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1. Similarity Theory and Phenomenological Methods.

A ship differs from land based large engineering structures in that, in addition to all its
other functions, it must be designed to move efficiently through the water with a minimum
of external assistance. In Part I it has been shown how the engineer can ensure adequate
buoyancy and stability for a ship, intact or damaged. In Part II the problem of providing
adequate structure for the support of the ship and its contents, both in calm water and
rough seas was discussed.
In this part we are concerned with the problems of ship resistance and propulsion. The

task at hand is to ensure that, within the limits of other design requirements, the hull
form and propulsion arrangement will be the most efficient in the hydrodynamic sense. The
ultimate test is that the ship shall perform at the required speed with the minimum of
shaft power, and the problem is to attain the best combination of low resistance and high
propulsive efficiency. In general this can only be attained by a proper matching of hull,
engine, and propeller.
Another factor that influences the hydrodynamic design of a ship is the need to ensure

not only good calm water performance but also that under average service conditions at sea
the ship shall not suffer from excessive motions, wetness of decks, or excessive speed loss.
The assumption that a hull form that is optimum in calm waters will also be optimum in
rough seas is not necessarily valid. Furthermore, a ship must be able to control its direction
at will and keep its desired path through the water. The problem of ship motions, attainable
speed and added power requirements in waves, as well as maneuverability and controllability
are discussed in Part IV.
In Section 1 we approach ship resistance through an intuitive or phenomenological sense,

while more rational fluid mechanics considerations are reserved for Section 2. Ship propul-
sion, propulsive efficiency, and propeller selection are discussed in Section 3.

1.1 Forms of resistance.

The resistance of a ship at a given speed is the force required to tow the ship at that
speed in smooth water, assuming no interference from the towing ship. If the hull has no
appendages, this is called the bare–hull or towing resistance, and although very near to, it is
not exactly the same as the propulsion resistance due to hull/propeller interactions.
This total resistance is made up of a number of different components, which are caused

by a variety of factors and which interact with each other in a rather complex fashion. In
order to deal with the question more efficiently, it is customary to consider the total calm
water resistance as being made up of four main components.
(a) Frictional resistance, due to the motion of the hull through a viscous fluid.
(b) Wave making resistance, due to the energy that must be supplied continuously by

the ship to the wave system created on the free surface.
(c) Eddy resistance, due to the energy carried away by eddies shed from the hull or

appendages. This is especially severe at the stern where the water may be unable to follow the
curvature and will break away from the hull, giving rise to eddies and separation resistance.
(d) Air resistance experienced by the above–water part of the main hull and the super-
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structures due to the motion of the ship through the air.
The resistances under (b) and (c) are commonly considered together (although they arise

from different physical mechanisms) under the name residuary resistance. Also a variety of
other forms of resistance exists such as added resistance due to waves and the wave breaking
resistance for a ship sailing in a seaway, and the added resistance due to turning (for surface
ships) and diving (for submarines). These are mentioned in the next part of the notes, under
ship dynamics.
A streamlined body moving in a straight horizontal line at constant forward speed, deeply

immersed in an unlimited ocean, presents the “simplest” (still far from trivial) case of re-
sistance. Since there is no free surface, there is no wave formation and therefore no wave
making resistance. For an ideal fluid the velocity distribution past the hull will be greater
than the speed of advance along the midportion, and in the region of bow and stern will be
less, as shown in Figure 1. The pressure distribution as derived from Bernoulli’s law will
follow the inverse pattern: higher at the bow and stern, and lower in the middle. Since the
fluid is assumed to be without viscosity, the pressure forces will everywhere be normal to the
hull, and it can be shown that they will cancel out each other and the body will experience
no resistance (d’Alembert’s paradox).
In a real fluid, the boundary layer alters the virtual shape and length of the body,

the pressure distribution at the stern is changed and its forward component is reduced.
In this case there is a net force on the body acting against the motion, giving rise to a
resistance which is variously referred to as form drag or viscous pressure drag. The body also
experiences frictional resistance and perhaps eddy resistance as well. The fluid immediately
in contact with the surface of the body is carried along with the surface, and that in the
close vicinity is set in motion in the same direction as that in which the body is moving.
This results in a boundary layer which gets gradually thicker from the bow to the stern,
and in which the velocity varies from that of the body at its surface to that appropriate to
the potential flow pattern at the outer edge of the layer. The momentum supplied to the
water in the boundary layer by the hull is a measure of the frictional resistance. If the body
is rather blunt at the after end the flow may detach at some point, called the separation
point, thus reducing the total pressure on the afterbody and adding to the resistance. This
separation resistance is evidenced by a pattern of eddies which is a drain of energy.
A ship moving on the surface of the sea experiences all of the above forms of resistance

in much the same way as does a submerged body. However, the presence of the free surface
adds a further component. The resulting pressure distribution on the hull results in the
creation of a wave system which spreads out astern of the ship and has to be continuously
recreated. This corresponds to a drain of energy supplied by the ship and is termed the wave
making resistance.
A plot of the total resistance (effective horsepower, EHP, per ton of displacement) versus

the speed–length ration V/
√
L (V in knots, L in feet) for different types of ships is presented

in Figure 2.

1.2 Dynamic similarity.

Dimensional analysis which is the basis for similarity theory, is essentially a means of
utilizing a partial knowledge of a problem when the details are too obscure to permit an

3



exact analysis. Dimensional analysis methods do not yield numerical answers, but they
provide the form of the answer so that an experiment can be used to the fullest advantage in
determining a general empirical solution. The method rests on the basic principle that every
equation which expresses a physical relationship must be dimensionally homogeneous. There
are three basic quantities in mechanics — mass, length, and time — which are represented
by the symbols M , L, and T . All other quantities have dimensions made up from these three
basic ones.
Now consider the case of a ship moving with constant velocity V on the free surface.

Geometrical similarity is assumed with the geometry of the hull characterized by its length L.
Since the steady motion of the ship on the free surface generates a system of waves dependent
on the gravitational acceleration g, this parameter must be included in the dimensional
analysis along with the length L, velocity V , density ρ, and kinematic viscosity of the water
ν. If we assume now that the resistance R takes the form of a power law in terms of the
above variables, we have

R ∝ ρaV bLcνdge . (1)

For equation (1) to be dimensionally consistent we must have

ML

T 2
=
(
M

L3

)a (L

T

)b
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(
L2

T

)d (
L

T 2

)e
, (2)

and from equation (2) we get

a = 1 ,

−3a + b+ c + 2d+ e = 1 ,

−b− d− 2e = −2 ,
or

a = 1 ,

b = 2− d− 2e ,

c = 2− d+ e .

Then equation (1) becomes

R ∝ ρV 2L2
(
V L

ν

)−d (gL

V 2

)e
. (3)

Remembering now that we started with geometrically similar bodies, L2 is proportional to
the wetted surface S, and equation (3) may be written

R

1/2ρSV 2
= f

(
V L

ν
,
gL

V 2

)
, (4)

where the left hand side is the nondimensional resistance coefficient CR.
Therefore, the ship resistance is

R = 1
2
ρCRV

2S , (5)
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where the resistance coefficient
CR = CR(Re,Fn) ,

is a function of the Reynolds number

Re =
V L

ν
, (6)

and the Froude number

Fn =
V√
gL

. (7)

It can be seen that the method of dimensional analysis has revealed here the two important
parameters in ship resistance: (i) the Reynolds number (6) which physically represents the
ratio of inertial forces to viscous forces in the fluid; and (ii) the Froude number (7) which is
the ratio of inertia forces to gravity forces. Two geometrically similar hull forms (geosims)
with the same Re and Fn will have the same resistance coefficient CR. Unfortunately, this
is an impossible task, as we will see in the next section.

1.3 Resistance calculations.

In principle one can get the resistance coefficient CR by solving the complete set of Navier–
Stokes equations for a three dimensional body moving on the free surface: a formidable task.
Even in these CRAY–zy days of numerical ship hydrodynamics this is not reliably possible;
experiments in model tanks are still necessary. If the subscript s corresponds to the ship
and m to the geosim model, in order to have

(CR)s = (CR)m , (8)

we must ensure that

(Re)s = (Re)m or
Vm
Vs
=

Ls
Lm

· νm
νs

, (9)

and

(Fn)s = (Fn)m or
Vm
Vs
=

(
gm
gs

)1/2 (
Lm
Ls

)1/2

. (10)

Now a reasonble model to ship length ratio would be (Lm/Ls) = (1/100), and equations (9)
and (10) require

Vm
Vs
= 100

νm
νs

and
Vm
Vs
=
1

10

(
gm
gs

)1/2

.

We see that in order to satisfy both requirements (9) and (10) we must either (i) perform
experiments in a space station with adjustable orbit and adjustable g; or (ii) invent an
exotic fluid with νm/νs = 1/1000. Since neither is possible, we cannot satisfy both Re and
Fn scaling at the same time. If we call Ls/Lm = λ, we can either satisfy

(Re)s = (Re)m ⇒ Vm
Vs
= λ , or (11)

(Fn)s = (Fn)m ⇒ Vm
Vs
=
1√
λ

, (12)
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for the same fluid for the ship and the model. Now since λ � 1, Re scaling according to (11)
is highly impractical, and the best we can do is Froude number scaling according to (12).
So the problem now is how to get (CR)s from measurements of (CR)m by assuming

experiments at Froude number scaling only. Strictly speaking, since CR is a function of both
Re and Fn, this is not possible. Froude’s hypothesis comes here to the rescue (as early as
1868). Write CR as in

CR(Re,Fn) = CF (Re) + Cr(Re,Fn) , (13)

where CF is the frictional resistance coefficient which is a function of Re number only ac-
cording to the physical motivations of Section 1.1, and the rest is the residual resistance
coefficient. The latter is written as

Cr(Re,Fn) = CW (Fn) + CFORM(Re,Fn) , (14)

where CW is the wave making resistance coefficient (the main part of Cr) which depends on
Fn only, and CFORM is the form drag coefficient. The form drag has very little to do with
Fn, and it is fortunate that it has little to do with Re too. It is a constant and remains the
same for geosims. Therefore, Froude’s hypothesis follows in the form

CR(Re,Fn) = CF (Re) + CW (Fn) + CFORM . (15)

Before proceeding any further, an experimental validation of Froude’s hypothesis can be
made by plotting CR versus Re, for different values of the hull length. According to (15),
all experimental points for the same Froude number should be situated at equal distances
above the flat plate frictional resistance curve, and Froude’s hypothesis can be evaluated
according to the degree to which this is true. Numerous results on this have been obtained
and confirm that Froude’s method does succeed to a considerable extent in correlating the
resistance of geosim ship hulls of widely different lengths. Therefore, so far we have achieved
the following

• Construction of a geometrically similar model enforces (CFORM)s = (CFORM)m.

