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Preface 
 
This is a sequel to the book “Programming the Boundary Element Method” by G. Beer 

published by Wiley in 2001. The scope of this book is different however and this is 
reflected in the title. Whereas the previous book concentrated on explaining the 
implementation of a limited range of problems into computer code and the emphasis was 
on programming, in the current book the problems covered are extended, the emphasis is 
on explaining the theory and computer code is not presented for all topics. The new topics 
covered range from dynamics to piezo-electricity. However, the main idea, to provide an 
explanation of the Boundary Element Method (BEM), that is easy for engineers and 
scientists to follow, is retained. This is achieved by explaining some aspects of the method 
in an engineering rather than mathematical way.  

Another new feature of the book is that it deals with the implementation of the method 
on parallel processing hardware. I. M. Smith, who has been involved in programming the 
finite element method for decades, illustrates that the BEM is “embarrassingly 
parallelisable”. It is shown that the conversion of the BEM programs to run efficiently on 
parallel processing hardware is not too difficult and the results are very impressive, such 
as solving a 20 000 element problem during a “coffee break”.  

Due to the fact that, compared to the Finite Element Method, a significantly smaller 
group of people are working in this field the development of the method is lagging 
considerably behind. The often quoted comparison that the method is a “Cinderella”, 
dominated by her “big sister”, the Finite Element Method, and whose beauty is hidden 
away, is still true and we hope that the reader will see the beauty of the method in the 
examples on industrial applications and the advanced topics presented at the end.  

The book includes some innovative development work carried out by the small but 
very active group at the Institute for Structural Analysis, Graz University of Technology, 
Austria under the leadership of G. Beer. The main scope of their research is to further 
develop the method, so that it can be applied to a much wider range of practical problems 
in engineering, one particular application of interest being in the field of geotechnical 
engineering, especially underground excavation. 

COMPUTER PROGRAMS 
All software (libraries and programs) can be downloaded free of charge from the website  
http://www.ifb.tugraz.at/BEM  
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1 
Preliminaries 
 

A journey of a thousand miles 
 begins with a single step 

Lao-tzu, Chinese philosopher 

1.1 INTRODUCTION 

Nearly all physical phenomena occurring in nature can be described by differential 
equations and boundary conditions. In the solution of these boundary value problems 
we aim to determine a response to given boundary conditions. For example we may be 
interested in determining the response of the rock mass due to the excavation of a tunnel, 
or the response of a structure to dynamic excitations of its foundations (caused by an 
earthquake). Analytical solutions of boundary value problems, i.e. solutions that satisfy 
both the differential equations (DE) and the boundary conditions (BCs), can only be 
obtained for few problems with very simple boundary conditions. For example, 
analytical solutions exist for the excavation of a circular tunnel in a homogeneous rock 
mass, not really a realistic scenario for practical tunnelling. To be able to solve real life 
problems, the engineer must revert to approximate solutions. Two approaches can be 
taken: instead of satisfying both the DE and the BCs, one can attempt to satisfy only one 
of the two and minimise the error in satisfying the other one. In the first approach (based 
on the original idea of Ritz1) solutions are proposed that satisfy the boundary conditions 
exactly. The error in satisfying the differential equation is then minimised. This is the 
well known Finite Element Method. In the alternative (proposed by Trefftz2), the 
assumed functions satisfy the DE exactly and the error in the satisfaction of the 
boundary conditions is minimised. 

Most readers of this book will be familiar with the finite element method. In the most 
common version of this method we subdivide the domain into elements and approximate 
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the response to a specified loading with functions which are defined at element level, 
i.e., are piecewise continuous. This subdivision is necessary because in practice it is 
impossible to determine functions that cover the whole domain and at the same time 
satisfy the boundary conditions (as originally proposed by Ritz). The parameters of these 
functions, which are the values of the unknowns at the nodes where elements are 
connected to each other, are determined by minimising the error in satisfying the DE. 
This can be done using residual methods, where the integral of the error is minimised 
and this involves a domain integral. A violation of the DE may occur at any point in the 
domain, but the variation of the unknown is chosen in such a way that the error in the 
satisfaction of the DE over the whole domain is a minimum. In continuum mechanics, 
for example, this means that the chosen functions will usually not satisfy exactly the 
equilibrium conditions at specified points.  

Figure 1.1 shows an example of a finite element mesh for the three-dimensional 
analysis of sequential excavation and construction of a tunnel. A plane of symmetry is 
applied, so that only half of the tunnel is discretised.  Note that to model the rock mass 
through which the tunnel is driven, which for all practical purposes can be assumed to be 
infinite, we must make a 'box' of solid elements. At the outer boundaries of this box, 
unless we use infinite elements, we either set displacements to zero or apply stress 
boundary conditions, which represent the in situ stress. The mesh shown here has 
approximately 100 000 degrees of freedom and a solution took several hours on a PC. 
Note that small jumps occur in the contours of maximum compressive stress, between 
elements indicating a lack of satisfaction of equilibrium locally. 

The second approach to solving this problem (based on the original idea of Trefftz) 
does not require the subdivision of the domain into elements because the functions used 
for approximating the solution inside the domain are chosen to be those which exactly 
satisfy the governing differential equations. In a similar way as with the FEM the error 
in satisfying the boundary conditions is minimised and this now involves a boundary 
integral. Numerically, this integral can be evaluated by subdividing the boundary into 
elements over which the values (for example, tractions or displacements in the case of 
continuum mechanics) are interpolated, much in the same way as with the FEM. The 
advantage of the method is obvious: the dimensionality of the problem is reduced by one 
order, i.e. only a surface instead of a volume integral is required. This means that the 
number of unknowns is reduced dramatically, especially for three-dimensional 
problems, because unknowns occur only on the problem boundary. Other advantages are 
that the DE is satisfied exactly everywhere in the domain and that infinite domain 
problems are easy to deal with.  

As an example, Figure 1.2 shows the boundary element mesh for the same tunnel as 
analysed by the FEM in Figure 1.1. This mesh has approx. 1000 degrees of freedom and 
took 3 minutes to solve on a PC. The stress contours computed and drawn on the 
excavation surface and a user defined plane inside the rock mass show no jumps as they 
are seen in FEM results. Since functions must be found which exactly satisfy the 
governing differential equation (DE) the BEM requires a solution of the DE. This 
solution must be as simple as possible because, as will be seen in the chapter on 
implementation, this is crucial for efficiency. Unfortunately, the simplest solutions 
which we can find (fundamental solutions) are due to concentrated loads or sources and 
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are singular, i.e., have infinite values at certain points. This property has to be taken into 
account when integrating these functions over boundary elements. This will make the 
numerical integration procedure more complicated than is the case with finite elements. 

 

Figure 1.1 Finite element mesh for the analysis of tunnel excavation. Left side: mesh 
with contours of z-displacement; right side: detail with contours of 
maximum compressive stress 

Figure 1.2 Boundary element mesh for the simulation of tunnel excavation with 
contours of maximum compressive stress plotted  on excavation surface 
and result planes 
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There has been a general misconception that because a fundamental solution of the 

problem must exist for the BEM to work, the method can only be applied to linear 
problems with homogeneous material. As will be shown in this book, non-linear 
problems can almost as easily be solved as with the FEM, by the repeated solution of 
linear problems and special methods may be employed to solve problems with 
heterogeneous material properties.  

1.2 OVERVIEW OF BOOK 

This book is designed to be used as basis for a course on the BEM or for self study. 
It is recommended that chapters be read consecutively as later chapters build on material 
discussed earlier. Throughout the book, the reader will build a suite of subprograms, 
which perform the various tasks needed for the numerical implementation of the BEM. 
Various exercises are included which allow the reader to test the programs written and 
experience how the method works.  

We start with an introduction to the FORTRAN 95 programming language. 
FORTRAN, which stands for FORMula TRANslation is still the most widely used 
language for programming engineering applications and is easier to learn and more 
efficient than other high level languages such as C++. However, there is no reason why 
the procedures outlined in some detail in this book could not be implemented in another 
language.  

The next chapter deals with the way in which we can describe the geometrical 
boundary of a problem and boundary conditions in a numerical way. This is done by 
subdividing the surface into small elements and by interpolating between nodal values. 
This is essential for the later treatment of integral equations. With the aid of the 
examples we can not only test the subroutines developed but also get an understanding 
of the error introduced by the approximations used to describe boundaries. 

Another fundamental building block is the description of the material response. In 
Chapter 4 we introduce basic concepts of elasticity and potential flow and develop 
fundamental solutions, that is, simple solutions which satisfy the governing differential 
equations. These will be central to our subsequent deliberations. 

Next we introduce the concepts of boundary element methods using the method 
originally proposed by Trefftz. Although this very simple method cannot be used for 
general purpose programs, it serves very well to explain the fundamental ideas of the 
method. A small computer program can be developed to solve some simple problems. 
Again, this will serve as a tool for learning by experience.  

The direct boundary element method used in the majority of BEM software is 
introduced next. Here we will use the reciprocal theorem by Betti, which is well known 
to engineers to obtain an integral equation. The major task in the implementation 
however, is to solve the integral equations numerically. 

The next chapter on numerical implementation therefore deals with the evaluation of 
integrals using numerical integration. Those familiar with isoparametric finite elements 
will recognise the Guass Quadrature method used. However, in contrast to its use in the 
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FEM, one must be very careful to select the number of integration points, as they are 
dependent on how close the singularity is to the integration region. This is the most 
difficult and crucial part in the implementation of the BEM. The integration over the 
boundary surface is carried out over a boundary element and the contributions of all 
elements which describe a boundary are then added. We will see that this is very similar 
to the assembly procedure in the FEM. 

After the numerical treatment of the integral equations we end up with a system of 
equations. In contrast to the FEM, the coefficient matrix is fully populated and 
unsymmetrical. Standard Gauss elimination can be used but, for large systems, the 
storage requirement and the computation times may be reduced considerably by iterative 
solvers, such as conjugate gradient methods. Such special solution techniques are 
introduced in the next chapter. Here we also find that the method is “embarrassingly 
parallelisable” i.e. that excellent speed up rates can be achieved with special hardware. 

The primary results obtained from the analysis are values of displacement or traction 
at the boundary depending on the boundary condition specified. In contrast to the FEM, 
primary results do not include values in the interior of the domain but these are 
computed by post-processing. In Chapter 9 it is explained how the stresses at the 
boundary and in the interior can be obtained from boundary displacements and tractions. 
This is indeed an advantage of the method, because the user has free choice of the 
locations where results are obtained. 

We now have all the building blocks together and are able to compile a computer 
program that is able to solve two and three-dimensional problems in elasticity and 
potential flow, depending on which fundamental solution is used. In Chapter 10 we 
apply the program developed to test examples and find out what level of accuracy can be 
obtained in comparison with the FEM.  

For inhomogeneous domains, where we can not obtain a fundamental solution, we 
introduce the concept of multiple regions, where the domain is subdivided into sub-
regions, similar to the FEM. There is an additional advantage in this concept, because 
sparseness is introduced in the system of equations. We will also find out in a later 
chapter that the multi-region method allows contact and excavation problems to be 
solved in an elegant way. 

In the next chapter we deal with problems that involve corners and geometry which 
changes with time, as is the application to sequential excavation/construction of a tunnel.  

Because elements only exist on the boundary the BEM has difficulty dealing with 
problems where forces are applied inside the domain. These forces can be loosely 
termed “body forces”. It will be shown that an additional volume integral has to be 
considered. For body forces that are constant the volume integral can be transformed 
into a surface integral. However, if the body forces are not constant throughout the 
domain the volume integral needs to be evaluated numerically. This can be done by 
using internal cells, which look like finite elements, but do not involve any additional 
degrees of freedom, as they are only used for integration. The implementation of this 
procedure, discussed in chapter 13 also allows the solution of problems in elasto- and 
visco-plasticity. Body forces of a different kind (mass forces) occur in the case of 
dynamics, but their treatment with the BEM is quite different to the FEM and this is 
discussed in Chapter 14.  
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In Chapter 15 we show that the solution of non-linear problems follows similar 
procedures as in the FEM and that the general solution algorithm is similar. Here two 
types of non-linear problems are discussed in more detail: plasticity and contact 
problems.  

It is possible to couple the BEM with the FEM thus getting the ‘best of both worlds’. 
In Chapter 16, methods of coupling are presented. Basically, a stiffness matrix of the BE 
region is obtained and assembled with the FEM stiffness matrices. Since many general 
purpose programs allow the input of a user defined element stiffness matrix this may be 
used to extend the capabilities of a reader’s FEM code.  

To demonstrate that the method also works for large scale industrial problems, 
Chapter 17 shows some applications of the boundary and coupled method in 
engineering. The purpose of this chapter is twofold: firstly it shows how complex 
problems, as they invariably occur in real life, can be simplified and how a suitable 
boundary element mesh is obtained. Secondly it shows the advantage of the BEM and 
the coupled BEM/FEM in terms of user friendliness and computing time. 

The last chapter deals with topics which were still subject to research at the writing 
of the book. The first deals with the efficient treatment of heterogeneous ground 
conditions the other with the consideration of linear inclusions such as reinforcement 
and rock bolts. The application in piezo-electricity shows the flexibility of the method to 
deal with any problem whose fundamental solution is known. 

By the end of this book the reader should have an understanding of how the method 
works, of its potential and how it can be implemented into a computer program.  

1.3 MATHEMATICAL PRELIMINARIES 

A good consistent notation is essential to any textbook. For the development and 
explanation of numerical methods two notations are used by engineers: matrix and 
tensor notation. Traditionally, textbooks on the BEM have use tensor notation, whereas 
those about the FEM have used matrices, although this is rapidly changing.  The main 
notation chosen for this book is the matrix notation. 

There are two reasons for this: firstly, the book which is probably still the most 
widely read on numerical modelling, “The Finite Element Method”, by O.C. 
Zienkiewicz and R.L Taylor3, uses matrix notation throughout. Since we hope to attract 
more engineers to the BEM, this was one motivation. The other reason is that books on 
the BEM that use tensor notation have to revert to matrix notation at some stage, for 
example when discussing the assembly of the system of equations. Thus the book 
attempts to avoid two different notations. 

However, when discussing fundamental solutions and their derivatives it transpires 
that tensor notation is much easier to use. Therefore in this book we have made a 
compromise in that for this case only we revert to a simplified version of the tensor 
notation. 

In the following we discuss some basic mathematics which will be used in this book 
and also attempt a comparison of matrix and tensor notation.  
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1.3.1 Vector algebra 
 

Vectors are used to represent a displacement/force or to define the position of a point 
relative to a set of Cartesian axes. We define the position of a point in 3-D space with 
respect to Cartesian axes x, y, z (Figure 1.3) as 
 
 

(2.1) 

Figure 1.3 Position vector x defining a point in space 

Alternatively, we may represent the point in terms of Cartesian coordinates xi, where 
i=1,2,3 (the last number is also referred to as range). 

The components are specified with respect to a set of orthogonal coordinate axes, 
which are defined by base vectors of unit length, ii and which have the property: 

  

(2.2) 

where denotes the scalar (dot) product 

(2.3) 

 and ij is known as the Kronecker delta.  
Vector x may then be represented in indicial notation as 

(2.4) 

ji

ji
ijji

for    0

for    1
ii

ii
i

ii xx iix
3

1

x

x

y

z

1i

2i

3i

z

y

x

x

1 2 1 2 1 2i j x x y y z zi i i i i ii i
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where the Einstein summation convention has been used for the last term. This 
convention specifies that for any index which is repeated and which does not appear on 
the left hand side, a summation of all terms within the range is implied.  

Another vector quantity is the displacement which can be written either as 

(2.5) 

in matrix notation or i iuu i  in indicial notation   

Coordinate transformation 

If we want to express the location of a point, x in another orthogonal coordinate system 
( x ) the directions of which are given by unit vectors v1 , v2 , v3 then in matrix notation 
we write 

(2.6) 

where the transformation matrix is defined as 

(2.7) 

Alternatively, we may write in indicial notation 

(2.8) 

where 

(2.9) 

Projection of one vector onto another 

If we want to compute the projection of a vector onto a direction specified by a unit 
vector v, then it is very convenient to use the dot product. For example, the component, 
u of the displacement u in the direction specified by v is given by 

(2.10) 

The angle  between the two vectors is computed by 

(2.11) 
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where the length of vector u is given by 

(2.12) 

Figure 1.4 Projection of vector 

Derivatives of vectors 

The derivatives of the displacement vector may be written as 

(2.13) 

 
 

In indicial notation we simply write 

(2.14) 
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1.3.2 Stress and strain 

Stresses and strains are tensorial quantities. In the indicial notation the strain tensor is 
defined by 

(2.15) 

In this book, however, we use a notation originally proposed by Timoshenko4.  
We define a pseudo-vector of strain, i.e., a matrix with one column:  

(2.16)  

Note that in the pseudo-vector notation we only have 6 strain components, whereas 
the symmetric strain tensor has 9. Also note that the ½ term is missing for the shear 
strains in order to achieve consistency between the tensor and matrix operations. The 
index number of the location of the strain or stress components for matrix notation and 
tensor notation is given in Table 1.1  
 

Table 1.1   Index numbering for strain and stress  

 
Notation Index number 
Matrix 1 2 3 4 5 6 
Tensor 11 

xx 
22 
yy 

33 
zz 

12&21 
xy&yx 

23&32 
yz&zy 

31&13 
zx&xz 

 
Similarly, the stress tensor ij  can be written as a pseudo-vector  

(2.17) 
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1.4 CONCLUSIONS 

At the beginning of this chapter we have shown on an example in geomechanics that 
substantial gains can be made with the BEM, in terms of mesh generation and solution 
times. These gains are most pronounced for problems involving infinite or semi-infinite 
domains. Other examples where the BEM seems to be superior to the FEM is for 
problems where boundary stresses are important, e.g. in Mechanical Engineering. 
Examples of this will be shown later.  

The main purpose of this book is to encourage the use of the method. The simple 
computer programs included contain all the necessary building blocks for building more 
advanced and more specific computer programs for research or industrial applications.  

In conclusion the reader should see this book as an advanced introduction to the 
BEM, with some basic building blocks for computer programming.  
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2 
Programming  

Art is only pleasing if it 
has the character of lightness 

 
J.W. von Goethe 

 

2.1 STRATEGIES 

Although the first idea which provided the background for the boundary element method 
dates back to the early 1900s, the method only emerged when digital computers became 
available. This is because, except for the simplest problems, the number of computations 
required is too large for ‘hand calculation’. 

The implementation into a computer application basically consists of giving the 
processor a series of instructions, or tasks, to perform. In the early days these 
instructions had to be given in complicated machine code and writing them was mainly 
the domain of specialised programmers. Very soon higher level languages were 
developed which made the programming task easier and this had the additional 
advantage that code developed could run on any hardware. One of these languages, 
especially developed for scientists and engineers, was FORTRAN. In the past decades, 
the language has undergone tremendous development. Whereas with FORTRAN IV the 
writing of programs was rather lengthy and tedious and the code difficult to follow, the 
new facilities of FORTRAN 90/95/2000 (F90) make it suitable for writing short, 
readable code. This has mainly to do with features that do away with the need to use 
statement numbers and the availability of powerful array and matrix manipulation tools. 
Today, any engineer should be able to write a program in a rather short time. 

When developing a relatively large program, such as will be attempted in this book, it 
is important to use the concept of modular programming. This means that the task has to 
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be divided into many subtasks. Therefore, we will develop a library of procedures to 
perform certain tasks, for example, computing the value or the derivative of a function at 
a certain point. The sub-procedures or functions can be called as needed from the main 
program or from other procedures. 

In the following, we will give a short introduction to some features of F90 that will be 
used in this book. Here, it will be assumed that readers already have some knowledge of 
FORTRAN. A more detailed description of F90 is given by Smith1.  

We will also introduce in this chapter the notation used in this book, especially with 
respect to vectors and matrices. A short introduction to matrix algebra and vectors will 
also be given. 

2.2 FORTAN 90/95/2000 FEATURES 

2.2.1 Representation of numbers 

Numbers are stored in the computer in binary form. Real numbers are stored in two 
parts: one consists of the digits that make up the number, the other of the exponent. The 
exact way in which a number is stored depends on the hardware used. For real numbers, 
either 4 or 8 bytes could be allocated for storage in earlier Fortrans, for example by 
declaring the variable REAL*4 (“single precision”) or REAL*8 (“double precision”). 
However, since the storage is machine dependent, we do not know exactly how many 
digits can be stored in either mode. Fortran now provides a facility for specifying the 
precision in number of digits with a “KIND parameter”.  

First, one must interrogate the processor as to which value of KIND provides a 
certain number of digits. For example 

IWP= SELECTED_REAL_KIND(16) 

would assign to parameter IWP, the KIND number which would give 16 significant 
digits (if the processor can achieve it). The declaration of the REAL variable A would 
then be 

REAL(KIND=IWP) :: A 

                or                                  REAL(IWP) :: A 
 
which replaces the former type of declaration, for example    

                                            REAL*8 A 

The precision in which the numbers are stored is significant because numerical 
round-off may occur if two numbers, which differ greatly in magnitude, are subtracted 
from each other. If a great number of such operations are carried out, the error produced 
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by the round-off may become significant. For example, in the solution of a large system 
of equations by Gauss elimination, there are many subtractions and therefore a high 
precision storage is necessary, whereas other parts of the program may not be so 
sensitive. In the programs developed in this book except in the chapter on parallel 
processing we use REAL(KIND=8) instead of REAL(iwp). 

2.2.2 Arrays  

F90 has powerful features to handle arrays. An array can be of rank 1,2,3 etc. A rank 1 
array is a vector, a rank 2 array a matrix. In this book we will distinguish between real 
vectors (identified by a lowercase bold letter) and matrices with one column, or pseudo-
vectors (identified by lowercase bold Greek letters). 

The shape of an array indicates the number of elements in each dimension. For 
example the vector  

(2.1) 

 would be of shape (3,1) , whereas the matrix 

(2.2) 

would be of shape (3,2).  
The declaration of the two arrays in F90 would be 

REAL :: V(3),A(3,2) 

One of the most important features of F90, however, is that arrays may be declared 
dynamically, that is, the programmer does not need to know the dimensions of an array 
when writing the program, but these can be read, or calculated, at run time. Since array 
dimensions in the BEM will depend on number of nodes and/or number of degrees of 
freedom, this is a particularly useful feature. To declare an array A, whose dimensions 
are known at run-time, we write: 

REAL, ALLOCATABLE :: A(:,:) 

In the program, we can then allocate the dimensions of the array with computed 
values of dimensions I,J by: 

ALLOCATE(A(I,J)) 
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When the array is no longer used, then the space in memory can be freed by 

DEALLOCATE(A) 

An array may be assigned initial values by the statement 

REAL :: V(3)=(/ 1.0, 0.0, 0.0 /) 

2.2.3 Array operations 

FORTRAN 90 has features for array and vector operations, which simplifies the 
manipulation of arrays from the programmer’s point of view. The operations include 
matrix/vector additions and subtractions, multiplication and vector product. They also 
include operations on part of the arrays, examining arrays, determining max/min values, 
gathering of submatrices etc. 

Matrix Addition: If all the coefficients of A are to be added then one can simply write 

A= A+B 

Multiplication by a scalar: If all coefficients of A are to be multiplied by a scalar (say 
3.0), then this would translate into 

A= A*3.0 
or 

A= A*3.0 _IWP 

Although A and the scalar 3.0 clearly have different shapes, 3.0 is said to be “broadcast” 
to all the coefficients of A.  
    
Operation on selected coefficients of a matrix: For example, to add the first 3 
coefficients of the second column of array A to array B and store it in A one needs a 
single statement instead of a loop  

A(1:3,2)= A(1:3,2) + B(1:3,2) 

Transpose of a matrix: The transpose of a matrix means exchanging rows and 
columns. For example, the transpose of vector v defined above is given by: 

(2.3) 

this translates into  

VT= TRANSPOSE(V) 

zyx vvvTv
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the resulting vector vT would be of shape (1,3). 

Matrix multiplication: The multiplication of two matrices of shapes (1,3) and (3,2) 
gives a result of shape (1,2). For example 

(2.4) 

translates into 

B= MATMUL(VT,A) 

It is obvious that for matrix multiplication to be possible, the shapes of the matrices to 
be multiplied have to obey certain rules. 

Vector dot product: The vector “dot” product of two vectors 

(2.5) 

is a scalar and is defined as: 

(2.6) 

this translates into 

X= DOT_PRODUCT(V1,V2) 

Maximum value in an array: To find the element of array A in (2.2) which has the 
maximum value one writes 

AMAX= MAXVAL(A) 

Location of maximum value: To find the location of the maximum element of array A, 
NMAX, execute the statement 

NMAX= MAXLOC(A) 

Upper bound of an array: Sometimes it is useful for the program to find out what 
shape an array had when it was assigned. This will be used extensively in 
SUBROUTINES in order to reduce parameter lists. The statement 
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N= UBOUND(A,1) 

will return the number of the last row of A, which is 3 whereas 

M= UBOUND(A,2) 

will return the number of the last column of A, which is 2. 
 
Check on array elements: Another useful function is one which checks if all elements 
of an array fulfil a certain condition. For example 

ALL(A >0) 
or 

ALL(A >0.0_IWP) 

will return a logical .TRUE. if all elements of A are greater than “zero”.  

Figure 2.1 Two-dimensional boundary element mesh and connectivity of element 3 
Sum of array elements: Instead of summing the coefficients of an array requiring at 
least one loop, with the intrinsic function SUM we may calculate the sum of all 
coefficients of an array by simply writing 

C= SUM(A) 

Masking can be used to sum only coefficients which fulfil certain conditions. For 
example 
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C= SUM(A, MASK=A>0.0) 

would sum only coefficients of A which are greater than “zero”. 

Gathering and scattering: A feature in F90 makes the ‘gathering’ and ‘scattering’ of 
values, which we will need later, very simple. To explain these operations consider a 
two-dimensional mesh of boundary elements in Figure 2.1.  

The nodes of the mesh where elements are connected with each other can be 
numbered in two different ways: locally and globally. When referring, for example, to 
the unknown u (e.g. temperature in the case of heat conduction problems) one has two 
vectors, a global one 

(2.7) 

and a local one defined at element level, for example, for the two nodes of element 3: 

(2.8) 

 For element 3 we may define a ‘connectivity vector’ of dimension 2, which contains 
the global node numbers of the two nodes of the element 

CONNECTIVITY=(/3,4/) 

The ‘scatter’ operation is where the locally defined unknowns are put into the global 
vector 

U_GLOBAL(CONNECTIVITY)= U_LOCAL 

This statement would put u1 and u2 of element 3 into locations 3 and 4 of the global 
vector. The ‘gather’ operation would do the opposite, i.e.  

U_LOCAL= U_GLOBAL(CONNECTIVITY) 

would put the global values of u1 and u2 into the local positions 1 and 2. 
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2.2.4 Control  

Various features which can be used to control the flow of the program have been 
improved and new ones added. With these new features it should no longer be necessary 
to have GOTO statements and statement numbers, features which sometimes made 
programs very difficult to read. A new feature is the SELECT CASE which replaces 
the computed GOTO. This feature allows us to control which parts of the code are 
executed under certain conditions.  

For example the coding 

  SELECT CASE(NUMBER_OF_FREEDOMS) 
 CASE(1) 

  Coding for one degree of freedom 
 CASE(2) 
  Coding for two degrees of freedom 
 CASE DEFAULT 

Error message 
END SELECT 

would execute two different types of instructions, depending on the degrees of freedom 
per node (i.e., potential vs. elasticity problems) and would issue an error message if 
another value is encountered. 

The IF statement is mainly used for controlling execution. It has been improved in 
that symbols which are familiar to engineers can be used.  

For example the operators : 

.NE.  can be written as  /= 

.EQ.                          == 

.GT.  > 

.GE.                           >= 

.LT.                           < 

.LE.                            <= 

The DO loop has also been improved. It is possible to give each DO loop a name 
which enhances readability. Also, there is an easier possibility of exiting a loop when a 
certain condition is reached. For example, in an iteration loop the condition for exiting 
may be that a convergence has been achieved. The code 

Iteration_loop: & 
DO ITER=1,NITERS 

Statements 
IF(CONVERGED) EXIT 
Statements 

END DO & 
Iteration_loop 
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would exit the loop completely if the value of CONVERGED is .TRUE. 

Another nice feature is CYCLE. For example the coding 

Element_loop: & 
DO NEL=1,NELEM 

Statements 1 
IF(NEL >= NELB) CYCLE 
Statements 2 

END DO & 
Element_loop 

would skip Statements 2 if NEL becomes greater or equal to NELB and would continue 
with the next value of NEL. 

2.2.5 Subroutines and functions 

Subroutines and functions perform frequently used tasks and split a complex problem 
into smaller ones. For example, to normalise a vector we may define a Subroutine 
Vector_norm as 

 
SUBROUTINE VECTOR_NORM(V,VLEN) 
  !---------------------------------------- 
  !   Normalise vector 
  !---------------------------------------- 
  REAL, INTENT(INOUT)  :: V(:)         !     Vector to be normalised 
  REAL, INTENT(OUT)      :: VLEN     !     Length of vector  
  VLEN= SQRT( SUM(V*V)) 
  IF(ABS(VLEN)<1.E-10) RETURN 
  V= V/VLEN 
  RETURN 
 END SUBROUTINE VECTOR_NORM 
 
Two things are of note here. Firstly, in the declaration of variables in the parameter 

list, we may specify if a parameter is to be used for input (IN), output (OUT) or input 
and output (INOUT). This not only helps to clarify the readability of the code, but also 
protects variables from being changed by accident in the subprogram. Secondly, we do 
not need to specify the dimension of vector V, since this will be determined in the 
program calling the Subroutine. For example, the calling program will have 

 
REAL :: V(3) 
. 
. 
CALL VECTOR_NORM(V,VLEN) 
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Another very useful feature which we will use in the book is that a function can also 
return an array. For example, we may write a function for determining the vector ex-
product of two vectors as: 

 
FUNCTION VECTOR_EX(V1,V2) 
  !---------------------------------------- 
  !   Returns vector x-product v1xv2 
  !   where v1 and v2 are dimension 3 
  !---------------------------------------- 
   REAL, INTENT(IN) :: V1(3),V2(3)               !     Input 
   REAL                      :: VECTOR_EX(3)       !     Result 
   VECTOR_EX(1)=V1(2)*V2(3)-V2(2)*V1(3) 
   VECTOR_EX(2)=V1(3)*V2(1)-V1(1)*V2(3) 
   VECTOR_EX(3)=V1(1)*V2(2)-V1(2)*V2(1) 
  RETURN 
  END FUNCTION VECTOR_EX 
 
In the calling program we use this function in this way 
 
REAL   ::  V1(3),V2(3),V3(3) 
.  
. 
V3= VECTOR_EX(V1,V2) 

2.2.6 Subprogram libraries and common variables 

As indicated previously, for developing large programs, it is convenient to subdivide 
the big task into smaller ones. This means that a library of subroutines will be 
developed. There are basically two ways in which these subroutines were able to 
communicate with each other in earlier Fortrans: via parameter lists or via COMMON 
blocks. F90 has replaced the somewhat tedious COMMON block structure by the 
MODULE and USE statements. A MODULE is simply a set of declarations and/or 
subroutines. If a program or subprogram wants to use the declarations and subroutines, it 
simply has a USE statement at the beginning. For example, to define some variables 
which are used by subprograms we specify  

MODULE Common_Variables 
REAL(IWP) ::  A, B 
REAL(IWP), ALLOCATABLE :: C(:) 

END MODULE Common_Variables 
 

This replaces the COMMON statements. Any program or sub-program that uses the 
common declarations has a USE statement such as: 
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PROGRAM TEST 
USE Common_Variables 
- 
- 
- 

                          END PROGRAM TEST 
 

 To help with the management of large programs it is convenient to group subroutines 
into different files. The MODULE facility can be used for this purpose. For example, we 
may group all subroutines which have to do with the geometrical description of 
boundary elements into a module Geometry_lib 

MODULE Geometry_lib 
REAL ::  Pi= 3.149 

    CONTAINS 
SUBROUTINE Shape … 
END SUBROUTINE Shape 
… 

END MODULE Geometry_lib 

2.3 CHARTS AND PSEUDO CODE 

Even though the features of F90 have made programs readable, there is still a need to 
show the general layout of the program in a simple way. Flow charts, as used in the early 
days of programming, are not useful because they do not illustrate the essential features 
of a program’s structure.  

Instead, structure charts and pseudo code are used, i.e., a FORTRAN-like code which 
gives but a general description of what to do. Since nested DO LOOPS are complicated 
to read in a FORTRAN code they can be explained better in a structure chart. For 
instance, the chart for the example of two-dimensional numerical integration discussed 
in the next chapter is shown in Figure 2.2. 

The advantage of the structure chart is that the structure of the nested do loop can be 
clearly seen. Another feature where structure charts may be useful is in IF statements, 
especially when they are complicated. For example, if we wish to check all diagonal 
elements of the coefficient matrix and take appropriate action if they are negative, zero 
or positive, the structure chart in Figure 2.3 can be used. 
 
 
 
 
 
 
 
 



24 The Boundary Element Method with Programming 

Figure 2.2 Example of a structure chart, nested DO-loop 

Figure 2.3 Example of a structure chart, IF statement 
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2.4 PARALLEL PROGRAMMING 

  As problem sizes grow, or analyses types become more ambitious, computer 
processing time can inhibit the design process2,3. For example, if a nonlinear analysis 
(Chapter 15) takes hours to complete, the designer loses interest because interaction 
between computation and design is hampered. Alternatively, design of many systems 
depends on a statistical evaluation of their responses and so a single analysis is not 
sufficient. Stochastically it may be necessary to complete several hundred analyses 
before a statistically significant result can be reported. 
  For these reasons it is important to minimise computer analysis time, and the presently 
available means of so doing is called “parallel processing”. The idea is to carry out the 
computation on NPES processors, usually of similar type, connected in parallel. If the 
computational work can be shared equally amongst the processors, under perfect 
conditions computation time is reduced by a factor NPES. At the time of writing, 
systems with 1000 processors are quite common, meaning that an analysis taking 1 hour 
on a single processor could be completed in 4 seconds in parallel. More affordably, 10 
standard PCs coupled together in parallel would reduce the hour of computation to a 6 
minute “coffee break”. 
  A second advantage of working in parallel is that data can be distributed across the 
processors and so much larger problems can be analysed. 
 
2.4.1 Message Passing using MPI  
 
  While there are several ways of organising programs to run in parallel, we concentrate 
here on “message passing” using a portable system called MPI – “Message Passing 
Interface”4. When computations are subdivided and assigned to the various processors, a 
time will come when information has to be shared, or exchanged between processors. 
The job of MPI is to handle these exchanges – a process called “communication”. Since 
computation is fast and communication slow, an aim will be to optimise the ratio 
between them. 
  By “portable” in the above description, we mean that execution of a program in parallel 
should appear to the user to be independent of the processing hardware being employed 
and MPI satisfies this requirement. It is a de-facto standard and consists of subroutines, 
callable from FORTRAN by means of the usual CALL statement. For example 
 
CALL  MPI_ALLREDUCE(F1,F,Ndofs,MPI_REAL8,MPI_SUM,MPI_COMMWORLD,ier) 
 
collects the sum of the distributed arrays F1, of length Ndofs, from all processors and 
returns the result to F. The KIND of the arrays would have to match the Fortran 
REAL*8 precision. The significance of the other parameters need not concern the 
applications programmer. 
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2.4.2 Using MPI on a “Supercomputer” 
 
 Current “supercomputers” all have parallel architectures of some kind and so it has been 
essential to make the use of MPI simple. Therefore at compile time a command like 
“f90” to compile a serial program is simply replaced by, for example, “mpif90” for a 
parallel program using MPI. At runtime, a command like “mpirun” will have a 
parameter specifying the number of parallel processors requested. 
 
2.4.3 Using MPI on PC “Clusters” 
 
  A low cost entry to parallel computing can be achieved by linking PCs together using 
for example an Ethernet for communication between machines. In the 1990s such 
groupings were often termed “Beowulf” clusters and there are publications5 describing 
how to set these up. The basic steps might be as follows: 
 

1. Choose N identical PCs. (In practice the PCs need not be identical but for 
beginners this is a simplifying step). 

2. Install the same (e.g. Linux) operating system on each PC. 
3. Connect the PCs together using for example an Ethernet. 
4. Give each PC a distinct IP address ………….X where X =1, N. 
5. Install a version of MPI on each PC. 
6. Compile the same program (linking to an MPI Library – see below) on each 

PC. 
7. Configure MPI (put a list of IP addresses in a configuration file) to “talk” to all 

PCs. 
 
 An obvious pitfall is that all machines must be running identical software and it is easy 
to forget to update modifications. 

 Two MPI libraries which can be freely downloaded are MPICH6 and LAM MPI7. 
The parallel program is launched by typing a command from one of the PCs 
(implementation-specific). The program and input data must be in the same location 
(directory) on each PC (or compute node). When the program is launched from the 
“master” PC, each “slave” PC will run the same program, in parallel, but will work on 
its own data. Most Beowulf-type software is Unix or Linux, based but Microsoft have 
recently put forward a “Microsoft Compute Cluster” enabling parallel processing from a 
Microsoft Windows environment.  
  In Chapter 8, programs are listed which enable Boundary Element computations to be 
processed in parallel by any system capable of supporting MPI, ranging from clusters of 
PCs to “supercomputers”. 
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2.5 BLAS LIBRARIES 

  Since computations by the Boundary Element Method make extensive use of array 
manipulations, it is sensible to make use of software which facilitates this, if available. 
BLAS, “Basic Linear Algebra Subroutine” libraries permit three levels of array 
processing: vector-vector, matrix-vector and matrix-matrix8. In Chapter 8 we shall use 
BLAS subroutine DGEMV to carry out matrix by vector multiplications. On some 
processors this can lead to significant speed-up in comparison with the Fortran 
MATMUL. 

2.6 PRE- AND POST-PROCESSING   

For large problems it is very tedious, or impossible, to produce a file using a text 
editor which contains all input data the program needs for analysis. For example, the 
specification of the coordinates of all nodes and the connectivity of all elements may 
involve thousands of lines. It is common practice, therefore, to use preprocessors with a 
graphical interface which allow the user to specify the problem geometry and loading 
and which automatically generate the necessary information. Unfortunately, even though 
FORTRAN has developed very sophisticated features for computation, there are no built 
in tools available for graphical display, as there are, for example, with C++. If one wants 
to develop graphic capabilities and user interfaces, one must use special libraries, such 
as that supplied, for example, by Interactive Software Services (INTERACTER9).  

Results obtained from boundary element programs can be displayed in a variety of 
ways. The simplest is to print out values of displacements at nodal points and surface 
stresses inside boundary elements. In addition, the values at interior points can be 
printed out. Printed numbers are appropriate for the small examples used in this book, 
but for larger problems, one cannot do without graphical display. Indeed this will be 
what will ‘sell’ any numerical method to the engineering community. A few examples of 
graphical display will be shown in Chapter 17 (Applications).  

General purpose graphical pre- and postprocessors are freely available and sometimes 
quite inexpensive (for example, GID by UPC10). Therefore, the topic of pre- and post-
processing will not be discussed in this book. Since the small test examples used here 
only require a few lines of input, we can do without preprocessors. However, the reader 
is encouraged to enhance the software by providing a suitable interface for the programs 
to be developed in this book with existing preprocessing packages. 

2.7 CONCLUSIONS 

In this chapter we have given a short overview of some of the features of F90 the latest 
dialect of FORTRAN which we are going to use. There are as many programming styles 
as there are programmers and each programmer will no doubt claim that his/hers is best.  
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The aim in good programming should be to produce efficient, readable and easy to 
check code. The last is a very stringent requirement in quality control. Easy to read 
programs sometimes also tend to be efficient; however a small gain in efficiency should 
not be made, if clarity is sacrificed. For example sometimes it is clearer and also more 
efficient not to use a DO loop if less than 4 cycles will occur. If permutations of indices 
have to be made such as in the fundamental solutions shown later, it is often better to 
generate all of the coefficients using the editor’s copy and paste facility, since the code 
can be checked much faster visually. 

In the past, sub-programs had either many COMMON blocks or long parameter lists. 
These were needed to pass variables between SUBROUTINES and the main program. 
Fortunately F90 has done away with COMMON blocks and the number of parameters 
for SUBROUTINES can be further reduced by the dynamic array allocation, the use of 
UBOUND and the USE statement. However one must very carefully consider which 
variables should be declared in the Common Module as explained previously and which 
should be declared in each subroutine.  

Regarding the programs presented in this book, we claim neither that they are very 
efficient nor that this is the only way that the procedures outlined may be implemented. 
Indeed, we encourage the reader to think of different ways in which the theory can be 
converted efficiently and elegantly into code. In the programs that we present here we 
have placed our emphasis on readability. Otherwise there would be no point in including 
the code in the text. In many cases we have sacrificed efficiency and have limited 
ourselves to solving small problems, because we do not use direct access files for storing 
values, but assume instead that all data required fit into RAM. With the dramatic 
increase in the amount of RAM available on standard PCs this, however, is not likely to 
become a main issue throughout the lifetime of this book especially if parallel 
processing is used. With regard to efficiency some rearranging of DO loops, would be 
necessary so that computations which only need to be carried out once are not 
unnecessarily carried out many times. This occurs especially in the subroutines for the 
integration of Kernel-shape function products. However, such rearrangement would 
have made the programs more difficult to follow and therefore was not implemented. 

The programs were developed on a Visual Fortan11 compiler. However, since only 
standard F90 features have been used, the source code should be able to be compiled 
with any FORTRAN90, FORTRAN95 or FORTRAN 2000 compiler. 

2.8 EXERCISES 

Exercise 2.1. 
Given are two integer arrays of rank one named Inci1, Inci2 with element node numbers. 
Write a LOGICAL FUNCTION Match(Inci1,Inci2) which returns .TRUE. if all the 
numbers of Inci2 match all the numbers in Inci1. Note that the sequence of the numbers 
in Inci1 and Inci2 will in general not be the same. The dimension of both arrays will be 
declared in the calling program. 
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Exercise 2.2. 
Write a REAL FUNCTION DETERMINANT(A) which computes the determinant of 
the matrix A which can be of shape (2,2) or (3,3). 
 
Exercise 2.3. 
Given is a sub-matrix A of  shape (2,2) and a matrix B whose shape is declared in the 
calling program. Write a SUBROUTINE ASSEMBLE(A,B,I,J) which assembles the 
sub-matrix A into the matrix B at location i,j (see Figure below) 
 

 

2.9 REFERENCES 
 
1. Smith I.M. (1995), Programming in FORTRAN90, J.Wiley.  
2. Smith I. M. and Griffiths D. V., (2004) Programming the Finite Element Method, 4th 

ed, J.Wiley.  
3. ParaFEM Web Reference (2004), http://www.parafem.org.uk.  
4. Message Passing Interface Forum (1994) MPI: A message Passing Interface 

Standard, International Journal of Supercomputer Applications 8:3-4. 
5. Sterling, T.L., Salmon, J., Becker, D.J. and Savarese, D.F. (1999) How to Build a 

Beowulf, The MIT Press. 
6. MPICH Web Reference (2007), http://www-unix.mcs.anl.gov/mpi/mpich/  
7. LAM MPI Web Reference (2007), http://www.lam-mpi.org/  
8. Dongarra, J.J. and Walker, D.W. (1995) Software Libraries for Linear Algebra 

Computations on High Performance Computers,SIAM Rev. 37(2):151-180 
9. Interactive Software Services (1999), INTERACTER Subroutine Reference.  
10. GID web reference: http://gid.cimne.upc.es  
11. Digital Equipment Corp. (1997) Digital FORTRAN Language Reference Manual  
  

2221

1211
  
j

i             

AA

AA



 

3 
Discretisation and Interpolation 
 Nature is indifferent      
 towards the difficulties it 
 causes to a mathematician 

 Fourier 
 

 
 
 

3.1   INTRODUCTION 

One of the fundamental requirements for numerical modelling is a description of the 
problem, its boundaries, boundary conditions and material properties, in a mathematical 
way. The exact definition of the shape of a complicated boundary would require the 
specification of the location (relative to the origin of a set of axes) of a large number of 
points on the surface (indeed an exact definition will take an infinite number). In order 
to be able to model such problems with a reasonable amount of input data, only a limited 
number of points may be defined and the shape between the points approximated by 
functions. This is known as solid modelling1. Solid modelling is being used, for 
example, to describe the shape of car bodies in mechanical engineering and ore bodies in 
mining, for the purpose of generating displays on computer graphics terminals. Thus, a 
new form of car body can be visualised, in perspective, from various angles, even before 
a scale model is built and the location and grade of ore bodies can be displayed for 
optimising excavation strategies in mine planning. 

In the following we will discuss one and two-dimensional boundary elements as 
defined by the number of intrinsic (element) coordinate directions. One-dimensional 
elements exist in two-dimensional Cartesian space and two-dimensional elements in 
three-dimensional space. Thus, in this chapter, we consider discretisation methods used 
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in the boundary method and start building the library of subroutines needed later. For the 
treatment of non-linear problems discussed in Chapter 15 we will also need two- and 
three-dimensional cells, which are also discussed here. 

3.2   ONE-DIMENSIONAL BOUNDARY ELEMENTS 

One-dimensional elements are used for the description of a boundary in the x-y plane. 
The first step in the description of the boundary is to specify a discrete number of points 
on the boundary (Figure 3.1). Next we specify an interpolation between these points. In 
the simplest case we have linear segments (or boundary elements) which connect two 
nodes i and j, the positions of which are defined by Cartesian coordinates. For each 
element it is convenient to define a local (intrinsic) coordinate  which follows the 
direction of the element, equals zero at the centre and has the value of  1 at the ends 
(Figure 3.2).  

Figure 3.1 Plane domain, boundary approximated by linear elements 

Figure 3.2 Boundary element shown in a) global and b) local (intrinsic) coordinate space  
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It can easily be verified that the Cartesian coordinates of a point on element e with the 
intrinsic coordinate  are given by 

(3.1) 

This equation can be checked by substituting  = – 1 and  = + 1 to obtain the 
coordinates of nodes 5 and 6. 

It is now convenient to substitute for the global coordinates:  

 
 
 
 
 
 

 

In this way we establish a link between local and global numbering of nodes. 
The global numbers of nodes which belong to the element are referred to as ‘element 

incidences’ or ‘element connectivity’. In the example in Fig. 3.1, the connectivity of 
element e is 5,6. The sequence in which the element node numbers are entered will be 
significant later, as it will affect the direction of the outward normal. From now on we 
will work with the local numbering system and use the element incidences to ‘gather’ 
coordinates from the global values, as explained in the previous chapter. 

We can rewrite equation (3.1) as 
 

(3.2) 

 
or in abbreviated form 

(3.3) 

where L is the number of element nodes and Nn are element ‘shape’ functions. Equation 
(3.3) can be written in matrix notation 

(3.4) 
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where x is a vector containing coordinates of a point on element e and e
nx  is a vector of 

coordinates of the nth node of element e.  
For the two-node element just derived, the shape functions are (Figure 3.3) 

(3.5) 

 

Figure 3.3 Linear shape functions 

Figure 3.4 Quadratic element shown in a) global and b) local coordinate space 

The shape functions may be also expressed by 

(3.6) 

where the local coordinates of the  2 nodes are given by 

(3.7) 
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Complicated shapes can be more accurately described by a smaller number of 
elements with three nodes and quadratic shape functions (Figure 3.4). The coordinate  
now follows the element shape, i.e., is curvilinear and the third node is placed at  = 0. 
The shape function associated with the mid-side node is a parabola, which has unit value 
at the third node and zero value at the other nodes, that is, 

(3.8) 

 

 
Figure 3.5 Quadratic shape functions 

The corner node shape functions can be obtained by subtracting half of the centre 
node function from each of the linear shape functions (Figure 3.5) 

(3.9) 

 The shape functions presented here have so far not been derived mathematically but 
written down intuitively. Shape functions derived this way have been called Serendipity 
functions2. It can be seen that the shape functions derived so far have the following 
properties 

(3.10) 
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The mathematical derivation of functions which satisfy conditions (3.10) is possible 
using Lagrange polynomials3. For the parabolic elements the Lagrange shape functions 
are defined as 

(3.11) 

where 
 

(3.12) 

The reader can verify that the Lagrange and Serendipity shape functions are identical 
for one-dimensional elements. However, Lagrange polynomials will be used to construct 
shape functions for two-dimensional elements, which differ from the Serendipity shape 
functions. 

3.3   TWO-DIMENSIONAL ELEMENTS 

For the description of the boundary of three-dimensional problems two-dimensional 
boundary elements are used. The elements are also used for defining cells for the 
evaluation of volume integrals for plane problems. Their derivation is analogous to that 
of the one-dimensional elements described previously, except that two intrinsic 
coordinates ( , ) are used, as shown in Figure 3.6.  

Figure 3.6 Quadrilateral boundary element in a) global and b) local coordinate system 
 
The Cartesian coordinates of a point with intrinsic coordinates ( , ) are obtained by 
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(3.13) 

  
where for boundary elements 
 

(3.14) 

For cells we have 

(3.15) 

Figure 3.7 Bilinear shape function N1 

 
Figure 3.8 Quadratic Serendipity element 
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Bilinear shape functions are used: 

(3.16) 

 The shape function N1 is shown in Figure 3.7. It describes a curved surface consisting 
of straight lines in the ,  directions. The surface, also called a hyper-surface, has been 
a widely used shape for concrete shells, because the formwork is simple to construct. 

Table 3.1 Intrinsic coordinates of nodes 

n n n 
1 -1.0 -1.0 
2  1.0 -1.0 
3  1.0  1.0 
4 -1.0  1.0 
5  0.0 -1.0 
6  1.0  0.0 
7  0.0  1.0 
8 -1.0  0.0 

 
Figure 3.9 Shape functions for mid-side and corner nodes 
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 Again we can derive a higher order element by adding mid-side nodes on the element 
sides. A quadratic element is shown in Figure 3.8 and the local coordinates of nodes are 
shown in Table 3.1. The shape functions for the mid-side nodes are given by 

(3.17) 

The corner node functions are constructed in a similar way as for the one-dimensional 
element (Figure 3.9) 

(3.18) 

 By writing down the shape functions in this manner, it is possible to derive elements 
with variable numbers of nodes by deleting appropriate terms. For example, for an 
element with no midside node 5, a linear function is assumed between nodes 1 and 2 and 
the shape functions are obtained by simply setting N5 = 0. 

Figure 3.10 Quadratic  Lagrange element in a) global and b) local coordinate system 
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 If the element shape functions for the quadratic element are derived from Lagrange 
polynomials, then there is an additional node at the centre of the element (Figure 3.10). 
The shape functions are given by 

(3.19) 

 
Figure 3.11 Serendipity and Lagrange shape functions 
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Ai,l is defined in equation (3.12) and  
 

(3.20) 

where i and j are the column and row numbers of the nodes. This numbering is defined 
in Figure 3.10. The nodes are given by 
  

 n (1,1)  = 1 n (2,1) = 2 n (3,1) = 5 
 n (1,2) = 4 n (2,2)  = 3  n (3,2) = 7 
 n (1,3) = 8 n (2,3)  = 6 n (3,3) = 9 

 
The Serendipity and Lagrange shape functions are compared in Figure 3.11 
The Lagrange element has an additional ‘bubble mode’ and is, therefore, able to describe 
complicated shapes more accurately. Triangular elements can be formed from 
quadrilateral elements, by assigning the same global node number to two or three corner 
nodes. Such degenerate elements are shown in Figure 3.12.  

Figure 3.12 Linear and quadratic degenerate elements 

Alternatively triangular elements may be defined using the iso-parametric concept. In 
Figure 3.13 we show a triangular element in the global and local coordinate system.  The 
shape functions for the transformation are defined as4 

(3.21) 
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Figure 3.13 Triangular linear element in global and local coordinate system 

As can be seen in Figure 3.14 the shape functions are represented by planes. 
 

Figure 3.14 Shape functions of linear triangular boundary element 

 It is also possible to define a triangular element with a quadratic shape function. The 
shape functions for the mid-side nodes are given by 

(3.22) 
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The corner node functions are constructed in a similar way as for the previous 
elements 

(3.23) 

Figure 3.15 Triangular quadratic element 

3.4   THREE-DIMENSIONAL CELLS 

For the description of cells for 3-D problems three-dimensional elements are used.  
Their derivation is analogous to that of the two-dimensional elements described 
previously, except that now three intrinsic coordinates ( , , ) are used, as shown in 
Figure 3.16. The Cartesian coordinates of a point with intrinsic coordinates ( , , ) are 
obtained by 

(3.24) 

Bilinear shape functions are used for the quadrilateral element in Figure 3.16  
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where local coordinates of the nodes are defined in Table 3.2. For the description of cells 
with a quadratic shape function, see for example [4]. 

 
Figure 3.16 3-D cell element in a) global and b) local coordinate system 

 

Table 3.2 Local coordinates of nodes for 3-D cells 

 n 
  

 n   n   n   n  n  n  n

 1  -1.0  -1.0  1.0  5  -1.0  -1.0  -1.0
 2  1.0  -1.0  1.0  6  1.0  -1.0  -1.0
 3  1.0  1.0  1.0  7  1.0  1.0  -1.0
 4  -1.0  1.0  1.0  8  -1.0  1.0  -1.0

 

3.5   ELEMENTS OF INFINITE EXTENT 

It is sometimes necessary to describe surfaces of infinite extent. Examples are found in 
geomechanics, where either the surface of the ground extends to infinity or a tunnel can 
be assumed to be infinitely long. To describe the geometry of an element of infinite 
extent in one intrinsic coordinate direction, we may use special shape functions5 which 
tend to infinity, as the intrinsic coordinate tends to +1. For the one-dimensional element 
shown in Figure 3.17 the coordinate transformation 
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results in infinite Cartesian coordinates at  = 1 if the shape functions are taken to vary 
as follows:  

(3.26) 

Figure 3.17 One-dimensional infinite element in a) global and b) local coordinate space 

Note that the element is finite in the local coordinate space and therefore can be treated 
the same way as a finite boundary element for the integration. 

  

Figure 3.18 Two-dimensional infinite element in a) global and b) local coordinate space. 

The concept can be extended to two-dimensions. The geometry of the two-
dimensional element shown in Figure 3.18, for example, is described by 
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(3.27) 

where ( ) ( )m nN  are linear or quadratic Serendipity shape functions as presented for the 

one-dimensional finite boundary elements, ( ) ( )k nN  are the same infinite shape 
functions as for the one-dimensional element, with  substituted for  and the values 
for m(n) and k(n) are given in Table 3.3 

Table 3.3 Values for m and k in Equation (3.27) 

 n  m  k
 1  1  1
 2  2  1
 3  2  2
 4  1  2
 5  3  1
 6  3  2

 

3.6   SUBROUTINES FOR SHAPE FUNCTIONS 

Here we start building our library of Subroutines for future use. We create routines for 
the calculation of Serendipity, infinite and Lagrange shape functions. Only the listing for 
the first one is shown here.  

As explained in Chapter 3, some variables will be defined as global, that is, as 
accessible to all the subroutines in a MODULE and all programs which use them via the 
USE statement. The dimensions for the array Ni, which contains the shape functions, 
depend on the type of element and will be set by the main program.  
 
SUBROUTINE Serendip_func(Ni,xsi,eta,ldim,nodes,inci) 
!--------------------------------- 
! Computes Serendipity shape functions Ni(xsi,eta) 
! for one and two-dimensional (linear/parabolic) finite 
! boundary elements 
!--------------------------------- 
REAL,INTENT(OUT)  :: Ni(:)  ! Array with shape function 
REAL,INTENT(IN)   :: xsi,eta! intrinsic coordinates 
INTEGER,INTENT(IN):: ldim   ! element dimension 
INTEGER,INTENT(IN):: nodes  ! number of nodes 
INTEGER,INTENT(IN):: inci(:)! element incidences 
REAL:: mxs,pxs,met,pet      ! temporary variables 
SELECT CASE (ldim) 
CASE(1)! one-dimensional element 

4(6)
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Ni(1)= 0.5*(1.0 - xsi);  Ni(2)= 0.5*(1.0 + xsi) 
IF(nodes == 2) RETURN!  linear element finished 
Ni(3)=  1.0 - xsi*xsi 
Ni(1)= Ni(1) - 0.5*Ni(3); Ni(2)= Ni(2)  0.5*Ni(3) 

CASE(2)! two-dimensional element 
 mxs=1.0-xsi; pxs=1.0+xsi; met=1.0-eta; pet=1.0+eta 
 Ni(1)= 0.25*mxs*met ; Ni(2)= 0.25*pxs*met 
 Ni(3)= 0.25*pxs*pet ; Ni(4)= 0.25*mxs*pet 
 IF(nodes == 4) RETURN!  linear element finished 
 IF(Inci(5) > 0) THEN  !zero node = node missing 
 Ni(5)= 0.5*(1.0 -xsi*xsi)*metNi(1)= Ni(1) - 0.5*Ni(5) ; 
 Ni(2)= Ni(2)0.5*Ni(5) 
 END IF 
 IF(Inci(6) > 0) THEN 
  Ni(6)= 0.5*(1.0 -eta*eta)*pxs 
  Ni(2)= Ni(2) - 0.5*Ni(6) ; Ni(3)= Ni(3)  - 0.5*Ni(6) 
 END IF 
 IF(Inci(7) > 0) THEN 
  Ni(7)= 0.5*(1.0 -xsi*xsi)*pet 
  Ni(3)= Ni(3) - 0.5*Ni(7) ; Ni(4)= Ni(4)- 0.5*Ni(7) 
 END IF 
 IF(Inci(8) > 0) THEN 
  Ni(8)= 0.5*(1.0 -eta*eta)*mxs 
  Ni(4)= Ni(4) - 0.5*Ni(8) ; Ni(1)= Ni(1)  - 0.5*Ni(8) 
 END IF 
CASE DEFAULT !   error message 
CALL Error_message('Element dimension not 1 or 2') 
END SELECT 
RETURN 
END SUBROUTINE Serendip_func 

3.7   INTERPOLATION 

In addition to defining the shape of the solid to be modelled, we will also need to specify 
the variation of physical quantities (displacement, temperature, traction, etc.) in an 
element. These can be interpolated from the values at the nodal points.  

3.7.1 Isoparametric elements 

The value of a quantity q at a point inside an element e can be written as 

(3.28) 

where e
nq  is the value of the quantity at the nth node of element e and nN are 

interpolation functions (Figure 3.19).  

e
n nq N q
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If for a particular element the same functions are used for the element shape and for the 
interpolations of physical quantities inside the element, then the element is called 
‘isoparametric’ (i.e., same number of parameters). 
 

Figure 3.19 Variation of q along a quadratic 1-D boundary element (in local coordinate system) 

Figure 3.20 Interpolation of q over a linear 2-D element 

The variation of physical quantities on the surface of two-dimensional elements or 
inside plane elements can be described (Figure 3.20) 

(3.29) 

Note than q may be a scalar or a vector (i.e. may refer to tractions t or displacements 
u). The physical quantities are defined for each element separately, so they can be 
discontinuous at nodes shared by two elements as shown in Figure 3.21. If Serendipity 
or Lagrange shape functions are used only C0 continuity can be enforced between 
elements by specifying the same function value for each element at a shared node. 
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Figure 3.21 Variation of q with discontinuous variation at common element nodes 

3.7.2 Infinite elements 

For the one-dimensional infinite element we can assume that the displacements and 
tractions decay from node 1 to infinity with o(1/r) and o(1/r2) respectively, or that they 
remain constant. The former corresponds to a surface that extends to infinity, but the 
loading is finite, the latter corresponds to a the case where both the surface and the 
loading extends to infinity (this corresponds to plane strain conditions). For the one-
dimensional “decay” infinite element we have 

(3.30) 

where 

(3.31) 

For the “plane strain” infinite element the variation is given simply by 

(3.32) 

For the two-dimensional “decay” infinite element we have 

(3.33) 
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Where ( )nN  are linear or quadratic Serendipity shape functions as presented for the 

one-dimensional finite boundary elements and 1 ( )tN  and 1( )uN are the same infinite 
shape functions as for the one-dimensional element with  substituted for . 
For the two-dimensional “plane strain” infinite element we have 

(3.34) 

3.7.3 Discontinuous elements 

Later we will see that in some cases it is convenient to interpolate q not from the nodes 
that define the geometry but from other (interpolation) nodes that are moved inside the 
element.  

Figure 3.22 One dimensional linear discontinuous element 

This type of element will be used in the Chapter on corners and edges to avoid a 
multiple definition of the traction vector. For the one-dimensional linear element in 
Figure 3.22 we have  

(3.35) 

Where e
nq are the values of q at the interpolation nodes and the interpolation functions 

are 
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Here d1, d2 are absolute values of the intrinsic coordinate of the interpolation nodes.  

Figure 3.23 One dimensional quadratic discontinuous element 

It can be easily verified that for d1=d2=1 the shape functions for the continuous element 
are obtained. For a quadratic element we have  
 

(3.37) 

 

Figure 3.24 Two-dimensional linear discontinuous element 

For the two-dimensional linear element shown in Figure 3.24 the shape functions are 
given for the corner nodes by 

(3.38) 
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Figure 3.25 Two-dimensional quadratic discontinuous element 

For the quadratic element in Figure 3.25 we have for the corner nodes 

(3.39) 

and for the mid side nodes: 

(3.40) 
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3.8   COORDINATE TRANSFORMATION 

Sometimes it might be convenient to define the coordinates of a node in a local 
Cartesian coordinate system. A local coordinate system is defined by the location of its 
origin, x0 and the direction of the axes. In two dimensions we define the direction with 
two vectors as shown in Figure 3.26a. The global coordinates of a point specified in a 
local coordinates system x  are given by 

(3.41) 

where x0 is a vector describing the position of the origin of the local axes. For two-
dimensional problems the geometric transformation matrix is given by 

(3.42) 

where 1 2,v v are orthogonal unit vectors specifying the directions of ,x y . 
 For three-dimensional problems a local (orthogonal) coordinate system is defined by 
unit vectors 1 2 3, ,v v v as shown in Figure 3.26b. The transformation matrix for a 3-D 
coordinate system is given by 

(3.43) 

    The inverse relationship between local and global coordinates is given by 

(3.44) 

Figure 3.26 Local coordinate systems a) 2-D and b) 3-D 
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3.9   DIFFERENTIAL GEOMETRY 

In the boundary element method it will be necessary to work out the direction normal to 
a line or surface element.  

Figure 3.27 Vectors normal and tangential to a one-dimensional element 

The best way to determine these directions is by using vector algebra. Consider a 
one-dimensional quadratic boundary element (Figure 3.27). A vector in the direction of 
 can be obtained by 

(3.45) 

By the differentiation of equation (3.4) we get 
 

(3.46) 

A vector normal to the line element, V3, may then be computed by taking the cross-
product of V  with a unit vector in the z-direction (vz): 

(3.47) 

This vector product can be written as: 

(3.48) 
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 The length of the vector V3 is equal to 
 

(3.49) 

and therefore the unit vector in the direction normal to a line element is given by 

(3.50) 

It can be shown that the length of V3 represents also the real length of a unit segment 
( 1 ) in local coordinate space (this is also known as the Jacobian J of the 
transformation from local to global coordinate space). 

Figure 3.28 Computation of normal vector for two-dimensional elements 

For two-dimensional surface elements (Figure 3.28), there are two tangential vectors, 
V  in the -direction and 

(3.51) 

in the -direction, where 

(3.52) 

The vector normal to the surface may be computed by taking the cross-product of V  
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(3.53) 

that is  
 

(3.54) 

As indicated previously the unit normal vector v3 is obtained by first computing the 
length of the vector: 

(3.55) 

This is also the real area of a segment of size 1x1 in the local coordinate system, or the 
Jacobian of the transformation. The normalised vector in the direction perpendicular to 
the surface of the element is given by 

(3.56) 

It should be noted here that ,v v are not orthogonal to each other. An orthogonal 
system of axes is required for the definition of strains and stresses needed later. Here we 
assume that the first axis defined by vector v1 is in the direction of v . The second axis is 
defined by: 

(3.57) 

The computation of the normal vector requires the derivatives of the shape functions. 
These are computed by SUBROUTINE Serendip_deriv shown below. 

 
SUBROUTINE Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci) 
!--------------------------------- 
! Computes Derivatives of Serendipity shape functions  
! for one and two-dimensional (linear/parabolic) 

 ! finite boundary elements 
!--------------------------------- 
REAL,INTENT(OUT)  :: DNi(:,:) ! Derivatives of Ni 
REAL, INTENT(IN)  :: xsi,eta ! intrinsic coordinates 
INTEGER,INTENT(IN):: ldim ! element dimension 
INTEGER,INTENT(IN):: nodes ! number of nodes 
INTEGER,INTENT(IN):: inci(:) ! element incidences 
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REAL:: mxs,pxs,met,pet ! temporary variables 
SELECT CASE (ldim) 
 CASE(1) ! one-dimensional element 
 DNi(1,1)= -0.5 
 DNi(2,1)= 0.5 
 IF(nodes == 2)RETURN !  linear element finished 
 DNi(3,1)=  -2.0*xsi 
 DNi(1,1)= DNi(1,1) - 0.5*DNi(3,1) 
 DNi(2,1)= DNi(2,1) - 0.5*DNi(3,1) 
 CASE(2) ! two-dimensional element 
 mxs= 1.0-xsi 
 pxs= 1.0+xsi 
 met= 1.0-eta 
 pet= 1.0+eta 
 DNi(1,1)= -0.25*met 
 DNi(1,2)= -0.25*mxs 
 DNi(2,1)=  0.25*met 
 DNi(2,2)= -0.25*pxs 
 DNi(3,1)=  0.25*pet 
 DNi(3,2)=  0.25*pxs 
 DNi(4,1)= -0.25*pet 
 DNi(4,2)=  0.25*mxs 
 IF(nodes == 4) RETURN  ! linear element finshed 
 IF(Inci(5) > 0) THEN  ! zero node = node  missing 
  DNi(5,1)= -xsi*met 
  DNi(5,2)= -0.5*(1.0 -xsi*xsi) 
  DNi(1,1)= DNi(1,1) - 0.5*DNi(5,1) 
  DNi(1,2)= DNi(1,2) - 0.5*DNi(5,2) 
  DNi(2,1)= DNi(2,1) - 0.5*DNi(5,1) 
  DNi(2,2)= DNi(2,2) - 0.5*DNi(5,2) 
 END IF 
 IF(Inci(6) > 0) THEN 
  DNi(6,1)= 0.5*(1.0 -eta*eta) 
  DNi(6,2)= -eta*pxs 

  DNi(2,1)= DNi(2,1) - 0.5*DNi(6,1) 
  DNi(2,2)= DNi(2,2) - 0.5*DNi(6,2) 
  DNi(3,1)= DNi(3,1) - 0.5*DNi(6,1) 
  DNi(3,2)= DNi(3,2) - 0.5*DNi(6,2) 
 END IF 

 IF(Inci(7) > 0) THEN 
  DNi(7,1)= -xsi*pet 
  DNi(7,2)= 0.5*(1.0 -xsi*xsi) 
  DNi(3,1)= DNi(3,1) - 0.5*DNi(7,1) 
  DNi(3,2)= DNi(3,2) - 0.5*DNi(7,2) 
  DNi(4,1)= DNi(4,1) - 0.5*DNi(7,1) 
  DNi(4,2)= DNi(4,2) - 0.5*DNi(7,2) 
 END IF 
 IF(Inci(8) > 0) THEN 
  DNi(8,1)= -0.5*(1.0-eta*eta) 
  DNi(8,2)= -eta*mxs 
  DNi(4,1)= DNi(4,1) - 0.5*DNi(8,1) 
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  DNi(4,2)= DNi(4,2) - 0.5*DNi(8,2) 
  DNi(1,1)= DNi(1,1) - 0.5*DNi(8,1) 
  DNi(1,2)= DNi(1,2) - 0.5*DNi(8,2) 
 END IF 

 CASE DEFAULT      !   error message 
 CALL Error_message('Element dimension not 1 or 2' ) 
END SELECT 
RETURN 
END SUBROUTINE Serendip_deriv 

The computation of the vector normal to the surface and the Jacobian is combined in 
one SUBROUTINE Normal_Jac. 
SUBROUTINE Normal_Jac(v3,Jac,xsi,eta,ldim,nodes,inci,coords) 
!------------------------------------------------------- 
! Computes normal vector and Jacobian 
!------------------------------------------------------- 
REAL,INTENT(OUT)  :: v3(:)      ! Vector normal to point 
REAL,INTENT(OUT)  :: Jac        ! Jacobian 
REAL, INTENT(IN)  :: xsi,eta    ! intrinsic coords of point 
INTEGER,INTENT(IN):: ldim       ! element dimension 
INTEGER,INTENT(IN):: nodes      ! number of nodes 
INTEGER,INTENT(IN):: inci(:)    ! element incidences 
REAL, INTENT(IN)  :: coords(:,:)! node coordinates 
REAL,ALLOCATABLE  :: DNi(:,:)   ! Derivatives of Ni 
REAL,ALLOCATABLE  :: v1(:),v2(:)! Vectors in xsi,eta dir 
INTEGER :: Cdim    !   Cartesian dimension 
Cdim= ldim+1 
!Allocate temporary arrays 
ALLOCATE (DNi(nodes,Cdim),V1(Cdim),V2(Cdim)) 
!Compute derivatives of shape function 
Call Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci) 
! Compute vectors in xsi (eta) direction(s) 
DO I=1,Cdim 
 V1(I)= DOT_PRODUCT(DNi(:,1),COORDS(I,:)) 
 IF(ldim == 2) THEN 
  V2(I)= DOT_PRODUCT(DNi(:,2),COORDS(I,:)) 
 END IF 
END DO 
!Compute normal vector 
IF(ldim == 1) THEN 
 v3(1)= V1(2) 
 v3(2)= -v1(1) 
ELSE 
 V3= Vector_ex(v1,v2) 
END IF 
!Normalise 
CAll Vector_norm(V3,Jac) 
DEALLOCATE (DNi,V1,V2) 
RETURN 
END SUBROUTINE Normal_Jac 
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3.10   INTEGRATION OVER ELEMENTS 

The functions to be integrated over elements will be quite complex so they require 
numerical treatment. Therefore the main reason for selecting a range of +1 to –1 for the 
intrinsic coordinates is to enable the use of numerical integration over the elements.  

3.10.1 Integration over boundary elements 
To compute the real length eS of an element using local integration variables we have 

(3.58) 

where the Jacobian J is given by equation (3.49). 
Similarly, the area of a two-dimensional boundary element eA  is computed by 

(3.59) 

where the J  is given by equation (3.55).  For a one-dimensional infinite element the 
Jacobian is given by 

(3.60) 

3.10.2 Integration over cells 
 

The integration over 2-D cells is identical to the 2-D boundary elements. For 3-D 
cells the volume is computed by  

(3.61) 

where the Jacobian is given by 
  

(3.62) 
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3.10.3 Numerical integration 
 
In numerical integration schemes, the integral is approximated by a sum of values of the 
integrand evaluated at certain points, times a weighting function. For the integration of 
function ( )f , for example we can write 
 

(3.63) 

  
 In the above, Wi are weights and i are the intrinsic coordinates of the integration 
(sampling) points. If the well known trapezoidal rule is used, for example, then I=2, the 
weights are 1 and the sampling points are at +1 and –1. That is 

(3.64) 

However, the trapezoidal rule is much too inaccurate for the functions that we are 
attempting to integrate. The Gauss Quadrature with a variable number of integration 
points can be used to integrate more accurately. In this method it is assumed that the 
function to be integrated can be replaced by a polynomial of the form 

(3.65) 

where the coefficients are adjusted in such a way as to give the best fit to f( ). We 
determine the number and location of the sampling points, or Gauss points, and the 
weights by the condition that the given polynomial is integrated exactly. 

Table 3.4 Gauss point and degree of polynomial 

No. of Gauss points, I  Degree of polynomial p 

1 1 (linear) 
2 3 (cubic) 
3 5 (quintic) 

 

Table 3.5 Gauss point coordinates and weights 

I i Wi 

1 0.0 2.0 
2 0.57735 , -0.57735 1.0,1.0 
3 0.77459, 0.0 , -0.77459 0.55555, 0.88888, 0.55555 
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 We find that with increasing degree of polynomial p, we need an increasing number 
of Gauss points. Table 3.4 gives an overview of the number of Gauss N points needed to 
integrate a polynomial of degree p up to degree 5. The computed location of the 
sampling points and the weights are given in Table 3.5 for one to three Gauss points 
(data for up to 8 Gauss points are given in the program listing). It should be noted here 
that in the application of numerical integration later in this book the integrands can not 
be replaced by polynomials. However, it can be assumed that as the rate of variation of 
the functions is increased more integration points will be required. 

Figure 3.29 Gauss integration points for a two-dimensional element 

 If we apply the numerical integration to two-dimensional elements or cells then a 
double sum has to be specified 
  

(3.66) 

The Gauss integration points for a two-dimensional element and a 2x2 integration are 
shown in Figure 3.29. For the integration over 3-D cells we have: 
  

(3.67) 

A subroutine can be written which returns the Gauss point coordinates and weights 
depending on the number of Gauss points for an integration order of up to 8. 
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SUBROUTINE Gauss_coor(Cor,Wi,Intord) 
!------------------------------------ 
! Returns Gauss coords and Weights for up to 8 Gauss points 
!------------------------------------ 
REAL, INTENT(OUT)  :: Cor(8)   !   Gauss point coordinates 
REAL, INTENT(OUT)  :: Wi(8)    !   weigths 
INTEGER,INTENT(IN) :: Intord   !   integration order 
SELECT CASE (Intord) 
CASE(1) 
 Cor(1)= 0. 
 Wi(1) = 2.0 
CASE(2) 
 Cor(1)= .577350269  ; Cor(2)= -Cor(1) 
 Wi(1) = 1.0 ;  Wi(2) = Wi(1) 
CASE(3) 
 Cor(1)= .774596669  ; Cor(2)= 0.0 ; Cor(3)= -Cor(1) 
 Wi(1) = .555555555  ; Wi(2) = .888888888 ; Wi(3) = Wi(1) 
CASE(4) 
 Cor(1)= .861136311 ; Cor(2)= .339981043 ; Cor(3)= -Cor(2) 
 Cor(4)= -Cor(1) 
 Wi(1) = .347854845 ; Wi(2) = .652145154 ; Wi(3) = Wi(2) 
 Wi(4) = Wi(1) 
CASE(5) 
 Cor(1)= .906179845 ; Cor(2)= .538469310 ; Cor(3)= .0  
 Cor(4)= -Cor(2) ; Cor(5)= -Cor(1) 
 Wi(1)= .236926885 ; Wi(2)= .478628670 ; Wi(3)= .568888888  
 Wi(4) = Wi(2) ; Wi(5) = Wi(1) 
CASE(6) 
 Cor(1)=.932469514 ; Cor(2)=.661209386 ; Cor(3)=.238619186 
 Cor(4)= -Cor(3) ;  Cor(5)= -Cor(2) ; Cor(6)= -Cor(1) 
 Wi(1)= .171324492 ; Wi(2)= .360761573 ; Wi(3)= .467913934 
 Wi(4) = Wi(3) ; Wi(5) = Wi(2) ; Wi(6) = Wi(1) 
CASE(7) 
 Cor(1)=.949107912 ; Cor(2)=.741531185 ; Cor(3)=.405845151 
 Cor(4)= 0. 
 Cor(5)= -Cor(3) ;Cor(6)= -Cor(2) ;Cor(7)= -Cor(1) 
 Wi(1)= .129484966 ; Wi(2)= .279705391 ; Wi(3)= .381830050 
 Wi(4) = .417959183 
 Wi(5) = Wi(3) ; Wi(6) = Wi(2) ; Wi(7) = Wi(1) 
CASE(8) 
 Cor(1)=.960289856 ; Cor(2)=.796666477 ; Cor(3)=.525532409  
 Cor(4)= .183434642 
 Cor(5)= -Cor(4) ; Cor(6)= -Cor(3) ; Cor(7)= -Cor(2)  
 Cor(8)= -Cor(1) 
 Wi(1)= .101228536 ; Wi(2)= .222381034 ; Wi(3)= .313706645 
 Wi(4) = .362683783 
 Wi(5)= Wi(4) ; Wi(6)= Wi(3) ; Wi(7)= Wi(2) ; Wi(8)= Wi(1) 
CASE DEFAULT 
 CALL Error_Message('Gauss points not in range 1-8') 
END SELECT 
END SUBROUTINE Gauss_coor 
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3.11   PROGRAM 3.1: CALCULATION OF SURFACE AREA 

We now have developed sufficient library subroutines for writing our first program. The 
program is intended to calculate the length or surface area of a boundary described by 
boundary elements. First we define the libraries of subroutines to be used. The names 
after the USE statement refer to the MODULE names in the source code which can be 
downloaded from the web. There are three types of libraries: 

 The Geometry_lib, which contains all the shape functions, derivative of the shape 
functions and the routines to compute the Jacobian and the outward normal. 

 The Utility_lib, which contains utility subroutines for computing, for example, vector 
ex-products, normalising vectors and printing error messages. 

 The Integration_lib, which contains Gauss point coordinates and weights. 
  
PROGRAM Compute_Area 
!-------------------------------------------- 
!   Program to compute the length/surface area 
!   of a line/surface modelled by boundary elements 
!--------------------------------- 
USE Geometry_lib ; USE Utility_lib ; USE Integration_lib 
IMPLICIT NONE 
INTEGER :: ldim,noelem,nelem,lnodes,maxnod,node,Cdim 
INTEGER,ALLOCATABLE :: inciG(:,:)! Incidences 
INTEGER,ALLOCATABLE :: inci(:)! Incidences one element 
REAL,ALLOCATABLE :: corG(:,:) ! Coordinates (all nodes) 
REAL,ALLOCATABLE :: cor(:,:)  ! Coordinates one element 
REAL,ALLOCATABLE :: v3(:)     ! Normal vector 
REAL :: Gcor(8),Wi(8) ! Gauss point coords and weights 
REAL :: Jac, xsi, eta, Area 
OPEN(UNIT=10,FILE='INPUT.DAT',STATUS='OLD') 
OPEN(UNIT=11,FILE='OUTPUT.DAT',STATUS='UNKNOWN') 
READ(10,*) ldim,lnodes,noelem,intord 
WRITE(11,*) ' Element dimension=',ldim 
WRITE(11,*) ' No. of elem.nodes=',lnodes 
WRITE(11,*) ' Number of elements=',noelem 
WRITE(11,*) ' Integration order =',intord 
Cdim= ldim+1    !Cartesian dimension 
ALLOCATE(v3(Cdim)) 
ALLOCATE(inciG(8,noelem))! Allocate global incid. Array 
DO nelem=1,noelem 
 READ(10,*) (inciG(n,nelem),n=1,lnodes) 
END DO 
maxnod= MAXVAL(inciG) 
ALLOCATE(corG(Cdim,0:maxnod)!Allocate array for coords 
corG(:,0)= 0.0!Node No 0 means node is missing  
DO node=1,maxnod 
 READ(10,*) (corG(i,node),i=1,Cdim) 
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END DO 
ALLOCATE(inci(lnodes),cor(Cdim,lnodes))   
CALL Gauss_coor(Gcor,Wi,Intord)! Gauss coordinates and weigths 
Area= 0.0 !   Start sum for area/length 
Element_loop: & 
DO nelem=1,noelem 
 inci=  inciG(:,nelem)!   Store incidences locally 
 cor= corG(:,inci)!   gather element coordinates 
 SELECT CASE (ldim) 
 CASE (1)!   One-dim. problem determine length 
 Gauss_loop:& 
 DO I=1,INTORD 
 xsi= Gcor(i) 
 CALL Normal_Jac(v3,Jac,xsi,eta,ldim,lnodes,inci,cor) 
 Area= Area + Jac*Wi(i) 
 END DO & 
 Gauss_loop 
 CASE (2)!   Two-dim. problem determine area 
 Gauss_loop1:& 
 DO I=1,INTORD 
 DO j=1,INTORD 
 xsi= Gcor(i) 
 eta= Gcor(j) 
 CALL Normal_Jac(v3,Jac,xsi,eta,ldim,lnodes,inci,cor) 
 Area= Area + Jac*Wi(i)*Wi(j) 
 END DO 
 END DO & 
 Gauss_loop1 
 CASE DEFAULT 
 END SELECT 
END DO & 
Element_loop 
IF(ldim == 1) THEN 
 WRITE(11,*) ' Length =',Area 
ELSE  
 WRITE(11,*) ' Area =',Area 
END IF 
END PROGRAM Compute_Area 

We define allocable arrays for storing the incidences of all elements, the incidences 
of one element, the coordinates of all node points, the coordinates of all nodes of one 
element and the vector normal to the surface. The dimensions of these arrays depend on 
the element dimension (one-dimensional, two-dimensional), the number of element 
nodes (linear/parabolic shape function) and the number of elements and nodes. The 
dimension of these arrays will be allocated once this information is known.  

