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Preface

This book is based on a course of Ship Hydrostatics delivered during a quarter of a
century at the Faculty of Mechanical Engineering of the Technion-Israel Institute
of Technology. The book reflects the author's own experience in design and R&D
and incorporates improvements based on feedback received from students.

The book is addressed in the first place to undergraduate students for whom
it is a first course in Naval Architecture or Ocean Engineering. Many sections
can be also read by technicians and ship officers. Selected sections can be used
as reference text by practising Naval Architects.

Naval Architecture is an age-old field of human activity and as such it is much
affected by tradition. This background is part of the beauty of the profession.
The book is based on this tradition but, at the same time, the author tried to write
a modern text that considers more recent developments, among them the theory
of parametric resonance, also known as Mathieu effect, the use of personal
computers, and new regulations for intact and damage stability.

The Mathieu effect is believed to be the cause of many marine disasters.
German researchers were the first to study this hypothesis. Unfortunately, in
the first years of their research they published their results in German only. The
German Federal Navy - Bundesmarine - elaborated stability regulations that
allow for the Mathieu effect. These regulations were subsequently adopted by a
few additional navies. Proposals have been made to consider the effect of waves
for merchant vessels too.

Very powerful personal computers are available today; their utility is enhanced
by many versatile, user-friendly software packages. PC programmes for hydro-
static calculations are commercially available and their prices vary from several
hundred dollars, for the simplest, to many thousands for the more powerful.
Programmes for particular tasks can be written by a user familiar with a good
software package. To show how to do it, this book is illustrated with a few
examples calculated in Excel and with many examples written in MATLAB.
MATLAB is an increasingly popular, comprehensive computing environment
characterized by an interactive mode of work, many built-in functions, imme-
diate graphing facilities and easy programming paradigms. Readers who have
access to MATLAB, even to the Students' Edition, can readily use those exam-
ples. Readers who do not work in MATLAB can convert the examples to other
programming languages.

Several new stability regulations are briefly reviewed in this book. Students
and practising Naval Architects will certainly welcome the description of such
rules and examples of how to apply them.
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This book is accompanied by a selection of freely downloadable MATLAB
files for hydrostatic and stability calculations. In order to access this mate-
rial please visit www.bh.com/companions/ and follow the instructions on the
screen.

About this book

Theoretical developments require an understanding of basic calculus and analytic
geometry. A few sections employ basic vector calculus, differential geometry or
ordinary differential equations. Students able to read them will gain more insight
into matters explained in the book. Other readers can skip those sections without
impairing their understanding of practical calculations and regulations described
in the text.

Chapter 1 introduces the reader to basic terminology and to the subject of
hull definition. The definitions follow new ISO and ISO-based standards. Trans-
lations into French, German and Italian are provided for the most important
terms.

The basic concepts of hydrostatics of floating bodies are described in Chap-
ter 2; they include the conditions of equilibrium and initial stability. By the end
of this chapter, the reader knows that hydrostatic calculations require many inte-
grations. Methods for performing such integrations in Naval Architecture are
developed in Chapter 3.

Chapter 4 shows how to apply the procedures of numerical integration to the
calculation of actual hydrostatic properties. Other matters covered in the same
chapter are a few simple checks of the resulting plots, and an analysis of how
the properties change when a given hull is subjected to a particular class of
transformations, namely the properties of affine hulls.

Chapter 5 discusses the statical stability at large angles of heel and the curve
of statical stability.

Simple models for assessing the ship stability in the presence of various heel-
ing moments are developed in Chapter 6. Both static and dynamic effects are
considered, as well as the influence of factors and situations that negatively affect
stability. Examples of the latter are displaced loads, hanging loads, free liquid sur-
faces, shifting loads, and grounding and docking. Three subjects closely related
to practical stability calculations are described in Chapter 7: Weight and trim
calculations and the inclining experiment.

Ships and other floating structures are approved for use only if they comply
with pertinent regulations. Regulations applicable to merchant ships, ships of the
US Navy and UK Navy, and small sail or motor craft are summarily described
in Chapter 8.

The phenomenon of parametric resonance, or Mathieu effect, is briefly descri-
bed in Chapter 9. The chapter includes a simple criterion of distinguishing
between stable and unstable solutions and examples of simple simulations in
MATLAB.
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Ships of the German Federal Navy are designed according to criteria that take
into account the Mathieu effect: they are introduced in Chapter 10.

Chapters 8 and 10 deal with intact ships. Ships and some other floating struc-
tures are also required to survive after a limited amount of flooding. Chapter 11
shows how to achieve this goal by subdividing the hull by means of watertight
bulkheads. There are two methods of calculating the ship condition after dam-
age, namely the method of lost buoyancy and the method of added weight. The
difference between the two methods is explained by means of a simple example.
The chapter also contains short descriptions of several regulations for merchant
and for naval ships.

Chapters 8, 10 and 11 inform the reader about the existence of requirements
issued by bodies that approve the design and the use of ships and other floating
bodies, and show how simple models developed in previous chapters are applied
in engineering calculations. Not all the details of those regulations are included
in this book, neither all regulations issued all over the world. If the reader has
to perform calculations that must be submitted for approval, it is highly recom-
mended to find out which are the relevant regulations and to consult the complete,
most recent edition of them.

Chapter 12 goes beyond the traditional scope of Ship Hydrostatics and pro-
vides a bridge towards more advanced and realistic models. The theory of linear
waves is briefly introduced and it is shown how real seas can be described by the
superposition of linear waves and by the concept of spectrum. Floating bodies
move in six degrees of freedom and the spectrum of those motions is related
to the sea spectrum. Another subject introduced in this chapter is that of tank
stabilizers, a case in which surfaces of free liquids can help in reducing the roll
amplitude.

Chapter 13 is about the use of modern computers in hull definition, hydro-
static calculations and simulations of motions. The chapter introduces the basic
concepts of computer graphics and illustrates their application to hull defini-
tion by means of the MultiSurf and SurfaceWorks packages. A roll simulation
in SIMULINK, a toolbox of MATLAB, exemplifies the possibilities of modern
simulation software.

Using this book

Boldface words indicate a key term used for the first time in the text, for instance
length between perpendiculars. Italics are used to emphasize, for example
equilibrium of moments. Vectors are written with a line over their name: KB,
GM. Listings of MATLAB programmes, functions and file names are written
in typewriter characters, for instance mathisim. m.

Basic ideas are exemplified on simple geometric forms for which analytic
solutions can be readily found. After mastering these ideas, the students should
practise on real ship data provided in examples and exercises, at the end of each
chapter. The data of an existing vessel, called Lido 9, are used throughout the
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book to illustrate the main concepts. Data of a few other real-world vessels are
given in additional examples and exercises.

I am closing this preface by paying a tribute to the memory of those who
taught me the profession, Dinu Hie and Nicolae Paraianu, and of my colleague
in teaching, Pinkhas Milkh.
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1
Definitions, principal
dimensions

1.1 Introduction

The subjects treated in this book are the basis of the profession called Naval
Architecture. The term Naval Architecture comes from the titles of books pub-
lished in the seventeenth century. For a long time, the oldest such book we were
aware of was Joseph Furttenbach's Architectura Navalis published in Frankfurt
in 1629. The bibliographical data of a beautiful reproduction are included in
the references listed at the end of this book. Close to 1965 an older Portuguese
manuscript was rediscovered in Madrid, in the Library of the Royal Academy
of History. The work is due to Joao Baptista Lavanha and is known as Livro
Primeiro da Architectura Naval, that is 'First book on Naval Architecture'. The
traditional dating of the manuscript is 1614. The following is a quotation from
a translation due to Richard Barker:

Architecture consists in building, which is the permanent construc-
tion of any thing. This is done either for defence or for religion, and
utility, or for navigation. And from this partition is born the division
of Architecture into three parts, which are Military, Civil and Naval
Architecture.

And Naval Architecture is that which with certain rules teaches the
building of ships, in which one can navigate well and conveniently.

The term may be still older. Thomas Digges (English, 1546-1595) published
in 1579 an Arithmeticall Militarie Treatise, named Stratioticos in which he
promised to write a book on 'Architecture Nautical'. He did not do so. Both
the British Royal Institution of Naval Architects - RINA - and the American
Society of Naval Architects and Marine Engineers - SNAME - opened their
websites for public debates on a modern definition of Naval Architecture. Out of
the many proposals appearing there, that provided by A. Blyth, FRINA, looked
to us both concise and comprehensive:

Naval Architecture is that branch of engineering which embraces
all aspects of design, research, developments, construction, trials
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and effectiveness of all forms of man-made vehicles which operate
either in or below the surface of any body of water.

If Naval Architecture is a branch of Engineering, what is Engineering? In the
New Encyclopedia Britannica (1989) we find:

Engineering is the professional art of applying science to the
optimum conversion of the resources of nature to the uses of
mankind. Engineering has been defined by the Engineers Council
for Professional Development, in the United States, as the creative
application of "scientific principles to design or develop structures,
machines..."

This book deals with the scientific principles of Hydrostatics and Stability. These
subjects are treated in other languages in books bearing titles such as Ship theory
(for example Doyere, 1927) or Ship statics (for example Hervieu, 1985). Further
scientific principles to be learned by the Naval Architect include Hydrodynamics,
Strength, Motions on Waves and more. The 'art of applying' these principles
belongs to courses in Ship Design.

1.2 Marine terminology

Like any other field of engineering, Naval Architecture has its own vocabulary
composed of technical terms. While a word may have several meanings in com-
mon language, when used as a technical term, in a given field of technology,
it has one meaning only. This enables unambigous communication within the
profession, hence the importance of clear definitions.

The technical vocabulary of people with long maritime tradition has peculiar-
ities of origins and usage. As a first important example in English let us consider
the word ship; it is of Germanic origin. Indeed, to this day the equivalent Dan-
ish word is skib, the Dutch, schep, the German, Schiff (pronounce 'shif'), the
Norwegian skip (pronounce 'ship'), and the Swedish, skepp. For mariners and
Naval Architects a ship has a soul; when speaking about a ship they use the
pronoun'she'.

Another interesting term is starboard; it means the right-hand side of a ship
when looking forward. This term has nothing to do with stars. Pictures of Viking
vessels (see especially the Bayeux Tapestry) show that they had a steering board
(paddle) on their right-hand side. In Norwegian a 'steering board' is called 'styri
bord'. In old English the Nordic term became 'steorbord' to be later distorted to
the present-day 'starboard'. The correct term should have been 'steeringboard'.
German uses the exact translation of this word, 'Steuerbord'.

The left-hand side of a vessel was called larboard. Hendrickson (1997) traces
this term to 'lureboard', from the Anglo-Saxon word 'laere' that meant empty,
because the steersman stood on the other side. The term became 'lade-board' and
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'larboard' because the ship could be loaded from this side only. Larboard sounded
too much like starboard and could be confounded with this. Therefore, more than
200 years ago the term was changed to port. In fact, a ship with a steering board
on the right-hand side can approach to port only with her left-hand side.

1.3 The principal dimensions of a ship

In this chapter we introduce the principal dimensions of a ship, as defined in
the international standard ISO 7462 (1985). The terminology in this document
was adopted by some national standards, for example the German standard DIN
81209-1. We extract from the latter publication the symbols to be used in draw-
ings and equations, and the symbols recommended for use in computer programs.
Basically, the notation agrees with that used by SNAME and with the ITTC
Dictionary of Ship Hydrodynamics (RINA, 1978). Much of this notation has
been used for a long time in English-speaking countries.

Beyond this chapter, many definitions and symbols appearing in this book are
derived from the above-mentioned sources. Different symbols have been in use in
continental Europe, in countries with a long maritime tradition. Hervieu (1985),
for example, opposes the introduction of Anglo-Saxon notation and justifies
his attitude in the Introduction of his book. If we stick in this book to a certain
notation, it is not only because the book is published in the UK, but also because
English is presently recognized as the world's lingua franca and the notation
is adopted in more and more national standards. As to spelling, we use the
British one. For example, in this book we write 'centre', rather than 'center' as
in the American spelling, 'draught' and not 'draft', and 'moulded' instead of
'molded'.

To enable the reader to consult technical literature using other symbols, we
shall mention the most important of them. For ship dimensions we do this in
Table 1.1, where we shall give also translations into French and German of the
most important terms, following mainly ISO 7462 and DIN 81209-1. In addition,
Italian terms will be inserted and they conform to Italian technical literature, for
example Costaguta (1981). The translations will be marked by Tr' for French,
'G' for German and T for Italian. Almost all ship hulls are symmetric with respect
with a longitudinal plane (plane xz in Figure 1.6). In other words, ships present
a 'port-to-starboard' symmetry. The definitions take this fact into account. Those
definitions are explained in Figures 1.1 to 1.4.

The outer surface of a steel or aluminium ship is usually not smooth because
not all plates have the same thickness. Therefore, it is convenient to define the hull
surface of such a ship on the inner surface of the plating. This is the Moulded sur-
face of the hull. Dimensions measured to this surface are qualified as Moulded.
By contrast, dimensions measured to the outer surface of the hull or of an
appendage are qualified as extreme. The moulded surface is used in the first
stages of ship design, before designing the plating, and also in test-basin studies.
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Table 1.1 Principal ship dimensions and related terminology

English term Symbol Computer
notation

Translations

After (aft) perpendicular AP

Baseline BL

Bow

Breadth B

Camber

Centreline plane

Depth D

Depth, moulded

Design waterline DWL

Draught T

Draught, aft TA

Draught, amidships TM

Draught, extreme

Draught, forward TF

Draught, moulded

Forward perpendicular FP

Fr perpendiculaire arriere,
G hinteres Lot,
I perpendicolare addietro
Fr ligne de base, G Basis,
I linea base
Fr proue, 1'avant, G Bug,
I prora, prua

B Fr largeur, G Breite,
I larghezza
Fr bouge, G Balkenbucht,
I bolzone

CL Fr plan longitudinal de symetrie,
G Mittschiffsebene,
I Piano di simmetria,
piano diametrale

DEP Fr creux, G Seitenhohe,
I altezza
Fr creux sur quille,
G Seitenhohe,
I altezza di costruzione
(puntale)

DWL Fr flottaison normale,
G Konstruktionswasserlinie
(KWL),
I linea d'acqua del piano di
costruzione

T Fr tirant d'eau, G Tiefgang,
I immersione

TA Fr tirant d'eau arriere,
G Hinterer Tiefgang,
I immersiona a poppa
Fr tirant d'eau milieu,
G mittleres Tiefgang,
I immersione media
Fr profondeur de carene hors
tout, G groBter Tiefgang,
I pescaggio

TF Fr tirant d'eau avant,
G Vorderer Tiefgang,
I immersione a prora
Fr profondeur de carene
hors membres,
Fr perpendiculaire avant,
G vorderes Lot,
I perpendicolare avanti
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Table 1.1 Cont

English term

Freeboard

Heel angle

Symbol Computer
notation

/ FREP

fa HEELANG

Translations

Fr franc-bord, G Freibord,
I franco bordo
Fr bande, gite,

Length between Lpp LPP
perpendiculars

Length of waterline LWL LWL

Length overall LOA

Length overall LOS
submerged

Lines plan

Load waterline DWL DWL

Midships

Moulded

Port P
Sheer

Starboard S
Station
Stern, poop

Trim

Waterline WL WL

Krangungswinkel
I angolo d'inclinazione
trasversale
Fr longueur entre
perpendiculaires,
G Lange zwischen den Loten,
I lunghezza tra le perpendicolari
Fr longueur a la flottaison,
G Wasserlinielange,
I lunghezza al galleggiamento
Fr longueur hors tout,
G Lange u'ber alien,
I lunghezza fuori tutto
Fr longueur hors tout immerge,
G Lange iiber alien unter Wasser,
I lunghezza massima opera viva
Fr plan des formes,
G Linienrifi,
I piano di costruzione,
piano delle linee
Fr ligne de flottaison en charge,
G Konstruktionswasserlinie,
I linea d'acqua a pieno carico
Fr couple milieu,
G Hauptspant,
I sezione maestra
Fr hors membres,
G auf Spanten,
I fuori ossatura
Fr babord, G Backbord, I sinistra
Fr tonture, G Decksprung,
I insellatura
Fr tribord, G Steuerbord, I dritta
Fr couple, G Spante, I ordinata
Fr arriere, poupe,
G Hinterschiff, I poppa
Fr assiette, G Trimm,
I differenza d'immersione
Fr ligne d'eau,
G Wasserlinie,
I linea d'acqua
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Sheer at AP Midships, , Sheer at FP

v
N Deck

AP

Baseline

LOS

Figure 1.1 Length dimensions

Steel plating

L

FP

AP FP

Figure 1.2 How to measure the length between perpendiculars

Figure 1.3 The case of a keel not parallel to the load line
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Camber

D

Figure 1.4 Breadth, depth, draught and camber

The baseline, shortly BL, is a line lying in the longitudinal plane of symmetry
and parallel to the designed summer load waterline (see next paragraph for a
definition). It appears as a horizontal in the lateral and transverse views of the
hull surface. The baseline is used as the longitudinal axis, that is the x-axis
of the system of coordinates in which hull points are defined. Therefore, it is
recommended to place this line so that it passes through the lowest point of the
hull surface. Then, all z-coordinates will be positive.

Before defining the dimensions of a ship we must choose a reference waterline.
ISO 7462 recommends that this load waterline be the designed summer load
line, that is the waterline up to which the ship can be loaded, in sea water, during
summer when waves are lower than in winter. The qualifier 'designed' means that
this line was established in some design stage. In later design stages, or during
operation, the load line may change. It would be very inconvenient to update
this reference and change dimensions and coordinates; therefore, the 'designed'
datum line is kept even if no more exact. A notation older than ISO 7462 is DWL,
an abbreviation for 'Design Waterline'.

The after perpendicular, or aft perpendicular, noted AP, is a line drawn
perpendicularly to the load line through the after side of the rudder post or through
the axis of the rudder stock. The latter case is shown in Figures 1.1 and 1.3. For
naval vessels, and today for some merchant vessels ships, it is usual to place the
AP at the intersection of the aftermost part of the moulded surface and the load
line, as shown in Figure 1.2. The forward perpendicular, FP, is drawn per-
pendicularly to the load line through the intersection of the fore side of the stem
with the load waterline. Mind the slight lack of consistency: while all moulded
dimensions are measured to the moulded surface, the FP is drawn on the outer
side of the stem. The distance between the after and the forward perpendicular,
measured parallel to the load line, is called length between perpendiculars and
its notation is Lpp. An older notation was LBP. We call length overall, LOA>
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the length between the ship extremities. The length overall submerged, I/os>
is the maximum length of the submerged hull measured parallel to the designed
load line.

We call station a point on the baseline, and the transverse section of the
hull surface passing through that point. The station placed at half Lpp is called
midships. It is usual to note the midship section by means of the symbol shown
in Figure 1.5 (a). In German literature we usually find the simplified form shown
in Figure 1.5 (b).

The moulded depth, D, is the height above baseline of the intersection of the
underside of the deck plate with the ship side (see Figure 1.4). When there are
several decks, it is necessary to specify to which one refers the depth.

The moulded draught, T, is the vertical distance between the top of the keel
to the designed summer load line, usually measured in the midships plane (see
Figure 1.4). Even when the keel is parallel to the load waterline, there may be
appendages protruding below the keel, for example the sonar dome of a warship.
Then, it is necessary to define an extreme draught that is the distance between
the lowest point of the hull or of an appendage and the designed load line.

Certain ships are designed with a keel that is not parallel to the load line. Some
tugs and fishing vessels display this feature. To define the draughts associated
with such a situation let us refer to Figure 1.3. We draw an auxiliary line that
extends the keel afterwards and forwards. The distance between the intersection
of this auxiliary line with the aft perpendicular and the load line is called aft
draught and is noted with TA. Similarly, the distance between the load line and
the intersection of the auxiliary line with the forward perpendicular is called
forward draught and is noted with Tp. Then, the draught measured in the
midship section is known as midships draught and its symbol is TM- The
difference between depth and draft is called freeboard; in DIN 81209-1 it is
noted by /.

The moulded volume of displacement is the volume enclosed between the
submerged, moulded hull and the horizontal waterplane defined by a given
draught. This volume is noted by V, a symbol known in English-language litera-
ture as del, and in European literature as nabla. In English we must use two words,
'submerged hull', to identify the part of the hull below the waterline. Romance
languages use for the same notion only one word derived from the Latin 'carina'.
Thus, in French it is 'carene', while in Catalan, Italian, Portuguese, Romanian,
and Spanish it is called 'carena'.

In many ships the deck has a transverse curvature that facilitates the drainage
of water. The vertical distance between the lowest and the highest points of the

(a)

Figure 1.5 (a) Midships symbol in English literature, (b) Midships symbol
in German literature
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deck, in a given transverse section, is called camber (see Figure 1.4). According
to ISO 7460 the camber is measured in mm, while all other ship dimensions are
given in m. A common practice is to fix the camber amidships as 1/50 of the
breadth in that section and to fair the deck towards its extremities (for the term
'fair' see Subsection 1.4.3). In most ships, the intersection of the deck surface
and the plane of symmetry is a curved line with the concavity upwards. Usually,
that line is tangent to a horizontal passing at a height equal to the ship depth,
D, in the midship section, and runs upwards towards the ship extremities. It is
higher at the bow. This longitudinal curvature is called sheer and is illustrated in
Figure 1.1. The deck sheer helps in preventing the entrance of waves and is taken
into account when establishing the load line in accordance with international
conventions.

1.4 The definition of the hull surface

1.4.1 Coordinate systems

The DIN 81209-1 standard recommends the system of coordinates shown in
Figure 1.6. The x-axis runs along the ship and is positive forwards, the y-axis is
transversal and positive to port, and the z-axis is vertical and positive upwards.
The origin of coordinates lies at the intersection of the centreline plane with the
transversal plane that contains the aft perpendicular. The international standards
ISO 7460 and 7463 recommend the same positive senses as DIN 81209-1 but
do not specify a definite origin. Other systems of coordinates are possible. For
example, a system defined as above, but having its origin in the midship sec-
tion, has some advantages in the display of certain hydrostatic data. Computer
programmes written in the USA use a system of coordinates with the origin of
coordinates in the plane of the forward perpendicular, FP, the x-axis positive

Bow, Prow

Port

Figure 1.6 System of coordinates recommended by DIN 81209-1
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afterwards, the y-axis positive to starboard, and the z-axis positive upwards.
For dynamic applications, taking the origin in the centre of gravity simplifies the
equations. However, it should be clear that to each loading condition corresponds
one centre of gravity, while a point like the intersection of the aft perpendicular
with the base line is independent of the ship loading. The system of coordinates
used for the hull surface can be also employed for the location of weights. By its
very nature, the system in which the hull is defined is fixed in the ship and moves
with her. To define the various floating conditions, that is the positions that the
vessel can assume, we use another system, fixed in space, that is defined in ISO
7463 as XQ, y$, ZQ. Let this system initially coincide with the system x, y, z.
A vertical translation of the system x, y, z with respect to the space-fixed system
£o> 2/o» ZQ produces a draught change.

If the ship-fixed z-axis is vertical, we say that the ship floats in an upright
condition. A rotation of the ship-fixed system around an axis parallel to the
x-axis is called heel (Figure 1.7) if it is temporary, and list if it is permanent.
The heel can be produced by lateral wind, by the centrifugal force developed in
turning, or by the temporary, transverse displacement of weights. The list can
result from incorrect loading or from flooding. If the transverse inclination is the
result of ship motions, it is time-varying and we call it roll.

When the ship-fixed x-axis is parallel to the space-fixed x0-axis, we say that
the ship floats on even keel. A static inclination of the ship-fixed system around
an axis parallel to the ship-fixed y-axis is called trim. If the inclination is
dynamic, that is a function of time resulting from ship motions, it is called
pitch. A graphic explanation of the term trim is given in Figure 1.7. The trim
is measured as the difference between the forward and the aft draught. Then,
trim is positive if the ship is trimmed by the head. As defined here the trim is
measured in metres.

(a) heel (b) trim

Figure 1.7 Heel and trim
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1.4.2 Graphic description

In most cases the hull surface has double curvature and cannot be defined by
simple analytical equations. To cope with the problem, Naval Architects have
drawn lines obtained by cutting the hull surface with sets of parallel planes.
Readers may find an analogy with the definition of the earth surface in topography
by contour lines. Each contour line connects points of constant height above sea
level. Similarly, we represent the hull surface by means of lines of constant x,
constant y, and constant z. Thus, cutting the hull surface by planes parallel to the
yOz plane we obtain the transverse sections noted in Figure 1.8 as StO to StlO,
that is Station 0, Station 1, . . . Station 10. Cutting the same hull by horizontal
planes (planes parallel to the base plane xOy), we obtain the waterlines marked
in Figure 1.9 as WLO to WL5. Finally, by cutting the same hull with longitudinal
planes parallel to the xOz plane, we draw the buttocks shown in Figure 1.10.
The most important buttock is the line y = 0 known as centreline; for almost
all ship hulls it is a plane of symmetry.

Stations, waterlines and buttocks are drawn together in the lines drawing.
Figure 1.11 shows one of the possible arrangements, probably the most common
one. As stations and waterlines are symmetric for almost all ships, it is sufficient
to draw only a half of each one. Let us take a look to the right of our drawing;
we see the set of stations represented together in the body plan. The left half of
the body plan contains stations 0 to 4, that is the stations of the afterbody, while
the right half is composed of stations 5 to 10, that is the forebody. The set of
buttocks, known as sheer plan, is placed at the left of the body plan. Beneath is
the set of waterlines. Looking with more attention to the lines drawing we find
out that each line appears as curved in one projection, and as straight lines in

St7 st8 St9 St lO

Figure 1.8 Stations
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WL5 WL4

WLO

Figure 1.9 Waterlines

the other two. For example, stations appear as curved lines in the body plan, as
straight lines in the sheer and in the waterlines plans.

The station segments having the highest curvature are those in the bilge region,
that is between the bottom and the ship side. Often no buttock or waterlines cuts
them. To check what happens there it is usual to draw one or more additional
lines by cutting the hull surface with one or more planes parallel to the baseline

Buttock 2
Buttock 1

Buttock 3

Centreline

Figure 1.10 Buttocks
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Sheer plan Body plan

Buttock 3 Buttock 2 Buttock 1 Afterbody Forebody\ \ ^ \ y

StO SH St2 St3 St4 St5 St6 St 7 St8 St9 St 10

Waterlines plan

Figure 1.11 The lines drawing

but making an angle with the horizontal. A good practice is to incline the plane
so that it will be approximately normal to the station lines in the region of highest
curvature. The intersection of such a plane with the hull surface is appropriately
called diagonal.

Figure 1.11 was produced by modifying under MultiSurf a model provided
with that software. The resulting surface model was exported as a DXF file to
TurboCad where it was completed with text and exported as an EPS (Encapsu-
lated PostScript) file. Figures 1.8 to 1.10 were obtained from the same model as
MultiSurf contour curves and similarly post-processed under TurboCad.

1.4.3 Fairing

The curves appearing in the lines drawing must fulfill two kinds of conditions:
they must be coordinated and they must be 'smooth', except where functionality
requires for abrupt changes. Lines that fulfill these conditions are said to be fair.
We are going to be more specific. In the preceding section we have used three
projections to define the ship hull. From descriptive geometry we may know
that two projections are sufficient to define a point in three-dimensional space.
It follows that the three projections in the lines drawing must be coordinated,
otherwise one of them may be false. Let us explain this idea by means of Fig-
ure 1.12. In the body plan, at the intersection of Station 8 with Waterline 4, we
measure that half-breadth y(WL4, St8). We must find exactly the same dimen-
sion between the centreline and the intersection of Waterline 4 and Station 8 in
the waterlines plan. The same intersection appears as a point, marked by a circle,
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XWL4, St8)

z(Buttockl,SHO)

Figure 1.12 Fairing

in the sheer plan. Next, we measure in the body plan the distance z(Buttockl,
StlO) between the base plane and the intersection of Station 10 with the longi-
tudinal plane that defines Buttock 1. We must find exactly the same distance in
the sheer plan. As a third example, the intersection of Buttock 1 and Waterline
1 in the sheer plan and in the waterlines plan must lie on the same vertical, as
shown by the segment AB.

The concept of smooth lines is not easy to explain in words, although lines
that are not smooth can be easily recognized in the drawing. The manual of the
surface modelling program MultiSurf rightly relates fairing to the concepts of
beauty and simplicity and adds:

A curve should not be more complex than it needs to be to serve its
function. It should be free of unnecessary inflection points (reversals
of curvature), rapid turns (local high curvature), flat spots (local low
curvature), or abrupt changes of curvature . . .

With other words, a 'curve should be pleasing to the eye' as one famous Naval
Architect was fond of saying. For a formal definition of the concept of curvature
see Chapter 13, Computer methods.

The fairing process cannot be satisfactorily completed in the lines drawing.
Let us suppose that the lines are drawn at the scale 1:200. A good, young eye can
identify errors of 0.1 mm. At the ship scale this becomes an error of 20 mm that
cannot be accepted. Therefore, for many years it was usual to redraw the lines at
the scale 1:1 in the moulding loft and the fairing process was completed there.

Some time after 1950, both in East Germany (the former DDR) and in Sweden,
an optical method was introduced. The lines were drawn in the design office at
the scale 1:20, under a magnifying glass. The drawing was photographed on
glass plates and brought to a projector situated above the workshop. From there
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Table 1.2 Table of offsets

S t 0 1 2 3 4 5 6 7 8 9 1 0

X O.QQQ 0.893 1.786 2.678 3.571 4.464 5.357 6.249 7.142 8.035 8.928

WL z Half breadths

0
1

2

3

4

5

0.360

0512

0.665

0.817

0.969

1 122

0894

1.014

1.055

1.070

1 069

0.900

1 167

1.240

1.270

1.273

1 260

1.189

1 341

1.397

1.414

1.412

1 395

1.325

1 440

1.482

1.495

1.491

1 474

1.377

1 463

1.501

1.514

1.511

1 496

1.335

1 417

1.455

1.470

1.471

1 461

1.219

1 300

1.340

1.361

1.369

1 363

1.024

1 109

1.156

1.184

1.201

1 201

0.749

0842

0.898

0.936

0.962

0972

0.389

0496

0.564

0.614

0.648

0671

0067

0.149

0.214

0.257

0295

the drawing was projected on plates so that it appeared at the 1:1 scale to enable
cutting by optically guided, automatic burners.

The development of hardware and software in the second half of the twentieth
century allowed the introduction of computer-fairing methods. Historical high-
lights can be found in Kuo (1971) and other references cited in Chapter 13. When
the hull surface is defined by algebraic curves, as explained in Chapter 13, the
lines are smooth by construction. Recent computer programmes include tools
that help in completing the fairing process and checking it, mainly the calcu-
lation of curvatures and rendering. A rendered view is one in which the hull
surface appears in perspective, shaded and lighted so that surface smoothness
can be summarily checked. For more details see Chapter 13.

1.4.4 Table of offsets

In shipyard practice it has been usual to derive from the lines plan a digi-
tal description of the hull known as table of offsets. Today, programs used to
design hull surface produce automatically this document. An example is shown
in Table 1.2. The numbers correspond to Figure 1.11. The table of offsets contains
half-breadths measured at the stations and on the waterlines appearing in the lines
plan. The result is a table with two entries in which the offsets (half-breadths)
are grouped into columns, each column corresponding to a station, and in rows,
each row corresponding to a waterline. Table 1.2 was produced in MultiSurf.

1.5 Coefficients of form

In ship design it is often necessary to classify the hulls and to find relationships
between forms and their properties, especially the hydrodynamic properties. The
coefficients of form are the most important means of achieving this. By their
definition, the coefficients of form are non-dimensional numbers.
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DWL

Submerged hull

Figure 1.13 The submerged hull

The block coefficient is the ratio of the moulded displacement volume, V, to
the volume of the parallelepiped (rectangular block) with the dimensions L, B
andT:

(1.1)LET

In Figure 1.14 we see that CB indicates how much of the enclosing parallelepiped
is filled by the hull.

The midship coefficient, CM, is defined as the ratio of the midship-section
area, AM, to the product of the breadth and the draught, BT,

(1.2)

Figure 1.15 enables a graphical interpretation

Figure 1.14 The definition of the block coefficient,
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Figure 1.15 The definition of the midship-section coefficient, CM

The prismatic coefficient, Cp, is the ratio of the moulded displacement vol-
ume, V, to the product of the midship-section area, AU, and the length, L:

r _ V _ CBLBT _ CB_
A.y[L (^>y[BT L CM

(1-3)

In Figure 1.16 we can see that Cp is an indicator of how much of a cylinder
with constant section AM and length L is filled by the submerged hull. Let
us note the waterplane area by Ayj. Then, we define the waterplane-area
coefficient by

(1.4)

Figure 1.16 The definition of the prismatic coefficient, Cp
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Figure 1.17 The definition of the waterplane coefficient,

A graphic interpretation of the waterplane coefficient can be deduced from
Figure 1.17.

The vertical prismatic coefficient is calculated as

CVP =
V

AWT (1.5)

For a geometric interpretation see Figure 1.18.
Other coefficients are defined as ratios of dimensions, for instance L/B,

known as length-breadth ratio, and B/T known as 'B over T'. The length
coefficient of Froude, or length-displacement ratio is

(1.6)

and, similarly, the volumetric coefficient, V/L3.
Table 1.3 shows the symbols, the computer notations, the translations of the

terms related to the coefficients of form, and the symbols that have been used in
continental Europe.

Figure 1.18 The definition of the vertical prismatic coefficient, CVP
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Table 1.3 Coefficients of form and related terminology

English term Symbol Computer Translations
notation European symbol

Block coefficient CB CB

Coefficient of form

Displacement A

Displacement mass A DISPM

Displacement V DISPV
volume

Midship CM CMS
coefficient

Midship-section AM
area
Prismatic CP CPL
coefficient

Vertical prismatic CVP CVP
coefficient

Waterplane area AW AW

Waterplane-area
coefficient

Fr coefficient de block, J,
G Blockcoeffizient,
I coefficiente di finezza (bloc)
Fr coefficient de remplissage,
G Volligkeitsgrad,
I coefficiente di carena
Fr deplacement, G Verdrangung,
I dislocamento
Fr deplacement, masse,
G Verdrangungsmasse
Fr Volume de la carene,
G Verdrangungs Volumen,
I volume di carena
Fr coefficient de remplissage au
maitre couple, /?,
G Volligkeitsgrad der Hauptspantflache,
I coefficiente della sezione maestra
Fr aire du couple milieu, G Spantflache,
I area della sezione maestra
Fr coefficient prismatique, 0,
G Scharfegrad, I coefficiente
prismatico o longitudinale
Fr coefficient de remplissage vertical ifr,
I coefficiente di finezza prismatico
verticale
Fr aire de la surface de la flottaison,
G Wasserlinienflache,
I area del galleggiamento
Fr coefficient de remplissage
de la flottaison, a,
G Volligkeitsgrad der Wasserlinienflache,
I coefficiente del piano di galleggiamento

1.6 Summary

The material treated in this book belongs to the field of Naval Architecture. The
terminology is specific to this branch of Engineering and is based on a long
maritime tradition. The terms and symbols introduced in the book comply with
recent international and corresponding national standards. So do the definitions
of the main dimensions of a ship. Familiarity with the terminology and the cor-
responding symbols enables good communication between specialists all over
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the world and correct understanding and application of international conventions
and regulations.

In general, the hull surface defies a simple mathematical definition. Therefore,
the usual way of defining this surface is by cutting it with sets of planes parallel
to the planes of coordinates. Let the x-axis run along the ship, the y-axis be
transversal, and the z-axis, vertical. The sections of constant x are called sta-
tions, those of constant z, waterlines, and the contours of constant y, buttocks.
The three sets must be coordinated and the curves be fair, a concept related to
simplicity, curvature and beauty.

Sections, waterlines and buttocks are represented together in the lines plan.
Line plans are drawn at a reducing scale; therefore, an accurate fairing process
cannot be carried out on the drawing board. In the past it was usual to redraw
the lines on the moulding loft, at the 1:1 scale. In the second half of the twenti-
eth century the introduction of digital computers and the progress of software,
especially computer graphics, made possible new methods that will be briefly
discussed in Chapter 13.

In early ship design it is necessary to choose an appropriate hull form and
estimate its hydrodynamic properties. These tasks are facilitated by character-
izing and classifying the ship forms by means of non-dimensional coefficients
of form and ratios of dimensions. The most important coefficient of form is the
block coefficient defined as the ratio of the displacement volume (volume of the
submerged hull) to the product of ship length, breadth and draught. An example
of ratio of dimensions is the length-breadth ratio.

1.7 Example

Example 1.1 - Coefficients of a fishing vessel
In INSEAN (1962) we find the test data of a fishing-vessel hull called C.484 and
whose principal characteristics are:

14.251 m
B 4.52 m
TM 1.908m
V 58.536m3

AU 6.855 rn2

47.595m2

We calculate the coefficients of form as follows:

- V _ 58.536 _
B ~ LPPBTM ~ 14.251 x 4.52 x 1.908 ~~ '

Aw _ 47.595
CwL 14.251 x 4.52
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6.855
4.52 x 1.908

V 58.536
~ ~ 6.855 x 14.251 ~

and we can verify that

C B _ 0.476
Cp~C^~ 0.795

1.8 Exercises

Exercise LI - Vertical prismatic coefficient
Find the relationship between the vertical prismatic coefficient, Cyp, the
waterplane-area coefficient, CWL> and the block coefficient, CB-

Exercise 1.2 - Coefficients of Ship 83074
Table 1.4 contains data belonging to the hull we called Ship 83074. The length
between perpendiculars, Lpp, is 205.74 m, and the breadth, B, 28.955 m. Com-
plete the table and plot the coefficients of form against the draught, T. In Naval
Architecture it is usual to measure the draught along the vertical axis, and other
data - in our case the coefficients of form - along the horizontal axis (see
Chapter 4).

Exercise 1.3 - Coefficients of hull C.786
Table 1.5 contains data taken from INSEAN (1963) and referring to a tanker hull
identified as C.786.

Table 1.4 Coefficients of form of Ship 83074

Draught

T

m

3
4
5
6
7
8
9

Displacement
volume

V

m3

9029
12632
16404
20257
24199
28270
32404

Waterplane
area

AWL
m2

3540.8
3694.2
3805.2
3898.7
3988.6
4095.8
4240.4

CB CWL CM Cp

0.505 0.594 0.890 0.568
0.915
0.931
0.943
0.951
0.957
0.962
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Table 1.5 Data of tanker
hull C.786

Z/WL

B
TM
V
AM
AWL

205.468 m
27.432 m
10.750m
46341 m3

0.220
3.648

Calculate the coefficients of fonn and check that



Basic ship hydrostatics

2.1 Introduction

This chapter deals with the conditions of equilibrium and initial stability
of floating bodies. We begin with a derivation of Archimedes' principle and
the definitions of the notions of centre of buoyancy and displacement.
Archimedes' principle provides a particular formulation of the law of equilibrium
of forces for floating bodies. The law of equilibrium of moments is formulated
as Stevin's law and it expresses the relationship between the centre of gravity
and the centre of buoyancy of the floating body. The study of initial stability is
the study of the behaviour in the neighbourhood of the position of equilibrium.
To derive the condition of initial stability we introduce Bouguer's concept of
metacentre.

To each position of a floating body correspond one centre of buoyancy and one
metacentre. Each position of the floating body is defined by three parameters,
for instance the triple {displacement, angle of heel, angle of trim}', we call them
the parameters of the floating condition. If we keep two parameters constant
and let one vary, the centre of buoyancy travels along a curve and the metacentre
along another. If only one parameter is kept constant and two vary, the centre
of buoyancy and the metacentre generate two surfaces. In this chapter we shall
briefly show what happens when the displacement is constant. The discussion
of the case in which only one angle (that is, either heel or trim) varies leads to
the concept of metacentric evolute.

The treatment of the above problems is based on the following assumptions:

1. the water is incompressible;
2. viscosity plays no role;
3. surface tension plays no role;
4. the water surface is plane.

The first assumption is practically exact in the range of water depths we are
interested in. The second assumption is exact in static conditions (that is without
motion) and a good approximation at the very slow rates of motion discussed in
ship hydrostatics. In Chapter 12 we shall point out to the few cases in which vis-
cosity should be considered. The third assumption is true for the sizes of floating
bodies and the wave heights we are dealing with. The fourth assumption is never
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true, not even in the sheltered waters of a harbour. However, this hypothesis
allows us to derive very useful, general results, and calculate essential properties
of ships and other floating bodies. It is only in Chapter 9 that we shall leave the
assumption of a plane water surface and see what happens in waves. In fact, the
theory of ship hydrostatics was developed during 200 years under the hypothesis
of a plane water surface and only in the middle of the twentieth century it was
recognized that this assumption cannot explain the capsizing of a few ships that
were considered stable by that time.

The results derived in this chapter are general in the sense that they do not
assume particular body shapes. Thus, no symmetry must be assumed such as
it usually exists in ships (port-to-starboard symmetry) and still less symmetry
about two axes, as encountered, for instance, in Viking ships, some ferries, some
offshore platforms and most buoys. The results hold the same for single-hull
ships as for catamarans and trimarans. The only problem is that the treatment of
the problems for general-form floating bodies requires 'more' mathematics than
the calculations for certain simple or symmetric solids. To make this chapter
accessible to a larger audience, although we derive the results for body shapes
without any form restrictions, we also exemplify them on parallelepipedic and
other simply defined floating body forms. Reading only those examples is suf-
ficient to understand the ideas involved and the results obtained in this chapter.
However, only the general derivations can provide the feeling of generality and
a good insight into the problems discussed here.

2.2 Archimedes' principle

2.2.1 A body with simple geometrical form

A body immersed in a fluid is subjected to an upwards force equal
to the weight of the fluid displaced.

The above statement is known as Archimedes' principle. One legend has it
that Archimedes (Greek, lived in Syracuse - Sicily - between 287 and 212 BC)
discovered this law while taking a bath and that he was so happy that he ran naked
in the streets shouting T have found' (in Greek Heureka, see entry 'eureka' in
Merriam-Webster, 1991). The legend may be nice, but it is most probably not
true. What is certain is that Archimedes used his principle to assess the amount
of gold in gold-silver alloys.

Archimedes' principle can be derived mathematically if we know another
law of general hydrostatics. Most textbooks contain only a brief, unconvincing
proof based on intuitive considerations of equilibrium. A more elaborate proof
is given here and we prefer it because only thus it is possible to decide whether
Archimedes' principle applies or not in a given case. Let us consider a fluid whose
specific gravity is 7. Then, at a depth z the pressure in the fluid equals 72. This
is the weight of the fluid column of height z and unit area cross section. The
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pressure at a point is the same in all directions and this statement is known as
Pascals principle. The proof of this statement can be found in many textbooks
on fluid mechanics, such as Douglas, Gasiorek and Swaffiled (1979: 24), or
Pnueli and Gutfinger (1992: 30-1).

In this section we calculate the hydrostatic forces acting on a body having a
simple geometric form. The general derivation is contained in the next section.
In this section we consider a simple-form solid as shown in Figure 2.1; it is
a parallelepipedic body whose horizontal, rectangular cross-section has the
sides B and L. We consider the body immersed to the draught T. Let us call
the top face 1, the bottom face 2, and number the vertical faces with 3 to 6.
Figure 2.1(b) shows the diagrams of the liquid pressures acting on faces 4 and
6. To obtain the absolute pressure we must add the force due to the atmospheric
pressure pQ. Those who like mathematics will say that the hydrostatic force on
face 4 is the integral of the pressures on that face. Assuming that forces are
positive in a rightwards direction, and adding the force due to the atmospheric
pressure, we obtain

jzdz + pQLT = -7LT2 + p0LT (2.1)

(b)

(a)

3

(c)

Figure 2.1 Hydrostatic forces on a body with simple geometrical form
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Similarly, the force on face 6 is

F6 = -L I -yzdz - PoLT = ~^-fLT2 - PoLT (2.2)
Jo *

As the force on face 6 is equal and opposed to that on face 4 we conclude that
the two forces cancel each other.

The reader who does not like integrals can reason in one of the following two
ways.

1. The force per unit length of face 4, due to liquid pressure, equals the area of
the triangle of pressures. As the pressure at depth T is jT, the area of the
triangle equals

I-T x 7T = iyr2

Then, the force on the total length L of face 4 is

F4-Lxi7T2+p0Lr (2.3)

Similarly, the force on face 6 is

F6 = -Lx^T2-PoLT (2.4)

The sum of the two forces F±, FQ is zero.
2. As the pressure varies linearly with depth, we calculate the force on unit

length of the face 4 as equal to the depth T times the mean pressure jT/2.
To get the force on the total length L of face 4 we multiply the above result
by L and adding the force due to atmospheric pressure we obtain

F4=-

Proceeding in the same way we find that the force on face 6, FQ, is equal
and opposed to the force on face 4. The sum of the two forces is zero. In
continuation we find that the forces on faces 3 and 5 cancel one another. The
only forces that remain are those on the bottom and on the top face, that is
faces 2 and 1. The force on the top face is due only to atmospheric pressure
and equals

F1 = -poLB (2.5)

and the force on the bottom,

F2 = poLB + -yLBT (2.6)

The resultant of F\ and F^ is an upwards force given by

F = F2 + F1 = -fLBT + PQLB - pGLB = <yLBT (2.7)
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The product LET is actually the volume of the immersed body. Then, the
force F given by Eq. (2.7) is the weight of the volume of liquid displaced by
the immersed body. This verifies Archimedes' principle for the solid considered
in this section.

We saw above that the atmospheric pressure does not play a role in the
derivation of Archimedes' principle. Neither does it play any role in most other
problems we are going to treat in this book; therefore, we shall ignore it in
future.

Let us consider in Figure 2.2 a 'zoom' of Figure 2.1. It is natural to consider
that the resultant of the forces is applied at the point P situated in the centroid
of face 2. The meaning of this sentence is that, for any coordinate planes, the
moment of the force ^LBT applied at the point P equals the integral of the
moments of pressures. In the same figure, the point B is the centre of volume
of the solid. If our solid would be made of a homogeneous material, the point
B would be its centre of gravity. We see that P is situated exactly under B, but
at double draught. As a vector can be moved along its line of action, without
changing its moments, it is commonly admitted that the force ^LBT is applied
in the point B. A frequent statement is: the force exercised by the liquid is applied
in the centre of the displaced volume. The correct statement should be: 'We can
consider that the force exercised by the liquid is applied in the centre of the
displaced volume'. The force ^LBT is called buoyancy force.

We have analyzed above the case of a solid that protrudes the surface of the
liquid. Two other cases may occur; they are shown in Figure 2.3. We study again
the same body as before. In Figure 2.3(a) the body is situated somewhere between
the free surface and the bottom. Pressures are now higher; on the vertical faces
their distribution follows a trapezoidal pattern. We can still show that the sum of

Po

7/2

B/2

Figure 2.2 Zoom of Figure 2.1
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Figure 2.3 Two positions of submergence

the forces on faces 3 to 6 is zero. It remains to sum the forces on faces 1 and 2,
that is on the top and the bottom of the solid. The result is

70 + H)LB - jzLB = jLBH (2.8)

As jLBH is the weight of the liquid displaced by the submerged body, this is
the same result as that obtained for the situation in Figures 2.1 and 2.2, that is
Archimedes' principle holds in this case too.

In Figure 2.3(b) we consider the solid lying on the sea bottom (or lake, river,
basin bottom) and assume that no liquid infiltrates under the body. Then no liquid
pressure is exercised on face 2. The net hydrostatic force on the body is ̂ z\LB
and it is directed downwards. Archimedes' principle does not hold in this case.
For equilibrium we must introduce a sea-bottom reaction, R, equal to the weight
of the body plus the pressure force jziLB. The force necessary to lift the body
from the bottom is equal to that reaction. However, immediately that the water
can exercise its pressure on face 2, a buoyancy force is developed and the body
seems lighter. It is as if when on the bottom the body is 'sucked' with a force

Figure 2.3(b) shows a particular case. Upwards hydrostatic forces can develop
in different situations, for example:

• if the submerged body has such a shape that the liquid can enter under part
of its surface. This is the case of most ships;

• the bottom is not compact and liquid pressures can act through it. This phe-
nomenon is taken into account in the design of dams and breakwaters where
it is called uplift.
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In the two cases mentioned above, the upwards force can be less than the weight
of the displaced liquid. A designer should always assume the worst situation.
Thus, to be on the safe side, when calculating the force necessary to bring
a weight to the surface one should not count on the existence of the uplift. On
the other hand, when calculating a deadweight - such as a concrete block - for
an anchoring system, the existence of uplift forces should be taken into account
because they can reduce the friction forces (between deadweight and bottom)
that oppose horizontal pulls.

2.2.2 The general case

In Figure 2.4 we consider a submerged body and a system of cartesian coordi-
nates, x, y, z, where z is measured vertically and downwards. The only condition
we impose at this stage is that no straight line parallel to one of the coordinate
axes pierces the body more than twice. We shall give later a hint on how to
relax this condition, generalizing thus the conclusions to any body form. Let the
surface of the body be S, and let P be the horizontal plane that cuts in S the
largest contour. The plane P divides the surface S into two surfaces, Si situated
above P, and 8*2 under P. We assume that Si is defined by

*• x

Figure 2.4 Archimedes' principle - vertical force
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and <$2 by

z = f 2 ( x , y )

The hydrostatic force on an element dA of Si is pdA. This force is directed along
the normal, n, to Si in the element of area. If the cosine of the angle between
n and the vertical axis is cos(n, z), the vertical component of the pressure force
on dA equals 7/1(0:, y) cos(n, z)dA As cos(n, z)dA is the projection of dA
on a horizontal plane, that is dxdy, we conclude that the vertical hydrostatic
force on Si is

/ / fi(x,y)dxdy (2.9)

Let us consider now an element of <$2 'opposed' to the one we considered on Si .
We reason as above, taking care to change signs. We conclude that the hydrostatic
force on £2 is

~7 / / h(x, y}dxty (2.10)
J JS<2

and the total force on <$,

The integral in Eq. (2.11) yields the volume of the submerged body. Thus,
F equals the weight of the liquid displaced by the submerged body. It remains
to show that the horizontal components of the resultant of hydrostatic pressures
are equal to zero. We use Figure 2.5 to prove this for the component parallel to
the x-axis. The force component parallel to the x-axis acting on the element of
area dA is

pcos(n, x)d^l = jzdydz

On the other side of the surface, at the same depth z, there is an element of area
such that the hydrostatic force on it equals

pcos(n, x)d^4 = — jzdydz

The sum of both forces is zero. As the whole surface <$ consists of such 'opposed'
pairs d^4, the horizontal component in the x direction is zero. By a similar
reasoning we conclude that the horizontal component in the y direction is zero
too. This is also the result predicted by intuition. In fact, if the resultant of the
horizontal components would not be zero we would obtain a 'free' propulsion
force.

This completes the proof of Archimedes' principle for a body shape subjected
to the only restriction that no straight line parallel to one of the coordinate axes
intersects the body more than twice.
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Figure 2.5 Archimedes' principle - force parallel to the Ox axis

Could we relieve the above restriction and show that Archimedes' principle
holds for a submerged body regardless of its shape? To do this we follow a
reasoning similar to that employed sometimes in the derivation of Gauss' theorem
in vector analysis (see, for example, Borisenko and Tarapov, 1979). Figure 2.6(a)
shows a body that does not fulfill the condition we imposed until now. In fact, in
the right-hand part of the body a vertical line can pierce four times the enclosing
surface. The dashed line is the trace of the plane that divides the total volume of
the body into two volumes, 1, 2, such that each of them cannot be pierced more
than twice by any line parallel to one of the coordinate axis.

(a) (b)

Figure 2.6 Extending Archimedes' principle

(C)
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Let us consider now the upper volume, 1, in Figure 2.6(b). Two forces act on
this body:

1. the resultant of hydrostatic pressures, PI, on the external surface;
2. the force R2,i exercised by the volume 2 on volume 1.

Similarly, let us consider the lower volume, 2, in Figure 2.6(c). Two forces act
on this body:

1. the resultant of hydrostatic pressures, P2, acting on the external surface;
2. the force Ri)2 exercised by the volume 1 on volume 2.

As the forces R2,i and Ri,2 are equal and opposed, putting together the volumes
1 and 2 means that the sum of all forces acting on the total volume is PI -f ?2,
that is the force predicted by Archimedes' principle. Let us find the x and
y -coordinates of the point through which acts the buoyancy force. To do so we
calculate the moments of this force about the xOz and yOz planes and divide
them by the total force. The results are

J JsS7*[/i(s, y) - fr(x, y)]dxdy
I Is 7^[/i(X y} ~ h(x, y)]dxdy

J fsxz[fi(xi y) - / 2p ,
ffsz[fi(x, y) - f2(x, y)]dxdy

J /$2/7*[/iQp, y) - h(x, y)]dxdy
f fsiz[fi(x, y) ~ h(z, y)]dxdy

These are simply the x and y-coordinates of the centre of the submerged volume.
We conclude that the buoyancy force passes through the centre of the submerged
volume, B (centre of the displaced volume of liquid).

2.3 The conditions of equilibrium of a floating body

A body is said to be in equilibrium if it is not subjected to accelerations. Newton's
second law shows that this happens if the sum of all forces acting on that body is
zero and the sum of the moments of those forces is also zero. Two forces always
act on a floating body: the weight of that body and the buoyancy force. In this
section we show that the first condition for equilibrium, that is the one regarding
the sum of forces, is expressed as Archimedes' principle. The second condition,
regarding the sum of moments, is stated as Stevin's law.
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Further forces can act on a floating body, for example those produced by wind,
by centrifugal acceleration in turning or by towing. The influence of those forces
is discussed in Chapter 6.

2.3.1 Forces

Let us assume that the bodies appearing in Figures 2.1, 2.3(a) float freely. Then,
the weight of each body and the hydrostatic forces acting on it are in equilibrium.
Archimedes' principle can be reformulated as:

The weight of the volume of water displaced by a floating body is
equal to the weight of that body.

The weight of the fluid displaced by a floating body is appropriately called
displacement. We denote the displacement by the upper-case Greek letter delta,
that is A. If the weight of the floating body is W, then we can express the
equilibrium of forces acting on the floating body by

A = W (2.16)

For the volume of the displaced liquid we use the symbol V defined in Chapter 1 .
In terms of the above symbols Archimedes' principle yields the equation

7V = W (2.17)

If the floating body is a ship, we rewrite Eq. (2.17) as

X?=lWi (2.18)

where Wi is the weight of the ith item of ship weight. For example, W\ can be
the weight of the ship hull, W^, of the outfit, W%, of the machinery, and so on.
The symbol CB and the letters L, B, T have the meanings defined in Chapter 1.

In hydrostatic calculations Eq. (2.18) is often used to find the draught cor-
responding to a given displacement, or the displacement corresponding to a
measured draught. In Ship Design Eq. (2.18) is used either as a design equa-
tion (see, for example, Manning, 1956), or as an equality constraint in design
optimization problems (see, for example, Kupras, 1976).

Instead of the displacement weight we may work with the displacement mass,
pV, where p is the density of the surrounding water. Then, Eq. (2.18) can be
rewritten as

PCBLBT = E^rai (2.19)

where m^ is the mass of the ith ship item. The DIN standards define, indeed,
A as mass, and use Ap for displacemnt weight. The subscript T" stands for
'force'. In later chapters of this book we shall use the displacement mass rather
than the displacement weight.
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Table 2.1 Some foreign names for the point B

Language

French
German
Italian
Portuguese

Term

Centre de carene
Formschwerpunkt
Centre di carena
Centre do carena

Meaning

Centre of submerged hull
Centre of gravity of solid
Centre of submerged hull
Centre of submerged hull

To remember the meaning of the symbol A, let us think that the word 'delta'
begins with a 'd', like the word 'displacement' (we ignore the fact that in
contemporary-Greek pronunciation 'delta' is actually read as 'thelta'). As to
the symbol V, it resembles 'V, the initial letter of the word 'volume'.

The point B is called in English centre of buoyancy. There are languages in
which the name of the point B recognizes the fact that B is not a centre of pressure.
Table 2.1 gives a few examples. This is, of course, a matter of semantics. The
line of action of the buoyancy force always passes through the point B.

2.3.2 Moments

In this section we discuss the second condition of equilibrium of a floating body:
the sum of the moments of all forces acting on it must be zero. This condition
is fulfilled in Figure 2.1 (a) where the centre of gravity, (7, and the centre of
buoyancy, B, of the floating body are on the same vertical line. The weight of
the body and the buoyancy force are equal - that is A -, opposed, and act along
the same line. The sum of their moments about any reference is zero.

Let us assume that the centre of gravity moves in the same plane, to a new
position, GI, as shown in Figure 2.7(b). The sum of the moments is no longer
zero; it causes a clockwise inclination of the body, by an angle <p. A volume

(a) (b) (c)

Figure 2.7 Stevin's law
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submerges at right, another volume emerges at right. The result is that the centre
of buoyancy moves to the right, to a new point that we mark by B$. The floating
body will find a position of equilibrium when the two points G\ and B^ will be
on the same vertical line. This situation is shown in Figure 2.7(c).

There is a possibility of redrawing Figure 2.7 so that all situations are shown
in one figure. To do this, instead of showing the body inclined clockwise by an
angle </>, and keeping the waterline constant, we keep the position of the body
constant and draw the waterline inclined counter-clockwise by the angle 0. Thus,
in Figure 2.8 the waterline corresponding to the initial position is WQ-^O- The
weight force, equal to A, acts through the initial centre of gravity, GO; it is
vertical, that is perpendicular to the waterline W^LQ. The buoyancy force, also
equal to A, acts through the initial centre of buoyancy, BQ: it is vertical, that is
perpendicular to the initial waterline.

We assume now that the centre of gravity moves to a new position, G\. The
floating body rotates in the same direction, by an angle <f>, until it reaches a
position of equilibrium in which the new waterline is W^L^. The new centre of
buoyancy is B^. The line connecting GI and B^ is vertical, that is perpendicular
to the waterline W^I/0. The weight and the buoyancy force act along this line.

Thus, in the case of a floating body, the second condition of equilibrium is
satisfied if the centre of gravity and the centre of buoyancy are on the same
vertical line. This condition is attributed to Simon Stevin (Simon of Bruges,
Flanders, 1548-1620). Stevin is perhaps better known for other studies, among
them one on decimal fractions that helped to establish the notation we use today,
the discovery in 1586 of the law of composition of forces for perpendicular
forces, and a demonstration of the impossibility of perpetual motion.

In Figures 2.7 and 2.8 we assumed that while the body rotates to a new
position, no opening, such as a hatch, window, or vent, enters the water. If this

Bo I

Figure 2.8 Stevin's law
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assumption is not correct, the body can either reach equilibrium under more
complex conditions (see Chapter 11), or sink.

2.4 A definition of stability

In the preceding section we learnt the conditions of equilibrium of a floating
body. The question we ask in the next section is how to determine if a condition
of equilibrium is stable or not. Before answering this question we must define
the notion of stability. This concept is general; we are interested here in its
application to floating bodies.

Let us consider a floating body in equilibrium and assume that some force or
moment causes a small change in its position. Three situations can occur when
that force or moment ceases to act.

1. The body returns to its initial position; we say that the condition of equilibrium
is stable.

2. The position of the body continues to change. We say in this case that the
equilibrium is unstable. In practical terms this can mean, for example, that
the floating body capsizes.

3. The body remains in the displaced position until the smallest perturbation
causes it to return to the initial position or to continue to move away from the
initial position. We call this situation neutral equilibrium.

As an example let us consider the body shown in Figure 2.1. If this body floats
freely at the surface we conclude from Eq. (2.17) that the total volume is larger
than the weight divided by the specific gravity of the fluid. This body floats in
stable equilibrium as to draught. To show this let us imagine that some force
causes it to move downwards so that its draught increases by the quantity 5T.
Archimedes' principle tells us that a new force, ^LB6T, appears and that it is
directed upwards. Suppose now that the cause that moved the body downwards
decreases slowly. Then, the force ̂ LB8T returns the body to its initial position.
In fact, as the body moves (slowly) upwards, ST decreases until it becomes zero
and then the motion ceases. If the force that drove the body downwards ceases
abruptly, the body oscillates around its initial position and, if damping forces
are active - they always exist in nature -, the body will eventually come to rest
in its initial position.

Next, we assume that some force moved the body upwards so that its draught
decreases by ST. A force —^LBST appears now and it is directed downwards.
Therefore, if the body is released slowly it will descend until 6T = 0. This
completes the proof that the body floating freely at the surface is in stable
equilibrium with regard to its draught. We mention 'with regard to draught'
because, as shown in the next section, the body may be unstable with regard
to heel.
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When a body floats freely, but is completely submerged, its weight equals
exactly its volume multiplied by the specific gravity of the liquid. This body is
in neutral equilibrium because it can float at any depth. Any small perturbation
will move the body from a depth to another one. If the weight of the body is
larger than its total volume multiplied by the specific gravity of the liquid, then
the body will sink.

Summing-up, we may distinguish three cases.

1 . The total volume of a body is larger than its weight divided by the specific
gravity of the water:

Ftotal > Wh

The body floats at the surface and we can control the draught by adding or
reducing weights.

2. The weight of the body exactly equals the total volume multiplied by the
specific gravity of the liquid:

The body can float at any depth and we cannot control the position by adding
or reducing weights. Any additional weight would cause the body to sink
bringing it into case 3. Reducing even slightly its weight will cause the body
to come to the surface; its situation changes to case 1.

3. The weight of the body is larger than its volume multiplied by the specific
gravity of the water:

Vtotal < Wh

The body will sink. To change its position we must either reduce the weight
until we reach at least situation 2, or add buoyancy in some way.

