

W

Univ.-Prof. DI Dr. Gernot Beer

DI Dr. Christian Duenser

Contents

Preface xiii

Acknowledgements xiv

1 Preliminaries 1

1.1 Introduction 1
1.2 Overview of book 4
1.3 Mathematical preliminaries 6

1.3.1 Vector algebra 7
1.3.2 Stress and strain 10

1.4 Conclusions 11
1.5 References 11

2 Programming 13

2.1 Strategies 13
2.2 FORTAN 90/95/2000 features 14

2.2.1 Representation of numbers 14
2.2.2 Arrays 15
2.2.3 Array operations 16
2.2.4 Control 20
2.2.5 Subroutines and functions 21
2.2.6 Subprogram libraries and common variables 23

2.3 Charts and pseudo code 24
2.4 Parallel programming 25
2.5 BLAS libraries 27
2.6 Pre- and Postprocessing 27
2.7 Conclusions 27
2.8 Exercises 28
2.9 References 29

3 Discretisation and Interpolation 31

3.1 Introduction 32

vi The Boundary Element Method with Programming

3.2 One-dimensional boundary elements 32
3.3 Two-dimesional elements 36
3.4 Three-dimensional cells 44
3.5 Elements of infinite extent 44
3.6 Subroutines for shape functions 46
3.7 Interpolation 47

3.7.1 Isoparametric elements 47
3.7.2 Infinite elements 49
3.7.3 Discontinuous elements 50

3.8 Coordinate transformation 53
3.9 Differential geometry 54
3.10 Integration over elements 59

3.10.1 Integration over boundary elements 59
3.10.2 Integration over cells 59
3.10.3 Numerical integration 60

3.11 PROGRAM 3.1: Calculation of surface area 64
3.12 Concluding remarks 65
3.13 Exercises 65
3.14 References 67

4 Material Modelling and Fundamental Solutions 69

4.1. Introduction 69
4.2. Steady state potential problems 70
4.3. Static elasticity problems 76

4.3.1 Constitutive equations 82
4.3.2 Fundamental solutions 85

4.4. Conclusions 94
4.5. References 94

5 Boundary Integral Equations 95

5.1 Introduction 95
5.2 Trefftz method 96
5.3 PROGRAM 5.1: Flow around cylinder, Trefftz method 99

5.3.1 Sample input and output 102
5.4 Direct method 104

5.4.1 Theorem of Betti and integral equations 104
5.4.2 Limiting values of integrals as P coincides with Q 107
5.4.3 Solution of integral equations 110

5.5 Computation of results inside the domain 116
5.6 PROGRAM 5.2: Flow around cylinder, direct method 118

5.6.1 Sample input and output 122
5.7 Conclusions 125
5.8 Exercises 127
5.9 References 127

CONTENTS vii

6 Boundary Element Methods – Numerical Implementation 129

6.1 Introduction 129
6.2 Discretisation with isoparametric elements 130
6.3 Integration of kernel shape function products 133

6.3.1 Singular integrals 134
6.3.2 Rigid body motion 135
6.3.3 Numerical integration 139
6.3.4 Numerical integration over one-dimensional elements 142
6.3.5 Subdivision of region of integration 146
6.3.6 Implementation for plane problems 148
6.3.7 Numerical integration for two-dimensional elements 155
6.3.8 Subdivision of region of integration 159
6.3.9 Infinite elements 160
6.3.10 Implementation for three-dimensional problems 161

6.4 Conclusions 166
6.5 Exercises 167
6.6 References 168

7 Assembly and Solution 169

7.1 Introduction 169
7.2 Assembly of system of equations 170

7.2.1 Symmetry 176
7.2.2 Subroutine MIRROR 180
7.2.3 Subroutine Assembly 183

7.3 Solution of system of equations 184
7.3.1 Gauss elimination 185
7.3.2 Scaling 187

7.4 PROGRAM 7.1: general purpose program, direct method, one region 187
7.4.1 User’s manual 195
7.4.2 Sample input file 198

7.5 Conclusions 199
7.6 Exercises 200
7.7 References 202

8 Element-by-element techniques and Parallel Programming 203

8.1 Introduction 203
8.1 The Element by Element Concept 204

8.1.1 Element-by-element storage requirements 206
8.2 PROGRAM 8.1 : Replacing direct by iterative solution 206

8.2.1 Sample input file 211
8.2.2 Sample output file 212

8.3 PROGRAM 8.2 : Replacing assembly by element-by-element procedure 213
8.3.1 Sample input file 219
8.3.2 Sample output file 219

viii The Boundary Element Method with Programming

8.4 PROGRAM 8.3 : Parallelising the element-by-element procedure 220
8.4.1 Sample input file 227
8.4.2 Sample output file 227
8.4.3 Results from larger analyses 228

8.5 Conclusions 229
8.6 References 229

9 Postprocessing 231

9.1 Introduction 231
9.2 Computation of boundary results 232

9.2.1 Potential problems 232
9.2.2 Elasticity problems 236

9.3 Computation of internal results 241
9.3.1 Potential problems 241
9.3.2 Elasticity problems 245

9.4 PROGRAM 9.1: Postprocessor 250
9.4.1 Input specification 258

9.5 Graphical display of results 259
9.6 Conclusions 261
9.7 Exercises 262
9.8 References 262

10 Test Examples 263

10.1. Introduction 263
10.2. Cantilever beam 264

10.2.1 Problem statement 264
10.2.2 Boundary element discretisation and input 264
10.2.3 Results 266
10.2.4 Comparison with FEM 269
10.2.5 Conclusions 271

10.3. Circular excavation in infinite domain 271
10.3.1 Problem statement 271
10.3.2 Boundary element discretisation and input 272
10.3.3 Results 274
10.3.4 Comparison with FEM 275
10.3.5 Conclusions 276

10.4. Square excavation in infinite elastic space 276
10.4.1 Problem statement 276
10.4.2 Boundary element discretisation and input 277
10.4.3 “Quarter point” elements 281
10.4.4 Comparison with finite elements 282
10.4.5 Conclusions 282

10.5. Spherical excavation 283
10.5.1 Problem statement 283
10.5.2 Boundary element discretisation and input 283

CONTENTS ix

10.5.3 Results 289
10.5.4 Comparison with FEM 290

10.6. Conclusions 290
10.7. References 291

11 Multiple regions 293

11.1 Introduction 293
11.2 Stiffness matrix assembly 294

11.2.1 Partially coupled problems 296
11.2.2 Example 299

11.3 Computer implementation 304
11.3.1 Subroutine Stiffness_BEM 306

11.4 Program 11.1: General purpose program, direct method, multiple regions 311
11.4.1 User’s manual 321
11.4.2 Sample problem 323

11.5 Conclusions 326
11.6 Exercises 327
11.7 References 328

12 Dealing with corners and changing geometry 329

12.1 Introduction 329
12.2 Corners and edges 330

12.2.1 Discontinuous elements 331
12.2.2 Numerical integration for one-dimensional elements 331
12.2.3 Numerical implementation 335
12.2.4 Test example – single region 343
12.2.5 Test example – multi region 344

12.3 Dealing with changing geometry 346
12.3.1 Example 348

12.4 Alternative Strategy 351
12.5 Conclusions 353
12.6 References 353

13 Body Forces 355

13.1 Introduction 355
13.2 Gravity 356

13.2.1 Post-processing 358
13.3 Internal concentrated forces 361

13.3.1 Post-processing 363
13.4 Internal distributed line forces 363

13.4.1 Post-processing 365
13.5 Initial strains 365

13.5.1 Post-processing 369
13.6 Initial stresses 372

x The Boundary Element Method with Programming

13.7 Numerical integration over cells 373
13.8 Implementation 374

13.8.1 Input data specification for Body_force 377
13.9 Sample input file and results 378
13.10 Conclusions 381
13.11 Exercises 382
13.12 References 383

14 Dynamic Analysis 385

14.1 Introduction 385
14.2 Scalar wave equation, frequency domain 385

14.2.1 Fundamental solutions 387
14.2.2 Boundary Integral Equations 388
14.2.3 Numerical Implementation 389

14.3 Scalar wave equation, time domain 390
14.3.1 Fundamental solutions 390
14.3.2 Boundary integral equations 392
14.3.3 Numerical implementation 395

14.4 Elastodynamics 398
14.4.1 Fundamental solutions 399
14.4.2 Boundary integral equations 399
14.4.3 Numerical implementation 400

14.5 Multiple regions 401
14.6 Examples 403

14.6.1 Test example 403
14.6.2 Practical application 405

14.7 References 406

15 Nonlinear Problems 407

15.1 Introduction 407
15.2 General solution procedure 408
15.3 Plasticity 410

15.3.1 Elasto-plasticity 410
15.3.2 Visco-plasticity 413
15.3.3 Method of solution 415
15.3.4 Calculation of residual {R} 417
15.3.5 Computation of stresses at cell nodes 421
15.3.6 Computation of boundary stresses 423
15.3.7 Example 425

15.4 Contact problems 427
15.4.1 Method of analysis 427
15.4.2 Solution procedure 430
15.4.3 Example of application 431

15.5 Conclusions 433
15.6 References 433

CONTENTS xi

16 Coupled Boundary Element/ Finite Element Analysis 435

16.1 Introduction 435
16.2 Coupling theory 436

16.2.1 Coupling to finite elements 436
16.2.2 Coupling to boundary elements 443

16.3 Example 444
16.4 Dynamics 446

16.4.1 Example 447
16.5 Conclusion 447
16.6 References 449

17 Industrial Applications 451

17.1 Introduction 451
17.2 Mechanical engineering 453

17.2.1 A cracked extrusion press causes concern 453
17.3 Geotechnical Engineering 457

17.3.1 CERN Caverns 457
17.4 Geological engineering 461

17.4.1 How to find gold with boundary elements 461
17.5 Civil engineering 464

17.5.1 Masjed-o-Soleiman underground power house 464
17.6 Reservoir engineering 470

17.6.1 Borehole stability 470
17.7 Conclusions 472
17.8 References 473

18 Advanced topics 475

18.1 Introduction 475
18.2 Heterogeneous Domains 476

18.2.1 Theory 476
18.2.2 Example 477

18.3 Linear inclusions 479
18.3.1 Theory 479
18.3.2 Example 484

18.4 Piezo-electricity 485
18.4.1 Changes required in General_Purpose_BEM 487

18.5 Conclusions 488
18.6 References 489

Appendix 491

xiii

Preface

This is a sequel to the book “Programming the Boundary Element Method” by G. Beer

published by Wiley in 2001. The scope of this book is different however and this is
reflected in the title. Whereas the previous book concentrated on explaining the
implementation of a limited range of problems into computer code and the emphasis was
on programming, in the current book the problems covered are extended, the emphasis is
on explaining the theory and computer code is not presented for all topics. The new topics
covered range from dynamics to piezo-electricity. However, the main idea, to provide an
explanation of the Boundary Element Method (BEM), that is easy for engineers and
scientists to follow, is retained. This is achieved by explaining some aspects of the method
in an engineering rather than mathematical way.

Another new feature of the book is that it deals with the implementation of the method
on parallel processing hardware. I. M. Smith, who has been involved in programming the
finite element method for decades, illustrates that the BEM is “embarrassingly
parallelisable”. It is shown that the conversion of the BEM programs to run efficiently on
parallel processing hardware is not too difficult and the results are very impressive, such
as solving a 20 000 element problem during a “coffee break”.

Due to the fact that, compared to the Finite Element Method, a significantly smaller
group of people are working in this field the development of the method is lagging
considerably behind. The often quoted comparison that the method is a “Cinderella”,
dominated by her “big sister”, the Finite Element Method, and whose beauty is hidden
away, is still true and we hope that the reader will see the beauty of the method in the
examples on industrial applications and the advanced topics presented at the end.

The book includes some innovative development work carried out by the small but
very active group at the Institute for Structural Analysis, Graz University of Technology,
Austria under the leadership of G. Beer. The main scope of their research is to further
develop the method, so that it can be applied to a much wider range of practical problems
in engineering, one particular application of interest being in the field of geotechnical
engineering, especially underground excavation.

COMPUTER PROGRAMS
All software (libraries and programs) can be downloaded free of charge from the website
http://www.ifb.tugraz.at/BEM

xiv

Acknowledgements

This book would not have been possible without the research effort by the small but very
active group of scientists working on boundary element methods at the Institute for
Structural Analysis, Graz University of Technology (Katherina Riederer, Andre Maues
Brabo Pereira, Klaus Thöni, Plinio Glauber Carvalho de Prazeres, Thomas Rüberg and
Jürgen Zechner). The Austrian Science Fund (FWF) and the European Commission
(under its framework program for research and technical development) contributed
significantly to the funding of the research effort.The complete set of fundamental
solutions presented in the Appendix has been supplied by Tatiana Souza Antunes Ribeiro
a former PhD student at the institute. Katherina Riederer supplied the two examples for
Chapter 18 (Advanced topics) on heterogeneous domains and linear inclusions. Andre
Periera made significant contributions to Chapter 14 (Dynamic Analysis).

The authors are grateful to Sylvia Beer for proofreading the manuscript and for her
valuable suggestions. Thanks are also due to the companies that gave the opportunity to
apply the method to the real engineering problems reported in Chapter 17: Lahmeyer
International (Bernhard Stabel), Geoconsult and Schoeller Bleckmann Austria. The
cooperation with Kuwait University (Abdullah Ebrahim) led to the application in
reservoir engineering. Last but not least our thanks go to our families for their support.

1
Preliminaries

A journey of a thousand miles
 begins with a single step

Lao-tzu, Chinese philosopher

1.1 INTRODUCTION

Nearly all physical phenomena occurring in nature can be described by differential
equations and boundary conditions. In the solution of these boundary value problems
we aim to determine a response to given boundary conditions. For example we may be
interested in determining the response of the rock mass due to the excavation of a tunnel,
or the response of a structure to dynamic excitations of its foundations (caused by an
earthquake). Analytical solutions of boundary value problems, i.e. solutions that satisfy
both the differential equations (DE) and the boundary conditions (BCs), can only be
obtained for few problems with very simple boundary conditions. For example,
analytical solutions exist for the excavation of a circular tunnel in a homogeneous rock
mass, not really a realistic scenario for practical tunnelling. To be able to solve real life
problems, the engineer must revert to approximate solutions. Two approaches can be
taken: instead of satisfying both the DE and the BCs, one can attempt to satisfy only one
of the two and minimise the error in satisfying the other one. In the first approach (based
on the original idea of Ritz1) solutions are proposed that satisfy the boundary conditions
exactly. The error in satisfying the differential equation is then minimised. This is the
well known Finite Element Method. In the alternative (proposed by Trefftz2), the
assumed functions satisfy the DE exactly and the error in the satisfaction of the
boundary conditions is minimised.

Most readers of this book will be familiar with the finite element method. In the most
common version of this method we subdivide the domain into elements and approximate

2 The Boundary Element Method with Programming

the response to a specified loading with functions which are defined at element level,
i.e., are piecewise continuous. This subdivision is necessary because in practice it is
impossible to determine functions that cover the whole domain and at the same time
satisfy the boundary conditions (as originally proposed by Ritz). The parameters of these
functions, which are the values of the unknowns at the nodes where elements are
connected to each other, are determined by minimising the error in satisfying the DE.
This can be done using residual methods, where the integral of the error is minimised
and this involves a domain integral. A violation of the DE may occur at any point in the
domain, but the variation of the unknown is chosen in such a way that the error in the
satisfaction of the DE over the whole domain is a minimum. In continuum mechanics,
for example, this means that the chosen functions will usually not satisfy exactly the
equilibrium conditions at specified points.

Figure 1.1 shows an example of a finite element mesh for the three-dimensional
analysis of sequential excavation and construction of a tunnel. A plane of symmetry is
applied, so that only half of the tunnel is discretised. Note that to model the rock mass
through which the tunnel is driven, which for all practical purposes can be assumed to be
infinite, we must make a 'box' of solid elements. At the outer boundaries of this box,
unless we use infinite elements, we either set displacements to zero or apply stress
boundary conditions, which represent the in situ stress. The mesh shown here has
approximately 100 000 degrees of freedom and a solution took several hours on a PC.
Note that small jumps occur in the contours of maximum compressive stress, between
elements indicating a lack of satisfaction of equilibrium locally.

The second approach to solving this problem (based on the original idea of Trefftz)
does not require the subdivision of the domain into elements because the functions used
for approximating the solution inside the domain are chosen to be those which exactly
satisfy the governing differential equations. In a similar way as with the FEM the error
in satisfying the boundary conditions is minimised and this now involves a boundary
integral. Numerically, this integral can be evaluated by subdividing the boundary into
elements over which the values (for example, tractions or displacements in the case of
continuum mechanics) are interpolated, much in the same way as with the FEM. The
advantage of the method is obvious: the dimensionality of the problem is reduced by one
order, i.e. only a surface instead of a volume integral is required. This means that the
number of unknowns is reduced dramatically, especially for three-dimensional
problems, because unknowns occur only on the problem boundary. Other advantages are
that the DE is satisfied exactly everywhere in the domain and that infinite domain
problems are easy to deal with.

