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Preface

Masses that are added to a ship’s bulk will determine the inertial properties of that
ship under motion. Computation of the effect of such added masses of various bodies
has been the subject of many journal articles, as well as chapters in various textbooks
and research monographs on theoretical and applied hydrodynamics. This book is
part of that literature.

The present volume is a revised translation of the second edition of the author’s
book “Added masses of ship structures” published in 2007 in Russian by Morwest
Publishers (St. Petersburg). The first Russian edition was published in 1986; in the
second edition the author also reviewed results obtained in this field over the inter-
vening 20 years.

In particular, we included a brief overview of existing numerical methods for
determination of added masses (Chap. 9). The well-developed numerical methods
allow us to go far beyond pure theoretical considerations which give explicit results
only for simple models. However, in many cases, for practical engineering purposes
one needs to know the dependence of various added masses on the main parameters
of the system for various models. In particular, these model cases can be used to
verify the accuracy of numerical results.

It is the purpose of this book to collect the main theoretical results on added
masses and to describe some experimental methods of their determination; we hope
that it can serve as a useful tool to engineers dealing with various structures moving
in fluid. Besides marine engineering, this book can be used in machine engineering,
aviation engineering and hydrotechnique studies.

The author would like to offer an apology to the reader for a certain notational
inconsistency: the period is used in decimal numbers in the main text of the book.
However, the comma is used for the same purpose in pictures which were inherited
from the Russian edition of the book. To avoid a tedious process of re-drawing these
figures we assume 0.5 = 0,5 = 1/2 in this book; we hope this inconsistency will not
confuse the reader significantly.

Some sections of this reference book were written by other authors. Sect. 9.6 is
written by V.S. Boyanovskij and O.I. Babko; Sect. 4.1—by Yu.V. Gurjev; Sects. 7.1,
7.2—by E.I. Ivanjuta; Sect. 2.6—by A.I. Nemzer; Sect. 9.5—by S.N. Okun-
jov, Sect. 7.4—by A.S. Samsonov; Sect. 6.10—by V.N. Fedorov; Chap. 6 and
Sect. 8.3—by E.N. Schukina, Sect. 5.14—by I.V. Sturova and E.V. Ermanjuk;
Sect. 8.5—by A.M. Vishnevskij, A.J. Lapovok and S.A. Kirillov.

I.V. Sturova made several important comments on Chap. 5 of the Russian edition;
these comments are taken into account in the English edition of the book.

The second Russian edition was published due to friendly recommendations of
A.S. Ginevskij.

v



vi Preface

I express my deep gratitude to N.A. Sizova who prepared the second Russian
edition for publication. Finally, I thank D. Korotkin who edited both the content and
the language of the English version of the book.

St. Petersburg Alexandr I. Korotkin
July 2008
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Chapter 1
General Discussion of Body Motion in an Ideal
Infinite Fluid

The notion of added mass was first introduced by Dubua in 1776 (see [24]), who ex-
perimentally studied the small oscillations of a spherical pendulum. An exact math-
ematical expression for the added mass of a sphere was obtained by Green in 1833
and Stokes in 1843 (see [133]). Stokes also studied the motion of a sphere in a finite
volume of fluid. Later, as a result of efforts of many researchers, the notion of added
mass was generalized to an arbitrary body moving in different regimes. Under mo-
tion of a body in real incompressible fluid, the hydrodynamic forces and torques are
determined by inertial and viscous properties of the fluid. In certain approximations
one can distinguish the forces and torques of inertial nature, which can be computed
assuming that the fluid is ideal (non-viscous), and the forces (torques) are related
to viscosity. The forces and torques of the inertial nature can be expressed in terms
of the added masses of the body. The hydrodynamic forces and torques can also be
expressed in terms of added masses not only in the case of accelerated motion, but
also in the case of motion with constant velocity. It is especially important to take
the added masses (or added moments of inertia) into account if they are comparable
with the mass (or moments of inertia) of the body itself.

The added masses are especially important in studies of the rolling of a vessel
and in studies of vessel control, as well as in the problems of analysis of local and
global vibration of a vessel and its parts (rudders, propellers).

1.1 Formulation of the Problem

Assume that the body with surface S is moving in an infinite homogeneous ideal
fluid free from vortices. Consider two systems of coordinates: the stationary one
(we denote it by XYZ) and the coordinate system moving together with the body
(we denote it by Oxyz). Let us assume that at a given moment these two systems of
coordinates coincide. The vortex-free condition implies the existence of a potential
ϕ(X,Y,Z, t) such that the components of the fluid velocity are given by:

vX = ∂ϕ

∂X
; vY = ∂ϕ

∂Y
; vZ = ∂ϕ

∂Z
. (1.1)

The continuity and incompressibility of the fluid imply the Laplace equation

∂2ϕ

∂X2
+ ∂2ϕ

∂Y 2
+ ∂2ϕ

∂Z2
= 0. (1.2)

The boundary conditions for Eq. (1.2) look as follows:

A.I. Korotkin, Added Masses of Ship Structures,
© Springer Science + Business Media B.V. 2009
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2 1 General Discussion of Body Motion in an Ideal Infinite Fluid

1. The watertight condition, valid on the surface S:

∂ϕ

∂n

∣
∣
∣
∣
S

= un, (1.3)

where (∂ϕ/∂n)|S is a projection of fluid velocity on the (external) normal direc-
tion n to surface S; un is the projection of velocity of a point of the body on the
normal n.

2. Stationarity condition at infinity:

lim
r→∞

∂ϕ

∂X
= lim

r→∞
∂ϕ

∂Y
= lim

r→∞
∂ϕ

∂Z
= 0, (1.4)

where r2 = X2 + Y 2 + Z2 (r is the distance from the origin to a fluid point).

The function ϕ vanishes at infinity as r−2, whereas its first-order coordinate
derivatives vanish as r−3 [116, 221].

From the formulation of our problem (1.2)–(1.4) we see that function ϕ depends
on time t via the right-hand side of boundary condition (1.3). Let us write down this
condition in more detail. Choose the origin O to coincide with an arbitrary point
of the body. Denote velocity of the point O by �uO (components u0x, u0y, u0z are
projections of the vector �uO on coordinate axes attached to the body). Denote by �ω
the angular velocity of the body with respect to the point O (components of �ω in
the same coordinate system are denoted by ωx,ωy,ωz). The velocity of an arbitrary
point of the body, including any point of its surface S, is determined by the following
relation

�u = �u0 + �ω × �r, (1.5)

where �r is the vector determining the position of the point. In components Eq. (1.5)
looks as follows:

ux = u0x + ωyz − ωzy,

uy = u0y + ωzx − ωxz,

uz = u0z + ωxy − ωyx. (1.6)

On the surface S we have

un = ux cos(n, x) + uy cos(n, y) + uz cos(n, z). (1.7)

Writing α ≡ cos(n, x), β ≡ cos(n, y), γ ≡ cos(n, z) and substituting (1.6) into
(1.7), we come to the following form of the boundary condition (1.3):

∂ϕ

∂n

∣
∣
∣
∣
S

= un = u0xα + u0yβ + u0zγ + ωx(yγ − zβ)

+ ωy(zα − xγ ) + ωz(xβ − yα). (1.8)

In the formula (1.8) the variables α, β , γ , yγ − zβ , zα − xγ , xβ − yα are deter-
mined only by the shape of the surface body. The body motion and the dynamics of
the flow are determined by the functions u0x , u0y , u0z, ωx , ωy , ωz.



1.2 Kinetic Energy of the Fluid 3

Linearity of the problem allows us to represent the potential ϕ as the sum

ϕ = u0xϕ1 + u0yϕ2 + u0zϕ3 + ωxϕ4 + ωyϕ5 + ωzϕ6. (1.9)

The formula (1.9) shows that ϕi, i = 1,2,3 are the flow potentials corresponding to
the body moving along the axes x, y, z at unit linear velocities, respectively. On the
other hand, ϕi, i = 4,5,6 are potentials corresponding to rotation of the body around
the same axes at unit angular velocities (respectively). We see that the problem of
body motion in an ideal infinite fluid gives rise to solution of six problems.

The first problem can be formulated as follows: find the solution of the Laplace
equation �ϕ1 = 0 with the following boundary conditions: the function

∂ϕ1

∂n
= α

is given on the surface S and

∂ϕ1

∂X
= ∂ϕ1

∂Y
= ∂ϕ1

∂Z
→ 0 as r → ∞.

The last (sixth) problem, taking (1.8) into account, can be formulated as follows:
find the solution of the Laplace equation �ϕ6 = 0 with the following boundary
conditions: the function ∂ϕ6/∂n = xβ − yα is given on the surface S, and

∂ϕ6

∂X
= ∂ϕ6

∂Y
= ∂ϕ6

∂Z
→ 0 as r → ∞.

We see that the functions ϕi (i = 1,2, . . . ,6) do not depend on �u0 and �ω. These
functions are determined only by the shape of the surface S of the body and the
choice of coordinate system Oxyz attached to the body.

1.2 Kinetic Energy of the Fluid

The kinetic energy of the fluid confined between the surface S of the moving body
and the stationary sphere Σ of radius a containing the body together with surround-
ing fluid, is defined by the integral

T = 1

2
ρ

∫ ∫ ∫

V

v2 dV = 1

2
ρ

∫ ∫ ∫

V

[(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2]

dx dy dz,

where ρ is the density of the fluid.
Using Green’s transformation for two functions (ϕ1, ϕ2),

∫ ∫ ∫

V

(
∂ϕ1

∂x

∂ϕ2

∂x
+ ∂ϕ1

∂y

∂ϕ2

∂y
+ ∂ϕ1

∂z

∂ϕ2

∂z

)

dx dy dz

= −
∫ ∫

S+Σ

ϕ1
∂ϕ2

∂n
dS −

∫ ∫ ∫

V

ϕ1

(
∂2ϕ2

∂x2
+ ∂2ϕ2

∂y2
+ ∂2ϕ2

∂z2

)

dx dy dz
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and taking into account that in our case ϕ1 = ϕ2 = ϕ and �ϕ = 0, we get the ex-
pression

T = −ρ

2

∫ ∫

S

ϕ
∂ϕ

∂n
dS − ρ

2

∫ ∫

Σ

ϕ
∂ϕ

∂n
dS. (1.10)

The second term in the right-hand side of Eq. (1.10) tends to zero as a → ∞ by
virtue of the asymptotical behavior of ϕ and its first derivatives as r → ∞. There-
fore, we obtain the following formula for the total kinetic energy of the fluid outside
of the surface S:

T = −ρ

2

∫ ∫

S

ϕ
∂ϕ

∂n
dS. (1.11)

Substituting the expression (1.9) into (1.11) and writing

u0x = u1, u0y = u2, u0z = u3, ωx = u4, ωy = u5, ωz = u6,

we obtain

T = 1

2

6
∑

i=1

6
∑

k=1

λikuiuk,

where the values

λik = −ρ

∫ ∫

S

∂ϕi

∂n
ϕk dS (1.12)

are called the added masses (in the sequel we shall sometimes use the abbreviation
AM) of the body. Some authors prefer to call λik the virtual masses of the body. The
added masses do not depend on the kinematics of the motion, since velocities ui do
not enter (1.12). Applying Green’s formula to functions ϕi and ϕk in the volume V

between the surfaces Σ and S,

∫ ∫ ∫

V

(ϕi�ϕk − ϕk�ϕi) dV =
∫ ∫

Σ

(

ϕi

∂ϕk

∂n
− ϕk

∂ϕi

∂n

)

dS

−
∫ ∫

S

(

ϕi

∂ϕk

∂n
− ϕk

∂ϕi

∂n

)

dS,

we see that the left-hand side of the equation equals zero, since �ϕi = �ϕk = 0,
and the first term of the right-hand side of the equation tends to zero at a → ∞.
Therefore, for the infinite fluid surrounding the body, the following condition holds:

∫ ∫

S

ϕi

∂ϕk

∂n
dS =

∫ ∫

S

ϕk

∂ϕi

∂n
dS,

thus λik = λki . Therefore, out of 36 values λik (i, k = 1,2, . . . ,6) only 21 values are
independent. The (multiplied by the factor of 2) kinetic energy of the fluid under an
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arbitrary body motion can be written as follows:

2T = λ11u
2
1 + λ22u

2
2 + λ33u

2
3 + 2λ12u1u2 + 2λ13u1u3 + 2λ23u2u3

+ 2u1(λ14u4 + λ15u5 + λ16u6) + 2u2(λ24u4 + λ25u5 + λ26u6)

+ 2u3(λ34u4 + λ35u5 + λ36u6) + λ44u
2
4 + λ55u

2
5 + λ66u

2
6+ 2λ45u4u5 + 2λ46u4u6 + 2λ56u5u6. (1.13)

The values for the AM λik depend on the shape of the body, chosen coordinate
system and fluid density ρ. The variables λik (i, k = 1,2,3) have dimension of mass,
values for λik (i = 1,2,3; k = 4,5,6) have dimension of static moment, values for
λik (i, k = 4,5,6) dimension of moment of inertia.

Similarly to the formula (1.13), the expression for kinetic energy of the body
of mass m, with coordinates of the center of inertia xc, yc , zc , with diagonal mo-
ments of inertia Jx , Jy , Jz and products of inertia Jxy , Jxz, Jyz, is represented in the
following form:

2T0 = mu2
1 + mu2

2 + mu2
3 + 2u1(mzcu5 − mycu6)

+ 2u2(mxcu6 − mzcu4) + 2u3(mycu4 − mxcu5)

+ Jxu
2
4 + Jyu

2
5 + Jzu

2
6 − 2Jyzu5u6 − 2Jxzu4u6 − 2Jxyu4u5. (1.14)

In spite of certain similarities between the formulas (1.13) and (1.14), there are also
essential differences between them. Let for example the body have only two non-
vanishing components of velocity: u1 and u2. Then the kinetic energy of the body is
defined by the formula T0 = m(u2

1 + u2
2)/2, while the kinetic energy of the fluid is

given by T = (λ11u
2
1 +λ22u

2
2 +2λ12u1u2)/2. An additional term in the last formula

can be interpreted as describing the interaction of two currents corresponding to the
motion of the body with velocities u1 and u2.

Some data on kinetic energy of fluid enclosed within closed contours (ellipse,
ideal triangle, segments of a circle) rotating with constant velocity around an axis
orthogonal to the plane of these contours are given in [36, 114]. Kinetic energy of
fluid can in these cases be expressed via variables which are analogous to added
masses. We do not consider this type of motion in this work since it does not corre-
spond to the problem formulated in Section 1.1.

1.3 Transformation of Added Masses under a Change of
Coordinate System

Transformation laws for the added masses under a change of the coordinate system
can be derived from invariance of quadratic form (1.13) under a change of coordi-
nate systems.

Let λik (i, k = 1,2, . . . ,6) be the added masses of the body computed in the
coordinate system xyz. Let us find the added masses λ′

ik (i, k = 1,2, . . . ,6) of the
same body in the new coordinate system x1y1z1; we denote the coordinates of the
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origin of the new coordinate system in the coordinate system xyz by ξ1, ξ2, ξ3. Let
us consider the matrix of cosines of the angles between the axes of the coordinate
systems xyz and x1y1z1:

x y z

x1 α11 α12 α13
y1 α21 α22 α23
z1 α31 α32 α33

The elements of this matrix satisfy the standard orthogonality relations

3
∑

i=1

αpiαiq = δpq,

where p,q = 1,2,3; δpq is the Kronecker symbol: δpq = 0 if p �= q and δpq = 1 if
p = q .

The velocity of the origin O1 of the new coordinate system we denote by �u′
(u′

1, u
′
2, u

′
3 are its projections onto the axes x1, y1 and z1). The vector �u is deter-

mined by the relation

�u′ = �u + �ω × �r, (1.15)

where �u (u1, u2, u3) is the velocity of the origin of coordinate system (x, y, z);
the vector �r with components (ξ1, ξ2, ξ3) is the radius-vector of the point O1 in
coordinate system xyz; the projections of the vector �ω onto the axes x1y1z1 are
denoted by u′

4, u′
5, u′

6.
It follows from the formula (1.15) that �u = �u′ − �ω × �r , or, in components,

u1 =
3

∑

m=1

u′
mαm1 − (ω2ξ3 − ω3ξ2);

u2 =
3

∑

m=1

u′
mαm2 − (ω3ξ1 − ω1ξ3);

u3 =
3

∑

m=1

u′
mαm3 − (ω1ξ2 − ω2ξ1),

where

ωi = u3+i =
3

∑

m=1

u′
3+mαmi, i = 1,2,3.

Substituting the expressions for ui (i = 1,2, . . . ,6) into the right-hand side of
the expression (1.13) and collecting the terms in front of the factors u′

iu
′
k (i, k =

1,2, . . . ,6), we obtain the formulas for the added masses in the coordinate system
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x1y1z1:

λ′
kr =

3
∑

i=1

3
∑

j=1

λijαkiαrj , k, r = 1,2,3; (1.16)

λ′
kr =

3
∑

i=1

6
∑

j=4

λijαkiαrj +
3

∑

i=1

3
∑

j=1

λijαki(αr,2+j ξj+1 − αr,j+1ξj+2), (1.17)

for k = 1,2,3, r = 4,5,6,

λ′
kr =

6
∑

i=4

6
∑

j=4

λijαkiαrj +
3

∑

i=1

6
∑

j=4

λijαkj (αr,2+iξ1+i − αr,1+iξ2+i )

+
3

∑

i=1

6
∑

j=4

λijαrj (αk,2+iξ1+i − αk,1+iξ2+i )

+
3

∑

i=1

3
∑

j=1

λij (αk,i+2ξi+1 − αk,i+1ξi+2)(αr,j+2ξj+1 − αr,j+1ξj+2),

(1.18)

for k, r = 4,5,6.
In the formulas (1.16)–(1.18) one should assume

αi4 = αi1, αi5 = αi2, αi6 = αi3;
α4i = α1i , α5i = α2i , α6i = α3i;
ξ4 = ξ1, ξ5 = ξ2, ξ6 = ξ3.

Choosing in these general formulas

α11 = cosβ, α21 = − sinβ, α12 = sinβ,

α22 = cosβ, α33 = 1,

ξ1 = ξ, ξ2 = η,

α13 = α31 = α23 = α32 = ξ3 = 0, (1.19)

we obtain the transformation formulas for the added masses for the case of the planar
motion [183, 206]:

λ′
11 = λ11 cos2 β + λ22 sin2 β + λ12 sin 2β;

λ′
22 = λ11 sin2 β + λ22 cos2 β − λ12 sin 2β;

λ′
12 = 0.5(λ22 − λ11) sin 2β + λ12 cos 2β;

λ′
16 = (λ16 + λ11η − λ12ξ) cosβ + (λ26 − λ22ξ + λ12η) sinβ;

λ′
26 = −(λ16 + λ11η − λ12ξ) sinβ + (λ26 − λ22ξ + λ12η) cosβ;

λ′
66 = λ66 + λ11η

2 + λ22ξ
2 − 2λ12ξη + 2(λ16η − λ26ξ). (1.20)
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In the case of the planar motion of the three-dimensional body such that the co-

ordinate system moves in the same plane, the expressions (1.20), according to the

formulas (1.19), should be complemented by the transformation formulas for the

other added masses, which follow from (1.16)–(1.18):

λ′
33 = λ33; λ′

13 cosβ + λ23 sinβ; λ′
23 = −λ13 sinβ + λ23 cosβ;

λ′
14 = [

λ13(ξ sinβ − η cosβ) + λ14 cosβ + λ15 sinβ
]

cosβ

+ [

λ23(ξ sinβ − η cosβ) + λ24 cosβ + λ25 sinβ
]

sinβ;
λ′

15 = [

λ13(ξ cosβ + η sinβ) − λ14 sinβ + λ15 cosβ
]

cosβ

+ [

λ23(ξ cosβ + η sinβ) − λ24 sinβ + λ25 cosβ
]

sinβ;
λ′

24 = −[

λ13(ξ sinβ − η cosβ) + λ14 cosβ + λ15 sinβ
]

sinβ

+ [

λ23(ξ sinβ − η cosβ) + λ24 cosβ + λ25 sinβ
]

cosβ;
λ′

25 = −[

λ13(ξ cosβ + η sinβ) − λ14 sinβ + λ15 cosβ
]

sinβ

+ [

λ23(ξ cosβ + η sinβ) − λ24 sinβ + λ25 cosβ
]

cosβ;
λ′

34 = λ34 cosβ + λ35 sinβ + λ33(ξ sinβ − η cosβ);
λ′

35 = −λ34 sinβ + λ35 cosβ + λ33(ξ cosβ + η sinβ);
λ′

36 = λ13η − λ23ξ + λ36;
λ′

44 = λ33(ξ sinβ − η cosβ)2 + λ44 cos2 β + λ55 sin2 β

+ 2λ45 sinβ cosβ + 2λ34 cosβ(ξ sinβ − η cosβ)

+ 2λ35(ξ sinβ − η cosβ) sinβ;
λ′

55 = λ33(ξ cosβ + η sinβ)2 + λ44 sin2 β + λ55 cos2 β − 2λ45 cosβ sinβ

− 2λ34(ξ cosβ + η sinβ) sinβ + 2λ35(ξ cosβ + η sinβ) cosβ;
λ′

66 = λ11η
2 + λ22ξ

2 − 2λ12ξη + λ66 + 2λ16η − 2λ26ξ ;
λ′

45 = λ33(ξ sinβ − η cosβ)(ξ cosβ + η sinβ) − λ44 sinβ cosβ + λ55 sinβ cosβ

+ λ45 cos 2β + λ34(ξ cos 2β + η sin 2β) + λ35(ξ sin 2β − η cos 2β);
λ′

46 = (λ46 − λ13η
2 + λ23ξη + λ14η − λ24ξ − λ36η) cosβ

+ (λ56 + λ13ξη − λ23ξ
2 + λ15η − λ25ξ + λ36ξ) sinβ;

λ′
56 = −(λ46 − λ13η

2 + λ23ξη + λ14η − λ24ξ − λ36η) sinβ

+ (λ56 + λ13ξη − λ23ξ
2 + λ15η − λ25ξ + λ36ξ) cosβ.

Let us derive the transformation formulas for the case when the axes of the new

coordinate system x1y1z1 are parallel to the axes of the old one. Let the origin of the

new coordinate system x1y1z1 in the system xyz have coordinates ξ1 = ξ ; ξ2 = η;

ξ3 = ζ . Then, taking into account the equations α11 = α22 = α33 = 1, αik = 0

(i �= k) we get from expressions (1.16)–(1.18):
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λ′
11 = λ11; λ′

22 = λ22; λ′
33 = λ33;

λ′
12 = λ12; λ′

13 = λ13;
λ′

23 = λ23; λ′
36 = λ36 + λ13η − λ23ξ ;

λ′
14 = λ12ζ − λ13η + λ14; λ′

15 = λ15 − λ11ζ + λ13ξ ;
λ′

16 = λ16 + λ11η − λ12ξ ; λ′
24 = λ24 + λ22ζ − λ23η;

λ′
25 = λ25 + λ23ξ − λ12ζ ; λ′

26 = λ26 − λ22ξ + λ12η;
λ′

44 = λ22ζ
2 + λ33η

2 − 2λ23ηζ + λ44 + 2λ24ζ − 2λ34η;
λ′

55 = λ11ζ
2 + λ33ξ

2 − 2λ13ξζ + λ55 − 2λ15ζ + 2λ35ξ ;
λ′

66 = λ11η
2 + λ22ξ

2 − 2λ12ξη + λ66 + 2λ16η − 2λ26ξ ;
λ′

45 = −λ33ξη − λ12ζ
2 + λ13ηζ + λ23ξζ + λ45 − λ14ζ

+ λ25ζ + λ34ξ − λ35η;
λ′

56 = −λ11ηζ + λ12ξζ + λ13ξη − λ23ξ
2 + λ56 + λ15η

− λ16ζ − λ25ξ + λ36η;
λ′

46 = −λ22ξζ + λ12ηζ − λ13η
2 + λ23ξη + λ46 + λ14η

− λ24ξ + λ26ζ − λ36η;
λ′

34 = −λ33η + λ23ζ + λ34; λ′
35 = λ33ξ − λ13ζ + λ35.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.21)

In the partial case (η = 0) the formulas (1.21) give the formulas derived by Lavren-
tijev [25].

If the coordinate system x1y1z1 is obtained from the initial coordinate system by
subsequent rotation of the initial coordinate system xyz by the angles β , ψ and θ

around corresponding axes (see Fig. 1.1), and the origins of both coordinate systems
coincide (i.e. ξi = 0, i = 1,2,3) then the expressions for αik (i, k = 1,2,3) have the
following form:

α11 = cosβ cosψ; α12 = sinβ cosψ; α22 = − sinψ;
α21 = cosβ sinψ sin θ − sinβ cos θ; α22 = sinβ sinψ sin θ + cosβ cos θ;
α23 = cosψ sin θ; α31 = cosβ sinψ cos θ + sinβ sin θ;
α32 = sinβ sinψ cos θ − cosβ sin θ; α33 = cosψ cos θ.

It is easy to derive these transformation laws from the formulas (1.16)–(1.18)
taking into account that ξi = 0 (i = 1,2,3). Sometimes one can choose the coordi-

Fig. 1.1 Subsequent positions of the coordinate system under rotation around different axes
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nates of the origin of the new coordinate system and angles of rotation of the new
coordinate system with respect to the initial one such that some added masses in the
new coordinate system vanish.

For example, from the third equality in (1.20), we see that for the case of planar
flow we can choose the rotation angle β such that λ′

12 = 0. Simultaneously, from
the fourth and fifth equalities of (1.20) we see that choosing ξ and η to be solutions
for the following system:

{

λ12ξ − λ11η = λ16,

λ22ξ − λ12η = λ26,

it is possible to provide the vanishing of the added masses λ′
16 and λ′

26.
For the three-dimensional case, using formulas (1.21) it is possible to choose ξ ,

η and ζ such that three values λ′
ik (i = 1,2,3; k = 4,5,6) out of six vanish. For

example, to get λ′
14 = λ′

15 = λ′
24 = 0, one should solve the following system of

equations with respect to ξ , η, ζ :

⎧

⎪⎨

⎪⎩

λ13η − λ12ζ = λ14,

λ23η − λ22ζ = λ24,

λ11ζ − λ13ξ = λ15.

Notice that two out of three values λ′
ik must have the coinciding second index (k).

Applying transformation formulas (1.21), we can calculate the coordinates of the
central point of the body. The point ξ0, η0, ζ0 is called central if, choosing this point
as the origin of the new coordinate system, we have λ′

15 = λ′
24; λ′

16 = λ′
34; λ′

26 =
λ′

35. Writing down these equations in the initial coordinate system, we obtain the
following system of equations on variables ξ0, η0, ζ0:

⎧

⎪⎨

⎪⎩

λ13ξ0 + λ23η0 − (λ22 + λ11)ζ0 = λ24 − λ15;
λ12ξ0 − (λ11 + λ33)η0 + λ23ζ0 = λ16 − λ34;
−(λ22 + λ33)ξ0 + λ12η0 + λ13ζ0 = λ35 − λ26.

Generically the problem of finding of three main directions, i.e. such directions
of axes that λ′

12 = λ′
13 = λ′

23 = 0, is more difficult, due to complicated expressions
for λ′

12, λ′
13, λ′

23 in terms of the angles β , ψ , θ and added masses λik , i, k = 1,2,3.
The method of finding the main directions is considered in Section 1.5. If the body
has at least one symmetry plane, the main directions can be easily determined: two
of them lie in the symmetry plane, and the angle between the axes of the initial
coordinate system and the new one can be computed using the formula derived in
the case of planar motion (see the third formula in (1.20)). The third main direction
is normal to the symmetry plane.
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1.4 Force and Torque Influencing a Body Moving in an Ideal
Incompressible Fluid

Consider a non-stationary motion of a body in an ideal infinite fluid. Then the hy-
drodynamic force and torque acting on the body are defined by the following ex-
pressions [116]:

�R = −∂ �B
∂t

− �ω × �B;

�L = −∂ �J
∂t

− �ω × �J − �u0 × �B,

where �R is the vector of force, applied to the origin of the non-stationary coordinate
system attached to the body; �B is the main vector of the system of momenta of
pressures acting on the surface of the body; �ω is the vector of angular velocity
of body rotation around the axis passing through the origin of the non-stationary
coordinate system; �L is the hydrodynamic torque influencing the body (computed
with respect to the origin of the non-stationary coordinate system); �J is the main
hydrodynamic moment influencing the surface of the body computed with respect
to the origin of the non-stationary coordinate system; �u0 is the vector of velocity of
the origin of the non-stationary coordinate system.

Projecting �R and �L onto the axes of the non-stationary coordinate system, we
obtain:

Rx = −∂Bx

∂t
− ωyBz + ωzBy;

Ry = −∂By

∂t
− ωzBx + ωxBz;

Rz = −∂Bz

∂t
− ωxBy + ωyBx;

Lx = −∂Jx

∂t
− ωyJz + ωzJy − u0yBz + u0zBy;

Ly = −∂Jy

∂t
− ωzJx + ωxJz − u0zBx + u0xBz;

Lz = −∂Jz

∂t
− ωxJy + ωyJx − u0xBy + u0yBx,

where the projections of the vectors �B and �J are determined by the following for-
mulas [116]:

Bx = ∂T

∂u0x

= ∂T

∂u1
; By = ∂T

∂u0y

= ∂T

∂u2
; Bz = ∂T

∂u0z

= ∂T

∂u3
;

Jx = ∂T

∂ωx

= ∂T

∂u4
; Jy = ∂T

∂ωy

= ∂T

∂u5
; Jz = ∂T

∂ωz

= ∂T

∂u6
.
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Taking into account the expression (1.13) for the kinetic energy T of the fluid, we
get the following formulas for the force and torque of potential nature influencing
the body:

Rx = −
[

λ11
∂u1

∂t
+ λ12

∂u2

∂t
+ λ13

∂u3

∂t
+ λ14

∂u4

∂t
+ λ15

∂u5

∂t
+ λ16

∂u6

∂t

+ λ33u3u5 + λ13u1u5 + λ23u2u5 + λ34u4u5 + λ35u
2
5

+ (λ36 − λ25)u5u6 − λ22u2u6 − λ12u1u6 − λ23u3u6

− λ24u4u6 − λ26u
2
6

]

; (1.22)

Ry = −
[

λ12
∂u1

∂t
+ λ22

∂u2

∂t
+ λ23

∂u3

∂t
+ λ24

∂u4

∂t
+ λ25

∂u5

∂t
+ λ26

∂u6

∂t

+ λ11u1u6 + λ12u2u6 + λ13u3u6 + (λ14 − λ36)u4u6 + λ15u5u6

+ λ16u
2
6 − λ33u3u4 − λ13u1u4 − λ23u2u4 − λ34u

2
4 − λ35u4u5

]

; (1.23)

Rz = −
[

λ13
∂u1

∂t
+ λ23

∂u2

∂t
+ λ33

∂u3

∂t
+ λ34

∂u4

∂t
+ λ35

∂u5

∂t
+ λ36

∂u6

∂t

+ λ12u1u4 + λ22u2u4 + λ23u3u4 + λ24u
2
4 + (λ25 − λ14)u4u5

+ λ26u4u6 − λ11u1u5 − λ12u2u5 − λ13u3u5 − λ15u
2
5 − λ16u5u6

]

; (1.24)

Lx = −
[

λ14
∂u1

∂t
+ λ24

∂u2

∂t
+ λ34

∂u3

∂t
+ λ44

∂u4

∂t
+ λ45

∂u5

∂t
+ λ46

∂u6

∂t

+ (λ66 − λ55)u5u6 + λ16u1u5 + (λ26 + λ35)u2u5

+ (λ36 − λ25)u3u5 + λ46u4u5 + λ56u
2
5 − λ15u1u6

+ (λ36 − λ25)u2u6 − (λ26 + λ35)u3u6 − λ45u4u6 − λ56u
2
6

+ (λ33 − λ22)u2u3 + λ13u1u2 + λ23u
2
2 + λ34u2u4

− λ12u1u3 − λ23u
2
3 − λ24u3u4

]

; (1.25)

Ly = −
[

λ15
∂u1

∂t
+ λ25

∂u2

∂t
+ λ35

∂u3

∂t
+ λ45

∂u4

∂t
+ λ55

∂u5

∂t
+ λ56

∂u6

∂t

+ (λ44 − λ66)u4u6 + (λ14 − λ36)u1u6 + λ24u2u6

+ (λ34 + λ16)u3u6 + λ45u5u6 + λ46u
2
6 − (λ16 + λ34)u1u4

− λ26u2u4 + (λ14 − λ36)u3u4 − λ46u
2
4 − λ56u4u5

+ (λ11 − λ33)u1u3 + λ12u2u3 + λ13u
2
3 + λ15u3u5

− λ13u
2
1 − λ23u1u2 − λ35u1u5

]

; (1.26)
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Lz = −
[

λ16
∂u1

∂t
+ λ26

∂u2

∂t
+ λ36

∂u3

∂t
+ λ46

∂u4

∂t
+ λ56

∂u5

∂t
+ λ66

∂u6

∂t

+ (λ55 − λ44)u4u5 + (λ15 + λ24)u1u4 + (λ25 − λ14)u2u4

+ λ35u3u4 + λ45u
2
4 + λ56u4u6 − λ14u1u5 − (λ24 + λ15)u2u5

− λ34u3u5 − λ45u
2
5 − λ46u5u6 + λ12u

2
1 + (λ22 − λ11)u1u2

+ λ23u1u3 + λ25u1u5 + λ26u1u6 − λ12u
2
2 − λ13u2u3 − λ16u2u6

]

. (1.27)

The expressions for forces and torques (1.22)–(1.27) make it possible to simplify
the matrix of added masses λik if the body has one, two or three planes of symme-
try. Suppose that the body has the plane of symmetry xOy. Consider the forces and
torques influencing the body when it starts moving from rest (ui = 0, i = 1,2, . . . ,6)
along the axis Ox with acceleration ∂u1/∂t (we assume that ∂ui/∂t = 0, i =
2,3, . . . ,6). Then we obtain

Rx = −λ11
∂u1

∂t
; Ry = −λ12

∂u1

∂t
; Rz = −λ13

∂u1

∂t
;

Lx = −λ14
∂u1

∂t
; Ly = −λ15

∂u1

∂t
; Lz = −λ16

∂u1

∂t
. (1.28)

Due to the symmetry under the plane xOy we have Rz = 0, Lx = 0, Ly = 0 which,
taking into account (1.28), implies λ13 = λ14 = λ15 = 0. Similarly, assuming the
non-vanishing of acceleration ∂u2/∂t while all other accelerations vanish, ∂ui/∂t =
0, i = 1,3,4,5,6, we get

Rx = −λ12
∂u2

∂t
; Ry = −λ22

∂u2

∂t
; Rz = −λ23

∂u2

∂t
;

Lx = −λ24
∂u2

∂t
; Ly = −λ25

∂u2

∂t
; Lz = −λ26

∂u2

∂t
.

Taking into account the equations Rz = Lx = Ly = 0 which follow from the sym-
metry condition, we obtain λ23 = λ24 = λ25 = 0.

If we give to the body the angular acceleration around the axis z, assuming
∂u6/∂t �= 0 while ui = 0, i = 1,2, . . . ,6 and ∂ui/∂t = 0, i = 1,2, . . . ,5, then, us-
ing Eqs. (1.22)–(1.27) and Rz = Lx = Ly = 0, we get the relations λ36 = λ46 =
λ56 = 0. Thus, if the body’s plane of symmetry coincides with the coordinate plane
xOy, the following added masses vanish:

λ13 = λ14 = λ15 = λ23 = λ24 = λ25 = λ36 = λ46 = λ56 = 0. (1.29)

If the body’s plane of symmetry coincides with the coordinate plane xOz, then

λ12 = λ14 = λ16 = λ23 = λ25 = λ34 = λ36 = λ45 = λ56 = 0.

If the plane of symmetry coincides with the plane yOz, then

λ12 = λ14 = λ13 = λ25 = λ26 = λ35 = λ36 = λ45 = λ46 = 0.
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We can simplify the formulas (1.22)–(1.27) using (1.29). Let us write them down,
using for clarity the original notation for the angular velocities:

Rx = −
(

λ11
∂u1

∂t
+ λ12

∂u2

∂t
+ λ16

∂ωz

∂t
+ λ33u3ωy + λ34ωxωy + λ35ω

2
y

− λ12u1ωz − λ22u2ωz − λ26ω
2
z

)

; (1.30)

Ry = −
(

λ12
∂u1

∂t
+ λ22

∂u2

∂t
+ λ26

∂ωz

∂t
+ λ11u1ωz + λ12u2ωz + λ16ω

2
z

− λ33u3ωx − λ34ω
2
x − λ35ωxωy

)

; (1.31)

Rz = −
(

λ33
∂u3

∂t
+ λ34

∂ωx

∂t
+ λ35

∂ωy

∂t
+ λ12u1ωx + λ22u2ωx

+ λ26ωxωz − λ11u1ωy − λ12u2ωy − λ16ωyωz

)

; (1.32)

Lx = −
[

λ34
∂u3

∂t
+ λ44

∂ωx

∂t
+ λ45

∂ωy

∂t
+ (λ26 + λ35)(u2ωy − u3ωz)

+ λ16u1ωy + λ34u2ωx − λ12u1u3 − λ45ωxωz + (λ33 − λ22)u2u3

+ (λ66 − λ55)ωyωz

]

; (1.33)

Ly = −
[

λ35
∂u3

∂t
+ λ45

∂ωx

∂t
+ λ55

∂ωy

∂t
+ (λ16 + λ34)(u3ωz − u1ωx)

+ λ12u2u3 + λ45ωyωz − λ26u2ωx − λ35u1ωy + (λ11 − λ33)u1u3

+ (λ44 − λ66)ωxωz

]

; (1.34)

Lz = −
[

λ16
∂u1

∂t
+ λ26

∂u2

∂t
+ λ66

∂ωz

∂t
+ λ12

(

u2
1 − u2

2

) + λ45
(

ω2
x − ω2

y

)

+ λ35u3ωx + λ26u1ωz − λ34u3ωy − λ16u2ωz + (λ55 − λ44)ωxωy

+ (λ22 − λ11)u1u2

]

. (1.35)

Let us now consider the case when the body has two planes of symmetry, and
these planes of symmetry coincide with the coordinate planes xOy and xOz of the
coordinate system attached to the body. Then, in addition to the vanishing of the
added masses (1.29), we have the vanishing of the following added masses:

λ12 = λ16 = λ34 = λ45 = 0. (1.36)
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Taking into account (1.36), the forces and torques of inertial nature (1.30)–(1.35)
for the body with two planes of symmetry can be written down in the following
form:

Rx = −
(

λ11
∂u1

∂t
+ λ33u3ωy + λ35ω

2
y − λ22u2ωz − λ26ω

2
z

)

; (1.37)

Ry = −
(

λ22
∂u2

∂t
+ λ26

∂ωz

∂t
+ λ11u1ωz − λ33u3ωx − λ35ωxωy

)

; (1.38)

Rz = −
(

λ33
∂u3

∂t
+ λ35

∂ωy

∂t
+ λ22u2ωx + λ26ωxωz − λ11u1ωy

)

; (1.39)

Lx = −
[

λ44
∂ωx

∂t
+ (λ26 + λ35)(u2ωy − u3ωz) + (λ33 − λ22)u2u3

+ (λ66 − λ55)ωyωz

]

; (1.40)

Ly = −
[

λ35
∂u3

∂t
+ λ55

∂ωy

∂t
− λ26u2ωx − λ35u1ωy + (λ11 − λ33)u1u3

+ (λ44 − λ66)ωxωz

]

; (1.41)

Lz = −
[

λ26
∂u2

∂t
+ λ66

∂ωz

∂t
+ λ35u3ωx + λ26u1ωz + (λ55 − λ44)ωxωy

+ (λ22 − λ11)u1u2

]

. (1.42)

If the body with two planes of symmetry (xOy and xOz) is the body of revolu-
tion whose axis coincides with the axis Ox, then its rotation in an ideal fluid around
the Ox axis at an arbitrary velocity ωx does not generate fluid motion.

Then the total potential (1.9) of the flow does not contain the term ωxϕ4; the
kinetic energy of fluid and hydrodynamic forces influencing the body do not depend
on ωx . Besides, in an ideal fluid the hydrodynamic forces act orthogonally to the
surface. Therefore, in the case of the body of revolution all hydrodynamic forces
pass through the axis of rotation, which implies the equation Lx = 0. From the
last equation, making use of the formula (1.40) and equations λ22 = λ33, λ55 =
λ66, we deduce that for the body of rotation, λ26 = −λ35. As a result we get from
expressions (1.37)–(1.42):

Rx = −λ11
∂u1

∂t
− λ22(u3ωy − u2ωz) + λ26

(

ω2
y + ω2

z

); (1.43)

Ry = −λ22
∂u2

∂t
− λ26

∂ωz

∂t
− λ11u1ωz; (1.44)
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Rz = −λ22
∂u3

∂t
+ λ26

∂ωy

∂t
+ λ11u1ωy; (1.45)

Lx = 0; (1.46)

Ly = λ26
∂u3

∂t
− λ55

∂ωy

∂t
− λ26u1ωy + (λ33 − λ11)u1u3; (1.47)

Lz = −λ26
∂u2

∂t
− λ55

∂ωz

∂t
− λ26u1ωz − (λ22 − λ11)u1u2. (1.48)

The formulas (1.43)–(1.48) admit further simplification if the origin is shifted
along the Ox axis by ξ = λ26/λ22. Then applying the transformation formulas
(1.21) to the case of the parallel shift of the coordinate system we get λ′

26 = 0,
λ′

55 = λ′
66 = λ66 − λ2

26/λ22. The forces and torques in the new coordinate system
look as follows:

R∗
x = −λ11

∂u∗
1

∂t
− λ22

(

u∗
3ωy − u∗

2ωz

); R∗
y = −λ22

∂u∗
2

∂t
− λ11u

∗
1ωz;

R∗
z = −λ22

∂u∗
3

∂t
+ λ11u

∗
1ωy; L∗

x = 0;

L∗
y = −λ′

55
∂ωy

∂t
+ (λ33 − λ11)u

∗
1u

∗
3; L∗

z = −λ′
55

∂ωz

∂t
− (λ22 − λ11)u

∗
1u

∗
2,

where u∗
1, u∗

2, u∗
3 are the components of the velocity of the origin of the new co-

ordinate system (with respect to immovable coordinate system XYZ) in the new
coordinate system.

Let us consider also the case when the body has three planes of symmetry: xOy,
xOz and yOz. Then from the formulas (1.41), (1.42) we conclude that λ26 = λ35 =
0, since under accelerations of this symmetric body from rest—along the axis Oz

(resp. Oy) the torque Ly (resp. Lz) is not generated.
Then the formulas (1.37)–(1.42) simplify further to give

Rx = −λ11
∂u1

∂t
− λ33u3ωy + λ22u2ωz;

Ry = −λ22
∂u2

∂t
− λ11u1ωz + λ33u3ωx;

Rz = −λ33
∂u3

∂t
− λ22u2ωx + λ11u1ωy;

Lx = −λ44
∂ωx

∂t
+ (λ55 − λ66)ωyωz + (λ22 − λ33)u2u3;

Ly = −λ55
∂ωy

∂t
+ (λ66 − λ44)ωzωx + (λ33 − λ11)u3u1;

Lz = −λ66
∂ωz

∂t
+ (λ44 − λ55)ωxωy + (λ11 − λ22)u1u2.
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1.5 Ellipsoids of Added Masses and Ellipsoids of Added
Moments of Inertia

Let us describe a way of finding a coordinate system attached to the body where the
matrix of added masses λik has the simplest form.

In relation to the formula for kinetic energy of the fluid (1.13) consider the fol-
lowing two surfaces of second order:

λ11x
2 + λ22y

2 + λ33z
2 + 2λ12xy + 2λ13xz + 2λ23yz = 1; (1.49)

and

λ44x
2 + λ55y

2 + λ66z
2 + 2λ45xy + 2λ46xz + 2λ56yz = 1. (1.50)

Since in the left-hand side of Eq. (1.49) (respectively (1.50)) the coefficients
λ11, λ22, λ33 (respectively λ44, λ55, λ66) have the same sign (they are positive, since
they define the kinetic energy of the fluid as the body moves along or around the cor-
responding axis), then both surfaces are ellipsoids [65]. It follows from the formulas
(1.49), (1.50) that if the point M (x, y, z) belongs to the surface of one of these ellip-
soids, then the point M1 (−x,−y,−z) also belongs to that surface. Thus, the points
of the surfaces form symmetric pairs with respect to the origin, and, therefore, these
surfaces are central. Let us show how the surface (1.49) can be transformed to the
simplest form by rotation of the coordinate system around the origin. The symmetric
matrix of added masses

Λ :=
⎛

⎝

λ11 λ12 λ13
λ12 λ22 λ23
λ13 λ23 λ33

⎞

⎠

in the new coordinate system diagonalizes, i.e., values λ′
12, λ′

13, λ′
23 in the new coor-

dinate system vanish; the corresponding axes Ox1,Oy1,Oz1 will be called the main
axes. Let us denote a vector pointing in one of the main directions (an eigenvector
of matrix λij ) by �a; its projections onto the axes of the initial coordinate system
we denote by (l,m,n). To determine l,m,n we first need to solve the characteristic
(eigenvalue) equation

det(Λ − kI) ≡
∣
∣
∣
∣
∣
∣

λ11 − k λ12 λ13
λ12 λ22 − k λ23
λ13 λ23 λ33 − k

∣
∣
∣
∣
∣
∣

= 0 (1.51)

where I is the 3 × 3 unit matrix. This equation has three solutions (eigenvalues of
the matrix λij ), denoted by k1, k2 and k3, which correspond to three main directions.
Taking one of them, say k1, we get the homogeneous linear system for components
of a corresponding eigenvector �a1 := (l1,m1, n1):

⎧

⎪⎨

⎪⎩

(λ11 − k1)l1 + λ12m1 + λ13n1 = 0,

λ12l1 + (λ22 − k1)m1 + λ23n1 = 0,

λ13l1 + λ23m1 + (λ33 − k1)n1 = 0,
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which, due to (1.51), has a non-zero solution for l1,m1, n1. Similarly, the other two
eigenvalues k2, k3 correspond to eigenvectors �a2 (l2,m2, n2) and �a3 (l3,m3, n3).
Since the matrix Λ is symmetric, the vectors �a1, �a2 and �a3 are pairwise orthogonal.

Therefore, we can introduce the unit basic vectors (orths) �i′, �j ′, �k′ pointing in
the main directions �a1, �a2, �a3; they are related to the orths of the initial coordinate
system �i, �j, �k by the formulas

�i′ = �a1

|�a1| = l1
√

l2
1 + m2

1 + n2
1

�i + m1
√

l2
1 + m2

1 + n2
1

�j + n1
√

l2
1 + m2

1 + n2
1

�k,

�j ′ = �a2

|�a2| = l2
√

l2
2 + m2

2 + n2
2

�i + m2
√

l2
2 + m2

2 + n2
2

�j + n2
√

l2
2 + m2

2 + n2
2

�k,

�k′ = �a3

|�a3| = l3
√

l2
3 + m2

3 + n2
3

�i + m3
√

l2
3 + m2

3 + n2
3

�j + n3
√

l2
3 + m2

3 + n2
3

�k.

Comparing these formulas with the usual transformation formulas for the orths of
different coordinate systems:

�i′ = cosα1�i + cosβ1 �j + cosγ1�k,

�j ′ = cosα2�i + cosβ2 �j + cosγ2�k,

�k′ = cosα3�i + cosβ3 �j + cosγ3�k,

it is easy to find the cosines of the angles between the axes of the new and the initial
coordinate system. Then we can write down the corresponding transformation of
coordinates:

x = x′ cosα1 + y′ cosα2 + z′ cosα3,

y = x′ cosβ1 + y′ cosβ2 + z′ cosβ3,

z = x′ cosγ1 + y′ cosγ2 + z′ cosγ3.

Similarly we can find the main axes of the ellipsoid of the added moments of inertia
by diagonalizing the matrix

Λ̃ :=
⎛

⎝

λ44 λ45 λ46
λ45 λ55 λ56
λ46 λ56 λ66

⎞

⎠ .

In the new coordinate system the equation of the ellipsoid of added masses (1.49)
looks as follows:

λ′
11x

2 + λ′
22y

2 + λ′
33z

2 = 1,

or, equivalently,

x2

(1/

√

λ′
11)

2
+ y2

(1/

√

λ′
22)

2
+ z2

(1/

√

λ′
33)

2
= 1.
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The main axes of the ellipsoid have the following property: if the body moves
with constant velocity in an ideal fluid without rotation along the main axis, then
the hydrodynamic forces and torques are equal to zero. Indeed, the added masses
λ′

12, λ
′
13, λ

′
23 vanish in the coordinate system, whose axes coincide with the main

axes. The vanishing of forces and torques follows from expressions (1.22)–(1.27)
since in the new coordinate system Rx = Ry = Rz = Lx = Ly = Lz = 0. The mo-
tion with constant velocity along one of main axes is stable; along the two other
main axes such motion is unstable.

Let the main axes be chosen such that λ11 < λ22 < λ33. Suppose that a body
moving with constant velocity along the axis Ox1 receives a deviation—a rotation
around the axis Oz1 in the negative (clockwise) direction (Fig. 1.2) by an angle �ϕ.
Then the velocity gets the second component u2 in the direction of the main axis
Oy1 attached to the body. Equation (1.27) shows that in this situation the body is
acted upon by torque Lz = −(λ22 − λ11)u1 u2 which is negative since λ22 > λ11,
u1 > 0, u2 > 0. This torque, acting in clockwise direction, increases the angle �ϕ.
Therefore, the motion with constant velocity along the axis Ox1 is unstable. Anal-
ogously one can verify that the motion with constant velocity along the axis Oy1 is
also unstable with respect to a turn around the axis Ox1. The only stable motion is
the motion with constant velocity along the axis Oz1. In that case a rotation around
the axis Oy1 generates the restoring torque which reduces the angle of deviation
in the plane x1Oz1. Consider a small turn of the body in the positive direction in
the y1Oz1, such that u2 and u3 are positive. Then, according to formula (1.25), the
torque Lx is negative, i.e., we also get a restoring force.

Besides the main axes of the ellipsoid of added masses (1.49) we can consider
the main axes of ellipsoid of the added moments of inertia (1.50). By the main axes
of ellipsoid (1.50) we mean such axes that λ45 = λ46 = λ56 = 0. The procedure
of determining the main axes of the ellipsoid of the added moments of inertia is
completely analogous to the process of determining the main axes of the ellipsoid
of added masses (1.49).

The formulas (1.22)–(1.27) show that if the body uniformly rotates in an ideal
fluid around one of the main axes of ellipsoid (1.50), then the hydrodynamic forces

Fig. 1.2 Projections of
velocity to the axes of the
coordinate system attached to
the body when the body turns
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and torques do not influence it. Assume that the main axes are chosen such that
λ44 < λ55 < λ66. Let the body rotating with constant angular velocity around the
axis Ox1 receive a random turn in the plane x1Oy1 by the angle �ϕ (Fig. 1.2). Then
the vector of angular velocity projects on the axes Ox1 and Oy1. The projections u4
and u5 of this vector are positive, since �ϕ is negative. The formula (1.27) shows
that it generates the torque Lz = −(λ55 −λ44)u4u5 which tends to increase the angle
�ϕ, since Lz < 0. Therefore, the rotation with constant angular velocity around the
axis Ox1 is unstable. In the same way we can show that the rotation with constant
angular velocity around the axis Oy1 is unstable with respect to a small turn around
the axis Ox1. The only axis of stable rotation with constant angular velocity is the
axis Oz1, which corresponds to the maximal moment of inertia λ66.

We stress that in general the main axes of the ellipsoid of added masses (1.49)
and the ellipsoid of added moments of inertia (1.50) do not coincide.

In solution of various problems of dynamics of a real body in the fluid it makes
sense to introduce the notion of so-called ellipsoids of modified masses and ellip-
soids of modified moments of inertia. By modified masses and moments of inertia
we mean the masses and moments of inertia of the system body-fluid [16]. The
notions of modified masses and modified moments of inertia are very useful in in-
vestigation of equations of motion of a solid body in a fluid. In the monograph of
Basin [16] the general equations of motion of this kind are presented, and various
cases of the inertial motion of a solid body in a fluid are considered.



Chapter 2
The Added Masses of Planar Contours Moving
in an Ideal Unlimited Fluid

For calculation of added masses of various elongated bodies the planar sections
technique (see Chap. 3) is widely applied. Application of this method requires a
knowledge of the added masses of corresponding cross sections in a planar flow.
Theory of functions of a complex variable allows us to describe explicitly the planar
flow around most planar contours that correspond to real ship structures. In this
chapter we discuss added masses of various planar contours moving in an infinite
two-dimensional fluid. We give the main formulas for computation of added masses
using techniques due to Sedov [206].

2.1 Sedov’s Technique

Using Sedov’s technique one can efficiently determine the added masses of planar
contours moving in an infinite fluid [206]. Consider the function of a complex vari-
able

z = f (ζ ) = k

ζ
+ k0 + k1ζ + k2ζ

2 + · · · , (2.1)

which defines the conformal map of the unit disc in ζ -plane to exterior (filled with
fluid) of a given contour C in z-plane (the “uniformization map”). Then the added
masses of the contour C moving in the fluid are given by the formulas:

λx = −ρ
[

S − 2πkk̄ + π(kk1 + k̄k̄1)
]; (2.2)

λy = −ρ
[

S − 2πkk̄ − π(kk1 + k̄k̄1)
]; (2.3)

λxy = iρπ(kk1 − k̄k̄1); (2.4)

λxω = ρ
[

Sy∗ − π(kc1 + k̄c̄1)
]; (2.5)

λyω = ρ
[−Sx∗ + πi(kc1 − k̄c̄1)

]; (2.6)

λω = iρ

2

∮

l

w̄3

(
1

ζ

)
dw3

dζ
dζ. (2.7)

A.I. Korotkin, Added Masses of Ship Structures,
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In formulas (2.2)–(2.7) we use the following notations: contour of integration l is the
unit circle |ζ | = 1 taken in positive (counterclockwise) direction; f (ζ ) is the “uni-
formization” function (2.1). Let us introduce the function f̄ defined by its Laurent
series at ζ = ∞:

f̄

(
1

ζ

)

:= k̄ζ + k̄0 + k̄1

ζ
+ k2

ζ 2
+ · · · ,

where k, kj (j = 0,1,2, . . .) are the coefficients in the Laurent expansion (2.1). The
function w3 is defined as follows:

w3(ζ ) = − 1

4π

∮

l

f (η)f̄

(
1

η

)
η + ζ

η − ζ

dη

η
;

dw3

dζ
= − 1

2π

∮

l

f (η)f̄

(
1

η

)
dη

(η − ζ )2
;

(
dw3

dζ

)

ζ=0
= c1 = − 1

2π

∮

l

f (η)f̄

(
1

η

)
dη

η2
.

Similarly we define the analytic function w̄3: if the function w3 has the Taylor series
w3(ζ ) = c1ζ + c2ζ

2 + · · · , then

w̄3

(
1

ζ

)

:= c̄1

ζ
+ c̄2

ζ 2
+ · · · .

The integral

S = − i

2

∮

l

f (ζ )
df

dζ
dζ

gives the area of the interior of the contour C (notice that, in contrast to the function
f̄ (ζ−1) which is holomorphic, the function f (ζ ) is an antiholomorphic function);

z∗ ≡ x∗ + iy∗ := − i

2S

∮

l

f (ζ )f (ζ )
df

dζ
dζ

is the complex coordinate of the centroid of the figure bounded by the contour C.
The overline here denotes ordinary complex conjugation.

These formulas show that the added masses of the contour C can be found if the
conformal map (2.1) is known. Then the integrals over contour l can be computed
by the residue theorem.

Below we use the formulas (2.2)–(2.7) for calculation of added masses of various
contours. Due to the Cauchy theorem, the function w3(ζ ) can be found as follows
[206]. Let us write (i/2)f (ζ )f̄ (1/ζ ) as f1(ζ ) + f2(ζ ), where f1(ζ ) is regular for
|ζ | < 1, and f2(ζ ) is regular for |ζ | > 1. Then w3(ζ ) = 2f1(ζ ).

Below we use this techniques to find added masses of various simple contours.
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Fig. 2.1 Elliptic contour

2.2 The Added Masses of Simple Contours

2.2.1 Elliptic Contour, Circular Contour and Interval (Plate)

The map of the exterior of the ellipse with half-axes a and b (Fig. 2.1) to the interior
of the unit circle in the ζ -plane is given by the function

z = f (ζ ) = −1

2

[

(a − b)ζ + (a + b)
1

ζ

]

.

Using the general formulas (2.2)–(2.7), we obtain

λ11 = ρπb2; λ22 = ρπa2;
λ66 = ρπ

8

(

a2 − b2)2;
λ12 = λ16 = λ26 = 0. (2.8)

Circle. The added masses of the circular contour are given by the formulas (2.8)
assuming a = b = r . Then λ11 = λ22 = ρπr2;λ12 = λ16 = λ26 = λ66 = 0.

Interval (plate). The added masses of the interval (plate) of length 2a are given
by the formulas (2.8) assuming b = 0. Then λ22 = ρπa2; λ66 = ρπa4/8; λ11 =
λ12 = λ16 = λ26 = 0.

2.2.2 Elliptic Contour with One Rib, T-shape Contour

The conformal map of the exterior of an ellipse with one rib (Fig. 2.2) in the z-plane
to the unit disc in the ζ -plane is given by

z = f (ζ ) = ci

2

{
(a + b)(1 + m)

4c

(

ζ + 1

ζ

)

+ m − 1

2

a + b

c

+ a + b

c

[(
1 + m

4

1

ζ
+ 1 + m

4
ζ + m − 1

2

)2

− 1

]1/2

+ c/(a + b)

m−1
2 + 1+m

4 (ζ + 1
ζ
) + [( 1+m

4 ζ + 1+m
4

1
ζ

+ m−1
2 )2 − 1]1/2

}

, (2.9)
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Fig. 2.2 Elliptic contour
with one rib

where a, b are the half-axes of the ellipse; c = √
b2 − a2; h is the height of the rib;

m = (b + h)/(a + b) + a/(b + h + √
a2 + h2 + 2bh); i = √−1. By expanding the

right-hand side of (2.9) in powers of ζ , we obtain

k = i
(a + b)(1 + m)

4
; k0 = i

(a + b)(m − 1)

2
;

k1 = i
(a + b)2(m2 + 2m − 3) + 4(b2 − a2)

4(a + b)(m + 1)
; k2 = i

4a(m − 1)

(m + 1)2
;

k3 = −i
2a(3m2 − 10m + 7)

(1 + m)3
; c1 = − i

4

(

m2 − 1
)

(a + b)2.

Using the general Sedov formulas we obtain the following expressions for the
added masses:

λ11 = ρπb2

4

[

(m + 1)2
(

1 + a

b

)2

− 4
a

b

(

2 + a

b

)]

;

λ22 = πρa2; λ16 = −πρb3

8

(

1 + a

b

)3
(

m2 − 1
)

(m + 1);

λ66 = ρπ
(a + b)2

27

[

(a + b)2(9m4 + 4m3 − 10m2 + 4m − 7
) + 16(b − a)2];

λ12 = λ26 = 0.

(2.10)
Dependence of coefficients

k11 = λ11

πρb2
; k16 = 8λ16

πρb3
;

k66 = 128λ66

πρb4

on parameters h/b and a/b is shown in Figs. 2.4–2.6.



2.2 The Added Masses of Simple Contours 25

Fig. 2.3 T-shape profile

Fig. 2.4 Coefficient k11 of added masses of an ellipse with one rib

T-shape. The added masses of the T-shape (Fig. 2.3) can be obtained from for-
mulas (2.10) assuming that b = 0:

m = h

a
+ a

h + √
a2 + h2

;

λ11 = π

4
ρa2[(m + 1)2 − 4

]; λ22 = πρa2;
λ16 = −π

8
ρa3(m2 − 1

)

(m + 1);
λ66 = π

27 ρa4(9m4 + 4m3 − 10m2 + 4m + 9
); λ12 = λ26 = 0.

The coefficients k11 = λ11/(ρπa2); k16 = (8λ16)/(ρπa3); k66 = (128λ66)/(πρa4)

are presented in Table 2.1 for 0.1 ≤ h/a ≤ 5.
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Fig. 2.5 Coefficient k16 of added masses of an ellipse with one rib

Fig. 2.6 Coefficients k66 of added masses of an ellipse with one rib. The left vertical axis corre-
sponds to the curve a/b = 3.0; the right vertical axis corresponds to other values of a/b
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Table 2.1 Coefficients of added masses of T-shape profile

h/a k11 k16 k66

0.1 0.005 −0.020 16.2

0.2 0.020 −0.082 16.7

0.3 0.044 −0.184 17.5

0.4 0.079 −0.332 18.8

0.5 0.122 −0.529 20.6

0.7 0.233 −1.090 24.0

1.0 0.457 −2.41 42.0

1.5 0.964 −6.31 102.0

2.0 1.62 −12.9 238

3.0 3.33 −37.4 853

4.0 5.56 −82.0 2690

5.0 8.30 −152 6380

2.2.3 Elliptic Contour with Two Symmetric Ribs

The exterior of the contour in the z-plane (Fig. 2.7) is mapped to the unit disc in the
ζ -plane by function

z = f (ζ ) = c

2

[

m(a + b)

2c

(

ζ + 1

ζ

)

+ a + b

c

√

m2

4

(

ζ + 1

ζ

)2

− 1

+ c

a + b

1

m
2 (ζ + 1

ζ
) +

√

m2

4 (ζ + 1
ζ
)2 − 1

]

,

where

c =
√

a2 − b2; m = a + h

a + b
+ b

a + h + √
b2 + h2 + 2ah

;

h is the height of the ribs.
Expanding the function f (ζ ) in powers of ζ , we obtain the coefficients

k = 1

2
(a + b)m; k0 = 0; k1 = 1

2m

[

(a + b)
(

m2 − 1
) + a − b

];

k2 = 0; k3 = (m2 − 1)b

m3
.

Then it is easy to find the added masses
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λ11 = ρπb2; λ22 = ρπa2
[

m2
(

1 + b

a

)2

− 2
b

a
− b2

a2

]

;

λ66 = π

8
ρ(a + b)2[(a + b)2(m4 − 1

) + (a − b)2];
λ12 = λ16 = λ26 = 0. (2.11)

The values of coefficients k22 = λ22/(πρa2) and k66 = (8λ66)/(πρa4) are given in
Figs. 2.7–2.9.

Choosing in (2.11) b = a, we obtain the expressions for the added masses of a
circle with two ribs.

Alternative expressions for the added masses of the circle of radius a with two
symmetric ribs of height h are given in the book [158]:

λ22 = πρs2
(

1 − a2

s2
+ a4

s4

)

; s = a + h;

λ66 = πρs4

8

{[
(

1 + R2)2 arctan
1

R

]2

+ 2R
(

1 − R2)(R4 − 6R2 + 1
)

arctan
1

R

− π2R4 + R2(1 − R2)2
}

where R = a/(a + h).

2.2.4 Elliptic Contour with Horizontal and Vertical Ribs

The added masses of an elliptic contour with two horizontal ribs of the same height
and with two vertical ribs of different height (Fig. 2.10) are defined by the formu-
las [158]

λ22 = πρ
(

4c2 − k2 − 2ab − b2),

λ33 = πρ
s2(a2 + b2) + 2ab2(a − b) − 2abs(s2 − a2 + b2)1/2

(a − b)2

where the parameters c and k can be found from the following equations:

k = as − b(s2 + a2 − b2)1/2

a − b
; c = f1 + f2

4
;

f 2
1 = k2 +

[

τ1 + (a + b)2

4τ1

]2

; f 2
2 = k2 +

[

τ2 + (a + b)2

4τ2

]2

;

τ1 = 1

2

[

t1 + (

t1 − a2 + b2)1/2]; τ2 = 1

2

[

t2 + (

t2 − a2 + b2)1/2]
.

The values a, b, s, t1, t2 are defined as shown in Fig. 2.10.
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Fig. 2.8 Coefficient k66 for an elliptic contour with two ribs. The left vertical axis corresponds to
values a/b = 3,4,5; the right vertical axis corresponds to all other values of a/b



2.2 The Added Masses of Simple Contours 31

Fig. 2.9 Coefficient k66 for elliptic contour with two ribs. The left vertical axis corresponds to the
values of a/b equal to 3,4,5; the right vertical axis corresponds to all other values of a/b
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Fig. 2.10 Elliptic contour
with four ribs

2.2.5 Symmetrical Profile Made up of Two Intersecting Intervals
(Plates)

For this type of profile (Fig. 2.11) the added masses can be obtained as a partial case
of formulas (2.11) assuming that a = 0:

m = h

b
+ b

h + √
b2 + h2

;
λ11 = πρb2; λ22 = ρπh2;

λ66 = πρb4 m4

8
; λ12 = λ16 = λ26 = 0.

The values of the coefficient k66 = (8λ66)/(πρb4) are given in Table 2.2.

Fig. 2.11 Symmetric profile
consisting of two plates
intersecting at a right angle

Table 2.2 Coefficient k66 for some values of h/b

h/b 0.1 0.2 0.3 0.4 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

k66 1.02 1.08 1.19 1.34 1.56 2.22 4.0 10.6 25.0 100.0 289.0 676.0
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Fig. 2.12 Circle with two external (a) and two internal (b) hitches

2.2.6 Circle with Two Hitches

The added masses of the circular contour with two external hitches (Fig. 2.12a) are
determined by the method of electro-hydrodynamic analogy (see Chap. 9) in [48].
The parameters of the hitch are: δ/r = 0.077; l/r = 0.76; s/(πR2) = 0.027 where
δ is the height of the hitch, r is the radius of curvature of the hitch, l is the length of
the hitch, s is the area of the hitch, R is the radius of the circle. The coefficients of
added masses for the circle with external hitches are given by: k11 = λ11/πρR2 =
1.09; k22 = λ22/πρR2 = 0.954. If there are two internal hitches (Fig. 2.12b) with
parameters δ/r = 0.115; l/r = 0.55; s/(πR2) = 0.03, then k11 = 1.06.

For other positions of hitches on the circle and other contours the added masses
were also found in [48].

2.2.7 Circle with Two Side Ribs

The added masses of the circle with two plates located at the angle of 45 degrees
to the diameter are found in [201]. The experimental results can be presented as the
following graphs:

k22 = λ22

ρπR2
= f1

(
h

2R

)

; k33 = λ33

ρπR2
= f2

(
h

2R

)

,

where R is the radius of the main circle; h is the height of the ribs. These curves are
shown in Fig. 2.13. In the same figure we show the dependence of dimensionless
coordinate l/2R of the point of application of inertial forces on h/2R. Knowing l

one can compute the added mass λ24 = lλ22.
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Fig. 2.13 Coefficient of
added masses of circle with
two side ribs

2.2.8 Circle with Cross-like Positioned Ribs

The formulas for the added masses of the circle with cross-like positioned ribs of
the same height are as follows [158]:

λ22 = λ33 = πρs2
(

1 − a2

s2
+ a4

s4

)

,

where a is the radius of the circle; s = a + h; h is the height of the ribs (Fig. 2.14).
The added mass λ66 = 2ρs4k66a/(πs), where the coefficient k66 can be found from
Fig. 2.14 (the curve I).

For comparison in the same Fig. 2.14 we draw the curve II which shows the
dependence of the coefficient k66 = (8λ66)/(πρs4) on a/s for the circle with two
symmetric ribs (the angle between the ribs is equal to π ).

If the heights of vertical ribs on the circle differ from the heights of the horizontal
ribs, then the added masses of the contour are as follows:

λ22 = πρs2

4

{
b2

s2

(

1 + a4

b4

)

+ c2

s2

(

1 + a4

c4

)

− 2

(

1 + a2

s2

)2

+ 2

[(

1 + a4

s2b2

)(

1 + b2

s2

)(

1 + a4

s2c2

)(

1 + c2

s2

)]1/2}

;

λ33 = πρs2
(

1 − a2

s2
+ a4

s4

)

.
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Fig. 2.14 Coefficient of
added masses of a circle with
four cross-like positioned ribs

Fig. 2.15 Circle with asymmetric (a) and symmetric (b) lateral ribs

If on the circle there are three or more equidistant ribs (see Fig. 2.15b), then

λ22 = λ33 = 2πρs2
{[

1 + (a2/s2)

2

n/2]4/n

− 1

2

(
a

s

)2}

;

λ66 = 0.533ρs4, if n = 3, a = 0;
λ66 = 2

π
ρs4, if n = 4, a = 0;

λ66 = π

2
ρs4, if n = ∞, a = 0.
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2.2.9 Circle with Two Tangent Horizontal Ribs

If two horizontal ribs of span 2s are tangent to circle of radius a (Fig. 2.16) and
also there are two vertical ribs of different heights, then the added masses are given
by [158]:

λ22 = 2πρ

{

c2 − a2

2
+ 4c2 sinλ cos2(λ/2)

3(λ + sinλ)

[

sin2 λ

2
− 3λ cos2(λ/2)

λ + sinλ

]

+2
(

r2 − c2)
}

,

λ33 = 2πρ

{

c2 − a2

2
− 4c2 sinλ cos2(λ/2)

3(λ + sinλ)

[

sin2 λ

2
− 3λ cos2(λ/2)

λ + sinλ

]}

,

where the parameter λ is defined from the equation

a

s
= 1

π

{

arcsh

(
λ

2
tan

λ

2

)1/2

+
[
λ

2
tan

λ

2
+

(
λ

2

)2

tan2 λ

2

]1/2}

.

Then one finds the values c = aπ/(λ + sinλ); variable h is determined by the equa-
tion

2 + b

2
= π

(
λ

h/c + 1
+ arctan

sinλ

h/c − cosλ

)−1

;

the parameter f is determined by the equation

d

a
= π

(
λ

f/c − 1
+ arctan

sinλ

f/c + cosλ

)−1

.

Then we compute

r = 1

4

(

h + c2

h
+ f + c2

f

)

.

Fig. 2.16 Circle with
horizontal ribs located in a
tangent plane
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2.2.10 Regular Inscribed Polygon

The values for the added masses of the regular polygon inscribed in the circle with
the radius a depend on the number of its sides n and are defined by the following
formulas [158]:

λ22 = λ33 = 0.654πρa2, if n = 3,

λ22 = λ33 = 0.787πρa2, if n = 4,

λ22 = λ33 = 0.823πρa2, if n = 5,

λ22 = λ33 = 0.867πρa2, if n = 6.

2.2.11 Zhukowskiy’s Foil Profile

The expressions for the added masses of the Zhukowskiy foil profile (Fig. 2.17)
were derived by L. Sedov [206]:

λ11 = πρa2

4

(

r2 + R2 − 2 cos 2α
); λ22 = πρa2

4

(

r2 + R2 + 2 cos 2α
);

λ12 = πρa2

2
sin 2α; λ16 = πρa3

8

[

r2 + R2 + 4(r + R) cosα
]

sinα;

λ26 = ρπa3

8

[

r3 + R3 + (

r2 + R2) cosα + 2(r + R) cos 2α
];

λ66 = ρπa4

8

(

8r2R2 cos4 α − 2rR sin2 2α + cos 4α
)

r2R2, (2.12)

where the parameters a,α,R, r of the formulas can be approximately expressed via
the geometrical characteristics of the given profile [110]: the value of the chord c,

Fig. 2.17 Foil profile of
Zhukowskiy
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Fig. 2.18 Characteristic
dimensions of foil profile of
N.E. Zhukowskiy

the maximal thickness of the profile em and the height of the arch h (Fig. 2.18):

μ = 0.77
em

c − 0.6em

; a = c

2(1 + μ2)
;

R = 1 + μ

cosα
; r = 1 + μ

cosα(1 + 2μ)
; tanα = 2h

c

(

1 + μ2).

