute motions, considerably greater than the wave
amplitude, are the result.

7.10 RELATIVE MOTIONS

Slamming and deck wetness (see Chapter 14) are of considerable importance in assessing the
seakeeping performance of a ship. They are largely determined by the magnitude of the
relative motion between the hull and the adjacent sea surface.

The relative vertical motion at a point ( xp, , X, , Xps ) is given by

ry =5, - { m (positive for increasing immersion) (7.13)

where s, is the absolute vertical motion given by Equation (7.8) and ( is the local wave
depression given by Equation (4.17a). Substituting these equations we find that the relative
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motion is
ry =rpsin (ot + 0, m (7.14)

where the relative motion amplitude is

r = | 53 = 253 Go €05 By + Q) + G5 m (7.15)
and the phase is given by

519 8in 8y + Gy sin O

tan 8 , =
54 OS5 B¢y ~ Gy cos @

(7.16)

Q in these equations is given by Equation (4.17b).

In practice the presence of the hull causes a considerable distortion of the waves close to the
ship and Equation (7.13) is only likely to be reliable at the forward perpendicular. Further aft
the equation may underestimate the relative motion by as much as 50%. Techniques for
estimating this distortion or ~swell up' are still the subject of research and no method has yet
won universal agreement. Nevertheless, Equation (7.13) is still used to estimate relative
motion, sometimes with empirical corrections for the swell up as described in Chapter 14.
Figure 7.22 shows some typical calculations (with no correction for swell up) for a point on
the forefoot of the frigate in head waves.

In very long waves the relative motions are zero because the ship contours the waves. In short
waves the ship is essentially stationary so that the wave motion is the only sizeable contribution
to the relative motion and the transfer function approaches unity.

At some intermediate frequency the motion phases are such that the upward absolute motion

is synchronised with the wave depression at the particular location chosen for the calculation.
The relative motion is then a maximum and sharply peaked resonances can occur at high speed.

7.11 VELOCITIES AND ACCELERATIONS
Since all the motion displacements are of the form

x=xy8in(w,t+0) morrad

the motion velocities and acceleration are given by

i=x,w cos (w,t+8) mlsec or radlsec

2.
- x, , sin (w, t +8) misec® or radlsec?

>4
|3
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which may be written

X=X sin(w,t+d+ w2) mlsec or radlsec

% sin (w,t+8 +w) misec? or radisec”

o
il

where the velocity and acceleration amplitudes are

Xy = X, W, misec or radlsec

2
x, w, misec? or radisec®

4
]

So the velocity and acceleration transfer functions for any motion can be obtained by
multiplying the displacement amplitude responses by the encounter frequency and the square
of the encounter frequency respectively.
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8

SHIP MOTIONS IN IRREGULAR WAVES

8.1 THE ELECTRONIC FILTER ANALOGY

For many years the assessment of seakeeping performance at the design stage progressed no
further than comparisons of ship motions in regular waves. The shortcomings of this approach
were widely recognised but further progress had to await the development of new techniques first
proposed by St Denis and Pierson (1953). These methods were based on ideas developed in the
electronics and communications fields and it is no exaggeration to suggest that their introduction,
together with the development of strip theory, form the two main foundations of the modern
theory of seakeeping.

St Denis and Pierson suggested that the ship could be treated in much the same way as the “black
box” electronic filter shown in Figure 8.1. The input signal received by the filter contains a
number of different frequency components and these are amplified or attenuated to produce a
modified output signal according to the characteristics of the filter.

Inpur Output
 —— Filter —

Waves Motion

— Ship —

Fig 8.1 - The electronic filter analogy

The analogy suggests that the ship can also be regarded as a filter, not of electrical signals, but
of the waves. In other words we can think of the ship as a “black box” which receives the waves
as input and generates ship motions as output. Of course there are a number of different ship
motion outputs so we should really regard the ship as a collection of filters, each with its own
individual characteristics.

It is also assumed that the filter is ‘linear’ in the sense that the output signal amplitude (the ship
motion) at any given frequency is linearly proportional to the input signal amplitude (the wave).

Let us consider the case of heave motion in head waves. Figure 7.5 shows typical heave transfer
functions for various speeds at p = 180° and we may regard these as defining the
characteristics of the “heave filter' of the black box ship. We can see that this is essentially a low
pass filter; at low encounter frequencies the wave motions are translated into corresponding
heave motions with little attenuation or phase shift. As the encounter frequency rises, the heave
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motions are reduced and at very high frequencies the input is completely attenuated so that there
are no resulting heave motions.

These ideas can be formalised and quantified by means of the so called “spectral calculation”.
This is mathematically valid and rigorous provided that the ship motion responses are linearly
proportional to the wave amplitude at any given speed, heading and frequency. This is nearly
always true, provided that the motions and waves are of small amplitude, and the spectral
calculation is widely used in seakeeping calculations.

8.2  THE ENCOUNTERED WAVE SPECTRUM

The first step is to determine the wave energy spectrum as described in Chapter 2. For the time
being we shall assume that the waves are long crested. The spectrum may be measured but it is
more usual to employ one of the idealised wave energy spectrum formulae (Equations (2.32) or
(2.44)). These formulae give the wave energy spectrum for a fixed point in the ocean: we require
to transform this to the reference frame of an observer on the moving ship.

A
_ Wave energy spectrum
)
=Y
S
Equal areas W~ CorresponAding o,
A Encounter spectrum
]
&
vy

Fig 8.2 - Transforming the wave energy spectrum into the encounter spectrum.

We have already seen that waves are encountered by the ship at the encounter frequency defined
in Equation (1.35). So the frequencies with which the waves are encountered are increased in
head waves and decreased in following waves. It follows that the wave energy spectrum must
be shifted along the frequency axis to cover a different range of frequencies when observed from
a moving ship.
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Figure 8.2 illustrates the result obtained in head waves: every wave frequency is transformed into
a corresponding encounter frequency according to Equation (1.35). The frequency interval dw
centred on the wave frequency w transforms into a corresponding encounter frequency interval
dw,. The relationship between the two intervals is obtained by differentiating Equation (1.35):

6me=(1 -
g

v cos ].1) O0w  radisec (8.1)

Now we have seen in Chapter 2 that the area under the wave energy spectrum within the small
frequency interval 8w is proportional to the energy contained within that band of frequencies.
Transforming the spectrum to the moving frame of reference of the ship does not change this
energy and it follows that the area within the wave frequency range 0w must be exactly
reproduced as an equal area within the corresponding encounter frequency range dw,. Hence
the ordinates of the wave spectmum perceived by a stationary observer and its counterpart in the
encounter frequency domain must be related by

S, (w)bw =8, (w,)dw, m? (8.2)

or, if dw and &w, are allowed to become infinitesimal

dw
Sc(we)*sc(m)dme .
=S (w) g m¥(rad/sec)
g - 20 Ucos

In head waves the effect is to increase the frequencies, widen their range and reduce the spectral
ordinate heights as shown in Figure 8.2. The areas under the two spectra are of course, identical
since the total wave energy and the significant wave height are unchanged by the transformation.

8.3 THE MOTION ENERGY SPECTRUM

8.3.1 Linear motion spectra

The spectrum for a linear (as opposed to angular) motion is calculated by filtering the
encountered wave energy spectrum with the appropriate motion transfer function. This is
achieved by multiplying each ordinate of the encountered wave spectrum by the square of the
motion transfer function at the corresponding encounter frequency. This approach is valid and
appropriate for any ship motion when the transfer function is normalised by dividing by the wave
amplitude’.

!'It is usual to normalise the transfer functions for the linear motions like surge, sway,
heave, absolute motion and relative motion by dividing by the wave amplitude.

154




{a) Encounter frequency domain (b) Wave frequency domain
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Fig 8.3 - Calculation of (a) heave energy spectrum in the encounter frequency domain and (b)
heave pseudo spectrum in the wave frequency domain. The areas under the two spectra are
the same.

The calculation for heave is illustrated in Figure 8.3(a). The motion energy spectrum ordinate at
each encounter frequency w, is given by

2

X35
Ss(w,)=8(w,) Ci m?/(radisec) (8.4)
a

The variance of the heave motion is obtained by integrating the heave motion energy spectrum:

o0

m, = f S, (w,)do, m? (8.5)

_0

and the rms heave motion is

0'0 = 1}??10 n
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The heave energy spectrum obtained in the encounter frequency domain in this way can be
transformed into a heave motion spectrum in the wave frequency domain by using the inverse
of the transformation procedure defined in Equation (8.3):

S, ( So( )dE
W) = w
x3 ) x3 e dw

Sﬁ(me)g—Zchosp

i

m*(radlsec)

The resulting spectrum has no physical significance and we shall call it the pseudo spectrum.
Nevertheless the variance and rms value of the motion may be still obtained by integrating the
pseudo spectrum because the area under the pseudo spectrum in the wave frequency domain is
the same as the area under the true spectrum in the encounter frequency domain. Now the same
variance and rms heave motion could have been obtained by conducting the entire calculation
in the wave frequency domain as shown in Figure 8.3(b). Here the heave motion pseudo spectral
ordinate is given by

0

x 2
S (@ =8 (w) (%] m*/(radlsec) (8.6)

and the heave motion variance and rms heave are given by

[=0]

m0=fSﬁ(m)dm m? (8.7)
: 0

0'0 = 1/?710 m

The wave frequency domain procedure is generally preferred because no transformations are
required and it avoids the complications of negative encounter frequcncies and multiple
responses in quartering and following waves. However it must be emphasised that the pseudo
spectrum is not an indication of the motion spectrum experienced by the occupants of the ship
. This can only be obtained by tranforming the psuedo spectral ordinates for the motion into the
encounter frequency domain or by working entirely in the encounter frequency domain.

8.3.2 Angular motion spectra
Angular ship motion transfer functions® are usually normalised by dividing by the wave slope
amplitude and this calls for a slightly different procedure, illustrated for pitch motion in Figure

2 Noting that the transformation is valid for ship motions as well as for waves
3Roll, pitch, yaw, autopilot controlled rudder motions, active fin stabiliser motions etc.
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8.4. The wave frequency domain is again preferred for the calculation and it is first necessary to
calcnlate the wave slope spectrum S, ( @ ) (see Equation (2.46)) . The rest of the calculation
follows the procedure described for linear motions above. The pitch energy pseudo spectrum is

given by
2
xSD 2
Ss(w) =5 (w) rad “[(radfsec) (8.8)
k¢,
= .008 I
3
~
~ 006 L
5
&
o 004 L
o
2 Wave slope spectrum:
. oz L. H,,=55m —
) Ty =124 sec
= 0 1 !
1.5 I T
= Pitch transfer function
’é’: 1.00 U=20knots; 1 =180 —
%
e 05 - —
0 i L
= .006 I |
u Pitch pseudo spectrum
>~ 004 [T 7]
~
o
~&
a~ 002 —
Ty
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0 0.5 1.0 1.5
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Fig 8.4 - Calculation of pitch pseudo spectrum for the frigate at 20 knots in irregular head

Wwaves.

The variance and rms motion are given by
o

my = fSﬁ(m)dm rad?
0

g, = ‘/mo rad
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3.4 RMS VELOCTITIES AND ACCELERATIONS

The rms velocity and acceleration and the motion periods may also be calculated in the wave
frequency domain. Using Equations (1.35) and (2.24) the spectral moments for heave are

00

mn=fw:.5'x3(me)dwe
0

oo
) n (8.10)
:[(m - Ucosp] S;(w)do m¥sec”
g
0
(n=0,24)
and for pitch
[» ]
mn=fo):Sx5(me)dme
0
co
) n (8.11)
=[(m - L Ucosp] Ss(w)dw rad?*/sec”
g
0
(n=024)
and the rms velocity and acceleration are given by
g, = \/nTz misec or radlsec 8.12)
o, = \/E misec? or radlsec® (8.13)

Analogous equations apply for other linear and angular motions. Equations (2.26) - (2.28) may

then be used to calculate the various mean periods of the motions.
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85  EFFECT OF MATCHING THE WAVE SPECTRUM AND THE
TRANSFER FUNCTION

High transfer function ordinates occurring at frequencies with a good deal of wave energy will
give large contributions to the motion energy spectrum. It follows that the rms motion depends
on the extent to which the motion transfer function “matches™ the wave spectrum. Figure 8.5
shows as an example the effect of varying the modal period of the wave energy spectrum on the
rms relative motion for the forefoot of the frigate in irregular head waves.

Figure 8.6 shows these and other motions plotted as a function of modal period. The motions
which are most sensitive to modal period are those, like relative motion and roll, which have
distinct transfer function peaks.
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Fig 8.5 - Effect of matching the wave energy spectrum with the transfer function. Relative
motions at the bow of the frigate at 20 knots in irregular head waves: Significant wave height
5.5 metres.
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Fig 8.6 - Effect of modal period on the motions of the frigate at 20 knots.
Significant wave height 5.5 metres

8.6  MOTIONS IN SHORT CRESTED WAVES

The procedures outlined above may be used to calculate motions in irregular long crested waves.
These are rare, as we have seen, and it is often necessary to extend these techniques to cope with
more realistic short crested waves. Now it was shown in Chapter 2 that the continuous short
crested wave spectrum S, (®, V) could be represented by a finite number of attenuated long
crested spectra distributed around the predominant wave direction (see Figure 2.13). Each long
crested spectrum is given by

SC(m,v)=WS€(m)

where W is a weighting factor depending on the secondary wave direction v - p given in Table
2.1.
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SPECIMEN CALCULATION OF ROLL MOTION IN SHORT

TABLE 8.1

CRESTED WAVES

Cosine squared spreading over = 90°.

Heading relative to predominant wave direction: p = 45°.
Significant wave height 5.5 metres. Modal wave period 12.4 seconds.
Bretschneider wave spectrum. Ship speed 20 knots.

Secondary | Heading Roll Weighting Contribution
wave relative to | motion factor to short
direction secondary | variance | (see Table crested
relative to wave in long | 2.1) variance
primary direction | crested
wave spectrum
direction
V- v m, 14 omy,
deg deg deg” deg’
-90 -45 36.24%* 0.000 0.00
-75 -30 12.11 0.011 0.13
-60 -15 292 0.042 0.12
-45 0 0.00 0.083 0.00
-30 15 2.92 0.125 0.37
-15 30 12.11 0.156 1.89

15
30
45
60
75
90

60
75
90
105
120
135

73.27
18.23
8.64
4.34
2.72
1.42

11.43
2.28
0.72
0.20
0.03
0.00

Total variance = ), Om, = 23.22 deg >

Rms roll in short crested waves = y 23.22 = 4.82 deg

* Rms roll in long crested waves =  36.24 = 6.03 deg
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Fig 8.7 - Effect of wave spreading on the motions af the frigate at 20 knots in irregular waves..
Significant wave height 5.5 metres; modal period 12.4 seconds.

It follows that the contribution to the motion variance from each secondary wave direction is
- 2 2
&my, = Wmy m= or deg
and the rms motion in short crested waves is

One = (M

ns m or deg

05
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The total motion variance in short crested waves is obtained by summing the contributions from
all the reduced long crested wave spectra:
V =+ T2
myg = E dm, m? or deg®
V= -TR

Input speed, heading, significant wave height and modal

period

Estimate average
roll amplitude

Calculate equivalent 1 Calculate average

roll damping roll amplitude

Calculate transfer

Junctions

Calculate psendo Difference not

spectra of motions accepiable
Calculate ns Campare with
roll angle > previous value

Y

Difference
acceptable

Y

Final result

Fig 8.8 - Iterative calculation of non linear motions in irregular waves
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Table 8.1 gives the results of a specimen calculation of the rolling motion of the frigate at 20
knots in quartering waves (4 = 45°). Inlong crested waves the rms roll at this heading is 6.03°
for the particular wave spectrum used in the calculation. Cosine squared wave spreading reduces
this to only 4.82°.

Figure 8.7 shows the effect of wave spreading on heave and pitch as well as on roll. In general,
wave spreading smooths out the more extreme variations of the motion. The effects are small
for heave but quite dramatic for roll. Wave spreading results in significant roll motions in
following waves and, to a lesser extent, in head waves. It also reduces the roll motions at the
worst heading by a considerable amount. In the same way spreading increases the pitch motions
in beam waves, but the effects at other headings are less pronounced.

8.7 SPECTRAL CALCULATIONS FOR NON LINEAR MOTION RESPONSES

The procedures outlined above rely on the assumptions that the motion responses are linearly
proportional to the wave amplitnde. We have seen that this is usually the case, but roll motions
may be an exception to this general rule. In this case a slightly more involved procedure,
illustrated in Figure 8.8, is required.

It is first necessary to estimate or guess the rms roll expected in the particular combination of
speed, heading, significant wave height and modal period for which the calculation is being
performed. The average roll amplitude may then be estimated using Equation (11.23). This
done, the total equivalent linearised roll damping coefficient may be calculated for the chosen
roll amplitude using the methods outlined in Chapter 6. The average frequency may be taken as
the natural roll frequency of the ship. The calculation then proceeds through the usnal stages of
determining the motion transfer functions and combining these with the appropriate wave spectra
to obtain rms values. Wave spreading should be taken into account.

The rms roll results are compared with the initial guess: if the differences are large (as will
usually be the case) the calculation is repeated using the new rms value and an improved
estimate of the roll damping. This procedure is repeated until the rms roll angle reaches an
asymptotic value and the calculation is terminated. The whole calculation must then be repeated
for every speed, heading, significant wave height and modal period specified.
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9

SEAKEEPING TRIALS

“Believe me niy young friends there is nothing - absolutely nothing - half so much worth doing
as simply messing about in boats™

From “Wind in the Willows” by Kenneth Graham 1908.
0.1 FULL SCALE TRIALS

Full scale seakeeping trials, in which the motions, deck wetness and other seakeeping phenomena
of interest are monitored in a measured wave environment, seem to be an attractive method of
assessing and comparing the performance of ships in rough weather. The waves are, of course,
irregular and it is necessary to record them and the motions simultaneously and to analyse the
results using the spectral analysis techniques discussed in Chapter 2. The rms motions (or other
seakeeping responses such as deck wetness frequency) can then be plotted as a function of
significant wave height and compared with those obtained from trials in other ships.
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Fig 9.1 - Comparative seakeeping trial results: pitch motions in head waves
(After Andrew and Lloyd (1981))

! There is no substitute for practical experience. Probably the most useful and rewarding
times in the anthor’s career were spent engaged in seakeeping trials with the Royal Navy.
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However, we have seen that the rough weather behaviour of a ship is a function not only of the
significant wave height, but also of the modal wave period, the shape of the wave spectrum and
the degree of wave spreading. So results obtained and compared in this simple way are likely to
be scattered and possibly misleading if the wave conditions at the time of the trials were in any
way dissimilar. In short, seakeeping trials are difficult to conduct satisfactorily because the wave
environment cannot be controlled in the experiment.

The only way that these problems can be overcome is by running two or more ships side by side
in simultaneous trials in nominally identical wave conditions. Trials of this nature have been
reported by Bledsoe, Bussemaker and Cummins (1960) and by Andrew and Lloyd (1981). Figure
9.1 shows the rms pitch motions and the mean zero crossing periods measured on two frigates
in the latter trjals in severe head waves (significant wave height 6-7 metres). These results form
an objective comparison between the motions experienced by two particular ships in a particular
rough weather environment: any peculiarities or changes in the wave conditions during the time
of the trial must have been experienced in equal measure by both ships (since they were only
about 400 metres apart) so any differences in the motions may be attributed to differences in the
design of the two ships.

Trials with a single ship are infrequent because of the expense involved and comparative trials
involving two ships are even more of a rarity. Such trials certainly cannot be regarded as a routine
way of ascertaining the performance of a new design. In any case, seakeeping trials, by their very
nature, cannot be used as part of the design process since they require the design to be finalised
and the ship to be built before they can be conducted. Model experiments and theoretical studies
provide the only practical method of estimating the seakeeping qualities of a new ship at the
design stage.

Trials do, however, offer the definitive method of verifying theoretical calculations or predictions
based on model experiments. If the wave spectrum is measured it may be used with estimated
motion transfer functions to predict the rms motions and periods experienced during the trial as
shown in Figure 9.1.

Alternatively the motion transfer functions may be estimated from the ratio of the measured

motion energy spectrum to the measured wave energy spectrum. Equation (8.4) may be
rearranged to give

730, 8t el ©.1)

with similar expressions for other linear motion transfer functions. In the same way Equation
(8.8) may be rearranged to give

Xs0 _ S (0,) 9.2)
k G, S, (w,)
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with similar expressions for other angular motion transfer functions.

9.2 WAVE MEASUREMENTS.

The heart of any seakeeping trial is the measurement of the waves, Without a proper technique
for recording and analysing the waves experienced by the ship the results obtained can only be
related to potentially unreliable visual estimates of the sea state at the time of the trial. For this
reason the use of relatively simple wave buoys such as the Waverider > (Figure 9.2) has become
de rigeur in all serious seakeeping trials.

The Waverider consists of a stainless steel sphere of 700 mm diameter weighing 106 kg. An
accelerometer to monitor vertical accelerations is mounted on a heavily damped pendulum within
the sphere. The pendulum keeps the accelerometer aligned with the true vertical

Fig 9.2 - Waverider buoy. (Reproduced by permission of Datawell bv.)

and the accelerometer's output is integrated twice by electronic circuits to provide an analogue
record of the vertical displacement of the buoy. The resulting signal is transmitted to a receiver
ashore or on board the trials ship. The buoy may be moored to the sea bottom or allowed to float
freely. The system will give satisfactory measurements of waves covering a frequency range
from 0.22 to 4.1 radians/second, corresponding to a wave length range from about 4 metres to
1300 metres. This is sufficient for most practical purposes except where measurements of very
short waves are required (where, for example, trials are being conducted on a small boat).

% Registered trade mark. Manufactured by Datawell bv, Zomerlustraat 4, 2012 LM
Haarlem, The Netherlands
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Simple buoys of this kind can give no information about the directional spreading of the waves
(or even the predominant wave direction). More sophisticated buoys which can give information
on wave spreading are now becoming available and techniques of hindcasting the waves from
measured wind data have also been used. These have not, however, yet become routine and most
trials still use simple measurements of point wave specira, relying on visual observations to
determine the predominant wave direction.

9.3 SHIP MOTION MEASUREMENTS

Most seakeeping trials are concerned with the measurement of the ship's displacements in the six
degrees of freedom. Angular motions are generally measured using gyros of the type used in
aircraft navigation systems. In warships it is often possible to use the ship’s own weapon system
gyros but on other ships the trials team will usually have to supply its own transducers.

Direct measurements of the linear motion displacements are irnpossible because no suitable fixed
datum levels are available. Instead, the usual practice is to measure the surge, sway and heave
accelerations using accelerometers mounted on a small platform stabilised by gyros to remain in
a horizontal plane (the gyros may also be used to measure the roll and pitch). Stabilisation is
necessary because a "strapdown" accelerometer fixed to the ship's deck would measure the lateral
force estimator or apparent acceleration in the plane of the deck (see Equation (15.12}) rather
than the true horizontal acceleration. In the same way the apparent surge acceleration in the
plane of the deck would be affected by pitch. Measurements of heave acceleration are reasonably
immune from these effects providing the pitch and roll angles are not too large.

The stabilised accelerometers should ideally be located at the centre of gravity of the ship so that
true measurements of the surge, sway and heave accelerations are obtained. In practice this is
often impossible to achieve. Even if the location of the centre of gravity is known when the
transducers are installed it may well turn out to be in some inaccessible or inconvenient location.
It is, in any case, unlikely that the exact location of the centre of gravity will be known at the
planning stage because it depends on the loading state of the ship and precise determination of
its position will only be possible at the time of the trial.

So in practice it is Iikely that the transducers will be located at some arbitrary position relative
to the centre of gravity and it will be necessary to correct their measurements to allow for this
error. If the transducers are located at (xg,, Xp,, Xxj,) they will measure local absolute
accelerations §, §, and §,  given by differentiating Equations (7.6) - (7.8). The true
accelerations of the centre of gravity are then given by

e o o 2
X, =8+ xg, X - xp &g misec 9.3)
e .o . 2
X, = 8 + xp X, - xp, X, misec 9.4)
e on o " o 2
Xy =8y - xp, Xy + xp, X misec (9.5)
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94  MEASUREMENTS OF OTHER SEAKEEPING RESPONSES

Seakeeping trials are often concerned with the measurement of responses other than motions in
waves. Typical examples are deck wetmess and slamming. Very simple instrumentation will often
suffice for measurements of the frequency of occurrence of these events. Indeed a seasoned
observer with a watch, a pencil and a log book is really all that is required. More permanent
records of deck wetness, which can be analysed at leisure in the less distracting environment of
the shore based laboratory, can be obtained by a video recording of the forecastle. This technique
was used successfully in the comparative seakeeping trials reported by Andrew and LLoyd
(1981) and their average deck wetness interval results are shown in Figure 9.3.
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Fig 9.3 - Deck wetness measurements on a frigate in head waves. (After Andrew and
Lloyd (1981))

Measurements of deck wetness severity can be obtained by mounting pressure transducers at
suitable locations on the ship's upper works.

Slamming frequency measurements may be obtained by using strain gauges to monitor the
bending moment experienced by the main hull girder. Slams will then be readily detected as short
periods of high frequency (typically 1.0 - 2.0 Hz) oscillation in these records. These oscillations
are caused by the hull whipping after each slam and are quite distinct from the longer period
oscillations in the bending moment experienced at the wave encounter frequencies. Alternatively
the high frequency vibrations may be detected using an accelerometer fixed to the ship's
structure. Slamming severity may also be monitored by analysing these records.

Pressure transducers are sometimes let into the hull surface to measure local slamming impact

pressures. It will, of course, be necessary to dock the ship if the transducers are to be fitted below
the waterline. This technique requires transducers and a recording system capable of responding
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to the very short rise times {of the order of milliseconds) typical of hydrodynamic impact
phenomena. This will often be incompatible with the requirements for the recording system for
ship motions and a separate system may be necessary.

9.5 RUN LENGTHS AND SHIP COURSES.

We have seen in Chapter 2 that at least 100 pairs of peaks and troughs are required in an irregular
time history to ensure a reasonably reliable estimate of the rms motion. Each trial run must be
of sufficient duration to achieve this minimum standard. The actual length required may be
estimated from strip theory calculations of the motions in the wave spectrum expected during the
trial. The mean period of the peaks for each motion may then be calculated from Equation (2.27).
Figure 9.4 shows the results obtained for a trial planned in a frigate.

= 25
g i I [ i ] — 40
3
NI T o — 35
g » S Roll Minimum g
S RN / run time — —30 §
Q, NN Sway L £
% 13 N s
= Ry ¥
S =
= =
W =
< 10 &
S
<
=
§ 3
=
S
= ! ! ! ! ! I,

0 30 60 90 120 150 180

Heading (degrees)

Fig 9.4 - Minimum run times for 100 motion peaks. Frigate at 20 knots: modal period 12.4
seconds

As expected, the mean periods are longest in following waves where the encounter frequencies
are low. The run time required to achieve 100 motion cycles is given by
100T
T, = L
60
where TP is the mean period of the peaks (in seconds) for the chosen motion. The required run

time is given by the maximum envelope value of T, for all the motions and this is also shown
in Figure 9.4.

minutes (9.6)
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In practice longer runs than this absolute minimum are advisable. A certain amount of additional
time should be allowed for the ship to settle onto its new course and speed at the beginning of
each run: more importantly it should be realised that every precaution should be taken to ensure
that data of adequate quality are collected. The opportunity of conducting a seakeeping trial
occurs so rarely that it would be false economy to shorten the runs because of economic or
operational pressures. If time is short it is better to reduce the number of runs rather than their

lengths.
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Fig 9.5 - Typical sequence of runs for a seakeeping trial at 20 knots

Very long runs are undesirable because they may take the ship too far away from the wave buoy.
The wave measurements will then be unrepresentative of the conditions experienced by the ship
during at least part of the run. Long runs also increase the risk of the wave conditions changing

during the run.

A good rule of thumb is to add a contingency of 10 minutes to the minimum calculated run time
for each course. Figure 9.5 shows a sequence of courses for a trial planned on this basis in the
frigate at 20 knots. The wave buoy is launched at the beginning of the head sea run and the
course sequence is chosen to minimise the distance from the ship to the buoy.
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10

MODEL TESTING

“The only difference between men and boys is the size and cost of their toys”

Source unknown: seen by the author in a vintage car dealer’s showroom in Monierey,
California, USA in 1986.

10.1 MODEL SEAKEEPING EXPERIMENTS

Preparing a ship for a seakeeping trial is an expensive and time consuming business. It is usually
necessary to select the trials period some time in advance and there can be no guarantee that
suitable weather conditions will occur. Many a trial has been postponed or cancelled because
there were no appreciable waves on the days allocated for it!

Even if waves of suitable severity are experienced, uncertainties about the degree of wave
spreading may still limit the utility and general applicability of the results obtained. However,
the main disadvantage of full scale trials is that they require the ship to be built before they can
be run. As such they are virtually useless as a method of assessing the seakeeping gualities of
a ship at the design stage.

Model testing provides an atiractive alternative. Models are much less expensive than ships and
can often be entirely dedicated to the required experiments. Moreover the model can be built
before the prototype ship and a mumber of alternative designs can be tested. Indeed, before the
advent of strip theory, model testing provided the only method of assessing the seakeeping
qualities of the ship at the design stage. '

If the model is to be tested in a towing tank or a seakeeping basin the waves can be produced
(and reproduced) to order. Suitable measurements are generally easier to accomplish than at full
scale. However, scaling problems can never be completely overcome and it must be admitted
that model tests in the controlled artificial environment of the laboratory always lack something
of the uncertain harsh reality of the real world experienced by the ship.

10.2 MODEL EXPERIMENT SCALING

10.2.1 Dimensional analysis

Consider a model ship in a system of regular long crested waves. How should the test conditions
be scaled to ensure that the model's motions are an accurate reproduction of the motions which
would have been experienced by the ship at full scale? To answer this question we employ the
techniques of dimensional analysis. These are discussed in detail by Massey (1986) and in many
other text books and we shall not give a general treatment here. Suffice it to say that the
technique allows the proper identification of the correct model test conditions in terms of non
dimensional groups of the quantities which are relevant.
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TABLE 10.1
DIMENSIONS OF QUANTITIES APPEARING IN EQUATION (10.1)

Quantity (tlc\:dnjlsss) (sz:fgsj) (sﬂig)

Xaq 0 1 0

Co 0 1 0

A 0 1 0

U 0 1 1

i 0 0 0

L 0 1 0

[ x5 ] 0 1 0

(7] 1 2 0

D 1 3 0

H, 1 -1 -1

g 0 1 -2

Let us consider as an example the heave motion of a ship and its model in regular waves. For
the time being we may assume that we have no detailed knowledge of the physical processes
involved: even so we might surmise that the heave amplitude x,, will be a function of the wave
amplitude {, and wave length A, the speed U and heading u and the size, shape and inertias
of the hull. In addition, the heave amplitude would be expected to depend on the physical
properties of the water (density p and viscosity ;) and the acceleration due to gravity. We
might therefore write a general mathematical expression relating these eleven quantities as:

x30 = f1 {Cg! )": U: H, Ls [xB ]s [ I ]! p= ,'lw’ g } m (101)

where f; is some as yet undetermined function which will be the same for both model and ship.
[ x5 ] represents a sufficient number of coordinates to define the shape of the hull and [ 7 ]

represents the moments of inertia of the hull. The dimensions of these quantities are listed in
Table 10.1.
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Massey (1986) shows how an expression of this form can be rearranged and written in terms of
a smaller number of non dimensional parameters. The theory of dimensional analysis allows the
required number of non dimensional parameters to be determined and for the case considered
here the non dimensional heave amplitude can be expressed as a function of seven such groups.
Many different formulations are possible and equally valid but it is convenient to consider the
form

1 T » ] '.l, ? £} (102)
L L [eL L p L3 Hw

where f, is some unknown function which is the same for both model and ship.!

0

@zfz{& LU [x]1 [1] pUL

x

Equation (10.2) tells us that the non dimensional heave amplitude —3 will be the same at both
0

model and full scale provided that all the parameter groups on the right hand side of the equation

have the same numerical values at model and full scale. This requirement dictates the conditions

required for the model experiment.

‘We define the model scale or dimension ratio as

R = (10.3)

Ls
LM

where L,, and L; are the lengths of the model and the ship. The dimension ratio generally lies
in the range from 10 to 100.

!These particular non dimensional parameters are chosen with the benefit of hindsight and
a knowledge of the characteristics of ship motions in regular waves. Other selections are, in
principle, equally valid providing that the total number of non dimensional groups is seven and
that they are all independent. Any one of the groups may be multiplied or divided by any other
non dimensional group (including ones that do not appear in Equation (10.2)). For example the

non dimensional wave amp]itude—%—} may be divided by the non dimensional wave length :'::— to

express the non dimensional wave amplitude as -19- and this is sometimes more convenient.

3
to give an

Similarly the non dimensional wave length may be multiplied by , |27

alternative non dimensional wave frequency parameter w,| — (see Table 1.1 for relevant
formulae). &
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10.2.2 Model and wave dimensions

x
If the dimensionless coordinates [ %5 ] are to be identical for model and ship we require each

corresponding dimension® to be related by

Tam _ Fas
Ly, Lg
so that
Xps
Xgy = — m 10.4
o T o (10.4)

In other words the model must be geometrically similar to the ship in all respects. The
underwater hull shape should be accurately reproduced and it is convenient to model the hull up
to the weather deck. It is not usually necessary to represent the superstructure as this has little
effect on ship motions except possibly in very severe conditions.

In the same way the requirement that the non dimensional wave amplitude and wave length must
be the same leads to

Cos
= — 10.5
Conr z " (10.5)
and
2ol 10.6
M= R m (10.6)

10.2.3 Mass and inertia

The requirement to represent the underwater hull form accurately demands that the model's
waterline be correctly located. This requires that the model's mass be correctly scaled. The
model's mass is

My = Py f By Dy, 0 dxyy,, t (10.7)

where the integration is performed over the length of the hull. Now all the model's dimensions
must be scaled according to Equation (10.4). So the model mass may be written as

Py
m,, = — Bs Ds o dxms

M R3

_ Pa Mg

pg R?

£ (10.82)

2 Dimensions’ may be taken to include quantities such as the radii of gyration, metacentric
height, centre of floatation and the coordinates of the centre of gravity.
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If Py = Pg this becomes

Mg (10.8b)

So if the water densities are identical the model mass is reduced in proportion to the cube of
the dimension ratio. In practice it is usual to test models of ocean going ships in fresh water so
that the water densities are not identical and this should be taken into account by using Equation
(10.8a). In this case it is generally assumed that p, = 1.025 tonnes/metre > for salt water and

Pu . 0976

Ps

The model's moments of inertia are scaled by ensuring that

I

M I

s

5 5
P Ly Py Lg

and the model's moments of inertia are then given by

Par 15 2
Iy = tm (10.9a)
ps R®

If Py = Py this becomes

I

- _8 2
" s

t m (10.9b)

So the model's .moments of inertia must be reduced in proportion to the fifth power of the
dimension ratio if the water densities are the same at model and full scale. Again it is necessary
to allow for differing water densities by using Equation (10.9a.)
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10.2.4 Frequencies and periods
The wave frequency is given by

w = g—gﬁ radfsec

(see Table 1.1). Using Equation (10.6) it follows that

w, = g yR radisec (10.10)

Model wave frequencies must therefore be increased in proportion to the square root of the
dimension ratio and are higher than the corresponding frequencies in ship scale.

Since

Ir=— sec (10.11)

(see Table 1.1) it follows that the model and full scale wave periods are related by

r -1
/R

" - sec (10.12)

Model wave periods must therefore be reduced in proportion to the square root of the
dimension ratio.

10.2.5 Heading
The heading p, is of course, a non dimensional group in its own right and it is self evident that
the model and full scale headings must be the same.

10.2.6 Speed: the experiment conundrum

Consider a small particle of water somewhere near the ship. Suppose that there is a
corresponding model scale particle at the corresponding location (defined by Equation (10.4))
near to the model and that each particle has dimensions which are some small fraction of the
ship's or model's length. Then the mass of the particle in each case will be proportional to p L?.
The particle’s velocity v will be proportional to the velocity of the ship or model and the
distance ds it moves in a given time 4t will be proportional to the ship's length. The particle's
acceleration can be written
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which is proportional to U¥L. So the inertia force (mass x acceleration) experienced by the
particle will be proportional to p L? U?. The gravity force on the particle is (mass x g)
which is proportional to p g L>. So we find that the Fronde number®, which is one of the non
dimensional parameters in Equation (10.2) , is the square root of the ratio of the inertia and
gravity forces on the particle:

Fo- inertia force _ | p L*u* U (10.13)
v gravity force pglL? m

The surface area of the fluid particle is proportional to L? and the viscous shear stress is
proportional to p,, times the velocity gradient.* The velocity gradient is proportional to U/L
and the viscous force on the particle is therefore proportional to p,, U L. So we find that

the Reynolds number °, another non dimensional parameter in Equation (10.2), is the ratio of the
inertia and viscous forces on the particle :

_ inertia force _ p U? L? _pUL
viscous force g, UL My,

R

(10.14)

Referring to Equation (10.2) we see that we require the model and full scale Froude numbers to
be identical:

Uy, U
\/ 8y L \/ 8s Ls

which leads to the speed scaling law

U, = — misec (10.15)

so that the model speed must be reduced in proportion to the square root of the dimension
ratio.