In the above analysis we assumed that the specific gravity of the liquid, 7, is con-
stant throughout the liquid volume. This assumption may not be correct if large
variations in temperature or salinity are present, or if the liquid volume consists
of layers of different liquids. Interesting situations can arise in such cases. Other
situations can arise at large depths at which the water density increases while
the volume of the floating body shrinks because of the compressibility of its
structure. These cases are beyond the scope of this book.

2.5 Initial stability

Figure 2.9(a) is a vertical, transverse section through a ship in upright condition,
that is unheeled. If this section passes through the centre of buoyancy, B, we
know from Stevin's law that it contains the centre of gravity, G. The water line is
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W0

W

r
(a) (b)

Figure 2.9 The condition of initial stability

(c)

Wo I/o- The weight force, W, acts through the centre of gravity, G; the buoyancy
force, A, through the centre of buoyancy, J50. The forces W and A are equal
and collinear and the ship is in an equilibrium condition. Let the ship heel to the
starboard with an angle <j>. For reasons that will become clear in Section 2.8, we
assume that the heel angle is small. As previously explained, we leave the ship
as she is and draw the waterline as inclined to port, with the same angle 0. This
is done in Figure 2.9(b) where the new waterline is W^L^. If the weights are
fixed, as they should be, the centre of gravity remains in the same position, G.
Because a volume submerges at starboard, and an equal volume emerges at port,
the centre of buoyancy moves to starboard, to a new position, B^. Both forces
W and A are vertical, that is perpendicular to the waterline W^L^. These two
forces form a moment that tends to return the ship towards port, that is to her
initial condition. We say that the ship is stable.

Figure 2.9(c) also shows the ship heeled towards starboard with an angle <p. In
the situation shown in this figure the moment of the two forces W and A heels
the ship further towards starboard. We say that the ship is unstable.

The difference between the situations in Figures 2.9(b) and (c) can be described
elegantly by the concept of metacentre. This abstract notion was introduced by
Pierre Bouguer (French, 1698-1758) in 1746, in his Traite du Navire. Let us
refer again to Figure 2.9(b). For a ship, the dot-point line is the trace of the
port-to-starboard symmetry plane, that is the centreline. More generally, for any
floating body, the dot-point line is the line of action of the buoyancy force before
heeling. The new line of action of the buoyancy force passes through the new
centre of buoyancy and is perpendicular to W^L^. The two lines intersect in the
point M^. Bouguer called this point metacentre.

We can see now the difference between the two heeled situations shown in
Figure 2.9:

in (b) the metacentre is situated above the centre of gravity, G;
in (c) the metacentre is situated below the centre of gravity, G.
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We conclude that the equilibrium of the floating body is stable if the metacentre
is situated above the centre of gravity.

For his contributions of overwhelming importance, Bouguer was sometimes
described as 'the father of naval architecture' (quotation in Stoot, 1959). It must
be emphasized here that the definition of the metacentre is not connected at all
with the form of a ship. Therefore, the fact that in the above figures the meta-
centre is the intersection of the new line of action of the buoyancy force and the
centreline is true only for symmetrical hulls heeled from the upright condition.
For a general floating body we can reformulate the definition as follows:

Let us consider a floating body and its centre of buoyancy B^. Let
the line of action of the buoyancy force be R. If the body changes
its inclination by an angle <50, the centre of buoyancy changes its
position to B^+SJ and the new line of action of the buoyancy force
will be, say, 5. When S(f> tends to zero, the intersection of the lines
R and S tends to a point that we call metacentre.

Readers familiar with elementary differential geometry will recognize that,
defined as above, the metacentre is the the centre of curvature of the curve of
centres of buoyancy. The notion of curvature is defined in Chapter 13.

2.6 Metacentric height

In the preceding section we learnt that a surface ship is initially stable if its initial
metacentre is above the centre of gravity. For actual calculations we must find a
convenient mathematical formulation. We do this with the help of Figure 2.9(a).
We choose a reference point, K, at the intersection of the centreline and the
baseline and we measure vertical coordinates from it, upwards. Thus defined,
K is the origin of ^-coordinates. A good recommendation is to choose K as the
lowest point of the ship keel; then, there will be no negative ^-coordinates. We
remember easily the chosen notation because K is the initial letter of the word
keel.

In the same figure M0 is the initial metacentre, that is the metacentre corre-
sponding to the upright condition. Dropping the subscripts 0 we can write

BM - KG (2.20)

and the condition of initial stability is expressed as

GM > 0 (2.21)

The vector GM is called metacentric height. The vector KB is the ^-coordinate
of the centre of buoyancy; it is calculated as the ^-coordinate of the centroid of
the submerged hull as one of the results of hydrostatic calculations. The vector
BM is the metacentric radius whose calculation we are going to discuss in
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Subsection 2.8.2. The vector KG is the ^-coordinate of the centre of gravity of
the floating body; it results from weight calculations. The quantities KB and
BM depend upon the ship geometry, the quantity KG upon the distribution of
masses.

2.7 A lemma on moving volumes or masses

Figure 2.10 shows a system of two masses, mi and m2. Let the x-coordinate of
the mass mi be x\\ that of the mass m,2, #2- The centre of gravity of the system
is G and its x-coordinate is given by

XG =
mi (2.22)

Let us move the mass m2 a distance d in the x direction. The new centre of
gravity is G* and its x-coordinate,

XG =
(x2 XG

-f- m2
(2.23)

The product dm2 is the change of moment caused by the translation of the mass
m2. The centre of gravity of the system moved a distance equal to the change
of moment divided by the total mass of the system. A formal statement of this
lemma is

Given a system of masses, if one of its components is moved in a
certain direction, the centre of gravity of the system moves in the
same direction, a distance equal to the change of moment divided
by the total mass.

A similar lemma holds for a system of volumes in which one of them is moved
to a new position. The reader is invited to solve Exercise 2.5 and prove the lemma
for a three dimensional system of masses.

/Tb cf

Figure 2.10 Moving a mass in a system of masses
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2.8 Small angles of inclination

In this section we prove two very important theorems for bodies that incline
at constant displacement. This is the case of floating bodies that change their
inclination without the addition or loss of weights. Constant displacement means
constant volume of displacement. In Chapter 1 we mentioned that Romance
languages use for the submerged volume terms derived from the Latin word
carina, for instance carene in French, carena in Italian. Correspondingly, the
theory of bodies inclined at constant volume of displacement is called Theorie
des isocarenes in French, Teoria delle isocarene in Italian. The prefix 'iso' comes
from Greek and means 'equal'. Thus, Romance languages use one single term
to mean 'bodies inclining at constant volume of displacement'.

A second assumption in this section is that the angle of inclination is small.
The results developed under this assumption are valid for any floating body. The
results are valid for any angle of inclination only for floating bodies belonging
to a particular class of forms called wall-sided, a concept explained later in this
chapter.

2.8.1 A theorem on the axis of inclination

Let us assume that the initial waterplane of the body shown in Figure 2.11 is
WQ Z/o- Next we consider the same body inclined by a small angle </>, such that
the new waterplane is W^L^. The weight of the body does not change; therefore,
also the submerged volume does not change. If so, the volume of the 'wedge'

Axis of inclination

Figure 2.11 Euler's theorem on the axis of inclination
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that submerges at right, between the two planes WQ A) and W^L^, equals the
volume of the wedge that emerges at left, between the same two planes. Let us
express this mathematically. We take the intersection of the two planes as the
x-axis. This is the axis of inclination.

As shown in Figure 2.12, an element of volume situated at a distance y from
the axis of inclination has the height y tan (/). If the base of this element of volume
is dA = dxdy, the volume is y tan <pdxdy. Let the area of the waterplane WQ^O
at the right of the axis of intersection be Si; that at the left, S2. Then, the volume
that submerges is

Vi — I I y tan (f)dxdy

and the volume that emerges,

V<2 = — I I y tan (/)dxdy
J 7s2

(2.24)

(2.25)

Assuming a small heel angle, 0, we can consider the submerging and the emerg-
ing volumes as wall sided and write Eqs. (2.24) and (2.25) as we did.

The condition for constant volume is

Figure 2.12 Euler's theorem on the axis of inclination
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Combining this with Eqs. (2.24) and (2.25) yields

y tan (pdxdy = — y tan <pdxdy (2.26)
J 7si J Js2

and, finally,

ydxdy = 0 (2.27)
s

where S = Si -f 82 is the whole waterplane. In words, the first moment of the
waterplane area, with respect with the axis of inclination, is zero. This happens
only if the axis of inclination passes through the centroid of the waterplane area.
We remind the reader that the coordinates of the centroid of a surface 5 are
defined by

/ fsxdxdy f fsydxdy
XG= /• r i i > ye = r r , ,J Js dxdy J Js dxdy

Or, as the Webster's Ninth New Collegiate Dictionary puts it, 'corresponds to
the center of mass of a thin plate of uniform thickness'. The centroid of the
waterplane area is known as centre of flotation and is noted by F. The corre-
sponding French term is 'centre de gravite de la flottaison', the German term is
'Wasserlinien-Schwerpunkt', and the Italian, 'centre del galleggiamento'.

A statement of the property proven above is

Let the initial waterplane of a floating body be WoZ/o- After an
inclination, at constant volume of displacement, with an angle 0, the
new waterplane is W^L^. The intersection of the two waterplanes
is the axis of inclination. If the angle of inclination tends to zero,
the axis of inclination tends to a straight line passing through the
centroid of the waterplane area.

In practice, this property holds if the angle of inclination is sufficiently small.
For heeling of a vessel, this can mean a few degrees, 5° for some forms, even
15° for others. If the inclination is the trimming of an intact vessel, the angles are
usually small enough and this property always holds. The property also holds
for larger heel angles if the floating body is wall sided. This is the name given
to floating bodies whose surface includes a cylinder (in the broader geometrical
sense), with generators perpendicular to the initial waterplane. An illustration of
such a case is given in Example 2.5. In French and Italian, for example, the term
used for wall-sided bodies is cylindrical floating bodies.

The term used in some languages, such as French or Italian, for an axis passing
through the centroid of an area is barycentric axis. This term is economic and
we shall use it whenever it will help us to express ideas more concisely.
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2.8.2 Metacentric radius

Let us refer again to Figure 2.9. As we shall see, the vector B^M^ plays an
important role in stability. Leaving the subscript </>, we genetically call BM
metacentric radius; in this section we calculate its magnitude. To do so we must
find the shift of the centre of buoyancy, B, for a small angle of inclination 0.
Here we use the lemma on moving volumes and we calculate

change of moment of volume
change or coordinate = - - - - -

total volume

As seen from Figures 2.11 and 2.12, the elemental change of volume is
y tan fidxdy. To find the changes of moment respective to the coordinate planes
we must multiply the elemental volume by the coordinates of its centroid. To
make things easier, we take the origin of coordinates in the initial centre of buoy-
ancy, £?o, measure the x-coordinate parallel to the axis of inclination, positive
forwards, the ̂ /-coordinate transversely, positive leftwards, and the z-coordinate
vertically, positive upwards. The coordinates of the centre of buoyancy B^ are
obtained by integrating the changes of moment of the elemental volume, over
the waterplane area S.

The results are

f fc ^V2 tan2 6dxdy II 0

ZB = S 2
 y - - = 2 y tan * (230)

Above, / is the moment of inertia of the waterplane area about the axis of
inclination (remember, it is a barycentric axis), and Ixy, the product of inertia
of the same area about the axes x and y. In German and some other languages
Ixy is called centrifugal moment of inertia.

As we assumed that the angle </> is small, we can further write

VB = (2-31)

11

The coordinate ZB is of second order and we can neglect it if </> is small. As
to the ^-coordinate let us remember that conventional ships in upright condition
enjoy a port-to-starboard symmetry. This means that for such ships, in upright
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Figure 2.13 Calculation of metacentric radius

condition, the product of inertia is zero so that XB is zero too. Then B^B^ in
Figure 2.13 is essentially equal to T/B- F°r other floating bodies there is a three-
dimensional theory that is beyond the scope of this book (see, for example,
Appel, 1921; Hervieu, 1985). For our purposes it is sufficient to consider the
projection of the curve of centres of buoyancy, B, on the plane that contains
the initial centre of buoyancy, BQ, and is perpendicular to the axis of inclina-
tion. In this plane the length of the arc connecting B0 to B^ equals BMfi (see
Figure 2.13). As ZB is of second order, we can write

/

V
and hence,

(2.32)

A statement of this important theorem is

The magnitude of the metacentric radius, BM, is equal to the ratio
of the waterplane moment of inertia, about the axis of inclination,
to the volume of displacement.

Returning to the third Eq. (2.31) we can see that ZB is always positive. This
means that the curve of centres of buoyancy presents its concavity towards the
waterline.

2.9 The curve of centres of buoyancy

Figure 2.14 shows a floating body inclined by some angle; the corresponding
waterline is WiLi and the centre of buoyancy, B\. Let us assume that the incli-
nation increases by an additional, small angle, <j>. Let the new waterline be
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Figure 2.14 Properties of Band M curves

and the corresponding centre of buoyancy, £?2. For a small angle 0 we can write
the coordinates of the new centre of buoyancy as

_ /

1 / ,o

Differentiation of these equations yields

_ I

V
/

V

which shows that the slope of the tangent to the 5-curve in B2 is

B-2

This is the assumed angle of inclination. We reach the important conclusion that
the tangent to the B-curve, in a point B^, is parallel to the waterline correspond-
ing to the centre of buoyancy B^.

We could reach the same conclusion by the following reasoning. In Figure 2.14
let the centre of volume of the emerged wedge be gi and that of the imersed
wedge, 02, and the volume of each one of them, v. Let the coordinates of gi be
2/pi, zgi, and those of 02 be yg2, zg2. The coordinates of the initial centre of
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buoyancy, B\, are yBi, zBl , and those of B2 are yB2, zs2 • Applying the lemma
on moving volumes we write

V
= ( Z g 2 - Z g l ) -

ygi

which shows that B^B^ is parallel to g\Q2- When 0 tends to zero, g\g% tends to
the initial waterline and J3i J32 to the tangent in BI to the £?-curve.

2.10 The metacentric evolute

The buoyancy force is always normal to the waterline. As the tangent to the
5-curve is parallel to the corresponding waterline, it follows that the buoyancy
force is normal to the J3-curve. In Figure 2.14 the normals to the 5-curve in
the points BI and B^ intersect in a point M. In some languages this point is
called metacentric point. When BI —> B%, the metacentric point tends to the
metacentre.

Let the curve M be the locus of the metacentres corresponding to a given
curve B. The curve M is the locus of centres of curvature of the curve B it
is also the envelope of the normals to the curve B By definition, the curve
M is the evolute of the curve B (see, for example Struik, 1961); it is called
metacentric evolute. The term used in French is developpee metacentrique•, in
German, Metazentrische Evolute, and in Italian, evoluta metacentric a.

Conversely, the curve B intersects at right angles the tangents to the meta-
centric evolute. Then, by definition, the curve B is the involute of the curve M.
The term used in French is developpante', in German, Evolvente, and in Italian,
evolventa.

The concepts of B and M curve are illustrated in Examples 2.5 and 2.6. Some
readers may be familiar with another example of a pair of curves that stay one
to the other in the relationship evolute-involute. The shape of the tooth flanks
used today in most gears is that of an involute of circle.

2.11 Metacentres for various axes of inclination

In Eq. (2.32) the moment of inertia, /, is calculated about the axis of inclination.
This axis passes through the centroid, F, of the waterplane and so does any other
axis of inclination. It can be shown that there is a pair of orthogonal axes such
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that the moment of inertia about one of them is minimum and about the other
maximum. Then, the metacentric radius corresponding to the former axis is min-
imum, and the moment about the latter axis is maximum. Correspondingly, one
of the metacentric radii is minimum and the other maximum. In some European
countries the smallest radius is denoted by r and is called small metacentric
radius, while the largest radius is denoted R and is called large metacentric
radius.

In the theory of moments of inertia the two axes for which we obtain the
extreme values of moments of inertia are called principal axes and the corre-
sponding moments, principal moments of inertia. When the waterplane area
has an axis of symmetry, this axis is one of the principal axes; the other one
is perpendicular to the first. The waterplane area of ships in upright condition
has an axis of symmetry: the intersection of the waterplane and the centreline
plane. The moment of inertia about this axis is the smallest one; it is used to
calculate the transverse metacentric radius. The moment of inertia about the
axis perpendicular in F to the centreline is the largest; it enters in the calculation
of the longitudinal metacentric radius.

To give an idea of the relative orders of magnitude of the transverse and
longitudinal metacentric radii, let us consider a parallelepipedic barge whose
length is L, breadth, B, and draught, T. The volume of displacement equals
V = LET. The transverse metacentric radius results from

LB3/12 B2

BM —
~ LET ~ 12T

The longitudinal metacentric radius is given by

BL3/12 L2

- - = 12T

The ratio of the two metacentric radii is

BM \B

The length-breadth ratio ranges from 3.1, for some motor boats, to 10.5, for fast
cruisers. Correspondingly, the ratio of the longitudinal to the transverse metacen-
tric radius varies roughly between 10 and 110. As a rule of thumb, the longitudinal
metacentric radius is of the same order of magnitude as the ship length.

2.12 Summary

A body submersed in a fluid is subjected to an upwards force equal to the weight of
the displaced fluid. This is Archimedes' principle. The hydrostatic force predicted
by this principle passes through the centre of volume of the displaced fluid; we
call that point centre of buoyancy and denote it by the letter B.
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For a floating body the weight of the displaced fluid equals the weight of that
body. The symbol for the immersed volume is V; that for the displacement mass,
A. If the density of the fluid is p, we can write

Values of the density of water in different navigation ways are given in the
Appendix of this chapter.

If a floating body is inclined by a small angle, the new waterplane intersects
the initial one along a line that passes through its centroid, that is, through the
centre of flotation.

If the floating body is a ship, using the notations described in Chapter 1 we
write

>yCBLBT = E^mi

where m* is the mass of the ith item aboard and n, the total number of ship items.
A is called displacement mass and V, displacement volume. The above equation
expresses the condition of equilibrium offerees. The condition of equilibrium of
moments requires that the centre of gravity, G, of the floating body and its centre
of buoyancy, J5, lie on the same vertical. This condition is known as Stevin's
law.

We say that a floating body is initially 'stable' if after a small perturbation of
its position of equilibrium, that body returns to its initial position. To study initial
stability, Bouguer introduced the notion of metacentre. Let the line of action of
the buoyancy force in the initial position be R. If the floating body is inclined
by a small angle, 5<j), the buoyancy force acts along a new line, say S. When 5(j>
tends to zero, the intersection of the two lines, R and 5, tends to a point, M,
called metacentre.

The equilibrium of a floating body is stable if its metacentre lies above its
centre of gravity. The distance from the centre of gravity to the metacentre, GM,
is called metacentric height and is considered positive upwards. The condition
of initial stability can be expressed as

G M > 0

The distance from the centre of buoyancy to the metacentre, BM, is called
metacentric radius. Its value is given by

BM=-

where / is the moment of inertia of the waterplane about the axis of inclination,
a line that passes through the centroid of the area, that is through the centre of
flotation, F. Let K be the origin of vertical coordinates. We can write

GM = KB + BM - KG



50 Ship Hydrostatics and Stability

By its definition, the metacentre is the centre of curvature of the curve described
by B for different angles of inclination. The curve described by the metacentre
is the evolute of the curve of centres of buoyancy. The normals to the curve B
are tangents to the curve M.

2.13 Examples

Example 2.1 - Melting ice cube
The following problem is sometimes presented as an intelligence quiz. We
describe it here as a fine application of Archimedes' principle.

Let us suppose that somebody wants to cool a glass of water by putting in it
a cube of ice made of the same water. Should he fear that when the cube melts
the level of the water will rise?

Let the mass of the cube be M and the density of water, p. The volume of
water displaced by the cube equals M/ p. After meltdown the cube becomes a
volume of water equal to M/ p. Conclusion: The water volume in the glass does
not change and neither does the water level.

Example 2.2 - Designing a buoy
This is a simple application of Archimedes' principle as the base of a design
equation. Let us suppose that we want to design a spherical buoy for an instrument
having a mass M. The buoy shall be made of 3 mm steel plate, of density p$, and
shall float so that the centre of the sphere lies in the waterplane (Figure 2.15).

To solve the problem we refer to Eq. (2.17),

7V = W

Instead of specific gravity and weight we can work with density and mass so
that our design equation becomes

= M

where pw is the water density.
The volume of the submerged half-sphere is

v-i.i*
where d0 is the outer diameter of the sphere. Let us measure d0 in metres.

Figure 2.15 Designing a buoy
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Then, the mass of the spherical shell is given by

MBteei = Ps^ [d3
0 - (do - 0.003)3] (2.34)

Putting things together we write

Pw\ • \vdl = p^-K [dl - (d0 - 0.003)3] + M

which yields the design equation

^dl - 3 x 0.003psd* + 3 x 0.0032psd0 - 0.0033p5 - = 0 (2.35)
2 4vr

This is a cubic equation. The general solution of cubic equations was found by
Italian algebraists in the sixteenth century. Instead of calculating this solution
we are going to numerically answer a particular example. Let our data be

water density 1 .025 tm~3

steel density 7.850 tm~3

instrument mass 0.0 1 0 1

A MATLAB file, called buoy . m and that solves this equation can be found on
the website of this book.

Running this file produces the results

do =
0 . 2 2 6 7

-0.0444 + 0.13631
-0.0444 - 0.13631

Obviously, only the first root is physically possible.
Another example of the use of Archimedes' principle in writing the design

equation of a floating body can be found in Biran and Breiner (2002: 309-1 1).

Example 2.3
Figure 2. 1 6(a) shows a cone floating top-down in water. The diameter of the base
is D\ the height, H, and the diameter of the waterplane area, d. Let the specific
gravity of the cone material be 7C and that of the water, 7W. We want to find out
under which conditions the cone can float as shown in the figure.

We begin by finding the draft, T. Archimedes' principle allows us to write

Geometrical similarity between the submerged cone and the whole cone yields
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1
\ ; /
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i

H •= / \
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—
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I Waterplane sections
'of , ld

(a)

Figure 2.16 A floating cone

(b)

Substituting d from Eq. (2.37) into Eq. (2.36), and noting

a —

we obtain

Other quantities necessary for checking the initial stability are

(2.38)

I_

V

with

7T<i4

= ~64~ ' = 3

the metacentric radius is

=16U

and the metacentric height

- KB + BM - KG
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The cone is stable if

2 3a fD\2 2- 3 > 0 (239)

From Eq. (2.39) we can deduce a condition for the specific gravity of the cone
material

a > FT (2.40)

or, a condition for the D/H ratio:

D\2 321-a
Jf) >^" (2-41)
H I 9 a./

Obviously, for the cone to float, the ratio a must be smaller than one. Thus, the
complete condition for the cone material is

< a < 1 (2.42)
32 (H)

Example 2.4
Figure 2.16(b) shows a cone floating top-up. Noting by F^ the freeboard, that is
the difference H — T, Archimedes' principle yields the equation

-7T

= 7 w ( I > 2 ^ - d2Fb) (2.43)

We obtain

Similarity gives us

d = ^Fb (2.45)n
Combining Eqs. (2.44) and (2.45) we obtain

fi -i \1/3

Fh=(^—^) H
\ /Y /\ 7w /

with
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we write for the freeboard

Fb = /3H (2.46)

and for the draught,

T = H-Fb = (l-/3)H (2.47)

The diameter of the waterplane section is given by

d = § Fb = /?£> (2.48)
12

To find the vertical coordinate of the centre of buoyancy we use the formula that
gives the height of the centroid of a trapeze (see books on elementary geometry
or engineering handbooks):

J - 64 '

we obtain

3 84 D2

3 1 + /3 161-/33^ 3

The cone is stable if

1 + /3 16 1 - /33

We obtain a condition for the D to H ratio:

'ZA2 32 1-/33 1

(2'49)

We calculate the metacentric radius as

5M = L (2.50)

with

(2'52)

The height of the centre of gravity is

~KG = H/3 (2.53)

and the resulting metacentric height is

BM - KG

1-13 1 + 2/3 3 /34 D* H (2.54)

(2-56)
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The condition for the specific gravity of the cone material is

2

-f3 P2 < 32 \H

noting

c- 9 (DC~

we can write

(C + l)/33 + C/32 - 1 > 0

In addition (3 must also fulfill the inequalities

0 < / ? < 1

(2.57)

(2.58)

(2.59)

Example 2.5 - A parallelepipedic barge
Let us consider a parallelepipedic barge; it has a constant, rectangular transverse
section as shown in Figure 2.17. Let L be the length, B the breadth, H the depth
and T the draught. For this simple body form we can calculate analytically the
positions of the centre of buoyancy and of the metacentre. We shall do this in
two ways:

1. Starting from known principles of mechanics and elementary results of dif-
ferential geometry;

2. Using the theorems developed in this chapter.

WQ M

-B/3

O Bi

Btan0/(3-2) F
T̂/2

Figure 2.17 A barge with simple geometrical form
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We begin this example by discussing the case in which the waterline reaches
first the deck and later the bottom. Formally, this condition is expressed by

H-T <T (2.60)

that is H < 2T. In upright condition the centre of buoyancy, BQ, is situated in
the centreline plane and its height above the bottom equals T/2. As shown in
Figure 2.18, we use a coordinate system with the origin in BQ, and measure y
horizontally, positive rightwards, and z vertically, positive upwards.

In Figure 2.17 we consider that the barge heels to starboard by an angle <j> and
the new waterline is W^L^. We distinguish several phases:

1. The new waterline is situated between the original waterline, Wol/o, and
the waterline passing through the corner of the deck. Formally, this case is
defined by

0 < 6 < arctan
H-T
B/2

(2.61)

2. The waterline is situated between the waterline that passes through the star-
board deck corner and the waterline that passes through the port-side bottom
corner. Formally, this means

arctan :H-T
B/2

2T
< arctan — (2.62)

3. As the angle </> increases, two other phases can be distinguished. However, it
is easier to consider those phases as being symmetric to the first two.

Figure 2.18 Centre of buoyancy and metacentre of simple barge
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Phase 1
For the simple form considered in this example we can start from the principles
of statics. We first observe that within the whole heel range defined by Eq. (2.61)
the two waterlines WQ^O and W^L^ intersect in the centreline plane. Indeed, the
submerging and the emerging wedges thus defined are equal, that is the volume
of displacement is constant (isocarene heeling). In other words we are dealing
with a wall-sided barge.

To calculate the change of moment we multiply the volume of each wedge
by the coordinate of its centroid measured from a convenient coordinate plane.
Then, the coordinates of the centre of buoyancy, B^, are obtained by means of the
lemma on moving volumes (Section 2.7). The calculations for the y-coordinate
are shown in Table 2.2.

This is the place to stop for a short digression on this tabular form of calcu-
lations. Let us refer to Table 2.2. Column 2 contains the volumes of the initial
hull, of the submerged wedge and of the emerged wedge. Column 3 contains the
y-coordinates of the centres of volumes entered in column 2. As said, these coor-
dinates are measured from the centreline plane; we call them tcb, an acronym for
transverse centre of buoyancy. We use lower-case letters and reserve the upper-
case notation, TCB, for the y-coordinate of the whole body. Column 4 contains
the moments of the initial body and of the wedges, about the centreline plane.
These moments are calculated as products of the terms in column 2, by those in
column 3. The procedure is described symbolically by the expression 4 — 2 x 3
written in the subheading of column 4.

The sum of the terms in column 2 equals the total volume of the heeled barge;
it is written in the cell identified by the entries volume and total. Similarly, the
sum of the partial moments in column 4 is the moment of the heeled barge about
the centreline plane; it appears in the cell corresponding to the entries moment
and total. Dividing the moment of the heeled barge by its volume yields the
y-coordinate of the centre of buoyancy of the heeled barge:

This result is written in the cell identified by the entries tcb and total.

Table 2.2 Calculating the transverse centre of buoyancy of the
heeled barge

Solid

(1)

Initial
Submerged wedge

Emerged wedge

Total

Volume

(2)

LET
LB2 tan 0/8

-LB2 tan 0/8
LET

tcb

(3)

0
2J3/(3 • 2)

-2£/(3 - 2)
£2tan0/(12T)

Moment

(4) = (2) x (3)

0
L£3tan0/(3 • 8)
LB3 tan 0(3 • 8)

LB3 tan 0/12
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A similar procedure is used to find the z-coordinate of the centre of buoyancy
of the heeled barge; it is shown in Table 2.3. Calculations in tabular form are
standard in Naval Architecture. More about them is written in Chapter 3 and we
expect the reader to discover gradually the advantages of this way of solving
problems. Obviously, Tables 2.2 and 2.3 can be consolidated. Then, the volumes
are entered only once.

Tables 2.2 and 2.3 yield the parametric equations of the curve of centres of
buoyancy:

1 B2

y = 19T~ tan<^1 , (2-63)
1 B 2 j.

Z=U~Ti&n *

We call the curve of centres of buoyancy B curve. From Eq. (2.63) we can derive

z=%y2 (2.64)

This is the equation of a parabola.
The slope of the curves of centres of buoyancy is given by

dz
- r - - r n = t a n 0 (2.65)
dy dy/dcf)

where

dy B2 1
d</> 12T cos2

and

dz B2 tan <
d</> 12T cos2 <

(2.66)

(2.67)

Equation (2.65) shows that the tangent in B^ has the slope <f>, meaning that it is
parallel to the corresponding waterline.

Table 2.3 Calculating the vertical centre of buoyancy of the heeled barge

Solid

(1)

Initial
Submerged
wedge
Emerged
wedge
Total

Volume

(2)

LET
LB2 tan 0/8

-.LB2 tan 0/8

LET

vcb

(3)

0
J3tan0/(3 • 2)

-£tan0/(3 • 2)

£2tan20/(24T)

Moment change

(4) = 2 x (3)

0
L£3tan20/(8 - 3 - 2 )

L£3tan2</>/(8 - 3 - 2 )

LB3 tan2 0/(3 • 8)
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To find the radius of curvature of the B curve we calculate

d2z 1 d</> 12T
dy2 cos2 (j) dy B2 (2.68)

and use a formula that can be found in many books on analysis or classic differ-
ential geometry (see, for example, Stoker, 1969: 26, or Gray, 1993: 11):

_

d2z/dy2 12T cos3 <t> ^ }

Now, let us use the theorems developed in this chapter. The volume of displace-
ment of the barge is

V = LBT

Equations (2.31) yield

XB = tan 0=

/ 1 B2

yB = — tan ^— — -— tan 0 (2.70)

*B = 2 y t an 2 ^ -—tan 2 </>

These are exactly the results obtained in Tables 2.2 and 2.3. As to the metacentric
radius, we calculate from Eq. (2.32)

_ I_ _ Lff3/12 _ \_B?_
" V ~~ LET ~ 12 "r"

and, for any heel angle </>,

L(B/cos^)3/12 I B3 1 ^^
LET 1 2 T

This is exactly the length of the radius of curvature obtained from Eq. (2.69).

Phase 2
In this phase the waterline passed the starboard deck corner and approaches
the port-side bottom corner. If we consider the barge heeled by 90°, so that the
starboard side becomes the new bottom, the barge is again a wall-sided floating
body. This observation allows us to continue the calculations in the same manner
as for Phase 1. However, they would be more complex so that algebraic techni-
calities could obscure insight. To avoid this, we make a simplifying assumption
(Hervieu, 1985): T = H/2. Then, the angle defining the limit between Phase 1
and Phase 2 is given by

H
tan <p — —

JD
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Substituting this value into Eq. (2.70) we find that at this angle the coordinates
of the centre of buoyancy are

1 B B

1 R2 W
2 / -"ZR — tan © = —

24 T 12

It is easy to see, in Figure 2.19 that these are the expected coordinates.
To continue the calculations in Phase 2, we use a new system of coordinates,

77, £, with the origin in the centre of buoyancy, £?90, of the barge heeled by 90°.
The relationships between the two systems of coordinates can be derived from
Figure 2.20. We obtain thus

yB = B/4 - CB
(2.72)

The equations shown above are implemented in a MATLAB function called
BARGE 1 that can be found on the website provided for this book. The results of
running the function with B = 10 and H = 6 are shown in Figure 2.21.

The reader is invited to experiment with various values of B and H and see
how they influence the shape of the B and M curves. A more general treatment
of the same problem can be found in Krappinger (1960).

Example 2.6 - B and M curves of Lido 9
Table 2.4 contains hydrostatic data of the vessel Lido 9 for a volume of displace-
ment equal to 44.16 m3 and the heel angles 0°, 15°, 30°,..., 90°. As shown

Figure 2.19 Simple barge
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£90 —T

H/4

Figure 2.20 Coordinate systems for simple barge

in Figure 2.22, all the data are measured in a system of coordinates £, 77, £.
In this example, the axes Kr\ and AT£ rotate with an angle (f> with respect to the
axes Ky, Kz in which the hull surface is defined. The angle <p is the heel angle.
The draft, T, is measured perpendicularly to the waterline; in our figure it is
T = KQ. As we see, KN is parallel to the waterline. The centre of buoyancy
corresponding to the heel angle </> is marked B^ and the metacentre, M^. In
the table we dropped the subscripts (/>. The height of the centre of buoyancy,
NB<p, is measured perpendicularly to the waterline and so is the height of the
metacentre, NM^.

In this example we want to draw the curve of centres of buoyancy, B, and the
metacentric evolute, M, at the given volume of displacement. With the data in
Table 2.4 and the definitions shown in Figure 2.22 it is possible to draw manually
these curves. Instead of this it is possible to use an M-file to draw the B- and
M-curves for any ship we may want. The data is written in a convenient way, on
an M-file named after the vessel we are studying. Thus, the contents of the file
1 ido9 . m can be found on the website of this book.

B= 10, H = 6

Figure 2.21 B and M curves of simple barge
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Table 2.4 Data of vessel Lido 9 at 44.16 m3 volume of displacement

Heel angle
(°)

0
15
30
45
60
75
90

Draught
(m)

1.729
1.575
1.163
0.600

-0.012
-0.693
-1.354

KN
(m)

0
1.122
1.979
2.595
2.945
2.874
2.539

NB
(m)

1.272
1.121
0.711
0.107

-0.625
-1.393
-2.108

NM
(m)

4.596
3.711
2.857
1.830
0.479

-0.869
-13.314

LCB
(m)

-1.735
-1.799
-1.932
-2.047
-2.072
-2.008
-1.970

NML

(m)

23.371
23.730
23.154
23.133
17.473
14.298
12.792

Next, we project all points we are interested in on a transverse plane, that is a
plane for which the longitudinal coordinate, x, is constant. We do this as in Fig-
ure 2.14. Let our plane be the midship section. For Lido 9 this section is described
by the points PI, P2, . . . , PIS whose coordinates are given in Table 2.5.

Let XB, y-& be the coordinates of the centre of buoyancy, B, and XM, yu those
of the metacentre, M. With the help of Figure 2.22 we can write

2/s - NB sin

= KN sin </> + NB cos
(2.73)

and

yu = KN cos fi - KM sin

zu — KN sin 0 -h NM cos
(2.74)

Figure 2.22 The coordinates of the points B and M
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Table 2.5 Points defining the midship section of the Ship Lido 9

Point

Pi
P2

Pa
P4

P5

Pe
P7

PS

y
0.000
0.240
0.240
1.100
1.787
2.460
2.902
3.100

z

0.50
0.50
0.58
1.00
1.25
1.50
1.75

2.00

Point

P9

Pio
Pn
Pl2

Pl3

Pl4

Pl5

2/

3.176
3.200
3.218
3.230
3.230
2.099
0.000

z

2.250
2.500
2.750
3.000
3.360
3.425
3.489

Equations (2.73) can be rewritten in matrix form as

XB cos
sin .

— sin
cos d

KN
NB

Similarly, Eq. (2.74) can be written in matrix form as

yu
cos 0 — sin
sin (j> cos </

KN
NM

The transformation matrix

cos <j> — sin <
sin 6 cos 6

(2.75)

(2.76)

(2.77)

performs counter-clockwise rotation, around the origin, with the angle 0. In this
example we need twice this rotation. As we may need it for more calculations
in the future, it is worth programming a MATLAB function that evaluates the
matrix and add this function to our toolbox. A possible listing of a file called
rotate. m is given on the website of this book.

To draw the waterline we need a point on it. The easiest to calculate is the
point Q shown in Figure 2.22. Here KQ corresponds to the draught T calculated
by the program ARCHIMEDES. The equation of the waterline passing through
this point is

z — Tcos 0 = tan </>(y — Tsin (2.78)

The M-file, called b_curve, provided on the website of the book, performs all
the calculations. The resulting plot is shown in Figure 2.23.

Table 2.4 contains a column that we did not use until now: the LCB values.
We included these data to show that at finite angles of heel the centre of buoyancy
can leave its initial transverse plane and move along the ship. This is the case of
ships that do not have a fore-to-aft symmetry. Then, when the heel changes, the
trim also changes until centre of gravity and centre of buoyancy lie again on the
same vertical (Stevin's law).
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Figure 2.23 B and M curves of vessel Lido 9

Example 2.7 - Catamaran stability
Up to this point we have considered floating bodies whose buoyancy is provided
by one submerged volume. If the floating body is a ship, we say that she is a
monohull ship. In the example that follows we are going to show that stability
can be greatly improved by distributing the buoyancy in two hulls. Then we
talk about a twin-hull ship, but more often we use the term catamaran, a word
derived from the Tamil 'kattumarum' composed of two words meaning 'to tie'
and 'tree'. As the etymology indicates, catamarans have been in use for centuries
in the Indian and Pacific Oceans. Today, many competition sailing boats and fast
ferries are of the catamaran type.

Let us consider in Figure 2.24, a barge of breadth B and length L. Assuming
the draught T, the displacement volume is

V - LET

and the metacentric radius,

£3L/12 1 J52

BM =
LET 12 T
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B/2

(a)

T m

(b)

Figure 2.24 Monohull versus catamaran

We can obtain the same displacement volume with two hulls of breadth B/2, the
same length, L, and the same draught, T. Assuming that the distance between
the centrelines of the two hulls is 3B/2, the resulting metacentric radius is

-=-_ 2 \(B/1)Z BT(3B\2

BM=LBT[U+^L(^)
19B2

48T

The first term between parantheses represents the sum of the moments of inertia
of the waterlines about their own centrelines. The second term accounts for the
parallel translation of the hulls from the plane of symmetry of the catamaran.
The second term is visibly the greater. The ratio of the catamaran BM to that of
the monohul is —-. The improvement in stability is remarkable.

Catamarans offer also the advantage of larger deck areas and, under certain
conditions, improved hydrodynamic performances. On the other hand, the weight
of structures increases and the overall performance in waves must be carefully
checked. It may be worth mentioning that also many vessels with three hulls, that
is trimarans, have been built. Moreover, a company in Southampton developed
a remarkable concept of a large ship with a main, slender hull, and four side
hulls; that is a pentamaran.

Example 2.8 - Submerged bodies
Submerged bodies have no waterplane; therefore, their metacentric radii are
equal to zero. Then the condition of initial stability is reduced to

GM = KB - KG > 0

In simple words, the centre of gravity, G, must be situated under the centre of
buoyancy, B. We invite the reader to draw a sketch showing the two mentioned
points and derive the condition of stability by simple mechanical considerations.
Submerged bodies do not develop hydrostatic moments that oppose inclinations,
as they do not develop hydrostatic forces that oppose changes of depth.
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Example 2.9 - An offshore platform
Figure 2.25 is a sketch of an offshore platform of the semi-submersible type. The
buoyancy is provided by four pontoons, each of diameter b and length L The
platform deck is supported by four columns. The depth of the platform is H and
the draught, T.

Our problem is to find a condition for the height of the centre of gravity,
KG, for given platform dimensions. To do this, we calculate the limit value of
KG for which the metacentric height, GM, is zero. The metacentric radius is
given by

BM = -

where the moment of inertia of the waterplane, /, and the volume of displace-
ment, V, are

7 = 4 TTb^
64

7T& 2 ,
~

In calculating the volume of displacement, V, we did not take into account the
overlapping between column and pontoon ends. In conclusion

'-26)
(2.79)

4(7 + T) 4(^ + T)

where we neglected the term in 62, usually small in comparison with other terms.

Figure 2.25 A semisubmersible platform
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Table 2.6 Calculation of KB

Pontoons

Columns

Total

Volume

7Tb2l

-rrtfiT b/9}

7TO (t + Of )

Vertical arm Moment

6/2 Z£L
(T \ M /r> 7rb (2T +bT~b )(J. \ O)/* 4

2T2+bT+4b£ -rrb2 (2b£+2T2 +bT — b2)
4(l+T) 4

4(1 + T)

The height of the metacentre above the baseline is given by

_ _ 2T2 4- bT 4- /2
Z1

The condition for initial stability is

The height of the centre of buoyancy above the base-line is calculated in
Table 2.6. Neglecting the term in — b2 we obtain

(2'80)

(2.81)

KG < 4(£ + T) (2.82)

To rewrite Eq. (2.82) in non-dimensional form we define

a = b/l, /3 = T/l

and obtain

T/r S~1 f ) /O2 I /Q I "I

¥ - ̂ iirrlr (183)

2.14 Exercises

Exercise 2.1 - Melting icebergs
In Example 2.1 we learnt that if an ice cube melts in a glass of water, the level of
water does not change. Then, why do people fear that the meltdown of all icebergs
would cause a water-level rise and therefore the flooding of lower coasts? Show
that they are right.

Hint: Icebergs are formed on the continent and they are made of fresh water,
while oceans consist of salt water. The density of salt water is greater than that
of fresh water.
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Exercise 2.2 - The tip of the iceberg
Icebergs are formed from compressed snow; their average density is 0.89 tm~3.
The density of ocean water can be assumed equal to 1.025 tm~3. Calculate what
part of an iceberg's volume can be seen above the water and explain the meaning
of the expression The tip of the iceberg'.

Hint: See Exercise 2.1.

Exercise 2.3 - Draughts of a parallelepipedic barge
Consider a parallelepipedic (or, with another term, a box-shaped) barge charac-
terized by the following data:

Length, L 10m
Breadth, B 3m
Mass, A/0 30 t

Find the draught, TI, in fresh water, and the draught, T2, in ocean water. See the
Appendix of this chapter for various water densities.

Exercise 2.4 - Whisky on the rocks
Instead of considering a cube of ice floating in a glass of water, as in Example 2.1,
let us think of a cube of ice floating in a glass of whisky. What happens when
the cube melts?

Exercise 2.5 -A lemma about moving masses in three-dimensional
Prove the lemma in Section 2.7 for a three-dimensional system of masses and a
three-dimensional displacement of one of the masses.

Exercise 2.6 -A wooden parallelepiped
The floating condition of a wooden, homogeneous block of square cross-section
depends on its specific gravity. Three possible positions are shown in Figure 2.26.

(a) (b) (c)

Figure 2.26 Different floating conditions of a wooden, parallelepipedic
block
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1. Find the ranges of specific gravity enabling each position.
2. For each range find a suitable kind of wood. To do this look through tables

of wood properties.
3. Can you imagine other floating positions? In the affirmative, calculate the

corresponding specific-gravity range.

Hint: A floating position is possible if the corresponding metacentric height is
positive.

Exercise 2.7 - B and Mcurves - variable heel
Table 2.7 contains the same data items as Table 2.4, but calculated at 5-degree
intervals. With this 'resolution' it is possible to plot smooth B and M curves.
First, write the data on a file lido9a similar to file lido9. Next, modify the
programme cited in Example 2.6 to plot only the B and M curves of the vessel
whose data are called from the keyboard. Run the program with the data given
at 5-degree intervals and print a hardcopy of the resulting plot.

Exercise 2.8 -B and M curves - variable trim
Table 2.8 contains data of the vessel Lido 9 for constant volume of displacement
equal to 44.16 m3, upright condition, and trim varying between -0.3 and l.lm.

Table 2.7 Data of vessel Lido 9 at 44.16 m3 volume of displacement and
5-degree heel intervals, trim = -0.325 m

Heel angle
(°)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Draught
(m)

1.729
1.711
1.659
1.575
1.462
1.324
1.163
0.985
0.796
0.600
0.402
0.198

-0.012
-0.235
-0.464
-0.693
-0.919
-1.140
-1.354

KN
(m)

0
0.399
0.776
1.122
1.432
1.716
1.979
2.215
2.419
2.595
2.749
2.870
2.945
2.960
2.931
2.874
2.788
2.678
2.539

NB
(m)

1.272
1.255
1.204
1.121
1.009
0.872
0.711
0.528
0.326
0.107

-0.126
-0.372
-0.625
-0.883
-1.140
-1.393
-1.640
-1.878
-2.108

NM
(m)

4.596
4.438
4.119
3.711
3.341
3.073
2.857
2.464
2.105
1.830
1.537
1.082
0.479

-0.185
-0.543
-0.869
-1.171
-1.446

-13.314

LCB
(m)

-1.735
-1.740
-1.761
-1.799
-1.841
-1.887
-1.932
-1.971
-2.002
-2.047
-2.106
-2.113
-2.072
-2.041
-2.025
-2.008
-1.994
-1.981
-1.970

NML

(m)

23.371
23.693
24.008
23.730
23.813
23.464
23.154
22.822
22.810
23.133
21.837
19.757
17.473
16.162
15.117
14.298
13.633
13.121
12.792
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Table 2.8 Data of vessel Lido 9 at 44.16 m3 volume of displacement,
0.1 m trim intervals, upright condition

Trim
(m)

-1.000
-0.900
-0.800
-0.700
-0.600
-0.500
-0.400
-0.300
-0.200
-0.100

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100

Draught
(m)

1.673
1.653
1.668
1.683
1.697
1.709
1.721
1.732
1.742
1.750
1.758
1.765
1.772
1.777
.782
.786
.789
.792
.793
.794
.795

1.795

NB
(m)

1.174
1.192
1.208
1.224
1.238
1.251
1.24
1.276
1.286
1.295
1.304
1.311
1.319
1.324
1.329
1.333
1.336
1.338
1.339
1.340
1.340
1.338

NM
(m)

4.536
4.550
4.564
4.577
4.585
4.589
4.592
4.598
4.604
4.610
4.614
4.615
4.614
4.612
4.610
4.606
4.603
4.599
4.599
4.597
4.594
4.590

LCB
(m)

-2.777
-2.623
-2.468
-2.313
-2.157
-2.001
-1.848
-1.697
-1.548
-1.401
-1.257
-1.114
-0.971
-0.829
-0.690
-0.546
-0.407
-0.270
-0.135

0.000
0.135
0.269

NML

23.681
23.904
24.069
24.163
24.145
23.954
23.584
23.293
22.951
22.556
22.108
22.137
22.115
22.046
21.910
21.707
21.431
21.116
20.895
20.871
20.834
20.829

The LCB values in column 5 are equivalent to the KN values in Example 2.6,
Figure 2.22.

Write the data on an M-file, Iido9b. m, and use the program b_curve to
plot the B- and M-curves. Here the M-curve is the locus of the longitudinal
metacentre.

2.15 Appendix -Water densities

Density (tm~3)

Fresh water
Eastern Baltic Sea
Western Baltic Sea
Black Sea
Oceans
Red Sea
Caspian Sea
Dead Sea

1.000
1.003
1.015
1.018
1.025
1.044
1.060
1.278



Numerical integration in naval
architecture

3.1 Introduction

In Chapter 2, we have learnt that the evaluation of ship properties, such as dis-
placement and stability, requires the calculation of areas, centroids and moments
of plane figures, and of volumes and centres of volumes. Such properties are cal-
culated by integration. In the absence of an explicit definition of the hull surface,
in terms of calculable mathematical functions, the integrations cannot be car-
ried out by analytic methods. The established practice has been to describe the
hull surface by tabulated data, as shown in Chapter 1, and to use these data in
numerical calculations.

Two methods for numerical integration are described in this chapter: the trape-
zoidal and Simpson's rules. The treatment is based on Biran and Breiner (2002).
The rules are exemplified on integrands defined by explicit mathematical expres-
sions; this is done to convince the reader that the two methods of numerical
integration are efficient, and to allow an evaluation of errors. The first examples
are followed in Chapter 4 by Naval-Architectural applications to real ship data
presented in tabular form.

Many Naval-Architectural problems require the calculation of the definite
integral

•&
f ( x ) d x

of a function bounded in the finite interval [a, b]. We approximate the definite inte-
gral by the weighted sum of a set of function values, /(zi), / (x 2 ) , . . . , /(xn),
evaluated, or measured, at n points Xi G [a, 6], i = 1 ,2 , . . . , n, i.e.

fb
I

-*a
(3.1)

In Naval Architecture, the coefficients a^ are called multipliers; in some books
on Numerical Methods they are called weights.
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There are several ways of deriving formulae for numerical integration - also
called quadrature formulae - of the form shown in Eq. (3.1); three of them are
mentioned below:

1. By geometrical reasoning, considering fa f ( x ) dx as the area under the curve
/(x), between x = a and x = b.

2. By approximating the function f ( x ) by an interpolating polynomial, P(x),
and integrating the latter instead of the given function, so that

•b

P(x) dx

3. By developing the given function into a Taylor or MacLaurin series and
integrating the first terms of the series.

The first approach yields a simple intuitive interpretation of the rules for numer-
ical quadrature and of the errors involved. This interpretation enables the user
to derive the rules whenever required, and to adapt them to particular situations,
for instance, when changing the subintervals of integration. On the other hand,
each rule must be derived separately. The advantages of the other approaches
are:

• The derivation is common to a group of rules which thus appears as particular
cases of a more general method.

• The derivation yields an expression of the error involved.

In the next two sections, we shall use the geometrical approach to derive the
two most popular rules, namely the trapezoidal and Simpson's rules. These two
methods are sufficient for solving most problems encountered in Naval Architec-
ture. The error terms will be given without derivation; however, interpretations
of the error expressions will follow their presentation.

3.2 The trapezoidal rule

Let us consider the function f ( x ) represented in Figure 3.1. We assume that we
know the values /(:TI), /(x2), . . . , f(x$) and we want to calculate the definite
integral

fXS

1= f ( x ) d x (3.2)

The integral in Eq. (3.2) represents the area under the curve f ( x ) . Let us connect
the points /(xi), /(#2)> . . • , f(x$) by straight line segments (the dashed-dotted
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Given integrand
Trapezoidal approximation

X3

Figure 3.1 The derivation of the trapezoidal rule

lines in the figure). We approximate the area under the curve by the sum of
the areas of four trapezoids, i.e. the area of the trapezoid with base #i£2 and
heights /(#i), /(x2), plus the area of the trapezoid with base x2x3 and heights
/(x2), /(^s)* and so on. We obtain

(X2 - (X3 _ (3.3)

For constant x-spacing, #2 — x\ = £3 — x2 = • • • = h, Eq. (3.3) can be reduced
to a simpler form:

f(xn-i) + f(xn (3.4)

We call the intervals [x\, x2], [0^2, ^3], and so on, subintervals.
As an example, let us calculate

•90°
sin
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The calculation presented in tabular form is as follows:

Angle (°)

0
15
30
45
60
75
90

Sum

sin x

0
0.2588
0.5000
0.7071
0.8660
0.9659
1.0000
-

Multiplier

1/2
1
1
1
1
1

1/2
-

Product

0
0.2588
0.5000
0.7071
0.8660
0.9659
0.5000
3.7979

The calculations were performed with MATLAB and the precision of the
display in the short format, i.e. four decimal digits, was retained. To obtain the
approximation of the integral, we multiply the sum in column 4 by the constant
subinterval, h:

T T X — ) x 3.7979-0.9943
180 J

Above we measured the interval in radians, as we should do in such calculations.
Equation (3.3) in matrix form yields

(x2 - xi)(x3 - x2)(x4 - - x4)

2/1 + 2/2

2/2 + 2/3

V3 + 2/4
(3.5)

The generalized form of Eq. (3.5) is implemented in MATLAB by the trapz
function that can be called with two arguments:

1. the column vector x,
2. the column vector y, of the same length as x, or a matrix y, with the same

number of rows as x.

If the points xi, x 2 , . . . , xn are equally spaced, i.e., if

the trapz function can be called with one argument, namely the column vec-
tor (or matrix) y. In this case, the result must be multiplied by the common
x-interval, h.
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3.2.1 Error of integration by the trapezoidal rule

In any subinterval [x^ a
trapezoidal rule equals

/ . / f (ff> \ f\ rp •
I I J\X) aX

J Xi

], the error of the approximation /;, obtained by the

12 dz2 (3.6)

where & is a point in the subinterval (o^, #i+i) and h = xi+1 — a^. Usually,
the interval of integration [#i,£m], is divided into several subintervals; if we
assume that they are equal, and note by / the trapezoidal approximation over the
whole interval, we can write

'- [^ /(i)da
Jxi 12 do;2

%m %l 7 o——— h max (3.7)

We do not know the maximum value of the derivative in Eq. (3.7); otherwise,
we would have been able to calculate the exact value of the integral. We can,
however, say the following:

• By substituting in Eq. (3.7) the maximum value of d2/(x)/dx2 in the interval
[#i, Xm], we can calculate an upper boundary of the error.

• The error is proportional to the square of h\ if we halve the subinterval, the
error is reduced approximately in the ratio 1/4.

• The method is exact if d2/(x)/dx2 = 0. This is the case for linear functions.
As a matter of fact, the derivation of the trapezoidal rule was based on a linear
approximation of f ( x ) .

Example 3.1
In this example, we consider the integral

/-7T/2

L { 7T/2{1 -f sin(x)} dx = [x — COS(X)]Q

= 7T/2 + 1 = 2.570 796 326 794 90

To calculate the same integral numerically by means of the trapezoidal rule, we
begin by dividing the interval [0,7r/2] into two subintervals and obtain the value
2.518 855 775 763 42. The error equals -2.02% of the correct value. We can
reduce the error by halving the subinterval h. Experimenting with subintervals
equal to Tr/8, Tr /16, . . . , Tr/128, we obtain the results shown in Table 3.1 where
they are compared with the results yielded by Simpson's rule (see Section 3.3).
For h =' 7T/8, Figure 3.1 shows the error as the sum of the small areas contained
between the dashed-dotted line (the trapezoids) and the solid line (the given
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Table 3.1 Results by trapezoidal and by Simpson's rule

Subinterval Integral

7T/4

TV/8

7T/16

7T/32

7T/64

7T/128 .

Trapezoidal rule

2.51885577576342
2.55791212776767
2.56758149868107
2.56999300727997
2.57059552111492
2.57074612688700

Simpson's rule

2.57307620428711
2.57093091176909
2.57080462231886
2.57079684347960
2.57079635905990
2.57079632881103

curve). This area looks really small. The errors in per cent of the true values
are shown in Table 3.2. As predicted by Eq. (3.7), each time we divide the
subinterval h by 2, the error is divided approximately by 4. It is easy to see that
as h —>• 0, the trapezoidal approximation of the integral tends to the true value.

In this example, by reducing the size of the subinterval h we could make the
error negligible. This was easy because we had an explicit expression for /(#),
and we could evaluate as many values of /(#) as we wanted. When there is no
explicit mathematical definition, as it happens when the ship lines are defined
only by drawings or tables of offsets, the number of function values that can
be measured, or evaluated, is restricted by practical limitations. In such cases,
we must be satisfied if the precision of the integration is consistent with the
precision of the measurements, or of calculations involving the same constants
and variables. To understand this point better, let us suppose that we want to
calculate the ship displacement mass as A = pV, where p is the density of the
surrounding water. It makes no sense to be very precise in the calculation of the
displacement volume V, if we multiply it afterwards by a conventional value of
the density p. The density varies from sea to sea (see table in Appendix A of
Chapter 2), and in the same sea it varies with temperature. In most calculations, it
would be impossible to take into account these variations, and the Naval Architect
or the ship Master has to use the value prescribed by the regulations relevant to

Table 3.2 Per cent error by trapezoidal and by
Simpson's rule

Subinterval Per cent error

7T/4

7T/8

7T/16

7T/32

7T/64

7T/128

Trapezoidal rule

-2.0204
-0.5012
-0.1251
-0.0312
-0.0078
-0.0195

Simpson's rule

0.08868371
0.00523515
0.00032268
0.00002010
0.00000126
0.00000008
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the ship under consideration. For example, for oceans and the Mediterranean sea,
various regulations specify the value 1.025 t m~3. An exception is the inclining
experiment, a case in which the actual density must be measured. But, even in
that case the precision of the measurement is limited and not better than that of
the V-value calculated with the rules described in this chapter.

3.3 Simpson's rule

In Figure 3.2, the solid line passing through the points B, C and D represents
the integrand /(#). We want to calculate the integral of /(#) between x = A
and x — E, i.e. the area ABCDEFA. This time we shall approximate f ( x ) by a
parabola whose equation has the form

f ( x ) = -f (3.8)

The parabola is represented by a dashed-dotted line in Figure 3.2. We need three
points to define this curve; therefore, in addition to the values of f ( x ) calculated
at the two extremities, i.e. at the points B and D, we shall also evaluate f ( x ) at
the half-interval, obtaining the point C. Let

AB = ~FC = ~ED = f ( x 3 )

AE
2

• Given integrand
Parabolic approximation

A F

Figure 3.2 The derivation of Simpson's rule
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We divide the total area under f ( x ) into two partial areas:

1. thetrapezoidABDEA,
2. the parabolic segment BCDGB.

The first area equals

For the second area, we use a result from geometry that says that the area of
a parabolic segment equals two-thirds of the area of the circumscribed paral-
lelogram. Correspondingly, we calculate the second area as two-thirds of the
circumscribed parallelogram BHID, i.e.

f
6

Adding the two partial sums yields

f ( x ) d* « [f(Xl) + 4/(x2) + /(x3)] (3.9)

which is the elementary form of Simpson's rule.
Usually we have to integrate the function f(x] over a larger interval [a, b}.

Then, we achieve a better approximation by dividing the given interval into
more subintervals. From the way we derived Eq. (3.9) we see that the number
of subintervals must be even, say n = 2/c, where k is a natural number. Let

. a-b

Applying Eq. (3.9) for each pair of subintervals, and adding all partial sums,
we get

4/(x4) + ' ' ' + 4/(zn) + /(xn+1)] (3.10)

which is the extended form of Simpson's rule, for equal subintervals. This form
is very helpful when calculations are carried out manually. As an example, let
us calculate

.
sin x dx
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In tabular form, the calculation is

Angle (°)
0

15
30
45
60
75
90

Sum

sin x

0
0.2588
0.5000
0.7071
0.8660
0.9659
1.0000

-

Multiplier
1
4
2
4
2
4
1
-

Product
0
1.0353
1.0000
2.8284
1.7321
3.8637
1.0000

11.4595

To obtain the approximation of the integral, we multiply the sum in column
4 by the constant subinterval:

W \ 1L4595 =

1807 3

When a computer is used, there is no need to have all subintervals equal and it is
sufficient to have pairs of equal intervals. A MATLAB function called s imp
that implements Eq. (3.9) is described in Biran and Breiner (2002, Chapter 10).

As an example, let us calculate by Simpson's rule the same integral that we
exemplified in Section 3.2. As shown in Tables 3.1 and 3.2, the results are much
better than those obtained with the trapezoidal rule.

3.3.1 Error of integration by Simpson's rule

Denoting by /; the approximation obtained by Simpson's rule in the subinterval
[#i, £3], the error equals

(3.11)
90 dz4

where x\ < £, < x3. Summing up the errors in all pairs of subintervals, and
denoting by / the approximation calculated with Simpson's rule, we obtain

/- /(#) dx
dz4 90

• - r /(x)dx
Jxi 180

l-h* max
dx4

(3.12)

(3.13)
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At this point we can say the following about Simpson's rule:

1. If we divide h by 2, the error decreases approximately in the ratio 1/16.
2. Simpson's rule yields the exact result if d4//dx4 = 0. This is certainly true

for second-degree parabolas, which is not surprising because we assumed
such a curve when we developed the rule. It is interesting that the method is
also exact for cubics (third-degree curves).

3. For an equal number of subintervals, Simpson's rule yields better results than
the trapezoidal rule. On the other hand, Simpson's rule imposes a serious
constraint: the number of subintervals must be even, or, equivalently, f ( x )
must be evaluated at an uneven number of equally spaced points, or, in other
words, an uneven number of ordinates. If, for example, we calculate the area
of a waterline, we need an uneven number of equally spaced stations.

Example 3.2
We refer again to Example 3.1 using this time Simpson's rule. We can experiment
with decreasing subintervals and obtain the results shown in Table 3.1, where they
are compared with the results yielded by the trapezoidal rule. The convergence
is considerably faster than that obtained in the case of the trapezoidal rule. The
per cent errors are shown in Table 3.2. As predicted by Eq. (3.13), each time
we divide the subinterval h by 2, the error decreases approximately in the ratio
1/16. Note also that only two subintervals yield better results with Simpson's
rule than eight with the trapezoidal rule.

3.4 Calculating points on the integral curve

The trapezoidal and Simpson's rules produce one number for an interval of
ordinates, i.e.

fb

I(a,b)= \ f(x)dx

Sometimes we are interested not only in one number, but also in a sequence
of numbers that describe the integral as a function within the given interval,

I(x) = I f ( x ) dx, a < x < b (3.14)
Ja

Thus, in certain hydrostatic calculations we may need to know the areas of
transverse sections (stations) as functions of draught (see Chapter 4).

Another example is that of calculations of dynamic stability which require the
knowledge of the area under the curve of the righting arm as function of the heel
angle. The latter subject is discussed in Chapters 6 and 8. An appropriate name
for a procedure that yields such an integral is integral with variable upper
limit.
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Let us consider a sequence of points, #1, x2, . . . , xn, and a sequence of
values /(xi), /(#2)> • • • , f(xn). In the first example above, the values of the
independent variable, a^, represent draught, the functions /(#;), half-breadth
and the integral, the area of the station up to that draught.