The chord c of the profile is determined by the length of the interval A1B1 con-
necting the profile back edge with the frontal point A1 posed at maximal distance
from the back edge. The local thickness of the profile e, the skeleton line position
(dotted line on the figure), and the arch height h are defined by the scheme shown in
Fig. 2.18. For convenience we show in Figs. 2.19–2.23 the graphs obtained by using

Fig. 2.19 Coefficients of added masses k11 and k22 of foil profile of Zhukowskiy
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Fig. 2.20 Coefficients of added masses k12 (above) and k16 of Zhukowskiy’s foil profile

the expressions (2.12).

k11

(
h

c
,
em

c

)

:= 4λ11

ρπc2
; k22

(
h

c
,
em

c

)

:= 4λ22

ρπc2
; k12

(
h

c
,
em

c

)

:= 8λ12

ρπc2
;

k16

(
h

c
,
em

c

)

:= 8λ16

ρπc3
; k26

(
h

c
,
em

c

)

:= 8λ26

ρπc3
; k66

(
h

c
,
em

c

)

:= 16λ66

ρπc4
;

tanα = tanα
[

(h/c, em/c)
]; μ = μ

(
em

c

)

.
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Fig. 2.21 Coefficients of added masses k26 (above) and k66 of Zhukowskiy’s foil profile

We stress here that the coordinate system xy has its origin at the back edge of the
profile, and the axis x has the angle α with the chord of the profile A1B1 (Fig. 2.17).

2.2.12 Arch of the Circle under Different Positions of Coordinate
Axes

The added masses of the arch of a circle under various choices of coordinate system
(Fig. 2.24) are given by the formulas [206]:

λ11 = ρπa2

2
tan2 α; λ22 = ρπa2

2

(

1 + 1

cos2 α

)

; λ12 = λ26 = 0.

If the origin is located at the middle of the arch as shown in Fig. 2.24a, then

λ16 = ρπa3

4

sinα

cos3 α
, λ66 = ρπa4

8

1

cos4 α
.
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Fig. 2.22 Relation between
the angle of (zero) lifting
force with thickness and
height of the arch of a
Zhukowskiy profile

Fig. 2.23 Relation between
the parameter μ and the
relative width of
Zhukowskiy’s foil profile

If the origin coincides with the center of the circle as shown in Fig. 2.24b, then
λ16 = λ66 = 0.

2.2.13 Lense Formed by Two Circular Arches

The added masses of the lens formed by two circular arches of radius R are given
by [183]:

λ11 = ρR2
[

sin 2β − 2β

180
π + 2π sin2 β

β
180 (2 − β

180 )

3(1 − β
180 )2

]

;
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Fig. 2.24 Choice of coordinate axes for the arch of the circle

Fig. 2.25 Added masses of the lens formed by two circular arches

λ22 = ρR2
[

sin 2β − 2β

180
π + 2π sin2 β

3 − 4 β
180 + 2(

β
180 )2

3(1 − β
180 )2

]

,

where 2β is the central angle of the arches thus formed (in degrees). The coefficients
k11 = λ11/(ρπR2 sin2 β), k22 = λ22/(ρπ R2 sin2 β) can be found from Fig. 2.25a.

These results are generalized in the work [80]. The dependence of coefficients
k11 and k22 on η is shown in Fig. 2.25b (where k11 = λ11/πρa2; k22 = λ22/πρa2;
α = 2π/η).
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2.2.14 Hexagon, Rectangle, Rhomb, Octagon, Square with Four
Ribs

The formulas for the added masses of hexagon (derived by Sokolov), rhomb and
rectangle (Fig. 2.26) are presented in the works [183, 206].

The graphs for coefficient k11 = λ11/(ρπb2) as a function of d/b for the cases
of a hexagon (for various angles β), a rectangular (curve I) and a rhomb (curve II)
are shown in Fig. 2.26.

Let us consider the flow around two rhombs located next to each other in such a
way that they touch each other at a corner and their orientation is the same. Then in
the flow orthogonal to the line connecting centers of the rhombs, the values λ11 for
the added mass of each rhomb in this system is 1.55 times higher in comparison with
its added mass in an infinite fluid [177]. The added moments of inertia of a rectangle
are computed in the work [246]. Dependence of coefficient k66 = 8λ66/ρπb4 on
the ratio a/b of the sides of the rectangle under rotation of the rectangle around the
central point are shown in Fig. 2.27.

Under the rotation of a regular hexagon around the central point, its added mo-
ment of inertia is defined by approximate formula [246] λ66 = 0.055πρa4, where
2a is the distance between the parallel opposite edges of the hexagon. The values for
the added mass λ11 = k11πρa2 and the added moment of inertia λ66 = k66(π/8)ρa4

of the square with the side 2a and four ribs of length d are presented in Fig. 2.28
as functions of the ratio d/a. The square is assumed to rotate around its central
point.

2.2.15 Plate with Flap

The added masses of a plate with a flap are of particular practical interest, since such
contour gives a good approximation to a flow around thin wing profiles with flaps
of various relative length.

This scheme is also applied to determine the hydrodynamic characteristics of a
system of two ships moving along a curved trajectory [177].

The added masses of the plate L1 with flap of length L2 located at an angle δ =
π/2k to the main plate are calculated in [177] using Sedov’s method. The exterior
of the plate with a flap is mapped on the unit disc by a Christoffel–Schwarz integral.
The values for the added masses are then calculated by formulas (2.2)–(2.7).

The coefficients of added masses k11 = 4λ11/(πρL2
1); k22 = 4λ22/(πρL2

1);
k12 = 4λ12/(πρL2

1); k66 = 16λ66/(πρL4
1); k16 = 8λ16/(πρL3

1); k26 = 8λ26/

(πρL3
1) as functions of the ratio L1/L2 are shown in Figs. 2.29–2.31. Parameter

k shown in these figures is related to the angle between the plate and the flap by
δ = π/2k. The value k = ∞ corresponds to δ = 0.
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Fig. 2.27 Added moment of
inertia of a rectangle

Fig. 2.28 Coefficients of
added masses of square with
ribs

2.3 Added Masses of Lattices

2.3.1 Two Plates Located on One Line

Formulas for the added masses of two intervals (plates) of lengths l1 and l2 located
on the same line at distance d (Fig. 2.32) have the following form [183, 206]:

λ22 = ρπ

4

(

l2
1 + l2

2

)

μ(p,q);
λ26 = ρπ

16
(2p + q + 1)

(

q2 − 1
)

l3
1;

λ66 = ρπ

64

[
1

2

(

q2 − 1
)2 + (2p + q + 1)2(q2 + 1

)
]

l4
1 ,
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Fig. 2.29 Coefficients of
added masses of a plate with
flap

where p = d/l1, q = l2/l1; the values for the coefficient μ(p,q) = μ(p/q,1/q)

shown in Fig. 2.32 are defined via complete elliptic integrals of the first and second
kind F(k),E(k):

μ(p,q) = (1 + 2p + q)2 − 4E(k)
F (k)

(1 + p)(p + q)

1 + q2
;

k2 = q

(1 + p)(p + q)
.

In the computation of λ26, λ66 we assumed that the origin is chosen to lie at an equal
distance from the centers of the plates.
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Fig. 2.30 Coefficients of added masses of a plate with flap
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Fig. 2.31 Coefficients of added masses of a plate with flap
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Fig. 2.32 Values of functions μ(p,q): μ(0,1) = 2; μ(0,1/2) = 1.8; μ(0,1/4) = 1.46

2.3.2 Three Plates Located on One Line

Formulas for the added masses of three plates symmetrically located on one line
(Fig. 2.33) look as follows1:

λ22 = 2πρ

[
1

2

(

c2 + b2 − a2) − (

c2 − a2)E(k)

F (k)

]

;

λ66 = πρ

8

[
(

c2 + b2 − a2)2 − 4b2(c2 − a2)E(k1)

F (k1)

]

.

Here E,F are complete elliptic integrals of the first and second kind;

k2 = c2 − b2

c2 − a2
, k2

1 = a2(c2 − b2)

b2(c2 − a2)
.

The lengths of the plates are given by: l1 = 2a, l2 = l3 = c − b. The gap between

Fig. 2.33 Coefficients of added masses of three plates

1These formulas were derived by V.F. Shushpalov, see [183].



50 2 The Added Masses of Planar Contours Moving in an Ideal Unlimited Fluid

the plates equals d = b − a. The expressions for λ22 looks as follows:

λ22 = k22ρπ

[

a2 + (c − b)2

2

]

,

where dependence of k22 on a/b, (c − b)/b for (c − b)/b < 1, or b/(c − b) for
(c − b)/b > 1 are shown in Fig. 2.33.

2.3.3 Lattice of Plates

Consider the lattice of parallel plates of width d (from a two-dimensional perspec-
tive these are intervals of length d). The axis of the lattice is assumed to have an
inclination β to the plane of the plates. The interval between the plates calculated
along the axis of the lattice is denoted by l (Fig. 2.34).

Fig. 2.34 Coefficients of
added masses of a plate lattice
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Fig. 2.35 Coefficients of added masses of a lattice of rectangles

Dependence of coefficient k22 = λ22/pl2 on parameters β and d/l is presented
in Fig. 2.34. If the lattice consists of intervals lying on one line (lattice of horizontal
plates), then β = 0 and

k22 = − 2

π
ln cos

πd

2l
.

If β = π/2 (vertical lattice of parallel plates) then

k22 = 2

π
ln cosh

πd

2l
.

2.3.4 Lattice of Rectangles

Consider the lattice with interval 2c of rectangles of width 2b and height 2d

(Fig. 2.35). The added masses of each rectangle were computed in [91]. The val-
ues for coefficients k11 = λ11/(4ρc2), k22 = λ22/(4ρc2) as functions of b/c and
d/c are shown in Fig. 2.35.

2.4 Added Masses of a Duplicated Shipframe Contour Moving
in Unlimited Fluid

Let us briefly describe the method of computing of the added masses in this case.
The description of motion of a two-dimensional contour in an ideal incompressible
two-dimensional fluid reduces to computation of the complex potential of the planar
flow w(τ) = ϕ(y, z) + iψ(y, z) [116]. Knowing the potential w(τ) one can find the
components of velocity vy, vz in the whole plane of τ = y + iz. Then, using the
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Cauchy–Lagrange formula one can determine the pressure at any point, including
the points of the contour. To find the function w(τ) it is sufficient to find the current
function ψ(y, z); the function ϕ can be found from the Cauchy–Riemann equations
∂ϕ/∂y = ∂ψ/∂z; ∂ϕ/∂z = −∂ψ/∂y.

The vortex-free condition leads to Laplace equation �ψ = 0. The boundary con-
ditions for this equation can be formulated as follows. If at infinity the fluid does
not move, then vy = ∂ψ/∂z = 0 and vz = −∂ψ/∂y = 0. On the contour we have
the water-tightness condition

vn = un, (2.13)

where vn is the normal component of velocity of fluid at the contour and un is the
normal component of the velocity of the same point of the contour.

For vn we have

vn = vy cos(n, y) + vz cos(n, z) = vy sinα − vz cosα

= vy

dz

ds
− vz

dy

ds
= ∂ψ

∂z

dz

ds
+ ∂ψ

∂y

dy

ds
= dψ

ds
,

where α is the angle between the element ds of the current line and the axis 0y

(Fig. 2.36). For un we get

un = uy sinα − uz cosα = (Uy − ωz)
dz

ds
− (Uz + ωy)

dy

ds
,

where Uy , Uz are components of the velocity vector of the origin of the moving co-
ordinate system yOz attached to the contour onto the axes Oy, Oz (we assume that
for the moment of observation the stationary and non-stationary coordinate systems
coincide); ω is the angular velocity of the contour rotation. Now condition (2.13)
can be written down in a more detailed form:

dψ

ds
= (Uy − ωz)

dz

ds
− (Uz + ωy)

dy

ds
. (2.14)

Fig. 2.36 System of
coordinates
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Using the formula (2.14) we get (up to an arbitrary additive constant) the condition

ψ = Uyz − Uzy − ω

2

(

y2 + z2), (2.15)

to be fulfilled on the contour. Taking into account (2.15) one represents the function
w(τ) in the form

w(τ) = Uyw2(τ ) + Uzw3(τ ) + ωw4(τ ),

where the functions w2(τ ), w3(τ ) and w4(τ ) are determined by geometric prop-
erties (i.e. the shape) of the contour only; these functions characterize the per-
turbed potential flow of the fluid under the motion of the contour with unit ve-
locities along the axes Oy, Oz and under rotation, respectively. The functions
wk(τ) = ϕk(τ ) + iψk(τ ) are regular outside of the contour and vanish at infinity.
On the contour C their imaginary parts, according to (2.15), satisfy the conditions

ψ2|C = z; ψ3|C = −y; ψ4|C = −1

2

(

y2 + z2). (2.16)

To find the potential of the fluid around contour C in the τ -plane it is sufficient to
find the function

τ = y + iz = f (ζ ), (2.17)

which conformally maps the exterior of the contour to the exterior of the unit circle
in the plane of ζ = ξ + iη [116, 127, 129, 130, 206], since the potential of the fluid
flow around the circle is known.

The function f (ζ ) can be in general represented as the following series:

f (ζ ) = kζ + k0 + k1

ζ
+ k2

ζ 2
+ · · · . (2.18)

If the contour C (Fig. 2.37) is symmetric with respect to the z-axis, then the expan-
sion (2.18) contains only terms of odd order.

Consider the following form of the function f [100]:

f (ζ ) ≡ y + iz := − iT

1 + p + q

(

ζ + pζ−1 + qζ−3), (2.19)

where the coefficients k, k1, k3 are replaced by the combinations of the value T (the
waterdraft of the frame) and the parameters p, q . On the unit circle, ζ = eiθ . By
substituting this value into the formula (2.19) and separating the real and imaginary
parts, we obtain the parametrical description of the contour C:

⎧

⎪⎪⎨

⎪⎪⎩

y = T
(1 − p) sin θ − q sin 3θ

1 + p + q
;

z = −T
(1 + p) cos θ + q cos 3θ

1 + p + q
.

(2.20)
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Fig. 2.37 Map of a duplicated shipframe to the unit circle

The chosen form of the function f (ζ ) gives z = −T , y = 0 when θ = 0. The second
condition, y = B/2, z = 0 when θ = π/2, gives one relation between the parameters
p and q:

1 + p + q

1 − p + q
= 2

T

B
.

By calculating the area bounded by the contour C: S = 2
∫ B/2

0 z dy, taking into
account Eqs. (2.20) and using the usual notation β = S/BT for the coefficient of
the plumpness of the shipframe, we find the second relation between the parameters
p and q:

β = π

4

1 − p2 − 3q2

(1 + p + q)2

2T

B
.

Therefore, for each pair of values β and 2T/B one can find corresponding values p

and q , and draw a contour C in the τ -plane, using (2.20).
The tables for values p,q for 0.5 ≤ β ≤ 1 and 0.2 ≤ 2T/B ≤ 10 are given in the

monograph by Huskind [100].
Let us turn to determining of the characteristic functions wk(τ) = ϕk(τ )+ iψk(τ )

(k = 2,3,4). Imaginary parts of these functions have to satisfy conditions (2.16) on
the contour C; these conditions, taking into account (2.17), can be rewritten as

�w2 = �τ ; �w3 = −�τ ; �w4 = −τ τ̄

2
. (2.21)

On the basis of (2.19), (2.21) we can find the following relation for the function w2:

�w2 = �
[

− iT

1 + p + q

(

ζ + pζ−1 + qζ−3)
]

.
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Taking into account that �(iζ ) = �ζ and on the unit circle �ζ = �ζ−1, we can
rewrite the previous equation as

�w2 = �
{

− iT

1 + p + q

[

(1 + p)ζ−1 + qζ−3]
}

.

Therefore, we have found the function ψ2 which satisfies the water-tightness con-
ditions on the contour and also the stationarity condition at infinity (when ζ → ∞).
Now the function w2 can be taken in the form

w2 = − iT

1 + p + q

[

(1 + p)ζ−1 + qζ−3]. (2.22)

Similar arguments lead (using the relation �ζ = −�ζ−1 valid on the unit circle) to
the formulas for w3,w4:

w3 = − T

1 + p + q

[

(p − 1)ζ−1 + qζ−3], (2.23)

w4 = − iT 2

(1 + p + q)2

[

p(1 + q)ζ−2 + qζ−4]. (2.24)

In the right-hand side of (2.24) we omit an unessential constant. By separating in
the expressions (2.22), (2.23), (2.24) the real and imaginary parts, we obtain ϕk , ψk

(k = 2,3,4). By using the formulas for the added masses

λik = −ρ

∫

C1

ϕi dψk,

where the integration is performed only over one half of the duplicated shipframe
contour (in the plane of the fluid), which corresponds to integration from −π/2 to
π/2 over θ in the ζ -plane, it is easy to find the dependence of the added masses on
parameters determining the profile of the shipframe:

λ22 = ρ
πT 2

2

(1 + p)2 + 3q2

(1 + p + q)2
= ρ

πT 2

2
k22;

λ33 = ρ
πB2

8

(1 − p)2 + 3q2

(1 − p + q)2
= ρ

πB2

8
k33;

λ24 = ρT 3

2

1

(1 + p + q)2

{
8

3
p(1 + p) + 16

35
q2(20 + 7p)

+ q

[
4

3
(1 + p)2 − 4

5
(1 − p)(7 − 5p)

]}

= ρT 3

2
k24;

λ44 = ρ
πB4

256

16[p2(1 + q)2 + 2q2]
(1 − p + q)4

= ρ
πB4

256
k44.
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Fig. 2.38 Coefficients of added masses of shipframes determined via the method of a duplicated
contour
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Fig. 2.39 Coefficients of added masses of shipframes determined via the method of a duplicated
contour

The graphs of dependencies kij (β,2T/b) are presented in Figs. 2.38, 2.39.2

The profiles of shipframe corresponding to functions f (ζ ) having three terms
in their Laurent series are shown in Figs. 2.40–2.43 (these profiles were drawn by
Dorofeuk [50]; for B/2T = 0.2; 0.4; 0.6; 0.8; 1; 1.2; 1.5; 2 these profiles were
obtained by Lewis in [131]). Notice that dependence of Lewis shipframes on only
two parameters B/2T and β imposes certain restrictions on their applicability. In
Fig. 2.44 we present a diagram showing the range of parameters where the Lewis
form of the shipframe can be used in practice. In Table 2.3 for each profile we

2Similar graphs for the range T/B ≤ 1 were found in the work [151].
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Fig. 2.40 Shape of a Lewis shipframe for different B/2T and β

present corresponding values of β , k22 = 2λ22/(πρT 2) and k33 = 8λ33/(πρB2).
The last coefficient in the calculations of the ship oscillations is usually denoted
by cv . Indexes v and h correspond to the added masses in vertical and horizontal
directions, respectively.

Dorofeuk calculated also several shipframe profiles and their inertial character-
istics keeping six terms in the Laurent series of function f (ζ ) (Fig. 2.45, Fig. 2.46,
Table 2.4). In Tables 2.3 and 2.4 the values of k240 were computed taking into ac-
count the presence of free surface; in computation of other coefficients the presence
of free surface is non-essential.

Besides the added masses of the “analytical” ships frames obtained on the basis
of a function of the type (2.18), one is also interested in the added masses of the real
shipframes. For two ships whose shipframes are shown in Fig. 2.47 and Fig. 2.48
the characteristics of these shipframes are given in Table 2.5 (they were found by
Pavlov using the method of electro-hydrodynamic analogy (EHDA), see Chap. 9).
The added masses of shipframes in the vertical direction can be found from the
formula

λ33 = πρB2

8
k33. (2.25)

The added masses of shipframes in the horizontal direction (which are computed
taking into account the presence of the free surface) can be found from the formula

λ220 = 2ρT 2

π
k220. (2.26)

In the formulas (2.25), (2.26) B is the frame width on the water-line, T is the
waterdraft of the frame. We notice the difference of the constant coefficients in the
formulas (2.25) and (2.26).
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Fig. 2.41 Shape of a Lewis shipframe for different B/2T and β

In practice it is convenient to use an approximate analytical representation of the
coefficients

k33 = cv = λ33

(π/2)ρ(B/2)2
and k220 = ch = λ220

(2/π)ρT 2

(see Fig. 2.49) in terms of characteristic dimensions of the frames. Possible inaccu-
racies arising from the use of this approximation can be corrected by use of com-
puter simulation.

Now we present the formulas for k33 derived by Ivanuta and Boyanovsky [35].
Similar formulas for k220 are given in Chap. 5.

One can use the relation obtained in the work [128]

k33 = (1 + k1)
2 + ∑∞

n=3 nk2
n

b2
k

,
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Fig. 2.42 Shape of a Lewis shipframe for different B/2T and β

Fig. 2.43 Shape of a Lewis
shipframe for different B/2T

and β
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Fig. 2.44 Domains of applicability of a Lewis shipframe: I—Lewis shape of shipframe is not
used; II—Lewis shape of shipframe is not recommended; III—Lewis shape of shipframe is rec-
ommended

Table 2.3 Coefficients of added masses of Lewis shipframes

B/2T Cont. No. β k22 k220 = ch k33 = cv k44 = ctor k240 = cincl

0.2 1 0.500 – – 0.611 – –

2 0.535 0.906 0.98 0.75 1.02 1.01

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.920 1.06 0.995 1.40 1.01 1.01

5 1.000 – – 1.98 – –

0.3 1 0.505 0.87 1.03 0.75 1.08 1.02

2 0.785 1.00 1.00 1.00 1.00 1.00

3 0.925 1.10 1.11 1.40 1.04 1.04

(continued on next page)
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Table 2.3 (continued)

B/2T Cont. No. β k22 k220 = ch k33 = cv k44 = ctor k240 = cincl

0.4 1 0.470 0.84 1.05 0.75 1.16 1.06

2 0.500 – – 0.65 – –

3 0.630 0.91 1.01 0.80 1.05 1.00

4 0.785 1.00 1.00 1.00 1.00 1.00

5 – – – 1.20 – –

6 0.940 1.12 1.02 1.40 2.15 1.11

7 1.00 – – 1.76 – –

0.5 1 0.440 0.80 1.08 0.75 1.35 1.09

2 0.610 0.87 1.00 0.80 1.13 1.00

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.880 1.07 1.00 1.20 1.06 1.06

5 0.945 1.10 1.04 1.40 1.23 1.15

0.6 1 0.410 0.79 1.12 0.75 1.69 1.15

2 0.500 – – 0.69 – –

3 0.615 0.87 1.03 0.80 1.24 1.0

4 0.710 0.90 1.02 0.90 1.05 0.98

5 0.785 1.00 1.00 1.00 1.00 1.00

6 0.885 1.10 1.02 1.20 1.14 1.11

7 0.955 1.2 1.05 1.40 1.53 1.27

8 1.000 – – 1.64 – –

0.7 1 0.495 0.79 1.09 0.75 2.21 1.10

2 0.595 0.84 1.04 0.80 1.63 1.02

3 0.705 0.91 1.01 0.90 1.13 0.97

4 0.785 1.00 1.00 1.00 1.00 1.00

5 0.910 1.16 1.03 1.20 1.57 1.28

6 0.960 1.25 1.06 1.40 2.24 1.50

0.8 1 0.350 0.76 1.22 0.75 5.85 1.47

2 0.500 – – 0.73 – –

3 0.565 0.82 1.07 0.80 2.95 1.02

4 0.700 0.92 1.02 0.90 1.36 0.93

5 0.785 1.00 1.00 1.00 1.00 1.00

6 0.850 1.08 1.01 1.10 1.31 1.19

7 0.895 1.14 1.02 1.20 1.98 1.37

8 0.935 1.23 1.05 1.30 3.31 1.67

9 0.970 1.25 1.07 1.40 4.80 1.94

10 1.00 – – 1.57 – –

(continued on next page)
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Table 2.3 (continued)

B/2T Cont. No. β k22 k220 = ch k33 = cv k44 = ctor k240 = cincl

0.9 1 0.325 0.74 1.27 0.75 24.55 2.10

2 0.550 0.79 1.08 0.80 10.24 1.04

3 0.700 0.91 1.01 0.90 2.74 0.80

4 0.785 1.00 1.00 1.00 1.00 1.00

5 0.860 1.05 1.01 1.10 2.94 1.53

6 0.900 1.15 1.03 1.20 6.28 1.96

7 0.945 1.26 1.06 1.30 12.9 2.68

8 0.980 1.36 1.10 1.40 21.0 3.45

1.0 1 0.295 0.74 1.33 0.75 0.035 −0.011

2 0.500 – – 0.76 – –

3 0.540 0.80 1.10 0.80 0.014 −0.0002

4 0.690 0.90 1.02 0.90 0.003 0.002

5 0.785 1.00 1.00 1.00 0 0

6 0.850 1.08 1.01 1.10 0.002 −0.004

7 0.910 1.20 1.04 1.20 0.005 −0.010

8 0.950 1.29 1.08 1.30 −0.008 −0.017

9 0.990 1.38 1.12 1.40 0.011 −0.026

10 1.000 – – 1.51 – –

1.1 1 0.265 0.74 1.40 0.75 34.00 −0.475

2 0.520 0.76 1.12 0.80 14.70 0.98

3 0.680 0.84 1.02 0.90 3.79 1.30

4 0.785 1.00 1.00 1.00 1.00 1.00

5 0.850 1.06 1.01 1.10 3.12 0.40

6 0.910 1.18 1.05 1.20 9.60 −0.49

7 0.955 1.26 1.09 1.30 18.20 −1.41

1.2 1 – – – 0.76 – –

2 0.510 0.64 1.14 0.80 4.98 1.00

3 0.500 – – 0.78 – –

4 0.680 0.92 1.03 0.90 1.83 1.16

5 0.785 1.00 1.00 1.00 1.00 1.00

6 0.860 1.16 1.01 1.10 1.64 0.64

7 0.920 1.31 1.05 1.20 3.50 0.13

8 0.960 1.43 1.11 1.30 6.23 -0.45

9 1.00 – – 1.47 – –

1.3 1 0.500 0.80 1.17 0.80 3.03 1.00

2 0.675 0.88 1.03 0.90 1.43 1.14

3 0.785 1.00 1.00 1.00 1.00 1.00

(continued on next page)
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Table 2.3 (continued)

B/2T Cont. No. β k22 k220 = ch k33 = cv k44 = ctor k240 = cincl

4 0.860 1.12 1.02 1.10 1.35 0.72

5 0.920 1.27 1.07 1.20 2.24 0.34

6 0.970 1.42 1.13 1.30 3.80 -0.17

1.4 1 0.480 0.75 1.20 0.80 2.32 1.02

2 0.675 0.87 1.03 0.90 1.27 1.12

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.870 1.14 1.02 1.10 1.23 0.77

5 0.930 1.29 1.07 1.20 1.87 0.41

6 0.975 1.43 1.15 1.30 2.88 -0.01

1.5 1 – – – 0.78 – –

2 0.470 0.78 1.24 0.80 1.96 1.02

3 0.500 – – 0.81 – –

4 – – – 0.85 – –

5 0.665 0.87 1.07 0.90 1.21 1.11

6 – – – 0.95 – –

7 0.785 1.00 1.00 1.00 1.00 1.00

8 – – – 1.05 – –

9 0.875 1.17 1.03 1.10 1.18 0.77

10 – – – 1.15 – –

11 0.930 1.28 1.08 1.20 1.62 0.47

12 0.985 1.49 1.19 1.25 2.40 0.07

13 1.000 – – 1.42 – –

1.6 1 0.455 0.74 1.26 0.80 1.75 1.02

2 0.660 0.84 1.04 0.90 1.16 1.11

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.870 1.14 1.03 1.10 1.12 0.89

5 0.940 1.34 1.09 1.20 1.49 0.50

6 0.990 1.50 1.18 1.30 2.04 0.03

1.7 1 0.440 0.73 1.30 0.80 1.62 1.02

2 0.655 0.81 1.05 0.90 1.13 1.10

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.880 1.14 1.04 1.10 1.12 0.79

5 0.940 1.32 1.10 1.20 1.39 0.53

6 1.01 1.59 1.23 1.30 1.96 0.11

(continued on next page)
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Table 2.3 (continued)

B/2T Cont. No. β k22 k220 = ch k33 = cv k44 = ctor k240 = cincl

1.8 1 0.425 0.75 1.33 0.80 1.53 1.02

2 0.650 0.86 1.05 0.90 1.11 1.10

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.875 1.20 1.03 1.10 1.08 0.80

5 0.955 1.43 1.14 1.20 1.41 0.47

1.9 1 0.410 0.84 1.35 0.80 1.45 1.05

2 0.645 0.93 1.06 0.90 1.10 1.11

3 0.785 1.00 1.00 1.00 1.00 1.00

4 0.885 1.35 1.04 1.10 1.08 0.80

5 0.965 1.58 1.15 1.20 1.37 0.50

2.0 1 0.400 0.63 1.41 0.81 1.48 1.03

2 0.500 – – 0.84 – –

3 – – – 0.85 – –

4 0.640 0.85 1.06 0.90 1.09 1.11

5 – – – 0.95 – –

6 0.785 1.00 1.00 1.00 1.00 1.00

7 – – – 1.05 – –

8 0.885 1.24 1.04 1.10 1.07 0.81

9 – – – 1.15 – –

10 0.960 1.45 1.15 1.20 1.27 0.54

11 1.000 – – 1.36 – –

Fig. 2.45 Shape of a Lewis shipframe if six terms of function f are non-trivial
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Fig. 2.46 Shape of a Lewis shipframe if six terms of function f are non-trivial

Table 2.4 Inertial characteristics of shipframe profiles

B/2T Cont. No. β k220 = ch k33 = cv k44 = ctor k240 = cincl

1 1 0.505 0.94 0.925 0.020 0.430

2 0.610 0.83 1.02 0.012 0.474

3 0.695 0.80 1.09 0.008 0.522

1.1 1 0.510 0.99 0.875 16.5 1.11

2 0.605 0.90 0.915 8.97 1.43

1.4 1 0.400 1.07 0.88 3.35 0.87

2 0.490 0.97 0.91 2.16 0.09

3 0.575 0.86 0.95 2.15 0.10

4 0.665 0.85 0.99 1.67 1.06

5 0.755 0.89 1.01 1.34 1.04

1.6 1 – 1.06 1.14 1.41 0.76

2 – 1.06 1.42 2.69 0.12

where b2
k = (π/8β)(B/T )(1 − ∑∞

n=1 nk2
n); β is the coefficient of the plumpness of

the shipframe, kn are the coefficients in the expansion

z = f (ζ ) = ζ + k1

ζ
+ k3

ζ 3
+ k5

ζ 5
+ · · · .

If only values for k1 and k3 are assumed to be non-vanishing, we get the following
formulas:

k33 = cv =
(

2T

B
− a

)(
2T

B
− a + 1

)

+ 1, (2.27)
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Fig. 2.47 Shipframe shapes for ship A

Fig. 2.48 Shipframe shapes for ship B

where

a = 3

2

(

1 + 2T

B

)

− 1

2

√

1 + 20T

B
+ 4T 2

B2
− 64βT

πB
. (2.28)

The expression under the square root is negative when β > (π/32)(2T/B +B/2T +
10). This inequality distinguishes the shipframes of bulb-type shape. Therefore,
for the shipframes of bulb-type shape the formula (2.27) is not applicable. For
three main positions of the bulb-type shipframe with respect to the water surface
(Fig. 2.50) Ivanuta and Boyanovsky derived the following approximate formulas:

• for position I: λ33 = 0.5ρπb2
S ,

• for position II: λ33 = ρπbS(1 − b2
S/2H 2

S ),
• for position III: λ33 = πρb2

S1(1 − b2
S1/2H 2

S1),

where the characteristic lengths bS, bS1,HS,HS1 are shown in Fig. 2.50. The values
in the brackets take into account the influence of water surface in the first approx-
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Table 2.5 Coefficients of added masses of shipframes

S.F. No. Ship A Ship B

B/2T β k220 = ch k33 = cv B/2T β k220 = ch k33 = cv

1 – – 0.515 – – – 0.585 –

2 0.240 1.035 0.950 2.20 0.320 1.13 0.960 2.81

3 0.520 0.788 0.965 1.04 0.675 0.99 1.18 1.56

4 0.773 0.736 0.978 0.872 0.970 0.94 1.22 1.225

5 0.985 0.775 1.07 0.880 1.15 0.91 1.255 1.15

6 1.170 0.762 1.13 0.850 1.23 0.926 1.370 1.19

7 1.19 0.886 1.21 1.065 1.26 0.985 1.49 1.32

8 1.19 0.930 1.27 1.160 1.27 0.99 1.51 1.37

9 1.19 0.945 1.285 1.205 1.27 0.99 1.51 1.44

10 1.19 0.960 1.304 1.235 1.27 0.99 1.51 1.42

11 1.19 0.993 1.350 1.280 1.27 0.98 1.49 1.38

12 1.19 0.990 1.348 1.275 1.27 0.975 1.44 1.26

13 1.19 0.960 1.304 1.235 1.195 0.945 1.39 1.18

14 1.19 0.930 1.348 1.160 1.195 0.930 1.34 1.15

15 1.17 0.865 1.160 1.030 1.10 0.875 1.155 1.04

16 1.15 0.790 1.10 0.920 0.960 0.785 1.05 0.917

17 1.07 0.733 1.145 0.823 0.745 0.635 1.05 0.740

18 0.933 0.666 1.110 0.729 0.497 0.308 0.70 0.397

19 0.773 0.505 0.946 0.650 – – – –

20 0.586 0.303 0.794 0.790 – – – –

21 0.320 0.927 1.570 0.742 – – – –

imation. More precise formulas for taking into account the influence of the water
surface on the added masses of a circular cylinder can be found in Chap. 5.

If 0.5 ≤ β ≤ 0.9, then for approximate calculations one can use the formula

λ33 = 1

2
ρβB2.

2.5 Added Masses of an Inclined Shipframe

The above results can be generalized [121, 225] to computation of added masses
λ22 and λ24 of inclined shipframes, whose contour can not be considered symmetric
with respect to any vertical axis. The problem was solved under the assumption that
on the water surface (which was assumed to be flat) the water-tightness condition is
imposed.
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Fig. 2.49 Graphs of analytic representation of coefficients k220 and k33 in terms of characteristic
dimensions of shipframes

Mapping the exterior of the contour of a duplicated shipframe in the τ -plane
(Fig. 2.51) to the exterior of the unit circle in the ζ -plane by the function

τ = y + iz = f (ζ ) = B

2(1 + p + q)

(

ζ + pζ−1 + aζ−2 + qζ−3 − a
)

,
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Fig. 2.50 Typical positions of bulb-type shipframes: from left to right: position I, position II and
position III

where B is the shipframe width computed at the waterline, we can get the paramet-
rical expression for the frame contour:

y = B

2(1 + p + q)

[

(1 + p) cos θ + a cos 2θ + q cos 3θ − a
];

z = B

2(1 + p + q)

[

(1 − p) sin θ − a sin 2θ − q sin 3θ
]

. (2.29)

The difference between formulas (2.29) and formulas (2.20) is in the presence
of a non-zero parameter a and, also, in coefficients in front of the brackets in the
formulas for f (ζ ).

The graphs of coefficients k22 = (β, ȳm,B/T ) = 2λ22/(πρT 2) and k24 =
λ24/(ρT 3) calculated by Usachev [225] are shown in Figs. 2.51–2.54. The value
ȳm := 2ym/B (Fig. 2.51) determines the asymmetry of the contour.

2.6 Added Masses of Catamarans and Twin Rudders

The added masses of catamarans can be determined via the added masses of a single
body [8]3:

λ11c = κ1λ11, λ22c = κ2λ22,

λ66c = κ2

(

λ66 + B2
1

4
λ22

)

+ κ1
B2

1

4
λ11

3This section was written by A.I. Nemzer.
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Fig. 2.54 Coefficients of added masses of an inclined shipframe

where λ11, λ22 and λ66 are added masses and added moment of inertia of the single
body; B1 is the distance between the symmetry planes (diameter planes) of the bod-
ies; κ1 and κ2 are coefficients taking into account the mutual position of the bodies.
These coefficients are determined by the formulas:

κ1 = 2 + e−c̄, κ2 = 2 − 0.8e−2c̄, c̄ = C

B
,

where C is the distance between the internal surfaces of the bodies, measured along
the waterline, B is the width of one body of the catamaran.

Other interesting results for added masses of a shipframe considered as a part of
a catamaran obtained in [48]:

λ22csf = k22λ22sf , λ33csf = k33λ33sf ,

where λ22sf , λ33sf are added masses of the shipframe of each of the bodies forming
the catamaran; k22 and k33 are coefficients taking into account the mutual position
of the bodies.

The coefficients k22 and k33 for the different shapes of the shipframes are shown
in Fig. 2.55.

On catamarans, as well as on single-body vessels, one could use twin rudders
(Fig. 2.56). The added mass of the rudders in the direction of the y axis is determined
as follows [2, 230]:
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Fig. 2.55 Coefficients of added masses of a single hull considered as part of a catamaran

Fig. 2.56 Positions of twin
rudders

λy = Kyρb2l,

where b is the chord of the rudder, l is the span of the rudder, Ky is the coeffi-
cient determined from the graphs shown in Figs. 2.57–2.60 as functions of parame-
ters

α1, α2, ᾱ, h̄0/b,λ,

where α1 and α2 are the attack angles of the twin rudders, ᾱ := α2/α1, h0 is the
distance between the axes of the stocks, and λ is the elongation (ratio of the chord
to the span) of the rudder.

Graphs shown in Figs. 2.57–2.60 are obtained under assumption that α2 ≥ α1 and
therefore ᾱ ≥ 1. Therefore if α1 �= α2 we choose the larger angle α2 in determining
the coefficient Ky . If α1 > α2, then the indices of the angle should be interchanged,
i.e., α1 should be chosen as an argument on the graphs in Figs. 2.57–2.60, and
parameter ᾱ is determined as ᾱ = α1/α2.
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Fig. 2.57 Values of coefficient Ky for h0/b = 0.8. Black circles correspond to λ = 0.5, black
triangles to λ = 0.75, white triangles to λ = 1.0, white circles to λ = 1.25

The total added masses of the system vessel-rudder are determined by the for-
mulas

λtotal
22 = λ22 + λy, λtotal

26 = λ26 − lbλy, λtotal
66 = λ66 − l2

bλy,

where lb is the distance from the rudder stock to the center of mass of the vessel.
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Fig. 2.58 Values of coefficient Ky for h0/b = 1.0. Black circles correspond to λ = 0.5, black
triangles to λ = 0.75, white triangles to λ = 1.0, white circles to λ = 1.25
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Fig. 2.59 Values of coefficient Ky for h0/b = 1.2. Black circles correspond to λ = 0.5, black
triangles to λ = 0.75, white triangles to λ = 1.0, white circles to λ = 1.25
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Fig. 2.60 Values of coefficient Ky for h0/b = 1.4. Black circles correspond to λ = 0.5, black
triangles to λ = 0.75, white triangles to λ = 1.0, white circles to λ = 1.25



Chapter 3
Added Masses of Three-Dimensional Bodies in
Infinite Fluid

From the general expressions for added masses of a solid body moving in fluid
(1.12) one sees that the added masses and moments can be computed if one knows
the potentials of velocity fields arising in the fluid under the motion of the body
along and around coordinate axes. Therefore, the problem of computation of added
masses involves solving the Laplace equation with given boundary conditions on
the surface of the body and at infinity. The methods of solutions of the Laplace
equation which are most commonly applied in hydrodynamics are the method of
separation of variables and the singularity method [4, 133, 139]. According to the
method of separation of variables, the general solution of a Laplace equation is
represented as a sum of particular solutions with constant coefficients, which are
defined from the boundary conditions. In this method it is convenient to use an
orthogonal curvilinear coordinate system chosen such that one of the coordinate
“planes” coincides with the surface of the body. For example, the problem can be
solved in a relatively simple way for ellipsoids if one uses an elliptic coordinate
system. For an arbitrary body of revolution the solution is rather complicated [139];
the solution can be simplified assuming that the length of the body is large compared
to its width.

The method of singularities is also based on linearity of the Laplace equation; the
potential in question is obtained by summing up potentials of elementary hydrody-
namic singularities: sources, dipoles and vortices. Posing the singularities inside of
the body and on its surface, one can find their distribution using the water-tightness
condition on the surface of the body. The method of singularities is widely used in
numerical analysis of this type of problems [21, 22].

In this chapter we discuss added masses of some simple bodies obtained from
exact solutions of a Laplace equation. Then we discuss approximate methods of
computation of added masses of three-dimensional bodies.

3.1 Added Masses of an Ellipsoid Moving in an Infinite Fluid

Motion of an ellipsoid in infinite ideal fluid is one of very few cases which can be
analyzed explicitly. Formulation of the problem and its solution is treated in detail
in standard courses of hydrodynamics [116, 133]. In these textbooks one can also
find the following formulas for added masses of three-axial ellipsoid with half-axes
a > b > c:

λ11 = 4

3
πρabc

A0

2 − A0
; λ22 = 4

3
πρabc

B0

2 − B0
;

A.I. Korotkin, Added Masses of Ship Structures,
© Springer Science + Business Media B.V. 2009
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λ33 = 4

3
πρabc

C0

2 − C0
;

λ44 = 4

15
πρ

abc(b2 − c2)2(C0 − B0)

2(b2 − c2) + (B0 − C0)(b2 + c2)
;

λ55 = 4

15
πρ

abc(a2 − c2)2(A0 − C0)

2(c2 − a2) + (C0 − A0)(c2 + a2)
;

λ66 = 4

15
πρ

abc(a2 − b2)2(B0 − A0)

2(a2 − b2) + (A0 − B0)(a2 + b2)
.

In these formulas

A0 = abc

∫ ∞

0

du

(a2 + u)
√

(a2 + u)(b2 + u)(c2 + u)
,

B0 = abc

∫ ∞

0

du

(b2 + u)
√

(a2 + u)(b2 + u)(c2 + u)
,

C0 = abc

∫ ∞

0

du

(c2 + u)
√

(a2 + u)(b2 + u)(c2 + u)
,

we notice that A0 + B0 + C0 = 2.
Computations of added masses on the basis of these formulas were performed by

Gurevich and Riman.
Taking into account that the mass of fluid inside of the ellipsoid is m =

(4/3)πρabc, and moments of inertia with respect to the axes Ox, Oy, Oz are

Jxx = 4

15
πρabc

(

b2 + c2);

Jyy = 4πρ

15
abc

(

a2 + c2);

Jzz = 4πρ

15
abc

(

a2 + b2),

it makes sense to consider dependence of coefficients of added masses

k11 = λ11

m
, k22 = λ22

m
, k33 = λ33

m
,

k44 = λ44

Jxx

, k55 = λ55

Jyy

, k66 = λ66

Jzz

on parameters p = a/b, q = c/b. These functions are shown in Figs. 3.1–3.3.
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Fig. 3.1 Coefficients of added masses of three-axial ellipsoids
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Fig. 3.2 Coefficients of added masses of three-axial ellipsoids



3.1 Added Masses of an Ellipsoid Moving in an Infinite Fluid 85

Fig. 3.3 Coefficients of added masses of three-axial ellipsoids
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3.2 Oblate Spheroid, Elongated Ellipsoid of Revolution, Sphere,
Disc and Elliptic Plates

For an oblate spheroid (oblate ellipsoid of revolution) p = a/b = 1, and the follow-
ing equalities hold [183]:

A0 = B0 = q

(1 − q2)3/2

[

arcsin
√

1 − q2 − q

√

1 − q2
];

C0 = 2q

(1 − q2)3/2

[
1

q

√

1 − q2 − arcsin
√

1 − q2

]

;

q = c/b.

Coefficients of added masses can be found from general expressions [183]:

k11 = A0

B0 + C0
; k22 = B0

A0 + C0
; k33 = C0

A0 + B0
;

k44 = (1 − q2)2

1 + q2

C0 − B0

2(1 − q2) + (B0 − C0)(1 + q2)
;

k55 = (q2 − p2)2

p2 + q2

A0 − C0

2(q2 − p2) + (C0 − A0)(q2 + p2)
;

k66 = (p2 − 1)2

p2 + 1

B0 − A0

2(p2 − 1) + (A0 − B0)(p2 + 1)
.

For p = 1, q = 0 the spheroid degenerates to the disc of radius a, whose added
masses look as follows:

λ33 = 8

3
ρa3; λ44 = λ66 = 16

45
ρa5; λ11 = λ22 = λ55 = 0.

For p = 1, q = 1 the spheroid turns into the sphere whose added masses are
given by

λ11 = λ22 = λ33 = 2

3
πρa3; λ44 = λ55 = λ66 = 0.

It is convenient to normalize the added masses of a spheroid which is oblate in
the direction of the z-axis. For that purpose we divide these added masses by the
corresponding added masses of the disc of radius a introducing the coefficients

k11 = 3λ11

8ρa3
= k22; k33 = 3λ33

8ρa3
; k44 = k55 = 45λ44

16ρa5
.

Graphs of the coefficients k11(c/a), k33(c/a) and k44(c/a) are shown in Fig. 3.4.
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Fig. 3.4 Coefficients of added masses of an oblate spheroid as functions of q = c/a

For the elongated ellipsoid of revolution (q = c/b = 1) we have

A0 = 2v

(v2 − 1)3/2

[

ln
(√

v2 − 1 + v
) −

√
v2 − 1

v

]

;

B0 = C0 = v2

v2 − 1

[

1 − v2

√
v2 − 1

ln
(√

v2 − 1 + v
)
]

,

where v = a/b.
In terms of the eccentricity

e =
√

1 − b2

a2
=

√
v2 − 1

v

of the meridian section of the ellipsoid, the previous formulas can be rewritten as
follows:

A0 = 2(1 − e2)

e3

[
1

2
ln

1 + e

1 − e
− e

]

;
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B0 = C0 = 1

e2
− 1 − e2

2e3
ln

1 + e

1 − e
.

It is convenient to introduce the coefficients

k11 = 3λ11

4πρab2
; k22 = k33 = 3λ22

4πρab2
;

k55 = k66 = 15λ55

4[πρab2(a2 + b2)] ; k44 = 0.

The graphs of functions k11(b/a), k22(b/a) and k55(b/a) are shown in Fig. 3.5.
The added masses of elliptic plates with half-axes a and b can be obtained

from general formulas for the added masses of three-axes ellipsoids in the limit
q → 0 [183]. The graphs of coefficients equal to ratios of the added masses of the
elliptic plates to the added masses and added moments of inertia of the disc of ra-
dius a,

k11 = k22 = 0; k33 = λ33

8ρa3/3
;

Fig. 3.5 Coefficients of added masses of an elongated ellipsoid of revolution
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Fig. 3.6 Coefficients of added masses of elliptic plates

k44 = λ44

16ρa5/45
; k55 = λ55

16ρa5/45
; k66 = 0,

are shown in Fig. 3.6.

3.3 Added Masses of Thin Finite-Span Airfoils

Added masses of finite-span foils are computed in [21, 22] by the method of the
vortex surface. The plane shape of the airfoils is characterized by the following
parameters (see Fig. 3.7): b—the root chord; l—the wing span; lk—the tip chord;
S—the area of the airfoil; ϕ0 is the front edge wing sweep angle; λ = l2/S—the
coefficient of relative elongation of the airfoil; η = b/bk—the wing taper ratio.

The origin of the coordinate system xyz is chosen in the middle of the central
chord; the plane xOz coincides with the plane of the airfoil. Taking into account
that the airfoil is assumed to be thin, one computes only the added masses λ22,
λ26, λ44 and λ66. In Figs. 3.8–3.10 we demonstrate dependence of the coefficients
k22 = λ22/(ρSb), k26 = λ26/(ρSb2), k44 = λ44/(ρSb3), k66 = λ66/(ρSb3) on λ, η

and ϕ0.
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Fig. 3.7 Scheme of a monoplane airfoil (η = b/bk, λ = l2/S)

To get an idea about the accuracy of these theoretical results one can consider
Fig. 3.11 where one compares theoretical and experimental results for the coeffi-
cients k22 and k66 in the case of rectangular airfoils of various elongation.

For the coefficients of added masses k22 of rectangular wings of elongation λ

and 1/λ one can get the relation [21] k22(λ) = λk22(1/λ) which follows from some
obvious equalities that are valid for a rectangular wing of span l and chord b:
λ22(λ) = λ22(1/λ) := λ22; k22(λ) = λ22/(ρSb); k22(1/λ) = λ22/(ρSl).

Sometimes it is convenient to use the following relations valid for the airfoils
shown in Fig. 3.7:

S = l(bk + b)

2
= bl(1 + η−1)

2
;

l

b
= λ(1 + η−1)

2
.

The added mass λ22 of a thin symmetric triangular airfoil with base l and angle
ϕ0 between each side and the base is given by the formula [36]:

λ22 = ρl3

π
(tanϕ0)

3/2.

3.4 Added Masses of Thin Circular Cylindrical Airfoils

A thin circular cylindrical airfoil of diameter D and chord of profile b represents a
thin cylindrical shell of diameter D and length b. Its added masses were obtained
by Kapustina and presented in [21]. The origin of the coordinate system is situated
in the center of the axis of the airfoil; the x-axis is chosen to coincide with the axis
of the airfoil (Fig. 3.12). Coefficients k22 := λ22/(ρDb2) and k66 := λ22/(ρDb4)

as functions of elongation λ = D/b of the annular airfoil are shown in Fig. 3.13.
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Fig. 3.8 Coefficients of added masses of finite-span airfoils
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Fig. 3.9 Coefficients of added masses of finite-span airfoils

3.5 Approximate Methods to Determine Added Masses of 3D
Bodies

For most real ship structures it is impossible to compute added masses explicitly
and one needs to make use of various approximate methods.
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Fig. 3.10 Coefficients of added masses of finite-span airfoils

3.5.1 Method of Plane Sections

If a body is elongated along one of its axes (typically this axis is assumed to coincide
with the x-axis) the added masses in orthogonal directions (i.e., along y and z-
axes) can be computed by the method of plane sections. The idea of this method is
that one computes the added masses of all plane sections orthogonal to the x-axis
and then integrates them along x. One assumes that the motion of fluid in the x-
direction is negligible if the body moves in any direction orthogonal to the x axis.
This assumption is well-satisfied for prolate bodies, when the ratio of the length of
the body (L) to its diameter (B or 2T ) is large enough (λ := L/B ≥ 9). When λ
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Fig. 3.11 Comparison of theoretical and experimental results for added masses of rectangular
airfoils (k22 = 4λ22/(ρπSb), k66 = 48λ66/(ρπl2b3)). The solid curves are theoretical; dots corre-
spond to experimental data

gets smaller the motion of fluid along the x-axis becomes essential, and the added
masses computed by the method of plane sections have to be corrected.

The formulas for added masses computed via the method of plane sections can
be written as follows:

λ22 = μ

(

λ = L

2T

)∫ L2

L1

λ220(x) dx; (3.1)

λ33 = μ

(

λ = L

B

)∫ L2

L1

λ330(x) dx; (3.2)

λ24 = μ

(

λ = L

2T

)∫ L2

L1

λ240(x) dx; (3.3)
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Fig. 3.12 Scheme of a circular cylindrical airfoil

Fig. 3.13 Added masses of a circular cylindrical airfoil

λ34 = μ

(

λ = L

B

)∫ L2

L1

λ340(x) dx; (3.4)

λ44 = μ

(

λ = L

2T

)∫ L2

L1

λ440(x) dx; (3.5)
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λ26 = μ1

(

λ = L

2T

)∫ L2

L1

λ220(x)x dx; (3.6)

λ35 = −μ1

(

λ = L

B

)∫ L2

L1

λ330(x)x dx; (3.7)

λ55 = μ1

(

λ = L

B

)∫ L2

L1

λ330(x)x2 dx; (3.8)

λ66 = μ1

(

λ = L

2T

)∫ L2

L1

λ220(x)x2 dx. (3.9)

In the formulas (3.1)–(3.9) the integration is performed between the endpoints of the
body whose x-coordinates equal L1 and L2; μ(λ) and μ1(λ) are corrections related
to fluid motion along the x-axis; these corrections are different since the motion
of fluid along the x-axis is different for cases of linear motion of the body and its
rotation. Notice the different sign in the formulas (3.6) and (3.7). There is a subtlety
related to the choice of correct sign while computing the added masses having the
dimension of static moment by the method of plane sections. Consider for example
the added mass λ35 of the body M which is symmetric under the x1Oy1 plane in
the coordinate system x1y1z1 (Fig. 3.14). For the body M (as well as for any other
body) one can find such a coordinate system xyz that λ35 = 0. Indeed, in the interval
[L1,L2], where λ330(x) ≥ 0, we have from the mean value theorem:

∫ L2

L1

λ330(x)x dx = xc

∫ L2

L1

λ330(x) dx

for some xc. Shifting the origin of the coordinate system along the x-axis to the point
x = xc, we get λ35 = 0. Let coordinate system x1y1z1 be shifted in the negative di-
rection of the axis Ox with respect to the coordinate system xyz by �x. Then the
integral

∫ L2−�x

L1−�x
λ330(x)x dx defining the added mass λ

(1)
35 in the coordinate system

Fig. 3.14 Coordinate systems for an elongated body
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x1y1z1 is positive (in this qualitative discussion we assume that the correction coef-
ficient μ in (3.7) equals 1). However, the added mass λ

(1)
35 itself is in fact negative in

this case, which follows from the following reasoning.
Suppose the body M starts moving from rest in the ideal fluid in the direction of

the axis Oz1 with acceleration

du3

dt
> 0. (3.10)

Then in the coordinate system (x1, y1, z1) the body is influenced by torque

My1 > 0 (3.11)

since the body starts rotating in the clockwise direction (from the point of view of an
observer situated at the “end” of the y1-axis). This direction of rotation is positive in
the left coordinate system x1y1z1. From the formula (1.26) it follows that the torque
My1 is related to acceleration du3/dt by the formula

My1 = −λ35
du3

dt
. (3.12)

Comparing expressions (3.10), (3.11) and (3.12) we conclude that in the coordi-
nate system x1y1z1 the added mass λ35 < 0.

In general the signs of added masses can be found using laws of transformation
of the added masses under a change of coordinate system (1.17). Suppose that in
the coordinate system xyz we have λ35 = 0. Consider now the coordinate system
x2y2z2 obtained from xyz by shifting the axis Ox in the positive direction by �x.
Then according to (1.21), λ

(2)
35 = �xλ33. Therefore, computing λ

(2)
35 by the method

of plane sections one should use the formula

λ
(2)
35 = −

∫ L2

L1

λ330(x)x dx,

since the integral itself is negative for this direction of shift.
Analogously, for λ

(2)
26 we get λ

(2)
26 = −�xλ22; thus λ

(2)
26 should be computed us-

ing the formula λ
(2)
26 = ∫ L2

L1
λ220(x)x dx. Similarly one can choose the correct signs

in front of all other integrals for computation of all added static moments by the
method of plane sections.1

The smaller the elongation of the body, the less precise is the method of plane
sections. To decrease the arising error one introduces the correction coefficients μ

and μ1 related to flow of fluid along the body. These correction terms can be found
both experimentally and theoretically, using the known exact solutions. The most
well-known experimental correction is the Pabst correction derived empirically from

1The problem with the choice of correct signs for the added static moments was indicated in
[16, 183].
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experiments with rectangular plates:

μ(λ) = λ√
1 + λ2

(

1 − 0.425
λ

1 + λ2

)

, (3.13)

where λ = L/B is the elongation of the plate.
In computations of added masses of hulls, the use of Pabst correction might be

insufficient due to the specific shape of the ship frames. Another issue is the influ-
ence of viscosity of the real fluid on these corrections. Therefore it is reasonable
to determine the corrections related to finiteness of the length of the hull by using
exact solutions (see Sect. 3.1) for three-axial ellipsoids; this allows also us to take
into account the relative thickness of the hull.

For a three-axial ellipsoid the added mass in the direction of the z-axis is deter-
mined by the formula

λ33 = k33
4

3
ρπabc,

where the coefficient k33 = k33(λ = a/b, q = c/b) can be found from Fig. 3.2.
Computing the added mass by the method of plane sections, we find

λ33pl = 2πρb2
∫ a

0

(

1 − x2

a2

)

dx = 4

3
πρab2.

Therefore, the correction related to the 3D character of the flow can be found from
relation μ(λ,q) = λ33/λ33pl = k33q . Graphs of the function μ(λ,q) are shown in
Fig. 3.15. The dashed line shows the dependence of Pabst correction on parameter λ.

We notice that the Pabst corrections found in experiments with plates signifi-
cantly differ from corrections μ(λ,0) obtained theoretically for elliptic plates; the
experimental correction is actually closer to μ(λ,1). This fact is probably due to the
difference between real and theoretical structure of the fluid flow.

Analogously one can get a correction related to the 3D character of the flow for
the added moment of inertia. The exact value of the added mass is

λ66 = k66(λ, q)
4

15
ρπabc

(

a2 + b2),

where the coefficient k66(λ, q) is shown on the graphs in Sect. 3.1.
The added mass λ66, computed by the method of plane sections, is expressed by

the formula

λ
planar
66 = 2ρπb2

∫ a

0

(

1 − x2

a2

)

x2 dx = 4

15
ρπb2a3.

Therefore, the correction for the added moment of inertia is written in the form

μ1(λ, q) = λ66

λ
planar
66

= k66(λ, q)q

(

1 + 1

λ2

)

.
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Fig. 3.15 Corrections related to the 3D character of flow to added masses computed by the method
of plane sections

Graphs of the function μ1(λ, q) are shown in Fig. 3.16.
The corrections μ(λ,q) and μ1(λ, q) can be used to determine the added masses

by the method of plane sections for bodies with relatively smooth boundaries.
Experimental data for correction μ1 for rectangular plates with different ratios of

the length L to the width B are shown in Fig. 3.16. The correction μ1 is found as the
ratio of an experimentally measured variable λ55 to the added moment of inertia of
the rectangular plate πρB2L3/48 computed via the method of plane sections. The
solid curve in Fig. 3.16 approximates the experimental data and corresponds to the
formula

μ1(λ) = 1 − e−0.4λ. (3.14)

If the plate has the shape of a double trapezeum (see Fig. 3.17) then the added mo-
ment of inertia is equal to the added moment of inertia of a rectangular plate of the
same length and the same area, multiplied with coefficient ξ (Fig. 3.17) depending
on the ratio B1/B2, where B1 and B2 are characteristic sizes shown in Fig. 3.17.

Let us comment on the use of formulas (3.13) and (3.14). The experimental for-
mula (3.13) derived for plates can be also applied to bodies of finite thickness, since
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Fig. 3.16 Correction μ1 taking into account 3D effects in computation of the added moment
of inertia: solid line—approximation of experimental data; dots—experimental data; dashed
line—computation for ellipsoids

Fig. 3.17 Ratio of added moment of inertia of double trapezeum to added moment of inertia of a
rectangular plate of the same length and area

the ratio of thickness to width of the body does not significantly influence the correc-
tion coefficient μ(λ). On the other hand, the correction coefficient μ1(λ) essentially
depends on the ratio B/2T . Indeed, for a body of revolution we have B/2T = 1,
and if λ = L/B tends to 1 the correction μ1 tends to 0, since for the sphere the
added moment of inertia is absent. On the other hand, for a plate with λ = 1 the cor-
rection μ1 is different; it can be computed by formula (3.14). Therefore, in practical
computations it makes sense to find correction μ1 using the data for ellipsoids.

Correction coefficients which take into account 3D effects in computation of
added masses by the method of plane sections are given in Sect. 7.3 of this book.
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3.5.2 Method of an Equivalent Ellipsoid

The problem of finding the added masses of an elongated body of volume V with
sizes L along the x-axis, B along the y-axis, 2T along the z-axis can be approx-
imately reduced to the problem of finding the added masses of an equivalent el-
lipsoid. The sizes of the ellipsoid are chosen as follows: assume the length of the
longest axis to coincide with the length of the body (2a = L); the volume of the el-
lipsoid equals the volume of the body (V = (4/3)πabc). For computation of λ33 and
λ55 one assumes that 2b = B (the third axis 2c of the ellipsoid is then determined
from condition V = (4/3)πabc). For computation of λ22 and λ66 one should as-
sume 2c = 2T (then the axis 2b is found from the same condition V = (4/3)πabc).

In computation of the added masses λ11 and λ44 one fixes the volume of the
ellipsoid (V = (4/3)πabc) and two axes 2b = B and 2c = 2T .

3.5.3 Approximate Formulas for Added Masses of the Hull

For the hull with symmetric waterline defined by equation

y(x) = B

2

[

1 −
(

2x

B

)n]

, (3.15)

and diametral section defined by equation

z(x) = −T

[

1 −
(

2x

B

)m]

, (3.16)

the following added masses were obtained by Huskind [100] using the method of
plane sections:

λ33 = λM
33

2α2L

1 + α
μ

(

λ = L

B

)

; (3.17)

λ22 = λM
22

2β2
0L

1 + β0
μ

(

λ = L

2T

)

; (3.18)

λ55 = λM
33

α2L3

6(3 − 2α)(3 − α)
μ1

(

λ = L

B

)

; (3.19)

λ66 = λM
22

β2
0L3

6(3 − 2β0)(3 − β0)
μ1

(

λ = L

2T

)

; (3.20)

λ24 = λM
24

L

1 − S2
1

(
2α2

1 + α
− S2

1

)

μ

(

λ = L

2T

)

; (3.21)
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λ44 = λM
44

L

(S2
1 − 1)2

[

S4
1 − 4S2

1α2

1 + α
+ 12α4

(1 + α)(2 + α)(1 + 3α)

]

μ

(

λ = L

2T

)

.

(3.22)
In the formulas (3.17)–(3.22) the area coefficient of the waterplane α and of the

diametral section β0 are related to degrees m and n in (3.15), (3.16) by relations
α = n/(n + 1), β0 = m/(m + 1); variables λM

ik are added masses of the midship
frame; S1 = 2T/B .

In practice, for a rough evaluation one can use the following simplified formulas:

1. For the added mass λ33 of the hull:

λ33 = ρV

(

1.2 + B

3T

)

;

2. For the added mass λ22 of the hull:

λ22 = ρV

(

0.3 + 0.3
T

B

)

.

In these formulas V is the cubic displacement of the hull, B is the maximal width,
T is the average draft, L is the length of the hull. The formulas (3.17)–(3.22) can
be used in approximate computations under various types of ship motion which are
taken into account for computation of coefficients λM

ik .



Chapter 4
Added Masses of Interacting Bodies

If a body is moving in a fluid close to other bodies (moving or not), then its added
masses differ from the added masses corresponding to motion in an infinite fluid.
This difference arises due to different boundary conditions: for an isolated body in
an infinite fluid one has only a boundary condition (water-tightness) on the body
surface and a boundary condition at infinity. In the presence of other bodies one
should also impose boundary conditions on their surfaces. A partial case of such a
situation is the motion of a body near a wall, which in the case of an ideal fluid can
be substituted by the mirror image of the body. In this chapter we consider added
masses of interacting bodies and added masses of bodies moving near hard walls.

4.1 Added Masses of Interacting Bodies Moving in a Fluid

4.1.1 Formulation of the Problem

We can distinguish three essentially different cases of interaction of bodies moving
in a fluid1:

1. Motion of a body which consists of several parts which are rigidly connected
among themselves.

2. Motion of a body in the presence of one or more stationary bodies.
3. Motion of two or more bodies, such that each body is moving independently,

possessing (in the general case) six degrees of freedom.

A typical example of the first case is given by two-hull vessels (catamarans),
where two hulls are rigidly connected to each other and preserve their relative posi-
tion under arbitrary motion (for example, under roll). Other examples of interaction
of this type are given by interaction of the hull with rudder, keel and other exter-
nal objects. The characteristic feature of this type of motion is that all elements of
the structure move as a single body which possesses not more than six degrees of
freedom.

For these problems one can apply an ordinary approach of finding added masses
of a single body in an infinite fluid. However, in practice this problem is essentially
more difficult in comparison with the case of single bodies whose surface can be
described by some analytical function (say, an ellipsoid). A few examples when one
can find added masses for compound bodies theoretically are given in Chap. 2 of
this book.

1This section is written by Yu.V. Gurjev.

A.I. Korotkin, Added Masses of Ship Structures,
© Springer Science + Business Media B.V. 2009
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In the general case one has to compute the added masses of each element of
construction separately, and then find the added masses of the whole construction
by summation. Of course, then we encounter the problem of evaluation of mutual
influence of various elements of the construction. For example, the transversal added
masses of the keel (which in the first approximation can be considered as a flat plate
of small elongation) increase with presence of the hull. To approximately model the
influence of the hull in this case one can substitute the hull near the keel by a flat
wall; the influence of the wall can be taken into account by the method of mirror
image, by doubling the length of the plate. After computing the added masses of
this new plate we have to divide them by two to find the added masses of the keel
near the hull. In the general case, to take into account the interaction of various
elements of construction is much more difficult; such problems can be solved either
semiempirically or numerically.

The second and third cases of interaction mentioned above are typically classified
as cases of non-stationary interaction of bodies in a fluid. The word “non-stationary”
is used here in the sense that the mutual positions of bodies change; in this sense that
motion can be non-stationary even if the velocities of the bodies remain constant.
Examples of non-stationary motion are given by motion of two ships under overtak-
ing or divergence, docking of a ship to a wall etc. In this case the system consists
of N bodies, each of which has six degrees of freedom. Therefore, the system as a
whole can have 6N degrees of freedom.

Under non-stationary motion the mutual positions of bodies in fluid continuously
change, as well as the degree of their mutual influence and their hydrodynamic
characteristics. Even when they move with constant velocities, all hydrodynamic
characteristics of the fluid flow (velocities, potentials, pressure) change. Therefore,
kinetic energy of the fluid motion also changes, which leads to similar changes for
the added masses.

Therefore, under non-stationary interaction of the bodies the added masses be-
come variables depending on coordinates of positions of the interacting bodies. This
is the principal difference between the problem of non-stationary motion and the
motion of a single body in fluid. Recall that for a single body the added masses
forming the 6 × 6 matrix are constants, determined only by the shape of the body
and choice of the coordinate system. Taking into account constancy of this matrix
we have obtained formulas for (1.22)–(1.27) for inertial hydrodynamic forces and
torques. Use of these formulas for the case of non-stationary interaction of bodies
in fluid is not correct any more [94].

The common feature of the situation when a body moves near immovable ob-
jects and the situation when there are several moving bodies is that in both cases the
added masses become time-dependent variables. Simultaneously, there is a signifi-
cant difference between these types of situations. For example, when a body moves
near a rigid wall, there are only added masses of the body itself, and their number
is the same as the number of added masses of a body moving in an infinite fluid. In
the case of simultaneous motion of several bodies the number of added masses is
larger. The increase in the number of added masses is not only due to the fact that
each of the bodies has 36 added masses, but also due to appearance of new added
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Fig. 4.1 Coordinate systems of interacting bodies

masses, called the added masses of interaction. For example, for two bodies moving
in an infinite fluid the total number of added masses equals 144.

For simplicity consider the interaction of two bodies moving in a fluid; for a
higher number of bodies the analysis remains essentially the same. Let two bodies
(see Fig. 4.1) of an arbitrary shape move independently in an inviscous ideal fluid.
Consider three coordinate systems: an absolute (immovable) system x, y, z and two
movable ones: x1, y1, z1 which is rigidly attached to the 1st body and x2, y2, z2
which is rigidly attached to the 2nd body. The origin of the nth coordinate system
(n = 1,2) we denote by On; this point is considered as the pole (center of rotation)
of the nth body. Then velocity of a point P belonging to the nth body is given by
the formula

�Vn(P ) = �VOn + �ωn × �rn, (4.1)

where �rn = OnP is the radius-vector of the point P with respect to the pole On.
We assume the flow to be vortex-free, with single-valued potential Φ . The prob-

lem of finding the potential gives rise to a solution of the Laplace equation

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2
= 0 (4.2)

with the following boundary conditions:

• Water-tightness condition on the surface of each body:

∂Φ

∂n

∣
∣
∣
∣
S1

= �V1 · �n,
∂Φ

∂n

∣
∣
∣
∣
S2

= �V2 · �n, (4.3)
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where �n is the unit vector of the external normal to the surface of the body.
• Asymptotic condition:

gradΦ → 0, as R =
√

x2 + y2 + z2 → ∞. (4.4)

Linearity of this problem allows us to use the superposition principle and repre-
sent the potential as a sum of 12 potentials (according to the total number of degrees
of freedom). As well as in the case of the motion of a single body in an unlimited
fluid one can introduce so-called elementary potentials ϕin in terms of which the
solution can be written in the form

Φ =
6

∑

i=1

vi1 · ϕi1 +
6

∑

i=1

vi2 · ϕi2. (4.5)

In this formula one has the generalized velocities vi1 and vi2 of the first and the sec-
ond bodies. These velocities are given by projections of linear and angular velocities
of the nth body to the axes of the coordinate system associated to this body:

v11 = VO1x, v21 = VO1y, v31 = VO1z, v41 = ω1x,

v51 = ω1y, v61 = ω1z, v12 = VO2x, v22 = VO2y,

v32 = VO2z, v42 = ω2x, v52 = ω2y, v62 = ω2z. (4.6)

The elementary potentials ϕi1 correspond to the motion of the first body with unit
ith velocity such that all other velocities of this body, as well as all velocities of
the second body, equal zero. Potentials ϕi1 are defined analogously. In analogy to
analysis of Chap. 1 of the motion of an isolated body, substituting (4.5) and (4.1) in
the boundary conditions (4.3) we obtain a set of conditions for the 12 potentials on
the boundaries of both bodies:

1. On the surface S1

∂ϕ11

∂n1
= cos(n1, x1); ∂ϕ21

∂n1
= cos(n1, y1) = l2;

∂ϕ31

∂n1
= cos(n1, z1) = l3; ∂ϕ41

∂n1
= y1l3 − z1l2 = l4;

∂ϕ51

∂n1
= z1l1 − x1l3 = l5; ∂ϕ61

∂n1
= x1l2 − y1l1 = l6; ∂ϕi2

∂n1
= 0. (4.7)

2. On the surface S2:

∂ϕ12

∂n2
= cos(n2, x2) = m1; ∂ϕ22

∂n2
= cos(n2, y2) = m2;

∂ϕ32

∂n2
= cos(n2, z2) = m3; ∂ϕ42

∂n2
= y2m3 − z2m2 = m4;

∂ϕ52

∂n21
= z2m1 − x2m3 = m5; ∂ϕ62

∂n2
= x2m2 − y2m1 = m6; ∂ϕi1

∂n2
= 0.

(4.8)
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From these boundary conditions we observe that each of the elementary potentials
ϕin corresponds to the motion of the nth body with ith unit velocity under assump-
tion that the second body remains at rest.