• Froude number scaling enforces (CW )s = (CW )m.
• We only need to compute CF . But since ships look (still) rather slender, the frictional
resistance should be approximately the same with that of a flat plate with the same
wetted area.

The above procedure can be summarized as follows:

1. Test the model with Fn number scaling, Vm = Vs/
√
λ, where λ = Ls/Lm.

2. Measure the total resistance (RT )m.

3. Estimate the frictional resistance of the model (RF )m by using flat plate results at the
model’s Reynolds number.

4. Compute the model residuary resistance from (Rr)m = (RT )m − (RF )m.
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5. Since (Cr)s = (Cr)m we can find the ship residuary resistance by (Rr)s =
1
2
(Cr)sρV

2
s Ss

or (Rr)s =
1
2
(Cr)mρ(Vm

√
λ)2Smλ

2 = 1
2
(Cr)mρV

2
mSmλ

3.

6. Estimate the frictional resistance of the ship (RF )s by using flat plate results at the
ship’s Reynolds number.

7. Compute the total ship resistance by

(RT )s = (Rr)s + (RF )s . (16)

If we need the total ship resistance coefficient

(CR)s = (CF )s + (Cr)s = (CF )s + (Cr)m = (CF )s + (CR)m − (CF )m . (17)

This method gives, except for very small models, satisfactory predictions for the resistance.
Usually, towing tanks incorporate a correction factor, called correlation allowance CA, so
that equation (17) becomes

(CR)s = (CF )s + (CR)m − (CF )m + CA , (18)

where CA is of the order of 0.0004. This correlation allowance, once called roughness coef-
ficient, is used mainly to fine–tune model tests with full scale measurements. Physically it
is due to a variety of factors, most notably the difference in roughness characteristics (the
model surface is always smoother than the ship) and the laminar flow near the bow of the
model (turbulence stimulators are often used on the model to alleviate this phenomenon).

2. Ship Resistance.

The simple qualitative arguments that were developed in the previous section are ade-
quate for preliminary estimates of the total resistance of a ship from model tests. In this
section we go a bit deeper into the problem in order to get some more understanding of the
physical mechanisms which contribute to the resistance of a ship.

2.1 Frictional resistance.

The frictional resistance is usually the most significant component of the total ship re-
sistance. For relatively slow ships with high block coefficients it contributes to about 85%
of the total resistance, whereas for high speed streamlined displacement hulls it may drop
to about 50%. These values may become higher in time due to the increased roughness of
the ship surface. Froude’s hypothesis was remarkable in the sense that he was able to split
the total resistance coefficient in two parts that are weakly dependent upon each other. The
dependence of frictional resistance on the Re number was not known during Froude’s time
and he was having some difficulty extrapolating his model tests to full scale. Nevertheless,
his regression results were very meticulous and they were in use for quite a few decades.
And then came Osborne Reynolds, and more light was shed into the problem. We now

know of the existence of a boundary layer for the fluid flow past a flat plate. The flow is
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characterized as laminar for low Re numbers or turbulent for higher Re numbers (more usual
in typical ship resistance problems). Turbulence is characterized by the superposition of a
highly irregular and oscillatory velocity pattern upon an otherwise smooth flow. This results
in a convection of momentum which causes the velocity profile to become more uniform, as
shown in Figure 3, and it results ultimately in a larger velocity gradient and shear stress on
the body surface. This causes an increase in the frictional resistance coefficient, as shown in
Figure 4.
Theoretical considerations due to Prandtl and von Karman (the same von Karman from

plate theory) led to the development of a theoretical formula for the frictional resistance
coefficient of the form

A√
CF
= log10(Re · CF ) +B . (19)

Extensive sets of experimental data were analyzed by Schoenherr in the light of equation
(19), and he found that he could get a good fit to the experimental data by making B zero
and A equal to 0.242, so arriving at the well known Schoenherr formulation

0.242√
CF
= log10(Re · CF ) , (20)

which was adopted in 1947 by the ATTC (American Towing Tank Conference) for use with
standard ship resistance computations. This ATTC line is shown in Figure 5 together with
the incorporation of the allowance coefficient CA. This coefficient, typically about 0.0004 as
was mentioned in Section 1.3, varies for different ship types and model sizes. Current (1982)
NAVSEA recommendation, based on sea trials, is

CA = 0.0008 L < 190′

CA =
0.0083
L1/3 − 0.00064 190′ ≤ L ≤ 960′

CA = 0.0002 960′ < L

With the introduction of larger ships, and comparatively smaller models, it was observed
that the correlation allowance CA necessary to reconcile the ship resistance with the pre-
diction from the model using the ATTC line was sometimes zero or negative, which was
rather embarrassing. This was attributed to the fact that the Schoenherr line had a slope
which was not considered to be sufficiently steep at the low Reynolds numbers appropriate
to small models, so that it did not give good correlation between the results of small and
large models. To alleviate this problem, the International Towing Tank Conference (ITTC)
adopted in 1957 a new formula

CF =
0.075

(log10 Re− 2)2
, (21)

which is known as the ITTC line and is the current standard (see Figure 5). It is important
to appreciate that this is a model/ship correlation line and not a frictional resistance line,
it makes no pretense to represent the frictional resistance of plane or curved surfaces and
should not be used for such a purpose.
Hughes in 1963 proposed a variation of (21) as

CFO =
0.066

(log10Re− 2.03)2
, (22)
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which is also shown in Figure 5. In association with line (22) which represents the fric-
tional resistance coefficient CFO in two dimensional flow, Hughes proposed a new method
of extrapolation from model to ship. He assumed that the total model resistance coefficient
CTM could be divided into two parts, CVM and CWM , representing the viscous and wave
making resistance, respectively, Figure 6. At low Froude numbers, CWM will be vanishingly
small, and at a point such as KM the curve of CTM will become approximately parallel to
the friction line. Hughes called KM the “run–in” point and GMKM the viscous resistance
coefficient CVM . GMHM is the two dimensional, flat plate resistance coefficient CFOM given
by equation (22), and HMKM is the form resistance coefficient, due at least in part to the
curvature of the hull. Now a form factor r can be defined by the expression

r = 1 + k =
GMKM

GMHM
=

CVM
CFOM

,

so that

k =
CVM − CFOM

CFOM
.

This form factor r is independent of the Reynolds number and is the same for all similar
models and ships. In Figure 6 a series of lines is drawn whose ordinates are, respectively,
1.10, 1.20, . . . , times those of the CFO curve, representing these constant values of the form
factor r. In the example shown, the model resistance coefficient curve becomes parallel to
the form factor curves at KM , indicating that the model has a form factor of 1.25. The line
1.25CFO then becomes the extrapolator for the particular hull form, and the ship curve of
CTS will start at a point KS on this line, where KM and KS apply to the same value of
Froude number for model and ship. The rest of the ship curve is obtained by plotting values
of CWS = CWM above the 1.25CFO curve at the appropriate values of Fn.
Since in the Froude method the whole of the model residuary resistance coefficient CR is

transferred to the ship unchanged, whereas in the Hughes method that part of CR attributed
to viscous effects is reduced in the transfer, the Hughes method gives substantially lower ship
predictions and so calls for larger values of the correlation allowance. This is a step towards
avoiding the negative allowances sometimes found when using the Froude method. A further
point of difference between the Froude and Hughes procedure is that whereas in the former
case only the slope of the correlation line matters, in the latter the absolute vertical position
of the line also affects the ship prediction, so that the determination of the basic line becomes
an essential factor in the use of the Hughes method.
The essence of the Hughes method is that the CFORM coefficient in equation (15) is

written as
CFORM(Re,Fn) = ηCF (Re) , (23)

instead of constant. As was indicated by Landweber a more general view of the issue suggests
the form

CFORM = ζ + ηCF (Re) , (24)

where ζ and η are two parameters that can be adjusted to give Froude’s method (η = 0) or
Hughes’ method (ζ = 0).
Granville’s technique is sometimes used and it usually results in predictions that fall

between Froude (high) and Hughes (low). Granville’s friction line was derived in 1977 and
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is

CFO =
0.0776

(log10Re− 1.88)2
+
60

Re
,

as shown in Figure 5.
It is obvious from the foregoing that the subject of ship/model correlation is still far from

being closed. In general, one can say that the total resistance coefficient is

CT = CV + CW , (25)

where the wave making resistance coefficient is

CW = CW (Fn) , (26)

and the viscous resistance coefficient is

CV = (1 + k)CV0(Re)f(Fn) . (27)

Here, CV0(Re) is some basic frictional resistance curve and the form factor k can be estab-
lished by velocity distribution measurements in the wake of the model. The coefficient f(Fn)
can be established by measurements of the waves generated by the model (wave surveys or
wave cuts). The (hopefully weak) dependence of CV on Fn is due to the fact that the wetted
surface of the model is altered to some extent by the generated wave system.