As an example, Figure 1.2 shows the boundary element mesh for the same tunnel as
analysed by the FEM in Figure 1.1. This mesh has approx. 1000 degrees of freedom and
took 3 minutes to solve on a PC. The stress contours computed and drawn on the
excavation surface and a user defined plane inside the rock mass show no jumps as they
are seen in FEM results. Since functions must be found which exactly satisfy the
governing differential equation (DE) the BEM requires a solution of the DE. This
solution must be as simple as possible because, as will be seen in the chapter on
implementation, this is crucial for efficiency. Unfortunately, the simplest solutions
which we can find (fundamental solutions) are due to concentrated loads or sources and

PRELIMINARIES 3

are singular, i.e., have infinite values at certain points. This property has to be taken into
account when integrating these functions over boundary elements. This will make the
numerical integration procedure more complicated than is the case with finite elements.

Figure 1.1 Finite element mesh for the analysis of tunnel excavation. Left side: mesh
with contours of z-displacement; right side: detail with contours of
maximum compressive stress

Figure 1.2 Boundary element mesh for the simulation of tunnel excavation with
contours of maximum compressive stress plotted on excavation surface
and result planes

4 The Boundary Element Method with Programming

There has been a general misconception that because a fundamental solution of the

problem must exist for the BEM to work, the method can only be applied to linear
problems with homogeneous material. As will be shown in this book, non-linear
problems can almost as easily be solved as with the FEM, by the repeated solution of
linear problems and special methods may be employed to solve problems with
heterogeneous material properties.

1.2 OVERVIEW OF BOOK

This book is designed to be used as basis for a course on the BEM or for self study.
It is recommended that chapters be read consecutively as later chapters build on material
discussed earlier. Throughout the book, the reader will build a suite of subprograms,
which perform the various tasks needed for the numerical implementation of the BEM.
Various exercises are included which allow the reader to test the programs written and
experience how the method works.

We start with an introduction to the FORTRAN 95 programming language.
FORTRAN, which stands for FORMula TRANslation is still the most widely used
language for programming engineering applications and is easier to learn and more
efficient than other high level languages such as C++. However, there is no reason why
the procedures outlined in some detail in this book could not be implemented in another
language.

The next chapter deals with the way in which we can describe the geometrical
boundary of a problem and boundary conditions in a numerical way. This is done by
subdividing the surface into small elements and by interpolating between nodal values.
This is essential for the later treatment of integral equations. With the aid of the
examples we can not only test the subroutines developed but also get an understanding
of the error introduced by the approximations used to describe boundaries.

Another fundamental building block is the description of the material response. In
Chapter 4 we introduce basic concepts of elasticity and potential flow and develop
fundamental solutions, that is, simple solutions which satisfy the governing differential
equations. These will be central to our subsequent deliberations.

Next we introduce the concepts of boundary element methods using the method
originally proposed by Trefftz. Although this very simple method cannot be used for
general purpose programs, it serves very well to explain the fundamental ideas of the
method. A small computer program can be developed to solve some simple problems.
Again, this will serve as a tool for learning by experience.

The direct boundary element method used in the majority of BEM software is
introduced next. Here we will use the reciprocal theorem by Betti, which is well known
to engineers to obtain an integral equation. The major task in the implementation
however, is to solve the integral equations numerically.

The next chapter on numerical implementation therefore deals with the evaluation of
integrals using numerical integration. Those familiar with isoparametric finite elements
will recognise the Guass Quadrature method used. However, in contrast to its use in the

PRELIMINARIES 5

FEM, one must be very careful to select the number of integration points, as they are
dependent on how close the singularity is to the integration region. This is the most
difficult and crucial part in the implementation of the BEM. The integration over the
boundary surface is carried out over a boundary element and the contributions of all
elements which describe a boundary are then added. We will see that this is very similar
to the assembly procedure in the FEM.

After the numerical treatment of the integral equations we end up with a system of
equations. In contrast to the FEM, the coefficient matrix is fully populated and
unsymmetrical. Standard Gauss elimination can be used but, for large systems, the
storage requirement and the computation times may be reduced considerably by iterative
solvers, such as conjugate gradient methods. Such special solution techniques are
introduced in the next chapter. Here we also find that the method is “embarrassingly
parallelisable” i.e. that excellent speed up rates can be achieved with special hardware.

The primary results obtained from the analysis are values of displacement or traction
at the boundary depending on the boundary condition specified. In contrast to the FEM,
primary results do not include values in the interior of the domain but these are
computed by post-processing. In Chapter 9 it is explained how the stresses at the
boundary and in the interior can be obtained from boundary displacements and tractions.
This is indeed an advantage of the method, because the user has free choice of the
locations where results are obtained.

We now have all the building blocks together and are able to compile a computer
program that is able to solve two and three-dimensional problems in elasticity and
potential flow, depending on which fundamental solution is used. In Chapter 10 we
apply the program developed to test examples and find out what level of accuracy can be
obtained in comparison with the FEM.

For inhomogeneous domains, where we can not obtain a fundamental solution, we
introduce the concept of multiple regions, where the domain is subdivided into sub-
regions, similar to the FEM. There is an additional advantage in this concept, because
sparseness is introduced in the system of equations. We will also find out in a later
chapter that the multi-region method allows contact and excavation problems to be
solved in an elegant way.

In the next chapter we deal with problems that involve corners and geometry which
changes with time, as is the application to sequential excavation/construction of a tunnel.

Because elements only exist on the boundary the BEM has difficulty dealing with
problems where forces are applied inside the domain. These forces can be loosely
termed “body forces”. It will be shown that an additional volume integral has to be
considered. For body forces that are constant the volume integral can be transformed
into a surface integral. However, if the body forces are not constant throughout the
domain the volume integral needs to be evaluated numerically. This can be done by
using internal cells, which look like finite elements, but do not involve any additional
degrees of freedom, as they are only used for integration. The implementation of this
procedure, discussed in chapter 13 also allows the solution of problems in elasto- and
visco-plasticity. Body forces of a different kind (mass forces) occur in the case of
dynamics, but their treatment with the BEM is quite different to the FEM and this is
discussed in Chapter 14.

6 The Boundary Element Method with Programming

In Chapter 15 we show that the solution of non-linear problems follows similar
procedures as in the FEM and that the general solution algorithm is similar. Here two
types of non-linear problems are discussed in more detail: plasticity and contact
problems.

It is possible to couple the BEM with the FEM thus getting the ‘best of both worlds’.
In Chapter 16, methods of coupling are presented. Basically, a stiffness matrix of the BE
region is obtained and assembled with the FEM stiffness matrices. Since many general
purpose programs allow the input of a user defined element stiffness matrix this may be
used to extend the capabilities of a reader’s FEM code.

To demonstrate that the method also works for large scale industrial problems,
Chapter 17 shows some applications of the boundary and coupled method in
engineering. The purpose of this chapter is twofold: firstly it shows how complex
problems, as they invariably occur in real life, can be simplified and how a suitable
boundary element mesh is obtained. Secondly it shows the advantage of the BEM and
the coupled BEM/FEM in terms of user friendliness and computing time.

The last chapter deals with topics which were still subject to research at the writing
of the book. The first deals with the efficient treatment of heterogeneous ground
conditions the other with the consideration of linear inclusions such as reinforcement
and rock bolts. The application in piezo-electricity shows the flexibility of the method to
deal with any problem whose fundamental solution is known.

By the end of this book the reader should have an understanding of how the method
works, of its potential and how it can be implemented into a computer program.

1.3 MATHEMATICAL PRELIMINARIES

A good consistent notation is essential to any textbook. For the development and
explanation of numerical methods two notations are used by engineers: matrix and
tensor notation. Traditionally, textbooks on the BEM have use tensor notation, whereas
those about the FEM have used matrices, although this is rapidly changing. The main
notation chosen for this book is the matrix notation.

There are two reasons for this: firstly, the book which is probably still the most
widely read on numerical modelling, “The Finite Element Method”, by O.C.
Zienkiewicz and R.L Taylor3, uses matrix notation throughout. Since we hope to attract
more engineers to the BEM, this was one motivation. The other reason is that books on
the BEM that use tensor notation have to revert to matrix notation at some stage, for
example when discussing the assembly of the system of equations. Thus the book
attempts to avoid two different notations.

However, when discussing fundamental solutions and their derivatives it transpires
that tensor notation is much easier to use. Therefore in this book we have made a
compromise in that for this case only we revert to a simplified version of the tensor
notation.

In the following we discuss some basic mathematics which will be used in this book
and also attempt a comparison of matrix and tensor notation.

PRELIMINARIES 7

1.3.1 Vector algebra

Vectors are used to represent a displacement/force or to define the position of a point
relative to a set of Cartesian axes. We define the position of a point in 3-D space with
respect to Cartesian axes x, y, z (Figure 1.3) as

(2.1)

Figure 1.3 Position vector x defining a point in space

Alternatively, we may represent the point in terms of Cartesian coordinates xi, where
i=1,2,3 (the last number is also referred to as range).

The components are specified with respect to a set of orthogonal coordinate axes,
which are defined by base vectors of unit length, ii and which have the property:

(2.2)

where denotes the scalar (dot) product

(2.3)

 and ij is known as the Kronecker delta.
Vector x may then be represented in indicial notation as

(2.4)

ji

ji
ijji

for 0

for 1
ii

ii
i

ii xx iix
3

1

x

x

y

z

1i

2i

3i

z

y

x

x

1 2 1 2 1 2i j x x y y z zi i i i i ii i

8 The Boundary Element Method with Programming

where the Einstein summation convention has been used for the last term. This
convention specifies that for any index which is repeated and which does not appear on
the left hand side, a summation of all terms within the range is implied.

Another vector quantity is the displacement which can be written either as

(2.5)

in matrix notation or i iuu i in indicial notation

Coordinate transformation

If we want to express the location of a point, x in another orthogonal coordinate system
(x) the directions of which are given by unit vectors v1 , v2 , v3 then in matrix notation
we write

(2.6)

where the transformation matrix is defined as

(2.7)

Alternatively, we may write in indicial notation

(2.8)

where

(2.9)

Projection of one vector onto another

If we want to compute the projection of a vector onto a direction specified by a unit
vector v, then it is very convenient to use the dot product. For example, the component,
u of the displacement u in the direction specified by v is given by

(2.10)

The angle between the two vectors is computed by

(2.11)

gx T x

321 vvvTg

i ij jx x

jiij iv

x

y

z

u
u
u

u

vuu

vu
u
1cos

PRELIMINARIES 9

where the length of vector u is given by

(2.12)

Figure 1.4 Projection of vector

Derivatives of vectors

The derivatives of the displacement vector may be written as

(2.13)

In indicial notation we simply write

(2.14)

u

v

u

, , ,; ;

xx x

y y y
x y z

z zz

uu u
yx z

u u u
x x y y z z

u uu
x zy

u u uu u u

j,i
j

i u
x
u

222
zyx uuuu

10 The Boundary Element Method with Programming

1.3.2 Stress and strain

Stresses and strains are tensorial quantities. In the indicial notation the strain tensor is
defined by

(2.15)

In this book, however, we use a notation originally proposed by Timoshenko4.
We define a pseudo-vector of strain, i.e., a matrix with one column:

(2.16)

Note that in the pseudo-vector notation we only have 6 strain components, whereas
the symmetric strain tensor has 9. Also note that the ½ term is missing for the shear
strains in order to achieve consistency between the tensor and matrix operations. The
index number of the location of the strain or stress components for matrix notation and
tensor notation is given in Table 1.1

Table 1.1 Index numbering for strain and stress

Notation Index number
Matrix 1 2 3 4 5 6
Tensor 11

xx
22
yy

33
zz

12&21
xy&yx

23&32
yz&zy

31&13
zx&xz

Similarly, the stress tensor ij can be written as a pseudo-vector

(2.17)

i,jj,iij uu
2
1

x
u

z
u

y
u

z
u

x
u

y
u

z
u
y

u
x

u

zx

zy

yx

z

y

x

xz

yz

xy

z

y

x

T
xzyzxyzyx

PRELIMINARIES 11

1.4 CONCLUSIONS

At the beginning of this chapter we have shown on an example in geomechanics that
substantial gains can be made with the BEM, in terms of mesh generation and solution
times. These gains are most pronounced for problems involving infinite or semi-infinite
domains. Other examples where the BEM seems to be superior to the FEM is for
problems where boundary stresses are important, e.g. in Mechanical Engineering.
Examples of this will be shown later.

The main purpose of this book is to encourage the use of the method. The simple
computer programs included contain all the necessary building blocks for building more
advanced and more specific computer programs for research or industrial applications.

In conclusion the reader should see this book as an advanced introduction to the
BEM, with some basic building blocks for computer programming.

1.5 REFERENCES

1. Ritz, W. (1909) Über eine Methode zur Lösung gewisser Variations-Probleme der

mathematischen Physik. Journal für reine und angewandte Mathematik, 135:1-61.
2. Trefftz, E. (1926) Ein Gegenstück zum Ritz’schen Verfahren. Proc. 2nd int. Congress

in Applied Mechanics, Zurich, pp 131.
3. Zienkiewicz O.C. and Taylor R.L. (2000) The Finite Element Method - Fifth Edition.

Butterworth-Heinemann, UK.
4. Timoshenko, S.P. and Goodier, J.N. (1970) Theory of Elasticity. McGraw-Hill,

London.

2
Programming

Art is only pleasing if it
has the character of lightness

J.W. von Goethe

2.1 STRATEGIES

Although the first idea which provided the background for the boundary element method
dates back to the early 1900s, the method only emerged when digital computers became
available. This is because, except for the simplest problems, the number of computations
required is too large for ‘hand calculation’.

The implementation into a computer application basically consists of giving the
processor a series of instructions, or tasks, to perform. In the early days these
instructions had to be given in complicated machine code and writing them was mainly
the domain of specialised programmers. Very soon higher level languages were
developed which made the programming task easier and this had the additional
advantage that code developed could run on any hardware. One of these languages,
especially developed for scientists and engineers, was FORTRAN. In the past decades,
the language has undergone tremendous development. Whereas with FORTRAN IV the
writing of programs was rather lengthy and tedious and the code difficult to follow, the
new facilities of FORTRAN 90/95/2000 (F90) make it suitable for writing short,
readable code. This has mainly to do with features that do away with the need to use
statement numbers and the availability of powerful array and matrix manipulation tools.
Today, any engineer should be able to write a program in a rather short time.

When developing a relatively large program, such as will be attempted in this book, it
is important to use the concept of modular programming. This means that the task has to

14 The Boundary Element Method with Programming

be divided into many subtasks. Therefore, we will develop a library of procedures to
perform certain tasks, for example, computing the value or the derivative of a function at
a certain point. The sub-procedures or functions can be called as needed from the main
program or from other procedures.

In the following, we will give a short introduction to some features of F90 that will be
used in this book. Here, it will be assumed that readers already have some knowledge of
FORTRAN. A more detailed description of F90 is given by Smith1.

We will also introduce in this chapter the notation used in this book, especially with
respect to vectors and matrices. A short introduction to matrix algebra and vectors will
also be given.

2.2 FORTAN 90/95/2000 FEATURES

2.2.1 Representation of numbers

Numbers are stored in the computer in binary form. Real numbers are stored in two
parts: one consists of the digits that make up the number, the other of the exponent. The
exact way in which a number is stored depends on the hardware used. For real numbers,
either 4 or 8 bytes could be allocated for storage in earlier Fortrans, for example by
declaring the variable REAL*4 (“single precision”) or REAL*8 (“double precision”).
However, since the storage is machine dependent, we do not know exactly how many
digits can be stored in either mode. Fortran now provides a facility for specifying the
precision in number of digits with a “KIND parameter”.

First, one must interrogate the processor as to which value of KIND provides a
certain number of digits. For example

IWP= SELECTED_REAL_KIND(16)

would assign to parameter IWP, the KIND number which would give 16 significant
digits (if the processor can achieve it). The declaration of the REAL variable A would
then be

REAL(KIND=IWP) :: A

 or REAL(IWP) :: A

which replaces the former type of declaration, for example

 REAL*8 A

The precision in which the numbers are stored is significant because numerical
round-off may occur if two numbers, which differ greatly in magnitude, are subtracted
from each other. If a great number of such operations are carried out, the error produced

PROGRAMMING 15

by the round-off may become significant. For example, in the solution of a large system
of equations by Gauss elimination, there are many subtractions and therefore a high
precision storage is necessary, whereas other parts of the program may not be so
sensitive. In the programs developed in this book except in the chapter on parallel
processing we use REAL(KIND=8) instead of REAL(iwp).

2.2.2 Arrays

F90 has powerful features to handle arrays. An array can be of rank 1,2,3 etc. A rank 1
array is a vector, a rank 2 array a matrix. In this book we will distinguish between real
vectors (identified by a lowercase bold letter) and matrices with one column, or pseudo-
vectors (identified by lowercase bold Greek letters).