As well as in the case of an isolated body in an infinite fluid the total kinetic
energy of the fluid enclosed between the surfaces of the bodies and the sphere of
large radius equals (in the limit when the radius of the sphere tends to infinity)

T = −ρ

2

∫

S1

Φ
∂Φ

∂n1
dS − ρ

2

∫

S2

Φ
∂Φ

∂n2
dS. (4.9)

Substituting the linear decomposition of the potential (4.5) in this expression and
taking into account the boundary conditions (4.8) and (4.9) for the unit potentials,
one can obtain an expression for the kinetic energy of the fluid, which contains 144
terms.

Using the formulas for the added masses in terms of the elementary potentials,
the expression (4.9) can be written in the form [94, 95]

2T =
6

∑

i=1

6
∑

j=1

vi1vj1Aij +
6

∑

i=1

6
∑

j=1

vi2vj2Dij +
6

∑

i=1

6
∑

j=1

vi1vj2Bij

+
6

∑

i=1

6
∑

j=1

vi1vj2Cij .

(4.10)

The added masses entering (4.10) are contained in four 6 × 6 matrices Aij , Bij ,
Cij and Dij given by

Aij = −ρ

∫ ∫

S1

ϕi1
∂ϕj1

∂n
dS, Dij = −ρ

∫ ∫

S2

ϕi2
∂ϕj2

∂n
dS,

Bij = −ρ

∫ ∫

S1

ϕi2
∂ϕj1

∂n
dS, Cij = −ρ

∫ ∫

S2

ϕi1
∂ϕj2

∂n
dS. (4.11)

The matrices Aij and Dij are the matrices of added masses of the first and second
bodies, respectively. However, these matrices are obtained taking into account the
mutual hydrodynamic influence of the bodies; therefore, they are different from the
added masses of the corresponding single body in an infinite fluid. The matrices
Bij and Cij contain new added masses, which can be called the added masses of
interaction. Since Bij are expressed via integrals over the surface of the first body,
they are called the added masses of interaction of the first body; Cij are called the
added masses of interaction of the second body.

We stress again, that all these added masses essentially depend on mutual posi-
tions of the bodies, and, therefore, change in the process of motion.

The total number of added masses which determine the kinetic energy of the fluid
under independent motion of two bodies equals 144 (four matrices, each of which
contains 36 entries). However, the number of independent added masses is much
smaller. One can show, for example, that Bij = Cij [94–96]. Taking into account
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this property the formula (4.10) for kinetic energy can be rewritten as follows:

2T =
6

∑

i=1

6
∑

j=1

vi1vj1Aij +
6

∑

i=1

6
∑

j=1

vi2vj2Dij + 2
6

∑

i=1

6
∑

j=1

vi1vj2Bij .

Therefore, each body has 21 added masses (similarly to the case of motion of an
isolated body in an infinite fluid); in addition there are 36 added masses of interac-
tion. The total number of independent added masses is therefore equal to 78.

Consider now the case of interaction of two bodies one of which is moving and
another is staying at rest. According to our terminology, such interaction is consid-
ered as non-stationary. There are the following modifications in formulation of the
problem of fluid motion in that case in comparison with the motion of two bodies:

First, the boundary conditions (4.3) on the boundary of the second (immovable)
body transform as follows (while the boundary conditions on the surface of the first
body remain the same):

∂Φ

∂n

∣
∣
∣
∣
S1

= �V1 · �n,
∂Φ

∂n

∣
∣
∣
∣
S2

= 0.

Second, now the system of two bodies possesses only six degrees of freedom (in-
stead of 12 in the case when both bodies move). The potential of fluid flow can be
represented as the sum of only six terms: ϕ = ∑6

i=1 vi1 · ϕi1. Boundary conditions
for the elementary potentials ϕi1 on the surfaces of moving body (S1) and immov-
able body (S2) differ from (4.7) and (4.8). Namely, in these formulas the boundary
conditions for the elementary potentials of the second body (ϕi2) are absent, since
these potentials equal zero. On the surface of the immovable body one has to im-
pose boundary conditions for the elementary potentials of the first (moving) body:
∂ϕi1/∂n|S2 = 0. It follows from (4.11) that under these conditions the added masses
of the second body Dij , as well as all added masses of interaction (Bij and Cij )
of both bodies, vanish. Therefore, we conclude that under interaction of a moving
body with an immovable one there exist only added masses of the moving body,
which are variable functions of coordinates determining its position with respect to
the immovable body.

The absence of the added masses of the second body, as well as of the added
masses of interaction is explained by the fact that the body can create some kinetic
energy of the fluid flow only if it is moving. If it is immovable, its boundaries can
only influence the flow created by the motion of the other body (and, therefore,
on its added masses). Mathematically this influence is expressed in the form of an
additional water-tightness condition on the surface of the immovable body, which
leads to the change of added masses of the moving body.

4.1.2 Motion of Two Spheres in an Infinite Fluid

The main features of the flow caused by the motion of two bodies in a fluid can
be observed in the case of motion of two spheres [117, 133, 181]. Let two spheres
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Fig. 4.2 Scheme of motion
of two spheres along the line
connecting their centers

with radii a and b move along the line connecting their centers with velocities u

and u1. The distance between the centers of the spheres is denoted by c. For an
arbitrary point P of the fluid we have (Fig. 4.2): AP = r , BP = r1, ∠PAB = θ ,
∠PBA = θ1. The potential of velocities can be represented in the form uϕ + u1ϕ1
where the functions ϕ and ϕ1 satisfy the following conditions:

1. �ϕ = 0; �ϕ1 = 0.
2. At infinity all coordinate derivatives of functions ϕ and ϕ1 vanish.
3. On the surface of the sphere A we have ∂ϕ/∂r = − cos θ , ∂ϕ1/∂r = 0; on the

surface of the sphere B we have ∂ϕ/∂r1 = 0, ∂ϕ1/∂r1 = − cos θ1.

We see that the function ϕ is the potential of the velocity in the case when the
sphere A moves with unit velocity towards the sphere B which stays at rest. The
function ϕ1 has a similar meaning: this is the potential of fluid corresponding to
the situation when the sphere A stays at rest while the sphere B moves towards the
sphere A with unit velocity. Complexity of this problem is due to necessity to satisfy
the water-tightness condition simultaneously on the surfaces of both spheres. The
method of successive approximation allows us to find the functions ϕ, ϕ1 and get an
expression for kinetic energy of the fluid:

2T = Lu2 + 2Muu1 + Nu2
1, (4.12)

where

L = 2

3
ρπa3

[

1 + 3
a3b3

c3f 3
1

+ 3
a6b6

c3f 3
1 (c − f2)3f 3

2

+ · · ·
]

;

M = 2πρ
a3b3

c3

[

1 + a3b3

f 3
10(c − f20)3

+ a6b6

f 3
10f

3
30(c − f20)3(c − f40)3

+ · · ·
]

;

N = 2

3
πρb3

[

1 + 3
a3b3

c3f 3
10

+ 3
a6b6

c3f 3
10(c − f20)3f 3

20

+ · · ·
]

;

f1 = c − b2

c
; f2 = a2c

c2 − b2
; f10 = c − a2

c
; f20 = b2c

c2 − a2
;

f30 = c − a2

c − f20
; f40 = b2

f 30
.
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The formula (4.12) is analogous to the formula for kinetic energy of a body with
two degrees of freedom moving in a fluid; for example, this body can move only
along axes Ox and Oy in the coordinate system attached to the body.

If the sphere B stays at rest (u1 = 0), then the added mass of the sphere A equals
λ11 = L, which follows from expression (4.12). If the ratios a/c and b/c are small,
then one can derive approximate expressions for L, M and N :

L = 2

3
πρa3

(

1 + 3a3b3

c6

)

; M = 2πρ
a3b3

c3
; N = 2

3
πρb3

(

1 + a3b3

c6

)

.

If the spheres move orthogonally to the line connecting their centers with veloc-
ities v and v1, then in the formula for kinetic energy of the fluid

2T = Pv2 + 2Qvv1 + Rv2
1

coefficients can be found approximately under assumption that the ratios a/c and
b/c are small [133]:

P = 2

3
πρa3

(

1 + 3

4

a3b3

c6

)

; Q = πρ
a3b3

c3
;

R = 2

3
πρb3

(

1 + 3

4

a3b3

c6

)

.

Added masses of two interacting bodies were also studied in [36].

4.2 Added Masses of Bodies Moving Close to a Solid Boundary

4.2.1 Sphere Moving Close to a Flat Wall

By substituting into the formulas derived in the previous section a = b, c = 2h,
where h is the distance to a flat solid wall, we find in the case when the sphere
moves orthogonally to the wall:

λ22 = 2

3
πρa3

(

1 + 3

8

a3

h3
+ · · ·

)

. (4.13)

When the motion is parallel to the wall:

λ11 = 2

3
πρa3

(

1 + 3

16

a3

h3
+ · · ·

)

. (4.14)

We assume that the x axis is parallel to the wall, and the y axis is orthogonal to
the wall. If in the computations one keeps the terms up to the order (a/h)12, one
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gets the following more precise version of the formulas (4.13), (4.14) [193]:

λ22 = 2

3
πρa3

(

1 + 3

8
δ3 + 3

26
δ6 + 9

28
δ8 + 3

29
δ9

+ 9

29
δ10 + 9

210
δ11 + 33

212
δ12 + · · ·

)

;

λ11 = 2

3
πρa3

(

1 + 3

16
δ3 + 3

28
δ6 + 3

28
δ8 + 3

212
δ9

+ 27

212
δ10 + 3

211
δ11 + 195

216
δ12 + · · ·

)

,

where δ = a/h.

4.2.2 Circular Cylinder Moving Near a Flat Wall

When an infinite cylinder of radius a moves hear a flat solid wall situated at a
distance h from its axis, its added masses are determined by the following for-
mula [193]:

λ11 = λ22 = πρa2
(

1 + 1

2
δ2 + 1

23
δ4 + 3

25
δ6 + 1

24
δ8 + 23

29
δ10 + 71

211
δ12 + · · ·

)

.

The x-axis is parallel to the wall; the y-axis is orthogonal to the wall, the z-axis
coincides with the axis of the cylinder, δ = a/h.

If a circular cylinder touches the wall (δ = 1), then its added mass λ11 looks as
follows [77]:

λ11 = πρa2
(

π2

3
− 1

)

= 2.29πρa2.

Consider an infinite circular cylinder of radius a situated in the central plane of
a channel of infinite depth bounded by two vertical walls; the distance between the
walls of the channel is denoted by h. The added mass of the cylinder along axis x

(which is chosen to be parallel to the walls) is given by the formula [36]:

λ11 = πρa2
[

1 + 2

3

(
πa

h

)2

+ · · ·
]

.

The added mass of a plate of width b under the same conditions of motion (the plane
of the plate is orthogonal to the boundaries of the channel) is given by [36]:

λ11 = πρb2

4

(

1 + π2b2

24h2
+ · · ·

)

.
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If an infinite circular cylinder of radius a is situated in the center of an infinite
cylinder of square section with side s, then its added mass in the direction orthogonal
to the axis of the cylinder and one of the walls is given by the formula [36]:

λ11 = πρa2
(

1 + 6.88
a2

s2
+ · · ·

)

under condition a/s � 1.

4.2.3 Elliptic Cylinder Moving Near a Flat Wall

Consider an elliptic cylinder moving near a flat solid wall such that the larger axis
of its cross-section is parallel to the wall and coincides with the x-axis. The smaller
axis (coinciding with the y-axis) is orthogonal to the wall. Then the added masses
(per unit of length of the cylinder) are given by the formulas [194]:

λ11 = ρπab
2 − (1 − e2)1/2 − (1 − η−2)1/2

(1 − e2)−1/2 − 2 + (1 − η−2)1/2
:= k11ρπab;

λ22 = ρπab
(1 − e2)−1/2 − (1 − η−2)1/2

(1 − η−2)1/2 − (1 − e2)1/2
:= k22ρπab;

λ66 = πρab(a2 + b2)e2

8(2 − e2)

(1 − e2)−1/2[1 − (1 − e2)1/2]2 + 2[1 − (1 − η−2)1/2]2

e−2[1 − (1 − e2)1/2]2 − [1 − (1 − η−2)1/2]2

:= k66
1

4
ρπab

(

a2 + b2),

(4.15)
where e2 = 1 − (b/a)2; η = [1 + 4h2/(a2 − b2)]1/2; a is the large semi-axis of the
ellipse, b—small semi-axis; h is the distance between the large semi-axis of the
ellipse and the wall. We consider ratios of these added masses to added masses of
elliptic cylinder in infinite volume to get coefficients k11, k22 and k66 per unit of
length.

In Figs. 4.3, 4.4 we show the graphs of functions k11(a/b, b/h); k22(a/b, b/h)

and k66(a/b, b/h).

4.2.4 Elliptic Cylinder Moving Between Two Flat Walls in the
Direction Parallel to the Walls

The problem of such motion was considered in the paper [70, 234]. An approximate
solution was used obtained under an assumption that the motion of the cylinder can
be substituted by the motion of three cylinders (the original cylinder and two of
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Fig. 4.3 Coefficients of added masses of an elliptic cylinder moving near a flat solid wall
(k11 := λ11/πρab, k22 := λ22/πρab)

Fig. 4.4 Coefficients of
added masses of elliptic
cylinder moving near a flat
solid wall
(k66 = λ66/{πρab(a2 + b2)})

its mirror images) in infinite fluid (the exact solution would require analyzing an
infinite lattice of such cylinders). Results of computation of the added mass

k11 = λ11

πρab
= f

(
b

a
,
b

h

)

,

where h is a half of the distance between walls, are shown in Fig. 4.5.
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Fig. 4.5 Coefficient of added
mass of an elliptic cylinder
moving between two parallel
walls in the direction parallel
to the walls

4.2.5 Motion of Parallelepipeds in Infinite Fluid and Between Flat
Walls

The added mass λ11 of parallelepipeds was determined experimentally [233] by the
method of small oscillations (see Chap. 9). It was considered only the motion along
the x-axis which is parallel to the flat walls. The y-axis was also parallel to the
walls, so the added mass λ22 can be obtained by a simple substitution. The sizes of
the parallelepiped along x, y and z axes are denoted by B , L and 2T . In Fig. 4.6
we show the graph of the function

k11 = λ11

2ρ(BT )3/2
= f1

(
B

L
,
L

T

)

for the case of motion in infinite fluid. The influence of hard walls situated at the
distance z = ±H from the xOy-plane is shown in Fig. 4.7 in the form of ratio

k11∞
k11H

= f2

(
B

L
,

T

H

)

.
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Fig. 4.6 Coefficient of added mass of a parallelepiped moving in an infinite fluid

4.2.6 Ellipsoid of Revolution Moving Near a Flat Wall

Consider an ellipsoid of revolution moving near a solid flat wall such that its sym-
metry axis (coinciding with the x-axis) remains parallel to the wall; the y-axis is
chosen to be orthogonal to the wall. Then the added masses are expressed by the
formulas [193]:

λ11 = k11
4π

3
ρab2; λ22 = k22

4π

3
ρab2;

λ33 = k33
4π

3
ρab2; λ55 = k55

4π

15
ρ
(

a2 + b2)ab2.

In these formulas a is the semi-axis of the ellipsoid corresponding to its symme-
try axis, b is another semi-axis; coefficients k11, k22, k33, k55 are shown in Fig. 4.8,
Fig. 4.9 as functions of a/b and b/h, where h is the distance from the center of
the ellipsoid to the wall. The dashed lines in Fig. 4.8, Fig. 4.9 correspond to exact
formulas in the cases of a sphere and an infinite cylinder.

Added masses of the ellipsoid of revolution moving near a hard boundary were
also given by Farell [68] for 3 < a/b < 15.
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Fig. 4.7 Coefficient of added
mass of a parallelepiped
moving between two walls

Fig. 4.8 Coefficients of added masses of a cylinder of revolution moving near a flat solid wall
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Fig. 4.9 Coefficients of added masses of a cylinder of revolution moving near a flat solid wall

4.2.7 Three-Axial Ellipsoid Moving Near a Flat Wall

In first approximation the added masses of a three-axial ellipsoid moving near a flat
hard wall can be computed via a method proposed by Bloch and Ginevsky [30]. Let
us briefly outline this method for the case of motion of two bodies in an ideal fluid
which does not move at infinity. The potential of velocities Φ of the fluid motion
can be represented in the form

Φ = Φ1 + Φ2,

where Φ1 is the potential of velocities corresponding to the motion of the first body
in the presence of the second body, which stays at rest; Φ2 is the potential of ve-
locities corresponding to the motion of the second body in the presence of the first
body, assuming that the first body stays at rest.

Obviously, the potential Φ1 differs from the potential Φ0
1 which corresponds to

the motion of the first body in an infinite fluid, when the second body is absent;
this difference is due to the water-tightness boundary condition on the surface of the
second body when it is present. If the distance between two bodies is large enough
in comparison with their sizes, then in the formula

Φ0
1 = Φ1 + δΦ1 (4.16)

the first-order correction δΦ1 can be found as follows. First compute the velocity
δu1 caused by the motion of the first body at the position of the second one. Assume
that the second body moves with this velocity. Then the second term in the right-
hand side of (4.4) will be written in the form ϕ2δu1, where ϕ2 is the potential arising
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in the fluid under the motion of the second body with unit speed in the direction of
velocity δu1 in the presence of the first body. Then we come to the equation

Φ0
1 = Φ1 + ϕ2δu1. (4.17)

Analogously for the second body we find

Φ0
2 = Φ2 + ϕ1δu2. (4.18)

The unknowns in Eqs. (4.17), (4.18) are ϕ1, ϕ2, Φ1, Φ2; the potentials ϕ1 and Φ1 are
also related to each other (as well as ϕ2 and Φ2), since they are entirely determined
by the motion of the first (respectively second) body. From the system (4.17), (4.18)
we can express either Φ1,2 or ϕ1,2.

If, for example, the body moves with linear velocity u0 along a hard flat wall
then, considering the mirror image of the body, we get that δu1 = δu2 = δu is the
velocity induced by the body at the location of its mirror image,

Φ1 = u0ϕ1, Φ0
1 = u0ϕ

0
1 , Φ2 = u0ϕ2, Φ0

2 = u0ϕ
0
2 .

The system of Eqs. (4.17), (4.18) then takes the form

ϕ0
1 = ϕ1 + ϕ2δū,

ϕ0
2 = ϕ2 + ϕ1δū,

where δū ≡ δu/u0.
Solutions of this system can be written in the form

ϕ1 = ϕ0
1 − ϕ0

2δū

1 − (δū)2
, ϕ2 = ϕ0

2 − ϕ0
1δū

1 − (δū)2

and allows us to find the required potential

ϕ ≡ Φ

u0
= ϕ1 + ϕ2 = ϕ0

1 + ϕ0
2

1 + δū
.

The formula for the elementary potential has the same form for the case when the
body moves orthogonally to the wall. Potentials ϕ0

1 and ϕ0
2 correspond to the motion

of isolated bodies in an unlimited fluid. If the body moves near a free surface of the
fluid then (imposing on the free surface the boundary condition ϕ = 0) the formula
for the total potential takes the form ϕ = (ϕ0

1 − ϕ0
2)/(1 − δū).2 In Fig. 4.10 we

show dependence of the coefficient of the added mass k11 = λ11/[(4/3)πρab] of
the three-axial ellipsoid with half-axes a > b > c, on c/b [30]. The positions of the
axes are chosen as follows: the largest axis, coinciding with coordinate axis Ox, is
parallel to the wall, while the smallest axis is either orthogonal to the wall (left half
of the figure), or parallel to the wall (right half of the figure). The ratio of half-axes
a/b in this example equals 5.

2More detailed description of this approximate method is contained in the work [30] and in the
monograph [117].
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Fig. 4.10 Coefficient k11 of added mass of a three-axis ellipsoid moving near a flat solid wall

The problem of motion of a three-axial ellipsoid near the wall was considered
in [52, 75, 188, 236]. The influence of the wall was substituted by the influence of
the mirror image of the ellipsoid. The axes Ox and Oy were assumed to be parallel
to the wall, the Oz axis—orthogonal to the wall. The half-axes were assumed to
satisfy the condition a > b > c. The distance from the xOy plane of the ellipsoid to
the wall was denoted by h. Motion along the Ox and Oy axes was considered. The
results of computation of the added masses

k11 = λ11

(4/3)πρabc
= f1

(
c

a
,
c

h

)

;

k22 = λ22

(4/3)πρabc
= f2

(
c

a
,
c

h

)

are shown in Figs. 4.11–4.15 for fixed values of he ratio b/a.

4.2.8 System of Oblate Ellipsoids of Revolution

For computations of added masses of chains and lattices of prolate ellipsoids of
revolution one can use the method of Bloch and Ginevsky [82]. The small semi-
axis of the ellipsoid is denoted by c, the large is denoted by a; the dimensionless
parameter is ā = a/c. In the case of the infinite chain of the ellipsoids posed at a
distance of 2H from one another along the z-axis (Fig. 4.16), the coefficient k11 =
λ11/[(4/3)πρa2c] of each of the ellipsoids (with small axis directed along the x-
axis) depends on parameters ā and H̄ = H/a. Graphs of this dependence are shown
in Fig. 4.16a; the curve ā = 1 corresponds to the chain of spheres.
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Fig. 4.11 Coefficients of added masses of a three-axial ellipsoid moving near a solid flat wall

Fig. 4.12 Coefficients of added masses of a three-axial ellipsoid moving near a solid flat wall

For the square lattice of the ellipsoids, when their centers are posed in the vortices
of square lattice with side 2H in the yOz-plane, and small axes are parallel to the
x-axis, the functions k11(ā, H̄ ) computed using the formula presented above, are
shown in Fig. 4.16b. Dots in Fig. 4.16b correspond to experimental data obtained
by the authors of [82].
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Fig. 4.13 Coefficients of added masses of three-axial ellipsoid moving near a solid flat wall

Fig. 4.14 Coefficients of added masses of three-axial ellipsoid moving near a solid flat wall

4.2.9 Infinite Chain of Three-Axial Ellipsoids

In the problem of motion of a three-axial ellipsoid in a flat channel between two
walls, the influence of the walls is modeled by an infinite chain of the ellipsoids
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Fig. 4.15 Coefficients of added masses of a three-axial ellipsoid moving near a flat solid wall

Fig. 4.16 Coefficient of added mass of an oblate ellipsoid of revolution, considered an element of
an infinite chain (a) and an infinite lattice (b)

posed such that the distance between their centers equals the distance between the
walls of the channel. The plane xOy of the ellipsoids is parallel to the walls of
the channel; the z-axis is orthogonal to the walls. The half-axes of the ellipsoid are
a > b > c. Coefficients of added masses of each ellipsoid in such a chain

k11 = λ11

(4/3)πρabc
= f1

(
c

h
,
c

a

)

,
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k22 = λ22

(4/3)πρabc
= f1

(
c

h
,
c

a

)

,

computed by the method of Bloch and Ginevsky [236], are shown in Figs. 4.17 and
4.18 for different values of b/a. Here 2h is the distance between centers of two
neighbor ellipsoids.

4.2.10 Sphere in Various Systems (Chains, Lattices)

In [48] by the method of electro-hydrodynamic analogy (EHDA, see Chap. 9) the
added masses of spheres posed in an infinite chain along the x-axis (curve 1 in
Fig. 4.19), in a chain along the y-axis (curve 2), in a flat square 2D lattice in the
yz-plane (curve 3) and in a 3D cubic lattice (curve 4) were obtained. The radius
of the sphere is denoted by R; the distance between centers of close neighbors is h.
The considered coefficient of added mass is k11 = λ11/[(4/3)πρR3]. Notice smaller
values of the coefficient k11 in the case of a horizontal chain in comparison with the
same coefficient for an isolated sphere (k110 = 0.5).

The added masses of spheres posed in various chains and lattices are computed
in [213].

4.2.11 Ellipsoid of Revolution Moving in the Bisecting Plane of a
Dihedral Angle

To find the potential of the flow one uses the method of Bloch–Ginevsky by substi-
tuting the influence of the walls by a system of mirror ellipsoids [85]. The coordi-
nate system is shown in Fig. 4.20. Added masses were computed for the ellipsoid of
revolution with ratio of the axes b/a = 0.208. Results of the computations for the
functions

k11 = λ11

(4/3)πρab2
= f1

(
b

H
, θ

)

;

k22 = λ22

(4/3)πρab2
= f2

(
b

H
, θ

)

are shown in Fig. 4.20. The distance H from the center of the ellipsoid to the wall is
computed along the normal to bisecting plane; 2θ is the dihedral angle. Apart from
theoretical results for k11 and k22, there were also obtained experimental results
via the method of small oscillations. Experimental results for the same coefficients
k11e = f3(b/H, θ) and k22e = f4(b/H, θ) are shown in Fig. 4.21.
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Fig. 4.19 Coefficients of added masses of a single sphere in various configurations

Fig. 4.20 Theoretical results for added masses of an ellipsoid of revolution moving in the bisecting
plane of a dihedral angle
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Fig. 4.21 Experimental results for added masses of an ellipsoid of revolution moving in the bi-
secting plane of a dihedral angle

4.2.12 Influence of the Boundary and the Free Surface on Added
Masses of Foils

If a foil is moving near a hard boundary or near the free surface, then the added
masses depend on the distance of the body to the boundary or the free surface. In
the case of a hard wall the added masses increase when the foil approaches the wall.
In the case of an under-water foil moving near a free surface with relatively high
velocity (this allows us to assume that on the surface the velocity potential vanishes,
ϕ = 0), then its added mass decreases when the foil approaches the surface.

The coefficients k∗
22(h/B) = λ∗

22/λ22∞ and k∗∗
22 (h/B) = λ∗∗

22/λ22∞ shown in
Fig. 4.22 [18] determine the change of the added mass of the foil near the hard
wall (k∗

22) and near the free surface (k∗∗
22 ). Here λ22∞ is the added mass of the foil in

an infinite fluid; b is the chord of the foil; h is the distance of the foil trailing edge
from the wall or free surface. For small attack angles the added masses of the foil
near a hard wall or a free surface can be found using the data for elliptic cylinders
(see Sect. 4.2.3), depending on the relative width of the profile and the distance to
the boundary.
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Fig. 4.22 Coefficients of
added masses of a foil
moving near hard wall (k∗

22)
and free surface (k∗∗

22 )

4.3 Added Masses of Bodies Moving in an Enclosed Space Filled
with a Fluid

4.3.1 Motion of a Sphere in the Fluid Contained Within a
Spherical Concentric Shell

Motion of the fluid is determined by the Laplace equation �ϕ = 0 and the following
boundary conditions [133]:

• On the surface of the sphere of radius a: ∂ϕ/∂r = −U cos θ for r = a, where U

is the velocity of the sphere.
• On the surface of a spherical immovable shell of radius b (b > a): ∂ϕ/∂r = 0 for

r = b.

Considering the solution of the Laplace equation in the form

ϕ =
(

Ar + B

r2

)

cos θ,

we get from the boundary conditions:

A = a3

b3 − a3
U ; B = 1

2

a3b3

b3 − a3
U.

The result for an added mass is as follows:

λ11 = 2

3
πρ

b3 + 2a3

b3 − a3
a3.

We see that when b decreases from ∞ to a the added mass of the sphere increases
from its value in an unlimited fluid to ∞.
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4.3.2 Ellipsoid of Revolution Moving in a Fluid Within a Confocal
Elliptic Cavity

This problem [148] is a generalization of the problem considered before. Let the
space between two confocal spheroids with half-axes a1, b1, b1 and a2, b2, b2 be
filled with a fluid of density ρ. Then the added masses of an internal spheroid are
determined by the formulas

λ11 = k11
4π

3
ρa1b

2
1; λ22 = k22

4π

3
πρa1b

2
1;

λ66 = k66
4π

15
ρa1b

2
1

(

a2
1 + b2

1

)

.

The dependence of the coefficients k11, k22, k66 on b1/a1 and a1/a2 is shown in
Fig. 4.23; recall that for confocal spheroids we have a2

1 − b2
1 = a2

2 − b2
2.



Chapter 5
Added Masses of Bodies Moving Close to a Free
Surface

5.1 Boundary Conditions on a Free Surface

Description of motion of a body near a free surface of a fluid is significantly different
from description of body motion in an infinite fluid. The difference is due to the
presence of a boundary condition (constancy of pressure) on the free surface. Below
we consider typical ways of dealing with this boundary condition for various cases.

5.1.1 Boundary Conditions on a Free Surface at Impact of a
Floating Body

Consider a body floating in an immovable fluid. When the body suffers an impact
the fluid particles situated in a small neighborhood of the body surface gain finite ve-
locities vx , vy , vz during an infinitely small interval of time τ . Consider the Navier–
Stokes equations of motion of incompressible fluid

∂ �v
∂t

+ (�v∇)�v = − 1

ρ
∇p + �g + μ

ρ
Δ�v (5.1)

where �g is the vector of free fall acceleration with components gx gy and gz; μ is the
dynamical viscosity; Δ is the Laplacian. Let us integrate these equations between 0
and τ (for brevity we consider only the first equation):

vx +
∫ τ

0

(

vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vz

∂z

)

dt

=
∫ τ

0
gx dt − 1

ρ

∂

∂x

∫ τ

0
p dt + ν

∫ τ

0
Δvx dt, (5.2)

where we took into account that vx = vy = vz = 0 at t = 0.
Taking into account that velocities, their derivatives and forces gx , gy , gz remain

finite in the limit, we get from (5.2) in the limit τ → 0:

vx = − ∂

∂x

(
pt

ρ

)

(5.3)

A.I. Korotkin, Added Masses of Ship Structures,
© Springer Science + Business Media B.V. 2009
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and, analogously, from the remaining two equations of motion we get

vy = − ∂

∂y

(
pt

ρ

)

; (5.4)

vz = − ∂

∂z

(
pt

ρ

)

, (5.5)

where the variable pt = ∫ τ

0 p dt , called the pressure momentum, has finite value
as τ → 0. The formulas (5.3)–(5.5) imply the existence of potential ϕ such that
vx = ∂ϕ/∂x, vy = ∂ϕ/∂y, vz = ∂ϕ/∂z.

Due to (5.3)–(5.5) we get

ϕ = −pt

ρ
. (5.6)

Applying Eq. (5.6) to the free surface we get the boundary condition

ϕ = 0. (5.7)

Since on a free surface the pressure is always constant and to equal p0, and τ → 0,
we see that pt = 0.

5.1.2 Boundary Conditions on a Free Surface under Periodic
Oscillations of a Floating Body

Periodic oscillations of a body floating close to the free surface of a fluid cause
periodic wave motion. Denote the amplitude of the waves by r , the wavelength by λ

(the wave number is k0 = 2π/λ) and the circular frequency by σ . Consider the
Navier–Stokes equations (5.1). Introducing the following dimensionless variables
[100]:

t0 = σ t, x0 = k0x, y0 = k0y, z0 = k0z,

�u = �v
rσ

, q = p

ρgr
,

we can rewrite the Navier–Stokes equation in the dimensionless form:

∂ �u
∂t0

+ rk0(�u∇)�u = −gk0

σ 2
∇q + �g

rσ 2
+ νk2

0

σ
Δ�u, (5.8)

where g := |�g|, ν := μ/ρ.
Under the usual assumption r � λ, or rk0 � 1, the second term in the left-hand

side of Eq. (5.8) can be neglected, which leads to the linearized equation

∂ �v
∂t

= − 1

ρ
∇p + �g + νΔ�v. (5.9)
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The next essential assumption is related to neglecting the viscosity while consid-
ering the wave motion. As one can see from the right-hand side of (5.8), the viscosity
can be neglected if the coefficient in front of the last term is small: νk2

0/σ � 1.
According to Huskind’s estimate, for water νk2

0/σ ∼ 8.9 · 10−6λ−3/2, where the
wavelength λ is measured in meters. It is clear that viscosity can be essential only
for small wavelengths. Neglecting viscosity, we get from (5.9):

∂ �v
∂t

= − 1

ρ
∇p + �g, (5.10)

where the vector �v has components vx , vy and vz. From (5.10) follows the existence
of potential ϕ(x, y, z) such that �v = ∇ϕ.

Due to continuity the potential ϕ satisfies the Laplace equation Δϕ = 0 and con-
dition (5.10). Then in the coordinate system chosen such that the xOy plane coin-
cides with the undisturbed water surface and the z axis is directed upwards, we get
the integral

p − p0 = −ρ
∂ϕ

∂t
− ρgz, (5.11)

where p0 is the pressure over a free water surface.
On the free surface at z = ζ (where function ζ(x, y) determines the shape of the

free surface) we have p = p0 and Eq. (5.11) can be written as follows:

∂ϕ

∂t
+ gζ = 0. (5.12)

Differentiating expression (5.12) in time, taking into account the approximate
equality ∂ζ/∂t ∼ vz = ∂ϕ/∂z, we get

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0. (5.13)

Under the assumption of small amplitude of the waves, the condition (5.13) can
be imposed on the unperturbed surface at z = 0.

Oscillations of floating and immersed bodies, and also scattering of surface
waves on immovable bodies we considered in detail in the monograph [135].

Taking into account the surface tension force, one can get the following relation
by projecting the equilibrium condition of a surface element (Fig. 5.1) on the vertical
axis:

α(sin θ2 − sin θ1) + (p − p0) dx = 0,

where α is the force of surface tension.
Assuming the angles θ1 and θ2 to be small, we can write:

sin θ1 ∼ tan θ1 = ∂ζ

∂x

∣
∣
∣
∣
x=x1

, sin θ2 ∼ tan θ2 = ∂ζ

∂x

∣
∣
∣
∣
x=x2

,
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Fig. 5.1 Forces acting on an
element of the free surface

which allows us to rewrite the previous equality as

α
∂2ζ

∂x2
+ p − p0 = 0. (5.14)

Substituting in expression (5.14) the value p − p0 from (5.11) and following the
derivation of (5.13) from (5.11), we arrive at the following boundary condition on
the free surface, taking into account the surface tension force:

∂2ϕ

∂t2
+ g

∂ϕ

∂z
− α

ρ

∂3ϕ

∂z∂x2
= 0. (5.15)

It is possible to show (see [116]) that if the wavelength is significantly greater
than λ0 = 1.78 cm, then the surface tension can be neglected.

The function ϕ corresponding to waves on a free surface can be represented in
the form

ϕ = ϕ1(y, z) sin(σ t − k0x).

Then condition (5.13) on the free surface implies for the function ϕ1:

∂ϕ1

∂z
− σ 2

g
ϕ1 = 0. (5.16)

For flat waves condition (5.15) can be written as

∂ϕ1

∂z
− σ 2

g + αk2
0/ρ

ϕ1 = 0. (5.17)

Parameters σ and k0 are related to each other in each concrete problem. Their
relationship is determined by conditions (5.13), (5.15) and the Laplace equation
with appropriate boundary conditions. For the case of sinusoidal waves on deep
water, when

ϕ = Cek0z sin(σ t − k0x),

condition (5.17) gives σ 2 = k0(g + αk2
0/ρ) or, neglecting the surface tension, σ 2 =

k0g. Using these equations we can rewrite the boundary conditions (5.16), (5.17) in
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the form
∂ϕ1

∂z
− k0ϕ1 = 0. (5.18)

If k0 is small then boundary condition (5.18) takes the form

∂ϕ1

∂z

∣
∣
∣
∣
z=0

= 0. (5.19)

This condition is equivalent to assumption of water-tightness of the separation
surface.

If k0 is very large (short waves) the condition (5.18) takes the form (5.7). This
happens under vibration of a body submerged close to a free surface. Obviously,
when determining whether the waves should be considered short or long one should
compare the wavelength with a characteristic size of the body.

The limiting cases (5.7) or (5.19) of the boundary condition (5.13) or (5.16) can
be interpreted as the cases of ultra-light or ultra-heavy fluid, respectively [100]. In
the case of ultra-light fluid the acceleration of the fluid particles is essentially greater
than the acceleration of the free fall. In the case of ultra-heavy fluid the acceleration
of the fluid particles is essentially lower than the acceleration of the free fall.

Behavior of the added masses in the limits of low and high frequencies is dis-
cussed in the works [6, 7, 146, 209] and others.

5.1.3 Boundary Conditions on a Free Surface when the Method of
a Duplicated Model is Applied

In the limiting cases (k0 → 0, k0 → ∞) one often uses the method of a duplicated
model. If on the free surface one has the condition (5.7): ϕ(z = 0) = 0 (as k0 → ∞)
then the function ϕ(x, y, z) can be continued to the upper half-space assuming it
to be an odd function of coordinate z by insertion in the upper half-space of the
mirror image S1 of the surface S; then ϕ(x, y, z, t) = −ϕ(x, y,−z, t). Then we get
the following symmetry relations for velocities:

vx(x, y, z, t) = −vx(x, y,−z, t);
vy(x, y, z, t) = −vy(x, y,−z, t);
vz(x, y, z, t) = vz(x, y,−z, t). (5.20)

Expressions (5.20) show that if we consider the motion of the duplicated hull in
an infinite fluid only along the z-axis, then the flow around its lower part is the same
as the flow around the immersed part of the original single hull under boundary
condition ϕ|z=0 = 0. If one considers the motion along axes x or y, the upper part
of the duplicated contour should move in the opposite direction to the lower part.

Therefore, to calculate the added masses λ33, λ35, λ55 one can calculate first the
added masses of the duplicated hull and then divide them by 2.
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If on a free surface we have the boundary condition

∂ϕ

∂z

∣
∣
∣
∣
z=0

= 0

(see (5.19)) in the limit k0 → 0, one can continue function ϕ(x, y, z, t) to the upper
half-space as an even function:

ϕ(x, y, z, t) = ϕ(x, y,−z, t),

which implies for velocities:

vx(x, y, z, t) = vx(x, y,−z, t);
vy(x, y, z, t) = vy(x, y,−z, t);
vz(x, y, z, t) = −vz(x, y,−z, t). (5.21)

Formulas (5.21) show that the flow around the duplicated hull under the motion
along the x and y axes is the same as the flow around the single hull along the same
axis. However, the motion of the duplicated hull along the z-axis gives the same
picture as the motion of the single hull if two halfs of the duplicated hull move in
opposite directions. Therefore, the added masses λ11, λ22, λ26, λ66 of the hull can
be computed under the boundary condition (5.19) as halfs of corresponding added
masses of the duplicated hull moving in an infinite fluid.

Therefore, in computation of added masses of the hull one should consider the
following problems:

1. Computation of added masses of the duplicated hull moving in an infinite fluid
(in this way one can compute added masses). If the case of boundary condition
ϕ|z=0 = 0 (this boundary condition is considered in studies of hull vibration) in
this way we compute the added masses λ33, λ35, λ55. In the case of boundary
condition ∂ϕ/∂z|z=0 = 0 (this boundary condition corresponds to the motion of
a ship in ice) we get in this way the added masses λ11, λ22, λ26, λ66.

2. Computation of remaining added masses λ11, λ22, λ26, λ66 under the boundary
condition ϕ|z=0 = 0.

3. Computation of remaining added masses λ33, λ35, λ55 of the hull under the
boundary condition ∂ϕ/∂z|z=0 = 0.

4. Computation of added masses of the hull under general boundary condition
(5.16), which corresponds to the roll of the ship on a perturbed water surface.

There exist two simplified models of the hull: the model of thin hull and the
model of long hull. Denote the length of the hull by L, the width by B and the
draft by T . The model of thin hull is applicable when B/L � T/B and T/B is of
the order of 1. The model of elongated hull is applicable if B/L and T/L are both
small and have the same order of magnitude.

Below we use both of these models for computation of added masses of hull.
In computation of added masses of a hull the method of planar sections is com-

monly used (see Sect. 3.5). Therefore we present below results of computation of
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added masses of shipframes obtained under various boundary conditions. We also
present some data on added masses of simple bodies moving under the free surface
or crossing the free surface.

5.2 Added Masses of Vertical Cylindrical Obstacles

A systematic description of the interaction of an ideal incompressible fluid with
cylindrical obstacles in case of presence of the free surface is contained in the mono-
graph by M.D. Huskind [100].

Consider surface waves with a linear wavefront in the presence of an immovable
vertical cylinder crossing the free surface (Fig. 5.2). The shape of the wave is
given by expression

A sin(σ t + k0x), (5.22)

where A is the amplitude of waves, σ is the time frequency, t is time; k0 = 2π/λ

is the space frequency related to the wavelength λ; x is the coordinate chosen in the
direction of wave propagation.

If the radius of the cylinder a is small in comparison with the wavelength (i.e.,
a/λ � 1) then one can consider a flat flow around each cross-section of the cylinder
with velocity which is given by the formula u(z, t) = u∗(z) sinσ t . The amplitude
u∗(z) depends on the immersion depth of the section (Fig. 5.2). The hydrodynamic
forces arising due to non-stationary character of the flow are determined in each
section by the ordinary added mass λ11 = ρπa2 and the corresponding local accel-
eration of the flow.

Consider now the case λ ∼ a. In that case we can not consider the incoming
flow to be homogeneous in space (along the x-coordinate). The influence of the
non-homogeneity of the flow is characterized by the parameter k0a = 2πa/λ. De-
pendence of the added mass of the circular cylinder on this parameter is shown in
Fig. 5.3, where the vertical axis corresponds to the variable [λ11(k0a)]/[λ11(k0a =
0)], where λ11(k0a = 0) = πρa2 (curve 1). In the same figure we show the curve
corresponding to the vertical flat plate of width 2a posed orthogonally to the direc-
tion of incoming waves (curve 2).

Fig. 5.2 Vertical cylinder
crossing the free surface of
fluid
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Fig. 5.3 Coefficients of
added masses of the circular
cylinder (curve 1) and vertical
plate (curve 2) crossing the
free surface of a fluid

5.3 Added Masses of Shipframes when a Ship is Oscillating on a
Free Surface

Hydrodynamic forces acting on a ship rolling on a free surface under the influence
of incoming waves can be determined under the following simplifying assumptions
[100]. Relative wave amplitudes are assumed to be small, which allows us to use
the linear wave theory. Oscillations of the hull are also assumed small. The fluid is
assumed to be ideal. The velocity potential is represented in the form

ϕ(x, y, z, t) = ϕ1(x, y, z) + ϕ2(x, y, z, t) + ϕ3(x, y, z, t) + ϕ4(x, y, z, t),

where ϕ1 is the potential corresponding to stationary movement of the ship with
constant linear and angular velocities on a still free surface; ϕ2 is the potential of the
incoming system of waves; ϕ3 is the diffraction potential characterizing the wave
motion arising as a result of interaction of the incoming system of waves with the
ship, considered as an immovable obstacle; ϕ4 is the potential corresponding to
forced oscillation of the ship on a still surface.

The problem of a body moving linearly with constant velocity in the presence of
periodic wave motion was discussed in [156] in the linear approximation. In con-
trast to rolling in absence of linear velocity, here the matrix of added masses is not
symmetric; it depends not only on characteristics of the body and wave frequency,
but also on velocity. This problem is usually considered in the coordinate system
attached to the body. The most well-studied case is the circular cylinder completely
immersed under free surface of an infinitely deep fluid [89, 111, 123, 208, 248, 252].
In [248] the values of λ11, λ33 and λ13 are given as functions of the frequency of
oscillations of the cylinder for h = 2a, U/

√
ga = 0.4, where a is the radius of the
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cylinder, h is the distance of the cylinder’s axis to the free surface, U is the velocity
of incoming flow. Added masses for a circular cylinder immersed in a fluid of finite
depth are determined in [247]; for an elliptic cylinder whose large semi-axis is par-
allel to the unperturbed water surface and a/b = 4 the added masses were found in
[112].

The added masses for a completely immersed sphere in the presence of homo-
geneous flow were determined in [253] (for the case of infinite depth) and in [249]
(for the case of finite depth). The added masses of an ellipsoid of revolution with
a/b = 5 completely submerged under the surface of an infinitely deep fluid are given
in [106].

The influence of small linear velocities on added masses of a (completely or
partially submerged) circular cylinder for an infinitely deep fluid was studied in
[255]; for the case of a floating rectangular pontoon—in [164].

In computation of added masses of a rolling ship, the influence of its stationary
linear motion is typically neglected; only the apparent frequency of incoming waves
is taken into account.

On the surface of the ship one imposes water-tightness boundary conditions; on
the free surface of the fluid one imposes a condition of constancy of pressure. If the
fluid has infinite depth, one assumes that the velocity vector vanishes as z → −∞.
If the fluid has finite depth, one imposes the water-tightness condition at the bottom.
Besides, for potentials ϕ3 and ϕ4 one imposes the so-called radiation condition at
infinity [100]. The physical meaning of the radiation condition for example, for
the case of the diffraction potential ϕ3, is that the system of incoming waves gets
partially reflected by the hull, and partially goes through.

In the general case, assuming that all these conditions are fulfilled, the hydro-
dynamic forces X1, X2, X3 and moments X4, X5, X6 acting on a rolling ship (on
regular periodic waves) can be written in the form [100]:

Xm = −
6

∑

s=1

(

λms

dvs

dt
+ νmsvs

)

, m = 1,2, . . . ,6, (5.23)

where λms are generalized added masses of the ship, which depend not only on the
shape of the hull, but also on frequency of waves; νms are coefficients of damping
forces; appearance of these coefficients is related to the fact that under the roll of a
ship part of the energy is spent to wave generation.

Notice that in the right-hand side of (5.23) the terms containing pairwise products
of velocities with coefficients given by added masses λms , m,s = 1,2, . . . ,6, are
absent. This is related to linearity of the formulation of this problem. If one needs to
take the non-linear terms into account one can use general formulas (1.22)–(1.27),
where λms have to be defined taking into account the presence of free surface.

For real ships, computation of added masses is carried out by the method of
plane sections (see Sect. 3.3); to use this method one should know the added masses
of each shipframe. Added masses of shipframes on waved water surface are com-
puted in [196, 197]. The shape of shipframe was chosen to coincide with a Lewis
shipframe keeping three terms in the corresponding Taylor expansion (see Chap. 2).



140 5 Added Masses of Bodies Moving Close to a Free Surface

In Figs. 5.4–5.17 and in Table 5.1 we show dependence of dimensionless added
masses λ22, λ33, λ24, λ44 of different shipframes on dimensionless wave number
Bk0/2 = Bπ/λ, where B is the width of the shipframe, λ is the wavelength. Results
were given for different values of shipframe coefficient β and half of the ratio of the
shipframe width to the draft: B/2T . We notice that the value Bπ/λ shown along
the horizontal axis can be represented in the form Bπ/λ = Bσ 2/2g, where σ is the
time frequency; to get this formula one should take into account that for small waves
described by Eq. (5.22) we have σ 2 = k0g, k0 = 2π/λ.

Similar computations of coefficients of added masses of shipframes under roll
were carried out in works by Tasai (some results of these computations are given in
[26, 200]).

Detailed tables of added masses λ22, λ33, λ24, λ44 of a Lewis shipframe are pre-
sented in [182]. These results essentially coincide with results of [196, 197]. To take
into account not only the influence of shipframe coefficient, but more subtle char-
acteristics of shipframe shape on the added mass λ33, one can use results of Porter
[32].

If a planar contour floating (vertically) on a one-dimensional free surface of a
two-dimensional fluid oscillates in vertical direction under finite depth of fluid H ,
then following Havelock [97] one can write

λ33H = λ33H=∞k

(
H

T

)

where T is the draft of the contour; λ33H=∞ is the added mass of the contour at
infinite depth.

Graphs of function k(H/T ) are shown in Fig. 5.18. The curve 1 was obtained in
[97]; the curve 2 was obtained in [9]; two points correspond to the circular cylinder
[90]. The analytic form of these curves looks as follows:

k

(
H

T

)

= 1 + 1

2

(
H

T

)2

, (curve 1),

k

(
H

T

)

= 1 + 8(H/T )2 + 8(H/T )4

8(H/T )4 − 1
, (curve 2).

Under a rolling motion in shallow water the added moment of inertia can be
written as

λ44H = λ44H=∞k1

(
H

T

)

.

The coefficient k1(H/T ) was determined in [31] experimentally to have the form

k1

(
H

T

)

= 1 + 0.2

(
T

H

)2

+ 0.1

(
T

H

)3

.

Experiments show that the influence of the bottom is negligible for H ≥ 4T . The
influence of the bottom on added masses of shipframes (the Lewis class, discussed
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Fig. 5.4 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.5 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.6 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.7 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.8 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.9 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.10 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.11 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.12 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.13 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.14 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.15 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.16 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ
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Fig. 5.17 Coefficients of added masses of shipframes depending on dimensionless frequency of
oscillations σ 2B/2g = Bπ/λ



5.3 Added Masses of Shipframes when a Ship is Oscillating on a Free Surface 155

Table 5.1 Values of coefficients of added masses λ44 and λ24

β B
2T

Bπ
λ

= σ 2B
2g

0.06 0.15 0.30 0.45 0.60 0.60 1.20 1.60 2.00

16λ44
ρπB4 0.6 2.0 0.138 0.078 0.065 0.078 0.067 0.048 0.011 −0.020 −0.045

3.0 0.167 0.095 0.102 0.096 0.086 0.070 0.046 0.010 0

4.0 0.185 0.108 0.106 0.102 0.093 0.078 0.048 0.025 0.012

6.0 0.194 0.114 0.109 0.104 0.097 0.085 0.059 0.040 0.031

0.785 2.0 0.103 0.061 0.062 0.056 0.047 0.033 0.011 0 0.003

3.0 0.145 0.081 0.087 0.082 0.073 0.033 0.018 0.018 0.014

4.0 0.152 0.090 0.096 0.091 0.083 0.070 0.045 0.030 0.025

6.0 0.177 0.133 0.102 0.098 0.091 0.079 0.056 0.042 0.038

1.0 2.0 0.038 0.059 0.062 0.063 0.063 0.065 0.074 0.085 0.093

3.0 0.116 0.075 0.077 0.074 0.070 0.063 0.055 0.057 0.065

4.0 0.131 0.081 0.086 0.083 0.077 0.068 0.054 0.050 0.055

6.0 0.147 0.089 0.095 0.092 0.086 0.075 0.058 0.049 0.049

8λ24
ρπB3 0.6 2.0 −0.084 −0.095 −0.101 −0.102 −0.099 −0.095 −0.095 −0.105 −0.119

3.0 −0.060 −0.069 −0.074 −0.077 −0.079 −0.081 −0.090 −0.103 −0.115

4.0 −0.045 −0.052 −0.057 −0.061 −0.064 −0.068 −0.081 −0.094 −0.105

6.0 −0.028 −0.034 −0.039 −0.043 −0.047 −0.053 −0.067 −0.081 −0.089

0.785 2.0 −0.082 −0.091 −0.098 −0.097 −0.090 −0.080 −0.067 −0.062 −0.059

3.0 −0.062 −0.071 −0.076 −0.078 −0.077 −0.074 −0.071 −0.070 −0.068

4.0 −0.048 −0.056 −0.060 −0.063 −0.064 −0.065 −0.067 −0.069 −0.068

6.0 −0.031 −0.038 −0.042 −0.045 −0.047 −0.051 −0.058 −0.064 −0.064

1.0 2.0 −0.040 −0.044 −0.046 −0.039 −0.026 0.009 0.015 0.030 0.039

3.0 −0.047 −0.055 −0.060 −0.059 −0.052 −0.040 −0.019 −0.004 0.010

4.0 −0.042 −0.050 −0.054 −0.054 −0.052 −0.046 −0.033 −0.021 −0.009

6.0 −0.031 −0.038 −0.041 −0.043 −0.043 −0.043 −0.040 −0.036 −0.027

in Chap. 2) for the case of shallow water was studied by Vorobjov [238–240]. He
computed the added mass λ33 for high frequency vertical oscillations of contours
where the ratio B/2T was between 0.4 and 1.4, and shipframe coefficient β (equal
to the ratio of the area of shipframe to the product of its maximal width to maxi-
mal height) was between β = 0.5 and β = 1.0. In Fig. 5.19, we present the depen-
dence of dimensionless coefficients k33 = λ33/(ρβBT ) on the relative depth H/T .
In Fig. 5.19 circles correspond to a Lewis shipframe (B/2t = 1.0, β = 1.0), crosses
correspond to a circle (β = π/4 = 0.785).

Following [238–240], in Fig. 5.20 we show dimensionless added masses of three
ships which oscillate with a high frequency in shallow water. Ship I had the average
form coefficient of immersed part (i.e. the ratio of the volume of its immersed part to
the product of its maximal width to maximal length and maximal immersion depth)
δ = 0.6, the waterplane area coefficient (i.e., ratio of the area of the waterplane to the
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Fig. 5.18 Dependence of
ratio k = λ33H /λ33∞ on the
depth of fluid

product of maximal length to maximal width) α = 0.706; other parameters were
given by L/B = 7.5, B/T = 2.5. Ship II had the following parameters: δ = 0.7,
α = 0.785, L/B = 7.0, B/T = 2.5; ship III had the following parameters: δ =
α = 0.785, L/B = 7.0, B/T = 2.5. The values of added masses are divided by
the ship displacement V = δLBT . For these three ships Vorobjov computed the
added masses λ33 and λ55 as functions of the dimensionless frequency of vertical
oscillations δ

√
L/g (Fig. 5.21).

5.4 Added Masses of Inclined Ship Frames Rolling on a Free
Surface

Added masses of inclined ship frames rolling on a free surface according to har-
monic law with frequency σ were computed by Ya.M. Elis [56, 57]. Denote by S

the area of the immersed part of a non-inclined ship frame; the width of shipframe
is denoted by B .

Coefficients of added masses k22 = λ22/ρS, k23 = λ23/ρS, k33 = λ33/ρS,
k24 = 2λ24/ρSB , k22 = 2λ34/ρSB , k44 = 4λ44/ρSB2 as functions of dimension-
less frequency parameter ζ = σ 2T/g for different values of B/T (T is the draft of
non-inclined shipframe), β (area coefficient of the immersed part of a non-inclined
shipframe), α (angle of roll) and parameter αn = arctan[2(H −T )/B] (the roll angle
when the deck touches the water surface) are shown in Table 5.2.

The parameter ζ was changing between 0.1 and 1.35. The variable H is the
height of the non-inclined shipframe. Values kij were determined in coordinate sys-
tem xyz (Fig. 5.22), where the z-axis is normal to free undisturbed water surface
downward; the y axis lies in the plane of the shipframe and directed along the water
surface; positive direction of rotation is assumed to be clockwise. General formulas
for added masses of inclined shipframes oscillating with small amplitude (either in
vertical, or in horizontal direction, as well as rotational oscillations) on a free surface
of a fluid having finite depth, are given in [55].
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Fig. 5.19 Dependence of coefficient k33 of added mass on relative depth of water.

5.5 Added Masses of a Shipframe in Case of Hull Vibration on
an Undisturbed Free Surface

Under vertical vibration of a shipframe its added mass λ33 is equal to 1/2 of the
added mass of the duplicated shipframe (see Sect. 5.1); it is defined by formulas
given in Chap. 2.

The added mass λ22 0 under a horizontal vibration should be determined via the
formula (5.7). Results of computations carried out by Dorofeuk in 1953–1954 for
shipframes presented in Fig. 2.40–2.43, are collected in Table 2.3.
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Fig. 5.20 Dimensionless
added masses λ33, λ55 of
three ships under high
frequency vertical oscillations
on shallow water

Coefficient k22 0 (also often denoted by ch, from “horizontal” in studies of vibra-
tion), is equal to the ratio

k22 0 = ch = λ22 0

(2/π)ρT 2
; (5.24)

the denominator equals the added mass of the half-immersed ellipse with the vertical
semi-axis T , under a horizontal impact [206].

It is sometimes convenient to use the following approximate formula for k22 0
proposed by Ivanjuta and Boyanovsky on the basis of work [128] (analogously to
formulas for k33, see Sect. 2.4):

k22 0 = ch = 1 + B2

3T 2

(
2T

B
− a + 1

)2

,

where a is determined by expression (2.28).



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 159

F
ig

.
5.

21
D

ep
en

de
nc

e
of

ge
ne

ra
liz

ed
ad

de
d

m
as

se
s

of
th

re
e

sh
ip

s
on

di
m

en
si

on
le

ss
fr

eq
ue

nc
y

of
ve

rt
ic

al
os

ci
lla

tio
ns

.
L

ef
t—

fo
r

sh
ip

I;
ce

nt
er

—
fo

r
sh

ip
II

;
ri

gh
t—

fo
r

sh
ip

II
I.

So
li

d
li

ne
co

rr
es

po
nd

s
to

th
in

sh
ip

;d
as

he
d

li
ne

co
rr

es
po

nd
s

to
el

on
ga

te
d

sh
ip



160 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
C

oe
ffi

ci
en

ts
of

ad
de

d
m

as
se

s
of

in
cl

in
ed

sh
ip

fr
am

es

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
0.

8;
β

=
0.

6

C
oe

ffi
ci

en
tk

22

0.
10

3.
20

7
3.

11
1

2.
71

1
2.

06
8

1.
31

7
2.

17
9

3.
35

2
3.

73
9

5.
31

0
7.

44
9

8.
42

8

0.
35

3.
83

5
3.

73
2

3.
27

2
2.

51
6

1.
61

1
2.

70
4

4.
09

0
4.

61
2

5.
89

9
6.

79
8

7.
13

9

0.
60

3.
27

3
3.

18
7

2.
82

0
2.

18
0

1.
41

2
2.

19
3

2.
98

7
2.

98
9

3.
04

7
2.

21
1

1.
73

7

0.
85

2.
15

8
2.

08
4

1.
83

3
1.

39
6

0.
90

5
1.

24
4

1.
60

0
1.

35
9

1.
48

5
0.

92
7

0.
51

0

1 .
10

1.
42

8
1.

36
2

1.
17

5
0.

86
9

0.
55

5
0.

69
0

0.
91

6
0.

66
5

0.
95

4
0.

64
7

0.
30

1

1.
35

1.
05

1
0.

99
2

0.
83

7
0.

59
9

0.
37

3
0.

43
2

0.
62

2
0.

39
5

0.
78

2
0.

63
4

0.
33

7

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
37

9
0.

66
6

0.
77

8
0.

66
8

0.
94

7
1.

05
3

1.
37

6
0.

90
4

1.
73

9
2.

36
7

0.
35

0.
47

1
0.

83
0

0.
98

1
0.

84
8

1.
22

1
1.

34
5

1.
79

2
1.

08
4

1.
85

7
2.

50
1

0.
60

0.
46

3
0.

83
0

0.
99

7
0.

88
7

1.
20

1
1.

20
2

1.
49

7
0.

75
3

1.
04

5
1.

28
3

0.
85

0.
37

0
0.

66
6

0.
80

3
0.

73
5

0.
91

2
0.

88
4

1.
00

9
0.

53
3

0.
78

8
0.

96
7

1.
10

0.
29

3
0.

52
5

0 .
63

2
0.

58
4

0.
69

3
0.

66
2

0.
75

6
0.

45
7

0.
74

8
0.

93
3

1.
35

0.
24

7
0.

44
1

0.
52

6
0.

48
8

0.
56

9
0.

56
2

0.
64

2
0.

43
5

0.
76

7
0.

97
0

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 161

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−2
.6

98
−2

.6
24

−2
.2

38
−1

.6
03

−0
.8

68
−1

.9
43

−3
.3

83
−4

.4
20

−6
.1

55
−1

0.
82

−1
3.

51

0.
35

−3
.1

15
−3

.0
40

−2
.6

10
−1

.8
85

−1
.0

24
−2

.3
42

−3
.9

99
−5

.3
26

−6
.6

09
−9

.7
49

−1
2.

08

0.
60

−2
.6

32
−2

.5
71

−2
.2

31
−1

.6
25

−0
.9

00
−1

.9
35

−2
.9

65
−3

.6
18

−3
.6

03
−3

.8
07

−3
.9

78

0.
85

−1
.8

06
−1

.7
50

−1
.5

11
−1

.0
89

−0
.6

09
−1

.1
97

−1
.7

44
−1

.9
25

−2
.0

96
−2

.3
27

−2
.2

99

1.
10

−1
.3

03
−1

.2
50

−1
. 0

61
−0

.7
47

−0
.4

14
−0

.7
73

−1
.1

73
−1

.2
25

−1
.6

58
−2

.1
31

−2
.1

44

1.
35

−1
.0

68
−1

.0
16

−0
.8

47
−0

.5
82

−0
.3

15
−0

.5
82

−0
.9

51
−0

.9
73

−1
.5

73
−2

.2
48

−2
.3

39

C
oe

ffi
ci

en
tk

33

0.
10

0.
85

5
0.

91
3

1.
05

4
1.

18
7

1.
21

7
1.

58
9

1.
46

8
2.

13
7

1.
26

3
2.

02
0

3.
18

6

0.
35

0.
39

1
0.

45
7

0.
62

7
0.

80
9

0.
87

8
1.

15
6

1.
00

1
1.

59
8

0.
72

6
1.

43
9

2.
53

5

0.
60

0.
25

9
0.

33
0

0.
51

5
0.

72
7

0.
82

6
1.

07
6

0.
87

6
1.

45
3

0.
59

5
1.

29
8

2.
39

8

0.
85

0.
20

7
0.

27
2

0.
44

3
0.

64
4

0.
75

6
0.

96
8

0.
77

2
1.

32
3

0.
57

1
1.

34
4

2.
49

8

1 .
10

0.
18

8
0.

24
7

0.
40

0
0.

58
0

0.
68

9
0.

89
2

0.
72

5
1.

28
2

0.
59

4
1.

43
1

2.
62

7

1.
35

0.
18

5
0.

24
0

0.
37

9
0.

54
3

0.
64

5
0.

85
7

0.
71

5
1.

29
2

0.
65

1
1.

50
8

2.
73

1

co
nt

in
ue

d
on

ne
xt

pa
ge



162 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.3

62
−0

.6
31

−0
.7

02
−0

.5
23

−1
.2

31
−1

.4
55

−2
.6

39
−1

.5
25

−3
.8

95
−6

.8
83

0.
35

−0
.4

33
−0

.7
56

−0
.8

51
−0

.6
46

−1
.4

07
−1

.6
67

−2
.9

32
−1

.6
23

−3
.8

87
−6

.8
63

0.
60

−0
.4

29
−0

.7
60

−0
.8

74
−0

.6
87

−1
.4

13
−1

.5
49

−2
.6

62
−1

.2
91

−2
.9

26
−5

.4
83

0.
85

−0
.3

66
−0

.6
52

−0
.7

58
−0

.6
18

−1
.2

17
−1

.2
77

−2
.2

12
−1

.1
04

−2
.7

10
−4

.9
93

1.
10

−0
.3

18
−0

.5
65

−0
.6

60
−0

.5
50

−1
.0

74
−1

.1
29

− 2
.0

04
−1

.0
59

−2
.7

31
−5

.0
32

1.
35

−0
.2

92
−0

.5
19

−0
.6

06
−0

.5
09

−1
.0

00
−1

.0
68

−1
.9

28
−1

.0
62

−2
.8

03
−5

.1
70

C
oe

ffi
ci

en
tk

44

0.
10

2.
77

6
2.

72
4

2.
35

0
1.

70
1

0.
93

4
2.

52
1

4.
38

5
7.

20
1

8.
58

5
19

.2
1

29
.7

7

0.
35

3.
05

4
3.

00
4

2.
60

0
1.

88
3

1.
02

1
2.

84
0

4.
91

2
8.

17
2

8.
91

4
17

.7
3

28
.1

1

0.
60

2.
65

3
2.

61
4

2.
29

2
1.

68
7

0.
94

2
2.

52
1

3.
95

3
6.

38
8

5.
76

4
10

.0
2

15
.8

8

0.
85

2.
04

7
2.

00
7

1.
76

8
1.

31
8

0.
77

1
1.

94
2

2.
87

7
4.

62
7

4.
32

4
8.

35
4

13
.6

3

1 .
10

1.
70

6
1.

66
5

1.
46

1
1.

09
3

0.
65

6
1.

61
3

2.
40

1
3.

92
1

3.
98

5
8.

30
8

13
.6

4

1.
35

1.
56

5
1.

52
2

1.
32

7
0.

99
0

0.
59

8
1.

46
7

2.
23

5
3.

68
6

3.
98

3
8.

61
1

14
.1

1

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 163

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
0.

8;
β

=
0.

8

C
oe

ffi
ci

en
tk

22

0.
10

2.
77

0
2.

85
0

2.
39

8
1.

81
0

1.
14

7
2.

13
3

3.
61

2
3.

35
1

4.
67

1
6.

29
1

7.
34

7

0.
35

3.
39

9
3.

48
2

2.
91

7
2.

18
5

1.
36

9
2.

54
2

3.
99

5
3.

61
0

4.
60

5
4.

21
5

3.
79

6

0.
60

2.
56

0
3.

45
7

2.
10

4
1.

55
8

1.
01

0
1.

52
3

1.
75

3
1.

58
5

1.
64

1
0.

97
7

0.
72

0

0.
85

1.
37

9
1.

25
7

1.
11

8
0.

83
7

0.
57

9
0.

70
1

0.
69

1
0.

63
8

0.
64

4
0.

38
9

0.
28

8

1 .
10

0.
76

9
0.

69
2

0.
63

5
0.

48
7

0.
35

5
0.

37
2

0.
37

1
0.

34
0

0.
39

6
0.

33
5

0.
30

6

1.
35

0.
50

5
0.

45
9

0.
43

0
0.

33
7

0.
25

2
0.

24
9

0.
28

4
0.

25
2

0.
35

8
0.

40
4

0.
41

8

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
30

6
0.

50
0

0.
57

0
0.

46
5

0.
77

0
0.

93
6

0.
93

3
0.

65
2

1.
17

4
1.

54
2

0.
35

0.
40

2
0.

65
4

0.
74

7
0.

60
6

1.
02

1
1.

19
6

1.
17

7
0.

76
3

1.
09

2
1.

26
9

0.
60

0.
35

3
0.

59
2

0.
68

4
0.

58
0

0.
84

1
0.

77
8

0.
79

6
0.

43
1

0.
54

2
0.

65
9

0.
85

0.
24

1
0.

42
3

0.
50

0
0.

45
5

0.
57

6
0.

48
9

0.
52

3
0.

28
1

0.
40

8
0.

54
7

1.
10

0.
17

5
0.

31
2

0 .
38

0
0.

36
4

0.
43

3
0.

37
0

0.
42

2
0.

23
1

0.
37

7
0.

54
8

1.
35

0.
13

8
0.

25
1

0.
31

3
0.

30
8

0.
36

1
0.

32
0

0.
37

6
0.

21
7

0.
38

6
0.

57
7

co
nt

in
ue

d
on

ne
xt

pa
ge



164 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−2
.4

48
−2

.5
57

−2
.0

03
−1

.3
53

−0
.6

66
−1

.9
13

−4
.0

05
−3

.6
60

−5
.4

60
−8

.7
17

−1
0.

86

0.
35

−2
.9

16
−3

.0
41

−2
.3

78
−1

.6
00

−0
.7

82
−2

.2
59

−4
.3

57
−3

.9
14

−5
.2

42
−5

.8
67

−6
.1

64

0.
60

−2
.1

60
−2

.1
17

−1
.7

04
−1

.1
50

−0
.5

97
−1

.4
21

−1
.9

79
−1

.9
01

−1
.9

75
−1

.7
17

−1
.8

31

0.
85

−1
.1

94
−1

.1
21

−0
.9

41
−0

.6
52

−0
.3

72
−0

.7
39

−0
.9

28
−0

.9
61

−0
.9

75
−1

.0
81

−1
.3

31

1.
10

−0
.7

30
−0

.6
85

−0
. 5

90
−0

.4
20

−0
.2

54
−0

.4
69

−0
.6

39
−0

.6
79

−0
.7

88
−1

.1
21

−1
.4

67

1.
35

−0
.5

51
−0

.5
27

−0
.4

55
−0

.3
27

−0
.2

02
−0

.3
74

−0
.5

88
−0

.6
12

−0
.8

16
−1

.3
00

−1
.7

22

C
oe

ffi
ci

en
tk

33

0.
10

0.
62

5
0.

69
1

0.
80

3
0.

89
3

0.
91

1
1.

20
4

1.
15

1
1.

52
0

0.
95

4
1.

42
2

2.
12

0

0.
35

0.
29

2
0.

35
3

0.
46

8
0.

58
1

0.
60

2
0.

85
1

0.
80

1
1.

03
3

0.
58

7
0.

99
2

1.
58

5

0.
60

0.
21

7
0.

28
0

0.
39

1
0.

51
0

0.
54

1
0.

76
2

0.
68

8
0.

91
9

0.
51

7
0.

97
0

1.
63

6

0.
85

0.
20

3
0.

25
9

0.
34

8
0.

45
2

0.
49

0
0.

68
4

0.
64

1
0.

89
3

0.
54

0
1.

04
5

1.
78

4

1 .
10

0.
20

9
0.

26
2

0.
33

1
0.

41
9

0.
45

8
0.

65
2

0.
64

5
0.

91
6

0.
58

2
1.

12
0

1.
89

2

1.
35

0.
22

4
0.

27
4

0.
33

0
0.

40
6

0.
44

2
0.

64
6

0.
66

3
0.

95
2

0.
62

0
1.

17
5

1.
96

7

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 165

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.3

40
−0

.5
31

−0
.5

65
−0

.4
01

−1
.1

04
−1

.5
23

−1
.9

40
−1

.1
83

−2
.7

34
−4

.6
85

0.
35

−0
.4

13
−0

.6
37

−0
.6

72
−0

.4
57

−1
.2

44
−1

.7
23

−1
.9

93
−1

.2
21

−2
.4

83
−4

.0
66

0.
60

−0
.3

73
−0

.5
92

−0
.6

39
−0

.4
58

−1
.1

20
−1

.3
15

−1
.6

56
−0

.8
78

−1
.8

75
−3

.4
64

0.
85

−0
.2

85
−0

.4
70

−0
.5

27
−0

.4
08

−0
.9

32
−1

.0
58

−1
.4

53
−0

.7
52

−1
.7

97
−3

.4
64

1.
10

−0
.2

37
−0

.3
98

−0
.4

59
−0

.3
74

−0
.8

40
−0

.9
68

− 1
.3

94
−0

.7
29

−1
.8

16
−3

.5
62

1.
35

−0
.2

14
−0

.3
63

−0
.4

27
−0

.3
55

−0
.7

99
−0

.9
42

−1
.3

84
−0

.7
34

−1
.8

63
−3

.6
57

C
oe

ffi
ci

en
tk

44

0.
10

2.
40

4
2.

58
5

1.
97

2
1.

30
8

0.
62

3
2.

36
5

5.
34

0
5.

33
3

7.
22

7
14

.1
80

21
.2

30

0.
35

2.
76

2
2.

95
9

2.
24

8
1.

47
8

0.
68

9
2.

67
0

5.
68

2
5.

61
4

6.
84

6
10

.3
80

14
.9

10

0.
60

2.
09

1
2.

13
1

1.
89

2
1.

15
5

0.
59

5
1.

98
2

3.
19

3
3.

63
2

3.
24

1
5.

07
1

8.
88

9

0.
85

1.
30

5
1.

30
4

1.
10

1
0.

81
0

0.
47

7
1.

41
6

2.
11

3
2.

72
0

2.
25

0
4.

43
3

8.
43

0

1 .
10

0.
95

5
0.

97
0

0.
84

6
0.

65
4

0.
41

3
1.

19
2

1.
85

3
2.

46
7

2.
13

8
4.

62
8

8.
81

0

1.
35

0.
83

8
0.

86
8

0.
75

8
0.