2.2 Wave making resistance.

The wave making resistance of a ship is related to the net force upon the ship due to
the normal fluid pressures acting on the hull, just as the frictional resistance is the result of
the tangential fluid forces. If the body is travelling on or near the free surface this pressure
variation causes waves which radiate away from the body and carry with them a certain
amount of energy that is dissipated in the ocean. The wave making resistance can then be
also characterized by the energy expended by the ship that is necessary to maintain the wave
system. Theoretical determination of the wave making resistance requires knowledge of the
wave system generated by a moving ship.
The first serious theoretical attempt towards quantifying the ship wave system was due

to Lord Kelvin in the late 19th century. He considered a single pressure point travelling in
a straight line over the surface of the water, sending out waves which combine to form a
characteristic pattern. This consists of a system of transverse waves following behind the
point, together with a series of divergent waves radiating from the point, the whole pattern
being predominantly contained within two straight lines starting from the pressure point
and making angles of about 19 degrees on each side of the line of motion, see Figure 7.
The Kelvin wave pattern illustrates and explains many of the features of the ship wave
system. The whole wave pattern moves with the ship, and for an observer on the ship the
waves appear to be stationary. Although at first it may seem that replacing the ship by
a single pressure point is too simplified, it should be borne in mind that this is a far field
approximation valid far away from the body where the geometric characteristics of the hull
are not visible. Kelvin was able to arrive at his model using a general technique in asymptotic
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analysis, called the method of stationary phase, which he developed precisely for the wave
resistance problem. The method allows the approximate evaluation of certain integrals of
rapidly oscillating functions and it produces two wave systems: One that is inside the 19
deg cusp lines of Figure 7, and one that is outside. The interior waves dissipate as O(1/

√
R)

where R is the radial distance from the ship; whereas the exterior as O(1/R) and, therefore,
they can be neglected for large R.
The method of stationary phase predicts for the wave making resistance Rw

Rw =
1
2
πρV 2

∫ π/2

−π/2
|A(θ)|2 cos3 θ dθ . (28)

Equation (28) expresses the wave resistance of a moving vessel as the weighted integral of
the square of the wave amplitude A(θ). The factor cos3 θ implies that the dominant portion
of the resistance will be associated with the transverse waves where the angle θ is smaller.
We can see that Rw ∼ V 2A2, and since A ∼ V (at least), it follows that Rw ∼ V 4 (or higher).
Now since the frictional resistance increases like V 2 or less (why?) we can see that at high
speeds (or high Fn) the wave making resistance will dominate the total ship resistance and
will create a practical “barrier” — compare the various hull types shown in Figure 2.
To utilize equation (28), the wave amplitude A(θ) must be predicted from theory (a

rather difficult task) or measured in a suitable experiment. One way of evaluating A(θ) is
based on the thin ship theory which was introduced by Michell in 1898 as a purely analytic
approach for predicting the wave resistance of ships. The essential assumption is that the hull
is thin, that is, the beam is small compared to all other characteristic lengths of the problem.
The resulting solution can be expressed in terms of a distribution of sources and sinks on
the centerplane of the hull, with the local source strength proportional to the longitudinal
slope of the hull. This solution is analogous to the thickness problem of thin wing theory in
aerodynamics. The result is the so called Mitchell’s integral

Rw =
4g2

πV 2

∫ π/2

0
sec3 θ

∣∣∣∣∣
∫∫

∂ζ

∂x
exp[(g/V 2) sec2 θ(y − ix cos θ)] dx dy

∣∣∣∣∣
2

dθ , (29)

where ζ(x, y) defines the local half–beam of the hull surface. This multiple integral is not
the sort of expression one expects to find in a table of integrals, particularly since in prac-
tical cases the longitudinal slope of the ship hull cannot be expressed in terms of simple
mathematical functions. Nevertheless, a fairly large number of numerical computations have
been carried out both for practical ship geometries and for simplified mathematical forms.
Mitchell’s integral is an effective means of comparisons between different theoretical predic-
tions or different hull forms.
More recent numerical studies of wave making rasistance do away with the thin ship

assumption and follow the so called panel methods. In these the surface of the ship is
approximated by a series of panels with distributed sources and sinks. The method is similar
to the thin ship approximation with the difference that the source/sink distribution is on
the actual ship surface instead of the centerplane. This allows for the actual geometry of
the hull to be taken into account, and therefore, minor modifications can be inflicted in
order to minimize the wave making resistance, for example appropriate bulbous bow design.
An example of such detailed computations is shown in Figure 8 where the wave contours
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generated by a DDG–51 similar hull at Fn=0.28 are shown. It can be seen that the basic
features of the elementary Kelvin system (divergent and transverse waves) are evident, along
with more detailed characteristics such as the bow and shoulder waves.
The use of the wave resistance integral (28) with experimental measurements of the am-

plitude function A(θ) to determine the total wave resistance provides a direct measurement
of the wave resistance without recourse to Froude’s hypothesis. This approach is known as
wave pattern analysis. The wave pattern analysis requires a relatively complex survey of the
wake region to determine the amplitude function A(θ) for all relevant wave angles, and it
is a valuable diagnostic tool, particularly when used with a measurement of the momentum
defect in the viscous wake region. These techniques have led to the discovery of an additional
drag component associated with wave breaking, and to a better understanding of the bulbous
bows of supertankers and other ships with low Froude numbers.
In fine high speed vessels such as destroyers and passenger liners, a bulbous bow promotes

beneficial interference between the waves generated at different points along the length of the
hull. Thus, for such vessels, the bulb bow reduces the wave making resistance. Originally,
bulbous bows of a similar form were fitted to supertankers on the basis of experimental
measurements indicating significant reductions in the total drag, but these reductions often
exceed the total estimated wave resistance. This apparent paradox has been reconciled by
careful experimental measurements of the wave energy flux and of the momentum defect in
the wake due to the viscous form drag. The latter measurement has revealed the existence
of momentum associated with breaking waves. Thus the wave breaking resistance results
from the breaking of waves near the ship, predominantly at the bow. The energy lost in
this manner is convected downstream in the form of large scale turbulence or eddies. For
supertankers and similar vessels, the bulbous bow is effective in reducing the magnitude of
the bow wave and thereby in avoiding wave breaking. For naval vessels, this is particularly
interesting since it is related to non acoustic signature and detection considerations.
A typical plot of the wave breaking resistance coefficient versus Froude number is shown

in Figure 9, where the curve shows typical humps and hollows. These are attributed to the
interference effects which are due to the four major wave systems, generated at

• the bow, beginning with a crest;
• the forward shoulder, starting with a trough;
• the after shoulder, starting with a trough;
• the stern, beginning with a crest.
A comparison between calculated and measured wave making resistance coefficient is also

presented in Figure 9. Experimental results are usually obtained by wake survey techniques
outlined above. In general, there is good agreement, although the computed CW curves
show more oscillations than the experimental results. These differences are assigned to three
major causes:

1. Errors due to simplifications introduced to the mathematical analysis.

2. Errors due to neglect of the effects of viscosity on the wave making resistance.
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3. Errors due to the effects of wave motion on the frictional resistance.

At very low speeds the wave making resistance is very small and depends mainly on the
waterline shape at the bow (angle of entrance), whereas at very high speeds it varies approx-
imately as the square of the displacement. This illustrates the fact that at very high speeds
hull shape is relatively unimportant, the chief consideration being the displacement carried
on a given length.

2.3 Other components of resistance.

Besides the frictional and wave making resistance, it was pointed out before that several
other components contribute to the resistance of a ship such as eddy resistance, viscous
pressure drag, separation resistance, and wave breaking resistance.
The turbulent frictional belt around a ship consists of eddies or vortices, so that all forms

of frictional resistance are really due to eddy making. However, the term is usually applied to
the resistance due to eddy formation or disturbed streamline flow caused by abrupt changes
of form, appendages or other projections, and excludes tangential skin friction. When the
total model resistance RTM is measured over a range of speeds and plotted as the coefficient
CTM = RTM/1

2
ρSV 2 against log Re (Rn in the figure), the curve will be of the general shape

shown in Figure 10. Also shown is a curve of the coefficient of frictional resistance CFOM for
a smooth flat plate in fully turbulent flow. The intercept CRM between the curves of CFOM
for the flat plate and CTM for the total model resistance is the so called residuary resistance
coefficient. In a typical case the CTM curve at the very low values of Re is almost parallel to
the CFOM curve but some distance above it. Since the primary component of the coefficient
CWM varies roughly as the fourth power of the speed, the wave making resistance at very
low values of Re must be vanishingly small, and so the intercept CRM (BC in Figure 10)
cannot be attributed to this cause. If a curve is drawn parallel to the curve of CFOM , the
intercept FG represents the wave making resistance coefficient CWM = RWM/1

2
ρSV 2. On

this assumption, the intercept FE (=BC) must be due to some other cause, and this is the
form resistance.
There are three main causes of this form resistance. The ordinate of the CFOM curve

applies to a flat surface having the same length and wetted area as the model and so neglects
any effects due to the curvature of the hull. This curvature affects the pressure distribution
along the length, causing the velocity to increase along most of the middle part and to
decrease at the ends. The former effect outweighs the latter. Also, since the path along a
streamline from bow to stern is longer on a shaped body than on a flat plate, the average
velocity must be higher. Thus, the real skin friction of a ship must be greater than that of the
equivalent flat plate. Since the pressure and velocity changes and the extra path lengths are
greater the fuller and stumpier the form, such shapes would be expected to have greater form
drag. This has been verified by experiments on bodies of revolution run deeply submerged.
For a given volume of displacement, increases in the length to diameter ratio L/D beyond a
certain point, while it may still reduce the form drag, will increase the frictional resistance
because of the greater surface area and so in terms of total resistance there will be some
optimum value of the L/D ratio. The value depends on the exact shape and on the amount
of appendages necessary to provide directional stability and control, and varies between 5
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and 7. For surface ships the intercept CRM has been found to vary from 5 to 15 percent of
CFOM in naval vessels and up to 40% or more in full cargo ships. These increases, however,
cannot be attributed solely to curvature effects, which leads to the other causes of form
effect.
The existence of the boundary layer has the virtual effect of lengthening the form and