The shape of an array indicates the number of elements in each dimension. For
example the vector

(2.1)

 would be of shape (3,1) , whereas the matrix

(2.2)

would be of shape (3,2).
The declaration of the two arrays in F90 would be

REAL :: V(3),A(3,2)

One of the most important features of F90, however, is that arrays may be declared
dynamically, that is, the programmer does not need to know the dimensions of an array
when writing the program, but these can be read, or calculated, at run time. Since array
dimensions in the BEM will depend on number of nodes and/or number of degrees of
freedom, this is a particularly useful feature. To declare an array A, whose dimensions
are known at run-time, we write:

REAL, ALLOCATABLE :: A(:,:)

In the program, we can then allocate the dimensions of the array with computed
values of dimensions I,J by:

ALLOCATE(A(I,J))

z

y

x

v
v
v

v

3231

2221

1211

aa
aa
aa

A

16 The Boundary Element Method with Programming

When the array is no longer used, then the space in memory can be freed by

DEALLOCATE(A)

An array may be assigned initial values by the statement

REAL :: V(3)=(/ 1.0, 0.0, 0.0 /)

2.2.3 Array operations

FORTRAN 90 has features for array and vector operations, which simplifies the
manipulation of arrays from the programmer’s point of view. The operations include
matrix/vector additions and subtractions, multiplication and vector product. They also
include operations on part of the arrays, examining arrays, determining max/min values,
gathering of submatrices etc.

Matrix Addition: If all the coefficients of A are to be added then one can simply write

A= A+B

Multiplication by a scalar: If all coefficients of A are to be multiplied by a scalar (say
3.0), then this would translate into

A= A*3.0
or

A= A*3.0 _IWP

Although A and the scalar 3.0 clearly have different shapes, 3.0 is said to be “broadcast”
to all the coefficients of A.

Operation on selected coefficients of a matrix: For example, to add the first 3
coefficients of the second column of array A to array B and store it in A one needs a
single statement instead of a loop

A(1:3,2)= A(1:3,2) + B(1:3,2)

Transpose of a matrix: The transpose of a matrix means exchanging rows and
columns. For example, the transpose of vector v defined above is given by:

(2.3)

this translates into

VT= TRANSPOSE(V)

zyx vvvTv

PROGRAMMING 17

the resulting vector vT would be of shape (1,3).

Matrix multiplication: The multiplication of two matrices of shapes (1,3) and (3,2)
gives a result of shape (1,2). For example

(2.4)

translates into

B= MATMUL(VT,A)

It is obvious that for matrix multiplication to be possible, the shapes of the matrices to
be multiplied have to obey certain rules.

Vector dot product: The vector “dot” product of two vectors

(2.5)

is a scalar and is defined as:

(2.6)

this translates into

X= DOT_PRODUCT(V1,V2)

Maximum value in an array: To find the element of array A in (2.2) which has the
maximum value one writes

AMAX= MAXVAL(A)

Location of maximum value: To find the location of the maximum element of array A,
NMAX, execute the statement

NMAX= MAXLOC(A)

Upper bound of an array: Sometimes it is useful for the program to find out what
shape an array had when it was assigned. This will be used extensively in
SUBROUTINES in order to reduce parameter lists. The statement

322212312111

3231

2221

1211

, avavavavavav
aa
aa
aa

vvv xxxzyxzyx
T Av

1 2 1 2 1 2 1 2x x y y z zx v v v v v vv v

1 2

1 1 2 2

1 2

;
x x

y y

z z

v v
v v

v v

v v

18 The Boundary Element Method with Programming

N= UBOUND(A,1)

will return the number of the last row of A, which is 3 whereas

M= UBOUND(A,2)

will return the number of the last column of A, which is 2.

Check on array elements: Another useful function is one which checks if all elements
of an array fulfil a certain condition. For example

ALL(A >0)
or

ALL(A >0.0_IWP)

will return a logical .TRUE. if all elements of A are greater than “zero”.

Figure 2.1 Two-dimensional boundary element mesh and connectivity of element 3
Sum of array elements: Instead of summing the coefficients of an array requiring at
least one loop, with the intrinsic function SUM we may calculate the sum of all
coefficients of an array by simply writing

C= SUM(A)

Masking can be used to sum only coefficients which fulfil certain conditions. For
example

1 2

3

4

7

6
5

 1

 2

 3

 4

 5

 6

7

 3

3

4

PROGRAMMING 19

C= SUM(A, MASK=A>0.0)

would sum only coefficients of A which are greater than “zero”.

Gathering and scattering: A feature in F90 makes the ‘gathering’ and ‘scattering’ of
values, which we will need later, very simple. To explain these operations consider a
two-dimensional mesh of boundary elements in Figure 2.1.

The nodes of the mesh where elements are connected with each other can be
numbered in two different ways: locally and globally. When referring, for example, to
the unknown u (e.g. temperature in the case of heat conduction problems) one has two
vectors, a global one

(2.7)

and a local one defined at element level, for example, for the two nodes of element 3:

(2.8)

 For element 3 we may define a ‘connectivity vector’ of dimension 2, which contains
the global node numbers of the two nodes of the element

CONNECTIVITY=(/3,4/)

The ‘scatter’ operation is where the locally defined unknowns are put into the global
vector

U_GLOBAL(CONNECTIVITY)= U_LOCAL

This statement would put u1 and u2 of element 3 into locations 3 and 4 of the global
vector. The ‘gather’ operation would do the opposite, i.e.

U_LOCAL= U_GLOBAL(CONNECTIVITY)

would put the global values of u1 and u2 into the local positions 1 and 2.

1

2

3

4

5

6

7

{ }

u
u
u

u u
u
u
u

3

2

13}{ u
uu

20 The Boundary Element Method with Programming

2.2.4 Control

Various features which can be used to control the flow of the program have been
improved and new ones added. With these new features it should no longer be necessary
to have GOTO statements and statement numbers, features which sometimes made
programs very difficult to read. A new feature is the SELECT CASE which replaces
the computed GOTO. This feature allows us to control which parts of the code are
executed under certain conditions.

For example the coding

 SELECT CASE(NUMBER_OF_FREEDOMS)
 CASE(1)

 Coding for one degree of freedom
 CASE(2)
 Coding for two degrees of freedom
 CASE DEFAULT

Error message
END SELECT

would execute two different types of instructions, depending on the degrees of freedom
per node (i.e., potential vs. elasticity problems) and would issue an error message if
another value is encountered.

The IF statement is mainly used for controlling execution. It has been improved in
that symbols which are familiar to engineers can be used.

For example the operators :

.NE. can be written as /=

.EQ. ==

.GT. >

.GE. >=

.LT. <

.LE. <=

The DO loop has also been improved. It is possible to give each DO loop a name
which enhances readability. Also, there is an easier possibility of exiting a loop when a
certain condition is reached. For example, in an iteration loop the condition for exiting
may be that a convergence has been achieved. The code

Iteration_loop: &
DO ITER=1,NITERS

Statements
IF(CONVERGED) EXIT
Statements

END DO &
Iteration_loop

PROGRAMMING 21

would exit the loop completely if the value of CONVERGED is .TRUE.

Another nice feature is CYCLE. For example the coding

Element_loop: &
DO NEL=1,NELEM

Statements 1
IF(NEL >= NELB) CYCLE
Statements 2

END DO &
Element_loop

would skip Statements 2 if NEL becomes greater or equal to NELB and would continue
with the next value of NEL.

2.2.5 Subroutines and functions

Subroutines and functions perform frequently used tasks and split a complex problem
into smaller ones. For example, to normalise a vector we may define a Subroutine
Vector_norm as

SUBROUTINE VECTOR_NORM(V,VLEN)
 !--
 ! Normalise vector
 !--
 REAL, INTENT(INOUT) :: V(:) ! Vector to be normalised
 REAL, INTENT(OUT) :: VLEN ! Length of vector
 VLEN= SQRT(SUM(V*V))
 IF(ABS(VLEN)<1.E-10) RETURN
 V= V/VLEN
 RETURN
 END SUBROUTINE VECTOR_NORM

Two things are of note here. Firstly, in the declaration of variables in the parameter

list, we may specify if a parameter is to be used for input (IN), output (OUT) or input
and output (INOUT). This not only helps to clarify the readability of the code, but also
protects variables from being changed by accident in the subprogram. Secondly, we do
not need to specify the dimension of vector V, since this will be determined in the
program calling the Subroutine. For example, the calling program will have

REAL :: V(3)
.
.
CALL VECTOR_NORM(V,VLEN)

22 The Boundary Element Method with Programming

Another very useful feature which we will use in the book is that a function can also
return an array. For example, we may write a function for determining the vector ex-
product of two vectors as:

FUNCTION VECTOR_EX(V1,V2)
 !--
 ! Returns vector x-product v1xv2
 ! where v1 and v2 are dimension 3
 !--
 REAL, INTENT(IN) :: V1(3),V2(3) ! Input
 REAL :: VECTOR_EX(3) ! Result
 VECTOR_EX(1)=V1(2)*V2(3)-V2(2)*V1(3)
 VECTOR_EX(2)=V1(3)*V2(1)-V1(1)*V2(3)
 VECTOR_EX(3)=V1(1)*V2(2)-V1(2)*V2(1)
 RETURN
 END FUNCTION VECTOR_EX

In the calling program we use this function in this way

REAL :: V1(3),V2(3),V3(3)
.
.
V3= VECTOR_EX(V1,V2)

2.2.6 Subprogram libraries and common variables

As indicated previously, for developing large programs, it is convenient to subdivide
the big task into smaller ones. This means that a library of subroutines will be
developed. There are basically two ways in which these subroutines were able to
communicate with each other in earlier Fortrans: via parameter lists or via COMMON
blocks. F90 has replaced the somewhat tedious COMMON block structure by the
MODULE and USE statements. A MODULE is simply a set of declarations and/or
subroutines. If a program or subprogram wants to use the declarations and subroutines, it
simply has a USE statement at the beginning. For example, to define some variables
which are used by subprograms we specify

MODULE Common_Variables
REAL(IWP) :: A, B
REAL(IWP), ALLOCATABLE :: C(:)

END MODULE Common_Variables

This replaces the COMMON statements. Any program or sub-program that uses the
common declarations has a USE statement such as:

PROGRAMMING 23

PROGRAM TEST
USE Common_Variables
-
-
-

 END PROGRAM TEST

 To help with the management of large programs it is convenient to group subroutines
into different files. The MODULE facility can be used for this purpose. For example, we
may group all subroutines which have to do with the geometrical description of
boundary elements into a module Geometry_lib

MODULE Geometry_lib
REAL :: Pi= 3.149

 CONTAINS
SUBROUTINE Shape …
END SUBROUTINE Shape
…

END MODULE Geometry_lib

2.3 CHARTS AND PSEUDO CODE

Even though the features of F90 have made programs readable, there is still a need to
show the general layout of the program in a simple way. Flow charts, as used in the early
days of programming, are not useful because they do not illustrate the essential features
of a program’s structure.

Instead, structure charts and pseudo code are used, i.e., a FORTRAN-like code which
gives but a general description of what to do. Since nested DO LOOPS are complicated
to read in a FORTRAN code they can be explained better in a structure chart. For
instance, the chart for the example of two-dimensional numerical integration discussed
in the next chapter is shown in Figure 2.2.

The advantage of the structure chart is that the structure of the nested do loop can be
clearly seen. Another feature where structure charts may be useful is in IF statements,
especially when they are complicated. For example, if we wish to check all diagonal
elements of the coefficient matrix and take appropriate action if they are negative, zero
or positive, the structure chart in Figure 2.3 can be used.

24 The Boundary Element Method with Programming

Figure 2.2 Example of a structure chart, nested DO-loop

Figure 2.3 Example of a structure chart, IF statement

Action
Error

zero pivot
stop

Value of pivot ?

Negative Zero Positive

Warning
neg. pivot Continue

Question

Answer

Determine value

of functions

Multiply with
integration weight

 For all Elements DO

For Gauss points in direction 1 DO

For all gauss points in dir.
2 DO

Initialisation

Calculate Jacobian,
Multiply with weights,

Add values

PROGRAMMING 25

2.4 PARALLEL PROGRAMMING

 As problem sizes grow, or analyses types become more ambitious, computer
processing time can inhibit the design process2,3. For example, if a nonlinear analysis
(Chapter 15) takes hours to complete, the designer loses interest because interaction
between computation and design is hampered. Alternatively, design of many systems
depends on a statistical evaluation of their responses and so a single analysis is not
sufficient. Stochastically it may be necessary to complete several hundred analyses
before a statistically significant result can be reported.
 For these reasons it is important to minimise computer analysis time, and the presently
available means of so doing is called “parallel processing”. The idea is to carry out the
computation on NPES processors, usually of similar type, connected in parallel. If the
computational work can be shared equally amongst the processors, under perfect
conditions computation time is reduced by a factor NPES. At the time of writing,
systems with 1000 processors are quite common, meaning that an analysis taking 1 hour
on a single processor could be completed in 4 seconds in parallel. More affordably, 10
standard PCs coupled together in parallel would reduce the hour of computation to a 6
minute “coffee break”.
 A second advantage of working in parallel is that data can be distributed across the
processors and so much larger problems can be analysed.

2.4.1 Message Passing using MPI

 While there are several ways of organising programs to run in parallel, we concentrate
here on “message passing” using a portable system called MPI – “Message Passing
Interface”4. When computations are subdivided and assigned to the various processors, a
time will come when information has to be shared, or exchanged between processors.
The job of MPI is to handle these exchanges – a process called “communication”. Since
computation is fast and communication slow, an aim will be to optimise the ratio
between them.
 By “portable” in the above description, we mean that execution of a program in parallel
should appear to the user to be independent of the processing hardware being employed
and MPI satisfies this requirement. It is a de-facto standard and consists of subroutines,
callable from FORTRAN by means of the usual CALL statement. For example

CALL MPI_ALLREDUCE(F1,F,Ndofs,MPI_REAL8,MPI_SUM,MPI_COMMWORLD,ier)

collects the sum of the distributed arrays F1, of length Ndofs, from all processors and
returns the result to F. The KIND of the arrays would have to match the Fortran
REAL*8 precision. The significance of the other parameters need not concern the
applications programmer.

26 The Boundary Element Method with Programming

2.4.2 Using MPI on a “Supercomputer”

 Current “supercomputers” all have parallel architectures of some kind and so it has been
essential to make the use of MPI simple. Therefore at compile time a command like
“f90” to compile a serial program is simply replaced by, for example, “mpif90” for a
parallel program using MPI. At runtime, a command like “mpirun” will have a
parameter specifying the number of parallel processors requested.

2.4.3 Using MPI on PC “Clusters”

 A low cost entry to parallel computing can be achieved by linking PCs together using
for example an Ethernet for communication between machines. In the 1990s such
groupings were often termed “Beowulf” clusters and there are publications5 describing
how to set these up. The basic steps might be as follows:

1. Choose N identical PCs. (In practice the PCs need not be identical but for
beginners this is a simplifying step).

2. Install the same (e.g. Linux) operating system on each PC.
3. Connect the PCs together using for example an Ethernet.
4. Give each PC a distinct IP address ………….X where X =1, N.
5. Install a version of MPI on each PC.
6. Compile the same program (linking to an MPI Library – see below) on each

PC.
7. Configure MPI (put a list of IP addresses in a configuration file) to “talk” to all

PCs.

 An obvious pitfall is that all machines must be running identical software and it is easy
to forget to update modifications.

 Two MPI libraries which can be freely downloaded are MPICH6 and LAM MPI7.
The parallel program is launched by typing a command from one of the PCs
(implementation-specific). The program and input data must be in the same location
(directory) on each PC (or compute node). When the program is launched from the
“master” PC, each “slave” PC will run the same program, in parallel, but will work on
its own data. Most Beowulf-type software is Unix or Linux, based but Microsoft have
recently put forward a “Microsoft Compute Cluster” enabling parallel processing from a
Microsoft Windows environment.
 In Chapter 8, programs are listed which enable Boundary Element computations to be
processed in parallel by any system capable of supporting MPI, ranging from clusters of
PCs to “supercomputers”.

PROGRAMMING 27

2.5 BLAS LIBRARIES

 Since computations by the Boundary Element Method make extensive use of array
manipulations, it is sensible to make use of software which facilitates this, if available.
BLAS, “Basic Linear Algebra Subroutine” libraries permit three levels of array
processing: vector-vector, matrix-vector and matrix-matrix8. In Chapter 8 we shall use
BLAS subroutine DGEMV to carry out matrix by vector multiplications. On some
processors this can lead to significant speed-up in comparison with the Fortran
MATMUL.

2.6 PRE- AND POST-PROCESSING

For large problems it is very tedious, or impossible, to produce a file using a text
editor which contains all input data the program needs for analysis. For example, the
specification of the coordinates of all nodes and the connectivity of all elements may
involve thousands of lines. It is common practice, therefore, to use preprocessors with a
graphical interface which allow the user to specify the problem geometry and loading
and which automatically generate the necessary information. Unfortunately, even though
FORTRAN has developed very sophisticated features for computation, there are no built
in tools available for graphical display, as there are, for example, with C++. If one wants
to develop graphic capabilities and user interfaces, one must use special libraries, such
as that supplied, for example, by Interactive Software Services (INTERACTER9).

Results obtained from boundary element programs can be displayed in a variety of
ways. The simplest is to print out values of displacements at nodal points and surface
stresses inside boundary elements. In addition, the values at interior points can be
printed out. Printed numbers are appropriate for the small examples used in this book,
but for larger problems, one cannot do without graphical display. Indeed this will be
what will ‘sell’ any numerical method to the engineering community. A few examples of
graphical display will be shown in Chapter 17 (Applications).