In the second example, x^ is a heel angle, f ( x i ) , the righting arm, GZ and
the integral, the area under the righting-arm curve up to the respective angle.
We could calculate the integral in Eq. (3.14) by applying one of the integration
rules over the interval [#i, £2], then over [#i, #3], and so on. This procedure
would be awkward. Table 3.3 illustrates an algorithm that yields the integral with
variable upper limit in a 'continuous' calculation. Let us detail the algorithm.

In column 1, we write the current numbers of the points at which we know the
values of the function to be integrated. In column 2, we write the X{ values, i.e.
the draughts in the first example given above, or the heel angles in the second
example. In column 3, we write the values of the functions f ( x i ) at the points
Xi shown in column 2. For columns 3 and 4, the algorithm is

Write 0 in column 4, line 1
For i = 1 : (n — 1)

• Pick up the value in column 4, line /
• Go left and add the value in column 3, line i
• Go down and add the value in column 3, line / +1
• Write the result in column 4, line / -j-1

End

In column 5, line i, we write the result of the product of the content of column 4,
line z, by half of the subinterval of integration. Visual inspection of column 5
shows that the expressions appearing there are exactly those yielded by the
trapezoidal rule over the intervals [#i, x2], [#i, x 2 ] , . . . , [#i, xn].

Table 3.3 The algorithm for integration with variable upper limit

No. Position Function Sums Integrals
_ _ _ _ _ _

I ^
2 X2

3 x3
c— )• J

4

e ( r t } \ °f(ro") 1 f(r<*} /(xi) i f ( .\JsLJ \ ^J\J,2) I J\^3) 2 ' J \*r2) + ̂

/(*„)
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Table 3.4 Integral with variable upper limit - comparing
the analytic result with that obtained in MATLAB

Angle (°)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

Analytic result

0
0.0152
0.0603
0.1340
0.2340
0.3572
0.5000
0.6580
0.8264
1.0000
1.1736
1.3420
1.5000
1.6428
1.7660
1.8660
1.9397
1.9848
2.0000

Numerical result

0
0.0152
0.0602
0.1336
0.2334
0.3563
0.4987
0.6563
0.8243
0.9975
1.1707
1.3386
1.4962
1.6386
1.7616
1.8613
1.9348
1.9798
1.9949

In our experience, the MATLAB procedure is slightly more exact than the
Excel spreadsheet. Table 3.4 compares the result yielded by Eq. (3.15) with
those obtained with the MATLAB function. The agreement between the results
obtained, analytically in Excel, and in MATLAB is remarkable.

3.5 Intermediate ordinates

The integration rules developed in Sections 3.2 and 3.3 were based on a sub-
division into equal subintervals. This procedure is not always the best one. Let
us consider, for example, the waterline shown in Figure 3.4. We may appreciate
that the shape of the curve between Stations 0 and 1 suits neither the trapezoidal
nor Simpson's rule; applying either of them would yield large errors. We learnt
that reducing the intervals would also reduce the errors. Therefore, let us intro-
duce an intermediate station between Stations 0 and 1 and appropriately call it
Station \. We introduce another intermediate station between Stations 9 and 10
and call it 9|. We invite the reader to check that the corresponding sequence of
trapezoidal multipliers is now

1/4, 2/4, 3/4, 4/4, !,...,!, 4/4,3/4, 2/4, 1/4

= 1/4, 1/2, 3/4, !,...,!, 3/4, 1/2, 1/4
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0 1 / 2 1 2 3 4 5 6 7 8

Figure 3.4 Intermediate ordinates at Station \ and Station 9^

The subdivision illustrated in Figure 3.4 suits Simpson's rule too, because we
have a pair of equal subintervals <5I//2, four pairs of equal subintervals SL and
a pair of equal subintervals 6L/2.

3.6 Reduced ordinates

We present in this section another way of overcoming the problem described in
the preceding section. In continuation, we show how the same method can be
adapted for a more difficult case.

Let us consider the thick, solid-line curve shown in the left-hand side of
Figure 3.5; it may be, for example, the after part of a waterline. If we calculate
the area under the curve by the trapezoidal rule, and enter 0 for the half-breadth
at Station 0 and the actual half-breadth at Station 1, we miss the whole shaded
area. If we use Simpson's rule with the same values, plus the actual half-breadth
at Station 2 (remember, for Simpson's rule we must take two equal subintervals),
we obtain, in fact, the area under the dashed line, and this can be again less than
the actual area.

The right-hand side of Figure 3.5 shows a simple way of improving the result.
Let us draw the line BC so that the two shaded areas look equal. Our intention is
to rely upon visual appreciation because we are looking for a quick procedure.
Then, we take the length of the segment AC as the reduced ordinate at Station 0.

Above, the curve we are interested in begins exactly at one station. Frequently
it happens that the curve begins or ends between stations. Such a case is illustrated
in Figure 3.6, which may represent the forward part of a waterline.

To obtain a reduced ordinate, we begin by applying the procedure described
above, and substitute the given curve arc by the straight line segment AB. Next,
we connect the point A to the point C and draw BE parallel to AC. The reduced

St 0 St 1 St 2 °' u

Figure 3.5 Reduced ordinates - a simple case
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St 8 St 9

Figure 3.6 Reduced ordinates - a more complex case

StlO

ordinate is CE and we use it with a minus sign. To prove that the proposed
procedure yields the correct result, we extend the segment BE until it intercepts
Station 9 at point D. We are looking for the area of the triangle ABF, but this
area equals the area of the triangle ACF minus that of the triangle ABC. Now,
the_area of the triangle ABC is half the area of the parallelogram ACED. Noting
AF = yg, the half-breadth at Station 9 and FC = 6L, we can write

Area =
yg -6L CE- SL

(3.16)

This is exactly the result we would obtain by applying the trapezoidal rule with
the value 3/9 for Station 9 and the length of the segment CE taken with the minus
sign.

3.7 Other procedures of numerical integration

We described in this section two rules for numerical integration: the trapezoidal
and Simpson's rules. Additional methods of integration have been developed
and employed. For example, a third rule popular in English-language literature
is Simpson's second rule in which the given integrand is approximated by a
third-degree parabola. This rule is applied on sets of three equal subintervals, or,
in other words, sets of four equally spaced ordinates. This is a very serious con-
straint. As shown in Chapter 13, CAD programs used today in Naval Architecture
describe the hull surface by piecewise polynomials, i.e. they fit polynomials and
combination of polynomials to curve segments and surface patches. Then, it
is possible to use the polynomial coefficients to obtain the integrals by simple
algebraic formulae. For example, if a segment of a waterline is described by the
equation

+ C2X -f C3 (3.17)
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then the area enclosed between the curve segment, the centreline, and the stations
x = a, x = b is

j Cl 3 , C2 2ydx= —x + y^

(3.18)

Similar equations can be derived for other properties, namely moments and
moments of inertia.

3.8 Summary

Naval Architecture requires the calculation of areas, moments of areas, moments
of inertia of areas, volumes and moments of volumes. Such calculations involve
definite integrals. Usually, the hull surface is defined by line drawings or tables
of offsets, and not by explicit mathematical expressions. Then, the integrals can
be obtained only by numerical methods. In a numerical method, we approximate
the integral by a weighted sum of a finite set of function values, i.e.

(3.19)

Two methods that implement such approximations are introduced in this chapter:
the trapezoidal rule and Simpson's rule. The trapezoidal rule approximates the
given curve by straight line segments, while Simpson's rule approximates it by a
parabola. The rules are exemplified on integrands for which we know the exact
solutions. Thus, it is possible to show convincingly that the approximations yield
satisfactory results. Also, it is possible to see that, as the number of ordinates -
i.e. the number of points at which the integral is evaluated - increases, the
error decreases. The number of ordinates must be limited for practical reasons.
This is possible because it is sufficient to maintain a precision consistent with
measurements or other calculations. Simpson's rule yields, on one hand, results
closer to the exact value. On the other hand, it imposes a serious constraint: the
number of subintervals must be even.

By applying the rule of integration over one interval we obtain one number.
In Naval Architecture, it is sometimes necessary to have a set of numbers that
describe the integral curve as a function of the independent variable, i.e.

- I f ( x ) d x , a<x<b
J a

This integral with variable upper limit can be obtained with the aid of an elegant
algorithm described in this chapter.

The shape of curves encountered in Naval Architecture can be such that over
certain intervals, generally towards their ends, it may be necessary to use smaller
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subintervals of integration. We then use intermediate ordinates. In the case of a
waterline, these ordinates are intermediate stations.

In the lines plan, some lines can terminate within a subinterval, and not at the
end of the subinterval. For example, by construction the design waterline usually
begins at the aft perpendicular AP, and ends at the forward perpendicular FP.
Most other waterlines can begin and end between stations. For good approxi-
mations of the areas under such curves, while using the initially given subdivision
into subintervals, the lines must be corrected yielding reduced ordinates that
will be used in the integration.

3.9 Examples

Example 3.1
Calculate the integral

/•45

L -x3 dx

by the following methods:
(a) analytic, (b) trapezoidal rule, five ordinates, (c) trapezoidal rule, nine ordi-
nates, (d) Simpson's rule, five ordinates and (e) Simpson's rule, nine ordinates.

Solution

(a)

r4

\
Jo

x6 dx = —
45

= 1025156.25

(b) The following values were calculated in MS Excel:

No. of
ordinate

(1)
1
2
3
4
5

Sum
Integral

Trapezoidal
multiplier

(2)
1/2
1
1
1

1/2
-

f ( x )

(3) (4)
0.00 0.00

11.25 1423.83
22.50 11390.63
33.75 38443.36
45.00 91125.00
- -

(45/4)Sum/3 =

Products

( 5 - 2 x 4 )
0.00

1423.83
11390.63
38443.36
45562.50
96820.31

1089228.52

The error is

E = 1 025 156.25 - 1 089 228.52 - -64 072.27
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and the relative error is

E
Er = 100 x = -6.25%

1025156.25

(c) The following values were calculated in MS Excel:

No. of
ordinate

(1)
1
2
3
4
5
6
7
8
9

Sum
Integral

Trapezoidal
multiplier

(2)
1/2
1
1
1
1
1
1
1

1/2
—

X

(3)

0.00
5.63

11.25
16.88
22.50
28.13
33.75
39.38
45.00

—

/(*)

(4)

0.00
177.98

1423.83
4805.42

11390.63
22247.31
38443.36
61046.63
91125.00

—
(45/8)Sum/3 =

Products

(5 = 2 x 4 )

0.00
177.98

1423.83
4805.42

11390.63
22247.31
38443.36
61046.63
45562.50

185097.66
1041174.32

The error is

E = 1025 156.25 - 1041174.32 - -16 018.07

and the relative error is

ET = 100 x
E

= -1.56%
1 025 156.25

(d) The following values were calculated in MS Excel:

No. of
ordinate

(1)
1
2
3
4
5

Sum
Integral

Simpson's
multiplier

(2)
1
4
2
4
1
_

x f ( x )

(3) (4)

0.00 0.00
11.25 1423.83
22.50 11390.63
33.75 38443.36
45.00 91125.00
- -

(45/4)Sum/3 =

Products

( 5 - 2 x 4 )

0.00
5695.31

22781.25
153773.44
91125.00

273375.00
1025156.25

The error is

E = 1025 156.25 - 1025 156.25 = 0
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and the relative error is

E
Er = 100 x = 0%

1025156.25

(e) The following values were calculated in MS Excel:

No. of
ordinate

(1)
1
2
3
4
5
6
7
8
9

Sum
Integral

Simpson's
multiplier

(2)
1
4
2
4
2
4
2
4
1
-

X

(3)

0.00
5.63

11.25
16.88
22.50
28.13
33.75
39.38
45.00

—

/(*)

(4)

0.00
177.98

1423.83
4805.42

11390.63
22247.31
38443.36
61046.63
91125.00

—
(45/8)Sum/3 =

Products

(5 = 2 x 4 )

0.00
711.91

2847.66
19221.68
22781.25
88989.26
76886.72

244186.52
91125.00

546750.00
1025156.25

The error is

E = 1025 156.25 - 1025 156.25 = 0

and the relative error is

E
ET = 100 x

1025156.25
= 0%

MATLAB solution

(a) Analytic:

format long
a = 45~4/4 = 1.025156250000000e+006

(b) Trapezoidal rule, five ordinates:

x = 0: 45/4: 45;
Y = X . ~ 3 ;
b = trapz(x, y) = 1.089228515625000e+006
error = a - b = -6.4072e+004
percent_error = 100*(a - b)/a = -6.2500 °
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(c) Trapezoidal rule, nine ordinates:

X = 0: 45/8: 45;

y = X . ~ 3 ;
c = trapz(x, y) = 1.041174316406250e+006
error = a - c = -1.6018e+004
percent_error = 100*(a - c)/a = -1.5625 %

(d) Simpson's rule, five ordinates:

X = 0: 45/4: 45;
y = X. " 3 ;
d = simp(x', y') = 1.025156250000000e+006
error = a - d = 0
percent_error = 100*(a - d)/a = 0 %

(e) Simpson's rule, nine ordinates:

x = 0: 45/8: 45;

y = x . ~ 3 ;
e = s imp(x ' , y 7 ) = 1 .025156250000000e+006
error = a - e = 0
percent_error = 100*(a - e)/a = 0 %

3.10 Exercises

Exercise 3.1
Calculate the integral

2

sin x dx
/-7T/2

by the following methods:

(a) analytic, (b) trapezoidal rule, five ordinates, (c) trapezoidal rule, nine ordi-
nates, (d) Simpson's rule, five ordinates and (e) Simpson's rule, nine ordinates.
Analyze the errors and explain your results.

Exercise 3.2
Find the trapezoidal multipliers corresponding to integration over the set of
stations

0, -, 1, 1-, 2, 3 , . . . , 8, 8-, 9, 9-, 10

Exercise 3.3
Find the Simpson's multipliers corresponding to integration over the set of
stations

0, i, 1, 2, 3 , . . . , 8, 9, 9^, 10



4
Hydrostatic curves

4.1 Introduction

In the preceding chapter we learnt several methods of numerical integration
used in Naval Architecture. In this chapter we are going to apply them to the
calculation of areas, centroids, moments of inertia of areas, volumes, and centres
of volume. We call these properties hydrostatic data and show how to plot them,
as functions of draught, in curves that allow further calculations.

Another set of plots consists of Bon jean curves; they enable the user to
calculate the displacement and the centres of buoyancy for a given waterline, in
an upright condition. The waterline can be not only a straight line, as is the case
in still water, but also a curve. The latter case can arise when the hull is deflected
because of a longitudinal bending moment or thermal expansion, or when the
vessel floats in waves. The vessel is said to be in a hogging condition if the
keel is concave downwards, and in a sagging condition if the keel is concave
upwards.

All the properties mentioned above are represented as functions of draught.
Certain functional relationships exist between some of those curves. Three such
properties are described in this chapter.

Another subject dealt with in this chapter is that of affine hulls, i.e. hulls
obtained from given ship lines by multiplying by the same scale factor all
dimensions parallel to an axis of coordinates. The properties of an affine hull
can be derived by simple formulae from the properties of the parent hull.

Within this chapter we use the following notations:

i station number, as in the lines drawing;
j station number defined such that the distance from the origin of

a;-coordinates is j 6L\
Xi x-coordinate of station i\
Ui half-breadth of station i on a given waterline;
a.i integration multiplier for station i\ for Simpson's rule

we assume that the common factor 1/3 is included in c^;
SL subinterval of integration along the x-axis;
ST subinterval of integration along the z-axis;

For the above definitions we have, obviously, j = 0 in the origin of
coordinates.
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4.2 The calculation of hydrostatic data

4.2.1 Waterline properties

In this section, we refer to Figure 4.1 and assume that all waterlines are symmetric
about the centreline. This assumption is true for almost all ships in upright
condition.

We calculate the waterplane area, of a given waterline, as

Aw

fb
= 2 y d x * .

J a
(4.1)

where the waterline begins at station HI, with x — a, and ends at station 712,
with x = b.

The moment of the waterplane area about a transverse axis passing
through the origin of coordinates is

rb

= 2
Ja

xydx 6L = 2 (4.2)

Leaving the indexes ni and ri2, we write the x-coordinate of the centre of
flotation of the given line as

= Mx (4.3)

Figure 4.1 An element of waterline area
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The notation XF corresponds to the DIN 81209 standard. The notation used in
English-language texts is LCF, an acronym for longitudinal centre of flotation.
The corresponding curve is shown in Figure 4.2. To calculate the transverse
moment of inertia of the waterplane area, i.e. the moment of inertia about the
centreline, we first write the moment of inertia of the elemental area shown in
grey in Figure 4.1:

2 3

= * dx

Then, the moment of inertia of the whole waterplane equals

rb

/

9

^- 3

(4.4)

(4.5)

The moment of inertia of the waterplane area about a transverse axis pass-
ing through the origin of coordinates is calculated as

rb ( n \ ( n \
y = 2 x2y dx « 2 £ a^yi } SL = 2 PT adfa 6L3

Ja \»=o / \t=o /
(4.6)

-2
2.2

KB, KM, LCF, LCB (m), dash lines
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Figure 4.2 Hydrostatic curves of Ship Lido 9
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In Subsection 2.8.1, we learnt that, for small angles of inclination, the initial
and the inclined waterlines intersect themselves along a line passing through
the centre of flotation (barycentric axis). For longitudinal inclinations, that is
trim, in intact condition, this is almost always true. Therefore, we are interested
in finding the moment of inertia of the waterplane area about the transverse
barycentric axis. We find this moment, called longitudinal moment of inertia,
by using a theorem on the parallel translation of the axes of coordinates

— Iy — (4.7)

The geometrical properties of the waterplane area can be conveniently
calculated in a spreadsheet such as that shown in Table 4.1. The table con-
tains the data of the lowest waterline in Figure 1.11 and it was calculated in MS
Excel.

The final results are obtained by using the sums in Table 4.1 as follows:

6L

LCF

IT

0.893m

2 x 0.893 x 9.507= 16.98m2

-4.124
9.507

x 0.893- -0.387m

- - x 13.091 x 0.8932 - 7.79m4

o
= 2 x 50.058 x 0.8933 - 71.29m4

= 71.29 - (-0.387)2 x 16.98 = 68.75m4

Table 4.1 A waterline sheet

Station Trapezoidal Half- Levers, Functions Functions Functions Cubes of Functions
No. multiplier, breadth, ji of area, of of/x, half- of IT,

Oii m ot-iVi moments, Q-iflyi breadth, o^y3

1
0
1
2
3
4
5
6
7
8
9
10

Sums

2

1/2
1
1
1
1
1
1
1
1
1

1/2
-

3

0.000
0.900

1.189
1.325
1.377

1.335
1.219
1.024

0.749
0.389
0.000
-

4

-5
-4
-3
-2
-1

0
1
2
3
4
5
-

5 = 2 x 3

0.000

0.900

1.189
1.325
1.377
1.335

1.219
1.024

0.749
0.389
0.000
9.507

6 = 5 x4

0.000
-3.600
-3.567
-2.650
-1.377

0.000
1.219
2.048
2.247
1.556
0.000

-4.124

7 = 6 X4

0.000
14.400
10.701
5.300
1.377
0.000
1.219
4.096
6.741
6.224
0.000

50.058

8 = 33

0.000
0.729
1.681
2.326
2.611
2.379
1.811
1.074
0.420
0.059
0.000
-

9 = 2x 8

0.000
0.729
1.681
2.326
2.611
2.379
1.811
1.074
0.420
0.059
0.000

13.091
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We recommend the reader to check the plausibility of the results by comparing
them with the data of the circumscribed rectangle. For example, the area of this
rectangle is

2 x 1.377x8.928-24.559m2

that is greater than the waterplane area, and so it should be.
Table 4.1 requires a few explanations. The fourth line contains column num-

bers. An expression like 5 = 2 x 3 means that the numbers in column 5 are
the products of numbers in column 2 by numbers in column 3. Similarly, the
numbers in column 7 are the products of numbers in column 6 by numbers
in column 4. This means that the number 14.400, for example, is obtained by
one multiplication, namely -3.600 x (-4), and not by two multiplications and
a squaring operation, 1 x (—4)2 x (0.900). Proceeding in this way we spare
computer resources and reduce the possibilities of errors. Another simplification
results from the use of the factors j, most of them integers. Multiplication by
integers is easier when carried out manually, and it is not affected by numerical
errors. Thus, instead of multiplying the products in column 5 by rr-distances that
are 'real' numbers (fractional values), and introduce numerical errors at each
station, we multiply by integers. Then, the sums of the products in columns
6 and 7 are multiplied only once by the length, and the square of the length of
the subinterval of integration, 8L, which can be a real number.

Let us make a final comment on the use of electronic spreadsheets for
calculations such as those in Table 4.1. The values of half-breadths, yi, are
entered only once, in column 3, although they are repeatedly used in all calcu-
lations. In this way, we reduce the possibilities of errors that can occur when
entering a number. Moreover, if we must change the value of a half-breadth, we
do it in one place only, and the change spreads automatically over the whole
table.

Instead of using an electronic spreadsheet, such as MS Excel, one can write a
programme in a suitable language, for example, MATLAB. Such a programme
can be useful if the calculations are chained with other computer operations. For
the reasons explained above, we recommend to write the programme following
the principles used in the waterline sheet shown in Table 4.1.

4.2.2 Volume properties

We can obtain the displacement volume corresponding to a given draught, TO,
by integrating 'vertically' the waterplane areas from the lowest hull point to the
given draught:

(4.8)
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The moment of the displacement volume above the base line can also be obtained
by 'vertical' integration:

MB = / ° TAW dz * (> ^ atZiAvK } 6T = ( > ' a^AW; \ d"2T (4.9)
Jo

where zi is the ̂ -coordinate of the zth waterline and ji the number of the waterline
counted from the baseline.

From Eqs. (4.8) and (4.9), we calculate the vertical coordinate of the centre
of buoyancy, ZB, as

MB
-zz- ~ — 7 — : - >• - — —/ — : - r— oT (4.10)
V

The notation ZB is that prescribed in the DIN 8 1209 standard. The notations com-
mon in English-language books are KB, or VCB, the latter being the acronym
of vertical centre of buoyancy. The procedure used with Eq. (4.10) yields bad
approximations for the lowest waterlines. Therefore, we recommend to neglect
the results for the first waterlines. As shown in Section 4.4, we can also cal-
culate the displacement and the vertical centre of buoyancy by 'longitudinal'
integration of values read in Bonjean curves.

4.2.3 Derived data

Let us suppose that we know the displacement, AQ, corresponding to a given
draught, TO, and we want to find by how many tons that displacement will
change if the draught changes by 6T cm. Let the waterplane area be AW m2 and
the water density pvv tm~3. For a small draught change, we may neglect the
slope of the shell (in other words we assume a wall-sided hull) and we write

<5A = pwAw 6T

If we measure A in tons, and 6T in centimetres, we obtain

6& = pw^xlW (4.11)
ol

We call the quantity pw^w/100 tons per centimetre immersion and use for
it the notation TPC. In older, English-language books, we find the notation TPI
as an acronym for tons per inch. This quantity is calculated from an expression
similar to Eq. (4.11), but adapted for English and American units. For SI units

TPC = x pw (4'12)
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where p\y should be taken from the Appendix of Chapter 2. The problem posed
above can be inverted: find the change in draught, 6T, corresponding to a change
of displacement, JA. The obvious answer is

TPC
The above calculations yield good approximations as long as the changes $A
and 6T are small. In fact, Eq. (4.11) is a linearization of the relationship between
displacement volume and waterplane area.

Trim calculations will be discussed in more detail in Chapter 7. However,
as one quantity required for those calculations is derived from hydrostatic data
and is usually presented with the latter, we introduce this quantity here. Let us
calculate the moment necessary to change the trim by 1 m. If the length between
perpendiculars is Lpp and is measured in m, the corresponding angle of trim is
defined by

arctan<9=-— (4.13)

The notation 0 for the angle of trim corresponds to the standards ISO 7463 and
DIN 81209-1. At the angle of trim given by Eq. (4.13), the displacement and
buoyancy forces are separated by a distance GMc sin 0, where GML is the
longitudinal metacentric height calculated as

GML = KB + BML - KG

The couple formed by the displacement and buoyancy forces is

AGML sin 9

For small angles of trim, we assume tan 0 « sin 6 and then the moment to
change trim by 1 m is equal to

MCT =

where MCT is measured in tm/m, A in t, and GM^ and Lpp, in m. Although
the SI unit is the metre, some design offices use the 'moment to change trim by
1 cm'. Then, the value of MCT given by Eq. (4.14) should be divided by 100.

In the first design stages KG is not known. As BMi, > KB — KG, we can
assume the approximation GM\.

In Table 4.2, calculated with the ARCHIMEDES programme, the moment to
change trim is based on the displacement volume, V, and is measured in m4/m.
Let us check, for example, the value corresponding to the draught 1.9m. We
rewrite Eq. (4.14) as

MCT = (4.15)
LPP



98 Ship Hydrostatics and Stability

Table 4.2 Hydrostatic data of ship Lido 9
Data

Trim difference
by head > 0)
Volume of
displacement
LCB Fwd of midship
KB
Waterline area
LCF
Long moment of
inertia
Moment to change
trim
Transverse moment
of inertia
Longitudinal, KM
Transverse, KM
Block coefficient, CB
Waterline
coefficient, CW
Midship
coefficient, CM
Prismatic
coefficient, CP

Units

m

m

m3

m
m

m2

m
m4

m4/m

m4

m
m
-
_

-

_

Draught

0.700

0.000

2.998

-1.599
0.506

11.529
-1.973
144.830

9.344

2.950

48.813
1.490
0.110
0.296

0.069

_

0.900

0.000

6.090

-1.747
0.660

20.221
-1.648
218.207

14.078

9.364

36.491
2.198
0.126
0.377

0.124

_

1.100

0.000

11.212

-1.600
0.819

31.449
-1.298
334.093

21.554

25.814

30.615
3.121
0.149
0.461

0.172

0.870

1.300

0.000

18.669

-1.446
0.973

42.998
-1.150
469.420

30.285

55.665

26.117
3.955
0.177
0.531

0.220

0.807

1.500

0.000

28.379

-1.329
1.120

54.183
-1.092
642.827

41.473

93.061

23.772
4.400
0.216
0.620

0.280

0.773

1.700

0.000

40.314

-1.268
1.263

64.708
-1.137
857.657

55.333

134.428

22.538
4.598
0.261
0.712

0.344

0.758

1.900

0.000

54.197

-1.246
1.401

74.088
-1.259

1129.524

72.872

171.925

22.242
4.574
0.301
0.783

0.398

0.758

2.100

0.000

69.825

-1.266
1.536

81.810
-1.388

1416.003

91.355

201.990

21.815
4.429
0.342
0.841

0.444

0.770

and calculate

54.197(22.242 - 1.401)
MCT = 15.5

= 72.872 m4/m

This is exactly the value appearing in Table 4.2.

4.2.4 Wetted surface area

We call wetted surface area the hull area in contact with the surrounding water.
When we speak about a certain value of the wetted surface area we mean the
value corresponding to a given draught. We need this quantity when we calculate
the ship resistance, i.e. the force by which the water opposes the forward motion
of the ship. Besides this, the protection against corrosion, be it active or passive,
depends on the value of the wetted surface area. The methods used to calculate
the wetted surface area can be extended to the evaluation of the shell area up to
any given height. The total shell area is needed for a preliminary estimation of
the weight of shell plates and the weight of paint.

In the past, the wetted surface area was calculated as the area of the hull
expansion. In simple terms, to do this one has to 'open' the hull surface and lay
it flat on a plane. This operation can be done exactly for certain surfaces called
developable (see Chapter 13) such as the surfaces of cubes, cylinders or cones.
Many hull surfaces are not developable, for some only the middlebody is devel-
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opable. Then, the Naval Architect must be satisfied with an approximation, such
as described in Comstock (1967, pp. 39-41). Recent computer programmes for
Naval Architecture calculate the wetted surface area by methods of differential
geometry. Approximate formulae for calculating the wetted surface area of many
ship types can be found in the literature of speciality. If the chosen hull belongs
to a series of models tested in a towing tank, the wetted surface area is usually
included in the data supplied by the experimenting institution.

4.3 Hydrostatic curves

Table 4.2 shows the hydrostatic data of the Ship Lido 9, for draughts between 0.7
and 2.1 m, as calculated by the ARCHIMEDES programme. The data appear at
discrete draught intervals. It is usual to represent those data also as hydrostatic
curves that allow interpolation at any required draught. Such curves are part of
the documentation that must be onboard, for use by deck officers in calculations
required for the operation of the vessel. Many ships are provided today with
board computers that store the input data of the vessel and enable the officers to
calculate immediately any data they need. Even in those cases the hydrostatic
curves and the knowledge to use them should be present for emergency cases in
which the computer fails.

There are no universally accepted standards for plotting hydrostatic data and
we can find a wide variety of 'styles'. For our purposes we choose a simple model
that can be accommodated in the space of a textbook page, but still shows the
major features common to all representations. The curves are plots of functions
of the draught, T, at constant trim and heel. In general, the trim equals zero
(ship on even keel), but it is possible to plot hydrostatic curves for any given,
non-zero trim. The heel is almost always zero. The hydrostatic curves represent
data calculated for parallel waterplanes. Romance languages use a short, elegant
term for this situation. For instance, in French one talks about 'carenes isoclines',
while Italian uses the term 'carene isocline'.

Let us refer to Figure 4.2. The draught axis is vertical, positive upwards. The
various properties are measured horizontally, each at its own scale, so that all
curves can be contained in the same paper format. In our example, the curves of
volume of displacement, V, displacement in fresh water, AFW, displacement
in salt water, ASW, waterplane area, AW, moment to change trim by one metre,
MCT, and longitudinal metacentre above keel, KM\., are measured along the
lower scale that is to be read as 0-100 m3, 0-1001, 0-100 m2, 0-100 m4/m,
or 0-100 m, respectively. The vertical centre of buoyancy, KB, the transverse
metacentre above keel, KM, the longitudinal centre of flotation, LCF, and
the longitudinal centre of buoyancy, LCB, are measured along the upper scale
graduated from —2 to 5 m. To simplify things, we plot the coefficients of form,
CB, CM, Cp, and CWL in another graph shown in Figure 4.3.

Let us return to the volume and displacement values represented in hydrostatic
curves. The displacement volume, V, is usually the volume of the moulded hull.
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Figure 4.3 Coefficients of form of Ship Lido 9

The displacements in fresh and in salt water should be total displacements that
include the displacements of shell plates and appendages. Appendages found in
all kinds of ships include rudders, propellers, propeller shafts and struts, bilge
keels, and roll fins. The sonar domes of warships are also appendages if they
do not appear in the lines drawing and are not directly taken into account in
hydrostatic calculations. The volumes of tunnels that accommodate bow thrusters
should be subtracted from the volume of the moulded, submerged hull when
calculating total displacements.

American literature recommends to calculate separately the volumes and
moments of shell plates and appendages, and to add them to those of the moulded
hull. This procedure requires detailed knowledge of all appendages and shell
plates, an information not available in early design stages. An approximate, sim-
ple method consists in adding a certain percentage to the moulded displacement
volume. This amounts to multiplying the moulded volume by a displacement
factor that is the sum of surrounding-water density and the relative part of
appendages and shell plates. Examples of values found in European projects are

AFW = (1.000 + 0.0008)V - 1.008V

for a vessel displacing a few hundred tons, and

AFW = (1-000 + 0.0005)V = 1.005V
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for larger vessels. The corresponding displacements in salt water of density
1.025 tm"1 are

AFW - (1.025 4- 0.0008)V - 1.033V

AFW - (1.025 4- 0.0005)V = 1.030V

To understand why the additional percentage decreases with increasing volume,
let us remember that volumes increase like the cubes of dimensions, while sur-
faces, such as those of plates and rudders, increase like the square of dimensions.

4.4 Bonjean curves and their use

Figure 4.4 shows the midship section of the Ship Lido 9 in solid, thick line. Its
equation is of the form

* = f(y)

4.5-

3.5

^2.5

o>

I 2

1.5

0.5

0

— Midship section, m
. — • Area, m2

— Moment above BL, m3

0 0.5 1 1.5 2 2.5

Figure 4.4 The meaning of Bonjean curves

3.5 4.5
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The Bonjean curves are defined by the equations

rr
 dz

/keel-L (4.16)

M - fJkeel
zydz (4.17)

The first integral yields the sectional area as function of draught, while the
second integral is the moment of the sectional area about the base line, also as
function of draught.

Figure 4.5 shows the Bonjean curves of the Ship Lido 9. The ship outline
appears in solid line. The scales along the x-axis and the T-axis are different,
otherwise the drawing format would be too long. The waterline appearing in
the figure corresponds to the mean draught 2 m and the trim 0.5 m. The data
corresponding to this line are written in Table 4.3; they are read along horizon-
tal lines starting from the intersection of the waterline with the corresponding
station. For example, the midship station is intersected by the waterline a small

4.5

3.5

'2.5

1.5

0.5

Sectional areas - solid lines, moments above BL - - dashed lines

-10 - 6 - 4 - 2 0 2 4 6
xfrom midship in m, areas in m2/2, moments above BL in m3/5

10

Figure 4.5 Bonjean curves of Ship Lido 9
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Table 4.3 A Bonjean sheet

Station
No.

1

0
i
2
1

2
3
4
5
6
7
8
9

9-
10

Sum

Trapezoidal
multiplier,

2

1/4
1/2
3/4
1
1
1
1
1
1
1

3/4
1/2
1/4
-

Lever
arm,

3

-5
-4.5
—4
-3
-2

i

0
1
2
3
4
4.5
5
-

Sectional
area,

4

0.23
0.68
1.04
2.99
2.21
2.62
2.68
2.42
2.09
1.51
0.87
0.43
0.03
-

Functions
of area,

5 = 2 x 4

0.06
0.34
0.78
2.99
2.21
2.62
2.68
2.42
2.09
1.51
0.65
0.21
0.01

18.57

Moment
from MS,

6 = 3 x 5

-0.29
-1.53
-3.12
-8.98
-4.41
-2.62

0.00
2.42
4.17
4.54
2.60
0.97
0.04

-6.21

Moment
above BL,

7

0.37
0.93
1.45
3.83
3.11
3.76
3.93
3.68
3.29
2.47
1.45
0.77
0.06
-

Functions
of moment,

8 = 2 x 7

0.09
0.47
1.09
3.83
3.11
3.76
3.93
3.68
3.29
2.47
1.09
0.38
0.01

27.20

distance below 2 m. On the horizontal corresponding to that draught, we read
the sectional area

A = 2x 1.34 = 2.68m2

and the moment about BL

M = 5x0 .79 -3.95m3

To simplify the example, we neglect the data corresponding to the ship volumes
aft of Station 0 and forward of Station 10. The respective values are indeed
very small and by not including them we can integrate by either trapezoidal or
Simpson's rule without having to correct multipliers.

The final results are calculated as follows:

SL
V

LCB

KB =

1.55m

2 x 1.55 x 18.57-57.57m3

-6.21
18.57
27.20

18.57

x 1.55--0.518

- 1.465m
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4.5 Some properties of hydrostatic curves

In Section 4.2, we have learnt how to calculate hydrostatic data and represent
them as functions of draught, for constant trim and heel. In addition to the func-
tional dependence of each variable on draught, certain relationships between
various curves hold true. In this section, we are going to show three of them.
Relationships between various hydrostatic curves have been used to check visu-
ally the correctness of hydrostatic calculations. Such checks were obviously very
useful when calculations were carried out by tedious manual procedures, even if
with the help of mechanical integrating devices. Today we rely on the correctness
and accuracy of computer programmes, but errors can still occur when plotting
the output of the programmes by means of procedures that are not part of the
hydrostatic programme. Besides this, reading this section is a good exercise in
understanding the meaning of hydrostatic data.

In Figure 4.6, we consider a floating body with the waterline WL. The centre
of buoyancy is B, the displacement volume is V, and the waterplane area AW-
The moment of the submerged volume about the plane zOy is XB V, the moment
of the submerged volume about the plane xOz equals y-Q V, and the moment of
the submerged volume about the plane yOx is z& V.

Let us assume that the waterline rises by a draught change equal to 6T. Then,
the submerged volume increases by 6V = Aw 5T. Let the centre of the addi-
tional volume be F. When 6T tends to zero, F tends to the centroid of the
waterline, that is to the centre of flotation. The moments of the submerged vol-
ume change by

5(xB V) = XF ST

6T
(4.18)

Figure 4.6 Properties of Isocline' floating bodies
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Expanding the left-hand side of Eq. (4.18), we obtain

6T (4.19)

V5zB -h zB 5V = zFAw 6T

Dividing by J V = AW ST, rearranging terms and passing to infinitesimal quan-
tities we rewrite Eq. (4.19) as

d(xB) V
dT Aw

«F-«B = %^ (4.20)

dT A™LL-i -Tl YY

Let us consider the first of Eq. (4.20) and assume xp = XB- The left-hand side
becomes zero and so must be the right-hand side. The displacement volume,
V, can equal zero only at the lowest point of the hull, where AW is also zero.
For any other point for which xp = XB we must have d(xB)/dT = 0. In the
hydrostatic curves this means

Where the curve of the longitudinal centre of flotation, LCF, inter-
sects the curve of the longitudinal centre of buoyancy, LCB, the
tangent to the latter curve is vertical.

We can easily verify this result on the curves shown in Figure 4.2. It may happen
that for some ship forms the two curves do not intersect. We turn now to the
third part in Eq. (4.20). Except at the lowest point of the hull, zp can never equal
ZB- It results that d(ze)/dT can never be zero in any other place than the lowest
point of the hull. In other words, the KB curve can have a vertical tangent only
in its origin. This result, which can be checked in Figure 4.2, corresponds to our
intuition. Indeed, as the draught increases, so must do the ^-coordinate of the
centre of buoyancy. Finally, let us divide, side by side, the first part in Eq. (4.20)
by the last. We obtain

and remark that zp = T. To discover the geometric significance of Eq. (4.21)
let us examine Figure 4.7 built with data of the Ship Lido 9\ it contains a plot of
ZB as function of XB, or, with alternative notations, KB values as function of
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Figure 4.7 Relationship between centre of flotation and centre
of buoyancy

LCB. The point F is the centre of flotation corresponding to a draught of 0.9 m,
and the point B, the centre of flotation for the same draught. We can write

tan(ZOEF) = = = =
OF

~BO

XB
(4.22)

which proves Eq. (4.21).
Conventional ships are symmetric about their centrelines. Then, yF = 2/s = 0

and so is d(y&)/dT. For floating bodies that have no port-to-starboard symmetry,
it makes sense to divide the second part in Eq. (4.20) by the third and obtain

(4.23)

Then, a property similar to that derived for the ZB(XB) -curve can be found for
the 23(ye)-curve. Examples of floating bodies that have no port-to-starboard
symmetry are ships with permanent list caused by unsymmetrical loading, by
negative metacentric height or by flooding.
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4.6 Hydrostatic properties of affine hulls

One way of obtaining new ship lines is to derive them by a transformation, or
mapping, of some suitable, given lines. The simplest transformation is that in
which all dimensions parallel to one of the coordinate axes are multiplied by the
same scale factor. Thus, let all dimensions parallel to the x-axis be multiplied by
rx, all dimensions parallel to the y-axis be multiplied by ry, and those parallel
to the z-axis, by rz. We say then that we obtain a hull affine to the parent hull,
or that we obtain the new hull forms by an affine transformation. In fact, the
transformations we are talking about are a subset of what is known in geometry
as affine mappings, more specifically scaling.

The case rx = ry = rz = r is particularly important; it yields a hull that is
geometrically similar to the parent hull. For example, the lines of a ship and
those of her model used in basin tests are.geometrically similar. The results of
basin tests can be extrapolated to the actual ship size by the laws of dimensional
analysis. When designing a new ship with the hull geometrically similar to that
of a successful ship one spares the costs of basin tests.

Modern computer programmes for hydrostatic calculations can find the
properties of affine hulls by changing only the scale factors, rx, ry, rz, and
not all the input, that is the offsets. However, it is possible to derive the
hydrostatic properties of affine hulls by simple explicit expressions based on
geometric considerations. This possibility is important because it permits a
straightforward calculation of the scale factors that would yield the desired prop-
erties. In this section, we are going to show with a few examples how to proceed.
The reader may continue by solving the exercises proposed at the end of the
chapter.

Let us begin by calculating the displacement volume, Vi, of a new hull affine
to a parent hull having the displacement volume

V0 = / / / dxdydz (4.24)
j j j

The dimensions of the new hull change as x\ = rxx, yi = ryy, z\ — rzz so
that the new displacement volume is

Vi = / / / dxi dyi dzi = I I I rx dx • ry dy - rz dz — rxryrz VQ

(4.25)

For geometrically similar hulls, we obtain Vi = r3 VQ.
With a similar reasoning, we can find that for scale factors rx, ry, rz, the

new longitudinal centre of buoyancy is LCBi — rxLCB$, the new longitudinal
centre of flotation is LCF\ = rxLCFo, and the new vertical centre of buoyancy,
~KB[ = TZ~KB^.
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4.7 Summary

The methods of numerical integration learnt in Chapter 3 can be applied to the
calculation of hydrostatic data. The properties of waterplanes are the area, AW ,
the longitudinal coordinate of the centre of flotation, LCF, the transverse moment
of inertia, 7T, and the longitudinal moment of inertia, /L. These properties can
be conveniently calculated in an electronic spreadsheet. The input data, i.e. the
half-breadths, are entered only once, but are used repeatedly in all calculations.
The various quantities are calculated each in a separate column. In the same line,
corresponding to one station, the calculations are chained in a way that reduces
the number of required arithmetic operations.

The hydrostatic data are calculated at discrete intervals, as functions of draught,
for constant trim and heel. These data are plotted in hydrostatic curves that allow
interpolation. These curves are part of the documentation that must be present
aboard the ship and are used in calculations related to the operation of the vessel.
A summary of the data yielded by hydrostatic calculations is given in Table 4.4.

The Bonjean curves represent the areas of transverse sections, and the moments
of these areas above the baseline, as functions of draught. Bonjean curves are
used in the processing of the results of inclining experiment (see Chapter 7).

Certain relationships exist between some hydrostatic curves. They can be used
for visual checks of the hydrostatic curves.

One method of deriving new ship lines consists in multiplying by the same
scale factor all dimensions parallel to an axis of coordinates. Such transforma-
tions are called affine transformations. The properties of a new hull, affine to a

Table 4.4 A summary of hydrostatic calculations

Quantity

Waterplane area
Moment of waperplane area about a
transverse axis
Longitudinal centre of flotation
Transverse moment of inertia of
waterplane area
Moment of inertia of waterplane about a
transverse axis
Longitudinal moment of inertia of
waterplane area
Displacement volume
Moment of displacement volume above
base line
Vertical centre of buoyancy
Longitudinal centre of buoyancy
Tons per centimetre immersion
Moment to change trim by one metre

Notation

Aw
Mx

xp, LCF
IT

ty

IL

V
MB

zB,#£, VCB
xB, LCB

TCP
MCT

How to calculate it

Eq.(4.1)
Eq. (4.2)

Eq. (4.3)
Eq. (4.5)

Eq. (4.6)

Eq. (4.7)

Eq. (4.8), Table 4.3
Eq. (4.9)

Eq. (4. 10), Table 4.3
Table 4.3
Eq. (4.12)

Eqs. (4. 14) and (4. 15)
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parent hull, can be derived from the properties of the parent hull by simple alge-
braic expressions. An important case of affine transformation is that in which
the three scale factors are equal. Two hulls related in this way are geometrically
similar. Affine transformations do not change the coefficients of form.

4.8 Example

Example 4.1 - the displacement of geometrically similar hulls
Let us assume, for example, that we derive a geometrically similar hull by
increasing the linear dimensions with the scale factor 10%. The displacement
volume increases by the factor l.l3 = 1.331. For a quick estimate, let us write

Vi - r3V0 (4.26)

Taking natural logarithms of both sides yields

In Vi = 3 In r + In V0 (4.27)

We differentiate both sides considering VQ constant and obtain

—- = 3— (4.28)
Vi r

We have now a rule for simple and quick approximation: the percent change of
the displacement volume equals three times the percent ratio change.

4.9 Exercises

Exercise 4.1
Modify Table 4.1 for a coordinate origin in AP and repeat the calculation. Check
the results with those shown in the original table.

Exercise 4.2
Modify Table 4.1 for use with Simpson's rule and repeat the calculations.

Exercise 4.3
Verify the values of MCT in Table 4.2, for the draughts 1.8 and 2.1 m, using the
displacement-volume, KB and KMi, values shown there.

Exercise 4.4
Modify Table 4.3 for a coordinate origin in AP and repeat the calculation. Check
the results with those shown in the original table.

Exercise 4.5
Modify Table 4.3 for use with Simpson's rule and repeat the calculations.
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Exercise 4.6
Using the data of Ship Lido 9 plot a figure in which you can verify the property
described by Eq. (4.21) for the draught values 1.7, 1.9 and 2.1 m.

Exercise 4.7
Show that affine transformations leave the coefficients of form unchanged. In
mathematical terminology, the coefficients of form are invariants of affine
transformations.

Exercise 4.8
Show that for affine hulls, the metacentric radius, BM, behaves like B2/T.



Statical stability at large
angles of heel

5.1 Introduction

Chapter 4 dealt with hull properties calculated as functions of draught, at constant
trim and heel. We reminded then that the maritime terminologies of Romance
languages have a concise term for the set of submerged hulls characterized as
above. Thus, for example, the term in French is carenes isoclines. The first
part of the term, 'iso', derives from the Greek 'isos' and means 'equal'. The
meaning of the term 'isocline' is 'equal inclination' (see Figure 4.6 in Chapter 4).
In this chapter, we are going to discuss the properties of submerged hulls as
functions of heel, at constant displacement volume. Again, Romance languages
have a concise term for the set of submerged hulls of a given vessel, having
the same displacement volume. For example, the French term is isocarenes,
while the Italian term is isocarene. The assumption of constant displacement
volume recognizes the fact that while a ship heels and rolls, her weight remains
constant. By virtue of Archimedes' principle, constant weight implies constant
displacement volume.

The central notion in this chapter is the righting arm. We shall show how
to calculate and represent the righting arm in a set of curves known as cross-
curves of stability. Another topic is the plot of the righting arm as function of
the heel angle, for a given displacement volume and a given height of the centre
of gravity. This plot is called curve of statical stability and it is used to assess
the ship stability.

5.2 The righting arm

In Figure 5.1, we consider a ship whose waterline in upright condition is
The corresponding centre of buoyancy is BQ and the centre of gravity G. Let
us assume that the ship heels to starboard by an angle </>. The new waterline is
W^L^ and the centre of buoyancy moves towards the submerged side, to the new
position B<j>. The weight force, equal to A, passes through G and is vertical, that
is perpendicular to W^L^. The buoyancy force, also equal to A, passes through
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Figure 5.1 Definition of righting arm

B^ and is also perpendicular to W^L^. The perpendicular from G to the line of
action of the buoyancy force intersects the latter line in Z. The forces of weight
and buoyancy produce a righting moment whose value is

MR - (5.1)

As A is a constant for all angles of heel, we can say that the righting moment is
characterized by the righting arm, GZ. From Figure 5.1, we write

GZ = 4 - KG sin (5.2)

For reasons to be explained later, the distance 4 is called value of stability
cross-curves. This quantity results from hydrostatic calculations based on the
ship lines. Such calculations are left today to the computer. The term KG sin <p
depends on KG, a quantity obtained from weight calculations as explained in
Chapter 7. In European literature, the term i^ is often described as 'lever arm of
stability of form', while the term KG sin 0 is called 'lever arm of stability of
weight'.

It is important to note that i^ is measured here from K, a point preferably
chosen as the lowest keel point, or the projection of the lowest keel point on the
midship section. The resulting Ik value is thus always positive. This convention
is practically standard in some European countries and, for its advantages, we
follow it throughout this book. In American projects and computer programmes
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ik is often measured from one of the positions of the centre of gravity, G.
For example, the reference point can be the centre of gravity for the full-load
condition (see, for example, Lewis, 1988, pp. 78-79). When proceeding so, the
designer must define in the clearest way the position of the reference point.

The relationship between the value of the stability cross-curves, £k, and the
angle of heel, 0, is not linear and, in general, cannot be defined explicitly. For
small angles of heel a linear expression for the righting arm, GZ, can be derived
from Figure 5.2:

GZ = GM sin (5.3)

But, what do we mean by 'small angle'? The answer is given by the same
Figure 5.2. Equation (5.3) holds true as long as the metacentre, M, does not
move visibly from its initial position. Thus, for many ships an angle equal
to 5° is small, while for a few others even 15° may be a small angle. The
value depends on both ship forms and loading condition. More insight on this
point can be gained by looking at the metacentric evolutes shown in Chapter 2.
A further criterion for the 'smallness' of the heel angle will be given in the next
section.

A useful way of plotting the lf~ values is shown in Figure 5.3. There, the
£k curves are plotted as functions of the displacement volume, V, for a set of
constant heel-angle values. Thus, we have a curve for </> = 10°, one for <p = 20°,
and so on. To use Eq. (5.2) for a given displacement volume, say VQ, it is

Figure 5.2 Righting arm, GZ, at small angles of heel
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Figure 5.3 Cross-curves of stability of Ship Lido 9
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necessary to draw the vertical line V = VQ and read the values where this line
'crosses' the curves. Hence the term cross-curves of stability.

5.3 The curve of statical stability

The plot of the righting arm, GZ, calculated from Eq. (5.2), as function of the
heel angle, 0, at constant V and KG values is called curve of statical stability.
Such diagrams are used to evaluate the stability of the ship in a given loading
condition. For a full appreciation, it is necessary to compare the righting arm
with the various heeling arms that can endanger stability. We discuss several
models of heeling arms in Chapter 6. An example of statical-stability curve is
shown in Figure 5.4; it is based on Table 5.1. The table can be calculated in an
electronic spreadsheet, or in MATLAB as shown in Biran and Breiner (2002,
Example 2.9).

Let us identify some properties of the righting-arm curves. One important
value is the maximum GZ value and the heel angle where this value occurs.
For example, in Figure 5.4 the maximum righting arm value is 1.009 m and the
corresponding heel angle is 50°. Another important point is that in which the
GZ curve crosses zero. The corresponding <p value is called angle of vanishing
stability. In our example, the righting-arm curve crosses zero at an angle greater
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Diagram of statical stability, Lido 9, V = 50.5 nrA KG = 2.2
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Heel angle (°)
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Figure 5.4 Statical-stability curve

70 80 90

Table 5.1 Ship Lido 9- Righting arm, GZ, for V = 50.5 m3, KG = 2 m

Heel angle

n
0
5

10
15
20
25
30
35
40

45

lp

(m)

0.000
0.396
0.770
1.115
1.427
1.713
1.977
2.208
2.402

2.564

KG sin '<t>

(m)

0.000
0.192
0.382
0.569
0.752
0.930
1.100
1.262
1.414

1.556

GZ
(m)

0.000
0.204
0.388
0.546
0.675
0.783
0.877
0.946
0.988

1.008

Heel angle

(°)

50
55
60
65
70
75
80
85
90

ZP
(m)

2.694
2.799
2.879
2.908
2.883
2.828
2.747
2.641
2.513

KG sin 0

(m)

1.685
1.802
1.905
1.994
2.067
2.125
2.167
2.192
2.200

GZ
(m)

1.009
0.997
0.974
0.914
0.816
0.703
0.580
0.449
0.313

KM = 4.608 m\KG = 2.200 m; GM - 2.408m
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than 90°, in a region outside the plot frame. The angle of vanishing stability can
often occur at less than 90°, as shown, for example, in Figure 6.23.

A very useful property refers to the tangent in the origin of the righting-arm
curve. The slope of this tangent is given by

d(GM)
|tana|^=0

(5.4)
dGM

, , sin 0 + GM0 cos 0 = GM0d(p

Equation (5.4) yields a simple rule for drawing the tangent:

In the curve of statical stability, at the heel angle 1 rad (approxi-
mately ̂ 73°) draw a vertical and measure on it a length equal to
that of GM. Draw a line from the origin of coordinates to the end
of the measured segment. This line is tangent to the GZ curve.

From the triangle formed by the heel-angle axis, the vertical at 1 rad, and the
tangent in origin, we find the slope of the line denned as above; it is equal to
GM/1, that is the same as yielded by Eq. (5.4). The tangent in the origin of
the righting-arm curve should always appear in the curve of statical stability; it
gives an immediate, visual indication of the GM magnitude, and it is a check
of the correctness of the curve. We strongly recommend not to try the inverse
operation, that is to 'fit' a tangent to the curve and measure the resulting GM
value. This would amount to graphic differentiation, a procedure that is neither
accurate nor stable.

Figure 5.4 lets us give another appreciation of what small angle means: we
can consider as small those heel angles for which the curve of the righting arm
can be confounded with the tangent in its origin. In our example, this holds true
for angles up to 7-8°.

For any angle of heel, </>, we can rewrite Eq. (5.4) as

dGZ
ZM^ (5.5)

where Z is as previously the foot of the perpendicular from G to the line of
action of the buoyancy force and M0 is the metacentre corresponding to the
heel angle </>. The geometric construction of this tangent is similar to that of the
tangent in origin. For a proof of this result see, e.g. Birbanescu-Biran (1979).

5.4 The influence of trim and waves

Once it was usual to calculate the cross-curves of stability at constant trim, i.e.
for the ship on even keel. This approach was justified before the appearance of
computers and Naval Architectural software. However, Eq. (2.28), developed
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in Chapter 2, shows that the longitudinal position of the centre of buoyancy
changes if the heel angle is large. It happens so because at large heel angles
the waterplane area ceases to be symmetric about the centreline. If the centre
of buoyancy moves along the ship, while the position of the centre of gravity
is constant, the trim changes too. Therefore, cross-curves calculated at constant
trim may not represent actual stability condition. Jakic (1980) has shown that
trim can greatly influence the values of cross-curves and, therefore, that influence
should be taken into account. The stability regulations, BV 1033, of the German
Navy require, indeed, the calculation of the cross-curves at the trim induced by
heel. Modern computer programmes for Naval Architecture include this option.

As we shall show in Chapter 9, waves perpendicular or oblique to the ship
velocity influence the values of cross-curves and can cause a very dangerous
effect called parametric resonance. This effect too must be taken into account
and modern computer programmes can calculate cross-curves on waves. The
stability regulations of the German Navy take into account the variation of the
righting arm in waves (see Arndt, 1965; Arndt, Brandl, and Vogt, 1982).

5.5 Summary

In this chapter, we dealt with the righting moment at large angles of heel, MR =
A(7Z. The quantity GZ, called righting arm, is the length of the perpendicular
drawn from the centre of gravity, G, to the line of action of the buoyancy force. We
assume that the ship heels at constant displacement. This is the desired situation
in which the ship neither loses loads nor takes water aboard. Then, the factor A
is constant and the variation of the righting moment with heel is described by
the variation of the righting arm GZ. The value of the righting arm is calculated
from

~GZ = 4 - ~KG sin <j>

where £&, called value of stability cross-curve, is the distance from the reference
point K to the line of action of the buoyancy force, KG, the distance of the centre
of gravity from the same point K, and 0, the heel angle. It is recommended to
take the point K as the lowest hull point. The values of the stability cross-curves,
Ik, are usually represented as functions of the displacement volume, with the
heel angle as parameter.

One can read in this plot the values corresponding to a given displacement
volume, calculate with them the righting arm and plot its values against the heel
angle. This plot is called curve of statical stability and it is used to appreciate the
stability of the ship, at a given displacement and height of the centre of gravity.
To check the correctness of the righting-arm curve, it is recommended to draw
the tangent in the origin. To do this, one should draw a vertical line at the angle
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of 1 rad and measure on the vertical a length equal to the metacentric height,
GM. The tangent is the line that connects the origin of coordinates to the point
found as in the previous sentence.

The trim changes as the ship heels. That effect should be taken into account
when calculating cross-curves of stability. Another influence to be taken into
account is that of waves.

Table 5.2 summarizes the main terms related to stability at large angles of
heel. As in Chapter 1, we note by 'Fr' the French term, by 'G' the German term,
and by T the Italian term. Old symbols used once in those languages are given
between parentheses.

Table 5.2 Terms related to stability at large angles of heel

English term Symbol Computer Translations
notation (old European symbol)

Centre of buoyancy

Centre of gravity

Curve of statical
stability

Heel angle (positive
starboard down)

Keel point - reference
point on BL

Projected centre of
gravity
Righting lever

Value of stability
cross-curve

z-coordinate of centre
of gravity

B Fr centre de carene (C),
G Verdrangungsschwepunkt (F),
I centre di carena

G Fr centre de gravite,
G Massenschwerpunkt,
I centro di gravita
Fr courbe de stabilite,
G Stabilitatskurve,
I curva di stabilita

4> HELANG Fr angle de bande, angle de gite,
G Krangungswinkel,
I angolo di inclinazione traversale,
sbandamento

K F point le plus has de la carene,
G Kielpunkt,
I intersezione della linea base con la
sezione maestra

Z G Projizierte Massenschwerpunkt

~GZ GZ F bras de levier (GK),
G Aufrichtenden Hebelarm,
I braccio radrizzante

Ik LK Fr pantocarenes, bras de levier
du couple de redressement,
G Pantocarenenwert bezogen auf K

KG ZKG Fr distance du centre de gravite a la
ligne d'eau zero,
G z-Koordinate des
Massenschwerpunktes,
I distanza verticale del centro di
gravita
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Ship Lido 9 - Cross-curves of stability

20

V(m3)

Figure 5.5 Three-dimensional cross-curves of stability of Ship Lido 9

5.6 Example

Figure 5.5 is a three-dimensional representation of the cross-curves of the Ship
Lido 9.

5.7 Exercises

Exercise 5.1
Plot in one figure the righting-arm curves and the tangents in origin of the Ship
Lido 9, for V = 50.5 m3 and KG-values 1.8, 2.0, 2.4 and 2.6m. Comment the
influence of the centre-of-gravity height.

Exercise 5.2
Draw the curve of statical stability of the Ship Lido 9 for a displacement in sea
water A — 35.3 t and a height of the centre of gravity KG = 2.1 m. Use data
in Tables 4.2 and 5.1.



6
Simple models of stability

6.1 Introduction

In Chapter 5 we learnt how to calculate and how to plot the righting arm in the
curve of statical stability. It may be surprising that for a very long period the
metacentric height and the curve of righting arms were considered sufficient for
appreciating the ship stability. We do not proceed so in other engineering fields.
As pointed out by Wendel (1965), one first finds out the resistance to ship advance
and only afterwards dimensions the engine. Also, we first calculate the load on
a beam and only afterwards we dimension it. Similarly, we should determine
the heeling moments and then compare them with the righting moment. It was
only at the beginning of the twentieth century that Middendorf proposed such a
procedure for large sailing ships. His book, Bemastung und Takelung der Schiffe,
was first published in Berlin, in 1903, and it contained the first proposal for a
ship-stability criterion. In 1933, Pierrottet wrote in a publication of the test
basin in Rome that the stability of a ship must be assessed by comparing the
heeling moments with the righting moment. He detailed his proposal in 1935,
in a meeting of INA, but had no immediate followers. Thus, in 1939 Rahola
published in Helsinki his doctoral thesis; it was based on extensive statistics
and a very profound analysis of the qualities of stable and unstable vessels.
Rahola proposed then a stability criterion that considered only the metacentric
height and the curve of the righting arm. The Naval-Architectural community
appreciated Rahola's work and his proposal was used, indeed, as a stability
standard and stood at the basis of stability regulations issued later by national
and international authorities.

It was only after the Second World War that the issue of comparing heeling
and righting arms was brought up again. German researchers used then a very
appropriate term: Lever arm balance (Hebelarm Bilanz). Eventually, newer sta-
bility regulations made compulsory the comparison of lever arms and we show
in this chapter how to do it.

Heeling moments can be caused by wind, by the centrifugal force developed
in turning, by transverse displacements of masses, by towing or by the lateral pull
developed in cables that connect two vessels during the transfer of loads at sea.
In Chapter 5 we have shown that, when the ship heels at constant displacement,
it is sufficient to consider the righting arm as an indicator of stability. Then, to
assess the ship stability it is necessary to compare the righting arm with a heeling
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arm. According to the DIN-ISO standard, we note the heeling arm by the letter
I and indicate the nature of the righting arm by a subscript. To obtain a generic
heeling arm, £g, corresponding to a heeling moment, Mg, we divide that moment
by the ship weight

(6.1)

where A is the displacement mass and g, the acceleration due to gravity. In older
practice it has been usual to measure the displacement in unit of force. Then,
instead of Eq. (6.1) one had to use

Much attention should be paid to the system of units used in calculation. From
now on we constantly use the displacement mass in calculations. At this point it
may seem that we defined the heeling arm as above just to be able to compare the
righting arm with a quantity having the same physical dimensions (and units!).
In Section 6.7, we prove that this definition is mathematically justified.

In Figure 6.1, we superimposed the curve of a generic heeling arm, £g, over
the curve of the righting arm, GZ. For almost all positive heeling angles shown
in the plot the righting arm is positive. We define the righting arm as positive
if when the ship is heeled to starboard, the righting moment tends to return it
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Figure 6.1 Angles of static equilibrium
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towards port. In the same figure the heeling arm is also positive, meaning that
the corresponding heeling moment tends to incline the ship towards starboard.
What happens if the ship heels in the other direction, i.e. with the port side down?
Let us extend the curve of statical stability by including negative heel angles,
as in Figure 6.2. The righting arms corresponding to negative heel angles are
negative. For a ship heeled towards port, the righting moment tends, indeed,
to return the vessel towards starboard, therefore it has another sign than in the
region of positive heel angles. The heeling moment, however, tends in general to
heel the ship in the same direction as when the starboard is down and, therefore,
it is positive. Summarizing, the righting-arm curve is symmetric about the origin,
while the heeling-arm curves are symmetrical about the lever-arm axis.