59
5

0.
38

4
1.

11
6

1.
83

8
2.

42
8

2.
23

5
4.

96
1

9.
30

2

co
nt

in
ue

d
on

ne
xt

pa
ge



166 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
0.

8;
β

=
1.

0

C
oe

ffi
ci

en
tk

22

0.
10

2.
79

8
2.

87
0

2.
44

5
1.

72
2

1.
14

7
1.

97
3

3.
53

3
3.

68
1

4.
45

8
6.

07
0

7.
17

5

0.
35

3.
47

6
3.

48
6

2.
91

8
2.

01
9

1.
28

3
2.

05
4

3.
26

6
2.

81
4

3.
71

2
1.

41
0

2.
18

4

0.
60

2.
02

2
1.

83
8

1.
58

1
1.

15
0

0.
79

0
0.

99
2

0.
97

1
0.

89
1

0.
87

3
0.

19
7

0.
52

0

0.
85

0.
77

8
0.

68
9

0.
65

2
0.

53
1

0.
43

6
0.

48
4

0.
34

9
0.

42
0

0.
25

5
0.

35
4

0.
42

9

1 .
10

0.
32

0
0.

30
1

0.
32

8
0.

30
4

0.
28

8
0.

31
5

0.
22

7
0.

33
1

0.
16

3
0.

60
3

0.
54

8

1.
35

0.
16

7
0.

17
9

0.
22

3
0.

22
7

0.
22

9
0.

26
3

0.
22

9
0.

34
3

0.
19

3
0.

82
7

0.
69

2

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
27

4
0.

44
1

0.
47

0
0.

34
4

0.
46

2
0.

76
1

0.
67

2
0.

56
8

1.
43

3
0.

97
7

0.
35

0.
38

2
0.

61
0

0.
64

4
0.

45
7

0.
60

8
0.

93
4

0.
73

8
0.

64
1

0.
50

6
0.

61
3

0.
60

0.
27

3
0.

45
6

0.
51

5
0.

39
5

0.
44

5
0.

45
9

0.
40

4
0.

25
5

0.
12

2
0.

29
4

0.
85

0.
14

3
0.

26
6

0.
33

1
0.

29
7

0.
30

4
0.

23
5

0.
26

0
0.

11
3

0.
08

7
0.

23
6

1.
10

0.
08

0
0.

16
6

0 .
22

9
0.

23
4

0.
23

0
0.

14
9

0.
20

2
0.

06
3

0.
11

5
0.

23
8

1.
35

0.
05

0
0.

11
5

0.
17

4
0.

19
7

0.
18

9
0.

11
3

0.
18

0
0.

04
7

0.
15

6
0.

25
6

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 167

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−2
.8

35
−2

.9
00

−2
.2

89
−1

.3
56

−0
.6

56
−1

.5
66

−4
.1

21
−4

.1
15

−5
.6

14
−8

.2
14

−1
0.

51

0.
35

−3
.4

42
−3

.4
45

−2
.6

89
−1

.5
76

−0
.7

30
−1

.6
52

−3
.8

05
−3

.2
30

−4
.5

81
−2

.8
26

−3
.6

60

0.
60

−1
.9

57
−1

.7
82

−1
.4

47
−0

.9
08

−0
.4

82
−0

.8
83

−1
.1

95
−1

.2
37

−1
.1

25
−0

.8
91

−1
.3

89

0.
85

−0
.7

66
−0

.6
88

−0
.6

19
−0

.4
37

−0
.2

99
−0

.5
05

−0
.5

09
−0

.7
52

−0
.4

44
−1

.3
88

−1
.3

54

1.
10

−0
.3

61
−0

.3
50

−0
. 3

48
−0

.2
70

−0
.2

20
−0

.3
78

−0
.3

98
−0

.6
73

−0
.3

98
−2

.0
01

−1
.6

04

1.
35

−0
.2

50
−0

.2
66

−0
.2

74
−0

.2
18

−0
.1

89
−0

.3
41

−0
.4

29
−0

.7
04

−0
.4

90
−2

.5
25

−1
.8

73

C
oe

ffi
ci

en
tk

33

0.
10

0.
59

4
0.

64
8

0.
72

6
0.

73
6

0.
75

0
0.

96
3

0.
99

9
1.

25
8

0.
89

9
1.

56
3

1.
60

5

0.
35

0.
35

6
0.

40
5

0.
47

7
0.

50
6

0.
46

1
0.

59
1

0.
74

7
0.

80
9

0.
65

2
1.

40
9

1.
21

6

0.
60

0.
33

2
0.

37
5

0.
43

0
0.

45
5

0.
40

3
0.

52
1

0.
66

9
0.

77
5

0.
64

1
1.

52
1

1.
36

7

0.
85

0.
35

0
0.

37
9

0.
40

6
0.

41
1

0.
37

2
0.

50
4

0.
65

5
0.

81
8

0.
67

7
1.

60
1

1.
51

2

1 .
10

0.
37

4
0.

39
6

0.
40

5
0.

39
2

0.
36

0
0.

51
1

0.
66

6
0.

87
1

0.
71

1
1.

64
9

1.
60

0

1.
35

0.
39

7
0.

41
4

0.
41

2
0.

38
4

0.
35

8
0.

52
6

0.
68

3
0.

91
8

0.
73

8
1.

68
1

1.
65

7

co
nt

in
ue

d
on

ne
xt

pa
ge



168 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.3

66
−0

.5
71

−0
.5

12
−0

.3
57

−0
.8

11
−1

.4
15

−1
.7

32
−1

.1
63

−4
.4

85
−3

.4
27

0.
35

−0
.4

65
−0

.7
06

−0
.6

30
−0

.3
67

−0
.7

84
−1

.5
55

−1
.5

61
−1

.1
99

−2
.9

84
−2

.6
92

0.
60

−0
.3

60
−0

.5
75

−0
.5

46
−0

.3
45

−0
.6

78
−1

.0
67

−1
.2

80
−0

.7
65

−2
.4

86
−2

.5
32

0.
85

−0
.2

43
−0

.4
17

−0
.4

26
−0

.3
08

−0
.6

02
−0

.8
44

−1
.2

12
−0

.6
28

−2
.5

31
−2

.6
23

1.
10

−0
.1

90
−0

.3
48

−0
.3

57
−0

.2
88

−0
.5

73
−0

.7
77

− 1
.2

20
−0

.5
94

−2
.6

35
−2

.7
23

1.
35

−0
.1

68
−0

.3
03

−0
.3

23
−0

.2
78

−0
.5

65
−0

.7
60

−1
.2

33
−0

.5
93

−2
.7

37
−2

.8
02

C
oe

ffi
ci

en
tk

44

0.
10

3.
09

0
3.

21
2

2.
45

6
1.

34
3

0.
56

9
1.

76
1

5.
75

2
6.

01
3

7.
89

7
18

.6
31

19
.1

1

0.
35

3.
63

7
3.

70
4

2.
80

9
1.

51
8

0.
61

3
1.

81
3

5.
40

9
5.

08
7

6.
50

6
10

.5
80

10
.0

70

0.
60

2.
12

2
2.

01
4

1.
64

5
0.

99
8

0.
49

2
1.

26
5

2.
41

0
3.

06
9

2.
26

6
7.

59
4

7.
19

7

0.
85

0.
98

1
0.

96
5

0.
89

9
0.

63
5

0.
39

9
0.

99
6

1.
65

0
2.

62
1

1.
52

2
8.

85
7

7.
41

9

1 .
10

0.
62

7
0.

67
1

0.
67

1
0.

50
8

0.
35

8
0.

90
9

1.
55

2
2.

58
6

1.
54

4
10

.2
80

7.
94

1

1.
35

0.
55

5
0.

87
3

0.
62

1
0.

47
1

0.
34

2
0.

88
7

1.
61

5
2.

65
4

1.
71

7
11

.2
90

8.
42

7

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 169

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
1.

6;
β

=
0.

6

C
oe

ffi
ci

en
tk

22

0.
10

1.
52

7
1.

46
6

1.
35

3
1.

04
1

0.
72

7
1.

25
1

1.
83

1
2.

30
5

2.
25

7
3.

22
4

3.
96

5

0.
35

1.
69

8
1.

65
2

1.
56

4
1.

22
1

0.
86

0
1.

50
9

2.
19

6
2.

81
4

2.
52

6
3.

65
4

4.
81

1

0.
60

1.
35

5
1.

33
8

1.
29

4
1.

02
6

0.
75

2
1.

22
1

1.
73

4
1.

96
3

1.
67

4
1.

98
4

2.
72

5

0.
85

0.
98

1
0.

96
0

0.
90

5
0.

70
8

0.
53

4
0.

75
6

1.
05

6
0.

97
6

0.
98

2
0.

89
0

1.
04

9

1 .
10

0.
75

2
0.

72
1

0.
64

5
0.

48
8

0.
36

6
0.

45
3

0.
63

9
0.

47
1

0.
64

8
0.

46
8

0.
39

0

1.
35

0.
62

4
0.

58
5

0.
49

6
0.

36
1

0.
26

4
0.

28
9

0.
42

1
0.

24
3

0.
49

5
0.

31
4

0.
15

0

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
11

7
0.

23
0

0.
28

9
0.

27
1

0.
27

4
0.

24
3

0.
18

3
0.

10
7

0.
07

1
−0

.0
52

0.
35

0.
13

9
0.

27
9

0.
36

0
0.

34
0

0.
34

7
0.

29
0

0.
21

1
0.

10
6

−0
.0

04
−0

.1
70

0.
60

0.
13

5
0.

28
0

0.
37

6
0.

36
9

0.
35

3
0.

27
2

0.
17

3
0.

07
2

−0
.0

22
−0

.1
68

0.
85

0.
12

0
0.

24
9

0.
33

8
0.

34
4

0.
30

0
0.

22
5

0.
13

8
0.

06
7

0.
04

2
−0

.0
46

1.
10

0.
10

9
0.

22
2

0.
29

8
0.

30
5

0.
25

1
0.

19
6

0.
13

2
0.

08
0

0.
11

4
0.

06
0

1.
35

0.
10

3
0.

20
3

0.
26

8
0.

27
3

0.
21

8
0.

18
5

0.
14

1
0.

10
0

0.
17

3
0.

13
3

co
nt

in
ue

d
on

ne
xt

pa
ge



170 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−0
.1

56
−0

.1
71

−0
.1

88
−0

.1
02

−0
.0

11
−0

.2
13

−0
.4

87
−0

.8
43

−0
.6

08
−1

.4
20

−2
.2

20

0.
35

−0
.1

50
−0

.1
72

−0
.1

99
−0

.1
08

−0
.0

06
−0

.2
52

−0
.5

70
−1

.0
26

−0
.6

59
−1

.5
94

−2
.6

76

0.
60

−0
.1

29
−0

.1
45

−0
.1

67
−0

.0
87

0.
00

1
−0

.2
10

−0
.4

63
−0

.7
52

−0
.4

60
−0

.9
10

−1
.5

74

0.
85

−0
.1

18
−0

.1
25

−0
.1

31
−0

.0
64

0.
00

6
−0

.1
40

−0
.3

06
−0

.4
13

−0
.3

08
−0

.4
58

−0
.6

67

1.
10

−0
.1

18
−0

.1
18

−0
.1

11
−0

. 0
49

0.
00

9
−0

.0
92

−0
.2

09
−0

.2
30

−0
.2

39
−0

.2
83

−0
.3

03

1.
35

−0
.1

22
−0

.1
17

−0
.1

02
−0

.0
42

0.
01

0
−0

.0
65

−0
.1

58
−0

.1
44

−0
.2

10
−0

.2
21

−0
.1

69

C
oe

ffi
ci

en
tk

33

0.
10

1.
58

0
1.

53
0

1.
49

2
1.

39
6

1.
31

4
1.

62
6

1.
80

8
2.

22
0

1.
77

5
2.

31
7

3.
10

4

0.
35

0.
79

9
0.

78
5

0.
79

9
0.

79
3

0.
77

9
0.

94
9

1.
02

0
1.

34
7

0.
94

4
1.

41
1

2.
03

9

0.
60

0.
59

6
0.

59
2

0.
62

4
0.

64
9

0.
65

8
0.

80
6

0.
84

8
1.

21
5

0.
78

4
1.

33
4

1.
98

2

0.
85

0.
52

0
0.

51
9

0.
56

0
0.

59
6

0.
61

4
0.

77
1

0.
81

4
1.

24
2

0.
76

8
1.

41
0

2.
09

9

1 .
10

0.
49

2
0.

49
5

0.
54

0
0.

57
8

0.
59

6
0.

77
7

0.
83

2
1.

31
4

0.
80

0
1.

50
8

2.
23

3

1.
35

0.
48

8
0.

49
2

0.
54

2
0.

57
7

0.
59

1
0.

80
1

0.
87

0
1.

39
3

0.
84

7
1.

59
4

2.
34

5

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 171

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

0.
01

3
0.

03
2

0.
08

1
0.

14
4

−0
.0

19
−0

.0
95

−0
.2

44
−0

.1
32

−0
.2

33
−0

.4
46

0.
35

−0
.0

16
−0

.0
30

−0
.0

10
0.

04
1

−0
.0

91
−0

.1
22

−0
.1

98
−0

.0
91

−0
.0

70
−0

.1
13

0.
60

−0
.0

26
−0

.0
51

−0
.0

42
0.

00
4

−0
.1

18
−0

.1
29

−0
.1

81
−0

.0
75

−0
.0

32
−0

.0
66

0.
85

−0
.0

31
−0

.0
60

−0
.0

57
−0

.0
15

−0
.1

25
−0

.1
24

−0
.1

72
−0

.0
72

−0
.0

54
−0

.1
35

1.
10

−0
.0

34
−0

.0
65

−0
.0

65
−0

.0
26

−0
.1

25
−0

.1
21

−0
.1

75
−0

.0
74

−0
.0

88
− 0

.2
12

1.
35

−0
.0

36
−0

.0
68

−0
.0

69
−0

.0
33

−0
.1

24
−0

.1
20

−0
.1

81
−0

.0
77

−0
.1

18
−0

.2
74

C
oe

ffi
ci

en
tk

44

0.
10

0.
10

9
0.

10
4

0.
10

6
0.

09
3

0.
09

0
0.

12
6

0.
24

0
0.

53
9

0.
29

9
0.

98
2

1.
96

8

0.
35

0.
10

9
0.

10
2

0.
10

2
0.

08
2

0.
07

2
0.

12
8

0.
25

9
0.

60
4

0.
30

7
1.

04
3

2.
17

5

0.
60

0.
10

8
0.

10
0

0.
09

6
0.

07
4

0.
06

4
0.

11
9

0.
23

4
0.

51
5

0.
26

1
0.

75
4

1.
55

7

0.
85

0.
10

8
0.

09
9

0.
09

1
0.

06
8

0.
05

7
0.

10
5

0.
19

7
0.

39
7

0.
22

7
0.

56
0

1.
05

5

1 .
10

0.
10

9
0.

09
9

0.
08

9
0.

06
4

0.
05

3
0.

09
5

0.
17

4
0.

33
0

0.
21

3
0.

48
4

0.
84

7

1.
35

0.
10

9
0.

09
9

0.
08

7
0.

06
1

0.
04

9
0.

08
9

0.
16

2
0.

29
7

0.
20

7
0.

45
6

0.
77

0

co
nt

in
ue

d
on

ne
xt

pa
ge



172 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
1.

6;
β

=
0.

8

C
oe

ffi
ci

en
tk

22

0.
10

1.
36

1
1.

40
2

1.
27

1
1.

01
0

0.
70

8
1.

21
1

1.
71

1
2.

20
7

2.
53

1
3.

89
8

4.
41

8

0.
35

1.
54

1
1.

57
8

1.
43

3
1.

13
4

0.
79

2
1.

35
8

1.
87

8
2.

40
4

2.
28

3
2.

57
1

3.
61

8

0.
60

1.
04

8
1.

05
4

0.
98

1
0.

80
5

0.
59

7
0.

91
4

1.
11

6
1.

31
5

0.
91

9
0.

70
7

1.
11

2

0.
85

0.
61

4
0.

61
5

0.
58

4
0.

50
3

0.
40

0
0.

53
6

0.
58

9
0.

63
1

0.
41

3
0.

28
9

0.
40

7

1 .
10

0.
39

4
0.

39
7

0.
38

0
0.

34
0

0.
28

5
0.

34
2

0.
35

4
0.

35
0

0.
25

6
0.

22
0

0.
24

8

1.
35

0.
28

8
0.

29
2

0.
28

1
0.

25
7

0.
22

3
0.

24
6

0.
25

2
0.

23
7

0.
21

5
0.

24
3

0.
23

9

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
05

6
0.

10
9

0.
14

5
0.

15
0

0.
09

9
0.

04
5

−0
.0

79
−0

.1
19

−0
.4

18
−0

.5
81

0.
35

0.
07

3
0.

14
3

0.
19

0
0.

19
4

0.
12

5
0.

05
2

−0
.1

27
−0

.1
67

−0
.4

84
−0

.7
57

0.
60

0.
06

8
0.

13
7

0.
18

7
0.

19
9

0.
11

7
0.

04
2

−0
.1

14
−0

.1
13

−0
.2

42
−0

.4
20

0.
85

0.
05

6
0.

11
3

0.
16

0
0.

17
9

0.
09

7
0.

03
5

−0
.0

74
−0

.0
65

−0
.1

15
−0

.2
07

1.
10

0.
04

6
0.

09
4

0.
13

7
0.

15
9

0.
08

3
0.

03
2

−0
.0

41
−0

.0
35

−0
.0

55
−0

.1
00

1.
35

0.
04

0
0.

08
1

0.
12

0
0.

14
4

0.
07

5
0.

03
3

−0
.0

16
−0

.0
16

−0
.0

26
−0

.0
45

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 173

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−0
.2

39
−0

.2
57

−0
.1

90
−0

.0
75

0.
02

5
−0

.1
22

−0
.3

69
−0

.5
99

−0
.8

68
−1

.7
80

−2
.1

16

0.
35

−0
.2

64
−0

.2
81

−0
.2

08
−0

.0
80

0.
03

1
−0

.1
37

−0
.4

03
−0

.6
43

−0
.7

64
−1

.0
94

−1
.6

19

0.
60

−0
.1

78
−0

.1
87

−0
.1

42
−0

.0
57

0.
02

5
−0

.0
96

−0
.2

41
−0

.3
44

−0
.2

99
−0

.2
44

−0
.3

81

0.
85

−0
.1

07
−0

.1
13

−0
.0

88
−0

.0
37

0.
01

6
−0

.0
59

−0
.1

30
−0

.1
57

−0
.1

34
−0

.0
77

−0
.0

71

1.
10

−0
.0

74
−0

.0
79

−0
.0

62
−0

.0
28

0.
01

2
− 0

.0
40

−0
.0

82
−0

.0
81

−0
.0

89
−0

.0
68

−0
.0

27

1.
35

−0
.0

59
−0

.0
65

−0
.0

50
−0

.0
23

0.
00

8
−0

.0
31

−0
.0

62
−0

.0
52

−0
.0

82
−0

.0
96

−0
.0

51

C
oe

ffi
ci

en
tk

33

0.
10

1.
15

5
1.

16
3

1.
16

6
1.

12
1

1.
04

8
1.

30
4

1.
40

2
1.

77
3

1.
44

9
1.

91
7

2.
51

4

0.
35

0.
59

1
0.

59
5

0.
60

5
0.

59
3

0.
57

1
0.

69
1

0.
74

1
0.

98
2

0.
82

1
1.

27
9

1.
67

6

0.
60

0.
47

6
0.

48
1

0.
49

0
0.

48
2

0.
46

4
0.

57
0

0.
63

4
0.

88
2

0.
79

5
1.

35
3

1.
71

4

0.
85

0.
45

7
0.

46
3

0.
46

8
0.

45
4

0.
43

1
0.

55
2

0.
63

9
0.

91
5

0.
86

2
1.

48
3

1.
84

3

1 .
10

0.
47

0
0.

47
7

0.
47

8
0.

45
6

0.
42

5
0.

57
0

0.
67

8
0.

98
0

0.
93

7
1.

58
5

1.
95

8

1.
35

0.
49

5
0.

50
3

0.
50

0
0.

47
0

0.
43

0
0.

59
9

0.
72

4
1.

04
6

1.
00

0
1.

65
7

2.
04

3

co
nt

in
ue

d
on

ne
xt

pa
ge



174 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.0

30
−0

.0
41

−0
.0

13
0.

04
8

−0
.1

08
−0

.1
75

−0
.3

38
−0

.1
75

−0
.2

67
−0

.4
92

0.
35

−0
.0

32
−0

.0
50

−0
.0

35
0.

01
1

−0
.0

81
−0

.1
05

−0
.1

28
−0

.0
30

0.
07

3
−0

.1
26

0.
60

−0
.0

34
−0

.0
56

−0
.0

47
−0

.0
06

−0
.0

81
−0

.0
93

−0
.0

95
−0

.0
30

−0
.0

28
−0

.0
00

0.
85

−0
.0

34
−0

.0
58

−0
.0

54
−0

.0
17

−0
.0

82
−0

.0
93

−0
.1

03
−0

.0
50

−0
.1

20
−0

.1
47

1.
10

−0
.0

35
−0

.0
60

−0
.0

58
−0

.0
25

−0
.0

85
−0

.0
98

−0
.1

21
−0

. 0
70

−0
.1

84
−0

.2
54

1.
35

−0
.0

35
−0

.0
61

−0
.0

61
−0

.0
30

−0
.0

88
−0

.1
03

−0
.1

40
−0

.0
86

−0
.2

26
−0

.3
28

C
oe

ffi
ci

en
tk

44

0.
10

0.
04

6
0.

05
5

0.
04

0
0.

02
5

0.
02

8
0.

03
1

0.
10

8
0.

28
6

0.
36

5
1.

12
8

1.
73

3

0.
35

0.
04

9
0.

05
8

0.
04

3
0.

02
5

0.
02

6
0.

03
1

0.
10

7
0.

25
0

0.
29

9
0.

64
9

1.
13

3

0.
60

0.
03

4
0.

04
1

0.
03

3
0.

02
3

0.
02

4
0.

02
7

0.
07

1
0.

15
5

0.
13

2
0.

22
0

0.
43

1

0.
85

0.
02

3
0.

02
9

0.
02

5
0.

02
1

0.
02

2
0.

02
4

0.
04

9
0.

10
0

0.
07

6
0.

15
0

0.
27

0

1 .
10

0.
01

8
0.

02
3

0.
02

2
0.

01
9

0.
02

1
0.

02
2

0.
03

9
0.

07
9

0.
06

3
0.

16
1

0.
27

0

1.
35

0.
01

6
0.

02
1

0.
02

0
0.

01
9

0.
01

9
0.

02
2

0.
03

6
0.

07
2

0.
06

4
0.

19
0

0.
30

9

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 175

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
1.

6;
β

=
1.

0

C
oe

ffi
ci

en
tk

22

0.
10

1.
62

5
1.

63
3

1.
42

4
1.

14
6

0.
81

7
1.

39
5

1.
91

6
2.

49
6

2.
63

6
3.

62
5

5.
07

8

0.
35

1.
77

2
1.

73
4

1.
47

7
1.

13
9

0.
80

7
1.

30
8

1.
68

1
2.

01
2

1.
83

6
1.

75
1

2.
02

5

0.
60

0.
81

5
0.

79
6

0.
76

5
0.

66
7

0.
53

7
0.

75
7

0.
76

6
0.

93
7

0.
52

0
0.

52
5

0.
79

5

0.
85

0.
31

3
0.

32
7

0.
38

7
0.

41
0

0.
37

7
0.

49
0

0.
41

5
0.

56
8

0.
20

1
0.

31
4

0.
64

3

1 .
10

0.
13

6
0.

16
3

0.
24

2
0.

30
2

0.
30

2
0.

38
0

0.
29

9
0.

45
4

0.
13

9
0.

30
9

0.
68

1

1.
35

0.
07

5
0.

10
7

0.
18

8
0.

25
6

0.
26

6
0.

33
4

0.
26

4
0.

42
6

0.
14

6
0.

35
4

0.
75

4

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
02

6
0.

03
1

0.
02

1
0.

04
6

−0
.0

84
−0

.1
44

−0
.3

83
−0

.2
18

−0
.6

01
−1

.2
31

0.
35

0.
05

7
0.

07
0

0.
04

5
0.

06
5

−0
.1

02
−0

.1
51

−0
.4

58
−0

.2
01

−0
.5

26
−1

.0
18

0.
60

0.
04

2
0.

05
8

0.
04

5
0.

06
4

−0
.0

87
−0

.1
16

−0
.3

41
−0

.1
45

−0
.3

36
−0

.6
12

0.
85

0.
01

1
0.

02
6

0.
02

9
0.

05
6

−0
.0

75
−0

.1
06

−0
.2

63
−0

.1
42

−0
.2

81
−0

.4
57

1.
10

−0
.0

11
−0

.0
02

0.
01

3
0.

04
8

−0
.0

68
−0

.1
08

−0
.2

19
−0

.1
50

−0
.2

66
−0

.3
97

1.
35

−0
.0

27
−0

.0
23

−0
.0

01
0.

04
1

−0
.0

63
−0

.1
12

−0
.1

92
−0

.1
58

−0
.2

66
−0

.3
77

co
nt

in
ue

d
on

ne
xt

pa
ge



176 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−0
.6

62
−0

.6
33

−0
.4

03
−0

.1
55

0.
01

1
−0

.1
34

−0
.5

27
−0

.5
94

−1
.2

74
−1

.6
75

−2
.0

47

0.
35

−0
.7

24
−0

.6
71

−0
.4

18
−0

.1
52

0.
01

5
−0

.1
13

−0
.4

54
−0

.4
16

−0
.8

76
−0

.7
44

−0
.5

23

0.
60

−0
.3

44
−0

.3
20

−0
.2

30
−0

.1
05

−0
.0

05
−0

.0
86

−0
.2

28
−0

.1
97

−0
.2

65
−0

.2
28

−0
.1

85

0.
85

−0
.1

43
−0

.1
43

−0
.1

29
−0

.0
82

−0
.0

20
−0

.0
81

−0
.1

46
−0

.1
49

−0
.1

18
−0

.1
62

−0
.2

54

1.
10

−0
.0

73
−0

.0
81

−0
.0

89
−0

. 0
72

−0
.0

28
−0

.0
83

−0
.1

20
−0

.1
49

−0
.0

91
−0

.1
79

−0
.3

54

1.
35

−0
.0

50
−0

.0
61

−0
.0

74
−0

.0
69

−0
.0

33
−0

.0
86

−0
.1

14
−0

.1
61

−0
.0

97
−0

.2
12

−0
.4

37

C
oe

ffi
ci

en
tk

33

0.
10

1.
02

7
1.

05
3

1.
03

3
0.

99
5

0.
93

5
1.

20
2

1.
23

6
1.

61
6

1.
29

6
1.

59
7

2.
24

5

0.
35

0.
63

3
0.

63
9

0.
58

3
0.

52
3

0.
48

6
0.

61
5

0.
67

5
0.

89
5

0.
85

8
1.

08
1

1.
57

9

0.
60

0.
61

3
0.

61
5

0.
53

4
0.

44
6

0.
39

5
0.

51
7

0.
63

0
0.

82
5

0.
91

7
1.

16
7

1.
62

4

0.
85

0.
65

6
0.

65
6

0.
55

7
0.

44
6

0.
37

3
0.

51
3

0.
67

4
0.

86
5

1.
01

8
1.

29
6

1.
73

8

1 .
10

0.
70

5
0.

70
3

0.
59

4
0.

46
8

0.
37

6
0.

53
8

0.
73

2
0.

92
6

1.
09

8
1.

39
5

1.
83

3

1.
35

0.
74

6
0.

74
4

0.
62

9
0.

49
4

0.
38

8
0.

57
0

0.
78

5
0.

98
4

1.
15

3
1.

46
3

1.
90

7

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 177

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.0

68
−0

.0
96

−0
.0

93
−0

.0
56

−0
.2

59
−0

.2
38

−0
.5

40
−0

.1
58

−0
.2

66
−0

.6
54

0.
35

−0
.0

71
−0

.0
82

−0
.0

56
−0

.0
30

−0
.1

14
−0

.0
89

−0
.1

47
−0

.0
48

0.
01

7
−0

.0
22

0.
60

−0
.0

71
−0

.0
84

−0
.0

54
−0

.0
28

−0
.0

86
−0

.0
80

−0
.1

07
−0

.0
81

−0
.0

79
−0

.1
67

0.
85

−0
.0

65
−0

.0
84

−0
.0

58
−0

.0
32

−0
.0

81
−0

.0
91

−0
.1

21
−0

.1
06

−0
.1

57
−0

.2
98

1.
10

−0
.0

60
−0

.0
83

−0
.0

62
−0

.0
36

−0
.0

85
−0

.1
05

−0
. 1

46
−0

.1
22

−0
.2

11
−0

.3
94

1.
35

−0
.0

57
−0

.0
83

−0
.0

66
−0

.0
40

−0
.0

91
−0

.1
18

−0
.1

73
−0

.1
32

−0
.2

47
−0

.4
60

C
oe

ffi
ci

en
tk

44

0.
10

0.
34

1
0.

32
5

0.
19

0
0.

08
4

0.
05

2
0.

15
0

0.
29

7
0.

62
8

0.
80

8
1.

27
2

2.
58

5

0.
35

0.
36

3
0.

34
1

0.
19

4
0.

08
1

0.
05

2
0.

11
3

0.
23

6
0.

37
9

0.
59

4
0.

61
7

0.
98

9

0.
60

0.
21

1
0.

20
8

0.
14

5
0.

07
7

0.
05

1
0.

10
3

0.
17

4
0.

28
5

0.
30

7
0.

37
6

0.
77

6

0.
85

0.
13

0
0.

14
1

0.
11

8
0.

07
5

0.
50

0.
10

1
0.

15
6

0.
26

6
0.

24
2

0.
37

6
0.

85
6

1 .
10

0.
10

2
0.

11
7

0.
10

7
0.

07
5

0.
04

9
0.

10
2

0.
15

4
0.

26
9

0.
23

5
0.

41
3

0.
96

8

1.
35

0.
09

4
0.

10
9

0.
10

3
0.

07
6

0.
04

9
0.

10
3

0.
15

7
0.

28
0

0.
24

3
0.

45
3

1.
06

5

co
nt

in
ue

d
on

ne
xt

pa
ge



178 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
2.

4;
β

=
0.

6

C
oe

ffi
ci

en
tk

22

0.
10

0.
99

1
0.

97
4

0.
95

7
0.

77
9

0.
62

6
1.

09
1

1.
44

5
2.

06
9

1.
96

9
2.

38
2

2.
81

2

0.
35

1.
02

6
1.

04
2

1.
06

6
0.

90
4

0.
71

3
1.

25
9

1.
67

5
2.

34
6

2.
02

1
2.

76
9

3.
09

1

0.
60

0.
79

2
0.

80
6

0.
83

1
0.

71
6

0.
58

6
0.

91
2

1.
19

7
1.

32
0

1.
12

8
1.

70
2

1.
46

2

0.
85

0.
60

7
0.

59
5

0.
58

2
0.

49
8

0.
41

8
0.

55
0

0.
69

9
0.

59
4

0.
61

6
0.

82
0

0.
56

1

1 .
10

0.
50

1
0.

46
9

0.
42

6
0.

35
7

0.
30

2
0.

34
0

0.
42

1
0.

28
4

0.
40

5
0.

42
6

0.
23

7

1.
35

0.
41

1
0.

39
6

0.
33

6
0.

27
4

0.
23

2
0.

22
7

0.
27

9
0.

15
7

0.
32

1
0.

26
2

0.
12

5

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

0.
02

8
0.

06
8

0.
11

1
0.

12
9

0.
01

3
−0

.0
69

−0
.3

30
−0

.2
63

−0
.4

26
−0

.5
96

0.
35

0.
02

8
0.

07
7

0.
13

8
0.

16
5

0.
01

2
−0

.1
12

−0
.4

70
−0

.3
95

−0
.6

40
−0

.8
47

0.
60

0.
02

2
0.

07
2

0.
14

4
0.

18
0

0.
00

8
−0

.1
29

−0
.4

19
−0

.3
60

−0
.5

95
−0

.6
61

0.
85

0.
91

9
0.

06
5

0.
13

4
0.

17
2

0.
00

6
−0

.1
07

−0
.2

95
−0

.2
57

−0
.4

18
−0

.4
18

1.
10

0.
01

8
0.

06
1

0.
12

3
0.

15
8

0.
00

7
−0

.0
77

−0
.2

03
−0

.1
70

−0
.2

74
−0

.2
72

1.
35

0.
02

0
0.

06
1

0.
11

4
0.

14
5

0.
00

9
−0

.0
50

−0
.1

43
−0

.1
05

−0
.1

75
−0

.1
87

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 179

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

0.
28

8
0.

21
4

0.
13

3
0.

11
3

0.
11

5
0.

01
3

−0
.0

70
−0

.1
43

−0
.1

19
−0

.5
05

−0
.8

37

0.
35

0.
30

6
0.

23
4

0.
14

9
0.

13
0

0.
13

5
0.

00
8

−0
.0

94
−0

.4
97

−0
.1

46
−0

.6
17

−0
.9

55

0.
60

0.
22

6
0.

17
4

0.
11

2
0.

10
5

0.
11

7
−0

.0
02

−0
.0

85
−0

.3
10

−0
.0

94
−0

.4
05

−0
.4

76

0.
85

0.
15

9
0.

11
9

0.
07

4
0.

07
5

0.
09

1
−0

.0
04

−0
.0

58
−0

.1
47

−0
.0

43
−0

.1
89

−0
.1

75

1.
10

0.
11

8
0.

08
5

0.
05

0
0.

05
6

0.
07

3
−0

.0
02

−0
.0

35
−0

.0
64

−0
.0

12
−0

.0
75

−0
.0

54

1.
35

0.
09

3
0.

06
4

0.
03

7
0.

04
4

0.
06

1
0.

00
2

−0
.0

19
−0

.0
23

0.
00

5
−0

.0
20

−0
.0

05

C
oe

ffi
ci

en
tk

33

0.
10

2.
21

9
2.

04
9

1.
88

5
1.

66
9

1.
50

3
1.

80
4

2.
14

5
2.

43
3

2.
45

8
2.

87
1

2.
88

0

0.
35

1.
20

6
1.

11
0

1.
02

9
0.

92
5

0.
84

8
1.

01
3

1.
22

1
1.

51
1

1.
46

2
1.

80
1

1.
92

3

0.
60

0.
96

6
0.

88
7

0.
82

9
0.

75
3

0.
69

5
0.

85
6

1.
04

8
1.

41
7

1.
35

4
1.

68
6

1.
87

0

0.
85

0.
88

1
0.

81
2

0.
76

8
0.

70
0

0.
64

5
0.

83
3

1.
03

4
1.

46
0

1.
39

0
1.

71
5

1.
92

9

1 .
10

0.
85

4
0.

79
3

0.
75

9
0.

69
1

0.
63

4
0.

85
6

1.
07

0
1.

53
3

1.
45

4
1.

77
6

2.
00

9

1.
35

0.
85

2
0.

79
7

0.
77

3
0.

70
1

0.
63

9
0.

89
6

1.
12

1
1.

60
5

1.
51

6
1.

83
8

2.
08

2

co
nt

in
ue

d
on

ne
xt

pa
ge



180 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

0.
11

4
0.

21
6

0.
28

3
0.

33
2

0.
26

5
0.

23
8

0.
32

7
0.

13
2

0.
34

6
0.

44
7

0.
35

0.
06

1
0.

11
6

0.
14

9
0.

18
0

0.
14

7
0.

17
3

0.
35

9
0.

21
0

0.
47

1
0.

63
0

0.
60

0.
04

7
0.

09
0

0.
11

3
0.

13
8

0.
12

4
0.

17
3

0.
38

6
0.

25
9

0.
53

1
0.

64
7

0.
85

0.
04

3
0.

08
1

0.
09

6
0.

11
7

0.
12

1
0.

18
2

0.
38

8
0.

28
4

0.
53

2
0.

60
6

1.
10

0.
04

2
0.

07
9

0 .
08

8
0.

10
6

0.
12

5
0.

19
2

0.
38

5
0.

29
4

0.
51

9
0.

57
2

1.
35

0.
04

4
0.

08
1

0.
08

6
0.

10
0

0.
13

2
0.

20
1

0.
38

0
0.

29
6

0.
50

3
0.

54
4

C
oe

ffi
ci

en
tk

44

0.
10

0.
13

3
0.

08
7

0.
06

8
0.

08
0

0.
11

0
0.

06
8

0.
09

9
0.

29
6

0.
21

7
0.

46
7

0.
65

4

0.
35

0.
14

2
0.

09
0

0.
05

8
0.

05
8

0.
07

6
0.

05
1

0.
09

7
0.

32
3

0.
22

2
0.

50
3

0.
70

4

0.
60

0.
11

5
0.

07
4

0.
04

9
0.

04
7

0.
06

2
0.

04
7

0.
09

9
0.

29
2

0.
21

7
0.

45
8

0.
55

3

0.
85

0.
09

0
0.

06
0

0.
04

2
0.

03
9

0.
05

1
0.

04
7

0.
09

9
0.

25
4

0.
20

7
0.

39
7

0.
43

8

1 .
10

0.
07

4
0.

05
0

0.
03

8
0.

03
4

0.
04

4
0.

04
8

0.
09

9
0.

22
9

0.
19

7
0.

35
4

0.
38

0

1.
35

0.
05

4
0.

04
5

0.
03

7
0.

03
2

0.
04

0
0.

04
9

0.
09

8
0.

21
4

0.
18

8
0.

32
7

0.
39

4

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 181

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
2.

4;
β

=
0.

8

C
oe

ffi
ci

en
tk

22

0.
10

0.
95

4
0.

95
2

0.
89

9
0.

78
5

0.
62

5
1.

09
6

1.
36

6
2.

01
0

1.
84

5
2.

95
2

3.
28

4

0.
35

0.
98

1
0.

98
3

0.
93

2
0.

81
5

0.
65

7
1.

14
0

1.
40

6
2.

00
5

1.
51

0
2.

03
3

2.
90

2

0.
60

0.
62

0
0.

62
8

0.
61

6
0.

56
4

0.
48

2
0.

72
1

0.
82

7
0.

97
7

0.
64

0
0.

67
1

1.
10

0

0.
85

0.
38

2
0.

38
9

0.
39

8
0.

38
2

0.
34

4
0.

44
2

0.
47

3
0.

49
0

0.
32

5
0.

33
0

0.
49

3

1 .
10

0.
26

3
0.

27
0

0.
28

6
0.

28
8

0.
26

7
0.

30
7

0.
31

2
0.

31
2

0.
22

3
0.

25
9

0.
32

6

1.
35

0.
20

6
0.

21
0

0.
22

8
0.

23
7

0.
22

4
0.

24
2

0.
24

0
0.

24
9

0.
19

5
0.

26
2

0.
29

3

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

−0
.0

41
−0

.0
46

−0
.0

12
0.

04
2

−0
.1

16
−0

.2
37

−0
.5

12
−0

.4
47

−0
.9

83
−1

.0
89

0.
35

−0
.0

52
−0

.0
57

−0
.0

12
0.

05
5

−0
.1

54
−0

.3
16

−0
.6

88
−0

.5
64

−1
.1

40
−1

.4
04

0.
60

−0
.0

49
−0

.0
54

−0
.0

10
0.

05
7

−0
.1

48
−0

.2
89

−0
.5

56
−0

.4
27

−0
.7

22
−0

.9
46

0.
85

−0
.0

43
−0

.0
48

−0
.0

09
0.

05
4

−0
.1

27
−0

.2
39

−0
.4

13
−0

.3
19

−0
.5

00
−0

.6
43

1.
10

−0
.0

39
−0

.0
44

−0
.0

09
0.

05
0

−0
.1

09
−0

.2
00

−0
.3

21
−0

.2
54

−0
. 3

92
−0

.4
86

1.
35

−0
.0

36
−0

.0
42

−0
.0

10
0.

04
6

−0
.0

95
−0

.1
73

−0
.2

64
−0

.2
14

−0
.3

38
−0

.4
03

co
nt

in
ue

d
on

ne
xt

pa
ge



182 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

0.
14

1
0.

13
5

0.
13

3
0.

13
0

0.
12

6
0.

05
2

0.
01

3
−0

.2
77

−0
.0

84
−0

.6
16

−0
.9

24

0.
35

0.
14

0
0.

13
5

0.
13

6
0.

13
6

0.
13

6
0.

05
1

0.
00

9
−0

.2
71

−0
.0

64
−0

.3
55

−0
.7

41

0.
60

0.
08

9
0.

08
6

0.
08

8
0.

09
3

0.
10

0
0.

02
9

0.
00

6
−0

.1
11

−0
.0

03
−0

.0
10

−0
.1

67

0.
85

0.
05

8
0.

05
5

0.
05

7
0.

06
1

0.
07

1
0.

01
6

0.
01

0
−0

.0
28

0.
03

5
0.

07
2

0.
01

8

1.
10

0.
04

4
0.

04
2

0.
04

1
0.

04
4

0.
05

4
0.

01
1

0.
01

3
0.

00
4

0.
04

7
0.

07
9

0.
05

9

1.
35

0.
03

8
0.

03
6

0.
03

4
0.

03
4

0.
04

3
0.

01
0

0.
01

7
0.

01
5

0.
05

0
0.

06
6

0.
05

4

C
oe

ffi
ci

en
tk

33

0.
10

1.
61

3
1.

59
4

1.
51

4
1.

36
5

1.
21

0
1.

49
6

1.
76

9
2.

06
5

1.
98

5
2.

52
4

2.
78

6

0.
35

0.
88

3
0.

87
0

0.
81

9
0.

73
1

0.
65

1
0.

80
6

0.
98

8
1.

25
9

1.
24

2
1.

81
6

1.
94

9

0.
60

0.
75

2
0.

73
9

0.
68

4
0.

59
9

0.
52

6
0.

68
0

0.
86

5
1.

16
8

1.
19

8
1.

76
7

1.
84

7

0.
85

0.
74

0
0.

72
4

0.
66

1
0.

56
8

0.
48

9
0.

66
6

0.
86

3
1.

18
5

1.
25

1
1.

80
6

1.
84

4

1 .
10

0.
76

6
0.

74
7

0.
67

4
0.

57
1

0.
48

2
0.

68
6

0.
89

6
1.

22
8

1.
31

6
1.

85
9

1.
87

8

1.
35

0.
80

3
0.

78
2

0.
70

1
0.

58
8

0.
48

9
0.

71
8

0.
93

9
1.

27
5

1.
37

5
1.

90
8

1.
91

9

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 183

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

0.
01

6
0.

05
3

0.
11

2
0.

17
9

0.
08

3
0.

00
3

0.
04

8
−0

.0
66

0.
09

7
0.

17
7

0.
35

0.
01

4
0.

03
2

0.
06

1
0.

09
8

0.
06

3
0.

05
5

0.
22

0
0.

11
3

0.
47

8
0.

64
3

0.
60

0.
01

7
0.

32
0

0.
05

1
0.

07
7

0.
06

8
0.

08
4

0.
26

2
0.

16
0

0.
46

4
0.

61
4

0.
85

0.
02

0
0.

03
4

0.
04

9
0.

06
8

0.
07

8
0.

10
1

0.
26

9
0.

17
0

0.
42

4
0.

55
5

1.
10

0.
02

2
0 .

03
7

0.
04

9
0.

06
4

0.
08

5
0.

11
1

0.
26

5
0.

16
6

0.
38

9
0.

51
0

1.
35

0.
02

4
0.

03
9

0.
04

9
0.

06
2

0.
09

1
0.

11
6

0.
25

8
0.

15
8

0.
36

2
0.

47
7

C
oe

ffi
ci

en
tk

44

0.
10

0.
02

5
0.

02
4

0.
02

5
0.

03
5

0.
05

6
0.

02
0

0.
04

4
0.

21
1

0.
15

8
0.

65
2

0.
87

1

0.
35

0.
02

5
0.

02
4

0.
02

5
0.

03
2

0.
04

7
0.

02
0

0.
04

3
0.

19
4

0.
12

8
0.

46
1

0.
68

4

0.
60

0.
01

7
0.

01
7

0.
01

8
0.

02
4

0.
03

6
0.

02
0

0.
04

0
0.

15
3

0.
10

3
0.

29
8

0.
42

1

0.
85

0.
01

3
0.

01
3

0.
01

4
0.

01
8

0.
02

8
0.

01
9

0.
03

8
0.

12
5

0.
08

5
0.

23
1

0.
30

8

1 .
10

0.
01

2
0.

01
2

0.
01

2
0.

01
5

0.
02

3
0.

01
9

0.
03

5
0.

10
7

0.
07

4
0.

20
5

0.
26

2

1.
35

0.
01

1
0.

01
1

0.
01

1
0.

01
3

0.
02

0
0.

01
9

0.
03

3
0.

09
7

0.
06

7
0.

19
8

0.
24

6

co
nt

in
ue

d
on

ne
xt

pa
ge



184 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
2.

4;
β

=
1.

0

C
oe

ffi
ci

en
tk

22

0.
10

1.
15

8
1.

16
5

1.
07

2
0.

95
2

0.
74

9
1.

30
5

1.
60

5
3.

97
9

2.
04

3
3.

08
2

4.
85

0

0.
35

1.
10

5
1.

08
6

0.
97

2
0.

84
8

0.
68

8
1.

12
8

1.
27

2
3.

00
4

1.
20

7
1.

35
0

2.
12

8

0.
60

0.
47

3
0.

49
4

0.
52

4
0.

52
8

0.
47

7
0.

67
2

0.
64

6
1.

46
3

0.
41

6
0.

54
1

0.
91

7

0.
85

0.
19

2
0.

23
0

0.
31

5
0.

37
6

0.
36

9
0.

47
5

0.
41

7
0.

98
2

0.
22

1
0.

40
8

0.
76

8

1 .
10

0.
08

8
0.

13
1

0.
23

0
0.

31
0

0.
31

9
0.

39
7

0.
33

8
0.

84
7

0.
17

9
0.

41
0

0.
80

0

1.
35

0.
05

1
0.

09
4

0.
19

0
0.

28
0

0.
29

4
0.

36
6

0.
31

2
0.

82
4

0.
18

3
0.

44
5

0.
86

6

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

−0
.0

93
−0

.1
55

−0
.1

48
−0

.0
52

−0
.2

75
−0

.4
59

−1
.3

06
−0

.6
08

−1
.2

74
−2

.1
05

0.
35

−0
.0

97
−0

.1
71

−0
.1

70
−0

.0
61

−0
.3

39
−0

.5
38

−1
.5

31
−0

.6
17

−1
.1

44
−1

.8
48

0.
60

−0
.0

76
−0

.1
42

−0
.1

51
−0

.0
57

−0
.2

99
−0

.4
37

−1
.1

71
−0

.4
33

−0
.7

81
−1

.1
83

0.
85

−0
.0

74
−0

.1
30

−0
.1

39
−0

.0
54

−0
.2

61
−0

.3
71

−0
.9

39
−0

.3
59

−0
.6

44
−0

.9
39

1.
10

−0
.0

78
−0

.1
29

−0
.1

33
−0

.0
52

−0
.2

34
−0

.3
34

− 0
.8

06
−0

.3
32

−0
.5

88
−0

.8
39

1.
35

−0
.0

84
−0

.1
28

−0
.1

30
−0

.0
50

−0
.2

16
−0

.3
12

−0
.7

26
−0

.3
22

−0
.5

67
−0

.8
00

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 185

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

−0
.1

60
−0

.1
18

0.
00

2
0.

09
0

0.
11

3
0.

03
2

−0
.0

58
−0

.5
14

−0
.3

69
−0

.6
25

−1
.4

87

0.
35

−0
.1

74
−0

.1
28

−0
.0

06
0.

08
0

0.
10

6
0.

03
4

−0
.0

32
−0

.2
83

−0
.2

17
−0

.1
45

−0
.2

69

0.
60

−0
.0

97
−0

.0
80

−0
.0

23
0.

02
9

0.
05

6
−0

.0
01

−0
.0

28
−0

.1
14

−0
.0

83
−0

.0
10

0.
01

1

0.
85

−0
.0

50
−0

.0
49

−0
.0

28
0.

00
3

0.
02

7
−0

.0
21

−0
.0

32
−0

.0
91

−0
.0

48
−0

.0
21

−0
.0

54

1.
10

−0
.0

26
−0

.0
31

−0
.0

28
−0

.0
10

0.
01

2
−0

.0
32

−0
.0

37
−0

.1
06

−0
.0

40
− 0

.0
53

−0
.1

51

1.
35

−0
.0

14
−0

.0
22

−0
.0

25
−0

.0
17

0.
00

3
−0

.0
39

−0
.0

41
−0

.1
31

−0
.0

42
−0

.0
84

−0
.2

37

C
oe

ffi
ci

en
tk

33

0.
10

1.
38

7
1.

40
2

1.
35

7
1.

26
9

1.
10

1
1.

42
4

1.
64

4
3.

35
7

1.
77

1
2.

28
6

3.
15

0

0.
35

0.
87

5
0.

86
3

0.
78

3
0.

69
7

0.
59

0
0.

78
8

0.
98

3
2.

12
8

1.
22

8
1.

69
2

2.
42

6

0.
60

0.
86

5
0.

83
8

0.
71

5
0.

60
0

0.
48

6
0.

68
4

0.
90

1
1.

95
8

1.
25

0
1.

64
6

2.
23

6

0.
85

0.
93

0
0.

89
6

0.
73

9
0.

59
0

0.
45

8
0.

67
4

0.
91

9
1.

95
5

1.
34

3
1.

70
0

2.
21

4

1 .
10

1.
00

0
0.

96
2

0.
78

5
0.

60
8

0.
45

7
0.

69
3

0.
96

1
2.

00
0

1.
42

9
1.

76
2

2.
23

5

1.
35

1.
05

6
1.

01
9

0.
81

0
0.

63
3

0.
46

5
0.

71
8

1.
00

5
2.

05
0

1.
49

6
1.

81
7

2.
26

8

co
nt

in
ue

d
on

ne
xt

pa
ge



186 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.0

21
−0

.0
43

−0
.0

42
0.

03
4

−0
.1

34
−0

.1
91

−0
.5

27
−0

.0
75

−0
.1

64
−0

.2
15

0.
35

−0
.0

01
−0

.0
04

−0
.0

10
0.

01
9

−0
.0

45
−0

.0
15

0.
02

0
0.

12
9

0.
23

2
0.

39
7

0.
60

−0
.0

01
0.

00
7

0.
00

6
0.

01
9

−0
.0

08
0.

03
6

0.
12

6
0.

13
1

0.
23

3
0 .

32
7

0.
85

−0
.0

04
0.

00
9

0.
01

4
0.

02
2

0.
01

2
0.

05
3

0.
15

6
0.

10
9

0.
20

5
0.

28
5

1.
10

−0
.0

06
0.

00
6

0.
01

8
0.

02
4

0.
02

3
0.

05
6

0.
16

0
0.

08
5

0.
17

5
0.

25
8

1.
35

−0
.0

08
0.

00
4

0.
01

8
0.

02
5

0.
02

9
0.

05
3

0.
15

4
0.

06
5

0.
15

0
0.

24
2

C
oe

ffi
ci

en
tk

44

0.
10

0.
11

6
0.

10
7

0.
08

0
0.

07
7

0.
06

9
0.

12
5

0.
20

5
0.

90
5

0.
36

3
0.

93
4

2.
56

8

0.
35

0.
12

0
0.

10
9

0.
07

7
0.

07
4

0.
06

9
0.

11
5

0.
16

3
0.

66
9

0.
27

2
0.

53
7

1.
36

8

0.
60

0.
11

1
0.

10
5

0.
07

5
0.

06
5

0.
05

8
0.

10
5

0.
14

2
0.

55
6

0.
22

7
0.

40
7

1.
05

0

0.
85

0.
10

3
0.

10
2

0.
07

5
0.

06
0

0.
05

0
0.

09
8

0.
13

0
0.

49
9

0.
20

7
0.

37
5

0.
99

0

1 .
10

0.
09

9
0.

09
9

0.
07

5
0.

05
7

0.
04

5
0.

09
3

0.
12

4
0.

46
8

0.
20

5
0.

37
5

0.
99

9

1.
35

0.
09

6
0.

09
8

0.
07

4
0.

05
5

0.
04

2
0.

08
9

0.
12

1
0.

45
2

0.
20

9
0.

38
7

1.
02

8

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 187

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
3.

2;
β

=
0.

6

C
oe

ffi
ci

en
tk

22

0.
10

0.
72

3
0.

74
1

0.
77

6
0.

73
1

0.
65

1
1.

14
4

1.
35

7
2.

19
5

1.
40

3
2.

22
0

3.
12

5

0.
35

0.
70

1
0.

74
9

0.
82

1
0.

78
5

0.
70

1
1.

23
5

1.
46

6
2.

25
0

1.
43

7
2.

29
4

2.
96

0

0.
60

0.
52

3
0.

55
1

0.
60

0
0.

58
3

0.
53

4
0.

80
4

0.
92

0
1.

05
7

0.
84

8
1.

12
5

1.
14

7

0.
85

0.
40

8
0.

40
7

0.
41

7
0.

40
7

0.
38

3
0.

47
6

0.
52

0
0.

46
4

0.
48

2
0.

51
8

0.
46

1

1 .
10

0.
34

5
0.

32
4

0.
31

0
0.

30
3

0.
29

2
0.

30
8

0.
32

4
0.

24
9

0.
31

7
0.

29
6

0.
25

5

1.
35

0.
30

9
0.

27
7

0.
24

9
0.

24
3

0.
23

9
0.

22
4

0.
23

0
0.

17
2

0.
24

4
0.

21
6

0.
19

9

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

−0
.0

46
−0

.0
59

−0
.0

16
0.

03
6

−0
.1

92
−0

.3
24

−0
.7

69
−0

.3
90

−0
.8

00
−1

.2
11

0.
35

−0
.0

64
−0

.0
82

−0
.0

20
0.

04
9

−0
.2

55
−0

.4
45

−1
.0

36
−0

.5
54

−1
.1

19
−1

.5
84

0.
60

−0
.0

72
−0

.0
90

−0
.0

20
0.

05
5

−0
.2

49
−0

.4
33

−0
.8

24
−0

.5
32

−0
.9

25
−1

.1
14

0.
85

−0
.0

71
−0

.0
86

−0
.0

19
0.

05
3

−0
.2

16
−0

.3
63

−0
.6

01
−0

.4
37

−0
.6

70
−0

.7
67

1.
10

−0
.0

67
−0

.0
79

−0
.0

17
0.

04
9

−0
.1

87
−0

.3
00

−0
.4

65
−0

.3
51

−0
. 5

06
−0

.5
89

1.
35

−0
.0

62
−0

.0
71

−0
.0

16
0.

04
4

−0
.1

65
−0

.2
53

−0
.3

85
−0

.2
87

−0
.4

06
−0

.4
94

co
nt

in
ue

d
on

ne
xt

pa
ge



188 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

0.
43

2
0.

33
6

0.
23

2
0.

17
7

0.
15

8
0.

04
1

0.
02

3
−0

.4
63

0.
13

3
−0

.3
44

−0
.9

45

0.
35

0.
41

8
0.

33
6

0.
23

8
0.

18
8

0.
17

2
0.

02
7

−0
.0

03
−0

.5
31

0.
09

8
−0

.4
13

−0
.9

55

0.
60

0.
30

6
0.

24
1

0.
16

6
0.

13
6

0.
13

4
−0

.0
05

−0
.0

32
−0

.3
04

0.
03

7
−0

.2
33

−0
.4

06

0.
85

0.
23

2
0.

17
4

0.
11

2
0.

09
4

0.
09

8
−0

.0
16

−0
.0

30
−0

.1
51

0.
02

9
−0

.0
94

−0
.1

61

1.
10

0.
19

1
0.

13
8

0.
08

3
0.

06
9

0.
07

6
−0

.0
16

−0
.0

18
−0

.0
81

0.
04

1
−0

.0
24

−0
.0

76

1.
35

0.
16

7
0.

11
7

0.
06

8
0.

05
5

0.
06

3
−0

.0
13

−0
.0

06
−0

.0
48

0.
05

3
0.

00
9

−0
.0

49

C
oe

ffi
ci

en
tk

33

0.
10

2.
79

1
2.

53
5

2.
25

0
1.

92
3

1.
67

1
2.

01
4

2.
47

1
2.

76
3

2.
88

9
3.

22
8

3.
31

5

0.
35

1.
60

5
1.

44
3

1.
27

1
1.

07
3

0.
92

7
1.

14
3

1.
46

5
1.

85
4

1.
77

6
2.

18
9

2.
40

5

0.
60

1.
35

3
1.

21
2

1.
06

5
0.

88
8

0.
75

9
0.

98
9

1.
31

1
1.

76
3

1.
64

4
2.

10
1

2.
29

2

0.
85

1.
27

7
1.

14
8

1.
01

4
0.

83
7

0.
70

8
0.

97
4

1.
30

7
1.

77
0

1.
66

2
2.

10
3

2.
27

4

1 .
10

1.
26

3
1.

14
3

1.
01

6
0.

83
4

0.
69

9
1.

00
4

1.
34

6
1.

81
0

1.
71

2
2.

13
3

2.
30

4

1.
35

1.
27

3
1.

16
2

1.
03

9
0.

84
9

0.
70

7
1.

04
7

1.
39

4
1.

85
5

1.
76

4
2.

16
9

2.
34

6

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 189

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

0.
16

4
0.

31
4

0.
39

7
0.

43
9

0.
42

2
0.

39
9

0.
67

6
0.

27
3

0.
59

0
0.

89
1

0.
35

0.
09

0
0.

18
0

0.
22

2
0.

24
5

0.
26

6
0.

30
9

0.
71

7
0.

27
8

0.
71

4
1.

11
7

0.
60

0.
07

9
0.

15
7

0.
18

5
0.

19
9

0.
25

4
0.

32
9

0.
74

6
0.

34
2

0.
78

1
1.

08
4

0.
85

0.
08

3
0.

15
9

0.
17

6
0.

18
1

0.
26

5
0.

35
8

0.
74

3
0.

39
4

0.
79

1
1.

02
8

1.
10

0.
09

1
0.

16
8

0 .
17

6
0.

17
5

0.
28

1
0.

38
1

0.
73

8
0.

42
6

0.
78

6
0.

99
4

1.
35

0.
10

0
0.

17
9

0.
18

0
0.

17
4

0.
29

6
0.

39
8

0.
73

3
0.

47
6

0.
77

7
0.

97
1

C
oe

ffi
ci

en
tk

44

0.
10

0.
28

2
0.

19
0

0.
13

8
0.

13
6

0.
15

7
0.

12
8

0.
17

3
0.

48
0

0.
27

2
0.

56
1

0.
90

3

0.
35

0.
27

4
0.

18
4

0.
12

3
0.

10
2

0.
10

9
0.

10
0

0.
16

8
0.

51
6

0.
27

5
0.

59
5

0.
94

0

0.
60

0.
20

3
0.

13
9

0.
09

8
0.

08
2

0.
08

7
0.

09
9

0.
17

3
0.

48
0

0.
27

4
0.

56
7

0.
76

1

0.
85

0.
15

6
0.

10
9

0.
08

3
0.

06
9

0.
07

3
0.

10
2

0.
18

0
0.

44
1

0.
27

3
0.

52
5

0.
65

2

1 .
10

0.
12

9
0.

09
3

0.
07

7
0.

06
4

0.
06

6
0.

10
7

0.
18

2
0.

41
3

0.
26

9
0.

49
0

0.
59

7

1.
35

0.
11

3
0.

08
5

0.
07

5
0.

06
1

0.
06

2
0.

11
0

0.
18

2
0.

39
6

0.
26

3
0.

46
5

0.
56

9

co
nt

in
ue

d
on

ne
xt

pa
ge



190 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
3.

2;
β

=
0.

8

C
oe

ffi
ci

en
tk

22

0.
10

0.
71

8
0.

75
0

0.
80

4
0.

76
5

0.
68

1
1.

18
4

1.
38

1
2.

27
6

1.
51

6
2.

73
0

3.
26

5

0.
35

0.
67

5
0.

70
1

0.
76

2
0.

73
8

0.
67

4
1.

13
6

1.
28

5
1.

94
9

1.
13

5
1.

74
7

2.
48

9

0.
60

0.
40

8
0.

42
3

0.
48

3
0.

50
0

0.
48

2
0.

68
0

0.
70

6
0.

86
0

0.
49

6
0.

63
0

0.
91

6

0.
85

0.
25

4
0.

26
7

0.
32

3
0.

35
9

0.
35

9
0.

43
5

0.
42

5
0.

46
9

0.
27

7
0.

36
8

0.
49

0

1 .
10

0.
17

7
0.

19
0

0.
24

5
0.

28
8

0.
29

4
0.

32
6

0.
30

8
0.

35
0

0.
20

6
0.

31
9

0.
39

4

1.
35

0.
13

8
0.

15
1

0.
20

5
0.

25
1

0.
26

0
0.

27
8

0.
26

0
0.

32
0

0.
18

8
0.

32
6

0.
38

9

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

−0
.1

27
−0

.1
94

−0
.1

29
−0

.0
32

−0
.2

79
−0

.4
93

−0
.8

86
−0

.6
54

−1
.4

04
−1

.4
66

0.
35

−0
.1

63
−0

.2
45

−0
.1

59
−0

.0
38

−0
.3

60
−0

.6
37

−1
.1

10
−0

.8
13

−1
.5

73
−1

.7
36

0.
60

−0
.1

57
−0

.2
36

−0
.1

53
−0

.0
36

−0
.3

31
−0

.5
64

−0
.8

40
−0

.6
48

−1
.0

72
−1

.1
61

0.
85

−0
.1

42
−0

.2
16

−0
.1

43
−0

.0
34

−0
.2

87
−0

.4
77

−0
.6

41
−0

.5
24

−0
.8

27
−0

.8
53

1.
10

−0
.1

30
−0

.2
00

−0
.1

35
−0

.0
33

−0
.2

53
−0

.4
17

− 0
.5

29
−0

.4
49

−0
.7

10
−0

.7
05

1.
35

−0
.1

20
−0

.1
88

−0
.1

30
−0

.0
32

−0
.2

29
−0

.3
76

−0
.4

64
−0

.4
04

−0
.6

52
−0

.6
29

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 191

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

0.
27

3
0.

26
5

0.
21

6
0.

17
2

0.
14

2
0.

04
5

0.
05

0
−0

.4
01

0.
11

0
−0

.4
93

−0
.9

58

0.
35

0.
24

5
0.

23
6

0.
19

6
0.

16
2

0.
14

2
0.

03
0

0.
03

1
−0

.3
63

0.
07

1
−0

.2
79

−0
.7

10

0.
60

0.
14

7
0.

14
0

0.
11

5
0.

09
8

0.
09

5
−0

.0
02

0.
00

3
−0

.1
65

0.
05

1
−0

.0
29

−0
.2

14

0.
85

0.
09

8
0.

09
3

0.
07

2
0.

06
1

0.
06

3
−0

.0
14

−0
.0

01
−0

.0
79

0.
05

9
0.

03
4

−0
.0

74

1.
10

0.
07

8
0.

07
3

0.
05

3
0.

04
2

0.
04

5
−0

.0
17

0.
00

2
−0

.0
49

0.
06

6
0.

04
0

−0
.0

48

1.
35

0.
07

0
0.

06
6

0.
04

5
0.

03
2

0.
03

5
−0

.0
16

0.
00

5
−0

.0
42

0.
06

9
0.

02
9

−0
.0

57

C
oe

ffi
ci

en
tk

33

0.
10

2.
05

5
2.

05
7

1.
90

3
1.

60
7

1.
35

0
1.

67
3

2.
14

8
2.

35
5

2.
49

0
3.

10
4

2.
98

1

0.
35

1.
20

2
1.

20
9

1.
10

0
0.

89
6

0.
73

2
0.

94
2

1.
31

1
1.

58
8

1.
69

7
2.

39
8

2.
24

1

0.
60

1.
07

5
1.

08
2

0.
96

5
0.

75
7

0.
59

9
0.

82
1

1.
19

3
1.

48
0

1.
64

3
2.

24
9

2.
06

1

0.
85

1.
08

0
1.

08
5

0.
94

9
0.

72
6

0.
56

0
0.

80
8

1.
18

7
1.

46
4

1.
67

6
2.

21
4

2.
00

0

1 .
10

1.
12

4
1.

12
5

0.
97

0
0.

73
0

0.
55

4
0.

82
8

1.
21

3
1.

48
1

1.
72

4
2.

22
2

1.
95

6

1.
35

1.
17

7
1.

17
4

1.
00

3
0.

74
7

0.
56

2
0.

85
8

1.
24

7
1.

50
6

1.
76

9
2.

24
4

2.
01

1

co
nt

in
ue

d
on

ne
xt

pa
ge



192 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.0

01
0.

07
2

0.
17

9
0.

26
4

0.
20

2
0.

09
1

0.
31

3
−0

.0
46

0.
26

3
0.

55
7

0.
35

0.
00

6
0.

04
7

0.
09

9
0.

14
4

0.
14

3
0.

13
7

0.
46

4
0.

14
3

0.
64

0
0.

90
3

0.
60

0.
02

6
0.

06
4

0.
09

4
0.

12
0

0.
15

6
0.

19
0

0.
49

3
0.

23
5

0.
65

8
0.

84
2

0.
85

0.
04

2
0.

08
4

0.
10

1
0.

11
4

0.
17

4
0.

22
5

0.
49

7
0.

27
3

0.
64

8
0.

79
5

1.
10

0 .
05

3
0.

09
8

0.
10

8
0.

11
4

0.
19

0
0.

24
6

0.
49

6
0.

28
5

0.
63

4
0.

76
9

1.
35

0.
05

9
0.

10
8

0.
11

5
0.

11
6

0.
20

2
0.

25
8

0.
49

3
0.

28
6

0.
62

5
0.

75
4

C
oe

ffi
ci

en
tk

44

0.
10

0.
13

7
0.

13
9

0.
11

1
0.

09
0

0.
09

8
0.

07
8

0.
15

5
0.

39
1

0.
32

3
0.

89
0

0.
98

7

0.
35

0.
12

3
0.

12
6

0.
10

4
0.

08
0

0.
07

6
0.

07
4

0.
15

6
0.

38
9

0.
29

3
0.

75
5

0.
86

7

0.
60

0.
08

8
0.

09
3

0.
08

2
0.

06
3

0.
06

0
0.

07
5

0.
15

2
0.

34
1

0.
26

5
0.

61
6

0.
65

6

0.
85

0.
07

2
0.

07
8

0.
07

0
0.

05
4

0.
05

0
0.

07
7

0.
14

7
0.

30
7

0.
24

2
0.

54
2

0.
56

2

1 .
10

0.
06

7
0.

07
3

0.
06

6
0.

05
0

0.
04

6
0.

07
8

0.
14

2
0.

28
5

0.
22

6
0.

50
4

0.
52

1

1.
35

0.
06

6
0.

07
1

0.
06

4
0.

04
8

0.
04

3
0.

07
8

0.
13

8
0.

27
2

0.
21

4
0.

48
7

0.
50

4

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 193

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
on

to
ur

B
/
T

=
3.

2;
β

=
1.

0

C
oe

ffi
ci

en
tk

22

0.
10

0.
89

4
0.

91
6

1.
12

5
0.

87
6

0.
75

3
1.

32
7

1.
52

3
2.

43
3

1.
78

5
2.

99
1

4.
13

6

0.
35

0.
76

0
0.

77
1

0.
82

3
0.

73
0

0.
66

9
1.

09
5

1.
12

2
1.

71
6

0.
92

9
1.

20
4

2.
30

0

0.
60

0.
32

8
0.

36
6

0.
42

5
0.

47
7

0.
46

7
0.

64
3

0.
59

7
0.

80
8

0.
36

4
0.

55
3

0.
94

0

0.
85

0.
14

5
0.

19
2

0.
28

2
0.

36
7

0.
37

0
0.

46
3

0.
42

0
0.

55
8

0.
23

3
0.

46
9

0.
70

6

1 .
10

0.
07

3
0.

12
2

0.
23

2
0.

32
0

0.
32

6
0.

39
5

0.
36

1
0.

50
0

0.
20

7
0.

48
6

0.
69

8

1.
35

0.
04

5
0.

09
4

0.
21

5
0.

30
0

0.
30

5
0.

37
1

0.
34

5
0.

50
0

0.
21

4
0.

52
5

0.
74

1

C
oe

ffi
ci

en
tk

23

0.
10

0.
0

−0
.1

56
−0

.4
86

−0
.2

29
−0

.0
82

−0
.3

54
−0

.6
36

−0
.9

67
−0

.8
43

−1
.6

94
−1

.9
75

0.
35

−0
.1

77
−0

.5
81

−0
.2

69
−0

.0
98

−0
.4

34
−0

.7
44

−1
.1

02
−0

.8
59

−1
.4

83
−1

.9
76

0.
60

−0
.1

48
−0

.4
92

−0
.2

49
−0

.0
93

−0
.3

77
−0

.6
20

−0
.8

17
−0

.6
37

−1
.0

59
−1

.2
84

0.
85

−0
.1

33
−0

.4
28

−0
.2

32
−0

.0
88

−0
.3

29
−0

.5
38

−0
.6

54
−0

.5
36

−0
.9

03
−1

.0
07

1.
10

−0
.1

29
−0

.3
87

−0
.2

22
−0

.0
84

−0
.2

95
−0

.4
90

− 0
.5

65
−0

.4
90

−0
.8

40
−0

.8
87

1.
35

−0
.1

28
−0

.3
62

−0
.2

15
−0

.0
82

−0
.2

71
−0

.4
59

−0
.5

15
−0

.4
70

−0
.8

15
−0

.8
33

co
nt

in
ue

d
on

ne
xt

pa
ge



194 5 Added Masses of Bodies Moving Close to a Free Surface

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

24

0.
10

0.
05

3
0.

07
9

0.
18

5
0.

15
2

0.
12

0
0.

00
4

0.
03

0
−0

.4
38

−0
.0

93
−0

.5
11

−1
.4

22

0.
35

0.
01

4
0.

03
9

0.
13

2
0.

11
7

0.
10

3
−0

.0
08

0.
01

8
−0

.2
96

−0
.0

56
−0

.0
98

−0
.6

35

0.
60

−0
.0

18
−0

.0
06

0.
07

0
0.

05
0

0.
05

2
−0

.0
36

−0
.0

12
−0

.1
49

−0
.0

25
−0

.0
01

−0
.1

90

0.
85

−0
.0

17
−0

.0
14

0.
05

2
0.

01
8

0.
02

5
−0

.0
48

−0
.0

22
−0

.1
13

−0
.0

16
−0

.0
16

−0
.1

51

1.
10

−0
.0

08
−0

.0
11

0.
04

7
0.

00
4

0.
01

0
−0

.0
53

−0
.0

27
−0

.1
11

−0
.0

16
−0

.0
48

−0
.1

90

1.
35

0.
00

0
−0

.0
08

0.
04

5
−0

.0
04

0.
00

2
−0

.0
55

−0
.0

31
−0

.1
19

−0
.0

19
−0

.0
81

−0
.2

42

C
oe

ffi
ci

en
tk

33

0.
10

1.
70

6
1.

70
5

1.
95

4
1.

47
3

1.
18

1
1.