reducing the slopes of the after waterlines. This is a region where the normal pressure on the
hull is higher than the static pressure and the forward components of these excess pressures
will exert a forward thrust overcoming some of the ship’s resistance. The presence of the
boundary layer reduces these forward components, resulting in an increase in resistance as
compared with that which would be experienced in a nonviscous fluid, and is called the
viscous pressure drag.
If the curvature near the stern becomes too abrupt, the water may no longer be able

to follow the hull and breaks away, and the space between the hull and the smooth flowing
water is filled with vortices, as illustrated in Figure 1. A point at which this happens is called
a separation point, and the resulting resistance is the third element of form drag, called
separation resistance. Separation of this kind can also affect the pressure distribution on the
hull, and so modify the viscous pressure drag. In addition to form and separation resistance,
eddy making resistance is also caused by struts, shafts, bossings and other appendages.
Especially in the case of bluff hull forms the phenomena of wave breaking and wave

breaking resistance have to be considered as well. For this type of hull the flow ahead of
the bow becomes irregular and complex, usually leading to a breaking wave, mentioned in
the previous section as well. At very low Froude numbers, below approximately 0.10, wave
making hardly occurs and the free surface at the stern rises to a height approximately equal
to V 2/2g, where V is the speed of the ship and g the acceleration due to gravity, in accordance
with Bernoulli’s equation. As the ship speed increases however, this rise of the wave at the
stern no longer occurs and instead the bow wave breaks. The resistance associated with wave
breaking has been the subject of extensive investigations. Bow wave breaking is considered
to be due to flow separation at the free surface, and it can generally be avoided by requiring
that the tangent to the curve of sectional areas at the forward perpendicular be not too
steep. At a certain ship speed the free surface becomes unstable and breaks when the radius
of curvature of the curved streamlines results in a value of the centrifugal acceleration V 2/R
greater than a critical value. This is the so called Taylor instability criterion (1950), and
when applied to the case of the flow around the bow of a ship with radius R, results in the
approximate expression that R ≥ V 2/50, with R in meters and V in m/sec, to avoid wave
breaking.

1. Wind resistance.

A ship sailing on a smooth sea and in still air experiences air resistance but this is
usually negligible, and it may become appreciable only in high wind. Although the wind
speed and direction are never constant and considerable fluctuations can be expected in a
storm, constant speed and direction are usually assumed. Even in a steady wind the speed
of the wind varies with height above the sea. For consistency therefore the speed is quoted
at a datum height of 10 m. Near the sea surface the wind is considerably slower than at and
above the datum height. According to Davenport the variation of speed with height can be
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sufficiently represented by

Wz

W
=

(
z

zg

)1/n

,

where zg is the datum height, W is the mean wind speed at the datum height, and n is about
7.5 for the atmosphere (this is like the 7–th power law in turbulent boundary layers).
The axial wind force (wind resistance) is given in terms of a coefficient CXA which is

expressed as

CXA(ψA) =
Axial force at relative wind angle ψA

1/2ρAATAW 2
,

where ATA is the transverse projected area of the ship. The axial wind force coefficient CXA
is function of the relative wind angle ψA and typically it varies between ±0.8 as ψA varies
from 0 to 180 degrees. The above force is generally insignificant except when the ship is
“stopped” in a wind or during low speed maneuvering. The wind side force is computed on
the basis of the lateral (side) projected area ALA, and is given by the expression

CY A(ψA) =
Side force at relative wind angle ψA

1/2ρAALAW 2
.

The variation of CY A with the relative wind angle is generally more or less sinusoidal, and
the maximum value of about 0.8 occurs near 90 degrees (beam wind). The yaw moment
generated by the wind is

CNA(ψA) =
Moment at relative wind angle ψA

1/2ρAALALOAW 2
,

where LOA is the length overall and the moment coefficient is

CNA(ψA) = xA(ψA)CY A(ψA) ,

where xA is the center of pressure, which typically varies between ±0.3 of the ship’s length.
2. Added resistance due to waves.

Winds are seldom encountered at sea without wind–generated waves, sometimes from
distant storms. Such waves approaching the ship from ahead can cause appreciable added
resistance, in part from the diffraction effect of the moving hull on the encountered waves
and partly from the indirect effect of the heaving and pitching motions caused by the waves.
In beam and quartering seas, there may be heavy rolling and some yawing, both of which
will add to the resistance. Required rudder action, in particular during tight maneuvers,
may also make a significant addition. Discussion of these effects will be delayed until Part
IV.

3. Appendage resistance.

The principal appendages in ships are the bilge keels, rudders, bossings or open shafts and
struts. All these items give rise to additional resistance, which is best determined by model
experiments. For rudders this can also be calculated from a knowledge of their shape, using
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drag coefficients for airfoils of similar characteristics and Reynolds numbers appropriate to
their speed and length. The correlation of model measurements to the ship is a difficult
question which is not yet satisfactorily solved. The model appendages themselves are very
small, so that the Reynolds numbers based upon their speed and dimensions are also small,
and scale effect is likely to be important. This is especially so with struts and open shafts.
Some tanks have adopted the practice of measuring the increase in CTM on the model due
to appendages, and adding only half of this to the total bare hull ship resistance coefficient.
Other tanks make no such reduction, adding the full value of the increase in CTM to the
ship bare hull resistance, so that the designer must be aware of the specific towing tank
techniques. As a means of making approximate estimates of appendage resistance for design
purposes, table 1 quotes overall figures derived from model tests, no reduction being made
for scale effects. The appendage resistance is expressed as percent of bare hull resistance.

4. Trim effects.

Due to the change in pressure distribution around a ship at different speeds, it will rise
or sink and trim. At low speeds there is a general sinkage and a slight trim by the bow as
compared with the at rest condition, Figure 11. As speed increases the movement of the
bow is reversed and at about Fn = 0.30 the bow begins to rise appreciably, the stern sinks
still further and the ship takes on a decided trim by the stern, Figure 11.
In the average merchant ship form, additional trim by the stern in the at rest condition

usually results in an increase in resistance at low speeds and a decrease at high speeds. At
low speeds the increased draft aft makes the stern virtually fuller, with a consequent increase
in form and separation resistance, whereas at high speeds this is more than offset by the
reduction in wave making due to the finer entrance in the trimmed condition.
In ballast condition it is usually necessary to carry considerable trim by the stern in

order to ensure adequate immersion of the propeller, and this will have similar effects to
those stated in the foregoing — higher resistance at low speeds, less at high speeds. For
any ship which is likely to spend an appreciable part of her time at sea in ballast condition,
model experiments are usually made to investigate these effects.

5. Shallow water effects.

The resistance of a ship is quite sensitive to the effects of shallow water. In the first place
there is an appreciable change in potential flow around the hull. If the ship is considered
as being at rest in a flowing stream of restricted depth, but unrestricted width, the water
passing below it must speed up more than in deep water, with a consequent greater reduction
in pressure and increased sinkage, trim usually by the stern, and resistance. If in addition
the water is restricted laterally, as in a river or canal, these effects are further exaggerated.
The sinkage and trim in very shallow water may set an upper limit to the speed at which
ships can operate without touching bottom.
A second effect is the changes in the wave pattern which occur in passing from deep

to shallow water. When the water is very deep, the wave pattern consists of the Kelvin
transverse and diverging waves shown in Figure 7, the pattern being contained between the
straight lines making an angle α of 19 deg 28 min on each side of the line of motion. As is
discussed more fully in Part IV and in Fluid Mechanics courses, the velocity of surface waves
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is

V 2
c =

g.w
2π

,

in deep water where .w is the wave length, and

V 2
c = gh ,

in shallow water where h is the water depth. The wave pattern for a moving pressure point
goes through a critical change when V =

√
gh, see Figure 12. For speeds less than V =

√
gh,

the system consists of a double set of waves, transverse and diverging as in deep water,
advancing with the pressure point at velocity V . For values of V less than about 0.4

√
gh,

the pattern is enclosed between the straight lines having an angle α = 19 deg 28 min to the
centerline, as for deep water. As V increases above this value, the angle α increases and
approaches 90 deg as V approaches

√
gh. All the wave making effect is now concentrated

in a single crest through the pressure point and at right angles to its direction of motion,
the wave being called a wave of translation. When V exceeds

√
gh, the angle α begins to

decrease again, the wave system being contained between the lines given by sinα =
√
gh/V .

It now consists only of diverging waves, there being no transverse waves or cusps. The two
straight lines themselves are the front crests of the diverging system, and the inner crests
are concave to the line of advance instead of convex as in deep water.
The resistance effect due to these changes is shown in Figure 13 for a pressure disturbance

of linear dimension l travelling over water of depth h. It can be seen from the figure that
the peaks occur at about V ≈ √

gh, the critical speed for that particular water depth. At
this speed the resistance is much greater than in deep water, but ultimately at a sufficiently
high speed it becomes less than in deep water. This depth effect has an important bearing
on full scale ship trials, and can cause misleading results on the relation between power and
speed.
Speeds below and above V =

√
gh are referred to as subcritical and supercritical, respec-

tively. Nearly all displacement ships operate in the subcritical zone, the exceptions being
fast naval ships. The ship speed loss

δV = V∞ − Vh ,

where V∞ is the speed at deep water, and Vh at water depth h, expressed in percentage terms
as 100× δV/V∞, is shown in Figure 14 where Ax is the maximum cross sectional area of the
hull.
When the ship is operating in shallow water and in restricted channels, the corresponding

speed loss can be evaluated from Figure 15 where RH denotes the hydraulic radius of the
channel defined as

RH =
area of cross section of channel

wetted perimeter
.

For a rectangular channel of width b and depth h

RH =
bh

b+ 2h
.
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When b becomes very large, RH = h, and this corresponds to the previous case of shallow
water of unrestricted width. When a ship or model is in a rectangular channel, the hydraulic
radius is

RH =
bh−Ax

b+ 2h+ p
,

where Ax is the maximum cross sectional area of the hull, and p the wetted girth of the hull
at this section.