In this chapter we present simplified models of various heeling arms, models
that allow reasonably fast calculations. Approximate as they may be, those mod-
els stand at the basis of regulations that specify the stability requirements for
various categories of ships. In most cases, practice has shown that ships comply-
ing with the regulations were safe. The requirements themselves are explained
in Chapters 8 and 10. By the end of this chapter, we briefly explain why the
simplifying assumptions are necessary in Naval-Architectural practice.

We can appreciate the stability of a vessel by comparing the righting arm
with the heeling arm as long as the heeling moment is applied gradually and
inertia forces and moments can be neglected. When the heeling moment appears
suddenly, as caused, for example, by a gust of wind, one has to compare the
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Figure 6.2 Curve of statical stability extended for heeling towards both
ship sides
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heeling energy with the work done by the righting moment. Such situations
are discussed in the section on dynamical stability. In continuation we show
how moving loads, solid or liquid, endanger the ship stability, and we develop
formulae for calculating the reduction of stability. Other situations in which
the stability is endangered are those of grounding or positioning in dock. We
show how to predict the moment in which those situations may become critical.
This chapter also discusses the situations in which a ship sails with a negative
metacentric height.

6.2 Angles of statical equilibrium

Figure 6.1 shows the curve of a heeling arm, £g, superimposed on the curve
of the righting arm, GZ. In general, those curves intersect at two points; they
are noted here as </>sti and 0st2- Both points correspond to positions of statical
equilibrium because at both points the righting arm and the heeling arm are equal,
and, therefore, the righting moment and the heeling moment are also equal. Only
the first point corresponds to a position of stable equilibrium, while the second
point corresponds to a situation of unstable equilibrium. In this section, we give
an intuitive proof of this statement; for a rigorous proof, see Section 6.7.

Let us first consider the equilibrium in the first static angle, 0sti, and assume
that some perturbation causes the ship to heel further to starboard by a small
angle, 5$. When the perturbation ceases at the angle 0stl + 8<j>, the righting arm
is larger than the heeling arm, returning thus the ship towards its initial position,
at the angle 0sti. Conversely, if the perturbation causes the ship to heel towards
port, to an angle </>sti — 5$, when the perturbation ceases the righting arm is
smaller than the heeling arm, so that the ship returns towards the initial position,
0sti. This situation corresponds to the definition of stable equilibrium given in
Section 2.4.

Let us see now what happens at the second angle of equilibrium, </>st2. If some
perturbation causes the ship to incline further to starboard, the heeling arm will be
larger than the righting arm and the ship will capsize. If the perturbation inclines
the ship towards port, after its disappearance the righting arm will be larger than
the heeling arm and the ship will incline towards port regaining equilibrium
at the first static angle, </>sti. We conclude that the second static angle, 0st2,
corresponds to a position of unstable equilibrium.

6.3 The wind heeling arm

We use Figure 6.3 to develop a simple model of the heeling moment caused by
a beam wind, i.e. a wind perpendicular to the centreline plane. In this situation
the wind heeling arm is maximal. In the simplest possible assumption the wind
generates a force, Fy, that acts in the centroid of the lateral projection of the
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Figure 6.3 Wind heeling arm

above-water ship surface, and has a magnitude equal to

FV = pyAy

where py is the wind pressure and Ay is the area of the above-mentioned pro-
jection of the ship surface. Let us call Ay sail area.

Under the influence of the force Fy the ship tends to drift, a motion opposed
by the water with a force, R, equal in magnitude to Fy. To simplify calculations
we assume that R acts at half-draught, T/2. The two forces, Fy and R, form a
torque that inclines the ship until the heeling moment equals the righting moment.
The value of the heeling moment in the upright condition is pyAy(hy + T/2),
where hy is the height of the sail-area centroid above W^L®. The heeling arm
in upright condition is

. ,ft. PvAv(hv + T/2)

How does the heeling arm change with the heeling angle? In the case of a 'flat'
ship, i.e. for B = 0, the area exposed to the wind varies proportionally to cos </>.
In Figure 6.3, we show that for a flat ship the forces Fy and R would act in the
centreline plane, both horizontally, i.e. parallel to the inclined waterline W^L^.
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Then, the lever arm of the torque would be proportional to cos 0. Summing up,
the wind heeling arm equals

PvAv cos 6 (' T\ pvAv(hy -f T/2) 9' hv H cos 6 = —r —- cos
2; ^A

(6.2)

This is the equation proposed by Middendorf and that prescribed by the stability
regulations of the US Navy; it can be found in more than one textbook on Naval
Architecture where it is recommended for all vessels. The reader may feel some
doubts about the strong assumptions accepted above. In fact, other regulatory
bodies than the US Navy adopted wind-heeling-arm curves that do not behave
like cos2 </>. The respective equations are described in Chapters 8 and 10. Our
own critique of the above model, and a justification of some of its underlying
assumptions, are presented in Section 6.12.

The wind pressure, pv» is related to the wind speed, Vw, by

Pv = CwP^w (6-3)

where cw is an aerodynamic resistance coefficient and p is the air density. The
coefficient cw depends on the form and configuration of the sail area. An average
value for cw is 1.2. Wegner (1965) quotes a research that yielded 1.00 < cw <
1.36, and two Japanese researchers, Kinohita and Okada, who measured cw

values ranging between 0.95 and 1 .24. Equation (6.3) shows that the wind heeling
arm is proportional to the square of the wind speed. In this section, we considered
the wind speed as constant over all the sail area. This assumption is acceptable
for a fast estimation of the wind heeling arm. However, we may know from our
own experience that wind speed increases with height above the water surface.
Some stability regulations recognize this phenomenon and we show in Chapters 8
and 10 how to take it into account. Calculations with variable wind speed, i.e.
considering the wind gradient, yield lower, more realistic heeling arms for small
vessels whose sail area lies mainly in the low- wind-speed region. It may be worth
mentioning that engineers take into account the wind gradient in the design of
tall buildings and tall cranes.

6.4 Heeling arm in turning

When a ship turns with a linear speed V, in a circle of radius RTC, & centrifugal
force, FTC > develops; it acts in the centre of gravity, G, at a height KG above
the baseline. From mechanics we know that

F2

Under the influence of the force FTC the ship tends to drift, a motion opposed by
the water with a reaction R. To simplify calculations, we assume again that the
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water reaction acts at half-draught, i.e. at a height T/2 above the baseline. The
two forces, FTC and R, form a torque whose lever arm in upright condition is
(KG - T/2). For a heeling, flat ship this lever arm is proportional to cos </>.
Dividing by the displacement force, we obtain the heeling lever of the centri-
fugal force in turning circle:

T
(6.4)

9 #TC V 2

The speed V to be used in Eq. (6.4) is the speed in turning, smaller than the speed
achieved when sailing on a straight line path. The turning radius, RTC> and the
speed in turning, V, are not known in the first stages of ship design. If results
of basin tests on a ship model, or of sea trials of the ship, or of a sister ship, are
available, they should be substituted in Eq. (6.4). The stability regulations of the
German Navy, BV 1033, provide formulae for approximations to be used in the
early design stages of naval ships (see Chapter 10). A discussion of this subject
can be found in Wegner (1965). This author uses a non-dimensional factor

(6.5)

where Vb is the ship speed in turning and VQ, the speed on a straight line path.
Substituting into Eq. (6.4) yields

- / _ T\
(KG--}cos(f> (6.6)

gLpp \ 2

Quoting Handbuch der Werften, Vol. VII, Wegner shows that for 95% of 80 cargo
ships the values of CD ranged between 0.19 and 0.25. For a few trawlers the
values ranged between 0.30 and 0.35.

6.5 Other heeling arms

A dangerous situation can arise if many passengers crowd on one side of the
ship. There are two cases when passengers can do this: when attracted by a
beautiful seascape or when scared by some dangerous event. In the latter case,
passengers can also be tempted to go to upper decks. The resulting heeling arm
can be calculated from

TIT)
ip — — (y cos (f) -f z sin </>) (6.7)

where n is the number of passengers, p, the average person mass, y, the horizontal
coordinate of the centre of gravity of the crowd and z, the vertical translation
of said centre. The second term between parentheses accounts for the virtual
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metacentric-height reduction. Wegner (1965) recommends to assume that up
to seven passengers can crowd on a square metre, that the average mass of a
passenger plus some luggage is 80 kg, and that the height of a passenger's centre
of gravity above deck is l.lm. Smaller values are prescribed by the regulations
described in Chapters 8 and 10. Wegner recommends to include in the deck
area all areas that can be occupied by panicking people, e.g. tables, benches
and skylights. Other heeling moments can occur when a tug tows a barge. The
barge can drift and then the tension in the towing cable can be decomposed into
two components, one parallel to the tug centreline and the other perpendicular
to the first. The latter component can cause capsizing of the tug. The process
is very fast and there may be no survivors. To avoid this situation tugs must be
provided with quick-release mechanisms that free instantly the towing cable.
Lateral forces also appear when fishing vessels tow nets or when two vessels are
connected by cables during replenishment-at-sea operations. Special provisions
are made in stability regulations for the situations mentioned above; they are
presented in Chapters 8 and 10. Icing is a phenomenon known to ship crews
sailing in very cold zones. The accumulation of ice has a double destabilizing
effect: it raises the centre of gravity and it increases the sail area. The importance
of ice formation should not be underestimated. For example, Arndt (1960a) cites
cases in which blocks of ice 1 m thick developed on a poop deck, or walls of 60 cm
of ice formed on the front surface of a bridge. Therefore, stability regulations
take into account the effect of ice.

6.6 Dynamical stability

Until now we assumed that the heeling moments are applied gradually and that
inertial moments can be neglected. Shortly, we studied statical stability. Heeling
moments, however, can appear, or increase suddenly. For example, wind speed is
usually not constant, but fluctuates. Occasionally, sudden bursts of high intensity
can occur; they are called gusts. As another example, loosing a weight on one
side of a ship can cause a sudden heeling moment that sends down the other
side. In the latter cases we are interested in dynamical stability. It is no more
sufficient to compare righting with heeling arms; we must compare the energy
of the heeling moment with the work done by the opposing righting moment. It
can be easily shown that the energy of the heeling moment is proportional to the
area under the heeling-arm curve, and the work done by the righting moment
is proportional to the area under the righting-arm curve. To prove this, let us
remember that the work done by a force, F, which produces a motion from x\
to #2 is equal to

Fdx (6.8)
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If the path of the force F is an arc of circle of radius r, the length of the arc that
subtends an angle d</> is dx = r d(j>. Substituting into Eq. (6.8), we get

W
r(f>2 f4>

Mdcf) (6.9)

where M is a moment.
A ship subjected to a sudden heeling moment Mh, applied when the roll angle

is 0i, will reach for an instant an angle fa up to which the energy of the heeling
moment equals the work done by the righting moment, so that

or

GZdfi

(6.10)

(6.11)

This condition is fulfilled in Figure 6.4 where the area under the heeling-arm
curve is A2 + AS, and the area under the righting-arm curve is A\ + A%. As A3 is
common to both areas, the condition is reduced to A\ = A%. Moseley is quoted

Curve of statical stability, Lido 9, V = 50.5 m3, KG = 2.6 m

•GZ • • . • • • • ; Area under GZ

0 10 20 30 40 50 60 70 80 90

Figure 6.4 Dynamical stability
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for having proposed the calculation of dynamical stability as early as 1850. It
took several marine disasters and many years until the idea was accepted by the
Naval-Architectural community.

In Figure 6.4, we marked with </>dyn the maximum angle reached by the ship
after being subjected to a gust of wind. An elegant way to find this angle is to
calculate the areas under the curves as functions of the heel angle, </>, plot the
resulting curves and find their points of intersection. The algorithm for calculat-
ing the integrals with variable upper limit is described in Section 3.4.

In Figure 6.4, we assumed that the gust of wind appeared when the ship was
in an upright condition, i.e. </>i = 0. As shown in Figure 6.5, the situation is less
severe if fa > 0, and more dangerous if fa < 0. In both graphs the maximum
dynamical angle is found by plotting the curve

/*<£ _ r4>
\ GZdfi- \

J 4>i J 4>i
d(f)

and looking for the point where it crosses zero. An analogy with a swing (or a
pendulum) is illustrated in Figure 6.6. Many readers may have tried to accelerate
a swing by pushing it periodically. Thus, they may know that a push given in
position (a) sends the swing to an angle that is much larger than the angle achieved
by pushing at position (b). Moreover, pushing the swing while it is in position

0.5

D

<D

Curve of statical stability, Lido 9, V = 50.5 m3, KG = 2.6 m

h—Margin linjscfl

Work difference :

-40 -20 20 40 60 100

-20 0 20 40

Heel angle (°)
60 100

Figure 6.5 The influence of the roll angle on dynamical stability
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(a) (b) (c)

Figure 6.6 Swing analogy

(c) proves very difficult. The physical explanation is simple. In position (a), the
energy transferred from the push is added to the potential energy accumulated by
the swing, the latter energy acting to return the swing rightwards. In position (c),
the potential energy accumulated by the swing tends to return it to position (b),
opposing thus the energy impacted by the push. The influence of the roll angle
on dynamical stability is taken into consideration by some stability regulations
(see Chapter 8).

6.7 Stability conditions - a more rigorous derivation

We describe the dynamics of heeling by Newton's equation for rotational motion

MH (6.12)

where J is the mass moment of inertia of the ship, A, the mass displacement
and MH, a heeling moment. The mass moment of inertia is calculated as the sum
of the products of masses by the square of their distance from the axis of roll

where yi is the transverse and zi is the height coordinate of the mass i. In the SI
system, we measure J in m2 1. In Eq. (6.12) we neglected damping and added
mass, terms briefly introduced in Section 6.12 and used in Chapter 12. We also
neglect the coupling of heeling with other ship motions.

Let us multiply by d0 on both sides of Eq. (6.12), we obtain

= MH d<£ (6.14)

We transform the factor that multiplies J as follows:
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and integrate between an initial angle, 0o, and a final angle, </>f,

/*0f r4>f _ r4>f
J <j)d<j) + gA GZd(f) = MHd</> (6.16)

J (f)Q J (/)Q J (f)Q

The result is

!- </A f
J 4>o

(6.17)

The left-hand side of the above equation represents kinetic energy, K. In the
position of stable equilibrium the potential energy has a minimum. As the sum
of potential and kinetic energies is constant in a system such as that under
consideration (it is a conservative system), the kinetic energy has a maximum
in the position of statical equilibrium. The conditions for maximum are

£-* w<»
Substituting K by the right-hand side of Eq. (6.17) and differentiating, we obtain

_
d(MH/gA) < dGZ

d(f) d(/)

The first part of Eq. (6.19) shows that at the point of statical equilibrium the
righting arm equals the heeling arm. The second part of the equation shows that
at the point of stable statical equilibrium the slope of the righting arm must be
greater than that of the heeling arm. This is a rigorous proof that the first static
angle corresponds to a position of stable equilibrium, while the second does not.

Until now we looked for the angles of statical equilibrium. Let us examine the
dynamical phenomenon, i.e. the behaviour of the heeling angle, 0, as function
of time. The conditions for maximum dynamic angle are

0 = 0, <j> < 0 (6-20)

Substituting the first part of Eq. (6.20) in Eq. (6.16), we obtain

_
GZd(f>= — d0 (6.21)

Equation (6.21) represents the condition of equality of the areas under the
righting and the heeling arms. The second part of Eq. (6.20) when applied to
Eq. (6.12) yields the condition

~GZ > ̂  (6.22)
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Figure 6.7 Two limiting cases of instability

Figure 6.7 shows two limiting cases. In the upper plot the first part of condi-
tion (6.19) is fulfilled, while the second is not. Therefore, in this case there is no
angle of stable statical equilibrium and the ship is lost. In the lower Figure 6.7
the areas under the righting-arm and the heeling-arm curves are equal, but con-
dition (6.22) is not fulfilled. Therefore, under the shown gust of wind the ship
will capsize.

6.8 Roll period

For small angles of heel, and assuming MH = 0, we rewrite Eq. (6.12) as

d2^
•- 0 (6.23)

CLC"

We say that this equation describes unresisted roll. We define the mass radius
of gyration, im, by

J = *mA (6.24)

Substituting the above expression into Eq. (6.23) and rearranging yields

9GM
-T7Tdt2 (6.25)
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With the notation

(6.26)

the solution of this equation is of the form (j) — ^ sin(cjot -f e), where UQ is the
natural angular frequency of roll and e, the phase. The natural period of roll
is the inverse of the roll frequency, /o, defined by

UJ$ = 27T/Q

Using algebra, we obtain

To - 2^-7^= (s) (6.27)

We conclude that the larger the metacentric height, GM, the shorter the roll
period, TQ. If the roll period is too short, the oscillations may become unpleasant
for crew and passengers, and can induce large forces in the transported cargo.
Tangential forces developed in rolling are proportional to the angular accelera-
tion, i.e. to

— - -$c^ sin(u;o* + e)

a quantity directly proportional to GM.
Thus, while a large metacentric height is good for stability, it may be necessary

to impose certain limits on it. IMO (1995), for example, referring to ships car-
rying timber on deck, recommends to limit the metacentric height to maximum
3% of the ship breadth (Paragraph 4.1.5.5). Norby (1962) quotes researches car-
ried out by Kempf, in Germany, in the 1930s. Kempf defined a non-dimensional
rolling factor, T^g/B, and, on the basis of extensive statistics found that:

• for values of Kempf's factor under 8 the ship motions are stiff;
• for values between 8 and 14 the roll is comfortable;
• for factor values above 14 the motions are tender.

When the motions become too tender the ship master will worry because the
metacentric height may be too low.

The exact value of the radius of gyration, im, can be calculated from Eq. (6.24)
and requires the knowledge of all masses and their positions. This knowledge is
not always available, certainly not in the first phases of ship design. Therefore,
it is usual to assume that the radius of gyration, im, is proportional to the ship
breadth, B, i.e.

zm = aB
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Let us define

0
 2*mc = 2a= —

Substituting into Eq. (6.27), we obtain

To = f (6.28)
^/gGM

As TT « ^/g, we can rewrite Eq. (6.28) as

(6.29)

Rose (1952) quotes the following c values: large cargo and passenger ves-
sels, 0.85; small cargo and passenger vessels, 0.77; loaded ore carriers, 0.81;
tugs, 0.76; wide barges, 0.79. These values are based on old-type vessels. More
recently, Costaguta (1981) recommends to take im = B/3 for merchant ships,
andc = 0.8-0.9 for round-bilge, motor yachts. Some shipyards use im = 0.355.

For actual ships, im can be obtained experimentally by measuring the roll
period. When im is known, Eq. (6.27) can be used to control the metacentric
height by measuring the roll period. This can be done automatically and on-line
with the help of modern technology. Wendel (1960b) describes an instrument
that did the job many years ago. The use of the roll period as a stability indicator
is discussed, for example, by Norby (1962) and Jons (1987).

Normally, the roll period is measured in the still water of a harbour, and the
ship is tied by the stern and by the aft to minimize other motions than roll. When
measuring the roll period in a seaway it is necessary to distinguish between the
ship own period and the period of encounter with the waves (see Jons, 1987 and
Chapter 9).

6.9 Loads that adversely affect stability

6.9.1 Loads displaced transversely

In Figure 6.8, we consider that a mass m, belonging to the ship displacement A,
is moved transversely a distance d. A heeling moment appears and its value, for
any heeling angle 0 is dm cos </>. As a result, the ship centre of gravity G moves
to a new position, GI, the distance GGi being equal to

(6.30)
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wf

Figure 6.8 The destabilizing effect of a mass moved transversely

and the righting arm is reduced to an effective value

GZeff = GZ - cos (6.31)

We invite the reader to check that the above reduction occurs when the vessel is
inclined towards the side to which the mass m was moved, while the righting
arm increases if the ship is inclined towards the other side.

6.9.2 Hanging loads

In Figure 6.9, we consider a mass m suspended at the end of a rope of length h.
When an external moment causes the ship to heel by an angle 0, the hanging
mass moves transversely a distance h tan </>, and the ship's centre of gravity
moves in the same direction a distance

hm
GGl = —-tan (6.32)

In Figure 6.10, we see that the righting arm is reduced from GZ to G\Z\ —
GZeff. The effect is the same as if the centre of gravity, G, moved to a higher
position, GV, given by

GG,
tan <b

(6.33)
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Figure 6.9 Hanging load

As a result, we use for initial-stability calculations a corrected, or effective
metacentric height

(6.34)

The destabilizing effect appears immediately after raising the load sufficiently
to let it move freely. Looking at Eq. (6.34) we see that the metacentric height
is reduced by the same amount that would result from raising the load by a
distance h. In other words, we can consider that the mass acts in the hanging
point.

6.9.3 Free surfaces of liquids

Liquids with free surfaces are a very common kind of moving load. Any engine-
propelled vessel needs fuel and lubricating-oil tanks. Tanks are needed for car-
rying fresh water. The cargo can be liquid; then tanks occupy a large part of
the vessel. Tanks cannot be filled to the top. Liquids can have large thermal
expansion coefficients and space must be provided to accommodate for their
expansion, otherwise unbearable pressure forces may develop. In conclusion,
almost all vessels carry liquids that can move to a certain extent endangering
thus the ship stability. A partially filled tank is known as a slack tank.
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M

Zeff

Figure 6.10 Effective metacentric height

Figure 6. 1 l(a) shows a tank containing a liquid whose surface is free to move
within a large range of heeling angles without touching the tank top or bottom.
Let us consider that the liquid volume behaves like a ship hull and consider the
free surface a waterplane. Then, the centre of gravity of the liquid is the buoyancy
centre of the liquid hull. Therefore, we use for it the notation 60 . While the ship
heels, the centre of gravity of the liquid moves along the curve of the centre of
the buoyancy, 'around' the metacentre, m. The horizontal distance between the
initial position 60 and the inclined position 60 is

tan

If v is the volume occupied by the liquid, ZB, the moment of inertia of the liquid
surface with respect to the barycentric axis parallel to the axis of heeling and p,
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(a)

Figure 6.11 The free-surface effect

the liquid density, the heeling moment produced by the inclination of the liquid
surface is

M\ = pv— tan 0 = pi& tan <p
v

where M\ has the dimensions of mass times length.
As a result, the ship centre of gravity moves transversely a distance equal to

(6.35)

By comparison with the preceding section, we conclude that the effective meta-
centric height is

GMeff = GM-

and the effective righting arm,

(6.36)

- sm (6.37)

Instead of considering the free-surface effect as a virtual reduction of the meta-
centric height and of the righting lever, we can take it into account as the heeling
lever of free movable liquids. Its value is

(6.38)

and the respective curve is proportional to sin 0. The latter approach is that
adopted in the stability regulations of the German Navy.
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The reduction of stability caused by the liquids in slack tanks is known as
free-surface effect. Two of its features must be emphasized:

• the mass of the liquid plays no role, only the moment of inertia of the free
surface appears in equations;

• the effect does not depend on the position of the tank.

In general, ships have more than one tank, and different tanks can contain
different liquids. The destabilizing effects of all tanks must be summed up when
calculating the effective metacentric height

(6.39)

and the effective righting arm,

where n is the total number of tanks.
Often the liquid surface is not free to behave as in Figure 6. 11 (a) and its

shape changes when it reaches the tank top or bottom. Then, we cannot use the
equations shown above. The same happens when the heeling angle is large and
the forms of the tank such that the shape of the free surface changes in a way that
cannot be neglected. In such cases the exact trajectory of the centre of gravity
must be calculated. As shown in Figure 6.1 l(b), the resulting heeling moment is

Mi = W(£ cos (f) + C sin 0) (6.41)

where W is the liquid mass, £ is the horizontal distance and £ is the vertical
distance travelled by the centre of gravity.

Some books and articles on Naval Architecture contain tables and curves
that allow the calculation of the free-surface effect for various tank proportions.
Present-day computer programmes can calculate exactly and quickly the position
of the centre of gravity for any heel angle. For example, one can describe the
tank form as a hull surface and run the option for cross-curves calculations.
Therefore, correction tables and curves are not included in this book.

The free-surface effect can endanger the ship, or even lead to a negative meta-
centric height. Therefore, it is necessary to reduce the free-surface effect. The
usual way to do this is to subdivide tanks by longitudinal bulkheads, such as
shown in Figure 6.12. If the left-hand figure would refer to a parallelepipedic hull,
the moment of inertia of the liquid surface in each tank would be 1/23 = 1/8
that of the undivided tank. Having two tanks, the total moment of inertia, and
the corresponding free-surface effect, are reduced in the ratio 1/4. An usual
arrangement in tankers is shown in Figure 6.12(b).

Some materials that are not really liquid can behave like liquids. Writes Price
(1980), 'Whole fish when carried in bulk in a vessel's hold behave like liquid',
and should be considered as such in stability calculations.
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Figure 6.12 Reducing the free-surface effect

We end this section by noting that transverse bulkheads do not reduce the
free-surface effect of slack tanks.

6.9.4 Shifting loads

Shifting loads, also called sliding loads, such as grain, coal and sand are a very
dangerous type of moving loads. Arndt (1968) lists 31 incidents due to sliding
loads, 13 of them leading to sinking, one to abandoning the ship. Those accidents
occurred between July 1954 and November 1966. More cases are cited in the
literature of speciality. Unlike liquid loads, materials considered in this section
do not move continuously during the ship roll. Shifting loads stay in place until
a certain roll angle is reached and then they slide suddenly.

The sides of a mass of granular materials, like those cited above, are inclined.
The angle between the side and the horizontal is called angle of repose and is an
important characteristic of the material. The angle of repose of most grain loads
ranges between 20° and 22°, but for barley it reaches 46° (see Price, 1980). The
angles of repose of ores range between 34° for copper from Norway, and 60°
for copper from Peru.

Let the angle of repose be PR. During roll, the mass of the granular material
stays in place until the heel angle exceeds the angle of repose, i.e. 0 > pR. Then,
the granular load slides suddenly and its centre of gravity moves horizontally a
distance f, and up a distance £. By analogy with Figure 6.11 (b), we can calculate
a reduction of the metacentric height equal to

r^L (£ cos 0 -j- £ sin (f>)

While the ship rolls back, the load does not move until its angle exceeds
the angle of repose. Wendel (1960b) describes this process and shows how the
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reduction of metacentric height can be represented by a loop that reminds the
phenomenon of hysteresis known mainly from the theory of magnetism. The
accelerations induced by ship motions can cause load shifting at angles that are
smaller than the angle of repose. The behaviour of granular materials is further
complicated by settling and by variations of humidity. For a detailed discussion,
see Arndt (1968).

6.9.5 Moving loads as a case of positive feedback

In all cases of moving loads we can assume that an external moment mh, caused
the ship to heel by an angle 0. Consequently, the load moved to the same side
producing another heeling moment ma that is added to the external moment.
This process is illustrated in Figure 6.13. Control engineers will recognize in this
process an example of positive feedback. Following Birbanescu-Biran (1979),
we can, indeed, use simple block-diagram techniques to retrieve some of the
relationships found above. A simplified development follows; a more rigorous
one can be found in the cited reference. Readers familiar with the elements of
Control Engineering can understand this section without difficulty; other readers
may skip it. However, making a little effort to understand the block diagram in
Figure 6.13 can provide more insight into the moving-load effect.

In Figure 6.13, G(s) is the ship transfer function and H(s)is the moving-load
transfer function. In the forward branch of the ship-load system, the Laplace
transform of the heel angle $(s) is related to the Laplace transform of the
effective heeling moment Me(s) by

- G(s)Me(s) (6.42)

Heeling
moment
M(s)

Additional
heeling
moment

Ma(s)

Effective
moment
Me(s)

Figure 6.13 Moving loads as a case of positive feedback
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The Laplace transform of the additional heeling moment Ma(s), induced by the
moving load, is related to the Laplace transform of the heel angle by

Ma(s) - H(s)$(s) (6.43)

Substituting Me(s) in Eq. (6.42) by the sum of the moments M(s) and Ma(s)
yields

$(s) = G(s)(M(s) + H(s)<l>(s)) (6.44)

Finally, the transfer function of the ship-load system is given by

$(s) G(s)
M(s) 1 - G(s)H(s]

(6.45)

To find the transfer function of the ship, we refer to Eq. (6.25) to which we add
a heeling moment, rae, in the right-hand side

g Me (6-46)
"m

Applying the Laplace transform, with zero initial conditions and rearranging,
we obtain the ship transfer function

*(-) _ */£* (6.47)
Afe(s) S2 + (£/£) GM

Substitution of the above transfer function into Eq. (6.45) yields

M(s) S2 + (g/il) (GM -

The factor

(6.48)

is the effective metacentric height.
From the preceding sections, it can be found that the transfer function of a

hanging load is H(s) = mh, and the transfer function of a free liquid surface is
H ( s ) — pi-Q. Equation (6.48) yields the condition for bounded response:

H(a)
GM - -j^- > 0

Indeed, if this condition is fulfilled, </>(£) is a sinusoidal function of time with
bounded amplitude. If the condition is not fulfilled, the heel angle is given by a
hyperbolic sine, a function whose amplitude is not bounded. We retrieved thus,
by other means, the famous condition of initial stability. A diagram such as that
in Figure 6.13 can be the basis of a SIMULINK® programme for simulating the
roll of a ship with moving loads aboard.
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6.10 The stability of grounded or docked ships

6.10.1 Grounding on the whole length of the keel

Figure 6.14 shows a ship grounded on the whole length of the keel. If local
tide lowers the sea level, at a certain draught the ship will loose stability and
capsize. To plan the necessary actions, the ship master must know how much
time remains until reaching the critical draught. A similar situation occurs when
a ship is laid in a floating dock. While ballast water is pumped out of the dock,
the draught of the ship decreases. Props must be fully in place before the critical
draught is reached.

In Figure 6.14, we consider that the draught T descended below the value
TO corresponding to the ship displacement mass A. Then, the ship weight is
supported partly by the buoyancy force gpVT and partly by the reaction R:

gpV (6.49)

where VT is the submerged volume at the actual draught T. The ship heels and
for a small angle 0, the condition of stability is

or

KM >

sin 0 > g&KG sin

AKG I

P VT

Simplifying we obtain

(6.50)

(6.51)

KM > —KG
VT

(6.52)

Figure 6.14 Ship grounded on the whole keel length
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Figure 6.15 Finding the critical draught of a ship grounded on the whole
keel length

where V is the displacement volume corresponding to the ship mass A. As an
example, Figure 6.15 shows the curves KM and VKG/V^r as functions of
draught, i.e. local depth T, for the ship Lido 9. The critical draught in this case
is 1.53m.

6.10.2 Grounding on one point of the keel

Figure 6.16 shows a ship grounded on one point of the keel; let this point be P0.
We draw a horizontal line through PQ ; let PI be its intersection with the vertical
passing through the centre of gravity G, and PS is the intersection with the
vertical passing through the centre of buoyancy B and the metacentre M. Taking
moments about the line P^Ps we write

sin <j) > sn

or

P3M > —PiG
VT

The similarity of the triangles P0MP3 and

(6.53)

(6.54)

lets us write

P3M P3P0 (6.55)
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Figure 6.16 Ship grounded on one point of the keel

Taking moments of forces about the point P0 gives

Combining Eqs. (6.54)-(6.56) yields the condition

>

(6.56)

(6.57)

In other words, the point P2 plays the role of metacentre. From Figure 6.16 and
Eq. (6.57), we see that pulling the ship to the left increases the distance GP2,
while pulling the ship to the right reduces it.

6.11 Negative metacentric height

The metacentric height GM can become negative if the centre of gravity is too
high, or if the influence of moving loads is important. Even with a negative
metacentric height, ships with certain forms can still find a position of stable
equilibrium at an angle of heel that does not endanger them immediately. An
example is shown in Figure 6.17 where the GZ curve is based on the data of a
small cargo ship built in 1958. The solid line represents the righting-arm curve
in ballast, departure condition. Let us assume that for some reason the centre
of gravity G moves upwards a distance 5KG = 0.75m. The dotted-dashed
curve represents the quantity 6KG sin </> that must be subtracted from the initial
righting-arm curve. The two curves intersect at approximately 10° and 55°. The
resulting righting-arm is shown in Figure 6.18. The ship finds a position of stable
equilibrium at 0i « 10°; she sails permanently heeled at this angle called angle
of loll. Looking again at Figure 6.17, we see that the first intersection of the two
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curves is possible because the first part of the GZ curve lies above the tangent
in the origin. It can be shown that the corresponding metacentric evolute has
ascending branches at $ = 0.

In Figure 6.18 we can see that, if a ship sailing with a positive angle of loll
receives a wave, a small gust of wind, or some other perturbation coming from
the starboard, she will incline to the port-side and stay there at a negative angle
of loll, (f>2 — —0i- In a seaway, such a ship can oscillate between fa and 02.
This kind of abrupt oscillation, different from a continuous roll, is characteristic
for negative metacentric heights.

An angle of loll can be corrected only by lowering the centre of gravity, not
by moving loads transversely, or by filling ballast tanks on the higher side.
Hervieu (1985) proves this in two ways, first by considering the metacentric
evolute, next by examining the righting-arm curve. We adopt here the second
approach.

We first assume that the ship master tries to correct the loll by moving a mass
ra = 21. As the breadth of the ship is 11.9 m, we can assume that the mass is
moved a distance d = 6 m towards port. The correcting arm, dm cos (/>/A, is
shown as a dotted line in Figure 6.19. Subtracting this correcting arm from the
initial righting-arm curve, we obtain the dashed line. The starboard angle of loll
03 is smaller than the initial angle fa, but the port-side angle of loll increases
from 02 to 04. Also, we see that the area A under the GZ curve is somewhat
reduced.

Next, we assume that, unsatisfied by the first result, the ship master moves
more masses towards port, until m = 4.25t. Figure 6.20 shows now the limit
situation in which the correcting-arm curve is tangent to the initial GZ curve.
The starboard angle of loll 03 is smaller than in the previous case, but still not
zero. On the other hand, the port-side angle of loll 04 is sensibly larger than the
uncorrected one, and the area A is smaller.

Finally, we consider in Figure 6.21 a very grave case with a still higher centre
of gravity (KG — 5.55m) and assume that the ship master decides to move
more masses until m = 6.51. There is no position of equilibrium at starboard
and the ship can find one only with the port-side down, at an angle of loll 04
sensibly larger than the initial angle 02. The area A under the righting-arm curve
is small and a not-too-large moment tending to incline the vessel towards port
can cause capsizing.

Ships whose righting-arm curves do not present inflexions like that shown in
Figure 6.17 cannot find an angle of loll. The reader is invited to examine such a
case in Exercise 6.4.

Once, it was not unusual to see that a ship carrying timber on deck sailed
out of harbour with an angle of loll. Today, Paragraph 4.1.3 of IMO (1995)
specifies for such vessels that, "At all times during a voyage, the metacentric
height GMo should be positive after correction for free surface effects...", and
even requires that in the departure condition the metacentric height be not less
than 0.1 Om.
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Figure 6.21 Correcting an angle of loll

6.12 The limitations of simple models

In Sections 6.3 and 6.4, we assumed that the water reaction to the heeling force
acts at half-draught. This assumption is obviously arbitrary, but practice has
proven it acceptable. A better evaluation would require an amount of calcula-
tions unacceptable in practical calculations. To find the exact location of the
centre of pressure, it is necessary to take into account the exact hull-surface
form. Moreover, the position of the centre of pressure can change with heel. In
practice, stability calculations must be carried out for each change in load, in
many cases by ship masters and mates. Under such circumstances computing
resources are limited and one must be satisfied with an approximation of the
centre of pressure consistent with other approximations assumed in the model.
A documented discussion on the point of application of water reaction can be
found in Wegner (1965). At this point it may be helpful to explain that the models
developed in this chapter may be rough approximations of the reality, but they
stand at the basis of national and international regulations that are compulsory.
Stability regulations correspond to the notion of codes of practice as known
in other engineering fields. All codes of practice accept simplifying assump-
tions that enable calculations with a reasonable amount of time and computing
resources. Another situation occurs in research where more exact models must
be assumed, powerful computer and experimenting resources are available, and
more time is allowed.
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Equation (6.2) developed in Section 6.3 yields a heeling arm equal to zero
at the heel angle 90°. Such a result is obviously wrong as any vessel presents
a sail area exposed to the wind even when lying on the side. Figure 1.103 in
Henschke (1957) illustrates well this point. At small angles the results based
on the curve proportional to cos2 (f) differ little from those obtained with other
approximations (see Chapters 8 and 10) and, therefore, they are acceptable for
large vessels that do not heel much under wind, such as the capital ships of the
US Navy. Smaller vessels tend to heel more under wind and then curves based
on the cos2 $ assumption may become quite unrealistic.

The models developed in this chapter are based on further simplifications. In
real life, water opposes the motions of a ship with forces that depend on the ampli-
tude of motion, the speed of motion and the acceleration of motion. Assuming
negligible roll velocity and acceleration, our models take into account only the
moment that depends on the amplitude of heeling, that is the righting moment.

The moment that depends on the heeling speed, 0, is called damping moment.
Damping causes energy dissipation. If a system that includes damping is dis-
placed from its equilibrium position and then it is left to oscillate freely, the
amplitude of oscillations will decrease with time and eventually will die out.
The damping of the roll motion is mainly due to the generation of waves, but
viscous effects may increase it and become important for certain bilge forms or
if the vessel is fitted with bilge keels or a large keel.

The moments proportional to heel acceleration belong to a category of forces
and moments called added masses because they can be collected together with
the mass moment of inertia of the ship.

The evaluation of damping and added masses requires special computer pro-
grammes or model experiments. Neglecting damping and added masses leads to
overestimation of dynamic heeling angles and this is on the safe side. Therefore,
no stability regulation takes explicitly into account the effects of damping or
added masses, but some regulations consider indirectly their influence by using
different parameters for ships fitted with sharp bilges, bilge keels or deep keels.

Cardo et al (1978), for example, discuss stability considering non-linear roll
equations that include damping and added masses. Using advanced mathemat-
ical criteria, the authors reach the same qualitative results as those obtained
in Section 6.7. An outline of the linear theory of ship motions is given in
Chapter 12.

Last, but not least, we neglected until now the influence of waves, and we
leave the discussion of this subject for Chapters 9-11.

6.13 Other modes of capsizing

Capsizing can be defined as the sudden transition of a floating body from a
position of equilibrium to another position of equilibrium. Depending on the
ship forms and loading, her second position can be on the side or with the
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keel up. If in the new position water can enter in large quantities, the ship will
eventually sink. Often the process is so fast that many lives are lost. Sometimes
no survivor remains to tell the story.

In Chapter 2, we saw that a floating body can capsize if the metacentric
height is negative. In this chapter, we learnt that a vessel can capsize if the
righting arm is too small in comparison with the heeling arm, or if the area
under the righting-arm curve is too small in comparison with the area under the
heeling-arm curve. In Chapter 9, we shall see that a ship can capsize because
of the variation of the metacentric height and of the righting arm in waves that
travel in the same direction as the ship (head or following seas) or at some
angle with her. That dangerous phenomenon is called parametric resonance or
Mathieu effect. What happens if the waves are parallel to the ship? Arndt (1960a)
explains that a ship cannot capsize in regular, parallel waves. Adds Arndt, 'From
practice we know cases in which captains put the ship parallel to the wave crests
in order to reduce the effect of storms, neither in experiments could anyone
cause until now a model to capsize in lateral, regular waves'. Otherwise seems to
happen with freak, or breaking waves of great steepness whose impact on the ship
side can be high enough to overturn the ship. Thus, for example, Morrall (1980)
investigates the loss of the large stern trawler Gaul, and Dahle and Kjaerland
(1980) study the capsizing of the Norwegian research vessel Helland-Hansen.
These studies support the hypothesis that the discussed disasters were due to
high breaking waves.

It seems that the process of capsizing because of freak or breaking waves is not
yet well understood and the methods proposed for its prediction are probabilistic
(see Dahle and Myrhaug, 1996; Myrhaug and Dahle, 1994). Kat (1990) stud-
ied numerical models for the simulation of capsizing and Grochowalski (1989)
describes a research on ship models. Probabilistic and simulation studies are
beyond the scope of this book.

Another mode of capsizing is broaching-to\ it is a dynamic phenomenon due
to the loss of control in severe following or quartering seas. The ship enters
into a forced turning that cannot be corrected by the rudder, heels and capsizes.
Broaching-to is studied by Nicholson (1975), Spyrou (1995, 1996a,b).

It has been claimed that capsizing results from a combination of several factors.
An example can be found in Hua (1996) who studied the capsize of the ferry
Herald of Free Enterprise as a result of the interaction between heeling and
turning motion, while great quantities of water were present on one deck.

6.14 Summary

The statical stability of ships is checked by comparing the righting-arm curve
with the curves of heeling arms. A heeling arm is calculated by dividing a heeling
moment by the ship displacement force. In general, a heeling-arm curve intersects
the righting-arm curve at two points that correspond to positions of statical
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equilibrium. The equilibrium is stable only at the first position; there the slope
of the righting-arm curve is larger than that of the heeling arm.

Heeling moments are caused by wind, by the centrifugal force developed in
turning, by the crowding of passengers on one side of the ship, by towing or
by the tension in a cable that links two vessels during a replenishment-at-sea
operation.

The wind heeling arm is proportional to the square of the wind velocity and
depends on the area of the lateral projection of the above-sea ship surface. We call
that area 'sail area'. Assuming that the wind velocity is constant over the whole
sail area, the wind heeling arm is proportional to the sail area. This assumption
is acceptable for quick calculations. In reality, the wind speed increases with
height above the sea level and this 'wind gradient' is taken into account in more
exact calculations.

The heeling arm in turning is proportional to the square of the ship speed in
turning, and inversely proportional to the radius of the turning circle. When the
heeling moment appears or increases suddenly we must check the dynamical
stability of the vessel. This situation can be caused by a gust of wind or by
losing a mass on one side of the ship. The area under the righting arm up to the
maximum angle reached momentarily by the ship is equal to the area under the
heeling arm up to that point. The process depends on the angle of roll at which
the sudden moment is applied. For a gust of wind, for example, the situation is
worse if the ship is heeled to the windward side, than if the ship is caught by
the gust with the lee side down. If the area available under the righting arm is
smaller than the area under the heeling arm, the ship is lost.

The period of unresisted roll is proportional to the square root of the meta-
centric height. This imposes an upper limit on the GM value. If the roll period
is too short, the roll motion is stiff; it is unpleasant for passengers and crew, and
may be dangerous for equipment and cargo. If the motion is too tender, it may
indicate a dangerously low metacentric height. A load displaced transversely
reduces the stability when heeling to the same side as the load. Moving loads too
decrease the stability. Thus, a load suspended so that it can move freely produces
a virtual reduction of the metacentric height as if the load were moved to the
point of suspension. A very common type of moving loads are liquids whose
surfaces are free to move inside tanks or on the deck. The reduction of stability is
proportional to the moment of inertia of the free surface about a barycentric axis
parallel to the axis of ship inclination. The effect does not depend on the mass
of the liquid (as long as the liquid surface does not reach the tank top or bottom)
or the position of the tank. The usual way of reducing the free-surface effect
is to subdivide the tanks by longitudinal bulkheads. Two other methods are to
empty the tank or to fill it. In the latter case the effect of the thermal expansion of
the liquid should be considered. Granular materials constitute another category
of moving loads. Such loads stay in place until the heel angle exceeds a value
characteristic for the material. This value is called angle of repose. The variation
of stability reduction due to sliding loads follows a hysteresis loop. The effect
of moving loads is a case of positive feedback.
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If a ship is grounded in a region where the water level is descending, at a
certain draught it can lose stability. The same happens with a ship on dock. The
calculation of the critical draught is rather simple.

A ship with negative metacentric height can find a position of stable equilib-
rium, without capsizing, if the first part of the righting-arm curve lies above the
tangent in the origin. This fixed angle of heel is called angle of loll. There are two
angles of loll and they are symmetric about the origin. Under moderate perturba-
tions, the ship can heel suddenly from one angle of loll to the other. This motion
is different from a continuous roll and is characteristic for negative metacentric
height. The angle of loll cannot be corrected by moving masses transversely;
such an action can endanger the ship. Angles of loll should be corrected only by
lowering the centre of gravity.

6.15 Examples

Example 6.1 - Wind pressure
Let us calculate the pressure corresponding to a wind speed of 70 knots. This
is the value specified by the German Navy for evaluating the intact stability of
vessels operating in open seas that are not exposed to tropical storms. Assuming
an aerodynamic resistance coefficient equal to 1.2 and an air density equal to
1.27 kgm"1, we obtain

pw = . -
2 2 rrr3 \ knot

- 987.99 kg ms-2

Rounding off yields lkNm~ 2 , or, using the SI term, 1 kPa. The conversion
factor, 0.5144, results from the definition of the knot as nautical mile per
hour. Substituting SI units we divide 1852 m by 3600 s and obtain 1852/3600
= 0.5144 ms~Vknot-

Example 6.2 - Calculating a wind heeling arm
Figure 6.22 is a simplified sketch of the sail area of the Ship Lido 9 with the
waterline corresponding to a draught of 1.85m. To simplify calculations, the
area is subdivided into five simple geometrical forms, namely rectangles and
triangles. The calculations are carried out in the spreadsheet shown in Table 6.1.

If the stability of the vessel must be checked for a wind speed of 90 knots,
we use the wind-pressure value of 1.5 MPa, as prescribed by the German Navy
stability regulations for ships that can encounter tropical storms.

Example 6.3 -The statical stability curves of HMS Captain and HMS Monarch
In the night between 6 and 7 September 1870, a British fleet was sailing-off
Cape Finisterre. The fleet was hit by a strong gale and one of the ships, HMS
Captain capsized, but all other ships survived. The righting arms of HMS Cap-
tain are given in Anonymous (1872) and Attwood and Pengelly (1960), while
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5 m

Figure 6.22 Calculation of sail area and its centroid

Table 6.1 Ship Lido 9 - sail area for T = 1.85 m

Area component

1
2
3
4
5

Total

Dimensions (m)

0.6 x 2/2
2 x 16.4

0.8 x 2.4/2
2x 11
1 x 3

Area (m)

0.60
32.80
0.96

22.00
3.00

59.36

Centroid (m2)

1.33
1.00
1.60
3.00
4.50
1.93

Moment (m3)

0.80
32.80

1.54
66.00
13.50

114.63

the latter book contains also the righting arms of HMS Monarch, a ship that
was part of the same fleet and survived. The statical stability curves of the two
ships are compared in Figure 6.23. The slopes in the origin of the curves show
that both ships had practically the same initial metacentric height. The angle
of vanishing stability of HMS Monarch was much larger than that of HMS
Captain. The same was true for the areas under the righting-arm curves. The
difference between those qualities was due mainly to a substantial difference in
the freeboards.

Visual inspection of Figure 6.23 explains why HMS Monarch could survive
the gust of wind that led to the capsizing of HMS Captain.

6.16 Exercises

Exercise 6.1 - stability in turning
Table 6.2 shows part of the cross-curves values of the small cargo ship exempli-
fied in Section 6.11. The other data needed in this problem are the displacement
volume, V = 2549 m3, the height of the centre of gravity above BL, KG = 5 m,
the ship length, I/pp = 75.5m and the ship speed, V = 16 knots. Using the
formulae given in Section 6.4, calculate the heeling arm in turning. Plot the
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Figure 6.23 The statical stability curves of HMS Captain and HMS
Monarch

heeling-arm curve over the righting arm and find the heel angle in turning. Next,
consider a free-surface correction equal to If = 0.04 m, draw the corrected
righting-arm curve, GZes, and see if the angle of heel is affected.

Hint: Use the tangent in origin when drawing the righting-arm curve.

Exercise 6.2 - Dynamical stability
The organizers of a boat race must throw a buoy from the starboard of a boat.
The boat is rolling. Would you advise the organizers to throw the buoy while the
starboard is down, or when the port side is down?

Table 6.2 Small cargo ship - partial
cross-curves values

Heel angle (°) lk

10
20
30
45
60
75
90

0.918
1.833
2.717
3.847
4.653
5.007
4.994
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Table 6.3 Small cargo

Draught, T
(m)

2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20

V
(m3)

993
1118
1243
1377
1504
1640
1776
1907
2045
2189
2322
2471

ship - partial hydrostatic data

KM
(m)

6.75
6.39
6.09
5.83
5.63
5.48
5.37
5.28
5.24
5.20
5.18
5.17

Draught, T
(m)

4.32
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
5.96
6.00
6.20

V
(m3)

2549
2609
2757
2901
3057
3210
3352
3507
3653
3786
3811
3972

KM
(m)

5.16
5.16
5.16
5.17
5.18
5.20
5.23
5.27
5.31
5.34
5.36
5.42

Exercise 6.3 - Critical draught of grounded ship
Table 6.3 contains part of the hydrostatic data of the small cargo ship exemplified
in the analysis of the angle of loll (Section 6.11).

1. The docking condition of the ship is characterized by the displacement vol-
ume, V = 1562.8 m3 and KG = 5.34 m. Find the critical draught at which
props must be in place.

2. The data of the ship carrying a cargo of oranges and close to her destination
(fuel tanks at minimum filling) are the displacement volume, V = 2979.4 m3

and KG = 4.92 m. Find the critical draught if the ship is grounded on the
whole length of the keel.

Exercise 6.4 - Negative metacentric height
Using the data in Table 5.1, show that the vessel Lido 9 cannot find an angle of
loll if the metacentric height is negative.
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Weight and trim calculations

7.1 Introduction

All models of stability require the knowledge of the displacement mass, A, and
of the height of the centre of gravity (vertical centre of gravity), KG. Stevin's law
(see Subsection 2.3.2) shows that the ship trim is determined by the longitudinal
position of the centre of gravity, LOG. The three quantities, A, KG and LCG are
calculated by summing up the masses of all ship components and their moments
about a horizontal and a transverse plane. The centre of gravity of a ship in
upright condition is situated in the plane of port-to-starboard symmetry of the
ship (centreline plane); therefore, the coordinate of the centre of gravity about this
plane is zero. However, individual mass ship components may not be symmetrical
about the centreline plane and it is necessary to calculate their moments about
that plane and ensure that the transverse coordinate (y-coordinate) of the ship's
centre of gravity is zero. It is usual to call the latter coordinate transverse centre
of gravity and note it by TCG. Thus, we have a consistent notation for the triple
of coordinates LCG, VCG, TCG. Systematic calculations of displacements and
centres of gravity are known as weight calculations and they are the subject of
the first part of this chapter. Recent literature and standards deal with masses
rather than weights. We follow this trend in our book, but use the term weight
calculations because it is rooted in tradition.

Another subject of this chapter is the calculation of the trim and of the forward
and aft draughts. As mentioned in Chapter 6, the trim affects the ship stability.
Also, a ship trimmed at a large angle can look unpleasant to the eye. Above all,
the trim determines the forward and aft draughts and thus affects certain ship
functions. For example, the aft draught must be large enough to ensure sufficient
propeller submergence and avoid cavitation.

Frequently weight calculations are based on approximate or insufficient data.
The sources of uncertainty are explained in this chapter when introducing the
notions of reserve and margin of displacement and of KG. Because of these
uncertainties, statutory regulations require an experimental validation of the
coordinates of the centre of gravity, and of the corresponding metacentric height,
GM, for all new buildings or for vessels that underwent alterations that can influ-
ence their stability. This validation is carried out in the inclining experiment,
also known in some shipyards as stability test.
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7.2 Weight calculations

7.2.1 Weight groups

A vessel is composed of hundreds, sometimes thousands of mass items. To sys-
tematize calculations it is necessary to organize them into weight groups. The
first subdivision is into two main sets: lightship and deadweight. The lightship
(less frequently known as lightweight) is the mass of the empty ship; it is com-
posed of the hull, the outfit, and the machinery masses, including the liquids in
the machinery and various systems, but not those in tanks or storage spaces. The
deadweight is the sum of the masses of crew, cargo and passengers, fuel, lubri-
cating oil, provisions, water, stores and spare parts. The usual abbreviation for
deadweight is DWT. In simpler terms, the deadweight is the weight that the
ship 'carries'.

One should make a distinction between the term lightship used as above, and
its homophone that designs a ship provided with a strong light and used to mark
a position.

In the first stages of ship design, known as preliminary design, the light-
ship masses and their centres of gravity are estimated by empirical equations,
based on statistics of similar ships, or are derived from the masses of a
given parent ship. This subject is treated in books on ship design such as
Kiss (1980), Schneekluth (1980), Schneekluth and Bertram (1998) and
Watson (1998). For merchant ships, the lightship groups are the hull, the outfit and
the machinery. The classification of warship weight groups may be somewhat
different. Thus, the classification system of the US Navy, SWBS, distinguishes
the following main weight groups: hull structure, propulsion plant, electric
plant, command and surveillance, auxiliary systems, outfit and furnishings,
armament.

As the design progresses by successive iterations, the weight estimations are
refined by subdividing the weight groups into subgroups, the subgroups into
lower-lever subgroups, and so on. Thus, the hull mass is subdivided into hull
and superstructure, then the hull into bottom, sides, decks, bulkheads etc. The
machinery components are first subdivided into main, or propulsion machinery,
and auxiliary machinery. In the final stages it is possible to calculate the masses
and centres of gravity of individual items from detailed drawings or from data
provided by equipment suppliers.

The procedure described above requires a classification of the various weight
groups, subgroups and so on that ensures that no item is forgotten and that no
item belongs to two groups. Readers who like mathematics may say that the
weight groups shall be disjoint. Such readers can also see that such a classifi-
cation system can be described by a tree graph (see Birbanescu-Biran, 1988).
Several authorities and organizations engaged in ship design and construction
have developed their own classification systems. An example of classification
system for merchant ships is shown in Kiss (1980). As mentioned above, the
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classification system adopted by the US Navy is known as SWBS, an acronym
for Ship Work Breakdown Structure.

The main deadweight item is the cargo; it is pre-specified by the owner. The
number of crew members depends on the functions to be carried aboard: fre-
quently a minimum is prescribed by regulations. The masses of fuel, lubricating
oil, and water result from the required ship speed and range, two characteristics
specified by the owner.

To compensate for the uncertainties in weight estimation in the first design
stages, Naval Architects introduce a weight item called reserve, or weight mar-
gin. Some regulations consider also a KG margin; that is the calculated height of
the centre of gravity, KG, is increased by a certain amount ensuring that stability
calculations fall on the safe side. As the ship design progresses, the uncertainties
are reduced and so must be the weight reserve and the KG margin.

When the detailed ship project is delivered for construction, all weight and
centres of gravity are supposed to be exact; however, a 'building' weight reserve
and a KG margin are still included in weight calculations. By doing so designers
take into account acceptable tolerances in plate, profile and pipe thicknesses,
tolerances in metal densities, and changes in the catalogues of suppliers.

Even when the ship is delivered to the owner, weight calculations still include
'commissioning' margins that take into account future equipment additions, trap-
ping of water in places from where it cannot be pumped out, and weight increase
due to rust and paint. Certain codes of practice, such as the stability regulations
of the US Navy and those of the German Federal Navy, impose well-defined
margin values.

7.2.2 Weight calculations

Once the ship is built and in service, the lightship displacement and its centre of
gravity are taken in calculations as constants. For each possible loading case, that
is for each combination of cargo and other deadweight items, the masses of those
items and their moments are added to those of the lightship. The calculations yield
the displacement and the coordinates of the centre of gravity of the loading case
under consideration. To give an example, we return to the data of the small cargo
ship considered in Chapter 6. Figure 7.1 shows the calculations corresponding
to the load case Homogeneous cargo, departure. By departure condition we
mean the ship leaving the port, with all the fuel, lubricating oil and provisions.

Table 7.1 was calculated in MS Excel. Alternatively, the calculations can be
performed in MATLAB. Then, the weight data can be stored in a matrix, for
example in the format

where m* is the mass of the ith weight item, kg^ its vertical centre of gravity,
and Icgi, its longitudinal centre of gravity. An example of calculations for the
loading case considered in Figure 7.1 is





Weight and trim calculations 163

format bank, format compact
Displ = sum(Wdata(:, 1) )
Displ = 2625.00
KG = Wdataf:, 1)'*Wdata(:, 2)/Displ
KG =5.00
LCG =Wdata(:, l)'*Wdata(:, 3)/Displ
LCG = 35.88

Unless all calculations are carried out by a computer programme, the results
of weight calculations are used as described below:

1. The mean draught, Tm, corresponding to the calculated displacement, is read
in the hydrostatic curves.

2. The trimming moment is calculated as

Mtrim - A(LCG - LCB) (7.1)

where the LCG value corresponding to Tm is found in the hydrostatic curves.
The moment to change trim, MCT, corresponding to Tm, is read from the
hydrostatic curves and the trim is calculated as shown in Section 7.3. If the trim
is small one can go to the next step, otherwise it is advisable to continue the
calculations using the Bonjean curves or to resort to a computer programme.

3. The height of the metacentre above BL, KM, corresponding to Tm, is read
in the hydrostatic curves.

4. The metacentric height is calculated as

GM = KM - KG

5. The free-surface effects of the tanks filled with liquids are added up and their
sum is subtracted from the metacentric height to find the effective metacentric
height, GMeff. _

6. The righting levers, GZ, are calculated, and the effective righting levers are
obtained by subtracting the free-surface effect

~GZ = /*
_ __ (7.2)
GZeff = G Z - l F s m ( f )

7. The data are used to plot the statical stability curve.

With older computer programmes, such as ARCHIMEDES, the displacement
and the coordinates of the centre of gravity can be used as input to obtain the
mean draught and the trim of the ship. The accuracy is good even for large trim
values. In recent computer programmes the user has to input the degree of filling
of cargo holds and of the various tanks and the computer carries on all weight
and hydrostatic calculations. This subject is discussed in Chapter 13.
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7.3 Trim

7.3.1 Finding the trim and the draughts at perpendiculars

In Figure 7.2 we consider a ship initially on even keel; the corresponding water-
line is WQ I/Q. Let us assume that the ship trims reaching a new waterline, W0L0.
If the trim angle, 0, is small (for normal loading conditions it is always small),
the intersection line of the two waterlines, WQ^O and W0L0, passes through the
centre of flotation, F, of the initial waterplane. The midship draught of the ship
on even keel, Tm, can be read in the hydrostatic curves at the intersection of the
displacement curve and the vertical corresponding to the given displacement.
For that draught we read the moment to change trim, MCT. We calculate the
trim, in m, as

trim = TF - TA =
A(LCG - LCB)

MCT
The trim angle is given by

(7.3)

(7.4)

From Figure 7.2, we see that

= Tm- LCF tan 0 = Tm- LCF
trim

(7.5)

and

LCF\i - — — (7.6)

wr

Figure 7.2 Finding the forward and aft draughts
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To give an example we consider again the loading case of the small cargo
ship analyzed in Subsection 7.2.2. In Tables 6.2 and 7.3 (See Exercise 7.1)
we find Tm = 4.32m, LCB = 0.291m, LCF = -0.384m, and MCT =
3223 rntm"1. We know that the length between perpendiculars is Lpp =
75.40m. In the table LCB is measured from midship, positive forwards. As
LCG is measured from AP, we calculate

^-^ +0.291 = 37.99m

and the trim

&(LCG - LCB) _ 2625(35.88 - 37.99)
MCT ~ 3223

= -1.72m

The ship is trimmed by the stern. In Table 7.3, LCF is measured from the
midship, positive forward; the value measured from AP is

-37.32m

and we calculate

TA - 4.32-37.32—^=5.17

TF = -1.72 + 5.17 = 3.45

where the results are in m.

7.3.2 Equilibrium at large angles of trim

For small angles of trim, Stevin's law yields LCB = LCG where both lengths
are measured from the same origin. As Figure 7.3 shows, when the trim is large,
things are not so simple and the heights of the centres of buoyancy and gravity
must be taken into account. In Figure 7.3 we assume again that both LCB and
LCG are measured in the same system and from AP and write

LCG + (KG - TCB) tan 6 = LCB (7.7)

The longitudinal centre of gravity, LCG, is always measured in a system fixed
in the ship. Some computer programmes may measure LCB in a system fixed in
space. Therefore, when using the output of a computer programme it is necessary
to read carefully the definitions used by it.
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LOG

FP

Figure 7.3 Equilibrium at large trim

7.4 The inclining experiment

Because of the importance of this subject we give here the term in three foreign
languages:

French Experience de stabilite
German Krangungsversuch
Italian Prova di stabilita

It is usual to carry out the inclining experiment a short time before the comple-
tion of the ship. The vessel must float in calm water and the work must be done
while no wind is blowing. The number of persons aboard should be limited to
that strictly necessary for the experiment; their masses and positions should be
exactly recorded. Tank fillings and free surfaces in tanks should be well known.
Free surfaces should not reach tank bottoms or ceilings for the expected heel
and trim angles. All draught marks should be read, i.e. forward, at midship, at
stern, both on starboard and on port side. Good practice requires to put a glass
pipe before the draught mark and to read the draught value corresponding to the
water level in the pipe. This procedure minimizes errors due to small waves. The
water density should be read at several positions around the ship.

Figure 7.4 shows a common set-up for the inclining experiment. A plumb line
with a bob B is hung at A. The bob is immersed in a water tank that serves as an
oscillation damper. A mass p is displaced transversely a distance d. The resulting
heel angle, assumed small, is given by

tan/9 =
pd

AGM
(7.8)
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Figure 7.4 Set-up for the inclining experiment

The deflection of the plumb line is measured on a graduated batten RiR<2 and is
used to calculate

CD
= (7.9)

A recommended practice is to displace the mass once to starboard and mea-
sure tan#s>then to port and measure tan$p. The value to be substituted into
Eq. (7.8) is

tan 0 =
tan #s + tan Op

It is recommended to repeat the set-up in Figure 7.4 at three stations along the
ship. The masses used for inclining the vessel should be chosen so that the heel
angles fall within that range in which Eq. (7.8) is applicable. Moore (1967)
recommends angles of 1° for very large vessels, 1.5° for ships of 120m length,
and 2-3° for small vessels. Kastner (1989) cites German regulations that require
heel angles ranging between 1 and 3.5°. Equation (7.8) can be used for the
estimation of suitable masses.