The first executable statements read the information necessary to allocate the 
dynamic arrays and the integration order to be used for the example. Here we use two 
files INPUT.DAT and OUTPUT.DAT for input and output. The input file has to be 
created by the user before the program can be run. The FORMAT of inputting data is 
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free-field, that is, numbers can be separated by blanks. After reading the general 
information the incidences (connectivity) are read for all elements and stored in array 
InciG. While reading this information, we find the largest node number, information 
which we need for allocating the dimension for the array containing node coordinates 
and which we do next before reading the node coordinates. We make use of the new 
feature in F90, that allows the subscripts of an array to start with zero,  because a 
transition  element that has the midside node missing will have a node number of 0 in 
the incidences. We assign zero coordinates to node number 0. 

We loop over all elements describing the boundary. For each element we get the 
Gauss point coordinates and weightings, by a call to Gaus_coor, which correspond to the 
integration order Specified by Intord. We then add all the Gauss point contributions, i.e. 
the Jacobians computed (by a call to Normal_jac) for each Gauss point multiplied by 
the weighting. Note that there are two cases to be considered: for a one-dimensional 
case, that is, if we work out a length of a curve, only one DO LOOP is required. For 
two-dimensional cases, that is, when we work out surface areas, two nested DO LOOPS 
are required (see equation 3.66). 

3.12     CONCLUDING REMARKS 

In this chapter we have dealt with methods for describing the geometry of a problem and 
have concentrated on describing problem boundaries. The method consists of 
subdividing the boundary into small elements and is commonly known as discretisation. 
The concept of isoparametric elements was introduced, where we use interpolation 
functions to describe the boundary surface in terms of nodal values and the variation of 
known or unknown values. We have laid here the foundation for Chapter 6 (Boundary 
Element Methods), where we will use the concepts described. We find that, once we use 
this advanced discretisation method in the BEM, the analytical integration is no longer 
possible. Therefore, we have also introduced the Gauss Quadrature method of numerical 
integration, most commonly used in numerical work. For general purpose programs 
using the isoparametric concept, the accuracy of the numerical integration will be 
crucial. We have started here our process of building a Subroutine library which will be 
needed later. A small program has been written which we can use to test the subroutines 
and to do numerical experiments. 

3.13     EXERCISES 

Exercise 3.1 
Using program Compute_area calculate the length of a quarter circle using: 

(a) one linear element 
(b) two linear elements 
(c) one quadratic element 



66 The Boundary Element Method with Programming 

Determine the discretisation error. Use 2x2 integration. 

Exercise 3.2  
Using program Compute_area, calculate the area of a quarter circle using: 

(a) discretisation into one quadrilateral element, as shown in Figure 3.30 (a) 
(b) discretisation into three quadrilateral elements, as shown in Figure 3.30 (b) 

Plot the variation of the Jacobian over the element using the Gauss point values. 
Determine the discretisation error. 
 

Figure 3.30 Discretisations for determining the area of a quarter circle 

Figure 3.31 Discretisations for determining the surface area of  1/8 sphere 

 
Exercise 3.3. 
Using program Compute_area, calculate the area of 1/8 of a sphere using 

(a) discretisation into one quadrilateral element, as shown in Figure 3.31 (a) 
(b) discretisation into three quadrilateral elements as shown in Figure 3.31 (b) 

Plot the variation of the Jacobian over the element using the Gauss point values. 
Determine the discretisation error. 

  

(a) (b)

  

(a) (b) 
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4 
Material Modelling and 
Fundamental Solutions 

If you can measure what 
you are speaking about, and 

express it in numbers, you 
know something about it. 

Lord Kelvin 
 

4.1. INTRODUCTION 

In addition to specifying the geometry of the problem, it is necessary to describe the 
physical response of the material in a mathematical way. This is done by defining the 
response characteristics of an infinitesimally small portion of the solid. The constitutive 
law establishes a relationship between heat flow and the temperature gradient or 
between strain and stress. The constants in such relationships are characteristic values or 
properties of the material. We distinguish between material properties which are 
direction independent (isotropic material), and those which are dependent on direction 
(anisotropic material). Furthermore, there are problems where the same properties apply 
everywhere (homogeneous problems) and where properties change from location to 
location (non-homogeneous problems). 

In the material response we distinguish between linear and non-linear behaviour. For 
linear materials we can establish a unique (linear) relationship between stress/strain, 
temperature/heat flow or potential/fluid flow. For non-linear material behaviour, this 
relationship depends on the current state and can therefore only be written in incremental 
form. These problems are therefore dependent on the deformation (thermal) history. 

As outlined previously, for the boundary element method a solution of the governing 
equation has to be available. In nearly all cases, the solution is obtained for very simple 
loading conditions (point load or source) and for infinite or semi-infinite domains. In the 
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literature, these solutions are referred to as fundamental solutions, Green’s functions or 
Kernels. Obviously, these solutions can only be found for linear material behaviour and 
for a homogeneous domain.  

The fundamental solutions have to satisfy three conditions: 

 Constitutive law 
 Equilibrium or conservation of energy 
 Compatibility or continuity 

The last condition will be automatically satisfied for solutions which are continuous 
in the domain. In the following, we will first derive the governing differential equations 
and then present fundamental solutions for potential problems (heat flow and seepage) 
and for elasticity problems in two and three dimensions. 

4.2. STEADY STATE POTENTIAL PROBLEMS 

Heat conduction in solids and flow in porous media (seepage) are diffusion problems 
and can be treated concurrently, because they are governed by the same differential 
equation (Laplace). 

Steady state heat flux or fluid flow q per unit area is related to temperature or 
potential u by 

(4.1) 

where the negative sign is due to the fact that the flow is always from higher to lower 
temperature/potential. The flow vector is defined as: 

(4.2) 

The conductivity/pemeabilty tensor D is given by 

(4.3) 

where kxx etc, are conductivities measured in [W/°K-m] in the case of thermal problems 
and permeabilities measured in [m/sec], in the case of seepage problems. The 
coefficients in D represent flow values for unit values of temperature gradient or 
potential gradient. It can be shown that D has to be symmetric and positive definite. 
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The differential operator  for three-dimensional problems is defined as 

(4.4) 

and for two-dimensional problems 

(4.5) 

The conservation of energy condition states that the outflow must be equal to the 
inflow, plus any flow per unit volume, Q̂ , generated by a source. 

Figure 4.1 Heat flow in an infinitesimal cube 

For the infinitesimal cube in Figure 4.1 this gives the following 

(4.6) 
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After cancelling terms we obtain 

(4.7) 

Substituting the Fourier law for isotropic material (i.e., kxx= kyy= kzz= k and kxy= kxz= 
kyz=0) we obtain the governing differential equation for which we seek a fundamental 
solution. 

(4.8) 

The simplest solution we can find is that of a concentrated source at point P (source 
point) of magnitude one in an infinite homogeneous domain. This means that internal 
heat or flow generation only occurs at one point (P) in the domain and is zero elsewhere. 
The function describing this variation is also referred to a Dirac Delta function which is 
defined as 

(4.9) 

where Q is a point in the domain . Due to a unit point source at P the temperature or 
potential at point Q (field point) can be written for the three-dimensional case as 

(4.10) 

where 2 2 2( ) ( ) ( )Q P Q P Q Pr x x y y z z is the distance between source point 

and field point (Figure 4.2).  

Figure 4.2 Notation for fundamental solution (three-dimensional potential problems) 
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Figure 4.3 Variation of fundamental solution U (potential/temperature) in the x-y plane for 3-
D potential problems (source at origin of coordinate system) 

Figure 4.4 Variation of fundamental solution T for n = {1,0,0} (flow in x-direction) in x-y 
plane for 3-D potential problems 
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As we will see later, the flow in a direction normal to a boundary defined by a vector 
n is also required. For three-dimensional isotropic problems, the flow is computed by 

(4.11) 

The derivatives of U in the global directions are 

(4.12) 

where 

(4.13) 

Equation (4.11) can be rewritten as 

(4.14) 

where  is defined as the angle between the normal vector n and the distance vector r, 
i.e. 

(4.15) 

The variation of kernels U and T is plotted in Figures 4.3 and 4.4. It can be seen that 
both solutions decay very rapidly from the value of infinity at the source. Whereas the 
fundamental solution for U is symmetric with respect to polar coordinates, the solution 
for T with the vector n pointing in x-direction (thus meaning flow in x-direction) is 
antisymmetric. 

 For a two-dimensional problem, the source is assumed to be distributed along a line 
of infinite length from z = -  to z = +  and the fundamental solutions are given by 

(4.16) 

and 

(4.17) 

where 

(4.18) 
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Equation (4.16) can also be rewritten as 

(4.19) 

where  
 

(4.20) 

 Subroutines for the isotropic solutions are presented below.  

MODULE Laplace_lib 
REAL :: PI=3.14159265359 
CONTAINS 
  REAL FUNCTION U(r,k,Cdim) 
  !   Fundamental solution for Potential problems 
  !   Temperature/Potential isotropic material 
  REAL,INTENT(IN)     ::  r   !  Distance source and field point 
  REAL,INTENT(IN)     ::  k   !   Conducivity 
  INTEGER,INTENT(IN)  :: Cdim !   Cartesian dimension (2-D,3-D) 
  SELECT CASE (CDIM) 
     CASE (2)          !  Two-dimensional solution 
        U= 1.0/(2.0*Pi*k)*LOG(1/r) 
     CASE (3)          !  Three-dimensional solution 
        U= 1.0/(4.0*Pi*r*k) 
     CASE DEFAULT 
        U=0.0 
        WRITE (11,*)'Cdim not equal 2 or 3 in Function U(...)' 
  END SELECT 
  END FUNCTION U 
  REAL FUNCTION T(r,dxr,Vnorm,Cdim) 
 !   Fundamental solution for Potential problems 
 !   Flow, isotropic material 
 REAL,INTENT(IN)::       r   !   Distance source and field point 
 REAL,INTENT(IN)::   dxr(:)  !   r,x,r,y,r,z 
 REAL,INTENT(IN):: Vnorm(:)  !   Normal vector 
 INTEGER,INTENT(IN) ::  Cdim !   Cartesian dimension 
 SELECT CASE (Cdim) 
    CASE (2)           !  Two-dimensional solution 
      T= DOT_PRODUCT (Vnorm,dxr)/(2.0*Pi*r) 
    CASE (3)           !  Three-dimensional solution 
      T= DOT_PRODUCT (Vnorm,dxr)/(4.0*Pi*r*r) 
    CASE DEFAULT 
      T=0.0 
      WRITE (11,*)'Cdim not equal 2 or 3 in Function T(...)' 
 END SELECT 
 END FUNCTION T  
END MODULE Laplace_lib 
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For anisotropic problems the fundamental solutions have been presented by Bonnet1. 
For example, the solution for temperature/potential is given by 

(4.21) 

for two-dimensional problems and 
 

(4.22) 

for three-dimensional problems, where  

(4.23) 

For general anisotropy in three dimensions, D has 9 material parameters but, because 
of the property of symmetry, only 6 components need to be input. A special case of 
anisotropy exists where the material parameters are different in three orthogonal 
coordinate directions. This is known as orthotropic material. If these conductivities are 
defined in the direction of global coordinates, then all off-diagonal elements of D are 
zero. If we denote the conductivities in x,y and z-directions as k1, k2, k3 then 

(4.24) 

For this case the values in equation (4.23) are given by: 

(4.25) 

4.3. STATIC ELASTICITY PROBLEMS 

In solid mechanics applications, a relationship between stress and strain must be 
established. Stresses are forces per unit area inside a solid. They can be visualised by 
cutting the solid on planes parallel to the axes and by showing the traction vectors acting 
on these planes (in Figure 4.5).  
 
 

kr
Q,PU

4
1

r
ln

k
Q,PU 1

2
1

rDrD 1Tranddetk

3
2

1

00
00
00

k
k

k
D

3

2

2

2

1

2
321

111
k

r
k

r
k

rrandkkkk zyx



MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 77 

 
The traction vectors acting on the three planes are defined as: 

(4.26) 

The components of the traction vectors are also known as stress components.  

 
Figure 4.5 Tractions acting on the faces of an infinitesimal cube and stress components 

Using the condition for rotational equilibrium (  ; ; xy yx xz zx yz zy ) only 6 
unique traction components remain and may be put into a  pseudo stress-vector  
 
 

(4.27) 

In plane stress problems, such as in thin plates subject to in-plane loading, all stresses 
associated with the z direction are assumed to be zero, i.e., z = xz = yz = 0 . 
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The components of traction vector t acting on a general plane defined by a normal 

vector n {nx,ny,nz} that is not parallel to one of  the axis planes can be expressed in terms 
of stress components by (Figure 4.6) 
 

(4.28) 

 

Figure 4.6 Definition of traction vector acting on a general plane 
 
Infinitesimal strains are defined in terms of displacement components in the x, y, z 

directions (ux, uy, uz) by 
 

(4.29) 
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These can be put into a pseudo-vector  
 
 

(4.30) 

 
 
In matrix form this can be written as 

(4.31) 

where u is a vector of displacements 
 

(4.32) 

and B is a differential operator matrix  

(4.33) 

In some circumstances, simplifications can be made and certain strain components 
taken to be zero. A state of plane strain can be assumed, if the solid extends a long 
distance in the z-direction, the loading is uniform in this direction and uz = 0 everywhere. 
We then have z = xz = yz = 0. Another special case is a state of complete plane strain, 
in which derivatives in the z direction of all displacements are taken to be zero, but uz 
may be non-zero.  
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This gives 

(4.34) 

Complete plane strain can be split into the plane strain case already discussed and an 
antiplane strain or St Venant torsion component for which x = y = z = xy = 0 and 

(4.35) 

In complete plane strain it is possible to have shear strains and stresses acting in the 
z-direction. 

Figure 4.7 Transformation of stresses in two dimensions 

Sometimes it is necessary to compute the magnitudes of stress or strain in directions 
which do not coincide with the global axes. In this case a transformation of stress or 
strain is necessary. The transformation of local stresses acting on planes in the material 
parallel with the , ,x y z axes to global stresses  acting on cuts parallel with the x, y, z 
axes can be written as 

(4.36) 
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For the two-dimensional case, in which the local axes are defined by a rotation about 
the z-axis, T  is obtained by the two transformations shown in Figure 4.7 

(4.37) 

For the stress transformation in three-dimensional space it is convenient to refer to 
the components of unit vectors in the directions of the local axes (Figure 4.8).  

For example, we denote by 

(4.38) 

the unit vector in the direction of the x - axis.  

Figure 4.8 Definition of unit vectors for the transformation of stresses in 3-D 
 
Similarly, v2 and v3 are unit vectors along the y - and z - axes. In terms of these vector 
components, the matrix T  is written as 

(4.39) 
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(4.40) 

 
4.3.1 Constitutive equations 

The elastic material response is governed by Hooke’s law. For an isotropic material, this 
is in three dimensions 

(4.41) 

where E is the modulus of elasticity, v the Poisson’s ratio and G the shear modulus, 
given by 

(4.42) 
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Equation (4.41) can be conveniently written in matrix form 

(4.43) 

where matrix C is defined as 
 

(4.44) 

 
The inverse relationship can be defined by 

(4.45) 

 
where 
  

(4.46) 

 
with 

(4.47) 

A subroutine to compute the isotropic D-matrix is given below. 
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SUBROUTINE D_mat(E,ny,D,Cdim) 
!----------------------------------- 
!   Computes isotropic D-matrix 
!   Plane-strain (Cdim= 2) 
!   or 3-D       (Cdim= 3) 
!----------------------------------- 
REAL, INTENT(IN)   :: E      !  Young's modulus 
REAL, INTENT(IN)   :: ny     !  Poisson's ratio 
INTEGER,INTENT(IN) :: Cdim   !  Cartesian Dimension 
REAL, INTENT(OUT)  :: D(:,:) !  D-matrix 
REAL               :: c1,c2,G 
c1= E*(1.0-ny)/( (1.0+ny)*(1.0-2.0*ny) ) 
c2= ny/(1.0-ny) 
G = E/(2.0*(1.0+ny)) 
D = 0.0 
SELECT CASE (Cdim) 
CASE (2) 
 D(1,1)= 1.0  ; D(2,2)= 1.0 
 D(2,1)= c2   ; D(1,2)= c2 
 D(3,3)= G/c1 
CASE (3)         !    3-D 
 D(1,1)= 1.0  ;  D(2,2)= 1.0  ;  D(3,3)= 1.0 
 D(2,1)= c2   ;  D(1,3)= c2   ;  D(2,3)= c2 
 D(1,2)= c2   ;  D(3,1)= c2   ;  D(3,2)= c2 
 D(4,4)= G/c1 ;  D(5,5)= G/c1 ;  D(6,6)= G/c1 
CASE DEFAULT 
END SELECT 
D= c1*D 
RETURN 
END SUBROUTINE D_mat 

 
For a general anisotropic material, 21 material properties are required but it is usually 

not possible to determine these. However, special types of anisotropy may exist for the 
case where the material properties are different in orthogonal directions. We may have a 
laminate or stratified material where the material property is the same in two orthogonal 
directions but different in the third orthogonal direction (see Figure 4.9).  

Figure 4.9 Definition of stratified material 
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Examples of this are a stratified rock mass, or fibre reinforced plastics. For a 
stratified material the elastic properties are defined as: 

(4.48) 

For this case the D-matrix is  

(4.49) 

with 

(4.50) 

If the orthogonal directions are not in the directions of the Cartesian coordinates, then 
the following transformation of the D-matrix has to be made 

(4.51) 

where D' is defined in local coordinates.  

4.3.2 Fundamental solutions 

The governing differential equations are obtained from the condition of equilibrium. For 
two-dimensional problems these are 

(4.52) 

2

2

1

433

312

321

00000
00000
00000
000
000
000

G
G

G
CCC
CCC
CCC

D

0

0

y
yxy

x
xyx

b
yx

b
yx

TDTD T

1

1
1

2

1
2

211

22
14

123
2

212
2

21

12
  ;

211
1

11
EGand

E
En

n
EC;CC

CnC;CnnC;CnC

'' '
1 2

' ' '

' ' ' ' ' '
1 2

' ' ' ' ' '

' ''
1 2

' ' '

   ;   

   ;   

   ;   

yx z

x y z

x y z y z x

x y z y z x

y yx

x z z

E E

G G



86 The Boundary Element Method with Programming  

 
where bx and by are components of body force in x and y directions. 

 Substitution of the equations for strain (4.29) and the Hooke’s law for plane strain 
conditions gives 
 

(4.53) 

where  

(4.54) 

For the plane strain problem, the fundamental solution is obtained for point unit loads 
in x and y directions of magnitude 1, which are distributed to infinity in the +z and–z 
directions. The solution was first worked out by Lord Kelvin2.  

Figure 4.10 Notation for two-dimensional Kelvin solution (unit load in x-direction) 

The solutions for the displacements in x and y directions due to a unit load in x- 
direction can be written as (Figure 4.10) 
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Note that the first subscript of U refers to the direction of the unit load whereas the 
second relates to the direction of the displacement. 

We note that as the distance between source point P and field point Q approaches 
infinity the solution tends to negative infinity. This is due to the fact that the source is 
distributed along an infinite line and its resultant is infinite. As we will see later this 
does not present any difficulties because scaling is introduced for the coordinates which 
limit the maximum scaled distance to unity. The fundamental solution has a positive 
singularity when points P and Q coincide. 

Figure 4.11 Notation for two-dimensional Kelvin solution (unit load in y-direction) 

For a unit load in the y-direction we have  

(4.56) 

the second equation indicating the symmetry of the solution.  
Equations (4.55) und (4.56) can be written as a single equation as follows: 

(4.57) 

where x,y is substituted for i,j and 

(4.58) 

is the Kronecker Delta.  
For the boundary element method we also need the solutions for the boundary stresses 
(tractions) acting on a surface with an outward normal direction of n (see figure 4.10).  
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The fundamental solutions for the tractions are obtained by first computing the 
fundamental solutions for the strains and then applying Hooke’s law. The fundamental 
solutions for strains are obtained by taking the derivative of the displacement solution. 
The tractions at point Q due to a unit load at P in x-direction are given by 

(4.59) 

where is defined in Figure 4.10. 
For a unit load in the y-direction we have 
 

(4.60) 

The combined expression is 

(4.61) 

We note that the first part of the solution is symmetrical (i.e., the first part of Txy 
equals Txy) but the second part is not.  

For the three-dimensional problem, the fundamental solution is obtained for point 
loads in x ,y and z directions.  

Figure 4.12 Notation for three-dimensional Kelvin solution (point load in x direction) 
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The solutions for the displacements in x,y and z directions due to a unit load in x-

direction can be written as 
 

(4.62) 

Now the solution approaches zero, as the distance between source point P and field 
point Q tends to infinity. However, this solution also approaches an infinite value, as r 
tends to zero. This fact will pose some problems with integrating the fundamental 
solutions which we will address later. The solution for load in x,y,z directions can be 
written as a combined Equation 

(4.63) 

The solutions for stresses acting on a boundary surface with an outward normal 
direction of n (see figure 4.8) are presented next. 

The fundamental solutions for the tractions due to a unit load at P, in x-direction, are 

(4.64) 

with 

(4.65) 

The general solution for the tractions can be written as 
 

(4.66) 
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The Kelvin solutions for displacements are plotted in Figures 4.13 and 4.14. A small 
circle of exclusion is used to avoid plotting very high values near the singularity. The 
variation of the displacement in x-direction shows symmetry about the x- and y-axes. 
The variation of the displacements in y-direction shows anti-symmetry about both axes. 
The influence of the Poisson's ratio on the displacements perpendicular to the load axis 
can be clearly seen in Figure 4.14. Note that the finite element method has difficulty 
dealing with a Poisson's ratio of 0.5 (incompressible material) because of the definition 
of C1 in equation (4.47) which would give an infinite value for = 0.5.  

Figure 4.13 3-D Kelvin solution: variation of displacements in x-direction due to Px= 1.0 

Figure 4.15 shows the variation of the fundamental solution for the boundary traction 
in x-direction assuming that the vector normal to the boundary, n , points in the x-
direction (this means that the computed traction is equivalent to the stress in the x-
direction). We can see clearly that the fundamental solution is anti-symmetric about the 
y–axis and decays very rapidly from the singularity.  

To implement the above equations in F90 we define functions UK and TK which 
return rank two arrays of dimension 2 or 3. The function only provides solutions for 
plane strain and 3-D problems. To obtain the solutions for plane stress problems simply 
substitute an effective Poisson´s ration of )1( . 

x y

Uxx (P,Q)

Px= 1.0
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Figure 4.14 3-D Kelvin solution: variation of displacements in y-direction due to Px= 1.0 for 
Poissons ratio of 0.0 (left figure) and 0.5 (right figure) 

Figure 4.15 3-D Kelvin solution: variation of Txx for n ={1,0,0}. This is equivalent to x 

y

Uxy (P,Q)

Px= 1.0

x

= 0.0
= 0.5

x y
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FUNCTION UK(dxr,r,E,ny,Cdim) 
!-------------------------------------------- 
! 
!   FUNDAMENTAL SOLUTION FOR DISPLACEMENTS 
!   isotropic material (Kelvin solution) 
! 
!-------------------------------------------- 
IMPLICIT NONE 
REAL,INTENT(IN)   :: dxr(:)        !   r,x,r,y,r,z 
REAL,INTENT(IN)   :: r             !   r 
REAL,INTENT(IN)   :: E             !   Young's modulus 
REAL,INTENT(IN)   :: ny            !   eff. Poisson's ratio 
INTEGER,INTENT(IN):: Cdim          !   Cartesian dimension 
REAL:: UK(Cdim,Cdim)               !   Function returns array  
REAL:: G,c,c1,onr,clog,conr        !   Temps 
G= E/(2.0*(1+ny)) 
c1= 3.0 - 4.0*ny 
SELECT CASE (Cdim) 
CASE (2)       !     Plane strain solution 
 c= 1.0/(8.0*Pi*G*(1.0 - ny)) 
 clog= -c1*LOG(r) 
 UK(1,1)= c*(clog + dxr(1)*dxr(1)) 
 UK(2,2)= c*(clog + dxr(2)*dxr(2)) 
 UK(1,2)= c*dxr(1)*dxr(2) 
 UK(2,1)= UK(1,2) 
CASE(3)        !      Three-dimensional solution 
 c= 1.0/(16.0*Pi*G*(1.0 - ny)) 
 conr=c/r 
 UK(1,1)= conr*(c1 + dxr(1)*dxr(1)) 
 UK(2,2)= conr*(c1 + dxr(2)*dxr(2)) 
 UK(3,3)= conr*(c1 + dxr(3)*dxr(3)) 
 UK(1,2)= conr*dxr(1)*dxr(2) 
 UK(1,3)= conr*dxr(1)*dxr(3) 
 UK(2,1)= UK(1,2) 
 UK(2,3)= conr*dxr(2)*dxr(3) 
 UK(3,1)= UK(1,3) 
 UK(3,2)= UK(2,3) 
CASE DEFAULT 
END SELECT 
RETURN 
END FUNCTION UK 

 
Function TK requires one more parameter to be specified: the vector normal to the 

boundary (normal vector).  
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FUNCTION TK(dxr,r,Vnor,ny,Cdim) 
!-------------------------------------------- 
!   FUNDAMENTAL SOLUTION FOR TRACTIONS 
!   isotropic material (Kelvin solution) 
!-------------------------------------------- 
IMPLICIT NONE 
REAL,INTENT(IN) :: dxr(:)         !  r,x,r,y,r,z 
REAL,INTENT(IN) :: r              !  r 
REAL,INTENT(IN) :: Vnor(:)        !  normal vector 
REAL,INTENT(IN) :: ny             !  eff. Poisson's ratio 
INTEGER,INTENT(IN) :: Cdim           !  Cartesian dimension 
REAL :: TK(Cdim,Cdim)  !  Function returns 

array  
REAL :: c2,c3,costh,Conr !  Temps 
c3= 1.0 - 2.0*ny 
Costh= DOT_PRODUCT (Vnor,dxr) 
SELECT CASE (Cdim) 
CASE (2)          !    plane strain 
 c2= 1.0/(4.0*Pi*(1.0 - ny)) 
 Conr= c2/r 
 TK(1,1)= -(Conr*(C3 + 2.0*dxr(1)*dxr(1))*Costh) 
 TK(2,2)= -(Conr*(C3 + 2.0*dxr(2)*dxr(2))*Costh) 
 DO i=1,2 
 DO j=1,3 
  IF(i /= j) THEN 
 TK(i,j)= -(Conr*(2.0*dxr(i)*dxr(j)*Costh &  
          - c3*(Vnor(j)*dxr(i) - Vnor(i)*dxr(j)))) 
 END IF 
 END DO 
 END DO 
CASE(3)           !    Three-dimensional 
 c2= 1.0/(8.0*Pi*(1.0 - ny)) 
 Conr= c2/r**2 
 TK(1,1)= -Conr*(C3 + 3.0*dxr(1)*dxr(1))*Costh 
 TK(2,2)= -Conr*(C3 + 3.0*dxr(2)*dxr(2))*Costh 
 TK(3,3)= -Conr*(C3 + 3.0*dxr(3)*dxr(3))*Costh 
 DO i=1,3 
  DO j=1,3 
   IF(i /= j) THEN 
 TK(i,j)= -Conr*(3.0*dxr(i)*dxr(j)*Costh & 
            - c3*(Vnor(j)*dxr(i) - Vnor(i)*dxr(j)))  
   END IF 
 END DO 
 END DO 
CASE DEFAULT 
END SELECT 
END FUNCTION TK 
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Fundamental solutions for anisotropic material exist, but are rather complicated3. Further 
details are discussed in Chapter 18. 

4.4. CONCLUSIONS 

In this chapter we have dealt with the description of the material response in a 
mathematical way and have derived solutions for the equations governing the problem 
for simple loading. The solutions are for point sources, or loads, in an infinite domain. It 
has been shown that the implementation of these fundamental solutions into a F90 
function is fairly straightforward. A particular advantage of the new facilities in F90 is 
that two-and three-dimensional solutions can be implemented in one FUNCTION, with 
the parameter Cdim determining the dimensionality of the result.  

The Kelvin fundamental solution is not the only one which may be used for a 
boundary element analysis. Indeed, any solution may be used, including ones which 
satisfy some boundary conditions explicitly. For example, we may include the zero 
boundary traction conditions at the ground surface. Green’s functions for a point load in 
a semi-infinite domain have been worked out, for example, by Melan in two dimensions4 
and Mindlin in three dimensions5. Also Bonnet1 presents a solution for bonded half-
spaces where two different materials may be considered implicitly in the solution. The 
fundamental solutions just derived will form the basis for the methods discussed in the 
next chapter. 
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5. Mindlin R.D. (1936) Force at a point in the interior of a semi-infinite solid. Physics 
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5 
Boundary Integral Equations  

There is nothing more practical 
than a good theory 

 
I. Kant  

5.1 INTRODUCTION 

As explained previously, the basic idea of the boundary element method comes from 
Trefftz1, who suggested that in contrast to the method of Ritz, only functions satisfying 
the differential equations exactly should be used to approximate the solution inside the 
domain. If we use these functions it means, of course, that we only need to approximate 
the actual boundary conditions. This approach, therefore, has some considerable 
advantages: 
 
 The solutions obtained inside the domain satisfy the differential equations exactly, 

approximations (or errors) only occur due to the fact that boundary conditions are 
only satisfied approximately. 

 Since functions are defined globally, there is no need to subdivide the domain into 
elements. 

 The solutions also satisfy conditions at infinity, therefore, there is no problem dealing 
with infinite domains, where the FEM has to use mesh truncation or approximate 
infinite elements. 

 
The disadvantage is that we need solutions of differential equations to be as simple as 

possible, if we want to reduce computation time. The most suitable solutions are ones 
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involving concentrated sources or loads in infinite domains. As we know from the 
previous chapter, these solutions also have some rather nasty properties, such as 
singularities. The integration of these functions will require special consideration. 

The original method proposed by Trefftz is not suitable for writing general purpose 
programs as its accuracy is not satisfactory and, as will be seen later, convergence of the 
method cannot be assured. However, because of the inherent simplicity of the method, it 
serves well to explain some of the basic principles involved. Therefore, we will first 
introduce this method on a simple example in heat flow. 

However, we will actually develop our programs using the direct method, which gets 
its name from the fact that no fictitious source or forces need to be computed, as in the 
Trefftz method, but that unknowns at the boundary are obtained directly. In the 
development of the integral equations we will use the theorem of Betti, which is better 
known to engineers than the Greens theorem. 

5.2 TREFFTZ METHOD 

To introduce the Trefftz method let us look at a simple two-dimensional example in heat 
flow. Consider an infinite homogeneous domain having conductivity k, where heat (q0) 
flows only in the vertical (y) direction (Figure 5.1a).  

Figure 5.1 Heat flow in an infinite domain, case  (a)  and (b)  
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According to the Fourier law introduced in Chapter 4 we can write 

(5.1)  

 
Solving the differential equations for u, the temperature at a point Q with coordinates 

x,y is obtained as 

(5.2)  

If we assume the temperature at the centre of the circle to be zero, then C= 0. 
We now place a cylindrical isolator in the flow and compute how the flow pattern and 

temperature distribution changes. The isolator prevents flow to occur in a direction 
perpendicular to its boundary, which is computed by 

(5.3)  

Where n {nx , ny}is the vector normal to the boundary of the isolator (outward 
normal). Note that the positive direction of this vector is pointing from the infinite 
domain into the isolator. For the solution (5.2) just obtained, we find that this condition 
is not satisfied, because the flow in the direction normal to the isolator boundary 
(marked with a dotted line in Figure 5.1a) is computed as: 

(5.4)  

 If we want to find out how the isolator changes the flow/temperature distribution, 
then we can think of the problem as divided into two parts: the first being the trivial one, 
whose solution we just obtained, the second being one where the solution is obtained for 
the following boundary condition:  

(5.5)  

If the two solutions for the flow normal to the boundary of the isolator are added 
then: 

(5.6)  

i.e. the boundary condition that no flow occurs normal to the isolator is satisfied. The 
final solution for the temperature is therefore 

(5.7)  
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We now solve the boundary value problem (b) by the Trefftz method. To apply the 
Trefftz method, we quite arbitrarily select N points on the boundary of the isolator, 
where we wish to satisfy the boundary conditions, equation (5.5) and another set of 
points, where we apply fictitious sources. The reason these are called fictitious is that 
they are not actually present, but can be thought of as parameters of the global 
approximation functions. We have to be careful with the location of these points and this 
will be the major drawback of the method. The source points must be placed in such a 
way, that they do not influence the results. In our case, the best place is inside the 
isolator. Also, we must not place points P too close to the boundary points Q, because, 
as we know, when P approaches Q, the fundamental solutions become singular. In 
Figure 5.2 we show an example of the choice of locations for load points Pi and 
boundary points Qi. We place points Q at quarter points on the boundary of the isolator, 
with radius RQ and points P at a circle, with radius RP inside the isolator. 

Figure 5.2  Points P for fictitious loads and Q, where boundary conditions are to be satisfied 

In the Trefftz method, we attempt to satisfy the given boundary conditions, by 
adjusting the magnitude of the fictitious sources Fi applied at Pi. Noting that the 
fundamental solutions for the flow in direction n, which we derived in the last chapter, is 
T(P,Q), the boundary condition at point Q1 can be satisfied by 

(5.8)  

Here T(Pi ,Q1) is the flow in direction n(Q1) at point Q1 due to a source at Pi. This is 
also sometimes referred to as an influence coefficient. We can now write a similar 
equation for each boundary point Qi, a total of 8 equations: 

(5.9)  
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We obtain a system of simultaneous equations, which we can solve for unknown 
fictitious sources Fi. Obviously, the number of fictitious sources depends on the number 
of equations we can write and hence, on the number of boundary points Qi. It is 
convenient, therefore, to have the same number of source points as we have field points. 
Once we have solved the system of simultaneous equations and calculated the fictitious 
sources Fi,, then the temperature at any point Q on the boundary of the isolator and in the 
domain (but outside the isolator) is given by 

(5.10)  

The flow at a point Q in x and y-directions may be obtained by 

(5.11)  

5.3 PROGRAM 5.1: FLOW AROUND CYLINDER, 
TREFFTZ METHOD 

The program shown here allows us to numerically solve the problem of flow around a 
cylinder, with a variable number of source points and this allows the reader to get a 
better understanding of the Trefftz method and its limitations. We activate the 
Laplace_lib, which contains the fundamental solutions of the Laplace equation 
governing our problem and the Utility_lib containing the subroutine for solving 
equations by the USE statement. Next, we read some information about the problem, 
such as heat inflow, conductivity, number of source/boundary points and radius of the 
cylinder. We finally, quite arbitrarily, specify that the source points are located on a 
circle with radius Rp, which has to be smaller than the radius of the cylinder. We can 
later do numerical experiments on the effect of distance between source and boundary 
points on accuracy of results. Since the size of the arrays for storing the equation system 
is dependent on the number of source points specified, we allocate them at run time. 
Next, we loop over all boundary points (DO loop Field_points) and all source points 
(DO loop Source_points) to generate the matrix of influence coefficients and the right 
hand side. The points Q and P are assumed to be equally distributed over the circle. The 
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system of equations is solved next with utility program SOLVE. The values of 
temperature are computed at boundary points and interior points, the coordinates of 
which are specified by the input. Both involve a summation of influences (i.e., 
fundamental solutions multiplied with the fictitious source intensities). 
 
PROGRAM Trefftz 
!--------------------------------- 
!   Program to compute the heat flow past a cylindrical isolator 
!   in a 2-D infinite domain using the Trefftz method 
!--------------------------------- 
USE Laplace_lib ; USE Utility_lib  
IMPLICIT NONE                     ! declare all variables 
REAL             ::  q                ! inflow/outflow 
REAL             ::  k                ! Thermal conductivity 
INTEGER          ::  npnts            ! Number of points P,Q 
REAL             ::  rq               ! radius of isolator 
REAL             ::  rp               ! radius of source points 
REAL(KIND=8),ALLOCATABLE ::  Lhs(:,:) ! left hand side 
REAL(KIND=8),ALLOCATABLE ::  Rhs(:)   ! right hand side 
REAL(KIND=8),ALLOCATABLE ::  F(:)     ! fictitious sources  
REAL             ::  dxr(2)           ! r,x, r,y 
REAL             ::  vnorm(2)         ! normal vector 
REAL             ::  Delth,Thetq,Thetp,xq,yq,xp,yp,xi,yi,r,uq 
INTEGER          ::  npq,npp,ninpts,nin 
OPEN(UNIT=10,FILE='INPUT.DAT',STATUS='OLD',ACTION='READ') 
OPEN(UNIT=11,FILE='OUTPUT.DAT',STATUS='UNKNOWN',ACTION='WRITE') 
READ(10,*) q,k,npnts,rq,rp 
WRITE(11,*) ' Program 2: heat flow past a cylinder Trefftz 
method' 
WRITE(11,*) '  Heat inflow/outflow=  ',q 
WRITE(11,*) '  Thermal conductivity= ',k 
WRITE(11,*) '  Number of Points P,Q= ',npnts 
WRITE(11,*) '  Radius of Isolator=   ',rq 
WRITE(11,*) '  Radius of Sources =   ',rp 
ALLOCATE (Lhs(npnts,npnts),Rhs(npnts),F(npnts)) !  
Delth= 2*Pi/npnts ! increment in angle theta between points  
Thetq= Pi/2.0     ! angle theta to first field point Q1 
Field_points: & 
DO npq= 1,npnts 
   Rhs(npq)= q * SIN(Thetq)    ! right hand side 
   xq= rq*COS(Thetq)           ! x-coordinate of field point 
   yq= rq*SIN(Thetq)           ! y-coordinate of field point 
   vnorm(1)= -COS(Thetq)       ! normal vector to Q 
   vnorm(2)= -SIN(Thetq) 
   Thetq= Thetq + Delth        ! angle to next field point Q 
   Thetp= Pi/2.0               ! angle to first source point P1 
   Source_points:  & 
   DO npp= 1,npnts 
      xp= rp*COS(Thetp)        ! x-coordinate of source point 
      yp= rp*SIN(Thetp)        ! y-coordinate of source point 
      dxr(1)= xp-xq 
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      dxr(2)= yp-yq 
      r= SQRT(dxr(1)**2 + dxr(2)**2)   ! dist. field/source pnt 
      dxr= dxr/r                       ! normalise vector dxr 
      Lhs(npq,npp)= T(r,dxr,vnorm,2)   !  
      Thetp= Thetp + Delth         ! angle to next point P 

END DO  & 
Source_points 

END DO & 
Field_points 
Lhs= - Lhs   !Multiplication with “–“ to avoid negative pivots 
Rhs= - Rhs   !  
!  Solve system of equations: calculate F out of Lhs and Rhs 
CALL Solve(Lhs,Rhs,F) 
!   Postprocessing - Boundary values of temperature 
WRITE(11,*)  '' 
WRITE(11,*)  'Temperatures at Boundary points:' 
Thetq= Pi/2.0  ! angle to first field point Q1 
Field_points1: & 
DO npq= 1,npnts 
   uq= 0.0 
   xq= rq*COS(Thetq)           ! x-coordinate of field point 
   yq= rq*SIN(Thetq)           ! y-coordinate of field point 
   Thetq= Thetq + Delth        ! angle to next field point Q 
   Thetp= Pi/2.0               ! angle to first source point P1 
   Source_points1: & 
   DO npp= 1,npnts 
     xp= rp*COS(Thetp)         ! x-coordinate of source point 
     yp= rp*SIN(Thetp)         ! y-coordinate of source point 
     dxr(1)= xp-xq 
     dxr(2)= yp-yq 
     r= SQRT(dxr(1)**2 + dxr(2)**2)  
     uq= uq + U(r,k,2)*F(npp)  
     Thetp= Thetp + Delth      ! angle to next source point P 
   END DO & 
   Source_points1 
   uq=uq-q/k*yq 
   WRITE(11,*) 'Temperature at field point',npq,' =',uq 
 END DO  & 
 Field_points1 
 !   Postprocessing - Interior points 
 WRITE(11,*)  '' 
 WRITE(11,*)  'Temperatures at interior points:' 
 READ(10,*) ninpts             ! read number of interior points 
 Int_points:  & 
 DO nin= 1,ninpts 
    READ(10,*) xi,yi           ! coordinates of interior points 
    uq= 0.0 
    Thetp= Pi/2.0              ! angle to first source point P1 
    Source_points2:  & 
    DO npp= 1,npnts 
       xp= rp*COS(Thetp)       ! x-coordinate of source point 
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       yp= rp*SIN(Thetp)       ! y-coordinate of source point  
  dxr(1)= xp-xi 
 dxr(2)= yp-yi 
 r= SQRT(dxr(1)**2 + dxr(2)**2) 
 uq= uq + U(r,k,2)*F(npp)      
     Thetp= Thetp + Delth    ! angle to next source point P 
    END DO & 
    Source_points2     
   uq=uq-q/k*yi 
    WRITE(11,*) 'Temperature at x=',xi,', y=',yi,' =',uq 
 END DO & 
 Int_points 
 STOP 
END PROGRAM Trefftz 

 
 

INPUT DATA for program Trefftz 
 

1.0    Problem specification 
q,k, npnts, rq,rp  q  …  Heat inflow 

 k  …  Thermal conductivity 
npnts  …  Number of points P,Q 
rq  …  Radius of isolator 
rp  …  Radius of sources 
 

2.0 Interior point specification 
Npoints                                                 Number of interior points     
 

3.0 Interior point coordinates (Npoints cards) 
x,y                                                        x,y  coordinates of interior points 

 

5.3.1 Sample input and output 

Here we show an example of the input for an isolator of radius 1.0 with 32 points P and 
Q, where the source points P are situated along a circle with a radius 0.7. 
 
File INPUT.DAT    
1.0 1.0 32 1.0 0.7 
18 
0. -5. 
0. -4.5 
0. -4. 
0. -3.5 
0. -3. 
0. -2.5 
0. -2. 
0. -1.5 
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0. -1. 
0. 1. 
0. 1.5 
0. 2. 
0. 2.5 
0. 3. 
0. 3.5 
0. 4. 
0. 4.5 
0. 5. 

 
File OUTPUT.DAT 
Program 2 : heat flow past a cylinder with Trefftz method 
Heat inflow/outflow=       1.00000     
Thermal conductivity=      1.00000     
Number of Points P,Q=            32 
Radius of Isolator=        1.00000     
Radius of Sources =       0.700000     
 
Temperatures at Boundary points: 
Temperature at field point           1 =   -1.99996     
…. 
Temperature at field point          32 =   -1.96546     
 
Temperatures at interior points: 
Temperature at x=   0.000000    , y=   -5.00000     =    5.19999  
….    
Temperature at x=   0.000000    , y=    5.00000     =   -5.19999 

 

  
Figure 5.3 Plot of error in computing the temperature versus the number of points P 
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The error in the computation of the temperature at the top of the circular isolator 
(point Q1) is  plotted in Figure 5.3. It can be seen that very accurate results can be 
obtained with 24 elements. 

5.4 DIRECT METHOD 

As we have seen from the simple example, the Trefftz method is not suitable for general 
purpose programming. The method is not very user-friendly because, in addition to 
specifying points where boundary conditions are to be satisfied, we have to specify a 
second set of points where fictitious forces are to be applied. This is certainly not 
acceptable, especially if we want to go into three-dimensional problems. In addition, the 
convergence of the method can not be guaranteed for a general case as the number of 
points Q and P are increased. 

5.4.1 Theorem of Betti and integral equations  

An alternative to the Trefftz method is the direct method. Here we use the well known 
Betti theorem, rather elegantly to get rid of the need to compute fictitious sources or 
forces. We also abolish the need for an additional set of points, by placing the source 
points P to coincide with field points Q.  

Figure 5.4 Application of Betti's theorem, tractions of load case 1 and displacements of load 
case 2 for computing W12 

 

Load case 2 Load case 1 
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This means that the method will become more complicated than Trefftz’s, because 
we will now have to solve a set of integral equations and to cope with integrals, which 
are singular. The direct method, however, is much more user-friendly than Trefftz’s 
method and has the advantage that convergence can be guaranteed. We explain the 
direct method with an example in elasticity, as engineers associate the Betti theorem 
with that type of problem. However, we will see that the integral equations can be 
derived for potential problems in a similar way.  

Consider an infinite domain with two types of ‘loading’: load case number 1 we 
assume to be the case we want to solve and load case number 2, a case where only a unit 
load in the x-direction is specified at a point P (see Figure 5.4). Along a dotted line we 
show for load case 1 the stresses defined as forces per unit length of the line (dS). These 
are the tractions at point Q, with components tx(Q) and ty(Q). For load case 2, we show 
the displacements at point Q on S, which are the fundamental solutions Uxx (P,Q) and 
Uxy(P,Q).  

As already mentioned in Chapter 4, we must cut through the continuum to show 
stresses. Here we cut along a dotted line, which forms a closed contour and which has 
been chosen quite arbitrarily. By this cut, the continuum is divided into two parts: the 
interior and exterior domains. Note that for the following derivation it does not matter 
which domain is considered and, therefore, the integral equations are valid for infinite as 
well as finite domains.  

Figure 5.5 Application of Betti's theorem, displacements of load case 1 and tractions for load 
case 2 for computing W21 

The theorem of Betti states that the work done by the load of case 1 along the 
displacements of case 2 must equal the work done by the loads of case 2 along the 
displacements of case 1. 

Px= 1 
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If we assume that there are no body forces acting in the domain (these will be 
introduced later), the work done by the first set of tractions and displacements is (Fig 
5.4) 

(5.12)  

The work done by the second set of tractions/forces and displacements is (Fig 5.5) 

(5.13)  

The theorem of Betti states that W12 = W21 and this gives the first integral equation 
 

(5.14)  

 
A second integral equation can be obtained by placing the unit load in y direction 

(5.15)  

  
 

Using matrix algebra we can combine equations (5.14) and (5.15) 

(5.16)  

where 

(5.17)  

Equations (5.16) represent for the two-dimensional problem discussed here a system 
of two integral equations which relate tractions t and displacements u at the boundary 
directly, thereby removing the need to compute fictitious forces.  
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For three-dimensional problems, three integral equations (5.15) can be obtained 
where S is a surface and 
 

(5.18)  

 

(5.19)  

It can be shown that the Betti theorem can also be arrived at in a mathematical way, 
by using the divergence theorem and Green's symmetric identity2. Using this more 
general mathematical approach, it can be shown that for potential problems, the 
following single integral equation is obtained 

(5.20)  

where u(Q) and t(Q) are the temperature/potential and the normal derivative respectively 
at point Q on S, and U(P,Q) and T(P,Q) are the fundamental solutions at Q for a source 
at point P. The integration is carried out over a line S for two-dimensional problems or a 
surface S for three-dimensional problems. 

5.4.2 Limiting values of integrals as P coincides with Q 

We have now succeeded to avoid computing the fictitious forces but have not succeeded 
yet in making the method more user-friendly since, we still need two sets of points: 
points P where the unit sources/loads are applied and points Q where we have to satisfy 
boundary conditions. Ideally, we would like to have only one set of points on the line 
where the points Q are specified. The problem is that some integrals in (5.16) or (5.20) 
only exist in the sense of a limiting value as P approaches Q.  

This is explained in Figure 5.6 for two-dimensional potential problems. Here, we 
examine what happens when points P and Q coincide. We define a region of exclusion 
around point P, with radius and integrate around it. The integrals in equation (5.20) 
can now be split up into integrals over S-S , that is, the part of the curve without the 
exclusion zone and into integrals over s  , that is, the part of the circular exclusion. As 

is taken to zero it does not matter if we integrate over s  or S . The right hand side of 
equation (5.20) is written as:  

(5.21)  
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 We examine the integrals over s  further. For a smooth surface at P, using polar 
coordinates, as shown, we change the integration limits of the first integral to 0 and  
and substitute for the fundamental solution U. Furthermore, as in the limit P will be 
coincident with Q, we can assume t(Q)=t(P) and u(Q)= u(P). Then we have  

(5.22)  

Figure 5.6 Diagram explaining the limiting value of integrals for two-dimensional potential 
problems 

The integral approaches zero as  approaches zero. Therefore 

(5.23)  

 The second integral becomes 

(5.24)  

As  cancels out we do not have to take the limiting value of this integral. The 
integral equation that has to be used for the case where the source points are located on 
the continuous line S, is given by 

(5.25)  
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For a three-dimensional problem, we take the zone of exclusion to be a sphere, as 
shown in Figure 5.7.  

Figure 5.7 Computation of integrals for the case that P=Q, three-dimensional case 

In this case the first integral also approaches zero as approaches zero. The second 
integral can be computed as 

(5.26)  

which for smooth surfaces gives the same result as before. Obviously, the same limiting 
procedure can be made for elasticity problems. If P=Q the integral equation (5.16) can 
be rewritten as 

(5.27)  

If the boundary is not smooth but has a corner, as shown in Figure 5.8, then equation 
(5.24) has to be modified. The integration limits are changed and now depend on the 
angle  : 

(5.28)  

A more general integral equation can be written for potential problems 

(5.29)  
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The reader may verify that  

(5.30)  

where  is defined as the angle subtended at P by s . 

Figure 5.8 Limiting value of integral when P is located on a corner  

For two and three-dimensional elasticity problems we may write a more general form 
of equation (5.25)  

(5.31)  

where c is as previously defined and I is a 2x2 or 3x3 unit matrix. 

5.4.3 Solution of integral equations 

Using the direct method, a set of integral equations has been produced that relates the 
temperature/potential to the normal gradient, or the displacement to the traction at any 
point Q on the boundary. Since we are now able to place the source points coincidental 
with the points where the boundary conditions are to be satisfied, we no longer need to 
be concerned about these points. Indeed, in the direct method, the fictitious sources no 
longer play a role. 

To use integral equations for the solution of boundary value problems we consider 
only one of the two regions created by cutting along the dotted line in Figure 5.4: the 
interior or the exterior region, as shown in Figure 5.9. With respect to the integral 
equations, the only difference between them is the direction of the outward normal n, 
which is assumed to point away from the solid. The interior region is a finite region, the 
exterior an infinite region. 
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Figure 5.9 Exterior and interior regions obtained by separating the domain along dotted line 

For potential problems, we obtain one integral equation per source point P. For 
elasticity problems, we get two or three integral equations per source point, depending 
on the dimensionality of the problem. Theoretically, if we want to satisfy the boundary 
conditions exactly at all points on the boundary, we would need an infinite number of 
points P=Q. In practice, we will solve the integral equations numerically and attempt to 
either satisfy the boundary conditions at a limited number of points Q, or specify that 
some norm of the error in satisfaction of the boundary conditions is a minimum.  

For a boundary value problem, either u or t is specified and the other is the unknown 
to be determined by solving the integral equations. The boundary condition where 
potential u or displacement u is specified, is also known as the Dirichlet boundary 
condition, whereas the specification of flow t or traction t is referred to as a Neuman 
boundary condition.  

Before we deal with the numerical solution of the integral equations, we must discuss 
the integrals a little further. As indicated, limiting values of the integrals have to be 
taken, as the region of exclusion around point P is reduced to zero. 

The fundamental solutions or kernels of integrals T and U have different types of 
singularities, which affect this limiting process. The kernel U varies according to lnr in 
two dimensions and with 1/r in three dimensions and is known as weakly singular. As 
we see later, the integration of this function poses no great problems. Kernel T has a 1/r 
singularity in two dimensions and a 1/r2 singularity in three dimensions. This is also 
known as strongly singular. The integral of this function only exists in the sense of a 
Cauchy principal value. We will discuss this further in the chapter on numerical 
implementation. In the simplest case, we may solve the integral equations by dividing 
the boundary for two-dimensional problems into straight line segments over which the 
values of u and t are assumed to be constant. We assume points P to be located at the 
centre of each segment. 
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Figure 5.10 Solution of integral equations by linear segments 

In the example shown in Fig 5.10 we assume the solution of a two-dimensional 
potential problem with eight segments, where either u or t is specified on the boundary. 
We see that this very simple discretisation into constant elements violates the continuity 
conditions between elements. However, we will see by numerical experiments, that the 
method converges, that is, exact results are obtained, as the number of elements tends to 
infinity. The integrals can now be evaluated over each element separately and the 
contributions added, that is, equation (5.25) can be re-written as eight equations 

(5.32)  

Where ue and te is the temperature and flow at the centre of element e. Note that as 
there is a smooth surface at the centres of the elements (at points Pi) c is assigned 1/2. 
The integrals over the segments are defined as 

(5.33)  

 
Using matrix notation, equation (5.32) can be written as 
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where 

(5.35)  

and 

(5.36)  

Figure 5.11 Discretisation into linear elements for problem of flow past cylinder 

If we consider the solution of the heat flow problem, which we solved by the Trefftz 
method, then we have a problem where flow {t}0 is specified at the boundary and 
temperatures are unknown (Figure 5.11).  
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This means that the system of equations can be written 

(5.37)  

where vector {t}0 is given by 

(5.38)  

The integrals which have to be evaluated analytically are 

(5.39)  

The integrals can be evaluated using a local coordinate system ,x y through point P 
and polar coordinates, as shown3 in Figure 5.12 where is defined anticlockwise from a 
line perpendicular to the element e with start node A and end node B.  

The angle  is computed as follows: a unit vector from A to B is defined as:  

(5.40)  

The vector normal to element n is computed by taking the vector x-product of VAB  
with the z-axis. This gives  

(5.41)  

The cosine and sine of  are then computed by 
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can be computed by 

(5.44)  

The first integral is evaluated as: 

(5.45)   

Figure 5.12 Polar coordinate system used for the analytic evaluation of integral Ti
e 

 
If Pi is at the centre of element e then we have to take the Cauchy principal value of 

the integral. As shown in Figure 5.13, the integration is carried out over the region of 
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Figure 4.4 we obtain 0i
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where r= h/cos  has been substituted 

Figure 5.13 Cauchy principal value computation as Pi approaches the centre of element e 

.  
For programming purposes, it is convenient to write this expression in terms of r and   

(5.47)  

If Pi is at the centre of element e of length L then we have  

(5.48)  

and the diagonal coefficient is computed as 

(5.49)  

5.5 COMPUTATION OF RESULTS INSIDE THE DOMAIN 

The solution of the integral equation only provides values of u and t on the boundary of 
the domain. Since we have defined global shape functions in the form of fundamental 
solutions, the results at any point inside the domain can be readily computed. In contrast 
to the FEM, where results at all nodes or Gauss points are computed as part of the 
solution, we compute the interior results as a post-processing exercise. To compute, for 
example, the temperature/potential at a point Pa inside the domain, we simply rewrite 
equation (5.20) 
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or in discretised form using line segments 

(5.51)  

where 

(5.52)  

The flows at Pa in x- and y-directions are computed by taking derivatives of (5.50) 

(5.53)  

where the derivatives of U have been presented previously and the derivatives of T are 
given for two-dimensional problems as 

(5.54)  

For constant boundary elements, equation (5.53) can be replaced by 
 
 

(5.55)  

where the integrals  
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8

1

8

1 e

e
a

e

e

e
a

e
a t)P(Uu)P(TPu

ee S
ea

e

S
ea

e )Q(dS)Q,P(UU,)Q(dS)Q,P(TT

S
a

S
aaay

S
a

S
aaax

QdSQ,P
y
TQuQdSQ,P

y
UQtkP

y
ukPq

QdSQ,P
x
TQuQdSQ,P

x
UQtkP

x
ukPq

x y

x y

T U Un n
x x x y

T U Un n
y y x y

E

e

E

e

ee
ya

ee
yaay

E

e

E

e

ee
xa

ee
xaax

uRtSkPq

uRtSkPq

1 1

1 1

ee

ee

S
a

e
ya

S
a

e
xa

S
a

e
ya

S
a

e
xa

QdSQP
y
TRQdSQP

x
TR

QdSQP
y
USQdSQP

x
US

,;,

,;,



118 The Boundary Element Method with Programming 

Using the notation in Figure 5.12 with node Pi replaced by Pa we can evaluate the 
integrals analytically in terms of the local coordinates ,x y . 

(5.57)  

The contribution of element e to the flux in ,x y -direction is given as: 

(5.58)  

This has to be transformed into global directions x,y by 

(5.59)  

where nx ,ny are the components of the vector normal to element e. 
The final fluxes are computed by summing all element contributions 

(5.60)  

5.6 PROGRAM 5.2: FLOW AROUND CYLINDER,  
DIRECT METHOD 

We can now write a computer program for the solution of the flow around a cylinder 
problem, which was previously solved with the Trefftz method. The input section of the 
program is very similar to Program 5.1, except that no source points have to be 
specified. The circle is divided into nseg straight line segments. At the centre of each 
segment the boundary condition t0 is specified. The coefficient matrices, equation (5.35), 
are set up with the results of the analytical integration, as computed in section 5.4.3. In 
setting up the coefficient matrices we distinguish between diagonal and off-diagonal 
coefficients.  The diagonal coefficients are computed for the case where points Pi are 
coincidental with the centre of the segment (also sometimes called self effects).  
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PROGRAM Direct_Method 
!--------------------------------- 
!   Program to compute the heat flow  past a cylindrical  
!   isolator in an 2-D infinite domain using the direct BE  
!   method with constant line segments 
!--------------------------------- 
USE Utility_lib             !   subroutine to solve equations 
REAL          ::  q         !   inflow/outflow 
REAL          ::  k         !   Thermal conductivity 
INTEGER       ::  nseg      !   Number of segments 
REAL          ::  rq        !   radius of isolator (inner) 
REAL          ::  rqo       !   radius of isolator (outer) 
REAL(KIND=8),ALLOCATABLE :: Lhs(:,:) ! [DT] 
REAL(KIND=8),ALLOCATABLE :: F(:)  ! {F} 
REAL(KIND=8),ALLOCATABLE :: u(:)  ! Temp at segment centers 
REAL,ALLOCATABLE :: Rhs(:,:)      ! [DU] 
REAL,ALLOCATABLE :: t0(:)         !   Applied flows 
REAL,ALLOCATABLE :: xA(:,:),xB(:,:)  !   Start/end coords of seg 
REAL,ALLOCATABLE :: xS(:,:)          !   Coords of points Pi 
REAL,ALLOCATABLE :: Ve(:,:),Vn(:,:)  !  Vectors A-B and n 
REAL :: vrA(2),vrB(2)   !  Vectors to point A and B of seg 
REAL :: lens            !  Length of segment 
C= 0.5/Pi 
OPEN(UNIT=10,FILE='INPUT.DAT',STATUS='OLD',ACTION='READ') 
OPEN(UNIT=11,FILE='OUTPUT.DAT',STATUS='UNKNOWN',ACTION='WRITE') 
READ(10,*) q,k,nseg,rq 
WRITE(11,*) 'Heat flow past a cylinder (direct BE method)' 
WRITE(11,*) 'Input values:' 
WRITE(11,*) ' Heat inflow/outflow= ',q 
WRITE(11,*) ' Thermal conductivity=',k 
WRITE(11,*) ' Radius of Isolator=  ',rq 
WRITE(11,*) ' Number of segments=  ',nseg 
ALLOCATE (Lhs(nseg,nseg),Rhs(nseg,nseg),F(nseg)) 
ALLOCATE (xA(2,nseg),xB(2,nseg),t0(nseg),u(nseg)) 
ALLOCATE (xS(2,nseg),ve(2,nseg),vn(2,nseg)) 
C1=0.5/(Pi*k) 
Delth= 2.0*Pi/nseg     !     increment in angle theta 
rqo=rq/COS(Delth/2.0)  !     outer radius of isolator 
Thet= (Pi-Delth)/2.0 
!   Compute start/end  coordinates of segments 
xA(1,1)= rqo*COS(Thet) 
xA(2,1)= rqo*SIN(Thet) 
Segments: & 
DO ns= 1,nseg-1 
 Thet= Thet + Delth 
 xB(1,ns)= rqo*COS(Thet) 
 xB(2,ns)= rqo*SIN(Thet)  
xA(1,ns+1)= xB(1,ns)  
xA(2,ns+1)= xB(2,ns) 
END DO & 
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Segments 
xB(1,nseg)= xA(1,1) 
xB(2,nseg)= xA(2,1) 
!   Compute centre coordinates of segments (coll. point coords) 
Segments1: & 
DO ns= 1,nseg 
 xS(1,ns)= (xB(1,ns) + xA(1,ns))/2.0 
 xS(2,ns)= (xB(2,ns) + xA(2,ns))/2.0 
END DO & 
Segments1 
!   Compute applied tractions at centers of elements 
Thet= Pi/2.0 
Segments2: & 
DO ns= 1,nseg 
 t0(ns)= q*SIN(Thet) 
 Thet= Thet + Delth 
END DO  & 
Segments2 
!    Assemble matrices DT and DU 
Segments3: & 
DO ns=1,nseg 
lens= dist(xA(:,ns),xB(:,ns),2) 
!    Vector parallel and normal to segment A-B 
dx= xA(1,ns) - xB(1,ns) 
dy= xA(2,ns) - xB(2,ns) 
ve(1,ns)= dx/lens 
ve(2,ns)= dy/lens 
vn(1,ns)= ve(2,ns) 
vn(2,ns)=-ve(1,ns) 
Points_Pi: & 
DO np=1,nseg 
rA= Dist(xA(:,ns),xS(:,np),2) 
rB= Dist(xB(:,ns),xS(:,np),2) 
vrA(1)= xA(1,ns)- xS(1,np) 
vrA(2)= xA(2,ns)- xS(2,np) 
vrB(1)= xB(1,ns)- xS(1,np) 
vrB(2)= xB(2,ns)- xS(2,np) 
COSThA= DOT_PRODUCT(vn(:,ns),vrA)/rA 
COSThB= DOT_PRODUCT(vn(:,ns),vrB)/rB 
SINThA= DOT_PRODUCT(ve(:,ns),vrA)/rA 
SINThB= DOT_PRODUCT(ve(:,ns),vrB)/rB 
ThetA= ACOS(COSThA)*SIGN(1.0,SinThA) 
ThetB= ACOS(COSThB)*SIGN(1.0,SinThB) 
IF(np == ns) THEN         ! Diagonal coefficients 
Lhs(np,np)=  0.5 
Rhs(np,np)= lens*C1*(LOG(lens/2.0)-1.0) 

ELSE                      ! off-diagonal coeff. 
Lhs(np,ns)= C*(ThetB-ThetA) 
Rhs(np,ns)= C1*(rB*SINThB*(LOG(rB)-1)+ThetB*rB*COSThB & 
              - rA*SINThA*(LOG(rA)-1)-ThetA*rA*COSThA) 
END IF 
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END DO  & 
Points_Pi 
END DO & 
Segments3 
F= MATMUL(Rhs,t0)    !    compute right hand side vector 
CALL Solve(Lhs,F,u)  !    solve system of equations 
!    output computed temperatures 
WRITE(11,*) 'Temperatures at segment centers:' 
Segments4: & 
DO ns= 1,nseg 
 WRITE(11,'(A,I5,A,F10.3)') & 
' Segment',ns,'  T=',u(ns)-q/k*xS(2,ns) 
END DO & 
Segments4 
DEALLOCATE (xS) 
!   Compute Temperatures and flows at interior points 
READ(10,*,IOSTAT=IOS) NPoints 
IF(NPoints == 0 .OR. IOS /= 0) THEN 
 PAUSE 'program Finshed' 
 STOP 
END IF 
ALLOCATE (xS(2,NPoints))  !   re-use array Xs 
WRITE(11,*) & 
'Temperatures(T) and flow (q-x,q-y) at interior points:' 
DO n=1,NPoints 
 READ(10,*) xS(1,n),xS(2,n) 
END DO 
Interior_points: & 
DO np=1,Npoints 
    up= 0.0 
    qx= 0.0 
    qy= 0.0 
    Segments5 : & 
    DO ns=1,nseg 
       rA= Dist(xA(:,ns),xS(:,np),2) 
       rB= Dist(xB(:,ns),xS(:,np),2) 
       vrA(1)= xA(1,ns)- xS(1,np) 
       vrA(2)= xA(2,ns)- xS(2,np) 
       vrB(1)= xB(1,ns)- xS(1,np) 
       vrB(2)= xB(2,ns)- xS(2,np) 
       COSThA= -DOT_PRODUCT(vn(:,ns),vrA)/rA 
       COSThB= -DOT_PRODUCT(vn(:,ns),vrB)/rB 
       SINThA= -DOT_PRODUCT(ve(:,ns),vrA)/rA 
       SINThB= -DOT_PRODUCT(ve(:,ns),vrB)/rB 
       H= RA*CosThA 
       ThetA= ACOS(COSThA)*SIGN(1.0,SinThA) 
       ThetB= ACOS(COSThB)*SIGN(1.0,SinThB) 
       IF(ThetB-ThetA > Pi) ThetA= 2.0*Pi + ThetA ! B- A < 180

o 

       dT= C*(ThetB-ThetA) 
       dU= C1*(rB*SINThB*(LOG(rB)-1)+ThetB*rB*COSThB & 
             - rA*SINThA*(LOG(rA)-1)-ThetA*rA*COSThA)        
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     dSx= C/k*(ThetB-ThetA) 
       Fact= CosthB/CosthA 
       IF(Fact > 0.0) THEN 
        dSy= -C/k*LOG(Fact) 
       ELSE 
        dSy= 0. 
       END IF 
       dRx= -C/H*(costhB*SINThB - cosThA*sinThA) 
       dRy= C/H*(costhB**2 - cosThA**2) 
       up= up + dU*t0(ns) - dT*u(ns) 
       qxp= -k*(dSx*t0(ns)-dRx*u(ns))         !   q-x' 
       qyp= -k*(dSy*t0(ns)-dRy*u(ns))         !   q-y' 
       qx= qx + qxp*vn(1,ns) - qyp*vn(2,ns) 
       qy= qy + qxp*vn(2,ns) + qyp*vn(1,ns) 
    END DO & 
    Segments5 
    Up= Up - q/k*xS(2,np)  !   superimpose solutions 
    qy= qy + q 
    WRITE(11,'(5(A,F10.3))') & 
 'x=',xS(1,np),', y=',xS(2,np),', T=',up,',  q-x=',qx,',  q-
y=',qy 
END DO  & 
Interior_points 
STOP 
END PROGRAM Direct_Method 

 
 
INPUT DATA for program Direct_method 

 
1.0    Problem specification 

q,k, nseg, rq  q         Heat inflow 
 k        Thermal conductivity 
 nseg   Number of segments 
 rq       Radius of isolator 
 

4.0 Interior point specification 
Npoints                                                            Number of interior points     
 

5.0 Interior point coordinates (Npoints cards) 
x,y                                                                     x,y  coordinates of interior points 
 

5.6.1 Sample input and output 

Here we show the input file for the calculation of the problem in Figure 5.11, with 16 
segments and interior points along a horizontal and vertical line and the output file 
generated by Program 5.2. 
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File INPUT.DAT : 
1.0 1.0 16 1.0 
28 
0. 1. 
… 
1. 0. 
… 
10. 0. 

 
File OUTPUT.DAT: 
Heat flow past a cylinder (direct BE method) 
Input values: 
Heat inflow/outflow=      1.00000     
Thermal conductivity=     1.00000     
Radius of Isolator=       1.00000     
Number of segments=             16 
Temperatures at segment centers: 
 Segment    1  T=    -2.026    
 .... 
 Segment   16  T=    -1.872 
Temperatures(T) and flow (q-x,q-y) at interior points: 
x=0.000, y=1.000, T=    -2.026,  q-x=     0.000,  q-y=     0.032 
..... 
x=10.000 y=0.000, T=     0.000,  q-x=     0.000,  q-y=     1.010 

 

Figure 5.14 Error in the temperature at segment 1 for different no of elements (points) 

Direct method, Plot of error %

0,000

1,000

2,000

3,000

4,000

5,000

6,000

8 16 24 32

Number of points

Er
ro

r %



124 The Boundary Element Method with Programming 

Figure 5.15 Heat flow in vertical direction along horizontal line results for different meshes 

Figure 5.16 Flow past a cylindrical isolator: contour lines of temperature 
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The error in the temperature at segment 1 versus the number of elements (collocation 
points) is plotted in Figure 5.14. It can be seen that the error falls below 1% for 24 
elements. A plot of the heat flow in vertical direction along a horizontal line depending 
on the number of segments is shown in Figure 5.15. The theoretical value of qy should 
approach the value of 2.0 exactly on the boundary. It can be seen that as we get very 
near to the boundary the values are significantly in error and that this error depends on 
the element size adjacent to the interior point. As we will see later, this is typical of the 
boundary element method and will be more pronounced when numerical integration is 
used. However with the higher order elements introduced next we will see that results 
exactly on the boundary can be computed with an alternative method. Figure 5.16 and 
5.17 finally show the graphical display of the results as it may be produced by a 
postprocessor. Figure 5.16 shows the contours of the temperature distribution whereas in 
Figure 5.17 the flow vectors are depicted by arrows whose magnitude depends on the 
value of heat flow. It can be seen that the temperature contours align normal to the 
boundary as they should and that the flow vectors approach zero values at the bottom 
and the top of the circular isolator. 

Figure 5.17 Flow past a cylindrical isolator: flow vectors 

5.7 CONCLUSIONS 

In this chapter we have introduced the Trefftz and boundary integral equation methods. 
Although we found that the Trefftz method is not suitable for general purpose 
programming it can be used to demonstrate the basic principles involved, because of its 
simplicity. A short program can be written and used for numerical experiments. As the 
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original idea by Trefftz, conceived in the days before computers, was not found to be 
suitable, improvements to the method were sought. This lead initially to the so called 
indirect method, where sources were assumed to be distributed instead of concentrated at 
a point. This allowed, with similar limiting procedures as shown in this chapter, the 
placing of source points on the same contour as the boundary points, therefore 
alleviating the need for two sets of points. We have not discussed this method here as it 
has been largely superseded by the direct method, which avoids the computation of 
fictitious sources/forces altogether.   

Using the well known theorem of Betti, we developed boundary integral equations 
relating tractions to displacements, or temperatures/potentials to normal gradients. We 
found that using a limiting procedure, source points can be placed on the boundary to be 
coincidental with the points where we satisfy given boundary conditions, thereby 
rendering the method usable for general purpose programming. However, we find that 
evaluating some boundary integrals causes difficulties, since the integrands tend to 
infinity at certain points. Some of the integrals exist only in the sense of a principal 
value. Indeed, the advanced mathematics involved, which may have prevented matching 
the success of the FEM in the early days, stems from the difficulty in evaluating these 
integrals. If simple elements, that is, line segments, such as the ones used here for 
solving the 2-D heat flow problem are defined, where the known boundary condition 
and the unknown are assumed to be constant, then the integration can be carried out 
analytically. For 3-D elasticity triangular elements with constant variation have been 
proposed, but the analytical evaluation of the integrals becomes rather involved. 
However, even for the simple heat flow example, we find that these constant elements 
are not very accurate and many elements are needed to model a smooth surface. 

To the author’s best knowledge, it was Lachat and Watson4 who first thought of the 
idea of introducing isoparametric boundary elements of the same type as the ones 
already in use in the FEM at that time. These are commonly attributed to Ergatoudis5, 
although the basic concept can be found in old mathematics books. The method, 
previously known as the Boundary Integral Equation method, became the Boundary 
Element Method (BEM). Analytical integration is no longer a feasible way of computing 
the coefficients of the system of equations and we have to revert to numerical 
integration. For engineers, who usually find no pleasure in writing pages of analytical 
evaluation of integrals, this of course was a godsend. Using the Gauss integration 
method introduced in Chapter 3, the evaluation of the integrals can now be reduced to 
evaluating sums. However, because of the nature of the integrals we must be very 
careful that the accuracy is adequate. In contrast to the FEM, where less may be better, 
(i.e., the application of reduced integration for the evaluation of element stiffness) we 
will find that the BEM is much less forgiving when it comes to the accuracy of the 
integrals. The boundary element method using higher order isoparametric elements, is 
the method used almost exclusively in modern general purpose computer programs. We 
will therefore deal, in some depth, with the numerical implementation of the method in 
the next chapter. 
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5.8 EXERCISES 

Exercise 5.1 
Use Program 5.1 (Trefftz method) to find out the influence of the following on the  
accuracy of results of the heat flow example in Fig 5.1: 
(a) when the distance between source points P and field points Q is reduced to ½ and ¼ 

of the value used in section 5.3. 
(b) when the number of points P,Q is increased to twice and three times the value used 

in section 5. 
 
Exercise 5.2 
Expand Program 5.1 (Trefftz method), so that in addition to temperatures flow vectors q 
may be computed at interior points. 
 
Exercise 5.3 
Use program 5.2 (Direct_method), to compute the heat flow problem solved by the 
Trefftz method. Investigate the influence of the number of segments on results by using 
8, 16 and 32 segments. Plot the norm of the error to show convergence. 
 
Exercise 5.4 
Modify program 5.1, so that potential problems for general boundary shapes can be 
analysed, by allowing points P and Q to be specified as input instead of being generated 
automatically. Test the program by analysing the flow past an elliptical isolator. 
 
Exercise 5.5 
Modify program 5.2, so that potential problems for general boundary shapes can be 
analysed, by allowing boundary segments and boundary conditions to be specified as 
input. Test the program by analysing the flow past an elliptical isolator. 
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6 
Boundary Element Methods – 
Numerical Implementation 

There is nothing more powerful 
than an idea whose time has come 

 
V. Hugo 

 

6.1 INTRODUCTION 

In the previous chapter we derived boundary integral equations relating the known 
boundary conditions to the unknowns. For practical problems, these integral equations 
can only be solved numerically. The simplest numerical implementation is using line 
elements, where the knowns and unknowns are assumed to be constant inside the 
element. In this case, the integral equation can be written as the sum of integrals over 
elements. The integrals over the elements can then be evaluated analytically. In the 
previous chapter we have presented constant elements for the solution of two-
dimensional potential problems only. The analytical evaluation over elements would 
become quite cumbersome for two- and three-dimensional elasticity problems. Constant 
elements were used in the early days of the development, where the method was known 
under the name Boundary Integral Equation (BIE) Method1. This is similar to the 
development of the FEM, where triangular and tetrahedral elements, with exact 
integration, were used in the early days. In 1968, Ergatoudis and Irons2 suggested that 
isoparametric finite elements and numerical integration could be used to obtain better 
results, with fewer elements. The concept of higher order elements and numerical 
integration is very appealing to engineers because it alleviates the need for tedious 
analytical integration and, more importantly, it allows the writing of general purpose 
software with a choice of element types. Indeed, this concept will allow us to develop 
one single program to solve two- and three-dimensional problems in elasticity and 
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potential flow, or any other problem for which we can supply a fundamental solution 
(see Chapter 18). 

The idea of using isoparametric concepts for boundary elements seems to have been 
first introduced by Lachat and Watson3 and this prompted a change of name of the 
method to Boundary Element Method. This chapter is about the numerical 
implementation of isoparametric boundary elements, using the basic concepts that were 
already discussed in detail in Chapter 3. 

6.2 DISCRETISATION WITH ISOPARAMETRIC ELEMENTS 

We consider the numerical solution of the boundary integral equations using 
isoparametric elements where linear or quadratic functions are assumed for the variation 
of the known and the unknown boundary values. Recalling from Chapter 3, we have for 
a one-dimensional isoparametric element and for potential problems the following 
interpolations 

(6.1) 

Consider the example in Figure 6.1, where the boundary of a two-dimensional 
potential problem is divided into linear isoparametric elements. 

Figure 6.1  Discretisation of two-dimensional problem into linear boundary elements 
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Equations (6.1) are based on a local numbering as explained in Chapter 3. In order to 
enforce continuity conditions, we also define a global numbering of the nodes. That is, 
we define a global vector containing the potentials/temperatures at all nodes. 

(6.2) 

The relation between local and global numbering is known as the element 
connectivity or incidences. For example, element 1 has connectivity vector {1,2}, which 
means that the values of u for the two nodes of the element appear at the first and second 
position in the global vector {u}. Although we usually wish to enforce continuity of u, 
this is not necessary for t, the boundary flux, which may be discontinuous. 

We now consider the numerical treatment of the integral equation. 

(6.3) 

 
Substituting equations (6.1) for t(Q) and u(Q) and splitting the integrals into a sum of 

integrals over elements gives (leaving out the limiting value process, which we now 
implicitly assume) 

(6.4) 

where E is the total number of elements and N is the number of nodes per element. The 
process is generally known as discretisation of the integral equation. Since te

n and ue
n, 

being nodal values are constant with respect to the integration, they can be taken out of 
the integral and equation (6.4) can be rewritten 

(6.5)  

The integration has now been changed to a sum of integrations of Kernel shape 
function products over elements. We will deal with this in detail later.  

Theoretically, Betti's theorem should be valid for any location P and, therefore, we 
can write equation (6.5) for an infinite number of points Pi . In practice, we select a 
limited number of points only. Since for potential problems either t or u must be known 
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on the boundary, there will be as may unknowns as there are nodes. In the simplest 
numerical method, also known as point collocation, we therefore obtain the necessary 
integral equations by placing points Pi in turn at all the nodes of the mesh. 

(6.6)  

where I is the total number of nodes, which has to equal to the number of unknowns. 
This would mean, however, that the theorem by Betti is only satisfied for certain 

locations of P. In an alternative approach we seek to minimise the error in the 
satisfaction of the Betti theorem. This approach is also known by the term weighted 
residual methods, because weighting functions are used in the minimisation of the 
residual error. In the most popular method, the Galerkin method, the interpolation 
functions are used as weighting functions. The Galerkin method will not be discussed 
here because it is more complicated and it is not clear if the additional complexity and 
increased numerical work will result in a significant increase in accuracy4. 

Equation (6.6) can be re-written as 

(6.7)  

where 

(6.8)  

where Se is the element length and  is the intrinsic coordinate. 
For elasticity problems, the integral equation which has to be discretised is given as 

(6.9)  

In discretised form this equation is written as 

(6.10)  
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where, for two-dimensional problems 
 

(6.11)  

For three-dimensional problems 

(6.12)  

where Se is the element area and  are the intrinsic coordinates. 
Since there are two or three integral equations per location Pi, we now get 2I or 3I 

equations depending on the Cartesian dimension. As we will see later in the section on 
assembly, Equation (6.10) can be written in matrix form, where coefficients are 
assembled in a similar way as in the FEM. For this it is convenient to store the 
coefficients for element into arrays [ U]e and [ T]e. For potential problems we have for 
example 

(6.13)  

The arrays are of size NxI, where N is the number of element nodes and I is the 
number of collocation points. For elasticity problems, the arrays are of size 2Nx2I, for 
two-dimensional problems and 3Nx3I, for three-dimensional problems. In the following 
section we will deal with the numerical integration of Kernel shape function products 
over elements.  