50
1

1.
97

9
2.

13
5

2.
23

7
2.

90
6

3.
13

4

0.
35

1.
10

0
1.

07
7

1.
28

4
0.

85
4

0.
64

5
0.

86
7

1.
28

1
1.

46
0

1.
66

0
2.

30
4

2.
45

2

0.
60

1.
09

6
1.

04
7

1.
22

0
0.

75
1

0.
54

0
0.

70
7

1.
19

0
1.

34
7

1.
64

9
2.

16
9

2.
19

1

0.
85

1.
17

8
1.

11
2

1.
23

9
0.

73
7

0.
51

3
0.

76
4

1.
19

3
1.

32
9

1.
71

5
2.

16
3

2.
11

0

1 .
10

1.
26

3
1.

18
8

1.
27

5
0.

74
9

0.
51

2
0.

78
2

1.
22

1
1.

34
0

1.
78

5
2.

18
8

2.
09

4

1.
35

1.
33

2
1.

25
4

1.
31

1
0.

77
0

0.
52

0
0.

80
6

1.
25

2
1.

35
9

1.
84

5
2.

22
1

2.
10

3

co
nt

in
ue

d
on

ne
xt

pa
ge



5.5 Added Masses of a Shipframe in Case of Hull Vibration on an Undisturbed Free Surface 195

Ta
bl

e
5.

2
(c

on
tin

ue
d)

ξ
α

n
=

40
°

30
°

20
°

10
°

α
=

0°
10

°
20

°
30

°
40

°
40

°
30

°
20

°
20

°
30

°
40

°

C
oe

ffi
ci

en
tk

34

0.
10

0.
0

−0
.0

11
−0

.1
70

0.
00

6
0.

13
6

0.
03

5
−0

.1
50

0.
04

0
−0

.1
03

−0
.0

76
0.

32
6

0.
35

0.
01

3
0.

02
4

0.
00

8
0.

07
2

0.
05

3
0.

00
8

0.
25

7
0.

15
5

0.
32

8
0.

76
3

0.
60

0.
02

6
0.

05
3

0.
03

0
0.

06
5

0.
08

3
0.

08
1

0.
29

2
0.

21
0

0.
36

2
0.

66
1

0.
85

0.
03

0
0.

09
0

0.
04

6
0.

06
7

0.
10

4
0.

11
6

0.
30

2
0.

21
1

0.
36

4
0.

62
2

1.
10

0.
02

8
0.

10
6

0.
05

6
0.

07
0

0.
11

9
0.

13
2

0.
30

6
0.

19
9

0.
35

9
0.

60
7

1.
35

0.
02

6
0.

11
3

0.
06

3
0.

07
4

0.
12

9
0.

14
0

0.
30

6
0.

18
3

0.
35

4
0.

60
3

C
oe

ffi
ci

en
tk

44

0.
10

0.
12

8
0.

12
8

0.
26

4
0.

11
8

0.
08

5
0.

11
3

0.
27

4
0.

50
0

0.
45

6
1.

19
2

1.
79

1

0.
35

0.
12

3
0.

12
1

0.
22

8
0.

11
0

0.
07

6
0.

11
5

0.
24

7
0.

43
7

0.
37

5
0.

84
6

1.
24

6

0.
60

0.
12

2
0.

11
6

0.
19

6
0.

09
2

0.
06

3
0.

11
2

0.
22

3
0.

38
0

0.
32

6
0.

69
8

0.
96

2

0.
85

0.
12

3
0.

11
6

0.
17

9
0.

08
2

0.
05

6
0.

11
0

0.
20

6
0.

34
9

0.
30

1
0.

64
0

0.
87

9

1 .
10

0.
12

4
0.

11
7

0.
16

8
0.

07
7

0.
05

1
0.

10
8

0.
19

5
0.

33
1

0.
29

1
0.

62
0

0.
85

8

1.
35

0.
12

4
0.

11
0.

16
1

0.
07

4
0.

04
9

0.
10

5
0.

18
7

0.
32

2
0.

28
9

0.
61

8
0.

86
2



196 5 Added Masses of Bodies Moving Close to a Free Surface

Fig. 5.22 Coordinate axes
and notations for inclined
ship frame

For three types of bulb-shaped shipframes considered in Sect. 2.4 (see Fig. 2.50)
they proposed the following formulas:

Type I: λ22 0 = π

2
ρb2

s ;

Type II: λ22 0 = πρb2
s

(

1 − b2
s

2H 2
s

)

;

Type III: λ22 0 = π

2
ρb2

s 2.

Under torsional oscillations of a hull vibrating on a free surface, the added mo-
ment of inertia of shipframe with respect to the x-axis (which is directed along
the axis of the ship and lies in the plane of waterline) can be found from formula
λ44 = 0.5λ∗

44, where λ∗
44 is the added moment of inertia of a duplicated contour

under rotation around the same axis in an infinite fluid. If coefficients in the Lau-
rent series of the function mapping the exterior of the contour to the interior of the
unit disc are known, then λ∗

44 can be found using Sedov’s formulas [206], given in
Chap. 2.

For shipframes shown in Fig. 2.45 and Fig. 2.46 the following formulas are due
to Dorofeuk. For the coefficient k44 we have:

k44 = ctor = λ44

(π/16)ρT 4(B2/4T 2 − 1)2
(5.25)

where the variable in the denominator is equal to the added moment of inertia of
the half-ellipse with half-axes B/2 and T . Variables k44 are given in Table 2.3.
In computation of λ44 one can also use the formula given in Sect. 2.4, and Fig. 2.39.
Suppose one needs to compute the added moment of inertia λ44 1 with respect to the
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axis x1, which is also contained in the centerline plane of the hull but shifted by z0

(which could be either positive or negative) with respect to the waterline. Then one
has to use the transformation formulas (see Chap. 1), which imply

λ44 1 = λ44 + z2
0λ22 0 + 2z0λ24 0,

where λ22 0 is defined by the formula (5.24), and

λ24 0 = 1

3
ρT 3

(
B2

4T 2
− 1

)

k24 0. (5.26)

The coefficients k24 0, which are also typically denoted in computations of vibrations
by cincl (from “inclination”), are presented in Tables 2.3 and 2.4.

For B/2T = 1 instead of formulas (5.25), (5.26) one has to use the relations

λ44 = k442πρT 4, λ24 0 = k24 0
8ρT 3

105
,

where k44 and k24 0 are shown in Table 2.3.
On the basis of results discussed above one can find the functions cv =

k33(β,B/2T ) and ch = k22 0(β,B/2T ), shown in Fig. 2.49.
Approximate analytical formulas for coefficients k44 = ctor and k24 0 = cincl, ob-

tained by Ivanjuta and Boyanovsky, have the following form:

k44 ≡ ctor = (1 + a3)
2 + 2(a3/a1)

2

(1 + a3)2
;

k24 0 ≡ cincl = 1

35

7(5 − 5a1 + 9a3) a1(1 + a3) + 2a3(7 − 7a1 − 45a3)

a1(1 + a3)(1 − a1 + a3)
.

Here

a1 = 1 − 2T/B

1 + 2T/B
(1 + a3);

a3 = 1 − 2k33 − 2T/B + (1 + 2T/B)
√

4k33 − 3

2(k33 − 1 − 2T/B − 4T 2/B2)
,

where k33 is defined by formulas (2.27), (2.28).
To evaluate the influence of the depth of water on added mass λ33 for various

shapes of shipframe, one can use the experimental data by Prohasky [200] obtained
by the method of small oscillations. In Fig. 5.23 we show graphs of coefficient k33 =
8λ33/πρB2, where B is the width of shipframe measured at the level of waterline,
on parameters h/T (h is the depth of water, T is the draught of the shipframe),
β is the area coefficient of the shipframe. The curves presented in Fig. 5.23 are
enumerated according to the numbers of shipframes shown in the same figure.
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Fig. 5.23 Dependence of coefficient k33 of various shipframes on the depth of water

5.6 Influence of a Free Surface on Added Masses of Submerged
Cylinders and Ellipsoids

A body moving under the free surface of a fluid generates surface waves. However,
in some cases like motion with high velocity or acceleration, high frequency oscil-
lation of the body, motion starting from rest under the impact etc., the surface waves
can be neglected. Physically this corresponds to assuming that gravity forces can be
neglected in comparison with inertial forces.

In this section added masses of a body moving under the free surface are deter-
mined under the following conditions:

• Velocity potential satisfies Laplace equation

Δϕ = 0. (5.27)

• On a free surface the following boundary condition is satisfied:

ϕ = 0. (5.28)

• At infinity the fluid remains at rest:

gradϕ|∞ = 0. (5.29)
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• On the surface of the body

∂ϕ

∂n
= un, (5.30)

where un is the normal component of velocity of a point of the surface of the
body.

Conditions (5.27)–(5.30) completely determine the function ϕ(x, y, z).

5.6.1 Completely Submerged Sphere

Added mass of a sphere under horizontal motion along the x-axis under a free sur-
face is expressed by the formula [191]:

λ11 = 4

3
πr3ρk11,

where

k11 = 1

2

1 − δ3/8

1 + δ3/16
,

δ = r/h; r is the radius of the sphere; h is the distance from the center of the sphere
to the free surface.

Under vertical motion (i.e. motion along z-axis) of a sphere under free surface
the added mass is given by approximate formula

λ33 = 4

3
πr3ρk33,

where

k33 = 1

2

1 − δ3/4

1 + δ3/8
.

A more precise formula has the form [192]:

k33 = 1

2

(

1 − 3

23
δ3 + 3

26
δ6 + 9

28
δ8 − 3

29
δ9 + 9

29
δ10 − 9

210
δ11 + · · ·

)

.

Experimental data on added masses of sphere and disc which oscillate in the
vertical direction under a free water surface are shown in Fig. 5.24, see [183].

For a sphere oscillating under the free surface of a fluid of infinite depth the
dependence of the added masses λ11 and λ33 on oscillation frequencies is studied in
[211, 244] for various immersion depths.
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Fig. 5.24 Coefficient λ33/λ33∞ of added masses of a sphere (above) and a disc (below) oscillating
in the vertical direction near the free surface

5.6.2 Circular Cylinder

Added mass per unit of length of the circular cylinder whose axis (y) is parallel to
the free surface, is given by the formula [183]:

λ11 = λ33 = πr2ρk11 = πr2ρk33,

where

k11 = k33 = 1 − δ2/4

1 + δ2/4
;

δ = r/h; r is the radius of the cylinder; h is the distance from the axis of the cylinder
to the free surface.
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A more precise formula has the form

k11 = k33 = 1 − δ2/2 + δ4

23
+ δ6

25
− 3

δ10

29
− 9

δ12

211
+ · · · .

Dependence of added masses of an oscillating cylinder on the immersion depth
h are given in [87] in the limiting cases of high-frequency and low-frequency os-
cillations. Dependence of added masses of a completely immersed cylinder on the
frequency of oscillations is given in [53, 87]. A distinctive feature of a circular
cylinder completely immersed under the free surface of an infinitely deep fluid is
the equality λ11 = λ33 and vanishing of all other entries of the matrix of added
masses. For h/r < 1.125 the added masses λ11 and λ33 of an oscillating cylinder
are negative in certain intervals of frequencies; explanations of this phenomenon are
given in [147].

Dependence of the added masses λ11 and λ33 on the frequency of oscillations of
an immersed cylinder of square section are given in [53].

Dependence of λ11 and λ33 of a system of two identical circular cylinders com-
pletely immersed under the surface of an infinitely deep fluid was studied in [42].
The author considered two cases: when the centers of the cylinders are situated on
a horizontal line, and when the cases are situated on a vertical line.

5.6.3 Ellipsoid of Revolution

Let an ellipsoid of revolution be fully submerged in water such that its long axis is
parallel to the free surface. The x-axis is chosen to coincide with the long axis of
the ellipsoid; the z-axis is orthogonal to free surface and directed downwards; the y

axis is parallel to free surface. Half-axes of the ellipsoid are denoted by a and b; the
distance of the axis of the ellipsoid to the free surface is denoted by h.

Added masses of the ellipsoid are given by the formulas [192]:

λ11 = 4

3
πab2ρk11

(
a

b
,
h

b

)

, λ22 = 4

3
πab2ρk22

(
a

b
,
h

b

)

,

λ33 = 4

3
πab2ρk33

(
a

b
,
h

b

)

, λ66 = 4

15
πa(a2 + b2)ab2ρk66

(
a

b
,
h

b

)

.

Coefficients kii(a/b,h/b) are shown in Fig. 5.25. Dashed curves correspond to
exact values of coefficients of added masses for the sphere (a/b = 1) and the infinite
circular cylinder (a/b = ∞).

For an oscillating completely immersed ellipsoid of revolution the dependence
of all coefficients of added masses on the oscillation frequency was studied in [254]
for different ratios of axes of the ellipsoid and different distances to the free surface
(the fluid was assumed infinitely deep).
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Fig. 5.25 Coefficients of added masses of an ellipsoid of revolution submerged in water
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5.6.4 Elliptic Cylinder

Let an elliptic cylinder be submerged in water such that the large axis of its cross-
section is parallel to the free surface and coincides with the x-axis. The smaller
axis (coinciding with the y-axis) is orthogonal to the free surface; it is directed
downwards.

Assuming that the Froude numbers are large [194], the added masses of elliptic
cylinder are given by the formulas:

λ11 = ρπab
(1 − η−2)1/2 − (1 − e2)1/2

(1 − e2)−1/2 − (1 − η−2)1/2
:= k11ρπab;

λ22 = ρπab
(1 − e2)−1/2 + (1 − η2)1/2 − 2

2 − (1 − e2)1/2 − (1 − η−2)1/2
:= k22ρπab;

λ66 = 1

4
ρπab

(

a2 + b2)

× e2

2 − e2

(1 − e2)−1/2[1 − (1 − e2)1/2]2 − 2[1 − (1 − η−2)1/2]2

2e−2[1 − (1 − e2)1/2]2 + 2[1 − (1 − η−2)1/2]2

:= 1

4
ρπab

(

a2 + b2)k66.

Here e2 = 1 − (b/a)2, η = [1 + 4h2/(a2 − b2)]1/2; a is the long semi-axis of
the cross-section of the cylinder; b is the short semi-axis; h is the distance of the
large semi-axis from the free surface. In Fig. 5.26 we show graphs of coefficients
k11 = k11(a/b, b/h), k22 = k22(a/b, b/h), k66 = k66(a/b, b/h).

5.6.5 Three-Axial Ellipsoid Moving under a Free Surface

The added mass λ11 = k11(4/3)ρπabc of the three-axial ellipsoid with half-axes
a > b > c in the case of a motion close to the water surface for large Froude numbers
can be determined by the method due to Bloch and Ginevsky [30].

In Fig. 5.27 we show the graph of function k11(h/b, c/b) for an ellipsoid with the
ratio a/b = 5. The position of the ellipsoid is such that the semi-axis a (coinciding
with the x-axis) is parallel to the free surface; the semi-axis c is either orthogonal to
the free surface (the left half of the graph) or parallel to the surface (the right half of
the graph).

5.7 Added Masses of Simplest Bodies Floating on a Water
Surface

Consider a body floating on a water surface. The xOy coordinate plane is assumed
to coincide with the water surface; the Oz axis is directed downwards. The motion
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Fig. 5.26 Coefficients of added masses of a submerged elliptic cylinder

of an ideal non-compressible fluid is assumed to be potential. The potential of ve-
locities ϕ satisfies the Laplace equation and the following boundary conditions (see
Sect. 5.1): on a free surface ϕ = 0; on the part of the surface of the body which is
immersed in water ∂ϕ/∂n = vn, where vn is the projection of velocity of a point of
the body surface to the normal (to the body surface); ∂ϕ/∂n equals the projection of
velocity of fluid particles to the same normal. Notice that the same problem corre-
sponds to vibration of a body on a free surface. If the fluid is bounded by hard walls,
then on these walls the water-tightness condition ∂ϕ/∂n = 0 should be fulfilled.

The first boundary condition leads to formulas (5.20), which are applicable if the
duplicated body either moves after impact along the Oz axis or rotates around some
horizontal axis. Therefore, under a vertical impact, the motion of the duplicated
body in an infinite fluid generates in the half-space z > 0 the same velocities as the
original body floating on a free surface of fluid of infinite depth. Therefore, in this
case the added masses of a floating body are equal to 1/2 of the corresponding added
masses of the duplicated body floating in an infinite fluid. In the presence of hard
walls, the problem of computation of added masses becomes more complicated.
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Fig. 5.27 The coefficient of the added mass k11 = 3λ11/(4πρabc) of a three-axial ellipsoid sub-
merged close to the free surface

The same formulas (5.20) show that the motion of a floating body under horizon-
tal impact can not be described via the motion of a duplicated model moving as a
whole in an infinite fluid. In that case one has to consider a model where the mirror
image of a body moves along a free surface in the direction which is opposite to the
direction of motion of the body itself.

Physically it can be explained by the fact that under motion in the horizontal
plane close to a free surface the pressure (additional to normal air pressure) vanishes
during the whole motion. Thus, the pressure at waterline arising due to the body
motion is absent, while at motion of the duplicated body in an infinite fluid the
pressure at the body surface in the waterplane is maximal. On the other hand, under
a vertical impact the difference in stress at waterline upon a floating body and its
duplicated model does not take place.

5.7.1 Elliptic Cylinder, Circular Cylinder, Wedge and Plate
Floating on the Surface of an Unlimited Fluid

Under vertical impact added masses of elliptic contour half-immersed in fluid are
given by [206]:

λ33 = 1

2
ρπa2, λ44 = ρπ

16

(

a2 − b2)2
, (5.31)

where a is the horizontal semi-axis, b is the vertical semi-axis. The origin is placed
at the geometric center of the ellipse.
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Fig. 5.28 Coordinate axes
and notations for a floating
cylinder

For a circular cylinder of radius a we get from formulas (5.31): λ33 = ρπa2/2,
λ44 = 0. For a flat plate of width 2a placed at the water surface we get from the
same formulas:

λ33 = 1

2
ρπa2, λ44 = 1

16
ρπa4.

If a circular cylinder of radius R is floating on a surface of an infinite fluid, being
immersed to depth H (Fig. 5.28), then its added mass per unit of length is expressed
by the following formula [67]:

λ33 = ρR2
[

π sin2 α

6k2

(

1 + 2k2) − α + 1

2
sin 2α

]

,

where α is 1/2 of the angle of the immersed arc of the circle; k = 1 − α/π ; h =
R(1 − cosα).

If the cylinder is completely immersed (α = π , H = 2R, k = 0) then

λ33 = πρR2
(

π2

6
− 1

)

.

Half-immersed cylinder (α = π/2, k = 0.5) has added mass λ33 = 0.5πR2ρ.
Dependence of the added masses λ11 and λ33 on the oscillation frequency of

a floating cylinder for different values of α are given in [53, 87]. Typically in the
range of low frequencies the added mass λ33 logarithmically grows with frequency.
The added mass λ11 is negative in certain ranges of frequencies for α > 2π/3 (in
contrast to a completely submerged cylinder, the added masses λ11 and λ33 do not
coincide for a floating cylinder).

Added mass of a wedge (Fig. 5.29) under vertical impact is equal to 1/2 of added
mass of the rhombus corresponding to the immersed part of the wedge; it is defined
by the formula

λ33 = ρl2

2

[
Γ (3/2 − β/π)Γ (β/π)

Γ (β/π + 1/2)Γ (1 − β/π)
− 1

]

sin 2β,

where l is the length of the immersed side of the wedge; Γ (x) is the gamma-
function; β is the angle between planes of the wedge and free surface.
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Fig. 5.29 Coordinate axes
and notations in the problem
of vertical impact of a wedge

The coefficient of added mass k33 = λ33/(0.5ρπl2 cos2 β) as a function of tanβ

is represented in Fig. 2.26 by curve II (for rhombus d/b = tanβ).
For angles β between 0 and 45° the formula for added mass of a wedge can be

written in simplified form [224]:

λ33 = ρhπ3

8

(

1 − β

π

)

cotβ,

where h is the depth of immersion of the tip of the wedge. This formula takes into
account the increase of the level of a free surface near the faces of the wedge under
a vertical motion.

Dependence of λ11 and λ33 on frequency for an oscillating floating wedge with
β = π/3 is obtained in [155]. The theoretical results agree well with experiment
[243].

Under a vertical impact of two plates floating horizontally on a free surface
(Fig. 5.30) their added mass is determined via formula [88]

λ33 = ρπ

(
b2 + a2

2
− c2

)

,

where c2 is the ratio of two elliptic integrals:

c2 =
[∫ b

a

x2 dx

(x2 − a2)(b2 − x2)

][∫ b

a

dx

(x2 − a2)(b2 − x2)

]−1

.

Fig. 5.30 Coordinate axes
and notations in the problem
of vertical impact of two
plates



208 5 Added Masses of Bodies Moving Close to a Free Surface

Fig. 5.31 Dependence of
coefficients k55 and k44 on
elongation of the plate b/a:
1—coefficient k44;
2—coefficient k55; circles (3)
correspond to experimental
data for k55

Added mass of a floating rectangular plate with sides a and b under vertical
impact can be computed via the Pabst formula:

λ33 = π

8
ρ

a2b2

√
a2 + b2

(

1 − 0,425
ab

a2 + b2

)

.

Some corrections to this formula were found in [226]. In the same paper the
added moments of inertia of a plate under rotation at the moment of impact around
the “short” symmetry axis y were found:

λ55 = πρ

16
a2b2k55,

as well as around the “long” symmetry axis x:

λ44 = πρ

16
ab3k44.

In these formulas the sides of the plate are equal to 2a and 2b along the axes x and y,
respectively. In Fig. 5.31 we show the dependence of coefficients k55 (curve 1) and
k44 (curve 2) on the elongation of the plate b/a. Points 3 correspond to experimental
data for coefficient k55.
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5.7.2 Sphere and Ellipsoid of Revolution Floating on the Surface
of a Fluid of Unlimited Depth

The problem of finding added masses of a half-immersed ellipsoid of revolution (in
particular, a sphere) was solved by Bloch [28, 29].

We introduce a coefficient equal to the ratio of an added mass of a half-immersed
sphere to a mass of water contained in a submerged part of the sphere. Under bound-
ary condition ϕ = 0 on a free surface (inertial forces under impact significantly ex-
ceed the gravity forces, thus the fluid can be assumed to be massless) we have:

λ11 = k11
2

3
πa3ρ; k11 = 0.273224; λ22 = λ11;

λ33 = k33
2

3
πa3ρ; k33 = 0.5

where a is the radius of the sphere (Fig. 5.32). We observe that the coefficient of
added mass of a floating hemisphere in the horizontal direction is essentially lower
than the same coefficient (equal to 0.5) in the case of an infinite fluid.

If we impose the boundary condition ∂ϕ/∂z on the free surface (the inertial forces
in this case are assumed to be negligible in comparison with gravity forces, which
corresponds to ultra-heavy fluid) we have:

λ11 = k11
2π

3
a3ρ; k11 = 0.5; λ22 = λ11;

λ33 = k33
2π

3
a3ρ; k33 = 0.8308.

In this case the coefficient k33 is higher than the corresponding coefficient of
added mass of a hemisphere in an infinite fluid.

In [27–29] there were considered two positions of an ellipsoid of revolution on
the free surface: in the first case its axis of rotation is orthogonal to free surface; in
the second case the axis of rotation lies in the plane of free surface (Fig. 5.33).

Added masses of the vertical ellipsoid of revolution are given by

λ11 = λ22 = k11
2π

3
ab2ρ, λ33 = k33

2π

3
ab2ρ;

Fig. 5.32 Coordinate system
for a floating sphere
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Fig. 5.33 Coordinate system for ellipsoid of revolution floating vertically (a) and horizontally (b)

Fig. 5.34 Coefficients of
added masses of vertically
floating ellipsoid of
revolution as functions of
parameter n = 1/(1 + a/b)

λ44 = λ55 = k44
2π

15
ab2(a2 + b2)ρ, λ66 = 0,

where coefficients kii were computed by Bloch (Fig. 5.34). Continuous curves cor-
respond to solution of the problem with boundary condition ∂ϕ/∂z|z=0 = 0; dashed
curves correspond to the boundary condition ϕ|z=0 = 0.

Analogous coefficients of added masses of a horizontal ellipsoid for two bound-
ary conditions are also shown in Fig. 5.35. Notice that added masses of completely
immersed bodies (see Sect. 5.6) computed under condition ϕ|z=0 = 0 on a free sur-
face can be considered as added masses of corresponding bodies under impact.

Added masses under a vertical impact of the axially symmetric body obtained
by rotation of a circle arc around a line connecting the endpoints of the arc, were
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Fig. 5.35 Coefficients of added masses of a horizontally floating ellipsoid of revolution as func-
tions of parameter n = b/(a + b)

Fig. 5.36 Coordinate system for a body of revolution floating on a free surface

computed by Norkin [160–162]. The body is half-immersed in a fluid of infinite
depth (Fig. 5.36). The radius of the circle is denoted by a; the distance from the
center of the arc to the axis of the rotation is denoted by b. The direction of vertical
impact can in general be shifted from the axis of rotation by x0. Therefore, besides
the vertical shift along the z-axis there can also be present a rotation around the
y-axis orthogonal to the xOz plane. In [160] there were obtained added masses
λ33 = k33(b/a)ρa3 and λ55 = k55(b/a)ρa5. Coefficients k33(b/a) and k55(b/a) are
shown in Table 5.3.

The linear velocity v after impact is related to the angular velocity ω by relation
λ33vx0 = λ55ω.

Added masses of an ellipsoid of revolution floating on a free surface such that its
axis of rotation is orthogonal to the free surface, and its geometric center is situated
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Table 5.3 Coefficients k33 and k55

b/a k33 k55 b/a k33 k55

−0.7 0.022 0.003 0.3 2.456 0.067

−0.5 0.112 0.009 0.5 3.919 0.288

−0.3 0.331 0.009 0.7 5.914 0.827

−0.1 0.745 0.002 0.8 7.145 1.282

0.0 π/3 0 0.9 8.553 1.903

0.1 1.426 0.004 1.0 10.158 2.728

Fig. 5.37 Coordinate system for vertical floating ellipsoid of revolution (a) and vertical circular
cylinder (b)

at distance h from the free surface (Fig. 5.37a), are computed in [14]. Boundary
conditions on the free surface are assumed to be ∂ϕ/∂z = 0. The z-axis is directed
along the rotation axis; the x-axis is parallel to the water surface. The length of
the ellipsoid along the z-axis is denoted by 2b; the radius of maximal section is a.
Coefficients of added masses

k33 = λ33

ρV
; k55 = λ55

ρV a2
; k15 = λ15

ρV a
,

where V is the volume of the submerged part of the ellipsoid, are given in Table 5.4.
Coefficients k33, k55, k15 were also computed in the same paper [14] for the

case of a circular cylinder of radius a vertically submerged in fluid to depth h

(Fig. 5.37b). Values of these coefficients divided by the volume of the submerged
part and radius of the cylinder are shown in Table 5.5.
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Table 5.4 Added masses of floating ellipsoid of revolution for different distances from its geomet-
ric center to free surface

h/b b/a = 0.5 b/a = 1.0 b/a = 2.0

k33 k55 k51 k33 k55 k51 k33 k55 k51

−0.5 0.915 0.064 0.059 0.392 0.153 0.309 0.157 1.180 0.900

−0.4 1.037 0.045 0.001 0.439 0.094 0.238 0.173 0.932 0.789

−0.3 1.212 0.043 −0.055 0.508 0.051 0.171 0.198 0.720 0.683

−0.2 1.433 0.057 −0.102 0.600 0.021 0.108 0.231 0.541 0.581

−0.1 1.697 0.082 −0.143 0.701 0.005 0.051 0.273 0.393 0.483

0 2.005 0.117 −0.177 0.836 0.000 0.000 0.323 0.272 0.391

0.1 2.364 0.157 −0.204 0.991 0.005 −0.049 0.385 0.177 0.303

0.2 2.781 0.201 −0.224 1.176 0.018 −0.090 0.459 0.106 0.221

0.3 3.274 0.244 −0.238 1.398 0.038 −0.124 0.551 0.056 0.145

0.4 3.867 0.284 −0.245 1.671 0.061 −0.152 0.667 0.024 0.075

0.5 4.605 0.318 −0.244 2.018 0.086 −0.171 0.816 0.010 0.013

Table 5.5 Coefficients of added masses of a floating vertical cylinder

h/a k33 k55 k51 h/a k33 k55 k51

0.1 8.725 0.762 −0.150 1.5 0.464 0.332 0.416

0.7 3.894 0.353 −0.107 2.0 0.340 0.663 0.629

0.4 1.885 0.153 −0.031 4.0 0.162 3.449 1.526

0.6 1.277 0.104 0.045 6.0 0.102 8.585 2.469

0.8 0.904 0.105 0.124 8.0 0.075 16.215 3.372

1.0 0.714 0.139 0.205 10.0 0.057 26.160 4.292

5.7.3 Elliptic Cylinder and Plate Floating on a Water Surface near
Hard Walls

Consider an elliptic cylinder floating on the free surface of a fluid filling a cylindrical
channel whose section also has an elliptic shape (Fig. 5.38), and, moreover, the
focuses of both ellipses coincide. In this case the added masses are determined in
[43, 73, 76, 81, 149, 168, 174, 176, 190].

We introduce the added mass λ33∞ = 0.5ρπa2 corresponding to the same cylin-
der on the free surface of a fluid filling the whole lower half-space. Dependence of
λ33/λ33∞ on the ratio a/b of axes of the ellipse and the ratio a/A, where A is the
maximal depth of the channel, is shown in Fig. 5.38.
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Fig. 5.38 Coefficients of added masses of an elliptic cylinder floating in a cylindrical channel
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Under boundary condition ϕ = 0 on the free surface, the formula for added mass
λ33 has the form

λ33 = πρa2

2

1 − b
a

√

1 − (1 − b2

a2 ) a2

A2
√

1 − (1 − b2

a2 ) a2

A2 − b
a

. (5.32)

The added mass λ44 of an ellipse in a confocal channel under an impact (bound-
ary condition ϕ = 0 on the free surface) is defined by the formula

λ44 = πρ

16

(

a2 − b2)2coth
[

2(α2 − α1)
]

, (5.33)

where α1 and α2 depend on the sizes of the channel and ellipse:

coshα1 = a√
a2 − b2

, coshα2 = A√
a2 − b2

.

In [190] there were also defined the following added masses under the same
boundary condition ϕ = 0:

λ22 = 16

π
ρb2

s
∑

n=1

n

(4n2 − 1)2
coth

[

2n(α2 − α1)
]; (5.34)

λ24 = 1

3
ρb

(

a2 − b2) coth
[

2(α2 − α1)
]

. (5.35)

Taking in these formulas the limit α2 → ∞, one can get the formulas for added
masses of an elliptic cylinder floating on a free surface of fluid filling the lower
half-space:

λ22∞ = 2

π
ρb2; λ33∞ = 0.5ρπa2;

λ24∞ = 1

3
ρb

(

a2 − b2); λ44∞ = 1

16
πρ

(

a2 − b2)2
. (5.36)

Graphs of functions λ22/λ22∞ = f (a/A,b/a), λ44/λ44∞ = f1(a/A,b/a) are
shown in Fig. 5.39. Choosing in (5.32)–(5.35) b = 0 we get expressions for added
masses of the plate of width 2a floating in elliptic channel:

λ22 = λ24 = 0, λ33 = 0.5
πρa2

√

1 − a2/A2
;

λ44 = π

16
ρa4coth 2α2. (5.37)

If the fluid fills the whole half-space, one gets from the formulas (5.37) in the
limit A → ∞, α2 → ∞:

λ33∞ = 0.5πρa2; λ44∞ = π

16
ρa4.
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Fig. 5.39 Coefficients of added masses of an elliptic cylinder floating in a cylindrical channel

Choosing in the formulas (5.32)–(5.35) a = 0, we get added masses of a vertical
plate immersed to depth b in the channel of an elliptic section:

λ22 = 16

π
ρb2

∞
∑

n=1

n

(4n2 − 1)
2 coth(2nα2);

λ33 = 0;
λ24 = −1

3
ρb3coth 2α2; λ44 = π

16
ρb4coth 2α2. (5.38)

When the fluid fills the whole half-space (α2 → ∞), formulas (5.38) take the
form

λ22∞ = 2

π
ρb2; λ33∞ = 0; λ24∞ = 1

3
ρb3; λ44∞ = 1

16
ρπb4.

Formulas (5.32)–(5.35) allow us to get added masses of the circular cylinder of
radius a floating in the concentric channel of radius R:

λ24 = λ44 = 0; λ22 = 16

π
ρa2

∞
∑

n=1

n

(4n2 − 1)2

R4n + a4n

R4n − a4n
.

The value of the added mass λ33 for the circular cylinder is given in Sect. 5.7.4.
It is interesting to compare the added mass of a half-submerged ellipse floating

on the surface of a fluid of infinite depth under horizontal impact, and an analogous
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added mass of the same ellipse moving in an infinite fluid. Denote a half of the added
mass of an ellipse immersed in an infinite fluid by λ22∞ = πρb2/2 and compute
the coefficient k = λ22/λ22∞ = 4/π2. This coefficient is approximately equal to
0.40528; it shows how much the added mass of a contour moving in a horizontal
direction decreases when the contour moves near a free surface in comparison with
the motion in an infinite fluid.

For the circular cylinder of radius a we get from formulas (5.36):

λ22 = 2

π
ρa2; λ24 = 0.

The added masses of an elliptic cylinder floating in a confocal elliptic chan-
nel half-filled by ultra-heavy fluid (very small Froude numbers) were considered in
[190]. The boundary condition on a free surface was taken to be ∂ϕ/∂z = 0.

Formulas for added masses are written as follows:

λ22 = 0.5πρb2coth(α2 − α1);
λ24 = 2

3
ρb

(

a2 − b2)coth(α2 − α1);

λ44 = 8

π
ρ
(

a2 − b2)2
∞
∑

n=0

coth[(2n + 1)(α2 − α1)]
(2n + 1)(2n − 1)2(2n + 3)2

. (5.39)

Taking in formulas (5.39) the limit α2 → ∞, we get added masses of an elliptic
cylinder half-submerged in an ultra-heavy fluid:

λ22∞ = 0.5ρπb2; λ24∞ = 2

3
ρb

(

a2 − b2);

λ44∞ = ρ

π

(

a2 − b2)2
.

In Fig. 5.40 we present the dependencies

λ44

λ44∞
= 8

∞
∑

n=0

coth [(2n + 1)(α2 − α1)]
(2n + 1)(2n − 1)2(2n + 3)2

= f

(
a

A
,
b

a

)

.

Notice that the added mass λ33 is absent in formulas (5.39). This is due to the
fact that in incompressible fluid potential ϕ3, corresponding to vertical motion of an
ellipse in an elliptic channel, does not exist under boundary condition ∂ϕ/∂z on free
surface (i.e., the corresponding boundary value problem for the Laplace equation is
unsolvable).

Choosing in formulas (5.39) b = 0, we find added masses of a plate of width 2a

floating on the surface of an ultra-heavy fluid in an elliptic channel:

λ22 = λ24 = 0; λ44 = 8

π
ρa4

∞
∑

n=0

coth [(2n + 1)α2]
(2n + 1)(2n − 1)2(2n + 3)2

.
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Fig. 5.40 Added mass λ44 of
an elliptic cylinder floating in
an elliptic channel on the
surface of an ultra-heavy fluid
(boundary condition
∂ϕ/∂z = 0)

If the ultra-heavy fluid fills the whole lower half-space, we get from the previous
formula

λ44∞ = ρ

π
a4.

Formulas (5.39) allow us also to get added masses of the vertical plate immersed
to depth b in an ultra-heavy fluid filling an elliptic channel. For that purpose one
should assume in (5.39) α1 = a = 0:

λ22 = 0.5πρb2cothα2; λ24 = −2

3
ρb3cothα2;

λ44 = 8

π
ρb4

∞
∑

n=0

coth[(2n + 1)α2]
(2n + 1)(2n − 1)2(2n + 3)2

.

If the plate is immersed vertically to the ultra-heavy fluid filling the whole lower
half-space, then

λ22 = 0.5πρb2; λ24 = −2

3
ρb3; λ44 = ρ

π
b4.

On the basis of formulas (5.37) one can draw the graphs

2λ33

πρa2
= k33

(
a

A

)

; 16λ44

πρa4
= k44

(
a

A

)

shown in Fig. 5.41a.
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Fig. 5.41 Coefficients of added masses of horizontal (a) and vertical (b) plates in an elliptic chan-
nel

In Fig. 5.41b we show graphs of functions

k22(b/B) = πλ22

2ρb2
; k44(b/B) = 16λ22

πρb4

found using formulas (5.38) for the case of a vertical plate immersed to depth b in a
channel having an elliptic section.

The added mass λ33 of a plate of width a floating horizontally on the surface of
a fluid filling a rectangular channel of width b and depth H under vertical impact is
shown by the graph of function f (a/b,H/b) = 8λ33/πρa2 in Fig. 5.41a [176].

For a plate of width 2a floating on a free surface of fluid of depth H the added
mass under vertical impact is defined by the graph k33(a/H) = 2λ33/πρa2 shown in
Fig. 5.42b. The problem of determining k33(a/H) was first considered by Keldysh
[113]. Work [176, 241] contains more precise numerical computations.

If a plate of width 2a is floating horizontally on free surface of fluid filling a
channel having section of half-circle of radius r , its added mass λ33 under vertical
impact is given by the following formula [93]:

k33 = 2λ33

πρa2
= 1 + 1

2
x + 1

4
x2 + 7

32
x3 + 5

32
x4 + 9

64
x5

+ 29

256
x6 + 851

8192
x7 + 727

8192
x8 + 1351

16384
x9 + 2389

32768
x10 + · · · ,

where x = (a/r)2.
The graph of function k33(a/r) found by a simpler method in the paper [176] is

shown in Fig. 5.43.
Consider the more general problem of computation of added mass of a plate of

width a floating non-symmetrically on the surface of a half-cylindrical channel of
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Fig. 5.42 Coefficient of added mass of a horizontal plate in a rectangular channel (left) and under
vertical impact in the case of finite depth of fluid (right)

Fig. 5.43 Coefficient of added mass of a plate in a cylindrical channel and coefficient of added
mass of a cylinder in a flat gap

radius r (Fig. 5.44). Values of the coefficient of added mass k33(a/r) = 8λ33/πρa2

are shown in Fig. 5.44. The same curve expresses dependence of coefficient of added
mass of width 2a floating symmetrically in a gap of width 2b (see Fig. 5.44). In this
case the coefficient k33 is defined as follows: k33(a/b) = 2λ33/πρa2.

Results of computation of the added mass of a plate floating in a channel of
rectangular section are given in the work [228].
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Fig. 5.44 Coefficient of added mass of a plate non-symmetrically floating in a cylindrical channel,
and also in a gap; the same coefficient for a cylinder floating near a plate

5.7.4 Circular Cylinder Floating on a Free Surface Close to Solid
Boundaries at Vertical Impact

The added mass λ33 of a circular cylinder of radius a which is symmetrically semi-
submerged in a channel which has the shape of a semi-circle of radius A, was com-
puted (under vertical impact) in [34, 261]. The graph of corresponding coefficients
is shown in Fig. 5.38 by a curve corresponding to the ratio of axes of the ellipse
a/b = 1. Here λ33∞ = ρπa2/2. The added mass of a circular cylinder of radius
r which is floating symmetrically in a gap of width 2b, is determined by a curve
shown in Fig. 5.43, where along the vertical axis we show the ratio 2λ33/πρr2.

For a cylinder of radius r floating near an edge of a plate situated on a water sur-
face, the added mass is determined by the curve shown in Fig. 5.44, where the verti-
cal axis corresponds to the ratio 2λ33/πρr2 (the distance from the axis of the cylin-
der to the edge of the plate is denoted by b). The added mass of a half-submerged
circular cylinder of radius r1 floating in a channel of half-cylindrical shape of radius
r2 is represented in Fig. 5.45a by function f (r1/r2, l/r2) := λ33/λ33∞; the distance
from the axis of the floating cylinder to the axis of the channel is denoted by l;
λ33∞ := ρπr2

1 /2.
For a half-submerged cylinder of radius r floating near a vertical wall such that

the distance from the center of the cylinder to the wall equals l, the added mass
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Fig. 5.45 Coefficient of added mass of a circular cylinder floating eccentrically in a channel of
half-cylindrical shape under vertical impact (left). The coefficient of the added mass of a circular
cylinder floating close to a vertical wall under a vertical impact (right)

Fig. 5.46 The added mass of a circular cylinder floating near another cylinder, under a vertical
impact (a). Coefficients of the added mass of a circular cylinder floating in fluid of a finite depth
under two different boundary conditions on free surface (b)

λ33 can be found from function f (r/ l) := λ33/λ33∞ shown in Fig. 5.45b, where
λ33∞ = 0.5ρπr2.

The added mass λ33 of a half-submerged cylinder of radius r floating on the
free surface near a half-submerged cylinder of radius R is given by the function
f (r/ l, r/R) := λ33/λ33∞ where λ33∞ = 0.5ρπr2; l is the distance between the
center of the first cylinder and the nearest point of the second cylinder.

Added masses of an oscillating half-submerged cylinder of radius a on the sur-
face of fluid of depth h were computed in [13] (Fig. 5.46b). The vertical oscillations
are assumed to be harmonic: z = z0 sin δt . In limiting cases δ → 0 (on a free sur-
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Fig. 5.47 Dependence of the coefficient of the added mass of a circular cylinder floating in the
fluid of finite depth, on the frequency of vertical oscillations (left). Circular cylinder floating in a
channel of rectangular section (right)

face one can assume the condition ∂ϕ/∂z = 0) and δ → ∞ (on free surface one
can assume the condition ϕ = 0) the functions f0(h/a) ≡ k33 0 := 2λ33 0/ρπa2 and
f1(h/a) ≡ k33∞ := 2λ33∞/ρπa2 where λ33 0 and λ33∞ are corresponding limits
of the added mass λ33, are shown in Fig. 5.46b. Moreover, for some values of h/a

there was computed the dependence of coefficient k33 := 2λ33/ρπaa on dimension-
less frequency of oscillations (Fig. 5.47).

Dependence of λ33 on frequency for h/a = 2 and h/a = 10 was studied in [199]
and [54]. The added mass λ33 of a half-submerged elliptic cylinder whose waterline
coincides with the long axis was studied in [199] for a = h = 2b.

In a fluid of finite depth (in contrast to an infinitely deep fluid) the added mass
λ33 remains finite as δ → 0.

Added masses of a half-submerged circular cylinder of radius a in a rectangu-
lar channel of depth d and width 2b under horizontal oscillations were found in
[12] (see Fig. 5.47). Results of computation of coefficients k22 0 = λ22 0/2ρa2 and
k22∞ = λ22∞/2ρa2 when the frequency of oscillations tends to 0 (λ22 0) and ∞
(λ22∞) [these limits correspond to boundary conditions ∂ϕ/∂z = 0 and ϕ = 0, re-
spectively], are shown in Table 5.6.

5.7.5 Ellipsoid of Revolution Floating in an Ellipsoid-Shape Vessel
under Vertical Impact

This problem was solved by Polunin [176]. For an oblate ellipsoid of revolution (the
rotation axis coincides with the Oz coordinate axis) floating in a vessel of ellipsoidal
shape the added mass under vertical impact is equal to λ33 = (2/3)πρa2bk33; the
graphs of the coefficient k33(a/A,b/a) is shown in Fig. 5.48. The variable a is equal
to the radius of the maximal cross-section of the ellipsoid; b is the smaller axis of
the ellipsoid; A is the radius of the free surface of the vessel.

In a partial case, when b = 0, the added mass of a disc of radius a floating in the
center of the surface of elliptical vessel with radius A of free surface, is given by
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Table 5.6 Coefficients of added masses of a floating circular cylinder

d/a b/a k22 0 k22∞ d/a b/a k22 0 k22∞

1.2 1.05 3.4826 1.2917 2.0 1.05 1.9819 0.8119

1.2 1.10 3.3060 1.0009 2.0 1.10 1.7711 0.6428

1.2 1.20 3.1412 0.7547 2.0 1.20 1.5487 0.5039

1.2 1.30 3.0658 0.6390 2.0 1.30 1.4279 0.4432

1.2 1.50 3.0047 0.5278 2.0 1.50 1.3036 0.3884

1.2 2.00 2.9751 0.4202 5.0 1.05 1.8999 0.7809

1.2 3.00 2.9750 0.4149 5.0 1.10 1.6788 0.6142

1.2 4.00 2.9749 0.4131 5.0 1.20 1.4356 0.4787

1.2 5.00 2.9749 0.4130 5.0 1.30 1.2943 0.4188

1.2 10.00 2.9744 0.4126 5.0 1.50 1.1314 0.3652

λ33 = 2

3
πρa3 1

arcsin
√

1 − ( a
A

)2 + a
A

√

1 − ( a
A

)2
.

If a/A → 0, we get λ33∞ = (4/3)ρa3. In Fig. 5.49 we show the graph of func-
tion f (a/A) := λ33/λ33∞.

In the case of an ellipsoid of revolution elongated along the Oz axis floating
in confocal ellipsoidal vessel the function f (a/b, b/B) := λ33/λ33∞ is shown in

Fig. 5.48 Coefficient of the
added mass of a
half-submerged ellipsoid of
revolution floating in an
ellipsoidal vessel
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Fig. 5.49 Coefficient of the
added mass of an elliptic
plate floating in an ellipsoidal
vessel

Fig. 5.50 Coefficient of
added mass of elongated
ellipsoid of revolution
floating in an ellipsoidal
vessel

Fig. 5.50. The value λ33∞ can be computed using results of [28, 29]; B is the depth
of the ellipsoidal vessel.

5.7.6 Sphere Floating on a Fluid Surface Close to Solid
Boundaries under Vertical Impact

The formula for the added mass of a sphere of radius a half-submerged in a spherical
vessel of radius R, was obtained for the case of a vertical impact by Zhukowskiy
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[263] and has the form

λ33 = πρa3

3

R3 + 2a3

R3 − a3
.

If a sphere of radius a is half-submerged in a fluid of finite depth h, then the
problem of computation of the velocity potential under a vertical impact is formu-
lated as follows. One has to find a solution of the Laplace equation Δϕ = 0 sat-
isfying boundary conditions ∂ϕ/∂r = v cos θ for r = a and |θ | < π/2; ϕ = 0 for
r > a, θ = ±π/2; ∂ϕ/∂z = 0 for z = h; gradϕ → 0 as

√

x2 + y2 → ∞, where the
z-axis is directed downwards; x and y axes lie in the plane of free surface; (r, θ) are
two out of three spherical coordinates; the angle θ is the angle between a radius-
vector and z-axis.

Solution of this problem [233] gives the following approximate result for the
added mass of the sphere:

λ33 = λ33∞(1 + 6α),

where λ33∞ = πρa3/3 is the added mass of the half-submerged sphere for h → ∞;
value 1 + 6α for different values of a/h is shown in the table:

a/h 0 1/5 2/7 1/3 2/5 1/2 10/11

1 + 6α 1 1.0054 1.0158 1.0252 1.0439 1.0870 1.8510

In [162] there was obtained the following formula for the added mass of a half-
submerged sphere floating on the surface of a fluid of finite depth, under a vertical
impact:

λ33 = λ33∞
[

1 + 9 · ζ(3)

16

(
a

h

)3

+ 27 · ζ 2(3)

256

(
a

h

)6

+ 81 · ζ 3(3)

4096

(
a

h

)9

+ 2025 · ζ 2(5)

32768

(
a

h

)10

+ 243 · ζ 2(3)

65536

(
a

h

)12

+ · · ·
]

,

where, as before, a is the radius of the sphere, h is the depth of the fluid; ζ(x) =
∑∞

k=1 k−x is the Riemann zeta-function; ζ(3) ≈ 1.202; ζ(5) ≈ 1.037; λ33∞ is the
limit of λ33 as a/h → 0.

The frequency dependence of added masses λ11 and λ33 of a sphere oscillating
under the free surface of a fluid of a finite depth was studied in [134].

The influence of parallel vertical walls of a channel on diagonal coefficients of
added masses λ11, λ22, λ33 of a sphere completely immersed under the free sur-
face of an infinitely deep fluid was studied in [251]. It was shown that the frequency
dependence of the added masses sharply changes near eigenfrequencies of the chan-
nel. The influence of the vertical walls becomes insignificant if their distance to the
center of the wall is larger than 10a.

Diagonal coefficients of added masses for a system of identical spheres whose
centers are situated in a horizontal plane are determined in [250].
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5.7.7 Disc Floating on a Free Surface Close to Solid Boundaries
under Vertical Impact

Consider a disc of radius a floating on the surface of a fluid of depth h. Consider
cylindrical coordinates where the z axis is directed downwards; r is the distance
from the z-axis to a point; the origin O coincides with the center of the disc. The
problem of description of vertical impact of the disc gives rise to solution of the
following boundary value problem for the Laplace equation [242]: ∂ϕ/∂z = v for
z = 0, r ≤ a, where v is the velocity of the disc after the impact; ϕ = 0 for z = 0,
r > a; ∂ϕ/∂z = 0 for z = h; gradϕ → 0 as r → ∞.

Approximate values of the added mass obtained after solution of this problem
are contained in the following table; the added mass λ33∞ = (4/3)ρa3 corresponds
to h = ∞.

h/a 3 2 1.8 1.6 1.4 1.2 1.1

λ33/λ33∞ 1 1.01 1.01 1.02 1.03 1.04 1.05

If a disc is floating on the free surface of a fluid filling a cylindrical vertical vessel
of radius R, then the problem of finding the potential ϕ is formulated as follows [33].
One has to find the solution of Laplace equation Δϕ = 0, satisfying the following
boundary conditions:

∂ϕ

∂z
= v for r ≤ a, z = 0;

ϕ = 0 for a < r < R, z = 0;
∂ϕ

∂r
= 0 for r = R, z ≥ 0;

gradϕ → 0 as r → ∞.

In [33] the problem was solved in the interval 0 ≤ a/R ≤ 0.815. For the added
mass of the disc there was found the following approximate formula:

λ33 = 4

3
ρa3[1 + 0.33818x3 + 0.10190x5 + 0.11437x6

+ 0.05426x7 + 0.06892x8 + 0.07325x9 + · · ·],
where x = a/R. Below we give the values of the correction term, which we denote
by α, for different values of a/R:

a/R 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

α 1 1.0003 1.0028 1.0095 1.0233 1.0481 1.0897 1.1580
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Fig. 5.51 Coefficients of added masses: above—of the disc; below—of the ring plate

Data on added masses of a disc floating on the free surface of an ellipsoidal vessel
are given in Sect. 5.7.5.

The added mass of a disc of radius a floating in the center of a cylindrical ves-
sel of radius R and depth R, under a vertical impact, depends on two parameters:
a/R and h/a. Coefficients k33(a/R,h/a) = λ33/((4/3)ρa3) obtained in [227], are
shown in Fig. 5.51a.

For a/R → 0 the following approximate equality holds:

k33 = −3

4
ln

(

1 − a

R

)

.
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For a/R → 0 and small h/a another approximate formula holds:

k33 = 3πa

32h
.

For a disc plate of external radius a and internal radius r floating on a free sur-
face, the coefficient of added mass k33 = λ33/((4/3)ρa3) as a function of ratio r/a

was obtained in [227] (Fig. 5.51b). Small circles in Fig. 5.51b correspond to exper-
imental results. For r/a < 0.6 one has the approximate formula k33 = 1 − 1.25r/a;
if r/a > 0.6, one has another approximate formula:

k33 = 3π2

32

(

1 + r

a

)(

1 − r

a

)2

.

In [227] there was also studied the added mass of a plate ring floating on the
free surface of a fluid filling a cylindrical vessel whose diameter coincides with
the external diameter of the plate ring. Under a vertical impact the plate ring slides
along the surface of the vessel. The dependence k33(r

2/a2) for two depths of the
fluid (h/a = 0.25, h/a = ∞) is given in Fig. 5.51c. For r2/a2 < 0.1 one can use the
formula k33 = 3π2/(16r/a).

5.7.8 Rectangular Pontoon Floating on a Fluid Surface

Added masses of an infinitely long rectangular pontoon of width 2a floating on the
surface with the draught T = a are discussed in [246].

Under a vertical motion λ33 = 0.75πρa2; under a horizontal motion λ22 =
0.25πρa2; under a rotation around the axis lying at the intersection of the water-
line plane and the longitudinal vertical plane λ44 = 0.117πρa4. The depth of the
fluid is assumed to be infinite. The boundary condition for the velocity potential on
the free surface is assumed to be in the form ϕ = 0.

The dependence of added masses λ11 and λ33 of an oscillating rectangular pon-
toon floating on the free surface of a fluid of an infinite depth on the oscillation fre-
quency is given in [155]. The draught of the pontoon was equal to 1/2 of its width.
For λ11 the theoretical predictions agree well with experimental data from [243] for
all frequencies. Analogous results for a pontoon with the ratio of the sides a/T = 1
which is situated in the middle of the channel of the depth 6a were obtained in [54].

5.7.9 Rectangular Pontoon Floating Close to Flat Walls

The added mass λ33 of a rectangular pontoon of width 2a with draught T = a mov-
ing close to a flat bottom such that the distance from the lower boundary of the
pontoon to the bottom equals h, is given by λ33 = k33πρa2, where the values of the
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Fig. 5.52 The coefficient of the added mass of a rectangular pontoon floating on the free surface
of a fluid of a finite depth

Fig. 5.53 The coefficient of the added mass of a rectangular pontoon floating on the free surface
of a fluid of a finite depth, under different boundary conditions

coefficient k33(h/T ) are given in Fig. 5.52 [246]. On the free surface the boundary
condition ϕ = 0 is assumed.

In [13, 98] the added mass λ33 of the rectangular pontoon oscillating vertically
according to the law z = z0 sin δt were studied (see Fig. 5.53). In Fig. 5.53 we show
the dependence of limit values of the coefficient k33 on the relative depth of the wa-
ter. In Fig. 5.54 we show the dependence of the coefficient k33 on the dimensionless
frequency of oscillations δ2a/g for some values of h/T .
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Fig. 5.54 Dependence of
coefficient of added masses of
rectangular pontoon on
frequency of vertical
oscillations

Fig. 5.55 The coefficient of
the added mass of a
rectangular pontoon under
horizontal oscillations in a
rectangular channel

In [54] the dependence of the added masses λ11 and λ33 on the frequency were
studied for floating rectangular pontoons of two types: a/T = 1 and h = T , and,
also a/T = 1.5 and h/T = 5.

The added mass of a rectangular pontoon of width B = 2a symmetrically im-
mersed in a rectangular channel of width 2b with draught c (the level of water in the
channel equals d), is computed in [13, 37]. The velocity potential is found numeri-
cally assuming water-tightness boundary conditions on the hard walls and the free
surface.

Results of solution of this problem are shown in Fig. 5.55 for various ratios b/a

and d/c for a rectangular pontoon with B/T = 2a/c, where B is the width of the
pontoon, T is the draught. The added mass is divided by the volume of fluid in
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Fig. 5.56 Dimensionless added mass of rectangular pontoon eccentrically floating in rectangular
channel

the submerged part of the pontoon. Dashed lines correspond to the data taken from
[159].

In computation of the added mass λ22 of a rectangular pontoon in a rectangular
channel under water-tightness boundary conditions on a free surface (see Fig. 5.55)
one can use the formula

λ22 = 2

3
ρc

[
cd

b − a
+ c (2a + b)

d − c
+ b − a

]

,

obtained in [11] which gives acceptable results in the range 0 < (d − c)/a ≤ 0.3;
0 < (b − a)/c ≤ 0.3.

If the rectangular pontoon is shifted with respect to the axis of a rectangular
channel by the distance ξ (Fig. 5.56) then its added mass changes depending on
d/c, W/B , ξ/B , where W is the width of the channel. Corresponding curves are
shown for W/B = 1.5 and W/B = 2.5 in Fig. 5.56 [72]. Dashed curves correspond
to the data from [23, 159].

Besides added masses corresponding to a linear motion, the added masses of an
oscillating rectangular pontoon near hard walls are also given in [72]. Formulation
of this problem is different from the one considered above since on the free surface,
when the oscillation frequency is high, one has to use the boundary condition ϕ = 0
instead of ∂ϕ/∂n = 0, as follows from the general discussion of Sect. 5.1.

Results of computation of the added mass λ22 under horizontal oscillations close
to a vertical wall on a shallow water are shown in Fig. 5.57b (solid curves). Dashed
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Fig. 5.57 Dimensionless added masses of a rectangular pontoon near a vertical wall in shallow
water

curves correspond to the values of the coefficient 2λ33/(ρπr2) of a half-submerged
circular cylinder of radius r which oscillates vertically near a flat solid wall.

An interesting numerical investigation of the added mass λ22 of a rectangular
pontoon floating in a rectangular channel (Fig. 5.58) is contained in [109]. Parame-
ters of the problem had the following values: l/T = 14.8, B/T = 4, h/T = 0.2,
where l is the width of the channel, T is the draught of the pontoon, B is the width
of the pontoon, h is the distance from the bottom of the pontoon to the bottom of
the channel. The distance from the pontoon to the wall of the channel (expressed via
parameter (l − l1)/T ) was changing.

Importance of this research was determined by two factors:

• The boundary condition on the free surface was considered in the form

∂ϕ

∂z
+ bϕ = 0,

where the parameter b was changing between 0 and ∞.
• Both types of the flow: a separating flow and a non-separating flow were consid-

ered.

Results of this research are shown in Fig. 5.58a for a non-separating flow, and
in Fig. 5.58b for a separating flow, when on the rear surface of the pontoon the
boundary condition ϕ = 0 is fulfilled. In vertical axes we show the ratio of λ22 to
λ22∞, where λ22∞ is the added mass computed for the case when the walls are
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Fig. 5.58 Dimensionless added masses of a rectangular pontoon in a rectangular channel for a
flow without separation and for a flow with separation

Fig. 5.59 Dimensionless
added mass of a rectangular
pontoon under vertical impact

absent. It is shown that for all b the value of λ22∞ for the case of non-separating
flow is about 1.7 times higher than λ22∞ for the case of separating flow.

Added masses of a rectangular pontoon of width B and draught T floating in a
geometrically similar rectangular channel of depth H and width b, under a vertical
impact, were computed in [175]. Graphs of functions f (B/T ,T /H) := λ33/λ33∞
are shown in Fig. 5.59. We have λ33∞ = λ33 0/2, where λ33 0 is the added mass of
the rectangle with sides B and 2T under its motion in an infinite fluid.
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Fig. 5.60 Dimensionless
added mass of polygonal
contours under vertical
impact

Fig. 5.61 Triangular cylinder (left) and shipframe (right) floating in a rectangular channel

Analogous dependencies for polygonal contours of various shape floating in geo-
metrically similar channels are shown in Fig. 5.60.

The added masses λ22 0 (on the free surface one assumes the boundary condition
∂ϕ/∂z = 0) and λ22∞ (on the free surface one assumes ϕ = 0) of a triangular cylin-
der (Fig. 5.61a; a/T = 1.0, d/T = 1.5) and the cylinder whose cross-section has the
shape of a Lewis shipframe with the area coefficient 0.941 (Fig. 5.61b; β = 0.941,
a/T = 1.0, d/T = 1.5), floating in a rectangular channel, were computed in [12].
We present these data in Tables 5.7 and 5.8.

5.8 Influence of the Separation of the Flow on a Body Surface on
Added Masses

Usually added masses are computed under the assumption that the flow around a
body does not separate on the body surface. However, there exist such regimes of
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Table 5.7 Added masses of a triangular cylinder in a rectangular channel

b/a λ22 0/(ρaT ) λ22 0/(ρaT )

1.05 2.2142 1.1412

1.10 2.1650 1.0299

1.20 2.0997 0.9212

1.30 2.0601 0.8646

1.50 2.0194 0.8048

2.00 1.9934 0.7480

2.50 1.9902 0.7292

Table 5.8 Added masses of a cylinder having cross-section in the
shape of a Lewis shipframe in a channel of rectangular section

b/a λ22 0/(ρaT ) λ22 0/(ρaT )

1.5 2.5769 0.4987

2.0 2.4483 0.4113

2.5 2.4338 0.3871

3.0 2.4320 0.3790

4.0 2.4315 0.3750

5.0 2.4307 0.3742

motion that this assumption is not applicable and the curves (surfaces) of the discon-
tinuity of the velocity are formed (curves BD and CD in Fig. 5.62). In this case one
should consider the flow around a body under the following boundary conditions on
the body surface:

1. On the part AB and AC of the body where the flow does not separate one im-
poses the water-tightness condition ∂ϕ/∂n = 0.

2. On the part BC of the body where the flow has separated from the body surface
and the fluid is stagnant one assumes the constancy of the pressure, i.e., ϕ = 0.

In computation of added masses corresponding surface integrals (1.12) are com-
puted only over the part BAC since on the part BC the integrand vanishes.

Fig. 5.62 Separation of the
flow around a body
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As an example we describe some data on added masses of bodies floating on a
free surface under horizontal impact [120, 231]. It is assumed that there is separation
of flow at the rear side (i.e., the side of the impact) of the body.

The z axis is chosen to be directed downwards; the z-coordinate of the point of
the separation is assumed to be equal to 0.92b where b is the maximal immersion
depth of the contour.

For a half-submerged horizontal elliptic cylinder,

λ22 = 0.56
2ρb2

π
; λ23 = 0.598

2ρab

π
; λ24 = −0.195ρb

(

b2 − a2).

For the same cylinder in the case when the separation of the flow does not take
place:

λ22 = 2ρb2

π
; λ23 = 0; λ24 = −1

3
ρb

(

b2 − a2).

For a half-submerged circular cylinder of radius a in the presence of the separa-
tion:

λ22 = 0.56
2ρa2

π
; λ23 = 0.598

2ρa2

π
; λ24 = 0.

For a vertical plate submerged to a depth b:

λ22 = 0.56
2ρb2

π
; λ23 = 0; λ24 = −0.195ρb3.

The horizontal plate of width l under a vertical impact leading to the separation
of the flow, has the added mass λ33 = 0.4224ρl2 (see [92]).

Experimental data [192] show that the added mass of a cavitating disc of radius a

equals λ33 = 2.52ρa3 and does not depend on the angle of inclination of the disc to
the free surface [260]. The theoretical value of the added mass of a disc floating on
the free surface under a vertical impact (see Sect. 5.7.7) is given by λ33 = (4/3)ρa3.

We stress the difference between the cavitating separation of flow, when the cav-
ern near the surface of the body is filled by a gas (air or steam), and the viscous
separation of the flow, when behind the point of separation one has the stagnant
zone of a fluid of the same density as the density of the incoming fluid. Obviously,
under an acceleration one has to take into account the influence of the fluid in the
stagnant zone on the body surface.

5.9 Effect of Fluid Compressibility on Added Masses of a
Floating Plate at an Impact

The problem of a vertical impact of a plate floating on the free surface of a com-
pressible fluid is considered in [58, 59]. It is assumed that the vertical force acting
on the plate starts at t = 0 and increases according to the law F(t) = F0(1 − e−βt ),
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where the finiteness of the coefficient β reflects the compressibility of the fluid; for
an incompressible fluid β = 0. The boundary conditions are formulated in the usual
way: on the surface of the fluid ϕ = 0; on the surface of the plate the normal compo-
nent of the velocity of the fluid is equal to the velocity of the plate; the perturbations
arising due to the impact decay at infinity (the radiation condition).

The added mass of the plate is determined by the formula

λ33 = ρπa2

2

(
1 − e−βt

1 + (ρπa2/2m)e−βt

)

,

where m is the mass of the plate. This formula shows that the added mass under an
impact, taking into account the compressibility of the fluid, grows from the value
λ33 = 0 at t = 0 to λ33 = (1/2)ρπa2 (as t → ∞) which coincides with the value of
λ33 in the case of an incompressible fluid. As β → ∞ the added mass also tends to
the added mass in an incompressible fluid: λ33 → (1/2)ρπa2.

5.10 Added Masses of Elliptic Contour under its Lift from a
Water Surface

Problems of this kind are rather common in shipbuilding.
Below we describe the solution of the problem of finding the added mass of a

half-submerged elliptic contour under its lift from the water surface [39].
At t = 0 the elliptic contour with half-axes a and b is half-submerged such that

the Ox axis coincides with the free surface (Fig. 5.63). In the process of motion the
contour is lifted from the water along the axis Oy (yc denotes the vertical coordinate
of the center of the ellipse in the process of the lift).

The motion of fluid is assumed to be potential. On the free surface one imposes
the following boundary conditions:

1. The normal component of velocity is absent:

∂ϕ

∂y

∣
∣
∣
∣
y=0

= 0.

2. The component of velocity tangential to the free surface is given at points M1
and M2 where the contour intersects the free surface.

To solve this problem one should first take the mirror image of the flow with
respect to the free surface. Then one maps the exterior of the resulting contour (for
t = 0 this is an ellipse itself; for t > 0 it looks like an “elliptic lens”) to the interior
of the unit circle in the plane of the auxiliary complex variable. Applying Sedov’s
formulas, the author of [39] gets the following formula for the added mass of an
elliptic contour under its lift from the water surface:

λ22 = 2

3π
ρ

[

10
a(b − yc)

b

√

b2 − y2
c + πab − 2

a

b

(

yc

√

b2 − y2
c + b2 arcsin

yc

b

)]

.
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Fig. 5.63 Dimensionless
added mass of an ellipse
under its lift from water
surface

This formula can be used for estimation of λ22 for various contours, if one de-
notes the width of the contour at waterline by B = 2a and draught by T = b.

The formula for λ22(yc/T ) was verified in [39] experimentally. Results of these
experiments (point A in Fig. 5.63) agree with theoretical predictions.

5.11 Added Masses of Inland Ships

In [115] added masses λ22 = k22πρT 2/2 for typical shapes of inland vessel’s
shipframes were determined by the method of electro-hydrodynamic analogy (see
Chap. 9).

Coefficient k22 as a function of B/T (B is width and T is the draught) and β (the
area coefficient of the shipframe) is shown in Fig. 5.64.

In the same work under assumption that the Froude numbers are small (on the
free surface one assumes the fulfillment of the water-tightness condition) the coeffi-
cients k11 = λ11H /λ11H=∞, k22 = λ22H /λ22H=∞ and k66 = λ66H /λ66H=∞ were
found as functions of the ratio T/H (H is the depth of fluid). Graphs of these func-
tions are shown in Fig. 5.65, where curves I correspond to an ellipsoid, curves II
correspond to the hull of an inland vessel.

If the added masses of an inland vessel are determined by the method of planar
sections, then corrections μ and μ1 related to spacial effects in the formulas (3.1),
(3.9)
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Fig. 5.64 Coefficients of added masses of inland vessels in the horizontal direction

λ22 = μ

∫ L

0
λ22 0(x) dx; λ66 = μ1

∫ L

0
λ22 0(x)x2 dx

can be taken in the following empirical form [78]:

μ = 0.9 + 0.012
B

T
; μ1 = 0.44

(
B2

T 2
+ 1

)(
L

B

)1/3

where L is the length of the boat.
Notice that correction μ is independent of L/T .
A systematic study of added masses of inland ships was carried out at the Novosi-

birsk institute of water transport in 1966–1971.
Systematic computations of added masses of three-axial ellipsoids moving in

a channel of a rectangular section were carried out in the paper [235] using the
method of [30]. On the basis of these computations there was proposed a method of
determination of added masses of inland ships. On the basis of these results in [170]
there were obtained the following approximate formulas for added masses of inland
ships valid under the assumptions

T/H ≤ 0.8; B/L ≤ 0.25; 0.1 ≤ T/B ≤ 0.5; 0.5 ≤ δ ≤ 0.92,
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Fig. 5.65 Influence of the depth of the water on added masses of inland vessels

where δ is the volume coefficient of the submerged part of the boat (which is equal
to the ratio of the volume of the submerged part of the hull to the product LBT );

λ11 = k11
D

g
; λ22 = k22

D

g
; λ66 = k66Jz,

where D is the displacement of the ship; g is the gravity acceleration;

Jz = (

1 + δ4.5) D

24g

(

L2 + B2);
k11 = (0.624 + 0.72δ)

× B

L

{
2T

B

[

0.18 + 2.88

(
B

L

)2][

1 − 1.4

(
T

H

)1.5]

+ 1.06

(
T

H

)1.5}

;

(5.40)
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k22 = 3.76
T

B

σ(1 − ασ)

α(1 + σ)(2 − α − σ)

+ 0.27σ

1 + 2.35(T /B)

T /H

1 − 3.11(T /H) + 3.77(T /H)2 − 1.66(T /H)3
;

(5.41)

k66 = 1.68(T /B)

1 + (B/L)2

2σ(9 − 6α − 6σ + 4ασ)(3 − 2α − 2σ + ασ)

a(6 − 5α − 5σ + 4ασ)(9 − 9σ + 2σ 2)

+ 0.223σ 2

1 + 3.68(T /B) − 2.27(T /B)2

× T/H

1 − 2.9(T /H) + 3.37(T /H)2 − 1.47(T /H)3
, (5.42)

where σ is the area coefficient of the diameter buttock; α is the area coefficient of
the waterplane.

The formulas (5.40)–(5.42) are valid for small Froude numbers. If the Froude
numbers are greater than 0.2, one should introduce experimental corrections to k11
[140, 145, 153, 232] which take into account an influence of the free surface at accel-
eration and deceleration. In some cases, in particular in studies of rolling on shallow
water, one has to determine the added mass λ33. To find λ33 of a given shipframe
on shallow water one can use the formula λ33H = εH λ33∞ [18] where the coeffi-
cient εH is shown in Fig. 5.66 as a function of the ratio H/T and dimensionless
frequency of oscillations σ 2B/2g (H is the depth of the water).

These dependencies are obtained theoretically for a circular cylinder oscillating
on shallow water. The value λ33∞ is the added mass of shipframe on deep water.

We notice also experimental results by Palagushkin for added masses of inland
ships at acceleration and deceleration [165–167]. A family of models whose geo-
metric characteristics are given in Table 5.9 was tested. The hull of the model No. 2
(chosen as the base model) is shown in Fig. 5.67. The models were tugged preserv-
ing the freedom of vertical motion and the trim angle motion. The tugging velocities
corresponded to dimensionless Froude numbers Fr = v/

√
gL (where L is the length

of the model) varying between 0 and 0.25.
The velocity of a model varied in the range 0.05 m/sec ≤ v ≤ 2.5 m/sec and

measured with the precision 0.1%; an acceleration (deceleration) a of the model
varied in the limits 0.015 m/sec2 ≤ |a| ≤ 0.2 m/sec2. In the process of tugging, the
longitudinal force acting on the model was measured.

Under a non-stationary motion the following equations of motion hold:

ma = X − R, (5.43)

where m is the mass of the model; a is an acceleration; X is the force measured by
a dynamometer; R is the hydrodynamic force acting on the model. The force R can
be represented in the form:

R = R1(a) + R2(a, v) + R3(v), (5.44)
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Fig. 5.66 Influence of the frequency of vertical oscillations on added masses of circular cylinder
oscillating on shallow water

Table 5.9 Geometric characteristics of a family of models of inland cargo vessels

Model No. 1 2 3 4 5 6 7 8 9

Length L, m 4.25 3.4 2 3.4 3.4 3.4 3.4 3.4 3.4

Width B, m 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Draught T , m 0.083 0.083 0.083 0.083 0.083 0.083 0.1346 0.0555 0.0357

Gen. area coeff. δ 0.85 0.85 0.85 0.809 0.907 0.931 0.85 0.85 0.85

L/B 8.5 6.8 4.0 6.8 6.8 6.8 6.8 6.8 6.8

B/T 6.0 6.0 6.0 6.0 6.0 6.0 3.71 9.0 14.0

where R1 depends only on the acceleration a, R2 depends on a and v; R3 is deter-
mined by the velocity v only.