3 In honour of William Froude who realised its importance as a parameter for determining
the required speed for model experiments in the nineteenth century. The French mathematician
Reech also recognised its significance and it is sometimes known as the “Nombre de Reech” in
France.

* See any text book on fluid mechanics.
3 In honour of the nineteenth century mathematician Osborn Reynolds.
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However, Equation (10.2) also demands that the Reynolds numbers for the model and ship are
the same:
Par Upt Ly _ Ps Ug Lg

Hwas Hys

Then the model speed must be

7= Ps Ky R U,

M milsec

Py Hys

If the model and ship water densities and viscosities are the same this leads to

U, = U R misec (10.16)

So for identical water properties the model speed must be increased in proportion to the
dimension ratio. Likely differences in density and viscosity do not substantially change this
result.

Evidently Equations (10.15) and (10.16) cannot simultaneously be satisfied (except by testing
at full scale so that R = 1). In other words it is impossible to satisfy the requirement for Froude
and Reynolds number identities at the same time.

Model tests in which the proper relationship between inertia, gravity and viscous forces is
maintained are therefore impossible .

Fortunately viscous forces do not play a very important role in ship motion dynamics (except
perhaps in roll motions). If this is the case, the requirement to scale viscous forces in the correct
proportion to inertia forces may be waived and it is no longer essential to match model and full
scale Reynolds numbers. In any case this matching is not usually a practical proposition since
it would demand impossibly high model test speeds: for example, a ship speed of 30 knots at a
maodel dimension ratio of 30 would demand a model test speed (Equation (10.16)) of 900 knots!
In contrast, Froude number identity requires reduced model test speeds and this example would
yield a much more practical model speed of about 5.5 knots (Equation (10.15).

Neglect of Reynolds number can yield misleading results in certain specific circumstances. If
the Reynolds number is too low (as is usual in ship model experiments) the transition point will
be too far aft and too much of the boundary layer will be laminar. Flow separation is then more
likely and the skin friction forces will be too low. This may have some effect on the behaviour
of the model. Itis usual practice to stimulate turbulence by roughening the model surface at the

8 In principle it would be possible to achieve proper Reynolds number scaling if the model
could be tested in a fluid with decreased viscosity and/or increased density. No suitable fluid has
yet been proposed.
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estimated transition point near the bow to compensate for the neglect of Reynolds number
scaling. This precaution can, however, only be regarded as a palliative measure and it always
advisable to adopt the largest practical model scale to reduce Reynolds number scaling problems
to a minimum.’

10.2.7 Functional form of motion responses in regular waves
For a correctly scaled model, Equation (10.2) reduces to

@ﬂg{_&',%,ﬂ,,p} (10.17)

where f, is an unknown function of the four listed non dimensional quantities.

In practice the non dimensional motion amplitude is often found to be essentially independent
of the non dimensional wave amplitude (; / L provided that it is relatively small (say
{,/ L < 0.02). In this case the motion amplitude is linearly dependent on the wave amplitude,
as assurned in strip theory. If this is the case we may write Equation (10.17) in the simpler form:

ﬁzﬁ{%,pﬂwu} (10.18)
0

In passing, it should be noted that the non dimensional wave length could be replaced by a non
dimensional wave period or frequency or a non dimensional encounter period or frequency (see
footnote 1 and Equation (1.35)).

10.2.8 Application of dimensional analysis to other seakeeping responses

The approach described above can be applied to all ship motions (linear and angular
displacements, velocities and accelerations), and equations of the same general form as Equation
(10.18) will always be obtained. These seakeeping responses must be non dimensionalised by
dividing by appropriate combinations of the relevant variables. Since the response amplitudes
are generally proportional to the wave amplitude it is convenient to include the wave amplitude
in the denominator. For linear displacements like surge, sway, heave, relative and absolute
motions this is sufficient to give a non dimensional quantity:

Xp X KX3p T 3

_ =, =, — , — , £tc

o G G G G
For other seakeeping responses it will generally be necessary to include additional quantities to
give the denominator the same dimensions as the nomerator. For example, angular displacement
amplitudes are usually non dimensionalised by dividing by the wave slope amplitude to give
quantities like

" Model size is usnally limited by considerations of run length and tank wall interference:
see Sections 10.10 and 10.11.
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Linear acceleration amplitudes may be non dimensionalised in the form

XL XL §,L

gl, 8¢ 8¢,
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10.2.9 Scaling laws for seakeeping responses
Scaling laws for seakeeping responses may easily be derived from these relationships. For

x
example, if the non dimensional heave velocity is expressed as 0 we may infer that in a
properly scaled model experiment W Gy
Faom  _ Faos

Wy Copr Wy Cos
Using Equations (10.4) and (10.10) we find that

%
. I
Ay = — misec

/R

showing that the heave velocity, like the forward speed, is reduced in proportion to the square
root of the dimension ratio. Similarly we may show that accelerations at model and ship scale
are identical:

. - 2
Fynr = Ha0s misec

and that model encounter frequencies are, like wave frequencies, increased in proportion to
the square root of the dimension ratio. One important consequence of this result is that the
model's response to the waves appears, to the untutored eye, to be too hurried. A more realistic
appearance can be obtained by recording the model's motions on film or video tape and playing
back at a reduced speed. The playback speed should be reduced in proportion to the square root
of the dimension ratio.

Table 10.2 gives a comprehensive list of scaling laws for model test conditions and responses.
10.2.10 Tests in irregular waves
All of the foregoing analysis applies to seakeeping experiments in regular waves. An analogous

approach can be adopted for irregular waves but we must now deal in statistical rather than in
deterministic quantities.
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TABLE 10.2

MODEL SCALING LAWS
Multiply
Quantity Examples ship scale
value by
Mass Ship mass Pt
ps R’
Length Ship length; all dimensions; surge, sway, heave, absolute and relative 1
displacements; wave amplitudes and lengths, significant wave height E
. ‘Wave and motion periods, run time; intervals between events, modal L
Time . . .
wave period, mean zero crossing perfod ete. \/1_3 .
. Ship speed; surge, sway, heave, absolute and relative motion velocities; __1__
Velocity . .
wave celerity and group velocity. \/ﬁ
. Surge, sway, heave, absolute and relative accelerations; acceleration due
Acceleration : 1
to pravity
Angle Roli, pitch and yaw angles; heading, stabiliser and rudder angles; phases 1
Angular velocity Roll, pitch and yaw velocities; stabiliser and rudder rates. /R
Angular Roll, pitch and yaw accelerations; stabiliser and rudder angle
acceleration accelerations R
. . ' . - . p
Pressure and stress Slamming and wetness impact pressures; hydrostatic pressure; dynamic M
pressure; stress Dg R
Frequenc ‘Wave and encounter frequencies; frequency of intermittent events;
quency propeller rpm. \/1_?
Pag
Force Exciting force; shear force, tension; weight; thrust o R 3
K]
Pyt
Moment Exciting moment; bending moment; torsional roment; torque P R P
s
. . . 1
Linear spectral density | Spectral density ordinates for waves, surge, sway, heave, absolute and —
ardinate relative motion R\/E
1
Angular spectral Spectral density ordinates for wave slope, roll, pitch, yaw, rudder and _R
density ordinate ‘/—

stabiliser angles
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Let us consider again the heave motion of a model and its full scale prototype. Drawing a
parallel with the regular wave Equation (10.1) we might suppose that the rms heave motion for
a given spectrum formulation would have some functional relationship with a number of relevant
quantities as follows:

O3 =f5{ﬂua s Ty s Uy Ly [ xg L, [ 1], ps My s g}m (10.19)

Applying the same general approach we find that the non dimensional rms heave for a
geometrically scaled model is conveniently expressed as

G H ’
- { BT .| &, Fy,u } (10.20)
Hy L L

In other words the non dimensional rms heave is a function of the non dimensional significant
wave height and modal period, the Froude number and the heading. It is easily seen that the
significant wave height must therefore be scaled in proportion to the dimension ratio, and the
modal period must be reduced in proportion to the square root of the dimension ratio. For
moderate significant wave heights the functional dependence on the non dimensional significant
wave height is often weak and the rins heave motion for a given modal period, Froude number
and heading is then directly proportional to the significant wave height.

10.3 OPEN WATER MODEL EXPERIMENTS

'The simplest kind of model experiment involves testing an instrumented remote controlled model
in the openisea in what amounts to a minjature seakeeping trial. A dimension ratio of the order
of 10 is typical and the model may be powered by a small marine diesel engine or an electric
motor. Ship motion instrumentation similar to that employed in full scale trials is used and motor
speed setting and steering are achieved by radio control.

A wave buoy is required to measure the waves. This must be designed to respond to the short
waves which will be of significance to the model and a standard full scale wave buoy will not
nsually be adequate in this respect. Wave and motion spectra and statistics are obtained in
exactly the same way as at full scale.

Open water experiments have an intrinsic appeal for their apparent realism and they are certainly
much cheaper than full scale trials. However they are fraught with difficulties and cannot
generally be regarded as a serious option for the assessment of ship behaviour in Tough weather.

The required full scale wave spectrum must be reproduced at model scale according to the
appropriate scaling laws. This generally dictates a test area in sheltered water with a limited
fetch. Unfortunately this often results in multiple wave reflections from the nearby coast and a
high degree of directional spreading is usually present during these experiments. This makes the
results difficult to interpret and misleading conclusions can easily be drawn.
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Wavemaker

/

Fig 10.1 - Typical towing tank

104 LABORATORY TEST FACILITIES

Tests in the controlled environment of the indoor laboratory are much preferred to open water
experiments. The traditional® type of long narrow towing tank is illustrated in Figure 10.1. Such
tanks are usually of the order of 100 metres long and 5-10 metres wide. The depth should be at
least half the longest wave length envisaged to avoid unwanted shallow water effects on the
waves. A towing carriage runs on rails and is powered either by onboard electric motors or
hauled by a winch at the end of the tank. Waves are generated at one end of the tank by a wave
maker and absorbed by a beach at the other. A section of the beach can usually be lowered to
allow the end of the tank to be used as a docking area for ballasting and trimming models.

8 In 1865 William Froude conducted model experiments on the River Dart in Devon. He
was concerned with developing scaling laws for ship resistance in calm water but often found
that the uncontrolled environment (wind and waves) of the river estuary spoiled his results.
Accordingly he approached the Admiralty with a proposal to build the World’s first purpose built
indoor towing tank at his home in Chelston Cross near Torquay. The tank was to be used for
experiments on rolling as well as ship resistance. It was completed in 1872 and was known as
the Admiralty Experiment Works. Froude died in South Africa in 1879 and was succeeded by
his son R E Froude who moved the establishment to Haslar, near Gosport in 1886. A new tank
was built and gave sterling service for over 100 years until it was closed and converted into
offices by an unsympathetic management more interested in accountancy than historical
significance or hydrodynamics. The author led the team which conducted the last experiment (on
deck wetness) on 5th November 1993.
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Fig 10.2 - Model restraint systems

Models may be tested at forward speed in head or following waves. In addition, tests at zero

speed in beam waves (with the model aligned across the tank) are possible.

The model to be tested is mounted under the carriage using one of the arrangements shown in
Figure 10.2. The rigidly restrained arrangement shown in Figure 10.2(a) is used omnly in
specialised experiments to measure wave loads. Figure 10.2(b) shows the rig commonly used
with an unpowered model in head or following waves. The model is free to pitch around a hinge
pin at its centre of gravity. The pitch pivot is mounted at the end of a vertical rod which slides
in linear bearings, allowing the model freedom to heave. No surge motion is allowed.

A limited freedom to surge can be obtained using the sprung arrangement shown in Figure
10.2(c). True surge motions can only be obtained if the model is self propelled and the

arrangements shown in Figures 10.2(d), 10.2(e) and 10.2(f} are possible.
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It is, of course, necessary to use very high quality bearings in these rigs to reduce frictional
effects on the measured motions to an absolute minimum. Some of the weight of the rig will be
supported by the model and due allowance for this must be made when ballasting and trimming.
In any case the moving parts of the rig should be made as light as possible to minimise the added
inertias which will contaminate the results. Frictional effects may be virtnally eliminated by
dispensing with any guidance arrangements as shown in Figure 10.2(g).

Beach }

dode!

Main carriage -

i

Sub carriage

Main rail
Main rail

Wavemaker

Fig 10.3 - Typical seakeeping basin

In recent years the seakeeping basin, specifically designed for seakeeping model tests, has been
introduced. These tanks are usually of the order of 50 metres square and are fitted with wave
makers and a beach at opposite ends. An ideal arrangement is shown in Figure 10.3. A main
carriage spans the tank and runs on rails in much the same way as in the traditional towing tank.
A subcarriage is mounted on the main carriage so that it may be positioned at any point over the
water surface. During a self propelled experiment the subcarriage's position may be maintained
over the model by an automatic control system. Alternatively for towed experiments the
subcarriage may be driven across the tank at some predetermined heading to the waves.

For self propelled experiments the model is connected to the subcarriage by an umbilical cable
as shown in Figure 10.2(e). This cable supplies the model with electric power for its propulsion
and instrumentation and also serves to feed the model's response signals back to the carriage for
recording and analysis. The cable is supposed to be sufficiently light and flexible to preclude any
interference with the model's motions.
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This ideal arrangement is of course very expensive and many tanks have no carriage, relying
instead on free running self contained models as shown in Figure 10.2(f). This means that the
model must carry its own batteries for power supply and that its responses must be recorded on
board or telemetered ashore. In either case the additional weight makes the achievement of
proper mass and inertia scaling more difficult and large models may be necessary to allow
adequate freedom of ballast adjustment.

N W
(a) Simple flap (B) Simple wedge (c) Double angle
wedge
D - (g} Double flap: .
](‘1 tfz)ps fng c‘z]ng flaps out of phase {f) Pneumatic

Fig 10.4 - Wave makers

10.5 WAVE MAKERS AND BEACHES

10.5.1 Wave makers

Figure 10.4 shows several different designs for laboratory wave makers in current use. In
modern installations the wave maker is usually driven by a servo controlled hydraulic ram which
will follow an electrical input drive signal as shown in Figure 10.5. Both regular and irregular
waves can be reproduced provided that appropriate drive signals are available.
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Drive signal servo Wave maker Waves
motion

Fig 10.5 - Wave maker block diagram

The wave maker transfer function relating the wave and servo motions may in principle be
calculated and Crapper (1984) gives a theory for a simple piston wave machine. However, most
laboratory test tanks rely on an experimentally determined transfer function for the wave maker
and its servo. Figure 10.6 shows a typical calibration for a wedge type wave maker. The
diagram allows the voltage amplitude required to achieve any desired regular wave amplitude to
be determined.

Model wave length A (metres)
30 10 5 3 2 1 0.5
‘1 | | | 1 | |

w
o

@

]
o

[l
o

L,/ v, (mm/volt)

o | | | | |
0 2 4 6 8 10 12

Model wave frequency w (radians/second)

Fig 10.6 - Wave maker transfer function

10.5.2 Beaches

Most tanks are fitted with a beach to absorb the waves after they have travelled the length of the
tank. All beaches allow a certain amount of wave energy to be refiected and tank superintendents
are often strangely reluctant to reveal definitive data on beach performance. In a rare display of
candour Hsuing et al (1983) measured the performance of the beach in a new tank at the
Memorial University of Newfoundland and their resuits are shown in Figure 10.7. The reflection
coefficient, defined as
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_ amplitude of reflected wave

R amplitude of incident wave

is plotted as a function of the non dimensional wave frequency w J‘E (where d is the depth of
8

the tank). The results show that the beach is most effective at high frequencies (ie in short waves)
and the best results are obtained when the beach slope is very small. Such a shallow beach may
well occupy a significant proportion of the length of the tank and practical considerations may
place a limit on the beach slope which can actually be used.

Model wave length /depth : A /d
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Fig 10.7 - Beach reflection coefficients (After Hsuing et al (1983))

Over the range of wave lengths of interest to most model experiments the reflection coefficient
is usually of the order of 0.05 - 0.10. These reflections will mix with the incident waves and
spoil their characteristics. It is therefore important to ensure that measurements are taken before
these unwanted reflections reach the model. This is discussed in more detail in Section 10.9.

10.6 INSTRUMENTATION

Where a carriage is available this provides a convenient datum for the measurement of ship
motions. Some examples of commonly used techniques for pitch and heave are shown in Figure
10.8 and adaptations of these systems are used for the other motions. A simple arrangement with
strings and potentiometers is shown in Figure 10.8(a). The potentiometers give signals which
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are proportional to the absolute motions at the attachment points and these may be combined to
give estimates of the pitch and heave:

§. + 8

Xy = £ 4 > A m (10.21)
§, - §

X = —%:x_F rad (10.22)
R

where s, and s, are the absolute motions measured forward and aft and 2x, is the longitudinal
separatlon of the two measurement locations.
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(a) String and potentiometers to (b) String and potentiometer to
measure absolute motions measure heave, Potentiometer

to measure pitch
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(c) Sonic transducer to measure heave: (d) Accelerometer to measure heave
Gyro to measure pitch acceleration: Gyro to measure pitch:

Resulis telemetered ashore
or recorded on board.

Fig 10.8 - Instrumentation for pitch and heave

Another technique is illustrated in Figure 10.8(b). Here the heave is measured directly by
monitoring the motion of the heave post and the pitch is obtained by coupling a potentiometer
to the pitch pivot pin in the model.

Where there is no physical connection (apart from the umbilical cable) between the model and
the carriage, systems like that shown in Figure 10.8(c) have found favour. Here the pitch is
measured by a gyro of the type used in aircraft navigation systems and the heave is monitored
using a sonic transducer. The transducer emits a short duration pulse of high frequency sound
(above the limit of human perception) and this is reflected from a horizontal board mounted
under the carriage. The time required for the sound to travel from the transducer to the board and
back again is monitored and is proportional to the distance from the transducer to the board.
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Where there is no carriage, heave and other linear ship motions cannot be measured directly
because no convenient datum level is available for use as a reference. It is then necessary to
resort to gyros and accelerometers as in full scale ship trials and this is illustrated in
Figure 10.8(d).

Two kinds of wave transducers are shown in Figure 10.9. Both involve a pair of metallic surface
piercing elements. Electronic circuits are used to monitor the resistance of the water between
the two elements and this is a function of the depth of immersion. Alternatively the elements
may be regarded as the plates of a capacitor using the water as the dielectric medium. The
capacitance is then monitored to provide an analogue of the depth of immersion.

>
(a) Foils (b) Wires flush with

probe surface

Fig 10.9 - Wave probes

These wave probes have some disadvantages. Surface tension effects may cause the water level
experienced on the probe surface to be slightly different to the true level away from the
immediate vicinity of the probe. The errors due to this effect are not, however, very serious
unless the probes are used to measure very small waves. Much more significant effects are
experienced if these surface piercing probes are used on a moving carriage to measure the wave
encountered by the model. The probe inevitably causes some surface disturbance and this is
likely to introduce errors in the measured wave profile due to the probe's own “bow' wave.
Speeds in excess of 1-2 metres/second may introduce noticeable errors.

More sophisticated wave probes which avoid contact with the water surface have been
developed. One type uses transducers to detect an ultrasonic pulse reflected from the water
surface. Optical systems using lasers are also being considered and the “servo needle’ is being
developed in Japan. This uses a servo controlled probe which is continually adjusted so that it
is just in contact with the water surface.
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It is advisable to position the wave probe perhaps one metre ahead and one metre to one side of
the model to avoid measuring any surface disturbance caused by the model. Care should be taken
to ensure that any surface disturbance due to the probe does not interfere with the model.

Figure 10.10 shows some of the types of instrumentation used to measure relative bow motion.
Most of the transducers are developments of those used to monitor waves. The simplest form,
using a pair of foils ahead of the model, is shown in Figure 10.10(a). This gives a general
indication of the relative motion ahead of the bow but is positioned so that the disturbance due
to the proximity of the hull may not be measured.

Hull surface
Aluminium foil tape —
Teflon tape
(a} Capacitance strips (b) Flush capacitance {c) Resistance wires
ahead of model Strips

Fig 10.10 - Relative motion instrumentation

This problem is overcome with the arrangement of flush mounted tapes shown in Figure
10.10(b). Here an aluminium foil tape is fixed directly to the surface of the model using double
sided adhesive tape. The aluminium is insulated from the water by a layer of Teflon' tape. The
aluminium and the water form the plates of a capacitor, the Teflon tape being the dielectric. The
electrical circuit of the capacitor is completed through an uninsulated aluminium tape on the
surface of the hull, and this allows the capacitance, and hence the relative motion, to be
monitored by suitable circuits. Insulated tapes may be located at a number of stations, allowing
the measurement of the longitudinal variation of relative motion. A single return tape will suffice
for several measurement locations. -

Measurements with this arrangement will certainly include the effects of the disturbance due to
the hull but may suffer from the surface tension effects experienced by wave probes. The rig
shown in Figure 10.10(c) has been proposed as an alternative. Here resistance wires are
stretched taut from keel to deck. The wires do not touch the hull surface so they should not be
subject to the unwelcome effects of surface tension: at the same time they should be sufficiently
close to the hull to give measurements which include the local wave disturbance effects due to
the hull.

Experiments to investigate deck wetness and slamming are also of some importance and suitable

transducers to monitor deck wetness are shown in Figure 10.11. In Figure 10.11(a) a vertical
plate incorporating pressure sensitive cells is mounted on the forecastle and may be used to
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measure both the impact pressures and the frequency of deck wetness. The cells are covered with
a thin flexible diaphragm and are connected to pressure transducers mounted on the carriage by
lengths of flexible tubing. An alternative technique using resistance wire probes is shown in
Figure 10.11(b). Here the probes measure the depth of water on the deck but can again be used
to monitor the frequency of deck wetness.

In slamming experiments pressure transducers are usually mounted flush with the model keel and
under the bow flare to measure impact pressures directly.

{a) Pressure cells (b) Resistance probes

Fig 10.11 - Deck wetness instrumentation
10.7 MODEL MATERIALS

William Froude developed the technique of building models from paraffin wax and this is nsed
in some establishments to this day. An oversize casting of the hull is first made using a simple
mould of wood and fabric. Accurate waterlines are then cut in a special double cutter milling
machine. The model is then finished by hand using templates taken from the body plan of the
hull.

Paraffin wax has many advantages. It is easily worked and models can be modified at any time
using simple hand tools. After a model's useful life has expired it can be melted down and the
wax reused. However, wax models are not very robust: indeed they will gradually distort if left
unsupported over a prolonged period. This can be avoided by keeping them submerged in water
if they are required for future experiments. This is, however, hardly convenient since all the
internal equipment must be removed. A harder wearing material is usually chosen for seakeeping
model experiments.

Wood is a favourite material, being easily worked and durable. The usual technique is to cat out
a series of boards to the shapes of the hull waterlines and to assemble these in the so called 'bread
and butter' construction. The excess material is removed by hand using scrapers and templates
for guidance in the final stages. The inside of the model is carved away to allow room for the
required equipment and to reduce weight.

It is always necessary to allow a considerable wall thickness to ensure adequate strength in a
wooden model and the usable internal space is often restricted. So wooden models are often quite
heavy and only a small amount of additional ballast is needed to bring them up to the required
mass. There is therefore little freedom to position the ballast to obtain the proper inertias and
centre of gravity. Wood also has the disadvantage that it ailways seems to absorb moisture from
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the water, no matter how well it is waterproofed. So dimensional stability is difficult to maintain
as the wood swells and subsequently contracts as it dries out.

For this reason alternative modern materials are often used, particularly for free running models
which must carry their own batteries for power supply. A favourite material is glass reinforced
plastic (GRP). The shell of the hull need then be only a few millimetres thick and a very light
yet strong and stift model can be produced. It is first necessary to build a plug (male) mould to
the exact finished shape of the hull and this is conveniently done in paraffin wax. The plug is
coated with a release agent and a female mould is built up on the plug with layers of glass cloth
impregnated with resin. When the resin has cured, the two moulds are separated and the plug is
discarded and recycled. The inside of the female mould is then coated with the release agent and
layers of resin impregnated cloth are built up to form the finished GRP hull. After curing, the
hull and the mould are separated and the hull is ready for fitting out. If required the female
mould can be used again to reproduce any number of identical models.

Expanded polystyrene foam has also been used in some laboratories. This is very light and stiff
and has many of the advantages of glass reinforced plastic.

10.8 TRIMMING AND BALLASTING

The first step in trimming and ballasting a model is to weigh the hull, completed with all internal
fittings such as instrumentation, batteries, propulsion motors etc. A temporary extra weight to
represent the weight of any towing or restraint apparatus to be supported by the model should be
included®. The additional ballast required to bring the model's mass up to the required value is
then calculated and the necessary ballast weights stowed in the huil. The model is placed in the
water and the positions of the ballast weights adjusted until the required trim is obtained. The
model is usnally required to have no heel angle and this can be checked by a spirit level sited on
some suitable datum surface. The longitudinal trim is best determined by simple adjustable wire
trim gauges of the type illustrated in Figure 10.12. These allow the freeboard F to be
determined at specified locations forward and aft. If the model's trim is correct it follows that
the longitudinal position of the centre of gravity must be correctly located.

It remains to determine the vertical location of the centre of gravity and to adjust it if necessary.
This is done using an inclining experiment. A small measured heeling moment is applied to the
model and the resulting heel angle is measured. The moment is most easily applied by moving
a known weight a measured lateral distance.'® This enables the solid metacentric height G
to be determined (see any text book on naval architecture). The position of the metacentre M wi
be known from the ship's hydrostatic diagrams and this allows an estimate of the vertical location
of the centre of gravity. The VCG can be adjusted by appropriate vertical movement of ballast
weights.

® This weight must be removed for the experiments.

10 The weight should be part of the ballast already installed since adding a weight at this
stage will change the model’s displacement and underwater hull form.
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Fig 10.12 - Trim gauge
The moments of inertia are measured using the compound pendulum rigs illustrated in Figures
10.13 and 10.14. Figure 10.13(a) shows a simple technique for measuring the pitch moment of
inertia I;;. The model is suspended in a light frame so that the centre of gravity is 4 metres
below a pivot point. The entire rig is then oscillated by hand and the natural period of oscillation T,

determined by measuring the time required for, say, ten complete oscillations. The total moment
of inertia of the complete rig is, by the parallel axis theorem

I=mkl+mh®>+1I. tm? (10.23)
and the stiffness of the compound pendulum is
c=(mh+mph,)g kN mirad (10.24)

where mis the mass of the supporting frame in tonnes, /;; is its moment of inertia in tonne
metres® and /., is the distance from its centre of gravity to the pivot point in metres.

Now, from Equation (A1.6) the oscillation frequency is

© = 2" - \JE radlsec (10.25)
T N7

and the model's radius of gyration is given by

mh+ m_h Tf’
o - ( Fhr) 8 -

S (10.26)
4 1 m

3 |-

An exactly similar procedure 1s used for finding the roll radius of gyration as shown in Figure
10.13(b). In both cases it is desirable to keep the mass and inertia of the supporting frame as
small as possible to minimise errors in the estimation of the hull's characteristics. The inertias
of the frame may be found by measuring its natural period of oscillation without the hull
attached.
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Fig 10.13 - Compound pendulum rigs for measuring pitch and roll radii of gyration

A somewhat simpler procedure for finding the yaw radius of gyration without using a supporting
frame is shown in Figure 10.14. The model is suspended on two wires from a suitable overhead
beam. Typically the wires will be five or six metres in length. The model is oscillated in yaw,
taking care to avoid roll or sway motions. The natural period of oscillation is recorded as before.
The stiffness of the system is calculated as foliows.

Suppose that the model is yawed through a small angle x, radians as shown. Then the wires will
swing through a small angle

Now the tension in each of the two wires must be half the model weight:
mnE N
2

and the horizontal component of these forces tending to swing the model back to its equilibrium
position is approximately

mg xg xp
2h

So the restoring moment on the model is
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'F ig 10.14 - Bifilar suspension rig for measuring yaw radius of gyration
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and the stiffness of the system is then

2
mg Xp

h kN mfrad (10.27)

The moment of inertia of the slender wires supporting the model is assumed to be negligible and
the natural frequency of the system is, from Equation (A1.6),

27 c AR ’ g
w === = = |5 radlsec
’ T, m .t’cﬁ2 ke \ £ (10.28)

and the yaw radius of gyration is given by

T
k, = YR 18 (10.29)
2x h
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The bifilar suspension method is widely used to estimate the yaw radins of gyration because of
its simplicity and convenience, requiring no more apparatus than a stopwatch and a pair of wires
suspended from hooks in a suitable overhead beam. In principle the same method could also be
used to estimate the pitch radius of gyration with the model turned on its side. This is, not
usually practical, however, because much of the internal equipment may not be sufficiently well
secured. Instead it is often assumed that the pitch radius of gyration is the same as the yaw radius
of gyration.

The model's radii of gyration may be adjusted to the required values by moving the internal
ballast weights. The radii of gyration may be reduced by moving ballast towards the middle of
the model and vice versa. Care should be taken to ensure that any adjustment to ballast on one
side (or end) of the model is exactly balanced by a corresponding adjustment as the other end.
Otherwise the location of the model's centre of gravity will be changed. It is good practice to
check the centre of gravity position after swinging the model to ensure that all is well in this
respect.

10.9 TESTING IN REGULAR WAVES

10.9.1 Measurement of motion transfer functions

Most tests in regular waves are concerned with the experimental determination of the motion
transfer functions. It is therefore necessary to record the sinusoidal motions of the model and to
determine the motion amplitudes experienced for a variety of different wave lengths or
frequencies. It is usual to keep the wave slope constant while varying the wave length, but
experiments in waves of constant amplitude are also used. Care should be taken to ensure that
the wave steepness is always small (unless the tests are specifically intended to investigate non
linear effects) so that there is no risk of the wave breaking.

If phase information is required it is necessary to measure the incident waves using a wave probe
mounted on the towing carriage. It is usual to position the probe ahead and to one side of the
model, as shown in Figure 10.15. This avoids measuring the wave distortion caused by the
presence of the model and prevents the bow wave generated by the probe interfering with the
model. This introduces a phase shift in the recorded motions and this must be corrected in the
analysis. Suppose that the wave probe is positioned x,, metres forward of the mean position
of the model's centre of gravity and x,, metres to starboard. Then the probe will record the
waves x, metres after they have passed the centre of gravity. The distance x, is given by

Xp = Xjp COS P~ Xpp SIR U M

Now the waves are overtaking the model with a relative velocity
c - Ucosy misec

and a wave trough recorded at the probe would have been alongside the model’s centre of gravity
at a time
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Xp

ty = ———  sec
c - Ucos p

earlier. So the phase lead measured with reference to the waves recorded at the wave probe
should be reduced by an amount

6, = w t

P e P
_ @, (x,pcos B - x,p 5in P ) vad (10.30)
c - Ucosp
Waves

\\l

_ Xar {;
‘ Xip :’ i
Y

/ UY
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Fig 10.15 - Calculation of phase shift due to wave probe location

10.9.2 Effects of wave reflections :

It was explained in Section 10.5 that all beaches reflect a certain amount of wave energy and that
these reflections will eventually spoil the characteristics of the waves generated by the wave
maker. Model experiments run in these contaminated waves will give misleading results. This
problem can be avoided by careful attention to the timing of the experiment run in relation to the
time at which the wave maker is started.

Consider the model in the experiment tank shown in Figure 10.16. It was shown in Chapter 1
that the main body of a group of waves having the proper wave amplitude propagates down the
tank at the group velocity u. This is preceded by a secondary wave front of reduced amplitude
travelling at the wave celerity ¢. The experiment run (ie that part of the model's run in which
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measurements of its behaviour are recorded) must obviously be confined to the part of the tank
which contains waves of the proper amplitude. In other words the model's responses should only
be observed and recorded while the model is behind the advancing wave front WW. At the same
time it is necessary to avoid taking measurements of the model's responses after it has
encountered the initial wave disturbance RR reflected from the beach.

This may be analysed with the aid of the distance/time diagrams shown in Figure 10.17. In these
diagrams x.. is the distance in metres from the wave maker and ¢ is the time in seconds. The
wave maker is started at ¢ = 0 seconds and the model progresses 'down' the tank at a component
velocity U cos p metres/second.

w Advancing wave front w L,

e A
v
% %

Wave maker

| | | 3

Waves

Fig 10.16 - Wave fronts and model location

The path of the initial wave disturbance is represented by the line OA with slope ¢
metres/second. This initial disturbance will be reflected from the beach at time

L
t=1t = sec (10.31)
[

(where L is the effective length of the tank) and will arrive back at the wave maker at time
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t =2t sec (10.32)

The path of the “proper” wave front is represented by the line OB with slope #, metres/second.
Providing the tank depth is at least half the wave length the group velocity is half the celerity
(see Equation 1.31) and the wave front reflects from the beach at time

t =12t sec (10.33)

t =4t sec (10.34)
t 4t/3 2t t, 4t/3 2t
L, : t
A B A l B
B \
S § D ¢ 4
g ¥/ & §/ &
< g/ EVARS
&) A 4R
& / Model N Model
tracks \F H tracks
-
— S
0o K— 7 - 0 G ~\C
O
0 2ty ¢ (seconds) . O 2t ¢ (seconds) v
(a) Following and (b) Head and bow waves
quartering waves

Fig 10.17 - Optimum experiment runs

When the model is at a location represented by a point above the line OB it will not be
experiencing the proper wave amplitudes of the main bady of waves. Similarly a model located
at a position represented by a point above the line AC will be experiencing the unwanted
reflected wave disturbance. It follows that the conditions outlined above for valid model test
observations in regular waves are only experienced when the model's location is defined by
points within the triangie ODC.

Let us first suppose that the model is to be tested in following or quartering waves and

Ucos p>u, misec

Ignoring the short distances needed to accelerate the model up to the required test speed and to
bring it to rest at the end of the run, the model's progress down the tank can be represented as a
line with a positive slope U cos p metres/second. The line may be positioned anywhere in the
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diagram depending on the time chosen to start the experiment run, but the optimum location
giving the longest run time is defined by the broken line ED in Figure 10.17(a). The run 'length’

is given by

Ir_ 2
L, 3

and this is achieved by starting the experiment observations at time

2L (2 1
b= — | = - — sec
3 c Ucos p

Head and [

Following and
bow wavey

gquartering waves

1.0

T AR AR A s i st ps m  Beach
The waves in this part of the tank are spoiled by

e beach and should not be used

Start of run End of run
05— i —
0 End of run Start of run Wavemaker
-3 ) -1 0 1 2 3
(Ucosp)/c
Fig 10.18 - Useful areas in a seakeeping basin
The run time is given by
X 2L
T, = T = T sec
Ucospu 3U cos

A similar analysis for the cases

0 < U cos p < u, (Following and quartering waves)
0 > U cos ) < - ¢ (Head and bow waves)

0> U cos u > - ¢ (Head and bow waves)

(10.33)

(10.36)

(10.37)

yields optimum tracks shown by the line OF in Figure 10.17(a) and the lines HC and DG in
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Figure 10.17(b). Table 10.3 lists the run parameters and Figure 10.18 shows them in graphical
form for all four cases. Even in the most favourable cases it can be seen that only two thirds of
the tank length is available for testing.

TABLE 10.3
FORMULAE FOR EXPERIMENT PARAMETERS
TO AVOID WAVE REFLECTIONS
Following and quartering waves Head and bow waves
Ucosp >0 Ucospu<0
U cos p>u U cos p<u, U cos p>-c U cos u<-c
Model
Track (see ED OF HC DG
Figure
10.17)
Start
position 2L
(metres 0 0 2L, U cos n —3T—
from wave- 2Ucos n - ¢
maker)
End position 2UL.. cos p
{metres 2L, —_— 0 0
from wave 3 Ucosp +c
maker)
Start time
(seconds 4t, U cos p 4t
storvve | 2r (21 0 R a
maker) 3 c U cos p cos |t —¢
Run time
gecondS) o s ———ZLT - 2L,
30 cos p Ucosp +c c - 2U cos p ———-—-—3UCDSP

10.10 TESTING IN IRREGULAR WAVES

10.10.1 Wave spectrum

For experiments in irregular waves it is first necessary to scale the required wave energy spectral

ordinates and frequencies using the scaling laws listed in Table 10.2;

Ser @y ) =

Sgs (wg)
RyR
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w,, = ms\/l_i (radisec)

We require to drive the wave maker with an irregular electrical signal which will produce a train
of irregular waves having this model wave spectrum. Treating the wave maker and its servo as
a “black box” (see Figure 10.5) we may use the spectral calculation procedures described in
Chapter 8 and write the wave energy spectrum as an equation analogous to Equation (8.4):

2
Sew (4 ) = Sy (0,) [%] m*(rad/sec) (10.38)
0

g L
where —2 is the wave maker transfer function in metres per volt. The drive signal spectrum is
v
0

then given by
2
Sy @y ) = Spy (@) (?] volts Y(radisec) (10.39)
0

A suitable time history having the spectrum given by Equation (10.39) must then be constructed
using the irregular wave synthesis techniques described in Chapter 2 (Equations (2.4) - (2.10)).
Driving the wave maker with this signal would then be expected to produce a wave time history
with the desired wave energy spectrum. In practice this simple technique may not give results
of adequate accuracy. This is believed to be because the wave maker response suffers from
poorly understood interactions between the many frequencies present in the irregular waves being
generated. These interactions are absent when the wave maker is used to generate a single
frequency regular wave. So the regular wave transfer function can only be regarded as a first
approximation to that required to quantify the response in irregular waves. Moreover, the
required transfer function apparently depends on the particular time history being generated and

not just on the spectrum characteristics. So a different transfer function may be required for
every new time history.