According to Hansen (1985) the length of the plumb line should be chosen so
that the length measured on the batten should be maximum 150-200 mm. Writes
Hansen, 'In general, long pendulums used on stiff ships and short pendulums
used on tender ships result in about the same accuracy in measuring the ship
list.' Kastner (1989) studies the dynamics of a compound pendulum consisting
of the ship and the plumb line. A long plumb line ensures a good resolution in
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reading the graduation on the batten. On the other hand, a long plumb line can
yield a large dynamic response to small-amplitude ship motions and increase
reading errors. Kastner concludes that a length of 1.146 m is sufficient.

Today, the set-up shown in Figure 7.4 can be replaced by electronic instruments
that measure the heel angle (inclinometres, gyroscopic platforms) whose output
can be fed directly to an on-board computer. A common way of checking the
accuracy of the results consists in plotting the tangents of heel angles, arc tan 9,
against the heeling moments, pd. Equation (7.8) shows that the ideal plot should
be a straight line. Years ago Naval Architects fitted by eye a straight line passing
through the plotted points. Nowadays computers and many hand calculators
yield easily a least-squares fit. Example 1 shows how to do it.

When analyzing the results of the inclining experiment, Eq. (7.8) is rewritten as

pd
tan<9

The interpretation of the results of inclining experiments requires the knowledge
of the displacement, A, and of the height of the metacentre above the baseline,
KM. If the trim is small, one can read the desired values in the hydrostatic
curves, entering them with the measured mean draught, Tm, as input. Hansen
(1985) quotes the limits imposed on the trim by the US Navy and the US Coast
Guard. The recommended value for naval vessels is 0.67%, and for commercial
ships 1% of the ship length. If the trim is not small one can use the Bonjean
curves or a computer programme for hydrostatic calculations. When drawing
the waterline on the Bonjean curves we must not forget that, in general, the
forward and the aft draught marks are not placed in the transverse planes of the
forward and aft perpendiculars. Therefore, the values read on the marks must be
adjusted and extrapolated to the FP and AP positions.

A computer programme for hydrostatic calculations can be used if the offsets
of the ship are stored in the required input format. Then, it is sufficient to run
the programme for the mean draught and the trim read during the inclining
experiment.

The ship hull behaves like a beam that can deflect under bending moments.
Bending moments arise from differences between the longitudinal distribution
of masses and that of hydrostatic pressures. Deflections of the hull beam also
can be caused by differences between thermal expansions of the deck and of the
bottom. The deflection can be calculated as the difference between the average
of forward and aft draught and the draught Tm measured at midship

d = rM - TF ~ TA (7.10)

Various authorities and authors publish formulae for calculating an equivalent
draught that allows the calculation of the displacement of a deflected hull. For
example, Hansen (1985) uses a rather complicated formula recommended by
NAVSEA, a design authority of the US Navy. Ziha (2002) analyzes the displace-
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ment change due to hull deflection and proposes ways of taking it into account.
Hervieu (1985) simplifies the problem by assuming a parabolic elastic line (the
deflected shape of the beam). Then, for a rectangular waterplane and vertical
sides in the region of the actual waterline (wall-sided hull) the added or lost
volume equals

<5A = -Awd
o

where Aw is the waterplane area, and d is the deflection. In most cases the
waterplane area is not rectangular, but still in a first approximation we can use
as equivalent draught

2
Teq = TU + -zd

o

The sign of d results from Eq. (7.10). The equivalent draught is used as input to
hydrostatic curves.

We think that with present-day computers, and even hand calculators, it is pos-
sible to obtain with little effort and in a reasonable time more exact hydrostatic
data. Moreover, assuming that the equivalent draught yields a good approxi-
mation of the displacement, what about the height of the metacentre above the
baseline?

It is easy to calculate the hydrostatic data of a deflected hull by using the
Bonjean curves. To do so one must simply draw a waterline passing through the
three measured draughts, that is the forward, the midship and the aft draughts.
The exact shape of the waterline is not known, but for small hull deflections
that line cannot differ much from the shape taken by a drafting spline. Once
the waterline is drawn, the Naval Architect has to read the Bonjean curves and
use the readings as explained in Section 4.4. If a computer programme is avail-
able, and the ship offsets are stored in the required input format, one has to run
the programme option for hydrostatic calculations in waves. The input wave
length is equal to twice the waterline length. The input wave height (trough-
to-crest) to be considered is equal to twice the hull deflection. If Tm > (Tp -f
TA)/2, a bending situation known as sagging, the wave crest shall be placed in
the midship section. This case is exemplified in Figure 7.5. The upper
figure (a), shows what happens in reality. The lower figure (b), shows the corre-
sponding computer input. If TM < (Tp 4- T&}/1, a bending situation known as
hogging, the wave trough shall be placed in the midship section. The midship
draught and the trim measured during the experiment shall be those supplied as
input.

Example 1 shows an analytic treatment of the results of the inclining experi-
ment; it yields the product AGM corresponding to the ship loading during the
test. As described above, the displacement, A, is read in the hydrostatic curves,
or is calculated from Bonjean curves or by a computer programme. Thus, one
obtains the metacentric height, GM, of the same ship loading. The height of
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Figure 7.5 Deflected hull - sagging: (a) actual condition (b) computer input

the metacentre above the baseline, KM, is obtained in the same way as the dis-
placement, that is from the hydrostatic curves, by integrating values read in the
Bonjean curves, or by running a computer programme. The height of the centre
of gravity above baseline is calculated as

KG = KM - GM

For small trim angles we can assume that the x-coordinates of the centre of
gravity and of the centre of buoyancy are equal, that is LCG = LCB\ otherwise
see Subsection 7.3.2. The longitudinal centre of buoyancy is obtained in the
same way as the displacement. At this point the Naval Architect knows the
displacement and the centre of gravity of the ship loaded as during the inclining
experiment. To calculate the data of the lightship one must first subtract the
masses and the moments of the items that do not belong to the lightship, but were
aboard during the test. Such items are, for example, the masses used to incline
the ship. Next, one has to add the masses and the moments of the items that
belong to the lightship, but were not yet assembled at the time of the inclining
experiment. Sometimes the authorities that must approve the ship have their
own inclining experiment regulations. Alternatively, the designer may be asked
to abide by certain codes of practice that include provisions for the inclining
experiment. Then, it is imperious to read those regulations before carrying on
the work. An example of such regulations is the standard F1321-92 developed
byASTM(2001).
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7.5 Summary

Stability and trim calculations require the knowledge of the displacement and of
the position of the centre of gravity. To calculate these quantities it is necessary to
organize the ship masses into weight groups. The sum of the weight groups that
do not change during operation is called lightship displacement; for merchant
vessels it is the sum of hull, outfit and machinery masses. The sum of the masses
that are carried in operation according to the different loading cases is called
deadweight; it includes the crew and its equipment, the cargo and passengers,
the fuel, the lubricating oil, the fresh water, and the stores.

To find the displacement of a given loading case it is necessary to add the
masses of the lightship and the deadweight items carried on board in that case.
To find the coordinates of the centre of gravity, LOG, and VCG (KG), it
is necessary to sum up the moments of the above masses with respect to a
transverse plane for the first, a horizontal plane for the second. The calculations
can be conveniently carried out in an electronic spreadsheet or by software such
as MATLAB.

Once the displacement, A, is known, one can find the corresponding mean
draught, Tm, by reading the hydrostatic curves. These curves also yield the values
of the longitudinal centre of buoyancy, LCB, the longitudinal centre of flotation,
LCF, and the moment to change trim by 1 m, MCT. If the trim is small it can
be found from

A(LCG - LCB)
TF~TA = - MCT -

For normal loading situations the trim is always small. Then, the trimmed water-
line, W0Lg, intersects the waterlines of the ship on even keel, WQ£O> along a
line passing through the centre of flotation, F, of W$LQ. To obtain the forward
draught, Tp, and the aft draught, TA, it is necessary to add to, or subtract from
the mean draught a part of the trim proportional to the distance of the respective
perpendicular from the centre of flotation

r s~i 77

TA - Tm - trim - — (m)

\
I - - - (m)

^PP /

If the trim is large, the heights of the centres of buoyancy and flotation must be
taken into account.

Because of uncertainties in the calculation of masses and centres of grav-
ity, it is necessary to validate them experimentally. This is done in the inclin-
ing experiment, an operation to be carried out for new buildings and for ships
that underwent substantial changes. The ship is brought in sheltered waters and
when no wind is blowing. A known mass, p, is displaced transversely a known
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distance, d, and the tangent of the resulting heel angle, tan 0, is measured. The
statistical analysis of several inclining tests yields the product

pd
tan 6

The displacement, A, is found as a function of the draughts measured during the
experiment. If a hull deflection is measured it must be taken into account. The
vertical centre of gravity is calculated as

KG = KM - GM

If the trim is large the hydrostatic curves cannot be used. The Bonjean curves are
helpful here, as is a computer programme. Both Bonjean curves and computer
programmes can be used to calculate the effect of hull deflection.

7.6 Examples

Example 7.1 - Least-squares fit of the results of an inclining experiment
The results of the inclining experiment presented here are taken from an example
in Hansen (1985), but are converted into SI units. The data are plotted as points in
Figure 7.6. At a first glance it seems reasonable to fit a straight line whose slope
equals the mean of pd/tan 0 values. In this example, some trials performed with
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Figure 7.6 A plot of the results of an inclining experiment
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very small pd values produced zero heel-angle tangents. Those cases must be
discarded when averaging because they yield pd/t an 0 = oo. After eliminating
the pairs corresponding to zero heel-angle tangents, we calculate the mean slope
and obtain 53 679.638. The reader can easily verify that the line having this
slope is far from being satisfactory. Available programmes for linear least-squares
interpolation cannot be used because, in general, they fit a line having an equation
of the form

y = cix + c2

Obviously, in our case the line must pass through the origin, that is c^ — 0.
Therefore, let us derive by ourselves a suitable procedure.

To simplify notations let Xi be the tangents of the measured heeling angles,
and yi the corresponding inclining moments. As said, we want to fit to the
measured data a straight line passing through the origin

y = Mx (7.11)

The error of the fitted point to the ith measured point is

y^ - MX, (7.12)

We want to minimize the sum of the squares of errors

2 (7.13)

To do this we differentiate e with respect to M and equal the derivative to zero

Y^Xi(yi-Mxi) = 0 (7.14)

The solution is

M = ̂ f (7.15)
Exi

An example of a MATLAB script file that plots the data, calculates the slope,
M, and plots the fitted line is

%INCLINING Analysis of Inclining Experiment
% Format of data is [ moment tangent ] ,
% initial units [ ft-tons - ]

incldata = [

% separate data
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moment = incldata(:, 1); tangent = incldata(:, 2);
plot(tangent, moment, 'k.'), grid
ylabel('Inclining moment, pd, tm')
xlabel('Heel angle tangent, tan\theta')
hold on
tmin = min(tangent); tmax = max(tangent);
M = sum(tangent.*moment)/sum(tangent.~2);
Mmin = M*tmin; Mmax = M*tmax;
plot( [ tmin tmax ], [ Mmin Mmax ], 'k-')
text(-0.015, 1100, ['Average slope = ' num2str(M)])
hold off

Above, the user has to write the data of the inclining experiment in the matrix
incldata. The MATLAB programme shown here can be easily transformed
so that the user can input the name of a separate file that stores the incldata
matrix.

7.7 Exercises

Exercise 7.1 - Small cargo ship homogeneous load, arrival
Using the data in Table 7.2 calculate the loading case homogeneous cargo,
arrival, of the small cargo ship earlier encountered in this book. By arrival
we mean the situation of the ship entering the port of destination with the fuel,
the lubricating oil and the provisions consumed in great part. Using data in
Tables 6.2 and 7.3 calculate the trim, the mean draught and the draughts at
perpendiculars.

cargo, arrival

Weight item

Lightship
Crew and effects
Provisions
Fuel oil
Lubricating oil
Fresh water
Ballast water
Cargo in hold
Fruit cargo

Mass
(t)

1247.66
3.60
1.00

27.74
3.49
8.70

248.87
993.94
90.00

VCG
(m)

5.93
9.60
7.00
2.17
0.62
1.61
0.55
4.35
6.08

LCG
(m)

32.04
11.00
3.50

23.15
17.08
9.75

39.62
42.62
38.66



Weight and trim calculations 175

Table 7.3

Draught, T
(m)

2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20

Small

MCT
(m)

2206
2296
2382
2470
2563
2645
2732
2824
2906
2293
3085
3167

cargo ship - partial hydrostatic data, 2

LCB from
midship

(m)

0.607
0.600
0.590
0.575
0.557
0.537
0.510
0.480
0.442
0.406
0.360
0.319

LCF from
midship

(m)

0.518
0.460
0.398
0.330
0.260
0.190
0.119
0.041

-0.035
-0.017
-0.210
-0.314

Draught, T
(m)

4.32
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
5.96
6.00
6.20

MCT
(m)

3223
3260
3336
3413
3485
3567
3639
3716
3793
3863
3880
3951

LCB from
midship

(m)

0.291
0.272
0.225
0.180
0.131
0.083
0.033

-0.018
-0.067
-0.108
-0.118
-0.167

LCF from
midship

(m)

-0.384
-0.430
-0.560
-0.698
-0.839
-0.960
-1.066
-1.158
-1.231
-1.281
-1.293
-1.348

Exercise 7.2
Check that substituting in Tp — TA the expressions given by Eqs. (7.5) and (7.6)
we obtain, indeed, the trim.
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Intact stability regulations I

8.1 Introduction

In the preceding chapters, we presented the laws that govern the behaviour of
floating bodies. We learnt how to find the parameters of a floating condition
and how to check whether or not that condition is stable. The models we devel-
oped allow us to check the stability of a vessel under the influence of various
heeling moments. At this point we may ask what is satisfactory stability, or,
in simpler terms, how much stable a ship must be. Analyzing the data of ves-
sels that behaved well, and especially the data of vessels that did not survive
storms or other adverse conditions, various researchers and regulatory bodies
prescribed criteria for deciding if the stability is satisfactory. In this chapter, we
present examples of such criteria. To use picturesque language, we may say that
in Chapters 2-7 we described laws of nature, while in this chapter we present
man-made laws. Laws of nature act independently of man's will and they always
govern the phenomena to which they apply. Man-made laws, in our case stabil-
ity regulations, have another meaning. Stability regulations prescribe criteria for
approving ship designs, accepting new buildings, or allowing ships to sail out
of harbour. If a certain ship fulfils the requirements of given regulations, it does
not mean that the ship can survive all challenges, but her chances of survival
are good because stability regulations are based on considerable experience and
reasonable theoretic models. Conversely, if a certain ship does not fulfill certain
regulations, she must not necessarily capsize, only the risks are higher and the
owner has the right to reject the design or the authority in charge has the right
to prevent the ship from sailing out of harbour. Stability regulations are, in fact,
codes of practice that provide reasonable safety margins. The codes are com-
pulsory not only for designers and builders, but also for ship masters who must
check if their vessels meet the requirements in a proposed loading condition.

The codes of stability presented in this chapter take into consideration only
phenomena discussed in the preceding chapters. The stability regulations of the
German Federal Navy are based on the analysis of a phenomenon discussed in
Chapter 9; therefore, we defer their presentation until Chapter 10. For obvious
reasons, it is not possible to include in this book all existing stability regulations;
we only choose a few representative examples. Neither is it possible to present
all the provisions of any single regulation. We only want to draw the attention of
the reader to the existence of such codes of practice, to show how the models
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developed in the previous chapters are applied, and to help the reader in under-
standing and using the regulations. Technological developments, experience
accumulation, and, especially major marine disasters can impose revisions of
existing stability regulations. For all the reasons mentioned above, before check-
ing the stability of a vessel according to given regulations, the Naval Architect
must read in detail their newest, official version.

All stability regulations specify a number of loading conditions for which
calculations must be carried out. Some regulations add a sentence like 'and any
other condition that may be more dangerous'. It is the duty of the Naval Architect
in charge of the project to identify such situations, if they exist, and check if the
stability criteria are met for them.

8.2 The IMO code on intact stability

The Inter-Governmental Maritime Consultative Organization was established in
1948 and was known as IMCO. That name was changed in 1982 to IMO - Inter-
national Maritime Organization. The purpose of IMO is the inter-governmental
cooperation in the development of regulations regarding shipping, maritime
safety, navigation, and the prevention of marine pollution from ships. IMO is an
agency of the United Nations and has 161 members. The regulations described
in this section were issued by IMO in 1995, and are valid 'for all types of ships
covered by IMO instruments' (see IMO, 1995). The intact stability criteria of
the code apply to 'ships and other marine vehicles of 24 m in length and above'.
Countries that adopted these regulations enforce them by issuing corresponding
national ordinances. Also, the Council of the European Community published
the Council Directive 98/18/EC on 17 March 1998.

8.2.1 Passenger and cargo ships

The code uses frequently the terms angle of flooding, angle of downflooding;
they refer to the smallest angle of heel at which an opening that cannot be closed
weathertight submerges. Passenger and cargo ships covered by the code shall
meet the following general criteria:

1. The area under the righting-arm curve should not be less than 0.055 m rad up
to 30°, and not less than 0.09 mrad up to 40° or up to the angle of flooding
if this angle is smaller than 40°.

2. The area under the righting-arm curve between 30° and 40°, or between 30°
and the angle of flooding, if this angle is less than 40°, should not be less than
0.03 m rad.

3. The maximum righting arm should occur at an angle of heel preferably
exceeding 30°, but not less than 25°.

4. The initial metacentric height, <2M0, should not be less than 0.15 m.
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These requirements are inspired by Rahola's work cited in Section 6.1. Example
8.1 illustrates their application. Passenger ships should meet two further require-
ments. First, the angle of heel caused by the crowding of passengers to one side
should not exceed 10°. The mass of a passenger is assumed equal to 75 kg. The
centre of gravity of a standing passenger is assumed to lie 1 m above the deck,
while that of a seated passenger is taken as 0.30m above the seat. The second
additional requirement for passenger ships refers to the angle of heel caused by
the centrifugal force developed in turning. The heeling moment due to that force
is calculated with the formula

MT = 0.02 (8.1)

where VQ is the service speed in m s l. Again, the resulting angle shall not exceed
10°. The reason for limiting the angle of heel is that at larger values passengers
may panic. The application of this criterion is exemplified in Figure 8.1 and
Example 8.3.

In addition to the general criteria described above, ships covered by the code
should meet a weather criterion that considers the effect of a beam wind applied
when the vessel is heeled windwards. We explain this criterion with the help of
Figure 8.2.
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Small cargo ship, A = 26251, KG = 5m, IMO turning criterion
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Figure 8.1 The IMO turning criterion
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Small cargo ship, A = 26251, KG = 5 m, IMO weather criterion
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Figure 8.2 The IMO weather criterion

The code assumes that the ship is subjected to a constant wind heeling arm
calculated as

PAZ
(8.2)

where P = 504 Nm 2, A is the projected lateral area of the ship and deck
cargo above the waterline, in m2, Z is the vertical distance from the centroid
of A to the centre of the underwater lateral area, or approximately to half-
draught, in m, A is the displacement mass, in t, and g = 9.81 m s~2. Unlike the
model developed in Section 6.3 (model used by the US Navy), IMO accepts
the more severe assumption that the wind heeling arm does not decrease as
the heel angle increases. The code uses the notation 0 for heel angles; we shall
follow our convention and write 0. The static angle caused by the wind arm
/wi is 0o- Further, the code assumes that a wind gust appears while the ship is
heeled to an angle 0i windward from the static angle, fa. The angle of roll is
given by

1 = (8.3)
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where 0i is measured in degrees, X\ is a factor given in Table 3.2.2.3-1 of the
code, X<2 is a factor given in Table 3.2.2.3-2 of the code, and k is a factor defined
as follows:

• k — 1.0 for round-bilge ships;
• k = 0.7 for a ship with sharp bilges;
• k as given by Table 3.2.2.3-3 of the code for a ship having bilge keels, a bar

keel or both.

As commented in Section 6.12, by using the factor k, the IMO code considers
indirectly the effect of damping on stability. More specifically, it acknowledges
that sharp bilges, bilge keels and bar keels reduce the roll amplitude. By assuming
that the ship is subjected to the wind gust while heeled windward from the static
angle, the dynamical effect appears more severe, as explained in Section 6.6 and
the lower plot of Figure 6.5.

The factor r is calculated from

r = 0.73 + 0.6 — (8.4)
-*m

where OG is the distance between the waterline and the centre of gravity, positive
upwards. The factor s is given in Table 3.2.2.3-4 of the code, as a function of
the roll period, T. The code prescribes the following formula for calculating the
roll period, in seconds,

(8.5)
VG'Meff

where

C = 0.373 + 0.023 - J - 0.043 (8.6)

The code assumes that the lever arm of the wind gust is

*w2 = 1.5*wi (8.7)

Plotting the curve of the arm £w2 we distinguish the areas a and b. The area b
is limited to the right at 50° or at the angle of flooding, whichever is smaller.
The area b should be equal to or greater than the area a. This provision refers
to dynamical stability, as explained in Section 6.6. When applying the criteria
described above, the Naval Architect must use values corrected for the free-
surface effect, that is GMeR and GZefi. The free-surface effect is calculated for
the tanks that develop the greatest moment, at a heel of 30°, while half full. The
code prescribes the following equation for calculating the free-surface moment

MF = vb-fkVS (8.8)



182 Ship Hydrostatics and Stability

where v is the tank capacity in m3, b is the maximum breadth of the tank in m,
7 is the density of the liquid in tm~3, 5 is equal to the block coefficient of
the tank, v/bth, with h, the maximum height and £, the maximum length, and
k, a coefficient given in Table 3.3.3 of the code as function of b/h and heel
angle. The contribution of small tanks can be ignored if Mp/Amin < 0.01 m at
30°. We would like to remind the reader that present computer programmes for
hydrostatic calculations yield values of the free-surface lever arms for any tank
form described in the input, and for any heel angle. It is our opinon that, when
available, such values should be preferred to those obtained with Eq. (8.8).

The code specifies the loading cases for which stability calculations must be
performed. For example, for cargo ships the criteria shall be checked for the
following four conditions:

1. Full-load departure, with cargo homogeneously distributed throughout all
cargo spaces.

2. Full-load arrival, with 10% stores and fuel.
3. Ballast departure, without cargo.
4. Ballast arrival, with 10% stores and fuel.

8.2.2 Cargo ships carrying timber deck cargoes

Section 4.1 of the code applies to cargo ships that carry on their deck timber
cargo extending longitudinally between superstructures and transversally on the
full deck breadth, excepting a reasonable gunwale. Where there is no limiting
superstructure at the aft, the cargo should extend at least to the after end of the
aftermost hatch. For such ships the area under the righting-arm curve should
not be less than 0.08 mrad up to 40° or up to the angle of flooding, whichever
is smaller. The effective metacentric height should be positive in all stages of
loading, voyage and unloading. The calculations should take into account the
absorption of water by the deck cargo, and the water trapped within the cargo.

8.2.3 Fishing vessels

Section 4.2 of the code applies to decked seagoing vessels; they should fulfill
the first three general requirements described in Subsection 8.2.1, while the
metacentric height should not be less than 0.35 m for single-deck ships. If the
vessel has a complete superstructure, or the ship length is equal to or larger
than 70 m, the metacentric height can be reduced with the agreement of the
government under whose flag the ship sails, but it should not be less than 0.15 m.
The weather criterion applies in full to ships of 45 m length and longer. For fishing
vessels whose length ranges between 24 and 45 m the code prescribes a wind
gradient such that the pressure ranges between 316 and 504 Nm~2 for heights of
1-6 m above sea level. Decked vessels shorter than 30 m must have a minimum
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metacentric height calculated with a formula given in paragraph 4.2.6.1 of the
code.

8.2.4 Mobile offshore drilling units

Section 4.6 of the code applies to mobile drilling units whose keels were laid after
1 March 1991. The wind force is calculated by considering the shape factors of
structural members exposed to the wind, and a height coefficient ranging between
1.0 and 1.8 for heights above the waterline varying from 0 to 256m. The area
under the righting-arm curve up to the second static angle, or the downflooding
angle, whichever is smaller, should exceed by at least 40% the area under the
wind arm. The code also describes an alternative intact-stability criterion for
two-pontoon, column-stabilized semi-submersible units.

8.2.5 Dynamically supported craft

A vessel is a dynamically supported craft (DSC) in one of the following cases:

1 . If, in one mode of operation, a significant part of the weight is supported by
other than buoyancy forces.

2. If the craft is able to operate at Froude numbers, Fu — V/^/gL, equal or
greater than 0.9.

The first category includes air-cushion vehicles and hydrofoil boats. Hydrofoil
boats float, or sail, in the hull-borne or displacement mode if their weight is
supported only by the buoyancy force predicted by Archimedes' principle. At
higher speeds hydrodynamic forces develop on the foils and they balance an
important part of the boat weight. Then, we say that the craft operates in the
foil-borne mode.

Section 4.8 of the code applies to DSC operating between two ports situated
in different countries. The requirements for hydrofoil boats are described in
Subsection 4.8.7 of the code. The heeling moment in turning, in the displacement
mode, is calculated as

where VQ is the speed in turning, in m s"1, and MR results in kN m. The formula
is valid if the radius of the turning circle lies between 2L and 4L. The resulting
angles of inclination should not exceed 8° .

The wind heeling moment, in the displacement mode, in kNm, should be
calculated as

Mv =
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and is considered constant within the whole heeling range. The area subjected
to wind pressure, Ay, is called here windage area. The wind pressure, Py,
corresponds to force 7 on the Beaufort scale. For boats that sail 100 nautical
miles from the land, Table 4.8.7.1.1.4 of the code gives Py values ranging
between 46 and 64 Pa, for heights varying from 1 to 5 m above the water-
line. The windage area lever, Z, is the distance between the waterline and the
centroid of the windage area. A minimum capsizing moment, MC, is calculated as
shown in paragraph 4.8.7.1.1.5.1 of the code and as illustrated in
Figure 8.3. The curve of the righting arm is extended to the left to a roll angle
0Z averaged from model or sea tests. In the absence of such data, the angle is
assumed equal to 15°. Then, a horizontal line is drawn so that the two grey
areas shown in the figure are equal. The ordinate of this line defines the value
MO According to the theory developed in Section 6.6 the ship capsizes if
this moment is applied dynamically. The stability is considered sufficient if
MC/MV > i.

The code also prescribes criteria for the transient and foil-borne modes. Such
criteria consider the forces developed on the foils, a subject that is not discussed
in this book.
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Figure 8.3 Defining the minimum capsizing moment of a dynamically
supported craft (DSC)
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8.2.6 Container ships greater than 100 m

Section 4.9 of the code defines a form factor C depending on the main dimensions
of the ship and the configuration of hatches (Figure 4.9-1 in the code). The
minimum values of areas under the righting-arm curve are prescribed in the
form a/C, where a is specified for several heel intervals.

8.2.7 Icing

Chapter 5 of the code bears the title 'Ice considerations'. The following values,
prescribed for fishing vessels, illustrate the severity of the problem. Stability
calculations should be carried out assuming ice accretion (this is the term used
in the code) with the surface densities:

• 30 kg m~2 on exposed weather decks and gangways;
• 7.5 kg m~2 for projected lateral areas on each side, above the waterplane.

The code specifies the geographical areas in which ice accretion can occur.

8.2.8 Inclining and rolling tests

Chapter 7 of the code contains the instructions for carrying on inclining experi-
ments for all ships covered by the regulations, and roll-period tests for ships up
to 70m in length. The relationship between the metacentric height, GMo, and
the roll period, T, is given as

GM0 = ( ^-)

where B is the ship breadth.
An interesting part of the Annex refers to the plot of heel-angle tangents against

heeling moments; it explains the causes of deviations from a straight line, such
as free surfaces of liquids, restrictions of movements, steady wind or wind gust.

8.3 The regulations of the US Navy

In 1944, an American fleet was caught by a tropical storm in the Pacific Ocean.
In a short time three destroyers capsized, a fourth one escaped because a funnel
broke down under the force of the wind. This disaster influenced the development
of stability regulations for the US Navy. They were first published by Sarchin
and Goldberg in 1962. These regulations were subsequently adopted by other
navies.
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The intact stability is checked under a wind whose speed depends on the
service conditions. Thus, all vessels that must withstand tropical storms should
be checked for winds of 100 knots. Ocean-going ships that can avoid the centre of
tropical storms should be checked under a wind of 80 knots, while coastal vessels
that can avoid the same dangers should be checked for winds of 60 knots. Coastal
vessels that can be called to anchorage when expecting winds above Force 8, and
all harbour vessels should be checked under the assumption of 60-knots winds.

We explain the weather criterion in Figure 8.4. The righting arm, GZ, is
actually the effective righting arm, GZeff, calculated by taking into account the
free-surface effect. The wind arm is obtained from the formula

O.OITV^AI cos2

1000A
(8.9)

where Vw is the wind velocity in knots, A, the sail area in m2, £, the distance
between half-draught and the centroid of the sail area in m, and A, the displace-
ment in t. The first angle of static equilibrium is </>sti. The criterion for static
stability requires that the righting arm at this angle be not larger than 0.6 of the
maximum righting arm. To check dynamical stability the regulations assume
that the ship is subjected to a gust of wind while heeled 25° to the windward
of </>sti. We distinguish then the area a between the wind heeling arm and the

0.5

0.4

0.3

0.2

0.1

75.4m ship, A = 26251, KG = 5m, US Navy weather criterion

-0.1

-0.2
-40 -20 0 20 40

Heel angle (°)

Figure 8.4 The US Navy weather criterion

60 80 100



Intact stability regulations I 187

righting-arm curves up to 0sti, and the area b between the two curves, from the
first static angle, 0sti, up to the second static angle, 0st2 (see Figure 8.4), or up
to the angle of downflooding, whichever is less (see Figure 8.5). The ratio of the
area b to the area a should be at least 1.4. A numerical example of the application
of the above criteria is shown in Example 8.4.

The designer can take into account the wind gradient, that is the variation of
the wind speed with height above the waterline. Then, the 'nominal' wind speed
defined by the service area is that measured at 10m (30ft) above the waterline.
Performing a regression about new data presented by Watson (1998) we found
the relationship

= 0.73318/10'13149 (8.10)

where 1/w is the wind speed at height h, VQ is the nominal wind velocity, and
h is the height above sea level, in m. In Figure 8.6, the points indicated by
Watson (1998) appear as asterisks, while the values predicted by Eq. (8.10)
are represented by the continuous line. An equation found in literature has the
form Vw/Vb = (/i/10)6. Regression over the data given by Watson yielded
b = 0.73318, but the resulting curve fitted less well than the curve correspond-
ing to Eq. (8.10).

To apply the wind gradient one has to divide the sail area into horizontal strips
and apply in each strip the wind ratio yielded by Eq. (8.10). Let Ri be that ratio
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Figure 8.5 The US Navy weather criterion, downflooding angle 60°
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for the ith strip. The results for the individual strips should be integrated by
one of the rules for numerical integration. The coefficient in Eq. (8.9) should be
modified to 0.0195 and then, the wind arm is given by

O.Q195VQ2

1000A
(8.11)

where VQ is the nominal wind speed, h is the common height of the horizontal
strips, o-i is the trapezoidal multiplier, AI is the area of the ith strip, and £j, the
vertical distance from half-draught to the centroid of the ^th strip. It can be easily
shown that

(8.12)

To explain the criterion for stability in turning we use Figure 8.7. The heeling
arm due to the centrifugal force is calculated from

V2(KG-T/2}
gR

cos (8.13)

where V is the ship speed in m s l and R is the turning radius in m.
Ideally, R should be taken as one half of the tactical diameter measured from

model or sea tests at full scale.Where this quantity is not known, an estimation
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Figure 8.7 The US Navy turning criterion

must be made. In Section 6.4, we described an empirical formula developed
for this aim, in Section 8.4, about the UK Navy, we give another approximate
relationship. The stability is considered satisfactory if

1. the angle of heel does not exceed 15°;
2. the heeling arm at the angle of static equilibrium is not larger than 0.6, the

maximum righting-arm value;
3. the grey area in the figure, called reserve of dynamical stability is not less

than 0.4 of the whole area under the positive righting-arm curve.

If the downflooding angle is smaller than the second static angle, the area repre-
senting the reserve of stability should be limited to the former value. An appli-
cation of the above criteria is given in Example 8.5.

Another hazard considered in the regulations of the US Navy is the lifting of
heavy weights over the side. The corresponding heeling arm is yielded by

wa
lw = — cos (8.14)

where w is the lifted mass, a is the transverse distance from the centreline to the
boom end, and A is the displacement mass including w. The criteria of stability
are the same as those required for stability in turning.

The crowding of personnel to one side causes an effect similar to that of a heavy
weight lifted transversely to one side. The heeling arm is yielded by Eq. (8.14),
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assuming that the personnel moved to one side as far as possible when five men
crowd in one square metre. Again, the stability is considered sufficient if the
requirements given for stability in turning are met.

8.4 The regulations of the UK Navy

The stability standard of the Royal Navy evolved from the criteria published by
Sarchin and Goldberg in 1962. The first British publication appeared in 1980 as
NES 109. The currently valid version is Issue 4 (see MoD, 1999a). The docu-
ment should be read in conjunction with the publication SSP 42 (MoD, 1999b).
The British standard is issued by the Ministry of Defence, shortly MoD, and is
applicable to vessels with a military role, to vessels designed to MoD standards
but without a military role, and to auxiliary vessels. Vessels with a military role
are exposed to enemy action or to similar dangers during peacetime exercises.
We shall discuss here only the provisions related to such vessels. The standard
NES 109 has two parts, the first dealing with conventional ships, the second with
unconventional vessels. The second category includes:

1. monohull vessels of rigid construction having a speed in knots larger than
4\/I/wL» where the waterline length is measured in m;

2. multi-hull vessels;
3. dynamically supported vessels.

In this book, we briefly discuss only the provisions for conventional vessels.
According to NES 109 the displacement and KG values used in stability calcu-
lations should include growth margins. For warships the weight growth margin
should be 0.65% of the lightship displacement, for each year of service. The KG
margin should be 0.45% of the lightship KG, for each year of service.

The shape of the righting-arm curve should be such that:

• the area under the curve, up to 30°, is not less than 0.08 m rad;
• the area up to 40° is not less than 0.133 m rad;
• the area between 30° and 40° is not less than 0.048 m rad;
• the maximum GZ is not less than 0.3 m and should occur at an angle not

smaller than 30°.

One can immediately see that all these requirements are considerably more severe
than those prescribed by IMO 95 for merchant ships.

The stability under beam winds should be checked for the following wind
speeds:

• 90 knots for ocean-going vessels;
• 70 knots for ocean-going or coastal vessels that can avoid extreme conditions;
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50 knots for coastal vessels that can be called to anchorage to avoid winds
over Force 8, and for harbour vessels.

These values are lower than those required by the US Navy and partially coincide
with those specified by the German Navy. The angle of heel caused by the wind
should not exceed 30°. The criterion for statical stability is the same as that
of the US Navy, that is, the righting arm at the first static angle should not be
greater than 0.6, the maximum righting arm. As in the American regulations,
it is assumed that the ship rolls 25° windwards from the first static angle, and
it is required that the reserve of stability should not be less than 1.4 times the
area representing the wind heeling energy. Figure 1.3 in the UK regulations
shows that the area representing the reserve of stability is limited at the right by
the downflooding angle. When checking stability in turning the corresponding
ship speed should be 0.65 times the speed on a straight-line course. If no better
data are available, it should be assumed that the radius of turning equals 2.5
times the length between perpendiculars. The angle of heel in turning should
be less than 20°, a requirement less severe than that of the US Navy. The static
criterion, regarding the value of the righting arm at the first static angle, and the
dynamic criterion, regarding the reserve of stability, are the same as those of the
US Navy.

To check stability when lifting a heavy mass over the side, the heeling arm
should be calculated from

w(a cos(f) + d sin 0)
/w = -r (8.15)

where a is the horizontal distance of the tip of the boom from the centreline, and
d is the height of the point of suspension above the deck. Stability is considered
sufficient if the following criteria are met:

1. The angle of heel is less than 15°.
2. The righting arm at the first static angle is less than half the maximum righting

arm.
3. The reserve of stability is larger than half the total area under the righting-arm

curve. The area representing the reserve of stability is limited at the right by
the angle of downflooding.

It can be easily seen that criteria 2 and 3 are more stringent than those of the
US Navy.

The NES 109 standard also specifies criteria for checking stability under icing.
A thickness of 150mm should be assumed for all horizontal decks, with an ice
density equal to 950kgm~3. Only the effect on displacement and KG should
be considered, and not the effect on the sail area.
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8.5 A criterion for sail vessels

The revival of the interest for large sailing vessels and several accidents justified
new researches and the development of codes of stability for this category of
ships. Thus, the UK Department of Transport sponsored a research carried out
at the Wolfson Unit for Marine Transportation and Industrial Aerodynamics of
the University of Southampton (Deakin, 1991). The result of the research is the
code of stability described in this section. A more recent research is presented
by Cleary, Daidola and Reyling (1996). The authors compare the stability cri-
teria for sailing ships adopted by the US Coast Guard, the Wolfson Unit, the
Germanischer Lloyd, the Bureau Veritas, the Ateliers & Chantiers du Havre, and
Dr Ing Alimento of the University of Genoa. These criteria are illustrated by
applying them to one ship, the US Coast Guard training barque Eagle, formerly
Horst Wessel built in 1936 in Germany.

In this section, we describe the intact stability criteria of The code of practice
for safety of large commercial sailing & motor vessels' issued by the UK Mari-
time and Coastguard Agency (Maritime, 2001). The code 'applies to vessels in
commercial use for sport or pleasure... that are 24 metres in load line length and
over... and that do not carry cargo and do not carry more than 12 passengers.'
For shorter sailing vessels, the UK Marine Safety Agency published another
code, namely 'The safety of small commercial sailing vessels.'

The research carried out at the Wolfson Unit yielded a number of interesting
results:

1 . Form coefficients of sail rigs vary considerably and are difficult to predict.
We mean here the coefficient c in

1 2
P = CPv

where p is the pressure, p, the air density, and V, the speed of the wind
component perpendicular to the sail.

2. The wind- arm curve behaves like cos1'3 0.
3. Wind gusts do not build up instantly, as conservatively assumed (see Sec-

tion 6.6). The wind speed of gusts due to atmospheric turbulence are unlikely
to exceed 1 .4 times the hourly mean, have rise times of 10 to 20 s and durations
of less than a minute. Other gusts, due to other atmospheric phenomena, are
known as squalls and they can be much more dangerous. Because the rise-up
times of significant gusts are usually larger than the natural roll periods of
sailing vessels, ships do not respond as described in Section 6.6, but have
time to find equilibrium positions close to the intersection of the gust-arm
curve and the righting-arm curve.

4. Sails considerably increase the damping of the roll motion, limiting the
response to a wind gust and enhancing the effect described above. Thus, the
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heel angle caused by a wind gust is smaller than that predicted by the balance
of areas representing wind energy and righting-arm work (Section 6.6).

Based on the above conclusions, the criterion of intact stability adopted by the
UK Maritime and Coastguard Agency does not consider the sail rig and the wind
moment developed on it. The code simply provides the skipper with a means for
appreciating the maximum allowable heel angle under a steady wind, if wind
gusts are expected. Sailing at the recommended angle will avoid the submergence
under gusts of openings that could lead to ship loss.

The code defines the downflooding angle as the angle at which openings hav-
ing an 'aggregate area' whose value in metres is greater than A/1500, submerge.
The displacement, A, is measured in t. Deakin (1991) explains that under his
assumptions the mass of water flowing through the above openings during 5 min-
utes equals the ship displacement. No ship is expected to float after a flooding
of this extent, and five minutes are considered a maximum reasonable time of
survival. For those who wish to understand Deakim's reasoning we remind that
the flow through an orifice is proportional to the orifice area multiplied by the
fluid speed

where a is the orifice area, cy, a discharge coefficient always smaller than 1,
g, the acceleration of gravity, and h, the level of water above the orifice. The
authors of the code assume cy = 1 and h — 1 m. We calculate

1500
x V2x9.81 x l-O.OOSAnr 1

It follows that in sea water 5.5 minutes are required for a mass of water equal to
the displacement mass.

We use Figure 8.8 to describe the criterion for intact stability. The righting-arm
curve is marked GZ; it is based on the data of an actual training yacht. At the
downflooding angle we measure the value of the righting arm, GZf . We assume
here the downflooding angle fa = 60°. We calculate a gust- wind lever in upright
condition

WLO=

The dashed line curve represents the gust arm. Under the assumptions that the
gust speed is 1.4 times the speed of the steady wind, the pressure due to steady
wind is one half that of the gust, and so is the corresponding heeling arm. There-
fore, we draw the 'derived curve' as the dash-dot line beginning at WLO/2
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Figure 8.8 Intact stability criterion for sail ships

and proportional to cos1-3 (j>. This curve intercepts the GZ curve at the angle of
steady heel, here a bit larger than 40°.
The code requires that:

1. The GZ curve should have a positive range not shorter than 90°.
2. If the downflooding angle is larger than 60°, </>f should be taken as 60°.
3. The angle of steady heel should not be less than 15°.

8.6 A code of practice for small workboats
and pilot boats

The regulations presented in this section (see Maritime, 1998) apply to small
UK commercial sea vessels of up to 24 m load line length and that carry cargo
and/or not more than 12 passengers. The regulations also apply to service or
pilot vessels of the same size. By 'load line length' the code means either 96%
of the total waterline length on a waterline at 85% depth, or the length from the
fore side of the stern to the axis of the rudder stock on the above waterline.

The lightship displacement to be used in calculations should include a margin
for growth equal to 5% of the lightship displacement. The x-coordinate of the
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centre of gravity of this margin shall equal LOG, and the ^-coordinate shall equal
either the height of the centre of the weather deck amidships or the lightship KG,
whichever is the higher. Curves of statical stability shall be calculated for the
following loading cases:

• loaded departure, 100% consumables;
• loaded arrival, 10% consumables;
• other anticipated service conditions, including possible lifting appliances.

The stability is considered sufficient if the following two criteria are met in
addition to criteria 1-4 in Subsection 8.2.1.

1 . The maximum of the righting-arm curve should occur at an angle of heel not
smaller than 25°. _

2. The effective, initial metacentric height, GMe^, should not be less than
0.35m.

If a multihull vessel does not meet the above stability criteria, the vessel shall
meet the following alternative criteria:

1. If the maximum of the righting-arm curve occurs at 15°, the area under the
curve shall not be less than 0.085 mrad. If the maximum occurs at 30°, the
area shall not be less than 0.055 mrad.

2. If the maximum of the righting-arm curve occurs at an angle ^czmax situated
between 15° and 30°, the area under the curve shall not be less than

A = 0.055 + 0.002(30° - 0GZmax) (8.16)

where A is measured in m rad.
3. The area under the righting-arm curve between 30° and 40°, or between 30°

and the angle of downflooding, if this angle is less than 40°, shall not be less
than 0.03 mrad.

4. The righting arm shall not be less than 0.2 m at 30°.
5. The maximum righting arm shall occur at an angle not smaller than 15°.
6. The initial metacentric height shall not be less than 0.35 m.

The intact stability of new vessels of less than 15m length that carry a combined
load of passengers and cargo of less than 1000kg is checked in an inclining
experiment. The passengers, the crew without the skipper, and the cargo are
transferred to one side of the ship, while the skipper may be assumed to stay at
the steering position. Under these conditions the angle of heel shall not exceed 7°.
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For vessels with a watertight weather deck the freeboard shall be not less than
75 mm at any point. For open boats the freeboard to the top of the gunwale shall
not be less than 250 mm at any point.

8.7 Regulations for internal-water vessels

8.7.1 EC regulations

The European prescriptions for internal-navigation ships are contained in direc-
tive 82/714/CEE of October 1982. In September 1999, a proposal for modifica-
tions was submitted to the European parliament. The proposal details the internal
waterways of Europe for which it is valid.

Intact stability is considered sufficient if:

« the heel angle due to the crowding of passengers on one side does not
exceed 10°;

• the angle of heel due to the combined effect of crowding, wind pressure and
centrifugal force does not exceed 12°.

In calculations it should be assumed that fuel and water tanks are half full. The
considered wind pressure is 0.1 kN m~2. At the angles of heel detailed above,
the minimum freeboard should not be less than 0.2 m. If lateral windows can be
opened, a minimum safety distance of 0.1 m should exist.

8.7.2 Swiss regulations

The Swiss regulations for internal navigation are contained in an ordinance of
8 October 1978. Some modifications are contained in an ordinance of 9 March
2001 of the Swiss Parliament (Der Schweizerische Bundesrat). According to
them cargo ships should be tested under a wind pressure of 0.25 kNm~2. The
heeling moment in turning, in kN m, should be calculated as

where c > 0.4 is a coefficient to be supplied by the builder or the operator.
Stability is considered sufficient if under the above assumptions the heeling
angle does not exceed 5° and the deck side does not submerge. The metacentric
height should not be less than 1 m. The required wind pressure is definitely lower
than that required for sea-going ships. On the other hand, the other requirements
are more stringent.
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8.8 Summary

The IMO Code on Intact Stability applies to ships and other marine vehicles
of 24 m length and above. The metacentric height of passenger and cargo ships
should be at least 0.15 m, and the areas under the righting-arm curve, between
certain heel angles, should not be less than the values indicated in the document.
Passenger vessels should not heel in turning more than 10°. In addition, pas-
senger and cargo ships should meet a weather criterion in which it is assumed
that the vessel is subjected to a wind arm that is constant throughout the heel-
ing range. The heeling arm of wind gusts is assumed equal to 1.5 times the heeling
arm of the steady wind. If a wind gust appears while the ship is heeled
windwards by an angle prescribed by the code, the area representing the reserve
of buoyancy should not be less than the area representing the heel energy. The
former area is limited to the right by the angle of downflooding or by 50°,
whichever is less.

The IMO code contains special requirements for ships carrying timber on
deck, for fishing vessels, for mobile offshore drilling units, for dynamically
supported craft, and for containerships larger than 100 m. The code also contains
recommendations for inclining and for rolling tests.

The stability regulations of the US Navy prescribe criteria for statical and
dynamical stability under wind, in turning, under passenger crowding on one
side, and when lifting heavy weights over the side. The static criterion requires
that the righting arm at the first static angle should not exceed 60% of the maxi-
mum righting arm. When checking dynamical stability under wind, it is assumed
that the ship rolled 25° windwards from the first static angle. Then, the area rep-
resenting the reserve of stability should be at least 1.4 times the area represent-
ing the heeling energy. When checking stability in turning, or under crowding
or when lifting heavy weights, the angle of heel should not exceed 15° and
the reserve of stability should not be less than 40% of the total area under the
righting-arm curve.

The stability regulations of the UK Navy are derived from those of the
US Navy. In addition to static and dynamic criteria such as those mentioned
above, the UK standard includes requirements concerning the areas under
the righting-arm curve. The minimum values are higher than those prescribed
by IMO for merchant ships. While the wind speeds specified by the UK stan-
dard are lower than those in the US regulations, the stability criteria are more
severe.

A quite different criterion is prescribed in the code for large sailing vessels
issued by the UK Ministry of Transport. As research proved that wind-pressure
coefficients of sail rigs cannot be predicted, the code does not take into account
the sail configuration and the heeling moments developed on it. The document
presents a simple method for finding a heel angle under steady wind, such that
the heel angle caused by a gust of wind would be smaller than the angle leading
to downflooding and ship loss. The steady heel angle should not exceed 15°, and
the range of positive heeling arms should not be less than 90°.
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Additional regulations mentioned in this chapter are a code for small work-
boats issued in the UK, and codes for internal-navigation vessels issued by the
European Parliament and by the Swiss Parliament.

8.9 Examples

Example 8.1 - Application of the IMO general requirements for cargo and
passenger ships
Let us check if the small cargo ship used in Subsection 7.2.2 meets the IMO gen-
eral requirements. We assume the same loading condition as in that section. The
vessel was built four decades before the publication of the IMO code for intact
stability; therefore, it is not surprising if several criteria are not met. Table 8.1
contains the calculation of righting-arm levers and areas under the righting-arm
curve. Figure 8.2 shows the corresponding statical stability curve. The areas
under the righting-arm curve are obtained by means of the algorithm described
in Section 3.4. The analysis of the results leads to the following conclusions:

1. The area under the GZ& curve, up to 30°, is 0.043 mrad, less than the
required 0.055. The area up to 40° equals 0.084mrad, less than the required
0.09 mrad. The area between 30° and 40° equals 0.04mrad, more than the
required 0.03 mrad.

Table 8.1 Small cargo ship - the IMO general requirements

Heel angle
(°)

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0

4
(m)

0.000
0.459
0.918
1.377
1.833
2.283
2.717
3.124
3.501
3.847
4.159
4.431
4.653
4.821
4.937
5.007
5.036
5.030
4.994

(KG + t^smt
(m)

0.000
0.439
0.875
1.304
1.724
2.130
2.520
2.891
3.240
3.564
3.861
4.129
4.365
4.568
4.736
4.868
4.963
5.021
5.040

b GZefi Area under righting arm
(m) (m2)

0.000
0.019
0.043
0.072
0.109
0.153
0.197
0.233
0.262
0.283
0.298
0.302
0.288
0.253
0.201
0.139
0.073
0.009

-0.046

0.000
0.001
0.004
0.009
0.017
0.028
0.043
0.062
0.084
0.107
0.133
0.159
0.185
0.208
0.228
0.243
0.252
0.256
0.254
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2. The righting arm lever equals 0.2 m at 30°; it meets the requirement at limit.
3. The maximum righting arm occurs at an angle exceeding the required 30°.
4. The initial effective metacentric height is 0. 1 2 m, less than the required 0.15m.

Example 8.2 - Application of the IMO weather criterion for cargo and pas-
senger ships
We continue the preceding example and illustrate the application of the weather
criterion to the same ship, in the same loading condition. The main dimensions
are L = 75.4, B = 11.9, Tm = 4.32, and the height of the centre of gravity
is KG = 5, all measured in metres. The sail area is A = 175m2, the height
of its centroid above half-draught Z = 4.19m, and the wind pressure P =
504 N m~~2 . The calculations presented here are performed in MATLAB keeping
the full precision of the software, but we display the results rounded off to the
first two or three digits. To keep the precision we define at the beginning the
constants, for example L = 75.4, and then call them by name, for example L.

The wind heeling arm is calculated as

PAZ

The lever of the wind gust is

Zw2 = 1-5/wi = 0.022 m

We assume that the bilge keels are 15 m long and 0.4 m deep; their total area is

Ak = 2 x 15 x 0.4= 12m2

To enter Table 3.2.2.3-3 of the code we calculate

Ak x 100
LxB

= 1.337

Interpolating over the table we obtain k — 0.963. To find X\ we calculate
B/Tm = 2.755 and interpolating over Table 3.2.2.3-1 we obtain X\ = 0.94. To
enter Table 3.2.2.3-2 we calculate the block coefficient

2635
" (1.03 x L x B x Tm) " '

Interpolation yields X<2 = 0.975. The height of centre of gravity above water-
line is

-Tm = 0.68

In continuation we calculate

= 0.73 + - = 0.824
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To find the roll period we first calculate the coefficient

C = 0.373 + 0.023 x ( - - 0.043 x (-- = 0.404

With GMeff = 0.12 m the formula prescribed by the code yields the roll period

T= <2°B = 27.752s

With this value we enter Table 3.2.2.3-4 and retrieve s = 0.035. Then, the angle
of roll windwards from the angle of statical stability, under the wind arm /wi, is

0i = W9kXiX2Vrs = 16.34°

Visual inspection of Figure 8.2 shows that the weather criterion is met. This fact
is explained by the low sail area of the ship.

Example 8.3 - The 1MO turning criterion
To illustrate the IMO criterion for stability in turning we use the data of the same
small cargo ship that appeared above. Cargo ships are not required to meet this
criterion, but we can assume, for our purposes, that the ship carries more than
12 passengers.

The ship length is L = 75.4 m, the mean draught Tm — 4.32 m, the ship speed
VQ = 16 knots, and the vertical centre of gravity KG = 5.0m. The speed in
ms"1 is

V0 = 16 x 0.5144 = 8.23 ms"1

and the heel arm due to the centrifugal force is

1T = 0.02^- (~KG - ^p j - 0.051 m

Figure 8.1 shows the resulting statical stability curve. We see that the heel angle
is slightly larger than 11°.

Example 8.4 - The weather criterion of the US Navy
To allow comparisons between various codes of stability we use again the data
of the small cargo ship that appeared in the previous examples. We initiate
the calculations by defining the wind speed, Vw = 80 knots, the sail area,
A = 175m2, the height of its centroid above half-draught, £ = 4.19m, and
the displacement, A = 26251. The corresponding stability curve is shown in
Figure 8.4. The wind heeling arm is given by

cos2 6

1QQQA

At the intersection of the righting-arm and the wind-arm curves we find the
first static angle, </>sti ~ 7.5°, and the righting arm at that angle equals 0.03 m.
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Rolling 25° windwards from the first static angle the ship reaches —17.5°. The
second static angle is <ftst2 — 85.7°. The ratio of the GZ value at the first static
angle to the maximum GZ is 0.03/0.302, that is close to 0.1 and smaller than the
maximum admissible 0.6. The area b equals 0.235 mrad, and the area a equals
0.024 mrad. The ratio of the area b to the area a is nearly 10, much larger than
the minimum admissible 1 .4. We conclude that the vessel meets the criteria of
the US Navy.

Example 8.5 - The turning criterion of the US Navy
We continue the calculations using the data of the same ship as above. We
assume the speed of 16 knots, and the vertical centre of gravity, KG = 5m,
as in Example 8.3. In the absence of other recommendations we consider, as
in NES 109, that the speed in turning is 0.65 times the speed on a straight-line
course, that is

V0 = 0.65 x 16 x 0.5144 = 5.35ms"1

Also, we assume that the radius of the turning circle equals 2.5 times the waterline
length

R=2- = 188.5m

Then, the heeling arm in turning is given by

= T/2) cog = Q Q44 ̂

gR

Drawing the curves as in Figure 8.7 we find that the first static angle is 0sti —
10.3°, and the corresponding righting arm equals 0.044 m. The ratio of this arm
to the maximum righting arm is 0.044/0.302 = 0.15, less than the maximum
admissible 0.6. The reserve of dynamical stability, that is the grey area in Fig-
ure 8.4, equals 0.205 mrad, while the total area under the positive righting-arm
curve is 0.256mrad. The ratio of the two areas equals 0.8, the double of the
minimum admissible 0.4. We conclude that the ship meets the criteria of the US
Navy.

8.10 Exercises

Exercise 8.1 - IMO general requirements
Let us refer to Example 8.1. Find the KG value for which the general requirement
4 is fulfilled. Check if with this value the first general requirement is also met.

Exercise 8.2 - The IMO turning criterion
Return to the example in Section 8.9 and find the limit speed for which the
turning criterion is met.
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Exercise 8.3 - The IMO turning criterion
Return to the example in Exercise 8.2 and check if with the vertical centre of
gravity, KG, found in Section 8.10 the turning criterion is met.

Exercise 8.4 - The US-Navy turning criterion
Return to Example 8.4 and redo the calculations assuming a wind speed of
100 knots.

Exercise 8.5 - The code for small vessels
Check that for ^czmax — 15° and 30°, Eq. (8.16) yields the values specified in
criterion 1 for multihull vessels (Section 8.6).



9
Parametric resonance

9.1 Introduction

Up to this chapter we assumed that the sea surface is plane. Actually, such a
situation never occurs in nature, not even in the sheltered waters of a harbour.
Waves always exist, even if very small. Can waves influence ship stability? And
if yes, how? Arndt and Roden (1958) and Wendel (1965) cite French engineers
that discussed this question at the end of the nineteenth century (J. Pollard and
A. Dudebout, 1892, Theorie du Navire, Vol. Ill, Paris). In the 1920s, Doyere
explained how waves influence stability and proposed a method to calculate that
influence. After 1950 the study of this subject was prompted by the sinking of a
few ships that were considered stable.

At a first glance beam seas - that is waves whose crests are parallel to the
ship - seem to be the most dangerous. In fact, parallel waves cause large angles
of heel; loads can get loose and endanger stability. However, it can be shown
that the resultant of the weight force and of the centrifugal force developed in
waves is perpendicular to the wave surface. Therefore, a correctly loaded vessel
will never capsize in parallel waves, unless hit by large breaking waves. Ships
can capsize in head seas - that is waves travelling against the ship - and
especially in following seas - that is waves travelling in the same direction
with the ship. This is the lesson learnt after the sinking of the ship Irene Olden-
dorff in the night between 30 and 31 December 1951. Kurt Wendel analyzed the
case and reached the conclusion that the disaster was due to the variation of the
righting arm in waves. Divers that checked the wreck found it intact, an obser-
vation that confirmed Wendel's hypothesis. Another disaster was that of Pamir.
Again, the calculation of the righting arm in waves surprised the researchers
(Arndt, 1962).

Kerwin (1955) analyzed a simple model of the variation of GM in waves and
its influence on ship stability. His investigations included experiments carried
out at Delft and he reports difficulties that we attribute to the equipment available
at that time.

To confirm the results of their calculations, researchers from Hamburg carried
out model tests in a towing tank (Arndt and Roden, 1958) and with self-propelled
models on a nearby lake (Wendel, 1965). Post-mortem analysis of other marine
disasters showed that the righting arm was severely reduced when the ship was
on the wave crest. Sometimes it was even negative.
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Paulling (1961) discussed The transverse stability of a ship in a longitudinal
seaway'.

Storch (1978) analyzed the sinking of thirteen king-crab boats. In one case he
discovered that the righting arm on wave crest must have been negative, and in
two others, greatly reduced.

Lindemann and Skomedal (1983) report a ship disaster they ̂ attribute to the
reduction of the stability in waves. On 1 October 1980 the RO/RO (roll-on/roll'
off) ship Finneagle was close to the Orkney Islands and sailing mfollowing seas,
that is with waves travelling in the same direction as the ship. All of a sudden
three large roll cycles caused the ship to heel up to 40°. It is assumed that this
large angle caused a container to break loose. Trimethylphosphate leaked from
the container and reacted with the acid of a car battery. Because of the resulting
fire the ship had to be abandoned.

Chantrel (1984) studied the large-amplitude motions of an offshore supply
buoy and attributed them to the variation of properties in waves leading to the
phenomenon of parametric resonance explained in this chapter. Interesting exper-
imental and theoretical studies into the phenomenon of parametric resonance of
trimaran models were performed at the University College of London, within
the framework of Master's courses supervised by D.C. Fellows (Zucker, 2000).

The influence of waves on ship stability can be modelled by a linear differential
equation with periodic coefficients known as the Mathieu equation. Under
certain conditions, known as parametric resonance, the response of a system
governed by a Mathieu equation can be unstable, that is, grow beyond any limits.
For a ship, unstable response means capsizing. This is a new mode of ship
capsizing; the first we learnt are due to insufficient metacentric height and
to insufficient area under the righting-arm curve. This chapter contains a
practical introduction to the subjects of parametric excitation and resonance
known also as Mathieu effect.

9.2 The influence of waves on ship stability

In this section we explain why the metacentric height varies when a wave travels
along the ship. We illustrate the discussion with data calculated for a 29-m fast
patrol boat (further denoted as FPB) whose offsets are described by Talib and
Poddar (1980). For hulls like the one chosen here the influence of waves is
particularly visible. Figure 9.1 shows an outline of the boat and the location
of three stations numbered 36, 9, and 18. This is the original numbering in
the cited reference. The shapes of those sections are shown in Figure 9.2. We
calculated the hydrostatic data of the vessel for the draught 2.5 m, by means of
the same ARCHIMEDES programme that Talib and Fodder used. The waterline
corresponding to the above draught appears as a solid line in Figures 9.1 and 9.2.
Let us see what happens in waves. Calculations and experiments show that the
maximum influence of longitudinal waves on ship stability occurs when the
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St36 St9 Stl8

T~ _

Figure 9.1 Wave profiles on a fast patrol boat outline - S = still water,
T = wave trough, C = wave crest

wave length is approximately equal to that of the ship waterline. Consequently,
we choose a wave length

A = Lpp = 27.3m

The wave height prescribed by the German Navy is

A 27.3
H =

10 + 0.05A 10 + 0.05 x 27.3
= 2.402m

The dot-dot lines in Figures 9.1 and 9.2 represent the waterline corresponding
to the situation in which the wave crest is in the midship-section plane. We say
that the ship is on wave crest. In Figure 9.2 we see that in the midship section
the waterline lies above the still-water line. The breadth of the waterline almost
does not change in that section. In sections 36 and 18 the waterline descends
below the still-water position. In section 18 the breadth decreases. This effect
occurs in a large part of the forebody. In the calculation of the metacentric radius,
jBM, breadths enter at the third power (at constant displacement!). Therefore,
the overall result is a decrease of the metacentric radius.

The dash-dash lines in Figures 9.1 and 9.2 represent the situation in which
the position of the wave relative to the ship changed by half a wave length. The
trough of the wave reached now the midship section and we say that the ship is
in a wave trough. In Figure 9.2 we see that the breadth of the waterline increased
significantly in the plane of station 18, decreased insignificantly in the midship
section, and increased slightly in the plane of station 36. The overall effect is an
increase of the metacentric radius.