The term R3(v) is found by tugging of the model with a constant velocity.
It was assumed in [166] that the term R3, which is independent of an acceleration,

does not contribute to the added mass, i.e., the added mass is defined by relation

R1 + R2 = aλ11 (5.45)

where λ11 is the added mass of the model in the longitudinal direction.
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Fig. 5.67 Hull of base model of an inland cargo vessel

Substituting the formulas (5.44) and (5.45) in (5.43), we find:

k11 := λ11

m
= X − R3

ma
− 1. (5.46)

Examples of experimental dependencies k11 = k11(Fr), obtained for the model num-
ber 2 under three relative depths of water (T/H = 0; 0.333; 0.667) where T is the
draught of the model, H is the depth of water, are shown in Fig. 5.68. Curves 1, 3, 5
are obtained under an acceleration of the model; curves 2, 4, 6—under deceleration.
Curve 7 in Fig. 5.68 corresponds to the coefficient k11 computed via the equivalent
ellipsoid.

Approximation of these experimental data allowed the author to propose the fol-
lowing approximate formulas for determination of k11 under the forward motion;
k11∗ under the reverse motion and k22 under the log motion:

k11 = k11∞k̄11 + c11Δk11f1f2f3; (5.47)

k11∗ = k11

[

1.09 − 0.042

(
T

H

)

+ 0.018

(
T

H

)2]

; (5.48)

k22 = k22∞k̄22 + DΔk22f
′
1f

′
2f

′
3. (5.49)

In the formulas (5.47)–(5.49) the following notations are used:

k11∞ := π

10

(
B

L

)1.31[

tanh

(

7.88
T

B

)]1.6

;
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Fig. 5.68 Examples of experimental curves

k̄11 := 1 + 0.1

(
T

H

)1.24

;

Δk11 :=
[

0.156 + 0.674

(
T

H

)1.28]

Fr1.03;

c11 := 1 −
[

0.13 − 0.138
T

H
+ 0.198

(
T

H

)2]

sign(a);

f1 := 1 + 2.56

(
B

L
− 0.147

)
T

H
;

f2 := 1 + 1.122(δ − 0.85);
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f3 := 1 + 0.693

(
T

B
− 0.167

)

;

k22∞ := 1.53

(
2T

B

)

− 0.685

(
2T

B

)2

;

k̄22 := 1 + 0.068

(
T

H

)1.7

;

Δk22 :=
[

1.46 + 17.1

(
T

H

)2.26](
v√
gB

)1.16+0.135(T /H)2

;

D := 1 −
[

0.121 − 0.115
T

H
+ 0.112

(
T

H

)2]

sign(a).

Under an acceleration sign(a) = 1; under a deceleration sign(a) = −1.

f ′
1 := 1 −

[

2.41 − 4.54
T

H
+ 5.58

(
T

H

)2](
B

L
− 0.147

)

;

f ′
2 := 1 + 1.48(δ − 0.85);

f ′
3 := 1

− 1.62

[

1 − 2.27
T

H
− 2.81

(
T

H

)2](
T

B
− 0.167

)[

1 − 3.18

(
T

B
− 0.167

)]

,

where L, is the length, B is the width, T is the draught, δ is the general area coeffi-
cient; H is the depth of water.

The domain of applicability of the formulas (5.47)–(5.49) looks as follows:

0.11 ≤ B

L
≤ 0.25; 0.07 ≤ T

B
≤ 0.28; 0.8 ≤ δ ≤ 0.94; T

H
≤ 0.67;

Fr = v√
gL

≤ 0.24; v√
gB

≤ 0.28.

The fact that the coefficients k11 and k22 essentially depend on the Froude num-
ber is explained by wave formation. In experiments with an ellipsoid which was
deeply submerged under the surface, the influence of velocity on added masses was
negligible. These added masses exceeded theoretical values by 11%, which can be
explained by the viscosity of water.

5.12 Added Masses of Barges Consists

Added masses of consists of barges were studied in [83, 84]. The added masses of
consist are determined via added masses of separate vessels, and via inertial coef-
ficients jkm which take into account an interaction of vessels. Both computations
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and experiments show that jkm significantly differ from 1 when the barges form a
single line whose direction coincides with the direction of motion, as well as in the
case when the consist is made of sections (a section consists of two barges which
are lashed together by sideboards).

The added mass of consist can be computed by the following formula:

λ11 = j11

n
∑

i=1

λ11 i ,

where λ11 i is the added mass of a single barge; values of coefficients j11 are given
below:

• For a single line consist:

T + 1 j11 = 0.90
T + 1 + 1 j11 = 0.74
T + 1 + 1 + 1 j11 = 0.61

• For a two-line consist:

T + 2 j11 = 1.49
T + 2 + 2 j11 = 1.25
T + 2 + 2 + 2 j11 = 1.14

where T denotes the pusher tug; the numbers are the numbers of barges and their
position in the consist.

In computation of added masses λ22, λ26, λ66 one has to introduce the inertial co-
efficients of a single section, which consists of several barges lashed by sideboards.
Added masses of each section are determined by expressions

λ
(s)
22 = j

(s)
22

m
∑

i=1

λ22 i; λ
(s)
66 = j

(s)
66

m
∑

i=1

λ66 i .

One can always choose the origin in such a way that λ26 = 0; due to the specific
shape of barges this point is typically close to the center of mass of the barge.

If a section consists of one barge then j22 = j66 = 1. If a section consists of two
lashed barges then j22 = 0.8 and j66 = 0.87; for the section which consists of three
lashed barges j22 = 0.71, j66 = 0.75.

In computation of added masses λ22, λ26, λ66 one usually neglects an interaction
between separate sections. Taking also into account that λ11 i is small in comparison
with λ22 i for each single barge, one gets the following formulas for the consist:
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λ22 =
n

∑

s=1

λ
(s)
22 =

n
∑

s=1

j
(s)
22

(
m

∑

i=1

λ22 i

)

s

;

λ26 =
n

∑

s=1

λ
(s)
22 xs =

n
∑

s=1

j
(s)
22

(
m

∑

i=1

λ22 i

)

s

xs;

λ66 =
n

∑

s=1

λ
(s)
66 +

n
∑

s=1

λ
(s)
22 x2

s =
n

∑

s=1

j
(s)
66

(
m

∑

i=1

λ66 i

)

s

+
n

∑

s=1

j
(s)
22

(
m

∑

i=1

λ22 i

)

s

x2
s .

In these formulas xs is the x-coordinate (the x-axis is chosen along the central
line of the consist) of the center of mass of each section with respect to the origin
which is chosen in the center of mass of the consist.

These formulas were verified by systematic model experiments.

5.13 Added Masses of Rafts

Added masses of a raft taking into account the bending effect were considered in
[195]. Inertial characteristics of the raft were determined as functions of its length
L, width B , and radius of curvature of its central line under bending R (or curvature
κ = 1/R). The longitudinal axis Ox and the transversal axis Oy are chosen in the
plane of the raft. Combining theoretical and experimental data one gets the follow-
ing approximate formulas, which take into account the penetrability of the (unbent)
raft:

k11 = λ11

m
= 1.3

(

0.041 − 0.0027
L

B

)

;

k22 = λ22

m
= 1.3

(

0.043 + 0.0085
L

B

)

,

where m is the mass of the raft. In [195] the following approximate formulas for
added masses of a raft under bending were also proposed:

λκ
11 = λ11 + κ2λ22

L2

12
; λκ

16 = κλ22
L2

12
,

where λκ
11 and λκ

16 are added masses of the bent raft; κ is the curvature of the central
line.

5.14 Influence of Density Stratification of Fluid on Added
Masses

Sometimes underwater vehicles move in a fluid whose density increases with depth.
Near the boundary separating layers with different density there may exist internal
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waves whose generation is related to additional energy losses.1 Therefore it is nec-
essary to study the influence of the gradient of fluid density to added masses of a
body.

The most interesting case is the case of an infinite fluid with homogeneous strati-
fication when the parameter N(z) := [(−g/ρ)dρ/dz]1/2 is independent of depth z:
N(z) = N0 (here ρ(z) is the density of the fluid). For a weakly stratified fluid one
usually uses the Boussinesque approximation. The homogeneous stratification is
then approximated by the linear stratification. A general solution for hydrodynamic
forces acting on a body immersed in such a fluid is derived in [62]; in this work
there were deduced relationships between oscillations of bodies in homogeneous
and linearly stratified fluids.

If the oscillation frequency σ > N0, one considers an elliptic problem with water-
tightness conditions on the surface of the body and vanishing of the amplitude at
infinity (problem 1). Let us rename the coordinates: x1 := x, x2 := y, x3 := z. By an
affine transformation of the form ξi = aixi (where a1 = a2 = 1; a3 = α := (Ω2 −
1)1/2/Ω and Ω = σ/N0) the equation of motion of a linearly stratified fluid turns
into a Laplace equation. The boundary conditions on the body also transform. In
this way one gets an equivalent problem (problem 2) in the non-stratified fluid. The
coefficients of added masses in the two problems, k

(1)
ij := λ

(1)
ij /(ρ0W

(1)) and k
(2)
ij :=

λ
(2)
ij /(ρ0W

(2)) (where W(1) and W(2) are volumes in the two problems in the 3D
case and areas in the 2D case and ρ0 is the density of fluid at the depth of the body
motion), are related by k

(1)
ij = k

(2)
ij aiaj .

In problem 2 one introduces the characteristic linear sizes of the body b1, b2 and
b3 in three directions ξ1, ξ2 and ξ3. One can then consider the coefficients k

(2)
ij as

functions of the ratios e := b2/b1 and f := b3/b1:

fij (e, f ) := k
(2)
ij . (5.50)

Therefore, a solution of the original problem 1 for the tensor of coefficients of
added masses can be obtained from (5.50) by the substitution q = q0α ≡ q0(Ω

2 −
1)1/2/Ω :

k
(1)
ij (Ω) = fij (e0, q0α)aiaj . (5.51)

For high frequency oscillations σ → ∞ these solutions, obtained in the Boussi-
nesque approximation, coincide with corresponding values of added masses in a
homogeneous unlimited fluid.

For Ω < 1 the original equation of problem 1 is the equation of hyperbolic type.
Its solution can be obtained by the method of analytical continuation. One can in-
troduce in this case the real parameter η = (1 − Ω2)1/2/Ω . The analytical contin-
uation of α is given by −iη; coefficients ai in (5.51) should be substituted by γi :
γ1 = γ2 = 1, γ3 = −iη. Solution (5.51) for Ω < 1 takes the form

k
(1)
ij (Ω) = fij (e0,−iq0η)γiγj . (5.52)

1This section was written by I.V. Sturova and E.V. Ermanyuk.



250 5 Added Masses of Bodies Moving Close to a Free Surface

From (5.51) and (5.52) we see that the values of k
(1)
ij for families of affine equiv-

alent bodies, which differ only by the value of q0, can be represented by a universal
curve.

In general case expressions for hydrodynamic pressures have complex form,
where the real part is determined by the added mass:

λij = ρ0W
(1)�(

k
(1)
ij

)

. (5.53)

All solutions for bodies of simplest geometry known before ([126]—vertical os-
cillations of ellipsoids of revolution, [99]—oscillations of a vertical cylinder in an
arbitrary direction) can be obtained as partial cases of the above construction. For
example, for an elliptic cylinder f11(q) = q , f33(q) = 1/q . Substitution of these
functions in (5.51), (5.52), (5.53) gives a solution obtained in [99]:

k
(1)
11 = k

(1)
33 ≡ 0 for Ω ≤ 1, k

(1)
11 = k

(1)
33 = (Ω2 − 1)1/2

Ω
for Ω > 1. (5.54)

A distinctive feature of solution (5.54) is the identical vanishing of the coeffi-
cients λ11 and λ33 for flat contours for σ ≤ N0.

In Fig. 5.69 we show experimental and theoretical data for the coefficient k11 =
λ11/(πρ0a

2) for a circular cylinder which horizontally oscillates in an unlimited
homogeneously stratified fluid. The solid line corresponds to a theoretical curve
obtained by Hurley [99]; symbols correspond to experimental data of Ermanyuk
[60]. Data obtained in a fluid of homogeneous density are shown by the dotted
line and +’s. Experimental estimates of dependence of the added mass λ11 on the
frequency are obtained by response function of the system corresponding to a single
impuls using Fourier transform.

In Fig. 5.70 we present the theoretical and experimental data for the coefficient

k11 = λ11

(4/3)πρ0a2b

Fig. 5.69 Coefficient k11 for
a circular cylinder oscillating
in a homogeneously stratified
fluid: solid curve—theory
[99], dotted curve and
+’s—data for a homogeneous
fluid; triangles, squares and
circles correspond to
experimental data [60]
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Fig. 5.70 Coefficient k11 for
ellipsoids with vertical
rotation axis, which
horizontally oscillate in
homogeneously stratified
fluid [62]: curves correspond
to theoretical predictions,
triangles and circles represent
corresponding experimental
data (1—oblate ellipsoid with
ratio of axes a/b = 2,
2—sphere, 3—prolate
ellipsoid with ratio of axes
a/b = 1/2)

Fig. 5.71 Universal curves
for �k

(1)
11 of ellipsoids with

vertical axis of rotation of an
arbitrary elongation in a
homogeneously stratified
fluid [62]: the curve
corresponds to theoretical
predictions; triangles and
circles correspond to
experimental data shown in
Fig. 5.70 and recalculated via
affine transformation

of ellipsoids with vertical axis of rotation in unlimited homogeneously stratified
fluid. Curves correspond to theoretical results; symbols correspond to experimen-
tal data of Ermanyuk [62, 63]. Using the affine transformation the data shown in
Fig. 5.70 can be shown in a universal form shown in Fig. 5.71.

From well-known formulas for fluids of homogeneous density (see for example
Chaps. 2, 3) one can also get formulas of added masses of ellipsoids under oscilla-
tions in an arbitrary direction, contours with corners etc. In particular, added masses
λ11 and λ33 for cylinders of rectangular section were derived in [61].

A typical stable configuration of sea medium looks as follows: two homogeneous
layers of different density are separated by a layer with high gradient of density,
called the pycnocline. When the gradient of density in pycnocline is high it can be
modeled by a two-layer fluid. When the gradient of density at pycnocline is low, one
can model the physical problem by a three-layer fluid; the pycnocline (the central
layer) is assumed to be linearly stratified.

The three-layer fluid includes as partial cases both the linearly stratified fluid and
the two-layer fluid. The first limiting case corresponds to an increase of the thickness
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of the central layer while keeping the value of the density gradient constant. The
second case arises when the thickness of pycnocline tends to zero.

The motion of a body in a two-layer fluid is most well-studied. The upper layer
is assumed to have density ρ1 and thickness H1. The lower level is assumed to have
density ρ2 = ρ1(1 + ε) (ε > 0) and thickness H2.

Dependence of added masses on the frequency for a circular and elliptic cylin-
der completely submerged in an infinitely deep layer under the separation bound-
ary of two layers was found by Sturova [217]. For the circular cylinder in this case
λ11 = λ33, as well as for a homogeneous fluid of infinite depth. Under low frequency
oscillations (σ → 0) the separation surface behaves like a solid boundary, indepen-
dently of the magnitude of the density jump and the thickness of the upper layer. An
approximate dependence of added masses on frequency is obtained on assumption
that the body is submerged deeply enough under the surface of separation. For an
elliptic cylinder with the axes ratio a/b = 2 for H1 = h = b and ε = 0.03 the de-
pendencies of added masses on frequencies were found numerically, by the method
of hybrid finite elements (h is the distance between the center of the cylinder and
the separation surface). The results are compared with analogous values of added
masses for two-layer fluid bounded by a solid boundary (“cover”) from the top, and
with the values of added masses in a homogeneous fluid with free surface. For small
values of σ mostly internal waves are generated; their characteristics almost coin-
cide with the case of a two-layer fluid under the “cover”. As the frequency grows the
generation of internal waves decreases and the surface waves become dominant; the
characteristics of the surface waves are essentially not influenced by a small jump
of density.

The added masses λ11 for a circular cylinder and λ55 for a horizontal plate sub-
merged under the separation surface in a two-layer unlimited fluid, are given in the
book by Filippov [71].

The model of a two-layer fluid allows us also to study the influence of a slimy
bottom on the motion of floating of a submerged body. Dependence of coefficient
λ33 on the frequency for the Lewis shipframe floating on a free surface and not inter-
secting the separation boundary is given in [264]. It is assumed that the lower layer
of fluid is viscous and its depth is essentially smaller than the depth of the upper
layer. It is shown that the coefficient λ33 essentially depends on the frequency, the
ratio of densities and thicknesses of the layers; however, it is essentially independent
of viscosity of the oozy layer.

The added masses λ11, λ33 and λ55 as functions of the oscillation frequency of a
parallelepiped with square horizontal section floating on a free surface in the upper
layer of a two-layer fluid were studied in [256].

Behavior of added masses λ11 and λ33 as functions of frequency for a circular
cylinder crossing the separation surface of an unlimited two-layer fluid was studied
in [152]. It was shown that under oscillations of a cylinder crossing the separation
surface the values of added masses are typically higher than the values of added
masses in a homogeneous fluid with free surface. This is explained by the fact that
in the latter case the area of the surface of the body contacting with the fluid is
smaller; thus a smaller amount of the fluid gets involved in oscillating motion.
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Fig. 5.72 Dependence of coefficients of added masses k11 (solid curves) and k22 (dashed curves)
on the depth of the lower layer for a circular cylinder. Left: h = 0, H1/a = 2; right: h/a = 0.5,
H1/a = 1. Curves 1 correspond to ε = 0; curves 2 correspond to ε = 0.3; curves 3 correspond to
ε = ∞

The influence of the depth of the lower layer on added masses of a circular and
elliptic cylinder floating on the separation boundary of a two-layer weightless fluid
which is bounded from above by free surface, is studied in [216]. As an example
we present below the results of computation of added masses of a circular cylinder
floating on the separation boundary.

The radius of the cylinder is denoted by a. On the free surface (y = H1) one im-
poses the boundary condition ϕ = 0. On the hard bottom (y = −H2) one assumes
the water-tightness condition ∂ϕ/∂y = 0. The distance from the center of the cylin-
der to the boundary between the layers (y = 0) is denoted by h. In Fig. 5.72 we
show coefficients k11 = λ11/(πρ2a

2) and k22 = λ22/(πρ2a
2) as functions of H2/a

for several values of h/a (equal to 0 and 0.5), H1/a (equal to 1 and 2) and ε (equal
to 0, 0.3 and ∞). The case ε = 0 corresponds to a non-stratified fluid. The case
ε = ∞ corresponds to the cylinder floating on a free surface.

Dependence of added masses λ11, λ33, λ55 and λ15 on the oscillation frequency
for an elliptic cylinder (flat problem) floating on the separation surface of a two-
layer fluid of finite density and finite depth bounded by a free surface was studied
in [220].

The influence of the separation surface on λ33 for a Lewis shipframe floating on
the free surface of a two-layer fluid was studied in [222] and [220]. In [222] there
were compared the experimental results for a contour with the following character-
istics: width B = 20 cm, draught T = 12 cm, area coefficient β := S/(BT ) = 0.9.
In the laboratory experiment there were used two non-mixing fluids (isoparaffine
oil and water) with the difference of densities ε = 0.3076. The full fluid depth in
all experiments was H = 40 cm. There were considered two cases, when the con-
tour either crosses the separation boundary (H1 = 6 cm, H2 = 34 cm) or is com-
pletely floating in the upper layer (H1 = 15 cm, H2 = 25 cm). For comparison we
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Fig. 5.73 Dependence of coefficient k33 on the frequency under vertical oscillations of the Lewis
contour: 1—H1 = 6 cm, H2 = 34 cm; 2—H1 = 15 cm, H2 = 25 cm; 3—homogeneous layer of
depth H = 40 cm. Curves represent results of [222]; symbols correspond to results of [220]

present also the third case, when the contour is oscillating in the layer of homo-
geneous fluid of density ρ2 for the same value of the depth H . In [222] it was re-
vealed a good agreement between numerical and experimental data. In Fig. 5.73 we
compare the numerical results of [222] and [220] for dependence of the coefficient
k33 = λ33/(ρ2b

2) on the frequency, where b = B/2. Curves 1–3 show the results of
[222] obtained by the method of boundary elements; symbols 1–3 show the results
of [220] obtained by the method of hybrid finite elements. The numerical results of
both methods agree well with each other. One observes that the stratification and
position of the body significantly influence the coefficient of added mass k33.

Hydrodynamic forces acting on an immersed body under its horizontal motion
with constant velocity in the lower layer of a two-layer fluid were studied in [218]
for a 2D problem. It is assumed that the lower layer is bounded by the solid “cover”,
while the lower layer has infinite depth. The full matrix of added masses for elliptic
contour with a/b = 2 is computed.

The influence of pycnocline on added masses of a body immersed in a three-layer
fluid were studied in the 2D case in [214, 215, 219]. Comparison of dependence of
added masses λ11 and λ33 on the frequency of oscillations of a circular cylinder
immersed in the lower layer (having finite depth) of two-layer and three-layer fluids
was made in [214]. It was assumed that the upper level is bounded by a solid “cover”.
The influence of the pycnocline thickness and the depth of the lower layer was
studied. It was shown that the behavior of added masses for the two-layer fluid
and the three-layer fluid with thin pycnocline (with the same change of density)
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essentially coincide. When the thickness of the pycnocline increases, the maximal
values of added masses increase, too.

The frequency dependence of added masses of a circular cylinder completely
immersed in the linearly stratified layer is studied in [215]. It was shown that under
increase of the thickness of the stratified layer, the values of added masses approach
the corresponding values given by (5.54); this is especially manifest in the case of
λ33. The presence of thick homogeneous layers significantly influences the values
of λ11 and λ33.

An arbitrary position of a circular cylinder in a three-layer fluid under assumption
of infinite thickness of the lower and upper layers was considered in [219]. The
values of λ11 and λ33 were compared for different stratifications, from an unlimited
two-layer fluid to a relatively deeply situated linearly stratified layer.

Experimental studies of λ11 for a circular cylinder and for a sphere oscillating in
a waveguide (linearly stratified fluid of finite depth and two-layer system of miscible
fluids with pycnocline of finite thickness) were carried out in [61, 64].



Chapter 6
Added Masses under Elastic Oscillations of
Structures and Their Components

Here we discuss oscillations of the surface of a body immersed in a fluid and com-
putation of added masses of the body under such oscillations.1 Oscillations of this
type typically occur as local oscillations of the hull surface. We give examples of
computation of added masses in typical model oscillations.

6.1 General Discussion

When a system immersed in a fluid oscillates elastically, the added mass depends on
whether the system is isolated or represents a part of a larger system because, in the
latter case, added masses depend on the behavior of system parts that are neighbor
to the system experiencing oscillations: if these parts are stable, then they serve as a
solid screen; if they oscillate, this results in additional fluid flow.

Publications on the problem of added masses caused by elastic motions of various
constructions and their separate parts are sparse. This is because of diversity of
hydroelasticity problems, each of which is difficult and customarily needs a separate
approach. At the same time, elastic motions of constructions are important in actual
engineering.

The problem of finding added masses of an elastic rectangular plate attached to
a solid screen was solved by Babaev [10] and the one for the circular plate was
solved by Lamb [133]. In the first case, the problem was solved in application to
a separate plate, whereas the rest of the ship’s skin was assumed to be absolutely
rigid. In reality, a single oscillating plate involves into motion neighbor parts of the
skin, which can be thought of as a stiffened multispan elastic plate. Added masses
of a multispan plate at various oscillation types were found by Schukina [202, 204]
by taking into account the fluid flow into the neighbor spans. She also proposed a
way to find added masses of fluid for oscillations of complex constructions taking
into account interactions between separate elements of these constructions.

The added masses of rectangular, cantilever plates (solid and perforated) and the
ones of the circular plates was found in paper [202]. The influence of the added mass
on characteristics of oscillations of a flexible plate in the fluid flow was considered
in [125, 203]. In [205], the dependence of the added mass of a plate on the presence
of a solid boundary was found.

1This chapter was written by E.N. Schukina.

A.I. Korotkin, Added Masses of Ship Structures,
© Springer Science + Business Media B.V. 2009
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The influence of the free fluid surface and of the flow of fluid across the ship hull
on the added mass of the ship bottom plating was estimated by Rostovtzev [187].
The problem of added masses of shells experiencing oscillations, which are axial-
or skew-symmetric w.r.t. the generating line, was addressed in [3, 15, 40, 69, 79,
104, 141, 150, 173, 180, 207, 223, 259, 262].

The determination of added masses of ship propellers due to shaft oscillations
[51] is important for dynamical calculations of shafting and propeller-shaft struts.

Calculations of added masses for various elastic constructions are performed be-
low taking into account different factors such as the presence of a solid boundary
and of the free fluid surface, oscillations of parts neighbor to the construction under
study, dynamical interaction between elements entering the construction and vol-
umes of fluid involved in motion by these elements.

6.2 Methods of Finding Added Masses under Structure
Oscillations

Problems of determination of added masses under oscillations of bodies and con-
structions in fluid are being customarily solved under the assumption of the ideal
fluid whose flow is potential. This is because the inertial properties of fluid depend
weakly on thermodynamical effects and on fluid viscosity. Investigating the poten-
tial motion of an incompressible homogeneous fluid reduces to finding the velocity
potential ϕ satisfying the Laplace equation and the corresponding boundary and ini-
tial conditions (see Chap. 1). The velocity potential ϕ can be also found using the
method of sources and sinks [139]. The influence of an oscillating body is equiva-
lent to the action of simple sources of capacity q = ∂Z/∂t continuously distributed
over the body surface S (here Z(A, t) is the normal (with respect to the surface)
displacement of the body at the corresponding point). A source of capacity q dS

corresponds to the area element dS located at a point A of the surface S, and the
velocity potential for this elementary source at a point M of the space filled with
liquid is

dϕ(M) = −q(A)
dS(A)

2πr(AM)
,

where r(AM) is the length of the radius-vector �AM = r joining the elementary
source at the point A with the space point M . Using the method of current su-
perposition, we determine the velocity potential at the point M created by sources
continuously distributed over the surface s as the integral

ϕ(M) = − 1

2π

∫ ∫

S

∂Z(A)

∂t

dS(A)

r(AM)
. (6.1)

The integration ranges over the whole surface S.
If the domain of fluid motion is unbounded, the function ϕ tends to zero as the

point M tends to infinity.
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The kinetic energy T of the potential motion of an incompressible homogeneous
fluid is given by the volume integral

T = 1

2
ρ

∫ ∫ ∫

V

v2 dV,

where the integration ranges over the whole fluid volume V and v = gradϕ.
Using the Green’s transformation, or the Ostrogradskii–Gauss formula, we can

express the kinetic energy T of the fluid through the value of the velocity potential
ϕ on the surface of the oscillating body S:

T = −ρ

2

∫ ∫

S

ϕ
∂ϕ

∂n
dS. (6.2)

Using relations (6.1) and

−∂ϕ

∂n
= ∂Z

∂t
,

we express dependence (6.2) in the form

T = ρ

4π

∫ ∫

S

∂Z(M)

∂t
dS(M)

∫ ∫

S

∂Z(A)

∂t

dS(A)

r(AM)
. (6.3)

Let us assume that the displacement Z(A, t) can be represented in the form

Z(A, t) = F(A)τ(t), (6.4)

where F(A) is the function characterizing changes in displacements at different
points of the body surface (for instance, the oscillation amplitude) and τ(t) describes
the time dependence of displacements. The assumption (6.4) means that the time
dependence of displacement of all points of the body surface is the same for all
points of the surface.

Then

T = ρ

4π

∫ ∫

S

F (M)
∂τ

∂t
dS(M)

∫ ∫

S

F (A)
∂τ

∂t

dS(A)

r(AM)
.

Then one can introduce the time-independent quantities

Mad = ρ

2π

∫ ∫

S

F (M)dS(M)

∫ ∫

S

F (A)
dS(A)

r(AM)
(6.5)

which can be naturally called the added masses. These quantities have the dimension
of mass; they correspond to the diagonal entries λ11, λ22 and λ33 of the matrix of
added masses considered in Chap. 1. By using the decomposition of the potential ϕ

into a linear combination of the elementary potentials ϕi , i = 1, . . . ,6, similarly to
(1.9) one can define all other added masses, which have dimensions of mass, static
moment, and inertia moment.

We stress that the definition of natural time-independent variable Mad corre-
sponding to a given type of vibration is possible due to assumption (6.4), which



260 6 Added Masses under Elastic Oscillations of Structures and Their Components

is natural in considering the vibrating bodies. This notion of added mass is there-
fore different from the notion of added masses of interacting bodies considered in
Sect. 4.1.1, since the latter are essentially time-dependent variables depending on
mutual position of the interacting bodies.

In the sequel we shall for brevity omit some arguments in (6.5) and write (6.5) in
the following schematic way:

Mad = ρ

2π

∫ ∫

S

F (s′) dS′
∫ ∫

S

F (s)
dS

r

where s and s′ stand for integration points of the surface S.

6.3 Added Masses of Multi-span Plates

Plates are the most common elements of various engineering constructions in which
they usually participate as multi-span (continuous) elements reinforced by beams
(of the ship skin, of deck plating, of platforms, etc.).

Under oscillations in a fluid, velocity fields caused by a motion of a single plate
span and the ones caused by a motion of the whole continuous construction are
different in general because of flow of fluid from one span to another. The character
of the fluid flow then depends on the nature of oscillations of a multi-span plate.
To determine added masses of a continuous plate, let us consider oscillations of a
rectangular panel (Fig. 6.1) reinforced by parallel stiffeners2 attached to a screen
and contacting with fluid from one side. We assume stiffeners to be rigid and non-
deforming3 and the plate to be flexible only in spans between the stiffeners.

Expressing plate oscillations in the form

Z(x, y, t) = w(t)ψ(x, y),

where x and y are the Cartesian coordinates, t is time, w(t) is the generalized co-
ordinate, and ψ(x, y) is the function of elastic oscillations of a continuous plate,
we replace the influence of an oscillating plate by the action of simple sources of
capacity q = ∂Z/∂t continuously distributed over the surface s of the plate. Then,
by virtue of (6.3), the expression for the kinetic energy of surrounding fluid is

T = ρ

4π

∫ ∫

S

∂Z

∂t
dS′

∫ ∫

S

∂Z

∂t

dS

r

or

T = ρ

4π
ẇ2

∫ ∫

S

ψ dS′
∫ ∫

S

ψ
dS

r
. (6.6)

2Panels reinforced by parallel stiffeners are often called fields.
3For the solution of the problem for a plate with flexible stiffeners, see Sect. 6.9.
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Fig. 6.1 The panel reinforced by parallel stiffeners

Here ρ is the fluid density, r is the distance between the points s and s′, and ẇ is
the generalized velocity.4

The coefficient of the generalized coordinate in expression (6.6) is the added
mass of the plate whose oscillations are described by the function ψ(x, y). In actual
calculations, dimensionless coefficients of added masses are more convenient [202],

μ

(
l

nb

)

= n

2πl

∫∫

S
ψ dS′ ∫∫

S
ψ dS

r
∫∫

S
ψ2 dS

, (6.7)

where l and b are the lengths of the panel (continuous plate) sides (see Fig. 6.1),
l/n = a is the length of a single span of the continuous plate, and n is the number of
spans into which the panel side l is separated by the stiffeners (the number of spans
of the continuous plate participating in motion).

The added mass per the plate unit area is then

m = ρ
l

n
μ

(
l

nb

)

. (6.8)

The coefficient μ(l/nb) depends therefore on the shape of oscillations of a con-
tinuous plate, on the number of spans involved in the oscillations, and on the ratio
of sides of the supporting contour.

4The dot over the symbol indicates differentiation in time.
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The numerical integration provided the coefficients [202] μ(l/nb) for the fol-
lowing forms of the plate oscillations (the axis y is directed along the stiffeners):

ψ(x, y) = sin
nπx

l
sin

πy

b
; ψ(x, y) = sin2 nπx

l
sin2 πy

b
;

ψ(x, y) = sin2 nπx

l
sin

πy

b
; ψ(x, y) = sin

nπx

l
;

ψ(x, y) = sin2 nπx

l
.

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.9)

The main difficulty in finding the coefficient μ is the evaluation of the integral

K =
∫ ∫

S

ψ dS′
∫ ∫

ψ
dS

r
. (6.10)

For the circular plate, this integral was calculated exactly [133]. Calculating this
integral for the rectangular one-span plate is difficult and was therefore performed
by Babaev [10] only approximately.

Let us denote

F(x′, y′) =
∫ ∫

ψ(x, y)

r
dS. (6.11)

Then

K =
∫ ∫

S

F (x′, y′)ψ(x′, y′) dS′.

We split the surface of the whole (continuous) plate into a sufficiently large num-
ber of equal rectangles and assume the values of the functions F and ψ to be known
at the geometrical centers of each of these rectangles. We can then write

K ≈ ΔxΔy
∑

i

∑

k

Fikψik. (6.12)

To simplify calculations, we split each side of the plate into an even number of
equal intervals, that is, we split the side l into 2nv intervals and the side b into 2p

intervals. Expression (6.12) then becomes

K = 4ΔxΔy

nv
∑

i=1

p
∑

k=1

Fikψik,

where Δx = l/(2nv) and Δy = b/(2p). Hence,

K = lb

nvp

nv
∑

i=1

p
∑

k=1

Fikψik. (6.13)



6.3 Added Masses of Multi-span Plates 263

The functions ψik entering (6.13) are calculated for the oscillation forms under
study (see (6.9)) as follows:

ψik = sin
(2i − 1)π

4v
sin

(2k − 1)π

4p
;

ψik = sin2 (2i − 1)π

4v
sin2 (2k − 1)π

4p
;

ψik = sin2 (2i − 1)π

4v
sin

(2k − 1)π

4p
;

ψik = sin
(2i − 1)π

4v
1; ψik = sin2 (2i − 1)π

4v
1.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.14)

To calculate Fik we present expression (6.11) in the form

Fik =
∫ ∫

S1

ψ(x, y)

r
dS +

∫ ∫

S2

ψ(x, y)

r
dS. (6.15)

The integration in the first term is here performed over the surface S1 of the element
at whose geometrical center we calculate the function Fik , whereas the integration
in the second term is performed over the whole remaining surface S2 of the plate
except this element.

The first integral reduces to
∫ ∫

S1

ψ(x, y)

r
dS ≈ ψik

∫ ∫

S1

dx dy

r

= 2ψik

[

Δx ln tan(β/2 + π/4) + Δy ln tan(α/2 + π/4)
]

,

where α = arctan(Δx/Δy) and β = arctan(Δy/Δx).
The second term in (6.15) can be calculated using the approximation

∫ ∫

S2

ψ(x, y)

r
dx dy ≈ ΔxΔy

2nv
∑

j=1

2p
∑

t=1

ψjt

r(xi;yk;xj ;yt )

where the indices j and t take all values except those when simultaneously j = i

and t = k.
The coefficients μ(l/(nb)) were calculated for the following values of the ratio

l/(nb): 0.1; 0.3; 0.5; 0.7; 0.85; 1.0. In expressions (6.14), the number of spans n

was taken to be 1, 2, 3, 4, and also n = 6 for the oscillations of form sin nπx
l

sin2 πy
b

.
All the calculations were performed with accuracy within 1%. The graphs of the
dependence of the coefficient μ on the ratio of the sides of the supporting contour
of the plate l/(nb) for different forms of its oscillations (different kinds of fixation
of its edges) are presented in Figs. 6.2–6.6, see [202].

Forms of oscillations under consideration (6.9) correspond to oscillations of the
neighbor spans of the plate either in phase or in antiphase, i.e., they represent ei-
ther the so-called symmetric or antisymmetric forms of deformations of continuous
plates.
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Fig. 6.2 The graph of
dependence of the added
mass coefficient μ on the
ratio of sides of the plate
freely supported along all the
edges, ψ(x, y) =
sin(nπx/l) sin(πy/b)

Fig. 6.3 The graph of
dependence of the added
mass coefficient μ on the
ratio of sides of the plate
rigidly clamped along all the
edges, ψ(x, y) =
sin2(nπx/l) sin2(πy/b)

The last two cases in expressions (6.9) correspond to the cylindrical deformations
of the plate that is either freely supported (antisymmetric form of oscillations) or
rigidly clamped (symmetric form of oscillations) along the long edges; this type of
oscillations is possible for plates with the ratio of sides a/b ≥ 2.5.

If a construction is surrounded by fluid from both sides (for instance, by outside
water or by fluid in a cistern), one must add the added masses (it is doubled if the
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Fig. 6.4 The graph of
dependence of the added
mass coefficient μ on the
ratio of sides of the plate
rigidly clamped along one
pair of parallel edges and
freely supported along the
other pair of parallel edges
ψ(x, y) = sin2(nπx/l) ×
sin(πy/b)

Fig. 6.5 The graph of
dependence of the added
mass coefficient μ on the
ratio of sides of the plate
freely supported along the
pair of parallel long edges
and experiencing cylindrical
oscillations ψ(x, y) =
sin(nπx/l)

fluid density is equal from both sides of the construction):

m = μ

(
l

nb

)
l

n
(ρ + ρ1), (6.16)

where ρ and ρ1 are the densities of fluid from the different sides of the construction.
It is worth mentioning that the curves in Figs. 6.2 and 6.3 for n = 1 exactly

coincide with the curves obtained by Babaev [10] for the separate plate, which is
attached to a rigid screen and is either freely supported or rigidly clamped along its
edges.
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Fig. 6.6 The graph of
dependence of the added
mass coefficient μ on the
ratio of sides of the plate
rigidly clamped along the pair
of parallel long edges and
experiencing cylindrical
oscillations ψ(x, y) =
sin2(nπx/l)

The generalized added mass of a single span of the plate (with dimensions a ×b)
whose oscillations have amplitude ψ(x, y) by virtue of formulas (6.7) and (6.8) is

M = m

∫ a

0

∫ b

0
ψ2(x, y) dx dy. (6.17)

Example. Let us find the added mass of the plate of a ship’s external plating, which
is reinforced by stiffeners and oscillates in the antisymmetric mode. The number of
plate spans between longitudinal beams of the prime set (stringers) is n = 4. The
plate dimensions are: the short side (the distance between stringers) a = 0.40 m,
the long side b = 1.60 m. The construction is surrounded by fluid on both sides: by
outer water on one side and by water in a cistern on the other side.

The added mass m per the unit area of the plate surface is given by formula (6.16).
The coefficient μ can be found from Fig. 6.2 for the antisymmetric oscillation mode.

When the ratio of the plate sides

a

b
= l

nb
= 0.40

1.60
= 0.25; μ

(
a

b

)

= 0.39,

we have

m = 2ρaμ

(
a

b

)

= 2 · 1.0 · 103 · 0.40 · 0.39 = 0.312 · 103 kg/m2.
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Here ρ = 1.0 · 103kg/m3 is the water density.
By virtue of formula (6.17), the generalized added mass of the plate is

M = m

∫ a

0

∫ b

0
ψ2(x, y) dx dy = m

∫ a

0

∫ b

0
sin2 πx

a
sin2 πy

b
dx dy

= 0.312 · 103 0.40 · 1.60

4
= 0.5 · 102 kg.

At plate thickness δ = 1.2 · 10−2 m and for the steel ship’s hull (ρm = 7.85 ·
103 kg/m3), the added mass corresponding to the antisymmetric mode of the plating

oscillations (with water on both sides) is m/mM = 0.312·103

7.85·1031.2·10−2 = 3.3 times bigger
than the mass of the plate itself.

6.4 Plate Immersed in a Compressible Fluid in the Presence of a
Solid Boundary

We consider the influence of a solid boundary on the added masses on the example
of an infinite plane plate oscillating in an ideal compressible fluid in antisymmetric
modes in two mutually perpendicular directions. Plate oscillations are assumed to
be stable and harmonic in time. Taking into account linearity of the problem, we
consider one Fourier harmonic of oscillation displacement described by the function

w(x,y, t) = f eiωt sin
πx

a
sin

πy

b
,

where f and ω are the respective amplitude and frequency of oscillations, a and
b are the lengths of half-waves in the directions of axes x and y (Fig. 6.7), and t is
time. The function w is complex-valued, and reality of displacement is restored in
physically realistic situations when one considers a linear combination of various
harmonics.

The motion of ideal compressible fluid is described by the wave equation

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 1

c2
0

∂2ϕ

∂t2
, (6.18)

where ϕ is the potential of fluid velocities and c0 is the sound velocity in the fluid.
Wave equation (6.18) must be supplemented by the following boundary condi-

tions:

(1) the normal components of the fluid and plate velocities are equal on the plate
surface, i.e.,

for z = 0,
∂ϕ

∂z
= ∂w

∂t
; (6.19)
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Fig. 6.7 An infinite plate oscillating near the solid boundary 1—the plate; 2—the solid boundary

(2) the condition of impenetrability of the solid boundary

for z = h,
∂ϕ

∂z
= 0, (6.20)

where h is the distance between the plate and the solid boundary (the boundary
is parallel to the plate).

Because the fluid motion is stable, we consider only one harmonic and seek the
solution of wave equation (6.18) in the form (this solution is complex, but a final
linear combination of such solutions having a physical meaning should be real)

ϕ(x, y, z, t) = ψ(x, y, z)eiωt . (6.21)

Substituting (6.21) in Eq. (6.18), we obtain the equation on the function
ψ̇(x, y, z):

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+

(
ω

c0

)2

ψ = 0. (6.22)

The boundary conditions for ψ(x, y, z) by virtue of (6.19) and (6.20) are

for z = 0,
∂ψ

∂z
= if ω sin

πx

a
sin

πy

b
;

for z = h,
∂ψ

∂z
= 0. (6.23)
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Looking for the solution of Eq. (6.22) in the form

ψ(x, y, z) = Z(z) sin
πx

a
sin

πy

b
, (6.24)

where Z(z) is a function of a single argument z (we assume that the axis z is directed
perpendicular to the plate), and substituting ansatz (6.24) in Eq. (6.22), we obtain

d2Z

dz2
− a2Z = 0, (6.25)

where

α =
√

(
π

a

)2

+
(

π

b

)2

−
(

ω

c0

)2

. (6.26)

The boundary conditions for Eq. (6.25) by virtue of (6.23) are:

for z = 0,
dZ

dz
= if ω;

for z = h,
dZ

dz
= 0. (6.27)

The solution of Eq. (6.25) can be presented in the form

Z(z) = C1e
az + C2e

−az, (6.28)

with C1 and C2 arbitrary constants.
For solution (6.28) to satisfy boundary conditions (6.27), we must set

C1 = − if ω

a

e−ah

eah − e−ah
;

C2 = − if ω

a

eah

eah − e−ah
. (6.29)

By virtue of expressions (6.21), (6.24), (6.28), and (6.29), the desired potential
of fluid velocities is

ϕ(x, y, z, t) = − if ω

a
eiωt e

a(h−z) + e−a(h−z)

eah − e−ah
sin

πx

a
sin

πy

b
.

The pressure on the plate surface (at z = 0) caused by its oscillations and calcu-
lated by a linearized Cauchy integral is

p = −ρ
∂ϕ

∂t

∣
∣
∣
∣
z=0

= ρ
f ω2

α
eiωt e

αh + e−αh

eαh − e−αh
sin

πx

a
sin

πy

b

= ρ
f ω2

α
eiωt 1

thah
sin

πx

a
sin

πy

b
.
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To calculate the added mass, we first find the generalized force caused by the
fluid pressure on the plate part of dimensions a × b:

P =
∫ a

0

∫ b

0
p sin

πx

a
sin

πy

b
dx dy = ρ

ab

4

f ω2

α
eiωt 1

tanhαh
.

Because f ω2eiωt is the acceleration of the middle of the plate part under consid-
eration, its proper added mass is5

Mad = ρ
ab

4α

1

tanhαh
. (6.30)

The added mass per unit area of the multi-span plate, calculated with accounting
for the number of oscillating spans and in the presence of the solid boundary, is
given by the formula

m = ρ
l

n
μ

(
l

nb

)

β(α,h),

where l/n = a is the distance between the nodal lines or the stiffeners, n is the num-
ber of oscillating spans of the multi-span plate, μ(l/nb) is the added mass coeffi-
cient determined by Figs. 6.2–6.6, and β(α,h) is the coefficient taking into account
the influence of the solid boundary and depending on the distance h between the
plate and the boundary and on the conditions of fixing the plate on the supporting
contour (on the oscillation type) characterized by the parameter α.

At the antisymmetric type of oscillations, the coefficient β(α,h) = tanh(αh) in
the case where the fluid is constrained between the plate and the solid boundary and
β(α,h) = 1 + 1/tanh(αh) in the case where the fluid is unlimited on the one side of
the plate and is constrained by the solid boundary on the other side of the plate.

The obtained results indicate that the influence of the fluid compressibility is
characterized by the ratio ω/c0 (see formula (6.26)). If the square of this ratio is
small as compared with the first two terms, then we may neglect the influence of the
compressibility. Let a be the smallest half-wave length (or the interval between the
stiffeners); then the condition

(
ω

c0

)2

≤
(

π

a

)2

is satisfied if

τ > 2T , (6.31)

where τ = 2π/ω is the period of plate oscillations and T = 2a/c0 is the time during
which the sound wave in fluid travels the distance equal to the doubled length of the
shortest half-wave.

5The solution was obtained by V.A. Rodosskii.
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Calculations of frequencies of oscillations of a ship’s hull plates and other en-
gineering constructions demonstrate that condition (6.31) is usually satisfied, and
one can therefore neglect the fluid compressibility when considering antisymmetric
types of oscillations of plates (and circular cylindrical shells). The expression for α

is then

α = π

√

1

a2
+ 1

b2
.

Besides, formula (6.30) yields that the added mass increases as the distance h

between the solid boundary and the plate decreases.
We now find the minimal distance to the solid boundary at which we can neglect

its influence on the fluid added mass, say, at which this influence will not exceed
10%. This is equivalent to the condition

1

tanh(αh)
= eαh + e−αh

eαh − e−αh
< 1.1, or e2αh > 21,

whence

2αh > ln 21 or h >
3.04

2π
√

a−2 + b−2
. (6.32)

Inequality (6.32) yields

– for the plate oscillating in a cylinder-like mode (b → ∞), h > 0.484a;
– for the square plate (a = b), h > 0.342a.

Therefore, if the distance between the plate and the solid boundary is greater than
the half-length of the short half-wave of the plate (h > a/2), experiencing antisym-
metric oscillations, then we can neglect the influence of the solid boundary on the
added masses.

If the infinite plate reinforced by parallel stiffeners and oscillating in the symmet-
ric mode (all spans oscillate in the same phase) is located near the solid boundary,
then, due to the fluid incompressibility and the absence of its flow between the spans,
the added mass becomes infinite.

6.5 Added Masses of Ship Hull Grillages and Fields

Grillages of ship hulls and other structures are systems of cross stiffeners (Fig. 6.8)
sheathed with plating. Fields are parts of plating confined between prime and cross
boarding joists and reinforced by parallel stiffeners. The nature of deformations of
such plating, or of the field, is the same as the one of the plate restricted by its
bounding contour. When determining the added masses of fields we can therefore
apply the principles and formulas obtained for plates.

The added masses caused by grillage oscillations and taken per unit area of the
grillage are determined by the respective formulas [204]

mrel = ρBμ(B/L); mad = ρbμ(b/l), (6.33)
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Fig. 6.8 The scheme of the ship hull grillage. 1—plating; 2—prime boarding joists; 3—cross
boarding joist; 4—cross stiffeners

where B and L are the dimensions of the grillage and b and l are the dimensions of
the field.

The coefficients μ(B/L) and μ(b/l) can be determined from Figs. 6.2–6.6 de-
pending on the ratio of sizes of the supporting contour of the construction (the
grillage or the field), on the type of its oscillations and on whether the neighbor
constructions participate in motion (the number n).

For the bottom platings whose sizes are close to the transversal dimensions of
the ship hull, the added masses must be determined taking into account the free
water surface, i.e., taking into account the three-dimensional hydrodynamic flow.
Rostovtzev [187] solved this problem and plotted the graphs of values of the added
mass coefficients k (Fig. 6.9) taking into account the influence of the above factors.
In accordance with this solution, for the principal mode of oscillations of the bottom
plating of the ship hull, the added mass per unit area is mrel = ρBk.

Calculations demonstrate [187] that clamping the grillage on the edges does not
substantially affect the value of the added mass per unit area. On the other hand,
passing from the oscillations that are symmetric w.r.t. the transverse bulkheads to
the oscillations that are antisymmetric reduces the coefficient by a factor of more
than two.

Examples of calculations of the added masses of fields and grillages are presented
in Sects. 6.9.1 and 6.9.2.
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Fig. 6.9 Values of the added mass coefficient for the ship’s bottom grillages; I—symmetric oscil-
lations; II—antisymmetric oscillations; dashed line—the grillage is freely supported on the edges;
solid line—the grillage is rigidly clamped on the edges

6.6 Added Masses of Cantilever Plates

For the first three modes of elastic oscillations of cantilever plates immersed in an
unlimited fluid, the added mass per unit length is determined by the formula [132]

m = πρb2

4

1

1 + ki(δ/b)b/2l
, (6.34)

where l is the plate length (measured between the rigidly clamped and the freely sup-
ported edges), b and δ are the respective width and depth of the plate, and ki(δ/b) is
the coefficient determined by Fig. 6.10.

The adjoint inertia moment per unit length of the longitudinal axis of symme-
try of the cantilever plate caused by its torsional oscillations is determined by the
formula (at b 
 δ)

J = 1

128
πρb4. (6.35)

The influence of the proximity of the free fluid surface on the added masses and
on the inertia moment of the cantilever plate (when the plate surface is parallel to the
free water surface) can be taken into account by multiplying the added mass value
and the inertia moments calculated by formulas (6.34) and (6.35) by the coefficient
ksurf determined from Fig. 6.11.



274 6 Added Masses under Elastic Oscillations of Structures and Their Components

Fig. 6.10 Values of the
coefficient determining the
influence of elastic
displacements of the
cantilever plate on the added
mass

Fig. 6.11 Values of the
coefficient determining the
influence of the free fluid
surface on the added mass of
the cantilever plate solid
line—torsional oscillations;
dashed line—flexural
oscillations

Example. Find the added mass of cantilever plates oscillating in an unlimited fluid
for the first three modes of their oscillations. Plate dimensions and the calculation
are presented in Table 6.1.

6.7 Added Masses of Shells

To find added masses of fluid involved in the motion of an oscillating shell, we
must introduce into the equations describing the shell oscillations the pressure of
the perturbed fluid and take into account the continuity of the normal component of
the fluid velocity, which must be equal to the velocity of the shell deformation on
the surface of the shell.
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Table 6.1 Calculation results for added masses of cantilever plates

Plate parameters Osc. mode ki(δ/b) (1 + ki(δ/b)/2l)−1 m given by (6.34)

l = 0.60 1 0.95 0.865 0.865 πρb2/4

b = 0.20 2 1.9 0.76 0.76 πρb2/4

δ = 0.5 · 10−2 3 3.75 0.618 0.618 πρb2/4

δ/b = 0.025

l = 0.60 1 ∼ 0 ∼ 1 πρb2/4

b = 0.20 2 0.9 0.87 0.87 πρb2/4

δ = 0.5 · 10−2 3 2.42 0.712 0.712 πρb2/4

δ/b = 0.075

The law of pressure distribution and the one of the velocity of the perturbed fluid
can be determined by solving the equations of motion and by taking into account
the continuity of an ideal incompressible fluid.

Because it is necessary to find the added masses for types of the shell oscillations
both dependent on and independent of the coordinate along the generatrix of the
shell (that is, for shells of finite or infinite lengths), we solve this problem in the
cases of both flat and spatial fluid flows.

6.7.1 Cylindrical Shell of Infinite Length

In the case of an infinitely long cylindrical shell (for which all the transversal sec-
tions oscillate in the same phase, and we can therefore consider it the circle of unit
length segregated from the shell by two sections perpendicular to the symmetry
axis) the equations of motion and continuity in the polar coordinates r and θ and
under the assumption of the smallness of oscillations of the shell and of the ideal
fluid are [116]

∂vr

∂t
= − 1

ρ

∂p

∂r
; ∂vθ

∂t
= − 1

ρr

∂p

∂θ
; ρ

r

∂(rvr )

∂r
+ ρ

r

∂vθ

∂θ

= 0, (6.36)

where vr and vθ are the respective radial and tangential components of the fluid
velocity, p(r, θ, t) is the fluid pressure, ρ is the fluid density, and t is time.

Substituting the components of the fluid velocity from the first two equations of
system (6.36) into the third equation, we obtain the following partial differential
equation w.r.t. the unknown function p:

∂

∂r

(

r
∂2p

∂r∂t

)

+ 1

r

∂3p

∂θ2∂t
= 0.
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Solving this equation, taking into account that the pressure is zero at large dis-
tance from the shell, we obtain the formula for the pressure in the outer domain,

p(r, θ, t) = C

rn
cosnθ cosλt, (6.37)

where C is the integration constant determined from the boundary condition on the
shell surface, n is the number of wave lengths along the shell boundary, and λ is the
oscillation frequency.

Substituting expression (6.37) in the first two equations of system (6.36) and
integrating the latter, we obtain the formulas determining the velocity components
of fluid surrounding the shell:

vr = Cn

ρλrn+1
cos(nθ) sin(λt); vθ = Cn

ρλrn+1
sin(nθ) sin(λt). (6.38)

The shell added mass can be determined by the energy method.
The coefficient ν, taking into account the influence of the added mass on the

eigenfrequency of the cylindrical shell, is

ν = ωn

λ
=

√

1 + m

msh
=

√

1 + T

Tsh
(6.39)

where ωn and λ are the respective shell eigenfrequencies in air and in the fluid, m is
the mass of fluid added per unit area of the shell surface, msh is the mass of the unit
area of the shell surface, T is the kinetic energy of fluid involved in the motion by
the oscillating shell, and Tsh is the shell kinetic energy.

The kinetic energy of the fluid involved into a motion by an oscillating ring is
determined by the formula

T = 0.5ρ

∫ 2π

0

∫ ∞

rsh

(

v2
r + v2

θ

)

r dθ dr, (6.40)

where rsh is the shell radius.
Substituting the values of the velocity components (6.38) into formula (6.40), we

obtain

T = πρnC2

2λ2r2n
sin2(λt).

The kinetic energy of the oscillating ring of unit length can be expressed analo-
gously,

Tsh = ρshδro

2

∫ 2π

0

(

ẇ2 + v̇2)dθ,

where ρsh is the density of the shell material, δ is the shell thickness, and ẇ and v̇ are
the respective normal and tangential components of the ring velocity determined by
expressions (6.38) upon the substitution r = rsh.
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Substituting the values of ẇ and v̇ in the formula for the ring kinetic energy, we
obtain

Tsh = πρshδrsh

2

C2(n2 + 1)

ρ2λ2r2n+2
sh

sin2(λt).

The squared coefficient ν (6.39) for the cylindrical shell whose form of oscilla-
tions does not depend on x (the x-axis is directed along the shell axis of symmetry)
is therefore

ν2 = 1 + nrshρ

ρshδ(n2 + 1)
. (6.41)

Comparing equalities (6.39) and (6.41) we find the added mass per unit area of
the infinite cylindrical shell oscillating in the antisymmetric mode,

m = nrshρ

n2 + 1
. (6.42)

It is worth mentioning that the least eigenfrequency of the shell oscillations cor-
responds to antisymmetric modes of oscillations at which the shell loses stability,
which is accompanied by the appearance of a large number of waves along the cir-
cular boundary (n ≈ 15–20 and more).

If we neglect the unity as compared with n2, then expression (6.42) becomes
merely

m = rshρ

n
. (6.43)

At the axial-symmetric oscillations of the infinite cylindrical shell (Fig. 6.12b)
the notion of added mass becomes nonsense (tends to infinity), that is, the hypothesis
of fluid incompressibility becomes invalid. Therefore, one must take into account

Fig. 6.12 The oscillation modes for the cylindrical shell of infinite length: left—antisymmetric;
right—axial-symmetric; f is the shell oscillation amplitude
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fluid compressibility when considering oscillations of the mode n = 0 for an infinite
shell.

6.7.2 Cylindrical Shell of Finite Length

Equations of motion and continuity at the spatial flow of an ideal incompressible
fluid (for a vortex-free motion) can be reduced to a single partial differential equa-
tion with the unknown ϕ, which is the Laplace equation taking the following form
in cylindrical coordinates:

∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
+ 1

r2
sh

∂2ϕ

∂ξ2
= 0,

where ξ = x/r0 and x is the coordinate along the generatrix with the origin at one
of the ends of the shell.

Solving the Laplace equation, taking into account the boundary conditions, en-
ables us to determine the components of the fluid velocity: the radial component vr ,
the tangential component vsh, and the component along the cylinder generatrix vZ .

To find the added mass in the case of oscillations of the cylindrical shell of finite
length (with n waves along the circle component and k half-waves along the axial
component), we use the reasonings analogous to the ones in Sect. 6.7.1.6

We substitute the components of the fluid velocity into the formula for the kinetic
energy of fluid involved into motion by an oscillating shell,

T = 0.5ρrsh

∫ 2π

0

∫ ∞

rsh

∫ l/rsh

0

(

v2
r + v2

sh + v2
Z

)

r dθ dr dξ

(l is the shell length), simultaneously substituting the components of the shell oscil-
lation velocity ẇ, u̇, and v̇ into the formula for the shell kinetic energy

Tsh = ρδrsh

2

∫ 2π

0

∫ l/rsh

0

(

ẇ2 + u̇2 + v̇2)dθ dξ.

Omitting rather cumbersome calculations, we eventually obtain the coefficient v

squared (see (6.39)), which takes into account the influence of the added mass on
the shell eigenfrequencies, in the form

ν2 = ω2
n

λ2
= rsh(ρshδ + μrshρ)

ρshδrsh
= 1 + μ

rshρ

ρshδ
, (6.44)

where

μ = 1
√

n2 + γ 2
k (1 + γ 2

k

2(n2+γ 2
k )3/2 )

. (6.45)

6The solution was obtained by Novozhilov and Lefonova.
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Fig. 6.13 The oscillation modes for the cylindrical shell of a finite length: left—antisymmetric;
right—axial-symmetric; f and f1 are the shell oscillation amplitudes

The added mass per unit area of the surface is therefore

mkn = μrshρ. (6.46)

We use the following notation in expressions (6.44)–(6.46): μ is the dimension-
less coefficient of the shell added mass, γk = kπrsh/l, rsh and l are the respective
radius and the length (the size along the generatrix) of the shell, and k is the number
of half-waves of the oscillation mode along the shell generatrix (Fig. 6.13a).

The number of waves n in the circular dimension that correspond to lacking sta-
bility and to the least eigenfrequency of the shell can be determined from Fig. 6.14.

For thin shells, formula (6.46) becomes

mkn ≈ rshρ
√

n2 + γ 2
k

, (6.47)

because in this case the quantity γ 2
k (n2 + γ 2

k )3/2 in expression (6.45) is small as
compared to unity.

From dependence (6.47) we can easily obtain the formula determining the added
mass of the infinite shell that does not experience deformations in the longitudinal
dimension and undergoes n-waves deformation along the circular coordinate, that
is, we do not allow fluid flows along the shell axis. Setting γk = 0 (i.e. l → ∞) in
(6.47), we obtain formula (6.43).

Comparing formulas (6.43) and (6.47) we obtain that with the increase of the
number of waves in the circular direction, which is specific for a thin-wall shell
of large radius, the influence of the fluid flow along the shell surface on the added
masses decreases. We can neglect this influence if the wavelengths in the circular
and longitudinal directions satisfy the inequality n2 
 γ 2

k .
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Fig. 6.14 The dependence of the number of waves in the circular dimension at which the cylin-
drical shell loses stability on the parameters of the shell

The above formulas were obtained under the assumption that the shell contacts
fluid only from one side. If the fluid is on both sides of the shell, the added mass
must be doubled.

For the added mass of the shell reinforced by the longitudinal stiffeners partic-
ipating in oscillations, formulas (6.45) and (6.46) remain valid, but the values of
quantities in these formulas must be changed.

We take the shell thickness to be the reduced thickness equal to

δred = δ + sF

L
,

where δ is the depth of the plating, s is the number of stiffeners along the shell
length, F is the cross-section of the transversal stiffener, L is the shell length, γk =
kπrsh/L, and n is the number of waves along the circular direction created when a
stiffener loses stability.

At the axial-symmetric oscillations of a shell of a finite length (Fig. 6.13b), the
added mass per the unit area of the shell surface can be calculated using formulas
(6.45) and (6.46) setting n = 0, i.e., mkn = 2rshρ/(2γk +1), or approximately mkn ≈
rshρ/γk .

In Table 6.2 we present the added mass per unit area of the cylindrical shell
caused by the shell oscillations in the antisymmetric mode with the least eigenfre-
quency (with the number of waves along the circular direction that corresponds to
losing stability) and with one half-wave along the generatrix. We consider two cases:
the non-reinforced shell and the reinforced shell.



6.8 Effect of a Solid Boundary on Added Masses of Shells 281

Table 6.2 The added masses of the cylindrical shell

Shell r0 th. l n k γk μ m

Non-reinforced 100 0.6 15 18 1 21
1

27.7
37.0

With one stiffener 100 0.662 30 8 1 10.5
1

13.2
77.5

In Table 6.2 r0 is the radius (cm); th. is the shell thickness (for non-reinforced
case) or modified thickness (for reinforced case); l is the shell length; n is the num-
ber of waves when the shell loses its stability; k is the number of half-waves along
the shell generating line; γk = kπr0/l; μ is the coefficient of the added mass; m is
the added mass per unit of the shell area, (kg/m2).

6.8 Effect of a Solid Boundary on Added Masses of Shells

We estimate the influence of the solid boundary on the shell added mass on the
example of oscillations of the thin (elastic) shell near the absolutely rigid cylindrical
boundary situated co-centrically w.r.t. the shell (Fig. 6.15). For this we use the basic
dependencies of the theory of incompressible fluid. We consider the plane fluid
motion whose equation reads

∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
= 0 (6.48)

in the polar coordinates.
The boundary conditions are

for r = R,
∂ϕ

∂r
= 0;

for r = rsh,
∂ϕ

∂r
= aλ cos(nθ) cos(λt),

where ϕ is the velocity potential for the fluid perturbed by the shell oscillations, rsh
and R are the respective radiuses of the thin and absolutely rigid (solid boundary)
shells, a and λ are the respective amplitude and frequency of the shell oscillations,
and n is the number of waves along the shell perimeter.

We seek the solution of Laplace equation (6.48) for the case of stable small os-
cillations of fluid under consideration in the form

ϕ(r, θ, t) = ψ(r) cos(nθ) cos(λt). (6.49)

Substituting (6.49) in (6.48), we come to the equation

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
− n2

r2
ψ = 0 (6.50)



282 6 Added Masses under Elastic Oscillations of Structures and Their Components

Fig. 6.15 Two co-centric cylindrical shells: 1—the elastic shell, 2—the absolutely rigid shell

with the boundary conditions

for r = R,
dψ

dr
= 0;

for r = rsh,
dψ

dr
= aλ. (6.51)

Looking for the solution of Eq. (6.50) in the form

ψ(r) = Crs, (6.52)

where C is a constant, and substituting (6.52) in (6.50), we obtain s = ±n.
Therefore,

ψ(r) = C1r
−n + C2r

n. (6.53)

Imposing boundary conditions (6.51) on solution (6.53), we find

C1 = aλ

n

R2n

rn−1
sh − R2nr

−(n+1)
sh

; C2 = aλ

n

1

rn−1
sh − R2nr

−(n+1)
sh

,

and the expression for the potential then reads

ϕ(r, θ, t) = aλ

n

R2nr−n + rn

rn−1
sh − R2nr

−(n+1)
sh

cos(nθ) cos(λt).

The pressure on the surface of the elastic shell is then

p|r=rsh = −ρ
∂ϕ

∂t

∣
∣
∣
∣
r=rsh

= ρ
aλ2rsh

n
cos(nθ) sin(λt) sign(Δr)

(rsh/R)2n + 1

(rsh/R)2n − 1
, (6.54)



6.8 Effect of a Solid Boundary on Added Masses of Shells 283

where Δr = rsh − R (see Fig. 6.15).
It follows from (6.54) that the influence of the proximity of a solid boundary on

the shell added masses is characterized by the last factor taking into account the
mutual locations of the elastic and rigid shells (signΔr), i.e., taking into account
whether the rigid shell is located inside or outside the elastic shell.

The added mass per unit area of the shell surface experiencing oscillations with
n waves on the circle and with k half-waves along the generatrix can be therefore
determined, by virtue of formulas (6.45), (6.47), and (6.54), using the expression7

mkn = rshρ
√

γ 2
k + n2

sign(Δr)
(rsh/R)

2
√

γ 2
k +n2 + 1

(rsh/R)
2
√

γ 2
k +n2 − 1

(6.55)

if the fluid is confined between the shell and the rigid boundary, and using the ex-
pression

mkn = rshρ
√

γ 2
k + n2

sign(Δr)

(

1 + (rsh/R)
2
√

γ 2
k +n2 + 1

(rsh/R)
2
√

γ 2
k +n2 − 1

)

= 2rshρ
√

γ 2
k + n2

signΔr

1 − (R/rsh)
2
√

γ 2
k +n2

(6.56)

if we have a solid boundary on one side of the shell and the unlimited fluid on the
other side.

At the plane fluid flow (for an infinite shell) we must set γk = 0 in formulas (6.55)
and (6.56).

We can use formulas (6.55) and (6.56) for both closed and non-closed shells
(bend plates). In the latter case, the number n is the number of half-waves along the
bend edge of a non-closed shell.

We now analyze the influence of the solid boundary on the added masses on the
example of an infinite shell. This influence will not exceed 10% if the last multiplier
in formula (6.54) does not exceed 1.1, or if

(rsh/R)2n > 20. (6.57)

The influence of the solid boundary on the value of added masses is therefore
diminished with the increase of the number of waves n along the circular boundary
of the shell and with the increase in the distance between the shell and the solid
boundary rsh/R.

At n = 20, inequality (6.57) holds at rsh/R > 1.1. The influence of the solid
boundary on the added masses of a light shell, which customarily experiences os-
cillations with a large number of waves along the circular coordinate, is therefore
negligible in practically all actual applications.

7These formulas were obtained by Schukina in collaboration with Rodosskii.
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Fig. 6.16 The domain (hatched) of combinations R/r0 and n, in which the shell experiences the
influence of the proximity of the solid boundary

The formulas that take into account the influence of the solid boundary on the
added mass of fluid confined between two co-centric shells one of which is rigid
were also derived in [150]. The results of the above calculations coincide with the
ones presented in [150].

In [150], the domain of values of the combinations R/rsh and n �= 0 within which
the shell immersed in an incompressible fluid is affected by the presence of the solid
boundary was found (the hatched domain in Fig. 6.16). The graph is depicted under
the assumption that solid boundaries do not affect added masses if the extra increase
of the added mass due to restrictions imposed by bounding the annulus-like layer of
fluid in comparison with the added mass in an unlimited fluid does not exceed 1.05
(5%).

6.9 Added Masses at Complex Structure Motion

Above we have considered added masses caused by definite types of motions of
either a solid or an elastic body. But in practice many bodies and constructions
participate in a complex motion unifying many types or components of oscillation
processes. Say, bending oscillations of beam structures (of the ship hull, of over-
hanging elements like cantilever wings, stabilizers, etc.) in fluid are customarily
accompanied by torsional oscillations even in the case where center of masses of
transversal sections coincide with the rigidity centers, which ensures the indepen-
dence of these two types of oscillations for a system in vacuum. Or, for example,
beams or other elements of a construction participate simultaneously in the motion
together with the bearing structure and in the motion w.r.t. this structure. The gril-
lage plating, first, oscillates with the prime boarding joists and, second, fluctuates
w.r.t. these joists. When we have stiffeners reinforcing the plating (see Fig. 6.8), we
add one more motion component—the stiffener bending due to the plating.
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Each of the motion components of the construction involves into motion a defi-
nite amount of fluid—the added mass caused by this type of the construction oscilla-
tion. Interaction of the construction with the surrounding fluid is therefore complex,
which results in many difficulties when applying the added mass principle: when
combining different types of motion, the expression for the kinetic energy of fluid
contains scalar products of velocities of components of motion (both radial and an-
gular in the general case), that is, added masses and added inertia moments of fluid
caused by different deformation types appear together with added static moments of
fluid, which appear due to various combinations of these deformations.

6.9.1 Interaction of Plates with Reinforcing Stiffeners

We consider oscillations of the continuous plate reinforced by elastic stiffeners
(Fig. 6.17). Oscillations of a specific mode of such construction can be regarded
as oscillations of a system with two degrees of freedom whose motion can be de-
scribed by a pair of generalized coordinates. The plate displacement can be then
presented in the form

Z(x, y, t) = w1(t)η(y) + w(t)ψ(x, y),

where w1(t) and w(t) are the generalized coordinates characterizing the respective
displacements of stiffeners, and displacements of the plate w.r.t. the stiffeners and

Fig. 6.17 The continuous plate reinforced by elastic stiffeners. The plate is rigidly attached
to the stiffeners whereas the stiffeners and the short edges of the plate are freely supported,
η(y) = sin(πy/b); ψ(x, y) = sin2(nπx/l) sin(πy/b)
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η(y) and ψ(x, y) are the functions describing the respective shapes of oscillations
of stiffeners and the ones of the continuous plate.

The kinetic energy of fluid involved in motion by the oscillating system is, in
accordance with expression (6.3),

T = ρ

4π

∫ ∫

S

∂Z

∂t
dS′

∫ ∫
∂Z

∂t

dS

r

= ρ

4π

∫ ∫

S

(ẇ1η + ẇψ)dS′
∫ ∫

(ẇ1η + ẇψ)
dS

r

= ρ

4π

[

ẇ2
1

∫ ∫

S

η dS′
∫ ∫

η
dS

r

+ ẇ1ẇ

(∫ ∫

S

η dS′
∫ ∫

ψ
dS

r
+

∫ ∫

S

ψ dS′
∫ ∫

η
dS

r

)

+ ẇ2
∫ ∫

S

ψ dS′
∫ ∫

ψ
dS

r

]

. (6.58)

The first term in expression (6.58) is the added mass of the field, i.e., the one
of the continuous plate vibrating together with the stiffeners, whereas the last term
is the added mass of the plate oscillating w.r.t. the stiffeners. The added masses of
the field M1 and the one of the plate M can be determined using the added mass
coefficient μ, defined in Sect. 6.3,

M1 = 1

2

ρ

π

∫ ∫

S

η(y) dS′
∫ ∫

η(y)
dS

r
= ρbμ

(
b

l

)∫ l

0

∫ b

0
η2(y) dx dy,

M = 1

2

ρ

π

∫ ∫

S

ψ(x, y) dS′
∫ ∫

ψ(x, y)
dS

r

= ρ
l

n
μ

(
l

nb

)∫ l

0

∫ b

0
ψ2(x, y) dx dy

where l and b are the field dimensions and μ(b/l) and μ(l/nb) are the coefficients
of the added masses caused by the respective oscillations of the field (the stiffeners)
and the ones of the plate w.r.t. the stiffeners. They are determined by Figs. 6.2–6.6
depending on the oscillation type, on the ratio of sides of the supporting contour,
and on the numbers of spans of the field8 and the plate.