These difficulties can be overcome by empirical adjustments to the wave maker drive signal
spectrum. Where the measured wave spectral ordinates are too low the drive signal spectral
ordinates should be increased and vice versa. It is usually possible to achieve a good match to
the desired wave spectrum with two or three adjustments of this kind.

10.10.2 Introducing the frequencies

Each component of the system of irregular waves will propagate down the tank at its own group
velocity, preceded by an advance party of reduced amplitude waves of that frequency moving at
the appropriate wave celerity. So the lowest frequency component, which has the highest group
velocity and wave celerity, will overtake the rest of the waves and arrive at the end of the tank
before the other frequency components. Clearly the 'complete’ wave spectrum will not be
experienced at a given location in the tank until the highest frequency component has arrived at
that point. By this time the lowest frequency waves may well have been reflected from the beach
and already be spoiling the waves propagating down the tank in the proper direction.
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This can be avoided by introducing the frequency components to the wave maker drive signal
(and hence to the generated waves) in descending order. The highest frequency is introduced first
and subsequent components are included at times specified to ensure that all frequency
components arrive simultaneously at some specified point in the tank.

Suppose that the required wave spectrum contains N frequency components

Wy — Wyy radlsec
The wave component with the highest frequency w,,, will propagate down the tank with the
group velocity

8

2w Iy

W, = misec

and arrive at a point x. metres from the wave maker at time
t = — Jec (10.40)

The nth wave component will take x,. / i, seconds to arrive at this point and it is therefore
necessary to delay its introduction into the wave time history until time

=

tl

‘-QH

——
g |~
=

L
QE =
—

(10.41)

Sec

The point Xy , at which the waves are required to coalesce, should be chosen to maximise the
length of the tank available for the experiment. Reference to Figure 10.18 shows that for a given
speed and heading the most critical conditions occur when the wave celerity is highest. In other
words the available test length is small when the wave frequency is low.

So the lowest frequency in the wave spectrum will dictate the location of the coalescence point
and this will also determine the permissible run time. This is illustrated in the following worked
example. -

Worked example

Consider a model to be tested in head waves (u=180 ") in a ship tank with a usable length
L, = 100 metres. The model's dimension ratio is R = 36 and the model test speed is to
represent a ship speed of 20 knois. The wave spectrum (at full scale) includes frequencies in
the range 0.3-1.6 radians/second and this is to be represented by discrete frequency
components at intervals of 0.1 radians/second at model scale.
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It is required to find the optimum run time and start position for the test and the frequency
component time lags for the wave maker drive signal.

The model component velocity is

-1.72 mi/sec

a
ES
0
Q
L
=
|
0
o
[
=)
S
&
I

The lowest frequency component is

MJ_(J‘)1\/I_a

1.8 radisec

w

and this will have the greatest celerity:

c,, = 8- =545 misec
M wy,
TABLE 10.4
WAVE MAKER DRIVE SIGNAL LAGS FOR
WORKED EXAMPLE
Frequency w,, Frequency w,, Lag ¢,
Frequency No (radians/secoﬁvd) (radians/ secoﬁl) (seconds)

8 (ship scale) {model scale) (model scale)

1 0.3 1.8 10.3

2 0.4 24 05

3 0.5 3.0 8.7

4 0.6 3.6 7.9

5 0.7 4.2 7.1

6 0.8 4.8 6.3

7 0.9 54 55

8 1.0 6.0 4.7

9 1.1 6.6 3.9

10 1.2 7.2 32

11 1.3 7.8 24

12 14 3.4 1.6

13 1.5 5.0 0.8
N=14 1.6 9.6 0.0
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Now 0 > U,, cos u > - c,,,. Referring to Table 10.3 the start position is given by

2L U,, cos
T M B _387 m

Xp =
2U,, cos p - ¢,

(ie little more than one third of the tank is usable).

The run time is
2L,
Tyu = =225 sec
Coy — 2U,, cos

corresponding to

Tye = 22.5¢ 36 = 135 sec  at ship scale

The wave maker drive signal lags are derived using Equation (10.41) and are given in Table 10.4.

Tank wall

— Radiated waves

— — Reflected waves

Tank wall
(a) U < U_,, : Tank wall interference occurs

it *

Tank wall

Tank wall

(b) U > U,, : Tank wall interference does not occur

Fig 10.19 - Tank wall interference: radiated and reflected wave patterns.
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10.11 TANK WALL INTERFERENCE

An oscillating model acts like a wave maker and radiates waves on either side. Indeed this is the
mechanism responsible for dissipating energy and providing motion damping. The model will
of course oscillate at the encounter frequency and the generated waves will radiate away from
the model at the celerity appropriate to this frequency. The waves will eventually reach the tank
walls and be reflected back towards the model, as shown in Figure 10.19. If the model speed is
very low these reflected waves will return to the centre of the tank before the model has moved
away, as shown in Figure 10.19(a). In this case the model's motions will be infinenced by these
reflected waves and misleading results will be obtained. If the model speed is high enough the
reflections will reach the centre of the tank after the model has passed by and no interference
occurs. The critical velocity at which tank wall interference occurs may be calculated as follows.
Suppose that the model is running in head or following waves down the centre of a long narrow
tank. The encounter frequency is then given by

2
W, = @ - W Ucosp radlsec (10.42)

g

where €05 M is - 1 or + 1 depending on the model's heading. The celerity of the radiated waves
is

. misec (10.43)

If we assume that the model beam is small compared with the tank width the time taken for the
radiated wave to travel from the model to the tank wall and back again is approximately

T e

g

it =

BT
- sec (10.44)

where B, is the width of the tank. Tank wall interference will occur if the model moves less
than its own length in this time. In other words tank wall interference will occur if the model
speed is less than a critical speed given by

L
t

U . =

crit

mlsec (1045)

Combining Equations (10.42) - (10.45) we find that the critical speed is

U =— 8 112 |1-4cosy 2| misec (10.46)
2 wcos p B,

In non dimensional form in head waves this becomes
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R SN A PR SR 7 (10.472)
2w \ L B,
and in following waves
1 g LY
F Lo =N 1+ 1 - = 10.47b
N crit 20 L BT ( )
Non dimensional wave length )./ L
bs 5 2105 02 o1 ¢
5L L L l l R
No interference "
0.4 - Jor L/By <07
No tank wall
03

interference —

v interference jévr
1< LBy <0.25

LBy =10

0.1

interference

0 2 4 6 8 100 2 4 6 8 10
Non dimensional wave frequency w v{L/g)

(a) Head waves (b) Foliowing waves

Fig. 10.20 - Tank wall interference diagrams showing permissible test speeds.

Figure 10.20(a) illustrates the relationship given by Equation (10.47a) for head waves. In this
case the Froude number must be greater than ¥, . to avoid tank wall interference: the critical
Froude number increases with the length of the model and is very large for low frequencies (long

WAaves).

Figure 10.20(b) shows the critical Fronde number for model tests in following waves obtained
from Equation (10.47b). In this case the Froude number must lie within a finite range to avoid
interference and the range decreases as the model length increases. When the model length is
one quarter of the width of the tank there is only one Froude number for each wave frequency
that will give results which do not suffer from interference. Models of greater length will always
experience tank wall interference whatever the Froude number or wave frequency. It follows that
the maximum permissible model length for tests in following waves is one quarter of the width
of the tank.
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11

PROBABILITY FORMULAE

“There are three kinds of lies - lies, damned lies and statistics.”
Quoted in Mark Twain’s autobiography but also ascribed to others.

11.1 INTRODUCTION

In Chapters 2 and 8 it was shown that the irregular time histories of waves and ship motions
could be characterised in terms of energy spectra and various statistical quantities like mean
and rms values, zero crossing periods and so on. Seakeeping studies, however, often demand
a more intimate knowledge of the characteristics of waves and motions. In particular the
likelihood of a particular event occurring (such as a particular motion level being exceeded)
~ is often of interest. Wave and ship motion time histories can be analysed to provide this sort
of information.'

11.2 PROBABILITY ANALYSIS

Two methods of analysis of irregular time histories are commonly used. In the first the time
history is analysed by reading discrete values of the record at set intervals of time (say every
second) as shown in Figure 2.3.> This method can be used to find the probability or the
proportion of time that the wave depression exceeds a particular level.

Some of the measurements obtained in this way may, by chance, be peaks, troughs or zero
crossings but they are not given any special significance. An alternative method of analysis
is concerned only with these salient points in the record and is commonly used in many
aspects of seakeeping work. Typically the analysis consists of measuring successive wave
amplitudes and periods as defined in Figure 2.2. This technique is used to extract information
on the probability of an individual peak or irough exceeding a given level.

11.3 HISTOGRAMS

Whichever kind of analysis is used the results will consist of an apparently random sequence
of measurements: these can be sorted according to their values into discrete ranges or
histogram "bins".

! The analysis is presented in termns of the wave depression in metres, but applies equally
well for ship motions with a change of units where appropriate. For example the probability
density function f for pitch angle would have units radians * or degrees™.

? Actually the discrete values may also be sampled at random time intervals.
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TABLE 11.1

ANALYSIS OF A WAVE TIME HISTORY AT DISCRETE TIME INTERVALS

Histogram Number of Probability of Probability density
bin observations in occurrence function ordinate
(metres) each bin N, P f metres’
-3.5t0-3.0 0 0.000 0.000
-3.0t0-25 1 0.001 0.001
-25t0-2.0 3 0.002 0.003
20to-1.5 11 0.006 0.012
-1.5t0-1.0 23 0.013 0.026
~1.0to -0.5 36 0.020 0.040
-0.5t0 0.0 71 0.039 0.079
0.0to 0.5 122 . 0.068 0.136
0.5t0 1.0 180 0.100 0.200
10t01.5 210 0.117 0.233
1.51t0 2.0 240 0.133 0.267
201025 250 0.139 0.278
251t03.0 210 0.117 0.233
3.0103.5 172 0.096 0.191
3.5t04.0 120 0.067 0.133
4.0t04.5 75 0.042 0.083
4510 5.0 37 0.021 0.041
5.0to 5.5 20 0.011 0.022
5.51t06.0 9 0.005 0.010
6.0 to 6.5 5 0.003 0.006
65t07.0 4 0.002 0.004
7.0t07.5 1 0.001 0.001
7.5t0 8.0 0 0.000 0.000

Mean surface depression {=20lm
Length of record: 1800 seconds
Time interval: 1 second
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Fig 11.1 - Histogram of measurements of wave depression sampled at equal or random time

intervals (Table 11.1).
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TABLE 11.2

AMPLITUDE ANALYSIS OF WAVE TIME HISTORY

Histogram bin Number of Probability of Probability density
(metres) measurements of occurrence P function
wave amplitude in f (metres ™)
each bin Np
0.0t 0.5 169 0.128 0.355
0.5t01.0 171 0.129 0.258
1.0to 1.5 234 0177 0.353
1.5t02.0 265 0.200 0.400
20t025 204 0.154 0.308
25t03.0 145 0.110 0.219
30t03.5 101 0.076 0.153
3.5t04.0 23 0.017 0.035
40to4.5 12 0.009 0.018
4.5t05.0 0 0.000 0.000

Mean wave amplitude { . = 1.7 metres
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Fig 11.2 - Histogram of amplitudes (Table 11.2)

The total number of measurements (whether they be amplitudes or measurements obtained
at fixed time intervals) is obtained by summing the observations in all the histogram bins:

N=) N, (11.1)

The probability of an individual measurement { lying in the range {, to {, is
[
1
P, <{<¢()= I, E N, (11.2)
&

and the probability of an individual measurement { exceeding a given value {, is

PC>C) = % ENH (11.3)
&




TABLE 11.3

VALUES OF THE ERROR FUNCTION

erflx) = 1 exp (——Z—i) dz
V27 | 2
x erf(x) | x erflx) | x erf(x) x erf(x)
0.00 0.000 | 1.00 0341 | 200 0477 | 3.00 0499
0.05 0.020 | 1.05 0353 | 2.05 0480 | 3.05 0495
0.10 0.040 | 1.10 0364 | 2.10 0482 | 3.10 0499
015 0.060 | 1.15 0375 2.15 0484 | 3.15 0499
020 0.079 | 1.20 0385 | 220 0486 | 3.20 0499
025 0099 | 1.25 0394 | 225 0488 | 325 0499
0.30 0.118 | 1.30 0403 | 230 0489 | 330 0.500
035 0.137 | 135 0412 | 235 0491 | 335 0.500
040 0.155 | 140 0419 | 240 0492 | 340 0500
045 0.174 | 145 0427 | 245 0493 | 345 0.500
050 0.192 | 150 0433 | 250 04%4 | 3.50 0.500
055 0209 | 1.55 0439 | 255 0495 | 355 0.500
0.60 0226 | 1.60 04451 260 0495 | 3.60 0.500
0.65 0242 | 1.65 0451 | 265 0496 |3.65 0.500
070 0258 | 1.70 0455 | 2770 0497 | 3.70 0.500
075 0273 | 1.75 0460 | 2775 0497 | 3.75 0.500
0.80 0.288 | 1.80 0464 | 280 0497 | 3.80 (.500
085 0302 | 185 0468 | 285 0498 | 3.85 0.500
090 0316 | 190 0471 | 290 0498 | 3.90 0.500
095 0329 | 195 0474 | 295 0498 | 395 0.500
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The mean value of all the observations is given by

_2 S N (11.4)

ZEZCz

N N

where (,, corresponds to the centre of each histogram bin of width w,.

Tables 11.1 and 11.2 and Figures 11.1 and 11.2 show mean values of surface depression and
wave amplitude obtained from Equation (11.4).

It is almost invariably found in seakeeping analysis that the histograms have peaks close to
the calculated mean value. In other words observations close to the mean value are very
common. The histogram of Figure 11.1 also shows the characteristic bell shaped symmetry
about the mean value obtained from measurements at regular time intervals: large deviations
from the mean are rare. The typical amplitude histogram (Figure 11.2) is not symmetrical
about the mean: small amplitudes are more common than large ones,

11.4 THE PROBABILITY DENSITY FUNCTION.

The histogram has one major disadvantage: the ordinates (the numbers of observations in
each bin) depend on the record length and the width of the histogram bins and this
complicates comparisons between different results. The probability density function (PDF)
is a form of histogram which eliminates this dependency on record length and bin width. The
PDF is defined such that the area enclosed by the PDF curve over a bin is equivalent to the
probability of the measurement falling within that bin.

If f is the probability density function ordinate and w/, is the width of the bin

f P Ve 11.5
w = = e .
H N (11.5)
and the PDF ordinate is
N
f = _.'P_. = H m -1
wy N wy (11.6)
The probabilities defined in Equations (11.2) and (11.3) can now be written as
£
P((, <0 <()=wy Ef (11.7)
&
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Fig 11.3 - Probability density function for measurements at regular or random time intervals

(Table 11.1)

The total area under the PDF is equivalent to the probability that an individual measurement

will lie within the range of all the measurements:

P(—OO<C<OO)=WHEf=1.D

-0a

The mean surface depression is now given approximately by
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(= WHE Cuf (11.10)

Probability density function ordinates corresponding to the histograms already discussed are
given in Tables 11.1 and 11.2. They are illustrated in Figures 11.3 and 11.4. The results are
exactly the same shape as the histograms: all the ordinates have simply been reduced in the
ratio 1/(Nw).

g 05 i i I i i
’ g Corre:s'panding
t 04 |- f" . Rayleigh PDF ]
= R N
E i \‘/
S . ! \ Area = probability
:;i 03 - ; LY of amplitude —
N F y lying in range
= A 3.0- 3.5 metres
£ 02 +, : —
5 i
N !
2 !
;é 01 b —
R0 —
0 1 2 3 4 5 6
Wave amplitude { a (metres)

Fig 11.4 - Probability density function for amplitudes (Table 11.2).

The probability density function defined in this way is discontinuous with a finite number
of bins and ordinates. If the bin width is reduced the number of ordinates is increased and if
the record is of sufficient length the PDF will gradually tend towards a continuous smoothly
varying curve. The probabilities defined earlier now become

4

PL,<(<()= fde (11.11)
9
P(C>() = ffdc (11.12)
&

and the total area under the continuous PDF curve is unity:
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P(-00 < { < Q) = f fdg =10 (11.13)

o0
11.5 THE GAUSSIAN OR NORMAL PROBABILITY DENSITY FUNCTION.
It is usually found that the probability density function for measurements of the wave

depression { sampled at random or at regular time intervals is closely approximated by the
Gaussian or Normal Distribution formula:

= 1 (C _ Z)Z) =1
f = ——— exp (— m

where m,, and { are the variance and mean value of the time history as defined in Equations
(2.1) and (2.2). This convenient result means that the PDF for a regularly sampled wave
record can be estimated if the mean and variance are known.

As an example, Figure 11.3 shows the Gaussian PDF obtained for the wave time history
analysed in Table 11.1.

In practice it is usual to arrange for the mean value { to be zero by making the arbitrary
datum for the measurements the same as the mean value and Equation (11.14) becomes

f=;exp(-cz) m! 11.15
J 2T m, 2 my, (11.15)

The probability that an individual measurement will lie within the range ¢, to {, is now
given by

(11.16)

e L (T 9 -l

0 0
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where the error function is defined as

X
erf (x) = —2 fexp (iz_) &z (11.17)
Y )

and is tabulated in Table 11.3. The error function has the properties
erf(-x)=-ef(x) (11.18)

and

erf (-00)=-erf (CO) = - 05 (11.19)

so that the probability of an individual measnrement ¢ exceeding a given positive level ¢,
is

P(C>C1)=erf(w)—erf(i) =0-5—erf(-§-l-) (11.20)

Oq

Note that Equation (11.20) refers to positive values and relates only to one side of the

Area=erf({,/q,)

Area = probability
of ¢ lying between

Area = probability
¢, and C,

of ¢ less than ()

Area = probability
of ¢ exceeding {,

Probability density function f (metres ™ )

Fig 11.5 - Properties of the Gaussian probability density function
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Gaussian probability density function. The probability of an individual measurement lying
outside the range + {, is given by

P(Cl>¢)=1 -230”(——) (11.21)

The probability that an individual measurement will lie within the total range of all
measurements is

P (-00 < {<00) = erf (00) - erf (-00) = 1.0 (11.22)

These properties are illustrated in Figure 11.5. Table 11.4 lists some of the salient properties
of the Gaussian PDF based on Equations (11.20) and (11.21). From these results it can be
seen that about 95% of all measurements obtained from a regularly sampled wave record will
lie within twice the rms value.

TABLE 114
GAUSSIAN PROBABILITY FORMULA: PROBABILITIES OF AN
INDIVIDUAL MEASUREMENT OF WAVE DEPRESSION
¢ EXCEEDING A GIVEN VALUE {,
¢ Probability of Probability of
— exceeding exceeding =(,
]

0.0 0.500 1.00

0.5 0.308 0.616

1.0 0.159 0.318

1.5 0.067 0.134

2.0 0.023 0.046

2.5 0.006 0.012

3.0 0.001 0.002

The mean value of all the upward or downward cbservations in the record can be obtained
from
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[crae o
iz = 2 = ngde = 0.798\/1'7G " (11.23)

o0
0

fde

0

11.6 THE RAYLEIGH PROBABILITY DENSITY FUNCTION

It is usually found and invariably assumed that the probability density function for wave
amplitudes is closely approximated by the Rayleigh distribution formula:

C .
f=n—:exp(2i) m™ (11.24)
0 0

where m,, is the variance of the time history defined in Equation (2.2). This convenient result
-allows the amplitude PDF to be estimated if the variance of the wave depression is known.
The Rayleigh PDF for the wave time history analysed in Table 11.2 is shown in Figure 11.4,

The probabiﬁty that an individual measurement of amplitude ¢ will lie within the range {_,
to ¢, is given by

Cr 2
1 a
P(Ca1<ca<ca2)=—fcﬂexp(‘ )dCa
my, 2 my,
Ca!
) ) (11.25)
() ()
2 my, K 2 m,
and the probability that the amplitude will exceed a given level ¢ , is
[ &)
2
1 Ca
P(Ca > Ca]) = ; C‘, exp (_2 " ] dca
¢ ¢, 0 (11.26)

it

o () - [42])

0
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and this function is plotted in Figure 11.6. Again, the probability that an individual amplitude
will lie within the total range of all the measurements is unity:

H

)«

2
P < <00 = L g e 2
0 0

1.0

(11.27)
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Fig 11.6 Probability of exceeding a given amplitude: (Rayleigh formula: Equation
(11.26))

Equation (11.26) can be rewritten to give the amplitude which has a given probability of
being exceeded:

Co =y 2mylog, [P, >C ] m (11.28a)

or
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éﬁ = [ 2 log, [P, > L]

o

(11.28b)

= [ ~4.605 log,, [P, > ()]

Table 11.5 gives some sample results from Equations (11.26) and (11.28). From these results
it can be seen that the probability of an individual amplitude exceeding about three times the
rms value is very small: only about one peak (or trough) in every hundred would be expected
to exceed this level.

If the average zero crossing period is _T; seconds (see Equation { 2.28)) it follows that the
level {, is exceeded M times per minute where:

2
60 Cat .-
M= = exp ( - ) min ! (11.29)
T 2 m,
Z
TABLE 11.5
RAYLEIGH PROBABILITY FORMULA:
PROBABILITY OF AN INDIVIDUAL AMPLITUDE (,
EXCEEDING A GIVEN AMPLITUDE (

Z Probability of Probability of Cor
el exceedance exceedance -
g P P %o
0.0 1.000 1.000 0.00
0.5 0.882 0.500 1.18
1.0 0.606 0.333 1.48
1.5 0.325 0.100 2.15
2.0 0.135 0.010 3.03
25 0.044 0.001 3.72
3.0 0.011 0.0001 4.29
35 0.002
4.0 0.0003
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11.7 SIGNIFICANT WAVE HEIGHT AND RELATED STATISTICS.

It was shown in Chapter 2 that the significant wave height, defined as the mean of the highest
third of the heights recorded in a wave time history, was closely related to the average wave
height estimated visually by an experienced observer. In the same way it might be expected
that the experienced sailor's estimates of "average" ship motions might be similar to their
significant amplitudes. Interest is therefore often centred on these quantities.

In more general terms an expression is required for the mean value of the highest 1/n th of
all observations of amplitudes (where n = 3 for significant values). If the probability density
function is known the required amplitude Zl 1, i8 given by the moment of area of the shaded
portion shown in Figure 11.7. The shaded area is, of course, equal to 1/n.

If the PDF is given by the Rayleigh formula (Equation (11.24)) the amplitude Z’l m (Which is
exceeded with a probability 1/n or once in namplitudes) is given by Equation (11.28a):

1
Clin = \j -2 m, log, (;) m (11.30)
e
;§ < C;m -
S
: //\ Area =
£ probability of
2 / amplitude
:_::‘ / exceeding { ..
g
3
=
=
s
) ¢
¢ Amplitude £ _ (metres)
bin

Fig 11.7 - Calculation of mean of the highest 1/n amplitudes.

If the PDF is given by the Rayleigh formula (Equation (11.24)), Equation (11.31)
becomes
(s )

_Cu:::”f_céexp("

m 9

50

224




Clin

Oy

=n \/—2[—"[0’1” + \/E( % - erf [ 2 log, n )] (11.32)

Selected results are given in Table 11.6. Of particular interest are the results for n = 1 and
n=3:

Putting n = 1 gives the mean value of all amplitudes:

(,=1250, m (11.33)

Putting n = 3 gives the significant single amplitude:

lys =200 05 m (11.34)
and the significant height is
H,=200¢,=4000, m (11.35)

These results are widely assumed to apply to all wave records and ship motions. It should,
however, be remembered that they are strictly only true if the Rayleigh formula (Equation
11.24) holds.

TABLE 11.6
MEAN OF THE HIGHEST 1/n AMPLITUDES
(RAYLEIGH FORMULA)
I Zlfﬂ n ) len
Oq Gy

1 1.25 10 2.54
2 1.77 100 3.34
3 2.00* 1000 3.72

10000 4.29

* Significant value
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11.8 JOINT PROBABILITIES

In some seakeeping studies interest is centred on the probability of two events occurring
simultaneously. If the two events are independent the probability of them both occurring is
simply the product of the probabilities of each individual event occurring in isolation.

If the probabilities are given by the Rayleigh formula (Equation (11.26)) the probability of
motion x, exceeding some level x;, at the same time as motion x; exceeds some level X

is

Xn xj% )
P(x,>x, and xj>xﬂ)=e;xp - exp | - i

2 my 2 My ; J
9 5 (11.36)
X A

il

exp(—
2m0!. Zmoj

where m,,; and my, are the variances of the respective motions.
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12

ROLL STABILISATION

12.1 MOTION REDUCTION.,

If motions are an undesirable feature of the behaviour of a ship in rough weather it is natural to
consider ways of reducing them. Methods of motion reduction are often known by the generic
name of motion "stabilisation" although it should be understood that this is usually an incorrect
use of the word. The oscillatory motions of all practical conventional ship designs are already
"stable" in that they can generally be expected to return to an equilibrium datum level after some
small disturbance: this is ensured by the stiffness terms in the equations of motion. The term
“stabilisation" implies an increase in the stiffness coefficients like c,, but almost every practical
motion stabilisation device achieves most of its motion reduction by increasing the motion
damping (coefficients like b,, in Equation (3.22d)). They should therefore more correctly be
called motion dampers. However, the term stabilisation is so widely used that the adoption of
more pedantic terminology for this book would be confusing and will be avoided.

In principle, stabilisation is possible for any motion. It is simply necessary to provide some
means (active or passive) of artificially increasing the damping terms in the appropriate equation
of motion. We have already seen that certain ship motion responses can be approximately
represented by the simple second order spring mass system. The possibility of motion reduction
may be nicely illustrated by considering the response shown for such a system in Figure A1.3.
If the damping is very small the system's amplitude response is very high at frequencies close to
the natural frequency. With random excitation (as in the case of a ship at sea) most of the
resulting motions will be experienced at frequencies close to this frequency.

Increasing the dampimg reduces these motions and Equation (A1.11) shows that doubling the
decay coefficient 11 will halve the amplitude at the natural frequency. However this is only
effective if the inherent damping is small. For very high initial values of the decay coefficient the
maximum motion amplitudes occur at zero frequency rather than at the natural frequency and
increasing the damping then has little effect. So motion stabilisation is only likely to be effective
if the inherent damping of the unstabilised system is small. Practical considerations also demand
that the damping force or moment required of the stabilisation system must be relatively small
so that an effective degree of stabilisation can be achieved without the need for massive
engineering. '

- Roll is the only motion which meets these two requirements of low inherent damping and
relatively small stabilisation moment demands. Roll stabilisation has therefore received
considerable attention and many successful systems have been installed in ships in service.

Pitch and heave stabilisation have received some attention and some success has been claimed

for small craft. However the inherent damping is usually already so high and the required forces
and moments so large that practical systems for ships remain an elusive goal.

227




12.2 BILGE KEELS

Bilge keels are the simplest form of roll stabilisation device. These are long narrow keels
mounted at the turn of the bilge as shown in Figure 12.1 Gaps may be left in the bilge keels to
accommodate active fin roll stabilisers if required.

Bilge keels are very effective and work well especially at low speeds. They have the significant
advantage that they have no moving parts and require no maintenance beyond that normally
given to the hull surface. Their only disadvantage is that they increase the resistance of the ship
but the effects can be minimised by aligning the keels with the flow streamlines around the
bilges. This is usually done using some kind of flow visualisation technique on a model during
the design stage. Correct alignment can only be achieved at one speed (the cruising speed is
usually chosen) but the resistance penalty at other speeds is usually small.

A
Y

1 -
| o
TpgXy \
et
/ \ -
&« Tox .

F DEK

bBK

Fig 12.1 - Bilge keel notation

Bilge keels work by generating drag forces which oppose the rolling motion of the ship. The
mechanism is similar to that shown for appendages at zero speed in Figure 6.5. The linearised
roli damping coefficient is given by Equation (6.10). It remains to determine suitable values of
the drag coefficient C,, for bilge keels. Cox and Lloyd (1977) cited experimental data published
by Martin (1958) and Ridjanovic (1962).This is presented (in slightly different form) in Figure
12.2. The normal force coefficient is given as a function of the equivalent aspect ratio

2b
gy, = oK (12.1)
Cox

and the non dimensional bilge keel radius parameter
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Vi X
p! = LBK 40
A

BK

(12.2)

where the radius 7, is defined as the distance from the centre of gravity to the normal through
the mid point of the bilge keel as shown in Figure 12.1. rp, is usually evaluated at the mid length

of the bilge keel.

ot
N

= o
oo ] (9]

Drag coefficient C,
L]

Fig 12.2 - Bilge keel drag coefficients (After Martin (1958) and Ridjanovic (1972))

The results may be expressed in the form

CD=O.849(%[1—exp(—Kr’)]+J
N

where

1466 - J
K

J = 2.37 - 5.33 g, + 1035 GE?K

1

Jage (1466 - J ) ( 0.0386 - 0.0735 a,, )
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Figure 12.3 shows the benefits of increasing the bilge keel aspect ratio. A short wide bilge keel
is more effective than a long narrow bilge keel for the same bilge keel area.

10
i | | |
E o bilge keels
8 Bilge keels —
60 x05m
'g; 6 —
S .
S Bilge keels
=~ 4= 30xI10m
2
s —
21 1 Hp=55mT,=12.45ec
0| I l 1 | 1
Y 30 60 S0 120 150 180
Heading (degrees)

Fig 12.3 - Effect of bilge keel aspect ratio on the roll motions of the frigate at 20 knots.

12.3  ACTIVE ROLL STABILISER FINS.

Active roll stabiliser fins are usually mounted on rotatable stocks at the turn of the bilge near the
middle of the ship as shown in Figure 12.4. The angle of incidence of the fins is continually
adjusted by a control system which is sensitive to the rolling motion of the ship. The fins develop
lift forces which exert roll moments about the centre of gravity of the ship. These roll moments
are arranged to oppose the moment applied by the waves and the roll motion is reduced.

At speeds above 10 - 15 knots active fins are usually the most effective method of stabilising a
ship. Reductions in rms roll motion of at least 50% are often possible in moderate waves with
a well designed system. However the fins become progressively less effective as the speed is
reduced and they are not usually specified for ships which habitually operate at low speed. It
should also be understood that fins have a limited capacity and their ability to reduce roll motion
decreases in very severe sea states. They are relatively sophisticated and expensive pieces of
equipment and require considerable maintenance. Nevertheless, their ability to work well over
a wide range of conditions has earned them almost universal acceptance and they are now fitted
to many ships.
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Fig 12.4 - Fin notation and constraints on outreach

Retractable fins are often specified for merchant ships. The fins can be withdrawn into the hull
when the ship is operating in calm weather to eliminate their small resistance penalty. This
feature is also used to eliminate the risk of grounding when the ship is operating in shallow
water or coming alongside..

In warships it is usual to fit non retractable fins as these have a greater immunity to damage from
shock and explosion. It is then necessary to confine the fins to the enclosing rectangle defined
by the ship's midship section (see Figure 12.4). This places a practical limit on the area and
aspect ratio and these fins are usually rather less effective than their retractable counterparts.

124  HYDRODYNAMIC CHARACTERISTICS OF STABILISER FINS

Roll stabiliser fins usually have a trapezoidal or rectangular planform as shown in Figure 12.4.
The geometry of the surface is conveniently defined by the root and tip chords ¢, and ¢, and the
outreach . The mean chord is

- m (12.7)

and the planform area is
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b c, +cC
g = r{C * ) m?2 (12.8)

4 b
a, = —L = L (12.9)

c C+CT

R

When the fin is at an angle of incidence & radians to the incident flow it will generate a lift force F',
kN and a drag force Fj; kN. These forces are respectively normal and parallel to the direction of
the incident flow, as shown in Figure 12.5. The lift vector may be assumed to act through the
intersection of the mid span and the quarter chord position (ie &, / 2 metres from therootand ¢ / 4

metres abaft the leading edge).
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. | High aspect
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Low aspect ratio &5
Angle of incidence o

Fig 12.5 - Stabiliser fin lift characteristics: effect of fin aspect ratio

At a given angle of incidence and planform shape the lift and drag are proportional to the square
of the forward speed and the planform area. So the lift and drag may be expressed in non

dimensional terms as
F

c =L
R (12.10)
P
and
F
€ =7 - (12.11)
— p U*A, :
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Most stabiliser fins have a streamlined symmetrical section like that shown in Figure 12.5. For
these sections there is no lift at zero incidence and the drag is a minimum. A fairly thick section
(typically a thickness /chord ratio of 15%) is usually chosen to allow a substantial stock diameter
to cope with the loads. The stock is usually located at the quarter chord to minimise the torque
required to maintain the fin incidence.

For small angles of incidence the lift coefficient increases more or less linearly with incidence
and we may write the lift coefficient as

c " 12.12
= — .
L do. ( )
ac, . . e L
where T is the lift curve slope at the origin (units rad") and « is in radians.
o

The slope of the curve diminishes as the angle of incidence is increased and the maximum lift
occurs at the stall angle o, . The lift curve slope increases with aspect ratio, but surfaces with
a high aspect ratio stall earlier and more abruptly than those of low aspect ratio. The lift
characteristics of symmetrical sections are only weakly dependent on the section shape.

Whicker and Fehlner (1958) tested a variety of lifting surfaces of low aspect ratio and derived
an empirical formula for the lift curve slope of rectangular planforms as a function of aspect
ratio:!

dc, 1.8 7 a, -1
= ra

(12.13)
do 1.8 + 1/a;,-2 + 4

Figure 12.6 shows this formula together with illustrations of the surface planforms associated
with various aspect ratios. Clearly the lift curve slope increases dramatically with increasing
aspect ratio: in other words long slender lifting surfaces (like the wings of a glider) are much
more effective than short stubby surfaces.

Whicker and Fehlner also reported the stall angles found for their lifting surfaces. These are
given approximately by

., = 1.05 - 0445 a, + 0.075 af rad for o < 3.0

(12.14)

o = 0.39 rad for o > 3.0

stall

If the angle of incidence approaches 90° the lift force (normal to the flow direction) becomes
zero. The drag force is then very large and acts normal to the plane of the fin. For this case
Hoerner (1965) gives ' '

! The formula is also adequate for trapezoidal planforms.
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Cc, = 117

Lift curve slope dC, /de

(radians ")
I

2 4 5] 3 Lt
Aspect ratio ag

(12.15)

Figl2.6 - Lift curve slope and aspect ratio (After Whicker and Fehlner (1958))
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Fig 12.7 - Effect of aspect ratio for a fixed (limited) outreach

12.5

CONSTRAINTS ON STABILISER FIN OUTREACH.

To minimise the risk of grounding or damaging the stabiliser fins when berthing the ship it is
usual to insist that the tips of non retractable fins are inside the enclosing rectangle defined by
the maximum beam and dranght of the ship. This limits the fin outreach as shown in Figure 12.4.
It follows that the only way to increase the lift available from the fin is to increase the area by
increasing the chord. Unfortunately this reduces the aspect ratio and the lift curve slope.
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Consider a rectangular fin of unit aspect ratio and outreach limited by this constraint. Let the lift
developed at some angle of incidence be F,, kN. Let the lift developed by another fin of the
same limited outreach but a different chord be F, kN. Rearranging Equations (12,10), (12.12)
and (12.13) it can be shown that the ratio of the lifts developed by the two fins is

Fo 4.04

12.16)
Fuo 18+ /a+ 42 (

Equation (12.16) is plotted in Figure 12.7. The gains associated with increasing the chord if the

outreach is limited are minimal if the aspect ratio is reduced below about 1.0. Thus practical non
retractable fins are limited to an aspect ratio of about 1.0. More lift can be achieved only by
installing more pairs of fins. Retractable fins do not suffer from this constraint and more efficient
high aspect ratios can be used.

F,cos B
p F,
——
F,sinp
F,cos F,
Section looking forward Plan view looking down

Fig 12.8 - Sway force and yaw moment caused by stabiliser fins.

12.6 EQUATIONS OF MOTION FOR A SHIP WITH STABILISER FINS

Figure 12.8 shows the forces and moments applied to the ship by a pair of fins at an angle of
incidence to the flow. Each fin develops a lift force

—ﬁl U?A_ o kN 12.17
2.9 7 (12.17)

1
FL=CL§pU2AF— o

exerting a roll moment

2F r. kNm port side down about the centre of gravity

where 7 is measured from the axis through the centre of gravity to the lift vector (taken to be
the mid point of the fin).
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The vertical components of the two lift forces cancel so that there is no resultant vertical force
on the ship. However, the horizontal components add and yield a sway force

2 F, sinpp kN to starboard

If the fins are mounted x,,. metres forward of the centre of gravity this horizontal force will
exert a yaw moment

2F xgpsin3 kN m to starboard
The effects of the stabiliser fins on the motions of the ship in waves may be computed by

including these additional terms in the equations of motion (3.22). Ounly the lateral plane
equations are affected and these become:

(m o+ @y )& + by X, +ay X, +by X +
sway:
¥ Gy Ko ¥ by K * e x + Y, EF, sin B (12.18a)
= Fpppsin (W, t +v,), kN
Qo By + by Xy + (g + 8y ) X, + by %y +Cyy X,
roli:
+ e X + by X+ €y Z EF, r. (12.18b)
=Fppsin(w, t+v,) kKNm
agy %y + by 4y + ag, &, + b, %,
yaw: .
+ (I + ag ) X + b X + cge +Z E F, xp, sin B (12.18c)
= Fososin (0, t +Y.,) kNm

In these equations the summations refer to the number of fins (not pairs of fins) fitted to the ship
and E is an effectiveness factor defined as

_ Effective lift of fin
Nominal lift of fin

(12.19)

E is generally less than 1.0 because of various hydrodynamic effects which are discussed in
Section 12.7.
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127  STABILISER FIN LOSSES

12.7.1 Location and alignment

For the maximum possible roll moment the fins should be mounted at the turn of the bilge to
maximise the roll lever arm r. (see Figure 12.4). It is also advantageous to mount the fin stock
normal to the hull surface. This simplifies the mechanical arrangements and minimises the gap
between the curved hull surface and the fin root when the fin is at an angle of incidence. Such
gaps are a potential source of leakage between the high and low pressure sides of the fin and will
result in a considerable loss of effectiveness. Fixed (non retractable) fins should also be aligned
to maximise the fin outreach within the enclosing rectangle of the ship.