6.3 INTEGRATION OF KERNEL SHAPE  
FUNCTION PRODUCTS 

The evaluation of integrals (6.8) or (6.12) over isoparametric elements is probably the 
most crucial aspect of the numerical implementation of BEM and this is much more 
involved than in the FEM. The problem lies in the fact that the functions which have to 
be integrated exhibit singularities at certain points in the elements. Here we first discuss 
the treatment of “improper” integrals that exist as Cauchy principal values and then 
discuss the numerical treatment of the other integrals. 
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6.3.1 Singular integrals  

How an integral can be evaluated depends on the type of singularity. In general, we can 
say that a weakly singular integral (functions of order lnr for 2-D and  1/r for 3-D 
problems) can be evaluated using numerical integration, that is the Gauss Quadrature 
discussed in Chapter 3. However, care has to be taken that an appropriate accuracy is 
maintained, by choosing the number of integration points as a function of the closeness 
of the collocation point to the region of integration. Theoretically the integrals of 
functions which are strongly singular (functions of order 1/r for 2-D problems and 1/r2 

for 3-D problems) are improper integrals and only exist as Cauchy principal values5. 
However, we can show that for integration on a flat surface approaching the collocation 
point the symmetric part of the kernel is zero and the anti-symmetric part 
approaches on one side and on the other side of the point. If we assume a flat 
integration region extending equal distances to the left and right of point Pi , the integral 
of the anti-symmetric part also becomes zero.  

Figure 6.2 Variation of Txy over a flat boundary  

To explain this, consider a problem in 2-D elasticity with a flat surface at point Pi as 
shown in Figure 6.2. For this problem the angle between vector r and n is 900 and 
therefore cos is zero.  

According to Equation (4.64) 

(6.14)  
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From the distribution of the anti-symmetric part of Txy , shown in Figure 6.2 we can 
see that given the restrictions stated above the integral of Txy will give zero value. As a 
consequence, the diagonal coefficients only contain the “free term” c as computed in 
Equation (5.24). One could devise a scheme whereby we assume a flat boundary very 
near the collocation point, extending equally in both directions and use normal Gauss 
integration over parts, which exclude this flat region, so that we do not have to worry 
about computing the Cauchy principal value of the integral. However, the 
implementation of this is not trivial and we still have to deal with the determination of 
the “free term” which for corners and edges in a 3-D analysis, is also not trivial. 

Two general approaches exist for the determination of the Cauchy principal value 
integral. One is a mathematical approach, by Guiggiani and Casalini6, the other is based 
on simple engineering considerations. Since the second is simpler to implement, it will 
be the one used for the programs in this book. 

6.3.2 Rigid body motion 

The concept is based on the fact that we do not need to actually compute the integrals 
because the coefficients may be determined from the fact that for a pure rigid body 
translation of an elastic domain, there must be no change in shape of the body and 
therefore, applied tractions must be zero. We note that strongly singular integrals arise 
only for the T kernel and only if the collocation point Pi coincides with one of the 
element nodes. Let us rewrite equation (6.10) 

(6.15)  

where g(n) stands for the global node number of a node with the local node number n, 
therefore separating in the first sum all the terms that involve a strongly singular 
integration. To generate a rigid body translation for a two-dimensional finite domain we 
substitute ux=1 and uy=0 (translation in x-direction) and ux=0 and uy=1 (translation in y-
direction) for all nodes and set all tractions to zero. For a plane problem we now can 
write 2 sets of equations 

(6.16)  

and 

(6.17)  

The equations can now be solved for the strongly singular terms including the free term. 
For the first set of equations we get: 
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(6.18)  

The consequence of 6.18 is that the strongly singular terms, including the free term can 
be determined by simply summing up all coefficients - except the terms to be evaluated - 
of one equation and changing the sign of the sum. The advantage of this scheme is that 
not only do we avoid the strongly singular integration, but we also get the free term at no 
additional expense. 

Figure 6.3 Rigid body translation in x-direction of a domain with radius R 

For an infinite domain we cannot apply a rigid body translation. However, if we 
consider a two-dimensional domain to be bounded by an auxiliary surface, i.e., a circle 
of radius R (see Figure 6.3), where R is approaching infinity, then we may apply a rigid 
body translation.  

We must consider now - in addition to the integrals which extend over the boundary 
of the problem S - also the ones over the boundary SR  , the auxiliary surface , that is 

(6.19)  
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The integral over SR is known as the azimuthal integral4. Substituting cos 1  and 
, cosxr  for two-dimensional elasticity problems, typical integrals are given by (see 

Figure. 6.3) 

(6.20)  

and 

(6.21)  

 
The azimuthal integral of matrix T can therefore be written as 

(6.22)  

where I is a 2x2 unit matrix.  

Figure 6.4 Rigid body mode for three-dimensional infinite domain problem 
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We see that since R cancels out, the integral is valid for any radius of the circle, 

including a radius of infinity, so the method of computing the strongly singular terms by 
rigid body translation is also valid for infinite domains.  

For three-dimensional elasticity problems, the infinite domain is assumed to be a 
sphere of radius R. Typical values of the azimuthal integral are (see Figure 6.4): 

(6.23)  

and 

(6.24)  

so equation (6.22) is equally valid for three-dimensional problems, except that I is a 3x3 
unit matrix. 

  

Figure 6.5 Rigid body mode for semi-infinite domain problem 
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For the case where the domain is semi-infinite, then the integration limits of the 
integral are from 0 to  and we have  

(6.25)  

(6.26)  

For potential problems, we may consider a concept similar to the rigid body motion, 
by assuming that for uniform temperature at all nodes of the boundary and no internal 
heat generation, there can be no heat flow.  

For a finite region we have 

(6.27)  

6.3.3 Numerical integration 

It has already been mentioned that it is very important to maintain an adequate accuracy 
of the numerical integration. If this is not done, then significant errors may be introduced 
in the solution. In Chapter 3 we introduced the numerical integration by Gauss and 
pointed out that in this method the function to be integrated is approximated by a 
polynomial.  

Here, we attempt to find an error bound for the integration of functions of type (1/r), 
(1/r2) and (1/r3) - which are not polynomials - depending on the number of Gauss points. 
Obviously, when point Pi is very close to the integration region, then the function varies 
very rapidly and higher and higher order polynomials are needed to approximate the 
function to be integrated and the number of required integration points has to increase. 
The error estimate that is introduced next allows us to ensure that the error made by 
numerical integration is nearly constant, regardless of the proximity of point Pi. 

The Gauss integration formula in one dimension is (see Chapter 3) 

(6.28)  

where N is the number of integration points.  
Stroud and Secrest8 provide a formula for the upper bound of error  

(6.29)  
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Considering the integration over an element of length L with point Pi located at a 
distance R on the side (Figure 6.6), and taking f( )=1/r we obtain  

(6.30)  

and for the integration error 

(6.31)  

 
Therefore the integration error is a function of the distance r from point Pi to the 
integration region. Various schemes have been proposed 4,7 for determining the number 
of Gauss points on the basis of equation (6.31). 

Figure 6.6 Integration over one-dimensional element 

 However, the actual functions to be integrated are more complicated than has been 
assumed above, because they involve products of the fundamental solution with the 
shape function and the Jacobian. In addition, it makes a difference if the Pi is located at 
the edge of the element as shown in Figure 6.6, or if it is located on the side. Finally the 
shape of the element (curved or straight) will also have an influence. For two-
dimensional problems the integrals to be evaluated can be simplified to 

(6.32)  

The idea is to determine the error in the integration as a function of the location of Pi 
if we integrate with a large number of Gauss points first to determine the actual value of 
the integral and then lower the number of Gauss points. If we do this for a large number 
of possible locations of points Pi then we can obtain contours of error for a given number 
of Gauss points. Figure 6.7 for example shows the contours of integration error 10-3 for a 
curved iso-parametric element for different integrals and for 4 Gauss Points. The 
contours can be interpreted in such a way that if point Pi lies on the contour then the 
error is exactly 10-3, if it is outside it is less, if on the inside it is greater. It can be seen 
that near the Gauss points Pi can be placed closer to the element. To devise a table for 
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points on or inside the envelope the accuracy of integration is assured. This has been 
proposed by Eberwien et al 7.  

Figure 6.7 Contours showing the location of points Pi where the integration with 4 Gauss points 
gives an error of 10-3 (second subscript of I indicates that this is for a 1/r singularity) 

Table 6.1   Number of Gauss points (Eberwien et al7) 

The result is summarised in Table 6.1 as limiting values of R/L for an integration 
order of 4 and 5. Experience showed that the minimum number of integration points 
should not be lower than 3 and that it is more efficient to keep the maximum integration 
order low. This means that we have to subdivide the region of integration, so that the 
minimum ratios of R/L according to Table 6.1, are obeyed.  

Cases where the point is very close to the element occur when there is a drastic 
change in element size, or the boundary surfaces are very close to each other, for 
example, in the case of a thin beam. Care has to be taken not to go to extremes with the 
value of R/L, because we must avoid cases where points Pi are too unevenly distributed 
since Betti’s reciprocal theorem is only satisfied at these points.  

We convert Table 6.1 into a FUNCTION Ngaus which returns the number of Gauss 
points according to the value of R/L. 
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INTEGER FUNCTION Ngaus(RonL,ne,RLIM) 
!----------------------------------------------------- 
!    Function returns number of Gauss points needed  
!    to integrate a function o(1/rne) 
!    according to Eberwien et al. 
!------------------------------------------------------ 
REAL , INTENT(IN)       ::  RonL  !   R/L 
INTEGER , INTENT(IN)    ::  ne    !   order of Kernel (1,2,3) 
REAL, INTENT(OUT)       ::  Rlim(2)  !   array to store values of 
table 
SELECT CASE(ne) 
 CASE(1) 
 Rlim= (/1.4025, 0.7926/) 

 CASE(2) 
 Rlim= (/4.1029, 1.6776/) 

 CASE(3) 
  Rlim= (/3.4170, 1.2908/) 

 CASE DEFAULT 
END SELECT 
DO   N=1,2     !   Determine minimum no of Gauss points needed 
 IF(RonL >= Rlim(N)) THEN 
      Ngaus= N+2 
     EXIT 
 END IF 

END DO  
IF(Ngaus == 0) THEN ! Point is too close to the surface 

 Ngaus=5    ! this value will trigger subdivision 
END IF 
RETURN 
END FUNCTION Ngaus 

6.3.4 Numerical integration over one-dimensional elements 

In the integration of Kernel-shape function products care has to be taken because in 
some cases the function has a singularity or is discontinuous over the element depending 
on the location of Pi. Therefore, we have to distinguish integration schemes for the case 
where Pi  is one of the element nodes and where it is not. 
The integrals which have to be evaluated over the isoparametric element, shown in 
Figure 6.8, are for potential problems 
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where U(Pi, ) and T(Pi, ) are the fundamental solutions at Q( ) for a source at point Pi , 
J( ) is the Jacobian and Nn( ) are linear or quadratic shape functions. 

When point Pi is not one of the element nodes, both integrals can be evaluated by 
Gauss Quadrature and the integrals in equation (6.33) can be replaced by two sums 

(6.34)  

 
where the number of integration points M is determined as a function of the proximity of 
Pi to the integration region as explained previously. If Pi is close to the integration region 
a subdivision will be necessary. 

Figure 6.8 One dimensional element, integration where Pi is not one of the element nodes 

When Pi is one of the element nodes, functions U and T tend to infinity within the 
integration region. Consider the two cases in Figure 6.9:  
 
(a) Pi is located at point 1 and n in the equation (6.33) is 2: 
 This means that although Kernels T and U tend to infinity as point 1 is approached, 

the shape function tends to zero, so the integral of product Nn( )U(Pi ) and 
Nn( )T(Pi ) tend to a finite value. Thus, for the case where Pi is not at node n of the 
element, the integral can be evaluated with the formulae (6.34) without any 
problems. 

 
(b) Pi is located at point 2 and n in the equation (6.33) is 2: 
 In this case, Kernels T and U tend to infinity and the shape function to unity and 

products Nn( )U(Pi ) and Nn( )T(Pi ) also tend to infinity. Since Kernel U has a 
singularity of order ln(1/r), the first product cannot be integrated using Gauss 
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Quadrature. The integral of the second product only exists as a Cauchy principal 
value. However, these are the diagonal terms of the coefficient matrix that can be 
evaluated using equation (6.18), (6.19) or (6.27). 

 

Figure 6.9 Integration when Pi is one of the element nodes 

For the integration of the product with ln(1/r), we can use a modified Gauss 
Quadrature called Gauss-Laguerre8 integration 

(6.35)  

where M is the number of integration points.  
The weights and coordinates are given by the Subroutine Gauss_Laguerre_coor, which 

is listed at the end of this section. Note that for this integration scheme 0  at the 
singular point and the limits are from 0 to 1, so a change in coordinates has to be made 
before equation (6.35) can be applied.  

This change in coordinate is given by (see Figure 6.10): 

(6.36)  

For the case where we integrate over a quadratic element, the integrand is discontinuous 
if Pi is located at the midside node. The integration has to be split into two regions, one 
over -1< <0, the other over 0< <1. For the computation of product Nn( )U(Pi ), the 
intrinsic coordinates for the 2 sub-regions are computed by (see Figure 6.10): 

(6.37)  
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To evaluate the first integral in equation (6.8) we must substitute for r as a function of . 
For a linear element we may simply write r= J  and obtain 

(6.38)  

Figure 6.10 Integration when Pi and n coincide 

The first integral may be evaluated with Gauss-Laguerre: 
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whereas the second part is integrated with normal Gauss Quadrature. The Jacobian 
can be easily obtained by differentiation of equations (6.36) and (6.37). The 

second integral in (6.38) can be evaluated using normal Gauss Quadrature. For quadratic 
elements, the substitution for r in terms of is more complicated. One may 
approximately substitute r= a where a is the length of a straight line between the end 
nodes of the element. This should give a small error for elements which are nearly 
straight. A more accurate computation r as a function of  is presented by Eberwien7. 

A SUBROUTINE which provides the coordinates and weights for a Gauss Laguerre 
integration is given below. 

 
SUBROUTINE Gauss_Laguerre_coor(Cor,Wi,Intord) 
!------------------------------------ 
!  Returns Gauss_Laguerre coordinates and Weights  
!  for 1 to 4 Gauss points 
!------------------------------------ 
IMPLICIT NONE 
REAL, INTENT(OUT)  :: Cor(8)  !  Gauss point coordinate 
REAL, INTENT(OUT)  :: Wi(8)   !  weigths 
INTEGER,INTENT(IN) :: Intord  !  integration order 
SELECT CASE (Intord) 
CASE (1) 
 Cor(1)= 0.5 ; Wi(1) = 1.0 
CASE(2) 
 Cor(1)= .112008806 ; Cor(2)=.602276908 
 Wi(1) = .718539319 ; Wi(2) =.281460680 
CASE(3) 
 Cor(1)= .063890793 ; Cor(2)= .368997063 ; Cor(3)= .766880303 
 Wi(1) = .513404552 ; Wi(2) = .391980041 ; Wi(3) =.0946154065 
CASE(4) 
 Cor(1)= .0414484801 ; Cor(2)=.245274914 ; Cor(3)=.556165453 
 Cor(4)= .848982394 
 Wi(1) = .383464068 ; Wi(2) =.386875317 ; Wi(3) =.190435126  
 Wi(4) = .0392254871 
CASE DEFAULT 
CALL Error_Message('Gauss points not in range 1-8') 
END SELECT 
END SUBROUTINE  

 

6.3.5 Subdivision of region of integration 

In some cases, when point Pi is near the element, the number of Gauss points required 
will exceed 4 in table 6.1. In this case it is necessary to subdivide the element into sub 
regions of integration. A simple approach is to subdivide the element into equal 
subdivisions depending on the value of R/L. If according to the R/L value the maximum 
number of Gauss points available is exceeded, the element is subdivided into K regions 
where  
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(6.40)  

 Where INT means a rounding up of the result and min/R L  is the minimum value 
of R/L for 4 Gauss points in table 6.1.  

Figure 6.11 Subdivision of integration region 

Note that for each sub region of integration the coordinates of the Gauss points have 
to be defined in a local coordinate system , whereas the shape functions are functions 
of . For one-dimensional boundary elements the Gauss formula (6.34) is replaced by 

(6.41)  

where K is the number of sub regions and M(k) is the number of Gauss points for sub 
region k. The relationship between and is given by 

(6.42)  

where 1  and 2  are the start and end coordinates of the sub region. In the example 
shown in 6.11 this is (0 , 1) for sub region 1 and (-1 , 0) for sub region 2. If a uniform 
subdivision is assumed the Jacobian J for the transformation from to is for all 
regions. 

(6.43)  
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The proposed scheme is not very efficient since the sub regions will have different 
minimum distances R to Pi and therefore should have different integration order also. A 
more efficient method would be to provide more subdivisions near Pi and less further 
away. 

6.3.6 Implementation for plane problems 

A SUBROUTINE Integ2P is shown below which integrates the Kernel/shape function 
products over one-dimensional isoparametric elements for potential problems.  
 
SUBROUTINE Integ2P (Elcor,Inci,Nodel,Ncol,xP,k,dUe,dTe) 
!-------------------------------------------------- 
!   Computes  Element contributions[dT]e and [dU]e  
!   for 2-D potential problems 
!   by numerical integration 
!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN):: Elcor(:,:)  ! Element coordinates 
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences 
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes 
INTEGER , INTENT(IN):: Ncol  ! Number of points Pi  
REAL, INTENT(IN)  :: xP(:,:) ! Array with coll. point coords. 
REAL, INTENT(IN)   :: k      ! Permeability/Conductivity 
REAL, INTENT(OUT) :: dUe(:,:),dTe(:,:)  
REAL :: epsi= 1.0E-4    !   Small value for comparing coords 
REAL ::Eleng,Rmin,RonL,Glcor(8),Wi(8),Ni(Nodel),Vnorm(2),GCcor(2) 
REAL :: UP,Jac,dxr(2),TP,r,pi,c1,c2,xsi,eta,dxdxb 
REAL :: RLIM(2),xsi1,xsi2,RJACB 
INTEGER :: i,m,n,Mi,nr,ldim,cdim,nreg,ndiv,ndivs 
pi=3.14159265 
ldim= 1 
cdim=ldim+1 
CALL Elength(Eleng,Elcor,Nodel,ldim) ! Element Length 
!---------------------------------------------------------------- 
!    Integration off-diagonal coeff.  -> normal Gauss Quadrature 
!----------------------------------------------------------------- 

dUe= 0.0 ; dTe= 0.0      ! Clear arrays for summation 
Colloc_points: & 
DO i=1,Ncol 

Rmin= Min_dist(Elcor,xP(:,i),Nodel,ldim,inci)! Distance to Pi 
  RonL= Rmin/Eleng  ! R/L  
   Mi= Ngaus(RonL,1,RLIM)! Number of Gauss points for (1/r) sing. 
  IF(Mi == 5) THEN   !  check if subdivisions are required 
   NDIVS= INT(RLIM(2)/RonL))+1 
   RJACB= 1/NDIVS 
   Mi=4 
  ELSE 
   NDIVS=1 
    RJACB=1.0 
  END IF 
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  Call Gauss_coor(Glcor,Wi,Mi)    ! Assign coords/Weights 
   Xsi1=-1 
  Subregions: & 
  DO NDIV=1,NDIVS 
   IF(NDIVS > 1) THEN 
   Xsi2= Xsi1+2/NDIVS 
   Gauss_points: & 
    DO m=1,Mi 
     xsi= Glcor(m) 
   IF(NDIVS > 1) Xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVS  
    CALL Serendip_func(Ni,xsi,eta,ldim,Nodel,Inci) 
      Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,Nodel,Inci,elcor)   
    CALL Cartesian(GCcor,Ni,ldim,elcor)  ! Coords of Gauss pt 
    r= Dist(GCcor,xP(:,i),cdim)       ! Dist. P,Q 
    dxr= (GCcor-xP(:,i))/r          ! rx/r , ry/r 
    UP= U(r,k,cdim) ; TP= T(r,dxr,Vnorm,cdim)   ! Kernels 
    Node_points: & 
      DO n=1,Nodel 
      IF(Dist(Elcor(:,n),xP(:,i),cdim) < epsi) EXIT ! Pi is n 
      dUe(i,n)= dUe(i,n) + Ni(n)*UP*Jac*Wi(m)*RJACB 
      dTe(i,n)= dTe(i,n) + Ni(n)*TP*Jac*Wi(m)*RJACB         
    END DO & 
      Node_points 
  END DO & 
   Gauss_points 
 END DO & 
 Subregions 
END DO & 
Colloc_points 
!------------------------------ 
!    Diagonal terms of dUe 
!------------------------------ 
c1= 1/(2.0*pi*k) 
Colloc_points1: & 
DO i=1,Ncol 
 Node_points1: & 
 DO n=1,Nodel 
  IF(Dist(Elcor(:,n),xP(:,i),cdim) > Epsi) CYCLE ! Pi not n 
  Nreg=1 
  IF(n == 3) nreg= 2 
!------------------------------------------- 
!    Integration of logarithmic term 
!-------------------------------------------- 
   Subregions: & 
   DO nr=1,Nreg 
   Mi= 4 
   Call Gauss_Laguerre_coor(Glcor,Wi,Mi) 
   Gauss_points1: & 
   DO m=1,Mi 
  SELECT CASE (n) 
  CASE (1) 
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  xsi= 2.0*Glcor(m)-1.0 
  dxdxb= 2.0 

  CASE (2) 
  xsi= 1.0 -2.0*Glcor(m) 
  dxdxb= 2.0 

  CASE (3) 
  dxdxb= 1.0 
  IF(nr == 1) THEN 
  xsi= -Glcor(m) 

  ELSE 
  xsi= Glcor(m) 

  END IF 
  CASE DEFAULT 
  END SELECT 
  CALL Serendip_func(Ni,xsi,eta,1,Nodel,Inci)  
  Call Normal_Jac(Vnorm,Jac,xsi,eta,1,Nodel,Inci,elcor) 
  dUe(i,n)= dUe(i,n) + Ni(n)*c1*Jac*dxdxb*Wi(m) 

  END DO & 
  Gauss_points1 

  END DO & 
  Subregions 
!------------------------------------------ 
!    Integration of non logarithmic term 
!------------------------------------------- 
   Mi= 2 
  Call Gauss_coor(Glcor,Wi,Mi)  ! Assign coords/Weights 
  Gauss_points2: & 
   DO m=1,Mi 
   SELECT CASE (n) 
   CASE (1:2) 
      c2=-LOG(Eleng)*c1 
     CASE (3) 

    c2=LOG(2/Eleng)*c1 
   CASE DEFAULT 
   END SELECT 
   xsi= Glcor(m) 
   CALL Serendip_func(Ni,xsi,eta,ldim,Nodel,Inci)          
   Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
      dUe(i,n)= dUe(i,n) + Ni(n)*c2*Jac*Wi(m) 
  END DO & 
   Gauss_points2 
 END DO & 
 Node_points1 
END DO & 
Colloc_points1 
RETURN 
END SUBROUTINE Integ2P 

 
The above integration scheme is equally applicable to elasticity problems, except that 

when integrating functions with Kernel U when Pi is one of the nodes of the element we 
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have to consider that only Uxx and Uyy have a logarithmic and non-logarithmic part. The 
logarithmic part is integrated with Gauss-Laguerre, for example: 

(6.44)  

The non-logarithmic part is integrated using Gauss Quadrature.  

Figure 6.12 Structure chart for SUBROUTINE Integ2E 
 
A SUBROUTINE for integrating over one-dimensional elements for elasticity is 
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now 2x2 matrices and we have to add two more Do-loops for the direction of the load at 
Pi and the direction of the displacement/traction at Q( . A structure chart of 
SUBROUTINE Integ2E is shown in Figure 6.12, where for the sake of clarity, the 
subdivision of the region of integration is not shown.  

For the implementation of symmetry, as will be discussed in Chapter 7 two additional 
parameters are used: ISYM and NDEST. The first parameter contains the symmetry 
code, the second is an array that is used to eliminate variables which have zero value, 
because they are situated on a symmetry plane.  

Note that the storage of coefficients is by degree of freedom number rather than node 
number. There are two columns per node and two rows per collocation point. The 
storage of the element coefficients [ U]e is as follows: 

(6.45)  

SUBROUTINE 
Integ2E(Elcor,Inci,Nodel,Ncol,xP,E,ny,dUe,dTe,Ndest,Isym) 
!-------------------------------------------------- 
!    Computes  [dT]e and [dU]e for 2-D elasticity problems 
!    by numerical integration 
!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN)    :: Elcor(:,:)     !   Element coordinates 
INTEGER, INTENT(IN) :: Ndest(:,:)  !   Node destination vector 
INTEGER, INTENT(IN) :: Inci(:)        !   Element Incidences 
INTEGER, INTENT(IN) :: Nodel          !   No. of Element Nodes 
INTEGER , INTENT(IN):: Ncol           !   Number of points Pi  
INTEGER , INTENT(IN):: Isym   
REAL, INTENT(IN)    :: E,ny           !   Elastic constants 
REAL, INTENT(IN)    :: xP(:,:)        !   Coloc. Point coords 
REAL(KIND=8), INTENT(OUT)   :: dUe(:,:),dTe(:,:)  
REAL :: epsi= 1.0E-4  !    Small value for comparing coords 
REAL :: Eleng,Rmin,RonL,Glcor(8),Wi(8),Ni(Nodel),Vnorm(2),GCcor(2) 
REAL :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r 
&,dxdxb,Pi,C,C1,Rlim(2),Xsi1,Xsi2,RJacB 
INTEGER :: i,j,k,m,n,Mi,nr,ldim,cdim,iD,nD,Nreg,NDIV,NDIVS,MAXDIVS 
Pi=3.14159265359 
C=(1.0+ny)/(4*Pi*E*(1.0-ny))    
ldim= 1                             ! Element dimension 
cdim=ldim+1 
MAXDIVS=1 
CALL Elength(Eleng,Elcor,nodel,ldim)  ! Element Length 

dUe= 0.0 ; dTe= 0.0               ! Clear arrays for summation 
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Colloc_points: DO i=1,Ncol 
Rmin= Min_dist1(Elcor,xP(:,i),Nodel,inci,ELeng,Eleng,ldim)  

RonL= Rmin/Eleng                   !  R/L 
!----------------------------------------------------- 
!     Integration off-diagonal coeff.  -> normal Gauss Quadrature 
!--------------------------------------------------------- 

Mi= Ngaus(RonL,1,Rlim) !  Number of Gauss points for o(1/r)  
NDIVS= 1 
RJacB=1.0 
IF(Mi == 5) THEN     !   Determine number of subdiv. In 
  IF(RonL > 0.0) NDIVS= INT(RLim(2)/RonL) + 1    
  IF(NDIVS > MAXDIVS) MAXDIVS= NDIVS 
  RJacB= 1.0/NDIVS 
  Mi=4 
END IF 
Call Gauss_coor(Glcor,Wi,Mi)  ! Assign coords/Weights 
Xsi1=-1 
Subdivisions: DO NDIV=1,NDIVS 
  Xsi2= Xsi1 + 2.0/NDIVS 
  Gauss_points: DO m=1,Mi 
  xsi= Glcor(m) 
  IF(NDIVS > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVS 
  CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
  Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
  CALL Cartesian(GCcor,Ni,ldim,elcor)    ! coords of Gauss pt 
  r= Dist(GCcor,xP(:,i),cdim)            !  Dist. P,Q 
  dxr= (GCcor-xP(:,i))/r         !  rx/r , ry/r 
  UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)  
   Node_points: DO n=1,Nodel 
    Direction_P: DO j=1,2 
     IF(Isym == 0)THEN 
       iD= 2*(i-1) + j 
     ELSE 
       iD= Ndest(i,j)              !  line number in array 
     END IF 
     IF (id == 0) CYCLE 
     Direction_Q: DO k= 1,2 
      nD= 2*(n-1) + k             !  column number in array 
      IF(Dist(Elcor(:,n),xP(:,i),cdim) > epsi) THEN   
        dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(j,k)*Jac*Wi(m)*RJacB 
        dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(j,k)*Jac*Wi(m)*RJacB 
       ELSE 
        dUe(iD,nD)= dUe(iD,nD) + & 
                    Ni(n)*C*dxr(j)*dxr(k)*Jac*Wi(m)*RJacB    
       END IF 
      END DO Direction_Q 
     END DO Direction_P 
    END DO Node_points 
   END DO Gauss_points 
   Xsi1= Xsi2 
  END DO Subdivisions 



154  The Boundary Element Method with Programming 

 END DO Colloc_points 
!----------------------------------------------------- 
!     Integration diagonal coeff.   
!--------------------------------------------------------- 
 C= C*(3.0-4.0*ny)         
Colloc_points1: DO i=1,Ncol 
  Node_points1:  DO n=1,Nodel 

 IF(Dist(Elcor(:,n),xP(:,i),cdim) > Epsi) CYCLE  
 Nreg=1 
 IF (n == 3) nreg= 2 
 Subregions: DO nr=1,Nreg 
   Mi= 4 
   Call Gauss_Laguerre_coor(Glcor,Wi,Mi) 
   Gauss_points1: DO m=1,Mi 
     SELECT CASE (n) 
      CASE (1) 
       xsi= 2.0*Glcor(m)-1.0 
       dxdxb= 2.0 
      CASE (2) 
       xsi= 1.0 -2.0*Glcor(m) 
       dxdxb= 2.0 
      CASE (3) 
       dxdxb= 1.0 
       IF(nr == 1) THEN 
         xsi= -Glcor(m) 
       ELSE 
         xsi= Glcor(m) 
       END IF 
       CASE DEFAULT 
      END SELECT 
      CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
      Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
      Direction1: DO j=1,2 
       IF(Isym == 0)THEN 
         iD= 2*(i-1) + j 
       ELSE 
         iD= Ndest(i,j)              !  line number in array 
       END IF 
       IF (id == 0) CYCLE            
       nD= 2*(n-1) + j              !  column number in array 
       dUe(iD,nD)= dUe(iD,nD) + Ni(n)*C*Jac*dxdxb*Wi(m) 
      END DO Direction1 
     END DO Gauss_points1 
    END DO Subregions 
    Mi= 2 
    Call Gauss_coor(Glcor,Wi,Mi)          
    Gauss_points2: DO m=1,Mi 
     SELECT CASE (n) 
      CASE (1) 
        C1=-LOG(Eleng)*C 
      CASE (2) 
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         C1=-LOG(Eleng)*C 
       CASE (3) 
         C1=LOG(2/Eleng)*C 
       CASE DEFAULT 
      END SELECT 
      xsi= Glcor(m) 
      CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci) 
      Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
      Direction2: DO j=1,2 
        IF(Isym == 0)THEN 
          iD= 2*(i-1) + j 
        ELSE 
           iD= Ndest(i,j)              !  line number in array 
        END IF 
        IF (id == 0) CYCLE            
        nD= 2*(n-1) + j              !  column number in array 
        dUe(iD,nD)= dUe(iD,nD) + Ni(n)*C1*Jac*Wi(m) 
       END DO Direction2 
      END DO Gauss_points2 
   END DO Node_points1 
END DO Colloc_points1 
RETURN 
END SUBROUTINE Integ2E 

6.3.7 Numerical integration for two-dimensional elements 

Here we discuss numerical integration over two-dimensional isoparametric finite 
boundary elements. We find that the basic principles are very similar to integration over 
one-dimensional elements in that we separate the cases where Pi is not one of the nodes 
of an element and where it is. Starting with potential problems, the integrals which have 
to be evaluated (see Figure 6.13) are: 

(6.46)  

When Pi is not one of the element nodes, then the integrals can be evaluated using 
Gauss Quadrature in the  and  direction. This gives 

(6.47)  
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Figure 6.13 Two-dimensional isoparametric element 

Figure 6.14 Sub-elements for numerical integration when Pi is a corner node of element 
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The number of integration points in  direction M is determined from Table 6.1, 
where L is taken as the size of the element in  direction, L  , and the number of points in 

 direction K is determined by substituting for L the size of the element in  direction 
(L ) in Figure 6.13. 

When Pi is a node of the element but not node n, then Kernel U approaches infinity as 
(1/r) but the shape function approaches zero, so product NnU may be determined using 
Gauss Quadrature. Kernel T approaches infinity as o(1/r2) and cannot be integrated using 
the above scheme. When Pi is node n of the element, then product NnU cannot be 
evaluated with Gauss Quadrature. The integral of the product NnT only exists as a 
Cauchy principal value but this can be evaluated using equations (6.17) and (6.18).  

For the evaluation of the second integral in equation (6.46), when Pi is a node of the 
element but not node n and for evaluating the first integral, when Pi is node n, we 
propose to split up the element into triangular subelements, as shown in Figures 6.14 and 
6.15. For each subelement we introduce a local coordinate system that is chosen in such 
a way that the Jacobian of the transformation approaches zero at node Pi. Numerical 
integration formulae are then applied over two or three subelements depending if Pi is a 
corner or mid-side node. 

Figure 6.15 Sub-elements for numerical integration when Pi is a mid-side node of element 
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Using this scheme, the first integral in equation (6.46) is re-written as 

(6.48)  

The equation for numerical evaluation of the integral using Gauss Quadrature is given 
by 

(6.49)  

where ,J  is the Jacobian of the transformation from ,  to 
The transformation from local element coordinates to subelement coordinates is given 

by 

(6.50)  

 
where l(n) is the local number of the nth subelement node and the shape functions are 
given by 

(6.51)  

Tables 6.2 and 6.3 give the local node numbers l(n) in equation (6.50), depending on 
the number of the subelement and the position of Pi . 

Table 6.2 Local node number l(n) of subelement nodes, Pi at corner nodes 

Subelement 1 Subelement 2 Pi at node 
n=  n=  n=  n=  n=  n=  

1 2 3 1 3 4 1 
2 3 4 2 4 1 2 
3 1 2 3 4 1 3 
4 1 2 4 2 3 4 

 
The Jacobian matrix of the transformation (6.50) is given by 

(6.52)   
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where 

(6.53)  

Table 6.3 Local node number l(n) of subelement nodes, Pi at mid-side nodes 

Subelement 1 Subelement 2 Subelement 3 Pi at 
node n=  n=  n=  n=  n=  n=  n=  n=  n=  

5 4 1 5 2 3 5 3 4 5 
6 1 2 6 3 4 6 4 1 6 
7 4 1 7 2 3 7 1 2 7 
8 1 2 8 3 4 8 2 3 8 

 
The Jacobian is given by 

(6.54)  

The reader may verify that for 1 the Jacobian is zero. Without modification, the 
integration scheme is applicable to elasticity problems. In equations (6.46) we simply 
replace the scalars U and T with matrices U and T.  

6.3.8 Subdivision of region of integration 

As for the plane problems we need to implement a subdivision scheme for the 
integration. In the simplest implementation we subdivide elements into sub regions as 
shown in Figure 6.16. The number of sub regions N  in  and N in  direction is 
determined by 

(6.55)  

Equation 6.47 is replaced by 

(6.56)  
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where M(l) and K(j) are the number of Gauss points in  and  direction for the sub 
region. 

Figure 6.16 Subdivision of two-dimensional element 

The relationship between global and local coordinates is defined as 

(6.57)  

where 1 2 1 2,   and  , define the sub-region. The Jacobian is given by 

(6.58)  

6.3.9 Infinite elements 

Since the integration over infinite elements is carried out in the (finite) local coordinate 
space no special integration scheme need to be introduced for infinite “decay” elements. 
However, special consideration has to be given to infinite “plane strain” elements9 . This 
is explained on an example of an infinitely long cavity (tunnel) in Figure 6.17. For a 
“plane strain” element there is no change of the value of the variable in the infinite 
direction and Equation 6.12 becomes. 

(6.59)  
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For a two-dimensional element the sides of the element going to infinity must be 
parallel, so J is o(r2). ( , )iP QT is o(1/ r2) so the product ( , )iP Q JT is o(1) and may be 
integrated using Gauss Quadrature.  However, ( , )iP QU  is o(1/r), the product 

( , )iP Q JU is o(r) and therefore the integral, with  going to infinity, does not exist. 
However we may replace the integral 

(6.60)  

with 

(6.61)  

where Q is a point dropped from Q to a “plane strain” axis, as shown in Figure 6.17. 

Figure 6.17 A cavity (tunnel) with the definition of the “plane strain” axis 

Replacement of 6.60 with 6.61 has no effect on the satisfaction of the integral equation 
because tractions must integrate to zero around the cavity. 
 

6.3.10 Implementation for three-dimensional problems 

A sub-program, which calculates the element coefficient arrays [ U]e and [ ]e for 
potential problems, or [ U]e and [ ]e for elasticity problems, can be written based on 
the theory discussed. The diagonal coefficients of [ ]e cannot be computed by 
integration over elements of Kernel-shape function products. As has already been 
discussed in section 6.3.2, these can be computed from the consideration of rigid body 
modes. The implementation will be discussed in the next chapter. In Subroutine Integ3 
we distinguish between elasticity and potential problems by the input variable Ndof 
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(number of degrees of freedom per node), which is set to 1 for potential problems and to 
3 for elasticity problems. 

Figure 6.18 Structure chart for computation of [ T] and if [ U] if Pi is one of the element nodes 

Subroutine INTEG3 is divided into two parts. The first part deals with integration 
when Pi is not one of the nodes of the element over which the integration is made. Gauss 
integration in two directions is used here. The integration of e

niT and e
niU  is carried 

out concurrently. It should actually be treated separately, because the functions to be 
integrated have different degrees of singularity and, therefore, require a different number 

Colloc_Points: DO i=1,Number of points Pi

Determine distance of Pi to Sub-lement and  No. of 
Gauss points in and Direction

Gauss Points eta: DO k=1,Number of Gauss in direction  

Determine r,dsxr,Jacobian etc. for kernel computation

Node_Points: DO n=1,Number of Element Nodes

Direction_P: DO j=1,2 (direction of force P)

Direction_Q: DO k=1,2 (direction of U,T at Q).

Sum coefficients [ U]  
 IF (n /= Pi ) sum [ T] 

Zero coefficient arrays [ U] and [ T], Determine L  and L  

Traingles: DO i=1,Number of triangles

Determine number of triangular sub-elements needed 

Gauss Points xsi: DO m=1,Number of Gauss in direction  

Determine row number for storage 

Determine column  number for storage 
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of Gauss points. For simplicity, both are integrated using the number of Gauss points 
required for the higher order singularity. Indeed, the subroutine presented has not been 
programmed very efficiently but, for the purpose of this book, simplicity was the 
paramount factor. Additional improvements in efficiency can, for example, be made by 
carefully examining if the operations in the DO loops actually depend on the DO loop 
variable. If they do not, then that operation should be taken outside of the corresponding 
DO loop. Substantial savings can be made here for a program that involves up to seven 
implied DO loops and which has to be executed for all boundary elements. 

The second part of the SUBROUTINE deals with the case where Pi is one of the 
nodes of the element which we integrate over. To deal with the singularity of the 
integrand the element has to be subdivided into 2 or 3 triangles, as explained previously. 
Since there are a lot of implied DO loops involved, we show a structure chart of this part 
of the program in Figure 6.18.  

A subdivision of the integration region has been implemented, but in order to improve 
clarity of the structure chart is not shown there. The subdivision of integration involves 
two more DO loops. 
 
SUBROUTINE 
Integ3(Elcor,Inci,Nodel,Ncol,xPi,Ndof,E,ny,ko,dUe,dTe,Ndest,Isym) 
!-------------------------------------------------- 
!    Computes  [dT]e and [dU]e for 3-D problems 
!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN)    :: Elcor(:,:)     !   Element coordinates 
INTEGER, INTENT(IN) :: Ndest(:,:)     !   Node destination vector 
INTEGER, INTENT(IN) :: Inci(:)        !   Element Incidences 
INTEGER, INTENT(IN) :: Nodel          !   No. of Element Nodes 
INTEGER , INTENT(IN):: Ncol           !   Number of points Pi  
REAL , INTENT(IN)   :: xPi(:,:)       !   coll. points coords. 
INTEGER , INTENT(IN):: Ndof     !   Number DoF /node (1 or 3) 
INTEGER , INTENT(IN):: Isym           
REAL , INTENT(IN)   :: E,ny     !   Elastic constants  
REAL , INTENT(IN)   :: ko             
REAL(KIND=8) , INTENT(OUT)  :: dUe(:,:),dTe(:,:)  
REAL :: Elengx,Elenge,Rmin,RLx,RLe,Glcorx(8),Wix(8),Glcore(8)& 
,Wie(8),Weit,r 
REAL :: Ni(Nodel),Vnorm(3),GCcor(3),dxr(3),Jac,Jacb,xsi,eta,xsib& 
,etab,Rlim(2) 
REAL :: Xsi1,Xsi2,Eta1,Eta2,RJacB,RonL 
REAL :: UP(Ndof,Ndof),TP(Ndof,Ndof)   !   for storing kernels 
INTEGER :: i,m,n,k,ii,jj,ntr,Mi,Ki,id,nd,lnod,Ntri,NDIVX& 
,NDIVSX,NDIVE,NDIVSE,MAXDIVS 
INTEGER :: ldim= 2       !   Element dimension 
INTEGER :: Cdim= 3       !   Cartesian dimension 
ELengx=& 
Dist((Elcor(:,3)+Elcor(:,2))/2.,(Elcor(:,4)+Elcor(:,1))/2.,Cdim)   
ELenge=& 
Dist((Elcor(:,2)+Elcor(:,1))/2.,(Elcor(:,3)+Elcor(:,4))/2.,Cdim)   
dUe= 0.0 ; dTe= 0.0                 ! Clear arrays for summation 
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!--------------------------------------------------------------- 
!     Part 1 : Pi is not one of the element nodes 
!--------------------------------------------------------------- 
Colloc_points: DO i=1,Ncol 
 IF(.NOT. ALL(Inci /= i)) CYCLE     !  Check if inci contains i 
 Rmin= Min_dist1(Elcor,xPi(:,i),Nodel,inci,ELengx,Elenge,ldim)  
 Mi= Ngaus(Rmin/Elengx,2,Rlim)   !  Number of G.P. in xsi dir.  
 RonL= Rmin/Elengx  
 NDIVSX= 1 ; NDIVSE= 1 
 RJacB=1.0 
 IF(Mi == 5) THEN    !  Subdivision in  required 

IF(RonL > 0.0) NDIVSX= INT(RLim(2)/RonL) + 1    
Mi=4 

 END IF 
 Call Gauss_coor(Glcorx,Wix,Mi)      
 Ki= Ngaus(Rmin/Elenge,2,Rlim)            
 RonL= Rmin/Elenge  
 IF(Ki == 5) THEN  !  Subdivision in  required  

IF(RonL > 0.0) NDIVSE= INT(RLim(2)/RonL) + 1    
Ki=4 

 END IF 
 IF(NDIVSX > 1 .OR. NDIVSE>1) RJacB= 1.0/(NDIVSX*NDIVSE) 
 Call Gauss_coor(Glcore,Wie,Ki)      
 Xsi1=-1.0 

Subdivisions_xsi: DO NDIVX=1,NDIVSX 
 Xsi2= Xsi1 + 2.0/NDIVSX 
 Eta1=-1.0 
 Subdivisions_eta: DO NDIVE=1,NDIVSE 
  Eta2= Eta1 + 2.0/NDIVSE 
  Gauss_points_xsi: DO m=1,Mi 
   xsi= Glcorx(m) 
   IF(NDIVSX > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVSX 
   Gauss_points_eta: DO k=1,Ki 
    eta= Glcore(k) 
    IF(NDIVSE > 1) eta= 0.5*(Eta1+Eta2)+eta/NDIVSE 
    Weit= Wix(m)*Wie(k)*RJacB 
    CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
    Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor) 
    CALL Cartesian(GCcor,Ni,ldim,elcor)           
    r= Dist(GCcor,xPi(:,i),Cdim)        !  Dist. P,Q 
    dxr= (GCcor-xPi(:,i))/r             !  rx/r , ry/r 
    IF(Ndof .EQ. 1) THEN 
     UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim) !  Pot. problem 
    ELSE 
     UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)  
    END IF 
     Direction_P: DO ii=1,Ndof 
      IF(Isym == 0)THEN 
       iD= Ndof*(i-1) + ii     !  line number in array 
      ELSE 
       iD= Ndest(i,ii)              !  line number in array 
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      END IF 
      IF (id == 0) CYCLE 
       Direction_Q: DO jj=1,Ndof 
         Node_points: DO n=1,Nodel 
           nD= Ndof*(n-1) + jj   !  column number in array 
           dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(ii,jj)*Jac*Weit 
           dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(ii,jj)*Jac*Weit 
         END DO Node_points 
        END DO Direction_Q 
       END DO Direction_P 
      END DO Gauss_points_eta 
     END DO Gauss_points_xsi 
     Eta1= Eta2 
    END DO Subdivisions_eta 
    Xsi1= Xsi2 
   END DO Subdivisions_xsi 
 END DO Colloc_points 

!--------------------------------------------------------- 
!     Part 1 : Pi is one of the element nodes 
!--------------------------------------------------------- 
Colloc_points1: DO i=1,Ncol 
 lnod= 0 
 DO n= 1,Nodel         !   Determine which local node is Pi 

IF(Inci(n) .EQ. i) THEN 
  lnod=n 
END IF 

 END DO 
 IF(lnod .EQ. 0) CYCLE          !  None -> next Pi 
 Ntri= 2 
 IF(lnod > 4) Ntri=3          !  Number of triangles 
 Triangles: DO ntr=1,Ntri 

CALL Tri_RL(RLx,RLe,Elengx,Elenge,lnod,ntr) 
Mi= Ngaus(RLx,2,Rlim)           
IF(Mi == 5) Mi=4   !  Triangles are not sub-divided 
Call Gauss_coor(Glcorx,Wix,Mi)    
Ki= Ngaus(RLe,2,Rlim)          
IF(Ki == 5) Ki=4 
Call Gauss_coor(Glcore,Wie,Ki)    
Gauss_points_xsi1: DO m=1,Mi 
 xsib= Glcorx(m) 
 Gauss_points_eta1: DO k=1,Ki 
  etab= Glcore(k) 
  Weit= Wix(m)*Wie(k) 
  CALL Trans_Tri(ntr,lnod,xsib,etab,xsi,eta,Jacb) 
  CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
  Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
  Jac= Jac*Jacb 
  CALL Cartesian(GCcor,Ni,ldim,elcor)              
  r= Dist(GCcor,xPi(:,i),Cdim)                           
  dxr= (GCcor-xPi(:,i))/r                           
  IF(Ndof .EQ. 1) THEN 



166  The Boundary Element Method with Programming 

   UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim) !  Potential  
  ELSE 
   UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)  
  END IF 
  Direction_P1: DO ii=1,Ndof 
   IF(Isym == 0)THEN 
    iD= Ndof*(i-1) + ii     !  line number in array 
   ELSE 
    iD= Ndest(i,ii)             !  line number in array 
   END IF                  
   IF (id == 0) CYCLE 
   Direction_Q1:  DO jj=1,Ndof 
    Node_points1: DO n=1,Nodel 
      nD= Ndof*(n-1) + jj    !  column number in array 
      dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(ii,jj)*Jac*Weit 
      IF(Inci(n) /= i) THEN  !   diagonal elements of dTe  
       dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(ii,jj)*Jac*Weit 
      END IF 
     END DO Node_points1 
    END DO Direction_Q1 
   END DO Direction_P1 
  END DO Gauss_points_eta1 
 END DO Gauss_points_xsi1 

  END DO Triangles 
END DO Colloc_points1 
RETURN 
END SUBROUTINE Integ3 

6.4 CONCLUSIONS 

In this chapter we have discussed in some detail, numerical methods which can be used 
to perform the integration of Kernel-shape function products over boundary elements. 
Because of the nature of these functions, special integration schemes had to be devised, 
so that the precision of integration is similar for all locations of Pi relative to the 
boundary element over which the integration is carried out. If this is not taken into 
consideration, results obtained from a BEM analysis will be in error and, in extreme 
cases, meaningless.  

The number of integration points which has to be used to obtain a given precision of 
integration is not easy to determine. Whereas error estimates have been worked out by 
several researchers based on mathematical theory, so far they are only applicable to 
regular meshes and not to isoparametric elements of arbitrary curved shape. The scheme 
proposed here for working out the number of integration points has been developed on a 
semi-empirical basis, but has been found to work well.  

We have now developed a library of subroutines which we will need for the writing 
of a general purpose computer program. All that is needed is the assembly of coefficient 
matrices from element contributions, to specify the boundary conditions and to solve the 
system of equations. 
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6.5 EXERCISES 

Exercise 6.1 
Check the accuracy of integration, using Subroutine Integ2P for a one-dimensional 
boundary element by performing the numerical integration of  

(6.62)  

(where U and T are the Kernels for potential problems) for a straight line element with 
linear shape function located parallel to the x-axis of length 2 for n=1, with two different 
locations of Pi (shown in Figure 6.19): 
(a) along the element 
(b) perpendicular to the centre of the element 
Do this for values of R/L= 0.5, 0.1 , 0.05 and compare with the analytical solution using  
aprogram such as MATHEMATICA.  
Modify Subroutine Integ2P to disable the subdivision of the region of integration and 
compare the results with the analytical solution 

Figure 6.19 2-D problem for checking accuracy of numerical integration 

Exercise 6.2 
Check the integration schemes proposed for two-dimensional boundary elements using 
Subroutine INTEG3 by performing the integration of equations 

(6.63)  

for a square element with linear  shape function of size 2x2, as shown in Figure 6.20 for 
n=1 with two different locations of Pi: 
(c) In the same plane as the element 
(d) perpendicular to the centre of the element 
for values of R/L= 0.5, 0.1 , 0.05. Compare with the analytical solution using 
MATHEMATICA or similar. 
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Figure 6.20 3-D problem for checking the accuracy of numerical integration 
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7 
Assembly and Solution  

Intellektuelle Erkenntnisse sind papier 
(Intellectual findings are just paper) 

H. Hesse 
 

7.1 INTRODUCTION 

The previous chapter, dealing with the numerical integration of Kernel-Shape function 
products, addressed probably the most important aspect of the boundary element 
method. We note that this is much more involved than the integration used in the FEM 
for determining the element stiffness matrix.  

In the current chapter we will find that subsequent steps in solving the integral 
equations are fairly straightforward and similar to the FEM, especially with respect to 
the assembly of element contributions into the global coefficient matrix. In this book we 
will discuss two approaches: one where we first assemble the coefficient matrices and 
then solve for the boundary unknowns and another where the assembly and solution are 
intermixed. The analogy to this in the FEM is the direct solution and the Element by 
Element solution using iterative solvers1. We will see that the iterative solution approach 
is very suitable to parallel processing. The assembly and direct solution is discussed in 
this chapter and the iterative solution strategy in the subsequent chapter, where also 
aspects of parallelisation will be discussed. 

The system of equations will be different to the FEM, as we have to deal with non-
symmetric and fully populated coefficient matrices. The fact that the equation system is 
fully populated has been claimed to be one of the main drawbacks of the method. 
However, because the system of equations obtained is always significantly smaller, it 
more than compensates for this and, as we will see later, computation times required for 
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the solution are usually much lower than the FEM. We will also see in chapter 11, that if 
we introduce the concept of multiple boundary element regions sparsity is introduced to 
the system of equations.  

At the end of this chapter we will have all the procedures necessary for a general 
purpose program, which can solve steady state problems in potential flow and elasticity. 
The program, however, will only give us values of the unknown at the boundary. As 
already pointed out, a special feature of the BEM is that results at any point inside the 
domain can be computed with greater accuracy as a postprocessing exercise. This topic 
will be dealt with in Chapter 9. 

7.2 ASSEMBLY OF SYSTEM OF EQUATIONS 

We start with potential problems. In the previous section we discussed the computation 
of element contributions to equation (6.7), that is 

(7.1)  

 
We recall the notation used 

(7.2)  

For the solution of the system of equations it is convenient to replace the double sums 
by a matrix multiplication of the type 

(7.3)  

where vectors {u}, {t} contain potential/temperature and fluxes respectively for all 
nodes in global numbering system 

(7.4)  

 and [ T], [ U] are global coefficient matrices assembled by gathering element 
contributions. In the global coefficient arrays, rows correspond to collocation points Pi 
and columns to the global node number. The gathering process is very similar to the 
assembly process in the FEM, except that whole columns are added. For the gathering 
process we need the Connectivity or Incidences of element e, which refer to the global 
node numbers of the element.  

Referring to the simple 2-D mesh with linear elements in Figure 7.1 the incidences of 
are given in Table 7.1. 
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Table 7.1  Connectivity (Incidences) 

Element Node 1 Node 2 
1 1 2 
2  2 3 
3  3  4 
4 4  5 
5  5 6 
6  6  7 
7  7  1 

 

Figure 7.1 2-D BE mesh for explaining assembly (potential problems) 

For example, to assemble the contributions of element 3 with connectivity (/3,4/), 
columns of the coefficient matrix [ T ]3  are added to the global matrix [ T]  

(7.5)  
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For elasticity problems there is more than one unknown per node, so columns are 
numbered according to the degree of freedom, rather than node number. For two-
dimensional elasticity problems, each node has two degrees of freedom and the 
incidences of element 3 are expanded to destinations shown in table 7.2.  

Table 7.2 Destinations  

Node 1 Node 2 Element

x y x y 
1 1 2 3 4 
2 3 4 5 6 
3 5 6 7 8 
4 7 8 9 10 
5  9 10 11 12 
6 11 12 13 14 
7  13  14 1 2 

 
 
For element 3 the destination vector is (/5,6,7,8/) and the assembly is 

(7.6)  

Note that destination numbers are now used for numbering the columns.  
Coming back to potential problems and assuming that, as in the introductory example 

solved with the Trefftz method, the flux t is known on all boundary nodes and solution u 
is required, we assemble the left hand side, perform the matrix multiplication on the 
right and solve the system of equations. Alternatively, multiplication [ U]{t} can be 
made element by element at the assembly level, without explicitly creating the matrix 
[ U], therefore saving on storage space. This would also allow us to consider 
discontinuous distribution of normal gradients or tractions. For the simple example in 
Figure 7.1, equation (7.1) can be replaced by 

(7.7)  FuT
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where the coefficients of the right hand side vector {F} are given by 

(7.8)  

Figure 7.2 2-D mesh for explaining assembly (2-D elasticity problems) 

Often, however, we have a mixed boundary value problem where u is prescribed on 
some portion of the boundary and t on the other. We must therefore exchange columns 
so that coefficients which multiply with unknowns are on the left hand side and 
coefficients which multiply with known values are on the right. We consider the simple 
example in Figure 7.3, where temperatures u are prescribed along element 4 and flow 
values are prescribed on elements 1,2 and 3. Note that since the outward normals are 
different at the corner nodes, the flow values are discontinuous there, i.e., different for 
the element left and right of the node. However, there can only be one temperature value 
at a node.  

Writing equations (7.1) in longhand we obtain: 

(7.9)  
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The assembly procedure has to be modified, so that we put all known values on the 
right hand side and all unknown ones on the left side of the equation.  

Known values are 

(7.10)  

Unknown values are 

(7.11)  

Figure 7.3 Example of two-dimensional potential problem with mixed boundary conditions 

After placing unknown values on the left and known values on the right, equation 
(7.9) is written as 

(7.12)  
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In equation (7.12) the global numbering for the nodes has been implemented. This 
equation can now be written for source points Pi located at nodes 1,2,3,4 as a matrix 
equation (7.13). The diagonal elements involving T are highlighted by brackets. As 
explained in 6.3.1., we compute and assemble these diagonal coefficients by considering 
“rigid body modes”. 

(7.13)  

The coefficients Fi of the right hand side vector {F} is computed as 

(7.14)  

For problems in elasticity, the assembly process for mixed boundary value problems 
is similar but, since the assembly is by degrees of freedom rather than node numbers, 
boundary conditions will also depend on the direction. An example of this is given in 
Figure 7.4. 
 

Figure 7.4  Example of discontinuous boundary condition in elasticity: fixed beam 

To summarise the assembly process we note that element contributions are assembled 
into the global matrix by gathering the coefficients according to incidences or 
destinations (in the case of elasticity problems). Depending on the boundary codes 
defined at a particular node, the coefficients e

niT and e
niU are assembled either into the 

left or right hand side. So the information that is needed for the assembly is the 
Connectivity or Destination vector and the boundary code for each element. Note that 
the boundary code is defined locally for each element and can have two values at a 
particular node. 
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7.2.1 Symmetry 

In many cases it is possible to take into account the symmetry of a problem and thereby 
considerably reduce the amount of analysis effort. In the FEM such conditions are 
simply implemented by generating only part of the mesh and providing the appropriate 
boundary conditions at the plane(s) of symmetry. In the BEM we can take a different 
approach, alleviating the need to have boundary elements on the symmetry plane. For 
example, for the problem shown in Figure 7.5, of a circular excavation in an infinite 
domain, nodes do not exist on the plane of symmetry. 

 
Figure 7.5  Example with one plane of symmetry and mesh used to explain implementation 

The approach in dealing with symmetry conditions in the BEM will be explained 
here. Consider the simple mesh for the analysis of a circular excavation consisting of a 
total of 8 elements shown in Figure 7.5b. The idea is to input only elements on the right 
hand side of the symmetry plane (elements 1 to 4) and to automatically generate the 
elements on the left (elements 11 to 41). The incidences of all elements are: 

 
Element i j Element i j 

1 4 5 11 5  41 
2 3 4 21 41 31 
3 2 3 31 31  21 
4 1 2 41 21  1 
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Note that the sequence of nodes for all mirrored elements is reversed. This is 
important because it affects the direction of the outward normal vector n. The 
coordinates of nodes at the left of the symmetry plane can be computed from those on 
the right by: 

 
Node x y 

21 -x2 y2 

31 -x3 y3 

41 -x4 y4 

Substantial savings in computational effort can be made, if during assembly we 
consider that the unknowns on the left hand side of the symmetry plane can be 
determined from the ones on the right. For potential problems we simply have u2

1= u2 , 
u3

1= u3 and u4
1= u4. 

Figure 7.6 Example with two planes of symmetry 

For elasticity problems we have (see displaced shape in Figure 7.5 (a)) 

 
Node ux uy 

21 - ux2 uy2 

31 - ux3 uy3 

41 - ux4 uy4 
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For assembly of the system of equations this means that the coefficients of the 

mirrored nodes are assembled in the same location as for the un-primed nodes.  
For elasticity problems, the negative signs of the x-component of the displacement 

have to be considered during assembly. If this assembly procedure is used, then the 
number of unknowns for the problem is reduced to the nodes on the right hand side of 
the symmetry plane and on the plane itself. The only additional computational effort will 
be the integration of the Kernel shape function products over the mirrored elements. If 
conditions of symmetry exist about the x and y axis, then the elements are “mirrored” 
twice, as shown in Figure 7.6. 

The incidence vectors are now 

 
Element i j Element i j 

1 2 3 12 22  32 
2 1 2 22 12 22 
11 3 21 13 31  23 
21 21 11 23 23  1 

 
Note that for all elements, except 12 and 22, the incidences are reversed. The 

coordinates of the “mirrored” nodes are 
 

Node x y 
11 -x1 y1 

32 x3 -y3 

21 -x2 y2 

22 -x2 -y2 

23 x2 -y2 

 
For potential problems we have u2

1= u2
2= u2

3= u2 , u1
1= u1 and u3

1= u3. For elasticity 
problems the displacements at the primed nodes are given by  

 
Node ux uy 

11 - ux1 0 

31 0 -uy3 

21 - ux2 uy2 

22 - ux2 -uy2 

23  ux2 -uy2 
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Figure 7.7 Three-dimensional BE mesh with 3 planes of symmetry  

 
The method can be extended to three-dimensional problems. Up to three planes of 

symmetry are possible and an element has to be projected seven times. For the mesh in 
Figure 7.7, we determine the incidences for the mirrored elements keeping a consistent 
outward normal, as shown (anti-clockwise numbering of element 1). 

 
Element i j k l 

1 1 2 3 4 
11 1 4 31 21 
12 1 21 32 41 
13 1 41 33 2 
14 11  43 37 23 
15 11 22 34 43 
16 11  42 35 22 
17 11  23 36 42 
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We note that for mirror image number n= 1,3,4 and 6, the incidences have to be 
reversed to maintain a consistent outward normal, as shown. 

We now discuss the computer implementation of up to 3 symmetry planes. We 
specify a symmetry code  

 
Symmetry code 

m 
Symmetry about No. of mirrored elements

1 y-z plane 1 
2 y-z and x-z plane 3 
3 All 3 planes 7 

 
For the mirrored nodes we can compute coordinates x, displacements u and tractions 

t from the original nodes by 

(7.15)  

where superscript n denotes the mirror image number, as used in Figures 7.5 to 7.7.  
Transformation matrices T are computed as follows 
First we define three matrices Tm  

(7.16)  

In terms of these, the transformation matrices are defined as 

(7.17)  

For implementation we provide an additional loop for each element which, depending 
on the symmetry code, is executed 1,2,4 or 8 times. For no symmetry (code 0) we 
consider only the original element. For code 1 (symmetry about y-z plane) we consider 
one mirrored image of the element. For symmetry codes 2 and 3, three and seven 
mirrored images of the element are considered. 

7.2.2 Subroutine MIRROR 

Subroutine MIRROR has been written to generate elements across symmetry planes. It 
returns the incidence, destination and coordinate vector of the mirrored element, as well 
as multiplication factors for the assembly. In the subroutine we assume that if points are 
on the symmetry plane, then they have exactly zero coordinate and one must ensure that 
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this is actually the case. We note that for subroutines INTEG to work for the mirrored 
elements, we must change the mirrored node numbers to some arbitrary value. Here we 
have chosen to add the maximum node number to the incidences. Note that some 
numbers of the original node must not be changed if they lie on a specified symmetry 
plane. Table 7.3 gives an overview of the node number that must not be changed if it lies 
on a specified symmetry plane. 

Table 7.3 List of node numbers that should not be changed during “mirroring” 

Node is on Mirror image (n) which 
must not be changed 

x-z plane 3 
y-z plane 1 
x-y plane 4 
2 planes 1 to 3 

 
Destination vectors of the mirrored elements used for the assembly remain the same 

as for the original element, except that if incidences are reversed to maintain a consistent 
outward normal, then the destination vector must also be reversed. Subroutine Reverse is 
used and it has been put in the Utility Library. Note that in the implementation of the 
transformation matrices (equation 7.17), only the diagonal terms are considered. 

 
SUBROUTINE Mirror(Isym,nsy,Nodes,Elcor,Fac,Incie,Ldeste & 
                  Elres_te,Elres_ue,,Nodel,Ndof,Cdim) 
!-------------------------------------------- 
!     Creates mirror image of an element 
!-------------------------------------------- 
INTEGER, INTENT(IN) ::  Isym       ! symmetry indicator  
INTEGER, INTENT(IN) ::  nsy        ! symmetry count 
INTEGER, INTENT(IN) ::  nodes      ! highest node no 
REAL, INTENT(IN OUT)::  Elcor(:,:) ! Coords (will be modified) 
REAL, INTENT(OUT)   ::  Fac(:)     ! Multiplication factors 
INTEGER, INTENT(IN OUT)::  Incie(:)! Incidences   (will be 
INTEGER, INTENT(IN OUT):: Ldeste(:)! Destinations  modified) 
REAL, INTENT(IN OUT)   ::  Elres_te(:) ! Element tractions 
REAL, INTENT(IN OUT)   ::  Elres_ue(:) ! Element displacements 
INTEGER, INTENT(IN) ::  Nodel      ! Nodes per element 
INTEGER, INTENT(IN) ::  Ndof       ! d.o.F. per Node  
INTEGER, INTENT(IN) ::  Cdim       ! Cartesian dimension 
REAL  :: TD(3) ! Transformation vector (diagonal elements of T) 
INTEGER :: n,m,Ison1,Ison2,Ison3,i 
Fac(1:nodel*ndof)= 1.0 
IF(nsy == 1) RETURN 
SELECT CASE (nsy-1) 
   CASE(1) 
    TD=(/-1.0,1.0,1.0/) 
   CASE(2) 
    TD=(/-1.0,-1.0,1.0/)  
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   CASE(3) 
    TD=(/1.0,-1.0,1.0/)  
   CASE(4) 
    TD=(/1.0,1.0,-1.0/)  
   CASE(5) 
    TD=(/-1.0,1.0,-1.0/)  
   CASE(6) 
    TD=(/1.0,-1.0,-1.0/)  
   CASE(7) 
    TD=(/-1.0,-1.0,-1.0/)  
END SELECT 
!     generate coordinates and incidences 
Nodes0: & 
DO n=1,nodel 
Elcor(:,n)= Elcor(:,n)*TD(m)  
!   Check if point is on any symmetry plane 
Ison1= 0 ; Ison2= 0 ; Ison3= 0 

 IF(Elcor(1,n)==0.0) Ison1=1   
 IF(Elcor(2,n)==0.0) Ison2=1   
 IF(Cdim > 2 .AND. Elcor(3,n)==0.0) Ison3=1   
 !   only change incidences for unprimed nodes 
 IF(ison1==1 .AND. nsy-1 ==1) CYCLE 
 IF(ison2==1 .AND. nsy-1 ==3) CYCLE 
 IF(ison1+ison2+ison3 > 1 .AND. nsy-1<4) CYCLE 
 Incie(n)= Incie(n) + Nodes 
END DO & 
Nodes0 
!     generate multiplication factors, elast. Problems only 
IF(Ndof > 1) THEN 
I=0 

 Nodes1: & 
 DO n=1,nodel 
  Degrees_of_freedom: & 
  DO m=1,Ndof 
   I=I+1 
   Fac(I)= TD(m) 
  END DO &  
  Degrees_of_freedom 
 END DO & 
 Nodes1 
END IF 
!   Reverse destination vector for selected elements 
SELECT CASE (nsy-1) 
 CASE (1,3,4,6) 
 CALL & 
 Reverse(Incie,elcor,ldeste,Elres_te,Elres_ue,Ndof,Cdim,nodel) 
 CASE DEFAULT 
END SELECT 
RETURN 
END SUBROUTINE Mirror  



ASSEMBLY AND SOLUTION 183
  
7.2.3 Subroutine Assembly 

A sub-program for assembling the coefficient matrices using a vector of incidences or 
destinations, as well as information about the type of boundary and symmetry condition, 
is presented. The information about the boundary condition is supplied for each node or 
each degree of freedom of an element and the code is 0 for Neuman and 1 for the 
Dirichlet condition. Care has to be taken where the boundary condition is discontinuous. 
For example, in Figure 7.3, both temperature and flow values are known at the first node 
of element 1, but only temperature is known at the second node of element 4 (both nodes 
equal 1 in global numbering). For the assembly we must therefore specify a global code, 
in addition to a boundary code for each element. Then, if Neuman BC is specified and 
the global code is Dirichlet, both T and U are assembled on the right hand side. In the 
parameter list vectors, Elres_u and Elres_t are introduced. These will eventually contain 
all results of an element. At the stage when the SUBROUTINE is called, however, they 
contain only known (prescribed) values with all other values being zero. SUBROUTINE 
Assembly can be used for the assembly of two or three-dimensional problems in 
potential flow or elasticity. The incidence vector in potential flow problems and the 
destination vector in elasticity problems is defined as LDEST.  
 
SUBROUTINE Assembly(Lhs,Rhs,DTe,DUe,Ldest,BCode,Ncode & 
                   ,Elres_ue,Elres_te,Diag,Ndofe,Ndof,Nodel,Fac) 
!--------------------------------------------- 
!  Assembles Element contributions DTe , DUe 
!  into global matrix Lhs and vector Rhs 
!  Also sums off-diagonal coefficients  
!  for the computation of diagonal coefficients 
!--------------------------------------------- 
REAL(KIND=8)            :: Lhs(:,:),Rhs(:)     !  Global arrays 
REAL(KIND=8), INTENT(IN):: DTe(:,:),DUe(:,:)   !  Element arrays 
INTEGER , INTENT(IN) :: LDest(:) ! Element destination vector 
INTEGER , INTENT(IN) :: BCode(:) ! Boundary code(local) 
INTEGER , INTENT(IN) :: NCode(:) ! Boundary code (global)  
INTEGER , INTENT(IN) :: Ndofe    ! D.o.F´s / Elem 
INTEGER , INTENT(IN) :: Ndof     ! D.o.F´s / Node 
INTEGER , INTENT(IN) :: Nodel      ! Nodes/Element 
REAL , INTENT(IN)    :: Elres_ue(:) ! vector u for element 
REAL , INTENT(IN)    :: Elres_te(:) ! vector t for element 
REAL , INTENT(IN)    :: Fac(:)     ! Mult. factor for symmetry   
REAL(KIND=8) :: Diag(:,:) ! Array containing diagonal coeff of DT 
INTEGER :: n,Ncol 
DoF_per_Element:& 
DO m=1,Ndofe   
 Ncol=Ldest(m)      !   Column number  
 IF(BCode(m) == 0) THEN    !   Neumann BC 

 Rhs(:) = Rhs(:) + DUe(:,m)*Elres_te(m)*Fac(m) 
!   The assembly of dTe depends on the global BC 

 IF (NCode(Ldest(m)) == 0) THEN  
Lhs(:,Ncol)=  Lhs(:,Ncol) + DTe(:,m)*Fac(m) 
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 END IF 
 IF (NCode(Ldest(m)) == 1) THEN 

Rhs(:) = Rhs(:) - DTe(:,m) * Elres_ue(m)*Fac(m) 
 END IF 

 END IF 
 IF(BCode(m) == 1) THEN   !   Dirichlet BC 

 Lhs(:,Ncol) = Lhs(:,Ncol) - DUe(:,m)*Fac(m) 
 Rhs(:)= Rhs(:) - DTe(:,m) * Elres_ue(m)*Fac(m) 

 END IF 
END DO & 
DoF_per_Element 
!    Sum of off-diagonal coefficients 
DO n=1,Nodel 
 DO k=1,Ndof 

l=(n-1)*Ndof+k 
Diag(:,k)= Diag(:,k) - DTe(:,l)*Fac(m) 

 END DO 
END DO 
RETURN 
END SUBROUTINE Assembly 

 
Element contributions to the coefficient matrix, which have been computed 

numerically with SUBROUTINE Integ, have zero values for coefficients Te
ni when 

g(n) is point I, because these coefficients are not computed using numerical integration. 
In the assembled matrix [ T], these coefficients correspond to diagonal elements. 
Equation (6.17) or (6.18) can be applied to compute these coefficients.  

For example, the assembled diagonal coefficient Tii is given by 
 

(7.18)  

where A is the azimuthal integral (see section 6.3.2). The double sum is computed by 
SUBROUTINE Assembly and stored in an array Diag for later use. 

7.3 SOLUTION OF SYSTEM OF EQUATIONS 

After assembly and adding the azimuthal integral as required, a system of simultaneous 
equations is obtained. The difference to the system of equations obtained for the FEM is 
that it is not symmetric and fully populated. The non-symmetry of the coefficient matrix 
had engineers, who were used to symmetric stiffness matrices, baffled for a while. The 
question was why, since we have used the theorem by Betti, which Maxwell used to 
prove reciprocity and therefore the symmetry of the stiffness matrix, are we not getting a 
symmetric coefficient matrix? The answer lies in the fact that we are not solving the 
integral equations exactly but by numerical approximation. Instead of enforcing the Betti 
theorem at an infinite number of points, as we should, we select a limited number of 
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points which are nodal points of the mesh. It can be shown that as the fineness of the 
mesh increases, the coefficient matrices become more and more symmetric. Indeed, in 
the limit with an infinite number of elements, full symmetry should be attained. Another 
fact that has been discovered is that if boundary elements with linear functions are used, 
then the non-symmetry is much less pronounced than if elements with quadratic 
variation are used. The reason for this is not quite clear. 

The fact that coefficient matrices are fully populated makes things easier in the sense 
that we do not need to worry about sparse solvers at this stage. We will see later that 
when we introduce multiple regions, for example, to cater for non-homogenities or to 
model cracks or faults, we will also introduce sparseness. 

The lack of sparseness of course means that no savings can be made by using special 
schemes, such as band or skyline storage. The number of degrees of freedom, however, 
should be considerably smaller, especially for soil or rock mechanics problems where 
the domain can be assumed to extend to infinity. 

7.3.1 Gauss elimination 

The Gauss elimination method is probably the oldest and most used for solving the 
system of equations. Consider the following system of equations 

(7.19)  

The solution for unknowns u involve two steps 
 
STEP 1: Reduction  

Here we introduce zeroes below the diagonal elements, so that we end up with an 
upper triangular coefficient matrix. 

For example, consider the n-th and i-th equation of a system 

(7.20)  

To introduce a zero in the n-th column of the i-th equation, we subtract (ain/ ann) times 
the equation n from equation i : 

(7.21)  

where 

(7.22)  
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The procedure, which is sometimes referred to as elimination of variable n, can be 
visualised as a repeated modification of the coefficients a to a* , sometimes referred to as 
starring operation. We continue doing the procedure for all the equations until all the 
coefficients of A below the diagonal are zero. 
 
STEP 2: Backsubstitution 

The results may now be obtained by computing the unknown from the last equation, 
which involves one unknown only. The formula for computing the n-th unknown is 
given by 

(7.23)  

The above procedure is easily converted to a subroutine. Subroutine SOLVE shown 
here assumes that coefficient matrix Lhs can be stored in memory. 

 

SUBROUTINE Solve(Lhs,Rhs,u) 
!--------------------------------------------- 
!    Solution of system of equations 
!    by Gauss Elimination 
!--------------------------------------------- 
REAL(KIND=8) :: Lhs(:,:)     !    Equation Left hand side 
REAL(KIND=8) :: Rhs(:)    !    Equation right hand side 
REAL(KIND=8) ::   u(:)    !    Unknown 
INTEGER             M   !    Size of system 
REAL(KIND=8) ::  FAC    
M= UBOUND(Rhs,1) 
!  Reduction 
Equation_n: & 
DO n=1,M-1 
 IF(Lhs(n,n) < 1.0E-10 .AND. Lhs(n,n) > -1.0E-10) THEN 
  CALL Error_Message('Singular Matrix') 
 END IF 
 Equation_i: & 
 DO I= n + 1,M 
  FAC= Lhs(i,n)/Lhs(n,n) 
  Lhs(i, n+1 : M)= Lhs(i, n+1 : M) - Lhs(n, n+1 : M)*FAC 
  Rhs(i)= Rhs(i) - Rhs(n)*FAC 
 END DO  & 
 Equation_i 
END DO & 
Equation_n 
!    Backsubstitution 
Unknown_n: & 
DO n= M,1,-1 
 u(n)= -1.0/Lhs(n,n)*(SUM(Lhs(n,n + 1:M)*u(n + 1:M)) - Rhs(n)) 
END DO Unknown_n 
RETURN ;  END SUBROUTINE Solve 
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As already mentioned previously for the solution of equations involving many 
subtractions, it is necessary to use REAL (KIND=8) for the arrays, to avoid an 
accumulation of round-off error. For a 3-D elasticity problem involving 1000 nodes, the 
space required for storing the coefficient matrix in REAL (KIND=8) is 72 Mbytes. For 
the solution on small computers this space may not be available and special algorithms 
must be devised, where part of the matrix is written onto disk. Methods for the 
partitioned solution of large systems are presented, for example by Beer and Watson2. 

For the reduction of the system of equations we need three implied DO-loops. In the 
implementation the innermost DO-loop is written implicitly using the new feature 
available in FORTRAN 90. The innermost DO-loop involves one multiplication and one 
subtraction and is executed (M – n) times, where M is the number of unknowns. The DO 
loop above it involves a division and is also executed (M – n) times. Finally the 
outermost DO-loop is executed M – 1 times. It can be shown, therefore, that the total 
number of operations required is 2/3M3 + ½M2 + 1/6M. For large systems the first term 
is dominant 

This means that, for example, for a problem in three-dimensional elasticity involving 
1000 nodes, approx. 2x1010 operations are necessary for the reduction. If we want to 
analyse these problems in a reasonable time there is clearly a need for more efficient 
solvers. Recently there has been a resurgence of iterative solvers1. The advantage of 
these solvers is that the number of operations and hence the solution time is only 
proportional to M2 and that they can be adapted easily to run on parallel computers. This 
will be discussed in the next chapter. 

7.3.2 Scaling 

When we look at the fundamental solutions for elasticity we note that kernel U contains 
the modulus of elasticity whereas T does not. Depending on the chosen units used we 
expect a large difference in values. As we have seen at the beginning of this chapter, if 
there is a mixed boundary value problem then there is a mixture of U and T terms in the 
assembled coefficient matrix. This may cause problems in the solution of equations, 
since very small terms would be subtracted from very large ones. Additionally, we note 
that for 2-D problems kernel U varies with ln(1/r) which gives value as r . 

For the above reasons scaling of the data is recommended. Scaling is applied in such 
a way that all tractions are divided by E and all coordinates by the largest difference 
between coordinates (which results in a scaled problem size of unity). 

7.4 PROGRAM 7.1: GENERAL PURPOSE PROGRAM,  
 DIRECT METHOD, ONE REGION 

We now have developed all necessary tools for writing a general purpose computer 
program for computing two and three-dimensional problems in potential flow and 
elasticity. The first part of the program reads input data. There are three types of data: 
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job specification, geometry and boundary data. They are read in by calling three separate 
subroutines Jobin, Geomin and BCinput.  The job information consists of the Cartesian 
dimension of the problem (2-D or 3-D), type of region (finite or infinite), whether it is a 
potential or elasticity problem, type of elements used (linear or quadratic), properties, 
that is conductivity for potential problems and modulus of elasticity and Poisson's ratio 
for elasticity problems and number of elements/nodes. The geometrical information 
consists of the coordinates of nodes and element incidences. Finally the boundary 
conditions are input. In the program we assume that all nodes have Neuman boundary 
condition with zero prescribed value by default. All nodes with Dirichlet boundary 
conditions and all nodes having Neumann BC, with non-zero prescribed values have to 
be input. After the specification of the BC´s element, destination vectors can be set up 
by a call to Subroutine Destination contained in the utility library. As explained 
previously destinations are the addresses of the coefficients in the global arrays. Note 
that for symmetry it is of advantage to exclude those degrees of freedom which have 
zero value and a node destination vector (Ndest) has been included to consider this. As 
explained previously a global boundary code vector is needed to cater for the case where 
the boundary code is discontinuous at a node. Scaling, as described above, is applied by 
a call to SUBROUTINE Scal. 

The assembly is made by calling SUBROUTINE Assemb. Since the diagonal 
coefficients are not computed using numerical integration but are determined using the 
'rigid body mode' method, all off-diagonal coefficients are summed and, if the region is 
infinite, the azimuthal integral is added. Diagonal coefficients are stored in a vector Diag 
and the boundary condition codes will determine if these are assembled into the left or 
right hand side. The system of equations is solved next. Using the element destination 
vector, results Elres_u and Elres_t are gathered from global vector u1. As will seen 
later, it is convenient for postprocessing to store results element by element. 