6. Subsurface waves.

Another wave phenomenon which illustrates several features of pressure resistance due
to wavemaking even more forcibly than waves generated at an air–water interface is that
associated with the so called “dead water”. A layer of fresh water often rests on a layer of
salt water, with little or no mixing, as in regions of rapidly melting ice or off the mouths
of large volume fresh water rivers or fiords. A slow ship or a tug and tow moving through
the low density upper layer may be greatly retarded and rendered almost unmanageable,
because of the generation of low velocity internal waves at the fresh–salt water interface.
Indeed, under these circumstances the internal or subsurface waves have a vertical height or
amplitude much greater than that of the surface waves, yet they are rarely, if ever, detectable
from above the free surface.
The augmented resistance due to these waves can be risen to two or three times the wave

making resistance in homogeneous water. It is also significant to note that for the subsurface
waves:

• Wavemaking at the submerged interface is not necessarily accompanied by wavemaking
at the free surface.

• Wavemaking at a submerged interface can be set up by a body or ship floating on and
in an upper layer of liquid, when the body does not project into the lower layer.

If the ratio of densities of fresh and salt water is represented by s, then the speed of propa-
gation of the subsurface waves compared to the speed of free surface waves is diminished in
the ratio [(1− s)/(1 + s)]0.5, and for fresh over salt water s = 0.9662 and the ratio is 0.131.
This reduces the speed of the subsurface waves significantly so that if the ship speed is above
5 kts, there is little chance that the ship will be caught by dead water.

2.4 Relation of hull form to resistance.

In research problems concerned with the separation of resistance into its components,
methods of extrapolation to the ship, model–ship correlation allowance and the like, the
total resistance coefficient

CT =
RT

0.5ρSV 2
,

is usually used, plotted to a base of the logarithm of Reynolds number Rn = V L/ν. Curves
of this kind have been used in earlier sections. In any consistent system of units, both CT
and Rn are dimensionless.
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For design purposes, a method is desired which will show the relative merits of different
ship forms. Ships are usually designed to carry a given displacement at a specified speed.
CT is not suitable for such cases, since it is based on wetted surface and not on displacement,
and can lead to misleading presentations. An obvious merit criterion is the resistance per
unit displacement weight, RT/W , which is nondimensional when RT andW are expressed in
the same units. This ratio is the basis of a number of presentations, which differ principally
with regards to the speed coefficient used as the base.
Since lower resistance implies lower fuel costs, minimization of ship resistance is clearly

a consideration in the design spiral. A new ship is usually required to carry a certain dead-
weight at a particular speed, and the designer then estimates the probable displacement and
principal dimensions. The latter are usually subject to restrictions not associated with resis-
tance and propulsion. Length is expensive in first cost, is limited by docking and navigation
restrictions, while added length increases scantlings, equipment and manning scales. From a
resistance point of view, greater length for a given displacement will reduce the wave making
resistance but increase the frictional resistance, so that longer lengths will be beneficial in
ships running at high speeds and vice–versa. Longer lengths are also generally beneficial for
behavior in rough seas.
An increase in draft, T , is generally beneficial for resistance, and is a cheap dimension in

terms of cost. However, it may be limited by depths of harbors, canals, or rivers.
The beam, B, is one of the governing factors in ensuring adequate stability, and a mini-

mum value of B/T is generally necessary on this account. An increase in B will increase the
resistance unless it is accompanied by a corresponding finer hull. In cases of low speed ships
however, a small reduction in length and a compensating increase in beam, because of the
resulting decrease in wetted surface, may result in little or no increase in resistance. This
results in a cheaper ship and also meets the need for increased stability in ships with large
superstructures. This idea has been exploited in a number of large tankers.
The minimum wetted surface for a given displacement is also sensitive to the B/T ratio,

the optimum value of which is about 2.25 for a block coefficient of 0.80 and about 3.0 at
0.50. However, the penalty for normal departures from these values is not very great. The
effects of changes in B/T on wave making resistance can be studied from model experiment
results. Generally, stability considerations and limiting drafts usually preclude values below
2.25 for full ships and 2.5 or even more for fine, higher speed hull forms.
While such considerations may be of guidance to naval architects in the choice of di-

mensions, they must meet many other demands, and will be influenced to a large extent
by their knowledge of the particulars of existing successful ships. The process of design is
essentially an iterative one, in which the various elements are changed until a proper balance
is attained. In order to do this, parametric surveys have to be made on the effects of changes
in dimensions, hull form, machinery types, and coefficients of form.
An approximate relation between the block coefficient CB and the Froude number Fn

can be expressed by
V√
gL
= 0.595(1.08− CB) ,

for trial speed, and
V√
gL
= 0.595(1.05− CB) ,
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for service speed. A similar formula for the sustained sea speed in terms of the prismatic
coefficient CP , is

VS√
gL
= 0.55− 0.48CP ,

where the trial speed is taken as
VT = 1.06VS .

The above relationships are intended as rough guides to the designer and do not take
the place of a careful analysis, model experiments, and comparison of alternative designs.
Relations between speed length ratio V/

√
L (V in knots, L in feet), prismatic coefficient CP ,

and displacement length ratio W/(0.01L)3 (W in tons, L in feet) are shown in Figure 16.
The underwater volume of the hull is denoted by �, so that there is no confusion with the
speed V . The curves of this figure are based upon data from a variety of sources, and result
in two pairs of empirical curves which define two “design lanes”. These apply to merchant
and combatant vessels of customary form, and not to special types such as fishing vessels
and tugs.
The load waterplane coefficient CWP decreases with increasing fullness, its value depend-

ing also to a considerable extent upon the type of transverse sections. For Series 60 it is
related to the CP by the approximate formula

CWP = 0.18 + 0.86CP .

In general, CWP will depend also on stability requirements and seakeeping.
In full ships considerable parallel body can be worked in with advantage, and the entrance

can be short, the run being long and fine to minimize flow separation and form resistance. As
CP decreases, so does parallel body, and the entrance is made longer to reduce the increase
in wave making resistance, the LCB moving aft in consequence. Most of the reduction in CP
is thus accomplished by fining the entrance, the change in the coefficient of the run being
much less.
In designing a new ship, systematic series of data for comparisons among a number

of choices of hull form and proportions are available in the technical literature. Such a
well known standard series is the Taylor series developed by Admiral Taylor in the 1930’s
in DTRC (Experimental Model Basin, EMB, at the time). The original parent hull was
patterned after a British cruiser with the scary name Leviathan. The sectional area curves
and body lines for the other models were derived from the parent partly by mathematical
means. The lines of the parent form are shown in Figure 17. The midship section coefficient
was 0.925. The prismatic coefficients of the fore and aft bodies were equal, and the LCB
was always amidships. The quantities varied were CP , B/T , and W/(L/100)3, the midship
section coefficient CM remaining constant. The ranges of the variables covered in the Taylor
standard series are (dimensionless or British units):

CP = 0.48 to 0.86,

B/T = 2.25, 3.00, and 3.75,

W/(L/100)3 = 20 to 250,

�/L3 = 0.70 to 8.75× 10−3.
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The design charts give contours of the residual resistance coefficient CR against V/
√
gL for

various values of �/L3, each chart being for a particular value of CP and B/T , and a typical
set is shown in Figure 18. In conjunction with frictional resistance coefficients (Figure 5) and
an appropriate allowance coefficient (page 99), they can be used to provide design estimates
of the total ship resistance. In using the Taylor series results it should be borne in mind
that the models have a deep cruiser stern suitable for a twin screw propulsion arrangement.
Also the LCB location has not being optimized but is stationed at amidships.
Other systematic ship resistance series include the following:
(a) Series 60: Very popular series developed by the Society of Naval Architects and

Marine Engineers in cooperation with the ATTC. It is based on a single screw merchant
parent and includes data on LCB variations, trim effects, and some propulsive data. It has
a narrower range than Taylor series. Many other results have been developed for this series.
(b) BSRA Series: This has resulted from a long series of tests with single screw merchant

type hulls. It was developed by the British Ship Research Association in the 1960’s. A
comparison between Taylor, Series 60, and BSRA is shown in Table 2.
Here C∆ = W/(0.01L)3 and Lp is the length of the parallel midbody as percent of the length
between perpendiculars. The terms in the last row are propulsion related factors and they
will be examined in the next section.
(c) SSPA Series: Developed by the Swedish State Shipbuilding Experimental Tank in the

1950’s and includes data for high speed, twin screw cargo liners; fast, single screw cargo ship
models; tankers; and single screw cargo ships.
(d) NPL Series: Developed by the National Physical Laboratory, England, it contains

data for coaster models and high speed displacement crafts.
(e) Formdata Series: Developed in Denmark fairly recently (in the 1970’s), it is an attempt

to combine the previous main series, Taylor, 60, SSPA, and NPL.

3. Ship Propulsion.

Propulsive devices for ships may take many forms but in the following sections only
mechanical means of propulsion will be discussed. Of the mechanical means the screw
propeller has been found most use and this section will be devoted exclusively to this. Before
actually discussing propeller theory and design it is important to understand the terms used,
and also to have some knowledge of certain principles of hydrodynamics.

3.1 Powering of ships.

We can begin by defining the basic power terms, as schematically depicted in Figure
19. The brake power, PB, is the power measured at the crank–shaft coupling by means of a
mechanical, hydraulic, or electrical brake. It is determined by a shop test and is calculated
by the formula

PB = 2πQn in kW ,

where

Q = brake torque, kN–m
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n = revolutions per sec.