Fig 12.9 - Lloyd’s fin experiments (1975,1977).

12.7.2 Hydrodynamic losses

Lloyd (1975,1977) investigated the effectiveness of roll stabiliser fins by measuring the lift
developed by model stabiliser fins and bilge keels in a variety of configurations on a ground
board. His experiments were conducted in the Circulating Water Channel at the Admiralty
Experiment Works' at Haslar in the United Kingdom. His apparatus is sketched in Figure 12.9.
He identified three major fin performance losses:

a) Hull boundary layer
b) Fin - fin interference
c) Fin - bilge keel interference

12.7.3 Losses due to hull boundary layer

The fins are partially immersed in the slow moving boundary layer on the hull surface. The flow
velocity near the root of the fin and the lift developed in this region are reduced. Lloyd (1975)
measured the boundary layer thickness (defined as the point at which the velocity is 99% of the
free stream velocity) and the lift developed by an isolated fin at various locations on his ground
board. Figure 12.10 shows the effectiveness of the fin as a function of the boundary layer
thickness.

The results may be approximated by the empirical equation

! Now part of the Defence Evaluation and Research Agency
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_ Lift developed with boundary layer

E. =
BL Nominal lift (no boundary layer)
5 (12.20)
= 1.0 - 0.21 —
by

The boundary layer thickness on the hull may be estimated using the equation
8 = 0377 xp Ry™> m (12.21)
where R, is the local Reynolds number defined as

pUx
R, = —*& (12.22)
Hw

and x,,, is the longitudinal distance from the Forward Perpendicular to the fin stock in metres.

Fig 12.10 - Effect of hull boundary layer on fin lift (After Lloyd (1975))
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Fig 12.11 - Trailing vortex generated by a stabiliser fin.

12.7.4 Fin - fin interference

Roll stabiliser fins, like all lifting surfaces, work by developing a pressure difference between
their upper and lower surfaces. The water is tempied to roll around the tip of the fin from the high
pressure to the low pressure surface and a vortex is formed. Figure 12.11 shows the vortex
generated by a fin at a fixed (nose up) angle of incidence . This vortex is shed from close to the
tip of the fin and trails away along the side of the hull imparting a swirling motion to the water
close to the hull. This causes a downwash in the region between the vortex and the hull surface
and an upwash in the region outboard of the vortex. If the fin incidence is negative (nose down)
these flow. directions are, of course, reversed.

Lift
oc\\':: D‘g__t:im\vash Reduced Lift

Increased Lift

Fig 12.12 - Fin-fin interference.

An oscillating fin produces a vortex of continually varying strength and direction which is
convected away along the side of the ship. In fact the vortex is a record or "memory" of the lift
developed by the fin. Figure 12.12 illustrates the flow behind an oscillating fin and it can be seen
that there are alternate regions of downwash and upwash in the wake of the fin, depending on the
lift developed in the immediate past.
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A second stabiliser fin mounted immediately downstream willl experience a downwash over
most of its outreach. This will generally decrease its angle of incidence and reduce the lift
developed. If the fin is moved further aft into a favourable region of upwash the lift will be
increased.
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Fig 12,13 - Fin-fin interference factors.

Figure 12.13 shows the fin - fin interference factor

B = Lift of second fin
¥ Nominal Lift

measured by Lloyd (1977) for a pair of oscillating fins. The results are plotted as a function of
a non dimensional frequency parameter and the longitudinal separation of the fins. At zero
frequency the interference is quite dramatic even for well spaced fins. For example, a fin spaced
20 outreaches behind the first fin will develop only about 50% of the nominal lift. The
interference effects become less important as the frequency and the separation are increased until,
at very high frequencies and separations, the second fin is in a region of upwash and the
interference becomes beneficial.

The fin separation may be optimised to achieve the best performance at the natural roll frequency
(where most of the roll motion occurs) and at the ship's cruising speed. In principle we require
the second fin to be at a distance x., metres abaft the first fin such that the time required for
the vortex to convect from the upstream fin is equal to half a roll period:
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so that

Xep = m (12.23)

Unfortunately this gives fin separations which are often impractical. For example, taking a
cruising speed of 10.3 metres/second (20 knots) and a natural roll frequency of 0.5
radians/second (natural period 12.6 seconds) we find an optimum separation

Xpp = 63 m

which may be difficult to achieve on all but the largest ships.

12.7.5 Fin - Bilge Keel Interference

A bilge keel mounted abaft a stabiliser fin will also experience downwash and will develop a
lift which opposes the fin lift. Lloyd (1975) measured this opposing lift for the case of zero
frequency and his results are presented in the form of an effectiveness factor

E,. =10 - Bilge keel lift
Nominal fin lift
(12.24)
= (.84

in Figure 12.14.

10 | ! !
By

0.3 7

Xrag/ bp

Fig 12.14 - Fin-bilge keel interference factors.

The detrimental effects of an aft mounted bilge keel are mitigated if the bilge keel is followed
by a second stabiliser fin. The biige keel has a straightening effect on the flow and removes some
of the downwash due to the trailing vortex from the upstream fin. This enhances the lift
generated by the second fin as shown in Figure 12.15. This effect can be approximated by setting
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Epy = 1.0 (12.25)
for the case of a bilge keel between two fins.

1.0 | | | I
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Fig 12.15 - Fin-fin interference factors: effect of bilge keel at zero frequency.

12.7.6 Overall hydrodynamic effectiveness
The hydrodynamic losses described above are cumulative and the overall effectiveness of each
stabiliser fin - bilge keel combination is given by multiplying the individual affectiveness:

E = Ey Ej Epy, (12.26)

12.7.7 Sway - yaw effects

Suppose that the fins are set to some fixed angle of incidence to give steady lift forces L kN to
generate a stabilising roll moment to port as shown in Figure 12.16. We have already seen that
this will result in a sway force and a yaw moment to starboard. The ship will respond in exactly
the same way as it responds to motions of the rudders and will begin to turn to starboard. A
centrifugal force to port then acts through the centre of gravity, opposed by inboard
hydrodynamic forces acting to starboard below the waterline. These forces form a couple which
tends to roll the ship to port, enhancing the port roll moment directly generated by the fins. The
total roll moment generated by forward mounted fins is therefore increased by this sway - yaw
effect.

If the fins are mounted abaft the centre of gravity x;, . is negative. The ship then turns in the

opposite direction in response to the fins (to port for the example given above). The roll moment
caused by the turning motion of the ship then opposes the roll moment directly generated by the

242




fins and their effectiveness is reduced. In extreme cases with near vertical fins mounted well aft
the roll moment due to the turning motion may actually exceed the roll moment directly
generated by the fins and the total moment will then be in the "wrong" direction.

Sections looking forward

Caouple enhances Couple opposes
roll mament roll moment
generdted by fins generated by fins
P8 =N
- 9 I .G_.).
— G — (. E-
(a) Fins mounted forward of G: (B) Fins mounted abaft G:
net force to starboord causes net force to starboard causes
ship to turn to sterboard. ship to turn to port.
Key: oumeard centrifugal Inboard hkydrodynamic

ree reaction
fo « . ——

Lift force on fins  a——

Fig 12.16 - Beneficial and detrimental effects of sway and yaw

These effects are reduced when the fins are oscillating at higher frequencies and they are not
usually very significant at the natural roll frequency where most of the rolling motion occurs.
However, we shall see in Section 12.10 that extreme aft fin locations with large angles of
depression may result in motion amplification (as opposed to the required reduction in motion)
at very low frequencies. For this reason these locations should be avoided if possible.!

Beneficial sway and yaw effects can be maximised by mounting the fins well forward with a
large angle of depression. However, this makes it difficult to accommodate a bilge keel forward
of the fins and is rarely attempted. Fin emergence and the risk of damage due to slamming in
head waves could also be a problem.

In practice fins are usually mounted somewhere near the middle of the ship and the sway - yaw
effects may then degrade their performance at low frequencies. The degradation can be
minimised by keeping the depression angle [ as small as possible but this will also tend to
reduce the roll lever arm 7. and the outreach b, if the fins are non retractable.

! The rudders may be regarded as stabiliser fins with extreme aft location and very large
depression angles ( of order 90° ) and systems using the rudders for roll stabilisation as well as
for steering the ship have been developed, These overcome the low frequency amplification
problem by switching the roll stabiliser functions off when the encounter frequency is low.
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12.8  DESIGN RECOMMENDATIONS FOR STABILISER FINS AND BILGE KEELS
The discussion above may be summarised in the following design recommendations:

(a) Fin location

Maximise the roll lever arm by mounting the fins at the turn of the bilge near the middle of the
ship. Do not fit bilge keels abaft the fins. The stock should be normal to the local hull surface.
Avoid large depression angles especially for aft mounted fins.

(b) Fin size and shape

The fin area should be as large as possible. Fixed (non retractable) fins must lie within the
enclosing rectangle defined by the maximum beam and draught. The aspect ratio of fixed fins
should not be less than 1.0. Locate the fin stock at the quarter chord position of the fin to
minimise torque requirements. Use a symmetrical section of sufficient thickness to allow an
adequate stock diameter.

(c) Number of fins
Use a single pair of fins to avoid interference effects. If sufficient stabilisation cannot be obtained
from a single pair of fins (bearing in mind the limitations which may be imposed on the fin
outreach) it will be necessary to adopt a two fin configuration. If practical, the longitudinal
separation should be chosen to take advantage of the favourable interference effects (see
Equation (12.23)).

(d) Bilge keels

Bilge keels should be as large as possible with a high aspect ratio. If only a single pair of fins is
fitted the bilge keel should be mounted forward of them. In multiple fin installations bilge keels
may be mounted between the fins but there should be no bilge keel abaft the after fin.

12.9  ACTIVE FIN CONTROL SYSTEMS

12.9.1 Introduction

Figure 12.17 shows a block diagram representation of a ship stabilised with active fins. Each
component or block in the diagram may be considered as a "black box" having an input and an
output which are related by the block's transfer function. For example, the ship block accepts an
input in the form of a roll moment F,, from the waves and generates a roll motion output x,.
Similarly the stabiliser fin controller generates a demanded fin angle @, in response to the roll
motion of the ship. The fin servo mechanism responds and drives the fins to an achieved fin
angle ¢ and the fins convert this into a stabilising roll moment F, . This is subtracted from the
roll moment generated by the waves, thus reducing the roll motion of the ship.

The transfer functions of the ship, the fin servo and the fin are essentially fixed for a given
design. The fin controller transfer function is, however, adjustable and must be set up in such a
way as to ensure that the fins develop roll moments which generally oppose the moments
provided by the waves.
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Fig 12.17 - Block diagram for a ship with roll stabiliser fins

12.9.2 The fin controller transfer function.
Fin controllers generally have transfer functions of the form

K + K, 5 +K, s*

G U
2
AM b1+b2S+b3S

(12.27)

where o, is the demanded fin angle

Xy, is the measured roll angle

K

c s the overall gain setting

K, is the speed dependent gain setting

K, is the (variable) roll angle sensitivity

K, is the (variable) roll velocity sensitivity
K, is the (variable) roll acceleration sensitivity
b,, b, and b, are fixed controller coefficients

s is the Laplace transform operator (d/dt).
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The coefficients K, , K, , K, , K, , and K; may be adjusted to achieve the desired roil
stabiliser performance within the capacity of the stabiliser fins. Table 12.1 shows values which
might be found on a typical controller. X, , K, , and K, should be adjusted to match the rolling
characteristics of the ship and will remain fixed for a given loading condition, metacentric height
and natural roll frequency. K and K, govern the overall level of activity of the roll stabiliser
system and are adjusted to achieve a given roll stabilisation performance. Note that the
coefficients b, , b, and b, are fixed values inherent in the design of the controller.

The speed dependent gain K, is introduced to compensate for the inherent reduction in stabiliser
performance as the ship speed is reduced and to avoid overloading the fin stocks at very high
speed. K, is varied antomatically with

K,, proportional to L
UZ

Ky = constant

Speed dependent

gain K,

Speed U

Fig 12.18 - Speed dependent gain

as shown in Figure 12.18. At very low speeds this would give very large gains resulting in
excessive stabiliser fin activity and frequent demands for fin angles greater than the maximum
available. The fin servo mechanisms would be continually driving the fins up against the
mechanical stops which are usually set to limit their travel to 25 or 30 degrees, leading to rapid
wear and possible damage to the mechanical components. So the speed dependent gain is usunally
limited to some finite value at speeds less than say, half the cruising speed. When the ship is hove
to the fins are completely ineffective and the speed dependent gain is then set to zero to avoid
needless wear on the systern.

12.9.3 Choosing settings for the sensitivities K,, K,, and K,

Consider the behaviour of the system illustrated in Figure 12.17. Let us suppose that the ship is
in regular waves of small amplitude. Then the sinusoidal disturbance initiated by the waves will
propagate around the system and each component block will generate a sinusoidal output
depending on its individual sinusoidal input. In general each block will introduce a phase shift
{positive or negative, depending on its individual characteristics).
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TABLE 12.1

TYPICAL ACTIVE FIN ROLL STABILISER CONTROLLER

COEFFICIENT VALUES
K, K, K, K,
0.00 0 0 0
0.25 1 5 1
0.50 2 10 2
0.75 3 15 3
1.00 4 20 4
1.25 5 25 5
1.50 6 30 6
1.75 7 35 7
2.00 8 40 8
2.25 9 45 9
2.50 10 50 10
b, = 0.50 )
b, = 0.05 = 225/U? for U > 15 knots

Now the object of the stabiliser control system is to ensure that the roll moment generated by the
fins exactly opposes the roll moment generated by the waves and this is achieved if the total
phase around the loop from A to F is zero. '

It is assumed that the only components which have significant phase responses are the ship, the
controller and the fin servo. So the controller must provide a phase advance which exactly
compensates, at the natural roll frequency, for the phase lags introduced by the other components.
The controller phase is then given by

de=g re.tE

OI‘EC=—ES—E

FS

Fy

=0

rad

(12.28)
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This can only be achieved at one frequency and it is customary to choose the natural roll
frequency since this is usually the dominant frequency in the roll motion.

By making the substitution s = i w, and setting w, = w,, in Equation (12.27) it can be shown
that the controller phase has two components:

€c = € t €, Tad (12.29)

C

where the variable component is given by

K, w,
tan €., = —— (12.30)
and the fixed component is given by
- b, w,
tan €, = —2—-"'5-] (12.31)
b, - by 0,
So the required variable phase €, from the controller is
-1 b, w,,
€y = ~€g = €pg Y AN | ———— rad (12.32)
Equation (12.30) may be written
K tan € K
-2 Gl -l | sec! (12.33)
K, W, , K,

from which it can be seen that the required phase must be achieved by choosing appropriate
ratios between the sensifivities.

12.9.4 Forced rolling trials

Practical application of this technique requires the phases €; and €, to be determined. These
may be found in a forced rolling trial at sea. The ship is run in calm water so that the roll moment
from the waves is negligible. If any waves are present their effects should be minimised by
running in head or following seas. Rudder motions will influence the rolling motions of the ship
so the helmsman should keep the wheel amidships and the autopilot, if the ship has one, should
be switched off.

The stabiliser controller is isolated from the system by breaking the circuit at the point D in
Figure 12.17. The fin servos are instead driven by a sinusoidal demand signal equivalent to, say,
+ 15 degrees fin amplitude at some selected frequency. The ship will then roll at the same
frequency and the roll response is measured at the point C. The actual fin angle is monitored at
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point E. €, is the phase between the signals monitored at C and E.

Natural frequency

Roll / fin amplitude x,, / v

0.4
0.2 I
0 1
200 ll | ]
T N (@) === — _
& ~N (b) == —-—
S P
w (a)
2 10— _
&
N 200 & | I
0 0.5 1.0 1.5

Frequency w, (radians/second)

Fig 12.19 - Forced roll responses for (a) forward fins with small depression angle and
(b) aft fins with large depression angle.

Figure 12.19 shows the form of the resnlts. These depend on the location and depression of the
fins. For fins mounted somewhere near the middle of the ship with a moderate angle of
depression the phase at zero frequency is zero showing that the ship rolls in the expected sense:
a fin incidence giving a steady roll moment to port results in a steady port heei.

If the fins are mounted well aft with a large depression angle the phase at zero frequency
becomes 180° for the reasons already explained in Section 12.7.7. The roll response to the fins
can be quite large but is then in the opposite sense to that expected.

In either case the ship phase €; can be measured at the natural roll frequency, as shown in Figure
12.19.

The fin servo phase €., is measured between the signals monitored at points D and E in Figure
12.17. Typical results are given in Figure 12.20.
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Fig 12.20 - Typical fin servo response

An alternative approach is to simulate a forced rolling trial using the equations of motion (12.18).
The excitations from the waves on the right hand sides are set to zero and the lift force F, is
made to vary sinusoidaliy by putting

o =0, sin w, ¢ rad (12.34)

The equations will then give sinusoidal motion responses {in sway and yaw as well as roll) and
the phase €, may be determined.

12.9.5 Fin servo transfer function
The fin servo transfer function may be expressed in the form

a;

o
Gp @, +a,s +a,s° (12.35)

Putting s = { w, we obtain the amplitude response

G a,

= 12.36
%0 [ (ay -ty @ P+ @ (1239

and the phase response is given by
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—azme

tan (phase) = .
a, - d; ©,

(12.37)

The coefficients a,, a,, and a, are chosen to match these equations to the measured fin servo

responses (Figure 12.20)

12.9.6 Worked Example:

Find appropriate controller coefficients to maich the responses given for forward mounted
Jins in Figures 12.18 and 12.19 using the controller coefficients listed in Table 12.1.

Natural roll frequency: w,, = 0.45 rad/sec

Phases at natural roll frequency:

Roll lags fin motion by 70° ; ie €5 =-70°;

Actual fin angle lags demanded fin angle by 10% ie €,; =-10°

From Equation (12.32) the required phase angle is

0.5 x 045 ) - g3°

€ = 70 + 10 + tan ! (
1.0 - 0.05 x 0.45°

Hence, from Equation (12.33)

K, _ tan (939 (5 . 02]

K, 045 \K,

Kl
- 424 L - 02
K3

(12.38)

This relationship can be achieved more or less exactly by many different combinations of the
available control sensitivities in Table 12.1. For example, the following settings all satisfy

Equation (12.38) and give the required phase advance within 1 degree:

k, |lojlo]Jo [o]|o]o|1t]|1]1]1]1
K, 101525 |35 |40 |50 |40 3025|1510
K, |1 ]2]3 |4 |5|6|w0|9]|8]|7]|6
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All of these settings will give a satisfactory performance since they all ensure that the moment
applied by the stabilisers exactly opposes the wave moment at the natural roll frequency. In
practice it may be found that some of the settings are marginally preferable to others but the
benefits to be gained are usually small. For example, setting K, to zero will ensure that the fins
do not waste energy by attempting to correct a steady list or trying to hold the ship upright in a
turn. The steady roll moment available at zero frequency is so small (see Figure 12.19) that
efforts in this area are probably doomed to failure. The only appreciable effect will be an increase
in the ship's fuel consumption due to the small increase in resistance. Similarly, high values of K,
may lead to excessive stabiliser fin activity at high frequencies and increased wear, noise and
vibration with no noticeable reduction in roll motion.

12.9.7 Choosing the overall gain X ;

Having chosen the sensitivities X, K,, and K, to match the control system to the rolling
characteristics of the ship the next step is to determine the overall gain setting K ;. This governs
the magnitude of the roll reduction achieved by the stabilisers and should be chosen so that the
ship meets some agreed roll specification in moderately severe weather conditions. An
appropriate specification would be written in the form:

The rms roll motion at the worst heading at 20 knots in sea state 7 must not
exceed 4.

Fin motions in these conditions should not exceed = 25° on more than one
oscillation in ten.

Sea state 7 is to be interpreted using the WMO sea state code and the most
probable modal wave period for annual conditions in the North Atlantic.
Cosine squared wave spreading is to be assumed.

The stabilised roll motion is computed using Equations (12.18) with the fin incidence o now
given by Equations (12.27) and (12.35). Typical results of such a calculation, taking account of
the speed dependent gain, are shown in Figure 12.21. As expected the roll motion decreases with
increasing overall gain at the expense of increased fin motion.

Using the gains available in the control system specified in Table 12.1 we find that the roll target
is achieved with -

K, = 125

The requirement to limit the fin activity is introduced to avoid excessive mechanical wear and
possible damage to the fin mechanism which will occur if fin angles greater than the maximum
available are continually demanded. Excessive fin demands will also lead to cavitation which,
in exireme cases, may damage the fins and will certainly be noisy. The latter may be of particular
importance in warships. It should also be noted that the assumptions of linearity inherent in
Equation (12.17) describing the fin lift characteristics will lead to an overestimate of the stabiliser
performance if the fin motion (and hence the lift) is actually limited by mechanical constraints.
In any case the equation will overestimate the lift at large angles of incidence (see Figure 12.5).
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Fig 12.21 - Effect of gain on stabiliser performance

The specification given above requires the probability of the fin motion amplitude exceeding
+ 25? to be no more than 0.1. Equation (11.28) may be used to calculate the corresponding
maximum allowable rms fin motion. Using Table 11.5 we find that

o
— =215
O

and the maximum permissible rms fin motion is

0y = =2 = 11.6°
2.15
The rms fin motion required to meet the roll target in Figure 12.21 is 12.4° which is greater than
11.6°. So the stabiliser capacity will need to be enhanced by increasing the fin area, using a more
effective aspect ratio, improving the fin/bilge keel layout to avoid interference or increasing the
number of fins.

12.10 SYSTEM STABILITY
Roll stabiliser systems have the potential, like all automatic control systems, of becoming

unstable at certain frequencies. Clearly this possibility must be considered at the design stage and
steps must be taken to prevent it occurring.
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Fig 12.22 - Stabilised and unstabilised systems.

Figure 12.22 shows a simplified block diagram of the roll stabiliser system. The ship is
represented by a block with a transfer function G (units rad / (kN m)) and the entire "feedback”
network consisting of the gyro, the fin controller, the fin servo and the fins themselves is
represented by the single block with a transfer function A (units kN m /rad). G and H are, of
course, complex quantities of the form

G = |G| (cos €; + isineggy) (12.39)

where |G| is the amplitude response or gain and €, is the phase response.
Suppose that the system is excited with an input v, (wave induced roll moment in kN m) and
responds with an output v,,,,,. (roll angle in radians). Then the output of the feedback block will

be H v, kN m and the total roll moment input to the ship willbe v, ~ H v, kKN'm. So
the input and output of the complete closed loop system are related by

Vour = G (vpy — H vy ) rad (12.40)
and the transfer function or closed loop gain of the complete system is given by

VYour G 1
= rad (kN m
v G H ( ) (12.41)

G H (no dimensions) is the transfer function the system would have if the feedback loop were
left open and is termed the open loop gain.

The stability of the closed loop system may be examined using the Nyquist diagram illustrated
in Figure 12.23. In this diagram the dimensionless open loop gain is plotted as a vector of length
|G H|and argument €., where

rad

254




w, Increasing

Imaginary
¥

\

( , .
\ -1,0 \V?\:\mf /
N I
J
/

Fig 12.23 - Open loop gain Nyquist diagram

The locus of the end of the vector varies with frequency, moving around the diagram as the
frequency increases. At zero frequency, in conventional systems with fins in the middle part of
the ship, the phase is zero and the the open loop gain vector G H lies along the positive real
axis. As the frequency increases some phase advance is introduced by the ship (see Figure 12.19)
and by the controller 2,

In a well designed system the phase is, as we have already seen, arranged to be zero at the
natural roll frequency w,, and the gain vector once again lies along the positive real axis. The
gain should be a maximum at this point so that maximum stabiliser activity occurs where it is
needed at the natural roll frequency. At higher frequencies the phase becomes negative and, in
a stable system, the gain steadily diminishes until it becomes zero at infinite frequency as the
locus curve approaches the origin.

If the ship were unstabilised the response to the excitation v, kN m would be G v, radians.
So the roll stabilisers will only reduce the rolling motion at some particular frequency if

[Vourl < |G vy  rad
This occurs if the quantity
(1 +GH|l >1

2 0 . ., a
ie. €, is positive
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Fig 12.24 - Nyquist diagrams showing amplification and instability.

Now |1 + G H| is the distance from the point (-1,0) to the appropriate point on the open loop
gain locus (see Figure 12.23). So we can see that the stabilisers will only reduce the rolling
motion at frequencies for which the open loop gain locus lies outside a circle of unit radius
centred at the point (-1,0). The roll motion will be amplified for all frequencies lying within this
unit circle. Figure 12.24(a) shows that this will always occur at high frequencies for conventional
fin locations. For aft mounted fins with large angles of depression the phase reversal at zero
frequency results in the locus of the open loop gain vector beginning somewhere on the negative
real axis as shown in Figure 12.24(b). So these installations will always give motion
amplification at low frequencies unless the gain is made zero by setting

K =0
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Equation (12.41) shows that the system will become unstable (ie the amplitude response will
become infinite} when the open loop gain

GH-=-1 (12.42)

and this occurs if the gain vector locus passes through the point (-1,0) on the negative real axis
as shown in Figure 12.24(c). ie the phase is then - 180" and the roll moment due to the fins then
enhances the roll moment due to the waves at some particular frequency. Any excitation at this
frequency will then cause very large fin motions which will enhance the initial excitation and
increase the fin motions still further. In practice, of course, the reponse will be limited by the
mechanical stops, fin rate limits on the fin servos and fin stall but large undesirable fin
oscillations may still occur.

Clearly we must ensure that open loop gain locus never passes through the point (-1,0) . It is also
desirable to avoid approaching it too closely because this will result in motion amplification even
though the motions will be stable. Two commonly used criteria for defining adequate safety
margins are the gain and phase margins defined in Figure 12.25.

The gain margin is defined as

1
G, =
" open loop gain at €qy = - 1807 (12.43)
o
g w, increasing
— S5
) —.
1/G, S
1
40 Real

Fig 12.25 - Definition of phase and gain margins.

and the minimum acceptable value of G,, is generally taken to be 2 which implies that
the open loop gain G H must not exceed 0.5 when the phase is -180°.
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The phase margin is defined as
€,, = 180° + open loop phase when |1 + G H| = 1 (12.44)

and the minimum acceptable phase margin is 30°. 60° is regarded as very good practice. |

If the system stability is unsatisfactory it can be improved by reducing the overall gain K, or by
choosing different values of the semsitivities K, K,, and K, (but still satisfying Equation
(12.33).

12.11  ACTIVE ROLL STABILISER FIN PERFORMANCE

Figure 12.26 shows the performance of a typical active fin roll stabiliser system with speed
dependent gain installed in the frigate descibed in Section 7.1. At very low speeds the fins are
completely ineffective because the overall gain is set to zero (see Figure 12.18). At speed U, the
fins are switched on and a substantial roll reduction is achieved. As the speed is increased to U,
the fins become progressively more effective and the stabilised roll motion decreases. At speeds
above U, the gain is reduced and the stabilised roll motion becomes nearly independent of
speed.

—
o

Rms roll at worst heading (degrees)
o

Speed (knots)

Fig 12.26 - Effect of speed on fin stabiliser performance for the frigate at the worst
heading. Significant wave height 5.5 metres; modal period 12.4 seconds; cosine squared
spreading.

12.12  PASSIVE TANKS

The fluid in a partially filled tank in a ship will slosh backwards and forwards across the tank as
the ship rolls. The shifting weight of the fluid will exert a roll moment on the ship and, by
suitable design, this can be arranged to damp the roll motion. Figure 12.27 shows the desired
motion of the water in relation to the rolling motion of the ship and it can be seen that we require
the motion of the fluid to lead the roll motion by 90° so that it is in phase with the roll velocity.

258




YN

= ss= e

{a)t=0 (b)yt=n/2w., (cjt=un/tw., (d)t=3n/2w0,,
Maximum roll rate Maximum roll Maximum roll rate Maximum roll
to starboard; to starboard; to port; to port;
maximum stabilising zero stabilising maximum stabilising zero stabilising
moment to port. moment, moment to starboard. moment.

Fig 12.27 - Passive tank motions

Figure 12.28 shows some of the types of passive tanks which are in current use. The simplest is
the flume or free surface tank which consists of a rectangular tank running athwartships.
Sometimes a limited control is exerted over the motion of the fluid by installing a restriction or
baffle in the centre of the tank.

Simple flume tank  Flume tank with Simple U-tube
baffle tank

U-tube tank with U-tube tank with Active U-tube tank
air duct and throttle  thottle valve with pump
valve

Fig 12.28 - Types of passive tank.

U tube tanks have also been fitted in a number of ships. In this case the free surface is confined
to the two arms of the U tube which are connected by a horizontal duct. The tops of the vertical
arms may be open to the atmosphere or they may be connected by a horizontal air duct. In this
case a throttle valve may be included to exert some control over the motions of the fluid. Some
designs incorporate a throttle valve or a pump in the bottom duct.

Passive tanks work well at low speeds but they are not usually as effective as a well designed
active fin system at high speed. For this reason they are often specified for ships like survey
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vessels or weather ships which must spend the majority of their time hove to.

Tanks have the advantage that they have no moving parts (except perhaps for a pump or
controlled throttle valve) 'and require little maintenance. They also avoid the small resistance
penalty associated with fins and bilge keels. They take up a considerable volume of the ship's hull
but it may be possible to use the fresh water supply or some of the fuel cil as the working fluid
so this loss of volume may not be serious. The optimum tank position high in the ship often
makes access along the ship difficult.

A major disadvantage is that the free surface always reduces the metacentric height so that roll
stability will be reduced. As a consequence all passive tanks amplify roll motions at low
encounter frequencies. In certain circumstances this amplification may become a serious
probiem and it may be necessary to immobilise the tank by draining it or filling it completely.
This will invariably take a considerable time and passive tanks are therefore not suitable for ships
which are required to change course frequently (eg warships).

In spite of the apparent simplicity of the flume tank no adequate theory for predicting its
performance has been developed. However Stigter (1966) has developed a theory for U tube
passive tanks and a simplified version of this is given below.

w2 w2

Siarboard |4
‘| reservoir

(J’d ,

Fig 12.29 - Passive tank notation

12.13 THEORY FOR A U TUBE PASSIVE TANK

12.13.1 Equation of motion for the fluid in the tank
Figure 12.29 shows a simple U tube passive tank. The tank is assumed to consist of two
reservoirs and a connecting duct of constant rectangular cross section.

! Strictly speaking such tanks are ‘active.’
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{a) Duct

(b) U tube reservoirs

Fig 12.30 - External forces applied to a unit mass of fluid in the tank

The length of the tank (in the fore/aft direction) is x, metres. We require to find the motions of
the fluid within the tank under the influence of the motions applied to the tank by the ship. These
may be analysed using the axis system shown. The origin O is at the midpoint of the connecting
duct and an axis y runs along the duct and up the reservoirs of the U tube. The fluid velocity
along the positive y direction (up the port reservoir) is v metres/second. Three additional axes
are defined: y; has its origin at O and runs parallel to the duct, positive to port; ¥,, and y,  have
their origins on the duct centreline and run parallel to the port and starboard reservoir walls as
shown.
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n is the width of the tank perpendicular to the y axis. Note that n is a variable which has
different (constant) values 4, on the ductand w_ on the two reservoirs. It is assumed that there
is no flow in the "n" direction and the motions of a unit mass (1 tonne) of fluid in the tank will
be governed by a simplified version of Euler's equation *

dv av_Y 1 oP

misec?

—_— Yoo =

ot ady p, Oy

where Y is the external force per unit mass and p, is the mass density of the fluid in the tank.

Now the duct and the reservoirs are assumed to be of constant cross section so we may write

L 0 everywhere except at the junctions between the duct and the reservoirs. Neglecting

oy
these corner effects Euler’s equation reduoces to

dv _y. 1 0P

ot p, oy

misec?

or, since there are now only two variables,
dv _y_ 1dP

misec?
ar b, dy (12.45)

If the difference in the height of the fluid level in the two reservoirs is z metres the velocity in
each reservoir will be

(z) w i
v = — 2 |==" mfsec
2 2

where T, which is assumed to be small, is the tank "angle" in radians, defined in Figure 12.29,
w=w,+w m (12.46)
and the velocity at any point in the tank is
wyv, wwil

v = = misec (12.47)
n 2n

The external force per unit mass ¥ is made up of contributions due to the accelerations applied
to the tank and the frictional forces arising from the losses in any throttle valve, wall friction etc.
Figures 12.30(a) and 12.30(b) show these contributions. They are:

The component of the acceleration due to gravity along the y direction:
- gcos &, misec?

The acceleration due to the roll acceleration:

% See any text book on fluid mechanics.
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. T .
-r X cos (¢, - E) = - r %, sin ¢, mlsec?

c) The component of the local lateral acceleration in the y direction:

1) in the duct

Il

Y, =% cosx, = § misec? (12.48a)
2) in the reservoirs

Y, =5 sinx

4 = S sinx, =0 misec? (12.48b)

n

sinice both §, and x, are assumed to be small.

d) The frictional or damping forces. Although these would be expected to be proportional to
the square of the local velocity it is convenient to assume that the damping can be linearised and
is proportional to the velocity v. If the tank length x, is much greater than the normal dimension 7
it can be shown that the frictional force per unit mass is approximately

-2Y v
n

where g is a coefficient of resistance to be estimated or determined by experiment.

Equation (12.45) then becomes

wwi qgwwi -
+ +geos G +rX sind, - Y,
2n 2 n?

(12.49)
14

p, dy

misec?

We now integrate this equation with respect to y to obtain an equation giving the motion of the
fluid in the tank (in terms of the angle t) as a function of the pressure difference at the surface
in the two reservoirs. Strictly the integration should proceed from the surface level in the
starboard reservoir (negative y) to the surface level in the port reservoir (positive y). However
the continually varying fiuid levels introduce complications and we therefore obtain an
approximate solution by integrating between the datum levels in each reservoir. We also assume
that the lateral acceleration §, does not vary appreciably along y. We obtain

p,w,wi i . p,gw. wi, 1
2 2

+ prgI3 + P,f4I4 * pr‘g;zIS
(12.50)

- 2
=P - Pp kNim

where
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wi 1) h
Ilzfd_z dyd+fdy”+fdym“1+2hr
o ™ h, w, w, h, w,

-h, 0

-wi2

w 0 B

"f £ dyj+fdy”+ By _w P
2 2 2 2 2 2
tank n hd W, W, hd W,
-wi2 ~h, 0
w/, 0
I =f cos &, dy = x, n:l’yd—fdymF + dym =wx, m
tank
-wi2 . 0
) 0 I
. w w
I4zfrsmcb2dy: rddyd+f5dyrs+ ?dyrp
tank
-wi2 . 0

=w(r,+h ) m

w

Is=—[ dy = - Jdy,=-w m
ditct
-w/i2

where j implies integration along the y axis from the datum level in the starboard reservoir
tank

to the datum level in the port reservoir and ] is confined to the duct. The angles ¢, and ¢,
duct

are defined for the duct and the reservoirs in Figures 12.30(a) and 12.30(b).

The hydrostatic pressures at the datum levels in the two reservoirs are

w
P, =-P,=-p,g 5T kNim?2 (12.51)

&
relative to atmospheric pressure.

Equation (12.50) may now be expressed as an equation giving the motion of the tank fluid as a
function of the moment applied to the tank fluid by multiplying by the moment of the area of the
[EServoirs:
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ww_ X,
2

m?3

Using Equation (7.7) to calculate the lateral acceleration experienced by the tank located Xp;
metres forward of the centre of gravity we obtain the equation of motion for the tank:

) + “14 X4 + € x4

tagk, rta_ tT+b 1+c, t=0 kNm (12.52)
where the coefficients are
a, = - Q, kN mf(radisec) (12.53a)
a, =@ (r,+h ) KN m/(radisec)* (12.53b)
¢y = Q, &8 kN mirad (12.53c)
ag = - Q x5 kN mi(radisec) (12.53d)
w kr 2 ‘
a_=Q w, + —L kN mi(radlsec) (12.53¢)
2h, w
w hr
b, =0, qw, > + kN m/(radlsec) (12.53f)
2h;  w
c.=0,8 =c, kN mlrad (12.53g)
where
w w?x
Q, = b Wy L otm

12.13.2 Equations of motion for a ship with a passive stabilising tank
The tank angle T may be regarded as an additional degree of freedom in the equations of motion

for the ship (3.23). Its effects are taken into account by including additional terms of the form
a. t, bt c.t (i=106)

in these equations. Many of these coefficients are zero. In particular, the tank has no effects on
the surge, heave or pitch motions so that
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Simple physical arguments also demonstrate that no sway force or yaw moments can be caused
by a steady tank angle and that the rate of change of tank angle can have little appreciable effect.
So

b_=¢_=20 i=2;i=06)
In addition it is assumed that the rate of change of tank angle has a negligible influence on the
roll moment so that

b4r =0

The lateral plane equations of motion for a ship stabilised with a passive tank are then:

sway:  (m +ay )X + by X, +ay, X +by %,
T, Xt b26 Xg * Cog Xg T 0, T (12.54a)
=F  psin(w, t+y,) kN
roll: Oup Foy * byp Xy + (L + 0y ) X, + by X, + 4y x4
+ e X+ by kg ¥ Cg Xg ~ a1+ gy Tl (12.54b)
=F psin(w,t+y,) kNm
yaw: Qg, ¥, + b62 X, + ag X, + bk, + (I + ag ) X
+ bgg g + Cgg Xg T A T (12.54c)

=F

weo SR (W, t + Y, ) kNm

(where the expression inside the square brackets in Equation (12.54b) is the tank stabilising
moment).