 
PROGRAM General_purpose_BEM 
!------------------------------------------------------ 
!     General purpose BEM program 
!     for solving elasticity and potential problems 
!------------------------------------------------------ 
USE Utility_lib ; USE Elast_lib ; USE Laplace_lib  
USE Integration_lib 
IMPLICIT NONE 
INTEGER, ALLOCATABLE :: Inci(:,:)  !  Element Incidences 
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) !  Element BC´s 
INTEGER, ALLOCATABLE :: Ldest(:,:) !  Element dest. vector 
INTEGER, ALLOCATABLE :: Ndest(:,:) !  Node destination vector 
REAL, ALLOCATABLE :: Elres_u(:,:)  !  Results , u 
REAL, ALLOCATABLE :: Elres_t(:,:)  !  Results , t 
REAL, ALLOCATABLE :: Elcor(:,:)    !  Element coordinates 
REAL, ALLOCATABLE :: xP(:,:)       !  Node co-ordinates 
REAL(KIND=8), ALLOCATABLE :: dUe(:,:),dTe(:,:),Diag(:,:) 
REAL(KIND=8), ALLOCATABLE :: Lhs(:,:),F(:) 
REAL(KIND=8), ALLOCATABLE :: u1(:) !  global vector of unknown 
CHARACTER (LEN=80) :: Title 
INTEGER :: Cdim,Node,m,n,Istat,Nodel,Nel,Ndof,Toa 
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INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t   
INTEGER :: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy 
REAL,ALLOCATABLE    :: Fac(:)     !  Factors for symmetry 
REAL,ALLOCATABLE    :: Elres_te(:),Elres_ue(:)    
INTEGER,ALLOCATABLE :: Incie(:)   !  Incidences 1 element 
INTEGER,ALLOCATABLE :: Ldeste(:)  !  Destination vector  
REAL :: Con,E,ny,Scat,Scad 
!----------------------------------------------------- 
!   Read job information 
!----------------------------------------------------- 
OPEN (UNIT=1,FILE='INPUT',FORM='FORMATTED') !  Input 
OPEN (UNIT=2,FILE='OUTPUT',FORM='FORMATTED')!  Output 
Call Jobin(Title,Cdim,Ndof,Toa,Nreg,Ltyp,Con,E,ny,& 
           Isym,nodel,nodes,maxe) 
Nsym= 2**Isym   !   number of symmetry loops 
ALLOCATE(xP(Cdim,Nodes))   !  Array for node coordinates 
ALLOCATE(Inci(Maxe,Nodel)) !  Array for incidences 
CALL Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim) 
Ndofe= Nodel*Ndof   !    Total degrees of freedom of element 
ALLOCATE(BCode(Maxe,Ndofe))  !    Element Boundary codes 
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))  
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,ndof)  
ALLOCATE(Ldest(maxe,Ndofe))  ! Elem. destination vector 
ALLOCATE(Ndest(Nodes,Ndof)) 
!------------------------------------------------------- 
!  Determine Node and Element destination vectors  
!------------------------------------------------------- 
CALL Destination(Isym,Ndest,Ldest,xP,& 

Inci,Ndofs,nodes,Ndof,Nodel,Maxe) 
!------------------------------------------ 
!     Determine global Boundary code vector 
!--------------------------------------------- 
ALLOCATE(NCode(Ndofs))             
DoF_o_System: & 
DO nd=1,Ndofs 
 DO Nel=1,Maxe 
  DO m=1,Ndofe 
   IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN  
    NCode(nd)= NCode(nd)+BCode(Nel,m) 
   END IF 
  END DO 
 END DO 
END DO & 
DoF_o_System 
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat) 
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe)) ! Elem. coef.  
ALLOCATE(Diag(Ndofs,Ndof))         ! Diagonal coefficients 
ALLOCATE(Lhs(Ndofs,Ndofs),F(Ndofs),u1(Ndofs)) ! global arrays 
ALLOCATE(Elcor(Cdim,Nodel))        !  Elem. Coordinates 
ALLOCATE(Fac(Ndofe))             !  Factor symmetry  
ALLOCATE(Incie(Nodel))            !  Element incidences 
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ALLOCATE(Ldeste(Ndofe))           !  Element destination 
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe))   
!---------------------------------------------------------------- 
!  Compute element coefficient matrices 
!---------------------------------------------------------------- 
Lhs(:,:) = 0.0; F(:) = 0.0; u1(:) = 0.0 
Elements_1:& 
DO Nel=1,Maxe 
 Symmetry_loop:& 
 DO nsy= 1,Nsym 
  Elcor(:,:)= xP(:,Inci(Nel,:))  ! gather element coordinates 
  Incie= Inci(nel,:)             ! incidences 
  Ldeste= Ldest(nel,:)           ! and destinations 
  Fac(1:nodel*ndof)= 1.0 
  Elres_te(:)=Elres_t(Nel,:) 
  IF(Isym > 0) THEN 
   CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,& 

  Incie,Ldeste,Elres_te,Elres_ue &  
           ,nodel,ndof,Cdim)  
  END IF 
  IF(Cdim == 2) THEN 
   IF(Ndof == 1) THEN 
    CALL Integ2P(Elcor,Incie,Nodel,Nodes& 

,xP,Con,dUe,dTe,Ndest,Isym) 
   ELSE 
    CALL Integ2E(Elcor,Incie,Nodel,Nodes& 

,xP,E,ny,dUe,dTe,Ndest,Isym)   
   END IF 
  ELSE 
   CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,Ndof & 
         ,E,ny,Con,dUe,dTe,Ndest,Isym)     
  END IF 
  CALL Assembly(Lhs,F,DTe,DUe,Ldeste,BCode(Nel,:),Ncode & 
         ,Elres_u(Nel,:),Elres_te,Diag& 

,Ndofe,Ndof,Nodel,Fac)  
 END DO & 
 Symmetry_loop 
END DO & 
Elements_1  
!------------------------------------------------------------ 
!  Add azimuthal integral for infinite regions 
!------------------------------------------------------------ 
IF(Nreg == 2) THEN 
 DO m=1, Nodes 
  DO n=1, Ndof 
   IF(Ndest(m,n) == 0)CYCLE 
   k=Ndest(m,n) 
   Diag(k,n) = Diag(k,n) + 1.0 
  END DO 
 END DO    
END IF 
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!------------------------------------------------------------- 
!  Add Diagonal coefficients 
!------------------------------------------------------------- 
Collocation_points: & 
DO m=1,Ndofs   
 Nod=0 
 DO n=1, Nodes 
  DO l=1,Ndof 
   IF (m == Ndest(n,l))THEN 
    Nod=n 
    EXIT 
   END IF  
  END DO 
  IF (Nod /= 0)EXIT 
 END DO 
 DO k=1,Ndof 
  DoF=Ndest(Nod,k) 
  IF(DoF /= 0) THEN 
   IF(NCode(DoF) == 1) THEN 
    Nel=0 
    Pos=0 
    DO i=1,Maxe 
     DO j=1,Ndofe 
      IF(DoF == Ldest(i,j))THEN 
       Nel=i 
       Pos=j 
       EXIT 
      END IF 
     END DO 
     IF(Nel /= 0)EXIT 
    END DO 
    F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos) 
   ELSE 
    Lhs(m,DoF)= Lhs(m,DoF) + Diag(m,k) 
   END IF 
  END IF 
 END DO 
END DO & 
Collocation_points 
!--------------------------------------------------------- 
!   Solve system of equations 
!--------------------------------------------------------- 
CALL Solve(Lhs,F,u1) 
CLOSE(UNIT=2) 
OPEN (UNIT=2,FILE='BERESULTS',FORM='FORMATTED') 
!   Gather Element results from global result vector u1 
Elements_2: & 
DO nel=1,maxe 
 D_o_F1:  & 
 DO nd=1,Ndofe 
  IF(Ldest(nel,nd) /= 0)THEN 
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   IF(NCode(Ldest(nel,nd)) == 0) THEN 
    Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd)) 
   ELSE 
    Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd)) 
   END IF 
  END IF 
 END DO & 
 D_o_F1  
 Elres_u(nel,:)= Elres_u(nel,:) * Scad 
 Elres_t(nel,:)= Elres_t(nel,:) / Scat 
 WRITE(2,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe) 
 WRITE(2,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe) 
END DO & 
Elements_2 
END PROGRAM 

 
To make the program more readable and easier to modify, the reading of the input 

has been delegated to subroutines. This also gives the reader some freedom to determine 
the input FORMAT and implement simple mesh-generation facilities. 

 
SUBROUTINE Jobin(Title,Cdim,Ndof,Toa,Nreg,Ltyp,Con,E,ny & 
                ,Isym,nodel,nodes,maxe) 
!------------------------------------------------ 
!    Subroutine to read in basic job information 
!------------------------------------------------ 
CHARACTER(LEN=80), INTENT(OUT):: Title 
INTEGER, INTENT(OUT) :: Cdim,Ndof,Toa,Nreg,Ltyp,Isym,nodel 
INTEGER, INTENT(OUT) :: Nodes,Maxe 
REAL, INTENT(OUT)    :: Con,E,ny 
READ(1,'(A80)') Title 
WRITE(2,*)'Project:',Title 
READ(1,*) Cdim 
WRITE(2,*)'Cartesian_dimension:',Cdim 
READ(1,*) Ndof        !    Degrees of freedom per node 
IF(NDof == 1) THEN 
 WRITE(2,*)'Potential Problem' 
ELSE 
 WRITE(2,*)'Elasticity Problem' 
END IF 
IF(Ndof == 2)THEN  
 READ(1,*) Toa ! Analysis type (plane strain= 1,plane stress= 2) 
 IF(Toa == 1)THEN 
  WRITE(2,*)'Type of Analysis: Solid Plane Strain' 
 ELSE 
  WRITE(2,*)'Type of Analysis: Solid Plane Stress' 
 END IF 
END IF  
READ(1,*) Nreg       !   Type of region 
IF(NReg == 1) THEN 
 WRITE(2,*)'Finite Region' 
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ELSE 
 WRITE(2,*)'Infinite Region' 
END IF 
READ(1,*) Isym       !   Symmetry code 
SELECT CASE (isym) 

CASE(0) 
WRITE(2,*)'No symmetry' 

CASE(1)  
WRITE(2,*)'Symmetry about y-z plane'  

CASE(2) 
WRITE(2,*)'Symmetry about y-z and x-z planes' 

CASE(3)  
WRITE(2,*)'Symmetry about all planes' 

END SELECT 
READ(1,*) Ltyp        !   Element type 
IF(Ltyp == 1) THEN 
WRITE(2,*)'Linear Elements' 

ELSE 
WRITE(2,*)'Quadratic Elements' 

END IF 
!     Determine number of nodes per element 
IF(Cdim == 2) THEN    !    Line elements 
 IF(Ltyp == 1) THEN 
  Nodel= 2 
 ELSE 
  Nodel= 3 
 END IF 
ELSE                  !    Surface elements 
IF(Ltyp == 1) THEN 
  Nodel= 4 
ELSE 
  Nodel= 8 
END IF 

END IF 
!   Read properties 
IF(Ndof == 1) THEN 
 READ(1,*) Con 
 WRITE(2,*)'Conductivity=',Con 
ELSE  
 READ(1,*) E,ny 
 IF(ToA == 2) ny = ny/(1+ny)    ! Solid Plane Stress 
 WRITE(2,*)'Modulus:',E 
 WRITE(2,*)'Poissons ratio:',ny 
END IF 
READ(1,*) Nodes 
WRITE(2,*)'Number of Nodes of System:',Nodes 
READ(1,*) Maxe      
WRITE(2,*)'Number of Elements of System:', Maxe 
RETURN 
END SUBROUTINE Jobin 
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SUBROUTINE Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim) 
!------------------------------------ 
!   Inputs mesh geometry  
!------------------------------------- 
INTEGER, INTENT(IN) :: Nodes   !   Number of nodes 
INTEGER, INTENT(IN) :: Maxe   !   Number of elements 
INTEGER, INTENT(IN) :: Nodel   !   Number of Nodes of elements 
INTEGER, INTENT(IN) :: Cdim   !   Cartesian Dimension 
REAL, INTENT(OUT)   :: xP(:,:)  !   Node co-ordinates 
REAL        :: xmax(Cdim),xmin(Cdim),delta_x(Cdim) 
INTEGER, INTENT(OUT):: Inci(:,:) !   Element incidences 
INTEGER       :: Node,Nel,M,n 
!------------------------------------------------------- 
!  Read Node Co-ordinates from Inputfile 
!------------------------------------------------------- 
DO Node=1,Nodes 
 READ(1,*) (xP(M,Node),M=1,Cdim) 
 WRITE(2,'(A5,I5,A8,3F8.2)') 'Node ',Node,& 
         '  Coor  ',(xP(M,Node),M=1,Cdim) 
END DO 
!------------------------------------------------------- 
!  Read Incidences from Inputfile 
!------------------------------------------------------- 
WRITE(2,*)'' 
WRITE(2,*)'Incidences: ' 
WRITE(2,*)'' 
Elements_1:& 
DO Nel=1,Maxe 
READ(1,*) (Inci(Nel,n),n=1,Nodel) 
WRITE(2,'(A3,I5,A8,24I5)')'EL ',Nel,'  Inci  ',Inci(Nel,:) 

END DO & 
Elements_1 
RETURN 
END SUBROUTINE Geomin 

 
SUBROUTINE BCInput(Elres_u,Elres_t,Bcode,nodel,ndofe,ndof)  
!------------------------------------------ 
!   Reads boundary conditions 
!------------------------------------------- 
REAL,INTENT(OUT)    :: Elres_u(:,:)  !  Element results , u 
REAL,INTENT(OUT)    :: Elres_t(:,:)  !  Element results , t  
INTEGER,INTENT(OUT) :: BCode(:,:)    !  Element BC´s 
INTEGER,INTENT(IN)  :: nodel         !  Nodes per element 
INTEGER,INTENT(IN)  :: ndofe         !  D.o.F. per Element 
INTEGER,INTENT(IN)  :: ndof          !  D.o.F per Node 
INTEGER :: NE_u,NE_t   
WRITE(2,*)'' 
WRITE(2,*)'Elements with Dirichlet BC´s: ' 
WRITE(2,*)'' 
Elres_u(:,:)=0  ! Default prescribed values for u = 0.0 
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BCode = 0    ! Default BC= Neumann Condition    
READ(1,*)NE_u   
IF(NE_u > 0) THEN 

Elem_presc_displ: & 
DO n=1,NE_u 
 READ(1,*) Nel,(Elres_u(Nel,m),m=1,Ndofe)    
 BCode(Nel,:)=1 
 WRITE(2,*)'Element ',Nel,'  Prescribed values: ' 
 Na= 1 
 Nodes: & 
 DO M= 1,Nodel 
  WRITE(2,*) Elres_u(Nel,na:na+ndof-1) 
  Na= na+Ndof 
 END DO & 
 Nodes 
END DO & 
Elem_presc_displ 

END IF 
WRITE(2,*)'' 
WRITE(2,*)'Elements with Neuman BC´s: ' 
WRITE(2,*)'' 
Elres_t(:,:)=0   !   Default prescribed values = 0.0 
READ(1,*)NE_t    
Elem_presc_trac:  & 
DO n=1,NE_t 
 READ(1,*) Nel,(Elres_t(Nel,m),m=1,Ndofe)       
 WRITE(2,*)'Element ',Nel,'  Prescribed values: ' 
 Na= 1 
 Nodes1: & 
 DO M= 1,Nodel 
  WRITE(2,*) Elres_t(Nel,na:na+ndof-1) 
  Na= na+Ndof 
 END DO & 
 Nodes1 
END DO & 
Elem_presc_trac 
RETURN 
END SUBROUTINE BCInput 

7.4.1 User’s manual 

The input data which have to be supplied in file INPUT are described below. Free field 
input is used, that is, numbers are separated by blanks. However, all numbers, including 
zero entries must be specified.  

The input is divided into two parts. First, general information about the problem is 
read in, then the mesh geometry is specified. The problem may consist of linear and 
quadratic elements, as shown in Figure 7.8. The sequence in which node numbers have 
to be entered when specifying incidences is also shown. Note that this order determines 
the direction of the outward normal, which has to point away from the material. For 3-D 
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elements, if node numbers are entered in an anticlockwise direction, the outward normal 
points towards the viewer. 

 
Figure 7.8  Element library 

INPUT DATA SPECIFICATION FOR General_purpose-BEM program 
 

1.0 Title specification 
TITLE  Project Title (max 60 characters) 
 

2.0 Cartesian dimension of problem 
Cdim  Cartesian dimension  
  2= two-dimensional problem 
  3= three-dimensional problem 

3.0 Problem type specification 
Ndof  Degree of freedom per node  
  1= potential problem 

2,3= elasticity problem 
 

4.0 Analysis type (Only input for Ndof= 2 !!) 
Toa  Type of analysis  
  1= Plane strain  
  2= plane stress   

5.0 Region type specification 
Nreg  Region code  
  1= finite region  
  2= infinite region 
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6.0 Symmetry specification 

ISym  Symmetry code  
  0= no symmetry  
  1= symmetry about y-z plane 
  2= symmetry about y-z and x-z planes 
  3= symmetry about all 3 planes 

7.0 Element type specification 
Ltyp  Element type  
  1= linear  
  2= quadratic 

8.0 Material properties 
C1, C2  Material properties  
  C1= k (conductivity) for Ndof=1  
       =  E (Elastic Modulus) for Ndof=2,3 
  C2= Poisson´s ratio for Ndof=2,3 

9.0 Node specification 
Nodes  Number of nodes 

10.0 Element specification 
Maxe  Number of elements 

11.0  Loop over nodes 
x, y, (z)  Node coordinates 

12.0  Loop over all elements 
Inci (1:Element nodes)  Global node numbers of element nodes 

13.0    Dirichlet boundary conditions  
NE_u  Number of elements with Dirichlet BC 

14.0    Prescribed values for Dirichlet BC for NE_u elements 
 Nel, Elres_u(1 : Element D.o.F.)    Specification of boundary condition 

  Nel = Element number to be assigned BC  
  Elres_u = Prescribed values for all degrees  

  of Freedom of element: all d.o.F 
    first node; all d.o.F second node etc. 

15.0     Neumant boundary conditions  
NE_t  Number of elements with Neuman BC 
  Only specify for no-zero prescribed values. 
 

16.0     Prescribed values for Neuman BC for NE_t elements 
Nel, Elres_t(1 : Element D.o.F.)  Specification of boundary condition 

  Nel = Element number to be assigned BC  
  Elres_t = Prescribed values for all degrees  

  of Freedom of element: all d.o.F 
    first node; all d.o.F second node etc. 
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7.4.2 Sample input file 

For the example of the heat flow past a cylindrical isolator, which was solved with the 
Trefftz method and the direct method with constant elements, we present the input file 
for an analysis with 8 linear elements and no symmetry (Figure 7.9). 

Figure 7.9 Discretisation of cylindrical isolator used for sample inputfile 

 
File INPUT 

 
Flow past cylindrical isolator, 8 linear elements  
2    ! Cdim , 2-D problem   
1    ! Ndof , potential problem    
2    ! Nreg , Infinite region 
0    ! ISym , no symmetry 
1    ! Ltyp , linear element 
1.00 ! C1 , Conductivity 
 8   ! Nodes 
 8   ! Number of Elements 
0.0 1.000   !   Coordinates 
0.707 0.707 
1.0 0.0 
0.707 -0.707 
0.0 -1.0 
-0.707 -0.707 
-1.0 0.0 
-0.707 0.707 
 1 2           !    Incidences 
 2 3 
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 3 4 
 4 5 
 5 6 
 6 7 
 7 8 
 8 1 
 0             !  no Dirichlet BC’s 
 8             !  Neuman BC’c 
 1  1.000  0.707 
 2  0.707  0.000 
 3  0.000 -0.707  
 4 -0.707 -1.000  
 5 -1.000 -0.707 
 6 -0.707  0.000  
 7  0.000  0.707 
 8  0.707  1.000 

7.5 CONCLUSIONS 

In this chapter we have developed a general purpose program, which can be used to 
solve any problem in elasticity and potential flow, or if we substitute the appropriate 
fundamental solutions, any problem at all. This versatility has been made possible 
through the use of isoparametric elements and numerical integration. In essence, the 
boundary element method has borrowed here ideas from the finite element method and, 
in particular, the ideas of Ergatoudis, who first suggested the use of parametric elements 
and numerical integration.  

Indeed, there are also other similarities with the FEM in that the system of equations 
is obtained by assembling element contributions. In the assembly procedure we have 
found that the treatment of discontinous boundary conditions, as they are encountered 
often in practical applications, needs special attention and will change the assembly 
process. 

The implementation of the program is far from efficient. If one does an analysis of 
runtime spent in each part of the program, one will realise that the computation of the 
element coefficient matrices will take a significant amount of time. This is because, as 
pointed out in Chapter 6, the order of DO loops in the numerical integration is not 
optimised to reduce the number of calculations. Also in the implementation, all matrices 
must be stored in RAM, and this may severely restrict the size of problems which can be 
solved.  

We have noted that the system of equations obtained is fully populated, that is, the 
coefficient matrix contains no zero elements. This is in contrast to the FEM, where 
systems are sparsely populated, i.e., containing a large number of zeroes. The other 
difference with the FEM is that the stiffness matrix is not symmetric. This has been 
claimed as one of the disadvantages of the method. However, this is more than 
compensated by the fact that the size of the system is significantly smaller. 

The output from the program consists only of the values of the unknown at the 
boundary. The unknown are either the temperature/displacement or the flow normal to 
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the boundary/boundary stresses. The computation of the complete flow vectors/stress 
tensor at the boundary, as well as the computation of values inside the domain is 
discussed in Chapter 9. 

7.6 EXERCISES 

Exercise 7.1 
Using Program 7.1 compute the problem of flow past a cylindrical isolator, find out the 
influence of the following on the accuracy of results: 

(a) when linear and quadratic boundary elements are used. 
(b) when the number of elements is 8,16 and 32. 
 
Plot the error in the computation of maximum temperature against number of elements. 
 
Exercise 7.2 
Modify the problem computed in Exercise 7.1 by changing the shape of the isolator, so 
that it has an elliptical shape, with a ratio vertical to horizontal axis of 2.0. Comment on 
the changes in the boundary values due to the change in shape. 
 
Exercise 7.3 
Using Program 7.1, compute the problem of a circular excavation in a plane strain 
infinite pre-stressed domain Figure 7.10, find out the influence of the following on the 
accuracy of results: 

(a) when linear and quadratic boundary elements are used. 
(b) when the number of elements is 8,16 and 32. 
 
Plot the error against the number of elements. 
 
Hint: This is the elasticity problem equivalent to the heat flow problem in Exercise 7.1. 
The problem is divided into two:  

1. Continuum with no hole and the initial stresses only 
2.  Continuum with a hole and Neuman boundary conditions. The boundary conditions 
are computed in such a way that when stresses at the boundary of problem 1 are added 
to the ones at problem 2, zero values of boundary tractions are obtained. To compute 
the boundary tractions equivalent to the initial stresses use equation (4.28). 
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Figure 7.10  Circular excavation in an infinite domain 

Exercise 7.4 
Modify the problem computed in Exercise 7.3 by changing the shape of the excavation, 
so that it has an elliptical shape with a ratio vertical to horizontal axis of 2.0. Comment 
on the changes in the deformations due to the change in shape. 

Figure 7.11 Potential problem with boundary conditions 

Exercise 7.5 
Using program 7.1, compute the potential problem of the beam depicted in Figure 7.12. 
Assume k=1.0 and a prescribed temperature of 0.0 at the left end and a prescribed flux 
of 1.0 at the right end. Construct two meshes, one with linear and one with quadratic 
boundary elements. Comment on the results.  
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Exercise 7.6 
Using program 7.1, analyse the problem of the cantilever beam depicted in Figure 7.12. 
Plot the displaced shape and distribution of the normal and shear tractions at the fixed 
end. Construct two meshes, one with linear and the other with quadratic boundary 
elements. Comment on the results. 

Figure 7.12 Example of cantilever beam 

 
Exercise 7.7  
Using program 7.1, compute the problem of the cantilever beam depicted in Figure 7.12. 
but apply a vertical movement of unity to the top support instead of traction at the free 
end. Plot the displaced shape and verify that this is just a rigid body rotation of the 
beam. 
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8 
Element-by-element techniques 
and Parallel Programming 
  

I am a little world 
made cunningly of elements 

Donne 
 

8.1    INTRODUCTION 

In the previous Chapter we considered “traditional” techniques of assembly and solution 
involving element matrix assembly (additive) followed by Gaussian elimination 
performed on the resulting non-symmetric, fully-populated, linear equation system. We 
noted that computer storage requirements for the element matrix coefficients become 
demanding, as do processing requirements, for large numbers of elements particularly in 
three dimensions. 
  Typical single processor storage capacity, at the time of writing, is about 2Gb or 
roughly 200 million 64-bit locations. Therefore, the number of assembled boundary 
element equations that can be handled by one processor is approximately 14,000, 
implying a 3-D model with less than about 5000 nodes. 
  Consider a cubical cavity (cavern) in an infinite elastic medium with each of its 6 faces 
meshed by n*n boundary elements. For linear elements, the number of nodes (equations) 
is close to 6n**2 (18n**2) and for quadratic elements 18n**2 (54n**2), so a linear 
element mesh would be restricted to about 30*30 elements per face and a quadratic one 
to about 16*16, if no symmetries can be exploited.    
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8.1     THE ELEMENT-BY-ELEMENT CONCEPT 

This arose in finite element work, probably first in “explicit” time marching analyses, 
where a solution, say u, t units of time after a previous one, say v, can simply be 
obtained by a matrix*vector multiplication  of the form 

(8.1)  

where M and K are the system “mass” and “stiffness” matrices respectively. The above 
product A v can be carried out “piece-by-piece”, as long as the sum of the “pieces” 
adds up to A. For example 

(8.2)  

 or any other suitable partitioning. Then taking, for example, the last partitioning 

(8.3)  

gives the same result as without partitioning. In boundary element or finite element 
work, element assembly involves just such a partitioning where the appropriate “pieces” 
of A are the element matrices themselves. So whenever a matrix*vector multiplication is 
needed a global A need never be assembled at all and instead the product computed as: 

(8.4)  

 where eA is the element matrix and ev is the appropriate part of v, gathered for element 
e as described in Section 7.2. In essence the idea is to replace the double sum in 
Equation 7.1 by a single sum and a matrix*vector multiplication. 

(8.5)  

To extend this idea to solving sets of linear equations we have to look for a solution 
technique  at the heart of which is a matrix*vector product like equation (8.1). 
Fortunately a whole class of iterative methods for equation solution is of this type. For 
example there are the “gradient” methods for symmetric systems, typified by the 
preconditioned conjugate gradient method (PCG) or the generalised minimum residual 
methods for non-symmetric systems, for example GMRES, which are appropriate for 
boundary element equations.  

Following Chapter 7 we can write the final system of equations in the following form 
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(8.6)  

Where 0R is the “residual” or error for a first trial solution of u namely 0u . In 

elasticity problems with only Neumann boundary conditions, for example, mK  would 

be the assembled matrix T and u  a vector of displacements. However, we note that 
in an element by element (EBE) iterative solution the system of equations (8.6) need 
never be actually assembled.  
 

Figure 8.1 Pseudo-code for BiCGStab 
 
 For the BEM we could choose any of the GMRES-type class of solution techniques. In 
particular, we select the BiCGStab algorithm, which has been shown to be effective in 
Finite Element work1. It follows the two-stage (“Bi”) procedure shown in Figure 8.1 
being dominated by two matrix*vector products such as 

(8.7)  
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carried out on an element by element basis. All other operations involve vector dot-
products.   

8.1.1 Element-by-element storage requirements 

We are not now interested in storing the fully assembled Ndofs*Ndofs system of 
Program 7.1, but rather the element level arrays dTe and dUe which are of size 
Ndofs*Ndofe (assuming both have to be stored). In fact our storage requirements will be  
somewhat greater than for the assembled system, but of course we look forward to 
employing a parallel environment in which this storage will be distributed across the 
number of parallel processors available, npes. 

Returning to our cubical “cavern” mesh, for linear elements the dUe (and dTe) 
boundary element coefficient matrices will need 12*18*n**2/npes locations 
(24*54*n**2/npes for quadratic elements). In this way we can solve much larger 
problems given that a sufficient number of processors is available. A very significant 
additional advantage when we come to parallel processing is that the time-consuming 
computation of dUe and dTe will also take place in parallel. Since this part of the 
computation involves no communication between processors it is an example of 
“perfectly” parallelisable code and with 1000 processors we shall compute the element 
matrix coefficients 1000 times faster than in serial mode. 

Before going on to parallel processing, we go through two intermediate stages. 
Starting from Program 7.1 we first make the (very small) alterations so that we retain 
traditional assembly, but solve the resulting equations iteratively using the BiCGStab(l) 
algorithm (Program 8.1). Then we illustrate the change to an element-by-element 
iterative solution strategy (Program 8.2) and finally progress to the fully parallelised 
version (Program 8.3). 
    Example analyses illustrate the efficiency of parallelism in terms of processing speed 
and problems involving up to 60,000 boundary elements are solved.  

8.2 PROGRAM  8.1 : REPLACING  DIRECT BY ITERATIVE 
SOLUTION 

PROGRAM General_purpose_BEM 
!------------------------------------------------------ 
!    General purpose BEM program 
!    for solving elasticity and potential problems 
!    This version iterative equation solution by BiCGStab(l)  
!------------------------------------------------------ 
USE bem_lib      !  contains precision 
IMPLICIT NONE    !  Ndof changed to N_dof 
INTEGER, ALLOCATABLE :: Inci(:,:)  !  Element Incidences 
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) !  Element BC´s 
INTEGER, ALLOCATABLE :: Ldest(:,:) !  Element destination vector 
INTEGER, ALLOCATABLE :: Ndest(:,:) !  Node destination vector 
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REAL(iwp), ALLOCATABLE :: Elres_u(:,:)  !  Element results , u 
REAL(iwp), ALLOCATABLE :: Elres_t(:,:)  !  Element results , t 
REAL(iwp), ALLOCATABLE :: Elcor(:,:)    !  Element coordinates 
REAL(iwp), ALLOCATABLE :: xP(:,:)       !  Node co-ordinates 
REAL(iwp), ALLOCATABLE :: dUe(:,:),dTe(:,:),Diag(:,:) 
REAL(iwp), ALLOCATABLE :: Lhs(:,:),F(:) 
REAL(iwp), ALLOCATABLE :: u1(:)    !  global vector of unknowns  
CHARACTER (LEN=80) :: Title 
INTEGER :: Cdim,Node,m,n,Istat,Nodel,Nel,N_dof,Toa 
INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t                
INTEGER :: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy,its,ell 
REAL(iwp),ALLOCATABLE    :: Fac(:)     !  Factors for symmetry 
REAL(iwp),ALLOCATABLE    :: Elres_te(:),Elres_ue(:)    
INTEGER,ALLOCATABLE :: Incie(:)   !  Incidences for one element 
INTEGER,ALLOCATABLE :: Ldeste(:)  !  Destination vector 1 elem 
REAL(iwp) :: Con,E,ny,Scat,Scad,tol,kappa 
!----------------------------------------------------- 
!   Read job information 
!----------------------------------------------------- 
OPEN (UNIT=11,FILE='prog81.dat',FORM='FORMATTED') !  Input 
OPEN (UNIT=12,FILE='prog81.res',FORM='FORMATTED') !  Output 
Call Jobin(Title,Cdim,N_dof,Toa,Nreg,Ltyp,Con,E,ny,& 
           Isym,nodel,nodes,maxe) 
Nsym= 2**Isym   !   number of symmetry loops 
ALLOCATE(xP(Cdim,Nodes))   !  Array for node coordinates 
ALLOCATE(Inci(Maxe,Nodel)) !  Array for incidences 
CALL Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim) 
Ndofe= Nodel*N_dof   !    Total degrees of freedom of element 
ALLOCATE(BCode(Maxe,Ndofe))      !    Element Boundary codes 
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))        
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,n_dof) 
READ(11,*) tol,its,ell,kappa    ! data for bicgstab(l)    
ALLOCATE(Ldest(maxe,Ndofe))  ! Elem. destination vector 
ALLOCATE(Ndest(Nodes,N_dof)) 
!---------------------------------------------------------------- 
!     Determine Node destination vector and Element dest vector  
!---------------------------------------------------------------- 
CALL Destination(Isym,Ndest,Ldest,xP,Inci,Ndofs,nodes,& 
N_dof,Nodel,Maxe) 
!--------------------------------------------- 
!     Determine global Boundary code vector 
!--------------------------------------------- 
ALLOCATE(NCode(Ndofs))             
NCode=0 
DoF_o_System: & 
DO  nd=1,Ndofs 
     DO Nel=1,Maxe 
         DO m=1,Ndofe 
            IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN  
                NCode(nd)= NCode(nd)+BCode(Nel,m) 
            END IF 
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         END DO 
     END DO 
END DO & 
DoF_o_System 
IF(N_dof ==1)E= Con 
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat) 
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe))! Elem. coef. matrices 
ALLOCATE(Diag(Ndofs,N_dof))             ! Diagonal coefficients 
ALLOCATE(Lhs(Ndofs,Ndofs),F(Ndofs),u1(Ndofs))   ! global arrays 
ALLOCATE(Elcor(Cdim,Nodel))             !  Elem. Coordinates 
ALLOCATE(Fac(Ndofe))              !  Factor for symmetric 
elements 
ALLOCATE(Incie(Nodel))               !  Element incidences 
ALLOCATE(Ldeste(Ndofe))              !  Element destination 
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe))   ! Tractions of 
Element 
!---------------------------------------------------------------- 
!  Compute element coefficient matrices 
!---------------------------------------------------------------- 
Lhs(:,:) = 0.0_iwp; F(:) = 0.0_iwp; u1(:) = 0.0_iwp; Diag(:,:) = 
0.0_iwp 
Elements_1:& 
DO Nel=1,Maxe 
        Symmetry_loop:& 
        DO nsy= 1,Nsym 
           Elcor(:,:)= xP(:,Inci(Nel,:))!gather element coord 
           Incie= Inci(nel,:)             !   incidences 
           Ldeste= Ldest(nel,:)           !   and destinations 
           Fac(1:nodel*n_dof)= 1.0_iwp 
           Elres_te(:)=Elres_t(Nel,:) 
           IF(Isym > 0) THEN 
               CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,   &                      
           Incie,Ldeste,Elres_te,Elres_ue,nodel,n_dof,Cdim)  
           END IF 
           IF(Cdim == 2) THEN 
             IF(N_dof == 1) THEN 
                   CALL Integ2P(Elcor,Incie,Nodel,Nodes, & 
                          xP,Con,dUe,dTe,Ndest,Isym) 
             ELSE 
                   CALL Integ2E(Elcor,Incie,Nodel,Nodes, & 
                          xP,E,ny,dUe,dTe,Ndest,Isym) 
             END IF 
            ELSE 
                 CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,N_dof & 
                                    ,E,ny,Con,dUe,dTe,Ndest,Isym)     
            END IF 
            CALL Assembly(Lhs,F,DTe,DUe,Ldeste,BCode(Nel,:),&        
        Ncode,Elres_u(Nel,:),Elres_te,Diag,Ndofe,N_dof,Nodel,Fac)      
        END DO & 
        Symmetry_loop 
END DO & 



PARALELL PROGRAMMING 209 

Elements_1 
!------------------------------------------------------------ 
!  Add azimuthal integral for infinite regions 
!------------------------------------------------------------ 
IF(Nreg == 2) THEN 
        DO m=1, Nodes 
           DO n=1, N_dof 
              IF(Ndest(m,n) == 0)CYCLE 
              k=Ndest(m,n) 
              Diag(k,n) = Diag(k,n) + 1.0_iwp 
           END DO 
        END DO            
END IF 
!------------------------------------------------------------- 
!  Add Diagonal coefficients        
!------------------------------------------------------------- 
DO m=1,Ndofs            ! Loop over collocation points 
   Nod=0 
   DO n=1, Nodes 
      DO l=1,N_dof 
         IF (m == Ndest(n,l))THEN 
             Nod=n      
             EXIT 
         END IF   
      END DO 
      IF (Nod /= 0)EXIT 
   END DO 
   DO k=1,N_dof 
      DoF=Ndest(Nod,k) 
      IF(DoF /= 0) THEN 
         IF(NCode(DoF) == 1) THEN 
            Nel=0    ;    Pos=0 
            DO i=1,Maxe 
               DO j=1,Ndofe 
                  IF(DoF == Ldest(i,j))THEN 
                    Nel=i   ;    Pos=j  ;    EXIT 
                  END IF 
               END DO 
            IF(Nel /= 0)EXIT 
            END DO 
            F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos) 
         ELSE 
           Lhs(m,DoF)= Lhs(m,DoF) + Diag(m,k) 
         END IF 
       END IF 
    END DO 
END DO 
!--------------------------------------------------------- 
!   Solve system of equations iteratively 
!--------------------------------------------------------- 
CALL bicgstab_l(Lhs,F,Ndofs,u1,0.0_iwp,tol,its,ell,kappa) 
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!   Gather Element results from global result vector u1 
Elements_2:     & 
DO nel=1,maxe,maxe - 1   
        D_o_F1:         & 
        DO nd=1,Ndofe 
         IF(Ldest(nel,nd) /= 0)THEN 
           IF(NCode(Ldest(nel,nd)) == 0) THEN 
            Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd)) 
           ELSE 
            Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd)) 
           END IF 
          END IF 
        END DO & 
        D_o_F1   
        Elres_u(nel,:)= Elres_u(nel,:) * Scad 
        Elres_t(nel,:)= Elres_t(nel,:) / Scat 
        WRITE(12,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe) 
        WRITE(12,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe) 
END DO & 
Elements_2 
END PROGRAM General_purpose_BEM 
 

 
 
 

                               Figure 8.2 Boundary mesh for cubical cavity 

The changes required to create Program 8.1 from Program 7.1 are minimal. Libraries 
Utility_lib, Elast_lib, Laplace_lib and Integration_lib are unchanged (apart from 
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minimised output) and have been combined into a single library bem_lib, which also 
contains the iterative solution subroutine bicgstab_l. For reasons associated with global 
variable names used later in parallelised programs, the number of degrees of freedom 
per element, called Ndof in Program 7.1, has been changed to N_dof. In the iterative 
algorithm there are variables ell (INTEGER) and kappa (REAL) which have to be 
declared and input, and since the process must be terminated somehow there are 
declarations and input of an iteration termination counter its (INTEGER) and a 
convergence tolerance tol (REAL). The only other change is the replacement of the 
direct solver solve by the iterative one bicgstab_l ; further, because the sample input file 
(although for a “small” problem) takes an example with 600 elements, the output has 
been truncated to list only the first and last node, coordinate, element and so on. 
Therefore in the output Elements_2 loop the counter increment is maxe–1 rather than 1.     

8.2.1 Sample input file 

The example chosen is of a cubical cavern in an infinite elastic medium loaded with a 
uniform traction on all 6 faces and meshed by 600 linear elements (see Figure 8.2). 

 
Square excavation 3D 
 3  
 3  
 2 
 0 
 1 
0.1000E+04 
0.0000E+00 
   602 
   600 
10.000     0.000     0.000   
10.000     1.000     0.000  
 9.000     1.000     0.000   
 9.000     0.000     0.000  
 8.000     1.000     0.000   
 8.000     0.000     0.000 
............................ 
10.000     5.000     9.000  
10.000     6.000     9.000  
10.000     7.000     9.000  
10.000     8.000     9.000  
10.000     9.000     9.000 
  1    2    3    4  
  4    3    5    6  
  6    5    7    8             
  8    7    9   10             
 10    9   11   12             
 12   11   13   14 
....................... 
597  131  133  598  
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598  133  135  599  
599  135  137  600  
600  137  139  601  
601  139  141  602  
602  141  143  331 
    0 
    600 
 1  0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 
 2  0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 
 3  0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 
 4  0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 
........................................................... 
596 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 
597 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 
598 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 
599 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 
600 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0     
1.E-9  50  4  .7  
 

 
 Young’s modulus is 1000.0 and Poisson’s ratio zero. The iteration tolerance is 1.e-9, a 
maximum of 50 iterations is specified and the iterative algorithm parameters are set to 
ell=4 and kappa = 0.7. 

8.2.2 Sample output file 

    Project: 
 Square excavation 3D                                                        
   
 Cartesian_dimension:           3 
 Elasticity Problem 
 Infinite Region 
 No symmetry 
 Linear Elements 
 Modulus:   1000.00000000000      
 Poissons ratio:  0.000000000000000E+000 
 Number of Nodes of System:         602 
 Number of Elements of System:         600 
Node     1  Coor     10.00    0.00    0.00 
Node   602  Coor     10.00    9.00    9.00 
  
 Incidences:  
  
EL     1  Inci      1    2    3    4 
EL   600  Inci    602  141  143  331 
  
 Elements with Dirichlet BC´s:  
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 Elements with Neuman BC´s:  
  
 Element          600   Prescribed values:  
  -10.0000000000000       0.000000000000000E+000  
0.000000000000000E+000 
  -10.0000000000000       0.000000000000000E+000  
0.000000000000000E+000 
 
It took BiCGSTAB_L     4 iterations to converge 
 
-0.00508     0.00508     0.00508    -0.00787     0.00123     
0.00787     0.00079    -0.00079     0.02236    -0.00123     
0.00787        0.00787 
0.00000     0.00000    10.00000     0.00000     0.00000    
10.00000     0.00000     0.00000    10.00000     0.00000     
0.00000    10.00000 
-0.02236     0.00079     0.00079    -0.00787    -0.00123     
-0.00787    -0.00508    -0.00508    -0.00508    -0.00787     
-0.00787    -0.00123 
-10.00000     0.00000     0.00000   -10.00000     0.00000     
0.00000   -10.00000     0.00000     0.00000   -10.00000     
0.00000     0.00000 

 
   These results are the same as those produced by Program 7.1 to 5 decimal places. 

8.3  PROGRAM 8.2 : REPLACING ASSEMBLY BY THE 
ELEMENT-BY-ELEMENT PROCEDURE 

PROGRAM EBE_BEM 
!------------------------------------------------------ 
!     General purpose BEM program for solving elasticity problems  
!     This version EBE with bicgstab(l) 
!------------------------------------------------------ 
USE bem_lib        ;    IMPLICIT NONE  ! N_dof replaces Ndof 
INTEGER, ALLOCATABLE :: Inci(:,:)  !  Element Incidences 
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) !  Element BC´s 
INTEGER, ALLOCATABLE :: Ldest(:,:) !  Element destination vector 
INTEGER, ALLOCATABLE :: Ndest(:,:) !  Node destination vector 
REAL(iwp), ALLOCATABLE :: Elres_u(:,:)  !  Element results , u 
REAL(iwp), ALLOCATABLE :: Elres_t(:,:)  !  Element results , t 
REAL(iwp), ALLOCATABLE :: Elcor(:,:)    !  Element coordinates 
REAL(iwp), ALLOCATABLE :: xP(:,:)       !  Node co-ordinates 
REAL(iwp), ALLOCATABLE :: dUe(:,:),dTe(:,:),lhs(:,:),Diag(:,:)& 
,pmul(:) 
REAL(iwp), ALLOCATABLE :: km(:,:),qmul(:) 
REAL(iwp), ALLOCATABLE :: store_dUe(:,:,:),store_dTe(:,:,:) 
REAL(iwp), ALLOCATABLE :: F(:)     !  global RHS 
REAL(iwp), ALLOCATABLE :: u1(:)    !  global vector of unknowns  
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CHARACTER (LEN=80) :: Title 
INTEGER :: Cdim,Node,m,n,Istat,Nodel,Nel,N_dof,Toa 
INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t                 
INTEGER :: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy 
INTEGER :: its,iters,ell 
REAL(iwp),ALLOCATABLE    :: Fac(:)     !  Factors for symmetry 
REAL(iwp),ALLOCATABLE    :: Elres_te(:),Elres_ue(:)    
INTEGER,ALLOCATABLE :: Incie(:)   !  Incidences for one element 
INTEGER,ALLOCATABLE :: Ldeste(:),g(:)  
REAL(iwp)::Con,E,ny,Scat,Scad,tol,kappa,alpha,beta,rho,gama,       
&omega,norm_r,r0_norm,error,one=1._iwp,zero=.0_iwp 
LOGICAL:: converged 
REAL(iwp),ALLOCATABLE::s(:),GG(:,:),Gamma(:),                        
&rt(:),y(:),y1(:),r(:,:),uu(:,:) 
!----------------------------------------------------- 
!   Read job information 
!----------------------------------------------------- 
OPEN (UNIT=11,FILE='prog82.dat',FORM='FORMATTED') !  Input 
OPEN (UNIT=12,FILE='prog82.res',FORM='FORMATTED')!  Output 
Call Jobin(Title,Cdim,N_dof,Toa,Nreg,Ltyp,Con,E,ny,& 
           Isym,nodel,nodes,maxe) 
Nsym= 2**Isym   !   number of symmetry loops 
ALLOCATE(xP(Cdim,Nodes))   !  Array for node coordinates 
ALLOCATE(Inci(Maxe,Nodel)) !  Array for incidences 
CALL Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim) 
Ndofe= Nodel*N_dof   !    Total degrees of freedom of element 
ALLOCATE(BCode(Maxe,Ndofe))      !    Element Boundary codes 
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))        
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,n_dof) 
READ(11,*) tol,its,ell,kappa ! BiCGStab  data 
ALLOCATE(Ldest(maxe,Ndofe))  ! Elem. destination vector 
ALLOCATE(Ndest(Nodes,N_dof)) 
!---------------------------------------------------------------- 
! Determine Node destination vector and Element dest vector  
!--------------------------------------------------------------- 
CALL Destination(Isym,Ndest,Ldest,xP,Inci,Ndofs,nodes,& 
                 N_dof,Nodel,Maxe) 
!---------------------------------------------- 
!     Determine global Boundary code vector 
!--------------------------------------------- 
ALLOCATE(NCode(Ndofs))             
NCode=0 
DoF_o_System: DO  nd=1,Ndofs 
    DO Nel=1,Maxe 
        DO m=1,Ndofe 
           IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN  
               NCode(nd)= NCode(nd)+BCode(Nel,m) 
           END IF 
        END DO 
    END DO 
END DO DoF_o_System 
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IF(N_dof ==1)E= Con 
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat) 
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe),lhs(Ndofs,Ndofe))! 
Elem.coef.matrices 
ALLOCATE(store_dTe(Maxe,Ndofs,Ndofe),store_dUe(Maxe,Ndofs,Ndofe)) 
! store els 
ALLOCATE(Diag(Ndofs,N_dof))          ! Diagonal coefficients 
ALLOCATE(F(Ndofs),u1(Ndofs))         ! global arrays 
ALLOCATE(Elcor(Cdim,Nodel))       !  Elem. Coordinates 
ALLOCATE(Fac(Ndofe))          !  Factor for symmetric elements 
ALLOCATE(Incie(Nodel))            !  Element incidences 
ALLOCATE(Ldeste(Ndofe),pmul(Ndofe),km(N_dof,N_dof)& 
                      ,g(N_dof),qmul(N_dof)) 
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe)) ! Tractions of Element 
!---------------------------------------------------------------- 
!  Compute element coefficient matrices 
!---------------------------------------------------------------- 
Lhs=zero; F = zero; u1 = zero; Diag = zero;store_dUe = zero; 
store_dTe = zero 
Elements_1:& 
DO Nel=1,Maxe 
        Symmetry_loop:& 
        DO nsy= 1,Nsym 
                Elcor(:,:)= xP(:,Inci(Nel,:))   
                Incie= Inci(nel,:)              
                Ldeste= Ldest(nel,:)    
                Fac(1:nodel*n_dof)= 1.0_iwp 
                Elres_te(:)=Elres_t(Nel,:) 
                IF(Isym > 0) THEN 
                CALL Mirror(Isym,nsy,Nodes,Elcor,Fac&                       
                Incie,Ldeste,Elres_te,Elres_ue,nodel,n_dof,Cdim)  
                END IF 
                IF(Cdim == 2) THEN 
                  IF(N_dof == 1) THEN 
                   CALL Integ2P(Elcor,Incie,Nodel,Nodes,        
                   &xP,Con,dUe,dTe,Ndest,Isym) 
                  ELSE 
                   CALL Integ2E(Elcor,Incie,Nodel,Nodes,        
                   &xP,E,ny,dUe,dTe,Ndest,Isym) 
                  END IF 
                ELSE 
                   CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,N_dof & 
                                    ,E,ny,Con,dUe,dTe,Ndest,Isym)     
                END IF 
!  Now build global F and diag but not LHS 
         CALL rhs_and_diag(F,DTe,DUe,Ldeste,BCode(Nel,:),Ncode  
         &,Elres_u(Nel,:),Elres_te,Diag,Ndofe,N_dof,Nodel,Fac) 
        END DO & 
        Symmetry_loop 
        store_dUe(Nel,:,:) = dUe;    store_dTe(Nel,:,:) = dTe 
END DO & 



216 The Boundary Element Method with Programming 

Elements_1 
!------------------------------------------------------------ 
!  Add azimuthal integral for infinite regions   
!------------------------------------------------------------ 
IF(Nreg == 2) THEN 
        DO m=1, Nodes 
                DO n=1, N_dof 
                        IF(Ndest(m,n) == 0)CYCLE 
                        k=Ndest(m,n) 
                        Diag(k,n) = Diag(k,n) + 1.0_iwp 
                END DO 
        END DO            
END IF    
!------------------------------------------------------------- 
!  Store active Diagonal coefficients      
!------------------------------------------------------------- 
DO m=1,Ndofs            ! Loop over collocation points 
   Nod=0 
   DO n=1, Nodes 
      DO l=1,N_dof 
         IF (m == Ndest(n,l))THEN 
              Nod=n   ;       EXIT 
         END IF   
      END DO 
      IF (Nod /= 0)EXIT 
   END DO 
   DO k=1,N_dof 
      DoF=Ndest(Nod,k) 
      IF(DoF /= 0) THEN 
         IF(NCode(DoF) == 1) THEN 
               Nel=0    ;     Pos=0 
           DO i=1,Maxe 
              DO j=1,Ndofe 
                 IF(DoF == Ldest(i,j))THEN 
                    Nel=i   ;    Pos=j   ;    EXIT 
                 END IF 
              END DO 
              IF(Nel /= 0)EXIT 
           END DO 
           F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos) 
         END IF 
       END IF 
   END DO 
END DO    
!--------------------------------------------------------- 
!   Solve system of equations  element by element 
!--------------------------------------------------------- 
ALLOCATE(s(ell+1),GG(ell+1,ell+1),Gamma(ell+1),&            
rt(Ndofs),y(Ndofs),y1(Ndofs),r(Ndofs,ell+1),uu(Ndofs,ell+1)) 
!      initialisation phase 
u1 = zero   ;    y = u1    ;    y1 = zero 
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Elements_2 : DO Nel = 1 , Maxe 
     Dte = store_DTe(Nel,:,:);  DUe = store_DUe(Nel,:,:) 
     Ldeste = Ldest(Nel,:); pmul = y(Ldeste)    
     CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)& 
                  ,Ncode,Ndofe,Fac) 
     y1 = y1 + MATMUL(lhs,pmul)  
END DO Elements_2  
DO i = 1 , nodes   
     CALL get_km(Cdim,i,y,Diag,g,qmul,km) 
     y1(g) = y1(g) + MATMUL(km,qmul) 
END DO     
    y=y1; rt = F - y 
    r=zero ; r(:,1) = rt  ;  uu = zero  ; gama = one  ; omega=one  
    norm_r = norm(rt);r0_norm = norm_r;error = one ;  iters = 0 
!     bicgstab(ell)  iterations 
iterations : DO 
   iters = iters + 1    ;            converged = error  < tol   
   IF(iters==its.OR. converged) EXIT  
   gama = - omega*gama  ;  y = r(:,1) 
    DO j = 1 , ell 
       rho = DOT_PRODUCT(rt,y)  ;  beta = rho/gama 
       uu(:,1:j) = r(:,1:j) - beta * uu(:,1:j)   ;  y = uu(:,j) 
       y1 = zero 
       Elements_3: DO Nel = 1 , Maxe 
         Dte = store_DTe(Nel,:,:);  DUe = store_DUe(Nel,:,:) 
         Ldeste = Ldest(Nel,:); pmul = y(Ldeste) 
         CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)& 
                      ,Ncode,Ndofe,Fac) 
         y1 = y1 + MATMUL(lhs,pmul)    
       END DO Elements_3   
       DO i = 1 , nodes    
         CALL get_km(Cdim,i,y,Diag,g,qmul,km) 
         y1(g) = y1(g) + MATMUL(km,qmul) 
       END DO        
       y=y1; uu(:,j+1) = y 
       gama = DOT_PRODUCT(rt,y); alpha = rho/gama 
       u1=u1+ alpha * uu(:,1) 
       r(:,1:j) = r(:,1:j) - alpha * uu(:,2:j+1)     
       y = r(:,j) 
       y1 = zero 
       Elements_4: DO Nel = 1 , Maxe 
        Dte = store_DTe(Nel,:,:);  DUe = store_DUe(Nel,:,:) 
        Ldeste = Ldest(Nel,:);  pmul = y(Ldeste) 
        CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)& 
                     ,Ncode,Ndofe,Fac) 
         y1 = y1 + MATMUL(lhs,pmul)   
       END DO Elements_4    
       DO i = 1 , nodes   
          CALL get_km(Cdim,i,y,Diag,g,qmul,km) 
          y1(g) = y1(g) + MATMUL(km,qmul) 
       END DO      
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       y=y1 ; r(:,j+1) = y 
    END DO 
    GG = MATMUL(TRANSPOSE(r),r) 
    CALL form_s(gg,ell,kappa,omega,gamma,s) 
    u1 = u1 - MATMUL(r,s);r(:,1)=MATMUL(r,Gamma) 
    uu(:,1)=MATMUL(uu,Gamma) 
    norm_r = norm(r(:,1))  ;  error = norm_r/r0_norm        
END DO iterations 
WRITE(12,'(/,A,I5,A,/)')"It took BiCGSTAB_L ",iters," iterations 
to converge" 
!   Gather Element results from global result vector u1 
Elements_5:     & 
DO nel=1,maxe , maxe - 1  
   D_o_F1:         & 
   DO nd=1,Ndofe 
      IF(Ldest(nel,nd) /= 0)THEN 
         IF(NCode(Ldest(nel,nd)) == 0) THEN 
            Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd)) 
         ELSE 
            Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd)) 
         END IF 
      END IF 
   END DO & 
   D_o_F1   
   Elres_u(nel,:)= Elres_u(nel,:) * Scad 
   Elres_t(nel,:)= Elres_t(nel,:) / Scat 
   WRITE(12,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe) 
   WRITE(12,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe) 
END DO & 
Elements_5 
END PROGRAM EBE_BEM 
 

The essential difference between this program and the preceding one is that we do not 
now store the Ndofs*Ndofs array Lhs. However, in this version, storage is allocated to 
all the element dUe and dTe matrices as store_dUe and store_dTe respectively. The 
basic BiCGStab algorithm is unchanged, but has to be “unscrambled” from the 
bicgstab_l subroutine, because instead of a simple MATMUL operation to complete the 
matrix*vector product of equation (8.1) we have to carry this operation out element-by-
element as in equation (8.4). Since the iterative algorithm is not now hidden in a 
subroutine there are additional declarations of REALs alpha, beta etc, but these need 
not concern the user. The same applies to arrays s, GG etc. 

The early part of the program, up to the call to subroutine Scal, remains unchanged. 
In the subsequent array allocations lhs is used for the element-sized “left hand side” in 
the element-by-element matrix*vector product, so Lhs can be deleted. The three-
dimensional storage arrays are added, as are pmul, km, g and qmul which are necessary 
for the addition of diagonal components.   

In the Elements_1 loop, instead of calling subroutine Assembly, we call 
rhs_and_diag, which merely omits to form Lhs, but otherwise forms F and Diag as 
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before. At the end of the loop, the element matrices are stored. The section adding the 
azimuthal integral for infinite regions is unchanged. In the next loop F is augmented 
from Diag as before, but of course there is no Lhs.  

We now proceed to a new section for solving the equation system element-by-
element. This contains two new subroutines form_lhs and get_km. The first of these 
combines element dUe and dTe matrices appropriately and the second gets the 
appropriate part of Diag for its addition into the matrix*vector multiplication. In the first 
case the “gather” vector is Ldeste and in the second it is g. 

So in the BiCGStab process there are three matrix*vector products: Elements_2, to 
start the process and Elements_3 and Elements_4 in the “ell” loop. The usual value of 
ell is taken to be 4 but this can be changed by the user.  

The results are collected from the global result vector u1 in exactly the same manner 
as in the previous program. 
 

8.3.1 Sample input file   

The input file is precisely the same as for the previous program. 

8.3.2 Sample output file 

 Project: 
 Square excavation 3D                                                       
   
 Cartesian_dimension:           3 
 Elasticity Problem 
 Infinite Region 
 No symmetry 
 Linear Elements 
 Modulus:   1000.00000000000      
 Poissons ratio:  0.000000000000000E+000 
 Number of Nodes of System:         602 
 Number of Elements of System:         600 
Node     1  Coor     10.00    0.00    0.00 
Node   602  Coor     10.00    9.00    9.00 
  
 Incidences:  
  
EL     1  Inci      1    2    3    4 
EL   600  Inci    602  141  143  331 
  
 Elements with Dirichlet BC´s:  
 Elements with Neuman BC´s:  
 Element          600   Prescribed values:  
  -10.000   0.000E+000 0.000E+000 
  -10.000   0.000E+000 0.000E+000 
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It took BiCGSTAB_L     4 iterations to converge 
 
    -0.00508     0.00508     0.00508    -0.00787     0.00123     
0.00787     0.00079    -0.00079     0.02236    -0.00123     
0.00787     0.00787 
     0.00000     0.00000    10.00000     0.00000     0.00000    
10.00000     0.00000     0.00000    10.00000     0.00000     
0.00000    10.00000 
    -0.02236     0.00079     0.00079    -0.00787    -0.00123    -
0.00787    -0.00508    -0.00508    -0.00508    -0.00787    -
0.00787    -0.00123 
   -10.00000     0.00000     0.00000   -10.00000     
0.00000     0.00000   -10.00000     0.00000     0.00000   -
10.00000     0.00000     0.00000 

 
The output can be seen to be the same as for Program 8.1 to 5 significant figures. The 

iterative algorithm converged in 4 iterations in this case. 

8.4 PROGRAM 8.3 : PARALLELISING THE 
ELEMENT_BY_ELEMENT    PROCEDURE 

PROGRAM PARALLEL_BEM 
!------------------------------------------------------ 
!     General purpose BEM program for solving elasticity problems  
!     This version parallel with bicgstab(l) 
!------------------------------------------------------ 
USE bem_lib_p; USE precision; USE timing; USE utility; USE 
mp_module 
USE global_variables1; USE gather_scatter6 
IMPLICIT NONE  !  Ndof changed to N_dof  
INTEGER, ALLOCATABLE :: Inci(:,:)  !  Element Incidences 
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) !  Element BC´s 
INTEGER, ALLOCATABLE :: Ldest(:,:) !  Element destination vector 
INTEGER, ALLOCATABLE :: Ndest(:,:) !  Node destination vector 
REAL(iwp), ALLOCATABLE :: Elres_u(:,:)  !  Element results , u 
REAL(iwp), ALLOCATABLE :: Elres_t(:,:)  !  Element results , t 
REAL(iwp), ALLOCATABLE :: Elcor(:,:)    !  Element coordinates 
REAL(iwp), ALLOCATABLE :: xP(:,:)       !  Node co-ordinates 
REAL(iwp),ALLOCATABLE  :: & 
dUe(:,:),dTe(:,:),lhs(:,:),Diag(:,:),pmul(:) 
REAL(iwp), ALLOCATABLE :: km(:,:),qmul(:),Diag1(:,:)  
REAL(iwp), ALLOCATABLE :: store_dUe_pp(:,:,:),store_dTe_pp(:,:,:) 
REAL(iwp), ALLOCATABLE :: F(:),F1(:)     !  global RHS 
REAL(iwp), ALLOCATABLE :: u1(:),y_cop(:) ! vector of unknowns  
CHARACTER (LEN=80) :: Title 
INTEGER :: Cdim,m,n,Nodel,Nel,N_dof,Toa,N_tot 
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INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t                
INTEGER:: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy,its,iters,ell 
REAL(iwp),ALLOCATABLE    :: Fac(:)     !  Factors for symmetry 
REAL(iwp),ALLOCATABLE    :: Elres_te(:),Elres_ue(:)    
INTEGER,ALLOCATABLE :: Incie(:)   !  Incidences for one element 
INTEGER,ALLOCATABLE :: Ldeste(:),g(:)  
REAL(iwp) :: Con,E,ny,Scat,Scad,tol,kappa,alpha,beta,rho,gama,       
&omega,norm_r,r0_norm,error,one=1._iwp,zero=.0_iwp 
LOGICAL:: converged 
REAL(iwp),ALLOCATABLE::s(:),GG(:,:),Gamma(:),rt(:),y(:),y1(:),r(:
,:),uu(:,:) 
timest(1) = elap_time(); CALL find_pe_procs(numpe,npes) 
!----------------------------------------------------- 
!   Read job information 
!----------------------------------------------------- 
OPEN (UNIT=11,FILE='prog83.dat',FORM='FORMATTED',ACTION='READ') !  
Input 
IF(numpe==1)OPEN(UNIT=12,FILE='prog83.res',FORM='FORMATTED',ACTIO
N='WRITE')!O/P 
IF(numpe==1) WRITE(12,*) "This job ran on ",npes," processors" 
Call Jobin(Title,Cdim,N_dof,Toa,Nreg,Ltyp,Con,E,ny,& 
           Isym,nodel,nodes,nels) 
Nsym= 2**Isym   !   number of symmetry loops 
ALLOCATE(xP(Cdim,Nodes))   !  Array for node coordinates 
ALLOCATE(Inci(nels,Nodel)) !  Array for incidences 
CALL Geomin(Nodes,nels,xp,Inci,Nodel,Cdim) 
Ndofe= Nodel*N_dof   !    Total degrees of freedom of element 
ALLOCATE(BCode(nels,Ndofe))      !    Element Boundary codes 
ALLOCATE(Elres_u(nels,Ndofe),Elres_t(nels,Ndofe))        
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,n_dof) 
READ(11,*) tol,its,ell,kappa      ! BiCGStab data 
ALLOCATE(Ldest(nels,Ndofe))  ! Elem. destination vector 
ALLOCATE(Ndest(Nodes,N_dof)) 
!---------------------------------------------------------------- 
! Determine Node destination vector and Element dest vector  
!---------------------------------------------------------------- 
CALL Destination(Isym,Ndest,Ldest,xP,Inci,Ndofs,& 
nodes,N_dof,Nodel,nels) 
!---------------------------------------------------------------- 
!     Determine global Boundary code vector 
!---------------------------------------------------------------- 
ALLOCATE(NCode(Ndofs)); CALL calc_nels_pp ! elements per 
processor 
IF(numpe==1) WRITE(12,*) "Elements on first processor ",nels_pp 
NCode=0 
DoF_o_System: & 
DO  nd=1,Ndofs 
    DO Nel=1,nels  
        DO m=1,Ndofe 
           IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN  
               NCode(nd)= NCode(nd)+BCode(Nel,m) 
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           END IF 
        END DO 
    END DO 
END DO & 
DoF_o_System 
IF(N_dof ==1)E= Con 
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat) 
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe),lhs(Ndofs,Ndofe))! 
Elem.coef.matrices 
ALLOCATE(store_dTe_pp(Ndofs,Ndofe,nels_pp),        & 
         store_dUe_pp(Ndofs,Ndofe,nels_pp)) ! store el matrices 
on procs 
ALLOCATE(Diag(Ndofs,N_dof),Diag1(Ndofs,N_dof))!Diag cos  
ALLOCATE(F(Ndofs),u1(Ndofs),F1(Ndofs))  ! global arrays 
ALLOCATE(Elcor(Cdim,Nodel))             !  Elem. Coordinates 
ALLOCATE(Fac(Ndofe))   !  Factor for symmetric elements 
ALLOCATE(Incie(Nodel))               !  Element incidences 
ALLOCATE(Ldeste(Ndofe),pmul(Ndofe),km(N_dof,N_dof),g(N_dof),qmul(
N_dof))!dest. 
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe)) ! Tractions of Element 
!---------------------------------------------------------------- 
!  Compute element coefficient matrices 
!---------------------------------------------------------------- 
Lhs=zero; F1 = zero; u1 = zero; Diag1 = zero;    N_tot = 
Ndofs*N_dof 
store_dUe_pp = zero; store_dTe_pp = zero    ; ielpe = iel_start 
Elements_1:& 
DO Nel=1,nels_pp   
 Symmetry_loop:& 
 DO nsy= 1,Nsym 
  Elcor(:,:)= xP(:,Inci(ielpe,:))  
  Incie= Inci(ielpe,:)              
  Ldeste= Ldest(ielpe,:)           
  Fac(1:nodel*n_dof)= 1.0_iwp 
  Elres_te(:)=Elres_t(ielpe,:) 
  IF(Isym > 0) THEN 
   CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,    & 
               Incie,Ldeste,Elres_te,Elres_ue,nodel,n_dof,Cdim)  
  END IF 
  IF(Cdim == 2) THEN 
   IF(N_dof == 1) THEN 
    CALL Integ2P(Elcor,Incie,Nodel,Nodes,& 
                 xP,Con,dUe,dTe,Ndest,Isym) 
   ELSE 
    CALL Integ2E(Elcor,Incie,Nodel,Nodes, &        
                  xP,E,ny,dUe,dTe,Ndest,Isym) 
   END IF 
  ELSE 
   CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,N_dof & 
               ,E,ny,Con,dUe,dTe,Ndest,Isym)     
  END IF 
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!  Now build global F and diag but not LHS 
   CALL rhs_and_diag(F1,DTe,DUe,Ldeste,BCode(ielpe,:),Ncode & 
  ,Elres_u(ielpe,:),Elres_te,Diag1,Ndofe,N_dof,Nodel,Fac) 
 END DO & 
 Symmetry_loop           ;    ielpe = ielpe + 1 
 store_dUe_pp(:,:,Nel) = dUe; store_dTe_pp(:,:,Nel) = dTe 
END DO & 
Elements_1 
CALL MPI_ALLREDUCE(F1,F,Ndofs,MPI_REAL8,MPI_SUM& 
                  ,MPI_COMM_WORLD,ier) 
CALL MPI_ALLREDUCE(Diag1,Diag,N_tot,MPI_REAL8,MPI_SUM& 
                  ,MPI_COMM_WORLD,ier) 
!------------------------------------------------------------ 
!  Add azimuthal integral for infinite regions   
!------------------------------------------------------------ 
IF(Nreg == 2) THEN 
        DO m=1, Nodes 
                DO n=1, N_dof 
                        IF(Ndest(m,n) == 0)CYCLE 
                        k=Ndest(m,n) 
                        Diag(k,n) = Diag(k,n) + 1.0_iwp 
                END DO 
        END DO            
END IF 
!------------------------------------------------------------- 
!  Store active Diagonal coefficients      
!------------------------------------------------------------- 
DO m=1,Ndofs            ! Loop over collocation points 
   Nod=0 
   DO n=1, Nodes 
      DO l=1,N_dof 
         IF (m == Ndest(n,l))THEN 
              Nod=n   ;       EXIT 
         END IF   
      END DO 
      IF (Nod /= 0)EXIT 
   END DO 
   DO k=1,N_dof 
      DoF=Ndest(Nod,k) 
      IF(DoF /= 0) THEN 
         IF(NCode(DoF) == 1) THEN 
               Nel=0    ;     Pos=0 
           DO i=1,nels 
              DO j=1,Ndofe 
                 IF(DoF == Ldest(i,j))THEN 
                    Nel=i   ;    Pos=j   ;    EXIT 
                 END IF 
              END DO 
              IF(Nel /= 0)EXIT 
           END DO 
           F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos)  



224 The Boundary Element Method with Programming 

         END IF    
       END IF 
   END DO 
END DO 
IF(numpe==1) WRITE(12,*) "Time before eq solution is ",& 
elap_time()-timest(1) 
!--------------------------------------------------------- 
!   Solve system of equations  element by element 
!--------------------------------------------------------- 
ALLOCATE(s(ell+1),GG(ell+1,ell+1),Gamma(ell+1),y_cop(Ndofs),             
& rt(Ndofs),y(Ndofs),y1(Ndofs),r(Ndofs,ell+1),uu(Ndofs,ell+1)) 
!      initialisation phase 
u1 = zero ; y = u1 ; y_cop = y; y1 = zero ; neq = Ndofs 
ielpe = iel_start 
Elements_2 : DO Nel = 1 , nels_pp  
   Dte = store_DTe_pp(:,:,Nel);  DUe = store_DUe_pp(:,:,Nel) 
   Ldeste = Ldest(ielpe,:); pmul = y(Ldeste) 
   CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:),Ncode,Ndofe,Fac) 
   y1 = y1 + MATMUL(lhs,pmul) ;  ielpe = ielpe + 1    
END DO Elements_2  
CALL MPI_ALLREDUCE(y1,y,neq,MPI_REAL8,MPI_SUM,MPI_COMM_WORLD,ier)   
DO i = 1 , nodes    
     CALL get_km(Cdim,i,y_cop,Diag,g,qmul,km) 
     y(g) = y(g) + MATMUL(km,qmul)    
END DO     
rt = F - y 
r=zero ; r(:,1) = rt   ;  uu = zero  ; gama = one  ; omega=one  
norm_r = norm(rt)   ;   r0_norm = norm_r   ;  error = one 
iters = 0 
!     bicgstab(ell)  iterations 
iterations : DO 
   iters = iters + 1    ;            converged = error  < tol 
   IF(iters==its.OR. converged) EXIT  
   gama = - omega*gama  ;  y = r(:,1)      
    DO j = 1 , ell 
     rho = DOT_PRODUCT(rt,y)  ;  beta = rho/gama 
     uu(:,1:j) = r(:,1:j) - beta * uu(:,1:j)   ;  y = uu(:,j) 
     y1 = zero     ; y_cop = y  ;  ielpe = iel_start    
     Elements_3: DO Nel = 1 , nels_pp  
       Dte = store_DTe_pp(:,:,Nel);  DUe = store_DUe_pp(:,:,Nel) 
       Ldeste = Ldest(ielpe,:); pmul = y(Ldeste) 
       CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)& 
                    ,Ncode,Ndofe,Fac) 
       y1 = y1 + MATMUL(lhs,pmul)  ;  ielpe = ielpe + 1  
      END DO Elements_3  
      CALL MPI_ALLREDUCE(y1,y,neq,MPI_REAL8,MPI_SUM& 
                        ,MPI_COMM_WORLD,ier)    
      DO i = 1 , nodes     
         CALL get_km(Cdim,i,y_cop,Diag,g,qmul,km) 
         y(g) = y(g) + MATMUL(km,qmul)   
      END DO      
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      uu(:,j+1) = y 
      gama = DOT_PRODUCT(rt,y); alpha = rho/gama 
      u1=u1+ alpha * uu(:,1) 
      r(:,1:j) = r(:,1:j) - alpha * uu(:,2:j+1)     
      y = r(:,j) 
      y1 = zero    ; y_cop = y ;   ielpe = iel_start 
      Elements_4: DO Nel = 1 , nels_pp  
        Dte = store_DTe_pp(:,:,Nel);  DUe = store_DUe_pp(:,:,Nel) 
        Ldeste = Ldest(ielpe,:);  pmul = y(Ldeste) 
        CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)& 
                      ,Ncode,Ndofe,Fac) 
         y1 = y1 + MATMUL(lhs,pmul) ;   ielpe = ielpe + 1    
      END DO Elements_4  
      CALL MPI_ALLREDUCE(y1,y,neq,MPI_REAL8,MPI_SUM& 
                        ,MPI_COMM_WORLD,ier)  
      DO i = 1 , nodes    
           CALL get_km(Cdim,i,y_cop,Diag,g,qmul,km)      
           y(g) = y(g) + MATMUL(km,qmul)                
      END DO    
      r(:,j+1) = y 
    END DO 
    GG = MATMUL(TRANSPOSE(r),r) 
    CALL form_s(gg,ell,kappa,omega,gamma,s) 
    u1 = u1 - MATMUL(r,s);r(:,1)=MATMUL(r,Gamma) 
    uu(:,1)=MATMUL(uu,Gamma) 
    norm_r = norm(r(:,1))  ;  error = norm_r/r0_norm        
END DO iterations 
IF(numpe==1) WRITE(12,'(/,A,I5,A,/)')& 
     "It took BiCGSTAB_L ",iters," iterations to converge" 
!   Gather Element results from global result vector u1 
Elements_5:     & 
DO nel=1,nels , nels - 1   
   D_o_F1:         & 
   DO nd=1,Ndofe 
      IF(Ldest(nel,nd) /= 0)THEN 
         IF(NCode(Ldest(nel,nd)) == 0) THEN 
            Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd)) 
         ELSE 
            Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd)) 
         END IF 
      END IF 
   END DO & 
   D_o_F1   
   Elres_u(nel,:)= Elres_u(nel,:) * Scad 
   Elres_t(nel,:)= Elres_t(nel,:) / Scat 
   WRITE(12,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe) 
   WRITE(12,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe) 
END DO & 
Elements_5 
IF(numpe==1) WRITE(12,*) "This analysis took ", elap_time() - 
timest(1) 
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CALL shutdown() 
END PROGRAM PARALLEL_BEM 

 
Comparing this parallelised program with the previous one, we see a simple logical 
development. Extra libraries are USEd to include routines needed for parallel processing 
and the basic library is bem_lib_p rather than bem_lib  but the user sees a basically 
unchanged coding. New arrays F1 and Diag1 are needed to hold the parts of F and Diag 
on the different processors until they are accumulated into F and Diag. N_tot  is the total 
number of entries in Diag. Otherwise the declarations are unchanged. 

The first sign of parallelisation is the need to establish the number of parallel 
processors being used (npes) and their “rank” (numpe). So numpe takes values 1 to 
npes. This is done by subroutine find_pe_procs. Before this, the clock is started to 
assess the time taken in different parts of the program (timing). To maintain simplicity, 
all processors read the input data although it might be better for one processor to do the 
reading and then “broadcast” to the other processors. The first processor (numpe=1) is 
used for output and the number of processors being used is listed. The next task is, given 
the number of elements in the analysis from Jobin, to calculate the number of elements 
to be allocated to each processor.  This is done by simple division using calc_nels_pp so 
that there will be nearly the same number nels_pp on each processor. There is no need 
to employ other than a “naïve” serial distribution - first 10, second 10 etc. As a check the 
number of elements on the first processor is output.  

The next section establishing Ncode remains unchanged, but in the subsequent array 
allocations each processor will only hold its own element matrices and so the storage 
arrays become store_dUe_pp and store_dTe_pp respectively. These could have 
(slightly) different sizes nels_pp. We can then proceed to compute the element 
coefficient matrices and store them. An important parameter established in the parallel 
libraries is iel_start, which is the number of the first element on each processor.  So 
when counting round the elements, we count Nel = 1 , nels_pp rather than Nel = 1 , 
Maxe and counter ielpe replaces Nel to identify an element in parallel. In the call to 
rhs_and_diag we calculate only the parts of F and Diag which reside on that particular 
processor as F1 and Diag1. Therefore, after the Elements_1 loop we need MPI routine 
MPI_ALLREDUCE with parameter MPI_SUM to collect the contributions from all 
processors and add into F and Diag. The “azimuthal integral” and “Diagonal 
coefficients” sections of the program are unchanged and the analysis time after element 
calculation (which can be quite significant) is printed. 

In the equation solution section, the parallel coding looks very similar to its serial 
counterpart. The element loops are over nels_pp rather than Maxe and one has to be 
careful to use element counter ielpe rather than Nel where appropriate. To compute a 
total vector y, the partial vectors y1 have always to be collected using 
MPI_ALLREDUCE. Gathering the element results is unchanged and it is necessary to 
close down MPI using subroutine shutdown. By comparing Programs 8.2 and 8.3 the 
hope is that the serial Fortran programmer will see that the step to parallel analyses is 
indeed a small one.    
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8.4.1 Sample input file 

The input is precisely the same as for the previous two programs. 

8.4.2 Sample output file 

 This job ran on            4  processors 
 Project: 
 Square excavation 3D                                                       
 Cartesian_dimension:           3 
 Elasticity Problem 
 Infinite Region 
 No symmetry 
 Linear Elements 
 Modulus:   1000.00000000000      
 Poissons ratio:  0.000000000000000E+000 
 Number of Nodes of System:         602 
 Number of Elements of System:         600 
Node     1  Coor     10.00    0.00    0.00 
Node   602  Coor     10.00    9.00    9.00 
 Incidences:  
EL     1  Inci      1    2    3    4 
EL   600  Inci    602  141  143  331  
 Elements with Dirichlet BC´s:   
 Elements with Neuman BC´s:   
 Element          600   Prescribed values:  
  -10.000 0.000E+000 0.000E+000 
  -10.000 0.000E+000 0.000E+000 
 Elements on first processor          150 
 Time before eq solution is    1.85099999999875      
It took BiCGSTAB_L     4 iterations to converge 
    -0.00508     0.00508     0.00508    -0.00787     0.00123     
0.00787     0.00079    -0.00079     0.02236    -0.00123     
0.00787     0.00787 
     0.00000     0.00000    10.00000     0.00000     0.00000    
10.00000     0.00000     0.00000    10.00000     0.00000     
0.00000    10.00000 
    -0.02236     0.00079     0.00079    -0.00787    -0.00123    -
0.00787    -0.00508    -0.00508    -0.00508    -0.00787    -
0.00787    -0.00123 
   -10.00000     0.00000     0.00000   -10.00000     0.00000     
0.00000   -10.00000     0.00000     0.00000   -10.00000     
0.00000     0.00000 
 This analysis took    2.813629999999903      
 

The output is again unchanged to five significant figures. The number of processors 
used was 4 and the speedup due to parallelisation, even on such a small problem, is 
shown in Table 8.1, the results being produced on a Bull computer  
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Table 8.1 Results for 600 element problem 

 
Processors Analysis time 

(seconds 
1 8.3 
2 4.6 
4 2.8 

 

8.4.3 Results from larger analyses 

When the number of elements was increased to 9600 the results obtained using a Bull 
computer and the UK National HPCx system are shown in Table 8.2 

Table 8.2 Results for 9600 element problem 

Analysis time (seconds) Processors 
Bull HPx 

32 490  
64 260  
128 140 63 
256  45 
512  43 

The scaling is satisfactory up to about a couple of hundred processors but not beyond. 
Recall that this analysis could not be run on a single processor because of storage 
limitations. Increasing the number of elements to 21600 leads to the following results on 
HPCx shown in Table 8.3 

Table 8.3 Results for 21600 element problem 

 
Processors Analysis time 

(seconds) 
512 288 

1024 249 
 
In this case there is no advantage in going beyond about 500 processors, but this quite 

large problem is solved in about 4 minutes – “coffee break time”.  
A concern when using iterative methods is that iteration counts may become “large” 

as problems get bigger. The counts for the above analyses are listed below in Table 8.4 
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Table 8.4 Convergence statistics for BiCGStab 

 
Equations Iterations to 

Converge 
1800 4 

28800 15 
64800 49 

 
It can be seen that the increase in iteration count with problem size is modest. A 

second concern about iterative methods relates to the conditioning of the system 
equations. When Poisson’s Ratio was increased to 0.5 the iterations to convergence 
increased by only about 50%2.     

8.5 CONCLUSIONS 

In this chapter we have illustrated how the basic program from the previous Chapter can 
be modified easily to use an iterative equation solution technique rather than a direct 
one. The purpose behind this is then to extend further to replace traditional element 
assembly by an element-by-element approach whereby no large system matrices are ever 
assembled at all. This opens up the prospect of a simple parallel processing strategy for 
boundary element methods. When this is done, solution times can be dramatically 
reduced and much larger problems solved. Finally readers should note that the new 
libraries referred to are not listed but are available for download from the web (see 
information in the preface). 
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9 
Postprocessing  

Man soll auf alles achten, denn man kann alles deuten 
(You should consider everything 

  because you can interpret everything) 
H. Hesse 

 

9.1 INTRODUCTION 

In the previous Chapters we developed a general purpose computer program for the 
analysis of two and three-dimensional problems in elasticity and potential flow. This 
program only calculates the values of unknowns (temperature/displacements or 
boundary flow/tractions) at the nodes of boundary elements. In this chapter we will 
develop procedures for the calculation of other results which are of interest. These are 
the flow vector or the stress tensor at the boundary and at points inside the domain.  