A quantitative illustration of the effect of waves on stability appears in Fig-
ure 9.3. For some time the common belief was that the minimum metacentric
radius occurs when the ship is on a wave crest. It appeared, however, that for

St9 Stl8

Figure 9.2 Wave profiles on FPB transverse sections - S = still water,
T = wave trough, C = wave crest
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Figure 9.3 The influence of waves on KM

forms like those of the FPB the minimum occurs when the wave crest is approx-
imately 0.31/pp astern of the midship section. Calculations carried out by us
for various ship forms showed that the relationships can change. Figure 9.3
shows, indeed, that for draughts under 1.6 m, KM is larger on wave crest than
in wave trough. Similar conclusions can be reached for the righting-arm curves
in waves. For example, the righting arm in wave trough can be the largest in a
certain heeling-angle range, and ceases to be so outside that range. The reader is
invited to use the data in Exercise 1 and check the effect of waves on the righting
arm of another vessel, named Ship No. 83074 by Poulsen (Poulsen, 1980).

More explanations of the effect of waves on righting arms can be found in
Wendel (1958), Arndt (1962) and Abicht (1971). Detailed stability calculations
in waves, for a training ship, are described by Arndt, Kastner and Roden (1960),
and results for a cargo vessel with CB — 0.63, are presented by Arndt (1964).
A few results of calculations and model tests for ro-ro ships can be found in
Sjoholm and Kjellberg (1985).

To develop a simple model of the influence of waves we assume that the wave
is a periodic function of time with period T. Then, also GM is a periodic function
with period T. We write

GM(t) = GM0 + 5GM(t)
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where

SGM(t) = 5GM(t + T)

for any t. In Section 6.7 we developed a simple model of the free rolling motion.
To include the variation of the metacentric height in waves we can rewrite the
roll equation as

Going one step further we assume that the wave is harmonic (regular wave) so
that the free rolling motion can be modelled by

cos LJe t)(f) = 0 (9.1)

This is a Mathieu equation; those of its properties that interest us are described
in the following section.

9.3 The Mathieu effect - parametric resonance

9.3.1 The Mathieu equation - stability

A general form of a differential equation with periodic coefficients is Hill's
equation:

where h(t) = h(t + T). In the particular case in which the periodic function is
a cosine we have the Mathieu equation', it is frequently written as

<j> + (6 + e cos 2t)c/) = 0 (9.2)

This equation was studied by Mathieu (Emile-Leonard, French, 1835-1900)
in 1868 when he investigated the vibrational modes of a membrane with an
elliptical boundary. Floquet (Gaston, French, 1847-1920) developed in 1883
an interesting theory of linear differential equations with periodic coefficients.
Since then many other researchers approached the subject; a historical summary
of their work can be found in McLachlan (1947).

A rigorous discussion of the Mathieu equation is beyond the scope of this book;
for more details the reader is referred to specialized books, such as Arscott ( 1 964),
Cartmell (1990), Grimshaw (1990) or McLachlan (1947). A comprehensive bib-
liography on 'parametrically excited systems' and a good theoretic treatment are
given by Nay f eh and Mook (1995). For our purposes it is sufficient to explain
the conditions under which the equation has stable solutions. By 'stable' we
understand that the response, </>, is bounded. Correspondingly, 'unstable' means
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that the response grows beyond any boundaries. For a ship whose rolling motion
is governed by the Mathieu equation, unstable response simply means that the
ship capsizes. The reader may be familiar with the condition of stability of an
ordinary, linear differential equation with constant coefficients: A system is sta-
ble if all the poles of the transfer function have negative real parts (Dorf and
Bishop, 2001). This is not the condition of stability of the Mathieu equation; the
behaviour of its solutions depends on the parameters e and 6. This behaviour
can be explained with the aid of Figure 9.4. In this figure, sometimes known
as Strutt diagram, but attributed by McLachlan (1947) to Ince, the horizontal
axis represents the parameter 6, and the vertical axis, the parameter €. The 5 - e
plane is divided into two kinds of regions. For 5, e combinations that fall in the
grey areas, the solutions of the Mathieu equation are stable. The (5, e points in
white regions and on the boundary curves correspond to unstable solutions. The
diagram is symmetric about the 8 axis; for our purposes it is sufficient to show
only half of it.

The theory reveals the following properties of the Strutt-Ince diagram.

• The lines separating stable from unstable regions intercept the 6 axis in points
for which

n^
T'

= 0, 1, 2, 3, . . .

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3

Parameter (<5)

Figure 9.4 Strutt-Ince diagram, 6 - e plane
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• As S grows larger, so do the stable regions.
• As e grows, the stable regions become smaller. Remember, e is the 'distur-

bance'.

Cesari (1971) considers the equation

x + (a2 4- 6 cos ujt)x = 0 (9.3)

The natural frequency of the 'undisturbed' equation - that is for e = 0 - is cr/27r,
while the frequency of the periodic disturbance is UJ/27T. With the transformation

ut = 2*i (9.4)

we calculate

dx dti & dx

dx dti ^2 d2x
dti dt 4 d*2

Substituting Eqs. (9.4) and (9.5) into Eq. (9.3) yields an equation in the stan-
dard form

x-f - (Si -Mi cos 2*1)0; = 0

where

4cr2 46
Si = —y, ei = -r-

UJ2 UJ2

The general aspect of the Si — ei plane is shown in Figure 9.5. Visual inspection
shows us that for small e values the danger of falling into an unstable region
is greater in the neighbourhoods of Si = I2, 22, 32, This means that for
small 6 parametric resonance occurs at circular frequencies u; = 2cr/n2, where
n — 1, 2, 3, The first dangerous situation is met when u = 2<j. We reach
the important conclusion that the danger of parametric resonance is greatest
when the frequency of the perturbation equals twice the natural frequency of the
undisturbed system.

This statement is rephrased in terms of ship-stability parameters in Exam-
ple 9.1 where a becomes the natural roll circular frequency, UJQ, of the ship, and
uj becomes o;E, the frequency of encounter, that is the frequency with which the
ship encounters the waves. This theoretical conclusion was confirmed by basin
tests.

Surprising as it may seem, the phenomenon of parametric excitation is well
known. The main character in Moliere's Le bourgeois gentilhomme has been
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Figure 9.5 Strutt-lnce diagram, Si - ei plane

writing prose for many years without being aware of it. Similarly, readers are
certainly familiar with parametric excitation since their childhood. Here are,
indeed, three well-known examples.

The motion of a pendulum is stable. However, if the point from which the
pendulum hangs is moved up and down periodically, with a suitable amplitude
and frequency, the pendulum can be caused to overturn.

Try to 'invert' a pendulum so that its mass is concentrated above the centre of
oscillation. The pendulum will fall. Still, at circus we see clowns that keep a long
rod clasped in their hand, as shown in Figure 9.6(a). The rod can be stabilized
by moving the hand up and down with a suitable amplitude and frequency.

A third, familiar example of parametric excitation is that of a swing. To increase
the amplitude of motion the person on the swing kneels close to the extreme
positions and stands up in the middle position (Figure 9.6(b)). Thus, the dis-
tance between the hanging point and the centre of gravity of the person varies
periodically. The swing behaves like a pendulum with varying length.

More examples of parametrically excited systems can be found in Den Har-
tog (1956). That author also studies a case in which the periodic function is a
rectangular ripple whose analytic treatment is relatively simple and allows the
derivation of an explicit condition of stability.
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(a) (b)

Figure 9.6 Two familiar uses of parametric excitation

9.3.2 The Mathieu equation - simulations

In this section we show how to simulate the behaviour of the Mathieu equation
and give four examples that illustrate the conclusions reached in the preceding
section. To solve numerically the Mathieu equation we define

(f)l = 0, 02 = 01

and replace Eq. (9.2) by the first-order system

0! = 02, 02 = -(S + ecos2t)0i (9.6)

The following MATLAB function, written on a file mathieu . m, calculates the
derivatives in Eq. (9.6):

%MATHIEU Derivatives of Mathieu equation.
function dphi = mathieu (tl, phi, dl , el)

dphi(l) = [ p h i ( 2 ) ; -(dl + e l*cos(2*t l ) )*phi (1) /

We write a second MATLAB function, mathisim.m, that calls the function
mathieu:

function ms = mathisim(omega_0, epsilon,
omega_e/ tf)

%MATHISIM Simulates the Mathieu equation
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elf % clean window

dl = 4*omega_0~2/omega_e/v2;
el = 4*epsilon/omega_exs2 ;
wO = [ 0.1; 0.0 ] ; % initial conditions;
ts = [ 0; tf ]; % time span
hmathieu = @mathieu;
[ tl, phi ] = ode45(hmathieu, ts, wO, [], dl, el);

t = 2*tl/omega_e;
subplot(2, 2, 1), plot(t, phi(:, 1)), grid
ns = num2str(omega_0);
nd = num2str(dl);
ne = num2str(el);
no = num2str(omega_e);
title('Time domain'), ylabel('\phi')
subplot(2, 2, 3), plot(t, phi(:, 2)), grid
xlabel('t'), ylabel ('\phi' ")
subplot (2, 2, 2), plot(phi(:, 1), phi(:, 2));

% phase plot
grid
title('Phase plan'), xlabel('\phi'),

ylabel C\phi''')
text(phi(1, 1) , phi(l, 2), 'start')
subplot(2, 2, 4), axis off
text(0.1, 0.66, [ '\omega_0 = ' ns ' ,

\delta_l = ' nd ] )
text(0.1, 0.33, [ '\epsilon_l = ' ne ' ,

\omega_e = ' no ])

Figures 9.7-9.10 show results of simulations carried out by means of the
function mathisim. Figure 9.7 corresponds to the parameters

a = 4, ei = 0, uj — 7T/4

In this case we deal with the well-known equation

0 + <5</> = 0

whose solution is a sinusoid with circular frequency \f&\

</> = Ci sm(\^t + C2)

The constants Ci, £2 can be found from the initial conditions of the problem.
The first derivative, </>, shown in the second subplot, is also a sinusoid:
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Figure 9.7 Simulation of Mathieu equation; sinusoidal response
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The third subplot is the phase plane of the motion. The curve is an ellipse.
Indeed, simple calculations show us that

The run parameters that generate Figure 9.8 are

cr- 2.1509, e= 1.5421, u = Tr/4

These values define in Figures 9.4 and 9.5 a point in a stable region. As the
simulation shows, the solution is bounded, periodic, but not sinusoidal.

The run parameters that generate Figure 9.9 are

(j = 7T/4, 6 = 16, UJ = 7T/4

These values define in Figures 9.4 and 9.5 a point in an unstable region. As the
simulation shows, the solution is unbounded. This can be best seen in the phase
plane where the start of the curve is marked by the word 'start'.

The run parameters for Figure 9.10 are

a = 2, e = 0.2, c j -4

These values define in the Strutt diagram a point in an unstable region, very
close to a boundary curve. As the simulation shows, the solution is periodic and
steadily growing. This can be best seen in the phase plane where the start of the
curve is marked by the word 'start'. The case shown in this figure corresponds
to the most dangerous condition of parametric resonance, u = 2cr.

9.3.3 Frequency of encounter

When judging ship stability, the frequency to be used in the Mathieu equation is
the number of waves 'seen' by the ship in one time unit. This is the frequency
of encounter, uj&, to calculate it we use Figure 9.11. Let v be the ship speed,
c, the wave celerity, that is the speed of the wave, A, the wave length, u;w, the
wave circular frequency, and a, the angle between ship speed and wave celerity.
By convention, a — 180° in head seas and 0° in following seas. The relative
speed between ship and wave is

c — v cos a.

The ship encounters wave crests (or wave troughs) at time intervals equal to

A
c — v cos a

This is the period of encounter. By definition, the wave circular frequency is

27T
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Figure 9.11 Calculating the frequency of encounter

where Tw is the wave period. Similarly, the circular frequency of encounter is
defined by

- —

In wave theory (see, for example, Faltinsen, 1993; Bonnefille, 1992) it is shown
that the relationship between wave length and wave circular frequency, in water
of infinite depth, is

Putting all together we obtain

— ^w -- v cos a
9

(9.7)

9.4 Summary

Longitudinal and quartering waves influence the stability of ships and other
floating bodies. The moment of inertia of the waterline surface in waves differs
from that of the waterplane in still water and, consequently, so do the metacentric
height and the righting arms. The way in which those quantities vary depends on
the ship form; however, it can be said that in many cases the righting moment in
wave trough is larger than in still water, while on wave crest it is smaller. If the
wave is periodic, also the variation of the righting arm is periodic. Then, into
the equation of rolling developed in Chapter 6 we must add to the coefficient of
the roll angle a term that is a periodic function of time:

5GM cos - 0
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For small heel angles the above equation can be reduced to the canonical form
of the Mathieu equation

4> + (6 + ecos 2t)<p = 0

The condition of stability is not the same as for a linear differential equation
with constant coefficients. In other words, the condition of positive metacentric
height, GM > 0, is no longer sufficient. The theory of differential equations
with periodic coefficients shows that the plane of the parameters 6 and e can
be subdivided into regions so that if in one of them the solution of the Mathieu
equation is stable, in the adjacent regions it is not. This means that for certain
pairs [J, e] the solution is unstable and we say that parametric resonance occurs.
The partition of the 8 - e plane into stable and unstable regions can be best
visualized in the Strutt-Ince diagram. Thus, it can be easily discovered that even
for small e values a particularly dangerous situation arises when the frequency
of the periodic coefficient is twice the natural frequency of the system without
periodic excitation.

Parametric excitation occurs in several systems we are familiar with. Thus, the
amplitude of oscillation of a swing can be increased by periodically changing the
position of the centre of gravity of the person on the swing. As another example,
a conventional pendulum is usually stable, but it can be forced to overturn if
the point of hanging is moved up and down with appropriate frequency and
amplitude. Conversely, an inverted pendulum, although inherently unstable, can
be stabilized by applying a suitable periodic motion to its centre of oscillation.

Ships have capsized although they fulfilled the criteria of stability commonly
accepted at the time of the disaster. Post-mortem analysis of some cases pin-
pointed the Mathieu effect as the cause of capsizing. The surprising discovery
was that the righting arm could be negative on wave crest.

The analysis of the Mathieu effect confirms a fact well known to experienced
seafarers: following seas are more dangerous than head seas. In fact, when the
direction of the waves is the same as that of the ship, the relative velocity is
small and the time interval in which the stability is reduced is longer. Then, there
is more time to develop large heeling angles. Still worse, in following seas the
effect of reduced stability can be enhanced by waves flowing over the deck. The
latter effect will increase the height of the centre of gravity because it means an
extra weight loaded high up on the ship. It also adds a free-surface effect.

9.5 Examples

Example 9.1 - Parametric resonance in ship stability
In this example we are going to explain the significance of the parameters 6 and
€ for ship stability. In Chapter 6 we developed the equation of free roll

(9.8)
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The natural, circular roll frequency is

ll/2

(9.9)

Let us assume that the wave produces a periodic variation of the metacentric
height equal to

8GM cos C^E

Where uj^ is the circular frequency of encounter. With this assumption and with
the notation introduced by Eq. (9.9) we rewrite Eq. (9.8) as

(9.10)

Following Cesari (1971) we use the substitution uj-^t = 2t^ and proceeding like
in Subsection 9.3.1 we transform Eq. (9.10) to

2 0° ~~ Cos2t 0 =

Substituting Eq. (9.9) we obtain

cos2tl = 0 (9.12)
J

Equation (9.12) can be brought to the standard Mathieu form with

^V (9.13)

We know that the most dangerous situation occurs at 5i = 1, that is forces =

Example 9.2 - 5ai7 s/w/i in longitudinal waves
The righting-arm curve in still-water shown Figure 9.12 was calculated for an
actual training yacht. We assume that the righting-arm curves on wave crest and
in wave trough, and the wind heeling arm are as shown in the figure. It is obvious
that while advancing in waves the yacht will roll between points A and B. Thus,
the Mathieu effect induces roll in head or following seas, a behaviour that is not
predicted by the conventional roll equation. Readers involved in yachting may
have experienced the phenomenon.
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Figure 9.12 Sail ship in longitudinal waves

9.6 Exercise

Exercise 9.1 - Ship 83074, levers of stability in seaway
Table 9.1 shows the cross-curves of stability of the Ship No. 83074 for a dis-
placement volume equal to 20000 m3. Plot in the same graph the curves for still
water, in wave trough and on wave crest.

Table 9.1 Levers of stability of Ship 83074, 20000 m3

Heel angle
(°)

0
10
20
30
45
60
75

Wave trough
(m)

0.000
2.617
4.985
6.912
9.095
9.734

10.783

Still water
(m)

0.000
2.312
4.606
6.759
9.361

10.447
10.425

Wave crest
(m)

0.000
2.309
4.635
6.892
9.235

10.073
9.917
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Intact stability regulations II

10.1 Introduction

We give in this section a simplified overview of the B V 1033 regulations of the
German Federal Navy, as an example of philosophy different from those illus-
trated in Chapter 8. These are the only effectively applied regulations that con-
sider the Mathieu effect. There were proposals to consider parametric excitation
in other codes of ship stability; to our best knowledge they remained proposals.
Our description follows the 1977 edition of the regulations and includes updat-
ings received as personal communications in the 1980s. As we suggested for
other regulations, for checks of stability that must be submitted for approval, it
is highly recommended to inquire about the latest, complete edition of BV 1033
and consult it for updatings and specific details.

10.2 The regulations of the German Navy

Kurt Wendel wrote in 1961 the first draft of stability regulations for the German
Federal Navy. Wendel issued in 1964 a new edition known as BV 103. An early
detailed explanation of the regulations and their background is due to Arndt
(1965). His paper was soon translated into English by the British Ship Research
Association and appeared as BSRA Translation No. 5052. An updated version
of the regulations was published in 1969 and since then they are known as BV
1033. As pointed out by Brandl (1981), the German regulations were adopted
by the Dutch Royal Navy (see, for example, Harpen, 1971) and they also served
in the design of some ships built in Germany for several foreign navies.

In Chapter 9 we mentioned experiments performed by German researchers
before the publication of the regulations. The authors continued to experiment
after the implementation of BV 1033 and thus confirmed the validity of the
requirements and showed that the German regulations and the regulations of the
U.S. Navy confer to a large extent equivalent safety against capsizing. For details
we refer the reader to Brandl (1981) and Arndt, Brandl and Vogt (1982).

Righting arms are denoted in BV 1033 by the letter /i; heeling arms, by k.
Thus, kw is the wind heeling arm, k& the heeling arm in turning, and so on.
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10.2.1 Categories of service

Stability requirements vary according to the intended use of the ships. The reg-
ulations of the German Federal Navy classify vessels into five categories, as
explained below:

Group A There are no limitations to the area of operation of ships belonging
to this category. Calculations for Group A should be carried out for
a wind velocity equal to 90 knots.

Group B This category includes ships that can avoid winds whose velocity
exceeds 70 knots. Examples of corresponding areas of operation are
the North Atlantic, the North sea, the Baltic sea, and the Mediter-
ranean sea. The wind velocity to be considered for this group is 70
knots.

Group C The category consists of coastal vessels that can reach a harbour if a
storm warning is received. Stability calculations shall be based on a
wind velocity of 50 knots.

Group D It consists of ships and decked boats that operate as harbour and
estuarial craft. The wind velocity to be considered is 40 knots.

Group E In this category enter open boats intended for coastal and harbour
operation, within well-defined geographical limits. Stability calcula-
tions shall assume a wind velocity equal to 20 knots.

10.2.2 Loading conditions

The BV 1033 regulations require the verification of stability in a number of
loading conditions. We shall exemplify here only three of them. The detailed
description of the loading cases involves the term empty ship ready for operation.
By this the regulations mean the ship with fuel, feed water and lubricating oil
in machines, piping, weapons and other systems, if necessary also with fixed
ballast.

Loading case 0 - Empty ship
The weight groups to be included are

• Empty ship ready for operation.
• Crew and personal effects.

Loading case 1 - Limit displacement with ballast water
The weights to be included are

• Empty ship ready for operation.
• Crew and personal effects.
• 10% consumables and provisions.
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• 10% fresh water or 50% if a fresh water generator with a capacity of minimum
25 1 per head and day is on board.

• 10% feed water or 50% if a fresh water generator is available.
• 10% fuel.
• 50% lubricating oil.
• 33% munitions, where launching tubes and weapons are charged, and the rest

of the ammunition is in the corresponding storing places.
• Aircraft.
• 33% or 100% deliverable or transported loads, whichever is worst for stability.
• Ballast water, if necessary for stability.

Loading case 1A - Limit displacement for ships to be checked with 90 or
70 knot wind
Same as case 1, except:

• Fuel and lubricating oil as necessary for stability, but not less than 10% fuel
and 50% lubricating oil.

• No ballast water.

10.2.3 Trochoidal waves

According to BV 1033, stability on waves should be checked in trochoidal
waves. This wave form has been used also for other naval-architectural calcula-
tions, mainly those of longitudinal bending.

The trochoidal wave theory is the oldest among wave theories; it was elab-
orated in 1804 by Gerstner (Franz Joseph von, lived in Bohemia, 1756-1832).
Rankine (William John Macquam, Scot, 1820-1872) gave an independent for-
mulation in 1863. This theory assumes that each water particle moves along a
circular path. For example, in Figure 10.1 the water particles shown as black cir-
cles move along circles with centres lying on the x-axis and having the radius r.
Let the x coordinate of the first shown circle be 0, and consider a particle on a
circle whose centre has the x coordinate equal to xo-This particle rotated with an

Figure 10.1 The generation of the trochoidal wave
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angle 9 relative to the particle on the first circle. The phase angle 6 is proportional
to the distance XQ, that is

9 = 2vr^ (10.1)
A

The resulting wave form is the trochoid; it looks very much like the actual
surface of swells. The assumption that water particles move on circular paths
also corresponds to a simple observation. A floating object, such as a piece of
wood thrown in a swell, describes a circular motion in a vertical plane. The mean
position of the floating object does not change. In trochoidal wave theory, the
wave particles do not travel, it is only the wave form that travels. Figure 10.2
shows two phases of a trochoidal wave. The dimensions are those prescribed by
the B V1033 regulations for a 114-m ship, such as that described in Example 10.2.
From Figure 10.1 and Eq. (10.1) we deduce that for two wave particles separated
by a distance x = A the phase angles 9 differ by 27r. In other words, the z
coordinates of two points separated by a distance A are equal. The quantity A is
the wave length. In the same figure we see that the trough-to-crest wave height
equals H — 2r.

To draw a trochoidal wave we need the following information:

• the equation of the trochoid;
• the position of the axis of orbit centres with respect to the still-water line.

To obtain the above-mentioned information we are going to use another definition
of the trochoid:

The trochoid is the curve generated by a circle that rolls, without
sliding, on the underside of a straight line.

The equations of the trochoidal wave are

x = RO-rsmO=—0-—smO

H ^ 2 (10.2)
z = r cos 0 = — cos 9

Zi

The trochoidal wave has a sharp form near the crest and is flatter in the trough.
Therefore, the still-water line must lie below the line of orbit centres by some

0
-5 r

0 20 40 60 80 100

Figure 10.2 The trochoidal wave suiting the Maestral example
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distance a. As the volume of water above the still-water line must equal that
below the same line, we can write

/

ZTT
(z - a)dx = 0 (10.3)

_

We can separate the above integral into two integrals that we calculate separately.
The first integral is

/•2-7T />2?r

/ zdx = r cos 9(R — r cos 0}d9
Jo Jo (10-4)

The second integral is

/•27T

/

Jo
adx = ax\Q = 27taR (10.5)

o

Equating Eqs. (10.4) and (10.5) we obtain

a = ~^R (1°'6)

We mention here, without proving, two interesting hydrodynamical properties
of the trochoidal wave.

1. Motion decay with depth
The radius of orbits decays exponentially with depth. For a given depth /i, the
amplitude of the orbital motion is

rh = re~h/R (10.7)

The amplitude on the sea bottom should be zero. In our model this only
happens at an infinite depth; therefore, the trochoidal wave model is correct
only in infinite depth seas. However, let us calculate the radius of the orbit at
a depth equal to half a wave length:

r_A/2 = r exp f 2fl ) ^ 0'0043r

that is practically zero.
2. Virtual gravity

A water particle moving along a circular orbit is subjected to two forces:

• its weight, mg\
• a centrifugal force, mru2, where u is the angular velocity of the particle.

It can be shown that a;2 = g/R.
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In the trough the two forces add up to

while on a wave crest the result is

Thus, a floating body experiences the action of a virtual gravity acceleration
whose value varies between g(l — r/R) and g(l -f g/R). One wave height-to-
length ratio frequently employed in Naval Architecture is 1/20. With this value
the apparent gravity varies between 0.843# and 1.157g.

The variation of apparent gravity, and consequently of buoyancy, in waves is
known as the Smith effect, after the name of the researcher who described it first
in 1883. The reduction of virtual gravity on wave crest was considered another
cause of loss of stability in waves. To quote Attwood and Pengelly (1960):

This is the explanation of the well-known phenomenon of the ten-
derness of sailing boats on the crest of a wave.

As the vessel seems to weigh less on the crest, so does the righting moment that
is the product of displacement and righting arm. As the wind moment does not
change, a boat 'of sufficient stiffness in smooth water, is liable to be blown over
to a large angle and possibly capsize.'

On the other hand, Devauchelle (1986) considers that in real seas, character-
ized by the irregularity of waves (see Chapter 12), the effect of virtual gravity
variation can be neglected. Model tests described by Wendel (1965) revealed that
the influence of the orbital motion can be neglected when compared with the
effect of the variation of the waterline in waves. Calculations carried out when
investigating the loss of a trawler showed that in that case the Smith effect was
completely negligible for heel angles up to 20° (Morrall, 1980).

More details on the theory of trochoidal waves can be found in Attwood
and Pengelly (1960), Bouteloup (1979), Susbielles and Bratu (1981), Bonnefille
(1992) and Rawson and Tupper (1994). To conclude this section, we state the
characteristics of the wave specified by the BV 1033 regulations:

wave form trochoidal
wave length equal to ship length, that is, A = L
wave height H = A/(10 + 0.05A)

The relationship between wave length and height is based on statistics and proba-
bilistic considerations. We may mention here that a slightly different relationship
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was proposed for merchant ships by the maritime registers of the former German
Democratic Republic and of Poland (Helas, 1982):

4.14 + 0.14LPP

A value frequently used by other researchers is H — A/20.
We described here the trochoidal wave because the BV regulations require

its use in stability calculations, while other codes of practice specify this wave
for bending-moment calculations. Other wave theories are preferred in other
branches of Naval Architecture. Thus, in Chapter 12, we introduce the sinusoidal
waves. There is no great difference in shape between the trochoidal and the sine
wave, but some other properties are significantly different.

10.2.4 Righting arms

The cross-curves of stability shall be calculated in still water and in waves. For the
latter, ten wave phases shall be considered. More specifically, the calculations
shall be performed with the wave crest at distances equal to 0.5L, 0.4L, . . .
OL, . . . — 0.4L from midship. The average of the cross-curves in waves shall
be compared with the cross-curves in still water and the smaller values shall be
used in the calculation of righting arms. The BV 1033 regulations denote by /IG
the righting arm in still water, and by h$ the righting arm in waves. It is easy to
remember the latter notation if we relate the subscript S to the word 'seaway', the
translation of the German term 'Seegang'. The reason for considering the mean
of the righting arms in waves, and not the smallest values, is that, in general,
there is not enough time for the Mathieu effect to fully develop.

Most ships are not symmetric about a transverse plane (notable exceptions
are Viking ships and some ferries). Therefore, during heeling the centre of buoy-
ancy travels in the longitudinal direction causing trim changes. According to the
German regulations this effect must be considered in the calculation of cross-
curves. In the terminology of BV 1033 the calculations shall be performed with
trim compensation. The data in Table 9.1 and in Example 10.2 are calculated
with trim compensation.

10.2.5 Free liquid surfaces

The German regulations consider the influence of free liquid surfaces as a heeling
arm, rather than a quantity to be deducted from metacentric height and righting
arms. The first formula to be used is

£ pjij
kF = ^—— sin 0 (10.8)
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where, as shown in Chapter 5, n is the number of tanks or other spaces containing
free liquid surfaces, PJ , the density of the liquid in the j th tank, and ij, the moment
of inertia of the free liquid surface, in the same tank, with respect to a baricentric
axis parallel to the centreline. As convened, A is the mass displacement.

If /cp calculated with Formula 10.8 exceeds 0.03 m at 30°, an exact calculation
of the free surface effect is required. The formula to be used is

A* = ~ E Pjbj (10.9)
L\ j=l

where PJ is the mass of the liquid in the jth tank and bj, the actual transverse
displacement of the centre of gravity of the liquid at the heel angle considered.
Obviously, calculations with Formula 10.9 should be repeated for enough heel
angles to allow a satisfactory plot of the kp curve.

10.2.6 Wind heeling arm

The wind heeling arm is calculated from the formula

fcw - ^w(*A-0.5Tm) + Q ̂  cog3

g&

where Aw is the sail area in m2; ZA, the height coordinate of the sail area centroid,
in m, measured from the same line as the mean draught; Tm, the mean draught,
in m; pw, the wind pressure, in kN/m2; gA, the ship displacement in kN. The
wind pressure is taken from Table 10.1, which contains rounded off values.

The sail area, Aw, is the lateral projection of the ship outline above the sea
surface. The BV 1033 regulations allow for the multiplication of area elements
by aerodynamic coefficients that take into account their shape. For example, the
area of circular elements should be multiplied by 0.6.

Arndt (1965) attributes Formula 10.10 to Kinoshita and Okada who published
it in the proceedings of a symposium held at Wageningen in 1957. The above
equation yields non-zero values at 90° of heel; therefore, as pointed out by Arndt,
it gives realistic values in the heel range 60°-90°.

Table 10.1 Wind pressures
knots

90
70
50
40
20

m/s

46
36
26
21
10

Beaufort

14
12
10
8
5

Pressure
kN/m2 (kPa)

1.5
1.0
0.5
0.3
0.1
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10.2,7 The wind criterion

With reference to Figure 10.3, let us explain how to apply the wind criterion of
the BV 1033 regulations.

1. Plot the heeling arm, kp, due to free liquid surfaces.
2. Draw the curve of the wind arm, &\y»by measuring from the kp curve upward.
3. Find the intersection of the kp -f fcw curve with the curve of the righting arm,

/i; it yields the angle of static equilibrium,
4. Look at a reference angle, </>REF> defined by

-{ 35°
5° + 20ST otherwise

(10.11)

5. At the reference angle, </>REF, measure the difference between the righting
arm, h, and the heeling arm, kp + A?w This difference, /IRES> called residual
arm, shall not be less than the value yielded by

0.1 15°
- 0.05 otherwise

(10.12)

Maestral, A = 29823.5674 kN, KG = 5.835 m, f= 4.097 m

0.8

0.6

0.4

0.2

0

-0.2

-0.4

GM = 0.846m

0 10 20 30 40 50 60 70 80 90

Heel angle (°)

Figure 10.3 Statical stability curve of the example Maestral, according to
BV1033
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The explicit display of the free liquid surface effect as a heeling arm makes it
possible to compare its influence to that of the wind and take correcting mea-
sures, if necessary. For example, a too large surface effect, compared to the wind
arm, can mean that it is desirable to subdivide some tanks. The heel
angle caused by winds up to Beaufort 10 shall not exceed 15°. The reader may
have observed that the regulations assume a wind blowing perpendicularly on
the centreline plane, while the waves run longitudinally. Arndt, Brandl and Vogt
(1982) write:

This combination is accounting for the fact that even strong winds
may change their direction in short time only, whereas the waves
are proceeding in the direction in which they were excited. Waves
and winds from different directions can be observed especially near
storm centres...

Figure 10.3 was plotted with the help of the function described in Example 10.1.
Example 10.2 details the data used in the above-mentioned figure. Both examples
can provide a better insight into the techniques of BV 1033.

10.2.8 Stability in turning

The heeling arm due to the centrifugal force developed in turning is calculated
from

m- cos 0 (10.13)

where v is the speed of approach, in m s"1, and I/DWL, the length of the design
waterline, in m. The value of this speed should not exceed 0.5\A?£DWL- The
coefficient CD can be used in the design stage when neither speed in turning,
nor turning diameter are known. Recommended values are CD = 0.3 for Froude
numbers smaller than 1, and CD = 0.18 for faster vessels. When basin or sea
trials have been performed, their results shall be used to calculate the actual
value of the coefficient. The meaning of the coefficient CD can be explained as
follows. Usually, in the first design stages neither the speed in turning, VTC> nor
the radius of the turning circle, jR-rc* is known. The speed in turning is smaller
than the speed in straight-line sailing; therefore, let us write

Cy <1

The radius of the turning circle is usually a multiple of the ship length. Let us
write

RTC = CR,LDWL> CR > 1
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The factor V^C/RTC in the equation of the centrifugal force (see Section 6.4)
can be written as

2 V2

CR.Z/DWL
=CD

with CD = C^/CR.
Stability in turning is considered satisfactory if the heel angle does not

exceed 15°.

10.2.9 Other heeling arms

Other heeling arms can act on the ship, for instance, hanging loads or crowding
of passengers on one side. The following data shall be considered in calculating
the latter. The mass of a passenger, including 5 kg of equipment, shall be taken
to be equal to 80 kg. The centre of gravity of a person shall be assumed as placed
at 1 m above deck. Finally, a passenger density of 5 men per square metre shall
be considered in general, and only 3 passengers per square metre for craft in
Group E.

Replenishment at sea requires some connection between two vessels. A trans-
verse pull develops; it can be translated into a heeling arm. A transverse pull
also can appear during towing. The German regulations contain provisions for
calculating these heeling arms. The heel angle caused by replenishment at sea
or by crowding of passengers shall not exceed 15°.

10.3 Summary

In Chapter 9 we have shown that longitudinal and quartering waves affect stabil-
ity by changing the instantaneous moment of inertia that enters into the calcu-
lation of the metacentric radius. This effect is taken into account in the stability
regulations of the German Federal Navy and it has been proposed to con-
sider it also for merchant ships (Helas, 1982). As shown in Chapter 9, German
researchers were the first to investigate parametric resonance in ship stability.
They also took into consideration this effect when they elaborated stability reg-
ulations for the German Federal Navy. These regulations, known as BV 1033,
require that the righting arm be calculated both in still water and in waves. More
specifically, cross-curves shall be calculated for ten wave phases, that is for
ten positions of the wave crest relative to the midship section. The average of
those cross-curves shall be compared with the cross-curves in still water and the
smaller values shall be used in the stability diagram.

In the German regulations, the criterion of stability under wind regards the
difference between the righting arm and the wind heeling arm. This difference,

— GZ — fcw, is called residual arm. If the angle of static equilibrium is
> stability shall be checked at a reference angle, </>REF> defined by
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35°
PREF - S 0 otherwise

At this reference angle, the residual arm shall be not smaller than the value
given by

, f 0.1
\ 0.0RES 0.01<feT - 0.05 otherwise

Finally, a few words about ship forms. Traditionally ship forms have been chosen
as a compromise between contradictory requirements of reduced hydrodynamic
resistance, good seakeeping qualities, convenient space arrangements and sta-
bility in still water. The study of the Mathieu effect has added another criterion:
small variation of righting arms in waves. A formulation of this subject can be
found in Burcher (1979). Perez and Sanguinetti (1995) experimented with mod-
els of two small fishing vessels of similar size but different forms. They show that
the model with round stern and round bilge displayed less metacentric height
variation in wave than the model with transom stern.

10.4 Examples

Example 10.1 - Computer function for BV1033
In this example we describe a function, written in MATLAB 6, that automatically
checks the wind criterion of BV 1033. The input consists of four arguments:
cond, w, sail, V. The argument cond is an array whose elements are:

1. the displacement, A, in kN;
2. the height of the centre of gravity above BL, KG, in m;
3. the mean draft, T, in m; <
4. the height of the metacentre above BL, KM, in m;
5. the free-surface arm in upright condition, fcp(O), in m.

The argument w is a two dimensional array whose first column contains heel
angles, in degrees, and the second column, the lever arms w, in metres. For
instance, the following lines are taken from Example 10.2:

Maestral = [
0 0
5 0.582

90 5.493 ] ;

The argument sail is an array with two elements: the sail area, in m2, and the
height of the sail-area centroid above BL, in m. Finally, the argument V is the
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prescribed wind speed, in knots. Only wind speeds specified by BV 1033 are
valid arguments.

After calling the function with the desired arguments, the user is prompted to
enter the name of the ship under examination. This name will be printed within
the title of the stability diagram and in the heading of an output file containing
the results of the calculation. In continuation a first plot of the statical-stability
curve is presented, together with a cross-hair. The user has to bring the cross-
hair on the intersection of the righting-arm and heeling-arm curves. Then, the
diagram is presented again, this time with the angle of equilibrium and the angle
of reference marked on it. The output file, bv!033 .out, is a report of the
calculations; among others it contains a comparison of the actual residual arm
with the required one.

function [ phiST, hRES ] = bv!033(cond, w, sail, V)
%BV1033 Stability calculations ace. to BV 1033.

clc % clean window
Delta = cond(l)
KG = cond(2)
T = cond(3)
KM = cond(4)
kfO = cond(5)

lever = w(: , 2)
A = sail(1)
z = sail(2)

displacement, kN
CG above BL, m
mean draft, m
metacentre above BL, m
free-surface arm, m

heel = w(:, l)*pi/180; % heel angle, deg
arm of form stability, m
sail area, sq m

% its centroid above BL, m
GZ = lever - KG*sin(heel);% righting arm
% choose wind pressure ace. to wind speed
switch V

case 90
P = 1.5;

case 70
P = 1.0;

case 50
p = 0.5;

case 40
P = 0.3;

case 20
p = 0.1;

otherwise
error('Incorrect wind speed')

end
kf = kf0*sin(heel); % free-surface arm, m
% calculate wind arm in upright condition
kwO = A*(z - 0.5*T)*p/Delta;
% calculate wind arm at given heel angles
kw = kwO*(0.25 + 0.75*cos (heel) .~3);
%%%%%%%%%%%%%%%% Initialize output file %%%%%%%%%%%%%%%%
sname = input('Enter ship name ', 's')
fid = fopen('BV1033.out', 'w');
fprintf(fid, 'Stability of ship %s ace. to BV 1033\n', sname);
fprintf(fid, 'Displacement %9.3f kN\n', Delta),
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fprintf(fid, 'KG %9.3f m\n', KG);
GM = KM - KG; % metacentric height, m
fprintf(fid, 'Metacentric height, GM %9.3f m\n', GM);
fprintf(fid, 'Mean draft, T %9.3f m\n', T) ;
fprintf(fid, 'Free-surface arm %9.3f m\n', kf 0) ;
fprintf(fid, 'Sail area %9.3f sq m\n', A);
fprintf(fid, 'Sail area centroid above BL .. %9.3f m\n', z) ;
fprintf(fid, 'Wind pressure %9.3f MPa\n', p);
phi = w(:, 1); % heel angle, deg
fprintf(fid, ' Heel Righting Heeling \n');
fprintf(fid, ' angle arm arm \n');
fprintf (fid, ' deg m m \n');
harm = kf + kw; % heeling arm, m
report = [ phi'; GZ'; harm' ]; % matrix to be printed
fprintf(fid, '%6.1f %11.3f %11.3f \n', report);
plot(phi, GZ, phi, kf, phi, harm, [ 0 180/pi ], [ 0 GM ] )
hold on
tl = [sname ', \Delta = ' num2str(Delta) ' kN, KG = ', ];
tl = [ tl num2str(KG) 1 ' m, T = ' num2str(T) ' m' ];
title(tl)
xlabel('Heel angle, degrees')
ylabel('Lever arms, m')
text(phi(5), l.l*kf(5), 'k_f')
text(phi(7), 1.1*(kf(7)+kw(7)), 'K_f + k_w')
text(phi(6), 1.1*GZ(6), 'GZ')
t2 = [ 'GM = ' num2str(GM) ' m' ];
text(59, GM, t2)
[ phiST, GZ_ST ] = ginput(l);
plot ( [ phiST phiST ], [ 0 GZ_ST ], 'k-')
text(phiST, -0.1, '\phi_{ST}')
phiREF = 5 + 2*phiST; % reference angle, deg
plot ( [ phiREF phiREF ], [0 max(GZ) ], 'k-')
text(phiREF, -0.1, '\phi_{REF}')
hRESm = 0.01*phiST - 0.05; % min required residual arm, m
resid = GZ - (kf + kw); % array of residual arms, m
% find residual arm at reference angle
hRES = spline(phi, resid, phiREF);
if hRES > hRESm

to = ' greater than'
elseif hRES == hRESm

tO = ' equal to'
else

tO = ' less than'
end
fprintf(fid, ' \n')
fprintf(fid, 'The angle of static

equilibrium is %5.1f degrees.\n',phiST);
fprintf(fid, 'The residual arm is %5.3f m \n' , hRES);

fprintf(fid, 'at reference angle %5.1f degrees,
%that is\n',phiREF);

fprintf(fid, '%s the required arm %5.3f m. \n', tO, hRESm),
hold off
fclose(fid)
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The following example illustrates an application of the function bv!033 to
a realistic ship.

Example 10.2 -An application of the wind criterion
This example is based on an undergraduate project carried out by I. Ganoni and
D. Zigelman, then students at the TECHNION (Zigelman and Ganoni, 1985).
The subject of the project was the reconstitution and analysis of the hydrostatic
and hydrodynamic properties of a frigate similar to the Italian Navy Ship Maes-
trale. The lines and other particulars were based on the few details provided by
Kehoe, Brower and Meier (1980). To distinguish our example ship from the real
one, we shall call it Maestral, its main dimensions are: I/pp, 114.000 m; J3,
12.900m; D, 8.775m. Table 10.2 contains the average of the cross-curves of
stability in ten wave phases, for a volume of displacement V = 2943 m3.

Example 10.1 illustrates a MATLAB function that automatically checks the
wind criterion of BV 1033. To run this function, the cross-curves of stability of
the example ship were written to a file, maestrale . m, in the format:

Maestral = [
0 0

90 5 .493 ] ;

The following lines show how to prepare the input and how to invoke the function.

maestrale % load the cross-curves
cond = [ 1.03*9.81*2943 5.835 4.097 6.681 0.06 ];
sail = [ 1166.55 8.415 ];
bv!033(cond, Maestral, sail, 70)

Table 10.2 Frigate Maestral, average of
cross-curves in ten wave phases

Heel angle

(°)
0
5
10
15
20
25
30
35
40
45

w
(m)

0
0.582
1.159
1.726
2.272
2.785
3.265
3.706
4.104
4.459

Heel angle

(°)
50
55
60
65
70
75
80
85
90

w
(m)

4.769
5.034
5.249
5.416
5.531
5.595
5.610
5.576
5.493
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The resulting diagram of stability is shown in Figure 10.3, the report, printed to
file bv!033 . out, appears below:

Stability of ship Maestral ace. to BV 1033
Displacement 29736 . 955 kN
KG
Metacentric height,
Mean draft, T
Free- surf ace arm .
Sail area
Sail area centroid a
Wind pressure

Heel Righting
angle arm
deg m
0.0 0.000
5.0 0.073
10.0 0.146
15.0 0.216
20.0 ;0.276
25.0 0.319
30.0 0.348
35.0 0.359
40.0 0.353
45.0 0.333
50.0 0.299
55.0 0.254
60.0 0.196
65.0 0.128
70.0 0.048
75.0 -0.041
80.0 -0.136
85.0 -0.237
90.0 -0.342

5. 835 m
GM . . . . 0 . 846 m

4 . 097 m
0 . 060 m

1166 .550 sq m
bove BL . . 8 .415 m

1.000 MPa
Heeling
arm
m
0.249
0.252
0.251
0.246
0.238
0.227
0.214
0.199
0.185
0.171
0.158
0.147
0.138
0.131
0.126
0.123
0.122
0.122
0.122

The angle of static equilibrium is 17.0 degrees.
The residual arm is 0.168 m
at reference angle 39.1 degrees, that is
greater than the required arm 0.120 m.

10.5 Exercises

Exercise 10.1 - Trochoidal wave
Plot the trochoidal waves prescribed by B V 1033 for ships of 50,100 and 200 m
length. Show, on the same plots, the still-water line.
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Table 10.3 Lido 9, cross-curves in seaway, 44.16 m3,
trim -0.325 m

Heel angle

(°)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Wave trough
(m)

0.000
0.360
0.713
1.055
1.375
1.671
1.946
2.200
2.429
2.622
2.766
2.867
2.934
2.959
2.955
2.925
2.856
2.756
2.637

Still water
(m)

0.000
0.397
0.770
1.111
1.421
1.704
1.967
2.206
2.410
2.582
2.735
2.868
2.950
2.960
2.932
2.875
2.789
2.679
2.548 X

Wave crest
(m)

0.000
0.395
0.773
1.124
1.445
1.727
1.966
2.166
2.336
2.477
2.588
2.671
2.729
2.756
2.767
2.744
2.678
2.582
2.458

Exercise 10.2 - Lido 9, cross-curves in seaway
Table 10.3 contains the Ik levers of the vessel Lido 9, for a volume of displace-
ment equal to 44.16 m3 and the full-load trim -0.325 m. The data are calculated
in wave trough, in still water, and on wave crest. According to the BV 1033 sta-
bility regulations of the German Federal Navy the wave length equals the length
between perpendiculars, that is A — 15.5 m, and the wave height is calculated
from

TT A
10 + A/20

-1.439m

Assuming that the height of the centre of gravity is KG = 2.21m, calculate and
plot the diagrams of statical stability (GZ curves) for the three conditions: wave
trough, still water, wave crest.

Using the same data as in Example 6.1 and the wind arm prescribed by the
BV 1022 regulations, check the range of positive residual arms in wave trough
and on wave crest. According to BV 1033, the range of positive residual arms
should be at least 10°, and the maximum residual arm not less than 0.1 m.



11
Flooding and damage
condition

11.1 Introduction

In the preceding chapters, we discussed the buoyancy and stability of intact
ships. Ships, however, can suffer damages during their service. Hull damages
that affect the buoyancy can be caused by collision, by grounding or by enemy
action. Water can enter the damaged compartment and cause changes of draught,
trim and heel. Above certain limits, such changes can lead to ship loss. We expect
a ship to survive a reasonable amount of damage, that is an amount compatible
with the size and tasks of the vessel. More specifically, we require that a ship that
suffered hull damage, to an extent not larger than defined by pertinent regulations,
should continue to float and be stable under moderate environmental conditions.
Then, passengers and crew can be saved. Possibly the ship herself can be towed
to a safe harbour.

To achieve survivability as defined above, the ship hull is subdivided into a
number of watertight compartments. The lengths of the compartments should be
such that after the flooding of a certain number of adjacent compartments, the
waterline shall not lie above a line prescribed by relevant regulations. The same
regulations specify the number of adjacent compartments that should be assumed
flooded. This number depends on the size and the mission of the ship. The reason
for considering adjacent compartments is simple. Collision, grounding or sin-
gle enemy action usually damage adjacent compartments. Flooding of adjacent
compartments also can be more dangerous than flooding of two non-adjacent
compartments. Adjacent compartments situated at some distance from the mid-
ship section can cause large trim and submerge openings above the deck, leading
thus to further flooding. Also, submerging part of the deck reduces the waterplane
area and can cause a substantial decrease of the metacentric radius. Flooding of
non-adjacent compartments, for example one in the forebody, the other in the
afterbody, can produce negligible trim. Then, even with relatively large draught
increases, the deck does not submerge, the waterplane area is not reduced, and the
metacentric height may be sufficient. If the deck does not submerge, no openings
are submerged. The need for international regulations governing the subdivision
of the hull into watertight compartments became clear after the Titanic disaster,
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in April 1912. A meeting was convened in London leading to the adoption on
20 January 1914 of an International Convention of the Safety of Life at Sea.
The convention is better known under its acronym, SOLAS. The first conven-
tion should have been applied in July 1915, but the First World War stopped
the process. In 1929, a new conference was held in London. The adopted text
entered into force in 1933. Technical developments made necessary a new con-
ference; it was held in 1948. The next edition was the 1960 SOLAS Convention,
organized this time by IMO (about IMO see Section 8.2). Several amendments
were adopted in the following years. The 1974 SOLAS Convention was again
held in London. Since then many important amendments were issued, some of
them influenced by major marine disasters, such as those of the roll-on/roll-off
passenger ferries Herald of the Free Enterprise, near Zeebrugge, in March 1987,
and Estonia, on 28 September 1994. At the moment of this publication SOLAS
1974 together with all its amendments is the convention in force (see SOLAS
2001).

SOLAS prescriptions cover many aspects of ship safety, among them fire pro-
tection, life boats and rafts, radars, radio equipment, and emergency lighting.
What interests us in this book are the prescriptions referring to subdivision and
damage stability. A detailed history of SOLAS activities can be found on a web-
site organized by Metal Safe Sign International Ltd, http://www.mss-int.com.
A short history of damage regulations appears in Gilbert and Card (1990).
A commented history of the SOLAS achievements can be read in Payne (1994).
Because of the overwhelming importance of the SOLAS regulations we give
here the translations of the official title in three other languages:

Fr Convention Internationale pour la sauvegarde de la vie humaine
en mer

G Internationales Ubereinkommen zum Schutz des menschlichen
Lebens auf See

I Convenzione internazionale per la salvaguardia della vita umana
in mare

The SOLAS regulations apply to merchant ships. Damage regulations for war-
ships are provided in the same regulations that deal with their intact stability (see
Chapters 8 and 10).

The European Commission sponsored researches on survivability in damage
condition, mainly the project HARDER. The Nordic countries established a
project entitled 'Safety of passenger/ro-ro vessels' (Svensen and Vassalos, 1998).

An alternative term used in damage considerations is bilging. Derrett and
Barrass (2000) define it as follows: 'let an empty compartment be holed... below
the waterline to such an extent that the water may ... flow freely into and out of
the compartment. A vessel holed in this way is said to be bilged.'

Roll-on/Roll-off ships, shortly Ro/Ro, are particularly sensitive to damage. To
enable easy loading and unloading of vehicles these vessels are provided with a
deck space uninterrupted by bulkheads. For the same reasons, that deck is close
to the waterline. Damage can easily cause deck flooding with consequences like
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KG increase, large free-surface effect and added weight. Little and Hutchin-
son (1995) quote, 'Over the past 14 years, 44 RO/RO vessels have capsized.'
Pawlowski (1999) appreciates, 'Roll-on/roll-off (RO/RO) ships are considered
by the maritime profession ... as the most unsafe ships in operation.' Statistics
on loss of life due to RO/RO disasters are simply frightening. For example, Ross,
Roberts and Tighe (1997) quote 193 casualties in the case on the Herald of Free
Enterprise, 910 in the Estonia disaster. A few Ro/Ro's sank in one and a half
minute after an accident. No wonder that many studies have been dedicated to
this type of vessel. As some of them refer to constructive measures, we think that
their treatment belongs to books on Ship Design, not here. We cite, however, the
papers whose contents are close to the subject of this chapter.

In this chapter, we give the definitions related to flooding and explain the
principles on which flooding and damage calculations are based. To illustrate
these principles we apply them to box shaped vessels. We also summarize a few
pertinent regulations and codes of practice. When performing calculations for
real-life projects, the reader is advised to refer to the full text of the most recent
edition of the regulations to be applied.

Flooding and damage stability calculations for real ship forms are rather com-
plex and tedious. Finding the floating condition requires iterative procedures.
Today, such calculations are performed on computers; therefore, we do not
describe them. We also give in this chapter the translations of the most important
terms introduced in it.

11.2 A few definitions

In this section, we introduce a few terms defined in the SOLAS conventions; they
are also used by other regulations. The hull is subdivided into compartments
by means of watertight bulkheads. This term is translated into three other
languages as

Fr cloisons etanches
G Schotten
I parade stagne

The deck up to which these bulkheads extend is called in English bulkhead
deck, in other languages

Fr pont de cloisonnement
G Schottendeck
I ponte delle parade

After flooding of a prescribed number of compartments the ship shall not
submerge beyond a line situated at least 76 mm (3 in) below the deck at side.
The said line is called in English margin line, in other languages
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Fr ligne de surimmersion
G Tauchgrenze
I linea limite

The floodable length at a given point of the ship length is the maximum length,
with the centre at that point, that can be flooded without submerging the ship
beyond the margin line. This subject is treated in more detail in Section 11.6.
The term 'floodable length' is translated as

Fr longueur envahissable
G flutbare Lange
I lunghezza allagabile

In Figure 11.1, we see the sketch of a ship subdivided by four bulkheads. The
three waterlines WLi, WL<2 and WL% are tangent to the margin line. They are
examples of limit lines beyond which no further submergence of the damaged
ship is admissible. If the bulkhead deck is not continuous, a continuous margin
line can be assumed such as having no point at a distance less than 76 mm below
the deck at side.

Let us suppose that calculating the volume of a compartment starting from
its dimensions we obtain the value v. There is almost no case in which this
volume can be fully flooded because almost always there are some objects in the
compartment. Even in an empty tank there are usually structural members - such
as frames, floors and deck beams - sounding instruments and stairs for entering
the tank and inspecting it. If we deduct the volumes of such objects from the
volume v, we obtain the volume of the water that can flood the compartment; let
it be VF. The ratio

M = — (H.l)v

is called permeability; it is often noted by p,. More correctly, we should talk
about volume permeability, to distinguish it from a related notion that is the
surface permeability. Indeed, because of the objects stored or located in a
compartment, the free-surface area is smaller than that calculated from the

Bulkhead deck

WL2

B - Watertight bulkhead

Figure 11.1 A few definitions
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dimensions of the compartment. Also the moment of inertia of the free-surface
area is calculated on the basis of the dimensions of the compartment. For exam-
ple, if the calculations are carried out by a computer programme, they are based
on an input that describes only the geometry of the tank and not its contents.
The moment of inertia of the surface free to heel is smaller than the value found
as above because the area considered is partially occupied by fixed objects that
do not contribute to the free-surface effect. Then, it is necessary to multiply the
calculated value by the surface permeability.

Typical values of volume permeability can be found in textbooks and in various
regulations. Examples of the latter are given in this chapter. When the recom-
mended values do not seem plausible, it is necessary to calculate in detail the
volume of the objects found in the compartment. When there are no better data,
the surface permeability can be assumed equal to the volume permeability of the
same compartment.

The term 'permeability' is translated into other languages as follows

Fr (coefficient de) permeabilite
G Flutbarkeit
I (coefficiente di) permeabilita

Usually, permeabilities are given in percent, for example 85 for machinery
spaces. In calculations, however, we must multiply by 0.85, and not by 85. More-
over, some computer programmes, such as ARCHIMEDES, require as input the
number 0.85 and not 85. Therefore, in the following sections permeabilities are
mainly given in the format 0.95, 0.85 etc., rather than as percentages.

11.3 Two methods for finding the ship condition after
flooding

There are two ways of calculating the effect of flooding. One way is known as
the method of lost buoyancy, the other as the method of added weight.

The method of lost buoyancy assumes that a flooded compartment does not
supply buoyancy. This is what happens in reality. If we refer to Figures 2.4
and 2.5, we can imagine that if there is open communication between a com-
partment and the surrounding water, the water inside the compartment exercises
pressures equal to and opposed to those of the external water. Then, the buoyancy
force predicted by the Archimedes' principle is cancelled by the weight of the
flooding water.

In the method of lost buoyancy the volume of the flooded compartment does
not belong anymore to the vessel, while the weight of its structures is still part of
the displacement. The 'remaining' vessel must change position until force and
moment equilibria are re-established. During the process not only the displace-
ment, but also the position of the centre of gravity remains constant. The method
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is also known as method of constant displacement. As the flooding water does
not belong to the ship, it causes no free-surface effect.

In the method of added weight the water entering a damaged compartment is
considered as belonging to the ship; its mass must be added to the ship displace-
ment. Hence the term 'added weight'. Following modern practice, we actually
work with masses; however, we keep the traditional name of the method, i.e. we
use the word 'weight'. Another reason may be the need to avoid confusion with
the term added mass mentioned in Section 6.12 and detailed in Chapter 12. The
latter term does not belong to the theory of flooding and damage stability.

In the method of added weight the displacement of the flooded vessel is cal-
culated as the sum of the intact displacement and the mass of the flooding water.
The position of the centre of gravity of the damaged vessel is obtained from the
sums of the moments of the intact vessel and of the flooding water. Becoming
part of the vessel, the flooding water produces a free-surface effect that must be
calculated and considered in all equations. For very small trim and negligible
heel changes we can write

AF = AI + p - v

LCGF • AF = LCGi -Ai + lcg-p-v (11.2)

TCGF • AF = teg - p • v

where the subscript F distinguishes the properties of the flooded vessel, and
the subscript I those of the intact ship. By leg we mean the longitudinal centre
of gravity of the flooding water volume, v, and by teg its transverse centre of
gravity. We assume TCGi = 0. When the trim and the heel are not negligible,
we must consider the vertical coordinates of the centres of gravity of the intact
ship and of the flooding water volume. Example 11.1 shows how to do this for
non-zero trim and zero heel.

To exemplify the above principles we follow an idea presented in Handbuch
der Werften and later used by Watson (1998). While the latter solves algebraically
the general problem, we prefer to solve it numerically and thus allow the reader
to visualize the differences between methods and those between the intact and
the damaged vessel. We choose the very simple example of the pontoon shown
in Figure 11.2. Two transverse bulkheads subdivide the hull into three watertight
compartments. In the following two sections we assume that Compartment 2 is
damaged and calculate the consequences of its flooding. We choose deliberately
a compartment symmetric about the midship transverse plane of symmetry of
the pontoon. Thus, the flooding of Compartment 2 produces no trim. Also, the
compartment extends for the full ship breadth and its flooding produces no heel.
The only change of position is parallel sinking. Thus, the complex calcula-
tions necessary for conventional ship forms, for large trim, or for unsymmetrical
flooding, do not obscure the principles and it is possible to obtain immediately
a good insight of the processes involved. For the same reasons we assume that
the volume and surface permeabilities are equal to 1. We leave to an exercise the
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Dimensions in m

12

10

G

1.5

Comportment 1 Compt.: Compartment 3

20

Figure 11.2 A simple pontoon - intact condition

informal proof that taking permeability into account does not change the quali-
tative results. Although based on different physical models, calculations by the
two methods yield the same final draught, as it should be expected. Moreover, the
stability properties calculated by the two methods are identical, if we compare
the initial righting moments. Here, the term 'initial' has the meaning defined
in Chapter 2 where we consider 'initial stability' as a property governing the
behaviour of the floating body in a small heel range around the upright position.
In that range the righting moment equals

MR = A(7M sin 0

As we are going to see, we obtain by the two methods the same MR value. In
the method of lost buoyancy the displacement remains equal to that of the intact
vessel. In the method of added weight the displacement increases by the mass
of the flooding water. To keep the product MR constant, the other factor, GM,
must be smaller. At a first glance it may be surprising that the two methods yield
different metacentric heights. The explanation given above shows that it should
be so because the considered displacements are different. What should be kept
in mind, after reading the examples, is that displacement and metacentric height
have different significances in the two methods. Therefore, damage-stability
data should include the mention of the method by which they were obtained.
Computer programmes use the method of lost buoyancy.

The length of the assumed pontoon is L = 20 m, the beam, B = 5 m, and
the draught in intact condition, TI = 1.5m. Let the vertical centre of gravity
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be KG\ = 1.5m. The following calculations were carried out in MATLAB,
using the full precision of the software. The results are rounded off to a reason-
able number of decimal digits. We first find the data of the intact pontoon. The
displacement volume is

Vi = LBTi = 20 x 5 x 1.5 = 150m3

The mass displacement equals

A! = pVi - 1.025 x 150 = 153.751

The moment of inertia of the waterplane area about the centreline equals

and the resulting metacentric radius is

/i 208.3333
BMi = — = = 1.389 m

For such a simple form we could have found directly the metacentric radius as

B3L/12 B2 52

The height of the centre of buoyancy is

rji

~KBi = — -0.75m
Zi

and the metacentric height is

= KBi 4- BMi - KGi = 0.75 + 1.389 - 1.50 = 0.639m

For small heel angles the righting moment in intact condition is calculated as

= AiGMisin<£ = 153.75 x 0.693 x sm</> = 98.229sin0tin

11.3.1 Lost buoyancy

The translations of the term 'method of lost buoyancy' in three other languages
are

Fr La methode des carenes perdues
G Methode des wegfallender Verdrangung
I II metodo per perdita di galleggiabilita
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In the method of lost buoyancy, the flooded compartment does not supply buoy-
ancy. As shown in Figure 11.3, the buoyant hull is composed only of Compart-
ments 1 and 3. After loosing the central compartment, the waterplane area is
equal to

AL = (L- 1}B = (20 - 4) x 5 = 80m2

To compensate for the loss of buoyancy of the central compartment the draught
increases to

VT 150
TL = ̂  = - = 1.875m

The height of the centre of buoyancy increases to

TT 1 875

We calculate the moment of inertia of the waterplane as

B3(L-l) 53(20-4)
/L = —J2— = 12 = 16

and the metacentric radius as

IT. 166.6667 . . „ _

Dimensions in m

12

10

Figure 11.3 A simple pontoon - damage calculation by the method of lost
buoyancy
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Finally, the metacentric height is

GML = KBL + BML - KGi = 0.938 4-1.111 - 1.5 - 0.549m

and the righting moment for small heel angles, in the lost-buoyancy method

MRL = AiGMLsin0 = 153.75 x 0.549 sin 0 = 84.349sin</>tm

11.3.2 Added weight

The translations of the term 'added-weight method' in three other languages are

Fr La methode par addition de poids
G Methode des hinzukommenden Gewichts
I II metodo del peso imbarcato

For this section see Figure 11.4. Because of the added weight of the flooding
water the draught of the pontoon must increase by a quantity ST. The volume
of flooding water equals

v = lB(Ti + 6T) (11.3)

The additional buoyant volume of the vessel, due to parallel sinking, is

SV = LBST (11.4)

Dimensions in m

12

10

5T

Figure 11.4 A simple pontoon - damage calculation by the method
of added weight
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To obtain the draught increment, 5T, we equate the two volumes, that is we write
v = JV. Algebraic manipulation and numerical calculation yield

The draught after flooding is

TA - TI + ST = 1.500 + 0.375 = 1.875m

The volume of flooding water is calculated as

v = IBTA = 4 x 5 x 1.875 = 37.5 m3

and the height of its centre of gravity

kb = — = = 0.938m
2 2

The displacement volume of the flooded pontoon is

VA = LET p. - 20 x 5 x 1.875 = 187.5m3

We consider the flooding water as an added weight; therefore, we must calculate
a new centre of gravity. The calculations are shown in Table 11.1. The moment
of inertia of the damage waterplane is the same as in the initial condition, that is
/A = 208.333 m4. Then, the metacentric radius equals

JA 208.333 .. .