The vertical plane equations remain as for the unstabilised ship (Equations (3.22a)}, (3.22c) and
(3.22e)).

We now derive the tank acceleration coefficients a,, a, and a._. These may be considered
as the sway force, roll and yaw moments required to sustain a tank angle acceleration of % =1.0

radian/second 2.

Consider the tank shown in Figure 12.31. If the tank angle acceleration is T radians/ second® the
fluid acceleration in the reservoirs and the duct are, by Equation (12.47)
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Fig 12.31 - Fluid accelerations and reaction forces in a passive tank

Vo= misec?

w T . wowil
d 2

;o Vg = ———
¢ 2n,
and the masses of the fluid in the two reservoirs and the duct are
m,=2ph wx;, m =pwh,x

The lateral force which must be applied to the tank to sustain these clockwise (positive)
accelerations is:

p, W, w? x, T

2

a, T =my; v, = kN  to starboard

so that

a, =0, =-a, KkN/ (adlsec? (12.55a)

Since the tank is located x,, metres forward of the centre of gravity the yaw moment required
to sustain the accelerations is

a.. t =x, a, 1 kN m to starboard

so that

g, = O, x5 = -—a, kNm/ (rad/sec?) (12.55h)

The roll moment required to sustain the acceleration of the fluid in the reservoirs is
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m v_w hw w?x %
"2" :p’ r ';2 ! kN m to port

and the roll moment required to sustain the acceleration of the fluid in the duct is
p, Ty w,w 2 x, %

myvgty = 5

kKN m to port

so that the total roll moment is

2 -
ww x (h +1r,)7%
4T‘|f=p' s t?fr a) kKN m to port

and we obtain

a, =0, (h +ry)=a, kKNm/ (radfsec? ) (12.55c)

Finally we obtain the coefficient c,, by considering the roll moment required to sustain a steady
positive tank angle t. The mass of fluid above the datum level in the port reservoir in Figure
12.32 is
p, W, Wwx T
2

t

and a similar mass is displaced from the starboard reservoir. So the applied moment is

2
_Pgw W x T

kN m to port

and

Cye = Qz g =cC, =Cy kN m [ rad (12.55(1)

w2

Y

Fig 12.32 - Roll moment due to tank angle.
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12.14  PASSIVE TANK NATURAL FREQUENCY AND DAMPING

The motion of the fluid in the tank is governed by Equation (12.52) which may be rewritten in
the form

awr'*“bttr-'-cr'ct:_a1:4x4—c1:4x4

—a, % —ag% kNm (12.56)

This has the same form as the equation for the motion of a second order linear damped spring
mass system { Equation (A.1.1)) with the right hand side providing the excitation to the tank from
the ship. Using Equations (A1.6) and (12.53) we find that the undamped natural frequency of
the tank is:

c. | 2gn,
®w, = |— = rad/sec (12.57)
w w+2h h,

The non dimensional tank damping or decay coefficient is, from Equation (A1.10),

W= —F—= (12.58)
2.c_a

The tank decay coefficient may be determined with a simple free decay experiment on a fixed
model of the tank. The model should be of fairly large scale and is conveniently made in acrylic
sheet or some other transparent material so that the oscillations of the fluid may easily be
observed. The tank fluid should be displaced towards one side of the tank and then released. The
subsequent decay of the tank angle oscillations should be recorded and the decay coefficient
estimated from Equation (A1.18). The dimensional tank damping coefficient is then given by

w h,
P T I G B T,
d r
(12.59)
2
= 'ﬂ,—Q,EJ kN m Hradisec)
w

*t
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12.15 DESIGN OF PASSIVE STABILISING TANKS

Figure 12.33 shows a block diagram representation of a ship stabilised with a passive tank. The
basic requirement for optimum tank performance is exactly the same as for active fin roll
stabilisers. We again require the open loop phase to be zero so that the stabilising moment
applied by the tank is in exact opposition to the roll moment excitation applied by the waves.
Once again it is impossible to achieve this desirable state at all frequencies simultaneously and
we choose to optimise the performance at the natural roll frequency where most of the rolling
motion occurs. The roll motion lags the wave excitation by 90° at the natural roll frequency and
we therefore require the stabilising moment to lead the roll motion by 90° at this frequency. It
will also be desirable to arrange for the stabilising moment to be a maximum at the natural roll
frequency.

due to waves Roll

Roll moment
due 1o tank

Fig 12.33 - Block diagram for a ship with a passive stabiliser tank.

The roll moment applied by the tank to the ship may be calculated using Equations (12.56) and
(12.54b). The algebra is considerably simplified if we neglect the influence of sway and yaw
accelerations. We suppose that the ship is rolling in regular waves and that the roll motion is
given by

X, =Xy sin(w,t) rad
and that the resulting tank motion is
T=T,8in(w, t+€ ) rad

Substituting these expressions and their derivatives in Equation (12.56) we obtain the tank angle
amplitude for a given roll angle amplitude as

2
T c, —a_,
—0- = ( o ¢ EN mirad (12.60)
X 2412 2 2
40 ‘/(cﬂuanwe) + b W,

The stabilising moment applied to the ship is
F,=F, sin(w,t+¢€,)=a,t+c,T kKNm

(See Equation (12.54b). Making the same substitutions we obtain the tank moment amplitude
response to roll motion

F

40

2
C4t - a41: (x)e

*40

and using Equations (12.55c) and (12.55d) we find the tank stabilising moment amplitude
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response to roll motion is

F1'40 - ( C'r4 - a1:4 (03 )2
a0 ‘/(cn—awmz)zﬂubf;mz‘
1 3
Q:S( . _ﬂ_Az) (12.61)
a
= T kN mirad

J (1 =M+ 4n A

and the phase is given by

- b, w, -2, A

tan €, = tan €, = A mz = Y (12.62)
Tt TT e

showing that the tank moment is always in phase with the tank motion.

Figure 12.34 shows the tank stabilising moment amplitude and phase responses calculated from
these equations for a tank with the following characteristics:

Il

w=20m; w, =3m; hr=5m; hy=1m; h =10m; n, =01

d
rg=-15m;x =10m; p, = 1.0 t/m?>

giving a tank natural frequency ( Equation (12.57))
w,, = 0529 radlsec

This shows that the stabilising moment is a near maximum at the tank natural frequency «,, and
that the phase at this frequency is

€, = 90°

Evidently the optimum tank performance will be assured if we arrange for the tank and ship roll
natural frequencies to be the same. This ensures that the stabilising moment is a maximum and
leads the roll motion by 90° at the natural roll frequency.

12.16  PASSIVE TANK CHARACTERISTICS AND DESIGN RECOMMENDATIONS

12.16.1 Natural frequency

Equation (12.57) gives the tank natural frequency as a function of the tank dimensions and the
depth of the fluid. The equation may be used to show that the tank natural frequency decreases
with the widths w and w and increases with the duct depth /, . However the natural frequency
is quite insensitive to the depth of fluid 4, in the tank. Tt follows that there is little scope for
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adjusting the natural frequency after the tank has been designed and fitted to the ship.

12.16.2  Fluid depth and maximum tank angle
In practice /i, should be selected to give a datum fluid level halfway up each reservoir. This

gives the greatest possible scope for fluid motion and maximises the available stabilising
moment. The maximum possible tank angle is then given by

h - h,
tan T, = (12.63)
w
20

=

]

N

B

=

g

7
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Non dimensional frequency A

Fig 12.34 - Passive tank stabilising moment characteristics

12.16.3 Maximum stabilising moment

The stabilising moments developed at the natural roll frequency may be obtained by setting
A = 1.0 in Equation (12.61) to give

F

0 _

Q,g(

2
1_3
al—u

(12.64)

40

KN mirad
2Zn ,

Now we have seen that the natural frequency is determined by the tank dimensions w, w_ and %,
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(see Equation (12.57)). The remaining parameters p, , x, , 7, and r ,; have no effect on the
natural frequency but may be chosen to achieve the required maximum stabilising moment . The
stabilising moment clearly increases with the fluid density p, and the tank length x, and
Equation (12.64) may be used to show that the peak stabilising moment increases if the tank is
located high in the ship (ie , is small or negative).

12.16.4  Loss of metacentric height

As already mentioned one penalty of passive stabilising tanks is the inherent loss of roll stability
because of the free surface effect’ .This may be estimated using Equation (12.54b). If we
consider the roll behaviour of the ship at zero frequency we may neglect all the velocity and
acceleration terms and write

Cy Xy — €, T=F, kNm

where F, is some steady applied roll moment. Now the tank angle is, from Equations (12.52)
and (12.53g),

T=-x, rad

and using Equation (12.55d) we find

mgGM¢ (1 -p)x, =F, kNm

where [, is the fractional loss in metacentric height:

m =
e 12.65
" mGM s ( )
Clearly this loss of stability is undesirable and , is usually limited to about 0.25.
12.16.5 Mass of working fluid
The mass of fluid in the tank is given by
m,o=p,x, (wh, +2h w ) t (12.66)

and it is usually found that a satisfactory degree of stabilisation can be achieved if m, is of the
order of 1% - 5% of the ship mass.

3 See any text book on naval architecture or seamanship.

273




12.16.5 Tank damping

The tank damping may be adjusted by installing an obstruction or a throttle valve in the duct as
shown in Figure 12.28. Figure 12.35 shows the effect of increasing the tank damping on the roll
transfer function for a ship in beam waves at zero speed. With low tank damping the roll
response peak at the natural roll frequency is effectively eliminated but this is at the expense of
resonant peaks at higher and lower frequencies. These indicate that the tank will amplify the
motions at these frequencies, possibly leading to an overall amplification of the roll motion,
depending on the shape of the wave energy spectrum. They may be eliminated, or at least
reduced, by increasing the tank damping. The motion at low frequencies is still amplified but this
‘is a characteristic common to all passive tanks since the loss in stability ensures that the
"stabilised" roll motion at zero frequency always exceeds the unstabilised roll motion.

12.17 PERFORMANCE OF PASSIVE STABILISING TANKS.

Figure 12.36 shows the performance of the tank described earlier fitted to a 4000 tonne ship. The
calculations are for a loss in stability of @ = 0.2and a tank mass of 1.87% of the ship mass.

12 | [ | | I
Unstabilised

[
o
|

Speed 0 knots

Beam waves

H, 5= 535 metres;
T, =124 seconds| _|

o0
|

Stabilised: n =02
High tank damping

ES o
I

b

Roll / wave slope amplitude x,,/ k

0 02 04 06 08 1.0 1.2
Frequency w (radians/second)

Fig 12.35 —_Typical roll transfer functions showing the effect of tank damping

At zero speed the tank gives a useful reduction in roll motion at all headings. This is because the
inherent roll damping due to the hull, bilge keels and other appendages at low speed is small and
the damping provided by the tank makes a substantial additional contribution. At 20 knots the
hydrodynamic damping is much higher and the contribution provided by the tank is relatively
insignificant. So the tank is unable to achieve a worthwhile reduction in roli motion.

Figure 12.36 also shows the penaity of the loss of stability at high speed in following seas. The
encounter frequencies are then very low and the tank amplifies the roll motion.

Also shown in Figure 12.36 is the rms tank motion for each speed. Equation (12.62) gives the
maximum permissible tank angleas t . = 24.2°%. The rms tank angles corresponding to various
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probabilities of exceeding this level may be estimated from Table 11.5:

Probability of tank Rims tank angle
angle exceeding 24.2° {degrees)
0.1 11.3
0.01 7.4
0.001 6.0

These are plotted in Figure 12.36. Evidently the tank motion is sufficient to reach the tops of the
reservoirs and the duct about once in every 100 oscillations on the worst heading in this
particular sea condition. This would be regarded as satisfactory in practice. A more frequent rate
of exceedance would invalidate the calculation which takes no account of any such limits in the
tank's stabilising capacity. This could be rectified by increasing the height of the reservoirs and
the depth ~_ of the working fluid.
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Fig 12.36 - Passive stabilising tank performance
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13

ADDED RESISTANCE AND INVOLUNTARY
SPEED LOSS IN WAVES

13.1 INTRODUCTION

The speed a ship can achieve in calm water is governed by its resistance, propeller efficiency
and the power of its engines. In rough weather the resistance may be changed by the action
of the waves and the wind and the resulting change in the load on the propeller usually reduces
the propeller efficiency. The speed the ship can achieve for a given engine power is usually
reduced by these effects. This 'involuntary' speed loss does not often amount to more than two
or three knots but may still result in substantial financial losses for merchant ships.

Resistance in waves

Mean added resistance in waves R,

Resistance

Calm water resistance R,

Y

Time

Fig 13.1 - Resistance in regular waves.

13.2 SIMPLE THEORY FOR ADDED RESISTANCE IN REGULAR HEAD WAVES

A ship towed in regular waves will have a fluctuating resistance as illustrated in Figure. 13.1.
In head waves the mean value of the resistance will be greater than the calm water resistance
and the difference may be atiributed to the effects of the waves.

The simple theory for this added resistance presented here is based on that proposed by
Gerritsma and Beukelman (1971) and has its origins in the strip theory described in Chapter
4. We shall confine our attention to long crested head waves which is generally accepted as
the most severe case. Only vertical plane motions then occur.
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Consider the relative motion of a strip located x,,, metres forward of the centre of gravity. At
the water surface this is given by Equation (7.13) as:

Iy =8, -C m

where S, is the absolute motion of the strip given by Equation (7.8):

Sy = Xy = Xp; X5 M
Since we are here concerned with the average relative vertical motion experienced over the

draught of the ship, it is appropriate to take the wave elevation at the local mean dranght D
_ /
D=4

B /

rather than at the surface. In this case the relative motion becomes

nt

ry =8 -Cexp(-kD) m (13.1)

The force required to sustain this motion is, by analogy with Equation (4.10),

(13.2)

per metre length of strip. Now the relative motion may be written (Equation (7.14))

ry =r m

pin(w t+90

r3)

and the work done by the strip in one complete cycle is then

T
!

da
b3/3 U=
Bi

W, ry kN m (13.3)

8E = [OF, 0ry =

The total work done by the whole ship in one encounter period is obtained by allowing &x,,
to approach zero and integrating Equation (13.3) over the hull length:

L

/ daals 2
E=7w, by U —=| ryydxy, Nm (13.4)
dxp,
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Fig 13.2 - Added resistance response curve for a fast cargo ship in regular head waves (After
Gerritsma and Beukelman (1971))

This work must be supplied by the ship's engine as an additional quantity over that required
to drive the ship in calm water. If the total resistance of the ship in waves is written as

R :RC +Raw kN

where R, is the calm water resistance and R, is the added resistance due to the waves, the
additional work required to drive the ship through one wave length is

E=R,_ A kNm

and the added resistance is

L

T w, / dasla 2
RGW = A‘ b33 - U ‘?‘i;-"‘“‘ T30 de] kN (13.5)
BI

0

Now the relative motion amplitude 7, is proportional to the wave amplitude {, and it follows
that the added resistance in regular waves must be proportional to the square of the wave
amplitude. A suitable non dimensional added resistance 'transfer function' applicable to all
wave amplitudes must therefore include the wave amplitude squared in the denominator.
Figure. 13.2 shows a widely accepted non dimensional form for plotting the added resistance
in regular waves. These results were obtained by Gerritsma and Beukelman (1971) and show
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an encouraging comparison between their predictions and measurements on a model of a fast
cargo ship in regular head waves. The added resistance response peak occurs when the relative
motions are a maximum. In very long waves (low wave frequencies) the relative motions are
very small (see Figure 7.22) and the added resistance tends to zero. In very short waves the
relative motion approaches the wave amplitude as the absolute motions become negligible. The
added resistance is then due to wave diffraction and reflection and approaches some small but
finite value,

1200

1000

800

Resistance (kN)

600

400

200

0 2 4 6 8 10 12
Significant wave height (metres)

Fig 13.3 - Resistance of the frigate in head winds and irregular head waves

13.3 ADDED RESISTANCE IN IRREGULAR HEAD WAVES

Consider the narrow band of frequencies centred on some encounter frequency w, in the
encountered wave energy spectrum shown in Figure 8.2.

If we replace the wave components in this small range of frequencies by a single sine wave,
the amplitude of the sine wave must be, by analogy with Equation (2.13a)

C0=\/ZSC(mE)6wE m
and the added resistance due to this single sine wave is

2C,, SC (w,) (Swe N
where

= —*  kNim® (13.6)
Co

aw
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is a dimensional added resistance response function. The total added resistance due to all the
wave components in the encountered wave spectrum is obtained by allowing 6w, to approach
zero and integrating to give
o
R_ =2 f C,, S(w) dw, kN (13.7)
0
Figure. 13.3 shows the results of some typical calculations of the resistance in irregular waves
for a frigate. The resistance rises rapidly with significant wave height, and the greatest
increase relative to the calm water resistance occurs at low speed.

13.4 ADDED RESISTANCE DUE TO WIND

Part of the resistance of the ship in calm water is accounted for by the aerodynamic drag of the
superstructure and the above water part of the hull. It is customary to express this drag in the
form

Fp, =Cpo Py U A, KN (13.8)

where

F,. 1isthe drag force in kN

p, s the density of air in tonnes/metres’

U is the speed of the ship in metres/second

A, is the maximum cross section area of the superstructure and above water part of the hull
in metres®.

The drag coefficient C;, may be determined from wind tunnel tests on a model of the above
water hull form and superstructure of the ship.

Head waves are generally accompanied by head winds and this increases the aerodynamic drag
to

1
Fpa ZCDZPA(U+ U )2 A, kN
and the additional drag due to the ambient wind U, is

Fopaw = Cp 3 P4 (UL +2U U ) A, KD (13.9)

There is of course no direct relationship between the wind and the sea state, but estimates of
the aerodynamic drag associated with a particular sea state may be obtained by calculating the
drag for the most probable wind speeds given in Table 2.4. Figure. 13.3 shows the additional
drag calculated in this way for the frigate. The contribution from the wind is quite small
compared with the increase in resistance due to the waves.
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13.5 PROPELLER CHARACTERISTICS

The speed attained by the ship for a given resistance depends on the hydrodynamic
characteristics of the propeller. Figure 13.4 shows a typical set of these characteristics
obtained from cavitation tunnel tests on a model propeller. The diagram shows, in non
dimensional form, the thrust developed and the torque absorbed by the propeller as a function
of the advance coefficient. The advance coefficient is a measure of the 'slip' of the propeller
and is defined by

U
J = Nil (13.10)

where

Up 18 the mean velocity of the flow through the propeller disc in metres/second
N is the number of propeller revolutions/second
d is the propeller diameter in metres.

The velocity through the propeller disc is somewhat less than the forward speed of the ship
because of the effects of the boundary layer on the hull. The two velocities are related by the
Taylor wake fraction which is defined as

v-5 13.11
W, = ———£& .
T T ( )
from which we find that the mean velocity through the propeller disc is
U,=U(1l ~w,) mlsec (13.12)

The Taylor wake fraction is usually of the order of 10% and may be measured in suitable
model experiments.

Combining Equations (13.10) and (13.12) we see that the advance coefficient may also be
written as
U(l -w
g YL r) (13.13)
Nd

The thrust and torque coefficients in Figure 13.4 are defined as
T

K,= —— 1
T (13.14)
o
K =__=2
¢ TN (13.15)

where T is the thrust kN and Q is the torque in kN metres.

The efficiency of the propeller is defined as the ratio

281




_ power delivered _ TU(L -wg)
power absorbed 2T NQ

(13.16)

At high values of advance coefficient the propeller is turning very slowly in relation to the
forward speed of the ship and the thrust developed and the torque absorbed are both small.
The thrust will be less than the resistance and the ship will slow down. At low values of the
advance coefficient the propeller revolutions are high in relation to the forward speed and the
thrust and torque coefficients are both large. The thrust will then exceed the resistance and the
ship will accelerate.
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e : : 0.02 _jo4
— | | 0.01 o2
0 _./\, | | ] { 0 _do
0 0.6 0.7 0.8 0.9 1.0
Advance coefficient J

Fig 13.4 - Typical propeller characteristics
At some intermediate value of the advance coefficient the thrust will equal the ship resistance
and the ship speed will be maintained. This condition determines the advance coefficient for
'self propulsion'.

The presence of the propeller augments the ship resistance by a small fraction a so that the
effective resistance for the self propulsion calculation for calm water is

R,=R (1 +a) KN

The total thrust required at self propulsion in calm water is then
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T=R (1+a) kN (13.17)
giving a thrust coefficient

K,=cC J* (13.18)
where C_ is a constant for a given speed:

R (1+a)

C, = (13.19)
pUd>(1 - w,)?2

Equation (13.18) defines the relationship required between K., and J to propel the ship at
speed U metres/second in calm water. The values of K. and J which define the operating
conditions of the propeller are determined by the intersection of Equation (13.18) and the
K versus J curve as shown in Figure 13.4. The resulting self propulsion advance coefficient J
determines the propeller revolutions required to drive the ship at the chosen speed in calm
water:

U(l-w,)

N, = 7d revsisec (13.20)

The power required to achieve these revolutions is given by

P

c

2T QO N,

2m Ky pN, d° kW (13.21)

The characteristics of the propeller are determined for the sieady flow conditions experienced
in calm water. In rough weather the waves and the ship motions will cause the flow around
the propeller to fluctuate but it is generally assumed that the operating characteristics of the
propeller, the Taylor wake fraction and the resistance augment will remain unchanged from
their calm water values. In this case the self propulsion advance coefficient and the power
required to drive the ship at a given speed in waves may be determined in exactly the same
way as for calm water. The resistance in now given by

R = (‘Rc + Raw )( 1 +a ) + Daw kN (1322)
and the required relationship between K. and J is given by

K. =C, J? (13.23)
where
(RC+R )(1+a)+Daw

C, = (13.24)
pUd* (1 -w,)?
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The self propulsion advance coefficient J,, for rough water is determined by the intersection
of Equation (13.23) with the K. versus J curve as shown in Figure 13.4. The effect of the
added resistance is to reduce the self propuision advance coefficient so that the propeller
revolutions required to maintain a given speed become

U1 =Wy

N = revs/sec
w 7 d (13.25)

The propeller efficiency is reduced and the power required to maintain this speed is

3
P,=2mnK, pN,d> kW (13.26)
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B Significant wave height = , 10m
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Fig 13.5 - Power for the frigate in irregular head waves

13.6 INVOLUNTARY SPEED LOSS

In the previous section it was shown that the advance coefficient is decreased and the propeller
loading increased in rough weather. The consequent reduction in speed depends on how the
engines respond to this change in load. In general we should expect the propeller revolutions
to fall, although the actual decrease in propeller speed may be difficult to determine. For the

sake of simplicity we shall assume here that the engine delivers constant power at a given
throttle setting regardless of the load.
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Fig 13.6 - Speed loss at constant power for the frigate in irregular head waves

The power required to drive the ship/propeller combination at a given speed in a specified
wave system may be calculated using the methods described above. Figure 13.5 shows the
results of such a calculation for the ship whose resistance characteristics are given in Figure
13.3, fitted with the propelier of Figure 13.4. As expected the power rises steeply with the
forward speed and the significant wave height. The speed that can be achieved at a given power
level may be determined for a number of significant wave heights and the results plotted as
shown in Figure 13.6.

The loss of speed due to the increase of resistance in waves and wind is termed the
involuntary speed loss since the captain has no control over it, in contrast to the voluntary
speed loss discussed in Chapter 16.

The speed loss is quite small at high power. At Iower power levels much more dramatic losses
occur and in extreme cases the speed may even be reduced to zero.
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14

SLAMMING, DECK WETNESS AND
PROPELLER EMERGENCE

“When the cabin port-holes are dark and green
Becaiutse of the seas outside;
When the ship goes wop (with a wiggle between)
And the steward falls in the soup-tureen,
And the trunks begin to slide;
When Nursey lies on the floor in a heap,
And Mummy tells you to let her sleep,
And you aren’t waked or washed or dressed,
Why then you will know (if you haven’t guessed)
You're 'Fifty North and Forty West’ .

From “How the whale got his throat” by Rudyard Kipling.
14.1 INTRODUCTION

The relative motions between the ship and the water surface are generally largest at the ends of
the ship. In high waves the motions may be so large that the forefoot and propeller are exposed
and the deck submerged. This occurs most frequently at high speed in head waves although it
is not unknown in other conditions.

The re-entry of the keel after emergence may result in a substantial impact or ‘slam’ as the ship's
bottom strikes the water surface. Ships with heavily flared bows may also experience similar,
but less severe, impacts under the bow flare even when there is no keel emergence. These slam
impacts may be severe enough to cause local structural damage to the ship's plating. In extreme
cases the loading may be sufficient to distort the ship’s hull permanently and some ships are
believed to have broken up following slamming. Even moderate stamming will cause the hull
to vibrate at its natural frequency (generally of the order of a few cycles per second) and the
resulting fatigue loading will reduce the life of the hull. The vibration following a slam is called
'whipping' and often provides the captain with his first indication that a slam has occurred.

Deck wetness may occur anywhere along the ship, particularly where the freeboard is low.
However, the most severe deck wetness generally occurs, like slamming, at the bow at high speed
in head waves. In these conditions the forward speed of the ship accentuates the effects of the
water shipped onto the foredeck, and damage to deck fittings and cargo may occur. Any crew
or passengers on deck may be injured or washed overboard. In extreme cases the ship might even
capsize and sink due to the weight of water taken on board.

Propeller emergence and propeller racing will begin to occur when the upper tips of the blades
emerge from the sea surface. The sudden reduction and subsequent increase of torque loading
as the propeller becomes fully submerged again may damage the engine and propeller shaft or
even the propeller itself.
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Clearly these phenomena are undesirable and the prudent captain will try to avoid them if
possible. Since they generally become more severe at high speed they impose an effective limit
on the ship speed in rough weather, especially in head waves. This aspect is discussed in Chapter
16.

Design waterline at zero speed (DWL) F D
' Y ¥
* . »—
T BINM
D,| | ) .
L2 L2
(a) Zero speed
F, D, 7y
Undisturbed water level
DWL
'
X M
T 1T
P\/_’;;lkage
Dp:
(b) Forward speed

Fig 14.1 - Effective draught and freeboard

14.2 PROBABILITY OF CCCURRENCE

The probabilities of occurrence of slamming, deck wetness and propeller emergence are
essentially dependent on the probability of the local relative motion exceeding the draught,
freeboard and the depth of the upper tips of the propeller blades.

Figure 14.1 shows how the ship adopts a running trim and creates a wave system which depends
on the speed. This gives a steady motion r, even when the ship is running in calm water. If we
assume that this datum relative motion is unchanged when the ship is in waves, we may regard

it as a change to the draught, freeboard, etc. Thus the effective draught to the keel becomes

D,=D+1r, m (14.1)
The effective freeboard is
F=F-r, m (14.2)
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and the effective depth of the tips of the upper propeller blades is

Dpe = Dp + ;3 m (143)

where ;3 is of course determined at the appropriate location on the ship.

The notional relative motion in waves is obtained by subtracting the wave depression from the
absolute motion (see Equation (7.13)). As the hull dips into the water the increasing submerged
volume causes a local “swell up' of the water surface. The effect disappears as the hull rises.
This enhances the relative motion over and above the notional value. We define a swell up
coefficient as

Cc - actual relative motion amplitude

* " notional relative motion amplitude (14.4)

and it is found that C_is a function of hull form, location on the hull, speed and wave length.
At the time of writing no universally accepted method of calculating C, has been developed, but
it has been measured in model experiments by several authors. Probably the most comprehensive
set of experiment data was published by Blok and Huisman (1984). A selection of their results
for a small frigate in regular head waves of length equal to the ship is shown in Figure. 14.2.
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Swell up coefficient C,
b
I
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| |
0 = '
O_/\/ 0.3 0.4 0.5
Ky /' L

Fig 14.2 - Swell up coefficients for a small frigate. (After Blok and Huisman (1984))

Referring to Equation (11.26) the probability of the local relative motion exceeding the effective
draught (i.e the probability of keel emergence) is
2
l Dke
2
2 ¢ my,

5

P, =exp| - (14.5)
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where m, is the variance of the notional relative motion at the appropriate location on the ship.

A similar expression may be written for the probability of deck submergence:

2

1 F.
P:i!; =exp |~ E Py (14'6)
C, my
and the probability of propeller emergence is
2
1 Dy
P =exp|- = i (14.7)
P 2 o2
s My
The average period of the peaks may be calculated from Equation (2.27) as
— m,
T =211 |— sec (14.8)

where m, and m, are the variance of the notional relative velocity and acceleration at the
appropriate location on the ship. The average number of keel emergences, deck submergences
and propeller emergences per hour are then

3600 P,
N, = ———— per hour (14.9)
T,
3600 P,
N, = ———=  per hour (14.10)
T,
3600 P,
Npe = ——" per hour (14.11)
T, -

14.3 SLAMMING

14.3.1 Introduction

Figure. 14.3 shows a frigate at high speed in rough weather. The relative motion is sufficient to
expose a considerable length of the keel and a slam is clearly imminent. The ship is shrouded
in spray from a previous deck wetting and much of the water that was shipped is pouring down
the sides to return to the sea beneath the keel. Some water may be drawn up under the keel as
it emerges from the sea surface.
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The subsequent slam will be into a mixture of air and water which probably helps to cushion the
impact. Slamming impact loads are also affected by the local hull section shape, the relative
velocity at impact, the relative angle between the keel and the water surface, the local flexibility
of the ship's bottom plating and the overall flexibility of the ship's structure. A complete
prediction of slamming phenomena is a complex task which is beyond the scope of any existing
theory.

Fig 14.3 - A Leander class frigate struggles to maintain station with the aircraft carrier HMS
Ark Royal (from which the picture was taken) in rough weather. A telling illustration of the
reasons why seakeeping performance is so important in small warships which may be expected
to escort larger vessels which are less susceptible to the weather. (MoD photo)
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Fig 14.4 - Slamming impact pressure recorded on US Coastguard vessel Unimak
(After Sellars (1972))
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Full scale measurements of slamming pressures at sea are rare because of the practical difficulties
involved, but Figure 14.4 shows a slamming pressure time history recorded by Sellars (1972) on
the keel of the US Coast Guard vessel Unimak during a severe slam. The pressure rises very
quickly after the initial impact: indeed it is suspected that the measured rise is probably limited
by the relatively sluggish response of the pressure transducer in all experiments performed to
date.
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Fig 14.5 Slamming pressure coefficients from model experiments

14.3.2 Slamming drop tests

The section shapes of most ships in way of the keel may be approximated by simple wedge
sections of the appropriate deadrise angle defined in Figure. 14.5. The slamming characteristics
of these sections may therefore be examined by dropping two dimensional wedge sections into
water.

Dimensional analysis (Chapter 10) suggests that the peak impact pressure developed on the
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wedge during a slam will be given in the form

P=C,2p 7 kNim? (14.12)

where C;, is the slamming pressure coefficient which is a function of the deadrise angle . This

relationship has been confirmed in a number of experiments and Figure, 14.5 shows how C, has
been found to vary with 3.

For deadrise angles above about 20° these results agree well with a theoretical result derived by
Wagner (1932) in connection with impact loads on seaplane floats:

2
C, =1+ [1“—9%’5_(3-] (14.13)

Slamming pressures estimates using these results are likely to be too high because two
dimensional drop tests take no account of the effect of the air/water mixture likely to be below
the keel just before impact; nor do they allow for the effect of the relative 'pitch’ angle between
the keel and the water surface. These effects are likely to decrease the impact pressure.
Nevertheless, the results do give a general indication of the effect of deadrise angle and confirm
the basic physics of the phenomena involved.

14.3.3 Model experiments in waves

The alternative approach of measuring slamming pressures on scale models in waves has been
pursued by a number of workers in the field. However, scale effects are likely to be important
and it is always difficult to measure the relative velocity at impact.

Ochi (1964), in a classic paper, described measurements of slamming pressures on a model of
a merchant ship in waves. Although he was unable to measure the impact velocities directly, he
confirmed the relationship given in Equation (14.12) but found that no appreciable slamming
impact occurred if the relative velocity was less than a certain value. According to Ochi this
critical velocity was about 3.7 metres/second for a 161 metre ship. Assuming that the critical
velocity obeys the Froude scaling law, it may be expressed as

Faogy = 0093 g L mifsec (14.14)

Ochi concluded that a slam will occur at a particular location if

(a) the relative motion exceeds the local effective draught D,
(b) the relative velocity at impact exceeds 7, _,,,

Now if the relative motion is considered independent of the relative velocity, the probability of
the relative motion exceeding the effective draught at the same time as the relative velocity

exceeds 7, . is given by




2 .2
_ D;, T3 crit
Pom = €X0 | - e A (14.15)
2C my 2C; m,

(see Equation (11.36)). m, and m, in this formula are the variances of the notional relative
motion and velocity.

The slamming frequency is

3600 P,

ar

N o = = P hour (14.16)
p

14.3.4 Estimation of slamming pressures during a typical severe slam
The time history of the relative motion during the short period encompassing an impact will vary
from slam to slam. This makes determination of the severity of the event difficult, but some
progress can be made if we choose to approximate the relative motion for this short period by
Ty =Tsin(wyt+8,) m (14.17)
as shown in Figure 14.6. The relative motion at impact is then
-D_, =rysinb, m (14.18)

so that

- D

T.

"E] rad (14.19)
30

= ape -1
6r3—sm (

T30 r=rysin{w,t+0;)

< —

Impact

Dy,

Keel emerges

Fig 14.6 - Relative motion time history
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The relative velocity during the motion cycle is given by
P =@yrypcos (Wt +08,) misec (14.20)
and the relative velocity at impact is obtained by setting ¢t = O:

Fasam = @,g Tap €OS 5 = @ 4\ rig - D2 (14.21)

It remains to determine a suitable value for the relative motion amplitude r,, and the motion
frequency w . The probability of the relative motion exceeding a peak value ry; is, from
equation (14.5),

1 r
P=ep|-= 23" (14.22)
2 C, my
and this peak relative motion will occur once in N oscillations, where
1 2T
P == (14.23)
N T,w,

where 7}; is an arbitrary sample period. Hence the relative motion amplitude which will be
exceeded once in Ty seconds is

ry = C. 0, \j - 2 log, ( T2 L ] m (14.24)

g 93

where @, is the rms notional relative motion.

The frequency w,; is assumed to be the same as the average frequency of the relative motion
peaks (see Equation (2.27)):

m,
W, = — radlsec (14.25)
2

Using these equations we may now estimate the peak slamming pressures which are likely to be
exceeded once in T}, seconds. Figure 14.7 shows the results of a specimen calculation for the
frigate described in Section 7.1 in head seas with T, set at 900 seconds. Figure 14.7(a) shows
the deadrise angle at keel and the corresponding slamming pressure coefficient Cp given by
Equation (14.13). The rms relative motion and velocity for the chosen speed and wave
conditions calculated by strip theory are shown in Figure 14.7(b). Figure 14.7(c) shows the
derived relative motion amplitude and impact velocity given by Equations (14.24) and (14.21).
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These represent the worst conditions likely to occur in a period of 900 seconds. Note that the
impact velocity is a maximum at the forward end of the ship and falls to zero at some location
where keel emergence is unlikely. Some of the predicted impact velocities are less than the
critical velocity calculated according to Equation (14.14). It is assumed that no slamming will
occur at these stations.

Finally Figure 14.7(d) shows the slamming pressure calculated according to Equation (14.12).
The pressure is set to zero where the impact velocity is less than the critical velocity.

14.4 DESIGN RECOMMENDATIONS TO AVOID SLAMMING

Slamming frequency may be minimised by adopting a deep draught forward to reduce the

frequency of keel emergence. Slamming severity may be minimised by adopting fine lines
forward with a high deadrise angles.

14.5 DECK WETNESS

Figure 14.8 shows a frigate experiencing deck wetness at high speed in rough seas. The bow is
buried in the sea and has thrown a corona of solid water and spray high into the air. The forward
speed of the ship will ensure that some of this water comes onto the deck although much of it
will be cast aside by a well designed bow. The remnants of a previous wetting can be seen
surrounding the ship along the entire length of the hull and as high as the top of the funnel.

Fig 14.8 - A companion picture taken on the same occasion as Figure 14.3 showing
deck wetness on a frigate.