There are two types of approximations involved in a boundary element analysis. The 
first is that the distribution of temperature/displacement, or boundary flow/stress, is 
approximated at the boundary by shape functions defined locally for each element. The 
second approximation is that the theorem by Betti is only ensured to be satisfied at the 
nodal points on the boundary elements (collocation points).  

Because we use fundamental solutions, the variation of temperature/displacements 
inside the domain is known in terms of boundary values. It is therefore possible to 
compute the results at any point inside the domain as a postprocessing exercise, after the 
analysis has been performed. This is in contrast to the FEM, where results are only 
available at points inside finite elements. Now the results at interior points can be part of 
a graphical postprocessor, with the option that the user may freely specify locations 
where results are required. Instead of using interpolation between values at nodal points 
of elements, we can use a direct procedure to determine the contour lines and this will be 
discussed later. 

In the discussion on the computation of results we distinguish between values inside 
the domain and on the boundary. For the computation of results the integral equation for 
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the displacement (5.16) or temperature/potential (5.20) can be used. The strain tensor is 
determined by taking the derivatives of the displacement solution. However, we note 
that the singularity of the Kernels increase by one order and tend to infinity as the 
boundary is approached. Special consideration has to be given to this case and therefore 
we will deal separately with the computation of values on the boundary and internal 
values. 

Because of the increased singularity of the Kernels, special care has to be taken in the 
numerical integration when points are very close to the boundary and a subdivision of 
the integration region will become inevitable. 

9.2 COMPUTATION OF BOUNDARY RESULTS 

For the computation of postprocessed results on the boundary, we use a procedure which 
is essentially the same as the one used in the finite element method for computing results 
inside elements. Along a boundary element we know (after the solution), the variation of 
both u and t because of the approximation introduced in 6.2. We can therefore compute 
fluxes or stresses tangential to the boundary by differentiation of u. In the following we 
will discuss two and three-dimensional potential and elasticity problems separately. 

9.2.1 Potential problems  

The temperature distribution on a boundary element in terms of nodal values e
nu is 

(9.1) 

For two-dimensional problems we define a vector V  in the direction tangential to the 
boundary (Figure 9.1) where 

(9.2) 

and e
nx  is a vector containing the coordinates of the element nodes. The flow in 

tangential direction is given by  
 

(9.3)  

where x is the inverse of the Jacobian given as 
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Figure 9.1 Local coordinate system for computing boundary values 

For three-dimensional problems we construct, at a point inside the element, a local 
orthogonal coordinate system x and y , with directions as specified by vectors v1 and v2  
as outlined in section 3.9 (see Figure 9.2), where v1 is in the  direction.  

Figure 9.2 Local coordinate systems for surface element 

The components of the flow vector in the local directions are 

(9.5)  
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To compute the values of / x  etc. we consider a view normal to the surface of the 
element (Figure 9.3) in order to more clearly show the relationship between the skew 
and the orthogonal axes. 

Figure 9.3 View normal to surface of element 

The unit vectors ,v v  in the direction ,  are computed by 

(9.6)  

where ,J J  are stretch factors given by 

(9.7)  

The relationship between ,x y and , is (see Figure 9.3) 

(9.8)  

where 

(9.9)  

Solving equations (9.8) for ,  

(9.10)  
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and taking the derivatives we obtain 

(9.11)  

The theory just outlined may be programmed into a subroutine which computes 
boundary flows at a point on the boundary element with intrinsic coordinates , ( ). 

 
SUBROUTINE BFLOW(Flow,xsi,eta,u,Inci,Elcor,k) 
!---------------------------------------------- 
!    Computes flow vectors in direction tangential to the 
!    Boundary  
!----------------------------------------------- 
REAL , INTENT(OUT)   :: Flow(:)  !  Flow vector 
REAL , INTENT(IN)    :: xsi,eta  !  intrinsic coord. of point 
REAL , INTENT(IN)    :: u(:,:)     !  Nodal temps/potentials 
INTEGER, INTENT (IN) :: Inci(:)  !  Element Incidences 
REAL, INTENT (IN)    :: Elcor(:,:)  !  Element coordinates 
REAL, INTENT (IN)    :: k        !  Conductivity    
REAL, ALLOCATABLE    :: Vxsi(:),Veta(:),DNi(:,:),V3(:)  
INTEGER :: Nodes,Cdim,Ldim 
REAL :: Jxsi,Jeta,v1(3),v2(3),CosT,SinT,DuDxsi,DuDeta,V3_L 
REAL :: DxsiDx,DxsiDy,DetaDx,DetaDy 
Nodes= UBOUND(ELCOR,2)  !  Number of nodes 
Cdim= UBOUND(ELCOR,1)   !  Cartesian Dimension 
Ldim= Cdim-1            !  Local (element) dimension 
ALLOCATE (Vxsi(cdim),Dni(Nodes,Ldim),v3(cdim)) 
IF(ldim > 1) ALLOCATE (Veta(cdim)) 
!   Compute Vector(s) tangential to boundary surface 
CALL Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci) 
Vxsi(1)= Dot_Product(Dni(:,1),Elcor(1,:)) 
Vxsi(2)= Dot_Product(Dni(:,1),Elcor(2,:)) 
IF(Cdim == 2) THEN 
 CALL Vector_norm(Vxsi,Jxsi) 
 Flow(1)= -k*Dot_product(Dni(:,1),u(:,1))/Jxsi 
ELSE 
 Vxsi(3)= Dot_Product(Dni(:,1),Elcor(3,:)) 
 CALL Vector_norm(Vxsi,Jxsi) 
 Veta(1)= Dot_Product(Dni(:,2),Elcor(1,:)) 
 Veta(2)= Dot_Product(Dni(:,2),Elcor(2,:)) 
 Veta(3)= Dot_Product(Dni(:,2),Elcor(3,:)) 
 CALL Vector_norm(Veta,Jeta) 
  v3= Vector_ex(Vxsi,Veta) 
  Call Vector_norm(v2,v3_L) 
   v1=Vxsi 
  v2= Vector_ex(v3,v1)   
  DuDxsi= Dot_Product(Dni(:,1),u(:,1)) 
  DuDeta= Dot_Product(Dni(:,2),u(:,1)) 
  CosT= DOT_Product(Vxsi,Veta) 

1 cos 1    ;       ;    
sin sinx J y J y J
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  SinT= ABS(DOT_Product(V2,Veta)) 
  DxsiDx= 1/Jxsi 
  DxsiDy= -CosT /(Jxsi*SinT) 
  DetaDx= 0.0 
  DetaDy= 1/(Jeta*SinT) 
!   Flow in local coordinate directions  
  Flow(1)= -k*DuDxsi*DxsiDx 
   Flow(2)= -k*(DuDxsi*DxsiDy+DuDeta*DetaDy)  
END IF 
RETURN 
END SUBROUTINE BFLOW 

9.2.2  Elasticity problems 

The computation of boundary values of stress for elasticity problems is similar to the 
one for potential problems. For elasticity, displacements u inside a boundary element are 
given in terms of nodal displacements e

nu by 

(9.12)  

For two-dimensional problems, the strain in tangential direction is computed by  

(9.13)  

where  

(9.14)  

Figure 9.4 Computation of tangential strain 
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The derivatives of the displacements are given by 
 

(9.15)  

Figure 9.5 Computation of stresses for plane strain problems 

The stresses in tangential direction are computed using Hooke`s law. For plane stress 
conditions we have (Figure 9.5): 

(9.16)  

where yt is the traction normal to the boundary.  
For plane strain we have 

(9.17)  

The local stress pseudo-vector for plane stress is 

(9.18)  

and for plane strain 

(9.19)  
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The stresses may be transformed into global directions using Eq (4.36). For three-
dimensional problems we compute the strain components in local ,x y directions. These 
strains are obtained in the same way as for two-dimensional problems by projecting the 
displacement vector u onto the unit tangential vectors v  and v  and by taking the 
derivatives to ,x y  (see Fig. 9.2). The strains in the local directions are given by 

 

(9.20)  

where 

(9.21)  

The components of stress in the local orthogonal system are shown in Figure 9.6. 
According to Chapter 4, stresses in the tangential plane are related to strains by 

(9.22)  

Using (9.20) and equilibrium conditions with boundary tractions zyx t,t,t , as shown 
in Figure 9.6, the stresses may be computed as 

(9.23)   

where  

(9.24)  
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The stresses may be transformed into the global x ,y ,z coordinate system by applying 
the transformation (4.36). The theory is translated into SUBROUTINE Bstress, which 
computes the stress components in the tangential plane at a point with the intrinsic 
coordinates ,  on a boundary element. The subroutine is very similar to Bflow, except 
that in addition to u, we have to specify t in the list of input parameters and we must 
provide an indicator specifying whether plane stress or plane strain is assumed for a 2-D 
analysis. 

Figure 9.6 Stresses and boundary tractions at a boundary point 

SUBROUTINE BStress(Stress,xsi,eta,u,t,Inci,Elcor,E,Ny,IPS) 
!---------------------------------------------- 
!    Computes stresses in a plane tangential to the 
!    Boundary Element 
!----------------------------------------------- 
REAL , INTENT(OUT)   :: Stress(:)!  Stress vector 
REAL , INTENT(IN)    :: xsi,eta  !  intrinsic coordinates  
REAL , INTENT(IN)    :: u(:,:)   !  Nodal displacements 
REAL , INTENT(IN)    :: t(:,:)   !  Nodal Tractions 
INTEGER, INTENT (IN) :: Inci(:)  !  Element Incidences 
REAL, INTENT (IN)    :: Elcor(:,:)  !  Element coordinates 
REAL, INTENT (IN)    :: E,Ny 
INTEGER , INTENT (IN):: IPS 
REAL, ALLOCATABLE    :: Vxsi(:),Veta(:),DNi(:,:),Ni(:),trac_GP(:) 
REAL :: Jxsi,Jeta,v1(3),v2(3),v3(3),v3_L,CosT,SinT 
REAL :: DxsiDx, DxsiDy, DetaDx, DetaDy 
REAL :: C1,C2,G,tn,ts,ts1,ts2 
REAL , ALLOCATABLE :: Dudxsi(:),Dudeta(:),Strain(:) 
INTEGER :: Nodes, Cdim, Ldim 
Nodes= UBOUND(Elcor,2) 
Cdim= UBOUND(Elcor,1) 
ldim= Cdim-1 
ALLOCATE (Vxsi(cdim),Veta(cdim),Dni(Nodes,Ldim),Ni(Nodes)) 
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ALLOCATE (Dudxsi(Cdim),Dudeta(Cdim),trac_GP(Cdim)) 
!   Compute Vector(s) tangential to boundary surface 
CALL Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci) 
CALL Serendip_func(Ni,xsi,eta,ldim,nodes,inci) 
trac_GP(1)= Dot_Product(Ni,t(:,1)) 
trac_GP(2)= Dot_Product(Ni,t(:,2)) 
Vxsi(1)= Dot_Product(Dni(:,1),Elcor(1,:)) 
Vxsi(2)= Dot_Product(Dni(:,1),Elcor(2,:)) 
IF(Cdim == 2) THEN 
!  2-D Calculation 
  ALLOCATE (Strain(1)) 
  CALL Vector_norm(Vxsi,Jxsi) 
  V1(1:2)= Vxsi 
  V3(1)=   Vxsi(2) 
  V3(2)= - Vxsi(1) 
  tn= Dot_Product(v3(1:2),trac_GP) 
  ts=  Dot_Product(v1(1:2),trac_GP) 
  DuDxsi(1)= Dot_Product(Dni(:,1),u(:,1)) 
  DuDxsi(2)= Dot_Product(Dni(:,1),u(:,2)) 
  Strain(1)= Dot_Product(DuDxsi,V1(1:2))/Jxsi 
!   Compute stresses in local directions 
  IF(IPS == 2) THEN    ! plane stress 
   Stress(1)= E*Strain(1) + ny*tn      
   Stress(2)= tn 
   Stress(3)= 0 
   Stress(4)= ts 
  ELSE            ! Plane strain 
   Stress(1)= 1/(1.0-ny)*(E/(1.0+ny)*Strain(1) + ny*tn)   
   Stress(2)= tn 
   Stress(3)= ny*(Stress(1)+ Stress(2)) 
   Stress(4)= ts 
  END IF 
  DEALLOCATE (Strain) 
ELSE 
!  3-D Calculation 
  ALLOCATE (Strain(3)) 
  trac_GP(3)= Dot_Product(Ni,t(:,3)) 
  Vxsi(3)= Dot_Product(Dni(:,1),Elcor(3,:)) 
  CALL Vector_norm(Vxsi,Jxsi) 
  Veta(1)= Dot_Product(Dni(:,2),Elcor(1,:)) 
  Veta(2)= Dot_Product(Dni(:,2),Elcor(2,:)) 
  Veta(3)= Dot_Product(Dni(:,2),Elcor(3,:)) 
  CALL Vector_norm(Veta,Jeta) 
  v3= Vector_ex(Vxsi,veta) 
  CALL Vector_norm(v3,v3_L) 
  v1=Vxsi 
  v2= Vector_ex(v3,v1)   
  DuDxsi(1)= Dot_Product(Dni(:,1),u(:,1)) 
  DuDxsi(2)= Dot_Product(Dni(:,1),u(:,2)) 
  DuDxsi(3)= Dot_Product(Dni(:,1),u(:,3)) 
  DuDeta(1)= Dot_Product(Dni(:,2),u(:,1)) 
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  DuDeta(2)= Dot_Product(Dni(:,2),u(:,2)) 
  DuDeta(3)= Dot_Product(Dni(:,2),u(:,3)) 
  CosT= DOT_Product(Vxsi,Veta) 
  SinT= ABS(DOT_Product(V2,Veta)) 
  DxsiDx= 1/Jxsi 
  DxsiDy= -CosT /(Jxsi*SinT) 
  DetaDx= 0.0 
  DetaDy= 1/(Jeta*SinT) 
!   Strains  
  Strain(1)= Dot_product(DuDxsi,v1)*DxsiDx    
  Strain(2)= Dot_product(DuDxsi,v2)*DxsiDy& 
            + Dot_product(DuDeta,v2)*DetaDy 
  Strain(3)= Dot_product(DuDxsi,v1)*DxsiDy& 
            + Dot_product(DuDeta,v1)*DetaDy& 
        + Dot_product(DuDxsi,v2)*DxsiDx 
  tn= Dot_Product(v3,trac_GP) 
  ts1= Dot_Product(v1,trac_GP) 
  ts2= Dot_Product(v2,trac_GP) 
!   Compute stresses in local directions 
  C1= E/(1.0-ny**2)  ;  C2= ny/(1.0-ny) ; G=E/(2*(1.0+ny)) 
  Stress(1)= C1*(Strain(1)+ny*strain(2))+ C2*tn 
  Stress(2)= C1*(Strain(2)+ny*strain(1))+ C2*tn 
  Stress(3)= tn 
  Stress(4)= G*Strain(3) 
  Stress(5)= ts2 
  Stress(6)= ts1 
  DEALLOCATE (Strain) 
END IF 
!  Transformation of local stresses in global stresses 
CALL Stress_Transformation(v1,v2,v3,Stress,Cdim) 
RETURN 
End SUBROUTINE BStress 

9.3 COMPUTATION OF INTERNAL RESULTS 

For the computation of results which are not on the boundary the integral equation for 
the temperature/potential and the displacement is used. 

9.3.1 Potential problems 

To compute temperature/potential at a point Pa we rewrite equation (5.20) 

(9.25)  

Flows at Pa in x-, y-and z-directions are given by  
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(9.26)  

where derivatives of U have been presented previously and derivatives of T are for two-
dimensional problems  
 

(9.27)  

and for three-dimensional problems  

(9.28)  

The derivatives of fundamental solutions T for three-dimensional space have a 
singularity of 1/r2 for 2-D and 1/r3 for 3-D problems and are therefore hypersingular. We 
now extend the Laplace_lib to include the derivatives of the fundamental solution. 
 
FUNCTION dU(r,dxr,Cdim) 
!------------------------------- 
!   Derivatives of Fundamental solution for Potential problems 
!   Temperature/Potential 
!------------------------------ 
REAL,INTENT(IN):: r    !  Distance between source and field point 
REAL,INTENT(IN)::  dxr(:)!  Distances in x,y directions div. by r 
REAL :: dU(UBOUND(dxr,1))    !   dU is array of same dim as dxr 
INTEGER ,INTENT(IN):: Cdim   !   Cartesian dimension (2-D,3-D) 
REAL :: C 
SELECT CASE (CDIM) 
     CASE (2)           !  Two-dimensional solution 
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      C=1/(2.0*Pi*r) 
      dU(1)= C*dxr(1) 
      dU(2)= C*dxr(2) 
     CASE (3)           !  Three-dimensional solution 
      C=1/(4.0*Pi*r**2) 
      dU(1)= C*dxr(1) 
      dU(2)= C*dxr(2) 
      dU(3)= C*dxr(3) 
     CASE DEFAULT 
END SELECT 
RETURN 
END FUNCTION dU 
FUNCTION dT(r,dxr,Vnorm,Cdim) 
!------------------------------- 
!  derivatives of the Fundamental solution for Potential problems 
!  Normal gradient 
!------------------------------ 
INTEGER,INTENT(IN) :: Cdim     !   Cartesian dimension 
REAL,INTENT(IN):: r  !   Distance between source and field point 
REAL,INTENT(IN):: dxr(:)!Distances in Cartesian dir divided by R 
REAL,INTENT(IN)::  Vnorm(:)    !   Normal vector 
REAL :: dT(UBOUND(dxr,1))      !   dT is array of same dim as dxr  
REAL :: C,COSTH 
COSTH= DOT_PRODUCT (Vnorm,dxr) 
SELECT CASE (Cdim) 
    CASE (2)           !  Two-dimensional solution 
     C= 1/(2.0*Pi*r**2) 
     dT(1)= C*COSTH*dxr(1) 
     dT(2)= C*COSTH*dxr(2) 
    CASE (3)           !  Three-dimensional solution 
     C= 3/(4.0*Pi*r**3) 
     dT(1)= C*COSTH*dxr(1) 
     dT(2)= C*COSTH*dxr(2) 
     dT(3)= C*COSTH*dxr(3) 
    CASE DEFAULT 
END SELECT 
RETURN 
END FUNCTION dT 

 
The discretised form of equation (9.25) is 

(9.29)  

where e
nu and e

nt are the solutions obtained for the temperature/potential and boundary 
flow on node n on boundary element e and 
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(9.30)   

The discretised form of equation (9.26) is given by 
 

(9.31)   

where  
 

(9.32)  

 
The components of S and R are defined as 

(9.33)  

The integrals can be evaluated numerically over element e using Gauss Quadrature, as 
explained in detail in Chapter 6. For 2-D problems this is 

(9.34)  

and  

(9.35)  
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For 3-D problems the equations are 
 

(9.36)  

 
and 
 

(9.37)  

The number of Gauss points in  and  direction M,K needed for accurate integration 
will again depend on the proximity of Pa to the element over which the integration is 
carried out. For computation of displacements, Kernel T has a singularity of 1/r for 2-D 
problems and 1/r2 for 3-D. Kernel R has a 1/r2 singularity for 2-D and a 1/r3 singularity 
for 3-D problems and the number of integration points is chosen according to Table 6.1.  

9.3.2 Elasticity problems 

The displacements at a point Pa inside the domain can be computed by using the integral 
equation for the displacement 

(9.38)  

The strains can be computed by using equation (4.31) 

(9.39)  

Finally, stresses can be computed by using equation (4.45) 

(9.40)  

or  

(9.41)  

where the derived fundamental solutions S and R are defined as 

(9.42)  
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and the pseudo-stress vector is defined as 

(9.43)  

Matrices S and R are of dimension 3x2 for two-dimensional problems and of 
dimension 6x3 for three-dimensional problems. 

Matrix S is given by1 

(9.44)  

The coefficients of S are given by: 

(9.45)  

Values x, y, z are substituted for i, j, k. Constants are defined in Table 9.1 for plane 
stress/strain and 3-D problems and  

Matrix R is given by 
 

(9.46)  
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where1 

(9.47)  

 
x, y, z may be substituted for i, j, k and cos has been defined previously. Values of the 
constants are given in Table 9.1. 

Table 9.1 Constants for fundamental solutions S and R 
 
 Plane strain Plane stress 3-D 

n 1 1 2 
C2 1/4 (1+ 1/8  
C3 1-2  (1-  1-2  
C5 G/(2 (1-  G/2  G/(4 (1-  
C6 4 4 15 
C7 1-4  (1-3 1+  1-4  

 
For plane stress assumptions the stresses perpendicular to the plane are computed 

by 0z , whereas for plane strain ( )z x y . 
Subroutines for calculating Kernels S and R are added to the Elasticity_lib. 

 
SUBROUTINE SK(TS,DXR,R,C2,C3) 
!------------------------------------------------------------ 
!   KELVIN SOLUTION FOR STRESS   
!   TO BE MULTIPLIED WITH t 
!------------------------------------------------------------ 
REAL, INTENT(OUT) :: TS(:,:)   ! Fundamental solution 
REAL, INTENT(IN)  :: DXR(:)    ! rx , ry, rz 
REAL, INTENT(IN)  :: R         ! r 
REAL, INTENT(IN)  :: C2,C3     ! Elastic constants 
REAL  ::  Cdim       !  Cartesian dimension 
INTEGER  :: NSTRES   !  No. of stress components 
INTEGER  :: JJ(6), KK(6)  !  sequence of stresses in pseudo-vector 
REAL     :: A,C2,C3 
INTEGER  :: I,N,J,K 
Cdim= UBOUND(DXR,1) 
IF(CDIM == 2) THEN 
   NSTRES= 3 
   JJ(1:3)= (/1,2,1/) 
   KK(1:3)= (/1,2,2/)    
ELSE 
   NSTRES= 6 
   JJ= (/1,2,3,1,2,3/) 
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   KK= (/1,2,3,2,3,1/) 
END IF 
Coor_directions:& 
DO I=1,Cdim 

Stress_components:& 
DO N=1,NSTRES 

      J= JJ(N) 
      K= KK(N) 
      A= 0. 
      IF(I .EQ. K) A= A + DXR(J) 
      IF(J .EQ. K) A= A - DXR(I) 
      IF(I .EQ. J) A= A + DXR(K) 
      A= A*C3 
      TS(I,N)= C2/R*(A + Cdim*DXR(I)*DXR(J)*DXR(K)) 
      IF(Cdim .EQ. 3) TS(I,N)= TS(I,N)/2./R 

END DO & 
Stress_components 

END DO & 
Coor_directions 
RETURN 
END SUBROUTINE SK 
SUBROUTINE RK(US,DXR,R,VNORM,C3,C5,C6,C7,ny) 
!------------------------------------------------------------ 
!    KELVIN SOLUTION FOR STRESS COMPUTATION 
!    TO BE MULTIPLIED WITH u 
!------------------------------------------------------------ 
REAL, INTENT(OUT) :: US(:,:)        ! Fundamental solution 
REAL, INTENT(IN)  :: DXR(:)          ! rx , ry, rz 
REAL, INTENT(IN)  :: R               ! r 
REAL, INTENT(IN)  :: VNORM(:)       ! nx , ny , nz 
REAL, INTENT(IN)  :: C3,C5,C7,ny  ! Elastic constants 
REAL  ::  Cdim       !   Cartesian dimension 
INTEGER  :: NSTRES   !   No. of stress components 
INTEGER  :: JJ(6), KK(6) !  sequence of stresses in pseudo-vector 
REAL     :: costh, B,C 
Cdim= UBOUND(DXR,1)  
IF(CDIM == 2) THEN 
 NSTRES= 3 
 JJ(1:3)= (/1,2,1/) 
 KK(1:3)= (/1,2,2/)    
ELSE 
 NSTRES= 6                    
 JJ= (/1,2,3,1,2,3/) 
 KK= (/1,2,3,2,3,1/) 
END IF   
COSTH= DOT_Product(dxr,vnorm)  
Coor_directions:& 
DO K=1,Cdim 
 Stress_components:&  
  DO N=1,NSTRES  
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      I= JJ(N) 
      J= KK(N) 
      B= 0. 
      IF(I .EQ. J) B= Cdim*C3*DXR(K) 
      IF(I .EQ. K) B= B + ny*DXR(J) 
      IF(J .EQ. K) B= B + ny*DXR(I) 
      B= COSTH *(B – C6*DXR(I)*DXR(J)*DXR(K) ) 
      C= DXR(J)*DXR(K)*ny 
      IF(J .EQ.K) C= C + C3 
      C= C*VNORM(I) 
      B= B+C 
      C= DXR(I)*DXR(K)*ny 
      IF(I .EQ. K) C=C + C3 
      C= C*VNORM(J) 
      B= B+C 
      C= DXR(I)*DXR(J)*Cdim*C3 
      IF(I .EQ. J) C= C – C7 
      C= C*VNORM(K) 
      US(K,N)= (B + C)*C5/R/R 
      IF(Cdim .EQ. 3) US(K,N)= US(K,N)/2./R 
 END DO & 
 Stress_components 
END DO & 
Coor_directions  
RETURN 
END 

 
The discretised form of equation (9.38) is written as 

(9.48)  

where 

(9.49)  

The discretised form of equation (9.41) is written as 

(9.50)  

where 

(9.51)  
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These integrals may be evaluated using Gauss Quadrature, as explained in Chapter 6. 
For 2-D problems they are given by 
 

(9.52)  

 
For 3-D elasticity we have 

(9.53)  

 The number of Gauss points in  and  direction M,K needed for accurate 
integration, will again depend on the proximity of Pa to the element over which the 
integration is carried out. For computation of displacements Kernel T has a singularity 
of 1/r for 2-D problems and 1/r2 for 3-D. The number of integration points M and K are 
chosen according to Table 6.1. A subdivision of the region of integration as outlined in 
Chapter 6 will be necessary for points that are close.  

9.4 PROGRAM 9.1: POSTPROCESSOR 

Program Postprocessor for computing results on the boundary and inside the domain is 
presented. This program is exacuted after General_purpose_BEM. It reads the INPUT 
file which is the same as the one read by General_Purpose_BEM and contains the basic 
job information and the geometry of boundary elements. The results of the boundary 
element computation are read from file BERESULTS, which was generated by 
General_purpose BEM program and contains the values of u and t at boundary points. 
The coordinates of internal points are supplied in file INPUT2 and the internal results 
are written onto file OUTPUT. The program first calculates fluxes/stresses at the nodes 
of specified boundary elements and then temperatures/displacements and fluxes/stresses 
at specified points inside the domain. In the case of symmetry conditions being applied 
the integration has to be carried out also over the mirrored elements. A call to 
Subroutine MIRROR takes care of this. For calculation of internal points, the integration 
is carried out separately for the computation of potentials/displacements and 
flow/stresses, as the Kernels have different singularities. This may not be the most 
efficient way and an over-integration of the first Kernels may be considered to improve 
the efficiency, since certain computations, like the Jacobian, for example, may only be 
computed once for a boundary element. Another improvement in efficiency can be made 
by lumping together internal points, so that only one integration loop is needed for all 
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points requiring the same number of integration points. In this case the number of 
computations of the Jacobian can be reduced significantly. Using table 6.1 and element 
subdivision it will be found later that the internal points may be placed quite close to the 
boundary. 
 
PROGRAM Post_processor 
!------------------------------------------------ 
!     General purpose Postprocessor 
!     for computing results at boundary and interior points 
!------------------------------------------------------ 
USE Utility_lib;USE Elast_lib;USE Laplace_lib 
USE Integration_lib 
USE Postproc_lib 
IMPLICIT NONE 
INTEGER, ALLOCATABLE :: Inci(:)    !  Incidences (one elem.) 
INTEGER, ALLOCATABLE :: Incie(:,:) !  Incidences (all elem.) 
INTEGER, ALLOCATABLE :: Ldest(:)   !  Destinations (one elem.) 
REAL, ALLOCATABLE    :: Elcor(:,:) !  Element coordinates  
REAL, ALLOCATABLE    :: El_u(:,:,:)! 
REAL, ALLOCATABLE    :: El_t(:,:,:)!  Results of System 
REAL, ALLOCATABLE    :: El_ue(:,:) !  Diplacements of Element 
REAL, ALLOCATABLE    :: El_te(:,:) !  Traction of Element 
REAL, ALLOCATABLE    :: Disp(:)    !  Diplacement results Node 
REAL, ALLOCATABLE    :: Trac(:)    !  Traction results of Node 
REAL, ALLOCATABLE    :: El_trac(:) !  Traction results Element 
REAL, ALLOCATABLE    :: El_disp(:) !  Displacement of Element 
REAL, ALLOCATABLE    :: xP(:,:)    !  Node co-ordinates of BE 
REAL, ALLOCATABLE    :: xPnt(:)    !  Co-ordinates of int. point 
REAL, ALLOCATABLE    :: Ni(:),GCcor(:),dxr(:),Vnorm(:)   
CHARACTER (LEN=80)   :: Title  
REAL :: Elengx,Elenge,Rmin,Glcorx(8),Wix(8),Glcore(8),Wie(8) 
REAL :: Jac 
REAL :: Xsi1,Xsi2,Eta1,Eta2,RJacB,RonL 
REAL, ALLOCATABLE :: Flow(:),Stress(:)!  Results for bound.Point 
REAL, ALLOCATABLE :: uPnt(:),SPnt(:) !  Results for int Point 
REAL, ALLOCATABLE :: TU(:,:),UU(:,:) !  Kernels for u 
REAL, ALLOCATABLE :: TS(:,:),US(:,:) !  Kernels for q,s 
REAL, ALLOCATABLE :: Fac(:),Fac_nod(:,:)  !   Fact. for symmetry  
INTEGER :: Cdim,Node,M,N,Istat,Nodel,Nel,Ndof,Cod,Nreg 
INTEGER :: Ltyp,Nodes,Maxe,Ndofe,Ndofs,Ncol,ndg,ldim 
INTEGER :: nod,nd,Nstres,Nsym,Isym,nsy,IPS,Nan,Nen,Ios,dofa,dofe 
INTEGER :: Mi,Ki,K,I,NDIVX,NDIVSX,NDIVE,NDIVSE,MAXDIVS 
REAL    :: Con,E,ny,Fact,G,C2,C3,C5,C6,C7 
REAL    :: xsi,eta,Weit,R,Rlim(2) 
OPEN (UNIT=1,FILE='INPUT',FORM='FORMATTED') 
OPEN (UNIT=2,FILE='OUTPUT',FORM='FORMATTED') 
Call Jobin(Title,Cdim,Ndof,IPS,Nreg,Ltyp,Con,E,ny,& 
           Isym,nodel,nodes,maxe) 
Ndofe= nodel*ndof 
ldim= Cdim-1 
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Nsym= 2**Isym   !   number of symmetry loops 
ALLOCATE(xP(Cdim,Nodes))   !  Array for node coordinates 
ALLOCATE(Incie(Maxe,Nodel),Inci(Nodel),Ldest(Ndofe))  
ALLOCATE(Ni(Nodel),GCcor(Cdim),dxr(Cdim),Vnorm(Cdim)) 
CALL Geomin(Nodes,Maxe,xp,Incie,Nodel,Cdim) 
!   Compute constants 
IF(Ndof == 1) THEN 
 Nstres= Cdim 
ELSE 
 G= E/(2.0*(1+ny)) 
 C2= 1/(8*Pi*(1-ny)) 
 C3= 1.0-2.0*ny 
 C5= G/(4.0*Pi*(1-ny)) 
 C6= 15 
 C7= 1.0-4.0*ny 
 Nstres= 6 
 IF(Cdim == 2) THEN 
  IF(IPS == 1) THEN                                                  

! Plane Strain 
     C2= 1/(4*Pi*(1-ny)) 
     C5= G/(2.0*Pi*(1-ny)) 
     C6= 8 
     Nstres= 4 
  ELSE 
     C2= (1+ny)/(4*Pi                )                               

! Plane Stress 
     C3= (1.0-ny)/(1.0+ny) 
     C5= (1.0+ny)*G/(2.0*Pi) 
     C6= 8 
     C7= (1.0-3.0*ny)/(1.0+ny) 
     Nstres= 4  
  END IF  
 END IF  
END IF       
ALLOCATE(El_u(Maxe,Nodel,ndof),El_t(Maxe,Nodel,ndof)& 
,El_te(Nodel,ndof),El_ue(Nodel,ndof),Fac_nod(Nodel,ndof)) 
ALLOCATE(El_trac(Ndofe),El_disp(Ndofe)) 
CLOSE(UNIT=1) 
OPEN (UNIT=1,FILE='BERESULTS',FORM='FORMATTED') 
WRITE(2,*) ' ' 
WRITE(2,*) 'Post-processed Results' 
WRITE(2,*) ' ' 
Elements1:& 
DO Nel=1,Maxe 
   READ(1,*) ((El_u(nel,n,m),m=1,ndof),n=1,Nodel) 
   READ(1,*) ((El_t(nel,n,m),m=1,ndof),n=1,Nodel) 
END DO & 
Elements1 
ALLOCATE(Elcor(Cdim,Nodel)) 
CLOSE(UNIT=1) 
OPEN (UNIT=1,FILE='INPUT2',FORM='FORMATTED') 
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ALLOCATE(Flow(Cdim),Stress(Nstres)) 
!------------------------------------------------------------ 
!     Computation of boundary fluxes/stresses 
!------------------------------------------------------------- 
WRITE(2,*) 'Results at nodes of Boundary Elements:' 
READ(1,*) Nan,Nen 
IF(Nan > 0) THEN 
 Element_loop: & 
 DO NEL= Nan,Nen 
    Inci= Incie(nel,:) 
    Elcor= xp(:,Inci(:)) 
    Eta= -1.0 
    Eta_loop: & 
    DO Net=1,NETA           
       Xsi= -1.0 
       Xsi_loop: & 
       DO Nxs=1,NXSI                          . 
          IF(Ndof == 1) THEN 
           Flow= 0.0 
           Call BFLOW(Flow,xsi,eta,El_u(Nel,:,:),Inci,Elcor,Con) 

            WRITE(2,'(A,I5,A,F6.2,A,F6.2)') 'Element',Nel,& 
            ' xsi=',xsi,' eta=',eta 
           WRITE(2,'(A,2F10.3)') 'Flux: ',Flow 
          ELSE 
           Stress= 0.0 
           Call BStress(Stress,xsi,eta,El_u(Nel,:,:)& 
                       ,El_t(Nel,:,:),Inci,Elcor,E,ny,IPS)     
           WRITE(2,'(A,I5,A,F6.2,A,F6.2)') 'Element',Nel,& 
           ' xsi=',xsi,' eta=',eta 
           WRITE(2,'(A,6F9.2)') ' Stress: ',Stress 
          END IF 
          Xsi= Xsi +1 
        END DO Xsi_loop 
        Eta=Eta+1.0 
     END DO Eta_loop 
  END DO Element_loop 
END IF 
ALLOCATE(uPnt(NDOF),SPnt(NSTRES),UU(NDOF,NDOF),TU(NDOF,NDOF)) 
ALLOCATE(TS(Nstres,Ndof),US(Nstres,Ndof)) 
ALLOCATE(xPnt(Cdim),Fac(Ndofe)) 
ALLOCATE(Disp(Cdim),Trac(Cdim)) 
WRITE(2,*)'' 
WRITE(2,*) 'Internal Results:' 
WRITE(2,*)'' 
Internal_points: & 
DO 
   READ(1,*,IOSTAT=IOS) xPnt 
   IF(IOS /= 0) EXIT 
   Write(2,'(A,3F10.2)') 'Coordinates: ',xPnt 

!   Temperatures/Displacements at Points inside a region 
   uPnt= 0.0 
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   Element_loop1: & 
   DO NEL= 1,MAXE 
      Symmetry_loop1:& 
      DO nsy=1,Nsym 
         Inci= Incie(nel,:) 
         Elcor= xp(:,Inci(:)) 
         IF(ldim == 2) THEN 
           ELengx= Dist((Elcor(:,3)+Elcor(:,2))/2.& 
           ,(Elcor(:,4)+Elcor(:,1))/2.,Cdim)  ! Lxsi 
           ELenge= Dist((Elcor(:,2)+Elcor(:,1))/2.& 
            ,(Elcor(:,3)+Elcor(:,4))/2.,Cdim)  ! Leta 
          ELSE 
            Call Elength(Elengx,Elcor,nodel,ldim) 
          END IF 
          Ldest= 1 
          Fac= 1.0 
          Fac_nod=1.0 
          El_ue(:,:)=El_u(Nel,:,:) 
          El_te(:,:)=El_t(Nel,:,:) 
          IF(Isym > 0) THEN 
            DO Nod=1,Nodel 
               dofa= (nod-1)*Ndof+1 
               dofe= dofa+Ndof-1 
               El_trac(dofa:dofe)= El_te(Nod,:) 
               EL_disp(dofa:dofe)= El_ue(Nod,:) 
             END DO 
             CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,Inci& 
                          ,Ldest,El_trac,EL_disp &  
                          ,nodel,ndof,Cdim)  
             DO Nod=1,Nodel 
                dofa= (nod-1)*Ndof+1 
                dofe= dofa+Ndof-1                                        
                El_te(Nod,:)= El_trac(dofa:dofe) 
                El_ue(Nod,:)= El_disp(dofa:dofe) 
                Fac_nod(Nod,:)= Fac(dofa:dofe) 
             END DO 
            END IF 
            Rmin= Min_dist(Elcor,xPnt,Nodel,ldim,Inci)  
            Mi= Ngaus(Rmin/Elengx,Cdim-1,Rlim)  
            NDIVSX= 1 ; NDIVSE= 1 
            RJacB=1.0 
            RonL= Rmin/Elengx 
            IF(Mi == 5) THEN   ! subdivision required 
              IF(RonL > 0.0) NDIVSX= INT(RLim(2)/RonL) + 1    
              IF(NDIVSX > MAXDIVS) MAXDIVS= NDIVSX 
              Mi=4 
            END IF 
            CALL Gauss_coor(Glcorx,Wix,Mi)  ! Coords/Wghts x dir 
            Ki= 1 ; Wie(1)= 1.0 ; Glcore(1)= 0.0 
            IF(Cdim == 3) THEN 
               Ki= Ngaus(Rmin/Elenge,Cdim-1,Rlim)  !  
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               RonL= Rmin/Elenge  
               IF(Ki == 5) THEN 
                 IF(RonL > 0.0) NDIVSE= INT(RLim(2)/RonL) + 1    
                 IF(NDIVSE > MAXDIVS) MAXDIVS= NDIVSE 
                 Ki=4 
               END IF 

                CALL Gauss_coor(Glcore,Wie,Ki) ! Coords/Weights 
             END IF 
          IF(NDIVSX > 1 .OR. NDIVSE>1) THEN 
           RJacB= 1.0/(NDIVSX*NDIVSE) 
         END IF 
          Xsi1=-1.0 
          Eta1=-1.0 
          Subdivisions_xsi:& 
          DO NDIVX=1,NDIVSX 
          Xsi2= Xsi1 + 2.0/NDIVSX 
            Subdivisions_eta:& 
            DO NDIVE=1,NDIVSE 
            Eta2= Eta1 + 2.0/NDIVSE 
              Gauss_points_xsi: & 
              DO m=1,Mi 
              xsi= Glcorx(m) 
              IF(NDIVSX > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVSX 
                Gauss_points_eta: & 
                DO k=1,Ki                                         
                eta= Glcore(k) 
                IF(NDIVSE > 1) eta= 0.5*(Eta1+Eta2)+eta/NDIVSE 
                Weit= Wix(m)*Wie(k) 
                CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)  
                CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim& 
                               ,nodel,Inci,elcor)  
                Fact= Weit*Jac*RJacB 
                CALL Cartesian(GCcor,Ni,ldim,elcor)   
                r= Dist(GCcor,xPnt,Cdim)      !  Dist. P,Q 
                dxr= (GCcor-xPnt)/r         !  rx/r , ry/r  etc 
                IF(Ndof .EQ. 1) THEN 
                  TU= U(r,Con,Cdim)  ; UU= T(r,dxr,Vnorm,Cdim) 
                ELSE 
                  TU= UK(dxr,r,E,ny,Cdim) 
                  UU= TK(dxr,r,Vnorm,ny,Cdim)    
                END IF 
                 Node_loop1:& 
                 DO Node=1,Nodel 
                  Disp= El_ue(Node,:)* Fac_nod(Node,:) 
                  Trac= El_te(Node,:)* Fac_nod(Node,:) 
                  uPnt= uPnt + (MATMUL(TU,Trac)-& 
                    MATMUL(UU,Disp))* Ni(Node)* Fact 
                 END DO & 
                 Node_loop1 
                END DO & 
                Gauss_points_eta 
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              END DO & 
              Gauss_points_xsi 
              Eta1= Eta2 
            END DO Subdivisions_eta 
            Xsi1= Xsi2 
        END DO Subdivisions_xsi 
      END DO Symmetry_loop1 
    END DO Element_loop1 
    WRITE(2,'(A,3F10.3)') '          u: ',uPnt 
!------------------------------------------------------------ 
!    Computation of Fluxes/Stresses at Points inside a region 
!------------------------------------------------------------ 
   SPnt= 0.0 
   Element_loop2: & 
   DO NEL= 1,MAXE 
     Symmetry_loop2: & 
     DO nsy=1,Nsym 
       Inci= Incie(nel,:) 
       Elcor= xp(:,Inci(:)) 
       IF(ldim == 2) THEN 
         ELengx= Dist((Elcor(:,3)+Elcor(:,2))/2.& 
                     ,(Elcor(:,4)+Elcor(:,1))/2.,Cdim)  ! Lxsi 
         ELenge= Dist((Elcor(:,2)+Elcor(:,1))/2.& 
                     ,(Elcor(:,3)+Elcor(:,4))/2.,Cdim)  ! Leta 
       ELSE 
         Call Elength(Elengx,Elcor,nodel,ldim) 
       END IF 
       Ldest= 1 
       Fac= 1.0 
       El_ue(:,:)=El_u(Nel,:,:) 
       El_te(:,:)=El_t(Nel,:,:) 
       IF(Isym > 0) THEN 
            DO Nod=1,Nodel 
               dofa= (nod-1)*Ndof+1 
               dofe= dofa+Ndof-1 
               El_trac(dofa:dofe)= El_te(Nod,:) 
               EL_disp(dofa:dofe)= El_ue(Nod,:) 
             END DO 
             CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,Inci& 
                          ,Ldest,El_trac,EL_disp &  
                          ,nodel,ndof,Cdim)  
             DO Nod=1,Nodel 
                dofa= (nod-1)*Ndof+1 
                dofe= dofa+Ndof-1                                        
                El_te(Nod,:)= El_trac(dofa:dofe) 
                El_ue(Nod,:)= El_disp(dofa:dofe) 
                Fac_nod(Nod,:)= Fac(dofa:dofe) 
             END DO 
        End IF 
        Rmin= Min_dist(Elcor,xPnt,Nodel,ldim,Inci)  
        Mi= Ngaus(Rmin/Elengx,Cdim,Rlim)      
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        NDIVSX= 1 ; NDIVSE= 1 
        RJacB=1.0 
        RonL= Rmin/Elengx 
        IF(Mi == 5) THEN 
          IF(RonL > 0.0) NDIVSX= INT(RLim(2)/RonL) + 1    
          IF(NDIVSX > MAXDIVS) MAXDIVS= NDIVSX 
          Mi=4 
        END IF 
       CALL Gauss_coor(Glcorx,Wix,Mi)  ! Coords/Wghts x dir 
       Ki= 1 ; Wie(1)= 1.0 ; Glcore(1)= 0.0 
       IF(Cdim == 3) THEN 
         Ki= Ngaus(Rmin/Elenge,Cdim,Rlim)     
         RonL= Rmin/Elenge  
         IF(Ki == 5) THEN   !  subdivide 
          IF(RonL > 0.0) NDIVSE= INT(RLim(2)/RonL) + 1    
          IF(NDIVSE > MAXDIVS) MAXDIVS= NDIVSE 
          Ki=4 
         END IF                          
         CALL Gauss_coor(Glcore,Wie,Ki) ! Coords/Wghts h dir 
       END IF 
       IF(NDIVSX > 1 .OR. NDIVSE>1) RJacB= 1.0/(NDIVSX*NDIVSE) 
       Xsi1=-1.0 
       Eta1=-1.0 
       Subdivisions_xsi1:& 
       DO NDIVX=1,NDIVSX 
         Xsi2= Xsi1 + 2.0/NDIVSX 
         Subdivisions_eta1: & 
         DO NDIVE=1,NDIVSE 
          Eta2= Eta1 + 2.0/NDIVSE 
           Gauss_points_xsi2: & 
           DO m=1,Mi 
            xsi= Glcorx(m) 
            IF(NDIVSX > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVSX 
             Gauss_points_eta2: & 
             DO k=1,Ki 
               eta= Glcore(k) 
               IF(NDIVSE > 1) eta= 0.5*(Eta1+Eta2)+xsi/NDIVSE 
               Weit= Wix(m)*Wie(k) 
               CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)  
               CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim& 
                              ,nodel,Inci,elcor)  
               Fact= Weit*Jac*RJacB 
               CALL Cartesian(GCcor,Ni,ldim,elcor)   
               r= Dist(GCcor,xPnt,Cdim)      !  Dist. P,Q 
               dxr= (GCcor-xPnt)/r         !  rx/r , ry/r  etc 
               IF(Ndof .EQ. 1) THEN 
                 TS(:,1)= dU(r,dxr,Cdim) 
                 US(:,1)= dT(r,dxr,Vnorm,Cdim) 
               ELSE 
                 CALL SK(TS,DXR,R,C2,C3)  
                 CALL RK(US,DXR,R,VNORM,C3,C5,c6,C7,ny) 
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               END IF 
                 Node_loop2:& 
                 DO Node=1,Nodel 
                  Disp= El_ue(Node,:)* Fac_nod(Node,:) 
                  Trac= El_te(Node,:)* Fac_nod(Node,:) 
                  SPnt= SPnt + (MATMUL(TS,Trac)- & 
                                MATMUL(US,Disp))* Ni(Node)* Fact  
                 END DO Node_loop2 
                 END DO Gauss_points_eta2 
               END DO Gauss_points_xsi2 
               Eta1= Eta2 
             END DO Subdivisions_eta1 
             Xsi1= Xsi2 
           END DO Subdivisions_xsi1 
         END DO Symmetry_loop2 
     END DO Element_loop2  
     IF(Ndof == 1) THEN 
       WRITE(2,'(A,6F10.3)') '       Flux: ',SPnt 
     ELSE 
       IF(CDIM == 2) THEN 
        IF(IPS==1) THEN 
          SPnt(4)=SPnt(3) 
          SPnt(3)= ny*(SPnt(1)+SPnt(2)) 
        ELSE 
          SPnt(4)=SPnt(3) 
          SPnt(3)= 0 
        END IF 
       END IF 
       WRITE(2,'(A,6F10.3)') '     Stress: ',SPnt 
     END IF 
END DO Internal_points 
END PROGRAM Post_processor 

9.4.1 Input specification 

INPUT DATA SPECIFICATION FOR Postprocessor 
 

1.0 Boundary results 
 Nan, Nen  First element and last element on 
 which boundary results are to be computed 
2.0 Internal point specification loop 
 x, y, (z)  Coordinates of internal points  

 Specify as many as required. 
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9.5 GRAPHICAL DISPLAY OF RESULTS 

In an engineering application, the graphical display of the results is indispensable. The 
display of the vector or scalar fields can be as diagrams of variation of a quantity along a 
line or as contour plots. The detailed description of the graphical postprocessing is 
beyond the scope of this book and the reader is referred to the literature on this subject. 
One approach to contouring is mentioned here, because it is unique to the BEM. In the 
BEM we are fortunate to actually have a continuous distribution of results inside the 
domain which is differentiable without any restriction. To take full advantage of the 
increased accuracy of results as compared to the FEM one may look beyond the usual 
interpolation schemes used there. 

The idea is to determine the contours in the domain, by using a predictor/corrector 
scheme. For contours that start on the boundary, the starting point ( 0 0,x y ) is first 
determined for a particular contour value 1f  of the function f(x,y) to be contoured by 
using interpolation of boundary values. Next, the directions tangential and normal to the 
contour are determined from the condition that the value of the result to be contoured 
remains constant along the contour, i.e. 

(9.54)  

Along a contour the change in f must be zero, i.e. 

(9.55)  

The vectors normal and tangential to the contour are  

(9.56)  

To obtain unit vectors, the components of the vectors must divided by the length 

(9.57)  

The method of contouring works as follows: A first estimate of a point on the contour 
( 1 1,x y ) is computed, by drawing a straight line of a specified length L in the direction 
given by t : 

(9.58)  

Next the stress is computed at the point at ( 1 1,x y ). 
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 The error of the prediction determined as  

(9.59)  

This error is now corrected using the direction n computed at the point. Further points 
on the contour are determined by repeated application of prediction and correction until 
the contours meets a boundary (see Figure 9.7) or closes. It is clear from figure 9.7 that 
the length of the predictor must be continuously adjusted to ensure convergence of the 
algorithm. In the case where a contour does not start from the boundary a search for the 
starting point of the contour may be carried out from the boundary. Further details can 
be found in Noronha et al2. 
 

Figure 9.7 Explanation of the contouring algorithm 

We show on an example in 2-D elasticity how the derivatives are determined. Taking 
the derivative of the stress solution we can obtain the change in the stress tensor in the x 
direction by 

(9.60)  

and in y direction by 

(9.61)  

where for example 

(9.62)  
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Figure 9.8 shows contour plots obtained with the new algorithm. 

Figure 9.8 Example of a contour plot of major and minor principal stresses for a tunnel 
subjected to self weight. 

9.6 CONCLUSIONS 

In this chapter we have discussed methods for obtaining results other than values of 
temperature/displacement and fluxes/tractions at the nodes of boundary elements. These 
additional results are flows/stresses at internal points. Results exactly on the boundary 
elements, can be obtained by a method also known as the “stress recovery”, whereby we 
use the shape functions of the element to determine tangential flows/stresses. The results 
at internal points are obtained with the fundamental solutions and are more accurate than 
comparable results from FEM, because they satisfy the governing differential equations 
exactly and – for infinite domain problems – include the effect of the infinite boundary 
condition. The task of computing internal results can be delegated to a postprocessor, 
where the user may either interactively interrogate points or define planes inside the 
continuum where contours are to be plotted.  

It has been found that due to the high degree of singularity of the Kernel functions, 
care must be taken that internal points are not too close to the boundary. If the proposed 
numerical integration scheme is used, then there is a limiting value of R/L below which 
the results are in error. However, since we are able to compute the results exactly on the 
boundary, we may use a linear interpolation between the internal point and a point 
projected onto the boundary element. Finally, a method to compute very accurate 
contours of stresses has been presented. This scheme is based on the fact that, in contrast 
to the FEM, the functions that describe the variation of results are differentiable, without 
any loss of accuracy. 
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9.7 EXERCISES 

Exercise 9.1 
Use Program 9.1 to compute for exercise 7.1 the flow in vertical direction along a 
horizontal line. Compare with the theoretical solution. 
 
Exercise 9.2 
Use Program 9.1 to compute for exercise 7.3, the stress in vertical direction along a 
horizontal line. Compare with the theoretical solution. 
 
Exercise 9.3 
Use Program 9.1 to compute for exercise 7.4 the flow in horizontal direction along a 
vertical line in the middle of the rectangular region. Compare with the theoretical 
solution. 
 
Exercise 9.4 
Use Program 9.1 to compute for exercise 7.6 the normal and shear stress along a vertical 
line, as shown in Figure 9.9. Do a graphical comparison with the theoretical solution. 
 

Figure 9.9 Cantilever beam with internal points 
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10 
Test Examples  

 
Die Wahrheit wird gelebt, nicht doziert 

(Truth is lived not taught) 
H. Hesse 

 

10.1 INTRODUCTION 

We have now developed all the software required to perform a boundary element 
analysis of problems in potential flow and elasticity. The examples which we can 
analyse will, however, be restricted to homogeneous domains and linear material 
behaviour. Before we proceed further in an attempt to eliminate these restrictions, it is 
opportune to pause and learn, on test examples, a few things about the method especially 
with respect to the accuracy that can be attained. The purpose of this chapter is twofold. 
Firstly, the reader will learn how problems are modelled using boundary elements, with 
examples of simple meshes in two and three dimensions. Secondly, we will show, by 
comparison with theory and results from finite element meshes, the accuracy which can 
be obtained. We will also point out possible pitfalls, which must be avoided. As with all 
numerical methods, examples can be presented that favour the method and others that 
don’t. Here we find that the BEM has difficulty dealing with cantilevers with small 
thickness where two opposing boundaries are close to each other. On the other hand it 
can deal very well with problems which involve an infinite domain. Also we will find 
that values at the surface are computed more accurately. This gives an indication of the 
range of applications where the method is superior as compared with others: those 
involving a large volume to surface ratio (including infinite domains) and those where 
the results at the boundary are important, for example stress concentration problems. In 
the following, several test examples will be presented ranging from the simple 2-D 
analysis of a cantilever beam to the 3-D analysis of a spherical excavation in an infinite 
continuum. In all cases we show the input file required to solve the problem with 
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program 7.1 and 9.1 and the output obtained. The results are then analysed with respect 
to accuracy with different discretisations. Comparison is made with theoretical results 
and in some cases with finite element models. 

10.2 CANTILEVER BEAM 

10.2.1 Problem statement 

The cantilever beam is a simple structure, which nevertheless can be used to show 
strengths and weaknesses of numerical methods. Here we analyse a cantilever beam with 
decreasing thickness and we will find that this causes some difficulties for the BEM. The 
problem is stated in Figure 10.1. An encastre beam is subjected to a distributed load of 
10 KN at the end. The material properties are assumed to be: E= 10 000 MPa and 0.0. 
We gradually decrease the thickness t of the beam and observe the accuracy of results. 

Figure 10.1 Cantilever beam: Dimensions and loading assumed 

10.2.2 Boundary element discretisation and input 

Figure 10.2 Boundary element Mesh 1 (  …corner node,  …  mid-side node) 
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Figure 10.2 shows the discretisation used (12 parabolic boundary elements) and the 
dimension of the first mesh analysed with a ratio of t/L of 0.2. The element and node 
numbering as well as the boundary conditions are shown.  
 
The input file for this problem for program 7.1 is 
Cantilever beam 
 2     ! Cdim     2-D 
 2     ! Ndof      Elasticity 
 2     ! ToA       Plane stress 
 1     ! Nreg     finite region 
 0     ! no symmetry 
 2     ! Quadratic elements 
0.1000E+05 0.0000E+00     !  E,Ny 
   24   !  Number of nodes 
   12   !  Number of Elements 
     0.000     0.000             !   Coordinates 
     1.000     0.000 
     0.500     0.000 
     2.000     0.000 
     1.500     0.000 
     3.000     0.000 
     2.500     0.000 
     4.000     0.000 
     3.500     0.000 
     5.000     0.000 
     4.500     0.000 
     5.000     1.000 
     5.000     0.500 
     4.000     1.000 
     4.500     1.000 
     3.000     1.000 
     3.500     1.000 
     2.000     1.000 
     2.500     1.000 
     1.000     1.000 
     1.500     1.000 
     0.000     1.000 
     0.500     1.000 
     0.000     0.500   
     1     2     3      !    Incidences 
     2     4     5 
     4     6     7 
     6     8     9 
     8    10    11 
    10    12    13 
    12    14    15 
    14    16    17 
    16    18    19 
    18    20    21 
    20    22    23 
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    22     1    24 
     1          !     Prescribed Dirichlet 
    12   0.0 0.0 0.0 0.0 0.0 0.0 
     1          !     Prescribed Neuman 
     6   0.0 -10.0 0.0 -10.0 0.0 -10.0 

10.2.3 Results 

The output obtained from the program 7.1 is: 

Project: 
Cantilever beam                                                             
 Cartesian_dimension:           2 
 Elasticity Problem 
 Type of Analysis: Solid Plane Stress 
 Finite Region 
 No symmetry 
 Quadratic Elements 
 Modulus:   10000.00     
 Poissons ratio:  0.0000000E+00 
 Number of Nodes of System:          24 
 Number of Elements of System:          12 
Node     1  Coor      0.00    0.00 
… 
Node    24  Coor      0.00    0.50 
 
 Incidences:  
EL     1  Inci      1    2    3 
… 
EL    12  Inci     22    1   24 
  
 Elements with Dirichlet BC´s:   
 Element           12  Prescribed values:  
  0.0000000E+00  0.0000000E+00 
  0.0000000E+00  0.0000000E+00 
  0.0000000E+00  0.0000000E+00 
  
 Elements with Neuman BC´s:   
 Element            6  Prescribed values:  
 Node=           1  0.0000000E+00  -10.00000     
 Node=           2  0.0000000E+00  -10.00000     
 Node=           3  0.0000000E+00  -10.00000 
     
 Results, Element           1 
 u=     0.000     0.000    -0.027    -0.030    -0.014    -0.008 
 t=   298.892     6.277     0.000     0.000     0.000     0.000 
 … 
 Results, Element           6 
 u=    -0.075    -0.508     0.075    -0.508     0.000    -0.508 
 t=     0.000   -10.000     0.000   -10.000     0.000   -10.000 
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 ….. 
 Results, Element          12 
 u=     0.000     0.000     0.000     0.000     0.000     0.000 
 t=  -298.892     6.277   298.892     6.277     0.000    11.876 

 

The input file for this problem for program 9.1 is 

1 12 
2.0 0.1 
2.0 0.2 
2.0 0.3 
2.0 0.4 
2.0 0.5 
2.0 0.6 
2.0 0.7 
2.0 0.8 
2.0 0.9 

 
The output obtained from program 9.1 is 

Post-processed Results  
Results at Boundary Elements: 
Element    1 xsi= -1.00 eta= -1.00 
 Stress:   -296.90    -6.28     0.00  -298.89 
Element    1 xsi=  0.00 eta= -1.00 
 Stress:   -269.50     0.00     0.00     0.00 
Element    1 xsi=  1.00 eta= -1.00 
 Stress:   -242.10     0.00     0.00     0.00 
… 
Element   12 xsi= -1.00 eta= -1.00 
 Stress:    298.89     0.00     0.00    -6.28 
Element   12 xsi=  0.00 eta= -1.00 
 Stress:      0.00     0.00     0.00   -11.88 
Element   12 xsi=  1.00 eta= -1.00 
 Stress:   -298.89     0.00     0.00    -6.28 
  
 Internal Results: 
Coordinates:       2.00      0.10 
          u:     -0.038    -0.107 
     Stress:   -144.657     0.818     0.000    -8.323 
Coordinates:       2.00      0.20 
          u:     -0.028    -0.107 
     Stress:   -108.503     0.604     0.000   -12.658 
Coordinates:       2.00      0.30 
          u:     -0.019    -0.107 
     Stress:    -72.370     0.421     0.000   -15.590 
Coordinates:       2.00      0.40 
          u:     -0.009    -0.107 
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     Stress:    -36.182     0.205     0.000   -17.311 
Coordinates:       2.00      0.50 
          u:      0.000    -0.107 
     Stress:      0.000     0.000     0.000   -17.886 
Coordinates:       2.00      0.60 
          u:      0.009    -0.107 
     Stress:     36.183    -0.206     0.000   -17.311 
Coordinates:       2.00      0.70 
          u:      0.019    -0.107 
     Stress:     72.370    -0.421     0.000   -15.590 
Coordinates:       2.00      0.80 
          u:      0.028    -0.107 
     Stress:    108.503    -0.603     0.000   -12.658 
Coordinates:       2.00      0.90 
          u:      0.038    -0.107 
     Stress:    144.655    -0.814     0.000    -8.322 

 
A total of three analyses were carried out gradually reducing the value of t to 0.5 and 

0.2m. The results of the analyses are summarised in Table 10.1 and compared with 
results obtained from the classical beam theory1 (Bernoulli hypothesis). Compared are 
the maximum deflection at the free end and the bending stresses at the fixed end. Note 
that the maximum bending stresses are obtained directly from the analysis (these are 
equal to the tractions tx at node 1 and 2 on element 12). 

Table 10.1 Summary of results for cantilever beam with parabolic boundary elements 

Max. deflection  (mm) Max. stress  (MPa) t t/L Mesh
Computed Beam theory Computed Beam theory 

1.0 0.2 1 0.508 0.500 0.299 0.300 
0.5 0.1 1 3.704 4.000 1.105 1.200 
0.2 0.04 1 36.74 62.50 4.38 7.50 

 
The displacement results obtained for a ratio t/L of 0.2 include the additional effect of 

shear and are more accurate than the results computed by beam theory. It can be seen 
that results deteriorate rapidly with decreasing value of t/L and that for a ratio t/L of 0.04 
the error is unacceptable. Note that for an equivalent finite element mesh, no problems 
arise if the thickness is reduced.  

Considering that the accuracy of integration introduced with the integration scheme in 
Chapter 6 is quite high the reasons for this deterioration in accuracy is probably the fact 
that the collocation points are very close to each other in one direction and far away in 
the other. Since the theorem by Betti will only be satisfied at the collocation points, there 
seems to be a detrimental effect if these points are very unevenly spaced. Apparently a 
close proximity of the collocation points also causes a lack of diagonal dominance of the 
system of equations. Numerical experiments have shown that even if the precision of 
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integration is further increased, errors still persist if the ratio t/L is decreased to a very 
low value.  

Figure 10.3 Adaptive  meshes: (a) Mesh 2 and  (b) Mesh 3 (only corner nodes shown) 

Table 10.2 Results for refined meshes 

Max. deflection (mm) Max. stress (MPa) t t/L Mesh
Computed Beam theory Computed Beam theory 

1.0 0.2 1 0.508 0.500 0.299 0.300 
0.5 0.1 2 3.993 4.000 1.192 1.200 
0.2 0.04 3 62.234 62.50 7.459 7.500 

 
A relatively simple remedy to this problem is to increase the number of elements as the 
ratio t/L is decreased. Such adaptive meshes for t/L=0.1 and 0.04 are shown in Figure 
10.3.As can be seen from Table 10.2 the accuracy of results is now greatly improved. 
The variation of normal stress and shear stress along a vertical line at a distance of 2.0 m 
from the fixed end is computed using Program 9.1 and plotted in Figure 10.5. The 
computed distribution is in good agreement with the theory for both normal and shear 
stresses 

10.2.4 Comparison with FEM 

We now make a comparison with the finite element method. The mesh shown in Fig 
10.4 has the same discretisation on the boundary as the BEM mesh. If we change the 
thickness to length ratio we see in Table 10.3 that this has no effects on the results. 
When we compare the stress distributions in Figure 10.5 we can see that the FEM 
exactly represents the bending stress, but will only be able to approximate the parabolic 
distribution of the shear stress by a constant distribution. 
 
 
 

 

(a) 

(b) 
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Figure 10.4 Finite element mesh 

Figure 10.5 Comparison of results  

Table 10.3 Results of finite element analysis 

Max. deflection (mm) Max. x (MPa) t/L Mesh
Computed Beam theory Computed Beam theory

0.2 1 0.515 0.500 0.300 0.300 
0.1 1 4.031 4.000 1.200 1.200 
0.04 1 62.58 62.50 7.500 7.500 
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10.2.5 Conclusions  

The conclusions from this example are that there is very little difference in the 
discretisation effort and computing time between the FEM and the BEM for this 
example. We found that for slender beams the program leads to significant errors for 
coarse discretisations. However, there are ways in which we may improve these results, 
for example by using schemes other than point collocation, namely the Galerkin method 
mentioned briefly in Chapter 6. However this will result in significantly higher 
computation effort so that the BEM may loose some advantage. Another elegant and 
efficient way would be to include in the fundamental solution the classical beam bending 
theory. If this is done then there is only need to discretise the centerline of the beam 
thereby avoiding all the difficulties which we have experienced. A good description of 
this method is given by Hartmann2.  

10.3 CIRCULAR EXCAVATION IN INFINITE DOMAIN 

10.3.1 Problem statement 

Consider an excavation made in an infinite, homogeneous, elastic space. The elastic 
space is assumed to have a modulus of elasticity of 10 000 MPa, a Poisson’s ratio of zero 
and to have been pre-stressed with a stress field of x= 0.0 MPa, y= -3.0 MPa, 
(compression) and xy= 0.0 MPa.  

Figure 10.6 Problems to be solved: Infinite space (a) without (b) with excavation 

0y

0t 0t

0y

(a) (b) 
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Required are the displacements and the changed stress distribution due to excavation. To 
obtain this solution we actually have to solve two problems (Figure 10.6): One (trivial) 
one where no excavation exists and one where the supporting tractions t0 computed in 
the first step are released, i.e., applied in the opposite direction. 
We can use equation (4.28) to solve the problem (a) i.e. to compute the tractions t0 as 

(10.1)  

10.3.2 Boundary element discretisation and input 

To solve problem (b) we use the BEM with two planes of symmetry. For the first mesh a 
single parabolic element (Figure 10.7) is used. Subsequently two (Mesh 2) and four 
elements (Mesh 3) are used for a quarter of the boundary. The mesh is subjected to 
Neuman boundary conditions with values of t0 computed using (10.1) and applied as 
shown in Figure 10.7. 

Figure 10.7 Boundary element mesh with Neuman boundary conditions 

If the element would be able to describe an exact circle then the values of traction ty0  
should be exactly –3.0 at node 1 and 0.0 at node 2. However, since the element can only 
describe a parabola, the y-component of the normal vector will not be exactly –1.0 at 
node 1 and not exactly 0.0 at node 2. Therefore, a small geometrical error occurs due to 
the coarse discretisation. Alternatively we could specify the values of traction that 
correspond to an exact circle (-3.0,-2.12, 0.0) The input file for program 7.1 for this 
problem is 
 

 Circular hole 
 2     ! 2-D 
 2     ! Elasticity problem 
 1     ! Plane strain 
 2     ! Finite Region 

 1

2
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 2     ! double symmetry 
 2     ! quadratic elements 
0.1000E+05  0.0000E+00    ! E,Ny 
    3     ! Nodes 
    1     ! Elements 
     0.000     1.000     ! Coordinates 
     1.000     0.000 
     0.707     0.707 
    1    2    3    ! Incidences 
    0    ! Dirichlet BC 
    1    ! Neumann BC 
    1    0.00000 -2.98681   0.00000 -0.28103  0.00000 -2.12132 

 

The output obtained from program 7.1 is 

Project: 
 Circular hole                                                              
 Cartesian_dimension: 2 
 Elasticity Problem 
 Type of Analysis:  Solid Plane Strain 
 Infinite Region 
 Symmetry about y-z and x-z planes 
 Quadratic Elements 
 Modulus:   10000.00     
 Poissons ratio:  0 
 Number of Nodes of System:           3 
 Number of Elements of System:        1 
Node     1  Coor      0.00    1.00 
Node     2  Coor      1.00    0.00 
Node     3  Coor      0.71    0.71 
 Incidences:   
EL     1  Inci      1    2    3 
 Elements with Dirichlet BC´s:  
 Elements with Neuman BC´s:   
 Element            1  Prescribed values:  
  0.00  -2.986810     
  0.00  -0.281030     
  0.00  -2.121320     
 Results, Element    1 
   u=   0.00000  -0.00060   0.00029   0.00000   0.00021  -0.00041 
   t=   0.00000  -2.98681   0.00000  -0.28103   0.00000  -2.12132  

 
The input file for this problem for program 9.1 is 

1 1 
1.1  0  
1.2  0  
1.3  0  
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1.4  0  
1.5  0 

 
The output obtained from program 9.1 is 

Post-processed Results  
 Results at Boundary Elements: 
Element    1 xsi= -1.00 eta= -1.00 
 Stress:      2.85     3.03     0.00    -0.27 
Element    1 xsi=  0.00 eta= -1.00 
 Stress:     -1.52     1.47     0.00     1.52 
Element    1 xsi=  1.00 eta= -1.00 
 Stress:     -0.08    -5.52     0.00     0.80 
  
 Internal Results: 
Coordinates:       1.10      0.00 
          u:      0.000     0.000 
     Stress:     -0.647    -4.205     0.000     0.000 
Coordinates:       1.20      0.00 
          u:      0.000     0.000 
     Stress:     -0.927    -3.103     0.000     0.000 
Coordinates:       1.30      0.00 
          u:      0.000     0.000 
     Stress:     -1.046    -2.380     0.000     0.000 
Coordinates:       1.40      0.00 
          u:      0.000     0.000 
     Stress:     -1.079    -1.875     0.000     0.000 
Coordinates:       1.50      0.00 
          u:      0.000     0.000 
     Stress:     -1.067    -1.508     0.000     0.000 

 

10.3.3 Results 

A theoretical solution for this problem has been obtained by Kirsch3. In Table 10.4 the 
results at the boundary for the 3 meshes are compared. It can be seen that even the coarse 
mesh, with only one element per quarter, gives acceptable results for this problem. 

Table 10.4 Results for meshes with parabolic boundary elements 

Mesh No. 
Elem 

Max. deflection 
(mm) 

Max. stress 
(MPa) 

Min. stress 
(MPa) 

1 1 0.60 -8,52 2.85 
2 2 0.60 -8.99 2.99 
3 4 0.60 -9.00 3.00 

Theory 0.60 -9.00 3.00 
 



TEST EXAMPLES              275
                                         

The internal results along a horizontal line are shown in Figure 10.8. It can be seen that 
there is good agreement even for coarse meshes. 

Figure 10.8 Distribution of vertical stress along a horizontal line 

10.3.4 Comparison with FEM 

The problem was analysed with the FEM with 3 different meshes of finite elements with 
quadratic shape function, as shown in Figure 10.9. Symmetry was considered by 
appropriate boundary conditions at the symmetry planes. This discretisation has the same 
variation of displacements along the excavation boundary as the boundary element mesh. 
Note that in the FEM we have to truncate the mesh at some distance away from the 
excavation. A truncation of 2 diameters away from the excavation is used here. At the 
truncation surface all displacements are assumed to be fixed. In order to eliminate the 
truncation error, coupled analyses were also made, where boundary elements were used 
at the edge of the FE mesh (see Chapter 16 on methods of coupling) 

Figure 10.9 Finite element meshes used 
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Table 10.5 shows the results of the analysis. It can be seen that they are less accurate 
than the ones obtained for the BEM and that the truncation error is significant. 

Table 10.5 Results for meshes with parabolic finite elements 

 FEM Coupled 
Mesh No. 

Elem
umax  
(mm) 

max 
(MPa) 

umax  
(mm) 

max 
(MPa) 

1 2 0.480 -6.840 0.535 -8.48 
2 6 0.494 -7.189 0.583 -9.01 
3 16 0.506 -8.165 0.598 -8.97 

Theory 0.600 -9.000 0.600 -9.00 
 

 

10.3.5 Conclusions 

In contrast to the previous example this one favours the boundary element method. We 
see that with the FEM we have two sources of error: one associated with the truncation 
of the mesh that is necessary because the method is unable to model infinite domains, the 
other one is that in the FEM the variation of the unknown has to be approximated by 
shape functions inside the continuum as well as along the boundary surface. It can be 
seen that without much additional effort the first error can be virtually eliminated by 
using the coupled method and by specifying boundary elements at the truncated 
boundary. This example demonstrates that the BEM is most efficient when the ratio 
boundary surface to volume is very small. For problems in geomechanics, where the 
soil/rock mass can be assumed to have infinite extent, this ratio actually approaches zero. 

10.4 SQUARE EXCAVATION IN INFINITE ELASTIC SPACE 

10.4.1 Problem statement 

This example was chosen to demonstrate the ability of the BEM to model stress 
concentrations. The problem is identical to the previous one, except that the shape of the 
excavation is square instead of circular. The exact solution for this problem is not known 
but according to the theory of elasticity, a singularity of the vertical stress occurs as the 
corner is approached. It is known4 that for a corner with a subtended angle of 180o 
(crack) the displacements tend to zero with r  and the stresses tend to infinity with 

r1 . A boundary element with quadratic variation of displacements will not be able to 
model this variation, so we expect some loss of accuracy for coarse meshes.  
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While there is obviously no point in trying to compute an infinite value of stress, the 
variation of the displacement can be used to compute intensity factors5. So the aim is 
rather to predict the variation of displacements accurately. 

Figure 10.10   Problem statement with result points A,B,C 

10.4.2 Boundary element discretisation and input 

For the solution of the problem we again use the conditions of symmetry on two planes 
and 4 meshes, three of which are shown in Figure 10.11. The first three simply represent 
a uniform subdivision into 2,4 and 16  elements. Mesh 4 is a graded mesh, where the 
element size has been reduced near the corner.  

Figure 10.11 Meshes used (mid-side nodes not shown for graded mesh 4) 
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The input file for program 7.1 for Mesh 1 is 

 Square excavation – Mesh 1 
 2 
 2 
 1 
 2 
 2 
 2 
0.1000E+05 
0.0000E+00 
    5 
    2 
     0.000     1.000 
     1.000     1.000 
     0.500     1.000 
     1.000     0.000 
     1.000     0.500 
    1    2    3 
    2    4    5 
    0 
    2 
    1  0.00000  -3.00000   0.00000  -3.00000  0.00000    -3.00000 
    2  0.00000   0.00000   0.00000   0.00000  0.00000     0.00000 

 
The output obtained from program 7.1 is 

Project: 
 Square excavation – Mesh 1                                                  
 Cartesian_dimension:              2 
 Elasticity Problem 
 Type of Analysis:      Solid Plane Strain 
 Infinite Region 
 Symmetry about y-z and x-z planes 
 Quadratic Elements 
 Modulus:         10000.00     
 Poissons ratio:       0 
 Number of Nodes of System:             5 
 Number of Elements of System:            2 
Node     1  Coor      0.00    1.00 
Node     2  Coor      1.00    1.00 
Node     3  Coor      0.50    1.00 
Node     4  Coor      1.00    0.00 
Node     5  Coor      1.00    0.50  
 Incidences:  
EL     1  Inci      1    2    3 
EL     2  Inci      2    4    5  
 Elements with Dirichlet BC´s:  
 Elements with Neuman BC´s:  
 Element            1  Prescribed values:  
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  0.00  -3.00     
  0.00  -3.00     
  0.00  -3.00     
 Element            2  Prescribed values:  
  0.00   0.00 
  0.00   0.00 
  0.00   0.00 
 Results, Element    1 
   u=   0.00000  -0.00072   0.00018  -0.00031   0.00014  -0.00063 
   t=   0.00000  -3.00000   0.00000  -3.00000   0.00000  -3.00000 
 Results, Element    2 
   u=   0.00018  -0.00031   0.00020   0.00000   0.00021  -0.00012 
   t=   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

 
The input file for program 9.1 for Mesh 1 is 

1 2 
1.1  0  
1.2  0  
1.3  0  
1.4  0  
1.5  0 

 
The output obtained from program 9.1 is 

Post-processed Results  
 Results at Boundary Elements: 
Element    1 xsi= -1.00 eta= -1.00 
 Stress:      3.80     3.00     0.00     0.00 
Element    1 xsi=  0.00 eta= -1.00 
 Stress:      1.80     3.00     0.00     0.00 
Element    1 xsi=  1.00 eta= -1.00 
 Stress:     -0.20     3.00     0.00     0.00 
Internal Results: 
Coordinates:       1.10      0.00 
          u:      0.000     0.000 
     Stress:      0.132    -2.107     0.000     0.000 
Coordinates:       1.20      0.00 
          u:      0.000     0.000 
     Stress:      0.026    -2.074     0.000     0.000 
Coordinates:       1.30      0.00 
          u:      0.000     0.000 
     Stress:     -0.071    -1.954     0.000     0.000 
Coordinates:       1.40      0.00 
          u:      0.000     0.000 
     Stress:     -0.161    -1.796     0.000     0.000 
Coordinates:       1.50      0.00 
          u:      0.000     0.000 
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     Stress:     -0.239    -1.627     0.000     0.000 

 

The boundary stresses obtained from Program 9.1 are plotted in Figure 10.12. It can be 
seen that the magnitude of the stress concentration depends on the fineness of the 
boundary element mesh near the corner and that a fine graded mesh can reasonably 
approximate the theoretical stress distribution at the corner. 

 

Figure 10.12 Distribution of tangential stress on Boundary BCA 

 

10.4.3 “Quarter point”  elements 

A numerical trick can be used to simulate a singularity: if we move the “midside” node 
of an element to the “quarter point” on one side, then it will be shown that the Jacobian 
tends to zero as the nearest corner node is approached.  

Consider the simple element in Figure 10.13, which is located along the x-axis with 
one point at the origin. In the derivation we transform the intrinsic coordinate  which 
ranges from -1 to +1 to , which ranges from 0 to 1.  
Expressed in this new coordinate system the three shape functions of a quadratic element 
are given by 

(10.2)  
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The coordinate x of a point with local coordinate  can be computed by the 
interpolation 

(10.3)   

Substituting for the coordinates of the nodes ( 0125000 321 .x,.x,.x ) we obtain  

(10.4)  

Substitution of this into (10.2) we obtain 

(10.5)  

Assuming an iso-parametric formulation the variation of the displacement u is given by 

(10.6)  

 

Figure 10.13 “Quarter point” boundary element 

Taking point 1 as the singular point we may substitute r=x and therefore the 
displacements tend to zero with r .The strains are computed by taking the derivative of 
the displacements and are given by 

(10.7)  

where c and d are constants. Since for elastic material the stresses x  are proportional to 

the strains we see that they go to infinity with ro 1   
In Figure 10.12 is shown that with the simple expedient of moving the third node point 

of the element near the corner, we can obtain similar or slightly better results for the 
mesh 3 with the midside node moved to the “quarter point” (mesh 5) than with the 
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graded mesh 4. Such elements have been successfully used for the computation of stress 
intensity factors6. 
 

10.4.4 Comparison with finite elements 

Comparing with finite element results we find that results are influenced not only by the 
discretisation along the boundary, but also the subdivision inside the elastic space. In 
fact, any result for the stress concentration at the edge can be obtained depending on the 
element subdivision. A reasonably fine graded mesh is shown in Figure 10.14. It consists 
of 40 Elements with quadratic variation of displacements. The distribution of the 
tangential stress along a vertical line in Figure 10.15 however, shows that the general 
trend of the theoretical distribution can not be obtained. 

Figure 10.14 Finite Element mesh 
 

10.4.5 Conclusions 

In this example we have shown how the boundary element method deals with 
singularities as they sometimes arise when we have corners. These singularities are of 
course only theoretical, since there is no such thing as a perfect corner in nature. Also, 
stresses can not reach an infinite value because they will be limited by a maximum value 
that a material can sustain. In fracture mechanics we may compute stress intensity 
factors based on the variation of displacements near the crack. The BEM is well suited 
for the computation of such factors, but this topic is beyond the limited scope of this 
book and will not be discussed further. For more information the reader may consult 
Aliabadi7. We have shown in the comparison with the FEM, that since we only have to 
worry about approximating the variation of displacements in one direction, i.e., along the 

 
 0yx u,u
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boundary, the task of finding the mesh which gives the most accurate result is simplified. 
In the FEM the result will depend on the approximation of the displacements inside the 
elastic space as well, so refinement has to be made in two directions. For a comparable 
discretisation on the boundary, however, we find that the BEM gives the better answer 
for this problem. 