In this method, the flooding water is considered as belonging to the displacement.
Therefore, if there is a free surface its effect must be calculated. The moment of
inertia of the free surface in the flooded compartment equals

and the lever arm of the free surface effect is

pi 41.667

Table 11.1 KG by the method of added weight

Volume Centre of gravity Moment

Initial 150.0 1.5 225.000
Added 37.5 0.938 35.156
Total 187.5 1.388 260.156
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The height of the centre of buoyancy is yielded by

= = 0.938m

The corresponding metacentric height is calculated as

= 0.938 + 1.111 - 1.388 - 0.222

= 0.439m

With the mass displacement

AA = pVA = 1-025 x 187.5 = 192.188 1

we obtain the righting moment for small angles of heel, in the added-weight
method

MRA = AAGMAsin0= 192.188 x 0.439 sin0 = 84.349 sin </>tm

11.3.3 The comparison

Table 11.2 summarizes the results of the preceding two sections. As expected,
both the method of lost buoyancy and that of added weight yield the same draught
1.875 m, and the same initial righting moment, 84.349 sin <fi tm. The displace-
ments and the metacentric heights are different, but their products, AGM, are
the same. As happens in most cases, the righting moment in damage condition
is less than in intact condition.

Table 11.2 Flooding calculations - a comparison of methods

Draught, m
V, m3

A, t
KB, m
BM,m
KG,m
GM, m
AGM, tm

Intact
condition

1.500
150.000
153.750

0.750
1.389
1.500
0.639

98.229

Damaged,
lost buoyancy

1.875
150.000
153.750

0.938
1.111
1.500
0.549

84.349

Damaged,
by added weight

1.875
187.500
192.188

0.938
1.111
1.388
0.439

84.349
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11.4 Details of the flooding process

The free surface in a compartment open to the sea behaves differently than that
in an intact tank. In Figure 11.5(a), W\L\ is the waterline in upright position and
W^L^, the waterline in a heeled position. We assume that the water level in
the side tank is the same as the external water level. In the heeled position the
water surface in the tank changes to FS, a line parallel to W^L^. The volume of
water in the tank remains constant. In Figure 11.5(b) the side tank is damaged
and in open communication with the sea. If the waterline in the heeled position
is W0L0, this is also the water level in the damaged tank. The water volume
is no longer constant, but varies with the heel angle. For the case shown in the
figure, the volume increases by the slice comprised between the lines W^L^
and FS. This change of volume must be taken into account in the added-weight
method. Figure 11.5(b) shows a case of unsymmetrical flooding. This kind
of flooding can easily submerge the deck. The consequences may be a drastic
reduction of stability and the submergence of openings such as vents. Therefore,
care must be exercised when placing longitudinal bulkheads. Sometimes, to
compensate unsymmetrical flooding it is necessary to open a connection between
the damaged tank and a tank situated symmetrically on the other side of the ship.
This action is called cross-flooding. The UK-Navy document SSP 24 warns
against the potential danger presented by longitudinal bulkheads.

Cross-flooding takes some time and can cause a slow change of the ship
position. Soding (2002) lists other slow-flooding processes such as occurring
'through open or non-watertight doors, hatches with non-watertight or partly
open hatch covers, through pipes, ventilation ducts...'. In his paper, Soding

(a) Intact condition (b) Damage condition

Figure 11.5 Free surface In intact and in damaged tank
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describes the mathematics of such water flows. Air can be trapped above the
flooding-water surface. If the top envelope of the compartment is airtight flooding
is stopped. If not, it is only slowed down.

Between the position of intact condition and the final damage position (pro-
vided that an equilibrium position can be found) the vessel can pass through
intermediate positions more dangerous than the final one. It is necessary to
check if such positions exist and if the ship can survive them.

11.5 Damage stability regulations

11.5.1 SOLAS

Regulation 5 of the convention specifies how to calculate the permeabilities to
be considered. Thus, the permeability, in percentage, throughout the machinery
space shall be

where a is the volume of passenger spaces situated under the margin line, within
the limits of the machinery space, c is the volume of between-deck spaces, in
the same zone, appropriated to cargo, coal, or store, and v, the whole volume of
the machinery space below the margin line.

The percent permeability of spaces forward or abaft of the machinery spaces
should be found from

63 + 35-
v

where a is the volume of passenger spaces under the margin line, in the respective
zone, and v, the whole volume, under the margin line, in the same zone.

The maximum permissible length of a compartment having its centre at a
given point of the ship length is obtained from the floodable length by multiplying
the latter by an appropriate number called factor of subdivision. For example, a
factor of subdivision equal to 1 means that the margin line should not submerge
if one compartment is submerged, while a factor of subdivision equal to 0.5
means that the margin line should not submerge when two compartments are
flooded.

Regulation 6 of the convention shows how to calculate the factor of subdivision
as a function of the ship length and the nature of the ship service. First, SOLAS
defines a factor, A, applicable to ships primarily engaged in cargo transportation
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ForL = 131, A = 1. Another f actor, B, is applicable for ships primarily engaged
in passenger transportation

ForL = 79, B = 1.
A criterion of service numeral, Cs, is calculated as function of the ship length,

L, the volume of machinery and bunker spaces, M, the volume of passenger
spaces below the margin line, P, the number of passengers for which the ship is
certified, TV, and the whole volume of the ship below the margin line, V. There
are two formulas for calculating Cs; their choice depends upon the product
PI = KN, where K = 0.056L. If Pl is greater than P,

3 V + P.-P

otherwise

M + 2P- 72-
V

For ships of length 131 m and above, having a criterion numeral Cs < 23, the
subdivision abaft the forepeak is governed by the factor A. If Cs > 123 the
subdivision is governed by the factor B. For 23 < Cs < 123, the subdivision
factor should be interpolated as

F=A
100

If 79 < L < 131, a number S should be calculated from

3.754 - 25L
5 =

13

If Cs = 5, F = 1. If Cs > 123, the subdivision is governed by the factor B. If
Cs lies between 5 and 123, the subdivision factor is interpolated as

123-5

If 79 < L < 131 and Cs < 5, or if L < 79, F = 1.
Regulation 7 of the convention contains special requirements for the subdi-

vision of passenger ships. Regulation 8 specifies the criteria of stability in the
final condition after damage. The heeling arm to be considered as the one that
results from the largest of the following moments:
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• crowding of all passengers on one side;
• launching of all fully loaded, davit-operated survival craft on one side;
• due to wind pressure.

We call residual righting lever arm the difference

GZ — heeling arm

The range of positive residual arm shall be not less than 15°. The area under the
righting-arm curve should be at least 0.015 mrad, between the angle of static
equilibrium and the smallest of the following:

• angle of progressive flooding;
• 22° if one compartment is flooded, 27° if two or more adjacent compartments

are flooded.

The moment due to the crowding of passengers shall be calculated assuming
4 persons per m2 and a mass of 75 kg for each passenger. The moment due to the
launching of survival craft shall be calculated assuming all lifeboats and rescue
boats fitted on the side that heeled down, while the davits are swung out and
fully loaded. The wind heeling moment shall be calculated assuming a pressure
of 120 Nm~2 .

11.5.2 Probabilistic regulations

Wendel (1960a) introduces the notion of probability of survival after dam-
age. A year later, a summary in French appears in Anonymous (1961). This
paper mentions a translation into French of Wendel's original paper (in Bul-
letin Technique du Bureau Veritas, February 1961) and calls the method 'une
nouvelle voie', that is 'a new way'. Much has been written since then on the prob-
abilistic approach; we mention here only a few publications, such as Rao (1968),
Wendel (1970), Abicht and Bakenhus (1970), Abicht, Kastner and Wendel (1977),
Wendel (1977). Over the years Wendel used new and better statistics to improve
the functions of probability density and probability introduced by him. The gen-
eral idea is to consider the probability of occurrence of a damage of length y and
transverse extent t, with the centre at a position x on the ship length. Statistics
of marine accidents should allow the formulation of a function of probability
density, /(#, y, t). The probability itself is obtained by triple integration of the
density function. The IMO regulation A265 introduces probabilistic regulations
for passenger ships, and SOLAS 1974, Part Bl, defines probabilistic rules for
cargo ships. Concisely, Regulation 25 of the SOLAS convention defines a degree
of subdivison

R= (0.002 + 0.0009L3)1/3
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where L is measured in metres. An attained subdivision index shall be calcu-
lated as

A = Ylplsi

where pi represents the probability that the ith compartment or group of com-
partments may be flooded, and Si is the probability of survival after flooding the
zth compartment or group of compartments. The attained subdivision index, A,
should not be less than the required subdivision index, R.

Early details of the standard for subdivision and damage stability of dry cargo
ships are given by Gilbert and Card (1990). A critical discussion of the IMO 1992
probabilistic damage criteria for dry cargo ships appears in Sonnenschein and
Yang (1993). The probabilistic SOLAS regulations are discussed in some detail
by Watson (1998) who also exemplifies them numerically. Ravn et al. (2002)
exemplify the application of the rules to Ro-Ro vessels.

Serious criticism of the SOLAS probabilistic approach to damage can be found
in Bjorkman (1995). Quoting from the title of the paper, 'apparent anomalies
in SOLAS and MARPOL requirements'. Watson (1998) writes, 'There would
seem to be two main objections to the probabilistic rules. The first of these is the
extremely large amount of calculations required, which although acceptable in
the computer age, is scarcely to be welcomed. The other objection is the lack of
guidance that it gives to a designer, who may be even driven to continuing use of
the deterministic method in initial design, changing to the probabilistic later -
and hoping this does not entail major changes!'

The 'CORDIS RTD PROJECTS' database of the European Communities,
2000, defines as follows the objective of project HARDER:

The process of harmonisation of damage stability regulations
according to the probabilistic approach is undergoing scrutiny...
before being proposed for adoption by IMO... However, ongoing
investigations started revealing serious lack of robustness and con-
sistency and more importantly a worrying lack of rationale in the
choice of parameters that are likely to affect the evolution of the
overall design and safety of ships.

A recent application of existing tools by a committee of the relevant
IMO working group... revealed that, before confidence in the whole
process is irreversibly affected, concerted effort at European level
must address the thorough validation of calculations, the proper
choice of parameters and the definition of levels of acceptance

A report on the progress of the project HARDER is contained in the IMO doc-
ument SLF 45/3/3 of 19 April 2002. The report covers 'Investigations and pro-
posed formulations for the factor "S": the probability of survival after flooding'.
The approach adopted in the project HARDER is explained by Rusas (2002). As
the probabilistic regulations are bound to change, we do not detail them in this
book.
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11.5.3 The US Navy

The regulations of the US Navy are contained in a document known as DDS-
079-1. Part of the regulations are classified, part of those that are not classified
can be found in Nickum (1988) or Watson (1998). For a ship shorter than 30.5 m
(100ft) the flooding of any compartment should not submerge her beyond the
margin line. Ships longer than 30.5 m and shorter than 91.5 m (300ft) should
meet the same submergence criterion with two flooded compartments. Ships
longer than 91.5 m should meet the submergence criterion with a damage extent
of 0.15L or 21 m, whichever is greater.

When checking stability under wind, the righting arm, GZ, should be reduced
by 0.05 cos <j> to account for unknown unsymmetrical flooding or transverse shift
of loose material. As for intact condition (see Figure 8.4), the standard identifies
two areas between the righting-arm and the wind-arm curves. The area AI is
situated between the angle of static equilibrium and the angle of downflooding
or 45°, whichever is smaller. The area A% is situated to the left, from the angle
of static equilibrium to an angle of roll. The wind velocity and the angle of
roll should be taken from DOS-079-1. As in the intact condition, the standard
requires that Ai/A^ > 1.4.

The US Navy uses the concept of V lines to define a zone in which the
bulkheads must be completely watertight. We refer to Figure 11.6. Part (a) of
the figure shows a longitudinal ship section near a bulkhead. Let us assume that
after checking all required combinations of flooded compartments, the highest

(a)

Figure 11.6 V lines
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waterline on the considered bulkhead is WL\ it intersects the bulkhead at O.
In part (b) of the figure, we show the transverse section AB that contains the
bulkhead. The intersection of WL with the bulkhead passes though the point Q.
The standard assumes that unsymmetrical flooding can heel the vessel by 15°.
The waterline corresponding to this angle is W\ LI . Rolling and transient motions
can increase the heel angle by a value that depends on the ship size and should
be taken from the standard. We obtain thus the waterline W^L^. Finally, to take
into account the relative motion in waves (that is the difference between ship
motion and wave-surface motion) we draw another waterline translated up by
h = 1.22m (4ft); this is waterline W^L^. Obviously, unsymmetrical flooding
followed by rolling can occur to the other side too so that we must consider
the waterline W4Z/4 symmetrical of W^L^ about the centreline. The waterlines
W^LZ and W^L^ intersect at the point P. We identify a V-shaped limit line,
W^PLz, hence the term 'V lines'. The region below the V lines must be kept
watertight; severe restrictions refer to it and they must be read in detail.

11.5.4 The UK Navy

The standard of damage stability of the UK Navy is defined in the same docu-
ments NES 109 and and SSP 24 that contain the prescriptions for intact stability
(see Section 8.4). We briefly discuss here only the rules referring to vessels with
a military role. The degree of damage to be assumed depends on the ship size,
as follows:

Waterline length Damage extent

LWL < 30 m any single compartment
30 < I/WL < 92 any two adjacent main compartments,

that is compartments of minimum 6-m length
> 92 m damage anywhere extending 15% of LWL

or 21 m, whichever is greater.

The permeabilities to be used are

Watertight, void compartment and tanks 0.97
Workshops, offices, operational and accommodation spaces 0.95
Vehicle decks 0.90
Machinery compartments 0.85
Store rooms, cargo holds 0.60

The wind speeds to be considered depend on the ship displacement, A, measured
in tonnes, that is metric tons of weight.

Displacement A, tonnes Nominal wind speed, knots

A < 1000 V = 20 + 0.005A
1000 < A < 5000 V = 5.06 In A - 10
5000 < A F-22.5 + 0.15V/A
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The following criteria of stability should be met (see also Figure 8.4):

1. Angle of list or loll not larger than 30°;
2. Righting arm GZ at first static angle not larger than 0.6 maximum righting

arm;
3. Area A\ greater than Am-in as given by

A < SOOOt Amin = 2.74 x 10~2 - 1.97 x 10~6Amrad
5000 < A < 500001 Amin = 0.164A-0-265

A > 50000 t consult Sea Technology Group
4. Ai > A<2\
5. Trim does not lead to downflooding;
6. ~GML > 0

Like the US Navy, the UK Navy uses the concept of V lines to define a zone
in which the bulkheads must be completely watertight; some values, however,
may be more severe. We refer again to Figure 11.6. Part (a) of the figure shows
a longitudinal ship section near a bulkhead. Let us assume that after checking
all required combinations of flooded compartments, the highest waterline on
the considered bulkhead is WL\ it intersects the bulkhead at O. In part (b) of
the figure, we show the transverse section AB that contains the bulkhead. The
intersection of WL with the bulkhead passes though the point Q. The standard
assumes that unsymmetrical flooding can heel the vessel by 20°. The waterline
corresponding to this angle is W\L\. Rolling and transient motions can increase
the heel angle by 15°, leading to the waterline W^L^. Finally, to take into account
the relative motion in waves (that is the difference between ship motion and
wave-surface motion) we draw another waterline translated up by h = 1.5m;
this is waterline W^L^. Obviously, unsymmetrical flooding followed by rolling
can occur to the other side too so that we must consider the waterline W±L±.
The waterlines W^L^ and W±L± intersect at the point P. Thus, we identify a
V-shaped limit line, W^PL^, hence the term 'V lines'. The region below the V
lines must be kept watertight; severe restrictions refer to it and they must be read
in detail.

11.5.5 The German Navy

The BV 1003 regulations are rather laconic about flooding and damage stability.
The main requirement refers to the extent of damage. For ships under 30 m length,
only one compartment should be assumed flooded. For larger ships a damage
length equal to

0.18LWL + 3.6m,

but not exceeding 18m, should be considered. Compartments shorter than 1.8 m
should not be taken into account as such, but should be attached to the adja-
cent compartments. The leak may occur at any place along the ship, and all
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compartment combinations that can be flooded in the prescribed leak length
should be considered. The damage may extend transversely till a longitudinal
bulkhead, and vertically from keel up to the bulkhead deck.

Damage stability is considered sufficient if

• the deck-at-side line does not submerge;
• without beam wind, and if symmetrically flooded, the ship floats in upright

condition;
• in intermediate positions the list does not exceed 25° and the residual arm is

larger than 0.05 m;
• under a wind pressure of 0.3 kN m~2 openings of intact compartments do not

submerge, the list does not exceed 25° and the residual lever arm is larger
than 0.05 m.

If not all criteria can be met, the regulations allow for decisions based on a
probabilistic factor of safety.

11.5.6 A code for large commercial sailing or motor vessels

The code published by the UK Maritime and Coastguard Agency specifies that
the free flooding of any one compartment should not submerge the vessel beyond
the margin line. The damage should be assumed anywhere, but not at the place of
a bulkhead. A damage of the latter kind would flood two adjacent compartments,
a hypothesis not to be considered for vessels under 85 m. Vessels of 85 m and
above should be checked for the flooding of two compartments.

In the damaged condition the angle of equilibrium should not exceed 7° and
the range of positive righting arms should not be less than 15° up to the flooding
angle. In addition, the maximum righting arm should not be less than 0.1 m and
the area under the righting-arm curve not less than 0.015 mrad. The permeabil-
ities to be used in calculations are

stores 0.60
stores, but not a substantial amount of them 0.95
accommodation 0.95
machinery 0.85
liquids 0.95 or 0, whichever

leads to worse predictions

The expression 'not a substantial amount of them' is not detailed.

11.5.7 A code for small workboats and pilot boats

The code published by the UK Maritime and Coastguard Agency contains dam-
age provisions for vessels up to 15m in length and over, certified to carry 15
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or more persons and to operate in an area up to 150 miles from a safe haven.
The regulations are the same as those described for sailing vessels in Subsec-
tion 11.5.6, except that there is no mention of the two-compartment standard for
lengths of 85 m and over.

11.5.8 EC regulations for internal-water vessels

The following prescriptions are taken from a proposal to modify the directive
82/714 GEE, of 4 October 1982, issued by the European Parliament. The intact-
stability provisions of the same document are summarized in Chapter 8.

A collision bulkhead should be fitted at a distance of minimum 0.04LWL from
the forward perpendicular, but not less than 4 m and no more than 0.041/wL+2 m.
Compartments abaft of the collision bulkhead are considered watertight only if
their length is at least O.lOZ/wL, but not less than 4m. Special instructions are
given if longitudinal watertight bulkheads are present.

The minimum permeability values to be considered are:

passenger and crew spaces 0.95
machinery spaces, including boilers 0.85
spaces for cargo, luggage, or provisions 0.75
double bottoms, fuel tanks either 0.95 or 0

Following the flooding of any compartment the margin line should not submerge.
The righting moment in damage condition, MR, should be calculated for the
downflooding angle or for the angle at which the bulkhead deck submerges,
whichever is the smallest. For all flooding stages, it is required that

MR > 0.2MP = 0.2 x 1.56P

where Mp is the moment due to passenger crowding on one side, b is the maxi-
mum available deck breadth at 0.5 m above the deck, and P is the total mass of
the persons aboard. The regulations assume 3.75 persons per m2, and a mass of
75 kg per person. The document explains in detail how to calculate the available
deck area, that is the deck area that can be occupied by crowding persons.

11.5.9 Swiss regulations for internal-water vessels

The following prescriptions are extracted from a decree of the Swiss Federal
Council (Schweizerische Bundesrat) of 9 March 2001, that modifies a Federal
Law of 8 November 1978. This is the same document that is quoted in Chapter 8
for its intact-stability prescriptions.

A ship should be provided with at least one collision bulkhead and two bulk-
heads that limit the machinery space. If the machinery space is placed aft, the
second machinery bulkhead can be omitted. The distance between the collision
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bulkhead and the intersection of the stem (bow) with the load waterline should
lie between L\vL/12 and LwL/8. If this distance is shorter, it is necessary to
prove by calculations that the fully loaded ship continues to float when the two
foremost compartments are flooded. In no intermediary position should the deck-
at-side line submerge. This proof is not necessary if the ship has on both sides
watertight compartments extending longitudinally I/wL/8 from the intersection
of the stem with the load waterline, and transversely at least £?/5.

11.6 The curve of floodable lengths

Today computer programmes receive as input the descriptions of the hull surface
and of the internal subdivision. In the simplest form, the input can consist of off-
sets, bulkhead positions and compartment permeabilities. Then, it is possible to
check in a few seconds what happens when certain compartment combinations
are flooded. If the results do not meet the criteria relevant to the project, we can
change the positions of bulkheads and run flooding and damage-stability calcu-
lations for the newly defined subdivision. Before the advent of digital computers
the above procedure took a lot of time; therefore, it could not be repeated many
times. Just to give an idea, manual flooding calculations for one compartment
combination could take something like three hours. Usually, the calculations
were not purely manual because most Naval Architects used slide rules, adding
machines and planimetres. Still it was not possible to speed up the work. To
improve efficiency, Naval Architects devised ingenious, very elegant methods;
one of them produces the curve of floodable lengths. To explain it we refer to
Figure 11.7. In the lower part of the figure, we show a ship outline with four
transverse bulkheads; above it we show a curve of floodable lengths and how to
use it.

Let us consider a point situated a distance x from the aftermost point of the
ship. Let us assume that we calculated the maximum length of the compartment
having its centre at x and that will not submerge the margin line, and that length
is Lp. In other words, if we consider a compartment that extends from x — Lp/2
to x -f Z/F/2, this is the longest compartment with centre at x that when flooded
will not submerge the ship beyond the margin line.

Now, we plot a point with the given x-coordinate and the ^/-coordinate equal
to LF measured at half the scale used for x values. For example, if the ship
outline is drawn at the scale 1:100, we plot y values at the scale 1:200. There
were Naval Architects who used the same scale for both coordinates; however,
the reader will discover that there is an advantage in the procedure preferred by
us. Plotting in this way all (x, LF) pairs, we obtain the curve marked 1; this is
the curve of floodable lengths.

Now, let us check if the middle compartment meets the submergence-to-the-
margin-line requirement. Counting from aft forward, we talk about the compart-
ment limited by the second and the third bulkhead. Let us assume that this is
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Bulkhead 1

Bulkhead 2 Bulkhead 3

Bulkhead

Figure 11.7 The curve of fioodable lengths

a machinery compartment with permeability ^ = 0.85. Therefore, within the
limits of this compartment we can increase the floodable lengths by dividing
them by 0.85. The resulting curve is marked 2. Let us further assume that we
are dealing with a ship subject to a 'two-compartment' standard (factor of sub-
division F — 0.5). Then, we divide by 2 the ordinates of the curve 2, obtaining
the curve marked 3. This is the curve of permissible lengths. On the curve 3,
we find the point corresponding to the centre of the machinery compartment
and draw from it two lines at 45° with the horizontal. The two lines intercept
the base line at A and B. Both A and B are outside the bulkheads that limit the
machinery compartment. We conclude that the length of this compartment meets
the submergence criterion. Indeed, as the y-coordinate of the curve of floodable
lengths is equal to half the length Lp, we obtain on the horizontal axis a length
AB = Lp/(p,F), that is the permissible length. It is larger than the length of
the compartment. To draw the lines at 45° we can use commercially available
set squares (triangles). If we plot both x and y values at the same scale, we must
draw check lines at an angle equal to arctan 2; there are no set squares for this
angle.

In Figure 11.7, we can identify the properties common to all curves of floodable
lengths and give more insight into the flooding process.
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1. At the extremities, the curve turns into straight-line segments inclined 45°
with respect to the horizontal. Let us choose any point of the curve in that
region. Drawing from it lines at 45°, that is descending along the first or the
last curve segment, we reach the extremities of the ship. These are indeed the
limits of the floodable compartments at the ship extremities because there is
no vessel beyond them.

2. The straight lines at the ship extremities rise up to local maxima. Then
the curve descends until it reaches local minima. Usually the ship breadth
decreases toward the ship extremities and frequently the keel line turns up.
Thus, compartment volumes per unit length decrease toward the extremities.
Therefore, floodable lengths in that region can be larger and this causes the
local maxima.

3. As we go towards the midship the compartment volumes per unit length
increase, while still being remote from the midship. Flooding of such com-
partments can submerge the margin line by trimming the vessel. Therefore,
they must be kept short and this explains the local minima.

4. The curve has an absolute maximum close to the midship. Flooding in that
region does not cause appreciable trim; therefore, floodable lengths can be
larger.

The term 'curve of floodable lengths' is translated as

Fr Courbe des longueurs envahissable
G Kurve der flutbaren Langen
I curva delle lunghezze allagabili

A very elegant method for calculating points on the curve of floodable lengths
was devised by Shirokauer in 1928. A detailed description of the method can
be found in Nickum (1988), Section 4. A more concise description is given
by Schneekluth (1988), Section 7.2. The procedure begins by drawing a set of
waterlines tangent to the margin line. For each of these lines the Naval Architect
calculates the volume and the centre of the volume of flooding water that would
submerge the vessel to that waterline. The calculations are based on Equations
such as (11.2). The boundaries of the compartment are found by trial-and-error
using the curve of sectional areas corresponding to the given waterlines.

11.7 Summary

Ships can be damaged by collision, grounding, or enemy action. A vessel can
survive damage of some extent if the hull is subdivided into watertight compart-
ments by means of watertight bulkheads. The subdivision should be designed to
make sure that after the flooding of a given number of compartments the ship can
float and be stable under moderate environmental conditions. The subdivision
of merchant ships should meet criteria defined by the international Convention
on the Safety of Life at Sea, shortly SOLAS. The first SOLAS conference was
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convened in 1914, following the Titanic disaster. It was followed by the 1929,
1948,1960 and 1974 conventions. The latter conference, completed with many
important amendments, is in force at the time of this writing. Warships are subject
to damage regulations defined by the respective navies.

The SOLAS convention defines as bulkhead deck, the deck reached by the
watertight bulkheads. The margin line is a line passing at least 76mm (3 in)
below the side of the bulkhead deck. If the bulkhead deck is not continuous, the
margin line should be defined as a continuous line that is everywhere at least
76 mm below the bulkhead deck. The term floodable length refers to a function
of the position along the ship length. For a given position, say P, the floodable
length is the maximum length of a compartment with the centre at P and whose
flooding will not submerge the vessel beyond the margin line.

Let v be the volume of a compartment calculated from its geometrical dimen-
sions. Almost always there are some objects in the compartment: therefore, the
net volume that can be flooded, VF, is less than v. We call the ratio /x = vp/v vol-
ume permeability. The same objects that reduce the volume that can be flooded,
reduce also the free surface area that contributes to the free-surface effect. We
define a surface permeability as the ratio of the net free surface to the total
free surface calculated from the geometric dimensions of the compartment. The
moment of inertia of the free-surface calculated from the geometry of the com-
partment should be multiplied by the surface permeability.

There are two methods of calculating the properties of a flooded vessel: the
method of lost buoyancy and the method of added weight. In the method of lost
buoyancy we assume that a damaged compartment does not provide buoyancy.
The displacement of the vessel and the centre of gravity do not change. The ship
must change position until the undamaged compartments provide the buoyancy
force and moments that balance the weight of the vessel. As the flooding water
does not belong to the vessel, but to the surrounding environment, it does not
cause a free-surface effect. This method corresponds to what happens in reality;
it is the method used by computer programmes. In the method of added weight
we consider the flooding water as a weight added to the displacement. The
displacement and the centre of gravity change until the equilibrium of forces
and moments is established and the level of flooding water is equal to that of the
surrounding water. As the flooding water is now part of the vessel, it causes a free-
surface effect. The two methods yield the same final equilibrium position and the
same righting moment, AGM sin </>, in damage condition. As the displacements
are different, the metacentric heights, GM also are different so as to yield the
same product AGM.

SOLAS and other codes of practice also prescribe damage-stability criteria.
For example, some criteria specify minimum value and range of positive residual
arms and of areas under the righting-arm curve. Flooding and damage stability
can be studied on ship models, in test basins, or by computer simulation. A paper
dealing with the former approach is that of Ross, Roberts and Tighe (1997); it
refers to ro-ro ferries. A few papers dealing with the latter approach are quoted
in Chapter 13.
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11.8 Examples

Example 11.1 -Analysis of the flooding calculations of a simple barge
This example is taken from Schatz (1983). We consider the box-shaped barge
shown in Figure 1 1.8, assuming as initial data Vi = 1824 rn3, KG — 3.0 m, and
LCG = 0 m. These values were fed as input to the programme ARCHIMEDES,
together with the information that Compartments 2.1 and 2.2 are flooded. The
permeabilities of the two compartments are 1 . Using various run options of the
programme, we calculate the properties of the intact hull, of the flooded hull,
and of the flooded volume. The results are shown in Table 1 1.3.

The programme ARCHIMEDES uses two systems of coordinates. A system
xyz is attached to the ship. The ship offsets, the limits of compartments, the
displacement and the centre of gravity are input in this system. The programme is
invoked specifying the numbers of the flooded compartments. The calculations
are run in the lost-buoyancy method and the results are given in a system of
coordinates, £??(", fixed in space. In this example, only the trim changed. A
sketch of the coordinate systems involved is shown in Figure 11.9. The data of
the damaged hull and of the flooded compartments, columns 3 and 4 in Table 1 1 .3
are given in the ££ system. To get more insight into the process let us check if
the results fulfill the equations of equilibrium (1 1 .2). To do this we must use data
expressed in the same system of coordinates. For example, we transform the
coordinates of the centre of gravity using an equation deduced from Figure 11.9:

+ — LCGcosip -{-KG sin (11.5)

First, we calculate

trim -1.092
ip — arctan —— — arctan = 0.823

Lrm 76

Dimensions in m

* ln * - 19

, 1
5

J2 f

Compartment
1

Compt. 2.2

Compt. 2.1

Compartment
3

Compartment
4

Figure 11.8 A simple barge - damage calculation
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Table 11.3 Simple barge - Compartments 2.1 and 2.2 flooded

Draught, m
V, m3

A,t
KG,m
LCG, m, from midship
LCB, m, from midship
Trim, m
~KB,m
BM,m
GM, m
FS moment of inertia

Intact
condition

1.999
1824.000
1869.600

3.000
0.000
0.000
0.000
0.750
1.389
4.001

Damaged,
hull

2.711
2472.682
2534.500

2.670
-1.092

1.337
4.427

Flooded
compartment

2.711
649.294

665.5628
1.285

-9.671

-1.092
0.915
1.139
0.454

2736.276

The moment of the intact-displacement volume about the midship section, in the
trimmed position, is

Vi(LCGcos^ + ~KGsm^) = 1824(0 x cos(-0.823°) + ssin(-0.823°)

- -78.616 m4

The moment of the flooded compartment equals

v-lcg = 649.294 x (-9.671) = -6279.322 m4

W,

Figure 11.9 A simple barge - coordinate systems used in calculations
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The moment of the flooded barge resulting directly from hydrostatic calcula-
tions is

VF - LCFF = 2472.682 x (-2.570) - -6354.793 m4

The deviation between the two moments is less than 0.05%; the equilibrium
of moments is fulfilled. As to the equilibrium of forces, we can easily see that
1824 + 649.294 is practically equal to 2472.682.

The programme ARCHIMEDES, like other computer programmes, carries out
calculations by the lost-buoyancy method. Then the final displacement volume
remains equal to the intact volume, 1824m3, while the calculated metacentric
height, GM, is 2.858 m. The righting moment for small heel angles, in the lost-
buoyancy method, is

MRL = 1.025 x 1824 x 2. 858 sin 0 = 5342.3sm</>tm

As an exercise let us compare this moment with that predicted by the added-
weight method. Hydrostatic calculations for the damaged barge yield KM —
5.764m. Capacity calculations for the compartments 2.1 and 2.2 give a total
volume of flooding water equal to 649.294m3, with a height of the centre of
gravity at 1.286m. In Table 11.4, we calculate the damage displacement and
the coordinates of its centre of gravity in the added-weight method. Capacity
calculations for the flooded compartments yield a total moment of inertia of
the free surfaces, i — 2736.276m3. The corresponding lever arm of the free
surface is

i 2736.276
V 247394

The resulting metacentric height is

GM A = KM - KGA -1F = 5.764 - 2.550 - 1.106 = 2.107m

and the righting moment for small heel angles, in the added-weight method

MRA = pVAGMAsin0 = 1.025 x 2473.294 x 2.107sin ̂

= 5341.7sm0tm

Due to errors of numerical calculations the values of MRL and MRA differ by
0.03%; in fact they are equal, as expected.

Table 11.4 Simple barge - added-weight calculations

Intact hull
Flooding water

Volume
(m3)

1824.000
649.294

kg
(m)

3.000
1.286

Moment
(m4)

5472.000
834.992

leg
(m)

0.000
-9.671

Moment
(m4)

0.000
-6279.322

Flooded hull 2473.294 2.550 6306.992 -2.539 -6279.322
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Table 11.5 Flooding calculations - a comparison of methods considering
permeability

Draught, m
V,m3

A,t
KB,m
BM,m
KG,m
GM, m
AGM, tm

Intact
condition

1.500
150.000
153.750

0.750
1.389
1.500
0.639

98.229

Damaged,
lost buoyancy

1.829
150.000
153.750

0.915
1.139
1.500
0.554

85.104

Damaged,
by added weight

1.829
182.927
187.500

0.915
1.139
1.395
0.454

85.104

11.9 Exercise

Exercise 11.1 - Comparison of methods while considering permeability
In Subsections 11.3.1 and 11.3.2, we compared the lost-buoyancy method to
the added-weight-method, but, to simplify things, we did not consider perme-
abilities. This exercise is meant to show the reader that even if we consider
permeabilities, the two methods yield the same draught and the same righting
moment in damage condition. The reader is invited to redo the calculations in
the mentioned sections, but under the assumption that the volume and surface
permeabilities of the flooded compartment equal 0.9.

A hint for using the method of lost buoyancy is that the waterplane area,
LB, is reduced by the floodable area of Compartment 2, ^Bl. The hint for the
method of added weight is that the volume of flooding water equals f^lBT^,
where TA is the draught in damage condition. The results should be those shown
in Table 11.5.



12
Linear ship response
in waves

12.1 Introduction

The title of the book is 'Ship hydrostatics and stability'. This chapter describes
processes that are not hydrostatic, but can affect stability. We elaborate here on
some reservations expressed in Section 6.12 and sketch the way towards more
realistic models. First, we need a wave theory that can be used in the description
of real seas. Therefore, we introduce the theory of linear waves. Next, we show
how real seas can be described as a superposition of regular waves. This leads
to the introduction of sea spectra. A floating body moves in six degrees of
freedom. The oscillating body generates waves that absorb part of its energy.
The integration of pressures over the hull surface yields the forces and moments
acting on the body. We return here, without detailing, to the notions of added
mass and damping coefficients introduced in Section 6.12. A full treatment
would go far beyond the scope of the book; therefore, we limit ourselves to
mentioning a few important results.

The problems of mooring and anchoring deserve special treatment and their
importance has grown with the development of offshore structures. We cannot
discuss here the behaviour of compliant floating structures, that is moored
floating structures, but give an example of how the mooring can change the
natural frequencies of a floating body. We mention in this chapter a few methods
of reducing ship motions, mainly the roll. This allows us to show that under very
particular conditions, free water surfaces can help, a result that seems surprising
in the light of the theory developed in Chapter 6.

The models introduced in this chapter are too complex to yield explicit mathe-
matical expressions that can be directly applied in engineering practice. It is only
possible to implement the models in computer programmes that yield numeri-
cal results. The input to such programmes is a statistical description of the sea
considered as a random process. Correspondingly, the output, that is the ship
response, is also a random process.

This chapter assumes the knowledge of more mathematics than the rest of
the book. Mathematical developments are concise, leaving to the interested
reader the task of completing them or to refer to specialized books. The reader
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who cannot follow the mathematical treatment can find in the summary a non-
mathematical description of the main subjects.

12.2 Linear wave theory

In Subsection 10.2.3, we introduced the theory of trochoidal waves. Trochoidal
waves approximate well the shape of swells and are prescribed by certain codes
of practice for stability and bending-moment calculations. Another wave theory
is preferred for the description of real seas and for the calculation of ship motions;
it is the theory of linear waves. The basic assumptions are

1. the sea water is incompressible;
2. there is no viscosity, i.e. the sea water is inviscid;
3. there is no surface tension;
4. no fluid particle turns around itself, i.e. the motion is irrotational;
5. the wave amplitude is much smaller than the wave length.

The first assumption, that of incompressibility, is certainly valid at the small
depth and the wave velocities experienced by surface vessels. This is a sub-
stantial difference from phenomena experienced in aerodynamics. Excepting
roll damping, the second assumption, the lack of viscous phenomena, leads to
results confirmed by experience. For roll, certain corrections are necessary; often
they are done by empiric means. Surface tension plays a role only for very small
waves, such as the ripple that can be seen on the surface of a swell. We shall see
how the fourth hypothesis, that is irrotational flow, makes possible the devel-
opment of an elegant potential theory that greatly simplifies the analysis. The
fifth hypothesis, low-amplitude waves, is not very realistic; surprisingly, it leads
to realistic results.

We consider two-dimensional waves, that is waves with parallel crests of
infinite length, such as shown in Figure 12.1. The crests are parallel to the y
direction and we are only interested in what happens in the x and z directions.
Let u be the horizontal and w the vertical velocity of a water particle. We note by
p the water density. The theory of fluid dynamics shows that the rate of change
of the mass of a unit volume of water is

d(pu) d(pw)
dx dz

The density of an incompressible fluid, p, is constant. Then, the condition that
the mass of unit volume of water does not change is expressed as

Equation (12. 1) is known as the equation of continuity; it states that the diver-
gence of the vector with components u, w is zero. The assumption of irrotational
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Figure 12.1 Two-dimensional waves: swell

motion is expressed by the condition that the curl of the vector with components
u, w is zero. In two dimensions this is

dx dz

We define a velocity potential, 3>, such that

d$> <9$
u — w —

~d~z

(12.2)

(12.3)

These expressions verify, indeed, Eq. (12.2). Substituting Eq. (12.3) into Eq. (12.1)
yields the Laplace equation

(12.4)

This equation must be solved together with a set of boundary conditions. Let
((#, z, t) be the elevation of the free surface and z the vertical coordinate
measured from the mean water surface upwards. In simple terms, £ represents
the wave profile. The kinematic condition

dz'
at 2 = 0 (12.5)

states that the vertical velocity of the wave surface equals the vertical velocity
of a water particle at the mean water level. This is an approximation acceptable
for small wave amplitudes.

The dynamic free-surface condition states that the water pressure on the
wave surface is equal to the atmospheric pressure

d&V
dx)

= 0 on z = £(z, y, 2) (12.6)
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Assuming small wave amplitudes we can neglect the squares of particle velocities
and thus we remain with the condition

^+^=0 , at * = 0 (12.7)
at

From Eqs. (12.5) and (12.7) we obtain the linearized free-surface condition

Additional boundary conditions must be written for the sea bottom, for walls that
limit the water domain, and for the surfaces of bodies floating in that domain.
As the water does not pass through such boundaries, the velocity components
normal to such boundaries should be zero.

Let the wave length be A, and the wave number k — 1ir/\. The vertical
coordinate of a water particle is z — 0 at the mean sea level, and z = — d, at
the depth d. We give the results of the theory for infinite-depth water as these
are the most interesting for sea-going ships. We leave to an exercise the proof
that these results fulfill the Laplace equation and the boundary conditions. The
solution that interests us is the potential

LU

The equation of the sea surface is

C - C o sin(ut-kx) (12.10)

The following relationship exists between the wave length, A, and the wave
period, T,

X=~-T2 (12.11)

Figure 12.2 shows the propagation of the wave described by Eq. (12.10). The
wave period is T = 6.5 s, and the wave length given by Eq. (12.11) is A =
65.965 m. The wave height, H = 2£b» equals A/20, a ratio often used in Naval
Architecture.

The speed of propagation of the wave shape is called celerity, a term that
comes from the Latin 'celeritas', speed. From Eq. (12.11) we find the celerity

We immediately see that long waves propagate faster than short waves. Therefore,
we say that water waves are dispersive. Acoustic waves, for example, are not
dispersive.

The components of the water-particle velocity are

u = uCo efcz sm(vt - kx) (12.13)

w = o;Co efcz cos(u;t - kx) (12.14)
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T= 6.5 s, A=65.9653m
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Figure 12.2 The propagation of a linear wave

We invite the reader to use the latter equations and prove that in infinite-depth
water, the particles move on circular orbits whose radii decrease with depth. At a
depth equal to about one-half wave length the orbital motion becomes negligible.

Figure 12.3 shows the orbit of a water particle at the surface of the wave
represented in Figure 12.2. The orbital velocities, u and v, are shown at two time
instants, i.e. t — 1 s and t — 4 s.

12.3 Modelling real seas

We can register the elevation of the sea at a given point and obtain a function
of time C = f ( t ) . Alternatively, we can consider the sea surface at a given
time instant, to, and a given coordinate yo- Then, we can register the elevations
along the x-axis and obtain a function £ = g ( x ) . Both representations have an
irregular aspect in the sense that there is no pattern that repeats itself. The linear
wave theory allows us to represent the sea surface as the superpositon of a large
number of sine waves, that is

N
C — E (12.15)
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7 = 6.5s, A=65.9653m
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Figure 12.3 Orbital velocities at the sea surface

where Ai is the wave amplitude, c^ the angular frequency, ki the wave number,
and €i the phase of the ith wave. We assume that the numbers e^ are random
and uniformly distributed between 0 and 2?r. To explain how the superposition
of sine waves can produce an irregular sea we refer to Figure 12.4. The lower
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Figure 12.4 The superposition of four waves
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curve represents the sum of the four sine waves plotted above it. A periodical
pattern can still be detected; however, as the number of components increases,
any periodicity disappears and there is no pattern that repeats itself.

As the wave phases, e$, are random, the sea surface is a random process. Let us
consider a segment of a wave record, such as in Figure 12.5. We distinguish two
types of trough-to-crest heights. When measuring the height HI, the trough and
the crest lie on two sides of the mean sea level, while H2 is measured between
two points on the same side of the mean sea level. Experience shows that heights
of the first type, HI, follow approximately the Raleigh distribution

f(H) =
4m0

The mean height is

Hm =

(12.16)

(12.17)

An important characteristic is the significant wave height defined as the mean
of the highest third of the wave heights

/>oo

#1/3 = / Hf(H)dh
JHQ

where HQ is defined by

f ( H ) d h = -

(12.18)

(12.19)
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Figure 12.5 For the definition of the significant wave height
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The significant height allows the calculation of other characteristics, for example
the sea spectrum. A natural question arises: given the significant height, #1/3,
what is the maximum wave height, Hmaxi that can be expected? It appears that
the larger the number of waves considered, the higher the maximum wave height
that can be expected. Using data in Bonnefille (1992) we find that Hmax/#i/3
varies from 1.2 for a sample of ten waves, to 1.92 for 1000 waves.

Let us return now to Eq. (12.15). It can be shown that the total energy of N
wave components, per unit sea area, equals

(12.20)
1=1

To define the wave spectrum, S(u), we consider a band extending from ujj to
ujj -f ACJ and write

S(uj)&u = -A2 (12.21)

where A^ is the amplitude of the wave component in the frequency band con-
sidered by us. For example, in Figure 12.6 we consider the band of breadth ACJ
centred around 0.8 rad s"1. In this case A2/2 — 0.08 m2s. The area of this band,
like the whole area under the spectrum curve, is measured in m2.

The wave spectrum describes the distribution of wave energy versus wave
angular frequency. At the end of Section 12.4 we shall find an important use of
this concept. Wave spectra can be obtained from measurements. A number of
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Figure 12.6 A Pierson-Moskovitz spectrum
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formulae have been proposed for calculating standard spectra on the basis of a
few given or measured sea characteristics. We shall give only one example, the
Pierson-Moskovitz spectrum as described by Fossen (1994)

S = AcT5 e~Buj~4 m2s (12.22)

where

A = 8.1 x 10~Vm2s~4

B = 0.0323 ( -%— ) s~4

V#l/3/

This spectrum corresponds to fully developed seas recorded in the North Atlantic;
an example is shown in Figure 12.6. The theory of linear waves exposed in this
section is a first-order approximation in which the wave shape moves, but there
is no mass transport. This approximation is sufficient for moving ships as their
speed is usually larger than the 'drift' caused by waves. For stationary structures
it may be necessary to consider higher order approximations that predict a drift.

12.4 Wave induced forces and motions

Like any other free body, a ship moves in six degrees of motion; we describe
them with the aid of Figure 12.7. The six motions of a ship have traditional names
that were adopted in the previous century also for planes and cars. We follow the
notation of Faltinsen (1993). Three motions are linear; they are described below.

1. Surge, along the x-axis; we note it by 771.
2. Sway, in the direction of the t/-axis; we use the notation 772.
3. Heave, along the z-axis; we note it by r/2.

The other three degrees of freedom define angular motions, as detailed below.

1. Roll, around the x-axis; we note it by 773.
2. Pitch, around the y-axis; we use the notation 775.
3. Yaw, around the z-axis; it is noted by 77$.

The motion of any point on a floating body is the resultant of all six motions

s = rjii + 772J 4- 773k + u x r (12.23)

where i is the unit vector on the x-axis, j, the unit vector on the y-axis, k, the unit
vector on the z-axis, and x denotes the vector product. The rotation vector is

v = 774! + T/5J 4- r?6k

LL
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Figure 12.7 Ship motions - definitions

and the position vector of a point with coordinates x, y, z is

r = xi + yj + zk (12.24)

For example, the vertical motion of the point with coordinates x, y, z is the
resultant of the heave, roll and pitch motions

For particular purposes we can write an equation of motion in one degree of
freedom, without considering the influence of the motions in the other degrees
of freedom. We say that such equations describe uncoupled motions. Thus,
in Section 6.7 we developed a non-linear equation of roll, the non-linear term
being pAGZ. In Section 6.8 we linearized the equation for small roll angles. We
neglected the damping term that for roll is non-linear. An example of an uncou-
pled roll equation with linear damping and a forcing term due to a trochoidal
wave is given by Schneekluth (1988)

di2
(12.25)

where n is a linear damping coefficient, o;n4 is the ship natural angular frequency
in roll, Co is the wave amplitude, and cj\y, the wave angular frequency.

Equations for uncoupled pitch motion can be developed in the same way as
those of roll, substituting GM\. for GM. For example, Schneekluth (1988) gives
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the following equation for undamped pitch

sin — - 0
^E

(12.26)

where i^ is the radius of inertia of the ship mass about the Oy axis, 7 is the
maximum pitch amplitude, and TE is the period of encounter. Obviously

2/55

is the ship natural, angular frequency in pitch, and

27T

(12.27)

is the angular frequency of encounter.
We use Figure 12.8 to develop an equation of the uncoupled heave motion

(m + ^33)773 + 6773 + pgAwr]3 = cos (12.28)

Above, we assumed that the wave length is large compared to the dimensions of
the waterplane. In Figure 12.8(b) we see a mass-dashpot-spring analogy of the
heaving body. This analogy holds only for the form of the governing equations.
In Figure 12.8(b) the damping coefficient, 6, is a constant. In Figure 12.8(a) the
added mass in heave, ^33, and the damping coefficient, 6, are functions of the

(m + -A33)?73 -f 6773 + /cr/3 = F
k = pgAyj

F = pgAwCo cos ut m x -h

Wave SL rface

A/v —

Waterplane

area

m

= Co cos cut

F=

(a) A floating body (b) A mass-spring-damper system

Figure 12.8 A heaving, floating body as a second-order dynamic system
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frequency of oscillation. After the extinction of transients, that is in steady state,
the frequency of oscillation is equal to the exciting frequency, that is the wave
frequency, o>w, for a body that does not move, and the frequency of encounter,
CJE, for a moving, floating body.

Let us return to the terms that are proportional to motion in the equations of
roll, pitch and heave

These terms represent two hydrostatic moments and one hydrostatic force that
oppose the motion and tend to return the floating body to its initial position. The
collective name for those moments and force is restoring forces. Only the roll,
pitch and heave motion are opposed by hydrostatic restoring forces. There are
no hydrostatic restoring forces that oppose surge, sway or yaw.

The equations of uncoupled motions are simplified models that allow us to
reach a few important conclusions. In reality, certain couplings exist between the
various motions. Thus, we already know that during roll the centre of buoyancy
moves along the ship causing pitch. As pointed out by Schneekluth (1988), the
combination of roll and pitch motions causes an oscillation of the roll axis and
induces yaw. Also, the combination of roll and pitch induces heave. Moreover,
one motion can influence the added masses and the damping coefficients of other
motions. The most complete model of coupled motions is

(M + A)f? + Brj + Crj = Re(Fe~ia;E<) (12.29)

Above, M is a 6-by-6 matrix whose elements are the ship mass and its moments
of inertia about the three axes of coordinates, and A is a 6-by-6 matrix of added
masses (general term including added masses and added moments of inertia).
The vectors of motions, speeds and accelerations are

77 = 77 =

1J2

The expression Re(Fe la;Et) means the real part of the vector of sinusoidal
exciting forces and moments.

For a ship displaying port-to-starboard symmetry a part of the elements of the
matrix M are zero, and another part are symmetric. The system of six ordinary
differential equations can be simplified in many practical situations. Thus, for a
floating structure presenting symmetry about the xOz plane, and with the centre
of gravity in the position (0, 0, ZG), Faltinsen (1993) shows that the matrix of
inertias becomes
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M
0
0
0

MZG
0

0
M
0

-MzG

0
0

0
0
M
0
0
0

0
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0
h
0

~/46

MzG
0
0
0
/5

0

0
0
0

~/46
0

J6

where M is the mass of the floating body, /4, the moment of inertia about the
x-axis, 746, the product of inertia about the x- and z-axis, and /6, the moment
of inertia about the z-axis. Certain symmetries also can appear in the matrices
of added masses, A, and damping coefficients, B. Remember, added masses
and damping coefficients are functions of the frequency of oscillation. For a
structure symmetric about the xOz plane the motions of surge, heave and pitch
(vertical-plane motions) can be uncoupled from those of sway, roll and yaw.

The equations shown above are linear. Then, if for a wave amplitude equal
to 1 the resulting motion amplitude is 7?a, for a wave amplitude equal to A the
motion amplitude will be Arj&. Further, the principle of superposition applies
to motions as it applies to waves. The response to the sum of several waves is
the sum of the responses to the individual waves. Then, if we characterize the
exciting waves by their spectrum, we can characterize the resulting motion by a
motion spectrum.

In Subsection 6.9.5 we introduced the concept of transfer function for a simple
case of roll motion. The transfer function obtained from a differential equation
such as those shown in this chapter is a function of frequency. Let the transfer
function of the ith motion be Yi(u). The spectrum of the respective motion,
Sjj. (a;), is related to the wave spectrum, /^(u;), by the relationship

S,» = [Y^Y^-u]} S»(u) (12.30)

The expression between square brackets is called response amplitude operator,
shortly RAO. The response amplitude operators of the various motions can be
obtained from the coupled equations of all motions. All motions occur at the
frequency of the exciting force, but have different phases.

12.5 A note on natural periods

If a linear mass-dashpot-spring system, such as that shown in Figure 12.8(b),
is excited by a force whose period is close to that of the system, the response
amplitude can be very large; we talk about resonance. Theoretically, at zero
damping the response is unbounded. In practice any physical system is damped to
a certain extent and this limits the response to bounded values. Large-amplitude
oscillations reduce the performance of the crew and the equipment and, therefore,
they should be avoided.

A very efficient means of avoiding resonance is to ensure that the natural period
of the floating body is remote from that of the waves prevailing in the region
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of operation. In general, it is not possible to change the natural periods of ships
because their designs must meet other important requirements. It is possible to
change the natural periods of moored platforms, such as those used in offshore
technology. To show an example let us refer to Figure 12.8(a). The natural period
of the undamped and uncoupled heave motion of the shown body is

= 27T
M+ ^33

pgAw

Let us assume that the floating body is moored as shown in Figure 12.9.
The mooring cable is tensioned; it pulls the floating body down increasing its
draught beyond the value corresponding to its mass, M. Thus, if we note by V
the submerged volume, and by Tc the tension in the cable, we can write

If the floating body is an offshore platform, we call it tension leg platform,
shortly TLP. When the floating body oscillates vertically, the hydrostatic force
that opposes the heave motion is that predicted in Figure 12.8. An additional
force develops in the cable; its value, according to the theory of elasticity, is

AE
(12.31)

where A is the sectional area of the cable, E, the Young modulus of the material
of the cable, and t, the cable length. This second force is usually much larger than

Static forces

pgv

v.=
submerged
volume = tension in cable

Figure 12.9 A tension-leg floating body
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the hydrostatic force. Then, a good approximation of the uncoupled, undamped
natural period of heave is

(1232)

and it can differ much from that of the unmoored platform. Lateral mooring lines
act like non-linear springs and can change the periods of other motions.

Natural periods can change temporarily when a ship enters confined waters.
The added masses are influenced by close vertical walls and by a close bottom.
Schneekluth (1988) cites the case of a barge with a B/T ratio equal to 2. When
performing the roll test in a depth equal to 1.25T, the added mass in roll was
found to be 2.7 times larger than in deep water. The measured roll period appeared
larger than in deep water, leaving the impression that the stability was worse
than in reality. Schneekluth appreciates that the added mass in roll, ^33, is
approximately 15% of the ship mass, M, and that bilge keels increase the added
mass by approximately 6%.

12.6 Roll stabilizers

There are many systems of reducing roll amplitude; their aim is to produce forces
whose moment can be added to the righting moment. The simplest and cheapest
system is represented by the bilge keels; they are steel profiles assembled on
part of the ship length, close to the bilge. Bilge keels act in two ways. First, a
hydrodynamic resistance force develops on them; it is opposed to the roll motion.
Second, bilge keels cause vortexes that increase the viscous damping of the roll
motion. As shown in the previous chapters, some codes of stability acknowledge
the contribution of bilge keels and provide for corresponding corrections of some
requirements. Bilge keels are passive devices.

Roll fins are wing-shaped bodies that extend transversely; usually they can
be rotated by a control system that receives as input the roll angle, velocity
and acceleration. The forward ship velocity causes hydrodynamic forces on the
wings, forces that oppose the roll motion. No helpful forces are produced at
low ship speeds. Rudders can be used as active anti-roll devices. Their action is
coupled with other motions and influences manoeuvering.

We do not expand on the devices mentioned above, but prefer to concentrate
on another possibility because its relation to stability is evident and because
it contradicts to some extent the theory that any liquid free surface endangers
stability. We mean anti-roll tanks. To explain their action we use a simple
mechanical analogy. We consider a classical oscillating system composed of a
mass, a spring and a dashpot. If a smaller mass is attached to the main mass
by a spring, and if the second mass and spring are properly dimensioned, their
vibration damps the oscillations of the main mass. This is the principle of the
Frahm vibration absorber. In a similar mode, if two tanks, one on starboard,
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the other on the port side, are connected by a pipe, and water flows between them
in a certain phase to the roll motion, this cross-flow opposes the roll motion. The
main mass-spring-damper system above is the analogue of the ship and the small
mass-spring system is the analogue of the anti-roll tanks.

We consider in Figure 12.10(a) a system composed of the mass mi, the linear
spring &i, and the viscous damper (dashpot) c, and an auxiliary system composed
of the mass 7712 and the linear spring k2. A sinusoidal force, FQ sin ut, acts on
the main mass, mi. The position of the mass mi is measured by the variable xi,
that of the mass rn2 by the variable x2. If properly 'tuned', the auxiliary system
(&2, 7712)» 'absorbs' the forced vibrations of the main system. To show this we
first write the equations that govern the behaviour of the composed system. The
first Eq. (12.33) describes the forces that act on the mass mi, and the second
equation refers to the forces acting on the mass m2,

mi
d x~\

— r-
at*

dx~\
— — - + kiXi -f k2(xi - #2) —
at

sin ut

-rr + k2(x2 -
at

= 0 (12.33)

We assume that the initial conditions are all zero, that is x\ = 0, dxi/dt = 0,
x2 = 0, dx2/dt — 0. Taking Laplace transforms and noting with s the Laplace-
transform variable, with X\(s) the Laplace transform of x\(t), and with Xz(s)
that of X2, we obtain

[mis2 + cs k2]Xl(s) - k2X2(s} = 2
 QW

 2

Eliminating X2(s) from Eq. (12.34) we arrive at

_ _ F$u m2s
2 + k2X i ( s ) =

s2 4- cj2 (m2s cs k2 -

(12.34)

(12.35)

c

hCH

(a) I (b)

Figure 12.10 (a) A Frahm vibration absorber, (b) Flume tanks
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Let us choose k^/m^ = t^2, i.e. we tune the auxiliary system to the exciting
frequency w. Then, the Laplace transform of the amplitude of oscillation of the
main mass, mi, becomes

Xi(s) = (12.36)
(mis2 + k2)(mis2 -f cs -f ki -f- k2) - k\

Churchill (1958) shows that the roots of the denominator (poles) have negative
real parts so that the oscillation x\ (t) is damped. A simulation of a system with
a Frahm vibration absorber is shown in Example 12.1.

In Figure 12.10, we sketch a section through a ship equipped with flume
tanks. A transverse pipe connects the two tanks. The flow of water between the
two sides can be controlled by throttling the pipe or by acting on the outflow of
air above the free surfaces. The water in the flume tanks causes a free-surface
effect. Therefore, a tradeoff is necessary between the benefits of roll stabilizing
and the disadvantage of reducing the effective metacentric height.

A friend of this author, Shimon Lipiner, described years ago an experiment
carried out at the University of Glasgow. Tests on the model of a Ro/Ro ship were
meant to show how disastrous can be the effect of water on the uninterrupted
car deck. For the particular parameters involved in that experiment, the observed
effect was a reduction instead of an increase of the roll amplitude. The water on
deck acted then as a Frahm stabilizer. Figure 12.11 reproduced from McGeorge
(2002) by courtesy of Butterworth-Heinemann describes the action of a passive
tank stabilizer.

ROLL CENTRE f

WEIGHT OF
WATER ,

(b)

(C) (d)

Figure 12.11 Brown-NPL pasive tank stabiliser: (a) Stern view of ship with
passive tank rolled to starboard. The water is moving in the direction shown,
(b) Ship rolling to port. The water in the tank on the starboard side provides
a moment opposing the roll velocity, (c) Ship at the end of its roll to port.
The water is providing no moment to the ship, (d) Ship rolling to starboard.
The water in the tank on the port side provides a moment opposing the roll
velocity
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12.7 Summary

To calculate the motion of a floating body in real waves we need an adequate
description of a real sea. Therefore, we consider the real sea as the result of the
superposition of a large number of linear waves. The theory of linear waves is
based on the following assumptions:

1. the sea water is incompressible;
2. the sea water is inviscid (no viscous effects);
3. surface tension plays no role;
4. no water particle turns around itself (irrotational motion);
5. the wave amplitude is small compared to the wave length.

The above assumptions allow the development of an elegant theory in which the
velocities of water particles can be derived from a velocity potential. The record
of sea elevations in a fixed point is a function of time in which we cannot find
any pattern that repeats itself. We can, however, characterize the sea by statistical
quantities. One important example is the significant wave height defined as the
mean of the highest third of trough-to-crest heights. The heights are measured
between trough and crests situated on different sides of the sea level.

Another statistical characteristic of the sea is the wave spectrum, actually the
distribution of wave energy as function of the wave frequency. Sea spectra can
be measured or can be calculated on the basis of sea characteristics, such as the
significant wave height. Formulae for standard spectra have been proposed for
various ocean or sea regions.

Floating bodies move in six degrees of freedom. Three motions are linear:
surge along the x-axis, sway along the y-axis, and heave along the z-axis, where
the axes of coordinates are those defined in Chapter 1. The other three motions
are angular: roll around the x-axis, pitch around the y-axis, and yaw around the
z-axis.

We can write a differential equation for one particular motion without consid-
ering the influence of other motions. We say then that the motion is uncoupled.
In reality certain couplings exist between motions. For example, we know from
Chapter 2 that roll induces pitch. Moreover, one motion can influence the added
masses and damping coefficients of other motions. The most general represen-
tation of motions in six degrees of freedom is by a system of six ordinary dif-
ferential equations. The port-to-starboard symmetry of many floating structures
simplifies the matrices of inertia, added masses and damping coefficients and
allow the decoupling of equations. Then, for example, we can write a system
of three equations for the vertical-plane motions, heave, surge and pitch, and
another system for sway, roll and yaw.

Moorings can change the natural frequencies of motions. An example is that of
tension-leg platforms. As the name says, the mooring 'tendons' are tensioned so
that they pull down the platform and increase its draught beyond that correspond-
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ing to the platform mass. An elastic force develops in the tensioned tendons; it
opposes heave and is much larger than the hydrostatic force developed by the
added submerged volume in heave. The natural period in heave is changed so
that it is remote from that of the waves prevailing in the region of operation.
Natural periods of ships can change in confined waters because of the proximity
of vertical walls and bottom. This effect must be avoided when performing roll
tests.