Analytical prediction of deck wetness frequency and severity is impossible at the time of writing
and seems likely to remain so in the near future. Model experiments can give useful information
but even here the results should be treated with caution. Shipping 'solid' water ('green seas') is
believed to be modelled correctly in a conventional Froude scaled experiment, but it is clear from
visual observations that the formation of spray is not modelled properly. This is because the
surface tension which governs the size of the spray droplets is incorrectly scaled. The model
spray droplets are then much too large and would scale to the size of footballs on the ship.
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14.6 FREEBOARD EXCEEDANCE

In considering the frequency of deck wetness it is necessary to distinguish between occasions
when the water rises above the level of the deck but does not come on board, and true deck
wetness where water is actually taken onto the weather deck of the ship. At low speed freeboard
exceedance will almost always be accompanied by deck wetness, but at higher speeds a well
designed bow can throw the water up and away from the ship as shown in Figure 14.9.
Freeboard exceedance therefore does not necessarily result in deck wetness, but all deck wettings
must be preceded by a freeboard exceedance.

It is at present impossible to calculate the frequency of deck wetness proper, but some idea of the
characteristics of a design can be obtained by calculating the probability and frequency of
freeboard exceedance using Equations (14.6) and (14.10).

Figure 14,10 shows the results of some calculations of freeboard exceedance in head waves using
these equations. In Figure 14.10(a) the notional relative motion increases towards the bow. The
swell up effect amplifies the relative motion but gives a maximum value some distance abaft the
stem.

The effective freeboard is reduced by the bow wave and the running trim of the ship (see Figure
14.10(b)).

Fig 14.9 - Freeboard exceedance without deck wetness

Equation (14.6) then gives the probability of freeboard exceedance which is typically a maximum
some way abaft the stem as seen in Figure 14.10(c).

While this result is typical it will generally overestimate the actual frequency of deck wetness
since most of the freeboard exceedances which occur at this location will not result in water
coming onto the foredeck. Figure 14.9 shows this phenomenon very well. Lloyd, Salsich and
Zseleczky (1986) found that the observed frequency of deck wetness was most closely correlated
with freeboard exceedances at the stem head. In other words a deck wetting is almost always the
result of a freeboard exceedance at the stem head and freeboard exceedances elsewhere do not
usually result in wetness unless they are also accompanied by exceedance at the stem head. It
follows that the frequency of freeboard exceedance at the stem head will probably give a
reasonably accurate estimate of the true deck wemess frequency at least at high speed in head
waves.
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Fig 14.10 - Calculation of freeboard exceedance for the frigate at 20 knots: significant wave
height 5.5 metres; modal period 12.4 seconds.

147 EFFECT OF BOW SHAPE

It seems obvious that deck wetness frequency and severity must be affected by the above water
form of the bow. Itis therefore surprising to find that freeboard is the only characteristic which
is universally agreed to have any effect on deck wetness, high freeboard being, of course,
desirable. There is no universal agreement on the effects of features like flare, stem rake or
knuckles.

The reasons for this are not hard to find. A proper objective comparison of the performance of
two different bows at sea requires two ships with identical underwater hull forms (to ensure the
same motion responses) but different above water bow shapes to be run side by side in rough
weather (to ensure the same wave conditions). No such trial has ever been conducted. Hearsay
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reports of deck wetness at sea are inherently subjective and unreliable because they are drawn
from observations made from different ships in different wave conditions.

9 rP
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0.1L

Fig 14.11 - Definition of flare and overhang

Model experiments provide a viable alternative but even here there are formidable practical
difficulties. In very severe conditions almost every encountered wave will be shipped over the
bow and all bow designs having the same freeboard will have virtually the same performance.
It follows that model experiments to examine the effects of the more subtle design features must
be run in moderate waves to allow differences in performance to be revealed. In these conditions
deck wetness will be relatively infrequent (perhaps one or two wettings per run) and it will be
necessary to conduct many runs to allow reliable wetness statistics to be established. Each run
must be at the same speed in waves having the same energy spectrum but a different time
history.

This was recognised by Lloyd, Salsich and Zseleczky (1986) who tested a total of nine different
bow designs on a model frigate at the US Naval Academy. Each bow was tested for one hour
(full scale equivalent) requiring no less than eighteen tank runs. The wave spectrum and model
speed were chosen to give about fifty wettings in this time. Flare was quantified by the angle 6
(measured at 0.1 L abaft the Forward Perpendicular: see Figure 14.,11). Freeboard was the same
for all the bows tested. The bow lines were developed using polynomial waterlines arranged to
fair in to the lines of the hull at 0.25L abaft the FP. The stem overhang was related to the flare
angle by the equation
X

fﬂ = 0002 & (5 in degrees) (14.26)
50 that heavily flared bows had a large overhang.

Visual observations during the experiments suggested that the heavily flared bows appeared to
work well, throwing impressive quantities of water aside, apparently keeping most of the water

off the deck. However, objective measurements of freeboard exceedance and deck wetness
frequency showed the opposite trend (see Figure 14.12). A very fine bow with only 20° of flare
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and x, / L = 0.08" had the best performance. Figure 14.13 shows a comparison of the body
plan of this bow with that of the worst bow in the series.
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Fig 14.12 - Effect of bow flare on freeboard exceedance and deck wetness on a model of the US
Navy FFG7 class frigate (After Lioyd, Salsich and Zseleczky (1986))

The good performance of the fine bow was explained by the observation that the swell up
coefficient increased with flare as shown in Figures 14.14 and 14.15. In other words well flared
bows appear to work well because they amplify the relative motions and then atone for this
undesirable characteristic by successfully disposing of some of the wetness they generate. A
slender bow with little flare slices easily through the waves with little disturbance. It will ship
the occasional sea but not as often as a wave enhancing well flared bow.

! Not one of the family defined by Equation (14.26).
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Fig 14.13 - Body and deck plans for the best and worst bows
(After Lloyd, Salsich and Zseleczky (1986))

Fy=1032 —
H, ;= 5.5 metres
Ty= 12.4 seconds

0 [ | | [ |
0] 10 20 30 40 50 60
Flare angle 0 (degrees)

—_

Swell-up coefficient Cg
o]
\
v
o
5

Fig 14.14 - Effect of flare on swell up coefficient

14.8  DESIGN RECOMMENDATIONS TC MINIMISE DECK WETNESS

Most deck wetness in head waves arises from freeboard exceedances at the stem head. Deck
wetness may therefore be minimised by adopting a high freeboard forward. Excessive flare
should be avoided since this appears to amplify the encountered waves and increase deck wetness
frequency. Limited experimental evidence suggests that the best wetness performance will be
achieved by adopting very fine lines with a sharp stem. Bluff bows should be avoided.
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Fig 14.15 Flare and swell up
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15

EFFECTS OF SHIP MOTIONS ON PASSENGERS AND CREW
“The wonder is always new that any sane man can be a sailor”

R W Emerson 1803 - 1882

151  INTRODUCTION

Ship meotions have two undesirable effects on the people within the ship. They cause motion
sickness and also make it more difficult to move in a controlled and coherent manner so that the
performance of every day tasks is impaired.

The balance organs located in the inner ear can detect changes of both the magnitude and
direction of the apparent gravitational acceleration as well as angular accelerations. Excessive
stimulation of these organs will, in most individuals, result in motion sickness. The condition is,
to some extent, alleviated if the accelerations are confirmed by visual cues from the eyes. Thus
a ride on a fairground switchback railway can be enjoyable and exciting even if large
accelerations are experienced. The same accelerations experienced by a blindfolded rider would
almost certainly result in quite distressing motion sickness. In the same way it is possible to
stimulate motion sickness without any motions being present at all. This can be done for, some
individuals, by showing them a film of a violent fairground ride.

30
_
=
1>
=20
10 |-
0
1 2 3 4 5
Number of days at sea

Fig 15.1 - Motion sickness incidence: effect of acclimatisation. (After Walters (1964))

On board ship it follows that motion sickness is most likely to occur if passengers or crew are
confined below decks so that they cannot see the horizon. Bittner and Guignard (1985) also
showed that motion sickness can be exacerbated by facing diagonally across the ship. Fore and
aft or athwartships seating is to be preferred. Other factors which may promote seasickness are
anxiety, fatigue, hunger, smells (particularly cooking and fuel oil), greasy food, reading and
carbonated or alcoholic drinks. Nieuwenhuijsen (1958) found that women and young children
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in the liner 8§ Masdam were more susceptible to sea sickness than men. Elderly people were
generally less affected than people of middle age.

Fortunately the symptoms of seasickness usnally disappear after a few days. Figure 15.1 shows
this effect in graphical form, based on a study of seasickness in the Royal Navy. Nevertheless
seasickness remains a deterrent to travel by sea for many people and an inconvenience to sailors.
This has led to a considerable research effort in developing drugs to alleviate the symptoms.
Rather less effort has been devoted to establishing the precise nature of the relationship between
motions and seasickness.

Motions also impair the ability to work effectively even when there are no problems with
seasickness. Moving around the ship becomes more difficult and the prudent sailor or passenger
will always hang on to some suitable anchorage to minimise his chances of injury in severe
conditions. The old adage "one hand for the ship and one for yourself" is sound advice. Even in
more moderate conditions performance at tasks requiring good hand/eye coordinations such as
tracking targets on a radar screen may be affected.

15.2 MOTION SICKNESS INCIDENCE

The principle cause of motion sickness in an individual is believed to be the vertical acceleration
experienced at his locality in the ship. Other motions might, if sufficiently high, also cause
motion sickness: but in conventional ships these are usually too small to offer any significant
additional stimulation.

ié‘ 100
< Acceleration
g} amplitude=
) Smisec?
E 80 2
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60 [ 2
40
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0 | |
0 1 2 3
w , (radians/sec)

Fig 15.2 - Motion sickness incidence (After O'Hanlan and McCawley (1974))

Determining the motion sickness likely to be experienced by an individual subjected to some
random motion response on board ship is a difficult problem. Individuals differ in their
susceptibility to motions so it is immediately clear that a statistical approach is required with a
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large number of subjects tested. An individual's response may also vary from day to day
depending on the contributory factors listed above. In particular a person who has a job to do is
much less likely to suffer badly from seasickness than one who has nothing better to do than to
contemplate the agonies of life at sea.

In a classic experiment O'Hanlan and McCawley (1974) measured the motion sickness response
of over 300 American male college student paid volunteers. None of the students had any recent
acclimatisation to motions. They were tested in pairs in a ship motion simulator which was
capable of driving the small enclosed test cabin through a vertical sinuscidal motion with
amplitudes up to about + 3.5 metres. The cabin had no windows so that the subjects could not
receive any visual motion cues and their only task was to monitor their state of nausea by
pressing buttons on a control panel. The experiments lasted for up to two hours, or until the
subjects vomited.

O'Hanlan and McCawley found that the Motion Sickness Incidence (defined as the percentage
of subjects who vomited within two hours) could be expressed in the form

155
logs, (_ ) = Hagsy
MSI = 100 | 0.5 + erf % 7 (15.1)

where |§,| is the vertical acceleration averaged over a half motion cycle and

Hyg = - 0.819 + 232 (log,, w,)? (15.2)

(with w, in radians/second).

Equation 15.1 may be evaluated with the help of Table 11.3 and is plotted in Figure 15.2, This
shows how MSI increases with acceleration and is most severe at a frequency of about 1.07
radians/second. This frequency is unfortunately close to the average frequencies of vertical
motions for many ships and this explains why motion sickness is such a common problem at sea.

Application of these results to the real life environment of a ship in rough weather requires us
to make assumptions about the equivalence of the random motions of the ship and the sinusoidal
motions of the simulator. if we assume that the ship accelerations are distributed according to the
Gaussian probability density function the average modulus of the acceleration is given by
Equation (11.23):

|5, = 0.798 fm, misec? - (15.3)

where m, is the variance of the vertical acceleration.
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From Equation (2.27) the average frequency of the motion peaks is’

® = |— radisec (15.4)

These approximations allow the MSI formula (Equation (15.1)) to be used to make an estimate
of the proportion of people who will suffer from seasickness in a given set of conditions at sea.
The estimate may not be very accurate because of the difficulty of allowing for the many
secondary factors which are involved in motion sickness and the various assumptions made
above. Nevertheless, the technique may be used to give some indication, at least in a comparative
sense, of the ride comfort of ships in rough weather. As an example Figure 15.3 shows a
calculation of MSI for a passenger ferry at 10 knots in head waves. The MSI is highest at the bow
and falls to a minimum a little way abaft midships. Knowledgable passengers who suffer from
seasickness would do well to make for this part of the ship. In practice the high MSI at the bow
may be immaterial because there will probably be no passengers or crew at that location. A better
impression of the MSI generally suffered by the occupants of the ship may be obtained by
applying a weighting function to represent the distribution of the occupied spaces within the ship.

The weighted average MSI is then given by

fMSIde

MSI
f W dxg,y,

(15.5)

where the integrals are evaluated over the length of the ship. Figure 15.3 shows a simple
weighting function giving equal weight to all the occupants of the ship over the length of the
passenger accommodation. For this example the weighted average MSIl is 7.9%.

15.3 SUBIJECTIVE MAGNITUDE

An experienced, well motivated and acclimatised crew will not suffer unduly from seasickness
but they will may still find that ship motions will inhibit their ability to work effectively. One
technique which has been used to roughly quantify this effect is based on some experiments by
Shoenberger (1975).

m
! Logic requires the average frequency of the acceleration peaks | —> to be used here
m
6

but this involves the calculation of the sixth and eighth moments of area of the motion

spectrum. In practice it is found that the integrals m, and mgmay not converge and it is better
to use the average frequency of the motion peaks.
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Fig 15.3 - MSI calculation for a passenger ferry at 10 knots. Significant wave height 5.5 metres;
Modal period 12.4 seconds.
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He subjected eight experienced US Air Force pilots to vertical sinusoidal motions in a simple
oscillating chair capable of amplitudes up to + 1.5 metres. The pilots were blindfolded to remove
any visual motion cues.

After some preliminary experiments they were subjected to a "standard" reference motion of
+0.6g at 1.0 Hz. This motion was assigned a value of 10 on an arbitrary "Subjective Magnitude"
(SM) scale. The frequency and amplitude of the motions were then changed and each subject was
asked to assess the severity of the new motion in relation to the standard. Thus a motion which
felt twice as severe was assigned an SM of 20 and one which felt half as severe was assigned a
value of 5.

The subjects were generally able to make their assessments within a minute and none suffered
from motion sickness during the experiments. Shoenberger obtained remarkably consistent
results which could be expressed in the form

iy Y14
SM = A| — (15.6)
8

where A is a parameter which is a function of frequency. Figure 15.4 shows the relationship
obtained from Shoenberger's results. Apparently humans are least sensitive to motions at
frequencies around 6 radians/second. Sensitivity is enhanced at both higher and lower
frequencies.

80.

Equation (15.7)

60

40

20 Experiment

0 I |
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w, (radians/second)

Fig 15.4 - Subjective magnitude parameter A (After Schoenberger (1975))

The equation

A=[1-exp(-165a)]

15.
x [ 75.6 - 49.6 log, w, + 13.5 (log, w, )* ] (157

308




fits the experiment data well and exhibits a maximum at «,= 1.07 radians/second, corresponding
to the most sensitive frequency for MSL.

These experiments were, like the MSI experiments, conducted nsing sinusoidal oscillations and
it is again necessary to devise some suitable means of applying the results to the irregular motion
environment found on board ship. Lloyd and Andrew (1977) suggested equating the sinusoidal
acceleration amplitude to the significant single amplitude:

§ig = 2 \/nT4 misec? (15.8)

and the appropriate frequency @, may be obtained from Equation (15.4).

Figure 15.5 shows the relationship between SM and the rms vertical acceleration according to
Equation (15.6) for the worst frequency @, = 1.07 radians/second. Also shown are semantic
descriptions of the resulting motion environment based on the experience of rough weather trials
in two frigates described by Andrew and Lloyd (1981).

SM may be calculated for any part of the ship and diagrams similar to that shown for MSI in
Figure 15.3 produced. A weighted mean SM may then be calculated using an equation analogous
to Equation (15.5):

fSMFVﬂ@M

f W dxgy,

SM =

(15.9)

Inmtolerable

10 ———:;;7F ————————
Serionus

Y 1 2 3

Rms vertical acceleration (m/sec? )

Fig 15.5 - Subjective magnitude and rms vertical acceleration at w, =1.07 radians /second.
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154 MOTION INDUCED INTERRUFPTIONS

15.4.1 Introduction

Although MSI is a reasonable parameter for judging the severity of ship motions from the
passenger’s point of view it is widely acknowledged that it has little relevance to the ability of
professional sailors to function effectively even though they may suffer from seasickness. SM
is a strictly limited measure of how severe a motion feels to the crew but is still not related to the
tasks they are required to perform.

Batis, Woolaver and Beck (1983) defined a Motion Induced Interruption (MII) as an occasion
when a member of the crew would have to stop working at the current task and hold on to some
convenient anchorage to prevent loss of balance. The frequency of MIIs can therefore be taken
as an indication of the severity of the ship motions which are relevant to the effectiveness of the
ship and the crew.

The analysis which follows is based on that proposed by Graham, Batis and Meyers (1992) who
suggested that MIIs could occur if the person slipped on the deck or toppled over (tipping).
Graham et @l included the effects of longitudinal accelerations and wind but we shall confine
our attention to the effects of vertical and lateral accelerations which are usually the most
important. '

Consider, for example, a person of mass m tonnes on the deck of a ship as shown in Figure 15.6.
The person’s centre of gravity is at ( xj,, xp,, x,; ) and the absolute lateral and vertical

accelerations at a particular time are §, and §; relative to the Earth. Resolving these
accelerations in directions parallel and normal to the deck we obtain

§p, = &, cos x, + §; sin x, misec® (positive to starboard)
in the plane of the deck and

§py = 8 cos x, - §, sin x, misec®>  (positive downwards)
normal to the deck.

For small roll angles these reduce to

§p = & + 8§, x, misec® (positive to starboard) (15.10a)

§g = & — §, x, mfsec®> (positive downwards) (15.10b)

Positive values of these accelerations will tend to 1ift people off the deck and slide them towards
the port side.
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-« Earth referenced acceleration

Fig 15.6 - Accelerations and apparent forces perceived by a sailor

The person is also subject to the components of gravity resolved in directions normal and parallel
to'the deck. For small roll angles the total apparent force parallel to the deck is

F,=miy, - mgx, kN positive to port

and using Equation (15.10a) this becomes

Fo,=m[§ +&x, —gx, ] kN positive to port (15.11)

The apparent acceleration parallel to the deck has been called the Lateral Force Estimator (I.FE)
and is given by

§,=08 +8§x ~gx,] misec? positive to -port (15.12)

When the ship is upright the gravity force on the person is m g kN downwards, but this is
reduced to m g cos x, kN normal to the deck when the ship is rolled. For small roll angles

cos x, = 1 and the total apparent force normal to the deck is

F..=mf§¥

A3 gy - M & kN  positive upwards

and using Equation (15.10b) this becomes

Foo=m(§ ~3§x, —g) kN positive upwards
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and the apparent weight of the person is

Wy=-F,=m(§x, -5 +g) kN (15.13)
15.4.2 Sliding
Consider a person on the deck of a ship as shown in Figure 15.7. The frictional force opposing
sliding is p W, kN where p is the coefficient of friction between the deck and the person’s

shoes.? The person will slide to port if the apparent lateral force to port exceeds the frictional
force to starboard:

F,>u W, kN

A slide to starboard will occur if the apparent lateral force to starboard exceeds the frictional
force to port:

Fo,=<-uW, kN

Substituting Equations (15.11) and (15.13) we obtain the condition for sliding to port as
§(1-pux)+§ @, +p)-gx,>ng misec? (15.14a)

and to starboard as

(1l +px )+, -pL)-gx,<-pg misec? (15.14b)

Using Equation (11.29) the number of MIls per minute caused by slides to port is

60 2 .
MIIsp = T exp (— -(—I{g—)—] min (15.15)

. 2m0

where m, is the variance of the left hand side of inequality (15.14a). A similar equation gives the
frequency of slides to starboard MII  with m, now obtained from inequality (15.14b). The total
number of MIIs due to slides is given by

M = MI, + MIL, min” (15.16)

55

? Graham, Baitis and Meyers (1992) found p = 0.19 for a worn lincleum floor in some
experiments to validate the procedure on board the USCGC Morganthau but suggested a value
p = 0.7 for a dry weather deck.
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Fig 15.7 - Sliding forces and tipping moments on a sailor

15.4.3 Tipping

Consider a sailor standing facing forward as shown in Figure 15.7. The natural stance adopted
in rough conditions is assumed with the feet spread to make tipping less likely. It is suggested
that a suitable value for the ratio of half the stance width to the centre of gravity height is

L. o2s
A

The apparent force to port and the apparent weight are again given by Equations (15.11) and
(15.13). Taking moments about the left foot the sailor will tip to port if the moment due to the
apparent lateral acceleration at the body’s centre of gravity exceeds the righting moment due to
his apparent weight:?

Foh>W,L kNm

Similarly, by taking moments about the right foot, the sailor will tip to starboard if
F,h<-W,L kNm

Substituting Equations (15.11) and (15.13) we obtain the condition for tipping to port as
g (1 ——%x4)+§3 (x4+%)—gx4>% misec® (15.172)

and to starboard as

? Graham et al also include a term representing the inertial moment due to the roll
acceleration of the ship.
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Lg

" L " L
1+ 2m) v & -2)-gx <~ == msec’  (15.17)

Equation (11.29) is again used to find the number of MIIs caused by tipping to port:

( - g) 2
Ml = 8 exp | - 2R min ! (15.18)
£ T, 2 m,

where m is the variance of the left hand side of inequality (15.17a). A similar equation yields
the frequency of tipping to starboard MII,  with m, now obtained from inequality (15.17b). The
total number of Mlls due to tipping is given by

MII =M, + M, min™ (15.19)

15.4.4 General remarks

The analysis outlined above is quasi static in that the person is assumed to be a rigid body. In
practice he may change his stance, crouch or sit down if he anticipates an imminent MIL. So the
actual frequency of MIIs will probably be over estimated by the equations given above.
Nevertheless, the person must do something to avert the impending MII and it follows that his
attention to the task in hand is distracted and the calculated MII frequency ought to be a good
estimator of crew effectiveness. MIlIs due to tipping are expected to be more frequent than MIls
due to sliding unless the deck is very slippery.
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16

SEAKEEPING CRITERIA AND VOLUNTARY SPEED LOSS IN ROUGH
WEATHER

Senior Officer Atlantic convoy escort to rejoining corvette in very bad weather:
“Why have you taken so long to rejoin convoy?”

Reply:

“It was uphill all the way.”

From “Make a Signal” by Jack Broome. Douglas Boyd Books 1994.
16.1 INTRODUCTION

The methods described so far in this book have been aimed at predicting the responses
experienced by a ship in rough weather. We now need to consider whether these responses will
be acceptable in practice. This requires us to determine limiting values or criteria for each of the
responses we predict.

Ships are required to carry out many different tasks and activities at sea and criteria for
acceptable responses depend on the task in hand. For example, motions which are acceptable in
a warship hunting a submarine would not be tolerated by the fare paying passengers on a cruise
liner. Deck weiness which might be acceptable in a frigate closed down for a high speed dash in
rough weather would not be condoned for operations which require men to work on the exposed
upper deck.

It is first essential to identify the responses which actually limit performance of the task.
Consider, for example, the task of retrieving an unmanned submersible from the sea on an
oceanographic research vessel. This is undoubtedly inhibited in rough weather and we might
expect the following problems to arise in severe conditions:

Problem Associated ship response
It is difficult to attach a line to the submersible Local relative motion
The handling party are sea sick. Local MST
The submersible strikes the side of the ship. Local LFE
1t is difficult for the handling party to keep their Local LFE and MIT
balance.
The risk of slipping on the wet deck is unacceptable | Local deck wetness

Criteria should be expressed in terms of the responses which are directly responsible for the
problems which have been identified and not in terms of motions which have no direct relevance
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to the activity being considered. For example, although heave motion (at the centre of gravity)
contributes to all the associated ship responses (at the retrieval station) but a heave motion
criterion per se would be inappropriate because it has no direct correlation with the problems
associated with the task.

Having determined the motions which are believed to influence performance the next step is to
estimate numerical values of the criteria. The ideal method would be to conduct controlled trials
in a variety of sea states to measure performance at the task as a function of measured ship
motions and to determine the conditions in which the task becomes essentially impossible.
Unfortunately this is generally impractical for the following reasons:

a) Sea state cannot be varied in a controlled manner and trials covering the required range of
conditions would be very protracted and expensive.

b) Tasks involving human intervention (as most tasks do) would be heavily influenced by all the
psychological and physiological factors to which humans are susceptible (motivation, morale,
fatigue, acclimatisation etc) and it would be very difficult to obtain consistent results unless a
very large number of experiments with different personnel was conducted. These experiments
would inevitably be conducted in a variety of sea states making a proper analysis very difficult.

Trials in ship motion simulators have the advantage that the same sequence of ship motions may
be reproduced over and over again so that controlled experiments on a large number of subjects
can be undertaken. However, most simulators are incapable of reproducing the very large ship
motions which are required to inhibit performance and they cannot usually reproduce all six
degrees of freedom (and other more intangible aspects of life at sea) simultaneously.
Furthermore, practical experiments in most simulators are limited to non strenuous tasks rather
than tasks requiring great physical effort and manual dexterity.

In most cases the only practical method of determining criteria is to observe the apparent
performance of actual ship's crews (and passengers) in the ordinary everyday ocean environment.
This can be done in a number of different ways. One of the most successful is to collect
performance data using questionnaires and this is discussed in Section 16.3 below. An alternative
is to measure and monitor ship motions over a long period of time (months or years) and to
correlate the measured motions with the activities of the ship recorded in a log book. This will
eventually build up an envelope of motions which were actually tolerated while specific tasks
were being performed in the ship.

We may summarise the requirements discussed above in terms of three "rules" for the
determination of criteria:

1) Criteria must be related to a particular task.

2) The responses chosen for criteria assessment should be of actual
concern to the task being considered.

3) Numerical values of criteria should be determined by monitoring the
apparent performance of actual ships at sea.
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16.2 EQUIPMENT CRITERIA

Although the criteria for many tasks are dependent on human performance some limitations arise
from equipment design. In these cases a detailed analysis of the equipment used in the task can
be a useful first step towards determining appropriate criterion levels. Consider for example a
radar antenna. Most antennae are stabilised so that the radar beam is maintained in the horizontal
plane regardless of the pitch and roll motions of the ship. However the stabilisation system has
physical limits so that the beam will no longer be horizontal and the radar will cease to function
properly if the angular motions exceed certain critical values.

The critical motion level will not, of course, be exceeded all the time even in the most severe
conditions. So we still need to decide on some measure of the acceptable probability of
exceedance. Generally the choice is between an estimate of the proportion of time or the
frequency with which the critical value is exceeded.

The choice depends on the nature of the equipment and the way in which the performance is
degraded. Consider, for example, a roll stabiliser fin which cavitates if the angle of incidence
exceeds a certain value. Cavitation is undesirable because it erodes the fin surface. Let us
suppose that we are interested in the rate of erosion and the proportion of time the motion
exceeds the critical value. This is given by Equation (11.21), derived from the Gaussian
probability density function. If the critical incidence is «_, we have

[
P(la]>a,)=1-2 erf( ;"‘ ] (16.1)
0

where 0, is the rms fin motion and the modulus is required becaunse cavitation occurs for both

positive and negative incidence. The time the fin is being eroded is then given by
t=T, P(|a|>a,) se (16.2)

where T, is the total time spent in the cavitation prone conditions of the calculation.

On the other hand we might be interested in the frequency with which the fin emits bursts of
cavitation noise because this might be detected by a submarine hunting the ship. We are then
concerned with the probability that the peak fin incidence in each motion cycle will exceed o._,.
This may be obtained from the Rayleigh probability density function by using Equation (11.26):

LY 2
P(a>a) =exp[—~;—(h] ] (16.3)

The mean period of the fin motion peaks is, from Equation (2.27),
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- m,
T,=2mn |— sec (16.4)
my

where m, and m, are the variances of the fin angular velocity and acceleration. The critical
incidence is then exceeded

crit )

3600 P (o >
N =

times per hour (16.5)

Tp

t and N in these formulae may be regarded as criteria for acceptable fin motions. Numerical
values of these criteria are best established by monitoring the actual performance of ships at sea
as required by Rule 3.

16.3 QUESTIONNAIRES

Questionnaires provide one of the few practical methods of obtaining data on actual performance
at specific tasks at sea. A typical questionnaire to obtain criteria relating to damage to deck cargo
on container ships is shown in Table 16.1. The compiler of the questionnaire shounid always bear
in mind that the recipient will probably not be very interested in the business of criteria
determination and the questionnaire should therefore be made as concise and self explanatory as
possible. Otherwise it is likely to be consigned to the waste paper basket rather than be properly
completed. The questionnaire should therefore open with the minimum number of questions
designed to establish the identity of the recipient and his ship and follow with a brief summary
of the scenario postulated. A statement promising confidentiality should always be included since
some recipients (and their employers) may consider any confession of rough weather damage as
an admission of poor seamanship. Questions soliciting opinions on design changes often yield
fruitful results and have the added advantage of boosting the ego of the recipient, thus
encouraging a timely response.

Ship operators will rarely be able to provide reliable direct estimates of limiting ship motions or
other criteria because they generally have no measurement systems available to monitor the rough
weather behaviour of their ship. Sailors are, however, often reasonably well schooled in
estimating wave conditions and much more fruitful resuits will be obtained by asking for
estimates of the worst sea state in which a particular task can be completed. Subsequent
calculations based on strip theory or model tests may then be used to estimate the corresponding
motions (or other rough weather phenomena) in suitable idealised sea spectra. If this technique
is used the speed and heading must, of course, be specified in the questionnaire.
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TABLE 16.1

SEAKEEPING QUESTIONNAIRE ON CONTAINER DAMAGE IN ROUGH WEATHER

Questionnaire on Container Damage in Rough Weather

Name of Captain

Name of ship

How long have you served in this ship? years months

Container ships running at high speed in rough weather are liable to damage the forward row of
containers due to green sea impacts. Containers have also been lost overboard in heavy rolling
condifions. This questionnaire is designed to obtain data on the problem and to determine the conditions
in which it is likely to happen.

YOUR REPLIES WILL BE TREATED IN STRICTEST CONFIDENCE,

1) Head seas.

Deck wetness and risk of container damage is increased at high speed in head seas. In the table below
please indicate the maximum speed you believe you could maintain in each sea state in the North Atlantic
with an acceptable risk of container damage:

Sea state 0 1 2 3 4 5 6 7 8 9
Max speed

(knots)

2) Beam seas

In beam seas rolling will increase in high sea states. In severe sea states it may be necessary to change
course to avoid a beam sea heading and minimise the risk to the containers,. In the table below please
indicate the maximum sea state you believe could be maintained in beam seas at your normal cruising
speed.

Seastse =~ 0 1 2 3 4 5 6 7 8§ 9

3) Design Improvements
‘Which of the following design improvements would you recommend to alleviate container damage?
(Please tick)

1) Increased freeboard forward

2) Remaove forward row of containers

3} Roll Stabilisers

4) Stronger lashings

5) Instrumentation to give warning of imminent problems
6) Other (please specify)

Thank you for your assistance. Please now return this questionnaire to:
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16.4 ANALYSIS OF NUMERICAL DATA FROM QUESTIONNAIRES
16.4.1 Mean values and standard deviations
Numerical data such as sea state estimates may be analysed to determine mean values and

standard deviations using the formulae given below. If the questionnaires yield N estimates of
a numerical quantity x (say the limiting sea state for a particular activity) the mean value is

f:Ei 6.6
N (16.6)

and the standard deviation is

o =\}Z(x"_€)2 (16.7)

0 N -1

t../VN

0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 350

Number in sample N

Fig 16.1 - Critical values for Student’s t function for 95% confidence

16.4.2 Student's t test for confidence in the mean value

It is almost inevitable that the number of questionnaire returns will be small and there will
probably be quite a wide divergence in the individual estimates giving large values of the
standard deviation. We must then consider the possibility that the derived mean value ¥ might
be a freak result because the particular sample canvassed in the questionnaire was biased or
untypical in some way. We need to establish whether X is a good estimate of the "trune" mean
value which would have been obtained if it had been possible to obtain estimates from many
more ships. This may be done using Student's t test (see Mack (1966) and other text books on
statistics). Briefly we may state that there is a 95% probability or confidence that the true mean
value which would have been obtained from a much larger sample will lie within the range

00 Icrit

/N

are given as functions of N in Figure 16.1.

X =

crit

/N

where ¢_. and

crit
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16.4.2 Tests for significant differences between ship classes

Questionnaires are often used to compare the performance of different ship classes. This will
yield two mean values X, and X, and two standard deviations ¢, and o, from the two samples
of N, and N, returns. We need to determine whether there is a significant difference between
the two mean values. Two tests are used. We define a test function

JF =

where 0, > 0, so that yF > 1 and F > 1.

0]

A
- (16.8)
Op

If /F is greater than the critical value given in Figure 16.2 there will be a 95% probability that
the two standard deviations are significantly different. If /F is less than |/F . thetwo samples
may be combined to give a single estimate of standard deviation for both samples:

(N,-1)0c, +(N,-1) 5

) = (16.9)
NA + NB -2

If the standard deviations are not significantly different and have been pooled in this way we may
apply a further test to establish whether the two mean values are significantly different.

5
- | [ [ _ ]
) /Fcﬁl Mo~
4 L —
3 [~ ?
¥ 5
2 [ 7 |
T 10
1 = _
N o X
0 | ] I I |
0 10 20 30 40 50 60
Number in sample A: N,

Fig 16.2 - Critical values of v'F for 95% confidence
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If the test function
s —— (16.10)

exceeds the critical value ¢__ given in Figure 16.1 the two means are significantly different at
85% confidence level (ie there is a significant difference in the performance of the two ship
classes). N is taken as the total number of returns from both classes for this test. In this formula S,
is the standard error of the differences defined by

S . =0 _1._, + i (16 11)
ed 0 NA NB -

Worked Example:

A questionnaire issued to two ship classes yields the following data for limiting sea state for
a particular activity: '

Class Mean Standard Number in
value deviation sample Ferir 1 N
g, N
A 5.7 1.2 7 0.9
B 49 1.4 10 0.7

What confidence levels can be atiributed to each individual result? Are the results significantly
different?

Using Student's t test and Figure 16.1 there is a 95% confidence that the true mean value for each
sample lies within the following ranges:

Class A: 5.7x1.2x0.9=5.7+1.08: ie range is 4.62 - 6.78

Class B : 49+14x0.7=4.9 +0.98: ie range is 3.92 - 5.88

Using the F test we find that the ratio of the standard deviations is

\/F=&=1.17

Op

and the critical value of /F is, from Figure 16.2,
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Foie = 20

So JF < JF_. and the two standard deviations are not significantly different. Equation

H

(16.9) then gives the combined standard deviation as

0, = 1.32

and the standard error of the differences is, from Equation (16.11),

S,, = 0.65

The test function ¢ is, from Equation (16.10),

t =123

and there is a total of 17 samples from the combined questionnaires. Figure 16.1 gives the critical
value of 1 as

1, = 2.04

so that ¢ < t, and the results obtained from the two classes are seen to be not significantly
different at 95% confidence level. The two samples may therefore be combined to yield a mean
value

;‘5—5'7X7+4'9X10=

= 5.2
17

and Student's t test may again be applied to find the confidence limits for this combined resuit.
We find a 95% confidence that the true mean value will lie within the range

52+1.32x0.53 = 52+£0.7: ierangeis 4.5-59

It can be seen that combining the samples, where this can be justified, results in an improved
estimate of the mean value.

16.4.3 Analysis of "Box Ticking" Questions

Box ticking questions yielding "yes/no" type answers require a different technique for
determining the reliability of the results. The returns are usually analysed to give the proportion
or "vote" for a particular opinion: for example, we might find that out of ten recipients of the
questionnaire shown in Table 16.1, seven think that roll stabilisers would be a useful design

323




improvement. The question is whether this can be taken as a valid indication with, say, a 95%
confidence level that roll stabilisers would be favoured by a majority of the masters of a
(hypothetical) very much larger sample of ships of the same class. It is quite possible that the
seven who favoured stabilisers might be ill informed and not typical of the population of masters
at large so that the 70% majority vote is a freak result.

To examine this possibility we need to consider whether a majority vote might be achieved by
chance. As an example consider the possible results of sending the questionnaire to four ships.
If Y means "yes" and N means "no" the sixteen possible outcomes from a box ticking question
are:

Result No
Ship 1 12 |3 |14 |5 |6 (7 |8 |9 (1011 (12 |13 (14 |15 |16
No * * ® % | *
1 N |Y {N|]Y IN|Y IN|Y IN|[Y [N |Y [N|[Y |[N|Y
2 N INJY |Y [N [N |[Y |Y IN|NJ|Y |]Y I[N |N |Y |Y
3 N |IN|NINJY |Y |Y |]Y |[N|N |N|N]|Y |Y |Y |Y
4 N |IN [N N [N |N|N [N |Y [Y | Y |Y |[Y |[Y |[Y |Y

Suppose now that three or more of the recipients voted "yes", to give a majority vote in favour
of fitting stabilisers. This could be achieved in the five different ways marked with an asterisk.
The probability that this result occurred by chance is therefore 5/16 = 0.3125 and the probability
that it was not a chance result is 1 - 0.3125 = 0.6875. So the confidence level that the majority
of a hypothetical much larger population of ship's masters would vote positively is only 68.75%
in spite of the fact that 75% of the sample voted “yes”.