The brake power is commonly used in internal combustion engines. In terms of horsepower
we have 1 hp = 0.7457 kW, where 1 hp = 550 ft–lb per sec.
The shaft power, PS, is the power transmitted through the shaft. It is usually mea-

sured aboard the ship by means of a torsionmeter. This instrument measures the angle of
twist between two sections of the shaft, which angle is directly proportional to the torque
transmitted. Usually we write

PS = PBηG , (30)

where ηG is the gearing efficiency. Through the bearing efficiency ηB and the sterntube
efficiency ηS, we arrive at the delivered power

PD = PBηSηBηG , (31)

which is the power available to the propeller for the propulsion of the ship.
As the propeller advances through the water at a speed of advance VA, it delivers a thrust

T , and the thrust power is
PT = TVA . (32)

Now the ship moves with speed V and experiences resistance R, so that the effective power
is

PE = RV . (33)

This is related to PD through the quasi–propulsive efficiency

ηD =
PE
PD

. (34)

The coefficient ηD is in the range of 0.5 to 0.7 whereas all other efficiencies are very close to
1.
In order to facilitate our notation, in the following the product ηSηBηG will be simply

termed ηS, the shaft transmission efficiency. The propulsive efficiency is then defined by

ηP =
PE
PB
= ηDηS . (35)

Finally, the ratio of the work done on the ship to that done by the propeller is called the
hull efficiency

ηH =
PE
PT
=

RV

TVA
. (36)

3.2 Propeller action.

Early attempts to explain the mechanism which is used by the propeller to drive the
ship focused around the momentum theory. In this the propeller is regarded as a “disk”
capable of imparting an increase of pressure or acceleration to the fluid passing through it,
the mechanism by which it does so being in the background. Momentum theories are based
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on correct fundamental principles, but give no indication of the propeller form which would
produce the required thrust.
More recent progress follows the circulation theory. In its simplest form, this yields the

blade element theory of propeller action, where the propeller is considered to be made up
of a number of separate blades, which in turn can be divided into successive strips across
the blades, from leading to trailing edge, Figure 20. The forces acting on each strip can be
evaluated from a knowledge of the relative velocity of the strip to the water and the geometry
of the section shape. The elementary forces are then resolved into the elements of thrust dT
in the forward direction, and of torque dQ in the plane of propeller rotation. By plotting
curves of dT and dQ along the blade from boss to tip, as in Figure 20, curves of thrust and
torque loading are obtained which when integrated will give the total thrust T and torque
Q on the whole propeller. The propeller efficiency is then defined by

η0 =
TVA
2πnQ

. (37)

The shapes of blade outlines and sections vary significantly according to the type of ship
for which the propeller is intended. Figure 21 shows a typical design and defines many of
the terms in common use.
If we consider a section of the propeller blade at a radius r with a pitch angle φ and pitch

P , and imagining the blade to be working in an unyielding medium, then in one revolution
of the propeller it will advance from A to A′, a distance called the pitch, P . If we unroll the
cylinder of radius r into a flat surface, the helix traced out by A will develop into a straight
line AM , and the angle

tanφ =
P

2πr
,

is the pitch angle. If the screw is turning at n revolutions per unit time, then in that time it
will advance a distance Pn and we can obtain a velocity diagram for the section as in Figure
21. In a real fluid, there will be a certain amount of yielding when the propeller is developing
thrust and the screw will not advance a distance LM , equal to Pn, in unit time, but some
smaller distance LS, the distance MS being called the slip. The ratio MS/ML = sR is
called the real slip ratio and MAS the slip angle or geometrical slip angle. Fromm Figure
21, it can be seen that

sR =
Pn− VA

Pn
= 1− VA

Pn
. (38)

3.3 Law of similitude for propellers.

As in the case of resistance, a great deal of knowledge concerning the performance of
propellers can be gained from experiments on models and it is important therefore to examine
the relation between model and full scale results. Dimensional analysis can be used to
establish this relation and in what follows an expression will be obtained for the thrust
produced by a propeller.
The thrust of the propeller, T , could depend upon:

1. Mass density of water, ρ.
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2. Propeller size, represented by the diameter, D.

3. Speed of advance, VA.

4. Acceleration due to gravity, g.

5. Speed of rotation, n.

6. Pressure in the field, p.

7. Viscosity of the water, µ.

Writing
T = f(ρaDbV c

Ag
dnepfµg) ,

and introducing the proper dimensions we have

ML

T 2
=
(
M

L3

)a
(L)b

(
L

T

)c ( L

T 2

)d ( 1
T

)e ( M

LT 2

)f (M

LT

)g
. (39)

Equating the indices of M , L, and T on the two sides of equation (39) leads to

T
1
2
ρD2V 2

A

= f

(
gD

V 2
A

,
nD

VA
,

p

ρV 2
A

,
ν

VAD

)
, (40)

where ν = µ/ρ. Equation (40) states that if all parameters on the right hand side have the
same values for two geometrically similar but different size propellers, the flow patterns will
be similar and the value of T/1

2
ρD2V 2

A will be the same for both.
If the model and ship quantities are distinguished by the subscriptsM and S, respectively,

and if λ is the linear scale ratio, then

DS

DM
= λ .

If the model propeller is run at the correct Froude speed of advance, then also

VAS
VAM

= λ1/2 .

Under these circumstances, the first term gD/V 2
A in equation (40) will be the same for model

and ship, so that the first condition for dynamic similarity is that the speed of advance of
the model and ship propellers should be in accordance with Froude scaling.
The slip ratio has been defined by equation (38). For geometrically similar propellers,

therefore, the second condition of equation (40) that nD/VA must be the same for model
and ship, means that the slip ratio must be kept the same for both. Just as in the case of
ship resistance, the third quantity in equation (40) cannot be the same for model and ship
propellers when the former is run in a towing tank, because the atmospheric pressure is not
scaled down in the latter case. However, since the forces on the propeller blades are caused
by differences in pressure, they will not be affected by this fact unless cavitation occurs, in
which case other kinds of tests must be made (see Section 3.5). The last term, ν/VAD, is a
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Reynolds number, and it cannot be made the same if the model and ship speeds of advance
follow Froude’s law. It is concerned with the frictional resistance on the propeller blades,
but as this is only a very small part of the total force on the blade, we can neglect the effects
of viscosity. Nevertheless, it is necessary to make the model propeller as large as feasible in
order to reduce such Reynolds number effects on the blade section drag to a minimum.
With these in mind, we can say that as long as gD/V 2

A and nD/VA are the same in ship
and model

T ∝ D2V 2
A .

The following relationships also hold:

DS

DM
= λ ,

VAS
VAM

= λ1/2 ,

TS
TM

=
D2
SV

2
AS

D2
MV 2

AM

= λ3 ,

nSDS

VAS
=

nMDM

VAM
,

or
nS
nM
=

DMVAS
DSVAM

= λ−1/2 or nM = nSλ
1/2 ,

i.e., the model revolutions are higher than those on the full scale propeller.
The thrust power is given by PT = TVA, so that

PTS
PTM

=
TSVAS
TMVAM

= λ3.5 ,

and
QS
QM
=

PTS
nS

· nM
PTM

= λ4 .

If the model results were plotted as values of

CT =
T

1
2
ρD2V 2

A

,

and

CQ =
T

1
2
ρD3V 2

A

,

to a base of J = VA/nD, therefore, the values would be directly applicable to the ship, apart
from any scale effects. This method of presentation is often used, but the coefficients have
the disadvantage that they become infinite for zero speed of advance, a condition sometimes
occurring in practice, such as for a tug pulling at a stationary ship.
Since J = VA/nD is the same for model and ship, we can replace VA by nD and obtain

new coefficients which do not have this disadvantage:

Advance ratio, J =
VA
nD
; (41)
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Thrust coefficient, KT =
T

ρn2D4
; (42)

Torque coefficient, KQ =
Q

ρn2D5
; (43)

Open water propeller efficiency, η0 =
J

2π
· KT

KQ

; (44)

where KT , KQ, and η0 are functions of J . These coefficients are dimensionless in any
consistent system of units.
Typical open water propeller curves are shown in Figure 22. These show that this pro-

peller reaches its maximum efficiency at a J–value of about 0.85. Since P/D = 1 for this
propeller, at J = 1 the slip ratio is sR = 0 (so why isn’t the thrust zero there?).

3.4 Hull propeller interaction.

In the previous discussion, the propeller was assumed to be working in undisturbed or
open water. When it is located behind the model or ship hull, the flow is considerably
modified. The propeller is now working in water which has been disturbed by the passage
of the hull, and in general the water around the stern has acquired a forward motion in
the same direction as the ship. This forward moving water is called the wake, and one of
the results is that the propeller is no longer advancing relatively to the water at the same
speed as the ship, V , but at some lower speed VA, called the speed of advance. The relations
between thrust, torque, and revolutions in open water where the inflow is uniform, cannot
be expected to remain the same behind the hull in the variable flow conditions experienced
there. This leads to the possibility of different propeller efficiencies in open water and behind
the hull.
1. Wake. The difference between the ship speed V and the speed of advance VA is the

wake speed. The wake fraction is defined as

w =
V − VA

V
, (45)

and then VA = V (1− w). The wake is due to three principal causes:
(a) The frictional drag of the hull causes a following current which increases in velocity

and volume towards the stern, and produces there a wake having a considerable forward
velocity relative to the surrounding water.
(b) The streamline flow past the hull causes an increased pressure around the stern, where

the streamlines are closing in. This means that in this region the relative velocity of the
water past the hull will be less than the ship’s speed and will appear as a forward or positive
wake augmenting that due to friction.
(c) The ship forms a wave pattern on the surface of the water, and the water particles

in the crests have a forward velocity due to their orbital motion, while in the troughs the
orbital velocity is sternward. This orbital velocity will give rise to a wake component which
will be positive or negative according to whether there is a crest or a trough of the wave
system in the vicinity of the propeller.
The total wake is made up of these three components, and in the great majority of cases

is positive, with the exception of high speed ships. The wake has other significant effects
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on the behavior of the ship, predominantly propeller induced hull vibrations discussed in
Section 2.5 of Part II.
2. Slip Ratio. The real slip ratio has been defined, equation (38), as

sR = 1− VA
Pn

.