General purpose graphical pre- and postprocessors are freely available and sometimes
quite inexpensive (for example, GID by UPC10). Therefore, the topic of pre- and post-
processing will not be discussed in this book. Since the small test examples used here
only require a few lines of input, we can do without preprocessors. However, the reader
is encouraged to enhance the software by providing a suitable interface for the programs
to be developed in this book with existing preprocessing packages.

2.7 CONCLUSIONS

In this chapter we have given a short overview of some of the features of F90 the latest
dialect of FORTRAN which we are going to use. There are as many programming styles
as there are programmers and each programmer will no doubt claim that his/hers is best.

28 The Boundary Element Method with Programming

The aim in good programming should be to produce efficient, readable and easy to
check code. The last is a very stringent requirement in quality control. Easy to read
programs sometimes also tend to be efficient; however a small gain in efficiency should
not be made, if clarity is sacrificed. For example sometimes it is clearer and also more
efficient not to use a DO loop if less than 4 cycles will occur. If permutations of indices
have to be made such as in the fundamental solutions shown later, it is often better to
generate all of the coefficients using the editor’s copy and paste facility, since the code
can be checked much faster visually.

In the past, sub-programs had either many COMMON blocks or long parameter lists.
These were needed to pass variables between SUBROUTINES and the main program.
Fortunately F90 has done away with COMMON blocks and the number of parameters
for SUBROUTINES can be further reduced by the dynamic array allocation, the use of
UBOUND and the USE statement. However one must very carefully consider which
variables should be declared in the Common Module as explained previously and which
should be declared in each subroutine.

Regarding the programs presented in this book, we claim neither that they are very
efficient nor that this is the only way that the procedures outlined may be implemented.
Indeed, we encourage the reader to think of different ways in which the theory can be
converted efficiently and elegantly into code. In the programs that we present here we
have placed our emphasis on readability. Otherwise there would be no point in including
the code in the text. In many cases we have sacrificed efficiency and have limited
ourselves to solving small problems, because we do not use direct access files for storing
values, but assume instead that all data required fit into RAM. With the dramatic
increase in the amount of RAM available on standard PCs this, however, is not likely to
become a main issue throughout the lifetime of this book especially if parallel
processing is used. With regard to efficiency some rearranging of DO loops, would be
necessary so that computations which only need to be carried out once are not
unnecessarily carried out many times. This occurs especially in the subroutines for the
integration of Kernel-shape function products. However, such rearrangement would
have made the programs more difficult to follow and therefore was not implemented.

The programs were developed on a Visual Fortan11 compiler. However, since only
standard F90 features have been used, the source code should be able to be compiled
with any FORTRAN90, FORTRAN95 or FORTRAN 2000 compiler.

2.8 EXERCISES

Exercise 2.1.
Given are two integer arrays of rank one named Inci1, Inci2 with element node numbers.
Write a LOGICAL FUNCTION Match(Inci1,Inci2) which returns .TRUE. if all the
numbers of Inci2 match all the numbers in Inci1. Note that the sequence of the numbers
in Inci1 and Inci2 will in general not be the same. The dimension of both arrays will be
declared in the calling program.

PROGRAMMING 29

Exercise 2.2.
Write a REAL FUNCTION DETERMINANT(A) which computes the determinant of
the matrix A which can be of shape (2,2) or (3,3).

Exercise 2.3.
Given is a sub-matrix A of shape (2,2) and a matrix B whose shape is declared in the
calling program. Write a SUBROUTINE ASSEMBLE(A,B,I,J) which assembles the
sub-matrix A into the matrix B at location i,j (see Figure below)

2.9 REFERENCES

1. Smith I.M. (1995), Programming in FORTRAN90, J.Wiley.
2. Smith I. M. and Griffiths D. V., (2004) Programming the Finite Element Method, 4th

ed, J.Wiley.
3. ParaFEM Web Reference (2004), http://www.parafem.org.uk.
4. Message Passing Interface Forum (1994) MPI: A message Passing Interface

Standard, International Journal of Supercomputer Applications 8:3-4.
5. Sterling, T.L., Salmon, J., Becker, D.J. and Savarese, D.F. (1999) How to Build a

Beowulf, The MIT Press.
6. MPICH Web Reference (2007), http://www-unix.mcs.anl.gov/mpi/mpich/
7. LAM MPI Web Reference (2007), http://www.lam-mpi.org/
8. Dongarra, J.J. and Walker, D.W. (1995) Software Libraries for Linear Algebra

Computations on High Performance Computers,SIAM Rev. 37(2):151-180
9. Interactive Software Services (1999), INTERACTER Subroutine Reference.
10. GID web reference: http://gid.cimne.upc.es
11. Digital Equipment Corp. (1997) Digital FORTRAN Language Reference Manual

2221

1211

j

i

AA

AA

3
Discretisation and Interpolation
 Nature is indifferent
 towards the difficulties it
 causes to a mathematician

 Fourier

3.1 INTRODUCTION

One of the fundamental requirements for numerical modelling is a description of the
problem, its boundaries, boundary conditions and material properties, in a mathematical
way. The exact definition of the shape of a complicated boundary would require the
specification of the location (relative to the origin of a set of axes) of a large number of
points on the surface (indeed an exact definition will take an infinite number). In order
to be able to model such problems with a reasonable amount of input data, only a limited
number of points may be defined and the shape between the points approximated by
functions. This is known as solid modelling1. Solid modelling is being used, for
example, to describe the shape of car bodies in mechanical engineering and ore bodies in
mining, for the purpose of generating displays on computer graphics terminals. Thus, a
new form of car body can be visualised, in perspective, from various angles, even before
a scale model is built and the location and grade of ore bodies can be displayed for
optimising excavation strategies in mine planning.

In the following we will discuss one and two-dimensional boundary elements as
defined by the number of intrinsic (element) coordinate directions. One-dimensional
elements exist in two-dimensional Cartesian space and two-dimensional elements in
three-dimensional space. Thus, in this chapter, we consider discretisation methods used

32 The Boundary Element Method with Programming

in the boundary method and start building the library of subroutines needed later. For the
treatment of non-linear problems discussed in Chapter 15 we will also need two- and
three-dimensional cells, which are also discussed here.

3.2 ONE-DIMENSIONAL BOUNDARY ELEMENTS

One-dimensional elements are used for the description of a boundary in the x-y plane.
The first step in the description of the boundary is to specify a discrete number of points
on the boundary (Figure 3.1). Next we specify an interpolation between these points. In
the simplest case we have linear segments (or boundary elements) which connect two
nodes i and j, the positions of which are defined by Cartesian coordinates. For each
element it is convenient to define a local (intrinsic) coordinate which follows the
direction of the element, equals zero at the centre and has the value of 1 at the ends
(Figure 3.2).

Figure 3.1 Plane domain, boundary approximated by linear elements

Figure 3.2 Boundary element shown in a) global and b) local (intrinsic) coordinate space

x

y

e

1

2

3
4

7

8

910
11

12

5

6

5

6

e

x

y

a) b)

1 2

DISCRETISATION AND INTERPOLATION 33

e
nnN xx

It can easily be verified that the Cartesian coordinates of a point on element e with the
intrinsic coordinate are given by

(3.1)

This equation can be checked by substituting = – 1 and = + 1 to obtain the
coordinates of nodes 5 and 6.

It is now convenient to substitute for the global coordinates:

In this way we establish a link between local and global numbering of nodes.
The global numbers of nodes which belong to the element are referred to as ‘element

incidences’ or ‘element connectivity’. In the example in Fig. 3.1, the connectivity of
element e is 5,6. The sequence in which the element node numbers are entered will be
significant later, as it will affect the direction of the outward normal. From now on we
will work with the local numbering system and use the element incidences to ‘gather’
coordinates from the global values, as explained in the previous chapter.

We can rewrite equation (3.1) as

(3.2)

or in abbreviated form

(3.3)

where L is the number of element nodes and Nn are element ‘shape’ functions. Equation
(3.3) can be written in matrix notation

(3.4)

ee

ee

yyy

xxx

21

21

1
2
11

2
1

1
2
11

2
1

e
n

e
n

L

n
n

y

x
N

y
x

1

5 1

6 1

5 2

6 2

first node of element e

second node of element e

e

e

e

e

x x

y y

x x

y y

5 6 6 5

5 6 6 5

2 2

2 2

x x x x
x

y y y y
y

34 The Boundary Element Method with Programming

where x is a vector containing coordinates of a point on element e and e
nx is a vector of

coordinates of the nth node of element e.
For the two-node element just derived, the shape functions are (Figure 3.3)

(3.5)

Figure 3.3 Linear shape functions

Figure 3.4 Quadratic element shown in a) global and b) local coordinate space

The shape functions may be also expressed by

(3.6)

where the local coordinates of the 2 nodes are given by

(3.7)

1
2
1

1
2
1

2

1

N

N

nnN 1
2
1

1

2

1
1

1()N

1

2 ()N

1

x

y

a) b)

1 2 3

DISCRETISATION AND INTERPOLATION 35

1

0
1

n

in

nn

N

niforN
N

Complicated shapes can be more accurately described by a smaller number of
elements with three nodes and quadratic shape functions (Figure 3.4). The coordinate
now follows the element shape, i.e., is curvilinear and the third node is placed at = 0.
The shape function associated with the mid-side node is a parabola, which has unit value
at the third node and zero value at the other nodes, that is,

(3.8)

Figure 3.5 Quadratic shape functions

The corner node shape functions can be obtained by subtracting half of the centre
node function from each of the linear shape functions (Figure 3.5)

(3.9)

 The shape functions presented here have so far not been derived mathematically but
written down intuitively. Shape functions derived this way have been called Serendipity
functions2. It can be seen that the shape functions derived so far have the following
properties

(3.10)

21
2
11

2
1

3 ,nNN nn

2
3 1N

1()N

1

2 ()N

1

3()N

1

1/ 2 1/ 2

36 The Boundary Element Method with Programming

The mathematical derivation of functions which satisfy conditions (3.10) is possible
using Lagrange polynomials3. For the parabolic elements the Lagrange shape functions
are defined as

(3.11)

where

(3.12)

The reader can verify that the Lagrange and Serendipity shape functions are identical
for one-dimensional elements. However, Lagrange polynomials will be used to construct
shape functions for two-dimensional elements, which differ from the Serendipity shape
functions.

3.3 TWO-DIMENSIONAL ELEMENTS

For the description of the boundary of three-dimensional problems two-dimensional
boundary elements are used. The elements are also used for defining cells for the
evaluation of volume integrals for plane problems. Their derivation is analogous to that
of the one-dimensional elements described previously, except that two intrinsic
coordinates (,) are used, as shown in Figure 3.6.

Figure 3.6 Quadrilateral boundary element in a) global and b) local coordinate system

The Cartesian coordinates of a point with intrinsic coordinates (,) are obtained by

321 iiii AAAL

1

n
in

i n

in

A for i n

A for i n

4

1 2

3

1 1(1, 1) (1, 1)

(1,1)(1,1)

x

z

a) b)

y

DISCRETISATION AND INTERPOLATION 37

(3.13)

where for boundary elements

(3.14)

For cells we have

(3.15)

Figure 3.7 Bilinear shape function N1

Figure 3.8 Quadratic Serendipity element

e
n

L

n
nN xx ,

1

1(,)N

1

1

2

3

4

x
y
z

x

4

1 2

3

x

y

a) b)

5

6

7

8

z

x
y

x

38 The Boundary Element Method with Programming

Bilinear shape functions are used:

(3.16)

 The shape function N1 is shown in Figure 3.7. It describes a curved surface consisting
of straight lines in the , directions. The surface, also called a hyper-surface, has been
a widely used shape for concrete shells, because the formwork is simple to construct.

Table 3.1 Intrinsic coordinates of nodes

n n n
1 -1.0 -1.0
2 1.0 -1.0
3 1.0 1.0
4 -1.0 1.0
5 0.0 -1.0
6 1.0 0.0
7 0.0 1.0
8 -1.0 0.0

Figure 3.9 Shape functions for mid-side and corner nodes

nnnN 1
2
11

2
1

5 (,)N

1
1

2

3

4

5

8

6

7

1(,)N

1

1

2

3

4

5

8

6

7

1
2

DISCRETISATION AND INTERPOLATION 39

 Again we can derive a higher order element by adding mid-side nodes on the element
sides. A quadratic element is shown in Figure 3.8 and the local coordinates of nodes are
shown in Table 3.1. The shape functions for the mid-side nodes are given by

(3.17)

The corner node functions are constructed in a similar way as for the one-dimensional
element (Figure 3.9)

(3.18)

 By writing down the shape functions in this manner, it is possible to derive elements
with variable numbers of nodes by deleting appropriate terms. For example, for an
element with no midside node 5, a linear function is assumed between nodes 1 and 2 and
the shape functions are obtained by simply setting N5 = 0.

Figure 3.10 Quadratic Lagrange element in a) global and b) local coordinate system

8,611
2
1

7,511
2
1

2

2

nforN

nforN

nn

nn

851 2
1

2
111

4
1 NNN

652 2
1

2
111

4
1 NNN

763 2
1

2
111

4
1 NNN

874 2
1

2
111

4
1 NNN

4

1 2

3

x

y

a) b)

5

6

7

8

z

9

j= 1

j= 2

j= 3

i= 1 i= 3 i= 2

40 The Boundary Element Method with Programming

 If the element shape functions for the quadratic element are derived from Lagrange
polynomials, then there is an additional node at the centre of the element (Figure 3.10).
The shape functions are given by

(3.19)

Figure 3.11 Serendipity and Lagrange shape functions

321321, jjjiiijin BBBAAAL

1 1

1 1

1

DISCRETISATION AND INTERPOLATION 41

Ai,l is defined in equation (3.12) and

(3.20)

where i and j are the column and row numbers of the nodes. This numbering is defined
in Figure 3.10. The nodes are given by

 n (1,1) = 1 n (2,1) = 2 n (3,1) = 5
 n (1,2) = 4 n (2,2) = 3 n (3,2) = 7
 n (1,3) = 8 n (2,3) = 6 n (3,3) = 9

The Serendipity and Lagrange shape functions are compared in Figure 3.11
The Lagrange element has an additional ‘bubble mode’ and is, therefore, able to describe
complicated shapes more accurately. Triangular elements can be formed from
quadrilateral elements, by assigning the same global node number to two or three corner
nodes. Such degenerate elements are shown in Figure 3.12.

Figure 3.12 Linear and quadratic degenerate elements

Alternatively triangular elements may be defined using the iso-parametric concept. In
Figure 3.13 we show a triangular element in the global and local coordinate system. The
shape functions for the transformation are defined as4

(3.21)

1

m
jm

j m

jm

B if j m

B if j m

8

1

374

6

2

5

2

34

1

1

2

3

(,) 1
(,)
(,)

N
N
N

42 The Boundary Element Method with Programming

Figure 3.13 Triangular linear element in global and local coordinate system

As can be seen in Figure 3.14 the shape functions are represented by planes.

Figure 3.14 Shape functions of linear triangular boundary element

 It is also possible to define a triangular element with a quadratic shape function. The
shape functions for the mid-side nodes are given by

(3.22)

3

1
2

1 1(0, 0) 2 2(1, 0)

3 3(0, 1)

x

z
y

1

2

3

4

5

6

4 1
4
4 1

N
N
N

DISCRETISATION AND INTERPOLATION 43

The corner node functions are constructed in a similar way as for the previous
elements

(3.23)

Figure 3.15 Triangular quadratic element

3.4 THREE-DIMENSIONAL CELLS

For the description of cells for 3-D problems three-dimensional elements are used.
Their derivation is analogous to that of the two-dimensional elements described
previously, except that now three intrinsic coordinates (, ,) are used, as shown in
Figure 3.16. The Cartesian coordinates of a point with intrinsic coordinates (, ,) are
obtained by

(3.24)

Bilinear shape functions are used for the quadrilateral element in Figure 3.16

(12.1)

1 4 6

2 4 5

3 5 6

1 11
2 2

1 1
2 2
1 1
2 2

N N N

N N N

N N N

1

2

3

4

5

6

0 1
2

1

1

1
2

8

1

, , e
n n

n

Nx x

nnnnN 111
8
1

44 The Boundary Element Method with Programming

where local coordinates of the nodes are defined in Table 3.2. For the description of cells
with a quadratic shape function, see for example [4].

Figure 3.16 3-D cell element in a) global and b) local coordinate system

Table 3.2 Local coordinates of nodes for 3-D cells

 n

 n n n n n n n

 1 -1.0 -1.0 1.0 5 -1.0 -1.0 -1.0
 2 1.0 -1.0 1.0 6 1.0 -1.0 -1.0
 3 1.0 1.0 1.0 7 1.0 1.0 -1.0
 4 -1.0 1.0 1.0 8 -1.0 1.0 -1.0

3.5 ELEMENTS OF INFINITE EXTENT

It is sometimes necessary to describe surfaces of infinite extent. Examples are found in
geomechanics, where either the surface of the ground extends to infinity or a tunnel can
be assumed to be infinitely long. To describe the geometry of an element of infinite
extent in one intrinsic coordinate direction, we may use special shape functions5 which
tend to infinity, as the intrinsic coordinate tends to +1. For the one-dimensional element
shown in Figure 3.17 the coordinate transformation

(3.25) e
n

n
nN xx)()(

3

1

4

1 2

3

x

z

a) b)

y 5 6

78

DISCRETISATION AND INTERPOLATION 45

results in infinite Cartesian coordinates at = 1 if the shape functions are taken to vary
as follows:

(3.26)

Figure 3.17 One-dimensional infinite element in a) global and b) local coordinate space

Note that the element is finite in the local coordinate space and therefore can be treated
the same way as a finite boundary element for the integration.