Standard practice in statistical analysis is to demand a confidence level of at least 95% and we
can see that this cannot be achieved with a sample of only four returns. Even if all four recipients
respond with a 'yes' vote (outcome No 16) there is a 1/16 probability that the result is by chance
and the confidence level that this would indicate a majority opinion in the world at large is only
1-1/16 = 93.75%.

We may extend this approach to an arbitrary number of questionnaire returns as follows. We
require to find the minimum number of “yes” votes g for a sample size N which indicate a
majority opinion with a 95% confidence level. Consider a questionnaire sample of N returns with
r “yes” answers to a particular question. The proportion voting “yes” is

P =

.
v N (16.12)
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TABLE 16.2
MINIMUM NUMBER OF “YES” RETURNS FOR A MAJTORITY VOTE
AT 93% CONFIDENCE LEVEL
Sample Number Sample Number Sample Number Sampie Number
size V of “yes” size N of “yes” size N of “yes” size N of “yes”
returns returns returns returns
q q q q
2 - 17 13 32 21 47 30
3 - 18 13 33 22 48 3
4 19 14 34 22 49 31
5 5 20 15 35 23 50 32
6 6 21 15 36 23 51 32
7 7 22 16 37 24 52 33
8 7 23 16 38 25 53 33
9 8 24 17 39 26 54 34
10 9 25 18 40 26 55 34
11 9 26 18 41 27 36 35
12 10 27 19 43 27 57 36
13 10 28 19 43 28 58 36
14 11 29 20 44 28 59 37
15 12 30 20 45 29 60 37
16 12 31 21 46 30 61 38

This vote could be achieved in

N. = N1
& T AN - ) (16.13)
different ways.

The total number of possible combinations of answers is

N
> Ne = (16.14)

r=0

If the answers to the questions were truly random all posmble combinations of answers would
be equally likely. Hence the probability of ¢ or more "yes" answers is

325




r (16.15)

and the probability or confidence level that this is not a chance result is
cC=1-P (16.16)

Table 16.2 gives the minimum number of positive responses g required for a 95% confidence
level as a function of the sample size N, calculated using the equations derived above. From this
it can be seen that the absolute minimum number of returns required is five and they must all
vote positively before this can be accepted as a valid indication of a majority opinion. The
required proportion of positive votes falls as the sample size is increased.!

16.4.4 Increasing the Sample Size

Evidently there are considerable benefits to be obtained if the sample size is made as large as
possible. Unfortunately it is usually only the largest navies which have more than, say, half a
dozen ships in a class and we have seen that a sample of this size will generally yield results of
only marginal reliability. For some aspects of seakeeping it may be possible to pool the results
from more than one class of ship, as described above, but this, of course, precludes the possibility
of distinguishing any effects of design differences between the classes.

It is sometimes tempting to increase the sample size by canvassing the opinions of former
captains. This is not good practice as these individuals may suffer from the so calied "fisherman’s
tales" effect by which experiences of long ago become distorted in the mind and generally
exaggerated. One technique which is, however, acceptable is to repeat the investigation at
intervals over a number of years so that the opinions of successive captains are canvassed in the
same ships. Large sample sizes can be gradually built up in this way.

16.5 VOLUNTARY SPEED LOSS IN ROUGH WEATHER.

One "mission" which has received considerable attention is the ability to maintain speed in severe
head seas. This is often regarded as a general indication of the seakeeping qualities of a ship since
excessive motions, slamming, deck wetmness, etc force the captain to reduce speed to avoid
damaging his ship and its contents and injuring his crew and passengers.

A typical questionnaire designed to obtain data on speed loss in rough weather is shown in Table
16.3. Some results for two classes of frigates are shown in Figure 16.3. Estimates of mean speed
and standard deviation have been calculated using Equations (16.6) and (16.7). As expected the
ships suffer a dramatic speed loss as the sea state worsens. The standard deviation increases in

! Note that the same analysis applies with equal validity to negative opinions (ie not
ticking a box).
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TABLE 16.3

QUESTIONNAIRE ON SPEED IN ROUGH WEATHER

Name of Captain

Name of Ship

How long have you served in this ship? years months

Ship speed is limited in rough weather by two factors:

a) In moderate sea states the action of the wind and waves causes the ship to slow down even if full
power 1s maintained.

b) In more severe sea states the captain may decide to reduce power or change course in order to
alleviate slamming, deck wetness, propeller emergence, ship motions etc.

Imagine that you are required to make a high speed passage in rough weather. All ship equipment should
be fully operational at the end of the passage. In the table below please indicate the maximum speed that
you could maintain in your ship in the given sea states. Please also indicate with a tick the sea state in
which you would first reduce power.

Sea state 0 1 2 3 4 5 6 7 8 9

Max speed
(knots)

Sea state for
power
reduction
(tick one
box)

In the table below please indicate the reasons for your decision to reduce power in their order of
importance.: For example if you consider that slamming is the primary reason for speed reduction, closely
followed by deck wetness, mark slamming “1" and deck wetness *“2".

Slamming

Deck wetness

Ship motions

Propeller emergence

Other cause(s) (please state)

high sea states, reflecting the difficulty of estimating speed loss and perhaps the lack of extreme
rough weather experience of the commanding officers.

Application of Student's t test gives the confidence limits shown as shaded areas in Figure 16.3.
The high standard deviation and the small number of ships in Class B widen the confidence
limits considerably so that the estimates of mean speed for this class are much less reliable than
those for Class A.

Application of the F test described above shows that the standard deviations are not significantly
different and they may be pooled to give a common value using Equation (16.9). The test
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function t is greater than the critical value (¢ = 2.03 for N = 37 , see Figure 16.1) for all but
the highest sea states. So the two results are significantly different at the 95% confidence level
and we may be confident that the performance of Class A is better than that of Class B at least
in moderate sea states.

= =
g 5 T T T T T T 5 %
2 4 ~ Class B 4 &
§ 3 | — - ] 3 ‘5
ng — ~ Class A — =
52 = t —203-—‘—\-&. t . —2 =
w3 & 1 erir T 2 \____ 1 QU
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different different
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I I I N I
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Significant wave height H,, (metres)
4ls e |7 [ 8 |

Sea state code

=
o

Fig 16.3 - Results of a questionnaire on speed in rough weather

16.6 CRITERIA FOR VOLUNTARY SPEED LOSS

The questionnaire shown in Table 16.3 asks for the captain's reasons for reducing speed. For
most conventional ships it is usually found that slamming is the primary cause of speed reduction
with either deck wetness or ship motions given as the secondary factor. Propeller emergence is
usually only important for merchant ships in ballast. For the frigates described above the order
of importance found from the questionnaire was

1. Slamming

2. Ship Motions
3. Deck Wetness
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Fig 16.4 - Limiting slamming frequency for ship class A

Figure 16.4 shows predictions of slamming frequency for Ship A using the methods outlined
earlier. The calculation is for head seas with the most probable modal periods for the North
Atlantic. Now the questionnaire gives the maximum permissible speeds in given wave
conditions and the results have been plotted in Figure 16.4 as a locus of acceptable combinations
of speed and wave height. This allows us to estimate the maximum tolerable slamming
frequency: in this case the captains of Ship Class A apparently tolerate about 60 - 80 slams per
hour. and we may take this as a suitable criterion for slamming.
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Fig 16.5 - Tolerated subjective motion in Ship class A
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TABLE 16.4
SEAKEEPING CRITERIA FOR SPEED IN ROUGH WEATHER
Author Ship type | Slamming Deck wetness | Propeller Vertical
emergence acceleration
Kehoe (1973) Warship 60 / hour at 60 / hour at FP
0.15L
Ochi and Motter Merchant | Probability Probability
(1974) ship 0.03 0.07
Shipbuilding Merchant | Probability Probability Probability 0.1
Research Assoc. ship 0.01 0.02
of Japan (19753) '
Lioyd and Andrew | Warship 36/ hour SM =15
(1977)
Lloyd and Andrew | Merchant 120/ hour
(1977) ship
Aertssen (1963, Merchant | Probability . Probability
1966,1968,1972) ship 0.03 or 0.04 0.25
Andrew and Lioyd | Warship 90 / hour SM =12
(1981)
Comstock et al Warship 20 / hour 30/ hour Probability 0.2g rms at
(1982) 0.02 atFp bridge
Yamamoto (1984) | Merchant | Probability Probability Probability of
ship 0.02 0.02 at FP exceeding
0.4g at bridge
=0.05

Walden and ‘Warship Probability Probability
Grundmann (1985) 0.03 0.07

We may follow the same approach for ship motions and deck wetness and similar diagrams are
shown for suitable measures of these phenomena in Figures 16.5 and 16.6. We see that the
captains of these frigates apparently tolerate about 80 - 100 freeboard exceedances per hour at
the Forward Perpendicular (Equation (14.10)) and a weighted mean subjective magnitude of
about 11 - 12 (Equation (15.5) with SM substituted for MSI).

However, deck wetness and ship motions are not, in this case, the limiting factors which force
the captain to reduce speed. So these results cannot be taken as criteria for acceptable levels. All

* Strictly the captain is only concerned with deck submergences (ie occasions when the
water actually comes on to the deck) rather than freeboard exceedances (when some of the water
above the deck is thrown aside) but with the present state of prediction techniques it is not
possible to distinguish between these two phenomena (see Section 14.6).
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we can say is that the captain would tolerate more frequent deck submergence and higher levels
of motions if slamming were not so frequent. These results may help in the determination of
criteria but they cannot be used in the definitive way which was possible for slamming. We may
therefore guess that the maximum tolerable deck submergence frequency in this ship is about
120/hour and that the maximum tolerable Subjective Magnitude is about 15.

Figure 16.7 shows the speed loss from the questionnaire compared with speed loss curves derived
from Figures 16.4 - 16.6 for these estimated criteria. As expected, the slam limited speeds fit the
questionnaire data tolerably well, at least in the middle range of sea states, while the other curves
are higher. Note that all three limits are too high in high sea states. This may arise because the
ship and its crew must then tolerate severe levels of all three phenomena simultaneously and this
will be expected to reduce their tolerance to each individual factor. In other words severe motions
and deck wetness will reduce the crew's tolerance of slamming and the and the maximum
possible speed.

Table 16.4 lists a selection of seakeeping criteria for speed in rough weather derived by various
authors from questionnaires, trials and intuition.
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17

OPERATIONAL EFFECTIVENESS

“Their hulls whipped and shuddered in the huge Atlantic seas.... Solid green water swept
destructively along their decks... For hour after hour this process repeated itself. Damage

mounted, hull plates splitting, boats being smashed, men swept overboard and delicate anti
submarine devices put out of order...."

Captain D Maclntyre DSO, DSC, RN: The Battle of the Atlantic.

17.1 INTRODUCTION

Operational effectiveness is defined in semantic terms as the ability of a ship to go to sea and
accomplish its mission in whatever weather conditions it may find. In numerical terms we
may express operational effectiveness as the proportion of time the ship can successfully
accomplish its mission ' in a given combination of sea areas and seasons. Operational

effectiveness can then be used as a yardstick for comparing the seakeeping performance of
competing ship designs.
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Fig 17.1 - Calculation of operational effectiveness

! “Mission” might be any activity undertaken by the ship; for example serving a meal in
the passenger’s dining room on a ferry, refuelling a helicopter on a warship, gutting fish on a
trawler etc.
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We have seen in previous chapters how we may calculate the rough weather responses of a
ship for any combination of weather condition, ship speed and heading. If we know the
limiting values of these responses (criteria) for a particular mission we may then determine
whether it can be accomplished in that particular set of circumstances. Generalising the
calculation to include all possible combinations of sea area, season, primary wave direction,
significant wave height, modal period, ship speed and course allows us to calculate
operational effectiveness as the proportion of time for which the mission is possible.

The method of calculating operational effectiveness given here is a simplified version of that
proposed by Andrew, Loader and Penn (1984). The calculation is illustrated in graphical form
in Figure 17.1.

TABLE 17.1

TYPICAL FREQUENCY DISTRIBUTIONS OF f

season

Spring Summer Autumn Winter
Tourist 0.20 Q.60 0.20 0.00
ferry
Warship 0.25 0.25 0.25 0.25

17.2 SEASON AND SEA AREA

The first essential in the calculation of operational effectiveness is to specify the seasons in
which the ship is to operate. This is quantified by the frequency distribution £, and
examples are shown in Table 17.1. The tourist ferry is laid up in winter and spends most of
its time at sea during the summer months. In contrast the warship is required to operate year

round.

Having specified the frequency distribution for seasons the next step is to define the sea areas
in which the ship will be required to operate in each season. This is conveniently done in
terms of scatter diagrams like those shown in Table 17.2. Two examples of the conditional
frequency distributions (CFD)* of sea area for a given season are shown for a merchant ship
on a great circle transatlantic route and a warship operating in the North Atlantic. Sea areas
are defined according to Hogben, Dacunha and Olliver (1986) (see Figure 2.16).

**Conditional frequency distribution” is the proportion of time spent in a given condition
when another condition is held constant. Thus, for example, f,  is the proportion of time spent
in a particular sea area for a given season.
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The merchant ship is required to operate between Europe and North America and the CFD
of sea areas for each season reflects the time it is expected to spend in each area along the
route. The warship is required to operate throughout the North Atlantic with most of its time
spent in the northern areas 1, 3 and 4. In winter its operational area is moved south.

173 WAVE HEIGHT AND PERIOD

Scatter diagrams for wave height and period like those shown in Table 2.3 are required for
each sea area, season and direction. Suitable data can be found in the wave atlases reviewed
in Chapter 2. It may be necessary to convert the period into the preferred modal period
parameter using Equation (2.41).

TABLE 17.2
TYPICAL CONDITIONAL FREQUENCY DISTRIBUTIONS
FOR GIVEN SEASONS IN THE NORTH ATLANTIC.
Merchant ship Warship
Sea Spring | Summer | Auviumn | Winter Spring | Summer | Autumn | Winter
area

1 0 0 0 0 0.10 0.10 0.10 0.05
2 0 0 0 0 0.03 0.03 0.03 0

3 & ¢ 0 o 0 0.20 0.20 0.20 0.10
4 0 0 0 0 0.20 0.20 (.20 0.10
8 0 0 0 0 0.04 0.04 0.04 0.07
9 0 0 0 0 0.04 0.04 0.04 0.07
10 0.11 0.11 0.11 0.11 0.07 0.07 0.07 0.10
11 0 0 0 0 0.07 007 | 007 | 010
15 0.25 0.25 0.25 0.25 0.04 0.04 0.04 0.07
16 0.44 0.44 0.25 0.25 0.04 0.04 0.04 0.07
17 0 0 0 0 0.07 0.07 0.07 0.10
23 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.07
24 0.13 0.13 0.13 0.13 0.03 0.03 0.03 0.05
25 0 0 0 0 0.03 0.03 0.03 0.05

335




TABLE 17.3

TYPICAL FREQUENCY DISTRIBUTIONS f

course

Course N NE E SE S SW w NW

Merchant 0.0 0.0 0.5 0.0 0.0 00 0.5 0.0
ship

Warship | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125

17.4 SHIP’S COURSE AND SPEED

The frequency distribution of ship’s course is defined as f, , in Table 17.3 and the CFD
for speed f,, for a given course is shown in Tables 17.4a and 17.4b. For the merchant ship
the required course is easterly or westerly, depending on the direction of the voyage and half
its time is spent on each heading. The ship is to be run at its maximum economical cruising
speed in the range 15 ~ 20 knots. The warship is again required to be much more versatile.
All courses are equally likely and a wide range of speeds is demanded. Nevertheless the

econoimical cruising speed is frequently used. Very high and very low speeds are rare.

TABLE 17.4a

TYPICAL CONDITIONAL FREQUENCY DISTRIBUTION OF SPEED f,
FOR GIVEN SHIP COURSES (MERCHANT SHIP)

SHIP COURSE

Ship

speed N NE E SE S SW w NW
(knots)
25-130 0 0 0 0 0 0 0 0
20 -25 0 0 0 0 0 0 0 0
15-20 0 0 1 0 0 0 1 0
10-15 0 0 0 0 0 0 0 0

5-10 0 0 0 0 0 0 0 0

0-5 0 0 0 0 0 0 0 0
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TABLE 17.4b

TYPICAL CONDITIONAL FREQUENCY DISTRIBUTION OF SPEED f,,
FOR GIVEN SHIP COURSES (WARSHIP)

SHIP COURSE
Ship
speed N NE E SE S SwW A NwW
(knots)

25-30 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

20 -25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

15-20 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

10-15 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

5-10 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

0-5 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

17.5 CALCULATION OF OPERATIONAL EFFECTIVENESS

The proportion of time the ship spends in a given season, sea area, primary wave direction,
Zero crossing period, significant wave height, course and speed is given by the product

p = fs'easan faraa fx fTH fcaurse fU (17-1)
where
Sieason 18 the frequency distribution of ship’s time spent at sea
Jorea is the conditional frequency distribution of sea areas for a given season
fx is the conditional frequency distribution of primary wave directions relative to
North for a given season and sea area
Fr is the conditional joint frequency distribution of mean zero crossing periods and
significant wave heights for a given sea area, season and primary wave direction
frowse 18 the frequency distribution of ship courses relative to North

fu is the conditional frequency distribution of ship speed for a given ship course.
For each combination of season, sea area, primary wave direction, significant wave height,
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modal period, ship course and speed we may calculate the N ship responses’
(r, ;s n = 1..N) of relevance to the mission. If the nth calculated response exceeds the
corresponding criterion for the mission 7, . the mission cannot be accomplished and a
counting functional I’ is set to 0:

Pn=0 forr, >r

n crit

Otherwise the mission is not limited by the response r, and the counting functional is set to
1.0:

l"n =1 for Yo <1y i

The proportion of time for which the mission can be accomplished is the operational
effectiveness OF and this is obtained from the weighted sum of all the possible values of
P. Mathematically this may be written as

CE=) PI T,T,..T, (17.2)

where E implies summation over all seasons, areas, primary wave directions, zero crossing
periods, significant wave heights, ship courses and speeds respectively.

TABLE 17.5

OPERATIONAL EFFECTIVENESS OF A FRIGATE IN THE NORTH ATLANTIC.
(AFTER ANDREW, LOADER AND PENN (1984))

Criterion Unstabilised Stabilised
Rms pitch <2 ° 0976 0.976
no roll limit
Rmsroll<3° 0.650 0.851
no pitch limit
Rms pitch <2 ° 0.649 0.851
Rmsroll<3°

Table 17.5 shows an example of a calculation of operational effectiveness taken from
Andrew, Loader and Penn (1984). This shows the operational effectiveness of a frigate with
and without roll stabilisers in the North Atlantic. For this example it is assumed that the

? The responses are often rms motions but may include factors like Subjective Magnitude
and the probability of slamming or deck wetness.
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frigate's mission will be impossible if the rms pitch exceeds 2.0 degrees and the rms roll
exceeds 3.0 degrees.

Considering first the pitch motions in isolation we see that the ship is able to achieve its
mission almost all the time. Roll stabilisers, of course, have no influence on this resuit. Roll
motions have a much greater effect on the ship's ability to achieve its mission and the
unstabilised ship is effective for little more than half the time. These effects are considerably
alleviated by the stabilisers.
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18

THE EFFECT OF HULL SIZE AND FORM ON SEAKEEPING

“...Then I'll pray for fine weather for all you Big Steamers,
For little blue billows and breezes so saft

Oh billows and breezes don't bother Big Steamers,

For we’re iron below and steel-rigging aloft..."

From “Big Steamers: 1914-1918” by Rudyard Kipling.
18.1 INTRODUCTION

The methods outlined in this book allow the designer to quantify and assess the seakeeping
qualities of a new design before the ship is built. If the predicted performance is inadequate
the designer will need to change the size and/or shape of the hull to effect the necessary
improvements. The designer therefore requires some guidance on the performance
improvements which are likely to result from changes to hull form and size. The methods
described earlier may be used to provide information on these trends and this Chapter gives
the results of some specimen calculations. The trends described will be found to be generally
applicable and the results may be used to suggest suitable changes in size and shape to a wide
range of hulls. However, the results shown are necessarily specific to particular hull forms
and should not be used to give definitive numerical estimates of the changes in performance
of other huill forms. The actual performance of a particular design should always be estimated
from strip theory calculations or model tests.

18.2 VERTICAL PLANE MOTIONS

18.2.1 Introduction and rationale

We will first consider the effect of hull size and form on motions in the vertical plane and
confine our attention to head waves. This heading generally gives the worst vertical plane
motions and it is found that a form which has low motions in head waves nearly always has
a satisfactory performance at other headings. The most important motions to be considered
in this context are the absolute vertical accelerations in the occupied spaces in the ship and
the relative motions at the bow. The former are an indication of the severity of the motions
experienced by the crew and passengers and we choose to calculate the acceleration at
Xy = 0.15L, a typical location for the bridge of a warship or the passenger
accommodation on a ferry. In general it is found that a ship which has satisfactory motions
at this location will also have acceptable motions at other locations occupied by passengers
Or CTEW.

We shall calculate the relative motion at x, iy = 03L,a typical location for a severe slam,
and use this result to estimate the probability of keel emergence at this station.
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Fig 18.1 - Geometrically similar ships

18.2.2 Effect of hull size

The effect of hull size may be determined by calculating the responses of a series of
geometrically similar ships all having the same hull shape but differing lengths as shown in
Figure 18.1. Changing the length of the hull while keeping the shape constant results in
proportional changes to all the linear dimensions (beam, draught, freeboard etc) and the
displacement varies as the cube of the length. So these hulls may be regarded as scale models

or geosims' of each other.
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Fig 18.2- Heave and pitch transfer functions for the geosims in regular head waves

' Acronym for geometrically similar
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Fig 18.3 - Effect of hull size on heave pseudo spectrum at 20 knots in irregular head waves

For the purpose of this study we choose a frigate form with the following proportions:

D _o034; B-o12
3 3

Non dimensional transfer functions for heave and pitch of this hull shape in head waves at
various Froude numbers are shown in Figure 18.2. In this form these transfer functions apply
to all the geosim hull forms because they all have the same shape. All the motion responses
are essentially unity in waves which are much longer than the ship and more or less negligible
in waves shorter than a critical length which is about three quarters of the ship length. In
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other words ships tend to contour very long waves but do not respond to very short waves,
as already discussed in Chapter 7.

Transfer functions for a given ship length and speed may be derived from these results and
examples for 20 knots are shown in Figures 18.3 and 18.4.

These figures show the calculation of the rms motions in a typical long crested Bretschneider
wave energy spectrum using the wave frequency domain method described in Chapter 8.

Consider first an infinitely long ship. All the waves in the seaway are shorter than the critical
wave length, the heave and pitch transfer functions are zero over the entire range of
frequencies and the ship does not respond to the wave input at all.

0.008 i

IS
5 0006 |
SR
2,3 9
& oy 0.004 [ ___
w o uy .
Se s
% g \\: 0.002 fi_,; = 3.5 metres
2By ) — T, = 12.4 seconds
S "E g
Rse 0 | | |

\a
2 1.5 i T I
o
55 1.0
8y
B "§ 0.5
o S
g

0.008

K
g 0.006
533
o 0.004
LS
378
S8 & 0002
Ry, g ~
= B
ST
Ay S d

0 0.5 1.0 1.5 2.0

Wave frequency w (radians / second)

Fig 18.4 - Effect of hull size on pitch pseudo spectrum at 20 knots in irregular head waves
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As the ship length is reduced some of the waves in the seaway begin to exceed the critical
length and the transfer functions adopt appreciable values in the range of important wave
frequencies. So the heave and pitch pseudo spectral ordinates are increased, as shown in
Figures 18.3 and 18.4.

For a very small ship (for example a toy boat) with L = 0 metres all the waves in the
seaway are longer than the ship and the transfer functions are unity over the entire range of
frequencies. The ship contours the waves aligning itself to the wave slope: the heave is the
same as the wave depression and the pitch is the same as the wave slope.
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Fig 18.5 - Effect of hull size on rms heave and pitch motions at 20 knots in irregular head
waves

Figure 18.5 shows the rms heave and pitch motions obtained from the area under the motion
pseudo spectra shown in Figures 18.3 and 18.4. These clearly demonstrate that small ships
suffer from increased absolute motions in a given seaway.

Figure 18.6 shows a similar calculation for the vertical acceleration at x,,,, = 0.15 L.

1M
The acceleration pseudo spectral ordinates are given by

2

5, (@) = ( m"cs-”")z S{@)  ( misec? Y / (radlsec)
]

(see Equations (2.21) and (8.10)).
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Fig 18.6 - Effect of hull size on vertical acceleration pseudo spectrum at 20 knots in irregular
head waves: xp,= 0.15L.

The effects of encounter frequency become progressively more important as the ship length
is reduced (in other words small ships respond more vigorously to the shorter waves). In the
limit, a very small ship of length L = 0 metres will contour all the waves and suffer very
large accelerations.
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Fig 18.7 - Effect of hull size on relative motion pseudo spectrum at 20 knots in irregular head
waves: xg;,= 0.3L

Figure 18.7 shows a similar calculation for relative motion at x,,,, = 0.3 L. We have seen
that the infinitely long ship does not respond to the waves and it follows that the relative
motion must then be the same as the wave depression (apart from any swell up effects (see
Equation (7.13)).

This is confirmed in Figure 18.7 where we see that the infinitely long ship has a relative

motion transfer function which is unity over the entire range of frequencies. So the response
is the same as the wave energy spectrum and the rms relative motion is
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Again, the displacement transfer function s,, / {,, for an infinitely long ship is zero at all
frequencies and the ship does not respond to the seaway at all. As the ship length is reduced
the transfer functions increase and the response output becomes appreciable.

As the length is reduced the ship begins to contour the longer waves and the transfer function
encompasses a smaller range of frequencies. However peaks appear in the transfer function
and the response is amplified if these peaks coincide with the peak of the wave energy
spectrum. For very small ships ( L = 0) contouring all the waves the transfer function
ry ! €, is everywhere zero and there are no relative motions.

These trends are summarised in Figure 18.8.

Ship mass (tonnes)
500 5000 10000 50000 100000 200000
N 3
S | | | ! |
S =
3 3
~ Relative motion E
3 2 —2 &
& S
Y 9
£ 3
= p—— B
2 H,, = 5.5 metres 9
8 1 T, = 12.4 seconds — 1l &
3 =
u 2
§ Absolute vertical acceleration E
<) ]
S | |
Ry 0 0
0 100 200 300 400 500
Ship length (metres)

Fig 18.8 - Effect of hull size on rms relative motions at x g, = 0.3L
and rms absolute acceleration at xp,,, = 0.15L

The probability of keel emergence calculated using Equation (14.5) is shown in Figure 18.9.
For the wave spectrum considered here keel emergence is common for ships in the range 70 -
200 metres and is most common for ships about 120 metres in length®. Smaller ships are less
susceptible because they tend to contour the waves so that their relative motions are small.
These ships will, however, suffer from high vertical accelerations which would make life on
board intolerable at the speed considered in this example.

2 A typical frigate length!
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Fig 18.9 - Effect of hull size on keel emergence at 20 knots in irregular head waves

The greater draught of the larger ships ensures that keel emergence is unlikely for these vessels
in spite of their appreciable relative motions. Increasing the size of the ship also gives a dramatic
reduction in vertical acceleration. Large ships are generally more comfortable than small ones
in rough weather.

18.2.3 Effect of hull form

Detail changes of hull form such as easing the radius of curvature of the bilges have little
discernible effect on ship motions in the vertical plane. The designer seeking an improvement
in seakeeping performance must think in terms of changes to the overall proportions of the ship
rather than piecemeal modifications. Seakeeping performance assessment must therefore be
considered at an early stage in the design process before the major proportions and dimensions
of the hull have been settled.

A number of published works (for example Bales (1981), Schmitke and Murdey (1981), Lloyd
(1988)) offer useful guidance but they do not provide a method of developing an actual design.
All use different methods of quantifying ‘good’ seakeeping performance and changes in hull
form. Defining the hull form parameters which are kept constant is all important: for example
increasing the ship mass without corresponding changes to the overall dimensions of the ship
(length, beam and draught) would change the block coefficient and lead to results which would
be different from those obtained if the block coefficient had remained constant and the mass
accommodated by increases in the length, beam and draught.
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Fig 18.10 - Draught/length variations
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Fig 18.11 - Effect of draught/length ratio on rms absolute vertical acceleration
at xp,,, = 0.15L and rms relative motions at xp;,, = 0.3L in irregular head waves
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We shall here examine the effects of changing the draught/length and beam/length ratios and the
forward waterplane area coefficient while keeping the block coefficient constant. In other words
the ship mass is changed in proportion to the changes in beam and draught. These particular
parameters have been selected because they have appreciable and well defined effects on
seakeeping performance. Other parameters such as transom beam, midships section area
coefficient etc have relatively minor effects and it would not normally be considered worthwhile
changing them to improve seakeeping performance. Figure 18.10 illustrates changes to the
draught/length ratio. The effects on the motions are shown in Figure 18.11. These are given in
non dimensional form which makes them more easily applicable to ships of different length and
waves of different significant wave height. They are presented for a Froude number of 0.3 and
a non dimensional modal period defined as

which corresponds approximately to a modal period of 12.4 seconds for a ship length of 125
metres. Similar trends are found for other modal periods and ship lengths.
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Fig 18.12 - Effect of draught/length ratio on probability of keel emergence
in irregular head waves

Reducing the dranght with a corresponding reduction in ship mass increases the added mass and .
damping coefficients, as shown in Figure 5.8, and this has the generally beneficial effect of

reducing both the absolute and relative motions.

Figure 18.12 shows the corresponding effects on the probability of keel emergence. This rises
dramatically as the draught is reduced, in spite of the associated reduction in relative motion.
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Figures 18.13 - 18.15 show similar results for beam/length ratio. Again increases to the beam are
associated with increased displacement and the larger added mass and damping coefficients
would be expected to yield reduced motions. However the excitation from the waves is also
increased because of the larger waterplane area and the resulting changes to the motions are not
dramatic. The probability of keel emergence is greatest for ships with beam/length ratios in the
range 0.1 - 0.2 (typical of many modern designs).

Fig 18.13 - Beam/length ratio variations
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Fig 18.14 - Effect of beam/ length ratio on rms absolute vertical acceleration at
Xpe = 0.15L and rms relative motions at xp;,, = 0.3L in irregular head waves
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The effects of changing the forward waterplane area coefficient are shown in Figures 18.16 -
18.18. A large forward waterplane area coefficient increases the local beam at the bow and gives
favourable changes to the hydrodynamic coefficients in this region, again at the expense of
increased wave excitation. It also leads to more favourable section shapes (for the reduction of
slamming pressures) with higher deadrise angles, as shown in Figure 18.16.However, extremely
large forward waterplane area coefficients imply heavily flared bows above the waterline and
these may suffer from flare slamming and increased deck wetness (see Section 14.7)

Nevertheless, a large forward waterplane is clearly beneficial, reducing both absolute and relative
motions and the probability of keel emergence. The more favourable deadrise angles will
alleviate slamming when it does occur.
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Fig 18.15 - Effect of beam/length ratio on keel emergence in irregular head waves
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18.3 LATERAL PLANE MOTIONS

Lateral plane motions are also influenced by changes in hull form and size. However, it is
generally considered better to reduce motions by installing suitable roll reduction devices such
as bilge keels, active fins or passive tanks and, of course, the rudder. However the metacentric
height can have a considerable influence on roll motions and it is worth ensuring that a suitable
value is chosen.
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Fig 18.17 - Effect of forward waterplane area coefficient on rms absolute vertical
acceleration at xy,,, = 0.15L and rms relative motions at xp,,, = 0.3L in irregular head
waves
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Equation (7.5b) gives an approximate relationship between the natural roll frequency and the
fluid metacentric height:

Assuming that the metacentric height is sufficient to meet the stability regulations the designer
should ensure that it is chosen to yield a natural frequency which does not coincide with peaks
in the encountered wave spectrum in which the ship is expected to operate (see Section 8.5). It
is also desirable to arrange for the natural frequency to lie in the range

03 <w,, <06 radisec

Lower natural frequencies with long natural periods lead to a “lazy” roll motion and the feeling,
which may well be justified, that the ship is in danger of capsize. Higher frequencies lead to high
roll and local lateral accelerations, especially in the upper parts of the ship. Motion induced
interruptions may then become commonplace (see Chapter 15).

18.4 THE SEAKFEPING DESIGN PACKAGE

We have seen that the available methods of predicting seakeeping performance for a given design
cannot, in themselves, be used to optimise a hull form. Lloyd (1992,1993) overcame this problem
with the Seakeeping Design Package (SDP). This is a computer based design system which
develops optimum hull forms within parameter ranges (length, beam, draught etc) specified in

advance by the designer. The designer must specify seakeeping response targets for accelerations
at two places, deck wetness and slamming in head waves. An error sum is defined as

e=Y (log, P, —-log, P, V; (k=14 (18.1)

where
P, is the probability of the vertical acceleration exceeding 3.0 m/sec’ at xp,,, = 0.15L

P, is the probability of the vertical acceleration exceeding 3.0 m/sec’ at x,, e = — 04250

P, is the probability of the relative motion exceeding the freeboard at the FP

P, is the probability of the highest slamming pressure exceeding a level specified in the coding
and

P w(k=14) are the target values set by the user.

The optimum design is the one which achieves the minimum value of the error sum € (hopefully
zero if all the targets are achieved).
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The Package searches an extensive database of over 1750 previously assessed designs. Ships
similar to the current design are selected and quadratic regression techniques (see Dom and

Regression
surface

I
L é ? Data points

Fig 18.19 - Sketch of quadratic regression surface for two hull form parameters

McCracken (1972)) are used to derive empirical equations of the form

Y, =log, P,

=Eaijx‘.xj (i=0,n j =0,n); (k=1,4)

relating each of the four responses to the hull form parameters. Table 18.1 lists the # parameters
and the number of ship designs N found to be necessary for each regression. The indicated
parameters may be taken as having significant effects on the individual seakeeping responses.

With five or more parameters it is impossible to visualise this process but Figure 18.19 shows
a sketch of a regression surface which would be appropriate if there were only two parameters
L and B. The regression equation for this case is of the form

_ 2 2
Yk—am+amL+a0_,_B+auL +a12LB+a22B

and the regression technique finds the values of the coefficients @, which give the minimum
differences between the data points and the surface ordinates (ie it finds the surface which fits
the data best). These regression equations are then combined to produce a single equation relating
the error sum (Equation (18.1)) to the hull form variables. This is illustrated for the case of only
two variables in Figure 18.20. The Package searches the surface for the minimum value of the
error sum €and interpolates to find the corresponding hull form parameters. These represent the
optimum design having the closest possible match to the target responses within the range of

parameters specified by the user. As a check the parameters and the actual responses of the new
design are computed and added to the database. The search is repeated several times using the
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progressively improving database. In this way the Package “learns by its own mistakes” and
ships outside the range of the original database can be designed.

TABLE 18.1
SEAKEEPING DESIGN PACKAGE
HULL FORM PARAMETERS USED IN REGRESSION ANALYSIS
(After Lloyd (1993)

Regression L B D m x/L | Cy C. F g* | N
Accelerations * * * * * 60
Weitness * * * * * &0
Slamming # # % % # % * % # 150

* indicates that this parameter is used in the regression
** Keel trim angle; the angle beteween the keel (assumed straight) and the horizontal (positve bow up)

Lloyd (1993) demonstrated how the Seakeeping Design package could be used to improve
the performance of existing designs by allowing some freedom to vary the hull form parameters
(typically +10%) and specifying stringent target responses.

L

Fig 18.20 - Finding the minimum value of the error sum

Figure 18.21 shows the result obtained for a Ro-Ro ferry and the required changes in parameter
values are listed in Table 18.2. For this case substantial improvements were achieved with
relatively small changes to the hull form: the only significant changes are moving the centre of
gravity forward (ie shifting volume forward from the after part of the ship; increasing the forward
waterplane area coefficient and building in a 2 degrees bow down trim to the keel. These changes
lead to much increased deadrise angles forward which are largely responsible for the dramatic
reduction in slamming.
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Original design

Improved design

Fig 18,21 Original and improved designs for a Ro-Ro ferry (After i,loyd( 1993))

TABLE 18.2
IMPROVING THE SEAKEEPING PERFORMANCE OF A RO-RO FERRY
After Lloyd (1993)
Parameter Actunal design Improved design
L (metres) 146 140
B (metres) 23.3 24.5
D (metres) 54 5.2
m (tonnes) 12,000 11,060
2x. / L 0 0.10
Cyr 0.68 0.78
C, 0.95 0.90
F (metres) 10.9 10.0
0 (degrees) 0 -2.0
Performance at 15 knots in rms rms
sea state 7 acceleration | acceleration Wetness Slamming
at 0.15L at -0.425 L | probability | probability
Original design 0.130g 0.194g 0.032 0.206
Target 0.100 0.100 0.010 0.010
Improved design 0.098 0.102 0.011 0.004
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18.5 DESIGN RECOMMENDATIONS

In rough weather a large ship will generally be more comfortable than a small one. Increasing
hull size will almost always result in improved seakeeping performance.' However small ships
will tend to contour the waves and suffer less from slamming and deck wetness”.

If the ship length is already determined low levels of vertical acceleration can be achieved with
a shallow draught and/or a wide beam hull form (with consequent changes to the ship mass).
Shallow draught forms may, however, suffer from frequent keel emergence and slamming.

Immunity from slamming can best be achieved by increasing the draught (especially forward by
adopting a bow down rake to the keel with high deadrise angles) at the penalty of increased
vertical accelerations. Larger rudders and/or a skeg may be required to compensate for the
associated reduction in directional stability.