The sum of two integrals inside the parenthesis in expression (6.58) can be cal-
culated as follows [205].

It was noted in Sect. 6.2 that the action of an oscillating plate on the surrounding
fluid is equivalent to the action of simple density sources (1/2π)Ż distributed over

8For an isolated field, n = 1. If the field enters a more complex structure (say, the grillage), then
we take n to be the number of neighbor oscillating fields.
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the plate surface. If we assume that we can replace the spatially variable distributions
of density sources over the plate surface

−(1/2π)ẇψ(x, y) and −(1/2π)ẇ1η(y)

by the constant sources

−(1/2π)ẇψ̃ and −(1/2π)ẇ1η̃,

where

ψ̃ =
√
√
√
√

∫∫

S
ψ dS′ ∫∫ ψ dS

r
∫∫

S
dS′ ∫∫ dS

r

and η̃ =
√
√
√
√

∫∫

S
η dS′ ∫∫ η dS

r
∫∫

S
dS′ ∫∫ dS

r

,

then using the mean value theorem, we obtain

M01 = 1

2

ρ

π

(∫ ∫

S

η dS′
∫ ∫

ψ
dS

r
+

∫ ∫

S

ψ dS′
∫ ∫

η
dS

r

)

≈ ρ

π

√
{∫ ∫

S

η dS′
∫ ∫

η
dS

r

}{∫ ∫

S

ψ dS′
∫ ∫

ψ
dS

r

}

= 2
√

M1M.

The fluid kinetic energy is therefore

T = 1

2

(

M1ẇ
2
1 + M01ẇ1ẇ + Mẇ2).

The obtained value of the kinetic energy can be used in various dynamical prob-
lems of this construction immersed in a fluid, for instance, in the problem of free and
forced oscillations. We stress that the added masses affect frequencies of collective
free oscillations of plates and stiffeners (taking into account their interaction) more
strongly than partial frequencies of the system, i.e., the frequencies calculated with-
out taking into account interactions between elements of the construction, which
seems unnatural at first glance. Let us present the example.

To find equations of motion of the plate reinforced by elastic stiffeners from en-
ergy considerations, we begin with expressions for the kinetic and potential energies
of the system construction-fluid.

The kinetic energy TΣ of such a system comprising the kinetic energies of the
plate, the stiffeners, and fluid surrounding the system can be presented in the form

TΣ = 1

2

[

ẇ2
1

(

Mk
1 + M1

) + ẇẇ1
(

2Mk
01 + M01

) + ẇ2(Mk + M
)]

,

where

Mk
1 = mpl

∫ l

0

∫ b

0
η2 dx dy + (n − 1)mst

∫ b

0
η2 dy;

Mk
01 = mpl

∫ l

0

∫ b

0
ηψ dx dy; Mk = mpl

∫ l

0

∫ b

0
ψ2 dx dy. (6.59)
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The potential energy of the system comprising the potential energies of deforma-
tions of the plate and of the stiffeners is

Π = 1

2

(

Cw2 + C1w
2
1

)

,

where

C = Eδ3

12(1 − ν2)

∫ l

0

∫ b

0

[(
∂2ψ

∂x2

)2

+
(

∂2ψ

∂y2

)2

+ 2ν
∂2ψ

∂x2

∂2ψ

∂y2
+ 2(1 − ν)

(
∂2ψ

∂x∂y

)2]

dx dy,

C1 = (n − 1)Ei

∫ b

0

(
∂2η

∂y2

)2

dy. (6.60)

We have introduced the following notation in expressions (6.59) and (6.60): δ is
the plate thickness, mpl is the mass per unit area of the plate, mst is the mass per
unit length of the stiffener (without the joining band), i is the inertia moment of
the stiffener cross-section (with the joining band), n − 1 is the number of stiffeners
reinforcing the plate, and E and ν are the respective coefficient of normal elasticity
and the Poisson coefficient of the construction material.

Using the Lagrange equations

d

dt

(
∂TΣ

∂ẇi

)

+ ∂Π

∂wi

= 0,

we obtain the system of differential equations describing the construction oscilla-
tions:

ẅ + A0ẅ1 + A1w = 0, ẅ1 + A2ẅ + A3w1 = 0, (6.61)

where A0, A1, A2, and A3 are the quantities depending on the construction parame-
ters, on conditions of its fixation on the contour (on the oscillation type), and on the
conditions of its interaction with fluid:

A0 = Mk
01 + 0.5M01

Mk + M
; A1 = C

Mk + M
;

A2 = Mk
01 + 0.5M01

Mk
1 + M1

; A3 = C1

Mk
1 + M1

.

Here A1 and A3 are the squares of the proper partial (calculated under the assump-
tion of isolated work) frequencies of plates and of the stiffeners.

Considering harmonic construction oscillations and equating to zero the determi-
nant of system of Eqs. (6.61), we obtain the formula for determining eigenfrequen-
cies of plate and stiffeners, taking into account their interactions and the influence
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Fig. 6.18 The cross-section of modes of the joint oscillations of the plate and the reinforcing stiff-
eners; f1 is the stiffener bending, f is the plate bending w.r.t. stiffeners, the dashed line indicates
the equilibrium position, and the solid line indicates the position during the deformation process

of the environment [204]:

λ2
1.2 = A1 + A3 ± √

(A1 + A3)2 − 4A1A3(1 − A0A2)

2(1 − A0A2)
. (6.62)

The limits of values of joint frequencies of plate and stiffeners become wider
as compared with their partial frequencies, that is, the least among the partial fre-
quencies decreases whereas the highest increases. Calculations of actual ship plates
reinforced by stiffeners have demonstrated that the highest frequency may become
several times higher approaching the corresponding frequency of oscillation of the
construction in air. This is understandable: at the first frequency of the joint oscil-
lations, stiffeners (the field) and the plate oscillate in the same phase (Fig. 6.18a),
that is, the influence of added masses increases. At the second frequency when the
field and separate plates oscillate in antiphase (Fig. 6.18b), a partial compensation
of action of the added masses on the construction takes place. For special relations
between amplitudes of the motion components, the second eigenfrequency of the
construction may approach the one for the construction in air.

Note that the mechanical compliance of the set (w.r.t. transversal shifts) is im-
portant for those forms of oscillations of a continuous structure in which its spans
oscillate in phase.9 In this case, calculations of free and forced oscillations of plates
and stiffeners must be performed with accounting for their interaction, which be-
comes stronger in the presence of the surrounding fluid.

We now present expressions for the quantities entering formula (6.62) for the
main, most interesting practically, conditions of fixation of plates and reinforcing
stiffeners on the supporting contour [204].

9For the symmetric forms of oscillations of a multi-span plate, its supporting frame behaves as
an elastic one (elastic joists), whereas the same supporting frame behaves as a rigid frame for the
antisymmetric forms of oscillations. This is due to the direction of forces acting on the joists of
a continuous structure from the neighbor spans. These forces act in the same direction in the first
case and they act in opposite directions in the second case.
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(1) The plate is rigidly attached to stiffeners whereas the stiffeners and the short
edges of the plate are freely supported (see Fig. 6.17):

A0 = 4

3m∗

(

mpl +
√

3

2
madm

)

;

A1 = 16Dπ4

3a4m∗

[

1 + 0.5

(
a

b

)2

+ 3

16

(
a

b

)4]

;

A2 = 1

2 · m∗
p+s

(

mpl +
√

3

2
madm

)

;

A3 =
(

π

b

)4
Ei

m∗
p+sa

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.63)

(2) The plate is rigidly clamped along the contour and the stiffeners are rigidly
clamped at their ends (Fig. 6.19):

A1 = 16Dπ4

3a4m∗

[

1 + 2

3
(a/b)2 + (a/b)4

]

;

A3 = 16/3(π/b)4 Ei

m∗
p+sa

;

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(6.64)

whereas A0 and A2 are determined by the corresponding expressions from
Eq. (6.63).

Fig. 6.19 The continuous plate reinforced by elastic stiffeners. The plate and the stiffeners are
rigidly clamped along the supporting contour, η(y) = sin2(

πy
b

), ψ(x, y) = sin2( nπx
l

) sin2(
πy
b

)
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We have introduced the following notation in expressions (6.63) and (6.64): mpl
and m∗

p+s are the respective masses per unit area of the plate and of the plate together
with the averaged masses of stiffeners, mad and m are the respective added masses
per unit area of the plate and caused by the respective oscillations of the stiffeners
and the ones of the plate w.r.t. the stiffeners (see formulas (6.33) and (6.8)), m∗ =
m + mpl, m∗

p+s = mad + mst
p+s, D = Eδ3/(12(1 − ν2)) is the cylindrical stiffness of

the plate, and Ei is the torsional stiffness of the stiffener with the attached belt.
(3) For the plate with the ratio of sides more than 2.5 (the cylindrical bending of

plate), the expressions for A1 and A3 are

A1 = 16Dπ4

3a4m∗ , A3 = 2V

am∗
p+s

, (6.65)

and A1 and A2 are calculated by expressions (6.63).
The quantity V entering A3 is the stiffness of the elastic support of the band-

shaped beam that is the cross-section of the plate carved out across its long edges,

V = α4

2b4
Ei, (6.66)

where α is the dimensionless parameter depending on fixing the ends of the stiffen-
ers in the following way:

κ 0 0.25 0.50 0.75 1.0
α 3.14 3.46 3.81 4.22 4.73,

where κ is the coefficient of the supporting pair.

Example. Let us find eigenfrequencies of the plate of the grillage field and rein-
forcing stiffeners taking into account their interaction. The construction material is
steel (E = 19.6 ·1010 kg/m2, ν = 0.3). The construction contacts with water on one
side and has the following dimensions:

– the dimensions of the grillage field l = 1.75 m; b = 1.00 m; the plating thickness
δ = 1 · 10−2 m;

– the number of spans of the continuous plate n = 5; the distance between the stiff-
eners (the length of the short side of a separate plate) a = l/n = 0.35 m; the
profile of the stiffeners is the flat-bulb No. 810, the mass of the unit plate area
mpl = 78.4 kg/m2;

– the mass of the unit plate area taking into account the averaged mass of stiffeners
mst

p+s = 88.8 kg/m2; the inertia moment of the stiffener i = 1.7 · 10−6 m4; the

cylindrical stiffness of the plate D = 1.79 · 104 N · m.

We consider the case where the edges and the plate are rigidly clamped along
the supporting contour (see Fig. 6.19). We find quantities m and mad by formulas

10According to Russian GOST (State Standard) classification.
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(6.8) and (6.33). The coefficients μ entering these formulas and taking into account
the influence of the added masses are: μ(b/l) = 0.44 is the coefficient determin-
ing the added masses due to the field oscillations; we can find it from Fig. 6.3
at n = 1; μ(l/nb) = 0.98 is the coefficient determining the added masses due to
plate oscillations w.r.t. the stiffeners; we can find it from Fig. 6.3 at n = 5. Then
m = 1 · 103 · 0.35 · 0.98 = 343 kg/m2; mad = 1 · 103 · 1 · 0.44 = 440 kg/m2.

In accordance with formulas (6.64) and (6.63),

A1 = 16 · 1.79 · 104 · 3.144

3 · 0.354 · 421.4

[

1 + 2

3

(
0.35

1.0

)2

+
(

0.35

1.0

)4]

= 161.0 · 104 sec−2;

A3 = 16

3

(
3.14

1.0

)4 19.6 · 1010 · 1.7 · 10−6

528.85 · 0.35
= 93.33 · 104 sec−2;

A0 = 4

3 · 421.4

[

78.4 +
√

3

2
· 440 · 343

]

= 1.7534;

A2 = 1

2 · 528.85

[

78.4 +
√

3

2
· 440 · 343

]

= 0.5255.

Using formula (6.62), we find the eigenfrequencies of the plate and stiffeners
taking into account their interaction: λ1 = 777 sec−1 and λ2 = 5645 sec−1.

The partial frequencies of the stiffeners and the plate are λst = √
A3 = 970 sec−1;

λpl = √
A1 = 1275 sec−1.

Treating the plate as the band-shaped beam and using formulas (6.62) and (6.66),
we obtain the following eigenfrequencies for the plate attached to the stiffeners:
λ1 = 755 sec−1; λ2 = 5440 sec−1.

If the stiffeners are freely supported at the ends and the plate is rigidly attached
to the stiffeners and freely supported on the short edges (see Fig. 6.17), then the
eigenfrequencies of the plate together with stiffeners are λ1 = 375 sec−1 and λ1 =
4670 sec−1.

The partial eigenfrequencies of the stiffeners and the plate are λst = 390 sec−1

and λpl = 1225 sec−1 in this case.

6.9.2 Interactions of the Ship Grillage Structural Components

When construction elements participate in a motion, which is more complex as
compared to the one considered in Sect. 6.9.1, taking into account added masses
also becomes more complex but it may be performed in a way analogous to the
above reasonings. We estimate the influence of the added masses on oscillations
of the ship grillage simultaneously taking into account the mutual influence of its
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elements. Solving the problem by the energy method, we first find the kinetic en-
ergy of the fluid involved in motion by the oscillating grillage and its construction
components.

We consider a grillage of the very general type (see Fig. 6.8), which consists of
the prime set joists (stringers, floors, etc.), the plating, and the reinforcing stiffeners.
Oscillations of a definite tone for such a grillage can be presented as oscillations of
a system with three degrees of freedom, whose motion is determined by the three
generalized coordinates. We use the solution in [202, 203]. Taking the oscillation
function for the grillage prime set joists to be X(x) and Y(y), we describe the mo-
tion of these joists by the function

W = w1(t)X(x)Y (y),

where w1(t) is the generalized coordinate characterizing motions of the joists.
The displacement of the panel plate (the grillage part reinforced by stiffeners and

bounded by joists of the prime set) in its relative motion can be described as

wij = [

w2(t)
]

ij
η(y) + [

w3(t)
]

ij
ψ(x, y), (6.67)

where [w2(t)]ij is the generalized coordinate characterizing the displacement of the
stiffeners of this panel w.r.t. the grillage prime set joists, [w3(t)]ij is the generalized
coordinate characterizing the plate displacement w.r.t. the stiffeners, and the func-
tions η(y) and ψ(x, y) describe the respective oscillations of the stiffeners and the
ones of the panel plate.

We assume that each panel moves progressively in the direction perpendicular
to the grillage plane, whereas the motion of the contour of each of the panels is
determined by the value of the function W at the center of the panel:

Wij = w1(t)X(xi)Y (yj ),

where xi and xj are the coordinates of the panel center.
Because the panel contours oscillate with the same frequency with amplitudes

proportional to the value of X(xi)Y (yj ), we can set

[

w2(t)
]

ij
= w2(t)X(xi)Y (yj );

[

w3(t)
]

ij
= w3(t)X(xi)Y (yj ).

Expression (6.67) then becomes

wij = [

w2(t)η(y) + w3(t)ψ(x, y)
]

X(xi)Y (yj ).

The kinetic energy T of fluid involved in motion by an oscillating grillage can
be found under the assumption of the ideal fluid experiencing a vortex-free motion.
The influence of the oscillating grillage is equivalent to the action of simple sources
with capacities q = ∂Z/∂t continuously distributed over the grillage surface, where

Z(x, y, t) = [

w1(t) + w2(t)η(y) + w3(t)ψ(x, y)
]

X(xi)Y (yj ).
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Using formula (6.3) we transform the kinetic energy to the form

T = ρ

4π

∑

i,j

∫ ∫

S

∂Z

∂t
dS′

∫ ∫
∂Z

∂t

dS

r
. (6.68)

We integrate in expression (6.68) over the surface of every panel and sum up the
results over the whole grillage (for all the panels). In the case where all the panels
are equal and oscillate in the same phase, expression (6.68) becomes

T = ρ

4π

∫ ∫

S

(ẇ1 + ẇ2η + ẇ3ψ)dS′

×
∫ ∫

(ẇ1 + ẇ2η + ẇ3ψ)
dS

r

∑

i,j

[

X(xi)Y (yj )
]2

= ρ

4π

[

ẇ2
1

∫ ∫

S

dS′
∫ ∫

dS

r
+ ẇ1ẇ2

(∫ ∫

S

dS′
∫ ∫

η
dS

r
+

∫ ∫

S

η dS′
∫ ∫

dS

r

)

+ ẇ1ẇ3

(∫ ∫

S

dS′
∫ ∫

ψ
dS

r
+

∫ ∫

S

ψ dS′
∫ ∫

dS

r

)

+ ẇ2ẇ3

(∫ ∫

S

η dS′
∫ ∫

ψ
dS

r
+

∫ ∫

S

ψ dS′
∫ ∫

η
dS

r

)

+ ẇ2
2

∫ ∫

S

η dS′
∫ ∫

η
dS

r
+ ẇ2

3

∫ ∫

S

ψ dS′
∫ ∫

ψ
dS

r

]
∑

i,j

[

X(xi)Y (yj )
]2

,

(6.69)
where M1 = 1

2
ρ
π

∫∫

S
dS′ ∫∫ dS

r
is the added mass of a separate panel caused by

oscillations of the whole grillage, M2 = 1
2

ρ
π

∫∫

S
η dS′ ∫∫ η dS

r
is the added mass

of the separate panel oscillating together with stiffeners as a field, and M3 =
1
2

ρ
π

∫∫

S
ψ dS′ ∫∫ ψ dS

r
is the added mass of the plating of the separate panel oscillat-

ing w.r.t. the stiffeners.
We transform the sums of integrals in the parentheses in expression (6.69) using

the theorem about the average [205] (see Sect. 6.9.1):

M12 = 1

2

ρ

π

(∫ ∫

S

dS′
∫ ∫

η
dS

r
+

∫ ∫

S

η dS′
∫ ∫

dS

r

)

= ρ

π

√
∫ ∫

S

η dS′
∫ ∫

η
dS

r

∫ ∫

S

dS′
∫ ∫

dS

r
= 2

√

M2M1.

Analogously,

M13 = 1

2

ρ

π

(∫ ∫

S

dS′
∫ ∫

ψ
dS

r
+

∫ ∫

S

ψ dS′
∫ ∫

η
dS

r

)

= 2
√

M3M1;

M23 = 1

2

ρ

π

(∫ ∫

S

η dS′
∫ ∫

ψ
dS

r
+

∫ ∫

S

ψ dS′
∫ ∫

η
dS

r

)

= 2
√

M2M3.
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The final expression for the kinetic energy of fluid is

T = 1

2

(

M1ẇ
2
1 + M12ẇ1ẇ2 + M13ẇ1ẇ3 + M23ẇ2ẇ3 + M2ẇ

2
2 + M3ẇ

2
3

)

×
∑

i,j

[

X(xi)Y (yj )
]2

. (6.70)

The first term in (6.70) is the added mass of the whole grillage caused by its
oscillations as a system of crossing joists, which can be calculated by the formula

MG = 1

2
M1ẇ

2
1

∑

i,j

[

X(xi)Y (yj )
]2

= ρμ

(
B

L

)

B

∫ L

0

∫ B

0
X2(x)Y 2(y) dx dy. (6.71)

The quantities M1, M2, and M3 follow from the expressions

M1 = ρμ

(
B

L

)

B · b · l;

M2 = ρμ

(
L

pl

)
L

p

∫ L

0

∫ b

0
η2(y) dx dy;

M3 = ρμ

(
L

pl

)
l

n

∫ l

0

∫ b

0
ψ2(x, y) dx dy, (6.72)

where L and B are the respective length and width of the grillage, l and b are the
corresponding dimensions of a single panel, p the number of panels along the long
side L of the grillage, and n the number of spans of the plate inside a single panel.

We determined the coefficients μ entering expressions (6.71) and (6.72) by
graphs in Figs. 6.2–6.6.

Calculating the added masses M1, M2, and M3 is therefore easy. It is important to
use these quantities when calculating oscillations of the grillage taking into account
interactions between its separate elements (prime set joists, stiffeners, and plates of
the grillage).

We describe the idea of the method and formulas for calculating joint eigen-
frequencies of construction elements of the general type grillage, whose plating is
reinforced by stiffeners (see Fig. 6.8) [202, 203]. When using the energy method we
must know the total kinetic energy of the system grillage-fluid TΣ = TG + T and
the potential energy P of the construction. The fluid kinetic energy T is determined
by expression (6.70). The kinetic energy of the grillage equals the sum of kinetic
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energies of prime set joists, grillage plating, and stiffeners

TG = 1

2
Madẇ

2
1 + 1

2

[(

M
pl
1 + Mst

1

)

ẇ2
1 + (

M
pl
2 + Mst

2

)

ẇ2
2

+ M
pl
3 ẇ2

3 + 2
(

M
pl
12 + Mst

12

)

ẇ1ẇ2 + 2M
pl
13ẇ1ẇ3 + 2M

pl
23ẇ2ẇ3

]

×
∑

i,j

[

X(xi)Y (yj )
]2

, (6.73)

where

Mad = m1

∫ L

0
Y 2(y) dy

k
∑

i=1

X2(x̃i) + m2

∫ B

0
X2(x) dx

p−1
∑

j=1

Y 2(ỹj );

M
pl
1 = mplbl; M

pl
3 = mpl

∫ l

0

∫ b

0
ψ2(x, y) dx dy;

M
pl
2 = mpl

∫ l

0

∫ b

0
η2(y) dx dy; M

pl
13 = mpl

∫ l

0

∫ b

0
ψ(x, y) dx dy;

M
pl
12 = mpl

∫ l

0

∫ b

0
η(y)dx dy; M

pl
23 = mpl

∫ l

0

∫ b

0
η(y)ψ(x, y) dx dy;

Mst
1 = (n − 1)mstb; Mst

2 = (n − 1)mst

∫ b

0
η2(y) dy;

Mst
12 = (n − 1)mst

∫ b

0
η(y)dy,

where m1, m2, and mst are masses per unit lengths of the respective cross joist, the
prime set joist, and the stiffener (masses of all frame elements are given without
joining belts), mpl is the mass of the unit area of the grillage plating, k is the number
of cross joists, p − 1 is the number of the prime set joists, n − 1 is the number of
stiffeners inside a single panel, and x̃i and ỹj are the coordinates for the joists of the
prime set.

The potential energy of the whole grillage is

PG = 1

2
Ñadw

2
1 + 1

2

(

C1w
2
2 + Cw2

3

)∑

i,j

[

X(xi)Y (yj )
]2

,

where

Cjs = EJ1

∫ L

0

[

Y ′′(y)
]2

dy

k
∑

i=1

[

X(x̃i)
]2 + EJ2

∫ B

0

[

X′′(x)
]2

dx

p−1
∑

j=1

[

Y(ỹj )
]2

(6.74)
is the generalized stiffness of joists of the prime set, C1 and Ñ are the stiffness of
the respective stiffeners and the plating within a separate panel of the grillage (they
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are determined by formulas (6.60)), and J1 and J2 are the inertia moments of the
cross-sections of the respective cross joist and the joist of the principal direction.

Substituting the expressions for the kinetic TΣ and potential PG energies in the
Lagrange equation

d

dt

(
∂TΣ

∂ẇi

)

+ ∂PG

∂wi

= 0

(the potential energy of the fluid is not taken into account since it remains constant)
and introducing the notation

A =
∑

i,j

[

X(xi)Y (yj )
]2

, A3 = M
pl
13 + √

M1M3;

A1 = M
pl
12 + Mst

12 + √

M1M2, A4 = M
pl
23 + √

M2M3;
A2 = M

pl
12 + Mst

2 + M2; A5 = M
pl
3 + M3;

B1 = Mad + (

M
pl
1 + Mst

1 + M1
)

A, (6.75)

we obtain the system of differential equations for the oscillatory motion of the gril-
lage:

B1ẅ1 + AA1ẅ2 + AA3ẅ3 + Cadw1 = 0;
A1ẅ1 + A2ẅ2 + A4ẅ3 + C1w2 = 0;
A3ẅ1 + A4ẅ2 + A5ẅ3 + Cw3 = 0.

Looking for the solution of this system in the form

wi = fi sin(λt)

and equating the determinant to zero, we obtain the frequency equation

λ6(A2A3B1 − A2
4B1 − AA2

1A5 + 2AA1A3A4 − AA2A
2
3

)

− λ4(A5B1C1 + A2B1C + A2A5Cjs − A2
4Cjs − AA2

1C − AA2
3C1

)

+ λ2(B1CC1 + A5C1Cjs + A2CCjs) − CC1Cjs = 0. (6.76)

The positive roots λ1,2,3 of Eq. (6.76) are frequencies of the free oscillations
of the grillage calculated with accounting for the added masses of fluid involved
in motion both by the grillage as a whole and by its separate elements. The first
frequency then customarily characterizes the frequency of the free oscillations of
the grillage taking into account the influence of oscillations of the plating and joists,
whereas the second and the third frequencies characterize free oscillations of the
grillage plates and stiffeners with accounting for the mechanical compliance of the
grillage carcase joists.

As was demonstrated by calculations of actual ship grillages, interactions be-
tween separate elements of a grillage may result in reducing the frequencies of the
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first modes of free oscillations of the plating. The influence of oscillations of the
plating and the stiffeners on eigenfrequencies of the grillage is essential in the case
where the frequencies of free oscillations of the grillage and the ones of its fields
are close to each other (the difference between them does not exceed 50%).

The mechanical compliance of the joists of the grillage increases the joint fre-
quencies of plate and stiffeners (calculated with accounting for their interaction but
without taking into account the grillage elasticity): the lowest frequency may be
increased by (40–50)% and the higher frequency increases at a lesser rate.

Example. As an example, we determine the frequencies of free oscillations of the
bottom grillage and its construction elements (plates and stiffeners) taking into ac-
count their interactions and the influence of the outer water. The grillage is confined
by longitudinal and transverse bulkheads.

The basic parameters of the grillage and its carcase are the following. The grillage
dimensions are (see Fig. 6.8): the length L = 7.00 m, the width B = 7.00 m; the
profiles of the prime set joists and their inertia moments (with the attached plating
belt) are:

the vertical keel—
0.8 × 0.8 · 10−2

0.1 × 1.0 · 10−2
; J1 = 14.4 · 10−4 m4;

the stringers—
0.45 × 0.6 · 10−2

9 · 10−2 × 0.8 · 10−2
; J1 = 2.801 · 10−4 m4;

the floors—
0.45 × 0.6 · 10−2

9 · 10−2 × 0.8 · 10−2
; J2 = 2.728 · 10−4 m4;

the distance between the stringers is l = 1.75 m; the distance between floors is b =
1.00 m; the distance between the longitudinal stiffeners is a = 0.35 m; the profile
of the stiffener and its inertia moment with the attached plating belt is the flat-bulb
No. 8; i = 1.7 · 10−6 m4; the thickness of the plating δ = 1.0 · 10−2 m; the ship hull
material is steel (E = 19.6 · 1010 kg/m2; ν = 0.3); the grillage contacts water from
one side.

We need the masses of the following elements of the grillage construction.
The mass per unit length of the grillage joists (without attached plating belts):

for the vertical keel m1 = 51.84 kg/m; for the stringer m′
1 = 26.8 kg/m; for the

floor m2 = 26.8 kg/m; for the stiffener mst = 4.57 kg/m; the mass per unit area
of the plating mpl = 78.4 kg/m2. The cylindrical stiffness of the plating D =
Eδ3/12(1 − ν2) = 1.79 · 104 N · m.

We consider the first mode of the grillage oscillation and, assuming that joists
of both directions are freely supported at their ends, take the amplitudes of their
oscillations to be

X(x) = sin

(
πx

B

)

; Y(y) = sin

(
πy

L

)

.
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We assume the plating and stiffeners to be rigidly clamped along the supporting
contour (the symmetric oscillation mode), and, therefore,

η(y) = sin2
(

πy

b

)

; ψ(x, y) = sin2
(

nπx

l

)

sin2
(

πy

b

)

.

We now determine from (6.73) the generalized masses of the prime set joists, of
the stiffeners, and of the plates of the grillage:

Mjs = 51.84
∫ 7.00

0
sin2

(
πy

7.00

)

dy sin2
(

3.50π

7.00

)

+ 26.8
∫ 7.00

0
sin2

(
πy

7.00

)

dy

(

sin2 1.75π

7.00
+ sin2 5.25π

7.00

)

+ 26.8
∫ 7.00

0
sin2

(
πx

7.00

)

dx

× 2

(

sin2 1.00π

7.00
+ sin2 2.00π

7.00
+ sin2 3.00π

7.00

)

= 603 kg;

M
pl
1 = 78.4 · 1.0 · 1.75 = 137.5 kg;

M
pl
2 = 78.4

∫ 1.00

0

∫ 1.75

0
sin4

(
πy

1.00

)

dx dy = 51.5 kg;

M
pl
3 = 78.4

∫ 1.00

0

∫ 1.75

0
sin4 πy

1.00
sin4 5πx

1.75
dx dy = 19.3 kg;

M
pl
12 = 78.4

∫ 1.00

0

∫ 1.75

0
sin2 πy

1.00
dx dy = 68.6 kg;

M
pl
13 = 78.4

∫ 1.00

0

∫ 1.75

0
sin2 5πx

1.75
sin2 πy

1.00
dx dy = 34.3 kg;

M
pl
23 = 78.4

∫ 1.00

0

∫ 1.75

0
sin2 5πx

1.75
sin4 πy

1.00
dx dy = 25.75 kg;

Mst
1 = 4 · 4.57 · 1.0 = 18.3 kg;

Mst
2 = 4 · 4.57

∫ 1.00

0
sin4 πy

1.00
dy = 6.88 kg;

Mst
12 = 4 · 4.57

∫ 1.00

0
sin2 πy

1.00
dy = 9.15 kg.
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Using expressions (6.74) and (6.60) we find the generalized rigidities of the cor-
responding constructions:

Cjs = 19.6 · 1010
(

14.4 · 10−4 π4

7.004
sin2

(
3.50π

7.00

)∫ 7.00

0
sin2

(
πy

7.00

)

dy

+ 2.801 · 10−4 π4

7.004
2 · 0.7072

∫ 7.00

0
sin2

(
πy

7.00

)

dy

+ 2.728 · 10−4 π4

7.004
· 2 · 1.746

∫ 7.00

0
sin2

(
πx

7.00

)

dx

)

= 74.2 · 106 N/m;

C1 = 4 · 19.6 · 1.7 · 104 π4

1.004

∫ 1.00

0
cos2 2πy

1.00
dy = 260 · 106 N/m;

C = 1.79 · 104
∫ 1.00

0

∫ 1.75

0

[

4
π4

1.004
sin4 5πx

1.75
cos2 2πy

1.00

+ 4

(
5π

1.75

)4

cos2
(

2 · 5πx

1.75

)

sin4
(

πy

1.00

)

+ 8ν
25π4

1.002 · 1.752
sin2

(
5πx

1.75

)

cos

(
2 · 5πx

1.75

)

sin2
(

πy

1.00

)

cos

(
2πy

1.00

)

+ 32(1 − v)

(
5π2

1.00 · 1.75

)2

sin2
(

5πx

1.75

)

× cos2
(

5πx

1.75

)

sin2
(

πy

1.00

)

cos2
(

πy

1.00

)]

dx dy = 167.5 N/m.

The panel added masses M1, M2, and M3 caused by different types of its os-
cillations (together with plating, bending oscillations together with stiffeners and
bending oscillations of the grillage plates w.r.t. the stiffeners) can be calculated by
formulas (6.72):

M1 = 1.0 · 103 · 0.4 · 7.00 · 1.75 · 1.00 = 4.88 · 103 kg,

where μ(B/L) = 0.4 is the added mass coefficient caused by grillage oscillations
and determined by Fig. 6.2 under the assumption that n = 1;

M2 = 1.0 · 103 · 0.77 · 1.00
∫ 1.00

0

∫ 1.75

0
sin4

(
πy

1.00

)

dx dy = 506 kg,

where μ(L/pl) = 0.77 is the added mass coefficient caused by grillage oscillations
together with stiffeners and determined by Fig. 6.3 under the assumption that n =
4,5;

M3 = 1.0 · 103 · 0.98
1.75

5

∫ 1.00

0

∫ 1.75

0
sin4 5πx

1.75
sin4 πy

1.00
dx dy = 84.5 kg.
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Calculating the coefficients Ai and B1 (6.75) entering frequency equation (6.76),
we reduce the latter to the form

λ6 − 35 · 106λ4 + 166.3 · 1012λ2 − 34.3 · 1016 = 0.

The solution of this equation determines frequencies of free oscillations of the
grillage, stiffeners, and plates taking into account their interaction and the influence
of surrounding fluid: λ1 = 60 sec−1, λ2 = 2380 sec−1, and λ3 = 5415 sec−1. The
frequency of grillage free oscillations of the first mode calculated without taking into
account plating and stiffeners vibrations practically coincides with the frequency
obtained from Eq. (6.76).

The frequencies of free oscillations of the plate and the stiffeners calculated with
accounting for their interaction but without taking into account the mechanical com-
pliance of the prime set joists (see the example in Sect. 6.9.1) are λ1 = 777 sec−1

(stiffeners) and λ2 = 5645 sec−1 (plates). The partial (without taking into ac-
count interactions) frequencies of the stiffeners and plates are λst = 970 sec−1 and
λpl = 1275 sec−1.

The mechanical compliance of prime set joists results therefore in a substan-
tial increase in the second and third frequencies of the construction oscillations as
compared to the corresponding partial frequencies of plates and stiffeners. The ex-
planation is analogous to the one that explains changes of oscillation frequencies of
plates and stiffeners when taking into account their interaction (see Sect. 6.9.1).

6.9.3 Cylindrical Shell Reinforced by Longitudinal Stiffeners

We consider two related co-axis cylindrical shells experiencing transversal oscilla-
tory motions. These oscillations result in relative elastic oscillations of the external
shell reinforced by equidistantly distributed equal longitudinal stiffeners supported
by a solid frame. The internal shell is solid and does not experience relative motions.
The fluid is outside and between the shells.

Vibration parameters of the plating and the carcase of the external shell are to
be determined by taking into account dynamical interaction of the construction el-
ements under its complex motion and especially by taking into consideration the
surrounding fluid and fluid inside the construction that is involved in motion.

In this setting, the problem reduces to the problem of determination of forced
relative oscillations of the plating and of the carcase of the external shell caused by
a kinematic excitation, which are oscillatory motions of the system of co-axis shells
as a whole. We solve the problem under the following assumptions [185]:

– translational motion of frames of the both shells is assumed to be the same;
– fluid flow in circular direction between the shells is assumed to be free;
– velocity of the fluid flow along the shell axis in sections along the frame elements

is zero;
– the motion of the outer water as well as the one of the water between the shells is

subject to the law of the ideal incompressible fluid.
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Fig. 6.20 The distribution of
the fluid pressure on the shell
at its oscillations in the
direction perpendicular to the
axis

Modes of relative oscillations of the external shell and longitudinal stiffeners
(ribs are assumed to be stiff enough) are close to the modes of static bending of the
shell and stiffeners under the load distributed by the law cos θ (Fig. 6.20), which
corresponds to its oscillations in fluid in the direction perpendicular to the shell axis.
The form of the external shell oscillations w.r.t. the stiffeners can be therefore taken
to be

w(θ, x) = q1

4

(

1 + cos(nθ)
)

cos θ ·
(

1 + cos
2πx

l

)

,

whereas the stiffener displacement is

wst = q2

2
cos θi

(

1 + cos
2πx

l

)

,

where q1 and q2 are the generalized coordinates representing the corresponding
displacements of the shell w.r.t. the stiffeners and the ones of stiffeners w.r.t. ribs; θ

and x are the cylindrical coordinates, l is the frame spacing, θi is the central angle
determining the position of the ith stiffener (Fig. 6.21), and 2n is the number of
longitudinal stiffeners.

Because the number of stiffeners in actual constructions is rather big, we can
consider wst a continuous function of the coordinate θ ,

wst = q2

2
cos θ

(

1 + 2πx

l

)

.

The radial displacement of the shell w.r.t. ribs is therefore

w0 = w + wst.

The absolute radial displacement (superposed with the transitional motion of the
shell as a whole given by the function A(t)) is then

wa = A(t) cos θ + w0. (6.77)
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Fig. 6.21 The modes of
elastic oscillations of the
outer shell and longitudinal
stiffeners caused by a
kinematic excitation

We can find the absolute tangential shell displacement from the condition of non-
stretchability of the middle surface of the shell.

To find the fluid pressure on a shell, we must find the fluid velocity potential
ϕ(x, r, θ, t) on both sides of the outer shell using the Laplace equation. The latter
has the form

∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
+ ∂2ϕ

∂x2
= 0 (6.78)

in the cylindrical coordinates x, r, θ .
The boundary conditions for Eq. (6.78) for fluid outside the shell are conditions

of the zero normal flow on the surface of the outer shell and the condition of zero
flow at infinity. For the fluid between the shells, the boundary conditions are zero
normal flows on the surfaces of inner and outer shells.

Because Eq. (6.78) and the boundary conditions are linear, its solution is a su-
perposition of solutions for each of the components of the shell motion. Expressing
approximate shell oscillation functions through harmonic functions we obtain the
exact solutions of the Laplace equation subsequently obtaining the fluid pressure on
the shell [185].

The extra fluid pressure is determined by the linearized Lagrange–Cauchy inte-
gral

p = −ρ
∂ϕ

∂t
,

where ρ is the fluid density.
When the law of shell motion is q cos(nθ), the pressure of the outer fluid is

pe
n = −ρ

q̈

n
r0 cos(nθ), (6.79)

where r0 is the radius of the outer shell.
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The motion of the shell by the law q cos(nθ) cos( 2πx
l

) is accompanied by the
outer fluid pressure

pe
n = −ρq̈

1

2π

cos(nθ) cos(2πx/l)

1 + n/(2πr0)
. (6.80)

Pressure of fluid inside the construction on the inner surface of the outer shell
under its oscillations by the law A(t) cos θ is

pi
1 = ρr0

[

Ä +
(

q̈1

4
+ q̈2

2

)
1 + (R/r0)

2

1 − (R/r0)2

]

cos θ,

where R is the inner shell radius.
This expression demonstrates that the pressure increases unboundedly as the dis-

tance between the shells decreases (because of presence of the solid boundary).
When the outer shell oscillates by the law q cos(nθ) with n > 1, the correspond-

ing pressure is

pi
n = ρ

q̈

n
r0

1 + (R/r0)
2n

1 − (R/r0)2n
cos(nθ).

When the number of stiffeners is large (n > 10) and the ratio of the shell radiuses
R/r0 < 0.8, we can neglect the influence of the inner shell as a solid boundary and
find the pressure by the formula that up to a sign coincides with formula (6.79) for
the outer fluid pressure.

If oscillations are subject to the law q cos(nθ) cos( 2πx
l

) with n = 1,2, . . . , then
the influence of the solid boundary (the inner shell) on the fluid pressure on the inner
side of the outer shell is negligibly small. In this case, the formula for the pressure
coincides up to a sign with formula (6.80).

The added mass of the outer shell appears in the result of pressures and their
superpositions caused by shell component motions. We find them by solving the
problem of forced oscillations of the construction.

The equations for elastic oscillations of a shell with a frame under a kinematic
excitation and with the above conditions of contact with fluid are obtained from
the Lagrange equations of the second kind for which we have found preliminary
expressions for the kinetic and potential energies of the construction and for the
generalized forces in the generalized coordinates q1 and q2.

The kinetic energy of the shell is the sum of kinetic energies of the plating and
the one of the stiffeners. They can be found from well-known formulas, and we omit
them here.

The potential energy of the shell is also equal to the sum of potential energies of
deformations of the shell and the stiffeners. We assume that the shell is initially at a
stress state, determined by the forces in the middle surface for T1 and T2.

The generalized forces follow from the general mechanics rule

Q1 =
∫ l/2

−l/2

∫ 2π

0
pΣ(x, θ, t)f1(x, θ)r0 dθ dx;
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Q2 =
∫ l/2

−l/2

∫ 2π

0
pΣ(x, θ, t)f2(x, θ)r0 dθ dx,

where pΣ(x, θ, t) is the total pressure on the shell and f1(x, θ) and f2(x, θ) are the
respective relative displacements of the shell and the stiffeners.

As a result, we obtain the shell equations of motion as the ones for a system with
two degrees of freedom:

M11q̈1 + Ñ11q1 + M21q̈2 + Ñ21q2 = P1,

M12q̈1 + Ñ12q1 + M22q̈2 + Ñ22q2 = P2.

In these equations, we have introduced the notation

M11 = 27

128
πρ0hr0l

[

1 + 8

27
(β + 1)

ρr0

ρ0h

]

;

M12 = M21 = 3

8
πρ0hr0l

(

1 + β + 1

3

ρr0

ρ0h

)

;

M22 = 3

4
πρ0hr0l

(

1 + F

bh
+ β + 1

3

ρr0

ρ0h

)

;

C11 = 3

4
π5

(

1 + l4

b4
+ 4

3

l2

b2

)
r0D

l3
+ π3

4

r0

l

(

T1 + 3

2

l2

b2
T2

)

;

C12 = C21 = π5 r0D

l3
+ π3r0

4l

(

T 1 + 3

4π2
· l2

r2
0

T2

)

;

C22 = 2π5EJr0

bl3
+ π3r0

2l

(

T 1 + 3

4π2
· l2

r2
0

T2

)

;

P1 = −3

4
πρ0hr0l

(

1 + 2

3

ρr0

ρ0h

)

Ä;

P2 = −πρ0hr0l

(

1 + F

bh
+ ρr0

ρ0h

)

Ä, (6.81)

where D is the cylindrical rigidity of the shell, h is the shell thickness, F the area
of the tangential cross-section of the longitudinal stiffener, J the inertia moment of
the stiffener with the attached belt, b the distance between the neighbor stiffeners,
ρ0 the density of the construction material, and

β = (1 + R/r0)
2

(1 − R/r0)2
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the coefficient taking into account the influence of the inner shell as the solid bound-
ary on the added masses.

The generalized added masses caused by oscillations of the shell with respect to
the longitudinal stiffeners are given by the second term in the expression for M11

in (6.81). The generalized added masses caused by oscillations of the shell together
with the stiffeners are given by the third term in the expression for M22 in (6.81).
They are

M∗
11 = π

16
ρr2

0 l(β + 1); M∗
22 = π

4
ρr2

0 l(β + 1). (6.82)

The first terms in the expressions for M11 and M22 (6.81) are the generalized
masses of the construction itself corresponding to the generalized coordinates q1

and q2.
Note the influence of the inner shell as the solid boundary on the added mass

value. The coefficient β taking into account this influence may be rather big. Say,
for R/r0 = 0.8, we have β = 4.56.

Example. We determine eigenfrequencies of the outer shell (the inner shell is as-
sumed to be solid) reinforced by the longitudinal stiffeners and having contact with
outer water and with water between the shells.

The initial data are r0 = 4.6 m, R = 3.7 m, h = 0.6 cm, l = 1.2 m, b = 0.5 m;
the longitudinal stiffeners are flat-bulb No. 8 made from steel.

We present the values of eigenfrequencies and the partial frequencies of the shell
and the stiffeners in water and in air (vacuum) in Table 6.3.

The above calculations indicate that the presence of water results in a substantial
decreasing (by more than 12 times) of the lowest eigenfrequency of the construction,
corresponding to prevailing oscillations of stiffeners. The upper frequency corre-
sponding to prevailing oscillations of the plating is reduced unsubstantially (by less
than the factor of two) whereas the corresponding partial frequency becomes 12
times less due to the water added mass. This confirms the necessity of taking into
account the collective oscillations of the shell and the reinforcing elastic stiffeners
for the construction in fluid.

Table 6.3 Frequencies of the shell and the longitudinal frame in fluid

Conditions of contact with water Eigenfrequencies, Hz Partial frequencies, Hz

Shell Stiffeners Shell Stiffeners

Construction in air 1670 229 1010 231

Construction in water 885 18.7 82.5 18.8
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6.10 Added Masses of Plates with Cutouts

Following [10, 44, 210], the frequency of oscillation of a continuous plate in fluid is

λ∗
0 = λ0√

1 + 2μ(a/b)ρ0a/(ρ1h)
,

where λ0 is the frequency of oscillations of the continuous plate in air, μ(a/b) is
the added mass coefficient for the continuous plate determined in Sect. 6.3; ρ0 the
fluid density, ρ1 the density of the plate material, a and b are the least and biggest
dimensions of the plate, and h the plate thickness.11

Analogously, the frequency of oscillation of the plate with cutout immersed in
fluid is

λ∗ = λ0(1 + ξ(d/a))√
1 + 2μ(a/b)κ(d/b)ρ0a/(ρ1h)

.

Here d is the biggest dimension of the cutout (or the diameter of the circular cutout),
ξ(d/a) is the correction coefficient expressing the dependence of the oscillation fre-
quency of the plate in air on the cutout size, and κ(d/b) is the correction coefficient
of the added mass taking into account the presence of the cutout.

The oscillation frequency for a continuous plate in air depends on the boundary
conditions at the edges and is determined by the well-known formulas:

– For the freely supporter plates

λ0 = π2

a2

(

1 + a2

b2

)
√

D

ρ1h
;

– for the rigidly clamped plates

λ0 = 22.373

a2

√

D(1 + 0.605a2/b2 + a4/b4)

ρ1h
.

Here D = Eh3/(12(1 − ν2)) is the cylindrical rigidity, E is the elasticity modulus,
and ν is the Poisson coefficient.

Introducing the correction coefficients ξ and κ we can reduce the problem of
finding frequencies of oscillations of the plate with cutout in air and in fluid to the
analogous problem for the continuous plate of the same dimensions, which can be
easily solved.

The dependencies ξ(d/a) and κ(d/b) were found by V.N. Fedorov experimen-
tally by comparing eigenfrequencies of oscillations in air and in fluid for a large
series of plates with cutouts. It was found that the eigenfrequencies of oscillations
in air and in fluid of a plate with the central cutout are always higher than those for
the analogous continuous plate.

We approximate the coefficient ξ(d/a) by the cubic parabola:

11This section was written by V.N. Fedorov.
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– for the free support

ξ

(
d

a

)

= 2.5

n2 + n − 1

(
a

b

)2+b/(4a)(
d

a

)3

, (6.83)

– for the rigid clamping

ξ

(
d

a

)

= 5

(n2 + n − 1)a/b

(
a

b

)2+a/(2b)(
d

a

)3

, (6.84)

Fig. 6.22 Comparing the values of the coefficient ξ calculated by formulas (6.83) and (6.84) with
experimental data; dashed line—free support, solid line—rigid clamping, •••—experimental data
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where n = d/c is the relative size of the cutout and c is the lesser dimension of the
cutout.

We present the dependencies ξ(d/a) for several values of a/b and n in Fig. 6.22
together with experimental data.

The frequencies determined by formulas (6.83) and (6.84) satisfy the experimen-
tal values and frequencies obtained by the energy method with error not exceeding
5% for the square plates (as the relative size b/a increases, the error diminishes).

Interpolation formulas (6.83) and (6.84) can be used in calculations of frequen-
cies of plates having central cutouts for values b/a between 1 and 4. For plates with
b/a > 4, the influence of the cutout on the frequency is negligible in practice.

The plate added masses decrease in the presence of the cutout. Based on exper-
imental data, we have obtained the unified averaged dependence for the correction
coefficient of added masses κ(d/b):

κ

(
d

b

)

= 1 − 3

2

d

b
+ 3

2

(
d

b

)2

− 2

3

(
d

b

)3

. (6.85)

This dependence presented graphically in Fig. 6.23 is valid for rectangular iso-
lated plates with arbitrary boundary conditions and arbitrary stretching having cir-
cular or oval longitudinally oriented cutouts.

Analyzing the experimental data (see Fig. 6.23) we find that the actual added
mass correction coefficients for isolated rigidly clamped plates are 5–10% less and
the ones for the freely supported plates are 5–10% more than those calculated by
formula (6.85). Hence, the averaged dependence (6.85) ensures the least error when
calculating elastically clamped plates with mixed boundary conditions, which are
the most common elements of actual constructions.

Fig. 6.23 Comparing the
correction coefficient κ

calculated by formula (6.85)
with experimental data



Chapter 7
Elastic One-Dimensional Oscillations of an
Elongated Body in Fluid: Reduction Coefficients

In this section we discuss a way to describe elastic oscillations of an elongated body
(say, a hull) in a fluid along the long axis of the body.1 Assuming that the shape of
cross-sections of the body remains unchanged under oscillations (i.e., the oscillation
is identical to the oscillations of an elastic rod), one can introduce the notion of a so-
called reduction coefficient. The reduction coefficients describe three-dimensional
effects: a reduction coefficient is given by the ratio of an added mass of an elongated
body oscillating in one direction (vertical, horizontal of torsional) to the added mass
computed by the method of planar sections.

7.1 General Discussion

In studies of low frequency transverse oscillations a hull or another elongated body
can be modeled by an elastic rod (see for description of elastic oscillations of the
rod [20, 103, 105, 107, 122, 154, 172, 178, 187, 212]).

In solution of the hydroelastic problem one can use the following simplifying
assumptions:

1. Shape of free oscillations of the hull is the same under oscillations in air and in
water.

2. Amplitude of the oscillations is small.
3. The oscillation frequency is high; thus one can neglect the induced free surface

waves.
4. Induced fluid velocities are small.
5. The hull is considered as an elongated body whose hydrodynamics can be de-

scribed by considering a two-dimensional hydrodynamic problem in each section
(and then introducing a coefficient related to space effects).

Assumption 1 allows us to separate the problem into two parts: the problem of
elastic oscillations of the rod (hull) and the hydromechanical problem. In [186] an
error was evaluated which may be induced by the assumption 1. It was shown for
example that, under this assumption, the maximal error in determining the eigenfre-
quency of a 12th tone or prism-shaped rod does not exceed 2%. On the other hand,
the shape of the rod oscillations in water differs more essentially from the shape of
rod oscillation in air. In Fig. 7.1 we show the shapes of oscillation of the 1st and
10th tone of oscillations of a lighter ship hull having the displacement 62.090 tons.

1Sects. 7.1–7.3 were written by E.I. Ivanjuta.

A.I. Korotkin, Added Masses of Ship Structures,
© Springer Science + Business Media B.V. 2009
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Fig. 7.1 Shape of vertical oscillations of lighter carrier: the first tone in air (curve I) and in water
(curve II); the 10th tone in air (curve III) and in water (curve IV)

Assumptions 4 and 5 simplify the solution of the Laplace equation; they allow us
to reduce the problem to the two-dimensional one.

According to experimental data, the rod approximation of the hull can be used
up to the tone number n = 1 + 0.7L/B , where L is the maximal length of the hull;
B is the maximal width of the hull.

The three-dimensional effects of the flow around an oscillating hull (or an elon-
gated body in general) are captured by the so-called reduction coefficients Jn, where
n is the number of the tone of oscillation. The coefficient Jn is defined as follows:

Jn = Tn

T
p.s.
n

where Tn is the kinetic energy of the fluid flow arising under elastic oscillations of
the hull on the nth tone; T

p.s.
n is the approximation to the kinetic energy computed

by the method of planar sections. Namely, T p.s. = ∫ L

0 T (x)dx where x is the coor-
dinate along the axis of oscillations, and T (x) is equal to λ(x)v(x)2/2 where v(x)

is the velocity of a given planar section, and λ(x) is the added mass of this planar
section in the direction of its motion.

Depending on oscillation type (horizontal, vertical or torsional) one can define
three corresponding types of reduction coefficients: Jh

n , J v
n and J tor

n .
The coefficients Jn take into account both vibration and the three-dimensional

nature of the flow; in all known cases they turn out to be smaller than 1.



7.2 Added Masses of Shipframes under Vibration 313

7.2 Added Masses of Shipframes under Vibration

Let us introduce the parameters of an immersed part of the shipframe as shown in
Fig. 7.2. We choose the coordinate system in a standard way: the z axis is directed
downward; the x axis is directed along the central line of the hull; the y axis is par-
allel to the free surface. We consider the following added masses of a shipframe: the
added mass λ22 corresponds to motion of the shipframe in a horizontal direction, λ33

corresponds to the motion in a vertical direction; the added mass λ44 corresponds
to rotation with respect to the torsion center c. The position of the torsion center is
described by the properties of the hull as a whole; in Table 2.3 we compute λ44 with
respect to the point of intersection of the waterplane and the central plane of the
hull. If the torsion center is shifted with respect to this point, then λ44 transforms
accordingly.

Denote by d(x) the draught and by b(x) the (half of) the width of the shipframe
at waterline; S(x) is the area of the immersed part of the shipframe. By n we denote
the tone number.

We introduce coefficients ch, cv and ctor (denoted in Chap. 2, see Table 2.3 by
k22 0, k33 and k44 respectively). These coefficients are equal to ratios of the added
masses λ22, λ33 and λ44 of the immersed part of the shipframe to corresponding
added masses of the ellipse the same geometric size (with half-axes b and d).

We introduce also the following notations:

σ(x) = S(x)

2b(x)d(x)

is the area coefficient of a given shipframe;

q = d(x)

b(x)

Fig. 7.2 Scheme of (half of)
the immersed part of a
shipframe. S(x) is the area of
the shipframe; p is the
centroid of the immersed part
of the shipframe area; c is the
position of the center of
torsional oscillations; the
upper horizontal line is the
waterline
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is (a half of) the ratio of the draught to the width of the shipframe. We introduce the
following auxiliary coefficient

a = 1

2

[

3(1 + q) −
√

1 + 10q + q2 − 32σq/π
]

.

The following approximate formulas for coefficients ch and cv were proposed in
[50, 128]:

cv = 1 + (1 + q − a)(q − a),

ch = 4

π2

[

1 + 4

3q2
(1 + q − a)2

]

.

To take into account the three-dimensional effects one has to introduce also the
correction (or reduction) coefficients Jn (which depend on the tone number); the
added masses of the shipframe in a realistic situation then take the form:

λ22 = Jh
n ch

(
π

2
ρd2

)

,

λ33 = J v
n cv

(
π

2
ρb2

)

.

To write down approximate empiric formulas2 for coefficients Jh
n and J v

n we
need to introduce some additional notations:

αh := L

T
, αv := L

B
,

eh := 0.16αh + 1

0.3αh

, ev := 0.16αv + 1

0.3αv

,

ph := 1.03 − 1.7

αh

, pv := 1.03 − 1.7

αv

,

qh := αh − 0.125

αh + 2.5
, qv := αv − 0.125

αv + 2.5
,

fh := phqh(eh + 5)

1 − phqh

, fv := pvqv(ev + 5)

1 − pvqv

,

and, finally,

Rh
n := fh

ph(eh + fh + n)
, Rv

n := fv

pv(ev + fv + n)
.

2These formulas were derived as a result of efforts of several authors (technical reports of Krylov
Research Shipbuilding Institute, 1970–1980, unpublished).
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Then coefficients Jn obtained using the model of elongated ellipsoid of revolu-
tion (i.e., the ratio B/T is assumed to be 2) are given by:

Jh
1 = 1.035 − 1.674

L

αh

, J v
1 = 1.035 − 1.674

L

αv

(7.1)

and

J v
n = J v

1 Rv
n, J v

n = J v
1 Rv

n. (7.2)

The reduction coefficients obtained using the model of a three-axial ellipsoid (in
that case the ratio B/T can be arbitrary) have the following form:

Jh∗
n = Jh

n

(

1 + 0.02(B/T − 2)

J h
n

)

, J v∗
n = J v

n

(

1 + 0.02(B/T − 2)

J v
n

)

. (7.3)

For bulb-type shipframes, whose form coefficient is greater than 1, one can use
the above formulas by substituting the maximal width of the shipframe bmax instead
of b.

Values of coefficients cv , cn, ctor and cincl presented in Table 2.4 are computed
for shipframes with b/d < 2 (however, for some ships one can have b/d > 3). To
evaluate the dependence of cv and ch on b/d for various form coefficients (close
to 1) one can use graphs shown in Fig. 2.49 [122].

7.3 Reduction Coefficients of Simplest Elongated Bodies
Vibrating in Transverse Direction

7.3.1 Reduction Coefficients for a Circular Cylinder under
Transversal Oscillations

Consider transverse oscillations of an infinitely long circular cylinder of radius a.
Introduce the cylindrical coordinate system (x, r, θ) (see Fig. 7.3). Consider bend-
ing oscillations of the cylinder in the xy-plane, such that velocities of points of the

Fig. 7.3 Cylindrical
coordinate system
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surface of the cylinder depend on x and θ as follows:

v(r = a, θ, x) = v0 coskx cos θ. (7.4)

Solutions of the Laplace equation for velocity potential

∂2ϕ

∂x2
+ ∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2
= 0,

taking into account (7.4), can be represented in the form

ϕ(x, r, θ) = R(r) cos kx cos θ;
this leads to the following ODE for the function R:

R′′ + 1

r
R′ −

(

k2 + 1

R2

)

R = 0. (7.5)

Solution of Eq. (7.5), vanishing for r → ∞, is given by the Bessel function of sec-
ond kind of first order R(r) = CK1(kr) where an arbitrary constant C is determined
from the boundary condition (7.4):

∂ϕ

∂r

∣
∣
∣
∣
r=a

= v0 cosks cos θ = CkK ′
1(ka) coskx cos θ;

C = v0

kK ′
1(ka)

.

Therefore, the expression for velocity potential near vibrating cylinder looks as
follows:

ϕ(x, r, θ) = v0

kK ′
1(ka)

K1(kr) cos kx cos θ. (7.6)

Computing the kinetic energy of fluid using (7.6) we find

T = −1

2
ρ

∫ 2π

0
ϕ

∂ϕ

∂r
a dθ = −1

2
ρ

K1(ak)

akK ′
1(ak)

a2πv2
0 cos2 kx.

Dividing the kinetic energy by the square of local velocity in the y-direction
(1/2)v2

0 cos2 kx, we get the added mass λ22 of the circular cylinder vibrating in the
xOy plane:

λ22 = −ρa2π
K1(ak)

akK ′
1(ak)

= ρa2π
1

1 + ak[K0(ak)/K1(ak)] ,

where K0 is the Bessel function of second kind of 0th order; in computations leading
to this formula one has to use the identity

−K ′
1(z) = K0(z) + 1

z
K1(z).
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We see that the added mass of a vibrating cylinder differs from the added mass of a
cylinder moving without changing its shape (equal to ρπa2) by the multiplier

J = 1

1 + ak[K0/K1(ak)] . (7.7)

Consider now vibrations of a cylinder of finite length L. Let us choose in
(7.7) k := Jn = πn/L (n = 1,2, . . .). Then on the cylinder of length L one has
n nodes, since the distribution of velocities is determined by formula (7.4). Then
ak = aπn/L and the coefficient (7.7) takes the form

Jn = 1

1 + aπn/L[K0(aπn/L)/K1(aπn/L)] (7.8)

which depends on the number of nodes and on the ratio a/L.
The formula (7.8) gives reduction coefficients for the circular cylinder.
In fact, under vibration of a cylinder of finite length L, boundary conditions on

its ends differ from the case of an infinite cylinder. More precise formulas for Jn

which take into account these boundary conditions are given in [144].
Coefficient Jn remains the same when a cylinder is floating horizontally on a free

surface in half-submerged position since corresponding added masses (the added
mass of a vibrating cylinder and the added mass of a cylinder of stationary shape)
decrease by the factor of 2 in comparison with cylinders in an infinite fluid.

In Fig. 7.4 we show graphs of Jn(L/B) (B = 2a is the diameter of the cylinder)
for n = 2,3,4 obtained for the circular cylinder by different authors. Curve 1 is
computed by the formula (7.8); the curve 2 was obtained in [124]; curve 3 was
obtained in [144]. In the same figure we show experimental points (circles) obtained
in [144]. The curves shown in bold give the shape of bending oscillations for n =
2,3,4 in water; circles on these curves correspond to the shape of oscillations in air.

7.3.2 Reduction Coefficients for a Vibrating Elliptic Cylinder

To determine the added mass of an elliptic cylinder vibrating in a vertical plane in an
infinite fluid or being half-submerged, one can use reduction coefficients Jn, which
are given in Fig. 7.5 for n = 2,3,4 and the ratio of axes B/2d equal to 2 and 4. The
numbers assigned to separate points show the value of n.

7.3.3 Reduction Coefficients for a Vibrating Rectangular Pontoon

Explicit theoretical solution of the problem of vibration of a floating rectangular
pontoon of infinite length is not known (to the best of the author’s knowledge). Here
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Fig. 7.4 Dependence of reduction coefficients on elongation of a circular cylinder

we present experimental data for the coefficient J2 [144] for different combinations
of values of B/D (and B/2d , where D is the height, B is the width and d is the
draught of the pontoon), see Fig. 7.6. The added mass of a plane section of a non-
vibrating rectangular pontoon necessary for computation of J2, was computed via
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Fig. 7.5 Reduction coefficients for an elliptic cylinder

the formula λ22 = k22ρπ(B/2)2, where the coefficient k22 (see Fig. 7.7) is taken
from the work [131]. The added mass of a plane section of a vibrating pontoon is
given by λvib

22 = J2λ22.
For a pontoon of finite length L and square section we present in Fig. 7.8 the

experimental curve showing dependence of J2 on B/2d for various L/B .
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Fig. 7.6 Reduction coefficients for a rectangular pontoon: 1—for the model 1; 2—for the model 2;
3—for the model 3

7.3.4 Reduction Coefficients for Vibrating Ellipsoid of Revolution

Theoretically the added masses of a vibrating ellipsoid of revolution were consid-
ered in [131, 142, 143]. Curves showing dependence of reduction coefficients Jn

for n = 2,3,4,5 on the ratio L/B (L is the length and B is the width of the ellip-
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Fig. 7.7 Coefficient k22 of added mass of a rectangular pontoon under vertical motion

soid of revolution) are given in Fig. 7.9. The curves in the right lower corners of the
graphs correspond to the shape of the central line of the ellipsoid under oscillation
for L/B = 20.

Curves 1 correspond to the data of [131]; curves 2 were obtained in [143]; curves
3—in [142]. In the same graphs we show the experimental points [144].

Consider the influence of the shape of the axial line of the ellipsoid under vibra-
tion with the same number of nodes on reduction coefficients Jn. In [144] depen-
dence of Jn on b/a (where a is the deviation of the end of vibration body, b is the
deviation of the point situated in the middle between two nodes) were studied for
the circular cylinder with L/B = 9 (Fig. 7.10a) and the ellipsoid of revolution with
L/B = 11 (Fig. 7.10b) for n = 2,3,4.

If a cylinder is vibrating between two boundaries such that its ends are close to
the vertical walls, the reduction coefficient changes. Dependence Jn(L0/L) where L
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Fig. 7.8 Experimental data
on reduction coefficients of a
rectangular pontoon of finite
length

is the length of the vibrating cylinder, L0 is the distance between two walls, n = 2,3
was obtained experimentally in [144], see Fig. 7.11.

When the half-immersed floating cylinder is vibrating in a horizontal plane, its
reduction coefficient differs from the coefficient corresponding to vibration in a ver-
tical plane. Corresponding coefficients J2(L/B) and J3(L/B) are represented by
curves 4 in Fig. 7.9 [143]. In the case of two-node vibration (n = 2) the nodes were
situated at the distance x = ±0.223L from the center; for n = 3 the positions of
nodes were at x = 0 and x = ±0.3L.

There exist numerous publications devoted to computation of the reduction co-
efficients (see for example [50, 122, 186]). In most of these works the hull was
schematically represented as one or another body of revolution: the circular or ellip-
tic cylinder of finite length [186], ellipsoid of revolution [128] or three-axial ellip-
soid. Modeling the hull by a three-axial ellipsoid allows us to take into account both
ratios L/B and B/T (L is the length, B is the width, T is the draught). It turns out
that compressibility of fluid does not essentially influence the reduction coefficients.

In Table 7.1 we present values of reduction coefficient J v
n for the first six modes

of vertical oscillations of a three-axial ellipsoid.
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Fig. 7.9 Reduction coefficients of an ellipsoid of revolution

Fig. 7.10 Influence of a bending shape of vibrating body on reduction coefficients
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Fig. 7.11 Influence of walls on the values of reduction coefficients

7.3.5 Added Moments of Inertia under Torsional Oscillations of
the Hull

The influence of the shape of torsional oscillations and three-dimensional effects on
the value of the torsional added moment of inertia was studied in [50, 157]. In [157]
the hull was modeled by an elliptic cylinder and a three-axial ellipsoid.

In Fig. 7.12 we show the dependence of coefficients corresponding to the first
two tones, J tor

1 and J tor
2 , on the ratio L/B for constant ratio B/T = 3.

Table 7.1 Reduction coefficients for three-axial ellipsoid

Tone L/B B/T

2.2 2.5 3.0 3.5 4 5

n = 1 4 0.526576 0.561010 0.602126 0.630189 0.650272 0.676660

6 0.690928 0.715381 0.743838 0.763020 0.776687 0.794696

7 0.742383 0.763185 0.787374 0.803641 0.815237 0.830543

8 0.781685 0.799643 0.820435 0.834426 0.844411 0.857608

9 0.812395 0.828044 0.846150 0.858352 0.867046 0.878558

10 0.836870 0.850640 0.866580 0.877285 0.884934 0.895136

12 0.873018 0.883964 0.896598 0.905111 0.911179 0.919266

(continued on next page)
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Table 7.1 (continued)

Tone L/B B/T

2.2 2.5 3.0 3.5 4 5

n = 2 4 0.430890 0.436994 0.506621 0.537417 0.559876 0.589816

6 0.602164 0.630541 0.664228 0.687235 0.703731 0.725525

7 0.661495 0.686570 0.716040 0.736052 0.750390 0.769302

8 0.708427 0.730604 0.757494 0.774099 0.786657 0.830277

9 0.746081 0.765795 0.788773 0.834313 0.815445 0.830180

10 0.776729 0.794355 0.814867 0.828721 0.838639 0.851775

12 0.823100 0.837439 0.854095 0.865353 0.873399 0.884120

n = 3 4 0.374299 0.398268 0.435538 0.465065 0.487686 0.518743

6 0.530859 0.560111 0.596026 0.621104 0.621104 0.639279

7 0.529963 0.620075 0.652619 0.675026 0.691180 0.712661

8 0.644012 0.668750 0.698077 0.718141 0.732558 0.751701

9 0.686126 0.708586 0.735061 0.753098 0.766069 0.783292

10 0.712121 0.741550 0.765532 0.781834 0.793548 0.809091

12 0.775369 0.792387 0.812310 0.825826 0.835545 0.848377

n = 4 4 0.350578 0.358463 0.384063 0.409436 0.430430 0.460736

6 0.475267 0.502765 0.538386 0.564109 0.583057 0.608529

7 0.536092 0.563354 0.597078 0.620768 0.638013 0.661049

8 0.588426 0.614250 0.646492 0.667146 0.682831 0.703736

9 0.632882 0.656941 0.685694 0.705489 0.719794 0.738845

10 0.670652 0.692934 0.719386 0.737506 0.750580 0.768062

12 0.730562 0.749659 0.772133 0.787490 0.798543 0.813323

n = 5 4 0.355378 0.340601 0.349047 0.367315 0.385180 0.413249

6 0.433518 0.456935 0.490081 0.515266 0.534274 0.560230

7 0.489777 0.515531 0.548828 0.572893 0.590660 0.614697

8 0.541068 0.566724 0.598619 0.621146 0.637585 0.659640

9 0.586156 0.610800 0.640812 0.661731 0.676947 0.697312

10 0.625399 0.648680 0.676731 0.696151 0.710214 0.729017

12 0.689149 0.709622 0.734008 0.750805 0.762924 0.779038

n = 6 4 0.385145 0.341501 0.327651 0.336226 0.349646 0.374215

6 0.403881 0.421084 0.449860 0.473522 0.491996 0.517793

7 0.452839 0.475589 0.507109 0.530787 0.548595 0.572907

8 0.501191 0.525568 0.557067 0.579813 0.596632 0.619365

9 0.545485 0.569837 0.600226 0.621782 0.637559 0.658786

10 0.585029 0.608648 0.637558 0.657806 0.672675 0.692415

12 0.650944 0.672412 0.698186 0.716033 0.728981 0.746281
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Fig. 7.12 Reduction coefficients J tor
1 (the upper curve) and J tor

2 (the lower curve) under torsional
oscillations of a three-axial ellipsoid for B/T = 3

7.4 Influence of Shallow Water on Added Masses of a Hull under
Vertical Vibrations

Here we present the results of experimental study of vertical oscillations of the hull
of a cargo ship (vegetable carrier) of inland type ST-1302 on shallow and deep water,
and results of studies of a model of this ship.3 The main goal of this study was to
determine the dependence of frequency and shape of hull oscillation on the depth of
water; thus obtaining information about dependence of added masses of the hull on
the depth.

By analyzing the influence of water depth on eigenfrequencies we get informa-
tion on influence of the water depth on added masses of the ship. Parameters of this
ship were as follows: length at waterline: L = 83.6 m; width at waterline B = 12 m,
average draught T = 1.2 m. The depth water: H = 12 m (which corresponds to
h = 10.8 m under the keel) in experiments on “deep” water. The depth of water in
experiments on shallow water was H = 3.2 m (which corresponds to h = 2 m under
the keel).

The vibrogenerator of eccentric type (see Fig. 7.13) was installed on the transom
of the ship; the vibrosensors collecting the information about oscillations of the hull
were installed on sides and on bulkheads.

Shapes and frequencies of the ship oscillations for these values of h are shown
in Fig. 7.14.

To study a possibility of obtaining realistic results on models of a hull, there were
constructed four elastic models of the hull; all models had length 3 m, width 0.43 m,
had the same mass and elasticity, but different configurations of the hull.

The models were constructed as follows: 10 synthetic foam blocks were attached
by bolts to a channel bar of 3 m length; a gap between two blocks was equal to 1 cm;

3This section was written by A.S. Samsonov.
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Fig. 7.13 Positions of vibrogenerator and vibrosensors on the hull of ST-1302

Fig. 7.14 Shapes of vertical
oscillations of the hull. Small
circles correspond to deep
water (h = 10.8 m); crosses
correspond to shallow water
(h = 2.0 m). A denotes the
amplitude of the oscillations

this gap was covered by a thin elastic film, which provided water-tightness of the
hull, but did not influence its oscillations (Fig. 7.15 and Fig. 7.16). Elasticity of the
hull of such a model was completely determined by elasticity of the central channel
bar. Therefore, on each model one could easily excite the first five eigenmodes of
vertical oscillations; the difference between these oscillations was determined only
by the difference in added masses.

The configuration of the hull of the 1st model was exactly identical to the shape of
ST-1302; however, the elasticity of the hull of ST-1302 was not modeled. The other
three models were studied to understand the influence of the shape of the keel on
eigenfrequencies and shapes of oscillations of inland ships of this kind. These three
models had the identical shape of shipframes over the length; the difference between
them was in the angle of inclination of sides at the waterline level (90°, 60° and 30°
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Fig. 7.15 The main model of the ship ST-1302 and positions of vibrosensors. 1—vibrosensors,
2—synthetic foam blocks; 3—channel bar

Fig. 7.16 Cross-section of
the model of the ship ST-1302

Fig. 7.17 Position of vibrogenerator on the models

respectively); therefore, while all of these models had the same displacement, the
draught and width at waterline was slightly different.