Figure 3.18 Two-dimensional infinite element in a) global and b) local coordinate space.

The concept can be extended to two-dimensions. The geometry of the two-
dimensional element shown in Figure 3.18, for example, is described by

1 22 /(1) and (1) /(1) N N

x

y

a) b)

1 2

a)

1 at infinity

4

1 2

3

x

z

a) b)

y

=1 at infinity

5

6

46 The Boundary Element Method with Programming

(3.27)

where () ()m nN are linear or quadratic Serendipity shape functions as presented for the

one-dimensional finite boundary elements, () ()k nN are the same infinite shape
functions as for the one-dimensional element, with substituted for and the values
for m(n) and k(n) are given in Table 3.3

Table 3.3 Values for m and k in Equation (3.27)

 n m k
 1 1 1
 2 2 1
 3 2 2
 4 1 2
 5 3 1
 6 3 2

3.6 SUBROUTINES FOR SHAPE FUNCTIONS

Here we start building our library of Subroutines for future use. We create routines for
the calculation of Serendipity, infinite and Lagrange shape functions. Only the listing for
the first one is shown here.

As explained in Chapter 3, some variables will be defined as global, that is, as
accessible to all the subroutines in a MODULE and all programs which use them via the
USE statement. The dimensions for the array Ni, which contains the shape functions,
depend on the type of element and will be set by the main program.

SUBROUTINE Serendip_func(Ni,xsi,eta,ldim,nodes,inci)
!---------------------------------
! Computes Serendipity shape functions Ni(xsi,eta)
! for one and two-dimensional (linear/parabolic) finite
! boundary elements
!---------------------------------
REAL,INTENT(OUT) :: Ni(:) ! Array with shape function
REAL,INTENT(IN) :: xsi,eta! intrinsic coordinates
INTEGER,INTENT(IN):: ldim ! element dimension
INTEGER,INTENT(IN):: nodes ! number of nodes
INTEGER,INTENT(IN):: inci(:)! element incidences
REAL:: mxs,pxs,met,pet ! temporary variables
SELECT CASE (ldim)
CASE(1)! one-dimensional element

4(6)

() ()
1

e
m n k n n

n

N Nx x

DISCRETISATION AND INTERPOLATION 47

Ni(1)= 0.5*(1.0 - xsi); Ni(2)= 0.5*(1.0 + xsi)
IF(nodes == 2) RETURN! linear element finished
Ni(3)= 1.0 - xsi*xsi
Ni(1)= Ni(1) - 0.5*Ni(3); Ni(2)= Ni(2) 0.5*Ni(3)

CASE(2)! two-dimensional element
 mxs=1.0-xsi; pxs=1.0+xsi; met=1.0-eta; pet=1.0+eta
 Ni(1)= 0.25*mxs*met ; Ni(2)= 0.25*pxs*met
 Ni(3)= 0.25*pxs*pet ; Ni(4)= 0.25*mxs*pet
 IF(nodes == 4) RETURN! linear element finished
 IF(Inci(5) > 0) THEN !zero node = node missing
 Ni(5)= 0.5*(1.0 -xsi*xsi)*metNi(1)= Ni(1) - 0.5*Ni(5) ;
 Ni(2)= Ni(2)0.5*Ni(5)
 END IF
 IF(Inci(6) > 0) THEN
 Ni(6)= 0.5*(1.0 -eta*eta)*pxs
 Ni(2)= Ni(2) - 0.5*Ni(6) ; Ni(3)= Ni(3) - 0.5*Ni(6)
 END IF
 IF(Inci(7) > 0) THEN
 Ni(7)= 0.5*(1.0 -xsi*xsi)*pet
 Ni(3)= Ni(3) - 0.5*Ni(7) ; Ni(4)= Ni(4)- 0.5*Ni(7)
 END IF
 IF(Inci(8) > 0) THEN
 Ni(8)= 0.5*(1.0 -eta*eta)*mxs
 Ni(4)= Ni(4) - 0.5*Ni(8) ; Ni(1)= Ni(1) - 0.5*Ni(8)
 END IF
CASE DEFAULT ! error message
CALL Error_message('Element dimension not 1 or 2')
END SELECT
RETURN
END SUBROUTINE Serendip_func

3.7 INTERPOLATION

In addition to defining the shape of the solid to be modelled, we will also need to specify
the variation of physical quantities (displacement, temperature, traction, etc.) in an
element. These can be interpolated from the values at the nodal points.

3.7.1 Isoparametric elements

The value of a quantity q at a point inside an element e can be written as

(3.28)

where e
nq is the value of the quantity at the nth node of element e and nN are

interpolation functions (Figure 3.19).

e
n nq N q

48 The Boundary Element Method with Programming

If for a particular element the same functions are used for the element shape and for the
interpolations of physical quantities inside the element, then the element is called
‘isoparametric’ (i.e., same number of parameters).

Figure 3.19 Variation of q along a quadratic 1-D boundary element (in local coordinate system)

Figure 3.20 Interpolation of q over a linear 2-D element

The variation of physical quantities on the surface of two-dimensional elements or
inside plane elements can be described (Figure 3.20)

(3.29)

Note than q may be a scalar or a vector (i.e. may refer to tractions t or displacements
u). The physical quantities are defined for each element separately, so they can be
discontinuous at nodes shared by two elements as shown in Figure 3.21. If Serendipity
or Lagrange shape functions are used only C0 continuity can be enforced between
elements by specifying the same function value for each element at a shared node.

, , e
n nq N q

(,)q

1

2

34

1
eq

2
eq

3
eq4

eq

1 2 3

1
eq 3

eq
2
eq

()q

DISCRETISATION AND INTERPOLATION 49

Figure 3.21 Variation of q with discontinuous variation at common element nodes

3.7.2 Infinite elements

For the one-dimensional infinite element we can assume that the displacements and
tractions decay from node 1 to infinity with o(1/r) and o(1/r2) respectively, or that they
remain constant. The former corresponds to a surface that extends to infinity, but the
loading is finite, the latter corresponds to a the case where both the surface and the
loading extends to infinity (this corresponds to plane strain conditions). For the one-
dimensional “decay” infinite element we have

(3.30)

where

(3.31)

For the “plane strain” infinite element the variation is given simply by

(3.32)

For the two-dimensional “decay” infinite element we have

(3.33)

1 2 3

1
1q

1
3q

1
2q

()q

1 2 3

2
1q

2
3q

2
2q

()q

Element 1 Element 2

1 1 1 1 ; u tN Nu u t t

2
1 1

1 1(1) ; (1)
2 4u tN N

2(3) 2(3)

1 1
1 1

; e e
n u n n t n

n n

N N N Nu u t t

1 1 ; u u t t

50 The Boundary Element Method with Programming

Where ()nN are linear or quadratic Serendipity shape functions as presented for the

one-dimensional finite boundary elements and 1 ()tN and 1()uN are the same infinite
shape functions as for the one-dimensional element with substituted for .
For the two-dimensional “plane strain” infinite element we have

(3.34)

3.7.3 Discontinuous elements

Later we will see that in some cases it is convenient to interpolate q not from the nodes
that define the geometry but from other (interpolation) nodes that are moved inside the
element.

Figure 3.22 One dimensional linear discontinuous element

This type of element will be used in the Chapter on corners and edges to avoid a
multiple definition of the traction vector. For the one-dimensional linear element in
Figure 3.22 we have

(3.35)

Where e
nq are the values of q at the interpolation nodes and the interpolation functions

are

(3.36) 1 1 2 2
1 2 1 2

1 1() () ; () ()
() ()

N d N d
d d d d

() () e
n nq N q

2(3) 2(3)

1 1

; e e
n n n n

n n

N Nu u t t

1
eq

2
eq

geometric node interpolation node
1d 2d

1 2

()q

DISCRETISATION AND INTERPOLATION 51

Here d1, d2 are absolute values of the intrinsic coordinate of the interpolation nodes.

Figure 3.23 One dimensional quadratic discontinuous element

It can be easily verified that for d1=d2=1 the shape functions for the continuous element
are obtained. For a quadratic element we have

(3.37)

Figure 3.24 Two-dimensional linear discontinuous element

For the two-dimensional linear element shown in Figure 3.24 the shape functions are
given for the corner nodes by

(3.38)

1 1 2 2
1 2 2 1 2 1

3 1 2
1 2

1 1() ()(1) ; () ()(1)
() ()

1() ()()

N d N d
d d d d d d

N d d
d d

1 1 3 2 2 3

3 2 4 4 1 4

1 2 3 4

1 1(,) ()() ; (,) ()()

1 1(,) ()() ; (,) ()()

()()

N d d N d d
c c

N d d N d d
c c

c d d d d

(,)q

1
2

3
4

1
eq

2
eq

3
eq

4
eq

d2d1

d3

d4

1 2

34

1
eq 2

eq3
eq

1d 2d

1 23

()q

52 The Boundary Element Method with Programming

Figure 3.25 Two-dimensional quadratic discontinuous element

For the quadratic element in Figure 3.25 we have for the corner nodes

(3.39)

and for the mid side nodes:

(3.40)

5 1 2 3
1 2 3 4

6 2 3 4
3 4 1 2

7 1 2 4
1 2 3 4

8 1 3 4
3 4 1 2

1(,) ()()()
()

1(,) ()()()
()

1(,) ()()()
()

1(,) ()()()
()

N d d d
d d d d

N d d d
d d d d

N d d d
d d d d

N d d d
d d d d

1 1 3
1 2 3 4 2 4

2 2 3
1 2 3 4 1 4

3 2 4
1 2 3 4 1 3

4 1 4
1 2 3 4 2 3

1(,) ()()(1)
()()

1(,) ()()(1)
()()

1(,) ()()(1)
()()

1(,) ()()(1)
()()

N d d
d d d d d d

N d d
d d d d d d

N d d
d d d d d d

N d d
d d d d d d

(,)q

1
eq

2
eq

3
eq

4
eq

d1 d2

d3

d4

1 2

34

5

6

7

8

5
eq

6
eq

7
eq

8
eq

DISCRETISATION AND INTERPOLATION 53

3.8 COORDINATE TRANSFORMATION

Sometimes it might be convenient to define the coordinates of a node in a local
Cartesian coordinate system. A local coordinate system is defined by the location of its
origin, x0 and the direction of the axes. In two dimensions we define the direction with
two vectors as shown in Figure 3.26a. The global coordinates of a point specified in a
local coordinates system x are given by

(3.41)

where x0 is a vector describing the position of the origin of the local axes. For two-
dimensional problems the geometric transformation matrix is given by

(3.42)

where 1 2,v v are orthogonal unit vectors specifying the directions of ,x y .
 For three-dimensional problems a local (orthogonal) coordinate system is defined by
unit vectors 1 2 3, ,v v v as shown in Figure 3.26b. The transformation matrix for a 3-D
coordinate system is given by

(3.43)

 The inverse relationship between local and global coordinates is given by

(3.44)

Figure 3.26 Local coordinate systems a) 2-D and b) 3-D

0 gx x T x

1 2

1 2

x x
g

y y

v v
v v

T

zzz

yyy

xxx

g

vvv

vvv

vvv

321

321

321

T

0
T
gx x T x

x

y
x

y

0x

1v

2v

x

y

x
y

0x

2v

1v z

z

3v

)a)b

54 The Boundary Element Method with Programming

3.9 DIFFERENTIAL GEOMETRY

In the boundary element method it will be necessary to work out the direction normal to
a line or surface element.

Figure 3.27 Vectors normal and tangential to a one-dimensional element

The best way to determine these directions is by using vector algebra. Consider a
one-dimensional quadratic boundary element (Figure 3.27). A vector in the direction of
 can be obtained by

(3.45)

By the differentiation of equation (3.4) we get

(3.46)

A vector normal to the line element, V3, may then be computed by taking the cross-
product of V with a unit vector in the z-direction (vz):

(3.47)

This vector product can be written as:

(3.48)

3

1

en
n

n

N
V x x

zvVV3

0
1
0
0

3

3

3

3 d
dx

d
dy

d
dz
d
dy
d
dx

V

V
V

z

y

x

V

xV

V

3v

DISCRETISATION AND INTERPOLATION 55

 The length of the vector V3 is equal to

(3.49)

and therefore the unit vector in the direction normal to a line element is given by

(3.50)

It can be shown that the length of V3 represents also the real length of a unit segment
(1) in local coordinate space (this is also known as the Jacobian J of the
transformation from local to global coordinate space).

Figure 3.28 Computation of normal vector for two-dimensional elements

For two-dimensional surface elements (Figure 3.28), there are two tangential vectors,
V in the -direction and

(3.51)

in the -direction, where

(3.52)

The vector normal to the surface may be computed by taking the cross-product of V
and V :

3 3
3

1
V

v V

V x

e
n

nN xx

2 2

3 3V dy dx J
d d

V

56 The Boundary Element Method with Programming

(3.53)

that is

(3.54)

As indicated previously the unit normal vector v3 is obtained by first computing the
length of the vector:

(3.55)

This is also the real area of a segment of size 1x1 in the local coordinate system, or the
Jacobian of the transformation. The normalised vector in the direction perpendicular to
the surface of the element is given by

(3.56)

It should be noted here that ,v v are not orthogonal to each other. An orthogonal
system of axes is required for the definition of strains and stresses needed later. Here we
assume that the first axis defined by vector v1 is in the direction of v . The second axis is
defined by:

(3.57)

The computation of the normal vector requires the derivatives of the shape functions.
These are computed by SUBROUTINE Serendip_deriv shown below.

SUBROUTINE Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci)
!---------------------------------
! Computes Derivatives of Serendipity shape functions
! for one and two-dimensional (linear/parabolic)

 ! finite boundary elements
!---------------------------------
REAL,INTENT(OUT) :: DNi(:,:) ! Derivatives of Ni
REAL, INTENT(IN) :: xsi,eta ! intrinsic coordinates
INTEGER,INTENT(IN):: ldim ! element dimension
INTEGER,INTENT(IN):: nodes ! number of nodes
INTEGER,INTENT(IN):: inci(:) ! element incidences

VVV3

2 2 2
3 3 3 3x y zV V V V J

3
33

1
V

Vv

3

x x y z y z

y y z x z x

z z x y x y

V

2 1 3v v v

DISCRETISATION AND INTERPOLATION 57

REAL:: mxs,pxs,met,pet ! temporary variables
SELECT CASE (ldim)
 CASE(1) ! one-dimensional element
 DNi(1,1)= -0.5
 DNi(2,1)= 0.5
 IF(nodes == 2)RETURN ! linear element finished
 DNi(3,1)= -2.0*xsi
 DNi(1,1)= DNi(1,1) - 0.5*DNi(3,1)
 DNi(2,1)= DNi(2,1) - 0.5*DNi(3,1)
 CASE(2) ! two-dimensional element
 mxs= 1.0-xsi
 pxs= 1.0+xsi
 met= 1.0-eta
 pet= 1.0+eta
 DNi(1,1)= -0.25*met
 DNi(1,2)= -0.25*mxs
 DNi(2,1)= 0.25*met
 DNi(2,2)= -0.25*pxs
 DNi(3,1)= 0.25*pet
 DNi(3,2)= 0.25*pxs
 DNi(4,1)= -0.25*pet
 DNi(4,2)= 0.25*mxs
 IF(nodes == 4) RETURN ! linear element finshed
 IF(Inci(5) > 0) THEN ! zero node = node missing
 DNi(5,1)= -xsi*met
 DNi(5,2)= -0.5*(1.0 -xsi*xsi)
 DNi(1,1)= DNi(1,1) - 0.5*DNi(5,1)
 DNi(1,2)= DNi(1,2) - 0.5*DNi(5,2)
 DNi(2,1)= DNi(2,1) - 0.5*DNi(5,1)
 DNi(2,2)= DNi(2,2) - 0.5*DNi(5,2)
 END IF
 IF(Inci(6) > 0) THEN
 DNi(6,1)= 0.5*(1.0 -eta*eta)
 DNi(6,2)= -eta*pxs

 DNi(2,1)= DNi(2,1) - 0.5*DNi(6,1)
 DNi(2,2)= DNi(2,2) - 0.5*DNi(6,2)
 DNi(3,1)= DNi(3,1) - 0.5*DNi(6,1)
 DNi(3,2)= DNi(3,2) - 0.5*DNi(6,2)
 END IF

 IF(Inci(7) > 0) THEN
 DNi(7,1)= -xsi*pet
 DNi(7,2)= 0.5*(1.0 -xsi*xsi)
 DNi(3,1)= DNi(3,1) - 0.5*DNi(7,1)
 DNi(3,2)= DNi(3,2) - 0.5*DNi(7,2)
 DNi(4,1)= DNi(4,1) - 0.5*DNi(7,1)
 DNi(4,2)= DNi(4,2) - 0.5*DNi(7,2)
 END IF
 IF(Inci(8) > 0) THEN
 DNi(8,1)= -0.5*(1.0-eta*eta)
 DNi(8,2)= -eta*mxs
 DNi(4,1)= DNi(4,1) - 0.5*DNi(8,1)