Figure 10.15 Distribution of vertical stress 

10.5 SPHERICAL EXCAVATION 

All problems analysed so far were two-dimensional. In order to show how more drastic 
savings can be made when using the BEM we show an example in 3-D.  

10.5.1 Problem statement 

The example is similar to the example of a circular excavation in an infinite domain 
except that the excavation is now spherical and the virgin stress is given by 

(10.8)  

10.5.2 Boundary element discretisation and input 

Two fairly coarse discretisations are used. Both meshes consist of only 3 boundary 
elements, one consists of linear the other of parabolic elements. Three planes of 
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symmetry are assumed, so only one octant of the problem had to be considered. The 
meshes are shown in Figure 10.17. 

Figure 10.16 Problem statement 

Figure 10.17 Boundary meshes used 

Although the tractions 0t to be applied should be computed according to  

(10.9)  
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It is easier to compute them assuming the surface to correspond exactly to a sphere. The 
error in doing this is expected to compensate for the error in describing the geometry by 
a fairly coarse discretisation. In this case the tractions are computed by 

(10.10)  

The input file for program 7.1 for  Mesh 1 is 

 Spherical excavation - linear elements  
 3 
 3 
 2 
 3 
 1 
0.1000E+04 
0.0000E+00 
    7 
    3 
    1.000     0.000     0.000 
    0.707     0.000     0.707 
    0.500     0.500     0.707 
    0.707     0.707     0.000 
    0.000     0.707     0.707 
    0.000     1.000     0.000 
    0.000     0.000     1.000 
    1    2    3    4     
    4    3    5    6 
    3    2    7    5    
    0 
    3 
    1 0. 0. 0. 0. 0. -0.707 0. 0. -0.707 0. 0. 0.  
    2 0. 0. 0. 0. 0. -0.707 0. 0. -0.707 0. 0. 0.  
    3 0. 0. -0.707 0. 0. -0.707 0. 0. -1.0 0. 0. -0.707 

 

The output obtained from program 7.1 is  

Project: 
 Spherical excavation - linear elements                                     
   
 Cartesian_dimension:           3 
 Elasticity Problem 
 Infinite Region 
 Symmetry about all planes 
 Linear Elements 
 Modulus:   1000.000     

0

0

0
0

sinz

t
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 Poissons ratio:  0.0000000E+00 
 Number of Nodes of System:           7 
 Number of Elements of System:           3 
Node     1  Coor      1.00    0.00    0.00 
Node     2  Coor      0.71    0.00    0.71 
Node     3  Coor      0.50    0.50    0.71 
Node     4  Coor      0.71    0.71    0.00 
Node     5  Coor      0.00    0.71    0.71 
Node     6  Coor      0.00    1.00    0.00 
Node     7  Coor      0.00    0.00    1.00 
  
 Incidences:  
  
EL     1  Inci      1    2    3    4 
EL     2  Inci      4    3    5    6 
EL     3  Inci      3    2    7    5 
  
 Elements with Dirichlet BC´s:  
  
  
 Elements with Neuman BC´s:  
  
 Element            1  Prescribed values:  
 Node=           1  0.0000000E+00  0.0000000E+00  0.0000000E+00 
 Node=           2  0.0000000E+00  0.0000000E+00 -0.7070000     
 Node=           3  0.0000000E+00  0.0000000E+00 -0.7070000     
 Node=           4  0.0000000E+00  0.0000000E+00  0.0000000E+00 
 Element            2  Prescribed values:  
 Node=           1  0.0000000E+00  0.0000000E+00  0.0000000E+00 
 Node=           2  0.0000000E+00  0.0000000E+00 -0.7070000     
 Node=           3  0.0000000E+00  0.0000000E+00 -0.7070000     
 Node=           4  0.0000000E+00  0.0000000E+00  0.0000000E+00 
 Element            3  Prescribed values:  
 Node=           1  0.0000000E+00  0.0000000E+00 -0.7070000     
 Node=           2  0.0000000E+00  0.0000000E+00 -0.7070000     
 Node=           3  0.0000000E+00  0.0000000E+00  -1.000000     
 Node=           4  0.0000000E+00  0.0000000E+00 -0.7070000     
 Results, Element           1 
 u= 0.154E-03 0.000E+00 0.000E+00 0.744E-04 0.000E+00-0.468E-03 
    0.480E-04 0.480E-04-0.467E-03 0.113E-03 0.113E-03 0.000E+00 
 
 t=     0.000     0.000     0.000     0.000     0.000    -0.707 
        0.000     0.000    -0.707     0.000     0.000     0.000 
 
 Results, Element           2 
 u= 0.113E-03 0.113E-03 0.000E+00 0.480E-04 0.480E-04-0.467E-03 
    0.000E+00 0.744E-04-0.468E-03 0.000E+00 0.154E-03 0.000E+00 
 
 t=     0.000     0.000     0.000     0.000     0.000    -0.707 
        0.000     0.000    -0.707     0.000     0.000     0.000 
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 Results, Element           3 
 u= 0.480E-04 0.480E-04-0.467E-03 0.744E-04 0.000E+00-0.468E-03 
    0.000E+00 0.000E+00-0.723E-03 0.000E+00 0.744E-04-0.468E-03 
 
 t=     0.000     0.000    -0.707     0.000     0.000    -0.707 
        0.000     0.000    -1.000     0.000     0.000    -0.707 

 
The input file for Mesh 1 for program 9.1 is 

 1 3 
 1.1    0  0  
 1.2    0  0 
 1.3    0  0 
 1.4    0  0 
 1.5    0  0 
 2.0    0  0 
 4.0    0  0 
 6.0    0  0 
10.0   0  0 

 
The output obtained from program 9.1 is 

Project: 
 Spherical excavation - linear elements                                    
   
 Cartesian_dimension:           3 
 Elasticity Problem 
 Infinite Region 
 Symmetry about all planes 
 Linear Elements 
 Modulus:   1000.000     
 Poissons ratio:  0.0000000E+00 
 Number of Nodes of System:           7 
 Number of Elements of System:           3 
Node     1  Coor      1.00    0.00    0.00 
Node     2  Coor      0.71    0.00    0.71 
Node     3  Coor      0.50    0.50    0.71 
Node     4  Coor      0.71    0.71    0.00 
Node     5  Coor      0.00    0.71    0.71 
Node     6  Coor      0.00    1.00    0.00 
Node     7  Coor      0.00    0.00    1.00 
  
 Incidences:  
  
EL     1  Inci      1    2    3    4 
EL     2  Inci      4    3    5    6 
EL     3  Inci      3    2    7    5 
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 Post-processed Results 
   
 Results at Boundary Elements: 
Element    1 xsi= -1.00 eta= -1.00 
 Stress:     -0.04     0.12    -0.47    -0.08     0.08     0.17 
Element    1 xsi=  1.00 eta= -1.00 
 Stress:     -0.23     0.04     0.00    -0.14     0.30     0.70 
Element    1 xsi= -1.00 eta=  1.00 
 Stress:     -0.04     0.12    -0.47    -0.08     0.06     0.17 
Element    1 xsi=  1.00 eta=  1.00 
 Stress:     -0.24     0.05     0.00    -0.13     0.28     0.70 
Element    2 xsi= -1.00 eta= -1.00 
 Stress:      0.12    -0.04    -0.47    -0.08     0.17     0.06 
Element    2 xsi=  1.00 eta= -1.00 
 Stress:      0.05    -0.24     0.00    -0.13     0.70     0.28 
Element    2 xsi= -1.00 eta=  1.00 
 Stress:      0.12    -0.04    -0.47    -0.08     0.17     0.08 
Element    2 xsi=  1.00 eta=  1.00 
 Stress:      0.04    -0.23     0.00    -0.14     0.70     0.30 
Element    3 xsi= -1.00 eta= -1.00 
 Stress:      0.10     0.10     0.71     0.00     0.00     0.00 
Element    3 xsi=  1.00 eta= -1.00 
 Stress:     -0.12     0.06     0.74    -0.09     0.03     0.07 
Element    3 xsi= -1.00 eta=  1.00 
 Stress:      0.06    -0.12     0.74    -0.09     0.07     0.03 
Element    3 xsi=  1.00 eta=  1.00 
 Stress:     -0.11    -0.11     1.05    -0.21     0.14     0.14 
  
 Internal Results: 
  
Coordinates:       1.10      0.00      0.00 
          u:  0.142E-03 0.316E-11-0.532E-10 
     Stress: -0.135  0.137  -0.365   0.000   0.011   0.000 
Coordinates:       1.20      0.00      0.00 
          u:  0.127E-03-0.862E-12 0.780E-10 
     Stress: -0.134  0.111   -0.244   0.000   0.000   0.000 
Coordinates:       1.30      0.00      0.00 
          u:  0.115E-03-0.209E-12 0.486E-10 
     Stress: -0.121  0.091 -0.176     0.000   0.000   0.000 
Coordinates:       1.40      0.00      0.00 
          u:  0.103E-03-0.340E-12 0.337E-10 
     Stress: -0.108 0.075   -0.132    0.000   0.000   0.000 
Coordinates:       1.50      0.00      0.00 
          u:  0.930E-04-0.117E-14 0.712E-11 
     Stress: -0.095 0.062   -0.101    0.000   0.000   0.000 
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10.5.3 Results 

According to the highlighted value in the output from 7.1, the maximum displacement 
for mesh 1at the top is 0.72 mm compared to a theoretical value of 0.9. To obtain the 
correct stress results of the excavation problem we must add the virgin stress to the 
values highlighted in the output from 9.1. According to the highlighted value we obtain a 
maximum compressive stress in the z-direction at the boundary of -1.47 MPa, compared 
to a theoretical value of -2.0 MPa. 

Figure 10.18 Distribution of vertical stress  

The results are obviously improved for Mesh 2. For the mesh with parabolic boundary 
elements the maximum displacement at the crown is computed as 0.88 mm. The 
maximum value of stress at the meridian of the sphere is computed as 2.02 MPa 
compared with the theoretical solution of 2.0. The results for the internal stresses are 
summarized in Figure 10.18 where the vertical stress is plotted along a horizontal line 
originating from the meridian. It can be seen that even a relatively coarse mesh with 3 
quadratic elements gives a reasonable accuracy. 
 

10.5.4 Comparison with FEM 

To be able to model this problem with the FEM we have to truncate the mesh, as with 
the 2-D example. A fairly coarse mesh is shown in Figure 10.19. The mesh has 135 
degrees of freedom, as compared with 16 degrees of freedom for the boundary element 
mesh 2. The maximum displacement obtained from this analysis is 0.084 which 
represents a poor agreement with the theory. A much finer mesh would be required. 
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Figure 10.19 Finite element mesh 
 

10.6 CONCLUSIONS 

The purpose of this chapter was to show on a number of simple examples, how the 
method works and the sort of accuracy that can be expected. We have seen that some 
examples favour the BEM, while others do not. On the cantilever example it has been 
shown that care has to be taken to avoid situations where two boundary elements are too 
close to each other. The method based on point collocation implemented in this book 
shows that significant errors can be observed if surfaces are too close to each other and 
the mesh is coarse. On the other hand we have shown that for problems involving 
infinite domains, as they occur, for example in geotechnical engineering, accuracy, 
efficiency and user friendliness is superior to the FEM. 

After reading this chapter the reader should have learned how to generate boundary 
element meshes and input files for Programs 7.1 Generel_purpose_BEM and 9.1 
Post_processor. A good appreciation of the method, the accuracy that can be obtained 
and the pitfalls that should be avoided should also have been gained. The reader may 
now proceed to learn more about more advanced topics.  
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11 
Multiple regions 

 
Imagination is more important than knowledge.. 

A. Einstein 
 

 
 
 

11.1 INTRODUCTION 

The solution procedures described so far are only applicable to homogeneous domains, 
as the fundamental solutions used assume that material properties do not change inside 
the domain being analysed. There are many instances, however, where this assumption 
does not hold. For example, in a soil or rock mass, the modulus of elasticity may change 
with depth or there might be various layers/inclusions with different properties. For 
some special types of heterogeneity it is possible to derive fundamental solutions, for 
example, if the material properties change in a simplified way (linear increase with 
depth). However, such fundamental solutions are often complicated and the 
programming effort significant1.  

In cases where we have layers or zones of different materials, however, we can 
develop special solution methods based on the fundamental solutions for homogeneous 
materials in Chapter 4. The basic idea is to consider a number of regions which are 
connected to each other, much like pieces of a puzzle. Each region is treated in the same 
way as discussed previously but can now be assigned different material properties. With 
this method we are able to solve piecewise homogeneous material problems. As we will 
see later, the method also allows simulating contact and cracking propagation problems. 

Since at the interfaces between the regions both t and u are not known, the number of 
unknowns is increased and additional equations are required to solve the problem. These 
equations can be obtained from the conditions of equilibrium and compatibility at the 
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region interfaces. There are two approaches which can be taken in the implementation of 
the method.  

In the first, we modify the assembly procedure, so that a larger system of equations is 
now obtained including the additional unknowns at the interfaces. The second method is 
similar to the approach taken by the finite element method. Here we construct a 
“stiffness matrix”, K, of each region, the coefficients of which are the fluxes or tractions 
due to unit temperatures/displacements. The matrices K for all regions are then 
assembled in the same way as with the FEM. The second method is more efficient and 
more amenable to implementation on parallel computers. The method may also be used 
for coupling boundary with finite elements, as outlined in Chapter 12. We will therefore 
only discuss the second method here. For the explanation of the first approach the reader 
is referred for appropriate text books2,3. 

11.2 STIFFNESS MATRIX ASSEMBLY 

The multi-region assembly is not very efficient in cases where sequential 
excavation/construction (for example, in tunnelling) is to be modelled, since the 
coefficient matrices of all regions have to be computed and assembled every time a 
region is added or removed. Also, the method is not suitable for parallel processing since 
there the region matrices must be assembled and computed completely separately. 
Finally, significant efficiency gains can be made with the proposed method where only 
some nodes of the region are connected to other regions. 

The stiffness matrix assembly, utilises a philosophy similar to that used by the finite 
element method. The idea is to compute a “stiffness matrix” KN for each region N. 
Coefficients of KN are values of t due to unit values of u at all region nodes. In potential 
flow problems these would correspond to fluxes due to unit temperatures while in 
elasticity they would be tractions due to unit displacements. To obtain the “stiffness 
matrix” KN of a region, we simply solve the Dirichlet problem M times, where M is the 
number of degrees of freedom of the BE region nodes. For example, to get the first 
column of KN, we apply a unit value of temperature or of displacement in x-direction, as 
shown in Figure 11.1 while setting all other node values to zero. 

Figure 11.1 Example of computation of “stiffness coefficients”: Cantilever beam subjected to a 
unit displacement 1xu showing the traction distribution obtained from Program 7.1 

1xu

xt
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For computation of Dirichlet problems we use equation (7.3), with a modified right 
hand side 

(11.1)  

Here ,T U are the assembled coefficient matrices, 1t is the first column of the 

stiffness matrix KM and 1u is a vector with a unit value in the first row ,i.e 

(11.2)  

If we perform the multiplication of 1T u  it can be easily seen that the right hand 

side of equation (11.1) is simply the first column of matrix T . The computation of 

the region “stiffness matrix” is therefore basically a solution of i iU t F , with 

N right hand sides iF , where each right hand side corresponds to a column in T . 

Each solution vector it represents a column in K , i.e., 

(11.3)  

For each region (N) we have the following relationship between {t} and {u}: 

(11.4)  

To compute, for example, the problem of heat flow past an isolator, which is not 
impermeable but has conductivity different to the infinite domain, we specify two 
regions, an infinite and a finite one, as shown in figure 11.2. Note that the outward 
normals of the two regions point in directions opposite to each other (Figure 11.3). First 
we compute matrices KI and KII for each region separately and then we assemble the 
regions using the conditions for flow balance and uniqueness of temperature in the case 
of potential problems and equilibrium and compatibility in the case of elasticity. These 
conditions are written as 

(11.5)  

 The assembled system of equations for the example in Figure 11.2 is simply: 

(11.6)  

1 1U t T u

1

1
0
0

u

1 2
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which can be solved for u if t is known.  

 
Figure 11.2 Example of a multi-region analysis: inclusion with different conductivity in an 

infinite domain 

Figure 11.3 The two regions of the problem 

11.2.1 Partially coupled problems 

In many cases we have problems where not all nodes of the regions are connected (these 
are known as partially coupled problems). Consider for example the modified heat flow 
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problem in Figure 11.4 where an additional circular impermeable isolator is specified on 
the right hand side.  

Figure 11.4 Problem with a circular inclusion and an isolator 

Here only some of the nodes of region I are connected to region II. It is obviously 
more efficient to consider in the calculation of the stiffness matrix only the interface 
nodes, i.e. only of those nodes that are connected to a region. It is therefore proposed 
that we modify our procedure in such a way that we first solve the problem with zero 
values of u at the interface between region I and II and then solve the problem where 
unit values of u are applied at each node in turn.  

For partially coupled problems we therefore have to solve the following types of 
problems (this is explained on a heat flow problem but can be extended to elasticity 
problems by replacing t with t and u with u): 

  
1. Solution of system with “fixed” interface nodes 

 
The first one is where boundary conditions are applied at the nodes which are not 
connected to other regions (free nodes) and Dirichlet boundary conditions with 
zero prescribed values are applied at the nodes which are connected to other 
regions (coupled nodes). For each region we can write the following system of 
equations: 

(11.7)   0
0

0

N
N Nc
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where NB is the assembled left hand side and N
oF contains the right hand side 

due to given boundary conditions for region N. Vector N
cot contains the heat flow 

at the coupled nodes and vector N
fox either temperatures or heat flow at the free 

nodes of region N, depending on the boundary conditions prescribed (Dirichlet or 
Neumann). 

 
2. Solution of system with unit values applied at the interface nodes 
 

The second problem to be solved for each region is to obtain the solution due to 
Dirichlet boundary condition of unit value applied at each of the interface nodes in 
turn and zero prescribed values at the free nodes.  The equations to be solved are 

(11.8)  

where N
nF  is the right hand side computed for a unit value of u at node n. The 

vector N
cnt contains the heat flow at the coupled nodes and N

fnx  the temperature 

or heat flow at the free nodes, for the case of unit Dirichlet boundary conditions at 
node n. Nc equations are obtained where Nc is the number of interface nodes in the 
case of the potential problem (in the case of elasticity problems it refers to the 
number of interface degrees of freedom). Note that the left hand side of the system 
of equations, [B]N, is the same for the first and second problem and that 

nF simply corresponds to the nth column of T .  
 

After the solution of the first two problems N
ct and N

fx can be expressed in terms of 
N
cu by: 

(11.9)  

where N
cu  contains the temperatures at the interface nodes of region N and the 

matrices NK and NA are defined by: 

(11.10)  

0

0

N N N
Nc c
cN N N

f f

t t
u

x x

K

A

1,2
N

N cn
cnN

fn

t
B F n N

x

1 1;
c c

N N
N N

c cN c cNt t x xK A



MULTIPLE REGIONS 299 

 
3. Assembly of regions, calculation of interface unknowns 

After all the region stiffness matrices KN have been computed they are assembled 
to a system of equations which can be solved for the unknown cu .  
For the assembly we use conditions of heat balance and uniqueness of temperature 
or equilibrium and compatibility as discussed previously. This results in the 
following system of equations 

(11.11)  

where [K] is the assembled “stiffness matrix” of the interface nodes and {F}is the 
assembled right hand side. This system is solved for the unknown cu at the nodes 
of all interfaces of the problem. 

 
 

4. Calculation of unknowns at the free nodes of region N 
 

After the interface unknown have been determined the values of t at the interface 
( N

ct ) and the value of u or t at the free nodes ( N
fx ) are determined for each 

region by the application of  

(11.12)  

Note that N
cu is obtained by gathering values from the vector of unknown at all 

the interfaces cu . 

11.2.2 Example 

The procedure is explained in more detail on a simple example in potential flow. 
Consider the example in Figure 11.5 which contains two homogeneous regions. 
Dirichlet boundary conditions with prescribed zero values are applied on the left side 
and Neuman BC’s on the right side as shown. All other boundaries are assumed to have 
Neuman BC with zero prescribed values. The interface only involves nodes 2 and 3 and 
therefore only 2 interface unknowns exist.  

For an efficient implementation it will be necessary to renumber the nodes for each 
region, i.e. introduce a separate local numbering for each region. This will not only 
allow each region to be treated completely independently but also save storage space, 
because nodes not on the interface will belong to one region only. 
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Figure 11.5 Example for stiffness assembly, partially coupled problem with global node 
numbering; local (element) numbering shown in italics. 

Figure 11.6 The different problems to be solved for regions I and II (potential problem) 

On the top of Figure 11.6 we show the local (region) numbering that is adapted for 
region I and II. The sequence in which the nodes of the region are numbered is such that 
the interface nodes are numbered first. We also depict in the same figure the problems 

u= 0 

u= 0 

u= 0 

Region I 

u= 0 t= t0 

Region II 

4 1 

2 3 

2 

1 

3 

4 

It10

It20

IIt20

IIt10

It11

It12

It21

It22

IIt22

IIt21

IIt12

IIt11

1 1Iu 2 1IIu

2 0Iu 1 1IIu

1 0Iu

2 1Iu

1 0Iu

2 1Iu

1 

4 

2Region I

1

3

4 

5

6 

7

8 

5 

6 

Region II

2 

3 

0u 0tt

1 2 1 21

212 1 

2 

1

2 1 

2 12



MULTIPLE REGIONS 301 

which have to be solved for obtaining vector cot  and the two rows of matrix K and A. 
It is obvious that for the first problem to be solved for region I , where for all nodes u=0, 

cot  will also be zero. Following the procedure in chapter 7 and referring to the 
element numbering of Figure 11.5 we obtain the following integral equations for the 
second and third problem for region I. 

(11.13)  

 
for i=1,2,3,4. In Equation 11.13, two subscripts have been introduced for t: the first 
subscript refers to the node number where t is computed and the second to the node 
number where the unit value of u is applied. The roman superscript refers to the region 
number. The notation for and U T is the same as defined in Chapter 7, i.e. the first 
subscript defines the node number and the second the collocation point number; the 
superscript refers to the boundary element number (in square areas in Figure 11.5).  

This gives the following system of equations with two right hand sides 

(11.14)  

After solving the system of equations we obtain  

(11.15)  
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where ct and cu  refer to the values of t and u at the interface. 
For region II we have for the case of zero u at the interface nodes 

(11.17)  

 
 
This gives 

(11.18)  

which can be solved for the values at the interface and free nodes 

(11.19)  

In our notation I
cot refers to the values of t at the interface for the case where u=0 at 

the interface. I
cox  refers to the values of u at the free nodes (where Neumann boundary 

conditions have been applied).  
For 2 31 and 1u u we obtain 

(11.20)  

The solutions can be written as 
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where 

(11.22)  

The equations of compatibility or preservation of heat at the interface can be written 
as 

(11.23)  

Substituting (11.16) and (11.22) into (11.23) we obtain 

(11.24)  

where 

(11.25)  

This system can be solved for the interface unknowns. The calculation of the other 
unknowns is done separately for each region. For region I we have 

(11.26)  

Whereas for region II 

(11.27)  

If we consider the equivalent elasticity problem of a cantilever beam, we see (Figure 
11.7) then for region II the problem where the interface displacements are fixed gives 
the tractions at the interface corresponding to a shortened cantilever beam. If ux=1 is 
applied only a rigid body motion results and therefore no resulting tractions at the 
interface occur. The application of uy=1 however will result in shear tractions at the 
interface. 
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Figure 11.7 Effect of application of Dirichlet boundary conditions on region II of cantilever 
beam (elasticity problem)  

11.3 COMPUTER IMPLEMENTATION 

We now consider the computer implementation of the stiffness matrix assembly method. 
We divide this into two tasks. First we develop a SUBROUTINE Stiffness_BEM for the 
calculation of matrix K. If the problem is not fully coupled, then this subroutine will 
also determine the matrix A  and the solutions for zero values of u at the interface. 
Secondly we develop a program General_purpose_BEM_Multi. 

For an efficient implementation (where zero entries in the matrices are avoided) we 
must consider 3 different numbering systems, each one is related to the global 
numbering system as shown in Figure 11.5: 

 
1. Element numbering. This is the sequence in which the nodes to which an element 

connects are entered in the element incidence vector. In the example in Figure 11.5 
we have only two element nodes (1,2). Table 11.1 has two main columns: One 
termed “in global numbering” which shows the node numbers as they appear in 
Figure 11.5 and the other termed “in region numbering” as they appear on the top of 
Figure 11.6. 

 
2. Region numbering. This numbering is used for computing the “stiffness matrix” of 

a region. For this the element node numbers are specified in “region numbering”. 

1xu

1yu
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Table 11.2 depicts the “region incidences” i.e. the sequence of node numbers of a 
region. 

 
3. Interface numbering. This is basically the sequence in which the interface nodes 

are entered in the interface incidence vector. For the example problem the interface 
incidences are given in Table 11.3. This sequence is determined in such a way that 
the first node of the first interface element will start the sequence. Note that the 
interface incidences are simply the first two values of the region incidence vector.  

 
For problems involving more than one unknown per node the incidence vectors have to 
be expanded to Destination vectors as explained in Chapter 7. 

Table 11.1 Incidences of boundary elements in global and local numbering 
 

 

Table 11.2 Region incidences  

 1. 2. 3. 4.
Region I 2 3 4 1 
Region II 3 2 5 6 

Table 11.3 Interface incidences  

 1. 2.
Region I 2 3 
Region II 3 2 

 
. 

in global numbering in region numbering Boundary 
Element 
number 1. 2. 1. 2. 

1 1 2 4 1 
2 2 3 1 2 
3 3 4 2 3 
4 4 1 3 4 
5 2 5 2 3 
6 5 6 3 4 
7 6 3 4 1 
8 3 2 1 2 
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11.3.1 Subroutine Stiffness_BEM 

The tasks for the Stiffness_BEM are essentially the same as for the 
General_Purpose_BEM, except that the boundary conditions that are considered are 
expanded. We add a new boundary code,2 , which is used to mark nodes at the interface. 

The input parameters for SUBROUTINE Stiffness_BEM are the incidence vectors 
of the boundary elements, which describe the boundary of the region, the coordinates of 
the nodes and the Boundary conditions. Note that the vector of incidences as well as the 
coordinates has to be in the local (region) numbering. SUBROUTINE AssemblySTIFF 
is basically the same as SUBROUTINE Assembly, except that a boundary code 2 for 
interface conditions has been added. Boundary code 2 is treated the same as code 1 
(Dirichlet) except that columns of [ T]e are assembled into the array RhsM (multiple 
right hand sides).  SUBROUTINE Solve is modified into Solve_Multi, which can 
handle both single (Rhs) and multiple (RhsM) right hand sides. 

The output parameter of the SUBROUTINE is stiffness matrix K and for partially 
coupled problems in addition matrix A as well as {t}c. The rows and columns of these 
matrices will be numbered in a local (interface) numbering. The values of 0fu  and 

0ct are stored in the array El_res which contains the element results. They can be 
added at element level.  

We show below the library module Stiffness_lib which contains all the necessary 
declarations and subroutines for the computation of the stiffness matrix. The symmetry 
option has been left out in the implementation shown to simplify the coding. 
 
 
MODULE Stiffness_lib 
USE Utility_lib ; USE Integration_lib ; USE Geometry_lib 
IMPLICIT NONE 
INTEGER :: Cdim   !   Cartesian dimension 
INTEGER :: Ndof   !   No. of degeres of freedom per node 
INTEGER :: Nodel  !   No. of nodes per element 
INTEGER :: Ndofe  !   D.o.F´s / Elem 
REAL    :: C1,C2  !   material constants 
INTEGER, ALLOCATABLE :: Bcode(:,:) 
REAL, ALLOCATABLE :: Elres_u(:,:),Elres_t(:,:) !  El. results 
CONTAINS 
SUBROUTINE Stiffnes_BEM(Nreg,maxe,xP,incie,Ncode,Ndofc,KBE,A,TC) 
!--------------------------------------------- 
!    Computes the stiffness matrix of a boundary element region 
!    no symmetry implemented 
!-------------------------------------------- 
INTEGER,INTENT(IN) :: Nreg       !  Region code 
INTEGER,INTENT(IN) :: maxe       !  Number of boundary elements 
REAL, INTENT(IN)   :: xP(:,:)    !  Array of node coordinates 
INTEGER, INTENT(IN):: Incie(:,:) !  Array of incidences 
INTEGER, INTENT(IN):: Ncode(:)   !  Global restraint code 
INTEGER, INTENT(IN):: Ndofc      !  No of interface D.o.F. 
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REAL(KIND=8), INTENT(OUT)  :: KBE(:,:) !  Stiffness matrix 
REAL(KIND=8), INTENT(OUT)  :: A(:,:) ! u due to uc=1 
REAL(KIND=8), INTENT(OUT)  :: TC( :) ! t due to uc=0 
INTEGER, ALLOCATABLE :: Ldeste(:,:)!  Element destinations  
REAL(KIND=8), ALLOCATABLE :: dUe(:,:),dTe(:,:),Diag(:,:) 
REAL(KIND=8), ALLOCATABLE :: Lhs(:,:) 
REAL(KIND=8), ALLOCATABLE :: Rhs(:),RhsM(:,:) ! right hand sides 
REAL(KIND=8), ALLOCATABLE :: u1(:),u2(:,:)    ! results 
REAL, ALLOCATABLE :: Elcor(:,:)  
REAL    :: v3(3),v1(3),v2(3) 
INTEGER :: Nodes,Dof,k,l,nel 
INTEGER :: n,m,Ndofs,Pos,i,j,nd 
Nodes= UBOUND(xP,2)  !   total number of nodes of region 
Ndofs= Nodes*Ndof    !  Total degrees of freedom of region 
ALLOCATE(Ldeste(maxe,Ndofe)) ! Elem. destination vector 
!------------------------------------------ 
!     Determine Element destination vector 
!--------------------------------------------- 
Elements:& 
DO Nel=1,Maxe 
 k=0 
 DO n=1,Nodel 
  DO m=1,Ndof   
   k=k+1         
   IF(Ndof > 1) THEN 
    Ldeste(Nel,k)= ((Incie(Nel,n)-1)*Ndof + m) 
   ELSE 
    Ldeste(Nel,k)= Incie(Nel,n) 
   END IF 
  END DO      
 END DO      
END DO & 
Elements 
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe))    
ALLOCATE(Diag(Ndofs,Ndof))                    
ALLOCATE(Lhs(Ndofs,Ndofs),Rhs(Ndofs),RhsM(Ndofs,Ndofs)) 
ALLOCATE(u1(Ndofs),u2(Ndofs,Ndofs))  
ALLOCATE(Elcor(Cdim,Nodel))         
!--------------------------------------------------------------- 
!  Compute and assemble element coefficient matrices 
!--------------------------------------------------------------- 
Lhs= 0 
Rhs= 0 
Elements_1:& 
DO Nel=1,Maxe 
  Elcor(:,:)= xP(:,Incie(nel,:))!    gather element coords 
  IF(Cdim == 2) THEN 
   IF(Ndof == 1) THEN 
    CALL Integ2P(Elcor,Incie(nel,:),Nodel,Nodes,xP,C1,dUe,dTe) 
   ELSE 
    CALL Integ2E(Elcor,Incie(nel,:),Nodel,Nodes& 
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                ,xP,C1,C2,dUe,dTe)   
   END IF 
  ELSE 
   CALL Integ3(Elcor,Incie(nel,:),Nodel,Nodes,xP,Ndof & 
            ,C1,C2,dUe,dTe)     
  END IF 
  CALL AssemblyMR(Nel,Lhs,Rhs,RhsM,DTe,Due& 
                 ,Ldeste(nel,:),Ncode,Diag) 
END DO & 
Elements_1 
!------------------------------------------------------------ 
!  Add azimuthal integral for infinite regions 
!------------------------------------------------------------ 
IF(Nreg == 2) THEN 
 DO m=1, Nodes 
  DO n=1, Ndof 
   k=Ndof*(m-1)+n 
   Diag(k,n) = Diag(k,n) + 1.0 
  END DO 
 END DO    

END IF 
!------------------------------------------------------------- 
!  Add Diagonal coefficients 
!------------------------------------------------------------- 
Nodes_global: & 
DO m=1,Nodes 
 Degrees_of_Freedoms_node: & 
 DO n=1,Ndof 
  DoF = (m-1)*Ndof + n   !  global degree of freedom no. 
  k = (m-1)*Ndof + 1     !  address in coeff. matrix (row) 
  l = k + Ndof - 1       !  address in coeff. matrix (column) 
  IF (NCode(DoF) == 1) THEN  ! Dirichlet - Add Diagonal to Rhs  
   CALL Get_local_DoF(Maxe,Dof,Ldeste,Nel,Pos) 
   Rhs(k:l) = Rhs(k:l) - Diag(k:l,n)*Elres_u(Nel,Pos) 
  ELSE                       ! Neuman - Add Diagonal to Lhs 
   Lhs(k:l,Dof)= Lhs(k:l,Dof) + Diag(k:l,n)   
  END IF  
 END DO & 
 Degrees_of_Freedoms_node 

END DO & 
Nodes_global  
!    Solve problem  
CALL Solve_Multi(Lhs,Rhs,RhsM,u1,u2) 
!-------------------------------------- 
!  Gather element results due to  
!  “fixed” interface nodes 
!-------------------------------------- 
Elements2: & 
DO nel=1,maxe 
 D_o_F1:  & 
 DO nd=1,Ndofe 
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 IF(NCode(Ldeste(nel,nd)) == 0) THEN 
  Elres_u(nel,nd) =  u1(Ldeste(nel,nd)) 
 ELSE IF(NCode(Ldeste(nel,nd)) == 1) THEN 
  Elres_t(nel,nd) =  u1(Ldeste(nel,nd)) 
 END IF 

 END DO & 
 D_o_F1 

END DO & 
Elements2 
!------------------------------------ 
!   Gather stiffness matrix KBE and matrix A 
!------------------------------------ 
Interface_DoFs: & 
DO N=1,Ndofc 
  KBE(N,:)= u2(N,:) 
 TC(N)= u1(N) 
END DO & 
Interface_DoFs 
Free_DoFs: & 
DO N=Ndofc+1,Ndofs  
 A(N,:)= u2(N,:) 

END DO & 
Free_DoFs 
DEALLOCATE (Ldeste,dUe,dTe,Diag,Lhs,Rhs,RhsM,u1,u2,Elcor) 
RETURN 
END SUBROUTINE Stiffnes_BEM 
 
SUBROUTINE Solve_Multi(Lhs,Rhs,RhsM,u,uM) 
!--------------------------------------------- 
!    Solution of system of equations 
!    by Gauss Elimination 
!    for multple right hand sides 
!--------------------------------------------- 
REAL(KIND=8) ::    Lhs(:,:)    !    Equation Left hand side 
REAL(KIND=8) ::    Rhs(:)      !    Equation right hand side 1 
REAL(KIND=8) ::    RhsM(:,:)   !    Equation right hand sides 2 
REAL(KIND=8) ::    u(:)        !    Unknowns 1 
REAL(KIND=8) ::    uM(:,:)     !    Unknowns 2 
REAL(KIND=8) ::    FAC 
INTEGER  M,Nrhs            !    Size of system 
INTEGER  i,n,nr 
M= UBOUND(RhsM,1) ; Nrhs= UBOUND(RhsM,2) 
!  Reduction 
Equation_n: & 
DO n=1,M-1 
   IF(ABS(Lhs(n,n)) < 1.0E-10) THEN 
     CALL Error_Message('Singular Matrix') 
   END IF 
   Equation_i: & 
    DO i=n+1,M 
     FAC= Lhs(i,n)/Lhs(n,n)  
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    Lhs(i,n+1:M)= Lhs(i,n+1:M) - Lhs(n,n+1:M)*FAC 
     Rhs(i)= Rhs(i) - Rhs(n)*FAC 
     RhsM(i,:)= RhsM(i,:) - RhsM(n,:)*FAC 
   END DO  &  
    Equation_i 
END DO & 
Equation_n 
!     Backsubstitution  
Unknown_1: & 
 
DO n= M,1,-1    
  u(n)= -1.0/Lhs(n,n)*(SUM(Lhs(n , n+1:M)*u(n+1:M)) - Rhs(n)) 
END DO & 
Unknown_1 
Load_case: & 
DO Nr=1,Nrhs 
  Unknown_2: & 
   DO n= M,1,-1    
    uM(n,nr)= -1.0/Lhs(n,n)*(SUM(Lhs(n , n+1:M)*uM(n+1:M , nr))& 
                            - RhsM(n,nr)) 
  END DO & 
   Unknown_2 
END DO & 
Load_case 
RETURN 
END SUBROUTINE Solve_Multi 
 
SUBROUTINE AssemblyMR(Nel,Lhs,Rhs,RhsM,DTe,DUe,Ldest,Ncode,Diag) 
!--------------------------------------------- 
!  Assembles Element contributions DTe , DUe 
!  into global matrix Lhs, vector Rhs 
!  and matrix RhsM  
!--------------------------------------------- 
INTEGER,INTENT(IN)      :: NEL 
REAL(KIND=8)            :: Lhs(:,:) !  Eq.left hand side 
REAL(KIND=8)            :: Rhs(:)   !  Right hand side 
REAL(KIND=8)            :: RhsM(:,:) ! Matrix of r. h. s. 
REAL(KIND=8), INTENT(IN):: DTe(:,:),DUe(:,:)   !  Element arrays 
INTEGER , INTENT(IN)    :: LDest(:) ! Element destination vector 
INTEGER , INTENT(IN)    :: NCode(:) ! Boundary code (global)  
REAL(KIND=8) :: Diag(:,:) ! Diagonal coeff of DT 
INTEGER :: n,Ncol,m,k,l 
DoF_per_Element:& 
DO m=1,Ndofe   
 Ncol=Ldest(m)      !   Column number  
 IF(BCode(nel,m) == 0) THEN    !   Neumann BC 
  Rhs(:) = Rhs(:) + DUe(:,m)*Elres_t(nel,m) 

!     The assembly of dTe depends on the global BC 
  IF (NCode(Ldest(m)) == 0) THEN  
   Lhs(:,Ncol)=  Lhs(:,Ncol) + DTe(:,m) 
  ELSE 



MULTIPLE REGIONS 311 

   Rhs(:) = Rhs(:) - DTe(:,m) * Elres_u(nel,m) 
  END IF  
ELSE IF(BCode(nel,m) == 1) THEN   !   Dirichlet BC 
  Lhs(:,Ncol) = Lhs(:,Ncol) - DUe(:,m) 
  Rhs(:)= Rhs(:) - DTe(:,m) * Elres_u(nel,m) 
 ELSE IF(BCode(nel,m) == 2) THEN   !   Interface 
  Lhs(:,Ncol) = Lhs(:,Ncol) - DUe(:,m) 
  RhsM(:,Ncol)= RhsM(:,Ncol) - DTe(:,m)  
END IF 

END DO & 
DoF_per_Element 
!    Sum of off-diagonal coefficients 
DO n=1,Nodel 
 DO k=1,Ndof 
  l=(n-1)*Ndof+k 
  Diag(:,k)= Diag(:,k) - DTe(:,l) 
 END DO 

END DO 
 RETURN 
END SUBROUTINE AssemblyMR 
END MODULE Stiffness_lib 

11.4 PROGRAM 11.1: GENERAL PURPOSE PROGRAM, 
DIRECT METHOD, MULTIPLE REGIONS 

Using the library for stiffness matrix computation we now develop a general purpose 
program for the analysis of multi-region problems. The input to the program is the same 
as for one region, except that we must now specify additional information about the 
regions. A region is specified by a list of elements that describe its boundary, a region 
code that indicates if the region is finite or infinite and the symmetry code. In order to 
simplify the code, however  symmetry will not be considered here and therefore the 
symmetry code must be set to zero.  
The various tasks to be carried out are 

 
1. Detect interface elements, number interface nodes/degrees of freedom 

 
The first task of the program will be to determine which elements belong to an 
interface between regions and to establish a local interface numbering. Interface 
elements can be detected by the fact that two boundary elements connect to the 
exactly same nodes, although not in the same sequence, since the outward normals 
will be different. The number of interface degrees of freedom will determine the 
size of matrices K and A.  

 
2. For each region  

 
a. Establish local (region) numbering for element incidences 
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For the treatment of the individual regions we have to renumber the 
nodes/degrees of freedom for each region into a local (region) numbering 
system, as explained previously. The incidence and destination vectors of 
boundary elements, as well as coordinate vector, are modified accordingly.  

 
b. Determine K and A and results due to “fixed” interface nodes 

 
The next task is to determine matrix K. At the same time we assemble it into 
the global system of equations using the interface destination vector. For 
partially coupled problems, we calculate and store, at the same time, the results 
for the elements due to zero values of cu at the interface. These values are 
stored in the element result vectors Elres_u and Elres_t. Matrix A and the 
vector {t}c are also determined and stored.  

 
3. Solve global system of equations 

 
The global system of equations is solved for the interface unknowns cu  

 
4. For each region determine ct and fu  

Using equation (11.27) the values for the fluxes/tractions at the interface and (for 
partially coupled problems) the temperatures/displacements at the free nodes are 
determined and added to the values already stored in Elres_u and Elres_t. Note that 
before Equation (11.27) can be used the interface unknowns have to be gathered 
from the interface vector using the relationship between interface and region 
numbering in Table 11.3. 

 
PROGRAM General_purpose_MRBEM 
!------------------------------------------------ 
!     General purpose BEM program 
!     for solving elasticity and potential problems 
!     with multiple regions 
!------------------------------------------------------ 
USE Utility_lib; USE Elast_lib; USE Laplace_lib  
USE Integration_lib; USE Stiffness_lib 
IMPLICIT NONE 
INTEGER, ALLOCATABLE :: NCode(:,:) ! Element BC´s 
INTEGER, ALLOCATABLE :: Ldest_KBE(:) ! Interface destinations 
INTEGER, ALLOCATABLE :: TypeR(:)  ! Type of BE-regions 
REAL, ALLOCATABLE :: Elcor(:,:)  ! Element coordinates 
REAL, ALLOCATABLE :: xP(:,:) ! Node co-ordinates 
REAL, ALLOCATABLE :: Elres_u(:,:) ! Element results 
REAL, ALLOCATABLE :: Elres_t(:,:) ! Element results 
REAL(KIND=8), ALLOCATABLE :: KBE(:,:,:) ! Region stiffness 
REAL(KIND=8), ALLOCATABLE :: A(:,:,:)  ! Results due to ui=1  
REAL(KIND=8), ALLOCATABLE :: Lhs(:,:),Rhs(:) ! global matrices 
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REAL(KIND=8), ALLOCATABLE :: uc(:) !   interface unknown 
REAL(KIND=8), ALLOCATABLE :: ucr(:)! interface unknown(region) 
REAL(KIND=8), ALLOCATABLE :: tc(:)  ! interface tractions 
REAL(KIND=8), ALLOCATABLE :: xf(:)  ! free unknown 
REAL(KIND=8), ALLOCATABLE :: tcxf(:) ! unknowns of region 
REAL, ALLOCATABLE  :: XpR(:,:)  ! Region node coordinates 
REAL, ALLOCATABLE  :: ConR(:)  ! Conductivity of regions 
REAL, ALLOCATABLE  :: ER(:)   ! Youngs modulus of regions 
REAL, ALLOCATABLE  :: nyR(:)   ! Poissons ratio of regions 
REAL          :: E,ny,Con      
INTEGER,ALLOCATABLE:: InciR(:,:)! Incidences (region) 
INTEGER,ALLOCATABLE:: Incie(:,:)! Incidences (global)  
INTEGER,ALLOCATABLE:: IncieR(:,:) ! Incidences (local)    

 INTEGER,ALLOCATABLE:: ListC(:)  ! List of interface nodes 
INTEGER,ALLOCATABLE:: ListEC(:,:) ! List of interface Elem. 
INTEGER,ALLOCATABLE:: ListEF(:,:) ! List of free Elem. 
INTEGER,ALLOCATABLE:: LdestR(:,:) ! Destinations(local 

numbering) 
INTEGER,ALLOCATABLE:: Nbel(:)   ! Number of BE per region 
INTEGER,ALLOCATABLE:: NbelC(:)  ! Number of Interf. Elem./reg.  
INTEGER,ALLOCATABLE:: NbelF(:)  ! Number of free elem./region 
INTEGER,ALLOCATABLE:: Bcode(:,:) ! BC for all elements 
INTEGER,ALLOCATABLE:: Ldeste(:,:) ! Destinations (global)   
INTEGER,ALLOCATABLE:: LdesteR(:,:)! Destinations (local)  
INTEGER,ALLOCATABLE:: NodeR(:)   ! No. of nodes of Region 
INTEGER,ALLOCATABLE:: NodeC(:)   ! No. of nodes on Interface 

 INTEGER,ALLOCATABLE:: ListR(:,:) ! List of Elements/region 
INTEGER,ALLOCATABLE:: Ndest(:,:) 
INTEGER  :: Cdim   ! Cartesian dimension 
INTEGER  :: Nodes  ! No. of nodes of System 
INTEGER  :: Nodel  ! No. of nodes per element 
INTEGER  :: Ndofe  ! D.o.F´s of Element 
INTEGER  :: Ndof   ! No. of degrees of freedom per node 
INTEGER  :: Ndofs  ! D.o.F´s of System 
INTEGER  :: NdofR  ! Number of D.o.F. of region 
INTEGER  :: NdofC  ! Number of interface D.o.F. of region 
INTEGER  :: NdofF  ! Number D.o.F. of free nodes of region 
INTEGER  :: NodeF  ! Number of free Nodes of region 
INTEGER  :: NodesC  ! Total number of interface nodes  
INTEGER  :: NdofsC  ! Total number of interface D.o.F.  
INTEGER  :: Toa    ! Type of analysis (plane strain/stress) 
INTEGER  :: Nregs  ! Number of regions 
INTEGER  :: Ltyp   ! Element type(linear = 1, quadratic = 2) 
INTEGER  :: Isym   ! Symmetry code 
INTEGER  :: Maxe   ! Number of Elements of System 
INTEGER  :: nr,nb,ne,ne1,nel 
INTEGER  :: n,node,is,nc,no,ro,co 
INTEGER  :: k,m,nd,nrow,ncln,DoF_KBE,DoF 
CHARACTER(LEN=80) :: Title 
!----------------------------------------------------- 
!   Read job information 
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!----------------------------------------------------- 
OPEN (UNIT=1,FILE='INPUT',FORM='FORMATTED') !  Input 
OPEN (UNIT=2,FILE='OUTPUT',FORM='FORMATTED')!  Output 
Call JobinMR(Title,Cdim,Ndof,Toa,Ltyp,Isym,nodel,nodes,maxe) 
Ndofs= Nodes * Ndof       ! D.O.F's of System 
Ndofe= Nodel * Ndof       ! D.O.F's of Element 
Isym= 0  !   no symmetry considered here 
ALLOCATE(Ndest(Nodes,Ndof)) 
Ndest= 0 
READ(1,*)Nregs   !   read number of regions 
ALLOCATE(TypeR(Nregs),Nbel(Nregs),ListR(Nregs,Maxe)) 
IF(Ndof == 1)THEN 
 ALLOCATE(ConR(Nregs)) 
ELSE 
 ALLOCATE(ER(Nregs),nyR(Nregs)) 
END IF 
CALL Reg_Info(Nregs,ToA,Ndof,TypeR,ConR,ER,nyR,Nbel,ListR) 
ALLOCATE(xP(Cdim,Nodes))  !  Array for node coordinates 
ALLOCATE(Incie(Maxe,Nodel)) !  Array for incidences 
CALL Geomin(Nodes,Maxe,xp,Incie,Nodel,Cdim) 
ALLOCATE(BCode(Maxe,Ndofe))       
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))  
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,ndof)  
!------------------------------------------ 
!     Determine Element destination vector for assembly 
!------------------------------------------ 
ALLOCATE(Ldeste(Maxe,Ndofe)) 
Elements_of_region2:& 
DO Nel=1,Maxe 
 k=0 
 DO n=1,Nodel 
  DO m=1,Ndof   
   k=k+1         
   IF(Ndof > 1) THEN 
    Ldeste(Nel,k)= ((Incie(Nel,n)-1)*Ndof + m) 
   ELSE 
    Ldeste(Nel,k)= Incie(Nel,n) 
   END IF 
  END DO      
 END DO      
END DO & 
Elements_of_region2 
!------------------------------------------- 
!    Detect interface elements, 
!    assign interface boundary conditions  
!    Determine number of interface nodes 
!------------------------------------------- 
ALLOCATE(ListC(Nodes)) 
NodesC=0 
ListC=0 
Elements_loop: & 
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DO ne=1,Maxe 
 Elements_loop1: & 
 DO ne1=ne+1,Maxe 
  IF(Match(Incie(ne1,:),Incie(ne,:))) THEN 
   BCode(ne,:)= 2 ; BCode(ne1,:)= 2   !  assign interface BC  
   Element_nodes: & 
   DO n=1,nodel 
    Node= Incie(ne,n) 
    is= 0 
    Interface_nodes: & 
    DO nc=1,NodesC 
     IF(Node == ListC(nc)) is= 1 
    END DO & 
    Interface_nodes 
    IF(is == 0) THEN 
     NodesC= NodesC + 1 
     ListC(NodesC)= Node 
    END IF 
   END DO & 
   Element_nodes 
   EXIT 
  END IF 
 END DO & 
 Elements_loop1 
END DO & 
Elements_loop 
NdofsC= NodesC*Ndof 
ALLOCATE(InciR(Nregs,Nodes),IncieR(Maxe,Nodel)) 
ALLOCATE(KBE(Nregs,NdofsC,NdofsC),A(Nregs,Ndofs,Ndofs)) 
ALLOCATE(Lhs(NdofsC,NdofsC),Rhs(NdofsC),uc(NdofsC),tc(NdofsC)) 
ALLOCATE(NodeR(Nregs),NodeC(Nregs)) 
ALLOCATE(ListEC(Nregs,maxe)) 
ALLOCATE(ListEF(Nregs,maxe)) 
ALLOCATE(LdesteR(Maxe,Ndofe))  
ALLOCATE(Ldest_KBE(Ndofs)) 
ALLOCATE(NCode(Nregs,Ndofs))             
ALLOCATE(LdestR(Nregs,Ndofs)) 
ALLOCATE(NbelC(Nregs)) 
ALLOCATE(NbelF(Nregs)) 
LdesteR= 0 
Ncode= 0 
NbelF= 0 
NbelC= 0 
!------------------------------------------- 
!    Assign local (region) numbering 
!    and incidences of BE in local numbering 
!--------------------------------------------   
ListEC= 0 
ListEF= 0 
DoF_KBE= 0 
Regions_loop_1: & 
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DO nr=1,Nregs 
 node= 0 
 Elements_of_region: & 
 DO nb=1,Nbel(nr) 
  ne= ListR(nr,nb) 
  Interface_elements: & 
  IF(Bcode(ne,1) == 2) THEN     
   NbelC(nr)= NbelC(nr) + 1 
   ListEC(nr,NbelC(nr))= ne 
   Nodes_of_Elem: & 
   DO n=1,Nodel 
!   check if node has allready been entered 
     is=0 
    DO no=1,node 
     IF(InciR(nr,no) == Incie(ne,n)) THEN 
      is= 1 
      EXIT 
     END IF 
    END DO 
    IF(is == 0) THEN 
      node=node+1 
     InciR(nr,node)= Incie(ne,n) 
     IncieR(ne,n)= node        
    ELSE 
     IncieR(ne,n)= no 
    END IF 
   END DO & 
   Nodes_of_Elem 
  END IF & 
  Interface_elements 
 END DO & 
 Elements_of_region 
 NodeC(nr)= Node    ! No of interface nodes of Region nr 
 NdofC= NodeC(nr)*Ndof  ! D.o.F. at interface of Region nr   
 Elements_of_region1: & 
 DO nb=1,Nbel(nr) 
  ne= ListR(nr,nb) 
  Free_elements: & 
  IF(Bcode(ne,1) /= 2) THEN     
   NbelF(nr)= NbelF(nr) + 1 
   ListEF(nr,NbelF(nr))= ne 
   Nodes_of_Elem1: & 
   DO n=1,Nodel 
        is=0 
    DO no=1,node 
     IF(InciR(nr,no) == Incie(ne,n)) THEN 
      is= 1 
      EXIT 
     END IF 
    END DO 

    IF(is == 0) THEN 
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     node=node+1 
     InciR(nr,node)= Incie(ne,n) 
     IncieR(ne,n)= node 
    ELSE 
     IncieR(ne,n)= no 
    END IF 

END DO & 
Nodes_of_Elem1 

  END IF & 
  Free_elements 
 END DO & 
 Elements_of_region1 
 NodeR(nr)= node               !   number of nodes per region 
 !------------------------------------------ 
 !     Determine Local Element destination vector 
 !------------------------------------------ 
 Elements:& 
 DO Nel=1,Nbel(nr) 
  k=0 
  ne= ListR(nr,Nel) 
  DO n=1,Nodel 
   DO m=1,Ndof   
    k=k+1         
    IF(Ndof > 1) THEN 
     LdesteR(ne,k)= ((IncieR(ne,n)-1)*Ndof + m) 
    ELSE 
     LdesteR(ne,k)= IncieR(ne,n) 
    END IF 
   END DO      
  END DO      
 END DO & 
 Elements 
 !------------------------------------------ 
 !     Determine Local Node destination vector 
 !------------------------------------------ 
 n= 0 
 DO no=1, NodeR(nr) 
  DO m=1, Ndof 
   n= n + 1 
   LdestR(nr,n)= (InciR(nr,no)-1) * Ndof + m 
  END DO 
 END DO 
!------------------------------------------ 
!     Determine global Boundary code vector for assembly 
!------------------------------------------ 
 NdofR= NodeR(nr)*Ndof ! Total degrees of freedom of region 
 DoF_o_System: & 
 DO nd=1,NdofR 
  DO Nel=1,Nbel(nr) 
   ne=ListR(nr,Nel) 
  DO m=1,Ndofe 
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 IF (nd == LdesteR(ne,m) .and. NCode(nr,nd) == 0) THEN  
     NCode(nr,nd)= NCode(nr,nd)+BCode(ne,m) 
    END IF 
   END DO 
  END DO 
 END DO & 
 DoF_o_System 
END DO & 
Regions_loop_1 
Regions_loop_2: & 
DO nr=1,Nregs 
!----------------------------------- 
!   allocate coordinates in local(region) numbering 
!----------------------------------- 
 ALLOCATE(XpR(Cdim,NodeR(nr))) 
 Region_nodes: & 
 DO Node=1,NodeR(nr) 
  XpR(:,Node)= Xp(:,InciR(nr,node)) 
 END DO & 
 Region_nodes 
!-------------------------------------------------------------- 
!    Determine interface destination vector for region assembly 
!-------------------------------------------------------------- 
 No_o_Interfaceelements:& 
 DO n=1, NbelC(nr) 
  ne= ListEC(nr,n) 
  DoF_o_Element:& 
  DO m=1, Ndofe 
   DoF= Ldeste(ne,m) 
   IF(Ldest_KBE(DoF) == 0)THEN 
    DoF_KBE= DoF_KBE + 1 
    Ldest_KBE(DoF)= DoF_KBE 
   END IF 
  END DO & 
   DoF_o_Element 
 END DO & 
No_o_Interfaceelements 
 NdofR= NodeR(nr)*Ndof ! Total degrees of freedom of region 
 NdofC= NodeC(nr)*Ndof ! D.o.F. of interface of Region nr   
 E=ER(nr) 
 ny=nyR(nr) 
 CALL Stiffness_BEM(nr,XpR,Nodel,Ndof,Ndofe& 
,NodeR,Ncode(nr,:),NdofR,NdofC,KBE(nr,:,:)& 
,A(nr,:,:),tc,Cdim,Elres_u,Elres_t,IncieR& 
,LdesteR,Nbel,ListR,TypeR,Bcode,Con,E,ny,Ndest,Isym) 
 DO ro=1,NdofC 
  DoF= LdestR(nr,ro) 
  Nrow= Ldest_KBE(DoF) 
  Rhs(Nrow)= Rhs(Nrow) + tc(ro) 
  DO co=1, NdofC   
   DoF= LdestR(nr,co) 
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   Ncln= Ldest_KBE(DoF) 
   Lhs(Nrow,Ncln)= Lhs(Nrow,Ncln) - KBE(nr,ro,co) 
  END DO 
END DO 
DEALLOCATE (XPR) 

END DO & 
Regions_loop_2 
DEALLOCATE(tc) 
!------------------------------ 
!   solve for interface unknown 
!------------------------------ 
CALL Solve(Lhs,Rhs,uc) 
!----------------------------- 
!  compute and add effect of interface displ. 
!----------------------------- 
Regions_loop_3: & 
DO nr=1,Nregs 
!  gather region interface displacements 
  NdofC= NodeC(nr)*Ndof 
 ALLOCATE(ucr(NdofC)) 
  Interface_dof: & 
 DO n=1,NdofC 
  DoF= LdestR(nr,n) 
  ucr(n)= uc(Ldest_KBE(DoF)) 
 END DO & 
 Interface_dof 
!------------------------------------------------------------- 
! Store Interfacedisplacements into Elres_u 
!------------------------------------------------------------- 
 Interface_DoF1:& 
 DO nd=1, NdofC 
  DO n=1, Nbel(nr) 
   ne=ListR(nr,n) 
   DO m=1,Ndofe 
    IF(nd == LdesteR(ne,m))THEN 
     Elres_u(ne,m)= Elres_u(ne,m) + ucr(nd) 
    END IF 
   END DO 
  END DO 
 END DO & 
 Interface_DoF1 
!   effects of interface displacement in local (region) 

numbering 
 NdofR= NodeR(nr)*Ndof 
 NdofF= (NodeR(nr) - NodeC(nr))*Ndof  !   d.o.F , free nodes 
 ALLOCATE(tc(NdofC),xf(NdofF),tcxf(NdofR)) 
 tc= 0.0; xf= 0.0; tcxf= 0.0 
 tc= Matmul(KBE(nr,1:NdofC,1:NdofC),ucr) 
 xf= Matmul(A(nr,1:NdofF,1:NdofC),ucr) 
tcxf(1:NdofC)= tc 
tcxf(NdofC+1:NdofR)= xf 



320           The Boundary Element Method with Programming 

 !------------------------------------------------------------- 
 ! Store Interface tractions into Elres_t 
 !------------------------------------------------------------- 
 DO nd=1, NdofC 
  DO n=1, NbelC(nr) 
   ne=ListEC(nr,n) 
   DO m=1, Ndofe 
    IF(nd == LdesteR(ne,m))THEN 
     Elres_t(ne,m)= Elres_t(ne,m) + tcxf(nd) 
    END IF 
   END DO 
  END DO 
 END DO 
 !--------------------------------------------------------- 
 ! Store Results of free nodes into Elres_u or Elres_t 
!--------------------------------------------------------- 
DO nd=NdofC+1, NdofR 
  DO n=1, NbelF(nr) 
   ne=ListEF(nr,n) 
   DO m=1, Ndofe 
    IF(nd == LdesteR(ne,m))THEN 
     IF(Ncode(nr,nd) == 0)THEN 
      Elres_u(ne,m)= Elres_u(ne,m) + tcxf(nd) 
     ELSE IF(Bcode(ne,m) == 1)THEN 
      Elres_t(ne,m)= Elres_t(ne,m) + tcxf(nd) 
     END IF 
    END IF 
   END DO 
  END DO 
 END DO      
 DEALLOCATE(tc,xf,tcxf,ucr) 
END DO & 
Regions_loop_3 
!-------------------------- 
!    Print out results 
!-------------------------- 
CLOSE(UNIT=2) 
OPEN(UNIT=2,FILE= 'BERESULTS',FORM='FORMATTED') 
Elements_all: & 
DO nel=1,Maxe  
 WRITE(2,*) ' Results, Element ',nel 
 WRITE(2,*) 'u=' , (Elres_u(nel,m), m=1,Ndofe) 
 WRITE(2,*) 't=' , (Elres_t(nel,m), m=1,Ndofe) 
END DO & 
Elements_all 
END PROGRAM General_purpose_MRBEM 
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11.4.1 User’s manual 

The input data to be supplied in the data file INPUT are described below. Free field 
input is used, that is, numbers are separated by blanks. However, all numbers including 
zero entries must be specified.  

The input is divided into three parts. First, general information about the problem is 
read in. Next, the mesh geometry is specified. The problem may consist of linear and 
quadratic elements, as shown in Figure 11.8. The sequence in which node numbers have 
to be entered when specifying the incidences is also shown. Note that this order 
determines the direction of the outward normal, which has to point away from the 
material. For 3-D elements, if node numbers are entered in an anticlockwise sense the 
outward normal points towards the viewer. Finally, information about regions has to be 
specified. For each region we must input the number of boundary elements that describe 
the region, the region code (finite or infinite) and the material properties. 
 

 
Figure 11.8     Element library 

 
INPUT DATA SPECIFICATION FOR General_purpose-BEM program 

 
1.0 Title specification 
 TITLE Project title (max 60 characters) 
2.0 Cartesian dimension of problem 
 Cdim Cartesian dimension  
  2= two-dimensional problem 
  3= three-dimensional problem 
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3.0 Problem type specification 
 Ndof Degree of freedom per node  
  1 = potential problem  
  2,3 = elasticity problem 
4.0 Element type specification 
 Ltyp Element type  
  1= linear  
  2= quadratic 
5.0 Node specification 
 Nodes Number of nodes 
6.0 Element specification 
 Maxe Number of elements 
7.0 Region specification 
 Nregs Number of regions 

For Nregs regions DO 

8.0 Region specification 
 TypeR Type of region (1=finite, 2=infinite) 
9.0 Symmetrycode 
 Isym Symmetry code (must be set to zero) 
10.0 Material properties 
 C1,C2                                             Material properties  
  C1= k (conductivity) for Ndof=1  
      = E (Modulus of elasticity) for Ndof=2 
  C2= Poisson´s ratio for Ndof=1 
11.0 Number of elements 
 Nbel Number of boundary elements/region 
12.0 List of elements 
 ListR(1:Nbel) List of elements belonging to region 

END DO for each region 

13.0 Loop over nodes 
x,y,(z) Node coordinates 

14.0 Loop over all elements 
 Inci (1:Element nodes) Global node numbers of element nodes 
15.0 Dirichlet boundary conditions  
 NE_u Number of elements with Dirichlet BC 
16.0 Prescribed values for Dirichlet BC for NE_u elements 
 Nel, Elres_u(1 : Element D.o.F.) Specification of boundary condition 
  Nel = Elem. number to be assigned BC  
  Elres_u = Prescribed values for all 

 degrees of freedom of element: all d.o.F 
    first node; all d.o.F second node etc. 
17.0 Neuman boundary conditions  
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 NE_t Number of elements with Neuman BC 
  Only specify for non-zero prescribed 

 values. 
18.0 Prescribed values for Neuman BC for NE_t elements 

Nel, Elres_t(1 : Element D.o.F.) Specification of boundary condition 
  Nel = Elem. number to be assigned BC  
  Elres_t = Prescribed values for all 

 degrees of freedom of element: all d.o.F 
    first node; all d.o.F second node etc. 
 

 

11.4.2 Sample problem 

The example problem is the same as the cantilever in Chapter 10, except that two 
regions are specified instead of one. The mesh is shown in Figure 11.9. 

 

Figure 11.9 Cantilever beam multi-region mesh 

The input file for this problem is 
 
Cantilever beam multi-region   !  Title 
 2               !  Cartesian dimension 
 2               !  Elasticity problem 
 1               !  T.o.A.= plane strain 
 2               !  Parabolic elements 
   21            !  Nodes 
   12            !  Elements 
    2            !  Number of regions 
 1               !  Region 1: Type of region= Finite 
 0               !  No symmetry 
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0.1000E+05 0.0000E+00   !  E , 
   6             !  Number of elements 
   1 2 3 4 5 6   !  List of elements 
 1               !  Region 2: Type of region= Finite 
 0               !  No symmetry 
0.1000E+05 0.0000E+00   !  E ,  
   6             !  Number of elements 
 7 8 9 10 11 12  !  List of elements 
     0.000     0.000   !     Node coordinates 
     1.250     0.000 
     0.625     0.000 
     2.500     0.000 
     1.875     0.000 
     2.500     1.000 
     2.500     0.500 
     1.250     1.000 
     1.875     1.000 
     0.000     1.000 
     0.625     1.000 
     0.000     0.500 
     3.750     0.000 
     3.125     0.000 
     5.000     0.000 
     4.375     0.000 
     5.000     1.000 
     5.000     0.500 
     3.750     1.000 
     4.375     1.000 
     3.125     1.000 
    1    2    3  !   Element incidences 
    2    4    5 
    4    6    7 
    6    8    9 
    8   10   11 
   10    1   12 
    4   13   14 
   13   15   16 
   15   17   18 
   17   19   20 
   19    6   21 
    6    4    7 
    1 
 6 0.0 0.0 0.0 0.0 0.0 0.0   !  Dirichlet BC 
   1 
9 0.0 -10.0 0.0 -10.0 0.0 -10.0   ! Neumann BC 

 
The output from program 11.1 is as follows 

 
Project:                                                         
 Cantilever beam multi-region    
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 Cartesian_dimension:           2 
 Elasticity Problem 
 Type of Analysis: Solid Plane Strain 
 Quadratic Elements 
Number of Nodes of System:          21 
Number of Elements of System:          12 
Region            1 
Finite region 
No symmetry 
Youngs modulus:   10000.00  
Poissons ratio:  0.0000000E+00 
List of boundary elements:  
1           2           3           4           5           6 

 Region            2 
Finite region 
No symmetry 
Youngs modulus:   10000.00     
Poissons ratio:  0.0000000E+00 
List of boundary elements:  
7           8           9          10          11          12 

Node     1  Coor      0.00    0.00 
Node     2  Coor      1.25    0.00 
Node     3  Coor      0.63    0.00 
Node     4  Coor      2.50    0.00 
Node     5  Coor      1.88    0.00 
Node     6  Coor      2.50    1.00 
Node     7  Coor      2.50    0.50 
Node     8  Coor      1.25    1.00 
Node     9  Coor      1.88    1.00 
Node    10  Coor      0.00    1.00 
Node    11  Coor      0.63    1.00 
Node    12  Coor      0.00    0.50 
Node    13  Coor      3.75    0.00 
Node    14  Coor      3.13    0.00 
Node    15  Coor      5.00    0.00 
Node    16  Coor      4.38    0.00 
Node    17  Coor      5.00    1.00 
Node    18  Coor      5.00    0.50 
Node    19  Coor      3.75    1.00 
Node    20  Coor      4.38    1.00 
Node    21  Coor      3.13    1.00 
  
 Incidences:   
EL     1  Inci      1    2    3 
EL     2  Inci      2    4    5 
EL     3  Inci      4    6    7 
EL     4  Inci      6    8    9 
EL     5  Inci      8   10   11 
EL     6  Inci     10    1   12 
EL     7  Inci      4   13   14 
EL     8  Inci     13   15   16 
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EL     9  Inci     15   17   18 
EL    10  Inci     17   19   20 
EL    11  Inci     19    6   21 
EL    12  Inci      6    4    7 
  
Elements with Dirichlet BC´s:  

  
 Element            6  Prescribed values: 
  0.0000000E+00  0.0000000E+00 
  0.0000000E+00  0.0000000E+00 
  0.0000000E+00  0.0000000E+00 
  
 Elements with Neuman BC´s:  
  
 Element            9  Prescribed values:  
  0.0000000E+00  -10.00000     
  0.0000000E+00  -10.00000     
  0.0000000E+00  -10.00000 
 . 
 . 
 Results, Element     9 
 u= -7.3849E-02 -0.5012 
     7.3849E-02 -0.5012 
     1.0140E-09 -0.5011     
 . 

  . 
Results, Element     12 
 u=  5.5386E-02 -0.1582 
    -5.5386E-02 -0.1582 
     1.0792E-09 -0.1582     
 t=  -147.7       5.933  
      147.7       5.933  
    -1.2626E-06  12.060   

 
It can be seen that the maximum displacement is 0.5012, as compared with the 
theoretical value of 0.500 and that the multi-region method does not result in any loss of 
accuracy. 

11.5 CONCLUSIONS 

In this chapter we have extended the capabilities of the programs, so that problems with 
piecewise non-homogeneous material properties can be handled. The “stiffness matrix 
assembly” approach taken is quite different from the methods published in text books 
and uses some ideas of the finite element method. There are several advantages: since 
each region can be treated completely separately the method is well suited to parallel 
processing because each processor could be assigned to the computation of the stiffness 
matrix of one region. Furthermore, with this method it is possible to model sequential 
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excavation and construction as is required, for example for tunnelling4. By choosing to 
implement the method we have also laid the groundwork for the coupling with the finite 
element method so that there is not much more theory to discuss in Chapter 16. The 
multi-region method extends the capability of the BEM not only to handle non-
homogeneous domains but also, as will be demonstrated later, can be applied to contact 
and crack propagation problems5. 

11.6 EXERCISES 

Exercise 11.1  
 

Use program 11.1 to analyse the cantilever beam in Figure 11.10 consisting of two 
materials. Assume 0  and different ratios of 1 2/E E  (1.0, 2.0, 5.0). Compute the 
internal stresses for each region using program 9.1 and plot along a vertical line. 

Figure 11.10  Dimensions of cantilever beam 

Exercise 11.2 
 

Use program 11.1 to analyse the circular excavation in an inhomogeneous prestressed 
ground ( .1.0,  0vertical horiz ) shown in Figure 11.11 (see also Exercise 7.3).  
Assume 0  and 2 1/ 0.5E E . Use different values of distance a (2, 5, 10 m). 
Determine the effect on the maximum displacements. 

 
 
 
 
 
 
 
 

0.5 m

0.5 m

5 m

1 /kN m
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Figure 11.11  Description of example for exercise 11.2 
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12 
Dealing with corners and 
changing geometry 

He who goes beneath the surface 
does this at his own risk 

O. Wilde 
 

 
 
 

12.1 INTRODUCTION 

The multi-region method outlined in the previous chapter works well if interfaces 
between regions are smooth, i.e. where interface points have a unique tangent. If the 
boundary is not smooth but has corners and edges, i.e. the outward normals are different 
at elements adjacent to the node, then the normal flow or normal tractions are also 
different on each side. Such a case would arise, for example, if the shape of the inclusion 
in the example of the previous chapter is square (Figure 12.1) instead of circular. In this 
case, two values of normal flow or two sets of traction vectors would have to be 
computed at the corner node instead of one. However, the integral equations allow the 
computation at a node of only one value of t for potential problems and one vector of t  
for elasticity problems.  

In some applications of numerical simulation one has to deal with geometries that 
change during the analysis. For example the analysis of tunnel construction involves a 
changing excavation surface as the tunnel is constructed.  

This chapter deals in some detail with the treatment of corners in the boundary 
element method and the efficient analysis of problems with changing geometries. 
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12.2 CORNERS AND EDGES 

A number of schemes for dealing with the problem of sharp corners, where the solution 
for t is not unique have been proposed in the past.  

Figure 12.1 Example of a multi-region problem with corners 

The following are some methods that have been suggested: 
 

 Numerically round off the corner by using an average outward normal, i.e., an 
average of all normal vectors of elements connecting to the node. This is not really 
correct, as the geometry of the element should be rounded off too. 

 
 The unknown values of t  are computed by extrapolation from the nodes adjacent to 

the corner node1. This method is not difficult to implement but its accuracy would 
greatly depend on the size of the boundary elements adjacent to the corner. 

 
 Use of auxiliary equations2,6 based on stress symmetry and on the differential 

equation of equilibrium to compute extra values of t . Another method to solve the 
problem is based on derivations of potentials or displacements on each side of the 
corner to get the appropriate number of equations for solving multi valued flow or 
tractions3. 
 

 Use discontinuous elements4 introduced in section 3.7.2. Here t  is actually not 
computed right at the corner but slightly inside the element. Therefore two sets of t  
may be computed at each side of the corner. 
 
The approaches which add auxiliary equations to the system of equation have been 

implemented and tested6, and it has been found that with a careful implementation they 

Region I

Region II

rt
lt
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do improve the results at corners. However, auxiliary equations are somehow artificial 
and often the results depend on the fineness of the mesh. Especially for problems with 
changing geometries/boundary conditions, where the loading of the current analysis step 
depends on the previous steps, these methods do not work correctly and give erroneous 
results. It was found that for a multi-region analysis only discontinuous elements give 
satisfactory results and guarantee equilibrium at interface elements adjacent to corner 
and edge nodes. Therefore only discontinuous elements are discussed in more detail 
here. 

12.2.1 Discontinuous elements 

The method implemented here uses a continuous discretisation of the geometry and a 
discontinuous interpolation as explained in chapter 3. By this method the collocation 
points, where unknowns are determined, are placed inside elements, whereas the 
geometry nodes remain the same. Two programs are developed to demonstrate 
discontinuous elements, prog71_discont (single region program) and prog111_discont 
(multiple region program). Because we use continuous discretisation of the geometry the 
same input files can be used as for the programs prog71 and prog111. 

12.2.2 Numerical integration for one-dimensional elements 

In this section the numerical integration in 2D is explained for the case of elasticity. The 
approach for potential problems is similar. The integrals which have to be evaluated 
over a discontinuous element, shown in Figure 3.22, are for elasticity problems  

 

 
1 1

1 1

, , ,e e
ni n i ni n iN P J d N P J dU U T T  (12.1) 

 
where nN  are linear or quadratic discontinuous shape functions. The Jacobian J  
is evaluated with continuous shape functions and with the coordinates of the element 
nodes. 

When point iP  is not one of the element nodes, both integrals can be evaluated by 
Gauss Quadrature and the integrals in Equation (12.1) can be replaced by a sum where 
the number of integration points M is a function of the proximity of Pi to the integration 
region as explained in Chapter 6 
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We now investigate the other possibilities for the location of iP . 

iP  is located at one of the discontinuous nodes inside the element and the shape 
function value at this node is zero 
 
Since ( )iN O r  the singularity of the kernel shape function product cancels out if 
Q  approaches iP . The integral of the kernel shape function product remains regular, 
but the fact, that iP  is located inside the element and the integrand is discontinuous 
at iP , requires a splitting of the integration region into two sub regions. 

 

Pi
21 3

1 1

1 1

12N

U

1 1

1d 2d

 

Figure 12.2 Integration when iP is located at local node 1 and the shape function value is zero 

The integrals of equation (12.1) have to be evaluated separately and added for the 2 sub 
regions  

 
1 12 2

1 11 1

, , ,e e
ni n i ni n i

r r

d dN P J d N P J d
d d

U U T T (12.3) 

 
The local coordinate system is changed from  to for the left and the right sub 

region in the following way: 
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Pi located at node 1: 

Left sub region:    1 11 1
2 2

d d
     11

2
dd

d
 

Right sub region:   1 11 1
2 2

d d
     11

2
dd

d
 

 
Pi located at node 2: 

Left sub region:    2 21 1
2 2

d d
      21

2
dd

d
 

Right sub region:   2 21 1
2 2

d d
      21

2
dd

d
 

 
Pi located at node 3: 

Left sub region:    1 1
2

          1
2

d
d

 

Right sub region:   1 1
2

          1
2

d
d

 

iP  is located at one of the discontinuous  nodes inside the element and the shape 
function value at that node is not zero 
 
In this case the kernel shape function product e

niU is weakly singular and e
niT  is 

strongly singular. e
niT  is evaluated with the rigid body motion approach explained in 

chapter 6. The diagonal terms of the displacement fundamental solution consist of a 

logarithmic function 1ln
r

. For the integration of this function a modified Gauss 

Quadrature, Gauss-Laguerre5 is used. The off-diagonal terms consist of non- singular 
terms. Thus, these Kernel shape function products can be integrated regularly and in the 
same way as explained above. 

The logarithmic function 1ln
r

 is integrated in the following form 

 

 
1

10

1( ) ln ( )
M

m m
m

f d W f  (12.4) 

 
As can be seen in equation (12.4) the integration interval is from 0 to 1. This interval 

has to be applied for the sub regions as shown in Figure 12.3.  
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Pi
21 3

0 1

1
1N

U

1 1

1d 2d

1 0

 

Figure 12.3 Integration when iP is located at local node 1 and the shape function value is one 

The following transformations from intrinsic coordinate  to  have to be applied 
depending on the location of the collocation node inside the element. 
 
Pi located at node 1: 

Left sub region:    1 11d d      11d d
d

 

Right sub region:   1 11d d      11d d
d

 

 
Pi located at node 2: 

Left sub region:    2 21d d       21d d
d

 

Right sub region:   2 21d d       21d d
d

 

 
Pi located at node 3 

Left sub region:               1d
d
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Right sub region:              1d
d

 

 
The weakly singular part of the integral of Kernel e

xxU  is for example 

 
12

1
1 1

1ln ,e
xx n i

r

dU C C N P J d
r d

 (12.5) 

For straight elements the radius r can be expressed in the following way 
 

 
2
L dr a where a

d
 (12.6) 

 
The factor a  is a constant and depends on d d  and the element length L . Because 
of this, Equation (12.5) can be split into two parts. The first part can be integrated by the 
Quadrature of Gauss-Laguerre and the second one can be evaluated regularly 
 

1 12

1
1 0 0

1 1ln lne
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r

d dU C C N J d N J d
d a d

 (12.7) 

 
The integration limits of the second integral in equation (12.7) are from 0  to 1  and 

when using normal Gauss Quadrature, the integral has to be transformed to the limits 
1  to 1  as follows 
 

 
1 1

0 1

1 1ln ln ,n n i
d d dN J d N P J d

a d a d d
 (12.8) 

 
The transformation from  to  is independent of the location of the collocation 

point and the sub region. The transformation has the following form: 
 

1 1   and   
2 2

d
d

 

12.2.3 Numerical implementation 

Two dimensional discontinuous elements (linear and quadratic) are implemented in the 
single region program prog71_discont and in the multi region program prog111_discont. 
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In the Module Integration_lib a new subroutine called Integ2E_Disc is implemented 
which manages the integration. This subroutine itself calculates the regular integrals 
(when the collocation point is not located at the element). Inside this routine two 
subroutines are called (NonsingularIntegration2D and SingularIntegration2D) which 
are responsible for the integration when the collocation point is located at the element. 
The subroutine NonsingularIntegration2D performs the integration for the case where 
the shape function value is zero at the collocation point and the subroutine 
SingularIntegration2D is calculating the weakly singular behaviour of the kernel U . 
An additional subroutine ShapefunctionDisc has been added to the module 
Geometry_lib which calculates the discontinuous shape functions needed in the 
subroutines of integration. 