The roll amplitude can be reduced by passive devices, such as bilge keels, or
by active devices, such as roll fins. A frequently used roll stabilizer employs two
tanks (flume tanks) connected by a transversal pipe. When properly tuned, the
cross-flow between the two tanks opposes the roll motion. This is a case in which
a free surface helps. However, a tradeoff must be done between the good effect
on roll and the reduction of effective metacentric height due to the free-surface
effect of the water in the flume tanks.

12.8 Examples

Example 12.1 - Simulating a Frahm vibration absorber
Let us simulate the behaviour of a system provided with a vibration absorber,
such as described in Section 12.6. Dividing both sides of the first Eq. (12.33) by
mi and both sides of the second equation by 7712, we obtain

. , x .
H -- xi H -- (xi — X2) = — sin ut

mi mi mi

x'2 H -- (x2 - xi) = 0

We note by UQ = ki/mi the square of the natural angular frequency of the
undamped main system. According to the theory developed in Section 12.6 we
set k<2/m<2 = cj2, that is the square of the exciting frequency. We transform the
factor k'2/nrti as follows

__ _
mi m,2 mi mi

With the above notations we rewrite Eq. (12.37) as

c ' 2x\ H x\ + cjnXi -f u;^ —- (xi — X2,} — —~~ sin i
mi mi mi (12.38)

x'2 -f u;2(x2 — xi) — 0

For numerical integration we must convert the above system of two second-order
differential equations into a system of four first-order differential equations. To
do so we define the four variables
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yl — x\ the speed of mass mi
y2 = x\ the motion of mass m\
Us — %2 the speed of mass m2
y4 — X2 the motion of mass 7712

Using these notations the system of first-order differential equations becomes

c 2 2 m2 / x ^o . ,
i/i = yi - LJQy2 - u —(2/2 ~ 2/4J smut

mi mi mi

2/2 = ^ (12.39)

2/3 = -^0(2/4-2/2)

2/4 = 2/3

As shown, for example, in Biran and Breiner (2002), Chapter 14, we write the
model as the following function Frahm

%FRAHM Model of a Frahm vibration absorber.

function yd = Frahm(t, y, rm)

% Input arguments: t time, y variable, rm m2-to-ml ratio

% meaning of derivatives
% yd(l) speed of main mass ml
% yd(2) displacement of main mass ml
% yd(3) displacement of absorbing mass m2
% yd(4) displacement of absorbing mass m2

wO = 2*pi/14.43; % natural frequency of main system
w = 2*pi/7; % wave frequency, rad/s
c_m =0.1; % damping coefficient, c-to-ml ratio
F__m = 1 ; % exciting amplitude, F-to-ml ratio

yd = zeros(size(y)); % allocate space for y

% derivatives
yd(l) = -c_m*y(l)- w(T2*y(2) - w~2*rm* (y (2) - y(4)) - F_m*sin (w*t) ;
yd(2) = y(l);
yd(3) = -w/v2*(y(4) - y(2));
yd(4) = y(3)/ }

The ratio m2/mi appears as an input argument, rm. Thus, it is possible to play
with the rm value and visualize its influence. To call the function Frahm we
write a script file, call_Frahm; its beginning may be

%CALL_FRAHM Calls ODE23 with Frahm derivatives.
% Integrates the model of the Frahm damper,
to = 0.0; % initial time, s
tf = 100; % final integration time
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yO = [ 0; 0; 0; 0 ] % initial conditions
% call integration function for system
% without absorber
[ t, y ] = ode23(@Frahm, [ to, tf ], yO, [], 0);
subplot(3, 1, 1), plot(t, y(:, 2))

axis([ 0 100 - 5 5 ] )
Ht = text(80, 3.5, ' r_m = 0');
set(Ht, 'FontSize', 12)
Ht = title('Displacement of main mass');
set(Ht, 'FontSize', 14)

% call integration function with mass ratio 1/10

The results of the simulation are shown in Figure 12.12. The larger the rm ratio,
the more effective the absorber is. On a ship, however, large flume tanks mean
a serious reduction of the effective metacentric height and of the cargo. Hence
the need for a tradeoff between advantages and disadvantages.

Displacement of main mass

0 10 20 30 40 50 60 70 90 100

-5
0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Time scale, s

Figure 12.12 The simulation of a Frahm vibration absorber
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12.9 Exercises

Exercise 12.1 - Potential wave theory
Prove that Eqs. (12.13) and (12.14) fulfill Eq. (12.4).

Exercise 12.2 - Vertical motion
Draw a sketch to prove that the vertical motion of a ship point with coordinates
x, y, z is, indeed, as shown on page 278. In other words, show that the vector
of the vertical motion is the resultant of three vectors produced by heave, roll
and pitch.

Exercise 12.3 -A Frahm vibration absorber
Referring to Example 12.1, change the value of cm in function Frahm and study
the influence of the damping value.

Exercise 12.4 -A Frahm vibration absorber
Referring to Example 12.1 modify the file call_Frahm so as to plot also the
motion of the absorbing mass m^.

12.10 Appendix -The relationship between curl
and rotation

In Figure 12.13, we consider an infinitesimal square whose sides are dx and dz.
The horizontal speed of the lower left corner is u, and the vertical speed w. Then,
the horizontal velocity of the upper left corner is

du
u+ -^-dz

dz

and the vertical velocity of the lower right corner is

dw .
w + -7-— dx

ox

The difference of velocities between the lower left and the lower right corner
of the square causes a counter-clockwise rotation around the y-axis with the
angular speed

_
dx

The difference of horizontal speeds between the lower left and the upper left
comers causes a clockwise rotation with the angular speed around the y-axis

du
~d~z
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Figure 12.13 The relationship between curl and rotational motion

The resulting mean angular speed is

1 /dw du
2 V ~dx~ ~d~z

In three-dimensional space the curl of the vector of velocities [u, v, w] is
calculated from the determinant

curlQ-w, u, it;]) = . . .
dx dy dz
U V W

(12.40)

where i, j, k are the unit vectors in the x, y, and z directions, respectively. One
can see immediately that Eq. (12.2) says that there is no rotation around the
y-axis.

The terms corresponding to 'curl' in continental Europe are different, for
example

Fr roteur
G Rotor
I rotore



13
Computer methods

13.1 Introduction

The large amount of multiplications, summations and integrations required in
hydrostatic calculations made necessary a systematic approach and the use
of mechanical computing devices. Amsler invented in 1856 the planimeter,
a mechanical instrument that yields the area enclosed by a given curve. The
planimeter is an analogue computer. Other examples of mechanical, analogue
computers once widely used in Naval Architecture are the integraph and the inte-
grator. The integraph draws the integral curve, f* /(£)d£, °f a giyen curve,
y = f ( x ) (see Section 3.4). The integrator yields the area, the first and sec-
ond moments of the area bounded by a closed curve. When digital computers
appeared, they gradually replaced the mechanical instruments. To our knowl-
edge, the first publication of a digital computer programme for Naval Architec-
ture is due to Kantorowitz (1958). More programmes for hydrostatic calculations
appeared in the following years. Today, digital computers are used extensively in
modern Naval Architecture and computer programmes are commercially avail-
able. With the arrival of computer graphics, Naval Architects understood that they
can apply the new techniques to solve the problems of hull definition. Today,
some of the most sophisticated software packages are used for this purpose.
Moreover, once the hull surface is defined, the programmes use this definition
to perform hydrostatic and other calculations.

In this chapter we discuss concisely a few ways of using computers for the
treatment of the subjects described in the book. A detailed treatment would
require a dedicated book (for Naval Architectural graphics see Nowacki, Bloor
and Oleksiewicz, 1995). Besides this, computer software changes so rapidly that
it would be necessary to update the book at short intervals.

One of the first subjects treated in the book is the definition of the hull surface.
It is natural to begin this chapter by showing how computers are used for this
definition. To do so we first introduce a few elementary concepts of computer
graphics, and afterwards we give a few simple examples of application to hull-
surface definition.

The next subjects discussed in the book are hydrostatic and weight calcu-
lations. Correspondingly, we give in this book a few examples of computer
implementations of these matters.
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Towards the end of the book we describe simple models of dynamic ship
behaviour. We end this chapter by explaining what simulation is and give a simple
example that uses SIMULINK, a powerful toolbox that extends the capabilities
ofMATLAB.

13.2 Geometric introduction

13.2.1 Parametric curves

The ellipse shown in Figure 13.1 can be described by the Equation

(13.1)

where 2a is called major axis and 26 minor axis. In the particular case shown in
Figure 13.1, a — 3 and 6 = 2. We cannot use this implicit equation to draw the
curve by means of a computer. We can, however, derive the explicit equation

y = ±6^1 - (z/a)2 (13.2)

Major axis, 2a=6, minor axis, 2b =

2

1,5
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Figure 13.1 The plot of an ellipse
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Now, we can draw the ellipse in MATLAB using the following commands

a = 3; b = 2; X = -3: 0.01: 3;
yl = b*( l - (x/a) . ~ 2 ) . " (1 /2) ; y2 = -yl;
plot (x, yl, ' k - ' , x, y2 , ' k - ' ) / axis equal

There is another way of plotting the ellipse, namely by using a parametric
equation of the curve. An easy-to-understand example is

=
 h (13.3)

y = o sin t

where t is a parameter running from 0 to 27r. We invite the reader to show
that Eq. (13.1) can be obtained from Eq. (13.3). The MATLAB commands that
implement Eq. (13.3) are

a = 3 ; b = 2 ; t = 0 : pi/60: 2*pi;
X = a*COS (t) ;
y = b*sin (t) ;
plot(x, y, 'k-'), axis equal

The parameter t identifies any point on the curve and defines the orientation of
the curve - that is, the sense in which the parameter t increases. It is usual to
normalize it to lie in the interval [0, 1] . For example, we can rewrite Eq. (13.3) as

x = a cos 2yrt
, . 0 , (13.4)y = b sin 2?rt

where 0 < t < 1.
The concepts described in this section can be easily extended to three-

dimensional curves. Thus, the equations

x = r cos 2?rt, y = r sin 2?rt, z = pt, t = [0, 1]

describe a helix with radius r and pitch p.

13.2.2 Curvature

An important characteristic of a curve is its curvature. We refer to Figure 13.2 for
a formal definition. Let us consider the curve passing through the points A, B
and C. The angle between the tangents at the points A and B is a, and the length
of the arc AB is 5. Then

k = ̂  (13.5)
as

is the curvature at the point A. In words, the curvature is the rate of change of
the curve slope.



296 Ship Hydrostatics and Stability

/,— a
k~ ds

Figure 13.2 The definition of curvature

For a curve defined in the explicit form y = f ( x ) the curvature is given by

3/2

We see that the curvature is directly proportional to the second derivative of
y with respect to x. The curvature of a circle with radius r is constant along the
whole curve and equal to 1/r. For other curves the curvature may vary along the
curve. The radius of curvature is the inverse of curvature, that is I/A;. A most
important example is the metacentric radius, BM, defined in Subsection 2.8.2;
it is the radius of curvature of the curve of centres of buoyancy.

The curvature has a strong influence on the shape of the curve. Fairing the
lines of a ship means in a large measure taking care of curvatures. For a three-
dimensional curve we have to define a second quantity, torsion, which is a
measure of how much it bends outside of a plane. More details can be found in
books on differential geometry.

13.2.3 Splines

In Naval Architecture, the term spline designs a wood, metal or plastic strip
used to draw the curved lines of the ship. According to the Webster's Ninth New
Collegiate Dictionary, the origin of the word is unknown and it first appeared in



Computer methods 297

1756. It can be shown that, when forced to pass through a set of given points, a
spline bends so that its shape can be described by a cubic polynomial. According
to Schumaker (1981) Schoenberg adopted in 1946 the term spline functions to
describe a class of functions that approximate the behaviour of 'physical splines' .

Spline functions use polynomials to describe curves. It is easy to calculate,
differentiate or integrate polynomials. On the other hand, it may be difficult to
fit a single polynomial to a large number of points. A set of n points defines a
polynomial of degree n - 1. When n = 3, the fitted curve is a parabola that
connects the three points without oscillating. For n = 4, the curve may show
a point of inflection and as n increases the curve may oscillate wildly between
the given points. Runge (German, 1856-1927) described the phenomenon of
polynomial inflexibility; an example in MATLAB is shown in Biran and Breiner
(2002: 428-9). The general idea of the spline functions is to solve the problem
by subdividing the given set of points into several subsets, to fit a polynomial
to each subset, and to ensure certain continuity conditions at the junction of
two polynomials. For example, let us suppose that we have to fit a spline over
the interval [za, x&], and we subdivide it into two at £;, where, by definition,
xa < xi < Xb- Let y i ( x ) be the polynomial fitted over the interval [xa, Xj\ and
yi(x] the polynomial fitted over the interval [xi, xb], Obviously, we impose the
condition

For slope continuity, we also require that

A nicer curve is obtained when the curvature too is continuous, that is

Additional conditions can be imposed on the slopes of the curve at the begin-
ning and the end of the interval [xa, #&]. The set of conditions makes possible
the writing of a system of linear equations that yields all the coefficients of the
two polynomials. The extension to more subintervals is straightforward.

Let us consider in Figure 13.3 a set of points arranged along a ship station.
If the curve passes through all given points, as in Figure 13.4, we say that the
curve is an interpolating spline. Figure 13.4 was drawn with the MATLAB
spl ine function. In ship design, we may be less interested in passing the curve
through all the given points, than in obtaining a fair curve. The fitted curve is then
an approximating spline. An example obtained with the MATLAB polyf it
and polyval functions is shown in Figure 13.5. In this case the curve is a
single cubic polynomial fitted over seven points so that the sum of the squares of
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Figure 13.3 Points along a ship station

deviations is minimal, that is a least-squares fit. The two solutions described in
this paragraph do not allow the user to intervene in the fit; other solutions enable
this and they are introduced in the following sections.

13.2.4 Bezier curves

Working at Citroen, Paul de Faget de Casteljau (French, born 1930, see Bieri and
Prautzsch, 1999 and De Casteljau, 1999) developed a kind of curves that were
further developed at Renault by Pierre Bezier (French, 1910-99). These curves,
called now Bezier curves, are defined by a set of control points, BQ, BI, . . . ,
Bn, so that the coordinates of any point, P(t), on the curve, are weighted averages
of the coordinates of the control points. On the other hand, the coordinates are
functions of a parameter t= [0,1]. The curve begins at t = 0 and ends at t = 1.

Figure 13.4 An interpolating spline
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Figure 13.5 An approximating spline

The simplest Bezier curve is a straight line that connects the two points

T* R Xl

B° = ' Bl =

The coordinates of a point on the segment B0Bi are given as functions of the
parameter t

P(t)=\X]=(l-t)B0 + tB1, t = [0,
L " J

(13.8)

The above equation is in fact a formula for linear interpolation. A second-degree
curve is defined by three points, BQ, BI, 62, and its equation is

P(t) = (1 - t)2B0 + 2(1 - *)*Bi + t2B2 (13.9)

It can be shown that Eq. (13.9) describes a parabola.
A cubic Bezier curve is defined by four control points, BO, . . . , BS, and its

equation is

P(t) = (l- t)3B0 + 3(1 - t)2tBl -}- 3(1 - t)t2B2 + t3B3 (13.10)

An example is shown in Figure 13.6. We concentrate on cubic polynomials for
the simple reason that cubics are the lowest-degree curves that display inflection
points. Thus, cubic curves can reproduce the change of curvature sign present
in some ship lines. Increasing the degree of polynomials above 3 can cause
fluctuations (see above 'polynomial inflexibility') and make computation more
complex. In Example 1 3 . 1 , we give the listing of a M ATLAB function that plots
a cubic Bezier curve.
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Figure 13.6 A cubic Bezier spline
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The following properties of Bezier curves are given here without proof.

Property I The curve passes through the first and the last control point only.
In Figure 13.6, the curve passes, indeed, through the points B0 and B3 only.

Property 2 The curve is tangent to the first and last segment of the
control polygon. In Figure 13.6, the curve is tangent to the segments BoBi
andB2B3.

Property 3 The sum of the coefficients that multiply the coordinates of the con-
trol points equals 1. In spline theory, the functions that produce these coefficients
are called blending or basis functions.

Property 4 Moving one control point influences the shape of the whole curve.
Thus, in Figure 13.7, the point 63 was moved horizontally until it lies on the line
6162. We see that the curve eventually becomes a straight line. As the point
B3 is moved further to the right, a point of inflexion appears as in Figure 13.8.

The property of the tangents at the ends of a Bezier curve allows us to join
two Bezier curves so that the continuity of the first derivative is achieved. For
example, in Figure 13.9, two Bezier curves are joined at point B3, while the
point 64 lies on the straight line defined by the points 62 and B3.

The general form of a Bezier curve of degree n is

(13.11)
i=0
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Figure 13.7 Another cubic Bezier spline

where the blending function is

2.5 3.5

Jn,i(t) =
nl

t!(n-i)!
(13.12)

and 0° = 1, 0! = 1. The blending functions of Bezier curves are also known as
Bernstein polynomials.
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Figure 13.8 A third cubic Bezier spline
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-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 13.9 Combining two cubic Bezier splines

More degrees of freedom can be obtained by using rational Bezier curves
defined by

P(*) = (13.13)

The numbers Wi are called weights. We assume that all the weights are positive
so that all denominators are positive. The numerator is a vector, while the denom-
inator is a scalar. When all Wi = 1, the rational curves become the non-rational
Bezier curves described in this section. Rational Bezier curves can describe
accurately conic sections. As these sections, that is the circle, the ellipse, the
parabola and the hyperbola are second-degree curves, three control points are
necessary. The kind of curve depends on the chosen weights. An application of
rational Bezier curves to hull-surface design is given by Kouh and Chen (1992).

Examples of earlier uses of cubic or rational cubic splines to ship design can
be found in Kouh (1987), Ganos (1988) and Soding (1990). Jorde (1997) poses
a 'reverse' problem, how to define the ship lines to achieve given sectional area
curves and coefficients of form.

13.2.5 B-spllnes

It is easy to calculate points along Bezier curves. On the other hand, moving
a control point produces a global change of the curve. Another class of more
sophisticated curves, the B-spline curves, do not have this disadvantage. Moving
a point on the latter curves causes only a local change, that is a change that affects
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only the curve segment that neighbours the moved point. We give below the
recursive definition of a B-spline. Given n -f1 control points, j?i, . . . , £?n+i,
the position vector is

n+l

P(t) = ]T BiNitk(t), tmin < t < tmax, 2 < k < n + I (13.14)
1=1

Here k is the order of the B-spline, and k — 1, the degree of the polynomials
in t. The basis functions are

- { 1 11 L>i _\ £ _ t'i-f-l / i o 1 c\
n - (13.15)0 otherwise

and

A^fcO) = —^—lj^ h *+fc~* ^ H-i,fc-i— (13.16)

The set of ti values is called knot vector. If the knot values are not equally
spaced the B-spline is called non-uniform, otherwise it is called uniform. The
sum of the basis functions is

n+l

^Nitk(t) = l (13.17)
1=1

for all t.
The calculation of points along B-spline curves requires rather complex algo-

rithms that are beyond the scope of this chapter.
The NURBS, or non-uniform rational B-splines are an extension of the

B-splines; their definition is

As in Eq. (13.13), Wi are the weights. The basis functions, N^k, are defined
by Eqs. (13.15) and (13.16). A book on splines that includes historical and
biographical notes is that of Rogers (2001).

13.2.6 Parametric surfaces

Surfaces can be defined by implicit equations such as

/(x, y, z) = 0
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This form is not suitable for computer plots; a helpful form is an explicit equation
like

However, as for curves, the preferred form in computer graphics is a parametric
representation of the form

x = x(u,w), y = y(u,w], z = z(u, w)

Two parameters are sufficient, indeed, to define any point on a given surface.
As an example let us consider the upper half of an ellipsoid whose parametric
equations are

u
x — a cos TT— cos 2nw

u
y — b cos TT— sin 2nw (13.18)

Zj

u
z — c sin TT-, u = [0, 1], w = [0, 1]

When a = b — c the ellipsoid becomes a sphere with centre in the origin
of coordinates and radius 1. Then 7ru/2 is the analogue of what is called in
geography latitude, and TTW is the analogue of longitude.

Figure 13.10 shows a wireframe view of a surface obtained with Eq. (13.18).
The curve that bounds the surface at its bottom corresponds to u = 0. A net
composed of two isoparametric curve families is shown. The constant- w curves
are marked u = 0, 0.1, . . . , 1. The curve corresponding to u = 1 condenses
to a single point, the Northern Pole in the case of a sphere. For the sake of
visibility only part of the constant-it; curves are marked: w = 0.5, . . . , 0.9. As
cos 0 = cos 2?r, and sin 0 — sin 2?r, the curves w — 0 and w — 1 coincide.

Ellipsoid x2/d2 + y2//^ + z2/^2 =1,0 = 5, 6 = 3, c = 2

w=0.9

w=07
w=lD.6

Figure 13.10 The a and wnets on a parametric ellipsoidal surface



Computer methods 305

Figure 13.10 shows that a surface can be described by a net of isoparametric
curves. One procedure for generating a surface can begin by defining a fam-
ily of plane curves, for example ship stations, with the help of Bezier curves,
non-rational or rational B -splines, or NURBS, with the parameter u. Taking
then the points u = 0 on all curves, we can fit them a spline of the same kind
as that used for the first curves. Proceeding in the same manner for the points
u = 0.1, . . . , u = 1, we obtain a net of curves. Plane curves can be prop-
erly described by breaking them into spline segments and imposing continuity
conditions at the junction points. Similarly, surfaces can be broken into patches
with continuity conditions at their borders. The expressions that define the
patches can be direct extensions of plane curves equations such as those described
in the preceding sections. For example, a tensor product Bezier patch is
defined by

ij-Ji|m(u)JJ>H, u = [ 0 , 1], ™ = [0, 1]
i=0 j=0

where the control points, B^ define a control polyhedron, and Ji^m(u) and
Jj,n (w) are tne basis functions we met in the section on Bezier curves. There are
more possibilities and they are described in detail in the literature on geometric
modelling.

13.2.7 Ruled surfaces

A particular case is that in which corresponding points on two space curves are
joined by straight-line segments. For example, in Figure 13.11 we consider three
of the constant-it; curves shown in Figure 13.10. Then, we draw a straight line
from a u = i point on the curve w = 0.6 to the u = i point on the curve
w = 0.7, for i — 0, 0.1, . . . , 1. The surface patch bounded by the w = 0.6 and
the w = 0.7 curves is a ruled surface. A second ruled-surface patch is shown
between the curves w — 0.7 and w = 0.8. Ruled surfaces are characterized by
the fact that it is possible to lay on them straight-line segments.

13.2.8 Surface curvatures

In Figure 13.12, let N be the normal vector to the surface at the point P, and V,
one of the tangent vectors of the surface at the same point P. The two vectors, N
and V, define a plane, TTI, normal to the surface. The intersection of the plane TTI
with the given surface is a planar curve, say C. The curvature of C at the point
P is the normal curvature of C at the point P in the direction of V. We
note it by kn. A theorem due to Euler states that there is a direction, defined by
the tangent vector Vmin, for which the normal curvature, km-m, is minimal, and
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u=0
"W=0.8

w=0.7

w=0.6

Figure 13.11 Two ruled surfaces

another direction, defined by the tangent vector Vmax, for which the normal
curvature, /cmax, is maximal. Moreover, the directions Vmin and Vmax are
perpendicular. The curvatures kmin and /cmax are called principal curvatures.
For example, in Figure 13.12 the planes TTI and 7T2 are perpendicular one to the
other and their intersections with the ellipsoidal surface yields curves that have
the principal curvatures at the point from which starts the normal vector N. The
two curves are shown in Figure 13.13.

Figure 13.12 Normal curvatures
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Figure 13.13 Principal curvatures

The product of the principal curvatures is known as Gaussian curvature:

•**• ~ "'min ' "'max \ij.l

and the mean of the principal curvatures is known as mean curvature:

~r
(13.20)

In Naval Architecture, curvatures are used for checking the fairness of surfaces.
A surface with zero Gaussian curvature is developable. By this term we under-

stand a surface that can be unrolled on a plane surface without stretching. In
practical terms, if a patch of the hull surface is developable, that patch can
be manufactured by rolling a plate without stretching it. Thus, a developable
surface is produced by a simpler and cheaper process than a non-developable
surface that requires pressing or forging. A necessary condition for a surface
to be developable is for it to be a ruled surface. Cylindrical surfaces are devel-
opable and so are cone surfaces. The sphere is not developable and this causes
problems in mapping the earth surface. Readers interested in a rigorous
theory of surface curvatures can refer to Davies and Samuels (1996) and Marsh
(1999). The literature on splines and surface modelling is very rich. To the books
already cited we would like to add Rogers and Adams (1990), Piegl (1991),
Hoschek and Lasser (1993), Farm (1999), Mortenson (1997) and Piegl and Tiller
(1997).
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13.3 Hull modelling

13.3.1 Mathematical ship lines

De Heere and Bakker ( 1970) cite Chapman (FredrikHenrikaf Chapman, Swedish
Vice- Admiral and Naval Architect, 1721-1808) as having described ship lines
as early as 1760 by parabolae of the form

y = 1 - xn

and sections by

In 1915, David Watson Taylor (American Rear Admiral, 1864-1940) published a
work in which he used 5-th degree polynomials to describe ship forms. Names of
later pioneers are Weinblum, Benson and Kerwin. More details on the history of
mathematical ship lines can be found in De Heere and Bakker (1970), Saunders
(1972, Chapter 49) and Nowacki et al (1995). Kuo (1971) describes the state
of the art at the beginning of the 70s. Present-day Naval Architectural computer
programmes use mainly B-splines and NURBS.

13.3.2 Fairing

In Subsection 1.4.3, we defined the problem of fairing. A major object of the
developers of mathematical ship lines was to obtain fair curves. Digital comput-
ers enabled a practical approach. Some early methods are briefly described in
Kuo (1971), Section 9.3. A programme used for many years by the Danish Ship
Research Institute is due to Kantorowitz (1967a,b). Calkins et al (1989) use
one of the first techniques proposed for fairing, namely differences. Their idea
is to plot the 1st and the 2nd differences of offsets. In addition, their software
allows for the rotation of views and thus greatly facilitates the detection of unfair
segments.

As mentioned in Subsections 13.2.2 and 13.2.8, plots of the curvature of ship
lines can help fairing. Surface-modelling programmes like MultiSurf and Sur-
faceWorks (see next section) allow to do this in an interactive way. More about cur-
vature and fairing can be read in Wagner, Luo and Stelson ( 1 995), Tuohy, Latorre
and Munchmeyer (1996), Pigounakis, Sapidis and Kaklis (1996) and Farouki
(1998). Rabien (1996) gives some features of the Euklid fairing programme.

13.3.3 Modelling with MultiSurf and SurfaceWorks

In this section, we are going to describe a few steps of the hull-modelling process
performed with the help of MultiSurf and SurfaceWorks, two products of Aero-
Hydro. We like these surface modellers for their excellent visual interface, the
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possibilities of defining and capturing many relationships between the various
elements of a design, and the wide range of useful point, curve and surface types.
A recent possibility is that of connecting SurfaceWorks to SolidWorks.

The programmes described in this section are based on a concept developed
by John Letcher; he called it relational geometry (see Letcher, Shook and Shep-
herd, 1995 and Mortenson, 1997, Chapter 12). The idea is to establish a hierarchy
of dependencies between the elements that are successively created when defin-
ing a surface or a hull surface composed of several surfaces. To model a surface
one has to define a set of control, or supporting curves. To define a supporting
curve, the user has to enter a number of supporting points; they are the con-
trol points of the various kinds of curves. Points can be entered giving their
absolute coordinates, or the coordinate-differences from given, absolute points.
Moreover, it is possible to define points constrained to stay on given curves or
surfaces. When the position of a supporting point or curve is changed, any depen-
dent points, curves or surfaces are automatically updated. Relational geometry
considerably simplifies the problems of intersections between surfaces and the
modification of lines.

Both MultiSurf and SurfaceWorks use a system of coordinates with the origin
in the forward perpendicular, the x-axis positive towards aft, the y-axis positive
towards starboard, and the z-axis positive upwards. When opening a new model
file, a dialogue box allows the user to define an axis or plane of symmetry, and
the units. For a ship the plane of symmetry is y = 0.

We begin by 'creating' a set of points that define a desired curve, for example
a station. Thus, in MultiSurf, a first point, pOl, is created with the help of the
dialogue box shown in Figure 13.14. The last line is highlighted; it contains

locked

N<ime = pQ1
User data =
Layer = 0
Weight = 0.000
Color = 14
Visibility = 1

Figure 13.14 MultiSurf, the dialogue box for defining an absolute
three-dimensional point
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Figure 13.15 MultiSurf, points that define a control curve, in this case
a transverse section

the coordinates of the point, x = 17.250, y = 0.000, z = 3.000. There is a
quick way of defining a set of points, such as shown in Figure 13.15. In this
example all the points are situated along a station; they have in common the
value x = 17.250 m.

To 'create' the curve defined by the points in Figure 13.15 the user has to
select the points and specify the curve kind. A Bcurve (this is the MultiSurf
terminology for B-splines) uses the support points as a control polygon (see
Subsection 13.2.4), while a Ccurve (MultiSurf terminology for cubic splines)
passes through all support points. Figure 13.16 shows the Bcurve defined by

Y Z

X

Figure 13.16 MultiSurf, a curve that defines a transverse section
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\ \ \

Figure 13.17 MultiSurf, a surface defined by control curves such as those
in Figure 13.16

the points in Figure 13.15. The display also shows the point in which the curve
parameter has the value 0, and the positive direction of this parameter.

Several curves, such as the one shown in Figure 13.16, can be used as support
of a surface. To 'create' a surface the user selects a set of curves and then,
through pull-down menus, the user choses the surface kind. An example of
surface is shown in Figure 13.17. Any point on this surface is defined by the two
parameters u and v. The display shows the origin of the parameters, the direction
in which the parameter values increase, and a normal vector.

To exemplify a few additional features, we use this time screens of the Sur-
faceWorks package. In Figure 13.18 we see a set of four points along a station.
The window in the lower, left corner of Figure 13.18 contains a list of these
points. Figure 13.19 shows the B-spline that uses the points in Figure 13.18 as
control points. At full scale it is possible to see that the curve passes only through
the first and the last point, but very close to the others. The display shows again
the origin and the positive sense of the curve parameter.

Figure 13.19 is an axonometric view of the curve. Figure 13.20 is an ortho-
graphic view normal to the x-axis. In Figure 13.21, we see the same station
and below it a plot of its curvature. In this case we have a simple third-degree
B-spline; the plot of its curvature is smooth. In other cases the curve we are
interested in can be a polyline composed of several curves. Then, the curva-
ture plot can help in fairing the composed curve. Usually, it is not possible
to define a single surface that fits the whole hull of a ship. Then, it is neces-
sary to define several surfaces that can be joined together along common edges.
A surface is defined by a set of supporting curves, for example, the bow profile,
some transverse curves, etc.
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Figure 13.22 The wireframe view of a powerboat

Figure 13.22 shows a wireframe view of a powerboat. The hull surface is
composed of the following surfaces: bow round, bulwark, bulwark round, hull,
keel forward, keel aft, and transom.

The software enables the user to view the hull from any angle, for example
as in Figure 13.23. Other views can be used to check the appearance and the
fairing of the hull. The rendered view may be very helpful; we do not show an
example because it is not interesting in black and white.

Three plots of surface curvature are possible: normal, mean or Gaussian.
We have chosen the plot of normal curvature shown in Figure 13.24. The

•z

Figure 13.23 Rotating the wireframe view of a powerboat
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® Ship Lines: powerboat-3:3

Figure 13.26 The lines of a powerboat

13.4 Calculations without and with the computer

Before the era of computers, the Naval Architect prepared a documentation that
was later used for calculating the data of possible loading cases. The documen-
tation included:

• hydrostatic curves;
• cross-curves of stability;
• capacity tables that contained the filled volumes and centres of gravity of

holds and tanks, and the moments of inertia of the free surfaces of tanks.

For a given load case, the Naval Architect, or the ship Master, performed the
weight calculations that yielded the displacement and the coordinates of the
centre of gravity. The data for holds and tanks were based on the tables of
capacity. The next step was to find the draught, the trim and the height KM by
interpolating over the hydrostatic curves. Finally, the curve of static stability was
calculated and drawn after interpolating over the cross-curves of stability. It is in
this way that stability booklets were prepared; they contained the calculations
and the curves of stability for several pre-planned loadings. The same method
was employed by the ship Master for checking if it is possible to transport some
unusual cargo.

The above procedure is still followed in many cases, with the difference that
the basic documentation is calculated and plotted with the help of digital com-
puters, and the weight and GZ calculations are carried out with the aid of hand
calculators, possibly with the help of an electronic spreadsheet. However, since
the introduction of personal computers and the development of Naval Architec-
tural software for such computers, it is possible to proceed in a more efficient
way. Thus, it is sufficient to store in the computer a description of the hull and
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of its subdivision into holds and tanks. The model can be completed with a
description of the sail area necessary for calculating the wind arm. Then, the
user can define a loading case by entering for each hold or tank a measure of
its filling, for example the filling height, and the specific gravity of the cargo.
The computer programme calculates almost instantly the parameters of the float-
ing conditions and the characteristics of stability, and it does so without rough
approximations and interpolations. For example, in a manual, straightforward
trim calculation one has to use the moment to change trim, MCT, read from
the hydrostatic curves. Hydrostatic curves are usually calculated for the ship on
even keel; therefore, using the MCT value read in them means to assume that
this value remains constant within the trim range. Computer calculations, on
the other hand, do not need this assumption. The floating condition is found by
successive iterations that stop when the conditions of equilibrium are met with
a given tolerance.

The ship data stored in the computer constitute a ship model; it can be orga-
nized as a data base. In this sense, Biran and Kantorowitz (1986) and Biran,
Kantorowitz and Yanai (1987) describe the use of relational data bases. John-
son, Glinos, Anderson et al (1990), Carnduf and Gray (1992) and Reich (1994)
discuss more types of data bases. Many modern ships are provided with board
computers that contain the data of the ship and a dedicated computer programme.
Moreover, the computer can be connected to sensors that supply on line the tank
and hold filling heights.

13.4.1 Hydrostatic calculations

Some hydrostatic calculations are straightforward in the sense that we can per-
form them in a single iteration. For example, if we want to calculate hydrostatic
curves we must perform integrations for a draught TO, then for a draught T\, and
so on. Chapter 4 shows how to carry out such calculations. Other calculations
can be carried out only by iterations. For example, let us assume that we want
to calculate the righting arm of a given ship, for a given displacement volume,
VQ, and the heel angle fa. We do not know the draught, TO, corresponding to the
given parameters. We must start with an initial guess, Tinit, draw the waterline,
WQ LQ , corresponding to this draught and the heel angle 0^, and calculate the
actual displacement volume. If the guess Tjnit was not based on previous calcu-
lations, almost certainly we shall find a displacement volume Vi ^ VQ. If the
deviation is larger than an acceptable value, e, we must try another waterplane,
WiLi, parallel to the initial guess waterline, WQ£O- This time we proceed in a
more 'educated' manner. Readers familiar with the Newton-Raphson procedure
may readily understand why we use the derivative of the displacement volume
with respect to the draught, that is the waterplane area, Ayy. We calculate a
draught correction
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and we start again with a corrected draught

Ti - T^ + ST

We continue so until the stopping condition

| V 0 - V N | < 6

is met.
A much more difficult, but frequent problem is that of finding the floating

condition of a ship for a given loading. The input is composed of the displacement
volume and the coordinates of the centre of gravity. The output is the triple of
parameters that define the floating condition, that is the draught, the heel and
the trim. To solve the problem we can think of a Newton-like procedure in
three variables. Such a procedure implies the calculation of a Jacobian whose
elements are nine partial derivatives. Not less difficult is the problem of finding
the floating condition of a damaged ship, provided the ship can still float. The
Naval Architect has to find the draught, trim and heel for which the conditions
described in Section 11.3 are met. In physical terms, the Naval Architect must
find the ship position in which the water level in the flooded compartments is the
same as that of the surrounding water and the centres of buoyancy and gravity
lie on a common vertical. Some details of the above problems can be found
in Soding (1978). The calculations of hydrostatic data from surface patches is
discussed by Rabien (1985).

Many ingenious methods for solving the above problems have been devised;
by elegant procedures they ensured satisfactory precision in reasonable calcu-
lating times. The methods based on mechanical computers are particularly inter-
esting. Details can be found in older books. For example, an original publication
of a method for calculating lever arms at large heel angles is due to Leparmen-
tier (1899). Other methods for calculating cross-curves of stability are described
by Rondeleux (1911), Dankwardt (1957), Attwood and Pengelly (1960), Krap-
pinger (1960), Semyonov-Tyan-Shansky (no year given), De Heere and Bakker
(1970), Hervieu (1985), Rawson and Tupper (1996). Methods of flooding calcu-
lations are explained, for example, in Semyonov-Tyan-Shansky (no year given)
and De Heere and Bakker (1970).

As mentioned, the first publication about a computer programme for Naval
Architectural calculations is that of Kantorowitz (1958); it contains also an anal-
ysis of calculation errors. The first computer programmes worked in the batch
mode; an input had to be submitted to the computer, the computer produced an
output. For many years the input was contained in a set of punched cards, later it
could be written on a file. An example of such a programme is ARCHIMEDES
written at the University of Hannover (see Poulsen, 1980). The input consists of
several sequences of numbers. One sequence defines the calculations to be per-
formed, a second sequence describes the hull surface, a third sequence defines
the subdivision into compartments and tanks, a fourth the longitudinal distribu-
tion of masses, a fifth defines run parameters such as the draught, trim, the wave
characteristics, and the identifiers of the compartments to be considered flooded.
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Figure 13.27 The MultiSurf dialogue box for entering the input for
hydrostatic calculations

The programme ARCHIMEDES could be run for hydrostatic calculations,
capacity calculations (compartment and tank volumes, centres of gravity, and free
surfaces), cross-curves of stability, damage stability, and longitudinal bending.
Many examples in this book were obtained with the ARCHIMEDES programme.
A newer version of the software, ARCHIMEDES II, is described by Soding nd
Tongue (1989).

Recent programmes have a graphic interface that enables the user to build and
change interactively the ship model, to define run parameters and run calcula-
tions. The output consists of tables and graphs.

Hydrostatic calculations can be performed in MultiSurf or SurfaceWorks after
obtaining the offsets (see Figure 13.25). Figure 13.27 shows the dialogue box
in which the user has to input the height of the centre of gravity, under Z.c.g,
the draught, under Sink, and the trim and the heel. A rich output is produced;
Figure 13.28 shows only a fragment. A disadvantage of this implementation
is that each draught-trim-KG combination requires a separate run. Aerohydro
supplies another programme, Hydro, that enables a more convenient operation
and yields also graphs. So do several packages marketed by other companies.

13.5 Simulations

The term simulation is frequently used in modern technical literature. The word
derives from the Latin 'simulare', which means to imitate, pretend, counter-
feit. In our context, by simulation we understand computer runs that yield an



320 Ship Hydrostatics and Stability

34 stations, 6036 points
Inputs

Sink 4.00
Trim, deg. 0.00
Heel, deg. 0.00

Dimensions
¥.L. Length 18.50
fl.L. Fwd. X -1.80
¥.L. Aft X 16.70

Displacement
Volume 681.8
Displ't. 43653.1
LCB (% w.l.) 89.1

Uaterplane
¥.F. Area 12.52
LCF (% TJ.I.) 11-5

Wetted Surface
¥etd.Area 613.29
Ctr. tf.S. Z -3.07

Lateral Plane
L.P. Area 132.81
Ctr. L.P. Z -3.43

Initial Stability
Trans. GM 3.89

Spec. ¥t.
Z e.g.

W.L. Beam
Draft

Ctr.Buoy. X
Ctr.Buoy. Y
Ctr.Buoy. 2

Ctr.Flotn. X

Ctr. U.S. X

Ctr. L.P. X

Trans.RHPD

64,02
-3.00

5.11
6.00

14.68
-0.00
-3.14

0.33

15.30

13.23

2963.2

Figure 13.28 A fragment of the output of hydrostatic calculations carried
out in MultiSurf

approximation of the behaviour of a real-life system we are interested in. The
steps involved in this activity are described below:

1. The building of a physical model that describes the most important features
of the real-life system.

2. The translation of the physical model into a mathematical model. Many math-
ematical models are composed of ordinary differential equations that describe
the evolution of physical quantities as functions of time.

3. The translation of the mathematical model into a computer programme.
4. The running of the computer programme and the output of results.

For several good reasons the physical model cannot describe all features of the
real-life system. First, we may not be aware of some details of the phenomenon
under study. Next, to use manageable mathematics we must accept simplifying
assumptions. Last but not least, we must keep the computation time within
reasonabe limits and to achieve this we may be forced to accept more simplifying
assumptions.

It follows that computer simulations do not exactly reproduce the behaviour
of real-life systems; they only 'simulate' part of that behaviour. Better results
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can be certainly obtained by experiments, especially at full scale. It is easy to
imagine that full-scale experiments on ships may be very expensive so that they
cannot be carried out frequently. Dangerous experiments that can lead to ship loss
may not be possible at all. Such tests can be performed only on reduced-scale
models. Still, basin tests too are expensive and their extent is usually limited
by the available budget. Simulations may replace dangerous experiments, basin
tests can be completed by simulations. Then, part of the possible cases can be
simulated, part tested on basin models. The basin tests can be used to correct or
validate the computer model.

It is possible to measure the motions of a ship model in a test basin equipped
with a wave maker. Then, the motions are recorded as functions of time. It is
also possible to simulate ship motions as functions of time, that is to simu-
late in the time domain. However, such measurements or simulations in the
time domain have limitations. As explained in Chapter 12, the sea surface
is a random process; therefore, ship motions are also random processes. To
simulate a given spectrum in the basin or in a computer programme, it is
necessary to draw a number of random phases. The resulting motions do not
describe all possible situations, but are only an example of such possibilities. We
say that we obtain a realization of the random process. Moreover, for practical
reasons, the duration of a basin test is limited. Then, the time span may not
be sufficient for the worst event to happen. Although we may afford simulation
times longer than basin tests, they still may be insufficient for obtaining the worst
events.

More results can be obtained by calculating motions as functions of frequency,
that is calculating in the frequency domain. Programmes that perform such cal-
culaitons are available both through universities and on the market. The software
calculates the added masses and damping coefficients, for a series of frequen-
cies, by using potential theory and certain simplifying assumptions. Next, the
software calculates the response amplitude operators, RAOs, of various motions
or events. For a wave frequency component, and given ship heading and speed,
the programme calculates the frequency of encounter and transforms the spectra
from functions of wave frequency to functions of the frequency of encounter.
Response spectra are obtained as products of the spectra of encounter and RAOs.
Statistics can be extracted from the spectra, for instance root mean square,
shortly RMS values of the motions.

Taking into consideration the motion of the sea surface, the heave and the pitch,
the programme yields the motion of a deck point relative to the sea surface and
calculates the probability of having waves on deck. Other events whose proba-
bility can be calculated are slamming and propeller racing, while the motions,
velocities and accelerations of given ship points are obtained as combinations
of motions in the various degrees of freedom. An example of ship motions
simulated in the time domain can be found in Elsimillawy and Miller (1986).
Examples of studies of capsizing in the time domain are in Gawthrop, Kountzeris
and Roberts (1988) and Kat and Paulling (1989). An example of simulation in
frequency domain is given by Kim, Chou and Tien (1980).
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13.5.1 A simple example of roll simulation

Subsection 9.3.2 shows how to implement in MATLAB a Mathieu equation and
simulate the roll motion produced by parametric excitation. More complicated
models can be simulated in a similar manner by writing the governing equations
as systems of first-order differential equations and calling an integration routine.
The more complex the system becomes, the more difficult it is to proceed in this
way. The programmer must write more lines and arrange them in the order in
which information must be passed from one programme line to another. Software
packages have been written to make simulation easier. The common feature of
the various packages is that the programmer does not have to care about the order
in which information must be passed. Also, routines and functions frequently
used in simulations are available in libraries from which the user can readily
call them. The programmer has only to describe the various relationships, the
software will detail the equations and arrange them in the required order. In this
section we give one very simple example of the capabilities of modern simulation
software. As we give in the book examples in MATLAB, it is natural to use here
the related simulation package, SIMULINK. Let us consider the following roll
equation

Az20 + gkGZ = MH (13.21)

where A is the displacement mass, i, the mass radius of inertia, GZ, the righting
arm, and MH, a heeling moment. We rewrite Eq. (13.21) as

rr
(13.22)

In this example we neglect added mass and damping, but use a non-linear func-
tion for GZ and can accept a variety of heeling moments. To represent this
equation in SIMULINK we draw the block diagram shown in Figure 13.29 by
putting in blocks taken from the libraries of the software and connecting them
by lines that define the relationships between blocks. At the beginning we put
two blocks representing heeling moments, MH. For the wind moment we use
a step function. Initially the moment is zero, at a given moment it jumps to a
prescribed value that remains constant in continuation. For the wave moment we
use a sine function, but it is not difficult to input a sum of sines.

The next block to the right is a switch; it is used to select one of the heel-
ing moments, MH. The block called Heeling arm performs the division of
the heeling moment by the displacement value supplied by the block called
displacement. Follows a summation point. At this point the value gGZ is
subtracted from the heeling arm. The output of the summation block is

MH *



Displacement

Wind moment

Product 1 Integrator Integrator!

Wave moment

Gain = g Righting arm Conversion

roll

Figure 13.29 Simulating roll in SIMULINK
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Continuing to the right, we find a block that multiplies by l/i2 the output of the
summation block; the result is

/MH

We immediately see from Eq. (13.22) that the output of the block called
Product 1 is the roll acceleration, <j). This acceleration is the input to an inte-
grator. The symbol

1
5

that marks the integrator block reminds the integration of Laplace transforms.
The output of the integrator is the roll velocity, 0, in radians per second. The
roll velocity is supplied as input to two output blocks. One block, above at right,
is an oscilloscope, shortly scope, marked Phase plane. The other block, an
integrator marked Integrator 1, outputs the roll angle, <p.

Following a path to the left, the roll angle becomes the input of a block
called Righting arm. This block contains GZ values as functions of (/>. In
a gain block the GZ value is multiplied by the acceleration of gravity, g, and
at the summation point, the product is subtracted from the heeling arm. Fol-
lowing rightward paths, the roll angle is supplied directly to the scope Phase
plane, while converted to degrees is input to the scope Heel angle. The
scope phas e p 1 ane displays the roll velocity versus the roll angle. The scope
angle displays the roll angle versus time.

13.6 Summary

Ship projects require the drawing of lines that cannot be described by simple
mathematical expressions, and also extensive calculations, mainly iterated inte-
grations. Interesting attempts have been made to use mathematical ship lines,
but until the second half of the last century the procedures for drawing and fair-
ing ship lines remained manual. As to calculations, many elegant methods were
devised, not a few of them based on mechanical, analogue computers, such as
planimeters, integrators and integraphs. As in other engineering fields, in the
domain of Naval Architecture the advent of digital computers greatly improved
the techniques and made possible important advances. Naval Architects were
among the first engineers to use massive computer programmes.

The development of computer graphics has made possible the use of com-
puters in the design of hull surfaces. In computer graphics, curves are defined
parametrically

where the parameter, t, is frequently normalized so as to vary from 0 to 1 .
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The central idea in computer graphics is to define curves by piecewise poly-
nomials. In simple words, the interval over which the whole curve should be
defined is subdivided into subintervals, a polynomial is fitted over each subinter-
val and conditions of continuity are ensured at the junction of any two intervals.
The conditions of continuity include the equality of coordinates at the junction
point and the equality of the first, possibly also the second derivative at that
point. The latter conditions mean continuity of tangent and curvature.

The simplest examples of curves used in computer graphics are the Bezier
curves. The coordinates of a point on a Bezier curve are weighted means of the
coordinates of n control points that form a control polygon. The degree of the
polynomial representing the Bezier curve is n — 1. An extension of the Bezier
curves are the rational Bezier curves; they can describe more curve kinds than
the non-rational Bezier curves.

Moving a control point of a Bezier curve produces a general change of the
whole curve. B-splines avoid this disadvantage by using a more complicated
scheme in which the polynomials change between control points. Moving a
control point of a B-spline produces only a local change of the curve. A pow-
erful extension of the B-splines are the non-uniform rational B-splines, shortly
NURBS. Computer programmes for ship graphics use mainly B-splines and
NURBS.

Naval Architectural calculations involve many integrations. The calculations
for hydrostatic curves can be performed straightforward. Other calculations can
be carried out only by iterations, e.g. for finding the cross-curves of stability or
the floating condition of a ship for a given loading, possibly also a given damage.
Systematic and elegant methods were devised for performing the calculations
with acceptable precision, in a reasonable time. Many methods used mechanical,
analogue computers. When digital computers became available it was possible
to write computer programmes that performed the calculations in a faster and
more versatile way. The first programmes worked in the batch mode. The input
was first introduced on punched cards, later on files. The programme was run
and the output printed on paper. Present-day programmes are interactive and
graphic user interfaces facilitate the input and yield a better and pleasant output.
The interface enables the user to build and change interactively the ship model.
This model includes the definitions of the hull surface, of the subdivision into
compartments, holds and tanks, the materials in holds and tanks, and the sail
area required for the calculation of wind arms.

Another use of computer programmes is in the simulation of the behaviour of
ships and other floating structures in waves or after damage. Thus, it is possible
to study situations that would be too dangerous to experiment them on real
ships. Simulations can be carried out in the time domain or in the frequency
domain. In the latter approach, one input is a sea spectrum, the output consists
of spectra of motions and probability of events such as deck wetness, slamming
or propeller racing. Simulations are used also for studying the stability of ships
in the presence of parametric excitation. When the model used in simulation
consists of ordinary differential equations the work can be greatly facilitated by
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using special simulation software. Then, the user employs a graphical interface
to build the model with blocks dragged from libraries. The software produces
the governing equations and arranges them in the order required for a correct
information flow.

13.7 Examples

Example 13.1 - Cubic Bezier curve

%BEZIER Produces the position vector of a cubic
%Bezier spline

function P = Bezier(BO, Bl, B2, B3)

% Input arguments are the four control points
% BO, Bl, B2, B3 whose coordinates are given
% in the format [ x; y ]. Output is the
% position vector P with coordinates given in
% the same format.

% calculate array of coefficients, in fact
% Bernstein polynomials
t = [ 0: 0.02: 1 ] ' ; % parameter
CO = (1 - t).~3;
Cl = 3*t.* (1 - t) .~2;
C2 = 3*t.~2.* (1 - t) ;
C3 = t.~3;
C = [ CO Cl C2 C3 ] ;
% form control polygon and separate coordinates
B = [ BO Bl B2 B3 ] ;
xB = B(l, :) ; yB = B(2, :)
% calculate points of position vector
xP = C*xB'; yP = C*yB';
P = [ xP'; yP' ]

13.8 Exercises

Exercise 13.1 - Parametric ellipse
Write the MATLAB commands that plot an ellipse by means of Eq. (13.4).

Exercise 13.2 - Bezier curves
Show that the sum of the coefficients in Eq. (13.9) equals 1 for all t values.
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Note: Page numbers in italics refer to tables and figures

A see Displacement mass
V see Displacement volume
Added mass, 151,279-80
Added weight, method of, 243, 248-50
Affine hulls, 107
Afterbody, 11
Angle:

of downflooding, of flooding, 178
of loll, 146
of repose, 141
of static equilibrium, 122, 124
of vanishing stability, 114-15

Archimedes' principle, 24-32
Area:

sail, 125
sectional, 102

Arm:
heeling, 122-41

in turning, 126-7, 230-1
wind, 124-6, 154, 228-30

righting, 111-14,227
effective, 136, 139

Arrival (load condition), 174
Axis of inclination, 41-3

Barycentric axis, 43
Bezier curves, 298-302, 326
Bilge, 12
Bilging, 240
BM, see Metacentric radius
Body plan, 11
Bonjean:

curves, 101-103
sheet, 103

Bouguer, Pierre, 38
Breadth, 4
Broaching to, 152

B-splines, 302-303
Bulkhead:

deck, 241
longitudinal, 140-1
watertight, 241

Buoyancy force, 27
Buttocks, 11
BV1033, see German Navy

regulations

Camber, 4, 7, 9
Capsizing, 151-2
Captain, HMS, 154-5
Cargo ships, intact

stability, 178-82
Catamaran stability, 64-5
Centre:

of buoyancy, 34
longitudinal, LCB, 103
vertical, TtB, VCB, 96

of flotation, 43
longitudinal, LCF, 92-3

of gravity, 34-5
longitudinal, LCG, 159, 161
transverse, TCG, 159
vertical, "KG, 159

Codes:
of practice, 150, 177

Coefficient:
block, CB, 16
length coefficient of

Froude, 18
midship, CM, 16
prismatic, Cp, 17
vertical prismatic, CVP, 18
volumetric, 18
waterplane area, CWL, 17
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Coefficients:
of a fishing vessel, 20-1
of form, 15-19

of Ship 83074, 21
ofhullC786,21,22

Control points, see Bezier curves
Coordinate systems, 9
Criterion of service

numeral, 253
Cross-curves of

stability, 113-14
in seaway, 237

Curl, relation to rotation, 290-1
Curvature:

(of curves), 295-296
surface, 305-307

Gaussian, 307
mean, 307
normal, 305
principal, 306

Curve:
Bezier, 298-302
of centres of buoyancy, 45-7
of floodable lengths, 261-3
of statical stability, 114-16

tangent in origin, 116
points on integral, 80-3

Curves:
BandM,ofLzYfo9,6Q-3
Bonjean, 101-103
cross-curves, 113-14
hydrostatic, 91-110
parametric, 294-5

Damage condition, 239-68
Damping moment, 151
Deadweight, 160
Decay, of water motion, 225
Departure (load condition), 161
Depth, moulded, 4, 7, 8
Design equation, 33
Diagonal, 13
Displacement:

factor, 100-101
mass, 33
of geometrically similar

hulls, 109
volume, 8, 95-6

Docked ships, see Grounded ships

Draught, 4, 7
critical, of grounded ships, 157
definition, 8
equivalent (deflected hull), 168-9

Dynamically supported craft,
IMO, 183-4

Equilibrium, 36
Even keel, 10
Evolute, metacentric, 47
EXCEL, see Spreadsheet
Extreme, dimensions, 3

Factor of subdivision, 252
Fair, 13
Fairing, 13-15, 308
Fishing vessels, IMO, 182-3
Flooding, see Damage condition

cross, 251
unsymmetrical, 251

Flume tanks, 285
Forebody, 11
Frahm vibration absorber, 283-5

simulation of, 287-9
Free surface of liquids, 137-41,

227-8
Freeboard, 8
Frequency:

natural of roll, 134
of encounter, 215-16

Geometrically similar
hulls, 107, 109

German Navy regulations:
damage condition, 258-9
intact, 221-37
GM, see Metacentric height
GZ, see Arm, righting

Granular materials, 141-2
Grounded ships, 144-6
Grounding:

on one point, 145-6
on the whole keel, 144-5

Half-breadth, 13
Heave:

definition, 277
equation, 279-80

Heel, 10
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Hogging, 169
Hydrostatic:

calculations, summary, 108,
317-19

curves, 92-100
properties of curves, 104-106

Iceberg, tip of, 68
Icebergs, melting, 67
Icing:

definition, 128
IMO rules, 185

IMO code, intact stability, 178-85
Inclining experiment, 166-70, 185
Inertia:

moment of, 44
product of, 44

Integral curve, points on, 80-3
Integraph, 293
Integration, numerical, 71-90
Integrator, 293
Intermediate ordinate, 83^
Internal-water vessels:

damage condition, 260-1
intact stability, 196

KG, see Centre of gravity, vertical

Laplace transform of heel
angle, 142-3

LCF, see Longitudinal centre of
flotation

LCG, see Centre of gravity,
longitudinal

Least-squares fit, inclining
experiment, 168, 172-4

Length:
between perpendiculars, 6,1
overall, 6, 7
overall submerged, 6, 8

Length-breadth ratio, 18
Length-displacement ratio, 18
Lightship, 160
Linear waves theory, 270-3
Lines:

drawing, 11
mathematical, 308

List, 10
Load waterline, 7

Loading conditions, German
Navy, 222-3

Loads:
displaced transversely, 135-6
hanging, 136-7
moving, as positive feedback, 142-3
shifting, sliding, 141-2

Longitudinal centre of flotation
(LCF), 93

Lost buoyancy, method of, 243-4,
246-8

Margin line, 241
Mathieu:

effect, see Parametric resonance
equation, 207-11
simulation of equation, 211-15

MATLAB:
calculating points on the integral

curve, 80-3
cubic Bezier, 326
for BV1033, 232-5, 235-6
inclining experiment, 162-3, 173-4
integral JQ

45 x3 dx, 89-90
simulation of Frahm vibration

absorber, 287-9
simulation of Mathieu equation,

211-15
weight calculations, 162-3

Maximum permissible length, 252
Metacentre:

definition, 38
initial, 39

Metacentres for various axes of
inclination, 47-8

Metacentric:
evolute, 47
height, GM, 39-40

effective, 137
negative, 146-50
radius, BM, 44-5
radius, transverse, 48
radius, longitudinal, 48

Midships:
definition, 8
symbol, 8

Mobile offshore drilling units, 183
Modelling with MultiSurf and

Surface Works, 309-16
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Moment:
mass, of inertia, 131
of inertia of waterplane, 93-5
of waterplane, 92-3
righting, 112
to change trim, 97-8

Motions:
coupled, 280-1
in six degrees of

freedom, 277-81
Moulded, surface and

dimensions, 3
Moulding loft, 14

Naval Architecture, definition, 1
Negative metacentric height, 146-50
NES 109, see UK Navy
Numerical integration, 71-90
NURBS, 303

Offsets, table of, 15
Ordinates:

intermediate, 83-4
reduced, 84-5

Parameter (of curve), 295
Parametric:

curves, 294-5
resonance, 152, 203-19
surfaces, 303-305

Passenger ships:
IMO intact stability, 178-82

Period:
natural of heave, 282
natural of roll, 134
of encounter, 215
of tension leg platform, 282-3
wave, 272

Permeability, 242-3
Perpendicular, aft, forward, 7
Pierson-Moskovitz spectrum, 277
Pitch:

definition, 10, 277
equation, 278-9

Planimeter, 293
Port (side of ship), 3
Principal ship dimensions, 3-9
Probabilistic regulations, 254-5
Product of inertia, 44

Radius:
metacentric, BM, 44
of curvature, 296
of gyration, 133
of turning, 126-7

Rational Bezier curves, 302
Reduced ordinates, 84-5
Relational geometry, 309
Reserve:

weight, see Weight margin of
dynamical stability, 189

Response amplitude operator
(RAO), 281

Roll:
definition, 10
period, 133-5
stabilizers, 283-5

Sagging, 169
Sail area, 125, 155
Sail ships, vessels:

damage stability, 259-60
in longitudinal waves, 218-19
intact stability, 192-4

Sectional area, 102
Sheer, 6, 9
Sheer plan, 11
Significant wave height, 275-6
Simpson's rule, 77-80
Simulation, 319-21

of Mathieu equation, 211-15
of roll, 322-4

SIMULINK, roll simulation, 322-4
Small workboats:

damage stability, 259-60
intact stability, 194-6

Smith effect, 226
SOLAS, 240, 252-5
Spectrum, 276-7
Splines, 296-8
Spreadsheet:

integral with variable upper
limit, 82

weight calculations, 162
SSP24,«?eUKNavy
Stability:

conditions, 131-3
definition, 36
dynamical, 128-31
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in turning, 155-6, 179, 188-9
IMO, 200
US Navy, 201

initial, 37-9
intact, 178-201

German Navy, 221-37
internal-water, 196
sail vessels, 192-4
small workboats, 194-6

Mathieu equation, 208-10
of grounded ships, 144—6
statical at large angles, 111-19
terms related to, 118
vanishing, 114-15

Stable, 36
Starboard, definition, 2
Station, 8, 11
Stevin's law, 34-5
Strutt-Ince diagram, 208
Subdivision, 239

degree of, 254
factor of, 252

Submerged bodies, stability
of, 65

Surfaces:
parametric, 303-305
ruled, 305

Surge, 277
Sway, 277
Swing analogy, 130-1
Swiss regulations, 196, 260-1

TCG, see Centre of gravity,
transverse

Tension leg platform
(TLP), 282

Tons per centimetre
immersion, 96-7

Tons per inch, 96
TPC, TPI, see Tons per centimetre

immersion
Transfer function:

of ship, 142
of ship-load system, 143

Trapezoidal rule, 72-7
Trim:

calculations, 164-6
definition, 10
influence on stability, 116-17

Trimmed by the head, 10
Trochoidal waves, 223-7

UK Navy:
damage condition, 257-8
intact stability, 190-1

Unstable, 36
Uplift, 28
US Navy regulations:

damage condition, 256-7
intact stability, 185-90

V lines, 256-7, 258
VCB, see Vertical centre of buoyancy
Vertical centre of buoyancy, KB,

(VCB), 96
Volume:

of displacement, moulded, 8
properties, 95-6

Wall sided, 43
Water densities, 70
Waterline:

properties, 92-5
sheet, 94-5

Waterlines, 11,72
Wave:

celerity, 215, 272
crest, 205
height, 224, 227
number, 272
period, 272
spectrum, 276-7
trough, 205

Waves:
influence on stability, 116-17,

204-207
linear, 270-3
trochoidal, 223-37

Weather criterion:
IMO, 179-82, 199-200
US Navy, 186-8, 200-201

Weight:
calculations, 159-63
groups, 160
margin, 161

Weights:
(of rational Bezier), 302
of NURBS, 303