58 The Boundary Element Method with Programming

 DNi(4,2)= DNi(4,2) - 0.5*DNi(8,2)
 DNi(1,1)= DNi(1,1) - 0.5*DNi(8,1)
 DNi(1,2)= DNi(1,2) - 0.5*DNi(8,2)
 END IF

 CASE DEFAULT ! error message
 CALL Error_message('Element dimension not 1 or 2')
END SELECT
RETURN
END SUBROUTINE Serendip_deriv

The computation of the vector normal to the surface and the Jacobian is combined in
one SUBROUTINE Normal_Jac.
SUBROUTINE Normal_Jac(v3,Jac,xsi,eta,ldim,nodes,inci,coords)
!---
! Computes normal vector and Jacobian
!---
REAL,INTENT(OUT) :: v3(:) ! Vector normal to point
REAL,INTENT(OUT) :: Jac ! Jacobian
REAL, INTENT(IN) :: xsi,eta ! intrinsic coords of point
INTEGER,INTENT(IN):: ldim ! element dimension
INTEGER,INTENT(IN):: nodes ! number of nodes
INTEGER,INTENT(IN):: inci(:) ! element incidences
REAL, INTENT(IN) :: coords(:,:)! node coordinates
REAL,ALLOCATABLE :: DNi(:,:) ! Derivatives of Ni
REAL,ALLOCATABLE :: v1(:),v2(:)! Vectors in xsi,eta dir
INTEGER :: Cdim ! Cartesian dimension
Cdim= ldim+1
!Allocate temporary arrays
ALLOCATE (DNi(nodes,Cdim),V1(Cdim),V2(Cdim))
!Compute derivatives of shape function
Call Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci)
! Compute vectors in xsi (eta) direction(s)
DO I=1,Cdim
 V1(I)= DOT_PRODUCT(DNi(:,1),COORDS(I,:))
 IF(ldim == 2) THEN
 V2(I)= DOT_PRODUCT(DNi(:,2),COORDS(I,:))
 END IF
END DO
!Compute normal vector
IF(ldim == 1) THEN
 v3(1)= V1(2)
 v3(2)= -v1(1)
ELSE
 V3= Vector_ex(v1,v2)
END IF
!Normalise
CAll Vector_norm(V3,Jac)
DEALLOCATE (DNi,V1,V2)
RETURN
END SUBROUTINE Normal_Jac

DISCRETISATION AND INTERPOLATION 59

3.10 INTEGRATION OVER ELEMENTS

The functions to be integrated over elements will be quite complex so they require
numerical treatment. Therefore the main reason for selecting a range of +1 to –1 for the
intrinsic coordinates is to enable the use of numerical integration over the elements.

3.10.1 Integration over boundary elements
To compute the real length eS of an element using local integration variables we have

(3.58)

where the Jacobian J is given by equation (3.49).
Similarly, the area of a two-dimensional boundary element eA is computed by

(3.59)

where the J is given by equation (3.55). For a one-dimensional infinite element the
Jacobian is given by

(3.60)

3.10.2 Integration over cells

The integration over 2-D cells is identical to the 2-D boundary elements. For 3-D
cells the volume is computed by

(3.61)

where the Jacobian is given by

(3.62)

1

1

eS Jd

1 1

1 1

eA J d d

1 1 1

1 1 1

eA J d d d

Det

x y z

x y zJ

x y z

1 2
1 2 2 12

2 ()
(1)

e e e eN NxJ x x x x

60 The Boundary Element Method with Programming

3.10.3 Numerical integration

In numerical integration schemes, the integral is approximated by a sum of values of the
integrand evaluated at certain points, times a weighting function. For the integration of
function ()f , for example we can write

(3.63)

 In the above, Wi are weights and i are the intrinsic coordinates of the integration
(sampling) points. If the well known trapezoidal rule is used, for example, then I=2, the
weights are 1 and the sampling points are at +1 and –1. That is

(3.64)

However, the trapezoidal rule is much too inaccurate for the functions that we are
attempting to integrate. The Gauss Quadrature with a variable number of integration
points can be used to integrate more accurately. In this method it is assumed that the
function to be integrated can be replaced by a polynomial of the form

(3.65)

where the coefficients are adjusted in such a way as to give the best fit to f(). We
determine the number and location of the sampling points, or Gauss points, and the
weights by the condition that the given polynomial is integrated exactly.

Table 3.4 Gauss point and degree of polynomial

No. of Gauss points, I Degree of polynomial p

1 1 (linear)
2 3 (cubic)
3 5 (quintic)

Table 3.5 Gauss point coordinates and weights

I i Wi

1 0.0 2.0
2 0.57735 , -0.57735 1.0,1.0
3 0.77459, 0.0 , -0.77459 0.55555, 0.88888, 0.55555

1

1
1

I

i i
i

I f d W f

1

1
11 ffdfI

p
paaaaf 2

210

DISCRETISATION AND INTERPOLATION 61

 We find that with increasing degree of polynomial p, we need an increasing number
of Gauss points. Table 3.4 gives an overview of the number of Gauss N points needed to
integrate a polynomial of degree p up to degree 5. The computed location of the
sampling points and the weights are given in Table 3.5 for one to three Gauss points
(data for up to 8 Gauss points are given in the program listing). It should be noted here
that in the application of numerical integration later in this book the integrands can not
be replaced by polynomials. However, it can be assumed that as the rate of variation of
the functions is increased more integration points will be required.

Figure 3.29 Gauss integration points for a two-dimensional element

 If we apply the numerical integration to two-dimensional elements or cells then a
double sum has to be specified

(3.66)

The Gauss integration points for a two-dimensional element and a 2x2 integration are
shown in Figure 3.29. For the integration over 3-D cells we have:

(3.67)

A subroutine can be written which returns the Gauss point coordinates and weights
depending on the number of Gauss points for an integration order of up to 8.

1 1

1 1
1 1

, ,
JI

i j i j
i j

I f d d W W f

1

3

2

4

....57031

31

31 31

1 1 1

1 1 1
1 1 1

, , ,
JI K

i j k k i k
i j k

I f d d W W W f

62 The Boundary Element Method with Programming

SUBROUTINE Gauss_coor(Cor,Wi,Intord)
!------------------------------------
! Returns Gauss coords and Weights for up to 8 Gauss points
!------------------------------------
REAL, INTENT(OUT) :: Cor(8) ! Gauss point coordinates
REAL, INTENT(OUT) :: Wi(8) ! weigths
INTEGER,INTENT(IN) :: Intord ! integration order
SELECT CASE (Intord)
CASE(1)
 Cor(1)= 0.
 Wi(1) = 2.0
CASE(2)
 Cor(1)= .577350269 ; Cor(2)= -Cor(1)
 Wi(1) = 1.0 ; Wi(2) = Wi(1)
CASE(3)
 Cor(1)= .774596669 ; Cor(2)= 0.0 ; Cor(3)= -Cor(1)
 Wi(1) = .555555555 ; Wi(2) = .888888888 ; Wi(3) = Wi(1)
CASE(4)
 Cor(1)= .861136311 ; Cor(2)= .339981043 ; Cor(3)= -Cor(2)
 Cor(4)= -Cor(1)
 Wi(1) = .347854845 ; Wi(2) = .652145154 ; Wi(3) = Wi(2)
 Wi(4) = Wi(1)
CASE(5)
 Cor(1)= .906179845 ; Cor(2)= .538469310 ; Cor(3)= .0
 Cor(4)= -Cor(2) ; Cor(5)= -Cor(1)
 Wi(1)= .236926885 ; Wi(2)= .478628670 ; Wi(3)= .568888888
 Wi(4) = Wi(2) ; Wi(5) = Wi(1)
CASE(6)
 Cor(1)=.932469514 ; Cor(2)=.661209386 ; Cor(3)=.238619186
 Cor(4)= -Cor(3) ; Cor(5)= -Cor(2) ; Cor(6)= -Cor(1)
 Wi(1)= .171324492 ; Wi(2)= .360761573 ; Wi(3)= .467913934
 Wi(4) = Wi(3) ; Wi(5) = Wi(2) ; Wi(6) = Wi(1)
CASE(7)
 Cor(1)=.949107912 ; Cor(2)=.741531185 ; Cor(3)=.405845151
 Cor(4)= 0.
 Cor(5)= -Cor(3) ;Cor(6)= -Cor(2) ;Cor(7)= -Cor(1)
 Wi(1)= .129484966 ; Wi(2)= .279705391 ; Wi(3)= .381830050
 Wi(4) = .417959183
 Wi(5) = Wi(3) ; Wi(6) = Wi(2) ; Wi(7) = Wi(1)
CASE(8)
 Cor(1)=.960289856 ; Cor(2)=.796666477 ; Cor(3)=.525532409
 Cor(4)= .183434642
 Cor(5)= -Cor(4) ; Cor(6)= -Cor(3) ; Cor(7)= -Cor(2)
 Cor(8)= -Cor(1)
 Wi(1)= .101228536 ; Wi(2)= .222381034 ; Wi(3)= .313706645
 Wi(4) = .362683783
 Wi(5)= Wi(4) ; Wi(6)= Wi(3) ; Wi(7)= Wi(2) ; Wi(8)= Wi(1)
CASE DEFAULT
 CALL Error_Message('Gauss points not in range 1-8')
END SELECT
END SUBROUTINE Gauss_coor

DISCRETISATION AND INTERPOLATION 63

3.11 PROGRAM 3.1: CALCULATION OF SURFACE AREA

We now have developed sufficient library subroutines for writing our first program. The
program is intended to calculate the length or surface area of a boundary described by
boundary elements. First we define the libraries of subroutines to be used. The names
after the USE statement refer to the MODULE names in the source code which can be
downloaded from the web. There are three types of libraries:

 The Geometry_lib, which contains all the shape functions, derivative of the shape
functions and the routines to compute the Jacobian and the outward normal.

 The Utility_lib, which contains utility subroutines for computing, for example, vector
ex-products, normalising vectors and printing error messages.

 The Integration_lib, which contains Gauss point coordinates and weights.

PROGRAM Compute_Area
!--
! Program to compute the length/surface area
! of a line/surface modelled by boundary elements
!---------------------------------
USE Geometry_lib ; USE Utility_lib ; USE Integration_lib
IMPLICIT NONE
INTEGER :: ldim,noelem,nelem,lnodes,maxnod,node,Cdim
INTEGER,ALLOCATABLE :: inciG(:,:)! Incidences
INTEGER,ALLOCATABLE :: inci(:)! Incidences one element
REAL,ALLOCATABLE :: corG(:,:) ! Coordinates (all nodes)
REAL,ALLOCATABLE :: cor(:,:) ! Coordinates one element
REAL,ALLOCATABLE :: v3(:) ! Normal vector
REAL :: Gcor(8),Wi(8) ! Gauss point coords and weights
REAL :: Jac, xsi, eta, Area
OPEN(UNIT=10,FILE='INPUT.DAT',STATUS='OLD')
OPEN(UNIT=11,FILE='OUTPUT.DAT',STATUS='UNKNOWN')
READ(10,*) ldim,lnodes,noelem,intord
WRITE(11,*) ' Element dimension=',ldim
WRITE(11,*) ' No. of elem.nodes=',lnodes
WRITE(11,*) ' Number of elements=',noelem
WRITE(11,*) ' Integration order =',intord
Cdim= ldim+1 !Cartesian dimension
ALLOCATE(v3(Cdim))
ALLOCATE(inciG(8,noelem))! Allocate global incid. Array
DO nelem=1,noelem
 READ(10,*) (inciG(n,nelem),n=1,lnodes)
END DO
maxnod= MAXVAL(inciG)
ALLOCATE(corG(Cdim,0:maxnod)!Allocate array for coords
corG(:,0)= 0.0!Node No 0 means node is missing
DO node=1,maxnod
 READ(10,*) (corG(i,node),i=1,Cdim)

64 The Boundary Element Method with Programming

END DO
ALLOCATE(inci(lnodes),cor(Cdim,lnodes))
CALL Gauss_coor(Gcor,Wi,Intord)! Gauss coordinates and weigths
Area= 0.0 ! Start sum for area/length
Element_loop: &
DO nelem=1,noelem
 inci= inciG(:,nelem)! Store incidences locally
 cor= corG(:,inci)! gather element coordinates
 SELECT CASE (ldim)
 CASE (1)! One-dim. problem determine length
 Gauss_loop:&
 DO I=1,INTORD
 xsi= Gcor(i)
 CALL Normal_Jac(v3,Jac,xsi,eta,ldim,lnodes,inci,cor)
 Area= Area + Jac*Wi(i)
 END DO &
 Gauss_loop
 CASE (2)! Two-dim. problem determine area
 Gauss_loop1:&
 DO I=1,INTORD
 DO j=1,INTORD
 xsi= Gcor(i)
 eta= Gcor(j)
 CALL Normal_Jac(v3,Jac,xsi,eta,ldim,lnodes,inci,cor)
 Area= Area + Jac*Wi(i)*Wi(j)
 END DO
 END DO &
 Gauss_loop1
 CASE DEFAULT
 END SELECT
END DO &
Element_loop
IF(ldim == 1) THEN
 WRITE(11,*) ' Length =',Area
ELSE
 WRITE(11,*) ' Area =',Area
END IF
END PROGRAM Compute_Area

We define allocable arrays for storing the incidences of all elements, the incidences
of one element, the coordinates of all node points, the coordinates of all nodes of one
element and the vector normal to the surface. The dimensions of these arrays depend on
the element dimension (one-dimensional, two-dimensional), the number of element
nodes (linear/parabolic shape function) and the number of elements and nodes. The
dimension of these arrays will be allocated once this information is known.

The first executable statements read the information necessary to allocate the
dynamic arrays and the integration order to be used for the example. Here we use two
files INPUT.DAT and OUTPUT.DAT for input and output. The input file has to be
created by the user before the program can be run. The FORMAT of inputting data is

DISCRETISATION AND INTERPOLATION 65

free-field, that is, numbers can be separated by blanks. After reading the general
information the incidences (connectivity) are read for all elements and stored in array
InciG. While reading this information, we find the largest node number, information
which we need for allocating the dimension for the array containing node coordinates
and which we do next before reading the node coordinates. We make use of the new
feature in F90, that allows the subscripts of an array to start with zero, because a
transition element that has the midside node missing will have a node number of 0 in
the incidences. We assign zero coordinates to node number 0.

We loop over all elements describing the boundary. For each element we get the
Gauss point coordinates and weightings, by a call to Gaus_coor, which correspond to the
integration order Specified by Intord. We then add all the Gauss point contributions, i.e.
the Jacobians computed (by a call to Normal_jac) for each Gauss point multiplied by
the weighting. Note that there are two cases to be considered: for a one-dimensional
case, that is, if we work out a length of a curve, only one DO LOOP is required. For
two-dimensional cases, that is, when we work out surface areas, two nested DO LOOPS
are required (see equation 3.66).

3.12 CONCLUDING REMARKS

In this chapter we have dealt with methods for describing the geometry of a problem and
have concentrated on describing problem boundaries. The method consists of
subdividing the boundary into small elements and is commonly known as discretisation.
The concept of isoparametric elements was introduced, where we use interpolation
functions to describe the boundary surface in terms of nodal values and the variation of
known or unknown values. We have laid here the foundation for Chapter 6 (Boundary
Element Methods), where we will use the concepts described. We find that, once we use
this advanced discretisation method in the BEM, the analytical integration is no longer
possible. Therefore, we have also introduced the Gauss Quadrature method of numerical
integration, most commonly used in numerical work. For general purpose programs
using the isoparametric concept, the accuracy of the numerical integration will be
crucial. We have started here our process of building a Subroutine library which will be
needed later. A small program has been written which we can use to test the subroutines
and to do numerical experiments.

3.13 EXERCISES

Exercise 3.1
Using program Compute_area calculate the length of a quarter circle using:

(a) one linear element
(b) two linear elements
(c) one quadratic element

66 The Boundary Element Method with Programming

Determine the discretisation error. Use 2x2 integration.

Exercise 3.2
Using program Compute_area, calculate the area of a quarter circle using:

(a) discretisation into one quadrilateral element, as shown in Figure 3.30 (a)
(b) discretisation into three quadrilateral elements, as shown in Figure 3.30 (b)

Plot the variation of the Jacobian over the element using the Gauss point values.
Determine the discretisation error.

Figure 3.30 Discretisations for determining the area of a quarter circle

Figure 3.31 Discretisations for determining the surface area of 1/8 sphere

Exercise 3.3.
Using program Compute_area, calculate the area of 1/8 of a sphere using

(a) discretisation into one quadrilateral element, as shown in Figure 3.31 (a)
(b) discretisation into three quadrilateral elements as shown in Figure 3.31 (b)

Plot the variation of the Jacobian over the element using the Gauss point values.
Determine the discretisation error.