 
MODULE Integration_lib 
 
SUBROUTINE Integ2E_Disc(Elcor,Inci,Nodel,Ncol,xP,E& 
,ny,dUe,dTe,Ndest,Isym) 
!-------------------------------------------------- 
!    Computes  [dT]e and [dU]e for 2-D elasticity problems 
!    by numerical integration for discontinuous elements 
!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN)    :: Elcor(:,:)     !   Element coordinates 
INTEGER, INTENT(IN) :: Ndest(:,:)     !   Node destinations 
INTEGER, INTENT(IN) :: Inci(:)        !   Element Incidences 
INTEGER, INTENT(IN) :: Nodel          !   No. of Element Nodes 
INTEGER , INTENT(IN):: Ncol           !   Number of points Pi 
INTEGER , INTENT(IN):: Isym   
REAL, INTENT(IN)  :: E,ny           !   Elastic constants 
REAL, INTENT(IN)    :: xP(:,:)    !   Array with coll. coords. 
REAL(KIND=8), INTENT(OUT)   :: dUe(:,:),dTe(:,:)  
REAL :: epsi= 1.0E-4   
REAL :: Eleng,Rmin,RonL,Glcor(8),Wi(8),Ni(Nodel),Vnorm(2)& 
,GCcor(2) 
REAL :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r, dxdxb,Pi,C,C1 
REAL :: d1,d2 
INTEGER :: i,j,k,m,n,Mi,nr,ldim,cdim,iD,nD,Nreg 
d1=0.8 ; d2=0.8    ! offsets for discont. nodes 
Pi=3.14159265359 
C=(1.0+ny)/(4*Pi*E*(1.0-ny))    
ldim= 1                              
cdim=ldim+1 
CALL Elength(Eleng,Elcor,nodel,ldim)   
dUe= 0.0 
dTe= 0.0                  
Colloc_points: DO i=1,Ncol 
  Rmin= Min_dist1(Elcor,xP(:,i),Nodel,inci,ELeng,Eleng,ldim)  
  RonL= Rmin/Eleng                   !  R/L 

!     Integration off-diagonal coeff.  -> normal Gauss Quadrature 
  Mi= Ngaus(RonL,1)             
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  Mi=8 
  Call Gauss_coor(Glcor,Wi,Mi)  ! Assign coords/Weights 
  Gauss_points: DO m=1,Mi 
   xsi= Glcor(m) 
   CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
   CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
   CALL Cartesian(GCcor,Ni,ldim,elcor)           
   r= Dist(GCcor,xP(:,i),cdim)            !  Dist. P,Q 
   dxr= (GCcor-xP(:,i))/r         !  rx/r , ry/r 
   CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)   
   UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)  
   Node_points: DO n=1,Nodel 
   Direction_P: DO j=1,2 
    IF(Isym == 0)THEN 
     iD= 2*(i-1) + j 
    ELSE 
     iD= Ndest(i,j)              !  line number in array 
    END IF 
    IF (id == 0) CYCLE 
    Direction_Q: DO k= 1,2 
     nD= 2*(n-1) + k             !  column number in array 
     IF(HasEntry(inci, i) ==  .FALSE. ) THEN 

! i is not an element node 
      dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(j,k)*Jac*Wi(m) 
      dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(j,k)*Jac*Wi(m) 
     END IF 
    END DO Direction_Q 
   END DO Direction_P 
  END DO Node_points 
 END DO Gauss_points 

END DO Colloc_points 
CALL NonSingularIntegration2D(Elcor,Inci,Nodel,xP& 
                            ,E,ny,dUe,dTe,Ndest,Isym,d1,d2) 

CALL SingularIntegration2D(Elcor,Inci,Nodel,xP& 
                            ,E,ny,dUe,dTe,Ndest,Isym,d1,d2) 

RETURN 
END SUBROUTINE Integ2E_Disc 
 
SUBROUTINE NonSingularIntegration2D(Elcor,Inci,Nodel,xP& 
,E,ny,dUe,dTe,Ndest,Isym, d1, d2) 
!-------------------------------------------------- 
! Computes  nonsingular Integrals for the element 
! when the collocation node coincides with an element node 
! and the shape function is zero 
!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN)    :: Elcor(:,:)     !   Element coordinates 
INTEGER, INTENT(IN) :: Ndest(:,:)     !   Node destination vector 
INTEGER, INTENT(IN) :: Inci(:)        !   Element Incidences 
INTEGER, INTENT(IN) :: Nodel          !   No. of Element Nodes 
INTEGER , INTENT(IN):: Isym   
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REAL, INTENT(IN)  :: E,ny       !   Elastic constants 
REAL, INTENT(IN)  :: xP(:,:)    ! Coordinates of disc. nodes 
REAL(KIND=8), INTENT(INOUT)   :: dUe(:,:),dTe(:,:)  
REAL        :: epsi= 1.0E-4   
REAL        :: Glcor(8),Wi(8),Ni(Nodel),Vnorm(2),GCcor(2) 
REAL        :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r, dxdxb 
REAL, INTENT(IN)  :: d1, d2 
INTEGER  :: m,n,Mi,ldim,cdim,iD,nD,nreg, ns, i, j, k 
ldim= 1                              
cdim=ldim+1 
Element_nodes: DO n=1,Nodel 
 i=Inci(n)      ! Collocation node 
 Shape_function: DO ns=1, Nodel    
  IF(n == ns) CYCLE  ! only if N is zero 
  Region_Loop: DO nreg=1, 2            
   Mi= 8 
   Call Gauss_coor(Glcor,Wi,Mi) 
   Gauss_points: DO m=1,Mi 
    SELECT CASE (n) 
     CASE (1)                ! Node1 
      IF(nreg==1)THEN            ! right 
      xsi= (1.-d2)/2. + Glcor(m) * (1.+d2)/2. 
      dxdxb= (1.+d2)/2. 
      ELSE IF(nreg==2)THEN         ! left 
      xsi= (-1.-d2)/2. + Glcor(m) * (1.-d2)/2 
      dxdxb= (1.-d2)/2 
      END IF                
     CASE (2)                ! Node2 
      IF(nreg==1)THEN            ! right 
       xsi= (1.+d1)/2. + Glcor(m)*(1.-d1)/2 
       dxdxb= (1.-d1)/2 
      ELSE IF(nreg==2)THEN         ! left 
       xsi= (-1.+d1)/2. + Glcor(m)*(1.+d1)/2 
       dxdxb= (1.+d1)/2 
      END IF          
     CASE (3)                ! Node3 
      IF(nreg==1)THEN            ! right 
       xsi= 0.5 + Glcor(m) * 0.5  
       dxdxb= 0.5 
      ELSE IF(nreg==2)THEN         ! left 
       xsi= -0.5 + Glcor(m) * 0.5 
       dxdxb= 0.5 
      END IF          
     CASE DEFAULT 
    END SELECT 
    CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
    CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
    CALL Cartesian(GCcor,Ni,ldim,elcor)           
    r= Dist(GCcor,xP(:,i),cdim)            !  Dist. P,Q 
    dxr= (GCcor-xP(:,i))/r         !  rx/r , ry/r 
    CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)   
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    UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)    
     Direction1: DO j=1,2 
     IF(Isym == 0)THEN 
      iD= 2*(i-1) + j 
     ELSE 
      iD= Ndest(i,j)              !  line number in array 
     END IF 
     IF (id == 0) CYCLE            
     Direction2:  DO k= 1,2 
      nD= 2*(ns-1) + k              !  column number in array 
      dUe(iD,nD)= dUe(iD,nD) + Ni(ns)*UP(j,k)*Jac*dxdxb*Wi(m) 
      dTe(iD,nD)= dTe(iD,nD) + Ni(ns)*TP(j,k)*Jac*dxdxb*Wi(m) 
     END DO Direction2 
    END DO Direction1 
   END DO Gauss_points 
  END DO Region_Loop 
 END DO Shape_function 
END DO Element_nodes 
END SUBROUTINE NonSingularIntegration2D 
 
SUBROUTINE SingularIntegration2D(Elcor,Inci,Nodel,xP,E& 
,ny,dUe,dTe,Ndest,Isym, d1, d2) 
!-------------------------------------------------- 
! Computes  nonsingular Integrals for the element 
! when the collocation node coincide with an element node 
! and the shape function is not zero 
!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN)    :: Elcor(:,:)     !   Element coordinates 
INTEGER, INTENT(IN) :: Ndest(:,:)     !   Node destination vector 
INTEGER, INTENT(IN) :: Inci(:)        !   Element Incidences 
INTEGER, INTENT(IN) :: Nodel          !   No. of Element Nodes 
INTEGER , INTENT(IN):: Isym   
REAL, INTENT(IN)  :: E,ny           !   Elastic constants 
REAL, INTENT(IN)  :: xP(:,:)           ! Coordinates of 
discontinuous nodes 
REAL(KIND=8), INTENT(INOUT)   :: dUe(:,:),dTe(:,:)  
REAL  :: epsi= 1.0E-4   
REAL  :: Glcor(12),Wi(12),Ni(Nodel),Vnorm(2),GCcor(2) 
REAL  :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r, dxdxb, dxbdxp& 
, C, C1, Ellength, Radius 
REAL        :: f1, f2 
REAL, INTENT(IN)  :: d1, d2 
INTEGER       :: m,n,Mi,ldim,cdim,iD,nD,nreg, ns, i, j, k 
ldim= 1                             ! Element dimension 
cdim=ldim+1 
Pi=3.14159265359 
C=(1.0+ny)/(4*Pi*E*(1.0-ny))    
!-------------------------------------------------- 
! Integration of off-diagonal coefficients 
! for U kernel at singular point 



340 The Boundary Element Method with Programming 

! -> not singular -> normal gauss quadrature 
!------------------------------------------------- 
Element_nodes: DO n=1,Nodel   
 i=Inci(n)      ! Collocation node 
 Shape_function: DO ns=1, Nodel  
 ! Node at element -> shape function in integral term 
  IF(n /= ns) CYCLE   
  Region_Loop: DO nreg=1, 2           
  Mi= 8 
   Call Gauss_coor(Glcor,Wi,Mi) 
   Gauss_points: DO m=1,Mi 
    SELECT CASE (n) 
     CASE (1)                ! Node1 
      IF(nreg==1)THEN            ! right 
       xsi= (1.-d2)/2. + Glcor(m) * (1.+d2)/2. 
       dxdxb= (1.+d2)/2. 
      ELSE IF(nreg==2)THEN         ! left 
       xsi= (-1.-d2)/2. + Glcor(m) * (1.-d2)/2 
        dxdxb= (1.-d2)/2 
      END IF                
     CASE (2)                ! Node2 
      IF(nreg==1)THEN            ! right 
       xsi= (1.+d1)/2. + Glcor(m)*(1.-d1)/2 
       dxdxb= (1.-d1)/2 
      ELSE IF(nreg==2)THEN         ! left 
       xsi= (-1.+d1)/2. + Glcor(m)*(1.+d1)/2 
       dxdxb= (1.+d1)/2 
      END IF          
     CASE (3)                ! Node3 
      IF(nreg==1)THEN            ! right 
       xsi= 0.5 + Glcor(m) * 0.5  
       dxdxb= 0.5 
      ELSE IF(nreg==2)THEN         ! left 
       xsi= -0.5 + Glcor(m) * 0.5 
       dxdxb= 0.5 
      END IF          
     CASE DEFAULT 
    END SELECT 
    CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
    CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
    CALL Cartesian(GCcor,Ni,ldim,elcor)           
    r= Dist(GCcor,xP(:,i),cdim)            !  Dist. P,Q 
    dxr= (GCcor-xP(:,i))/r         !  rx/r , ry/r 
    CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci) 
     Direction1: DO j=1,2 
      IF(Isym == 0)THEN 
       iD= 2*(i-1) + j 
      ELSE 
        iD= Ndest(i,j)               
      END IF 
      IF (id == 0) CYCLE            
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     Direction2:  DO k= 1,2 
       nD= 2*(ns-1) + k               
       dUe(iD,nD)= dUe(iD,nD)& 
                          + Ni(n)*C*dxr(j)*dxr(k)*Jac*dxdxb*Wi(m)   
     END DO Direction2 
    END DO Direction1 
   END DO Gauss_points 
  END DO Region_Loop 
 END DO Shape_function 
END DO Element_nodes 
!-------------------------------------------------- 
! Integration of diagonal coefficients 
! for U kernel at singular point 
! -> singular ->  gauss laguerre quadrature 
!------------------------------------------------- 
C= C*(3.0-4.0*ny) 
CALL Elength(Ellength,Elcor,Nodel,ldim)   
Element_nodes_1: DO n=1,Nodel   
 i=Inci(n)      ! Collocation node 
 Shape_function_1: DO ns=1, Nodel    
  IF(n .NE. ns) CYCLE   
  Region_Loop_1: DO nreg=1, 2           
   Mi= 12 
   Call Gauss_Laguerre_coor(Glcor,Wi,Mi) 
   Gauss_points_1: DO m=1,Mi 
    SELECT CASE (n) 
     CASE (1)                ! Node1 
      IF(nreg==1)THEN            ! left 
       xsi= -d1 - (1. - d1 ) * Glcor(m) 
       dxdxb= 1.- d1  
      ELSE IF(nreg==2)THEN         ! right 
       xsi= -d1 + (1. + d1 ) * Glcor(m) 
       dxdxb= ( 1. + d1 ) 
      END IF                
     CASE (2)                ! Node2 
      IF(nreg==1)THEN            ! left 
       xsi= d2 - (1. + d2 ) * Glcor(m) 
       dxdxb= 1. + d2 
      ELSE IF(nreg==2)THEN         ! right 
       xsi= d2 + (1. - d2 ) * Glcor(m) 
       dxdxb=  1. - d2 
      END IF          
     CASE (3)                ! Node3 
      IF(nreg==1)THEN            ! left 
       xsi=  - Glcor(m) 
       dxdxb= 1. 
      ELSE IF(nreg==2)THEN         ! right 
       xsi= Glcor(m) 
       dxdxb=  1. 
      END IF          
     CASE DEFAULT 
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    END SELECT 
    Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
     CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)     
     Direction1_1: DO j=1,2 
      IF(Isym == 0)THEN 
       iD= 2*(i-1) + j 
      ELSE 
       iD= Ndest(i,j)              !  line number in array 
      END IF 
      IF (id == 0) CYCLE            
      nD= 2*(ns-1) + j              !  column number in array 
      dUe(iD,nD)= dUe(iD,nD) + Ni(n)*C*Jac*dxdxb*Wi(m)  
     END DO Direction1_1 
     END DO Gauss_points_1 
     Mi= 8  
     Call Gauss_coor(Glcor,Wi,Mi) 

        Gauss_points2:  DO m=1,Mi 
     SELECT CASE (n) 
     CASE (1)                ! Node1 
      IF(nreg==1)THEN            ! right 
       xsi= -d2 + (1. + d2 ) * (1+Glcor(m))/2 
       dxdxb= (1.+ d2 ) 
       dxbdxp= 0.5  
      ELSE IF(nreg==2)THEN         ! left 
       xsi= -d2 - (1. - d2 ) * (1-Glcor(m))/2 
       dxdxb= ( d2 - 1. ) 
       dxbdxp= -0.5  
      END IF                
     CASE (2)                ! Node2 
      IF(nreg==1)THEN            ! right 
       xsi= d1 + (1. - d1 ) *  (1+Glcor(m))/2 
       dxdxb= 1. - d1 
       dxbdxp= 0.5  
      ELSE IF(nreg==2)THEN         ! left 
       xsi= d1 - (1. + d1 ) * (1-Glcor(m))/2 
       dxdxb= - (1.+d1) 
       dxbdxp= -0.5  
      END IF          
     CASE (3)                ! Node3 
      IF(nreg==1)THEN            ! right 
       xsi= (1+Glcor(m))/2 
       dxdxb= 1. 
       dxbdxp= 0.5  
       ELSE IF(nreg==2)THEN         ! left 
        xsi= - (1-Glcor(m))/2 
        dxdxb= - 1. 
        dxbdxp= -0.5  
      END IF          
      CASE DEFAULT 
      END SELECT 
      Radius= (Ellength/2 ) * ABS(dxdxb)  
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      C1= LOG( 1/Radius )*C 
      CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)  
       CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)   
          Direction1_2: DO j=1,2 
       IF(Isym == 0)THEN 
        iD= 2*(i-1) + j 
       ELSE 
        iD= Ndest(i,j)               
       END IF 
       IF(iD == 0)CYCLE 
       nD= 2*(ns-1) + j               
           dUe(iD,nD)= dUe(iD,nD)& 
                       + Ni(n)*C1*Jac*dxdxb* dxbdxp*Wi(m) 
          END DO Direction1_2  
         END DO Gauss_points2 
     END DO Region_Loop_1 
    END DO Shape_function_1 
  END DO Element_nodes_1 
END SUBROUTINE SingularIntegration2D 

 
For the discontinuous version of both programs (prog71_discont and 

prog111_discont) the input files of the continuous versions can be used. At the 
beginning of each program, the coordinates of the collocation nodes are calculated from 
the node coordinates of the element and given values of 1d  and 2d . From the input file 
given incidences are transformed to the discontinuous version, too, from which the 
degrees of freedom are specified. There were no other major changes necessary.  

12.2.4 Test Example – Single Region 

To test the implementation the following example a cantilever beam (same example as 
used in chapter 10) shown in Figure 12.4 is considered. The example is designed to 
show that the discontinuous elements give good results even for the case where no 
corners are present. 

The diagram in Figure 12.5 shows the vertical displacements along the cantilever 
beam. The results for the discontinuous meshes shown in Figure 12.5 are extrapolated 
from the discontinuous points to the element nodes according to the interpolation 
functions and are compared with discontinuous elements for two different meshes. The 
first mesh consists of 3 quadratic elements along the length and the second has 5 
elements along the length. For both one element for the height is used.  

As is shown in Figure 12.5 the vertical displacements at the length side of the beam 
are the same and agree very well with the analytical solution, except for the coarse mesh 
with continuous elements. For the discontinuous mesh with 3 elements and for the 
continuous mesh with 5 elements on the length side the same accuracy of results are 
obtained. These two meshes are comparable because they have exact the same number 
of degrees of freedom. 
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Figure 12.4 Cantilever beam 

The expected error for the discontinuous displacement at common nodes of adjacent 
elements nodes is less then 0.1%. 
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Figure 12.5 Vertical displacements 

12.2.5  Test Example – Multiple Regions 

This example is a cube with a distributed boundary load of 210 KN/m on the top of the 
cube. The geometry is shown in Figure 12.6 and the material parameters for all regions 
are E=1000kN/m2, =0. For the purpose of demonstrating the corner problem the cube is 
subdivided into four regions. Region 1 and 2 is discretised with 8 linear elements. 
Region 3 and 4 consists of 6 linear elements. The points B and D of regions 3 and 4 are 
corner nodes. These points are located at the interface between regions and therefore 
need special attention. The calculation is done two times, first with the program prog111 
which uses continuous elements and then with the program prog111_discont, the 
discontinuous version of the multi-region program. If we compare the tractions at 
interface elements in Figures 12.7, 12.8 with 12.9 at the interface between regions we 
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see that the value, that should be constant, fluctuates widely if continuous elements are 
used. 
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Figure 12.6 Vertical Displacements 
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Figure 12.7 Tractions xt at the boundary of regions 3 and 4 along the line ABC   
If discontinuous elements are used the tractions, which are now evaluated at points 
slightly inside, show no fluctuation and only a small jump which is due to coarseness of 
the mesh. Indeed the diagram in Figure 12.7 indicates a gross violation of equilibrium 
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conditions if continuous elements are used because for 0 the tractions should be 
equal to zero, everywhere. 
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Figure 12.8 Tractions yt at the regions 3 and 4 along the line ABC   
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Figure 12.9 Tractions yt at the regions 1 along the line ABC   

12.3 DEALING WITH CHANGING GEOMETRY 

In this chapter we turn our attention to problems where the geometry is changing 
throughout the analysis process. Due to the change of the geometry, boundary conditions 
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may also change. An example is the modelling of a tunnel excavation process6. Here the 
domain is assumed to be of infinite or semi infinite extent and only the boundary of the 
tunnel has to be meshed by elements. 

 

Figure 12.10 Example for a staged excavation process in 3D (only half of the mesh shown) 

As shown in Figure 12.10 the multiple region BEM7 is used to model the excavation. 
In tunnelling with the New Austrian Tunnelling Method, excavation advances in steps of 
several meters, either by excavating the full cross section or parts of it. In the example 
shown in Figure 12.10 a two stage excavation (top heading and bench) is shown. Figure 
12.11 illustrates how excavation is modelled with a multi-region BEM. 

Figure 12.11 The steps in modelling excavation 

The volumes of material to be excavated are discretised by boundary elements and 
represent boundary element regions in a multi-region analysis. According to the multi- 
region algorithm explained in the previous chapter, stiffness matrices are calculated for 
each region separately. Each excavation step is simulated by the deactivation of a region. 
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When a region is deactivated then the tractions at the interfaces of the removed region 
have to be applied to the mesh in order to restore equilibrium conditions. We can 
observe that boundary conditions for the boundary elements of the region representing 
the fully excavated tunnel change from Interface to Neumann condition. 

The implementation of the activation and deactivation process in a computer code is 
not a trivial task and the detailed discussion related to the architectural design of 
software is outside the scope of this book. However, we will point out the drastic effects 
that corners and edges can have on the results for problems of changing boundary 
conditions if not properly addressed. In the following we restrict ourselves to two-
dimensional problems. 

12.3.1 Example 

In Figure 12.12 a staged excavation of 10 steps is shown. We assume an excavation in 
2D under plane strain conditions and this means excavation with infinite extend out of 
plane. This of course is not a real tunnel excavation, but serves well to explain the 
method. The mesh consists of 10 regions for top heading and bench. All these finite 
regions are embedded in an infinite region, which represent the infinite extent of the 
continuum. 

 
LC 2 LC 3 LC 4 LC 5

LC 10LC 9LC 8LC 7LC 6

LC 1

A B

 

Figure 12.12 Example for a staged excavation process in 2D 

The excavation process is modelled by the de-activation of regions that represent 
excavated material. First 5 top heading regions are excavated successively and then 5 
regions at bench. The sequence of excavation is shown in Figure 12.12. The material 
parameters are E= 5000 MN/m2 and =0. The virgin stress field is given as follows:  

2 2 2
0 0 05,0 / 5,0 / 0,0 /x y xyMN m MN m MN m .  

When regions are removed some elements will change boundary conditions from 
Interface to Neumann. The loading for Neumann elements is calculated from the stresses 
calculated at previous load cases. For the first stage the virgin stresses are applied. 
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Figure 12.13 Discretisation of regions (only corner nodes shown) 

The discretisation of the regions is shown in Figure 12.13. For a finite region 3 
quadratic elements are used on all sides. The discretisation of the infinite region matches 
the mesh of the finite regions. 
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Figure 12.14 Vertical displacements for LC1 to LC10 

In Figure 12.14 the vertical displacements at the top of the excavation (crown) is 
shown for all load cases for the sequential calculation using discontinuous elements. To 
verify these results an analysis was also performed for the case of the excavation made 
in one step (single region problem) for the selected load cases 4 and 7. Because this is a 
linear problem the sequential excavation and the one step excavation results should be 
the same. 

The geometry of these single region meshes is shown in Figure 12.15. Only the 
boundary of the excavated part is discretised and the excavation is done in one single 
step. As the boundary conditions for all elements are of Neumann type there is no corner 

5m

3m
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problem involved for both geometries. Thus, these calculations are performed with 
continuous elements.  

 
LC 4 LC 7

 

Figure 12.15 Single region meshes for LC4 and LC7 

The vertical displacements at the crown are shown in Figure 12.16 for the multi 
region calculation with discontinuous elements and the single region calculation with 
continuous elements. As can be seen the results are in excellent agreement.  
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Figure 12.16 Vertical displacements for LC4 and LC7 

In the following the effect of the corner problem is pointed out. For the load cases 
LC1 to LC5 the calculations are done twice, first with continuous elements and second 
with discontinuous elements, both with the sequential multi-region algorithm. In Figure 
12.17 the vertical displacements at the line AB  (indicated in Figure 12.12) for the LC1 
to LC5 are compared. As can be seen the results for continuous elements contain a large 
error and the errors accumulate from each load case to the other. 
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Figure 12.17 Vertical displacements for LC1 to LC5 for the calculation with continuous and 
discontinuous elements 

The reason for these errors is the erroneous calculation of tractions at corner nodes 
for continuous elements. In the sequential algorithm the tractions computed at a previous 
step is applied as loading of the following calculation step. Because of this fact the 
results are getting worse from step to step. 

12.4 ALTERNATIVE STRATEGY 

The strategy for modelling excavation problems is expensive, especially for 3-D 
problems, since the total number of interface degrees of freedom can become quite large 
if many excavation stages are considered. An alternative strategy, involving only one 
region, is explained for the same example as before and for load cases 1-5. The idea is to 
calculate (by the post-processing procedure explained in Chapter 9) after an analysis the 
stress distribution along a line that represents the boundary of the next excavation step 
(Figure 12.18). However, at the sharp corners A and B the stress is theoretically infinite 
and can not be determined by post-processing. To overcome this problem it is suggested 
to evaluate the stress very close to the edge. We propose that the location is specified by 
an intrinsic coordinate of value 0,90 of the element that will model the new 
excavation surface. The final stress distribution for this step is obtained by extrapolation 
using a similar procedure as for the discontinuous elements (Figure 12.18 right). Note 
that this distance is chosen quite arbitrary and the choice will affect the final results. 
After the computation we compute the tractions that will be applied at the next 
excavation step as 

 t n  (12.9) 
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Note that the resulting traction to be applied at the new excavation surface for load 
case 4 is the sum of tractions obtained by internal stress evaluation for load cases 1 to 3 
plus the tractions due to the virgin stress field. For the analysis of the next load case, the 
mesh of the single infinite region representing the excavated tunnel surface is changed 
by removing the face elements and adding a row of elements representing the next stage 
of excavation. 
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Figure 12.18 Vertical displacements at tunnel crown  
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Figure 12.19 Vertical displacements at tunnel crown  
The results of vertical displacements along the crown of the tunnel are shown in Figure 
12.19 for load cases 1 to 5. These results are compared with the reference solution. 
There is some difference and this can be attributed to approximation made for the stress 
distribution near the corners. It seems that the resultant excavation force is not 
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accurately computed and this error accumulates load case after load case. Obviously 
some improvements are possible by adjusting the stress distribution so the resultant 
excavation force is closer to the actual one. 

12.5 CONCLUSIONS 

The correct treatment of corners and edges is of great importance for some applications, 
in particular for applications where the boundary conditions as well as the geometry are 
changing during the calculation process. It was found out, that from all possibilities to 
improve the results at corner nodes discontinuous elements give the best results. Of 
course additional degrees of freedom are introduced by this method. For simplicity all 
elements have been treated as discontinuous here. This increases the size of the equation 
system drastically, especially in 3D. It is much more efficient to use discontinuous nodes 
only where they are needed, i.e. only at corner and edge nodes where the traction is 
discontinuous. The manner in which the interpolation functions are presented in chapter 
3 makes possible a mixture of discontinuous and continuous functions in one element. 
When dealing with changing geometries as in sequential excavation problems the multi-
region analysis with discontinuous elements gives good results. However, the effort can 
be quite considerable especially for 3-D applications because with each excavation stage 
modelled the number of regions and hence the interface degrees of freedom increase. An 
alternative method that involves only one region seems attractive but the accuracy still 
has to be improved. 
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13 
Body Forces  

Gravitation is not responsible 
 for people falling in love 

J. Keppler 
 

13.1 INTRODUCTION 

The advantages of the boundary element method over the FEM that no elements are 
required inside the domain, also has some disadvantages: loading may only be applied at 
the boundary, but not inside the domain. A number of problems exist where applying 
loading inside the domain is necessary, for example   
 
 where sources (of heat or water) or forces have to be considered inside the domain 
 where self weight or centrifugal forces have to be considered 
 where initial strains are applied inside the domain, for example when material is 

subjected to swelling. 
 

In addition, as we will see later, for the analysis of domains exhibiting nonlinear 
material behaviour, for which we cannot find fundamental solutions, the problem can be 
considered as one where initial stresses are generated inside the domain. 

In this chapter we will discuss methods which allow us to consider such loads 
commonly known as body forces. Here we will distinguish between those which are 
constant, such as for example, self weight and those which vary inside the domain. We 
will find that we can deal with constant body forces in a fairly straightforward way since 
the volume integrals which occur can be transformed into surface integrals. In the case 
where they are not constant, however, the only way to deal with volume integration is by 
providing additional volume discretisation. 

We will start this chapter by revisiting Betti’s theorem as derived for integral 
equations but now we will consider the additional effect of body forces. 
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13.2 GRAVITY 

First we deal with gravity forces, for example those generated by self weight. If the 
material is homogeneous then these forces per unit volume are constant inside the 
domain. We expand Betti`s theorem used in Chapter 5, to derive the integral equations 
taking into account the effect of body forces. 

 
Figure 13.1 Application of Betti´s theorem including the effect of body forces 

As shown in Figure 13.1 for 2-D problems, the forces of load case 1 consist of 
boundary tractions t (components tx and ty) and of body forces b (components bx, by) 
defined as forces per unit volume.  

The work done by the loads of load case 1 times the displacements of load case 2, 
W12 is computed by 

(13.1)  

 The work done by the displacements of load case 1 times the forces of load case 2, 
W21 is the same as explained in Chapter 5 

(13.2)  
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The integral equations, including the body force effect can be written as: 

(13.3)  

where the last integral in equation (13.3) is a volume integral. It can be shown1 that for 
body forces which are constant over volume V, this integral can be transformed into a 
surface integral 
 

(13.4) 

 
where for 2-D and 3-D problems 

(13.5)  

For 3-D problems the coefficients of G may be computed from1 

(13.6)  

where x,y,z may be substituted for i, G is the shear modulus, cos  has been defined 
previously in Chapter 4 and 

(13.7)  

Vectors n and r are the normal vector and the position vector, as defined in Chapter 4. 
For plane strain problems we have1 : 

(13.8)  

The discretised form of equation (13.3) can be written as 

(13.9)  
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where 

(13.10)  

For the three-dimensional case, no singularity occurs as P approaches Q and, 
therefore, the minimum integration order with which we are able to accurately compute 
the surface area of the element can be used. The analysis of problems with constant body 
forces proceeds the same way as before, except that an additional right hand side term is 
assembled. The final system of equations will be. 

(13.11) 

where the components of Fb for the i-th collocation point are 

(13.12) 

 

13.2.1 Post-processing 

When computing internal results the effect of body forces has to be included. For 
calculation of displacements  

(13.13)  

and for computation of stresses  
 

(13.14)  

where 

(13.15)  

 
Matrix S is obtained by differentiating (13.6) or (13.8) and multiplying with the 

constitutive matrix D. 
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(13.16)  

For 3-D problems we have1 

(13.17)  

where cos  and cos have been defined previously, ij is the Kronecker delta defined 
in Chapter 4 and 

(13.18)  

For plane strain problems we have1 

(13.19)  

Two subroutines Grav_dis and Grav_stress, which compute matrices G and Ŝ  
needed for the gravity load case are added to the library Elasticity.lib . The subroutines 
can be used to compute the element contributions for assembly of the right hand side. 
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SUBROUTINE Grav_dis(GK,dxr,r,Vnor,b,G,ny) 
!-------------------------------------------- 
!   FUNDAMENTAL SOLUTION FOR Displacements 
!   Gravity Loads(Kelvin solution) 
!-------------------------------------------- 
IMPLICIT NONE 
REAL            :: GK(:)        !   Fundamental solution 
REAL,INTENT(IN) :: dxr(:)       !   rx/r etc. 
REAL,INTENT(IN) :: r           ! 
REAL,INTENT(IN) :: Vnor(:)      !   normal vector 
REAL,INTENT(IN) :: b (:)        !   gravity force vector 
REAL,INTENT(IN) :: G            !   Shear modulus 
REAL,INTENT(IN) :: ny           !   Poisson's ratio 
INTEGER         :: Cdim         !   Cartesian dimension 
REAL            :: c1,c2,costh,Cospsi  !   Temps 
C1= 1.0/(8*Pi*G) 
C2=1.0/(2.0*(1.0-ny)) 
Costh=  DOT_PRODUCT(Vnor ,DXR)Cospsi= DOT_PRODUCT(b,DXR) 
 IF(Cdim == 2) THEN 
 C1= C1*(2.0*LOG(1.0/r)-1.0) 
 GK= C1*(b*costh – C2*Vnor*cospsi) 
ELSE 
 GK= C1*(b*costh – C2*Vnor*cospsi) 
END IF 
RETURN 
END 
 
SUBROUTINE Grav_stress(SK,dxr,r,Vnor,b,G,ny) 
!-------------------------------------------- 
!   FUNDAMENTAL SOLUTION FOR Stresses 
!   Gravity Loads(Kelvin solution) 
!-------------------------------------------- 
IMPLICIT NONE 
REAL            :: SK(:)       !   Kernel 
REAL,INTENT(IN) :: dxr(:)      !   rx/r etc. 
REAL,INTENT(IN) :: r           ! 
REAL,INTENT(IN) :: Vnor(:)     !   normal vector 
REAL,INTENT(IN) :: b (:)       !   body force vector 
REAL,INTENT(IN) :: G           !   Shear modulus 
REAL,INTENT(IN) :: ny          !   Poisson's ratio 
INTEGER         :: Cdim        !   Cartesian dimension 
INTEGER         :: II(6),JJ(6) !   Order of stress components 
REAL            :: c,c1,c2,c3,c4,costh,Cospsi,Cosphi   !   Temps 
C2=1.0/(1.0-ny) 
C3= 1-2.0*ny 
Costh=  DOT_PRODUCT(Vnor ,DXR) 
Cospsi= DOT_PRODUCT(b,DXR) 
Cosphi= DOT_PRODUCT(b,Vnor) 
IF(Cdim == 2) THEN    !   Two-dimensional solution 
 C1= 1.0/(8*Pi) 
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 C4= 1.0 - 2.0*LOG(1.0/r) 
 II(1:3)= (/1,2,1) 
 JJ(1:3)= (/1,2,2) 
 Stress_components: & 
 DO N=1,3 
  I= II(N) ; J= JJ(N) 
  IF(I == J) THEN 
   C= ny*(2.0*costh*cospsi-cosphi)+(1.0-2.0*LOG(1/r))cosphi 
  ELSE 
    C= 0.0 
  END IF 
  SK(N)= C2*(C – cospsi*(Vnor(I)*dxr(J)+ Vnor(J)*dxr(I)) & 
       - 0.5 *(cospsi*(Vnor(I)*dxr(J)+ Vnor(J)*dxr(I)) & 
                  + C3*(b(I)*Vnor(J)  + b(J)*Vnor(I))) 
 END DO 
 Stress_components 
 SK= C1*SK 
ELSE                   !   Three-dimensional solution 
   II= (/1,2,3,1,2,3) 
  JJ= (/1,2,3,2,3,1) 
    C1= 1.0/(8*Pi*r) 
  Stress_components1: & 
   DO N=1,6 
   I= II(N) ; J= JJ(N) 
   C=0. 
   IF(I == J) THEN 
    C= c2*ny*(costh*cospsi-cosphi) 
  ELSE 
    C= 0.0 
  END IF 
  SK(N)= 2.0*costh*(b(I)dxr(J)+ b(J)dxr(I))+ C & 
       -0.5 *(cospsi*(Vnor(I)*dxr(J)+ Vnor(J)*dxr(I))& 
                + C3*(b(I)*Vnor(J)  + b(J)*Vnor(I))) 
 END DO & 
 Stress_components1 
 SK= C1*SK 
END IF 
RETURN 
END 

13.3 INTERNAL CONCENTRATED FORCES 

It is sometimes necessary to apply concentrated forces inside the domain. An example of 
this is the simulation of a pre-stressed rock bolt in tunnelling, where a concentrated force 
is generated inside the domain. According to figure 13.2, additional work is done by a 
concentrated force F acting at point Q . 
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Figure 13.2 Application of Betti´s theorem including the effect of internal concentrated forces 

The work done by the loads of load case 1, times the displacements of load case 2, 
W12 is computed by 

(13.20)  

 The work done by the displacements of load case 1 times the forces of load case 2, 
W21 is the same as explained in Chapter 5. Using Betti’s theorem the following integral 
equation is obtained, which includes the effect of the concentrated laod: 

(13.21)  

where 

(13.22)  

The discretised form can be written as 

(13.23)  
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The final system of equations will be. 

(13.24) 

where the components of FP for the i-th collocation point are 

(13.25) 

13.3.1 Post-processing 

When computing internal results, the effect of the internal force has to be included. For 
calculation of displacements  

(13.26) 

whereas for computation of stresses we have 
 

(13.27) 

13.4 INTERNAL DISTRIBUTED LINE FORCES 

We now consider the effect of distributed line forces that may be shear forces acting in 
the rock mass due to a rock bolt. According to figure 13.3, additional work is done by a 
distributed force f acting along a line. 

The work done by the loads of load case 1 times the displacements of load case 2, 
W12 is computed by 

(13.28) 

where the last integral is over the line on which the distributed force acts. The work done 
by the displacements of load case 1 times the forces of load case 2, W21 is the same as 
explained in Chapter 5.  

The integral equations including the body force effect can be written as: 

(13.29) 
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where 

(13.30) 

The discretised form can be written as 

(13.31) 

Figure 13.3  Application of Betti´s theorem including the effect of internal distributed forces 

To evaluate the last line integral we propose to use internal cells. The cells are 
actually exactly like the 1-D boundary elements introduced in Chapter 3 but are used for 
the integration only. If the variation of f along the line is linear or quadratic then only 
one linear or quadratic cell element is required for the integration. Using the 
interpolation as discussed in Chapter 3 

(13.32) 

where nf are the nodal values of f, we obtain  

(13.33) 
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where  

(13.34)  

These integrals may be evaluated using Gauss integration. The final system of 
equations will be 

(13.35) 

where the components of Fp for the i-th collocation point are 

(13.36) 

13.4.1 Post-processing 

When computing internal results the effect of the internal force has to be included. For 
calculation of displacements at point aP  
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whereas for computation of stresses we have 
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into surface integrals. If we assume that the solid is subjected to a non-uniform 
volumetric strain (caused for example by a temperature increase) given by 

(13.40)  

additional work will be done. 

Figure 13.4 Application of the Betti theorem including the effect of initial strains 

Referring to figure 13.4, the work done by the displacements/strains of load case 1 times 
the forces/stresses of load case 2 is given by: 

(13.41)  

where QP,QP, yxxx   and  are the stresses at Q due to a unit force in x direction at 
P. Here we assume that only volumetric initial strains are present, even though it is 
obvious that shear strains could easily be included. The work done by the displacements 
of load case 2 times the forces/stresses of load case 1 is the same as for the case where 
no initial strains are applied.  
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Applying Betti’s theorem we obtain 

(13.42)  

where  

(13.43)  

For 3-D problems where strain 0z  is also present, matrix  is expanded to 

(13.44)  

 
The fundamental solution is given by2  

(13.45)  

where x,y,z may be substituted for i,k as usual. The values for the constants are given in 
Table 12.1 

Table 12.1 Constants for fundamental solution for initial strains 

 Plane strain Plane stress 3-D 
n 1 1 2 
C2 1/4 (1+ 1/8  
C3 1-2  (1-  1-2  
C4 2  3 

 
A FUNCTION for computing Matrix is written and added to the Elasticity_lib. 

FUNCTION SigmaK returns an array of dimension 2x2 or 3x3 with fundamental 
solutions for normal stresses. 
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FUNCTION SigmaK(dxr,r,E,ny,Cdim) 
!-------------------------------------------- 
!   FUNDAMENTAL SOLUTION FOR Normal Stresses 
!   isotropic material (Kelvin solution) 
!-------------------------------------------- 
REAL,INTENT(IN) :: dxr(:)         ! rx/r etc. 
REAL,INTENT(IN) :: r              ! r 
REAL,INTENT(IN) :: E              ! Young's modulus 
REAL,INTENT(IN) :: ny             ! Poisson's ratio 
INTEGER,INTENT(IN) :: Cdim           ! Cartesian dimension 
REAL :: SigmaK(Cdim,Cdim) ! Returns array CdimxCdim 
INTEGER  :: n,i,j 
REAL :: G,c,c2,c3,c4   ! Temps 
G= E/(2.0*(1+ny)) 
SELECT CASE (Cdim) 
 CASE (2)       !     Plane strain solution 
  n= 1 
  c2= 1.0/(4.0*Pi*(1.0-ny)) 
  c3= 1.0-2.0*ny 
  c4= 2.0 
 CASE(3)        !      Three-dimensional solution 
  n= 2 
  c2= 1.0/(8.0*Pi*(1.0-ny)) 
  c3= 1.0-2.0*ny 
  c4= 3.0 
 CASE DEFAULT 
END SELECT 
Direction_Pi: & 
DO i=1,Cdim 
 Direction_Sigma: & 
 DO j=1,Cdim 
  IF(i == j) THEN 
   SigmaK(i,i)= -c2/r**n*(c3*dxr(i)+c4*dxr(i)**3) 
  ELSE 
   SigmaK(i,j)= -c2/r**n*(-c3*dxr(i) + c4*dxr(i)**2*dxr(j)) 
  END IF 
END DO & 
Direction_Sigma 
END DO & 
Direction_Pi 
RETURN 
END FUNCTION SigmaK 

 
The discretised form can be written as 

(13.46)  0
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We propose to evaluate the volume integral numerically with the Gauss Quadrature 
method. To apply this method, however, the volume where initial strains are specified 
needs to be discretised, i.e., subdivided into cells. We use two-dimensional cells for the 
discretisation of 2-D problems and three-dimensional cells for 3-D problems. The cells 
have already been introduced in Chapter 3.  For the interpolation of the strains inside an 
element we have for plane problems with either linear (N=4) or quadratic (N=8) shape 
functions nN  

(13.47) 

The last integral in Eq. (13.46) is replaced by a sum of integrals over cells 

(13.48) 

where  

(13.49) 

The final system of equations will be. 
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This means that the presence of initial strains will result in an additional right hand 
side { }F  where the components of F  for the i-th collocation point are 

(13.51) 

13.5.1 Post-processing 
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From this equation the strains and stresses may be computed using Equations (4.34) 
and (4.45). If strains or stresses are evaluated inside a region that is subjected to initial 
strains then the integrand in last integral in (13.53) approaches infinity as Q  approaches 

aP and special care has to be taken in evaluating this integral. If we assume a small 
volume of exclusion around aP , then we can split the integral into two parts (Figure 
13.5). 

(13.54) 

Figure 13.5 Region of exclusion for the computation of volume integral 

 
The first integral only exists as a Cauchy principal value and we will discuss its 

evaluation in Chapter 15. The second integral can be evaluated analytically. If we 
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The two components of the integral in (13.55) are: 

(13.57) 

 
 According to Figure 13.5 we have , ,;     ;   cos   ;  sinx yr r rn r . 

Therefore we have for example: 
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and those of H 

(13.63) 

where the constants are given in Table 12.2. 

Table 12.2 Constants for fundamental solutions  

 Plane strain Plane stress 3-D 
n 1 1 2 
C7 1-4  (1-3  1-4  
C3 1-2  (1-  1-2  
C14 1 (1-3  1-4  
C15 1 (1-  1-2  
C6 4 5 
C16 G/(4(1-  G(1+ )/4 G/(15(1-  
C12 1 1 7-5  
C17 1-4  1 2+10  

 

13.6 INITIAL STRESSES 

The last type of body forces considered here are initial stresses. As will be seen later in 
the chapter on plasticity, these may correspond to the plastic stresses generated when a 
point goes into the plastic range. The capability to deal with initial stresses, therefore, 
will be important for the application of the BEM to nonlinear material response, in 
particular plasticity. The consideration of initial stresses follows a similar line as the 
consideration of initial strains. We start again with the theorem of Betti, but instead of 
initial strains we consider stresses applied inside the domain. If they exist, it is obvious 
that additional work will be done.  

Referring to Figure 13.6 the work done by the tractions/stresses of load case 1 times 
the displacement/strains of load case 2 is given by: 

(13.64)  
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where  ,  ,  xxx xyy xxyE E E are the fundamental solutions for strains at point Q due to a 
unit x-force at P. 

Figure 13.6 Application of the theorem of Betti including the effect of initial strains 

The work done by the forces/stresses of load case 2 times the displacements of load case 
one is the same as for the case without initial stresses.  
After applying the theorem by Betti we obtain  

(13.65)  

The detailed implementation of initial stresses is discussed in Chapter 15, dealing with 
non-linear problems. 

13.7 NUMERICAL INTEGRATION OVER CELLS 

The integrals over the cells are evaluated numerically using Gauss Quadrature. For the 
line integrals in (13.34) we use linear cells. Changing from x,y coordinates to intrinsic 
coordinate we get 
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The numerical integration is given by 

(13.67) 

The number of Gauss points M is determined from the minimum distance of iP  to the 
cell, as explained in Chapter 6, J is the Jacobian and Wm are weight factors.  

For the volume integrals occurring in (13.49) we use plane cells for 2-D problems and 
three-dimensional cells for 3-D problems. For plane problems the expression in intrinsic 
coordinates is 

(13.68) 

The numerical integration formula is 
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where the number of integration points in , directions M and K are determined 
according to the proximity of iP  to the cell. For three-dimensional problems we have 
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The numerical integration formula is 
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13.8 IMPLEMENTATION 
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of an implementation of body force: the effect of initial volumetric strains defined at a 
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general and allow for a variation of initial strains inside the domain, the input will be 
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programming the other body force effects and extend this to 3-D applications. 
Subroutine Body_force will read first the information about the number of cell nodes, 
cells and the initial strain to be applied.  Then the coordinates of the cell nodes and the 
incidences of the cells are read in. Next the additional right hand side is computed. 
According to Eq. (13.51) the right hand side is given by: 

(13.72)  

The implementation therefore involves 5 Do loops: One over collocation points i, 
number of cells cN , over cell nodes N and over the Gauss points m and k. In the 
innermost DO loop there is a matrix vector product. Note that in the Subroutine it is 
assumed that the cells are sufficiently far away from the collocation points so that a 
constant number of Gauss points is sufficient. A listing in Subroutine Body force is 
given below. 
 
SUBROUTINE Body_force(F,CDim,xP,NCol,Isym,E,ny) 
!-------------------------------------------------------- 
!  Adds contribution of body force terms (initial strain) 
!  to the right hand side vector F 
!  This implementation is only for linear cells and plane  
!  problems 
!-------------------------------------------------------- 
USE Utility_Lib; USE Elast_lib; USE Integration_lib 
IMPLICIT NONE 
INTEGER , INTENT(IN)        :: CDim 
REAL , INTENT(IN)           :: E 
REAL , INTENT(IN)           :: ny 
INTEGER , INTENT(IN)        :: NCol    
INTEGER , INTENT(IN)        :: Isym 
REAL , INTENT (IN)          :: xP(Cdim,Ncol)   
REAL(KIND=8), INTENT(INOUT) :: F(CDim*Ncol)   !  right hand side  
INTEGER, ALLOCATABLE :: InciC(:,:)  !  Cell Incidences 
INTEGER, ALLOCATABLE :: Inci(:) 
REAL, ALLOCATABLE    :: xPC(:,:)    !  Cell Node co-ordinates 
REAL, ALLOCATABLE    :: Ni(:),Elcor(:,:) 
INTEGER   :: NodesC,Ncells,NodelC,ldimC,IOS 
INTEGER   :: m,n,k,Node,Nc,i,ii,jj,Mi,Ki,iD 
REAL      :: Eps0(2),SigK(Cdim,Cdim),GCcor(3) 
REAL      :: Glcorx(8),Glcore(8),Wix(8),Wie(8),Vnorm(3) 
REAL      :: Jac,Weit,xsi,eta,r,dxr(Cdim) 
IF(Cdim > 2) RETURN  ! This coding is for plane problems only 
IF(ISym > 0) RETURN  ! Symmetry not considered here 

c
ni 0

1 1

0
1 1 1 1

( , ) , ( , )) ( , )  

c

c
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READ(1,*,IOSTAT=IOS) NodesC 
IF(IOS /= 0) RETURN    !   No body force effects 
Write(2,*) 'Number of cell nodes=',NodesC 
READ(1,*) Ncells 
Write(2,*) 'Number of cells=',Ncells 
READ(1,*) Eps0 
Write(2,*) 'Eps0=',Eps0 
NodelC=4       !  only linear elements considered 
ldimC= 2       !  plane cells 
ALLOCATE(xPC(Cdim,NodesC))   !  Array for node coordinates 
ALLOCATE(InciC(Ncells,NodelC),Inci(NodelC))  
ALLOCATE(Ni(nodelC),ELCOR(Cdim+1,nodelC)) 
!------------------------------------------------------- 
!  Read Cell Node Co-ordinates  
!------------------------------------------------------- 
DO Node=1,NodesC 
 READ(1,*) (xPC(M,Node),M=1,Cdim) 
 WRITE(2,'(A5,I5,A8,3F8.2)') 'Node ',Node,& 
         '  Coor  ',(xPC(M,Node),M=1,Cdim) 
END DO 
!------------------------------------------------------- 
!  Read Cell Incidences  
!------------------------------------------------------- 
WRITE(2,*)'' 
WRITE(2,*)'Incidences: ' 
WRITE(2,*)'' 
DO Nc=1,Ncells 
  READ(1,*) (InciC(Nc,n),n=1,NodelC) 
  WRITE(2,'(A3,I5,A8,4I5)')'EL ',Nc,'  Inci  ',InciC(Nc,:) 
END DO 
!-------------------------------------------------------- 
!   compute contribution to right hand side 
!------------------------------------------------------ 
Colloc_points: DO i=1,Ncol 
 Cells: DO nc=1,Ncells 
  Mi=4 ;  Ki=4  !  cell is sufficiently far away from Pi 
  Call Gauss_coor(Glcorx,Wix,Mi)              
  Call Gauss_coor(Glcore,Wie,Ki)      
  Elcor(1:2,:)= xPC(1:2,InciC(nc,:)) 
  Elcor(3,:)= 0.0 ! we are using 2-D boundary element as a cell 
  Inci=InciC(nc,:) 
  Gauss_points_xsi: DO m=1,Mi 
   xsi= Glcorx(m) 
   Gauss_points_eta: DO k=1,Ki 
    eta= Glcore(k) 
    CALL Serendip_func(Ni,xsi,eta,ldimC,nodelC,Inci)   
    Call Normal_Jac(Vnorm,Jac,xsi,eta,ldimC,nodelC,Inci,elcor)  
    Weit= Wix(m)*Wie(k)*Jac 
    CALL Cartesian(GCcor,Ni,ldimC,elcor)       
    r= Dist(GCcor(1:2),xP(:,i),Cdim)              
    dxr= (GCcor(1:2)-xP(1:2,i))/r              
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    SigK= SigmaK(dxr,r,E,ny,Cdim) 
    Direction_P: DO ii=1,Cdim 
     iD= Cdim*(i-1) + ii     !  Position in F array 
     Direction_Q: DO jj=1,Cdim 
       Node_points: DO n=1,NodelC 
         F(iD)= F(iD) + Ni(n)*SigK(ii,jj)*Weit*Eps0(jj) 
       END DO Node_points 
     END DO Direction_Q 
    END DO Direction_P 
   END DO Gauss_points_eta 
 END DO Gauss_points_xsi 
END DO Cells 
END DO Colloc_points 
DEALLOCATE(xPC)    
DEALLOCATE(InciC)  
DEALLOCATE(Ni,Elcor) 
RETURN 
END Subroutine Body_force 

 
In Program General_purpose_BEM we have to insert a call to Body_force as shown 
 

…. 
END DO & 
Elements_1  
CALL Body_force(F,CDim,xP,Nodes,Isym,E,ny) 
!------------------------------------------------------------ 
!  Add azimuthal integral for infinite regions 
!------------------------------------------------------------ 
… 

 

13.8.1 Input data specification for Body_force 

The input data for the cell mesh and the specification of the initial strain is supplied via 
file INPUT. If no body force effects are present SUBROUTINE Body_force returns 
immediately. The geometry of the cell and the sequence of the input of node numbers is 
shown in Figure 13.7. 
 
INPUT DATA SPECIFICATION FOR Body_force 

 
1.0 Node specification 

Nodes  Number of cell nodes 
2.0 Element specification 

Ncells  Number of cells 
3.0 Initial strain specification 

 Eps0(1:2)  Initial strains 0x , 0y  
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4.0  Loop over nodes 
 x, y, (z)  Node coordinates 

5.0  Loop over all cells 
     Inci (1:4)  Incidences of cells 

Figure 13.7 Linear plane cell 

 
13.9 SAMPLE INPUT FILE AND RESULTS 

 To test the Subroutine a small example in included here. It is an example of a circular 
opening in an infinite domain, where part of the domain is subjected to swelling.  The 
effect of the swelling on the deformations at the boundary of the hole is required. The 
material properties for the domain are assumed to be E= 1000.0 and The swelling 
zone is assumed to be subjected to an initial strain of 0.1 in the vertical direction. The 
mesh with quadratic boundary elements and linear cells is shown in Figure 13.8. Note 
that the numbering for the cells is completely separated from the numbering of the 
boundary elements so we can start with number 1. 

 
The file INPUT is 
 

Circular hole with swelling  
 2    ! Cdim 
 2    ! Ndof 
 1    ! Toa Plane strain 
 2    ! Nreg   infinite eregion 
 0    ! ISym  no symetry 
 2    ! Ltyp quads 
0.1000E+05  0.0000E+00 
    8   ! Nodes 
    4   ! Elements 
    1.000    1.000 
    0.707    0.707 
    1.000    0.000 
    0.707   -0.707 
    0.000   -1.000 

1 2

34
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   -0.707   -0.707 
   -1.000    0.000 
   -0.707    0.707 
    1    3    2 
    3    5    4 
    5    7    6 
    7    1    8 
    0 
    0 
    6   ! Cell Nodes 
    2   ! Cells 
0.0 0.1  !   vertical strain 
   -1.000    2.000 
    0.000    2.000 
    1.000    2.000 
    1.000    2.500 
    0.000    2.500 
   -1.000    2.500 
    1    2    5    6 
    2    3    4    5 

Figure 13.8 Problem specification 

1,0

1,0

2,0

Area subjected to swelling

0,5
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Figure 13.9 Mesh used 

 
The output obtained from the program is 

Project: 
 Circular hole with swelling                                                
 Cartesian_dimension:           2 
 Elasticity Problem 
 Type of Analysis: Solid Plane Strain 
 Infinite Region 
 No symmetry 
 Quadratic Elements 
 Modulus:   10000.00     
 Poissons ratio:  0.0000000E+00 
 Number of Nodes of System:           8 
 Number of Elements of System:           4 
Node     1  Coor      1.00    1.00 
Node     2  Coor      0.71    0.71 
Node     3  Coor      1.00    0.00 
Node     4  Coor      0.71   -0.71 
Node     5  Coor      0.00   -1.00 
Node     6  Coor     -0.71   -0.71 
Node     7  Coor     -1.00    0.00 
Node     8  Coor     -0.71    0.71 
 Incidences:  
EL     1  Inci      1    3    2 
EL     2  Inci      3    5    4 
EL     3  Inci      5    7    6 
EL     4  Inci      7    1    8 

1
2

3

4

5

6

7

8

1

23

4

1 2

1 2 3

456
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 Elements with Dirichlet BC´s:  
 Elements with Neuman BC´s:  
 Number of cell nodes=           6 
 Number of cells=           2 
 Eps0=  0.0000000E+00  0.1000000     
Node     1  Coor     -1.00    2.00 
Node     2  Coor      0.00    2.00 
Node     3  Coor      1.00    2.00 
Node     4  Coor      1.00    2.50 
Node     5  Coor      0.00    2.50 
Node     6  Coor     -1.00    2.50 
 Incidences:  
EL     1  Inci      1    2    5    6 
EL     2  Inci      2    3    4    5 
Results, Element           1 
 u=-0.471E-02-0.245E-01-0.171E-02-0.195E-01-0.323E-02-0.257E-01 
 t=     0.000     0.000     0.000     0.000     0.000     0.000 
 Results, Element           2 
 u=-0.171E-02-0.195E-01 0.612E-03-0.120E-01-0.397E-03-0.142E-01 
 t=     0.000     0.000     0.000     0.000     0.000     0.000 
 Results, Element           3 
 u= 0.612E-03-0.120E-01-0.798E-03-0.156E-01 0.802E-03-0.123E-01 
 t=     0.000     0.000     0.000     0.000     0.000     0.000 
 Results, Element           4 
 u=-0.798E-03-0.156E-01-0.471E-02-0.245E-01-0.104E-02-0.251E-01 
 t=     0.000     0.000     0.000     0.000     0.000     0.000 

13.10 CONCLUSIONS 

In this chapter we have dealt with the treatment of various types of effects occurring 
inside the domain, where no boundary elements exist. We have loosely called these 
effects body forces, even though some of these, for example the initial strains were not 
forces at all. With the capability to deal with these effects the range of application of the 
BEM has been expanded and we have also laid the foundations for the chapter that deals 
with plasticity. In the solution of material non-linear problems we can visualise the 
redistribution of stresses due to plasticity, as body forces which are generated once 
plasticity occurs. 

The effect of body forces is essentially an additional right hand side that is generated 
in the system of equations. If the body forces are constant, then this term can be 
computed as a surface integral using numerical integration. Otherwise, a mesh of cells 
has to be created in order to enable a volume integration to be carried out. Those critical 
of the BEM might suggest that the main attraction of the method, surface instead of 
volume discretisation, would be lost. However this is not the case. Cells are only needed 
where internal loading occurs and there are no additional degrees of freedom associated 
with the nodes of a cell mesh. This is demonstrated by the example shown where cells 
were only provided in the swelling zone. An equivalent finite element discretisation 
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would have to cover the entire domain, including the part where no swelling occurs. 
Also note that the number of unknowns at the nodes of the boundary elements was not 
increased by the fact that cells were required to compute the right hand side of the 
system of equations.  

The implementation of body forces requires additional fundamental solutions which 
have been added to the library. It is obvious that volumetric loading effects also occur in 
potential problems but the discussion of these in more detail is beyond the scope of this 
book. 

We have only shown one example of implementation: the treatment of initial strains 
as they may occur in problems where part of the domain, is subjected to swelling. 
However with the knowledge of programming gained in previous chapters and the 
explanation of the theory in this chapter the reader should be able to perform the 
implementation of the other types of body forces into program General_purpose_BEM. 

13.11 EXERCISES 

Exercise 13.1 
Write a Subroutine similar to SUBROUTINE Body_force that computes the right hand 
side for gravity as discussed in section 13.2. Implement this into program 
General_Purpose_BEM and test on an example of a cube subjected to self weight. 

Figure 13.10 Test example for exercise 13.1 

 
 

1,0m

1,0N

1,0m

1,0N

Note: Apply this 
load as traction 
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Exercise 13.1 
Write a Subroutine similar to SUBROUTINE Body_force that computes the right hand 
side for concentrated forces in the domain. Test on the example in Figure 13.10 of a hole 
in an infinite domain subjected to a pre-stressing force of a rock bolt. 
  

Figure 13.11 Test example for Exercise 13.2 

Exercise 13.2 
Write a Subroutine similar to SUBROUTINE Body_force that computes the right hand 
side for distributed line forces in the domain. Test on the example in Figure 13.10 of a 
hole in an infinite domain subjected to a distributed force (for example of a grouted rock 
bolt). 
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14 
Dynamic Analysis 

Do not worry about your difficulties in Mathematics, 
 I can assure you mine are still greater. 

Albert Einstein 
 

 
 
 

14.1 INTRODUCTION 

So far we have discussed problems that are independent of time and neglected inertial 
effects. It is therefore appropriate to extend the discussion of the theory and 
implementation to problems in dynamics. We have already seen that the Boundary 
Element Method has distinct advantages over the Finite Element Method for static 
problems involving infinite domains. This advantage is even more pronounced for 
dynamic problems since we will see that the fundamental solutions used in the BEM 
implicitly fulfil the radiation conditions. It is known that the FEM which requires the 
truncation of the mesh has the problem that waves may be reflected at truncation 
boundaries. In this Chapter we will only give an overview of the implementation of 
dynamic problems. For more details the reader is referred to relevant publications1,2,3. 

In dynamics we distinguish between cases where the field variables are dependent on 
time in a harmonic or general way. A field variable at a point Q which depends on time 
in a harmonic way can be expressed as 

(14.1)  

where 1i , a(Q) is the amplitude at point Q and  is the frequency. The use of 
complex numbers allows compact representation of sinusoidal and cosine effects. 
Equation (14.1) can also be written as 

( , ) ( )(sin  cos  )u Q t a Q t i t
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(14.2)  

The solution for these types of problems can be carried out in the “frequency domain” 
reducing the problem to the determination of the time-independent variable a(Q) at 
frequency . 

If the field variables are not harmonic then the solution has to proceed in the “time 
domain” also known as a transient problem. 

A “frequency domain” analysis may be motivated by: 
 

 Analysing the response due to steady state excitations of the type 
0( , ) ( ) i tp Q t p Q e  assuming that a steady state has been reached, i.e. 

that the influence of transient effects has become negligible. 
 Transformation of a problem involving non-harmonic excitation from the 

time domain into the Laplace domain. We can also use a Fourier transform 
of the type 

(14.3)  

For each value of  the transformed unknown ˆ( , )a Q  can be calculated 
for discrete values of . The advantage of this is that a greater range of 
fundamental solutions is available in the frequency domain. 
 

In this Chapter we will first start with the simplest problem, namely the scalar wave 
equation in the frequency domain and then proceed to the time domain. Next, general 
dynamic problems are discussed. This follows the philosophy of the book where 
potential problems with one degree of freedom where introduced first for static 
problems. 

14.2 SCALAR WAVE EQUATION, FREQUENCY DOMAIN 

The scalar wave equation governs many physical phenomena for example the transverse 
motions of membranes or the propagation of pressure in an acoustic fluid. For a time 
harmonic problem the governing differential equation is given by 

(14.4)  

or 

(14.5)  

where in the case of propagation in a fluid u is the pressure amplitude and /k c , also 
known as the wave number. c denotes the wave velocity which is a material constant and 

( , ) ( ) i tu Q t a Q e

ˆ( , ) 1 / 2 ( , ) i tu Q t a Q e d

2 2 2
2

2 2 2 0u u u k u F
x y z

2( , ) ( , ) ( , ) 0u Q k u Q F Q
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F is the body source distribution. The Equation (14.4) is also known as the Helmholz 
equation. 

14.2.1 Fundamental solutions 

The fundamental solution for the pressure amplitude ( , , )U P Q  is for a point source of 
unit amplitude located at point P, i.e. the solution of: 

(14.6)  

where ( )P Q is the Dirac delta function. The Dirac delta function is defined as 

(14.7)  

 
The fundamental solution for the pressure at Q is given by 

(14.8)  

where r is the distance between P and Q. 
Note that for the static case this reverts to ( , ) 1/ 4U P Q r . The derivatives of the 

pressure are given by 

(14.9)  

where x,y,z may be substituted for j and , jr  has been defined in Chapter 4. The 
derivative of U in the direction n, here referred to as T, is given by 

(14.10)  

where cos  has been defined in Chapter 4. If we integrate the three-dimensional 
solution over z  we obtain the solution for the plane problem as 

(14.11)  

where 1
0H  and 1

1H  are Hankel functions of the first kind and order 0 and 1, respectively. 
 

2 ( ) 0U k U P Q

( , , )
4

ikreU P Q
r

,
, 2 (1 )

4
j ikr

j
r

U ikr e
r

1 1
0 , 1( )   ;   ( )

4 4j
i ikU H kr U H kr

, , , 2
cos (1 )
4

ikr
x x y y z zT U n U n U n ikr e

r

( ) 0     when      

( ) 1

P Q P Q

P Q d
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The Hankel functions can be expanded to4 

(14.12)  

where 0.57721 (Euler constant) and here only the first terms of the expansion are 
shown. A plot of the fundamental solution for U is shown in Figure 14.1. 

14.2.2 Boundary integral equations 

As with the static system the reciprocal theorem of Betti can be used to obtain the 
integral equation. In the absence of body sources (distributed over the domain) we obtain 

(14.13)  

where the pressure gradient is defined as uq
n

 and ĉ depends on the boundary shape.  

Figure 14.1 Plot of the fundamental solution U for real part and / 4k c  

1
0

1
1

2( ) 1 ( ln )
2

2 1( ) ( ln )
2 2 2

i xH x

i ix x xH x
x

ˆ ( ) ( , , ) ( , ) ( , , ) ( , )
S S

cu P U P Q q Q dS T P Q u Q dS
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14.2.3 Numerical implementation 

In a well posed boundary value problem either u or q is specified on the boundary. 
Furthermore the integral equation (14.13) must be satisfied for any source point P. If we 
ensure the satisfaction at a discrete number of points Pi then we can get as many 
equations that are necessary to compute all the unknowns (point collocation).  

The solution of (14.13) can be achieved by discretisation of the boundary of the 
problem as for the static case. We introduce the interpolations 

(14.14)  

where J is the number of element nodes, jN  are shape functions introduced in Chapter 3 
and ,e e

j ju q  are nodal values of u and q at element e. 
The discretised form of equation (14.13) is 

(14.15)  

where E is the number of elements and 

(14.16)  

The integration over the boundary elements can be carried out using Gauss 
Quadrature as for the static case. However all variables must be declared COMPLEX 
type in the program. An example of programming the fundamental solution is given 
below. The complex function Hankel0 may be obtained from mathematical libraries or 
may be programmed using the approximation given here (however, note that only a very 
limited number of terms are considered).  

 
  COMPLEX FUNCTION UW(r,k,Cdim) 
  !------------------------------- 
  !   Fundamental solution for scalar wave equation 
  !   Pressure 
  !------------------------------ 
  USE Hankel 
  REAL,INTENT(IN)     ::  r   !   Distance between P and Q 
  REAL,INTENT(IN)     ::  k   !   wave number 
  INTEGER,INTENT(IN)  :: Cdim   !   Cartesian dimension (2-D,3-D) 
  REAL                ::  Pi 
  COMPLEX :: C0,Hankel0 
  Pi= 3.141592654 
  SELECT CASE (CDIM) 
     CASE (2)           !  Two-dimensional solution 

1 1

( , ) ( )    ;   ( , ) ( )    
J J

e e
j j j j

j j

u Q N u q Q N q

1 1 1 1

ˆ
j

J JE E
e e e e

i ji j ji
e j e j

cu P T u U q

, , , , ,
e e

e e
ji j i ji j i

S S

U N U P Q dS Q T N T P Q dS Q
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        C0= CMPLX(0,0.25) 
        UW= C0*Hankel0(k*r) 
     CASE (3)           !  Three-dimensional solution 
        C0= CMPLX(0,k*r) 
        UW= 1/(4.0*k*r*Pi)*EXP(C0) 
     CASE DEFAULT 
        UW=0.0 
        WRITE (11,*)'Cdim not equal 2 or 3 in Function UW(...)' 
  END SELECT 
  END FUNCTION UW 

14.3 SCALAR WAVE EQUATION, TIME DOMAIN 

For the case where u=u(Q,t) is not harmonic but transient, the scalar wave equation is 
given by 

(14.17)  

where overdots mean differentiation with respect to time t, c is the wave velocity and F 
is a specified body source. The assumption is of an isotropic and homogeneous medium. 
For a well posed problem we must have initial and boundary conditions. The initial 
conditions at time 0 are specified as  

(14.18)  

The condition 0 0( ) ( ) 0u Q v Q  is termed initial rest or quiescent past, 

14.3.1 Fundamental solutions 

A fundamental solution of the differential equation can be found by assuming an 
impulsive point source at P applied at time t , in an infinite domain. Therefore we 
seek the solution of 

(14.19)  

 
where a Dirac Delta function has been introduced for the time and space. The Dirac 
Delta function for the space has been discussed previously; the one for the time is 
defined as  

(14.20)  

2
1 0u u F
c

0 0( ,0) ( )      ;       ( ,0) ( ) u Q u Q u Q v Q

2
1 ( ) ( ) 0U U P Q t
c

( ) 0     when      

( ) 1

t t

t d
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The 3-D fundamental solution for the pressure U at point Q at time t due to an 
impulsive source at point P at time  is given by 

(14.21)  

The gradient of the pressure, T, in direction n is given by 

(14.22)  

. 

Figure 14.2 Diagram explaining causality  

 

Figure 14.3 Heaviside function 
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The interpretation of the fundamental solution U is as follows (Figure 14.2): If an 
impulse is applied at P then the wave takes some time to reach point Q (this is also 
known as causality). This time depends on the speed of the wave c and the distance (r) 
of the point Q from P, and is computed as r/c. Therefore point Q will only feel the 
impulse after a time lag of r/c. 

Integration of (14.21) in the z-direction gives the plane solution as 

(14.23)  

and  

(14.24)  

where H is the Heaviside function defined as (Figure 14.3): 

(14.25)  

14.3.2 Boundary integral equations 

Before we proceed with deriving the integral equations the concept of the convolution 
integral, which is commonly used in structural dynamics5, is explained on a system with 
one degree of freedom. The system is subjected to a transient load P(t) and we want to 
determine the response of the system due to this loading, u(t). We divide the transient 
loading P(t) into a sequence of impulses of magnitude P(t)d  (Figure 14.4a). The 
response of the system to one such impulse can be written as 

(14.26)  

where ( )h t is the response due to a unit value of ( )P t (Figure 14.5).  
If we integrate all the impulses over time t, the response due to the given loading P(t) 

is obtained as (Figure 14.4b) 

(14.27)  

This is also known as the Duhamel integral equation. 

2 2 2
1( , , , ) ( / )

2 ( )
cU P Q t H t r c

c t r

3/ 22 2 2

cos( , , , ) /
2 ( )

rcT P Q t H t r c
c t r

0 0

0 0

( ) 0   for    
( ) 1   for    

H t t t t
H t t t t

( ) ( ) ( )du t P d h t

0

( ) ( ) ( )
t

u t P h t d



DYNAMICS 393 

The time convolution* integral can also be written as    

(14.28)  

 
 
 
 

 

Figure 14.4 a) transient load and b) response of the system 

Figure 14.5 Response of system to a unit impulse applied at time  

                                                           
* The word convolution is a term that has been coined by mathematicians. The term is 
akin to the word “folding” which is actually the term used in German (Faltung). It refers 
to the time integration of a product. 
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The integral can be approximated numerically using the Convolution Quadrature 
Method (CQM) first introduced by Lubich6 

(14.29)  

where t  is a time step so that t n t , ˆ( )h s  is the Laplace transform7 of h  and nw are 
the convolution quadrature weights. 

Figure 14.6 Load cases considered for the derivation of the integral equation 

The reciprocal theorem in dynamics specifies a relationship between two dynamic 
states. It is an extension of the reciprocal theorem by Betti (a rigorous proof is given by 
Wheeler8). We apply the reciprocal theorem to the scalar wave problem and two distinct 
dynamical “load” cases. The first load case is the one, the solution of which we want to 
obtain at a time instant t. The second load case is the case where a unit impulse is 
applied at time (Figure 14.6). The reciprocal theorem gives 

(14.30)  
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or rearranging and introducing the above notation for the time integrals 

(14.31)  

where  

(14.32)  

Taking the limiting value as P approaches the boundary 

(14.33)  

where ĉ  is the jump term arising from taking the limit as Q approaches the boundary. 

14.3.3 Numerical implementation 

For the solution of the integral equation we have to discretise the problem in space as for 
the static case. Since the numerical integration using the CQM previously introduced is 
quite complex because it involves a Laplace transform we propose an alternative 
approach.  

Figure 14.7 Discretisation in time with a constant shape function 
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We discretise the total time into arbitrary small steps of size t , then we have 

(14.34)  

where ( )nN t  are shape functions in time and nu  and nq  are the pressure and pressure 
gradient at time step n (at time nt n t ). If we assume the variation of u and q to be 
constant within one time step t , then the convolution integrals may be evaluated 
analytically. In this case the shape functions are 

(14.35)  

where H is the Heaviside function. The time interpolation is shown in Figure 14.7.  
Substituting (14.34) into (14.33) we obtain the integral equation discretised in time 

and written for the time Nt  (time step N): 

(14.36)  

The convolution integrals are approximated by 

(14.37)  

and 

(14.38)  

where 

(14.39)  

This means that only the fundamental solutions are inside the integrals and these may 
be integrated analytically3. 

The time discretised integral equation now becomes 

(14.40)  
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or taking the sum outside the integral 

(14.41)  

For each time step N we get an integral equation. In a well posed boundary value 
problem either u or q is specified on the boundary and the values of u and q are known at 
the beginning of the analysis (t=0). Furthermore the integral equation (11.41) must be 
satisfied for any source point P. If we ensure the satisfaction at a discrete number of 
points Pi then we can get for each time step N as many equations that are necessary to 
compute the unknowns. Similar to static problems we specify the points Pi to be the 
node points of the boundary element mesh (point collocation). To solve the integral 
equation we introduce the discretisation in space of Chapter 3: 

(14.42)  

where ,n nu q are pressure and pressure gradients at Q; ,e e
nj nju q  refer to values of u and q 

at node j of element e at time step n and Nj are shape functions. Substitution of (14.42) 
into (14.41) gives 

(14.43)  

where 

(14.44)  

and 

(14.45)  

J is the Jacobian and E is the number of Elements. 
If we define vectors nu and nq  to contain all nodal values of pressure and 

pressure gradient at the nodes at time increment N we can rewrite Equation (14.43) in 
matrix form 

(14.46)  
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If we solve for time step N, the results for the previous time steps are known and can 
be put to the right hand side: 

(14.47)  

or 

(14.48)  

where the vector F contains the effect of the time history. The coefficients of F are 

(14.49)  

14.4 ELASTODYNAMICS 

We now turn our attention to general problems in elasticity. The differential equation for 
dynamics in the frequency domain can be written in matrix form as: 

(14.50)  

where b is a body force vector 

(14.51)  
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 is the mass density and G,  are elastic constants introduced in Chapter 4 and  is the 
frequency.   

The differential equation for dynamics in the time domain can be written in matrix 
form as: 

(14.53)  

where the acceleration vector is defined as 

(14.54)  

Equation (14.51) can be re-written in terms of pressure and shear velocities, 1 2,c c  

(14.55)  

where 2 2
1 2( 2 ) /   ,   /c G c G . 

14.4.1 Fundamental solutions 

Fundamental solutions are obtained for a concentrated impulse applied at P at time i.e. 
for the case of a body force of 

(14.56)  

where  is the Dirac Delta function introduced earlier. 
For 3-D problems the fundamental solution for the displacement is given by: 

(14.57)  

14.4.2 Boundary integral equations 

The integral equation is obtained in a similar way as for the scalar wave equation except 
that vectors u and t are used for the displacements and tractions. 
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The integral equation is given by 

(14.58)  

where U and T are matrices containing the fundamental solutions. 

14.4.3 Numerical implementation 

For the solution of the integral equation we discretise the problem in time as well as in 
space as for the scalar wave equation. If we discretise the total time into equal (arbitrary 
small) steps of size t  then we have 

(14.59)  

Following the steps for the scalar problem and assuming a constant shape function we 
obtain the discretised integral equation for time step N as 

(14.60)  

where 
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Introducing the space discretisation 

(14.62)  

where ,n nu t are displacements and tractions at Q, ,e e
nj nju t refer to values of u and t at 

node j of element e at time step n and jN  are shape functions. Substitution of (14.62) 
into (14.60) gives 
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and 

(14.65)  

where J  is the Jacobian. 

If we define vectors nu and nt  to contain all nodal values of displacements and 
tractions at the nodes at time increment N we have 

(14.66)  

or 

(14.67)  

where the vector F contains the effect of the time history: 

(14.68)  

14.5 MULTIPLE REGIONS 

The approach used for the dynamic analysis with multiple regions is very similar to the 
one introduced for statics in Chapter 11. The difference is that instead of applying unit 
Dirichlet boundary conditions at the interface between regions we apply unit impulses. 
We only consider a fully coupled problem to simplify the explanation that we present 
here. The details of a partially coupled analysis are given by Pereira et al.9 

Figure 14.8 Example for explaining the analysis of multiple regions 
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Consider the problem of an inclusion (with different properties) in an infinite domain 
in Figure 14.8. We separate the regions and show the displacements and tractions. 
Between the regions the conditions of equilibrium and compatibility must be satisfied 

(14.69)  

where ,I IIt t are interface tractions for region I and II and 0t are applied tractions. 

,I IIu u are the interface displacements. We attempt to derive a relationship between 
the tractions and the displacements at the interface between each region.   

Figure 14.9 Separated regions 

For this we consider each region separately and apply a (transient) unit displacement 
at each node while keeping the other displacements zero. We use the concept of the 
Duhamel integral introduced earlier to obtain the transient tractions due to transient unit 
displacements. If we do this then we obtain the following relationship between tractions 
and displacements for region i 

(14.70)  

where ( , )itK is a unit displacement impulse response matrix whose coefficients 
represent the transient traction components due to an impulsive unit displacement 

( )t applied at time . Matrix ( , )itK can be computed in the Laplace domain using 
the CQM introduced above. This is discussed in detail by Pereira10.  

To solve the fully coupled problem the time may be divided into n time steps t . 
Then Equation (14.70) may be written for time step n as 
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where ( )i n tK is a “dynamic stiffness matrix” of region i similar to the one obtained in 
Chapter 11. Introducing the compatibility and equilibrium equations (14.69) we obtain 
the equations for the solution of interface displacements at time n t 9 

(14.72)  

14.6 EXAMPLES 

Here we show two examples involving multiple regions. The first is meant to ascertain 
the accuracy of the method, the second to show a practical application. 

14.6.1 Test example 

A standard benchmark example commonly used to validate transient dynamic 
formulations is the wave propagation in a rod, as shown in Figure 14.10. The material 
properties of the rod are E = 2.1x1011 N/m2, = 0 and = 7850 kg/m3 (steel). The road 
is divided into two regions. A Heaviside compression load of magnitude 1 kN/m2 is 
applied on the free end of the rod. 

 

Figure 14.10   Step function excitation of a free-fixed steel rod 

In the following, all results are normalized by their corresponding static values, i.e., 
the displacements by su 1.4218x10 11m and the tractions by 1st kN/m2, respectively. 
The displacements at points A and B (free end and coupled interface) and the traction in 
longitudinal direction at the fixed end are plotted versus time in Figure 14.11 and Figure 
14.12, respectively. These results are obtained for different time step sizes. Taking as 
reference a parameter  = c t / r, where r is the element length, it is possible to identify 
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a range of values that depend on the time step size where the results are satisfactory i.e., 
stable and accurate. It can be observed, that the results are in good agreement with the 
analytic solution and with the numerical results for single region problem published for 
example by Schanz11. Excellent agreement with the analytic solution is obtained for the 
time step  = 0.25, however the results for  = 0.10 are unstable. The larger time steps 
(e.g.,  = 1.50) tend to smooth the results due to larger numerical damping and introduce 
some phase shift. Nevertheless, the results for all time step sizes inside the interval 
0.20< <1.50 are satisfactory. 
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Figure 14.11    Longitudinal normalized displacements at nodes A and B. 

Figure 14.12  Longitudinal normalized tractions at the fixed end (node C). 
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14.6.2 Practical application 

This is a practical application in tunnelling. The tunnel depicted in Figure 14.13 is 
located in a piecewise heterogeneous rock mass with two different properties. The 
loading is a suddenly applied point load of magnitude F at the tunnel face. 

Figure 14.13   Problem statement 

Figure 14.14  Boundary element mesh 
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The boundary element mesh consists of 2 regions and linear boundary elements, as 
shown in Figure 14.14. Results of the analysis are shown in Figure 14.15, for two 
different time steps and values of ratios of Young’s modulus. 

 

Figure 14.15   Contours of absolute displacement for two different ratios of modulus and times 
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15 
Nonlinear Problems  

(Everything flows) 
Aristotle 

 

15.1 INTRODUCTION 

So far we have discussed problems where there is a linear relationship between applied 
loading and displacement, or between applied flow and temperature/potential. The 
system of equations  

(15.1)  

corresponds to a linear analysis, if {u} is a linear function of {F}. 
The linearity of (15.1) is only guaranteed if certain assumptions are made when 

deriving the system of equations. These assumptions are: 
 

1. The relationships between flux and temperature/potential or stresses and strains are 
linear 

2. Matrix T is not affected by changes in geometry of the boundary that occurs during 
loading 

3. Boundary conditions do not change during loading 
 

Indeed, we have implicitly relied on these assumptions to be true in all our previous 
derivations of the theory.  