It is for the designer to decide on the best compromise for these conflicting requirements.

Immunity from wetness is best achieved by adopting a high freeboard forward with adequate
freeboard elsewhere. Excessively flared above water bows should be avoided.

A large forward waterplane area coefficient reduces all motions in head waves.. However, large
angles of entrance associated with a large forward waterplane area coefficient may increase bow
swell up and increased wetness may be a problem.

A forward location for the centre of gravity is generally beneficial.

The metacentric height should be chosen to meet stability regulations and to give natural roll
frequencies in the range 0.3 - 0.6 radians/second.

! M C Eames of the Canadian Defence Research Establishment (Atlantic) propounded
the poison gas theory: the cheapest way to improve the seakeeping performance of a warship is
to build a larger hull with lots of unused compartments. Unfortunately politicians and naval
officers then see the ship as not fulfilling its potential as a weapons platform and these spaces
will inevitably be filled with costly weapons and sensor systems, making the ship prohibitively
expensive. Eames’ tongue in cheek solution was to fill the unused spaces with poison gas to keep
the money spenders out.

? The battleships of the past suffered from excessive deck wetness because they were too
long to contour the waves; the problem was compounded by the universal adoption of low
freeboard (see Brown (1997))
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APPENDIX 1

THE SPRING MASS SYSTEM

“If you ask a sinusoidal question you will get a sinusoidal answer”

- Professor R E D Bishop in a lecture on ship dynamics at The Admiralty Experiment Works,
Haslar. circa 1973.

Al.l INTRODUCTION

The behaviour of a ship in rough weather is fundamentally similar to the oscillatory response of
the classical damped spring mass system illustrated in Figure. A1.1. So an understanding of the
characteristics of the spring mass system is a good basis for the study of ship motions. This
Appendix presents the governing equations without proof, which can be found in many books
on applied mathematics.

Damping b
| :‘_lg_
— |
l—,_l Mass a
_/\/\/\/_/\ AL Force F
Stiffness € Displacement x
——-

Fig Al.1 - Spring mass system
The classical spring mass system consists of a mass a (tonnes) which is connected to a fixed
tigid base (say the Earth) through a dashpot and a spring. The dashpot exerts a damping force &
kN in response to a velocity of 1 metre/second and the spring exerts a restoring force ¢ kN if
the displacement is 1 metre. If the system is not disturbed it will adopt an equilibrium position
which we shall define as a datum displacement’

x=0 m

At any instant of time the total force F applied to the mass is related to the motion by the
equation

ai + bx +ex = F kKN (A1.1)

' Although the system described has a linear displacement in response to a force the
analysis is equally valid for angular displacements in radians (or degrees) in response to a
moment in kN m.
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Al.2 HARMONIC RESPONSE

Suppose that the force F varies in a sinusoidal manner with amplitude F,, kN and frequency w
radians/second:

F=Fysin(wt)} kN (Al1.2)
then the motion is given by
xX=xy8in(wt+€) m (Al1.3)

where x, is the motion amplitude in metres and € is a phase angle in radians. €is negative so
that the displacement sine wave lags the force sine wave as shown in Figure A1.2. The
maximum (positive) displacement x, occurs €/w seconds after the maximum (positive) force

F,.

fy /j\ /_ \ t (seconds)

elw
&
oy T /i\ t (seconds)
| ../ ' ]
T=27nlw

Fig. Al.2 - Sinusoidal motion response to a sinusoidal force acting on a linear spring mass
system

The motion amplitude and the phase are given by

xo 1
- = mfkN (ALl.4)
0 Wc-awt)?+ b
_ ~bw
tan € = —— (A1.5)
c - a w

If & = 0 there is no damping and the motion amplitude becomes infinite at the undamped
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natural frequency w, given by

c
w, = ,|= radlsec
a

(AL.6)

10/l
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e |

! |

o
<
o

0.5 1.0

L=
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Non dimensional frequency A=w/ o -

Fig Al1.3 - Response of a linear spring mass system

361




The amplitude and phase responses may be written in non dimensional form as

X,
FO = ! m/kN (AL.7)
0 cy(l -A*)?+(@2n AR |
and
-2n A
tan g = ——— 1.
1 - A (A18)

where the non dimensional frequency or tuning factor is
A=l
. (A1.9)

and the non dimensional damping or decay coefficient is

b

2 yJca

n = (AL1.10)

Figure A1.3 shows the amplitude and phase response for the system for various values of the
decay coefficient 1. At zero frequency the applied force is steady and the damping and inertia
have no effect because there is no velocity or acceleration. The displacement is governed only
by the spring stiffness:

X
Jo. 1 m/kN
F, c

At A = 1.0 (the non dimensional natural frequency) the force due to the spring stiffness exactly
balances the force due to the inertia of the mass. The amplitude response is then

- mlkN (Al.11)

]
FO

When there is no damping the amplitude becomes infinite at the natural frequency, as we have
already seen. However, for finite damping the maximum amplitude occurs at a lower frequency.
‘When n is small the difference is very small, as shown in Figure A1.3. For larger values of 1
the peak amplitude and frequency are reduced until the maximum response occurs at zero
frequency when 1) exceeds 0.707. The system is said to be critically damped when 1 = 0.707.
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Fig. Al.4 - Decay of oscillations in a linear second order spring mass system

At higher frequencies the amplitude response falls towards zero regardless of the decay
coefficient or the spring stiffness. Physically this corresponds to the situation where the
oscillation is so rapid that the system has insufficient time to respond appreciably.

Figure A1.3 also shows the phase response of the system. At very low frequencies the phase is
nearly zero and the displacement x is almost in phase with the applied force F. In other words
the system responds nearly instantaneously to the slowly varying force. As the frequency is
increased, the displacement begins to lag behind the force and the phase £ becomes negative.
The lag increases with damping, showing that a well damped system responds sluggishly to the
applied force. The phase is always - 90° at the undamped natural frequency regardless of the
damping. At higher frequencies the phase decreases (ie the lag increases) still further and tends
to -180° at infinite frequency.

Combining Equations (Al.4) and (Al.5) yields equations for the in phase and quadrature
components of the applied force:

363




c-aw =—cose kNm; (Al1.12)
bw=-—gsine kNim (Al1.13)

The component of the applied force which is in phase with the motion is therefore associated
with the stiffness and inertia coefficients, while the quadrature component is associated with
damping.

Al3 FREE DECAY

Let us now suppose that the mass is deflected to some initial displacement x,, and then released.
We require to examine the subsequent motion. Since there is no applied force after the mass is
released, F = 0 and Equation (Al.1) becomes

af +bx +cx =0 kN (Al.14)

and the resulting oscillation resembles a “sine’ wave with a continually decreasing amplitude:
t
X = Xy, €xp ( —:—c—] cos (wWit) m (Al1.15)

where the time constant is given by

1
nw,

_2a
T = e sec (A1.16)

Figure Al.4 shows the free decay of a linear damped spring mass system for various values of
the decay coefficient 1. When n = O there is no damping and the oscillation continues
indefinitely with no loss of amplitude because there is no mechanism for energy dissipation. As 1
increases, the oscillations decay more rapidly until they effectively disappear after only a single
cycle when 1 is greater than about 0.5. Free decays are often used to obtain an estimate of a
system's natural frequency and damping. For low damping the oscillation will decay at a
frequency which is approximately the same as the natural frequency. If the peaks occur at
intervals (peak to peak) of T, seconds the natural frequency is

@, = - sec (A1.17)
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and the decay coefficient is given by

i (A1.18)

1
n = — log,
T Xor + 1

where x;, and x,, ,,are the Jth and the (J + 1)th amplitudes. Note that if the damping is low
several estimates can be made from one record.
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Fig Al.5 - Estimation of decay coefficient

Al4 SYSTEM WITH NO STIFFENESS

Figure Al.6 shows a related system in which there is no spring stiffness so that it only has
damping and inertia. The equation of motion is now

aX + bx = F,sin (wt) kN (A1.19)

and the response is

x=x,sin{(wt+e) m (A1.20)

s0 that the application of a sinusocidally varying force again results in a sinusoidally varying
displacement.
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Fig A1.7 - Amplitude and phase responses for a second order systeem with no stiffiess.
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The amplitude and phase are given

X, a 1
?ﬂ == mllN (A1.21)
i)

1
tan € = —
o (A1.22)

where the non dimensional frequency is

. i W

W = — P
> (A1.23)

Figure A1.7 shows the amplitude and phase response of the zero stiffness system The responses
are quite different from those of the spring mass system. There is no natural frequency and the
amplitnde rises steadily as the frequency approaches zero. At zero frequency the steady force F,
is resisted only by the damping force bx (since the acceleration, after an initial transient, is zero)
and the mass moves at a steady velocity given by

. F
X = — misec
b

Since this velocity continues indefinitely, the amplitude x,, is infinite at zero frequency.
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APPENDIX 2
EXCITATION AMPLITUDES AND PHASES

If the force on a strip or the moment applied by the force about the centre of gravity is
OF = CD[PSsin(met—Q)+Pccas(mer—Q) dxy,

then the total force or moment is obtained by integrating along the hull

F=de=F0sin(mer+y)

where the excitation amplitude is

Fo o [ [ R oy )"+ | [ B o

and the phase is given by

2

f R, dxg,

tan y =
f R, dxy,

where
R =(Pgcos Q + P,sin Q)

R,=(-PgsinQ + P.cos Q)
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APPENDIX 4

NOTATION

A (1) Coefficient in the ITTC two parameter wave spectrum
(2) Area
(3) Section area of hull below waterplane

A Virtual mass or inertia coefficient: ith total (hydrodynamic + inertial)
force or moment required to sustain unit jth acceleration

Coefficients in Fourier series representation of an irregular wave
Parameters in Lewis form calculation

a (1) Radius of circle
(2) Aspect ratio
(3) Resistance augment fraction
(4) Mass or inertia

a. ith force or moment due to unit wave depression acceleration

Added mass or inertia coefficient: ith hydrodynamic force or moment
required to sustain jth unit acceleration

a, Passive tank inertia coefficient: ith force or moment on ship caused by
B unit tank angle acceleration %

a_ Passive tank inertia coefficient: Tank moment required to sustain unit
ith acceleration

a Passive tank inertia coefficient: tank moment required to sustain unit
tank acceleration %

ay, a, etc (1) Parameters in Lewis form transformation

(2) Fin servo parameters

0!

B (1) Coefficient in the ITTC two parameter wave spectrum;
(2) Waterline beam
(3) Width
BG Height of centre of gravity above centre of buoyancy
BM Height of metacentre above centre of buoyancy
b (1) Appendage outreach
(2) Damping coefficient
b, ith force or moment due to unit wave depression velocity
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Passive tank damping coefficient; ith force or moment on ship caused
by unit tank angle velocity

Passive tank damping coefficient: tank moment required to sustain unit
tank angle velocity 1

Fixed roll stabiliser control coefficients

ith force or moment required to sustain jth unit velocity

(1) Coefficient in JONSWAP wave spectrum
(2) Parameter in Lewis form calculation
(3) Confidence level

Added resistance in waves coefficient

Block coefficient

Drag coefficient

Drag coefficient in eddy making calculations
Skin friction coefficient

Lift coefficient

Midships section area coefficient A_ /(B, D_ )
Beach reflection coefficient

Forward waterplane area coefficient 24, /(B, L)

(1) Wave celerity: velocity of crest
(2) Stiffness coefficient
(3) Chord

Celerity of radiated waves
ith force or moment due to unit wave depression
ith force or moment required to sustain unit jth displacement

Passive tank stiffness coefficient: tank moment required to sustain ith
unit displacement

Passive tank stiffness coefficient: ith force or moment on ship due to
unit tank angle t©

Passive tank stiffness coefficient: tank moment required to sustain unit
tank angle 1t displacement

Celerity of nth wave component
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Draught
Mean local draught

(1) Depth of ocean or tank
(2) Propeller diameter

Appendage lift curve slope

(1) Energy
(2) Fin effectiveness factor

(1) Factor for increase of significant wave height year by year
(2) Force

(3) Freeboard

(4) Parameter in statistical F test

Drag force
Lift force
Froude number

(1) Probability density function
(2) Frequency distribution

Gain of ship system

Gain margin

Fluid metacentric height allowing for internal free surface effects
Solid metacentric height

Acceleration due to gravity

(1) Height of regular wave
(2) Local beam/draught ratio
(3) Gain of feedback network

Height of irregular wave

Observed average wave height
Significant wave height
(1) Height of pivot point above centre of gravity of model

(2) Depth or height of fluid
(3) Height of centre of gravity

Height of pivot point above centre of gravity of frame
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Height of passive tank
Total moment of inertia of model and supporting frame
Pitch moment of inertia of supporting frame

Second moment of area of waterplane about transverse axis throngh
centre of gravity

Transverse second moment of area of the waterplane
Roll moment of inertia

Pitch moment of inertia

Yaw moment of inertia

/1

Propeller advance coefficient

Height of centre of gravity above keel
Overall gain setting

Propeller torque coefficient

Propeller thrust coefficient

Speed dependent gain

Roll angle sensitivity

Roll velocity sensitivity

Roll acceleration sensitivity

‘Wave number

Wave number of nth sine wave component in Fourier series
representation of an irregular wave record

Roll radius of gyration
Pitch radius of gyration
Yaw radius of gyration

(1) Waterline length
(2) Half stance width

Number of times an event occurs per minuate
Motion induced interruption

Momentum in ith direction
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First moment of area of waterplane about transverse axis through centre
of gravity

Momentum in ith direction of water in a wave

Motion sickness incidence

Parameters in Lewis form calculation

Mass

Mass of supporting frame

Variance of an irregular wave record in short crested waves
Variance of an irregular record displacement

Variance of velocity of an irregular record of displacement
Variance of acceleration of an irregular record

(1) Number of observations

(2) Number of frequencies

(3) Propeller revolutions per second

(4) Number of events per hour

(5) Number of questionnaire returns

(6) Number of ships selected for regression analysis

Number of observations in histogram bin
Width of duct or reservoir

Operational effectiveness

Height of centre of gravity above waterplane
Parameters in Lewis form calculation

(1) Pressure
(2) Probability of occurrence
(3) Proportion of time

Proportion voting “yes”
Fluctuating part of pressure under a regular wave

(D k xB' ; COS U
(2) Propeller torgque

(1) Total velocity
(2) Passive tank resistance coetficient

(1) Model dimension ratio
(2) Total resistance in waves
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Reynolds number

(1) Radial polar coordinate
(2) Number of “yes” returns from a questionnaire

Radial location of eddy shedding
Effective radius of bilge

nth ship response in calculation of OF
Relative motion

Aft vertical motion at measurement point

Spectral ordinate for Bretschneider wave slope spectrum

Spectral ordinate for Bretschneider or ITTC two parameter wave
spectrum

Forward vertical motion at measurement point

Spectral ordinate for JONSWAP wave slope spectrum
Spectral ordinate for JONSWAP wave spectrum
Subjective magnitude .
Wave maker drive signal spectral ordinate
Pseudo spectral ordinate for ith motion in wave frequency domain
Encounter spectral ordinate for ith motion
Wave spectral ordinate

Directional wave spectral ordinate

Encountered wave spectral ordinate

(1) Local girth of hull
(2) Laplace transform operator

ith absolute motion

(1) Regular wave period: time interval between successive peaks or
troughs
(2) Propelier thrust

Encounter period

(1) Duration of an irregular wave time history
(2) Duration of model experiment run
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Observed average period

Period of the peaks of an irregular wave: time interval between
successive peaks or troughs

Zero crossing period: time interval between successive upward or
downward zero crossings in an irregular wave record

Modal period corresponding to the peak of the wave spectrum
Natural period

(1) Time
(2) Student’s test function

Time for waves to travel length of the tank

Time delay for introduction of nth wave component

Time when wave trough is alongside model centre of gravity
Velocity of ship

Tank wall interference occurs if U < U

crit

(1) Velocity of a water particle in the x direction
(2) Parameter in eddy making calculation

Wave group velocity
Group velocity of nth wave component
Athwartships component of u

(1) Velocity of a water particle in the y direction
(2) Voltage

Amplitude of v

(1) Weighting factor
(2) Weight

Width of passive tank

Taylor wake fraction

Width of histogram bin

Force on particle of water in x direction
Parameters in Lewis form calculation

(1) Distance from origin in direction of wave propagation
(2) Real variable in z plane
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Ve

Location of a point in the ship relative to centre of gravity
Longitudinal distance from centre of gravity to AP (negative)

Distance from earth fixed origin E to moving origin G, in direction of
ship’s mean course

Distance from fin to bilge keel
Distance between stabiliser fins
Distance from FP

Longitudinal distance from midships to centre of gravity (positive
forward)

ith ship motion displacement relative to moving origin G,

Waves are recorded x, metres after they pass the centre of gravity
Distance from centre of gravity to measurement or suspension point
Amplitude of x,

ith velocity of strip

(1) ith acceleration of elemental mass
(2) ith acceleration of strip

ith displacement of strip relative to centre of gravity
Distance from wave maker
Length of passive tank

(1) Bow stem overhang
(2) amplitude of x

Sway velocity of strip relative to origin O in the waterline

Location of wave probe ahead and to starboard of model centre of
gravity

(1) Force on particle of water in y direction
(2) External force per unit mass

Component of local lateral acceleration in ydirection

(1) Depth below surface
(2) Imaginary variable in z plane
(3) Coordinate in passive tank analysis

Depth where pressure is P in calm water
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Y ¥,  Yertical coordinates in port and starboard reservoirs

Z, Z, Parameters in eddy making roll damping calculation
z (1) Complex variable in circle plane for Lewis form calculations
(2) Difference in fluid height in tank reservoirs
(b) GREEK SYMBOLS
o (1) Instantaneous slope of wave surface

(2) Appendage incidence

g Component of wave slope amplitude in surge direction

o0 Wave slope amplitude of nth sine wave component in Fourier representation of
an irregular wave slope record

Cs Slope of constant pressure contour at depth D

Cs, Athwartships component of o

B (1) Beach slope
(2) Fin depression angle
(3) Deadrise angle at keel

r Counting functional in calculation of OE

Y - (1) Coefficient in JONSWAP wave spectrum
(2) Slope of hull section at the waterline

Y; ith phase angle: ith wave force leads maximum wave depression by vy, radians

(1) Width of water particle
(2) Displacement volume of hull

Ax Deviation of water particle in x direction from datum position
Ay Deviation of water particle in y direction from datum position
0 (1) Thickness of boundary layer

(2) Bow flare angle
8, ith phase angle: ith motion leads maximum wave depression by 0, radians
dp Correction to phase angle due to wave probe location
&, Phase angle for relative motion: Relative motion leads maximum wave
depression by & ;radians
O ith‘ phase angle for absolute motion: ith motion leads maximum wave

depression by &, radians
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D

-t

an]

%)

> >

(1) ith Force or moment applied to elemental mass
(2) ith force or moment applied to sirip

ith force or moment applied to strip by wave
mass of element of ship

Contribution to variance in short crested waves from a single secondary wave
direction

Length of strip
Frequency interval

(1) Bandwidth parameter -
(2) Phase angle
(3) Error sum in Seakeeping Design Package

Phase of ship system

Phase of ship and feedback system
Phase of feedback system

Phase margin

Phase angle of nth sine wave component in a Fourier series representation of an
irregular wave record

(1) Instantaneous wave depression relative to mean level
(2) Complex variable in ship section plane

Amplitude of an irregular wave

Amplitude of sine wave component » in a Fourier series representation of an
irregular wave or motion record

Depression of constant pressure contour below depth y,

Mean value of highest 1/n observations of {,

(1) Decay coefficient
(2) Propeller efficiency

(1) Angular coordinate in z plane
(2) Keel trim angle

Polar angular location of element on surface of hull
Slope of hull surface
Tuning factor @ / w,

Regular wave length
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(bc 3 (bs
¢'1! (bg

Hw

Mass density of water

mass density of tank fluid

Section area coefficient

Root mean square value of ith motion
Root mean square value of an irregular wave record in short crested waves
Root mean square value of displacement of an irregular wave record
Root mean square value of velocity of an irregular wave record
Root mean square value of acceleration of an irregular wave record

(1) Passive tank angle
(2) Timeconstant 1 / (M w, )

Potential functions in Lewis form calculations
Angles in passive tank analysis

(1) Ship heading relative to primary wave direction
(2) Coefficient of friction

Viscosity of water

Fractional loss of metacentric height

Ship heading relative to secondary wave direction
Velocity potential

Stream functions in Lewis form calculations
Force potential

(1) Frequency
(2) Wave frequency

Encounter frequency
nth frequency in Fourier series representation of an irregular wave record
Undamped natural frequency

Undamped natural frequency for ith motion
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(3) SUFFIXES, SUBSCRIPTS ETC

Symbol
bar

173

prime /

SIS

amp
aw

BK
BL

ca

crit

IBK
IF

Examples

Meaning

Mean value

Significant value (mean of highest third)

(1) Local value
(2) Non dimensional value

(1) Appendage (stabiliser fin, rudder etc)

(2) Air
(3) Apparent value

Appendage drag at zero speed
Appendage lift

amplification

Added value in waves and wind
Bilge keel

Boundary layer

(1) Roll stabiliser controller
(2) In quadrature value

Calm water value
Augmented value in calm water
Critical value

(1) Demanded value
(2) Drag

Passive tank duct
Deck submergence
Eddy shedding
Effective value
Stabiliser fin

Bilge keel interference

Fin Interference
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L J

in, out

k
ke
L

max

pe

slam
sp
SS

stall

Mil
MiII

S5

stall

Indicates motion, force or moment:
1: surge, positive forward

2: sway, positive to starboard

3: heave, positive downwards

4: roll, positive starboard side down
5: pitch, positive bow up

6: yaw, positive bow to starboard

Input and output
Kinetic

Keel emergence
Lift

(1) Model value
(2) Measured value
(3) Measured from origin at midships

Value at midships
Maximum value

(1) Peaks

(2) Port side

(3) Propeller

(4) Slamming pressure
(5) Potential

Propeller emergence

(1) Reservoir
(2) Root

(1) Ship value
(2) In phase

(1) Starboard side
(2) Superstructure
(3) Swell up

Slamming

Slides to port

Slides to starboard

Value when appendage stalls
Towing tank
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(1) Tip
(2) Passive tank

Tipping to port
Tipping to starboard

(1) Waterplane
(2) Wave

Waterplane forward of midships
Amplitude
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APPENDIX 5

A NOTE ON UNITS AND NUMERICAL VALUES

Systéme International (SI) units are used throughout this book. The tonne (t) is adopted as the
unit of mass with the kilonewton (kN) as the corresponding unit of force which will accelerate
a unit mass at 1 metre/second®. The metre (m) and the second (sec) are adopted as the units of
length and time, unless otherwise stated in the text. Angles are generally measured in radians
(rad) and angular velocities and frequencies are given in rad/sec. Following common practice

ship speeds are given in knots or nautical miles per hour. The mass density of fresh water is 1.0
t/m”.

Appropriate units are quoted for all equations. Some readers of the first edition of this book
criticised this decision on the grounds that it implies that the equations are not valid in other
systems of units. This is, of course, not true and readers may substitute their own units providing
that a rational system is used with a unit force imparting a unit acceleration to a unit mass.

Quoting the units of equations is retained since this helps to reinforce the reader’s understanding
of their physical meanings. For example Equation (4.22d) for b,, gives the units as kN m
/(rad/sec) highlighting the fact that the roll damping coefficient is the roll moment (in kNm)
required to sustain a unit roll velocity (in rad/sec).

Mass density of fresh water 1.0 t/m?

Mass density of sea water 1.025 t/m?

Mass density of air at 15° C 0.00122 ¢/m®
Viscosity of fresh waterat 15°C  1.14 x 10 * kN sec/m”
Viscosity of air at 20° C 1.81 x 10 * kN sec/m?
Acceleration due to gravity 9.81 m/sec”

1 knot 0.515 m/sec

The following notation is used:

degrees

kilo Newtons
kilo Joules
metres

rad radians

sec seconds

t tonnes

2Egg
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APPENDIX 6

GLOSSARY

Shear line

Midships

Superstructure

Stemhead

Transom \ Sterm

Forecastie

Freeboard

Waterline \ Bow Stem

.

‘ Draught
\ Farefoot
Aft perpendicular Keel Y ———T"5 | Forward

N perpendicular

Length between
perpendiculars

L.
-

Aft perpendicular (AP)

Beam
Bow
" Draught

Fetch

Forecastle

Forefoot

Forward Perpendicular (FP)

Freeboard

Length

Shear line
Sinkage

Stem
Stemhead
Stern
Superstructure
Swell
Transom
Trim

Wall sided
Waterline
Waterplane
Weather deck

Vertical line drawn through intersection of the stern profile
and the waterplane

The width of the ship at the widest part of the waterplane

The foremost part of the ship

Local depth of the keel below the waterline at zero speed in calm
water

Length of ocean along wind vector exposed to the wind

The raised part of the hull at the bow

The keel close to the bow

Vertical line drawn through the intersection of the stem and the
waterline

Vertical distance from the water surface to the edge of the weather
deck

Water line length of the ship in calm water

Side view of the edge of the weather deck

Increase of draught at midships at forward speed in calm water
The line joining the keel and the deck at the bow

The top of the stem

The aftermost part of the ship

The part of the ship above the weather deck

‘Waves generated at some distance from the observation site
Stern truncated as a flat transverse section

Steady pitch at forward speed in calm water

The sides of the hull at the waterline are vertical

Side view of waterplane

The plane of intersection of the hull and the calm water surface
The main deck exposed to the weather '
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INDEX

A

absolute motions 148
accelerations
carrection for transducer location 168
hull form and vertical acceleraion 349, 351,
353
hull size and vertical acceleration 345
in regular waves 150
rms accelerations 158
spectrum 45
time history 45
variance 46
acclimatisation to ship motions 304
active roll stabiliser fins: see stabiliser fins
added mass 79
heaving Lewis form 111
rolling Lewis form 117
swaying Lewis form 113
added resistance in waves 276, 279
added resistance due to wind 280
alternative transfer function presentation 141
amplitude,
component sine wave 43
excitation amplitudes 368
mean 225
mean {irregular) wave amplitude 37
pressure amplitude under a wave 22
regular wave amplitade 13, 19
significant single amplitude 40, 225
wave orbit amplitude 22
wave slope amplitude 13
angular motion spectra 156
annual growth of wave heights 67
antisymmetric motions 70
appendage
roll damping 129
aspect ratio 232
axes 68

B

ballasting and trimming 194
Baltic sea 63

beaches 188

Bernoulli’s equation 14
bifilar suspension rig 196

bilge keels 228

design recornmendations 244
Black sea 63
bow shape

and deck wetness 298

flare 299

overhang 299
Bretschneider wave slope spectrum 54
Bretschneider wave energy spectrum 49

C
celerity 13, 18, 29
closed loop gain 254
coastal waters 52
coefficients in egnations of motion 77, 87, 88,
100-103
zero value coefficients 82
compound pendulum rig 194
confidence 320
conformal transformation 105
constraints on stabiliser fin outreach 234
conlouring the waves 344
cosine squared spreading 57
coupling 81, 83
criteria; see seakeeping criteria
critical relative velocity for slamming 292

D

damping
eddy roll damping 124
equivalent linearisation 123
heaving Lewis form 111
non linear roll damping 123
passive tank damping 269, 274
roll damping 122
rolling Lewis form 117
skin friction roll damping 126
swaying Lewis form 113
total roll damping 131

decay coefficient 362

deck wetness 286, 296
bow shape and deck wetness 298
green seas 296
measurements 192
spray 290, 296
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degrees of freedom 70
design recommendations

deck wetness 301

good seakeeping 358

passive tank 71

slamming 296

stabiliser fins and bilge keels 244
design of passive tanks 270
dimension ratio 174
dimensional analysis 172, 180
directional wave spectrum 56
drag coefficient 232

E

electronic filter analogy 152
encounter

frequency 29

period 29

wave spectrum 153
energy in a regular wave 23, 25
equations of motion -

passive tank 260

ship 71, 74

ship with a passive tank 265

ship with port/starboard symmetry 83

ship with stabiliser fins 235
equivalent linearisation 123
error function 214
excitation 93, 136, 368

F

fair weather bias in wave statistics 61
fetch 35

fins: see stabiliser fins

flare 299

forced rolling trials 248
fore-aft symmetry 81

Fourier analysis 39

freeboard exceedance 297, 330
Froude number 178

Ftest 321

fully developed waves 35

G

gain margin 257

Gaussian probability density function 218
generating a time history from a spectrum 42
geographical coefficients 82

geosims 341

green seas 296

390

group velocity 27
Gulf of Mexico 61

H

heading 29, 177

heave: see also ship motions; vertical plane
coefficients 78
natural frequency 133
spectral moments 158
stabilisation 227

hindcasting 63

histograms 210

hull boundary layer 237

hull form and
keel emergence 350, 352, 333
lateral plane motions 353
relative motion 349, 351, 353
seakeeping 340, 348
vertical acceleration 349, 351, 353

hull size and
keel emergence 347
lateral plane motions 353
relative motion 346
seakeeping 340
vertical plane motions 341
vertical acceleration 345

I

idealised wave spectra 49
instrnmentation 189
involuntary speed loss in waves 276, 284
irregular waves 35
Bretschneider wave energy spectrum 49
Bretschneider wave slope spectrum 54
ITTC wave energy spectrum 49
ITTC wave slope spectrum 54
generating a time history from a spectrum
42
mean amplitude 225
mean period 46, 50
mean period of the peaks 37, 46, 51
mean surface depression 39
mean wave height 37
mean zero crossing period 37, 46, 50, 61
JONSWAP wave energy spectrum 52
JONSWAP wave slope spectrum 54
wave energy spectrum 41
wave slope spectrum 53




J

joint probabilities 226 -
JONSWAP wave energy spectrum 52
JONSWAP wave slope spectrum 54

K

keel emergence
probability 288
effect of hull size 344
effect of hull form 350, 352, 353

L

lateral force estimator (LFE) 311
lateral plane
coefficients 82, 90
excitation 26
motions 70, 142, 145
Lewis forms 104, 106
lift coefficient 232
lift curve slope 233
line spectrum 42
linear motion spectra 154
long crested waves 55 -

M

matching wave spectrum and transfer function
159
mean
amplitude 225
period 46, 50
period of the peaks 37, 46, 51
surface depression 39
wave height (irregular waves) 37
zero crossing period 37, 46, 50, 61
Mediterranean sea 63
metacentric height 92, 353
loss for a passive tank 273
MIAS wave data 66
modal period 51, 61
model experiments 172
dimension ratio 174
inclining experiment 194
in irregular waves 181, 203
in regular waves 198
introducing the wave frequencies 204
laboratory test facilities 184
open water model experiments 183
optimum experiment runs 201
Testraint systems 185

391

madel experiments (continued) 172
scaling laws 172, 182
slamming drop tests 291
slamming experiments in waves 292
tank wall interference 208
trimming and ballasting 194
madel materials 193
moments of inertia 73
most probable modal period 61
motion induced interruptions (MIT) 310
motion sickness incidence (MSI) 304

N

natural frequency
heave 133
of a spring mass system 361
passive tank 269, 271
pitch 133
roll 143,145, 354
NOAA (US coastal) wave data 66
non linear roll damping 123
non linear motions in irregular waves 164
Normal probability density function 218
North Atlantic Ocean 61, 63
North Sea 61, 63, 66
notional relative motion 288

o

ocean waves 35

ocean wave statistics 25, 58

open water model experiments 183
open loop gain 254

operational effectiveness 333
overhang 299

P
Pacific Ocean 61, 65
particle orbits under a wave 20
passive tanks 258
characteristics and design recommendations
271
damping 269, 274
fluid depth 272
loss of stability 274
maximum stabilising moment 272
maximum tank angle 272
motions 259
natural frequency 269, 271
performance 274




passive tanks (continued)
theory for a U tube passive tank 260
types of passive tank 259
period 13, 19
mean 46, 50
mean period of the peaks 37, 46, 51
mean zero crossing period 37, 46, 50, 61
modal 51, 61
phase 76, 368
phase margin 258
phase shift due to wave probe location 199
pitch: see ship motions: vertical plane
cocfficients 82
natural frequency 133
spectral moments 158
stabilisation 227
poison gas theory 358
pressure contours under a wave 14
pressure fluctuations under a wave 23
probabhility
analysis 210
deck submergence 289
density function 215
exceeding a specified significant wave
height 61
formulae 210
keel emergence 289
propeller emergence 289
product moments of ineriia 73
propeller characteristics 282
propeller emergence 286
propeller racing 286
pseudo spectrum 156

0

questionnaires 318, 319, 327
analysis of box ticking questions 323
analysis of questionnaires 320
confidence 320
Ftest 321
Student’s t test 320

R

radius of gyration 73, 195
Rayleigh probability density function 221
regular waves 12

amplitude 13, 19

celerity 13, 18, 29

characteristics 28

formulae 27, 28

height 13

group velocity 25
orbif amplitudes 22
orbit velocities 21
period 13, 19
reflection 189, 199
steepness 13
trochoid 21
wave number 17
wave length 13
relative motion 149, 288
relative motion measurerment 192
response amplitude operator 132
Reynolds number 178
rms (root mean square) 39
accelerations 158
heave 156
pitch 157
velocities 158
roll; see ship motions: lateral plane
amplification 243, 256, 260
excitation 98
damping 122
natural frequency 143, 145, 354
stabiliser fins 230
stabilisation 227

S
scaling laws 172, 182
sea areas 61, 66 I
Sea of Japan 61 i
sea state 58 i
seakeeping basin 186 '
seakeeping criteria 315, 328, 331

criteria rules 316

equipment criteria 317

numerical values 331
Seakeeping Design Package 354
seakeeping trials 165

run lengths and ship courses 170

seakeeping measurements 168, 169
self propulsion 283
ship motions 68

absolute 148

acclimatisation 304

antisymmetric 70

definitions 68

effects on passengers and crew 303

energy spectrum 154

general equations of motion 71

in irregular waves 152

in regular waves 132




ship motions {continued)
in short crested waves 160
lateral plane 70, 142,145
non linear motions in irregular waves 164
relative 149, 288
symmetric 70
vertical plane 70, 133, 137, 138
short crested waves 55
significant single amplitude 40, 225
significant wave height 40, 49, 50, 61, 224, 225
slamming 286, 289
critical relative velocity for slamming 292
drop tests 291
frequency 292, 329
measurements 192
model experiments in waves 202
pressure 293
spectmm
definition 41
bandwidth 47
Bretschneider wave energy spectrum 49
Bretschneider wave slope spectrum 54
generating a time history from a spectrum
42
ITTC wave energy spectrum 49
ITTC wave slope spectrum 54
JONSWAP wave energy spectrum 52
JONSWAP wave slope spectrum 54
line spectrum 42
spectral moments 44
spectral ordinate 41
wave slope spectra 53
spray 250, 296
spreading 55, 160
spring mass system 359
decay coefficient 362
natural frequency 361
free decay 364
stabiliser fins 230
constraints on stabiliser fin outreach 234
controller transfer function 245
fin-bilge keel interference 241
fin-fin interference 239
hydrodynamic characteristics 231
lift coefficient 232
lift curve slope 233
losses 237
overall hydrodynamic effectiveness 242
performance 258
serve transfer function 250
specification 252

393

stabiliser fins (continued)
stall 233
sway-yaw effects 242
system stability 252
stabiliser fin control systems 244, 246
choosing overall gain 252
closed loop gain 254
controller transfer function 245
gain margin 257
open loop gain 254
phase margin 258
speed dependent gain 246
worked example 251
standard deviation 39
statistical analysis of irregular waves 37
strip theory 84
Student’s t test 320
subjective magnimde (SM) 306, 329
superposing 12
surge: see ship motions: vertical plane
sway; see ship motions: lateral plane
swell up 150 288, 300
swells 37
symmetric motions 70

T

tanks: see also passive tanks and seakeeping
basin
tank wall interference 208
towing tank 184

transfer functions 132, 166; see also table at the
end of the index
alternative presentations 141
servo transfer function 250

trochoid wave 22

U X

useful areas in a seakeeping basin 202

Vv

variance 39,45
acceleration 46
heave 156
pitch 157
velocity 46

velocity
regular waves 150
spectrum 45

velocity time history 45

velocity potential 13




vertical plane motions 70
coefficients 77, 100, 101
excitation 95
motons 133, 137, 138

virtual mass 75

virtual moment of inertia 75

voluntary speed loss 315, 326, 330

w

waves ; see also regular waves and irregular
waves
annual growth of wave heights 67
atlas 59, 63
breaking 37
decay 37
fully developed 35
generation by wind 35
measurement 167, 191
reflections 188, 199
scatter diagrams 61, 64

waves (continued)
spreading 57
visual observations 58

wave makers 187

waverider buoy 167

weiness; see deck wetness

whipping 169, 286

worked examples
model experiment parameters 205
stabiliser fin control 251
confidence in questionnaire analysis 322

Y

yaw: see ship motions; lateral plane

Z

zero crossing period (mean) 37, 46, 50, 61
zero value coefficients in equations of motion 82

Transfer Functions and page numbers
Heading Sway Heave Roll Pitch Yaw Absolute | Relative
(deg) motion motion
0 138 139 138 139
140 140
30 147 139 140 146 139 140 147
60 147 139 140 146 139 140 147
90 142 139 140 143 146
120 147 139 140 146 139 140 147
150 147 139 140 146 139 140 147
180 136 139 137 139 149 345 | 149 159
140 155 140 157 346
341 342 341 343
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