(a) (b)

(a) (b)

DISCRETISATION AND INTERPOLATION 67

3.14 REFERENCES

1. Encarnacao, J., and Schlechtendahl, J. (1983) Computer Aided Design. Springer
Verlag, Berlin.

2. Irons, B. M. (1966) Engineering applications of numerical integration in stiffness
method, J.A.I.A.A., 14, 2035-7.

3. Zienkiewicz, O. C., Irons, B. M., Ergatoudis, J. G., Ahmad, S., and Scott, F. C.
(1969) Iso-parametric and associate element families for two- and three-dimensional
analysis. Finite Element Methods in Stress Analysis (eds. I. Holland and K. Bell),
Tapir Press, Norway, Ch. 14.

4. Bathe K-J (1995), Finite Element Procedures. Prentice Hall.
5. Moser W., Duenser Ch., Beer G. (2004) Mapped infinite elements for three-

dimensional multi-region boundary element analysis. Int. J. Numer. Meth. Engng, 61:
317 - 328

6. Fraejis de Veubeke, B. (1965) Displacement and equilibrium models in the finite
element method. Stress Analysis, (eds. O.C. Zienkiewicz and G.S. Holister), John
Wiley, Chichester, Ch. 9.

4
Material Modelling and
Fundamental Solutions

If you can measure what
you are speaking about, and

express it in numbers, you
know something about it.

Lord Kelvin

4.1. INTRODUCTION

In addition to specifying the geometry of the problem, it is necessary to describe the
physical response of the material in a mathematical way. This is done by defining the
response characteristics of an infinitesimally small portion of the solid. The constitutive
law establishes a relationship between heat flow and the temperature gradient or
between strain and stress. The constants in such relationships are characteristic values or
properties of the material. We distinguish between material properties which are
direction independent (isotropic material), and those which are dependent on direction
(anisotropic material). Furthermore, there are problems where the same properties apply
everywhere (homogeneous problems) and where properties change from location to
location (non-homogeneous problems).

In the material response we distinguish between linear and non-linear behaviour. For
linear materials we can establish a unique (linear) relationship between stress/strain,
temperature/heat flow or potential/fluid flow. For non-linear material behaviour, this
relationship depends on the current state and can therefore only be written in incremental
form. These problems are therefore dependent on the deformation (thermal) history.

As outlined previously, for the boundary element method a solution of the governing
equation has to be available. In nearly all cases, the solution is obtained for very simple
loading conditions (point load or source) and for infinite or semi-infinite domains. In the

70 The Boundary Element Method with Programming

literature, these solutions are referred to as fundamental solutions, Green’s functions or
Kernels. Obviously, these solutions can only be found for linear material behaviour and
for a homogeneous domain.

The fundamental solutions have to satisfy three conditions:

 Constitutive law
 Equilibrium or conservation of energy
 Compatibility or continuity

The last condition will be automatically satisfied for solutions which are continuous
in the domain. In the following, we will first derive the governing differential equations
and then present fundamental solutions for potential problems (heat flow and seepage)
and for elasticity problems in two and three dimensions.

4.2. STEADY STATE POTENTIAL PROBLEMS

Heat conduction in solids and flow in porous media (seepage) are diffusion problems
and can be treated concurrently, because they are governed by the same differential
equation (Laplace).

Steady state heat flux or fluid flow q per unit area is related to temperature or
potential u by

(4.1)

where the negative sign is due to the fact that the flow is always from higher to lower
temperature/potential. The flow vector is defined as:

(4.2)

The conductivity/pemeabilty tensor D is given by

(4.3)

where kxx etc, are conductivities measured in [W/°K-m] in the case of thermal problems
and permeabilities measured in [m/sec], in the case of seepage problems. The
coefficients in D represent flow values for unit values of temperature gradient or
potential gradient. It can be shown that D has to be symmetric and positive definite.

uDq

z

y

x

q

q
q

q

zzzyzx

yzyyyx

xzxyxx

kkk
kkk
kkk

D

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 71

The differential operator for three-dimensional problems is defined as

(4.4)

and for two-dimensional problems

(4.5)

The conservation of energy condition states that the outflow must be equal to the
inflow, plus any flow per unit volume, Q̂ , generated by a source.

Figure 4.1 Heat flow in an infinitesimal cube

For the infinitesimal cube in Figure 4.1 this gives the following

(4.6)

z

y

x

y

x

dxdydzˆdxdyqdxdzqdydzq

dxdydz
z

q
qdxdzdy

y
q

qdydzdx
x

q
q

zyx

z
z

y
y

x
x

Q

z
y

xdy dx

dz

dx
x

qq x
x

dy
y

q
q y

y

dz
z

qq z
z

xq

qz

qy

72 The Boundary Element Method with Programming

After cancelling terms we obtain

(4.7)

Substituting the Fourier law for isotropic material (i.e., kxx= kyy= kzz= k and kxy= kxz=
kyz=0) we obtain the governing differential equation for which we seek a fundamental
solution.

(4.8)

The simplest solution we can find is that of a concentrated source at point P (source
point) of magnitude one in an infinite homogeneous domain. This means that internal
heat or flow generation only occurs at one point (P) in the domain and is zero elsewhere.
The function describing this variation is also referred to a Dirac Delta function which is
defined as

(4.9)

where Q is a point in the domain . Due to a unit point source at P the temperature or
potential at point Q (field point) can be written for the three-dimensional case as

(4.10)

where 2 2 2() () ()Q P Q P Q Pr x x y y z z is the distance between source point

and field point (Figure 4.2).

Figure 4.2 Notation for fundamental solution (three-dimensional potential problems)

0Q̂
z

q
y

q
x

q zyx

0Q2

2

2

2

2

2
ˆ

z
u

y
u

x
uk

rk
Q,PU

4
1

(-) 0 when

(-) 1

P Q P Q

P Q d

r

P(xP , yP , zP)

n
z

y

x

Q(xQ , yQ , zQ)

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 73

Figure 4.3 Variation of fundamental solution U (potential/temperature) in the x-y plane for 3-
D potential problems (source at origin of coordinate system)

Figure 4.4 Variation of fundamental solution T for n = {1,0,0} (flow in x-direction) in x-y
plane for 3-D potential problems

x y

U(P,Q)

x

y

T(P,Q)

74 The Boundary Element Method with Programming

As we will see later, the flow in a direction normal to a boundary defined by a vector
n is also required. For three-dimensional isotropic problems, the flow is computed by

(4.11)

The derivatives of U in the global directions are

(4.12)

where

(4.13)

Equation (4.11) can be rewritten as

(4.14)

where is defined as the angle between the normal vector n and the distance vector r,
i.e.

(4.15)

The variation of kernels U and T is plotted in Figures 4.3 and 4.4. It can be seen that
both solutions decay very rapidly from the value of infinity at the source. Whereas the
fundamental solution for U is symmetric with respect to polar coordinates, the solution
for T with the vector n pointing in x-direction (thus meaning flow in x-direction) is
antisymmetric.

 For a two-dimensional problem, the source is assumed to be distributed along a line
of infinite length from z = - to z = + and the fundamental solutions are given by

(4.16)

and

(4.17)

where

(4.18)

,, ,
2 2 2; ;

4 4 4
yx zrr rU U U

x y zr k r k r k

r
ln

k
Q,PU 1

2
1

y
Un

x
UnkUkQPT yxn

,

,, ;
2 2

yx rrU U
x rk y rk

24 r
cosQ,PT

T T
cos x y z x y z

1 with n ,n ,n and r ,r ,r
r

n r n r

, , ,; ;Q P Q P Q P
x y z

x x y y z z
r r r

r r r

z
Un

y
Un

x
UnkUkQPT zyxn

,

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 75

Equation (4.16) can also be rewritten as

(4.19)

where

(4.20)

 Subroutines for the isotropic solutions are presented below.

MODULE Laplace_lib
REAL :: PI=3.14159265359
CONTAINS
 REAL FUNCTION U(r,k,Cdim)
 ! Fundamental solution for Potential problems
 ! Temperature/Potential isotropic material
 REAL,INTENT(IN) :: r ! Distance source and field point
 REAL,INTENT(IN) :: k ! Conducivity
 INTEGER,INTENT(IN) :: Cdim ! Cartesian dimension (2-D,3-D)
 SELECT CASE (CDIM)
 CASE (2) ! Two-dimensional solution
 U= 1.0/(2.0*Pi*k)*LOG(1/r)
 CASE (3) ! Three-dimensional solution
 U= 1.0/(4.0*Pi*r*k)
 CASE DEFAULT
 U=0.0
 WRITE (11,*)'Cdim not equal 2 or 3 in Function U(...)'
 END SELECT
 END FUNCTION U
 REAL FUNCTION T(r,dxr,Vnorm,Cdim)
 ! Fundamental solution for Potential problems
 ! Flow, isotropic material
 REAL,INTENT(IN):: r ! Distance source and field point
 REAL,INTENT(IN):: dxr(:) ! r,x,r,y,r,z
 REAL,INTENT(IN):: Vnorm(:) ! Normal vector
 INTEGER,INTENT(IN) :: Cdim ! Cartesian dimension
 SELECT CASE (Cdim)
 CASE (2) ! Two-dimensional solution
 T= DOT_PRODUCT (Vnorm,dxr)/(2.0*Pi*r)
 CASE (3) ! Three-dimensional solution
 T= DOT_PRODUCT (Vnorm,dxr)/(4.0*Pi*r*r)
 CASE DEFAULT
 T=0.0
 WRITE (11,*)'Cdim not equal 2 or 3 in Function T(...)'
 END SELECT
 END FUNCTION T
END MODULE Laplace_lib

r
cosQ,PT
2

yxyx ,rrand,nnwith
r
1cos rnrn

76 The Boundary Element Method with Programming

For anisotropic problems the fundamental solutions have been presented by Bonnet1.
For example, the solution for temperature/potential is given by

(4.21)

for two-dimensional problems and

(4.22)

for three-dimensional problems, where

(4.23)

For general anisotropy in three dimensions, D has 9 material parameters but, because
of the property of symmetry, only 6 components need to be input. A special case of
anisotropy exists where the material parameters are different in three orthogonal
coordinate directions. This is known as orthotropic material. If these conductivities are
defined in the direction of global coordinates, then all off-diagonal elements of D are
zero. If we denote the conductivities in x,y and z-directions as k1, k2, k3 then

(4.24)

For this case the values in equation (4.23) are given by:

(4.25)

4.3. STATIC ELASTICITY PROBLEMS

In solid mechanics applications, a relationship between stress and strain must be
established. Stresses are forces per unit area inside a solid. They can be visualised by
cutting the solid on planes parallel to the axes and by showing the traction vectors acting
on these planes (in Figure 4.5).

kr
Q,PU

4
1

r
ln

k
Q,PU 1

2
1

rDrD 1Tranddetk

3
2

1

00
00
00

k
k

k
D

3

2

2

2

1

2
321

111
k

r
k

r
k

rrandkkkk zyx

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 77

The traction vectors acting on the three planes are defined as:

(4.26)

The components of the traction vectors are also known as stress components.

Figure 4.5 Tractions acting on the faces of an infinitesimal cube and stress components

Using the condition for rotational equilibrium (; ; xy yx xz zx yz zy) only 6
unique traction components remain and may be put into a pseudo stress-vector

(4.27)

In plane stress problems, such as in thin plates subject to in-plane loading, all stresses
associated with the z direction are assumed to be zero, i.e., z = xz = yz = 0 .

x

y

z

xy

yz

xz

x

y

z

1t

2t

3t

x

y

z

xy yx

xz

yz

zx
zy

1 2 3 ;
yxx zx

xy y zy

xz yz z

t t t

78 The Boundary Element Method with Programming

The components of traction vector t acting on a general plane defined by a normal

vector n {nx,ny,nz} that is not parallel to one of the axis planes can be expressed in terms
of stress components by (Figure 4.6)

(4.28)

Figure 4.6 Definition of traction vector acting on a general plane

Infinitesimal strains are defined in terms of displacement components in the x, y, z

directions (ux, uy, uz) by

(4.29)

z
u

x
u

y
u

z
u

x
u

y
u
z

u
y

u
x

u

xz
zx

zy
yz

yx
xy

z
z

y
y

x
x

zyyzxxzzz

yzzxyxyyy

xzzxyyxxx

nnnt

nnnt

nnnt

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 79

These can be put into a pseudo-vector

(4.30)

In matrix form this can be written as

(4.31)

where u is a vector of displacements

(4.32)

and B is a differential operator matrix

(4.33)

In some circumstances, simplifications can be made and certain strain components
taken to be zero. A state of plane strain can be assumed, if the solid extends a long
distance in the z-direction, the loading is uniform in this direction and uz = 0 everywhere.
We then have z = xz = yz = 0. Another special case is a state of complete plane strain,
in which derivatives in the z direction of all displacements are taken to be zero, but uz
may be non-zero.

zx

yz

xy

z

y

x

uB

x
0

z

yz
0

0
xy

z
00

0
y

0

00
x

B

z

y

x

u
u
u

u

80 The Boundary Element Method with Programming

This gives

(4.34)

Complete plane strain can be split into the plane strain case already discussed and an
antiplane strain or St Venant torsion component for which x = y = z = xy = 0 and

(4.35)

In complete plane strain it is possible to have shear strains and stresses acting in the
z-direction.

Figure 4.7 Transformation of stresses in two dimensions

Sometimes it is necessary to compute the magnitudes of stress or strain in directions
which do not coincide with the global axes. In this case a transformation of stress or
strain is necessary. The transformation of local stresses acting on planes in the material
parallel with the , ,x y z axes to global stresses acting on cuts parallel with the x, y, z
axes can be written as

(4.36)

x
u

y
u

x
u

y
u

y
u
x

u

z
xz

z
yz

yx
xy

z

y
y

x
x

,,

0

x
u
y

u

z
zx

z
zy

T

x

y

xy

y

x

y
xy

x

x

y

x
y

xy

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 81

For the two-dimensional case, in which the local axes are defined by a rotation about
the z-axis, T is obtained by the two transformations shown in Figure 4.7

(4.37)

For the stress transformation in three-dimensional space it is convenient to refer to
the components of unit vectors in the directions of the local axes (Figure 4.8).

For example, we denote by

(4.38)

the unit vector in the direction of the x - axis.

Figure 4.8 Definition of unit vectors for the transformation of stresses in 3-D

Similarly, v2 and v3 are unit vectors along the y - and z - axes. In terms of these vector
components, the matrix T is written as

(4.39)

where

2 2

2 2

2 2

cos sin 2cos sin

sin cos 2sin cos

cos sin cos sin cos sin

T

z

y

x

v

v
v

1

1

1

1v

x

y
z

v3

v1

v2

11 12

21 22

T T
T

T T

82 The Boundary Element Method with Programming

(4.40)

4.3.1 Constitutive equations

The elastic material response is governed by Hooke’s law. For an isotropic material, this
is in three dimensions

(4.41)

where E is the modulus of elasticity, v the Poisson’s ratio and G the shear modulus,
given by

(4.42)

,
G

,
G

,
G

v
E

v
E

v
E

zxzxyzyzxyxy

yxzz

zxyy

zyxx

111

1

1

1

v
EG

12

2 2 2
1 2 3
2 2 2

11 1 2 3

2 2 2
1 2 3

1 2 2 3 1 3

12 1 2 2 3 1 3

1 2 2 3 1 3

1 1 2 2 3 3

21 1 1 2 2 3 3

1 1 2 2 3 3

2 2 2
2 2 2

2 2 2

x x x

y y y

z z z

x x x x x x

y y y y y y

z z z z z z

x y x y y x

y z y z y z

x z x z x z

v v v

v v v

v v v

v v v v v v
v v v v v v

v v v v v v

v v v v v v

v v v v v v

v v v v v v

T

T

T

1 2 1 2 2 3 2 3 1 3 1 3

22 1 2 1 2 2 3 2 3 1 3 1 3

1 2 1 2 2 3 2 3 1 3 1 3

x y y x x y y x x y y x

y z z y y z z y y z z y

x z z x x z z x x z z x

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

T

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 83

Equation (4.41) can be conveniently written in matrix form

(4.43)

where matrix C is defined as

(4.44)

The inverse relationship can be defined by

(4.45)

where

(4.46)

with

(4.47)

A subroutine to compute the isotropic D-matrix is given below.

C

G
E

G
E

G
E

E

00000

00000

00000
0001
0001
0001

1C

D

1

1

1

22

22

22

1
1

00000

00000

00000

0001
0001
0001

C
G

C
G

C
G

CC
CC
CC

CCD

1
;

211
1

21 CEC

84 The Boundary Element Method with Programming

SUBROUTINE D_mat(E,ny,D,Cdim)
!-----------------------------------
! Computes isotropic D-matrix
! Plane-strain (Cdim= 2)
! or 3-D (Cdim= 3)
!-----------------------------------
REAL, INTENT(IN) :: E ! Young's modulus
REAL, INTENT(IN) :: ny ! Poisson's ratio
INTEGER,INTENT(IN) :: Cdim ! Cartesian Dimension
REAL, INTENT(OUT) :: D(:,:) ! D-matrix
REAL :: c1,c2,G
c1= E*(1.0-ny)/((1.0+ny)*(1.0-2.0*ny))
c2= ny/(1.0-ny)
G = E/(2.0*(1.0+ny))
D = 0.0
SELECT CASE (Cdim)
CASE (2)
 D(1,1)= 1.0 ; D(2,2)= 1.0
 D(2,1)= c2 ; D(1,2)= c2
 D(3,3)= G/c1
CASE (3) ! 3-D
 D(1,1)= 1.0 ; D(2,2)= 1.0 ; D(3,3)= 1.0
 D(2,1)= c2 ; D(1,3)= c2 ; D(2,3)= c2
 D(1,2)= c2 ; D(3,1)= c2 ; D(3,2)= c2
 D(4,4)= G/c1 ; D(5,5)= G/c1 ; D(6,6)= G/c1
CASE DEFAULT
END SELECT
D= c1*D
RETURN
END SUBROUTINE D_mat

For a general anisotropic material, 21 material properties are required but it is usually

not possible to determine these. However, special types of anisotropy may exist for the
case where the material properties are different in orthogonal directions. We may have a
laminate or stratified material where the material property is the same in two orthogonal
directions but different in the third orthogonal direction (see Figure 4.9).