Vertical oscillations of each model were generated by a vibrogenerator installed
at the stern (see Fig. 7.17; the amplitude of the generated oscillations was indepen-
dent of frequency); oscillations were measured by 10 vibrosensors.

The oscillations of the model were studied at nine depths which were changing
from minimal value h/B = 0.02 (B is the width at waterline, h is the depth under
the keel) to the value h/B = 2; further increase of the depth did not show any change
in eigenfrequencies (and, therefore added masses) of the models.

It was shown that for h/B = 0.02 all five eigenfrequencies were about 45%
smaller than the eigenfrequencies for h/B > 2. Moreover, the amplitude of oscil-
lations at the ends of the models was 3 − 5 times smaller for h/B = 0.02 in com-
parison with the same amplitude for h/B > 2 (Fig. 7.18). Analogous effects were
observed for the ship ST-1302 itself (Fig. 7.14).
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Table 7.2 Comparison of experimental frequencies (Hz) of vertical oscillations of three inland
cargo ships on shallow and deep water with theoretical results obtained via the formula (7.10).
“D”—deep, “S”—shallow, “exp”—experiment; “th”—theory

Tone ST-1302 “Kujbyshev GES” “Soviet Azarbajdjan”

D., exp. S., exp. S., th. D., exp. S., exp. S., th. D., exp. S., exp. S., th.

1 1.6 1.36 1.33 1.68 1.45 1.43 1.60 1.48 1.38

2 3.25 2.64 2.71 3.37 2.92 2.85 3.05 2.53 2.63

3 – – – 4.97 4.03 4.22 4.13 3.47 3.57

4 – – – 6.52 5.53 5.53 5.25 4.33 4.53

5 – – – 7.80 6.37 6.42 – – –

To evaluate the influence of shallow water on eigenfrequencies of vertical oscil-
lations and added masses one can use the following formula:

ηi :=
(

Ni
deep

Ni
shallow

)2

= D + Mi
shallow

D + Mi
deep

(7.9)

where Ni
shallow are eigenfrequency number i (i = 1, . . . ,5) of vertical oscillations

of the hull on shallow water; Ni
deep are eigenfrequency number i (i = 1, . . . ,5) of

vertical oscillations of the hull on deep water; D is the displacement of the ship;
Mi

shallow and Mi
deep are added masses on shallow and deep water, respectively.4

If the coefficients ηi and added masses Mi
deep of the hull on deep water are

known, one can determine the added masses Mi
shallow on shallow water.

Experiments on a model allowed us to determine the dependence of ηi on the
ratio h/B; these coefficients turn out to be almost coinciding for all four models,
and, moreover, they are almost the same for all i, i.e., are in fact independent of the
mode of oscillation.

Therefore, one can propose a general averaged dependence of ηi on h/B which
looks as follows:

η(i) = 0.075
B

h
+ 1. (7.10)

Applicability of this formula can be evaluated using the following Table 7.2
where we show the eigenfrequencies of the first five modes of vertical oscillations
for ST-1302 as well as two other ships obtained experimentally at different times,
and compare them with theoretical values obtained by the formula (7.10). The max-
imal deviation of theoretical values from the experimental data equals 7%.

4Here one uses the naive notion of added mass: one assumes that the hull oscillates as an elastic
rod of two different masses both in air and in water. The mass of the rod oscillating in air is its real
mass; the mass of the rod oscillating in water is assumed to be a sum of its real mass and the added
mass. Relationship of this notion of added mass to the general notion of added mass of vibrating
body from Chap. 6 is not obvious, although these notions do coincide in the main order.



330 7 Elastic One-Dimensional Oscillations of an Elongated Body in Fluid

Fig. 7.18 Shapes of first 5 model of vertical oscillation of the model of ship ST-1302. The first
mode is shown on top; the 5th in the bottom. I—deep water (h/B = 1.89); II—shallow water
(h/B = 0.02). The stern is at the right side of the graphs; the bow is at the left

The experiments on the ship ST-1302 (the length at waterline 83.6 m, width 12 m,
depth under keel on deep water 10.8 m, on shallow water 2 m) were carried out in
1983 by A.S. Samsonov. Experiments on cargo ship “Kujbyshev GES” (length at
waterline 131 m, width 16.8 m, depth under keel in deep water 72 m, on shallow
water 3.25 m) were carried out in 1964 by M.M. Bolesko and O.N. Lychev. The ex-
periments on ferry “Soviet Azerbajdjan” (length at waterline 127.2 m, width 17.5 m,
depth under keel on deep water 14 m, on shallow water 3.75 m) were carried out in
1964 by F.P. Shujgin.
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Fig. 7.19 Dependence of coefficient η on h/B for first five vertical eigenmodes of inland cargo
ships; h is the depth under the keel; B is the width of the hull at waterline



Chapter 8
Added Masses of a Propeller

Here we discuss the properties and methods of determination of added masses of a
propeller, as well as the influence of the hull on the added masses.

8.1 Forces and Torques of Inertial Nature Acting on a Propeller

Let us introduce the coordinate system xyz associated to the propeller (Fig. 8.1)
such that the origin O is situated at the axis; the Ox axis is directed along the
propeller axis; the Oz axis is directed along one of the blades. The number of the
blades we denote by Z. If the coordinate system xyz is rotated around the axis Ox

by the angle β = 2π/Z, then the axis Oz1 of the new coordinate system is also
directed along a blade of the propeller, i.e., the position of the propeller in the new
coordinate system xy1z1 is the same as its position under the old coordinate system
xyz. Therefore the added masses of the propeller in the new coordinate system
xy1z1 are the same as the added masses in the coordinate system xyz. Consider
kinetic energy of the fluid flow around the propeller (see (1.13)) in the coordinate
systems xyz and xy1z1.

Let in coordinate system xyz the linear and angular velocities of the propeller be
denoted by ui (i = 1, . . . ,6). Then in the coordinate system xy1z1 these velocities
have the form

u′
1 = u1; u′

2 = u2 cosβ + u3 sinβ;

u′
3 = −u2 sinβ + u3 cosβ; u′

4 = u4;

u′
5 = u5 cosβ + u6 sinβ; u′

6 = −u5 sinβ + u6 cosβ.

Kinetic energy of the fluid in the coordinate system xyz can be written as follows:

2T = λ11u
2
1 + λ22u

2
2 + λ33u

2
3 + 2λ12u1u2 + 2λ13u1u3 + 2λ23u2u3

+ 2u1(λ14u4 + λ15u5 + λ16u6) + 2u2(λ24u4 + λ25u5 + λ26u6)

+ 2u3(λ34u4 + λ35u5 + λ36u6) + λ44u
2
4 + λ55u

2
5

+ λ66u
2
6 + 2λ45u4u5 + 2λ46u4u6 + 2λ56u5u6. (8.1)

A.I. Korotkin, Added Masses of Ship Structures,
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Fig. 8.1 Coordinate system
associated to a propeller. R is
the maximal radius of the
propeller; r0 is the radius of
the propeller’s hub

The same kinetic energy in the coordinate system xy1z1 can be written as fol-
lows:

2T = λ11u
2
1 + λ22(u2 cosβ + u3 sinβ)2 + λ33(−u2 sinβ + u3 cosβ)2

+ 2λ12(u2 cosβ + u3 sinβ)u1 + 2λ13u1(−u2 sinβ + u3 cosβ)

+ 2λ23(u2 cosβ + u3 sinβ)(−u2 sinβ + u3 cosβ)

+ 2u1
[

λ14u4 + λ15(u5 cosβ + u6 sinβ) + λ16(−u5 sinβ + u6 cosβ)
]

+ 2(u2 cosβ + u3 sinβ)
[

λ24u4 + λ25(u5 cosβ + u6 sinβ)

+ λ26(−u5 sinβ + u6 cosβ)
]

+ 2(−u2 sinβ + u3 cosβ)
[

λ34u4 + λ35(u5 cosβ + u6 sinβ)

+ λ36(−u5 sinβ + u6 cosβ)
]

+ λ44u
2
4 + λ55(u5 cosβ + u6 sinβ)2

+ λ66(−u5 sinβ + u6 cosβ)2 + 2λ45u4(u5 cosβ + u6 sinβ)

+ 2λ46u4(−u5 sinβ + u6 cosβ)

+ 2λ56(u5 cosβ + u6 sinβ)(−u5 sinβ + u6 cosβ).

(8.2)
Expressions (8.1) and (8.2) are identically equal for arbitrary values of ui (i =
1,2, . . . ,6), since they define the same kinetic energy. Comparing various terms
in these formulas we can get relationships between the added masses λik (i, k =
1,2, . . . ,6), which follow from the discrete rotational symmetry of the propeller.

For two-blade propeller Z = 2, β = π . The formula (8.2) takes the form

2T = λ11u
2
1 + λ22u

2
2 + λ33u

2
3 − 2λ12u1u2 − 2λ13u1u2 + 2λ23u2u3

+ 2u1(λ14u4 − λ15u5 − λ16u6)

− 2u2(λ24u4 − λ25u5 − λ26u6) − 2u3(λ34u4 − λ35u5 − λ36u6)

+ λ44u
2
4 + λ55u

2
5 + λ66u

2
6

− 2λ45u4u5 − 2λ46u4u6 + 2λ56u5u6. (8.3)
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Since (8.3) must identically coincide with (8.1), taking into account that the added
masses λik coincide in both formulas, we get

λ12 = λ13 = λ15 = λ16 = λ24 = λ34 = λ45 = λ46 = 0. (8.4)

For four-blade propeller, when Z = 4 and β = π/2, the formula (8.2) takes the
form

2T = λ11u
2
1 + λ22u

2
3 + λ33u

2
2 + 2λ12u1u3

− 2λ13u1u2 − 2λ23u2u3 + 2u1(λ14u4 + λ15u6 − λ16u5)

+ 2u3(λ24u4 + λ25u6 − λ26u5) − 2u2(λ34u4 + λ35u6 − λ36u5)

+ λ44u
2
4 + λ55u

2
6 + λ66u

2
5 + 2λ45u4u6 − 2λ46u4u5 − 2λ56u5u6. (8.5)

Comparing (8.1) with (8.5), we get the following relations between the added
masses of a four-blade propeller:

λ22 = λ33; λ55 = λ66; λ25 = λ36; λ26 = −λ35;

λ12 = λ13 = λ23 = λ15 = λ16 = λ24 = λ34 = λ45 = λ46 = λ56 = 0. (8.6)

For a three-blade propeller (Z = 3), as well as for propellers with higher number
of blades (Z ≥ 5) one has to compare the formulas (8.1) and (8.2). Coincidence of
coefficients in front of pairwise products uiuk for i = 1, . . . ,6 implies

λ22 = λ33; λ55 = λ66; λ25 = λ36; λ26 = −λ35;

λ12 = λ13 = λ23 = λ15 = λ16 = λ24 = λ34 = λ45 = λ46 = λ56 = 0. (8.7)

We notice that for a two-blade propeller the condition λ23 = 0 is not included in
(8.4); this is due to the fact that the position of the axis Oz on the blade is considered
arbitrary. However, according to the transformation formulas from Chap. 1 one can
always choose the Oz axis in the Oyz plane such that λ23 vanishes.

Taking into account the expressions (8.4), (8.6) and (8.7), let us give the formulas
for kinetic energy of the flow around propellers with different numbers of blades:

For a two-blade propeller:

2T = λ11u
2
1 + λ22u

2
2 + λ33u

2
3 + 2λ23u2u3 + 2λ14u1u4

+ 2λ25u2u5 + 2λ26u2u6 + 2λ35u3u5 + 2λ36u3u6 + λ44u
2
4

+ λ55u
2
5 + λ66u

2
6 + 2λ56u5u6. (8.8)

For a four-blade propeller:

2T = λ11u
2
1 + λ22

(

u2
2 + u2

3

) + 2λ14u1u4

+ 2λ25(u2u5 + u3u6) − 2λ26(u3u5 − u2u6)

+ λ44u
2
4 + λ55

(

u2
5 + u2

6

)

. (8.9)
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For a three-blade propeller and a propeller with a number of blades Z ≥ 5:

2T = λ11u
2
1 + λ22

(

u2
2 + u2

3

) + 2λ14u1u4

+ 2λ25(u2u5 + u3u6) + λ44u
2
4 + λ55

(

u2
5 + u2

6

)

. (8.10)

Expressions (8.8)–(8.10) can be used to find forces and torques acting on a pro-
peller according to formulas of Sect. 1.4. The components of hydrodynamic forces
and torques of inertial nature acting on a propeller arbitrarily moving in an immov-
able fluid are determined by (1.22)–(1.27), taking into account (8.4), (8.6) or (8.7)
depending on the number of blades of the propeller.

The formulas for forces and torques of inertial nature acting on a propeller which
moves in a changing velocity field, are given in [137].

If a propeller with the number of blades Z ≥ 2 is moving in immovable fluid with
velocities u1(t) and u4(t), then, according to formulas (1.22)–(1.27), it is acted upon
by the following force and torque of inertial nature:

Rx = −λ11
du1

dt
− λ14

du4

dt
; Lx = −λ14

du1

dt
− λ44

du4

dt
.

8.2 Added Masses of Propeller Blades

Added masses of propeller blades are usually determined by the method of plane
sections [41, 136]. Consider an element of the propeller blade (see Fig. 8.2). The
origin of coordinate system xOy is assumed to belong to the chord of the profile;
it is assumed to coincide with the center of mass of the section. Let us assume that
for all sections of the blade these points belong to one line (coinciding with the Oz

axis), i.e., the blade is not twisted. The added masses of a given section are denoted
by λx , λy , λxy , λxω , λyω, λω. According to the method of planar sections the added
masses of the blade λ0

ik can be obtained by integration of added masses of planar
sections with respect to the radius r in the limits from r0 to R (see Fig. 8.1):

λ0
11 =

∫ R

r0

λx dr; λ0
12 =

∫ R

r0

λxy dr; λ0
22 =

∫ R

r0

λy dr;

λ0
14 = −

∫ R

r0

λxyr dr; λ0
15 =

∫ R

r0

λxr dr; λ0
16 =

∫ R

r0

λxω dr;

λ0
24 = −

∫ R

r0

λyr dr; λ0
26 =

∫ r

r0

λyω dr; λ0
25 = −λ0

14;

λ0
44 =

∫ R

r0

λyr
2 dr; λ0

55 =
∫ R

r0

λxr
2 dr; λ0

66 =
∫ R

r0

λ� dr;
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Fig. 8.2 Propeller blade

λ0
45 =

∫ R

r0

λxyr
2 dr; λ0

46 = −
∫ R

r0

λy� r dr; λ0
56 =

∫ R

r0

λx� r dr. (8.11)

Signs in front of the integrals were chosen according to the rules discussed in
Sect. 3.5.1, as well as the transformation formulas (1.21).

Added masses of the profile can be found in the coordinate system xOy taking
into account its width and curvature (see Chap. 2).

In approximate computations, taking into account a relatively small thickness of
the profile and small curvature of the middle chord, one can substitute the profile by
a thin plate of width b. Then the added masses of an element of the blade, taking
into account (1.20) can be written as follows:

λx = ρ
π

4
b2 cos2 ϕ; λy = ρ

π

4
b2 sin2 ϕ; λxy = −1

2
ρ

π

4
b2 sin 2ϕ;

λxω = ρ
π

4
b3(0.5 − b̄1) cosϕ; λyω = −ρ

π

4
b3(0,5 − b̄1) sinϕ;

λω = ρ
π

4
b4

[
9

32
− b̄1(1 − b̄1)

]

, (8.12)

where ϕ is the angle shown in Fig. 8.2; b is the width of profile of an element of the
blade; b1 is the distance between the front point of the blade to its center (Fig. 8.2);
b̄1 = b1/b.

If we assume that the blade profile is symmetric with respect to the axis Oz, i.e.,
b̄1 = 0.5, then λxω = λyω = 0. In this case, as it follows from (8.11),

λ0
16 = λ0

26 = λ0
46 = λ0

56 = 0.
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Substituting (8.12) into (8.11), we get the following formulas for the remaining
added masses of the blade:

λ0
11 = m

∫ 1

r̄0

b̄2 cos2 ϕ dr̄; λ0
22 = m

∫ 1

r̄0

b̄2 sin2 ϕ dr̄;

λ0
12 = −m

2

∫ 1

r̄0

b̄2 sin 2ϕ dr; λ0
14 = mR

2

∫ 1

r̄0

b̄2r̄ sin 2ϕ dr̄;

λ0
15 = mR

∫ 1

r̄0

b̄2r̄ cos2 ϕ dr̄; λ0
24 = −mR

∫ 1

r̄0

b̄2r̄ sin2 ϕ dr̄;

λ0
44 = mR2

∫ 1

r̄0

b̄2r̄2 sin2 ϕ dr̄; λ0
55 = mR2

∫ 1

r̄0

b̄2r̄2 cos2 ϕ dr̄;

λ0
66 = mR2

8
b̄2
m

∫ 1

r̄0

b̄4 dr̄; λ0
45 = −mR2

2

∫ 1

r̄0

b̄2r̄2 sin 2ϕ dr̄ (8.13)

where m = (1/8)πρb̄2
mD3; b̄m = bm/D; bm is the maximal width of the blade; D is

the diameter of the propeller; b̄ = b/bm; r̄ = r/R. The variable m in (8.13) has the
meaning of mass of the fluid contained in the cylinder of height R and diameter bm.
Variables mR and mR2 are proportional to the static moment and the moment of
inertia of this mass with respect to the axis of the propeller. Integrals in (8.13) are
coefficients of influence of blade geometry. They depend on the radius of the hub,
as well as of radial distribution of the width of the blade, and the pitch between the
blades. Variable bm depends on blade-area ratio, number of blades and radius of the
hub.

For Troost propellers of B-series family the integrals in (8.13) were computed
by V. Lipis [137]; for r̄0 = 0.2 he obtained the following formulas:

λ0
11 = 2.1ρ

D3θ2

Z2
f1

(
H

D

)

; λ0
22 = 0.319

(
H

D

)2
f0(H/D)

f1(H/D)
λ0

11;

λ0
12 = −0.6

(
H

D

)

λ0
11; λ0

14 = 0.159D

(
H

D

)

λ0
11;

λ0
24 = −0.0955D

(
H

D

)2

λ0
11; λ0

15 = 0.3Dλ0
11;

λ0
44 = 0.0253D2

(
H

D

)2

λ0
11; λ0

55 =
[

0.056

f1
− 0.102

(
H

D

)2]

D2λ0
11;

λ0
66 = 0.0854D2(θ2/Z2)

(
1

f1

)

λ0
11; λ0

45 = −0.0479D2
(

H

D

)2

λ0
11. (8.14)
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Fig. 8.3 Functions defining added masses of Troost B propellers

Here the functions f0(H/D) and f1(H/D) are determined by Fig. 8.3, θ is the
blade-area ratio; H/D is the pitch ratio. The function f1 can be approximated by
the formula [136] f1 = 0.61 − 0.19H/D.

The following added masses of the propeller as a whole can be approximately
found in terms of coefficients λ0

ik as follows:

λ11 = Zλ0
11; λ14 = Zλ0

14;

λ44 = Zλ0
44; λ25 = 0.5Zλ0

25.

It is more difficult to find other added masses; these computations should in par-
ticular take into account relationships (8.4), (8.6) and (8.7). In derivation of the
formulas (8.14) the formulas for added masses of isolated plates were used. Lattice
effects lead to increase of corresponding values of λik [86]. Taking these effects into
account the following expressions were obtained in this work:

λ11 = 2.31ρD3
(

θ2

Z

)

A;

λ14 = 0.368ρD4
(

θ2

Z

)(
H

D

)

A;

λ44 = 0.0585ρD5
(

θ2

Z

)(
H

D

)2

A, (8.15)
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Fig. 8.4 Graph of function A(H/D)

where

A = 0.56 − 0.26

(
H

D

)2

+
[

0.362

(
H

D

)3

− 0.031

(
H

D

)5]

× arctan
0.255(H/D)

0.2 + 0.101(H/D)2

+ 0.0703

(
H

D

)4

−
[

0.099

(
H

D

)4

− 0.00075

(
H

D

)6]

× ln
1 + 0.101(H/D)2

0.04 + 0.101(H/D)2
.

The graph of function A(H/D) is shown in Fig. 8.4. Notice that the signs of the
added masses λ0

14 (8.14) and λ14 (8.15) are chosen taking into account (8.11).
Besides theoretical results, very often one uses experimental data on a propeller’s

added masses. In particular, there is the following formula by L.M. Kutuzov for λ44
(for the case of water):

λ44 = 111θ2D5

Z

(H/D)2

3.8 + (H/D)2

√

1 + 0.23θ/Z

1 + (6θ/Z)2
kg × m2.

There exists also the following experimental formula relating λ44 and λ11:

λ44 = kH 2λ11,

where the coefficient k lies between 0.023 and 0.025.
On the other hand, computations using (8.14) give the following formula: λ44 =

0.0253H 2λ11. Formulas (8.14) show that the added masses of the blade (and, there-
fore, of the propeller as a whole) can be expressed via the variable λ0

11 (for propeller
via λ11). Therefore, the λ0

11 (and λ11) should be determined as exactly as possible.
Analysis of experimental data [137] suggested that we introduce a correction α(θ)

(see Fig. 8.5) which is introduced in the formula for the added mass of the propeller:

λ11 = 2.1ρ
D3θ2

Z
f1

(
H

D

)

α(θ).

Some results on added masses of four-blade propeller for 0.4 ≤ θ ≤ 1.0, 0.5 ≤
H/D ≤ 1.2 are contained in [102]. In the work [74] the added masses of three
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Fig. 8.5 Experimental correction α(θ) for added mass of a propeller

propellers were computed: propeller 1 (with diameter D = 5.3 m, number of blades
Z = 4, pitch ratio at radius 0.7R given by H/D = 1.23, blade-area ratio θ = 0.586),
propeller 2 (with diameter D = 5.8 m, number of blades Z = 5, pitch ratio at radius
0.7R given by H/D = 1.16, blade-area ratio θ = 0.650), propeller 3 (with diameter
D = 4.25 m, number of blades Z = 4, pitch ratio at radius 0.7R given by H/D =
1.17, blade-area ratio θ = 0.550).

In Table 8.1 we give the complete matrix of coefficients λik/ρDm for the pro-
peller No. 1, where m = 3 for i, k ≤ 3, m = 4 for i > 3, k ≤ 3, m = 5 for i, k > 3.

Each of the blades was covered by 308 panels (i.e., the complete surface of
the propeller was covered by 1232 panels). Theoretical considerations show that
λik = λki ; however, in Table 8.1 we observe certain disagreements with this predic-
tion; for example λ14 = −0.01225 while λ41 = −0.01237; λ35 = −0.00037 while
λ53 = −0.00042.

In Table 8.1 we also observe that λ23 �= 0 and λ56 �= 0, which contradicts theo-
retical predictions; however, these values are relatively small (0.00001 and 0.00005
respectively). These disagreements with theoretical predictions are due to discretiza-
tion error.

Table 8.1 Matrix of coefficients λik/(ρDm)

i/k 1 2 3 4 5 6

1 0.06759 0 0 −0.01225 0 0

2 0 0.01399 −0.00001 0 0.00620 0.00037

3 0 0.00001 0.01399 0 −0.00037 0.00620

4 −0.01237 0 0 0.00232 0 0

5 0 0.00603 −0.00042 0 0.00386 0.00005

6 0 0.00042 0.00603 0 0.00005 0.00386
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Table 8.2 Results of computation of added masses of propellers by different methods

Prop. 1 Prop. 2 Prop. 3

λ11
ρD3 a 0.0623 0.0594 0.0615

b 0.0519 0.0607 0.0532

c 0.0541 0.0574 0.0503

f 0.0676 0.0535 0.0484

λ14
ρD4 a −0.0121 −0.0110 −0.0114

b −0.0102 −0.0112 −0.00991

f −0.0122 −0.0093 −0.00841

λ44
ρD5 a 0.00239 0.00202 0.00213

b 0.00199 0.00207 0.00184

c 0.00207 0.00196 0.00174

f 0.00232 0.00171 0.00153

λ22
ρD3 a 0.0365 0.0313 0.0329

d 0.0474 0.0386 0.0426

f 0.0140 0.0114 0.0182

λ25
ρD4 a 0.00609 0.00548 0.00572

f 0.00620 0.00467 0.00453

λ55
ρD5 e 0.00190 0.00203 0.00171

f 0.00386 0.00287 0.00267

On the other hand, for a 4-blade propeller the symmetries related to π/2 rota-
tional symmetry of the propeller: λ22 = λ33, λ55 = λ66, λ25 = λ36, and λ12 = λ13 =
λ15 = λ16 = λ24 = λ34 = λ45 = λ46 = 0 are fulfilled exactly.

Comparison of results of computation of the added masses of the three propellers
mentioned above by the panel method and results obtained theoretically by various
authors is given in Table 8.2. Theoretical results of different authors are enumerated
as follows:
a—method of V. Lipis,
b—method of M. Grechin,
c—method of D. Kutuzov,
d—method of S. Dorofeuk and G. Solomatina,
e—method of L. Kutuzov and M. Yakovleva,
f —panel method used in [74].

As one can see from Table 8.2, the different methods give close values of λ11,
λ14, λ44 and λ25. However, values of λ22 and λ55 computed via the panel method
significantly differ from approximate theoretical predictions.
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8.3 Added Masses of a Propeller under Transversal Oscillations
of Shafting

In dynamical computations one has to find the added masses of the system which
consists of propeller and shafting.1

In [184] the added masses were computed experimentally by comparing the fre-
quencies of oscillations of a rod with a propeller attached to its end in air and in wa-
ter (in the case of oscillations in water the propeller was immersed deeply enough
to exclude the influence of the water surface). The added masses of the rod itself
can also be neglected if its diameter is sufficiently small compared to the diameter
of the propeller.

The frequency of free oscillations of a rod with a propeller attached to its end is
determined by the well-known formula:

N = a2

l2

√

EJ

m
(8.16)

where E is the modulus of elongation of the material of the rod; J is the moment of
inertia of the cross-section of the rod; l is the length of the rod; m is the linear mass
of the rod.

In the air the frequency equation for the coefficient a has the form

A(a) − naB(a) = 0 (8.17)

where A(a) = 1 + cosha cosa; B(a) = cosha sina + sha cosa; n = Mp/ml; Mp

is the mass of the propeller.
If the propeller is immersed in water, one has to add the added mass M (which

corresponds to the standard notation λ22 used in the rest of the book) to the propeller
mass Mp; in this way we get the frequency equation

A(a1) − n1a1B(a1) = 0 (8.18)

where n1 = (Mp + M)/ml; we have

M

Mp

= n1 − n

n
. (8.19)

The frequencies of oscillations of the system in the air and in the water can be
found experimentally; then one can find corresponding coefficients a from (8.16),
a1 from (8.18), which give coefficients n and n1; substituting these coefficients in
(8.19) we find M .

In [51] there were tested 41 propellers of the same diameter (D = 200 mm) with
different numbers of blades (2, 3 and 5), with different pitch ratio and blade-area
ratio.

1This section was written by E.N. Schukina.
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Fig. 8.6 Dependence of transversal added mass of propeller on pitch ratio

For three-blade propellers on the basis of experimental results there were found
graphs of M/M∂ as functions of pitch ratio H/D for different values of the blade-
area ratio θ (Fig. 8.6). As one can see from these graphs, dependence M/Mp =
f (H/D) is approximately linear for each value of θ ; moreover, all of these lines
intersect at one point.

Each of the lines M/Mp = f (H/D) can be expressed by the formula

M

Mp

= k + δ

c

H

D
+ k = k

(
1

c

H

D
+ 1

)

+ δ

c

H

D
. (8.20)

The values of k, c and δ are shown in Fig. 8.6. Since c = 0.6 and δ = 0.05, the
values of added masses of the tested three-blade propellers can be determined as
follows:

M =
[

k

(

1 + 1.66
H

D

)

+ 0.083
H

D

]

Mp. (8.21)

The coefficient k depends on the blade-area ratio θ ; the graph θ(k) is shown in
Fig. 8.7.

The formula (8.21) was derived for three-blade propellers. For propellers with
another number of blades one can introduce a correction; to determine this cor-
rection experimental investigation was carried out for propellers with number of
blades equal to 2, 3 and 5 with the same blade-area ratio θ = 0.55 and pitch ratio
H/D = 1.0. The experimental curve showing dependence of M/Mp on the number
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Fig. 8.7 Dependence of
coefficient k on blade-area
ratio θ

Fig. 8.8 Dependence of
added mass of a propeller on
the number of blades

of blades Z is shown in Fig. 8.8; this curve is a linear function in a good approxi-
mation.

If we denote the point of intersection of the graph of this function M/M0 = f (Z)

with Z-axis by Z0, we get

f (Z)

f (Z0)
= Z0 − Z

Z0 − 3
.

Since (Z0 − 5)/(Z0 − 2) = f (5)/f (2) then

Z0 =
[

2 − 5
f (2)

f (5)

][

1 − f (2)

f (5)

]−1

= 7.85.

Therefore,

f (Z) = 7.85 − Z

4.85
f (3) or

M

Mp

= 7.85 − Z

4.85

(
M

Mp

)

3
(8.22)

where (M/Mp)3 is the value of the ratio M/Mp for a three-blade propeller.
Introduce in (8.21) the correction related to the number of blades according to

(8.22). Let us also introduce another correction, related to the density of propeller
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Fig. 8.9 Model of a propeller shaft

material (the tested propellers were made of white metal with density γ0 = 7.26 ×
104 N/m3), we get the final formula for the added mass of an arbitrary propeller:

M =
[

k

(

1 + 1.66
H

D

)

+ 0.083
H

D

]
7.85 − Z

4.85

γ0

γp

Mp (8.23)

where γp is the density of the propeller.
The formula (8.23) is valid for all propellers, independently of their diameter,

which was verified by comparing the data obtained using (8.23) with experimental
data for frequencies of free oscillations of the propeller shaft in water (Fig. 8.9).
Propellers of diameter 250 mm and 300 mm were attached to the end of the shaft.
The frequencies of free transversal oscillations of the propeller shaft, obtained the-
oretically (using (8.23)) and experimentally, are given below.

D = 250 mm D = 300 mm

Mass P , kg 3.15 5.43
Number of blades Z 3 3
Blade-area ratio θ 1.03 1.10
Pitch ratio H/D 1.03 1.03
Theoretical frequency of free
oscillations Nt , osc./min.

395 328

Experimental frequency of free
oscillations Ne, osc./min.

400 316

Experiment also shows that the rotation of the propeller does not significantly influ-
ence its added masses.

The added moment of inertia of the propeller can be found using the following
approximate formula2:

J = 33 · 10−4ρD5z

(
H

D
− 0.4

)(
θ

Z
+ 0.04

)(

1.3 − 0.3
H

D

)

,

where ρ is the density of the fluid; D is the diameter of the propeller; Z is the
number of blades; H/D is the pitch ratio; θ is the blade-area ratio.

2Obtained by L.M. Kutuzov and M.V. Yakovleva.
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8.4 Added Masses of a Propeller in a Shroud

The added mass λ11 of a propeller working in a shroud was found in [198] by
experimental analysis of the frequencies of vibration of propeller models in the air
and in the water.

All propellers had diameter 0.5 m; the form of blades was assumed to be of
Kaplan type. The blade-area ratio varied in the limits between 0.4 ≤ θ ≤ 0.7; the
pitch ratio varied in the limits between 0.5 ≤ H/D ≤ 1.4. The shroud of length
0.5 m had the shape of a ring cylinder with inner diameter 0.505 m. The relative
gap between the blade ends and the inner surface of the shroud was therefore equal
to Δ = (505 − 500)/500 = 0.01.

Analysis of experimental data gave the following formula for the added mass of
propeller in the shroud:

λ11 = 0.74ρD3 θ2

Z

(

1 + 0.25
H

D

)
[

1 − (θ − 0.4)2],

where Z is the number of blades. Using this formula together with (8.14) we get the
following formulas for λ14 and λ44:

λ14 = 1

2
πDλ11

H

D
= 0.118ρ

θ2

Z

H

D

(

1 + 0.25
H

D

)
[

1 − (θ − 0.4)2]D4,

λ44 = 0.0253D2 H 2

D2
λ11

= 0.0187ρ
θ2

Z

H 2

D2

(

1 + 0.25
H

D

)
[

1 − (θ − 0.4)2]D5.

The comparison with experimental data on propellers without a shroud shows
that the shroud increases the added mass λ11 by 5% to 30% depending on geometric
characteristics of the propeller.

8.5 Influence of a Boundary on Added Masses of a Propeller

In computation of added masses of propeller it is common to used the software
STAR3D Electric which was originally developed for computation of the stationary
electrical field of multi-electrode galvanic systems [229].3 The possibility to use this
program in hydrodynamics is based on a well-known electro-hydrodynamic analogy
(EHDA) between the electric field E and the velocity field in an ideal fluid. In the
static case the field E is potential: E = −gradϕ, and the potential ϕ satisfies the
Laplace equation Δϕ = 0.

3This section was written by A.M. Vishnevskij, A.J. Lapovok and S.A. Kirillov.
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Fig. 8.10 Coefficient of added mass of a disc under its motion near a hard boundary

In particular, STAR3D Electric allows us to consider the isolating surfaces where
the boundary condition

∂ϕ

∂n
= E0n (8.24)

is satisfied. Here E0n is the normal component of an external homogeneous electric
field. The boundary value problem (8.24) for the Laplace equation corresponds to
the Laplace equation (1.2) and the water-tightness condition (1.3) from Chap. 1.

To solve the boundary-value problem (8.24), STAR3D Electric uses the method
of boundary elements (MBE), which, in contrast to the method of finite elements
(MFE), does not require the use of a three-dimensional net; instead, one triangulates
the isolating surface only.

In the case of boundary-value problem (8.24) for the Laplace equation, the
method of boundary elements gives rise to solution of an integral equation for the
density of an equivalent double layer of electrical charges situated on an isolating
surface; we use a method of approximation of the density of the double layer which
allows us to take into account the branching of the surface [229].

The corresponding system of linear algebraic equations has a symmetric and
positively-defined matrix; thus the problem can be solved by methods of iteration.
In large dimensions (104–105 boundary elements) the program STAR3D Electric
uses the multi-level fast multi-pole algorithm [38].
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Fig. 8.11 Disc with
triangulation

Fig. 8.12 Model of a propeller with blade-area ratio 1.08 with triangulation

Fig. 8.13 Model of a propeller with blade-area ratio 0.61 with triangulation

In STAR3D Electric there exists a possibility to take into account the boundary
conditions ϕ = 0 or ∂ϕ/∂n = 0 automatically, via the method of mirror imaging of
equivalent sources.



350 8 Added Masses of a Propeller

Fig. 8.14 Coefficients of added masses of a propeller with blade-area ratio 1.08 under its motion
near a hard boundary

Below we collect some results of numerical computation of added masses of a
disc and two models of propellers when they move close to a solid boundary. We
considered two five-blade propellers with the values of blade-area ratio equal to 1.08
and 0.61. The blades of real geometry were modeled by thin plates (i.e. the effects
related to finiteness and variability of the thickness of a blade were neglected).

Below we consider the added masses of a disc and two blades in the presence of
a solid boundary divided by corresponding values in an infinite fluid. For the case
of longitudinal motion this ratio is denoted by λ11/λ11∞; for the case of transversal
motion it is denoted by λ22/λ22∞.
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Fig. 8.15 Coefficients of added masses of a propeller with blade-area ratio 0.61 under its motion
near a hard boundary

Disc Moving Near a Flat Boundary

Consider a disc or diameter D situated at a distance h from the solid plane; the angle
between the plane and the axis of the disc is denoted by ϕ (see Fig. 8.10). The model
of the disc with the triangulation is shown in Fig. 8.11. The total number of triangles
in the triangulation equals 8056. Computations were performed for different values
of relative distance of the disc to the boundary h/D and angle ϕ. The ratio λ11/λ11∞
as a function of h/D and ϕ is shown in Fig. 8.10.



352 8 Added Masses of a Propeller

Fig. 8.16 A propeller near a flat boundary with a channel; triangulation of the boundary

Fig. 8.17 The coefficient of added masses of a propeller under motion near a hard boundary with
a channel

Propeller with Blade-Area Ratio 1.08 Moving Near Flat Boundary

The position of the propeller with respect to hard boundary is shown in Fig. 8.14.
The geometric model of the propeller is shown in Fig. 8.12. The number of bound-
ary elements of the propeller equals 4890. Graphs of coefficients λ11/λ11∞ and
λ22/λ22∞ as functions of h/D and ϕ are shown in Fig. 8.14.

Propeller with Blade-Area Ratio 0.61 Moving Near Flat Boundary

The geometric model of considered propeller is shown in Fig. 8.13. The number
of boundary elements was equal to 3160. Results of computation of coefficients
λ11/λ11∞ and λ22/λ22∞ as functions of h/D and ϕ are shown in Fig. 8.15.
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Propeller with Blade-Area Ratio 0.61 Moving Near Flat Boundary
with a Channel

The geometric picture is shown in Fig. 8.17. The channel represents a half-cylinder
of diameter D0. The axis of the propeller coincides with the axis of the channel. In
this problem the boundary was also triangulated (in contrast to the previous cases of
flat boundary when we used the method of mirror images). The added masses were
computed for different values of D0. The number of boundary elements for different
values of D0 was between 6520 and 11724. In Fig. 8.16 we show a triangulation for
D0/D = 1.5. The graph of coefficient λ11/λ11∞ as a function of D0/D is shown in
Fig. 8.17.



Chapter 9
Methods for Experimental Determination of
Added Masses

There exist two main methods of experimental determination of added masses:
the method of small oscillations and the method of electro-hydrodynamic analogy
(EHDA). Below we consider these two methods in detail. In the last section we
briefly review the existing numerical methods of computation of added masses.

9.1 Method of Small Oscillations

Consider a spring-mass system completely immersed in liquid. The equation of
small oscillations of the mass along the x-axis has the form

(m + λ11)ẍ + 2n̄ẋ + k̄2x = 0 (9.1)

where m is the mass and λ11 is the added mass of the body; dot denotes derivative
with respect to time t ; the first term corresponds to inertial force; the second term
equals the damping force; the third term equals the restoring force.

The frequency of oscillations is given by the formula k1 = √
k2 − n2 where the

condition of under-damping k2 = k̄2/(m + λ11) � n̄2/(m + λ11) = n2 is provided
by using springs with sufficiently small spring constants.

If we neglect damping n2 in comparison with k2 and experimentally determine
the frequency of oscillations in water k2

0 = k̄2/(m + λ11) and in air k2
� = k̄2/m, one

gets the relation

k2
�

k2
0

= 1 + λ11

m
,

which allows computation of the added mass

λ11 = m

(
k2
�

k2
0

− 1

)

. (9.2)

This simple formula is derived under assumption of constancy of k̄, assumption of
small resistance and also under assumption ρ0 � ρ (ρ0 is the air density, ρ is the
water density) which allows us to neglect the added mass of the air.

In derivation of (9.2) we used Eq. (9.1) with linear dependence of damping on ve-
locity. However, it is well known that hydrodynamic resistance is in most cases pro-
portional to the square of velocity. A detailed analysis of the equation with quadratic

A.I. Korotkin, Added Masses of Ship Structures,
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Fig. 9.1 Scheme of
experimental facility to
determine added masses by
the method of small
oscillations

damping shows [25] that for small amplitudes the frequency of oscillations is essen-
tially independent of damping and is defined by the formulas k2

0 = k̄2/(m + λ11),
k2
� = k̄2/m, i.e., expression (9.2) in the case of quadratic damping is more accurate

than in the case of linear damping. In practice the measurements are usually carried
out when the oscillation regime is stable, which is provided by the impulse pumping
of energy, which does not essentially change the eigenfrequency of oscillations of
the system [183].

The installation scheme is shown in Fig. 9.1. The model (1) immersed in a fluid
using the rod (2) is attached to springs (3); other ends of the springs are attached to
the main body of the installation. A metallic plate (4) is attached to the upper end
of the rod. Electrical magnet (5) connected to the battery (6) attracts the plate (4).
The switch (7, 8) disconnects the battery when the rod is in highest upper position;
then the rod falls down, the switch (7, 8) connects the battery and the rod returns to
the upper position. Then the process repeats. The whole process is recorded using
recording device (9, 10, 11).

An analogous scheme is used to determine the added moments of inertia.

9.2 Small Oscillations for Determining Added Masses of Bodies
Floating on Water Surface

The scheme of installation for determining the added masses of floating bodies is
shown in Fig. 9.2.1 A crankgear transforms the rotation of the motor into a linear

1The method and the installation were developed by Huskind and Riman [101].
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Fig. 9.2 Installation for
determining added masses of
ship models

harmonic motion of the rod y = r cosσ t . This motion is recorded by a recording de-
vice (3). A spring is attached to the low end of the rod, and another rod (5) connects
the other end of the spring with the model (6). The displacement of the rod (5) and
the displacement of the model are recorded by the recording device (7).

Denote the mass of the model (including the lower rod) by m; the added mass
by λ33; the damping coefficient by n33; the density of water by γ , the area of the
model at waterline by S; the spring coefficient by C; the vertical displacement of
the model by z. The differential equation for z(t) looks as follows:

(m + λ33)
d2z

dt2
+ n33

dz

dt
+ (γ S + C)z = Cr cosσ t. (9.3)

A particular solution corresponding to oscillations of the model induced by the
driven force have the form

zp = Aei(σ t−δ) (9.4)

where A is the amplitude of oscillations; δ is the phase shift between the driven
force and oscillations of the model. Substituting (9.4) in (9.3) we get

[

γ S + C − σ 2(m + λ33) + iσn33
]

A = Creiδ,

or, separating the real and imaginary parts,

λ33 = 1

σ 2

[

γ S + C − Cr

A
cos δ

]

− m

and

n33 = Cr

σA
sin δ.

Determining A and δ experimentally from the recording devices one can easily
compute λ33, as well as damping n33.

A similar scheme is used to determine λ55 when the model oscillates along the
trim angle [100].

The same method can be applied when the model is tugged with constant veloc-
ity. In Fig. 9.3 we show experimental data [245] for added masses of an ellipsoid
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Fig. 9.3 Coefficient of added
mass of the ellipsoid of
revolution for various tugging
velocities

Fig. 9.4 Coefficient of added
mass of catamaran

of revolution with elongation L/B = 7, obtained when the ellipsoid oscillates near
the water surface. Here k33 = λ33/V , where V is the volume of the ellipsoid; the
immersion depth of the long axis of the ellipsoid is h = B; the Froude number (the
normalized velocity) is Fr = v/

√
gL where v is the speed of tugging, Ω = σ

√
B/g

where σ is the frequency of oscillations of the model.
The method of small oscillation to find λ33 was applied by Avramenko [8] for

catamaran models. The length of the models was 0.866 m, the draft and width of
the models was changing. The cross-section of the hulls was chosen in the shape of
rectangle, semi-circle and right-angled triangle (Fig. 9.4). These experiments were
carried out for various frequencies of oscillations of the model k (k = 2π/τ , where
τ is the period of oscillations) and different distances between hulls (measured at the
level of waterline). Dependence of coefficient k33 = λ33/m (where m is the mass of
model) on dimensionless frequency k2B1/g, where g is the free fall acceleration, is
shown for triangle hulls in Fig. 9.4.

Points shown by white circles (points “1”) correspond to value b/B1 = 0 (B1 is
the width of one hull of the model); points shown by white triangles (points “2”)
correspond to b/B1 = 1; points shown by black circles (points “3”) correspond to
b/B1 = 3.7. The mutual positions of the hulls is shown in Fig. 9.4. The author of [8]
noticed that the added mass λ33 of catamarans is smaller than λ33 of a single hull
whose width equals twice the width of a single hull of a catamaran.
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Fig. 9.5 Dependence of
coefficient λ22/λ

0
22 of a

half-immersed cylinder on the
distance to the wall under
horizontal oscillations. Here
λ0

22 is the added mass of the
half-immersed cylinder of
radius a in absence of the
wall

Fig. 9.6 Dependence of
coefficient λ33/λ

0
33 of a

half-immersed cylinder on the
distance to the bottom under
vertical oscillations. Here λ0

33
is the added mass of the
half-immersed cylinder of
radius a at infinite depth

Using the method of small free oscillations, Dorofeuk investigated dependence
of added masses of a half-immersed floating cylinder on the distance to a vertical
wall (Fig. 9.5) and on the distance to the bottom (Fig. 9.6).

9.3 Experimental Method of Determining Added Mass of a Ship
at Acceleration and Deceleration

Sometimes added mass can be determined using the so-called inertial method [232].
Under non-stationary linear motion of a ship the equations of motion have the form

(m + λ11)
du1

dt
= P − R, (9.5)

where m is the mass of the model, λ11 is the added mass of the ship; u1(t) is the
linear velocity along the x-axis; P is the driving force (which is usually equal to
zero in experiments with deceleration); P is resistance force.

If the driving force P = const, one can choose an interval of velocities [u1(t1),

u2(t2)] such that the resistance coefficient cx in the formula R = (1/2)cxρu2
1(t)S

can be considered constant. Then Eq. (9.5) gives differential equation

(m + λ11)
du1

n2 − u2
1

= 1

2
cxρS dt, (9.6)

where n2 = 2P/cxρS. Integrating (9.6) over the interval [t1, t2], we get the expres-
sion

(m + λ11) ln

[
u1(t2) + nu1(t1) − n

u1(t1) + nu1(t2) − n

]

= ncxρS(t2 − t1).
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Measuring velocities u1(t2) and u1(t1) at the moments t2 and t1 and knowing P ,
cx , S and m, we can easily find λ11 from the last equality.

If the added mass is determined in the process of deceleration under the action
of the force of hydrodynamic resistance, Eq. (9.5) takes the form

−(m + λ11)
du1

u2
1

= 1

2
cxρS dt. (9.7)

Integrating (9.7) between t1 and t2 we find

(m + λ11)

(
1

u1(t2)
− 1

u1(t1)

)

= 1

2
cxρS(t2 − t1).

From this equality we determine λ11 for known t1, t2, u1(t1) and u1(t2).
In principle, an added mass should not depend on the regime of the motion of a

model. However, in presence of viscosity one observes some difference in values of
added masses computed under acceleration and deceleration [232].

9.4 Experimental Determination of Added Masses of Vibrating
Models

The installation used to experimentally determine added masses of vibrating models
is shown in Fig. 9.7 [144]. The model (“2”) is posed on a free surface of liquid
filling the tank (“1”). The model is supported by strings (“4”) attached to the model
at the points which are supposed to remain at rest under vibration (“node points”).
Other ends of the strings are attached to the installation frame (“5”). On the surface
of the model one installs a generator of vibrations (“3”) and a device measuring
acceleration in a given section of the model (“6”).

Fig. 9.7 Installation for determining added masses of vibrating models
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In the simple case of investigation of homogeneous cylinder (not necessarily
circular) its oscillation frequency is given by expression

f air
n = k2

n

√

EJ

m

where E is the coefficient of elasticity; J is the moment of inertia of the cross-
section of the cylinder with respect to the central axis; m is the linear density of the
cylinder; kn is the coefficient depending on type of oscillation (for a given length
of the cylinder on a number of nodes) and boundary conditions at the ends of the
cylinder.

By measuring the frequency of free oscillations of the cylinder in air f air
n and in

water

f water
n =

√

EI

m + Δm
k4
n

under the same conditions, we get the relation

(
f air

n

f water
n

)2

= 1 + Δm

m
,

which implies the formula for the linear added density of the cylinder:

Δm = m

[(
f air

n

f water
n

)2

− 1

]

.

The added mass of air is usually neglected.
Consider the added linear density of the cylinder moving as a solid body in the

direction of vibration (y-axis):

Δm′ = k22ρπa2,

where a is half of the width of the cylinder in the direction orthogonal to the direc-
tion of motion; k22 is a coefficient depending on the shape of a cross-section of the
cylinder. The ratio

Jn = Δm

Δm′ ,

depending on the number of nodes n, is the reduction coefficient introduced above
in Sect. 7.1.

If Δm is determined for a circular cylinder half-immersed in a liquid, then

kn = 2m

πρk22a2

[(
f air

n

f water
n

)2

− 1

]

,

since in that case

Δm′ = 1

2
k22ρπa2.
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Let us describe some details of experiments carried out by Dorofeuk. The model
was chosen to be an ellipsoid of revolution of length L = 150 cm, with elongation
L/B = 10. The interior base of the model was a steel plate 3 cm wide and 0.3 cm
thick (to study vibrations of 4th and 5th tones the thickness of the plate was taken to
be 0.1 cm). The “shipframes” were disks made of plywood 0.5 cm thick. The radius
of the disks was changing over the length of the plate by elliptic law. The intervals
between plywood disks were 0.2 cm; the disks were separated by washers 0.2 cm
thick. At the ends of the model small metallic cups were attached. From outside the
model was covered by a rubber shell 0.1 cm thick which prevented penetration of
water inside of the model. The weight of the model was chosen to make sure that it
was floating when half-immersed in water. The rigidity of the ellipsoid was constant
over its length and was equal to the rigidity of the central plate. The linear mass of
the model was a combination of mass of the central plate, the washers, and plywood
disks.

To carry out experiments in the air, two carriers were attached to the central plate;
two strings were attached to the carriers. The positions of the carriers were chosen
to coincide with nodes under oscillations of the model with given frequency. The
rod of the vibrating mechanism was at the end of the model; it was connected to the
model by a steel spring. Oscillations of various points of the model were recorded
by vibrograph.

When the model was oscillating in water, the vertical supporting strings were
removed, and the position of the model in water was fixed by horizontal bracings
attached to the model at both ends.

At small frequencies of the driven force the model was oscillating as a solid
body. This regime corresponds to conditions of motion considered above (method
by Huskind and Riman). When the frequency increases, these oscillations quickly
decay and elastic oscillations of the model appear, whose amplitude is increasing
until it reaches its maximum when the frequency of the driven force coincides with
the 1st tone of the model. Two nodes of oscillations of the first tone were clearly
seen. When the frequency of the driven force increases further, the model becomes
immovable again, until the frequency reaches the second tone, etc.

For the model whose interior steel plate was 0.3 cm thick, in this way one can
excite the 1st, 2nd and 3rd resonance tones. Due to high rigidity of such a plate,
higher tones could not be excited. Oscillations of 4th and 5th tones were excited by
substitution of the 0.3 cm plate by a 0.1 cm thick plate. However, in that case the
1st, 2nd and 3rd modes could not be excited due to insufficient power of an electrical
motor at small frequencies.

It is interesting to notice that in water one can easily see the nodes of oscillations;
counting them one can determine the tone. In Fig. 9.8 (obtained by E.N. Schukina)
we clearly see these points for the case of oscillations of a rectangular pontoon.

In Table 9.1 both experimental and theoretical results are shown for reduction
coefficients kn (n = 1, . . . ,5) for an ellipsoid of revolution.
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Fig. 9.8 Rectangular
pontoon vibrating on a water
surface

Table 9.1 Values of reduction coefficients (due to Dorofeuk) for vertical oscillations of a floating
ellipsoid of revolution

Tone number Frequency of free oscillations kn exp knth

in air, osc/min in water, osc/min

1 195 150 0.875 0.858

2 460 360 0.810 0.808

3 825 655 0.760 0.759

4 290 228 0.716 0.716

5 460 365 0.689 0.677

9.5 Determination of Added Mass Coefficients by Methods of
Electromagnetic Modeling

In the general case, to determine added masses of an arbitrary geometric form mov-
ing in unbounded flow gives rise to computation of integrals (see Chap. 1):

λik = −ρ

∫ ∫

S

ϕk

∂ϕi

∂n
dS, i, k = 1, . . . ,6, (9.8)

where ρ is the density of the fluid, ϕi are elementary potentials of velocity defined
after (1.9); n is surface normal; S is the surface of the body.2

One approach to experimental determination of these integrals is based on mathe-
matical analogy between the flow of an ideal fluid and electrical and magnetic fields.

2This section was written by S.N. Okunev.
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Table 9.2 Electro-hydrodynamic analogy (EHDA)

Field of velocities in liquid caused by
linear motion of a body

Field of stationary electrical charges in
conducting media (EHDA)

Velocity of fluid v Electric field of induced charges E

Velocity of body v0 External homogeneous electric field E0

Potential of fluid velocity ϕ Potential of induced charges ϕ

Relation between velocity and potential
v = gradϕ

Relation between electric field and
potential E = −gradϕ

Boundary condition on body surface
vn = v0 cos(v0, n)

Boundary condition on non-conducting
body surface En = −E0 cos(E0, n)

Boundary condition on watertight
boundaries of the flow vn = 0

Boundary conditions on
non-conducting external boundaries
En = 0

Condition of continuity in the flow:
Laplace equation Δϕ = 0

Condition of continuity in conducting
medium Δϕ = 0

Added masses λik = −ρ
∫∫

S
ϕi

∂ϕk

∂n
dS,

i, k = 1, . . . ,6; S is the area of body
surface; ρ density of fluid

λik = −ρ
∫∫

S
ϕi

∂ϕk

∂n
dS; ϕi -elementary

electric potentials

Correspondence between hydrodynamic and electrical variables is represented in
Table 9.2 [189] (in [189] a correspondence between hydrodynamic and magnetic
variables is also given). It follows from these tables that in geometrically identical
electrical model, under appropriate boundary conditions one can mathematically
rigorously reproduce the flow of ideal fluid around a solid body.

Advantages of electromagnetic analog models are the following:

– Use of standard devices which can measure electrical and magnetic fields with
high precision.

– Existence of conducting materials (metallic foil, electrolytes) possessing standard
properties and technically convenient for model construction.

– Existence of well-known methods of analogous modeling in continuous media,
which allow reproduction of a model of the flow induced by the motion of a body
or a flat contour of an arbitrary shape. The flow can be bounded by walls of an
arbitrary shape; in this case complexity of the modeling increases insignificantly
(for example, analysis of the flow around a hull near a wall of an arbitrary shape
is only 2–3 times more laborious than the analysis of the same flow in an infinite
fluid).

– High visualization of the method.
– For most measured variables such as potential, velocity, contour integrals etc., one

can tune-up the model in advance and determine coefficients translating electrical
and magnetic parameters into hydrodynamic ones.

The disadvantages of analogous models are related mainly to inaccuracy of ob-
tained data having the following origins:
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1. Insufficiently complete formulation of the problem and insufficiently precise
translation of boundary conditions (especially in the case of body motion near
the free surface).

2. Discreteness of boundary conditions; inhomogeneity of conduction medium.
3. Systematic error related to jump of potential on conducting elements while work-

ing with electrolytes.

Solution of these problems is taken into account in development of modeling
methods [49, 189].

In electromagnetic models, precision is influenced by working frequency of the
electromagnetic field, relation between size of the model and size of the electromag-
netic sensor. Detailed analysis of these parameters is given in [189].

The main methods of electrical and magnetic modeling, taking into account
boundary conditions as well as their practical implementations, are considered be-
low.

9.5.1 Added Masses of Planar Contours

Added masses of a flat contour can be most conveniently determined via the formula
(9.8) on EHDA installation for the model of reversed flow (Fig. 9.9). The installation
includes a rectangular conducting sheet (a model of the domain of the flow), bus
bars to get the difference of potentials E0 and an electric battery. The investigated
contour is cut out from a sheet (conducting material is removed from the inside of
the contour) such that the axis Ox, parallel to E0, coincides with the direction of
the body motion. A point of the contour is chosen as an origin of the coordinate
system (x = 0, y = 0). At the origin one installs a needle of a sensor; at this point
one assumes ϕk = 0. The second needle is installed in other points of the contour;
potential ϕmi of contour points with respect to the origin is measured.

Taking into account the boundary condition on the contour when it moves along
the Ox axis with unit velocity, one gets from (9.8) the following expression for the
added mass:

λ11 = −ρ

∫ yM

0
ϕ1 dy. (9.9)

In this formula yM is the y-coordinate of the point M of the contour l which has
a maximal distance to Ox axis; ϕ1 := ϕ1m − ϕ0m, where ϕ1m is the potential at a
given point of the contour l; ϕ0m is the potential at the same point if the investigated
contour is not cut out.

Value ϕ0m can be determined by one measurement on a conducting sheet before
the model is cut out between points 0 and M (see Fig. 9.9).

For contours of an arbitrary shape the measurements should be carried out for
all points of the contour; for symmetric contours one can measure only one half
of the contour, and then double the result. To determine ϕ0m = f (y) one can use
an “etalon”—a rectangular model of conducting medium, included in the chain to-
gether with the model (see Fig. 9.9). For coinciding widths of the sheets h = H the
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Fig. 9.9 EHDA installation to determine added masses of planar contours. Notations:
1—conducting media; 2—electrodes creating difference of potentials; 3—battery; 4—device con-
trolling the magnitude of current in the model; 5—static sensor measuring reference potential ϕ0;
6—moving sensor to measure potential at the contour l; 7—measuring device; 8—non-conducting
contour l

rate of increase of the potential (per unit of length) is the same; for different widths
the rate of increase of the potential is inversely proportional to the ratio of heights
of the working sheet and the etalon, since E0H = E′

0h. This scheme is convenient
for modeling a motion parallel to a flat boundary (screen) which is modeled by a
non-conducting edge AA1 of the sheet (see Fig. 9.9) from one or from both sides.
To imitate a motion of the contour towards the screen one can cut an edge of the
sheet, which changes electrical parameters of the model.

The EHDA method allows us to reproduce the model of induced flow by setting
appropriate potentials on contours via discrete electrodes (Fig. 9.10). Contour S can
be split by several equidistant lines parallel to the direction of motion (the x-axis);
the interval between two lines equals Δy = const. Change of potential on these in-
tervals (which is equal by magnitude) is added or subtracted depending on the angle
between the y-axis and normal to the interval ΔS of the boundary. Discrete elec-
trodes (via resistors) and “etalon” are connected to batteries with variable voltage.
Such a scheme allows us to introduce sources of the same magnitude; the “etalon”
controls the total flow (i.e., defines velocity of the contour). The induced potentials
ϕi are measured between the electrodes. For 20–25 sources and sinks the error due
to discreteness does not exceed 2–4%. This method allows us to investigate, for ex-
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Fig. 9.10 Electrical model of non-inversed motion of contour. Notations: 1—contour S, moving
in the direction of axis Ox; 2—discrete sources (sinks) of intensity qi ; 3—immovable contour S1;
4—conducting medium; 5—boundaries of the flow; 6—device for determining total flow

∑
qi ;

7—resistors Ri ; 8—battery; the contour is moving in the direction of the screen 9

ample, motion of a contour over a screen of an arbitrary shape in presence of other
(immovable) contours.

To increase the precision of measurement on the contour (if the contour is rel-
atively small, or has a complicated shape) one applies a combined model of mo-
tion. In this model the inverted flow is defined with respect to the moving contour
while on other contours and a curved screen one installs sources and sinks (through
“etalons”) which compensate the field of inverted flow on these contours (in this
way one models their “motion” in the direction of inverted flow (Fig. 9.11)). In such
models the discreteness of sources and sinks is significant at lengths which do not
exceed 2–3 distances between the sources (sinks).

9.5.2 Added Masses of 3D Bodies

To determine added masses of a 3D body by the EHDA method one immerses a
model made of dielectric into a tank filled with an electrolyte. The surface of the
model is marked by two families of equidistant parallel planes (xOy and xOz)
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Fig. 9.11 Combined scheme of modeling of motion on EHDA installation. Notations:
1—investigated contour; 2—immovable contour; 3—electrodes; 4—discrete sources (sinks);
5—resistors; 6—etalon; 7—battery; 8—curved boundary; 9—domain of the flow; 10—battery

such that projections ΔS of all surface elements on the orthogonal plane are equal
(Fig. 9.12). Discrete electrodes (sources and sinks of different intensity) are posed at
the center of each surface element. The measurement of induced potentials is carried
out over the marking curves between the electrodes.

The problems of this method are related to complexity of installation of many
electrodes. An advantage of the method is the possibility to model boundaries of
arbitrary shape, and the possibility to consider a superposition of several moving
bodies. If one models the motion in an infinite medium, or in a medium bounded by
flat screens which are parallel to the direction of the motion, it makes sense to apply
the model of inverted flow.

Within a tank filled with an electrolyte (Fig. 9.13) one creates a homogeneous
electric field; then one inserts in the tank a model of the body made of a dielectric.
On the surface of the body one measures the potential (with respect to an arbitrary
initial point) by a needle sensor. The choice of measurement points is arbitrary,
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Fig. 9.12 Marking of the surface of a model: ΔS = 4ΔzΔy—projections of bow and after-part
elements of hull surface to the plane of middle shipframe; E0—domain of electrolyte; ni—points
of measurement of potential

Fig. 9.13 Scheme of space EHDA installation. Notations: 1—electrodes; 2—electrolyte;
3—1-needle sensors; 4—non-conducting surface of the model; ϕk—potential at point k of sur-
face S

which is convenient in studies of models of complicated structure with elements
of different scale (for example, immersed parts of floating drilling vessels). The
measurement and summation of potentials should be carried out over the complete
surface.

Similar methods can be applied to determine added moments of inertia [189].

9.5.3 Determination of Added Masses on the Basis of
Magneto-hydrodynamic Analogy (MHDA)

Analog models for determining added masses can be constructed on the basis of
magneto-hydrodynamic analogy (MHDA). The MHDA installation is shown in
Fig. 9.14. A homogeneous magnetic field is created inside a closed solenoid which,
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Fig. 9.14 Scheme of
installation of
magnetohydrodynamic
analogy (MHDA). Here
1—generator; 2—amplifier;
3—block of capacitors;
4—solenoid;
5—homogeneous magnetic
field; 6—metallic screen;
7—metallic model;
8—solenoid sensors;
9—commutator;
10—measuring amplifier;
11—results recorder

together with a block of capacitors, creates an oscillating circuit with resonant fre-
quency 30–50 kHz. A metallic model is put inside the solenoid; screens made of
metallic sheets 0.3–0.5 mm thick are posed both inside and outside of the solenoid;
the screen can have an arbitrary shape.

Magnetic potentials are measured using thin long solenoids which are moved
orthogonally to the vector of unperturbed field B0, such that one end of the solenoid
is posed near the model surface, where ϕi = ϕ0i + ϕbi ; another end is posed far
from the model, where the field is unperturbed, ϕi = ϕ0i . Therefore, the potential of
induced motion ϕbi can be found by one measurement. The potential ϕb is measured
over the whole surface and integrated.

Advantages of the MHDA method (compared to the EHDA method) are absence
of electrolytes, possibility to consider large models (up to 3–5 m), simplification of
measurements, absence of flow boundaries (since solenoid winding does not bound
the magnetic field). Restrictions of the method are related to necessity to build mod-
els from metal, and to take into account the size of sensors for measuring mag-
netic potentials (usually diameter of the solenoid is d = 4–8 mm and length is 500–
1000 mm). If characteristic linear size l of the model is chosen such that l/d > 20,
the error of measurement does not exceed 3%; for l/d > 100, the error does not
exceed 0.3%.

9.5.4 Some Data on Added Masses of Planar Contours Determined
Using EHDA Method

1. Cylinder of radius R with rectangular attachment. The sides of rectangle h and l

are chosen according to Fig. 9.15, where one shows also the choice of coordinate
system.
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Fig. 9.15 Cylinder with
rectangular attachment

Fig. 9.16 Coefficient of
added mass of parallel plates
with cylindrical attachments
as a function of 2R/h

h/2R 0.40 0.60 0.60 0.60 0.60 – – –
l/2R 0.25 0.25 0.35 0.45 0.5 – – –
λ11/(πρR2) 1.08 1.30 1.42 1.45 1.48 – – –
h/2R 0.10 0.10 0.10 0.20 0.30 0.40 0.50 0.50
l/2R 0.10 0.20 0.30 0.30 0.30 0.40 0.40 0.50
λ22/(πρR2) 1.16 1.42 1.68 1.77 1.83 2.10 2.15 2.67

2. Two parallel plates of height h with cylindrical attachments of radius R posed
at distance l from each other have a coefficient of added masses determined by the
graph shown in Fig. 9.16. Variable k11 = 2λ11/πρR2 corresponds to added mass of
one plate.

3. Coefficient of added mass of the system consisting of a vertical plate and a
circular cylinder posed under the plate. The graph of k11 = 2λ11/ρπR2 as a function
of D/H is shown in Fig. 9.17; here h = 0.4H , where H is the total height of the
system (see Fig. 9.17).

4. Added mass λ11 = k11πρR2 of a circular cylinder with edges of height l

posed with gap h − l near its surface (see Fig. 9.18) is shown in terms of coeffi-
cient k11(l/R) for h/R = 0.5.

Added masses of a cylinder with central slit is shown in Fig. 9.19 via dependence
of coefficients k11 = λ11/πρR2 and k2 = λ22/πρR2 on dimensionless parameter
(D − h)/D determining the width of slit (D = 2R is diameter of the cylinder, h is
the width of the slit).
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Fig. 9.17 Coefficient of
added mass of the system
plate-cylinder as a function of
D/H

Fig. 9.18 Coefficient of
added mass of cylinder with
edges posed close to its
surface as a function of l/R

Fig. 9.19 Coefficient of
added mass of cylinder with
slit as a function of
(D − h)/D

9.6 On Numerical Methods of Computation of Added Masses

There exist two main ways of mathematical description of problems of mechanics
of continua: the first one is based on differential equations, and the second one is
based on variational principles.3

The most common numerical method based on a differential equations descrip-
tion is the method of finite differences [45, 179]. The idea of this method is to sub-
stitute all derivatives in the differential equations and boundary conditions by their
approximate difference values, which are determined by values of the function at a
chosen set of lattice points inside the domain. Then the original problem reduces to
a system of algebraic equations.

3This section was written by V.S. Boyanovsky and O.I. Babko.
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Fig. 9.20 Finite-element models (above) and results of computations of the shape of oscillations
of the first mode of a hull of a medium-size tanker (below)

The most common numerical method based on variational principles is the
method of finite elements [1, 46, 47, 66, 118, 119, 179, 257, 258]. The method
of finite elements (MFE) is very stable with respect to change of geometry of the
considered object and boundary conditions. The main idea of the method is in sub-
stitution of a system with infinite degrees of freedom as a system of a finite number
of separate elements connected to each other at certain points (junction points).

There are the following steps of computations via the MFE:

1. The domain (structure) under investigation is split into finite elements interacting
with each other at junction points (see Fig. 9.20). The choice of the shape and
size of the finite elements depends on the shape of the object and precision of
computation.

2. The values of a function at junction points are assumed to be unknown; then the
total number of degrees of freedom equals the product of the number of junction
points with the number of unknown functions.

After the set of unknowns is chosen, one performs the main step: the choice of
interpolating polynomial which describes the unknown function inside the finite
element via the values of unknown variables at the junction points. When poly-
nomials of first order are used the finite elements are called first order; polyno-
mials of second order determine quadratic finite elements. Under certain general
conditions on these polynomials the value of the functional χ (whose physical
meaning depends on the problem) for the whole domain is defined as follows:

χ =
N

∑

i=1

χi



374 9 Methods for Experimental Determination of Added Masses

Fig. 9.21 Different ways to partition a domain to finite elements

Fig. 9.22 Finite-element
model of a plate with a hole

where χi is the value of the functional on the ith element; N is the total number
of elements.

3. Finding of stationary value of the functional χ under variation of the values of
the function at the junction points; stationarity of the functional gives a system
of algebraic equations for these values.

When the size of finite elements decreases, the method gives more precise result;
however, this leads to exponential growth of computation time.

In Fig. 9.21 we show various ways of partitioning a domain in finite elements.
Generically, in a domain of high gradients of a function one should use smaller
finite elements. For example, a typical way of partition of a plate with a hole in
finite elements is shown in Fig. 9.22.

As an illustration of application of MFE consider a rectangular pontoon and a
circular cylinder airfoil of finite length.

In the case of an oscillating rectangular pontoon for various ratios L/B (L is the
length, B is the width) and constant ratios B/H = 2 and H/T = 2 (H and T are
the height and the draught, respectively) the results of application of MFE show that
the added masses of a given section are rather inhomogeneously distributed over the
length of the pontoon (Figs. 9.23–9.25). In particular, we can conclude from these
figures that as the ratio L/B grows, the relative length of the zones near the pontoon
ends, where the added masses of plane sections significantly drop, decreases.

Let us now compare the theoretical results obtained in [21] with numerical results
of computation of added masses by MFE for a cylindrical airfoil (see Fig. 3.12).
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Fig. 9.23 Distribution of amplitude of oscillations Y , the pressure P and added mass m over the
length of the pontoon (L/B = 3) under vertical vibration of the 1st 2nd and 3rd modes (from top
to bottom)

Introduce the coefficients of added masses

k22 = λ22

ρDb2
,

where λ22 is the total added mass of cylindrical airfoil in a direction orthogonal to
the axis; ρ is the fluid density, D is the diameter of the cylinder, b is the length of
the cylinder.

In Fig. 9.26 we show dependence of the coefficient λ22 on parameter λ := D/b.
The solid curve corresponds to analytical results obtained in [21]; the points show
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Fig. 9.24 Distribution of amplitude of oscillations Y , the pressure P and added mass m over the
length of the pontoon (L/B = 5) under vertical vibration of the 1st, 2nd and 3rd modes (from top
to bottom)

the results of numerical computation by the MFE. One observes a good correspon-
dence between analytical and numerical results.

Using numerical methods one can study the added mass λ22 of cone-type circular
airfoil. It turns out that under the same length and the same average diameter the
following approximate formula holds:

λα
22 = λ22

(

1 + α

100

)

,
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Fig. 9.25 Distribution of amplitude of oscillations Y , the pressure P and added mass m over the
length of the pontoon (L/B = 10) under vertical vibration of the 1st, 2nd and 3rd modes (from top
to bottom)

where λ22 is the added mass of a circular cylindrical airfoil; λα
22 is the added mass

of cone-type airfoil of the same length and average width, where α is the angle
between the central line of the airfoil and generating line of its surface.

Another observation one can make on the basis of numerical results is that the
added mass of elliptic airfoil in the direction of one of the main axes is in fact inde-
pendent of the value of eccentricity (as long as the axis orthogonal to the direction
of motion remains the same).

Using MFE one can also evaluate the influence of hard boundary and free surface
on total added mass of circular cylindrical airfoil (Figs. 9.27, 9.28). Comparison of
the results for the circular airfoil and for the solid cylinder shows that the presence
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Fig. 9.26 Coefficients of added masses of a circular airfoil: the curve corresponds to theoretical
results of [21]; dots correspond to computations via the method of finite elements

Fig. 9.27 Dependence of
added mass of circular
cylinder airfoil (solid line)
and of a solid cylinder
(dashed line) on the ratio of
the distance from the axis to
flat solid boundary to the
radius

Fig. 9.28 Dependence of
added mass of circular
cylinder airfoil (solid line)
and of a solid cylinder
(dashed line) on the ratio of
the distance from the axis to
the free surface to the radius

of fluid inside of the cylinder essentially decreases the influence of the distance to
the solid boundary on the value of added mass.
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There exist various program complexes for computation of added masses:
ANSYS [19, 108], NASTRAN, COSMOS, etc.; most of these complexes are based
on the method of finite elements and allow one to describe numerically highly com-
plicated interactions of bodies moving in fluid (see for example [5]).
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