An example where the first assumption is violated is elasto- or visco-plastic material 
behaviour (this is generally referred to as material nonlinear behaviour). The second one 
is violated if displacements significantly change the boundary shape (large displacement 
problems). Finally, the third no longer holds true for contact problems, where either the 

FuT
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Dirichlet boundary or the interface conditions between regions change during loading, 
thereby affecting the assembly of T . An example of an elastic sphere on a rigid 
surface, shown in Figure 15.1. After deformation two nodes, indicated by dark circles 
may change from Neuman to Dirichlet boundary condition. 

 

Figure 15.1 Example of nonlinear analysis: contact problem 

If one of the above-mentioned assumptions are not satisfied, then the relationship 
between {u} and {F} will become nonlinear. In a nonlinear analysis matrix T becomes 
itself a function of the unknown vector {u}. It is therefore not possible to solve the 
system of equations directly.  

In this chapter we shall discuss solution methods for nonlinear problems starting with 
the general solution process. We will then discuss two different types of nonlinear 
behaviour, plasticity and contact problems. We shall see that solution methods for these 
types of problems are very similar to the ones employed by the finite element method. 
We will also find that the BEM is well suited to deal with contact problems because 
boundary tractions are used as primary unknown. 

15.2 GENERAL SOLUTION PROCEDURE 

The method proposed is to first find a solution with the assumption that the conditions 
for linearity are satisfied, i.e. we solve 

(15.2)  
00 0T x F

Original Deformed
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where 0T is the “linear” coefficient matrix. With solution vector 0x (which contains 
either displacements or tractions depending on boundary conditions) a check is then 
made to see whether all linearity assumptions have been satisfied, for example, we may 
check if the internal stresses (computed by post-processing) violate any yield condition, 
or if boundary conditions have changed because of deformations. If any one of these 
“linearity” conditions has not been satisfied this means that matrix T has changed 
during loading, i.e, instead of equation (15.2) we have  

(15.3)  

Here 1T is the changed matrix, also referred to as “tangent” matrix, and 1R is a 
residual vector. Therefore the solution has to be corrected. 

We compute the first correction to {x}, x as  

(15.4)  

where the overdot means increment and proceed with these corrections until the residual 
vector {R} approaches zero.  

Final displacements/tractions are obtained by summing all corrections: 

(15.5)  

where N is the number of iterations to achieve convergence. The solution is assumed to 
have converged if the norm of the current residual vector is much smaller than the first 
residual vector, i.e., when 

(15.6)  

 where Tol is a specified tolerance. 
 Alternative to the system of equations (15.4) we may use the “linear” matrix 

throughout the iteration, that is, equation (15.4) is modified to 

(15.7)  

This will obviously result in slower convergence but will save us computing a new 
left hand side and a new solution of the system of equations, only a re-solution with a 
new right hand side is required. This will be the approach that we will consider here. 

0 1 Nx x x x

0 11T x F R

1 11T x R

1 10T x R

TolN

1R
R
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15.3 PLASTICITY 

There are two ways in which nonlinear material behaviour may be considered: elasto-
plasticity and visco-plasticity1. Regardless of the method used, the aim is to obtain initial 
strains or stresses. Using the procedures outlined in Chapter 13 residuals {R} may be 
computed directly from initial stresses. 

15.3.1 Elasto-plasticity  

In the theory of elasto-plasticity we define a yield function 0....),,( 21 CCF  which 
specifies a limiting value of stress (C1, C2, etc., are plastic material parameters). 
Stress states can only be such that F is negative (elastic states) or zero (plastic states). 
Positive values of F are not allowed. Here we restrict the discussion to materials that 
exhibit no hardening, although it is clear that the numerical procedures are applicable to 
hardening materials also. 

Figure 15.2 Mohr-Coulomb yield surface showing elastic and inadmissible stress state 

A popular yield function for soil and rock material is the Mohr-Coulomb2 condition 
which can be expressed as a surface in principal stress space by 

(15.8)  1 3 1 3( ) sin cos 0
2 2

F c

n-1)
 

( )n
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where 31  and are maximum and minimum principal stresses, c is cohesion and  the 
angle of friction. The yield function is plotted as a surface in the principal stress space in 
Figure 15.2. We assume that the loading is applied in increments. After the solution it 
may occur that stresses that were in an elastic state at a previous load increment n-1 (i.e. 
F < 0) change to an inadmissible state (F> 0) at the current increment n (Figure 15.2).  
 Therefore, this stress state has to be corrected back to the yield surface. To do this we 
have to isolate the plastic and elastic components. If the state of stress is such that F( ) < 
0, then theory of elasticity governs the relationship between stress and strain, i.e. (see 
Chapter 4) 

(15.9)   

For stress states where F( ) = 0, elastic strains e as well as plastic strains p may be 
present, i.e. the total strain , , consists of two parts3 

(15.10)  

For this case the stress-strain law can only be written incrementally as 

(15.11)  

where epD is the elasto-plastic constitutive matrix and d  is the total strain increment. 

To determine epD we must determine the plastic strain increment. This is  

(15.12)   

where Q is a flow function whose definition is similar to F. If Q F then this is known 
as associated flow rule. On the yield surface (F=0) we can write for the stress increment 

(15.13)  

The stress increment can therefore be split into two parts (one elastic and one plastic) 

(15.14)  

The condition that 0F is not allowed means that for any increment d the change in F 
must be zero, i.e. 

(15.15)  
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Substitution of (15.13) into (15.15) gives after some algebra 

(15.16)  

Substituting of (15.16) into (15.13) gives for the plastic stress increment 

(15.17)  

where 

(15.18)  

This relationship only holds true if the stress state is actually on the yield surface (F=0). 
In the case where during a load increment a point goes from an elastic to a plastic state 
and violates the yield condition in the process (i.e. F>0) then the plastic stress increment 
has to be related to the plastic strain increment rather than the total strain increment.  
 

Figure 15.3 Determination of plastic part of the strain increment  

Using a simple linear approximation the plastic strain increment is computed by (Figure 
15.3): 

(15.19)  

where has been substituted for d to indicate that the increments are no longer 
infinitesimally small and 

(15.20)  
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Table 15.1 gives an overview of the factor r for different situations of the stress state at 
the beginning (n-1) and the end of the load increment (n). 

Table 15.1 Values of r for various cases 

Case n-1 n r 
1 F < 0 F < 0 0.0 
2 F < 0 F > 0 Eq. (15.20) 
3 F = 0 F > 0 1.0 
4 F = 0 F < 0 0.0 

 
After a load increment the stresses have been wrongly computed if they are outside 

the yield surface (F>0). They should have to be computed according to 

(15.21)  

where 

(15.22)  

Therefore the stresses have to be corrected by 

(15.23)  

    This stress can be assumed as an “initial stress” generated in the domain. Equation 
(15.20) is only approximate since a linear variation has been used.  Therefore, when 
checking the stress state after the correction applied it will not lie exactly on the yield 
surface. The discussion of so called “return algorithms” to ensure this are beyond the 
scope of this text and the reader is referred to the relevant literature on this subject4. 

15.3.2 Visco-plasticity 

The concept of visco-plasticity allows F( ) to be greater than zero5. A positive yield 
function simply means that the stress state has a higher plastic potential. The stresses are 
then allowed to creep back to a lower plastic potential (Figure 15.4) and eventually to the 
yield surface. This takes into consideration the fact that the material requires time to 
“react” to changes in stress and also allows the consideration of creep behaviour. 

The strain rate, at which “creeping” takes place, is assumed to be proportional to the 
plastic potential. That is 

(15.24)  
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(15.25)  

 
In the above equations  is a material parameter describing its time dependent 

behaviour (viscosity).  
A visco-plastic analysis proceeds in time steps and a visco-plastic strain increment is 

computed at each time step by:  

(15.26)  

where t is a time increment. The initial stresses for the computation of the residual are  

(15.27)  

The time increment t cannot be chosen freely but has to satisfy certain stability 
conditions to prevent oscillations5. 

Figure 15.4 Explanation of the concept of visco-plasticity 
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15.3.3 Method of solution 

For the solution of problems in plasticity we use a similar method as in Finite Elements 
known as the “initial stress” method. In this method we compute initial stresses as 
outlined in the previous section and apply this as loading. For this we have to amend the 
discretisation of the problem. In addition to surface elements we require the specification 
of volume cells in the parts of the domain that are likely to yield, for the integration of 
initial stresses. These volume cells have been discussed in Chapter 3. Figure 15.5 shows 
examples of discretisations for a cantilever beam and a circular hole in an infinite 
domain. The discretisations actually look almost like finite element meshes and it could 
be argued that one might as well use finite elements for this problem.  

However, there are subtle differences: 
 There is no requirement of continuity, i.e. elements do not need to connect to each 

other as finite elements need. 

 There are no additional unknown associated with the mesh of volume cells. 
Therefore the system of equations does not increase in size. 

 The representation of stress is still more accurate than with the FEM. 

 The mesh of cells only needs to cover zones where plastic behaviour is expected. 
 

Figure 15.5 Volume cells for the example of a cantilever beam and a circular hole 

 
The iterative process is described in the structure chart in Fig 15.6. First we may 

divide the total applied load into increments to optimise the number of iterations. Then 
we solve for the unknown displacements/tractions with the applied loading. With the 
boundary results we compute the stresses at each cell node and check the yield 
condition. If F>0 is detected then the “initial stress” is computed as explained 
previously. The residual vector R is computed as will be explained later and a new 
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solution mx computed and accumulated. The iterations proceed until the norm of the 
residual vanishes. 

Figure 15.6 Structure chart for plasticity 
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15.3.4 Calculation of residual {R} 

After the initial (linear) analysis the system of equations that has to be solved is 

(15.28)  

where the components of the residual vector are given by 

(15.29)  

and 

(15.30)  

where C is the number of Cells, N is the number of cell nodes and 0
c

n is the “initial 
stress” increment computed at node n of cell c.  

The evaluation of integrals c
niE  is similar to the evaluation of c

ni , that has been 

discussed in section 13.7. For plane problems the expression for c
niE  in intrinsic 

coordinates is 

(15.31)  

Using Gauss Quadrature the formula can be replaced by 

(15.32)  

where M and K are the number of integration points in  and  directions, respectively.  
 
For 3D problems we have 

(15.33)  

and the integration formula is 

(15.34)  
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with L, M and K being the number of integration points in  ,   and  directions.  
The matrix E is given by 

(15.35)  

with the coefficients 

(15.36)  

where x,y,z may be substituted for i,j,k and the constants are given in Table 15.2 

Table 15.2 Constants for fundamental solution E 

 Plane strain Plane stress 3-D 
n 1 1 2 
C 1/8 G (1+ G 1/16 G  
C3 1-2  (1-  1-2  
C4 2  3 

The above formulae are valid for the case where none of the cell nodes is the 
collocation point. The special case where one of the cell nodes coincides with a 
collocation point, Pi, the kernel c

niE  tends to infinity with o(1/r) for 2-D problems and 
o(1/r2) for 3-D problems. To evaluate the volume integral for this case we subdivide a 
cell into sub cells, as shown in Figure 15.7. 

Figure 15.7 Cell subdivision for the case where cell point is a collocation point (plane 
problems) 
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For 2-D problems the subdivision is carried out in exactly the same way as for the 
evaluation of the boundary integrals for 3-D problems, i.e., the square domain is mapped 
into triangular domains where the apex of the triangle is located at Pi (see section 6.3.7). 
Equation (15.31) is rewritten as 

(15.37)  

where sc is the number of sub-cells, which is equal to 2 if the collocation point Pi is at a 
cell corner node, or 3 if it is a middle node of the cell. The computation of the Jacobian 
J  of the transformation from sub element coordinates , to intrinsic coordinates 

, is explained in 6.3.7. Since the Jacobian of this transformation tends to zero with 
o(r) as point Pi is approached, the singularity is cancelled out. 

Figure 15.8 Subdivision method for computing singular volume integrals (3-D problems). 

For three-dimensional problems, if one of the nodes of the cell is a collocation point, 
a subdivision, analogous to the 2-D case, into tetrahedral sub-cells with locally defined 
co-ordinate, as shown in Figure 15.8, is used. The integral over the cell is expressed as  

(15.38)  
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where sc is the number of sub-cells which equals to 3 for collocation point at a corner 
node, and 4 for collocation point at a mid-node. J is the Jacobian of the transformation 
from ,,  to ,,  coordinates.  

This transformation is given by 

(15.39)  

Where l(n) is an array that indicates the local number of node l. For the sub-cell 2 in 
Figure 15.8  for example ( ) (4,1,2,3,8)l n . More details can be found in [6]. 
 The shape functions are defined as 

(15.40)  

The Jacobian is defined as 

(15.41)  

where 

(15.42)  

The Jacobian tends to zero with o(r2) thereby cancelling out the singularity. Having 
computed the residual R due to an initial stress state 0 we solve the problem for the 

boundary unknowns x . The next step is to compute stress increments at the cell and 
boundary nodes. 
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15.3.5 Computation of stresses at cell nodes 

For computation of the internal stress results the following equation is used7,8  

(15.43)  

which is derived in the same way as Eq. (13.59). 
The coefficients of Ê  are given by 

(15.44)  

and those of F by 

(15.45)  

where the constants are given in Table 15.3. 

Table 15.3 Constants for fundamental solution Ê  

 Plane strain Plane stress 3-D 
n 1 1 2 
C2 -1/4  -(1+  -1/8  
C3 1-2  (1-  1-2  
C4 2  3 
C12 1 1 7-5  
C13 1-4  (1-3 2-10  
C18 -1/8(1-  - /8 -1/30(1-  

The discretized form of (15.43) is 

(15.46)  
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The integrals e
nR  and e

nS  are evaluated as explained in Chapter 9. The integrals 
ˆ c

nE  can be evaluated using Gauss Quadrature as explained previously if the point aP is 
not one of the cell nodes. If Pa coincides with the nodes of cells, then the integrand tends 
to infinity with o(r2) for 2-D and o(r3) for 3-D problems and special attention has to be 
given to the evaluation of ˆ c

nE . As explained in Chapter 13 for the case with initial 
stresses a small zone of exclusion is assumed around aP and this results in the “free 

term” 0 aPF . Now, however we need to evaluate the strongly singular integral ˆ c
nE  

over the cells excluding the spherical region with radius . 
 

Figure 15.9 Polar coordinates for integration with a spherical region of exclusion 
 

For this the singularity isolation method9 is used. The singularity is isolated be rewriting 
the strongly singular domain integral in the form 

(15.47)  

The first integral on the right had side of Eq. (15.47) is weakly singular and can be 
integrated numerically using the cell subdivision technique. The strong singularity has 
been moved to the second integral and can be treated semi-analytically. For this the 
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shown in Figure 15.9. Using a polar coordinate system with the origin at aP , the volume 
integral over the domain is rewritten as  

(15.48)  

where Ê̂  is the part of the kernel which is not a function of r (i.e., term within square 
brackets in equation (15.43)). Therefore the singularity is isolated and after some 
transformation9 the volume integral can be replaced by a surface integral  

(15.49)  

where n is the vector normal to cS , the boundary of the cell surrounding the point aP . 

The strong singularity in the kernel Ê is now isolated and the numerical evaluation with 
Gauss Quadrature can be performed by 

(15.50)  

where  

(15.51)  

sc is the number of cell surfaces as indicated in Fig. 15.10 and SJ  is the Jacobian of the 
transformation of coordinates over the cell boundaries (see section 3.9).  
The implementation in 2-D follows the same procedure. 

15.3.6 Computation of Boundary Stress 

The method presented in the previous section for determining the stresses at internal 
points can not be used for points exactly on the boundary due to the higher singularity of 
the integral. We have already presented an alternative method for computing the stress 
tensor on the boundary itself using the variations of the displacements and tractions over 
boundary elements in Chapter 9. All that is required here is to modify this procedure by 
taking into consideration the effect of the initial stresses.  
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The stresses in the local directions ,x y  (tangential and normal to the boundary) are 
given by 

(15.52)   

Figure 15.10 Integration over cell boundaries 

for plane strain where 0x and 0 y are the initial stresses in local directions. For plane 

stress we simply substitute  with  and E with E where 

(15.53)  

and set 0z . In the 3D case, we have 

(15.54)   
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(15.55)  

The stresses can be transformed to the global coordinate system using (4.37) or 
(4.39). Indeed the same method may be also used to compute results inside cells. This is 
much simpler than the method proposed above but also less accurate. The advantage is 
that the Kernels involved have a much lower singularity and no elaborate schemes are 
required. Using this method first the displacements are computed at the cell nodes. The 
variation over a cell is then approximated by the shape functions 

(15.56)  

The strains inside the cell are computed by 

(15.57)  

The stresses are computed according to Eq. (15.52) and (15.54) but there is no need 
to use local coordinates and a transformation. 

15.3.7 Example  

To illustrate the application of the method we present the analysis of a thick-walled 
cylinder subjected to internal pressure under plane strain conditions. The Von Mises 
yield function is used and a linear elastic-ideal plastic material behaviour is considered. 
The material parameters used are: 

 
Youngs Modulus E= 12000 MPa 
Poisson’s ratio v= 0.3 
yield stress Y= 24 MPa 

 
The problem dimensions and loading are shown in Figure 15.11. Due to the 

symmetry of the problem, only a quarter of the cylinder is analyzed. The mesh used 
consists of 36 quadratic boundary elements and 72 quadratic volume cells. The solution 
proceeds in increments where, after each iteration, the yield condition is checked at all 
the nodes of the cells. If the residual is sufficiently small, convergence is achieved and 
the analysis is stopped. After applying the full load we can notice that all the points 
belonging to the first row of the cell are plastic, however the plastic zone goes slightly 
bit into the second row of the cells. 

Some results of the nonlinear analysis are presented. Figure 15.12 shows a plot of the 
tangential stress distribution. Comparing the boundary element results with the results 
from the analytical solution10 we can observe very good agreement. 
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Figure 15.11 Example problem and discretisation used  

 
Figure 15.12 Tangential stress distribution in a thick-walled cylinder 
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15.4 CONTACT PROBLEMS 

The second type of nonlinear problem we will discuss here is where boundary conditions 
change during loading. An example of a contact problem is where interface conditions 
between regions change. A practical application of this is delamination/slip and crack 
propagation. For these type of problems we have a condition, similar to the yield 
condition discussed previously, which determines when the continuity conditions for an 
interface no longer apply. In the case of crack propagation, for example, we may have a 
condition based on tensile strength of the material which determines when nodes 
separate. For problems with joints we may have a criterion based on the angle of friction 
and cohesion which determines when slip occurs. 

In our discussion here we will concentrate on relatively simple problems: ones where 
contact initially exists and where it is lost due to some conditions being violated. We will 
see that the theory we will develop11 can be applied to delamination and joint problems. 

15.4.1 Method of analysis 

We start with the multi-region method developed in Chapter 10. Consider the beam in 
Figure 15.13 consisting of two regions. 

Figure 15.13 Cantilever beam with interface 

We recall Equation 11.27 that can be used to compute the tractions at the 
interface ct . For regions I and II we have  

(15.58)  

where cot is a vector of tractions assuming fixed interface displacements, K is the 
stiffness matrix of the interface nodes and cu is a vector containing displacements at 
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the interface nodes. Since the beam is fixed on the left our problem has only 2 interface 
unknowns. 

For contact problems it is convenient to work with components in direction normal to 
interface nt and in a direction tangential to interface st instead of global components 

yx tt  and . Also, to separate delamination and slip it is required that the local components 
be used for the displacements as well. The relationship between global and local 
components is given by: 

(15.59)  

where Tg is the transformation matrix, as discussed in Chapter 3 and 

(15.60)  

In terms of local components equations (13.58) are rewritten as 

(15.61)  

where NK  is the transformed stiffness matrix , i.e., 

(15.62)  

The conditions at the interface normally stipulate that the equations of equilibrium 
and compatibility have to be satisfied , i.e., 

(15.63)  

We may now define conditions for compatibility. For example the condition  

(15.64)  

stipulates that the traction normal to the interface has to be smaller than or, at most, 
equal to the tensile strength, T, of the material. If tn has reached T then delamination 
occurs, that is, the compatibility condition is no longer applied to that point in the 
direction normal to the interface.  

Analogous to plasticity the yield function can be written as 

(15.65)  

Another condition may be that the shear traction is limited by 

(15.66)  
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where c is the cohesion and  the angle of friction. If tantct ns slip occurs, that is, 
the compatibility condition is no longer applied to that point in the direction tangential to 
the interface.  

The corresponding yield function is written as: 

(15.67)  

The consequence is that when either F1 or F2 is zero the assembly is changed: Instead 
of adding all stiffness coefficients we assemble the corresponding stiffness coefficients 
for region I and II into different locations in K.  

Consider, for example, the problem in Figure 15.13. The equations for compatibility 
at node 1 are (since only one node is involved we have left out the subscript denoting the 
local (region) node number):  

(15.68)  

With the vector of interface unknown only involving the ones at node 1 

(15.69)  

For the example with only one interface node we may write for the region stiffness 
matrices (see 11.2.2.) 

(15.70)  

and the following assembled interface stiffness matrix is obtained 

(15.71)  

If F1 =0 then the normal displacement and - as a consequence – also the shear 
displacement of region I are independent of region II. The vector of interface unknown is 
expanded to 

(15.72)  
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And the stiffness matrix is defined as 

(15.73)  

If F2 =0 then slip occurs and compatibility does not apply to the shear displacement. 
The vector of interface unknown is given by 

(15.74)  

In the stiffness matrix only the terms associated with the normal components are 
added 

(15.75)  

15.4.2 Solution procedure 

Only in exceptional cases will it occur that a point is reached when the yield functions 
are exactly 0. As with plasticity we will have the condition that if the yield function is 
checked after the application of a load increment with traction t we find that 
either 0or    0 21 tt FF . In the first case this means that the material has been 
stressed beyond the tensile strength, in the second that the friction law has been violated.  

In the first instance the excessive stress, i.e., the one which caused the yield condition 
to be violated is computed by 

(15.76)  
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whereas in the second case  

(15.77)  

We now propose the following solution procedure: 
 

1. The system is solved in the normal way using the interface compatibility and 
equilibrium conditions. 

2. The yield conditions F1 and F2 are computed at each interface node. If both are zero 
then the analysis is finished. 

3. If one of the yield conditions is greater than zero residual tractions are computed 
according to equations (15.76) or (15.77). 

4. The interface matrix K is re-assembled taking into consideration the relaxed 
continuity conditions for interface points which are separating or slipping. 

5. The system is solved with the residual tractions applied as loading in the opposite 
direction. 

6. Points 2 to 5 are repeated until the yield conditions are satisfied at all interface 
nodes. 

 
The extension of the method to three dimensions is straightforward. In 3-D we have 

two instead of one shear traction ( 11  and ss tt ) and when we check the yield condition we 
have to work with a resultant shear traction. This is given by 

(15.78)  

15.4.3 Example of application 

As an example of application we present an analysis of the delamination of a cantilever 
beam. The beam consists of two finite regions described by quadratic boundary 
elements, as shown in Figure 15.14. At the interface the tensile strength of the material 
was assumed to be zero. Shear loading is applied to the bottom half of the beam as 
shown. Figure 15.15 shows the distribution of normal stress at the interface after the 
linear analysis. It can be clearly seen that the yield condition for tension is violated. 
Figure 15.16 shows that after iteration step 1, delamination starts as a consequence. 
Further examples of the application of the method to the modelling of faulted rock can 
be found in [12,13]. The method can also be applied to the simulation of dynamic crack 
propagation14. 
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Figure 15.14 Mesh used for cantilever analysis  

Figure 15.15  Distribution of normal stress at the interface 

Figure 15.16   Displaced shape of beam after first iteration 
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15.5 CONCLUSIONS 

In this chapter we attempted to show that the treatment of nonlinear problems is almost 
as straightforward as with the FEM. Only two types of nonlinear problems have been 
discussed: plasticity and contact problems. In the first type, additional volume 
discretisation is needed and the BEM looses a bit of its attraction. However, it was 
pointed out that the internal cell discretisation does not add to the number of unknown 
and that all the advantages of the BEM are still retained. It must be admitted, however, 
that the effort in programming, especially dealing with hyper-singular integrations, is 
rather involved.  

We have also found that for contact problems the BEM is better suited than the FEM 
because the interface stresses required for checking the yield conditions are directly 
obtained from the solution. In the FEM these would have to be determined by 
differentiation of the computed displacement field. The purpose of this chapter has been 
to demonstrate that any type of nonlinear problem can be solved with the BEM. 
However, the computer implementation has not been discussed in any detail here 
because it would be beyond the scope of an introductory text.  
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16 
Coupled Boundary Element/ 
Finite Element Analysis 
 Marriage à la mode 

 O. C. Zienkiewicz 

 
 
 

16.1 INTRODUCTION 

In the introduction we compared the boundary element method (BEM) with its main 
“competitor” the finite element method (FEM). Although in the specific example the 
impression was given that a BEM analysis would be superior to the FEM this was not 
meant to imply that this is always the case. In a famous paper written more than two 
decades ago1, O.C. Zienkiewicz pointed out that benefits could be gained by combining 
the two methods of analysis, thereby gaining the “best of both worlds”. This was at a 
time when BEM protagonists claimed that the BE could do everything better and there 
was almost no collaboration between the two groups. Zienkiewicz, in his inimitable 
style, chose the title “Marriage a la mode” which shows a double meaning: marriage a la 
mode means a marriage of convenience, not love, but also there is a double meaning 
with the word mode (displacement mode =shape function). 

There are several reasons why one would want to consider the combination of the two 
methods:  
 
 Some problems, for example those involving highly heterogeneous material, require 

additional effort to solve with the BEM. 

 For some problems no fundamental solutions of the governing differential equations 
can be found or in certain cases the solutions are extremely complex. 
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 Users familiar and happy with a FEM package would want to upgrade the program 
capabilities by including, for example, an efficient modelling of an infinite domain. 
Many well known commercial packages have capabilities for the specification of a 
user defined element stiffness, so the implementation of the Subroutine 
Stiffness_BEM introduced in Chapter 11 would be fairly straight forward. 

 
As will be seen here, the coupling of the FEM and BEM is not very difficult. Indeed, 

we have already set the foundation for this in Chapter 11, where we explained how the 
“stiffness matrix” of a region can be computed. In essence, for coupling we have to find 
a way of harmonising the differences between the two methods. The main difference is 
that nodal tractions are used as primary unknown in the BEM, whereas nodal point 
forces are used in the FEM. The “stiffness matrix” obtained for the BE region turned out 
to be unsymmetrical and this may cause some problems because symmetric solvers are 
usually employed in the FEM. Therefore we will also show how the BEM stiffness 
matrix can be “symmetrised”. 

16.2 COUPLING THEORY 

There are basically two approaches to coupling the boundary and finite element 
methods. In the first approach, the BE region is treated as a large finite element and its 
stiffness is computed and assembled into the global stiffness matrix. In the second 
approach, finite elements are treated as equivalent BE regions and their “stiffness 
matrix” is determined and assembled, as explained in Chapter 10 for multiple regions. 
The choice of coupling method depends mainly on the software available for the 
implementation, i.e., if boundary element capabilities are to be added to a finite element 
program, or finite element capabilities to a boundary element one. In the following we 
will discuss the theoretical basis and implementation of each approach. The coupling 
theory is discussed using problems in elasticity. However, as demonstrated throughout 
this book, potential problems can be considered in an analogous way. 

16.2.1 Coupling to finite elements2 

The FEM leads to a system of simultaneous equations which relate displacements at all 
the nodes to nodal forces. In the BEM, on the other hand, a relationship between nodal 
displacements and nodal tractions is established. 

Consider the cantilever beam in Figure 16.1 consisting of one BE region connected to 
two finite elements. We refer to the assembly of two finite elements as Finite Element 
Region. Following the procedures in Chapter 11, we can obtain for the BE region a 
relationship between tractions ct and displacements cu at the interface (equation 
11.27)  

(16.1)  
cBEcc uKtt 0
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Figure 16.1 Cantilever beam: discretisation into finite and boundary elements 

In the above, 0ct is a vector containing tractions, if all interface displacements are 
zero, and KBE is the pseudo “stiffness matrix” of the BE region.  

For the example problem we have 

(16.2)  

For the finite element region we can write a relationship between interface 
displacements and interface nodal forces as 

(16.3)  

where 0cF is the force vector at the interface when all interface displacements are zero 
and KFE the condensed stiffness matrix of the finite element region which involves only 
the interface nodes. In equations (16.1) and (16.3) we have already implicitly assumed 
that compatibility conditions are satisfied (i.e., displacements of the BE and FE regions 
are the same at nodes 1-3). Figure 16.2 shows the forces that exist at the interface. For 
the BE region these are boundary stresses, whereas for the FE region these are nodal 
point forces. 
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Figure 16.2 Interface between finite element and boundary regions showing interface forces 

In the first method of coupling we propose that the boundary tractions be converted 
into equivalent nodal point forces.  

Figure 16.3 Calculation of Fx2 by principle of virtual work 

To compute the x-component of the equivalent nodal point force at node 2, for 
example, we apply a unit virtual displacement in the x-direction at that point (Figure 
16.3). For equilibrium to be satisfied, the work done by the tractions must be equal to 
that done by the equivalent nodal forces at node 2. 
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This gives 

(16.4)  

Substituting the interpolation for tractions and displacements  

(16.5)   

(where j is 2 for element 2 and 1 for element 3) we obtain  

(16.6)  

A second equation can be obtained by applying a virtual displacement in y direction. 
Based on this approach a general equation can be derived for computing the equivalent 
nodal point force at a point k  

(16.7)  

where the outer sum is over all boundary elements that connect to point k, the inner sum 
is over all nodes of the element and j is the local number of node k.  

For 2-D problems we have 

(16.8)  

where I is the unit matrix and 

(16.9)  

The integration over elements can be conveniently carried out using numerical 
integration (Gauss Quadrature) with two points. For 2-D problems this gives 

(16.10)  
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whereas for 3-D problems 

(16.11)  

 
Equation (16.1) can now be expressed in terms of equivalent nodal point forces by 

pre-multiplying with N 

(16.12)  

where N is assembled from element contributions e
jnN .  

For the example in Figure 16.1 this matrix is given by 

(16.13)  

Matrix NKBE is now a “true” stiffness matrix in the finite element sense, i.e., one that 
relates nodal point displacements to nodal point forces. However, since KBE is not 
symmetric, this matrix is also unsymmetrical.  

Although there is in principle no problem in dealing with unsymmetrical matrices, 
and they actually occasionally do occur sometimes in nonlinear FEM analysis, some 
solvers used for finite elements are specialised in dealing with symmetric system of 
equations and, in some cases, it may be convenient if all stiffness matrices are 
symmetric. One way of getting a symmetric matrix is to use the principle of minimum 
potential energy to derive the equilibrium equations at the interface3.  

Considering for simplicity only the forces/tractions due to interface displacements we 
can compute the total potential energy at the interface as 

(16.14)  

where the first expression on the left hand side is the work done by the FE region and the 
second is the one done by the BE region. Taking the minimum of potential energy we 
obtain 

(16.15)  

The operation in the square parentheses means that a symmetric stiffness matrix for 
the BE region can be obtained by adding the transpose and by halving the result. This 
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way of stating the equilibrium condition is commonly used in the FEM. However, its 
application here is not quite correct since in the derivation of KBE an interpolation of 
both displacement and traction has been assumed at the interface. It has been shown 
however that acceptable results can be obtained for most applications. 

Having obtained a “true” stiffness matrix for the BE region, the further steps in the 
computation of coupled problems are fairly straightforward. The boundary element 
region is treated as a super (finite) element and its stiffness is assembled in the usual way 
to obtain the system equations.  

Figure 16.4 Fully and partially coupled discretisations 

In the implementation we distinguish between fully coupled and partially coupled 
analyses. In a fully coupled analysis all nodes of the boundary element region are 
connected to the finite element region and no loading is assumed at the interface. An 
example of this type of analysis is the problem of an excavation in an infinite domain 
solved by a coupled discretisation, as shown in Figure 16.4 (a). In this case, the infinite 
boundary element region can be considered as a large finite element which accurately 
represents the effect of the infinite domain. This is a good example of gaining the “best 
of both worlds” as the alternative to the coupled mesh shown would be either to extend 
the finite element region a large distance away and apply artificial boundary conditions 
there or to use infinite finite elements. Both methods require more mesh generation and 
computational effort and result in loss of accuracy. The reason for a coupled analysis 
may be that a thin lining is to be modelled, which is done more efficiently with shell 
elements. In a fully coupled analysis only the stiffness matrix of the BE region needs to 
be determined and pre-multiplied with N in order to change it to a true stiffness matrix 
that can be assembled. 

BE region 

FE region 

BE region 

(a) (b)
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An example of a partially coupled analysis is shown in Figure 16.4 (b). Here we 
consider the additional effect of a ground surface and another (existing) excavation. In a 
partially coupled analysis we first solve the problem with the interface nodes fixed and 
obtain an interface traction vector 0ct . Then we compute the pseudo stiffness matrix of 
the region. Before we assemble our finite element system, both 0ct  and KBE have to be 
pre-multiplied with N, yielding a nodal point force vector as well as a stiffness matrix. 

The only additional programming required for the implementation of a coupled 
analysis capability is the assembly of transformation matrix N and the pre-multiplication 
of the stiffness matrix KBE and, in the case of a partially coupled analysis, the traction 
vector tBE with this matrix. If required, a “symmetrisation” procedure may be applied as 
explained above.  

We develop a function Mtrans which returns the transformation matrix N, an array of 
dimension Ndofsc x Ndofsc, where Ndofsc is the number of interface degrees of 
freedom. The input parameters of this function are number of interface elements, number 
of interface nodes, incidence vector for each element and coordinates of interface nodes. 
 
FUNCTION MTrans(Nelc,Ndofsc,xPc,Incic) 
!----------------------------------------- 
!   Function returns the assembled matrix N 
!   for the conversion of a pseudo stiffnes matrix 
!   into a true stiffness matrix 
!----------------------------------------- 
INTEGER, INTENT (IN):: Nelc      !  No. of interface elements 
INTEGER, INTENT (IN):: Ndofsc    !  No. of interface nodes 
REAL, INTENT (IN)   :: xPc(:,:)  !  Coords of interface nodes 
INTEGER, INTENT (IN):: Incic(:,:) ! Incidences of interface elem 
REAL ::  Mtrans(Ndofsc,Ndofsc) !  Function returns array 
REAL ::  MMjn(Ndof,Ndof) 
REAL ::  Glcor(2),Wi(2),Wie(2),Ni(Nodel),Elcor(Cdim,Nodel)  
REAL ::  xsi,eta,Jac,Weit,Mjn 
INTEGER :: Inci(nodel) 
Mtrans= 0. 
ldim= Cdim - 1 
Mi= 2 ; Ki= 1 ; Wie=1.0 
CALL Gauss_coor(Glcor,Wi,2)  !  2x2 integration 
IF (Cdim == 3) THEN 
 Ki=2 
 Wie= Wi 
END IF 
Interface_elements: & 
DO Nel= 1,Nelc 
  Inci(:)= Incic(nel,:) 
  Elcor(:,:)= xPc(:,Inci(:)) 
 Nodes_of_elem1: & 
 DO j=1,nodel 
  Nodes_of_elem2: & 
  DO n=1,nodel 
    Mjn= 0. 
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   Gauss_points_xsi: & 
   DO m=1,Mi 
    xsi= Glcor(m) 
    Gauss_points_eta: & 
    DO k=1,Ki 
     eta= Glcor(k) 
      Weit= Wi(m)*Wie(k) 
     CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)   
     Jac= Jacobean(xsi,eta,zeta,ldim,nodel,Inci,Elcor 
     Mjn= Mjn + Ni(j)*Ni(n)*Jac*Weit 
    END DO & 
    Gauss_points_eta 
   END DO & 
   Gauss_points_xsi 
    MMjn= 0. 
   DO nd=1,ndof 
    MMjn(nd,nd)= Mjn 
   END DO 
   nrow= (Inci(j)-1)*Ndof+1 

  ncol= (Inci(n)-1)*Ndof+1 
   Mtrans(nrow:,ncol:)= MMjn 
  END DO & 
  Nodes_of_elem2 
 END DO & 
Nodes_of_elem1 
END DO & 
Interface_elements 
RETURN 
END FUNCTION MTrans 

16.2.2 Coupling to boundary elements 

The coupling of finite elements to boundary elements follows the same steps as for the 
multi-region method discussed in Chapter 11. We may consider an assembly of finite 
elements as a boundary element region. Using standard FEM procedures we obtain the 
following system of equations for the finite element region  

(16.16)  

where the notation has been defined at the beginning of this chapter. The equations 
which we get for each region in the BEM are 

(16.17)  

where the roman superscript denotes the region number. 
For coupling the finite element region all that is required is to convert (16.16) into a 

form such as (16.17). This is simply the inverse relationship to (16.12), i.e. 

cFEcoc uKFF
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(16.18)  

where the inverse of N has to be determined. Since N is a sparsely populated and 
diagonally dominant matrix this does not pose any problems.  

After having obtained the pseudo stiffness matrix of the finite element region 
1

FEN K  and, for partially coupled problems, the equivalent traction vector 1
0cN F  

we proceed in the same way as for multi-region problems. 

16.3 EXAMPLE 

The example presented here is that of a circular excavation in an infinite domain. The 
problem geometry, material properties and initial stress field assumed are shown in 
figure 16.5 (a). The discretisation into quadratic finite and boundary elements is shown 
in Figure 16.5 (b). One plane of symmetry is assumed. 

Figure 16.5 Example problem specification and coupled mesh used for analysis 

Some results of the analysis are shown here. Figure 16.6 shows the displaced shape 
and 16.7 the distribution of the maximum compressive stress in the finite element region. 
The distribution of maximum compressive stress along a nearly horizontal line through 
the Gauss points of finite elements and inside the boundary element region shows good 
agreement with the theoretical results. 

1 1 1
0 FEc c c ct N F N F N K u
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Figure 16.6 Displaced shape after excavation 

  

Figure 16.7 Contours of maximum compressive stress 
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Figure 16.8 Distribution of maximum compressive stress, comparison with theory 

16.4 DYNAMICS 

Here we extend the coupling method to dynamics. The dynamic equilibrium equations 
which arise from finite element discretisation (see Bathe4) can be written as 

(16.19)  

where M , C , K are the assembled mass, damping and stiffness matrices and 

u , u , u  are the acceleration, velocity and displacement vectors. The time may be 
discretised into n time steps of size t . Assuming an average acceleration within the 
time step the system of differential equations can be transformed into a system of 
algebraic equations (Newmark method4) 

(16.20)  

where t n t and ( 1)t n t  
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The “dynamic stiffness matrix” is given by: 

(16.21)  

and 

(16.22)  

Since we have already worked out a “dynamic stiffness matrix” of the boundary element 
region in Chapter 14 the coupling procedure is now straightforward. For a fully coupled 
problem the system of equations is given by 

(16.23)  

16.4.1 Example 

The example is that of a concrete column embedded in a semi-infinite soil mass. The 
description of the problem can be seen in Figure 16.9. The top of the column is subjected 
to a suddenly applied load p(t) of 1 MN/m2 . The material properties for the column are: 
spec. weight= 2500 kg/m3, E=30 000 MN/m2 , =0.2. For the soil we have: spec. 
weight= 2000 kg/m3, E=100 MN/m2 , =0.2.  

 
Figure 16.9 Description of example 

Figure 16.10 shows the mesh used for the analysis it consists of a finite element region 
that describes the column and a boundary element region that describes the semi-infinite 
ground. The mesh has 1500 degrees of freedom. Figure 16.11 shows the time-dependent 
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displacements at the top of the column obtained from the analysis. The results compare 
well with a reference solution with the FEM that used 1 Million elements. 

Figure 16.10 Coupled mesh  

Figure 16.11 Displacement at the top of the column 

16.5 CONCLUSION 

In this chapter we have shown how the capability of a finite or boundary element 
program can be easily extended so that the advantages of both methods can be combined 
giving the user “the best of both worlds”. We have shown one example where the 
capability of the BEM in dealing with infinite domains was exploited. Many other such 
examples exist and we will show in the next chapter one industrial application that could 

(seconds)
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not have been analysed with either method given the restrictions regarding time and 
computing resources.  

Although it is true that both methods can deal with almost any problem that arises in 
engineering (and comprehensive text books on the FEM and BEM assert this), it is also 
clear that they are more appropriate for some applications and less so for others. It 
should have become clear to the reader, for example, that the BEM is well suited for 
problems involving a small ratio of boundary surface to volume. Extreme cases of this 
are problems which can be considered as involving an infinite volume. Such problems 
exist, for example, in geomechanics5, where the earth’s crust has no lateral boundaries. 
Another extreme where the ratio boundary surface to volume is very large is the 
application to thin shell structures.  

Another aspect is the importance that is given to surface stresses. As we have seen in 
Chapter 9, stresses at the surface are computed more accurately with the BEM than with 
the FEM. We have shown that problems where “body forces” occur in the domain, as for 
example plasticity problems, etc., can be handled with the BEM but it has to be admitted 
that implementation is much more involved than with the FEM. A final aspect which is 
also gaining more importance, is the suitability of the methods for implementation with 
regards to computer hardware. The future seems to lie in massive parallel processing and 
we have seen in Chapter 8 that the BEM seems to lend itself to parallel programming.  
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17 
Industrial Applications 

Grau ist alle Theorie ... 
(Grey is all theory ...) 

J.W. Goethe 
 

17.1 INTRODUCTION 

So far in this book we have developed software which can be applied to compute test 
examples. The purpose of this was to enable the reader to become familiar with the 
method, ascertain its accuracy and get a feel for the range of problems that can be 
solved. The emphasis in software development has been on an implementation that was 
concise and clear and could be well understood. As pointed out in the introduction to 
programming, this is not necessarily the most efficient code in terms of storage and 
computer resources.  

If one wants to tackle real engineering problems one is inevitably faced with the need 
to develop efficient code. The programs developed here would be unsuitable for such a 
task. Aspects of the software that need to be improved are: 

 Greater efficiency in the computation of coefficient matrices by rearranging DO 
loops, so that calculations that are independent of the DO loop variable are taken 
outside the loop.  

 Greater efficiency in data and memory management so that data are only stored in 
RAM when they are needed, use of hard disk storage to achieve this (see for 
example [1] ). 

 
It has been shown in Chapter 8 that a significant gain in efficiency can be achieved 

by using element by element techniques and parallel programming. Indeed, to solve 
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problems at an industrial scale in a short time, special hardware, such as parallel 
computers may have to be used. 

In this chapter we attempt to show applications of the boundary element and coupled 
methods which have been compiled from a number of tasks that have been carried out 
over more than two decades using BEFE2, a combined finite element/boundary element 
program. The purpose of the chapter is twofold. Firstly, an attempt is made to 
demonstrate the applications for which the BEM may have a particular advantage over 
the FEM. These applications include: 

 Problems involving stress concentrations at the boundary, such as they occur in 
mechanical engineering 

 Problems consisting of infinite or semi-infinite domains, such as those occurring in 
geotechnical engineering 

 Problems involving slip and separation at material interfaces, such as they appear in 
mechanical and geotechnical engineering 

 Contact and crack propagation problems 
 

The second purpose of this chapter is to show how the very complex problems that 
invariably arise in industrial applications can be simplified, so that the analysis can be 
performed in a reasonable short time.  

It is very rarely the case that a problem can be modelled exactly as it is. In most cases 
we have to decrease its complexity. The process of modelling a given complex structure 
requires a lot of engineering ingenuity and experience. When we simplify a complex 
problem we must ensure that the important influences are retained neglecting other less 
important ones. For example, in a structural problem some parts of the structure may not 
contribute significantly to its load carrying capacity but are there because of design 
considerations.  

One very significant modelling decision is if a 3-D analysis needs to be carried out. 
Obviously this would result in much greater analysis effort. As an example in 
geotechnical engineering consider a tunnel which is very long compared to its diameter. 
If we are only interested in the displacements and stresses at a cross section far away 
from the tunnel face, then a plane strain analysis would obviously suffice. Another way 
of simplifying a problem is the introduction of planes of symmetry. As we have seen in 
some of the examples in Chapter 10, this results in considerable savings. Obviously if 
the prototype to be analysed is symmetric there is no loss in modelling accuracy. In 
some cases, however, symmetry planes can be assumed without significant loss in 
accuracy even if the prototype itself is not exactly symmetric. 

In the following we will present background information on each application, in some 
cases together with a story associated with it. We will start with the description of the 
problem and how it was simplified. We show the boundary element mesh generated and 
the results obtained. Comments are made on the quality of the results. The problem areas 
are divided into mechanical, geotechnical, geotechnical civil engineering and reservoir 
engineering. 
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17.2 MECHANICAL ENGINEERING 

17.2.1 A cracked extrusion press causes concern 

A small company in Austria manufactures rolled thin tubes by extrusion. The extrusion 
press in use was 35 years old and made of cast iron (see Figure 17.1). During a routine 
inspection cracks were detected on the surface of the cast iron casing, as indicated. The 
company was in the process of ordering a new press, however delivery was expected to 
take more than six months. There was some concern that something dramatic might 
happen during the extrusion process with the press suddenly breaking, meaning not only 
a danger to lives but also the possibility of losing the press. With full order books the 
latter was a very serious economic threat.  

Figure 17.1 35 year old drawing of extrusion press with location of cracks indicated 

The aim of the analysis was therefore to determine: 
 

 If the existing cracks would propagate 
 If this propagation would lead to a sudden collapse of the structure 

 
The geometry of the part to be analysed was fairly complicated and had to be 

reconstructed from the original plans. For the purpose of the analysis it was assumed 
that there were two planes of symmetry, as shown in Figure 17.2, although this was not 
strictly true.  

The cylindrical bar restraining the casing was not explicitly modelled but instead 
appropriate Dirichlet boundary conditions were applied. Each time a tube is extruded the 
casing is loaded with a force of 3700 tons (37 MN), as shown by the arrows. Although 

Cracks
observed
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this load is actually applied dynamically it was assumed to be static for the purpose of 
the analysis. 

 

Figure 17.2 Boundary element model showing axes of symmetry and holding bar  

The drawing in Figure 17.2 actually looks like a finite element mesh but if viewed 
from the symmetry planes (Fig. 17.3) one can notice that, in contrast to a FEM 
discretisation, there are no elements inside the material. The mesh consists of a total of 
1437 linear boundary elements and has 4520 degrees of freedom. 

There were two reasons why a boundary element analysis was chosen for this 
problem. Firstly, the generation of the mesh was found to be easier, since no internal 
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elements and connection between surfaces had to be considered. Secondly, the task was 
to determine surface stresses and then to investigate crack propagation. As outlined 
previously, the BEM is well suited for this type of analysis. 
 

Figure 17.3 Boundary element mesh viewed from one of the symmetry planes 

Initially, an analysis with only one region was carried out without considering the 
presence of cracks. This was done in order to check that the analysis was able to predict 
crack initiation. The criteria chosen for this was the maximum tensile strength of the 
material, taking into consideration the dynamic nature of the loading and the number of 
cycles that the press had so far sustained (approx. 2 million cycles). This analysis was 
also carried out to see if the model was adequate and to enable the client to get 
confidence in the BEM analysis proposed. The contours of maximum stress obtained 
from the single region analysis, shown in Figure 17.4, clearly indicate a stress 
concentration at the locations where cracks were observed, of a magnitude which would 
cause crack initiation there after a number of cycles. 

After this verification of the model, a multi-region analysis was carried out. For this 
each of the flanges where the crack was observed was divided into two regions. For 
simplicity it was assumed that the crack path was known a priori and is in the diagonal 
direction, as observed. Along this assumed crack path an interface was assumed between 
regions and the interface was allowed to slip and separate.  
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Figure 17.4 Contours of maximum principal stress 

 
Figure 17.5 Displaced shape showing crack opening 



INDUSTRIAL APPLICATIONS  457
  

 
It was found that in the worst case (lowest parameters assumed for the material) the 

crack would tend to propagate to the corners of the flange (Figure 17.5). However, even 
with the crack propagated that far the model predicted that there would be no dramatic 
failure of the casing. Instead, the deformations would become so large that the press 
would become inoperable.  

After half a year the new press arrived and was installed. The old press gave service 
without any major problems prior to replacement. 

The advantages of the BEM over a FEM model may be summarised as: 
 
 The fact that there are no elements inside and no connections were required between 

elements on opposing boundaries the mesh generation was simplified. The number 
of unknowns and elements was also reduced. 

 The stress concentrations were computed more accurately because they are not 
obtained using an extrapolation from inside the domain but from boundary results. 

 The method was well suited to model crack propagation. 

17.3 GEOTECHNICAL ENGINEERING 

17.3.1 CERN Caverns 

The European Laboratory for Particle Physics (CERN) is the world’s largest research 
laboratory for subatomic particle physics. The laboratory occupies 602 hectars across the 
Franco-Swiss border and includes a series of linear and circular particle accelerators. 
The main Large Electron Positron (LEP) accelerator has a circumference of 26.7 km and 
a series of underground structures situated at eight access and detector points (Fig. 17.6). 
The LEP accelerator has been operating since 1989 but in 2000 it has been shut down 
and replaced by the Large Hadron Collider (LHC) in 2005. This will use all existing 
LEP structures but will also require new surface and underground works. Two new 
detectors will be installed in two separated cavern systems, called Point 1 and 5. 

Here we will present the three-dimensional analysis of the new caverns of Point 53,4 
(Fig 17.7). This is an interesting application because point 1 of the LHC was analysed 
using the finite element method and a picture of the results appear in the cover of the 
book Programming the Finite Element Method 5. According to a report published on this 
study the mesh had approx 300 000 degrees of freedom and a supercomputer was 
required to solve the problem.  

Initially, an elastic analysis was carried out with the single region BE mesh shown in 
Figure 17.8. The aim of the analysis was to ascertain the range of validity of 2-D 
analyses carried out with a distinct element code.  
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Figure 17.6 Photo showing location of the CERN particle accelerator 

Figure 17.7 Cavern system at Point 5, showing existing and new structures 
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Figure 17.8 Boundary element mesh, single region analysis 

 
 

Figure 17.9 Results of single region analysis: contours of maximum compressive stress 

  

Quadratic 
boundary elements  

“plane strain” infinite 
boundary elements 
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The overburden above crown is about 75 m. In the analysis therefore the ground 
surface was assumed to be sufficiently far away so that its influence on the cavern was 
neglected. In order to reduce the number of unknowns “plane strain” infinite elements 
were used, as introduced in section 3.7.2. and as indicated in Figure 17.8. The mesh has 
a total of 4278 unknowns and the calculation took 10 minutes on a PC. The results of the 
analysis are shown in Figure 17.9. Here the maximum compressive stress is plotted on 
two planes inside the rock mass. Looking at the horizontal result plane it can be seen that 
at a cross-section between the vertical shafts, nearly plane strain conditions are obtained, 
warranting a 2-D analysis there. 

 

Figure 17.10 Coupled boundary element / finite element mesh of USC55 cavern 

Figure 17.11 Displacements of the concrete shell due to swelling 

 

Infinite ‘plane 
strain’  boundary 
elements

Linear boundary 
elements 

Linear cells 

Linear ‘brick’ 
finite elements 

Symmetry plane 
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Geologists found that a portion of the soil above the cavern could swell significantly 

if subjected to moisture. Therefore, an analysis had to be carried out to determine the 
effect of swelling on the final concrete lining. Obviously, this cannot be simplified as a 
2-D problem because the concrete lining acts as a 3-D shell structure. For this analysis a 
coupled finite element/boundary element analysis was performed with the thin concrete 
shell modelled by finite elements. The swelling zone was modelled by linear cells as 
explained in Chapter 13. In addition a symmetry plane was assumed between the large 
and the small cavern. Even though in reality no symmetry exists this was thought to be 
acceptable since the assumption that the second cavern is the same size as the first one 
would give results that are on the safe side. The main reason for the choice of this mesh 
was that due to time limitations the job had to be completed quickly and only standard 
PCs were available for performing the analysis. The coupled mesh of cavern USC 55 is 
shown in Figure 17.10. The mesh has a total of 7575 degrees of freedom and the run 
took 45 minutes on a standard PC. Most of the computing time was for computation of 
the stiffness matrix of the boundary element region 

The displacements of the concrete lining due to swelling were determined from the 
analysis. These are shown in figure 17.11. From these displacements the internal forces 
in the shell (bending moment and normal force) could be determined and used for 
designing the reinforcement. The analysis shown here demonstrates that with limited 
resources available (time and computer), boundary element and coupled analysis offer 
an efficient alternative to the FEM.  

17.4 GEOLOGICAL ENGINEERING 

17.4.1 How to find gold with boundary elements 

The analysis was performed to test a theory of geologists that gold dust was originally 
suspended in water and was deposited in the ground in locations that had a significantly 
smaller amount of compressive stress than the surrounding rock6. This seems to make 
sense, since deposits would naturally occur in voids, i.e., areas where the compressive 
stress is zero. 

Since Australia is one of the richer countries in terms of gold resources the story 
takes place there. In particular, the analysis concentrates on what is presumed to have 
occurred in a region of Western Australia (where a deposit was found) during the 
Precambrian period (about 800 million years ago). The geologists assume that the region 
was shortened in an approximate east/west direction and that the deposit was formed at 
approximately 2.5 km of depth below the surface. On this basis it was suggested that a 
volume of rock of about 2000x2000x1000 m dimension with the geological structure as 
observed in that area should be analysed. The geological structures are shown in Figures 
17.12 and 17.13. Figure 17.12 shows contours of the contact between different rock 
types, whereas Fig.17.13 shows contours of two faults (termed Lucky and Golden 
faults). 
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Figure 17.12 Contours of contact between different rock types 

Figure 17.13 Contours of Lucky and Golden faults 

It was assumed that the block to be analysed was subjected to 2000 m of overburden 
(which was subsequently eroded) and to tectonic stresses which were estimated from the 
presumed shortening of the region.  
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Figure 17.14  Definition of boundary element regions 

  
Figure 17.15  Block analysed showing stress boundary conditions applied 
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Figure 17.16 Contours of maximum compressive principal stress  

For the analysis a multi-region boundary element method was used with special 
contact/joint algorithms implemented on the interfaces between regions. Figure 17.14 
shows a view of the four regions considered. Figure 17.15 shows the block analysed 
with stress boundary conditions applied. In this figure the deformation of the blocks and 
the movements on the Golden and Lucky faults can be seen. The results of the analysis 
can be seen in Figure 17.16 as contours of the maximum (compressive) principal stress 
on the contact between regions I and II. One can clearly see an anomaly of the 
compressive stress (“hot spot”) and this is near the location where the gold deposit was 
assumed to be. So the boundary element method was successfully applied to find gold 
deposits. Note that an analysis with a domain type method would be feasible. However, 
the mesh generation would be more complicated because of the presence of elements 
inside the regions and the necessity to assure proper connectivity. 

17.5 CIVIL ENGINEERING 

17.5.1 Masjed-o-Soleiman underground power house 

The Masjed-o-Soleiman hydroelectric scheme is situated in the south of Iran. The 
powerhouse is situated underground. In 2002 the last of 4 turbines were installed in the 
existing powerhouse and an extension of the facility to house another 4 turbines was 
underway. During the excavation of the extension, cracks were observed in the concrete 
walls of the existing powerhouse, which caused some concern. In addition 

„hot spot“
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measurements from pressure cells installed behind the concrete walls recorded 
seasonally dependent pressure increases that showed an increasing tendency. Following 
a visit by the panel of experts it was decided to carry out a numerical analysis. The aim 
of the analysis was to determine the cause of the cracks and to predict if the cracking 
would get worse because of continuing excavation activity on the extension. 

Figure 17.17 View of hydroelectric plant, the powerhouse cavern is inside the mountain on the 
left of the dam  

Figure 17.18 Layout of the Caverns indicating existing caverns and caverns being excavated 



466 The Boundary Element Method with Programming  

Figure 17.17 shows a view of the hydroelectric facility and Figure 17.18 a plan of the 
layout showing the existing powerhouse cavern and the extension under construction. 
The areas where cracking was observed are shown in Figure 17.19. Special 
consideration was given to the circled area near the construction of the extension. 

Figure 17.19 Plan of powerhouse depicting areas where cracks were observed 

The ground conditions in the vicinity of the caverns, as shown in Figure 17.20, are 
dominated by layers of very weak mudstone and sandstone.  

Figure 17.20 Geological conditions near the caverns  
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To ascertain the fineness of the mesh required for the analysis and the displacement 
patterns, a 3-D Boundary Element analysis was first carried out.  

Figure 17.21 Boundary element mesh of caverns and computed deformations 

Figure 17.22 Coupled mesh for the analysis of powerhouse cavern and concrete powerhouse 
structure 
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However, this analysis does not consider the presence of geological features and non-
linear effects, which are important. Figure 17.21 shows the mesh with quadratic (8-node) 
boundary elements and the result for the case where both caverns are excavated, plotted 
as displacement contours on the excavation surface. It can be seen that for a large 
portion of the cavern plane strain conditions can be observed. It was therefore decided 
that the mesh could be reduced by the use of infinite plane strain boundary elements as 
they have been introduced in Chapter 3.  

For a meaningful analysis, however, the effect of the geological features as well as 
the non-linear behaviour of the ground had to be considered. For this purpose a coupled 
finite element/boundary element mesh was constructed as shown in Figure 17.22. Here 
the rock mass in the vicinity of the cavern, as well as the concrete structure of the 
powerhouse is discretised into finite elements. Plane strain boundary elements were used 
to shorten the mesh in the direction along the cavern, taking into consideration the 
displacement conditions, as depicted in Figure 17.21. This analysis allows to consider 
the geological features as well as the nonlinear behaviour of the ground (in particular the 
mudstone layers). 

Figure 17.23  Two of the stages considered in the analysis 

Several excavation stages were considered and two of these are shown in Figure 
17.23. The mesh on the left models the complete excavation of cavern 1, the one on the 
right the construction of the powerhouse structure and the excavation stage of the 
extension as existed during the visit of the panel of experts. Figure 17.24 shows the 
displaced shape on a section through the end of the existing cavern near the extension 
excavation. The deformation of the FEM-BEM interface can be seen especially on top of 
the cavern, so an analysis without coupling to BEM would not have yielded meaningful 

Existing powerhouse cavern 
excavated

Powerhouse structure 
installed, excavation of 
extension, status Nov. 2003 
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results. A view of the finite element mesh of the powerhouse structure, indicating the 
location of the cracks near the extension is shown in Figure 17.25. 

 

 

Figure 17.24 Displaced shape in a cross-section through the end of the powerhouse. 

 

Figure 17.25 View showing the concrete powerhouse and the location of the cracks 
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Figure 17.26 shows one result of the analysis namely the stress distribution in the 
concrete wall plotted as principal stress vectors. It can be seen that the observed crack 
pattern on the right is perpendicular to the maximum computed principal stress.  
 

Figure 17.26 Predicted stress pattern in wall and crack pattern observed. 

This is a nice example of the use of a coupled analysis because it substantially reduces 
the effort. Without coupling to BEM the mesh would have to be made much larger, to 
reduce the effect of artificial boundary conditions to an acceptable level. It should be 
noted here that with the methods for non-linear analysis described in Chapter 15 and for 
dealing with heterogeneous ground conditions outlined in Chapter 18 it would have been 
possible to completely avoid the discretisation into finite elements of the ground 
surrounding the cavern. All that would be required is to subdivide the ground into cells. 
However, at the time of the analysis these capabilities were not available. 

17.6 RESERVOIR ENGINEERING 

17.6.1 Borehole stability 

The example relates to some work performed in cooperation with the University of 
Kuwait. For oil recovery vertical boreholes are drilled to a depth of several thousand 
meters. In order recover as much oil as possible from one bore hole, deviated boreholes 
are drilled as shown in Figure 17.27. The angle of deviation of the lateral bore varies 
from 30° to 60° and the direction of the deviation with respect to the virgin stress field 
also varies. Since the boreholes are drilled in a highly pre-stressed rock mass, mud 
pressure has to be applied in order to stabilize the borehole. The questions to be 
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answered by the simulation were with respect to the stability of the rock near the 
junction of the vertical and the deviated borehole.  

Figure 17.27 Sketch of borehole junction 

To determine the areas in the rock mass that are likely to break an elastic analysis 
was performed. The result of the analysis was a contour plot of a yield function, ( )F . 
The yield functions used were the Mohr-Coulomb and Hoek and Brown models. The 
mesh used for the analysis for a 45° deviation is plotted in Figure 17.28 on the left. 

Figure 17.28 Boundary element mesh (left) and results of the analysis (right) plotted on surface 
and dummy plane 
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The mesh consists of about 1000 linear boundary elements. Plane strain elements are 
used at the ends of the mesh, where the boreholes are truncated, to simulate an infinite 
extent of the boreholes, which was assumed to be realistic since the depth of the junction 
was 2000 m underground. The analysis took about 5 minutes to run and therefore a great 
number of runs could be carried out with various virgin stress fields and mud pressures. 
The contours of the yield function showed for which orientation to the virgin stress filed 
relative to the deviated borehole and for which mud pressures the failure zone had the 
minimum extent. An example of the results obtained can be seen in Figure 17.28 on the 
right. The advantages of a boundary element approach can be summarised as follows: 
 

 The mesh generation was much simpler than with finite elements 
 The accuracy of the results was probably significant higher compared with a 

finite element analysis since no approximation of displacements is assumed in 
the rock mass. An automatic mesh generation would probably have computed 
distorted elements in the vicinity of the junction degrading the accuracy at this 
location. 

 The effort would have been significantly larger with the FEM 
 

The analysis presented here, however, is only elastic and therefore does not consider 
the non-linear material behaviour. In addition it is assumed that the two boreholes are 
excavated instantly and simultaneously which is not very realistic. A non-linear analysis 
with internal cells and the sequential excavation algorithm described in Chapter 12 was 
proposed but results are not available at the time of writing of the book. 

17.7 CONCLUSIONS 

In this chapter we have attempted to show, on some practical applications, that the 
method is not only of academic interest but can be used to solve real life problems. We 
have purposely concentrated on applications where the BEM has been shown to have a 
distinct advantage over the FEM in terms of effort to generate the mesh and computing 
resources.  

However, we do not make the claim that the BEM is always superior to the FEM and 
to be fair have included two applications where a combination of the BEM and the FEM 
leads to best results. Indeed, we believe that the analyst should be given a choice used 
and make a case for more commercial software which allows the use of either method 
independently or in combination. 
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18 
Advanced topics 

Sometimes one pays most for the things 
 one gets for nothing. 

A. Einstein 
 

18.1 INTRODUCTION 

In this Chapter we shall discuss topics which are advanced in the sense that they cover 
topics which were still subject to investigation at the writing of the book or that are non-
standard engineering applications. 

One particular topic is overcoming the difficulty the BEM has to deal with 
heterogeneous material. As we have seen in Chapter 11 only the consideration of 
piecewise heterogeneous domain is possible via a multi-region concept. If the 
heterogeneity is pronounced then the simulation effort can become considerable. Also, 
for some problems a continuous heterogeneity may have to be assumed. Another topic is 
the inclusion of linear elements such as reinforcement in concrete technology or rock 
bolts in tunnelling. The inclusion of these elements in the FEM is fairly straightforward 
because nodes exist inside the domain to which these elements can be connected. 
However, in the BEM no such nodes exist. Here, we will show some results which at the 
writing of the book were fairly new. 

The availability of a code, that could be downloaded free of charge for readers of the 
book “Programming the BEM” has led to applications that are beyond the usual 
engineering topics. One such application is shown here. It relates to the simulation of 
piezo-electric materials i.e. materials which show some reaction (deformation) if 
subjected to an electric current. This application has been chosen because it shows that 
once the framework of the program has been established even complicated new 
applications can be implemented relatively quickly by supplying the appropriate 
fundamental solutions. It also shows that the concept of the program includes flexibility 
in dealing with any number of degrees of freedom and that the routines for computing 
Kernel- shape-function products remain unchanged.  
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18.2 HETEROGENEOUS DOMAINS 

18.2.1 Theory 

The approach is first explained on a problem with 2 different properties but it will 
become obvious that the method will also work for a general heterogeneous domain. The 
example in Figure 18.1 shows a problem of a tunnel being excavated in a domain with 2 
different materials (this is a pure Neumann problem). We could solve this with a multi-
region approach but here we choose a different method. 

Figure 18.1 Example with heterogeneous domain 

The idea is to start with an analysis that assumes that the whole domain has the same 
properties ( 1 1,E ) which are represented by the constitutive matrix 1D . Hence we solve 
the following system of equations (see also 7.2) 

(18.1)  

Next we compute displacements at the boundary nodes and via post-processing the 
strains, , at the cell nodes aP  

(18.2)  

We find that when we compute stresses these should be computed according to: 

T u F

, ,a a a
S S

P P Q Q dS P Q Q dSS t R u
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(18.3)  

because this was the assumption made for the analysis. However, this is not correct if the 
point is inside the inclusion. Here the stresses should be computed according to 

(18.4)  

where 2D is the constitutive matrix for material 2. A correction of the stresses has to be 
made therefore to the results. The proposal is to follow a similar approach as presented 
for plasticity in Chapter 15. A residual “initial stress” is computed inside the inclusion 
for the first iteration by 

(18.5)  

and this is applied as body force to the system. The computation of the residual R is 
the same as outlined in Chapter 15. For the pure Neumann problem of Fig. 18.1 
increments of the displacements due to the body force are computed by 

(18.6)  

The next increments of  are computed by 

(18.7)  

With this increment  a new initial stress 0  and residual R  is computed by 

(18.8)  

 The iteration proceeds until the norm of the residual is below a specified value. 
 

18.2.2 Example 

This example, shown in Figure 18.2, is a block (2m x 2m) with an inclusion in centre 
(1m x 1m) under plane strain conditions. The block is fixed at the bottom and loaded on 
the top surface with a constant pressure of p = 1N/m². The inclusion is assumed to be 10 
times softer than the block. The block is discretised with 4x12 quadratic boundary 
elements and the inclusion is discretised with 6x6 quadratic cells. Figure 18.3 shows the 
deformed shape of the mesh. The analysis took 39 iterations to converge. The results are 
compared with a finite element reference solution. Figure 18.4 shows the vertical 
displacements along the left half of the upper block surface. A good agreement with the 
reference solution is obtained. 

1D

2D

T u R

0 0, ,a a a a
S V

P P Q Q dS P Q Q dV PR u E F

0 1 2D D

0 1 2D D
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Figure 18.2 Description of example problem 

 

Figure 18.3 Deformed mesh 

 
Figure 18.4 Variation of computed displacement on to of the block 
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18.3 LINEAR INCLUSIONS 

18.3.1 Theory 

The treatment of linear inclusions follows a similar approach as with heterogeneities1. 
Figure 18.5 shows an example of a tunnel with a rock bolt which will be treated as an 
inclusion with different material properties. The rock bolt is assumed to be fully grouted 
i.e. in contact to the rock mass along it’s length. 

Figure 18.5 Example of a tunnel with a rock bolt 

The cross-section of the rock bolt is assumed to be small compared to its length and 
therefore the variation of the stress across the section can be assumed to be constant. The 
approach is very similar to the previous one, i.e. first an analysis is carried out without 
the rock bolt and then a correction made due to the presence of the rock bolt. It is 
explained on a plane problem but the extension to 3-D is straightforward. 
The first system of equations to be solved is for the Neumann example in Fig. 18.5  

(18.9)  

After the first analysis the strain in the direction of the rock bolt is computed. Because of 
the difference in moduli between the rock and the bolt the stress is different at a point 
depending if the point lies in the bolt or in the rock (Fig. 18.6). The difference in the 
stress (in the direction of the bolt x ) is computed by: 

(18.10)  

u F

( )x xRock xBolt Rock Bolt xE E
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and this will be applied as initial stress. 
 

Figure 18.6 Explanation of difference in stress between rock bolt and rock mass 

 

Figure 18.7 Linear cell element 

To compute the strain along the rock bolt we use a line cell as shown in Fig. 18.7.  
First we compute the displacements at the cell nodes using Eq. (9.48) 

(18.11)  

where aP is a cell node. We introduce a local coordinate system specified by vectors 

1s along the rock bolt and 2s perpendicular to it (Figure 18.8). The values of the 
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displacement in direction of the bolt xu are computed at nodal point n of the cell using 
the transformation: 

(18.12)  

 

Figure 18.8 Local coordinate system 

Then the strain in the bolt at nodal point n can be computed by: 

(18.13)  

where 

(18.14)  

where xiu  is the displacement in bolt direction at node i of the cell and J is the Jacobian 
of the transformation from ,yx to . The initial stress at node n of a cell c is computed 
by 

(18.15)  

In general the component iR of the residual vector R due to the “initial stress” is 
computed by 

(18.16)  
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Where E  is the fundamental solution for strain. E  and 0  are based on the global 

coordinate system. As the initial stress 0
c
xn  in (18.15) is based on a local coordinate 

system the fundamental solution is needed in the local system, too. E  is calculated with 
the local value r  which is computed by 

(18.17)  

where the geometrical transformation matrix is given by 

(18.18)  

The fundamental solution for displacement is now given in local coordinates ( , )x y . 
Since only the axial stresses are taken into account, the stress vector 0  in (18.16) 

reduces to a scalar 0x  and the matrix E  reduces to a vector Ê  in local coordinates, for 
plane problems we have: 

(18.19)  

 
The residual (18.16) in the local coordinate system is 

(18.20)  

The global residual vector R  can be obtained with a transformation  

(18.21)  

The transformed fundamental solution is defined by 

(18.22)  

The discretised form of (18.21) is computed by 

(18.23)  
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Assuming that the cross-section of the bolt is small and that the initial stress does not 
vary across it, the initial stress at point Q  is only a function of  i.e. 

(18.24)  

Substitution into (18.23) gives 

(18.25)  

or 

(18.26)  

where 

(18.27)  

If n is not node i then (18.27) may be evaluated using Gauss Quadrature 

(18.28)  

where A is the cross-sectional area of the inclusion, which is assumed constant along the 
cell here and K is the number of Gauss points required.  
If n is node i then the Kernel becomes singular. In this case an analytical integration can 
be carried out2 

(18.29)  

The increment in displacement due to the body force R is computed by 

(18.30)  

The increment in displacement u at a cell node aP due to an increment in displacement 
(computed by equation 18.30) is computed for the subsequent iteration steps as 

(18.31)  
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where 

(18.32)  

The iterations continue until the residual vanishes. 
 

18.3.2 Example 

The example is that of a circular excavation of radius 10 m in an infinite domain with 
linear inclusions. In practice this would correspond to a tunnel with fully grouted rock 
bolts. For the example the assumption is of an internal pressure of 215 /MN m . The 
mesh consists of 40 linear boundary elements for the boundary of the hole and of 24 
rock bolts which are discretised into 2 quadratic cells each. A finer mesh with 120 linear 
boundary elements and 4 cells per rock bolt was also used.  
 

 

Figure 18.9 Mesh used for the analysis 

 

Figure 18.10 Variation of displacement along a bolt axis 

( , )
c

c
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For the analysis the following material properties were assumed: ERock=5 GN/m², =0.3, 
EBolt=400 GN/m². The bolts have a cross section of ABolt=0.007854m² and a length of 
10m. The analysis took 22 iterations to converge and the results were compared with a 
finite element analysis with a very fine mesh in Fig. 18.10. In this figure the 
displacement along the axis of the rock bolt is shown. It can be seen that the solutions 
compare well with the reference solution. 

18.4 PIEZO-ELECTRICITY 

This is a good example of how easy it is to implement new capabilities into the general 
purpose program 7.1 by changing only a few lines and adding subroutines for computing 
a fundamental solution. This application has been worked out by a PhD student from 
Venezuela and the application is in piezo-electricity. Some materials react to an applied 
current by deforming and the deformation also causes an electric potential, so there is an 
interaction between electricity and deformation. These are known as piezo-electric 
materials. Apparently some bio-materials exhibit this property and hence the application 
of this work is actually bio-engineering. For a piezo-electric material we have a coupling 
of the stresses and the electric displacement d3: 

(18.33)  

We define the electric displacement d and the electric field vector E by 

(18.34)  

A characteristic of piezo-electric materials is that they behave in an an-isotropic way 
therefore the matrix D is an anisotropic constitutive matrix. However, here we restrict 
ourselves to transversely isotropic materials and the matrix D presented in section 4.3.1. 
is used. For this case the matrix linking the stresses and the electric field vector 
(piezoelectric matrix) is 

(18.35)  
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d e E
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Where ije are material parameters and the matrix relating electric displacement to the 
field vector is given by 

(18.36)  

Equations (18.32) can be combined into one by 

(18.37)  

where 

(18.38)  

Figure 18.11 Calculation of angles 1 2,   

The governing differential equation can be written as 

(18.39)  

where L is the piezo-electric differential operator3 and 

(18.40)  
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u is the displacement vector and  is the electric potential that is related to the electric 
field vector by 

(18.41)  

The plane problem has 2+1=3 and the 3-D problem 3+1=4 degrees of freedom. The 
fundamental solution of the differential equation for unit values of load and electric field 
can be derived using a Radon transformation 4,5. The fundamental solution in 3-D for 
Û which combines the displacements and the electric potential is given by 

(18.42)  

r is the distance between P and Q (length of vector r) and 1 2,  are determined 
according to Figure 18.11, where 0r is a unit vector in the direction r . The 
complementary fundamental solution for the tractions and the electric field in direction n 
is given by 

(18.43)  

Because of the complexity of the fundamental solution which would take very long for 
the computation of values at Gauss points of elements a scheme is adopted where a table 
of values of M as a function of 1 2, is computed. The required particular values are 
then obtained by interpolation. We will see that the most difficult part of the 
implementation is the calculation of the fundamental solution; the other changes in the 
program are minimal. 

18.4.1 Changes required in General_Purpose_BEM 

The first change is in the input. Here we allow an additional Analysis Type (=4) in Toa 
and allow 4 degrees of freedom for the combined vector û . We have to allow for reading 
in a larger number of material constants. In addition we may provide some additional 
information about the size of the table to hold the pre-computed values of M. These are 
computed in the main program and stored in the arrays of rank 4 in m_GridU and 
m_GridT. The size of the increments of 1 2, in the table are determined by the 
variables m_step1 and m_step2. The only other change is in the subroutine INTEG3 
where additional IF statements are included to call the subroutine that computes the 
fundamental solutions using the tables. 
 
SUBROUTINE Integ3(Elcor,Inci,Nodel,Ncol,xPi,Ndof,E,ny,ko,dUe& 
          ,dTe,Ndest,Isym,Toa,m_step1,m_step2,m_GridU,m_GridT) 
!-------------------------------------------------- 
!    Computes  [dT]e and [dU]e for 3-D problems 
!    by numerical integration 

, , ,  ;    ;  x x y y z zE E E

1 2
1ˆ ( , ) ( , )UP Q
r

U M

1 22
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r
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!------------------------------------------------- 
IMPLICIT NONE 
REAL, INTENT(IN)    :: Elcor(:,:)     !   Element coordinates 
INTEGER, INTENT(INOUT) :: Toa     !   Type of analysis 
!  Increments for table and arrays for storing table 
REAL,INTENT(INOUT) :: m_step1,m_step2 
REAL,INTENT(INOUT) :: m_GridU(:,:,:,:),m_GridT(:,:,:,:,:) 
…… 
!--------------------------------------------------------------- 
!     Part 1 : Pi is not one of the element nodes 
!--------------------------------------------------------------- 
Colloc_points: DO i=1,Ncol 
….             
    IF(Ndof .EQ. 1) THEN 
     UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim)  
    ELSE 
     IF(Toa.EQ.3)THEN 
      UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)  
     END IF 
     IF(Toa > 3)THEN 
  !  piezoelectric solution         
         UP=UKa(GCcor,xPi(:,I),NDOF,1,r,m_step1,m_step2,m_GridU) 
   TP=TKa(GCcor,xPi(:,I),NDOF,1,Vnorm,r,m_step1,m_step2,m_GridT) 
      END IF 
    END IF 
…… 
END DO Colloc_points 
!--------------------------------------------------------- 
!     Part 1 : Pi is one of the element nodes 
!--------------------------------------------------------- 
Colloc_points1: DO i=1,Ncol 
……                          
      IF(Ndof .EQ. 1) THEN 
       UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim)        
      ELSE 
       IF(Toa.EQ.3)THEN 
        UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)  
       END IF 
       IF(Toa > 3)THEN    
         UP=UKa(GCcor,xPi(:,I),NDOF,1,r,m_step1,m_step2,m_GridU)  
   TP=TKa(GCcor,xPi(:,I),NDOF,1,Vnorm,r,m_step1,m_step2,m_GridT)   
       END IF          
      END IF 
….. 
END DO Colloc_points1 
RETURN 
END SUBROUTINE Integ3 

 
Further details and examples are available in [4]. 
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18.5 CONCLUSIONS 

In this chapter we have dealt with applications where a solution with the BEM was not 
previously possible and with applications that go beyond usual engineering problems. 
The proposed efficient treatment of heterogeneous material and of reinforcement is still 
a subject of research at the writing of the book, but preliminary results look very 
promising. Indeed, with a concentrated research effort sponsored by national and 
European funds it seems possible that the lag in the development of the BEM as 
compared with the FEM can be shortened.  
The availability of a numerical toolbox through the book “Programming the boundary 
element method” by G. Beer seems to have had a positive effect on the development of 
the BEM and several applications in “exotic” areas emanated. One such area is piezo-
electricity and here the “beauty” of the BEM is revealed: only a new fundamental 
solution is required to implement a completely new application. Try this with finite 
elements. Unfortunately the work of the PhD student was just starting at the writing of 
the paper and we hope to present some interesting applications of this in the area of bio-
mechanics (increased healing potential of human bones when subjected to low voltage 
electricity) in a second edition.  
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Appendix 
Fundamental Solutions 

Supplied by Tatiana Ribeiro 
 

The fundamental solutions presented for static elasticity are in indicial notation. Please 
refer to Chapter 1 for the correlation between indicial and vector notation. 

A.1. DISPLACEMENT SOLUTION 

The displacement iu  at an internal point P is computed by 

(A.1) 

Where ,i iu t are the displacements and tractions and 0 0,jk jk  are initial stresses and 
strains. The fundamental solutions are given for plane problems by 

(A.2) 

and in 3D by 

(A.3) 

 
For plane as well as for 3-D problems we have 

(A.4) 
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(A.5) 

(A.6) 

 
where r is the distance between the source point P and the field point Q and in  the 
outward normal. The derivative of r with respect to the Cartesian axis j is given by r,j. 
The term cos   is computed by 

(A.7) 

and the values for the constants are given in Table A.1 

Table A.1 Constants for fundamental solutions  

 Plane strain Plane stress 3-D 
n 1 1 2 
C 1/8 G (1+ G 1/16 G  
C1 3-4  (3-  3-4  
C2 1/4  (1+  1/8  
C3 1-2  (1-  1-2  
C4 2  3 
C5 1 (1- 1-2  
C6 4 5 
C7 1-4  (1-3  1-4  
C8 -1/8  - /8 -1/15  
C9 3-4  (3-  4-5  
C10 1 (1-3 1-5  
C11 -1/16G  - /16G -1/30G  
C12 1 1 7-5  
C13 1-4  (1-3 2-10  
C14 1-2  (1-3  1-4  
C15 1 (1-  1-2  
C16 G/4(1-  G /4 G/15(1-  
C17 1-4  1 2+10  
C18 -1/8(1-  - /8 -1/30(1-  
C19 G/2  G/2  G/4  
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A.2. STRAIN SOLUTION 

The strain tensor at an internal point is computed by 

(A.8) 

where 

(A.9) 

(A.10) 

 

(A.11) 

 

(A.12) 

 

(A.13) 

(A.14) 

where the constants are given in Table A.1 . 
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A.3. STRESS SOLUTION 

The stress tensor for an internal point is computed by 

(A.15) 

where  

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

where the constants are shown in Table A1. 
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