For the propeller working behind the hull, another slip ratio can be calculated using the ship
speed V instead of the speed of advance of the propeller. This is called the apparent slip
ratio, sA, given by

sA = 1− V

Pn
. (46)

The real slip ratio is the only real guide to the ship’s performance and requires a knowledge
of the wake fraction, w. However, the apparent slip ratio, which needs only the values of
ship speed, revolutions, and propeller pitch for its calculation, is often recorded in ships’ log
books.
3. Relative Rotating Efficiency. The propeller in open water, with a uniform inflow

velocity at a speed of advance VA, has an open water efficiency given by

η0 =
TVA
2πnQ0

, (47)

where Q0 is the torque measured in open water when the propeller is delivering thrust T at
n rotations. Behind the hull, at the same effective speed of advance VA, the thrust T and
revolutions n will be associated with some different torque Q, and the efficiency behind the
hull will be

ηB =
TVA
2πnQ

. (48)

The ratio of behind to open efficiencies under these conditions is called the relative rotative
efficiency, being given by

ηR =
ηB
η0

=
Q0

Q
. (49)

The difference in torque found behind and in open is due to two main reasons: the het-
erogenous wake, and the fact that the amount of turbulence in the water behind the hull is
greater than in open water. The value of the relative rotative efficiency does not in general
depart significantly from one, being in the range of 0.95 to 1.0 for most twin screw ships,
and between 1.0 and 1.1 for single screw.
4. Thrust Deduction. When a hull is towed, there is an area of high pressure over the

stern which has a resultant forward component reducing the total resistance. With a self
propelled hull, however, the pressure over some of this area is reduced by the action of the
propeller in accelerating the water flowing into it, the forward component is reduced, the
resistance is increased and so is the thrust necessary to propel the model or ship. If R is the
resistance and T the thrust, we can write for the same ship speed

R = (1− t)T , (50)

where the expression (1− t) is called the thrust deduction factor.
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5. Hull Efficiency. The work done in moving a ship at a speed V against a resistance R is
proportional to the product RV or the effective power PE. The work done by the propeller
in delivering a thrust T at a speed of advance VA is proportional to the product TVA or the
thrust power PT . The ratio of the work done on the ship by that done by the propeller is
called the hull efficiency, ηH , so that

ηH =
PE
PT
=

RV

TVA
=
1− t

1− w
. (51)

For most ships this is greater than one. At first sight this seems an anomalous situation in
that apparently something is being obtained for nothing. It can, however, be explained by
the fact that the propeller is making use of the energy which is already in the wake because
of its forward velocity.
6. Propulsive Efficiency. In equation (34) the quasi–propulsive efficiency was defined as

ηD =
effective power

delivered power
=

PE
PD

,

where

PE = RV , and

PD =
TVA
ηB

,

from equation (48). Therefore,

ηD =
RV

TVA
ηB ,

and from the relationships already developed, this can be expanded into the form

ηD =
1− t

1− w
ηB =

1− t

1− w
· ηB
η0

η0

1− t

1− w
ηRη0 = ηHηRη0 . (52)

The overall propulsive efficiency is then given from (35) as

ηP = ηHηRη0ηS . (53)

The division of the propulsive coefficient into factors in this way is of great assistance both
in understanding the propulsion problem and in making estimates of propulsive efficiency
for design purposes.

3.5 Cavitation.

Cavitation is a phenomenon met with in highly loaded propellers in which, beyond certain
critical revolutions, there is a progressive breakdown in the flow and a consequent loss of
thrust. In its extreme form, it may prevent the ship from reaching the desired speed. Before
this stage is reached, however, it manifests itself by noise, vibration and erosion of the
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propeller blades, struts, and rudders. Avoidance of cavitation has become an important
requirement in the design of nearly all propellers, and it is necessary to consider the problem
of cavitation before going on to methods of propeller design and selection.
To understand the mechanism of cavitation, consider a blade section or airfoil set at

a small angle of attack in a two dimensional, steady, nonviscous flow, Figure 23. On this
diagram a horizontal line is drawn which represents the static pressure on the back of the
blade. If the reduction in pressure on the back should equal the static pressure at any point
in the breadth of the blade then any tendency to reduce the pressure beyond this point will
cause flow breakdown and the formation of cavities filled with air or water vapor. Now these
cavities or bubbles will be swept along the blade and as they move towards the trailing edge
they will come into regions of higher pressure and collapse. The collapse of the bubbles
generates very highly localized forces, sufficient to cause mechanical damage to the material
of the blade, or erosion. For quantitative purposes, it is necessary to have some criterion
which will indicate the conditions under which a propeller is working as far as cavitation is
concerned.
With reference to Figure 23, Bernoulli’s equation yields

p1 +
1
2
ρV 2

1 = p0 +
1
2
ρV 2

0 ,

and the change in pressure is

δp = p1 − p0 =
1
2
(V 2

0 − V 2
1 ) .

At some point S near the leading edge of the section, the velocity V1 is zero. This point S
is called a stagnation point and the pressure at S, called the stagnation pressure, is

q = 1
2
ρV 2

0 .

The pressure p1 at some point on the back of the blade will become zero if

δp = −p0 .

Since water cannot support tension, the flow will break down at this point with the formation
of bubbles and cavities, and cavitation will result. In practice, this situation will come about
somewhat earlier — when p1 has fallen not to zero but to the vapor pressure of water, pv,
at which it begins to “boil” and form cavities. The criterion is then that

pv = p0 + δp , or

δp = −(p0 − pv) .

Dividing through by the stagnation pressure 1
2
ρV 2

0 or q, cavitation will begin when

−δp

ρ
≥ p0 − pv

q
.

The expression
p0 − pv

q
= σ , (54)
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is called the cavitation number.
In model experiments, the dimensional analysis of Section 3.3, revealed that for dynamic

similarity the term p/ρV 2
A must remain the same for model and full scale propeller — refer to

equation (40). It can be seen that this is equivalent to saying that the cavitation number σ
must be the same. In order to establish the cavitation characteristics of a propeller, therefore,
the tests must be run at the same value of σ, while still keeping Froude scaling. Such tests
are done in cavitation tunnels or variable pressure towing tanks where the pressure can be
reduced to the correct scale amount.
Many propellers, especially during an initial design phase, are designed from charts de-

rived from methodical series tests, as presented in Section 3.6. Even if they are designed by
using analytical tools, it is still necessary to begin with some chosen propeller diameter, also
determined from a design chart. Some general criterion is therefore needed for the choice
of blade area to avoid cavitation. A diagram designed to provide such guidance in order to
avoid excessive cavitation and erosion under average service conditions at sea was given by
Burrill and is presented in Figure 24. In the diagram, the local cavitation number σ0.7R is
calculated using the relative speed VR at 0.7 radius and the pressure at the centerline of the
propeller, i.e.,

σ0.7R =
pA − pv + ρgh

1
2
ρ [V 2

A + (0.7πnD)
2]

,

an approximate value for which is

σ0.7R =
188.2 + 19.62h

V 2
A + 4.836n

2D2
, (55)

where h is the head of water at the propeller center line (m), D the propeller diameter (m),
n revolutions per second, and VA the speed of advance (m/sec). On the vertical scale of the
diagram, a coefficient τc expressing the mean thrust loading on the blades, is defined

τc =
T/AP
1
2
ρV 2

R

,

where T is the thrust in kN, AP the projected blade area in m
2, and VR is given by V 2

R =
V 2
A + (0.7πnD)

2. A suggested limit on T/AP can then be obtained in order to avoid serious
back cavitation. The projected blade area AP can be found from the more usual developed
area AD by using Taylor’s approximate formula (refer to Figure 21 for the definitions)

AP
AD
= 1.067− 0.229P

D
. (56)

We remind that the thrust can be calculated from the effective power PE or the delivered
power PD from the expressions

T =
PE

(1− t)V
=

PDηD
(1− t)V

.

A useful formula for obtaining a first indication as to the required expanded blade area
ratio was derived by Keller

AE
A0
=
(1.3 + 0.3Z)T

(p0 − pv)D2
+ k , (57)
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where T is the thrust, Z the number of propeller blades, po−pv the pressure at the centerline
of the propeller, k is a constant varying from 0 (for transom stern naval vessels) to 0.20 (for
high powered single screw vessels), A0 is the propeller disk area πD2/4, and AE is the
expanded blade area derived from the expanded blade outline as shown in Figure 21.
The subject of cavitation criteria in propeller design can really only be dealt with ade-

quately by incorporating pressure distribution, angle of attack, and cavitation number in-
formation into a detailed design process, for every radius. Criteria such as the Burrill chart
and the Keller formula do not reflect the influence of the wake or propeller blade geometry
such as pitch, camber, and thickness distribution. They should, therefore, be used with care
for preliminary estimates only.

3.6 Propeller selection and design.

The design of a marine propeller can be carried out either by purely theoretical calcula-
tions or by using charts and methodical series, in which case it is more propeller selection
than design. In this section we concentrate our efforts more on propeller selection and less
on design, the latter being a very complicated problem.

1. General considerations in propeller design.

Propeller efficiency usually increases with increasing diameter, D, and the maximum
diameter is limited by the geometry of the stern. Another limiting factor is imposed by pro-
peller induced unsteady hull forces which decrease with increasing hull/propeller clearance.
Also a larger diameter will change the radial distribution of the wake in which the propeller
operates, which can lead to serious detrimental effects if the blades extend into a region of
greater flow non–uniformity.
The number of revolutions, n, is in many cases selected beforehand and may not be a

part of the final design. In general, a reduction in rpm tends to be beneficial.
The number of blades, Z, affects predominantly the level of the unsteady forces on the

propeller. The main consideration that influences the selection of Z is to avoid hull resonance,
as was briefly discussed in Section 2.5 of Part II.
The expanded blade area, AE , is generally selected to avoid cavitation. This can be done

by using, for example, equation (57).
Finally, with a view to the recent developments of highly skewed propellers, it is appro-

priate to mention their properties. Properly designed skewed propellers have the following
advantages:

• Decrease in propeller induced unsteady bearing forces and moments.
• Decrease in propeller induced unsteady pressure forces.
• Decreased susceptibility to cavitation when operating in a wake.

These advantages are at the expense of:

• Decreased backing efficiency.
• More difficult to manufacture.
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• Strength related problems for very high skew and for backing conditions.
Appropriate skew design can be achieved only with detailed analytical studies and it requires
a fairly accurate knowledge of the wake in which the propeller will be operating.

2. Propeller selection from methodical series.

In conducting model propeller series tests, a parent model is chosen of given blade area,
number of blades, blade outline, section shape, and blade thickness, and a number of models
are built with different pitch ratios. These models are then run in open water in a towing
tank over a range of slip ratios. Additional groups can be run in which one of the other
parameters is changed and the effect of the alteration on performance determined. The most
widely used systematic propeller series is the Wageningen B–series. The range of Z and
AE/A0 that the series covers is shown in Table 3.
Any particular group of series B is identified by combinations such as B.5.60 where 5 indicates
the number of blades and 0.60 the expanded blade area ratio. A typical form of a four blade
propeller is shown in Figure 25.
The open water propeller characteristics are presented in graphical form in terms of the

thrust and torque coefficients

KT =
T

ρn2D4
, KQ =

Q

ρn2D5
, (58)

and the open water propeller efficiency

η0 =
J

2π
· KT

KQ
, (59)

versus the advance coefficient

J =
VA
nD

, (60)

and for different values of the pitch ratio P/D. A typical propeller chart is shown in Figure
26. Each diagram is for a certain value of Z and AE/A0, which are selected based on the
previous general considerations.
In the propeller selection problem we have the two equations (58) and six basic unknowns:

T (or R), VA (or V ), P , D, n, and Q. Therefore, if we know four of these unknowns we
can solve the problem and select the propeller. As an example, suppose we know the ship
resistance R at the required service speed V from the resistance calculations of the previous
sections. We have already selected a type of main engine and the revolutions n are known.
We know the propeller diameter D, and we want to find the pitch P and the delivered power
PD. In order to do this we have to estimate t and w and, therefore, we know T , VA, n, and
D. From these we can find KT and J from equations (58) and (60), and this defines a point
on the KT–J diagram. The curve P/D that passes through that point determines the pitch,
and the corresponding value of KQ yields the open water torque Q at the propeller. The
delivered power is then

PD =
2πnQ0

ηR
. (61)
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If three instead of four of the parameters are known, and a relationship between two of
the remaining, for instance R or PE versus V , we have to solve an optimization problem.
The optimality criterion is normally the propeller efficiency (59). During preliminary design
we usually have two main categories of such propeller optimization problems:
Optimal revolution: We know V , PE or R, and D (for example, the largest propeller that

fits under the stern), and we want to find P and n to maximize η0. The solution procedure
is as follows: Estimate t and w and compute T and VA. Therefore, we can compute the ratio

KT

J2
=

T

ρV 2
AD

2
= C1 . (62)

The curve KT = C1J
2 is then plotted on the KT–J diagram. This curve corresponds to

the ship requirements, Figure 27. The intersection of this curve with any one of the KT–J
curves constitutes a potential solution to the problem, and we can find the corresponding
efficiency η0. If this procedure is performed for all KT–J curves in the diagram, we can plot
the curve η0–J and the maximum of this curve corresponds to the optimal propeller.
If, instead of PE, the delivered power PD is known, we have

KQ =
Q

ρn2D5
=

PDηR
2πρn3D5

,

and we can see that the ratio KQ/J
3 is now constant. By superimposing this curve on the

propeller chart, we can construct the η0–J curve and determine the optimal propeller.
Optimal diameter: Suppose that V , PE , and n are given — for example, we know what

kind of main engine and gearing is to be installed, but we don’t know the engine horsepower.
We need to determine the propeller diameter D and pitch P for maximum efficiency η0.
Similarly to the previous case we can see that here the ratio

KT

J4
=

Tn2

ρV 2
A

,

is known. The selection procedure is then similar to the optimal revolution case. If PD
instead of PE is given, we can see that the ratio KQ/J

5 will now be known and the rest of
the procedure is the same.
The above procedures can also be performed numerically by using some standard opti-

mization technique, such as the Lagrange multiplier method. This is possible because the
curves KT and KQ are also given in polynomial form for the Wageningen B–series in terms
of the parameters J , P/D, AE/A0, and Z. All these curves apply for Reynolds number
2× 106. Corrections for different Reynolds numbers exist but they are rather insignificant.
The results are usually given in tables or graphical form.
At the final design stage now we have decided on the particular main propulsion unit to

be installed on the ship. This introduces one more level of complexity since the propeller
characteristics must match the main engine characteristics as closely as possible. A typical
engine power vs. engine speed diagram for a Sulzer 2–stroke engine is shown in Figure 28.
It is desirable that the propeller characteristics curve is located in region A and must go
through point M.C.R., or close to it. Each point on such a curve corresponds to a different
propeller/engine operation point and can be parametrized by the specific fuel consumption

33



and the ship speed. From such detailed diagrams it is possible to evaluate how successful
the final design is. If, for example, the propeller operates at full speed with little power, it
has too small a pitch ratio. If, on the other hand, it operates at full power at low speed,
its pitch is too high. The advantages and added flexibility of a controllable pitch propeller
become now evident — such topics will be covered through homework problems.

3. Theoretical propeller design.

The use of a design method based upon a rational theory permits the designer the ability
to account for the following:

• number of blades
• hub size
• radial blade loading
• chordwise blade loading
• blade shape and size
• blade skew
• wake adaption

All of these features, with the possible exception of hub size, can play a major role in
minimizing ship vibration and/or cavitation problems. The proper recognition of propeller
blade strength requirements can only be achieved within the framework of a theoretical
design method.
Figure 29 presents a schematic diagram of the propeller design process. The first two

steps involve recognition of the available data, design constraints, selection of design para-
meters, and initial estimates. These ensure that the propeller will be compatible with the
ship, installed propulsion machinery, and transmission from the standpoint of efficiency and
vibration.
Step III involves the use of a lifting line program. This allows for computation of the

optimum spanwise lift distribution over the propeller blade, the hydrodynamic pitch angle,
the inflow velocity to each blade section, the total thrust which is produced, the power which
is absorbed, and the propeller efficiency. Lifting line theory cannot account for chordwise
effects but can recognize spanwise (radial) effects. The main hypotheses and assumptions of
the lifting line concept can be summarized as follows:

1. The fluid is inviscid and incompressible. However, in the calculation procedure, al-
lowance is made for the viscous drag of the blade by the use of some kind of strip
theory.

2. The free stream velocity is axisymmetric and steady.

3. Each propeller blade is represented by a lifting line and the circulation varies along the
radius. From vortex theory it follows that free vortices are shed from the lifting line
and, in a coordinate system that rotates with the propeller, these free vortices form a
general helical surface behind the propeller.
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4. Each of the free vortices is at a constant pitch in the downstream direction, but a
radial variation in pitch is allowed. This means that effects of centrifugal force on the
shape of the vortex sheets are ignored.

5. The radial velocity induced at the hub is assummed small so that the effect of the hub
on the pitch of the trailing sheets is ignored.

The lifting line results allow detailed cavitation and strength analysis. The preliminary
estimates of thickness and chord distribution made in Step II can now, in Step IV, be checked
and altered if necessary. It might be found that the optimum load distribution found in Step
III cannot be achieved. In particular, the tip might have to be unloaded. In this case, a
non–optimum load distribution will have to be developed and the lifting line program re–run.
Step V involves skew and rake selection. Both are very important in controlling propeller

excited vibrations. Vibration excitation results from both the unsteady pressure forces acting
on the hull and the unsteady bearing forces which result from the varying loading on the
propeller. Blade rake is used to increase the distance between the propeller and the hull.
Blade skew permits a more gradual entry of the blade into the high wake region. Thus, both
rake and skew tend to reduce the propeller excitation forces.
Lifting line theory cannot recognize chordwise effects and thus it is not sufficient to

use two dimensional section data to obtain the required angle of attack and camber for
relatively broad bladed marine propellers. To obtain the chordwise effects, we must use
a lifting surface program, Step VI, to compute the lifting surface corrections for the angle
of attack and camber distributions. The previous lifting line theory assumptions hold for
lifting surface, except now it is assumed that the bound vortices are distributed over the
blade surface rather than concentrated at a lifting line, and the blade is allowed to have a
finite thickness.
The lifting surface program can predict the loading and velocity distribution over the

entire propeller blade. These can be used for a final cavitation check, Step VII. In addition,
the loading can be put into a finite element program to conduct a detailed structural analysis.
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Figure 1: Examples of flow about a submerged body.
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Figure 2: Speed–power trends for different ship types.
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Figure 3: Velocity profiles for the boundary layer on a flat plate.

Figure 4: Skin friction lines, turbulent and laminar flow.
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Figure 5: Standard skin friction lines.
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Figure 6: Ship resistance calculation using Hughes form factor method.

Figure 7: Kelvin wave pattern.
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Figure 8: Ship generated waves prediction.
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Figure 9: Typical wave making resistance coefficient plots.

Figure 10: Elements of model resistance.
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Figure 11: Changes in sinkage and trim with speed.

Figure 12: Effect of shallow water on wave pattern.

Figure 13: Effect of shallow water on wave resistance.
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Figure 14: Chart for calculating reduction in speed in shallow water.

Figure 15: Curves for calculating resistance in restricted channels.
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Figure 16: Design lanes for prismatic coefficient and displacement length ratio.

Figure 17: Lines for the parent form of Taylor standard series.
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Figure 18: Typical Taylor standard series contours.
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Figure 19: Ship power definitions.

Figure 20: Propeller blade definitions and loading curves.
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Figure 21: Typical propeller drawing and definitions.
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Figure 22: Typical KT , KQ, and η0 curves.

Figure 23: Flow and pressure around an airfoil.
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Figure 24: Burrill’s cavitation diagram.

Figure 25: Blade form and sections of B.4 series.
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Figure 26: Wageningen B–series propeller: Z = 4, AE/A0 = 0.9, P/D = 0.5 to 1.4.
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Figure 27: Example of optimal revolution propeller selection.
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Figure 28: Typical main engine and propeller characteristics.
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Figure 29: Theoretical propeller design steps.
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Table 1: Appendage resistance for various ship types.

Table 2: Range of applicability of resistance standard series.

Table 3: Range of applicability of B–series propellers.
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