Figure 4.9 Definition of stratified material

Isotropic plane

x'

y'

z'

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 85

Examples of this are a stratified rock mass, or fibre reinforced plastics. For a
stratified material the elastic properties are defined as:

(4.48)

For this case the D-matrix is

(4.49)

with

(4.50)

If the orthogonal directions are not in the directions of the Cartesian coordinates, then
the following transformation of the D-matrix has to be made

(4.51)

where D' is defined in local coordinates.

4.3.2 Fundamental solutions

The governing differential equations are obtained from the condition of equilibrium. For
two-dimensional problems these are

(4.52)

2

2

1

433

312

321

00000
00000
00000
000
000
000

G
G

G
CCC
CCC
CCC

D

0

0

y
yxy

x
xyx

b
yx

b
yx

TDTD T

1

1
1

2

1
2

211

22
14

123
2

212
2

21

12
 ;

211
1

11
EGand

E
En

n
EC;CC

CnC;CnnC;CnC

'' '
1 2

' ' '

' ' ' ' ' '
1 2

' ' ' ' ' '

' ''
1 2

' ' '

 ;

 ;

 ;

yx z

x y z

x y z y z x

x y z y z x

y yx

x z z

E E

G G

86 The Boundary Element Method with Programming

where bx and by are components of body force in x and y directions.

 Substitution of the equations for strain (4.29) and the Hooke’s law for plane strain
conditions gives

(4.53)

where

(4.54)

For the plane strain problem, the fundamental solution is obtained for point unit loads
in x and y directions of magnitude 1, which are distributed to infinity in the +z and–z
directions. The solution was first worked out by Lord Kelvin2.

Figure 4.10 Notation for two-dimensional Kelvin solution (unit load in x-direction)

The solutions for the displacements in x and y directions due to a unit load in x-
direction can be written as (Figure 4.10)

(4.55)

2 22 2

2 2

2 22 2

2 2

() ()() 0

()() () 0

y yx x
x

y yx x
y

u uu u
G G b

x y x yx y

u uu u
G G b

x y x y x y

(1)(1 2)
E

2
1

1

1, ln

,

1/ 8 1 , 3 4

xx x

xy x y

U P Q C C r
r

U P Q C r r

with

C G C

P(xp , yp)

nQ(xQ , yQ)

Py= 1

r
x

y

xyT

xxT

xT

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 87

Note that the first subscript of U refers to the direction of the unit load whereas the
second relates to the direction of the displacement.

We note that as the distance between source point P and field point Q approaches
infinity the solution tends to negative infinity. This is due to the fact that the source is
distributed along an infinite line and its resultant is infinite. As we will see later this
does not present any difficulties because scaling is introduced for the coordinates which
limit the maximum scaled distance to unity. The fundamental solution has a positive
singularity when points P and Q coincide.

Figure 4.11 Notation for two-dimensional Kelvin solution (unit load in y-direction)

For a unit load in the y-direction we have

(4.56)

the second equation indicating the symmetry of the solution.
Equations (4.55) und (4.56) can be written as a single equation as follows:

(4.57)

where x,y is substituted for i,j and

(4.58)

is the Kronecker Delta.
For the boundary element method we also need the solutions for the boundary stresses
(tractions) acting on a surface with an outward normal direction of n (see figure 4.10).

1 , ,
1(,) lnij ij i jU P Q C C r r
r

1 if

0 if
ij

ij

i j

i j

2
1

1, ln

, ,

yy y

yx xy

U P Q C C r
r

U P Q U P Q

P(xp , yp)

nQ(xQ , yQ)

Py= 1

r
x

y

yyT

yxT

yT

88 The Boundary Element Method with Programming

The fundamental solutions for the tractions are obtained by first computing the
fundamental solutions for the strains and then applying Hooke’s law. The fundamental
solutions for strains are obtained by taking the derivative of the displacement solution.
The tractions at point Q due to a unit load at P in x-direction are given by

(4.59)

where is defined in Figure 4.10.
For a unit load in the y-direction we have

(4.60)

The combined expression is

(4.61)

We note that the first part of the solution is symmetrical (i.e., the first part of Txy
equals Txy) but the second part is not.

For the three-dimensional problem, the fundamental solution is obtained for point
loads in x ,y and z directions.

Figure 4.12 Notation for three-dimensional Kelvin solution (point load in x direction)

22
3 ,

2
, , 3 , , , ,

, 2 cos

, 2 cos

yy y

yx x y y x x y

CT P Q C r
r

CT P Q r r C n r n r
r

22
3 ,

2
, , 3 , , , ,

2 3

, 2 cos

, 2 cos

11/ 4 1 , 1 2 , cos

xx x

xy x y y y x x

CT P Q C r
r

CT P Q r r C n r n r
r

C C
r

r n

2
3 , , 3 , ,2(,) 2 cos (1)()ij ij i j ij j i i j

C
T P Q C r r C n r n r

r

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 89

The solutions for the displacements in x,y and z directions due to a unit load in x-

direction can be written as

(4.62)

Now the solution approaches zero, as the distance between source point P and field
point Q tends to infinity. However, this solution also approaches an infinite value, as r
tends to zero. This fact will pose some problems with integrating the fundamental
solutions which we will address later. The solution for load in x,y,z directions can be
written as a combined Equation

(4.63)

The solutions for stresses acting on a boundary surface with an outward normal
direction of n (see figure 4.8) are presented next.

The fundamental solutions for the tractions due to a unit load at P, in x-direction, are

(4.64)

with

(4.65)

The general solution for the tractions can be written as

(4.66)

22
3 ,2

2
, , 3 , , , ,2

2
, , 3 , , , ,2

, 3 cos

, 3 cos

, 3 cos

xx x

xy x y x y y x

xz x z x z z x

CT P Q C r
r
CT P Q r r C n r n r
r
CT P Q r r C n r n r
r

2 31/ 8 1 , 1 2C C

2
1 ,

, ,

, ,

1

,

1,

1,

1/ 16 1 , 3 4

xx x

xy x y

xz x z

CU P Q C r
r

U P Q C r r
r

U P Q C r r
r

with

C G C

, 1 , ,(,) ()i j ij i jU P Q C C r r

2
3 , , 3 , , , ,2(,) 3 cos (1)()ij ij i j ij j i i j

C
T P Q C r r C n r n r

r

90 The Boundary Element Method with Programming

The Kelvin solutions for displacements are plotted in Figures 4.13 and 4.14. A small
circle of exclusion is used to avoid plotting very high values near the singularity. The
variation of the displacement in x-direction shows symmetry about the x- and y-axes.
The variation of the displacements in y-direction shows anti-symmetry about both axes.
The influence of the Poisson's ratio on the displacements perpendicular to the load axis
can be clearly seen in Figure 4.14. Note that the finite element method has difficulty
dealing with a Poisson's ratio of 0.5 (incompressible material) because of the definition
of C1 in equation (4.47) which would give an infinite value for = 0.5.

Figure 4.13 3-D Kelvin solution: variation of displacements in x-direction due to Px= 1.0

Figure 4.15 shows the variation of the fundamental solution for the boundary traction
in x-direction assuming that the vector normal to the boundary, n , points in the x-
direction (this means that the computed traction is equivalent to the stress in the x-
direction). We can see clearly that the fundamental solution is anti-symmetric about the
y–axis and decays very rapidly from the singularity.

To implement the above equations in F90 we define functions UK and TK which
return rank two arrays of dimension 2 or 3. The function only provides solutions for
plane strain and 3-D problems. To obtain the solutions for plane stress problems simply
substitute an effective Poisson´s ration of)1(.

x y

Uxx (P,Q)

Px= 1.0

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 91

Figure 4.14 3-D Kelvin solution: variation of displacements in y-direction due to Px= 1.0 for
Poissons ratio of 0.0 (left figure) and 0.5 (right figure)

Figure 4.15 3-D Kelvin solution: variation of Txx for n ={1,0,0}. This is equivalent to x

y

Uxy (P,Q)

Px= 1.0

x

= 0.0
= 0.5

x y

Txx (P,Q)

Px= 1.0

92 The Boundary Element Method with Programming

FUNCTION UK(dxr,r,E,ny,Cdim)
!--
!
! FUNDAMENTAL SOLUTION FOR DISPLACEMENTS
! isotropic material (Kelvin solution)
!
!--
IMPLICIT NONE
REAL,INTENT(IN) :: dxr(:) ! r,x,r,y,r,z
REAL,INTENT(IN) :: r ! r
REAL,INTENT(IN) :: E ! Young's modulus
REAL,INTENT(IN) :: ny ! eff. Poisson's ratio
INTEGER,INTENT(IN):: Cdim ! Cartesian dimension
REAL:: UK(Cdim,Cdim) ! Function returns array
REAL:: G,c,c1,onr,clog,conr ! Temps
G= E/(2.0*(1+ny))
c1= 3.0 - 4.0*ny
SELECT CASE (Cdim)
CASE (2) ! Plane strain solution
 c= 1.0/(8.0*Pi*G*(1.0 - ny))
 clog= -c1*LOG(r)
 UK(1,1)= c*(clog + dxr(1)*dxr(1))
 UK(2,2)= c*(clog + dxr(2)*dxr(2))
 UK(1,2)= c*dxr(1)*dxr(2)
 UK(2,1)= UK(1,2)
CASE(3) ! Three-dimensional solution
 c= 1.0/(16.0*Pi*G*(1.0 - ny))
 conr=c/r
 UK(1,1)= conr*(c1 + dxr(1)*dxr(1))
 UK(2,2)= conr*(c1 + dxr(2)*dxr(2))
 UK(3,3)= conr*(c1 + dxr(3)*dxr(3))
 UK(1,2)= conr*dxr(1)*dxr(2)
 UK(1,3)= conr*dxr(1)*dxr(3)
 UK(2,1)= UK(1,2)
 UK(2,3)= conr*dxr(2)*dxr(3)
 UK(3,1)= UK(1,3)
 UK(3,2)= UK(2,3)
CASE DEFAULT
END SELECT
RETURN
END FUNCTION UK

Function TK requires one more parameter to be specified: the vector normal to the

boundary (normal vector).

MATERIAL MODELLING AND FUNDAMENTAL SOLUTIONS 93

FUNCTION TK(dxr,r,Vnor,ny,Cdim)
!--
! FUNDAMENTAL SOLUTION FOR TRACTIONS
! isotropic material (Kelvin solution)
!--
IMPLICIT NONE
REAL,INTENT(IN) :: dxr(:) ! r,x,r,y,r,z
REAL,INTENT(IN) :: r ! r
REAL,INTENT(IN) :: Vnor(:) ! normal vector
REAL,INTENT(IN) :: ny ! eff. Poisson's ratio
INTEGER,INTENT(IN) :: Cdim ! Cartesian dimension
REAL :: TK(Cdim,Cdim) ! Function returns

array
REAL :: c2,c3,costh,Conr ! Temps
c3= 1.0 - 2.0*ny
Costh= DOT_PRODUCT (Vnor,dxr)
SELECT CASE (Cdim)
CASE (2) ! plane strain
 c2= 1.0/(4.0*Pi*(1.0 - ny))
 Conr= c2/r
 TK(1,1)= -(Conr*(C3 + 2.0*dxr(1)*dxr(1))*Costh)
 TK(2,2)= -(Conr*(C3 + 2.0*dxr(2)*dxr(2))*Costh)
 DO i=1,2
 DO j=1,3
 IF(i /= j) THEN
 TK(i,j)= -(Conr*(2.0*dxr(i)*dxr(j)*Costh &
 - c3*(Vnor(j)*dxr(i) - Vnor(i)*dxr(j))))
 END IF
 END DO
 END DO
CASE(3) ! Three-dimensional
 c2= 1.0/(8.0*Pi*(1.0 - ny))
 Conr= c2/r**2
 TK(1,1)= -Conr*(C3 + 3.0*dxr(1)*dxr(1))*Costh
 TK(2,2)= -Conr*(C3 + 3.0*dxr(2)*dxr(2))*Costh
 TK(3,3)= -Conr*(C3 + 3.0*dxr(3)*dxr(3))*Costh
 DO i=1,3
 DO j=1,3
 IF(i /= j) THEN
 TK(i,j)= -Conr*(3.0*dxr(i)*dxr(j)*Costh &
 - c3*(Vnor(j)*dxr(i) - Vnor(i)*dxr(j)))
 END IF
 END DO
 END DO
CASE DEFAULT
END SELECT
END FUNCTION TK

94 The Boundary Element Method with Programming

Fundamental solutions for anisotropic material exist, but are rather complicated3. Further
details are discussed in Chapter 18.

4.4. CONCLUSIONS

In this chapter we have dealt with the description of the material response in a
mathematical way and have derived solutions for the equations governing the problem
for simple loading. The solutions are for point sources, or loads, in an infinite domain. It
has been shown that the implementation of these fundamental solutions into a F90
function is fairly straightforward. A particular advantage of the new facilities in F90 is
that two-and three-dimensional solutions can be implemented in one FUNCTION, with
the parameter Cdim determining the dimensionality of the result.

The Kelvin fundamental solution is not the only one which may be used for a
boundary element analysis. Indeed, any solution may be used, including ones which
satisfy some boundary conditions explicitly. For example, we may include the zero
boundary traction conditions at the ground surface. Green’s functions for a point load in
a semi-infinite domain have been worked out, for example, by Melan in two dimensions4
and Mindlin in three dimensions5. Also Bonnet1 presents a solution for bonded half-
spaces where two different materials may be considered implicitly in the solution. The
fundamental solutions just derived will form the basis for the methods discussed in the
next chapter.

4.5. REFERENCES

1. Bonnet, M, (1995) Boundary Integral Equation Methods for Solids and Fluids.

Wiley, Chichester.
2. Sokolnikoff I.(1956) Mathematical Theory of Elesticity, McGraw-Hill, New York.
3. Tonon F, Pan E. and Amadei B. (2000) Green's functions and BEM formulations for

3-D anisotropic media. Computers and Structures, 79 (5):469-482.
4. Melan, E. (1932) Der Spannungszustand der durch eine Einzelkraft im Inneren

beanspruchten Halbscheibe. Z. Angew. Math. & Mech,12, 343-346.
5. Mindlin R.D. (1936) Force at a point in the interior of a semi-infinite solid. Physics

7: 195-202.

5
Boundary Integral Equations

There is nothing more practical
than a good theory

I. Kant

5.1 INTRODUCTION

As explained previously, the basic idea of the boundary element method comes from
Trefftz1, who suggested that in contrast to the method of Ritz, only functions satisfying
the differential equations exactly should be used to approximate the solution inside the
domain. If we use these functions it means, of course, that we only need to approximate
the actual boundary conditions. This approach, therefore, has some considerable
advantages:

 The solutions obtained inside the domain satisfy the differential equations exactly,

approximations (or errors) only occur due to the fact that boundary conditions are
only satisfied approximately.

 Since functions are defined globally, there is no need to subdivide the domain into
elements.

 The solutions also satisfy conditions at infinity, therefore, there is no problem dealing
with infinite domains, where the FEM has to use mesh truncation or approximate
infinite elements.

The disadvantage is that we need solutions of differential equations to be as simple as

possible, if we want to reduce computation time. The most suitable solutions are ones

96 The Boundary Element Method with Programming

involving concentrated sources or loads in infinite domains. As we know from the
previous chapter, these solutions also have some rather nasty properties, such as
singularities. The integration of these functions will require special consideration.

The original method proposed by Trefftz is not suitable for writing general purpose
programs as its accuracy is not satisfactory and, as will be seen later, convergence of the
method cannot be assured. However, because of the inherent simplicity of the method, it
serves well to explain some of the basic principles involved. Therefore, we will first
introduce this method on a simple example in heat flow.

However, we will actually develop our programs using the direct method, which gets
its name from the fact that no fictitious source or forces need to be computed, as in the
Trefftz method, but that unknowns at the boundary are obtained directly. In the
development of the integral equations we will use the theorem of Betti, which is better
known to engineers than the Greens theorem.

5.2 TREFFTZ METHOD

To introduce the Trefftz method let us look at a simple two-dimensional example in heat
flow. Consider an infinite homogeneous domain having conductivity k, where heat (q0)
flows only in the vertical (y) direction (Figure 5.1a).

Figure 5.1 Heat flow in an infinite domain, case (a) and (b)

x

y

x

y

n

(b)(a)

0q

0q

0q
()at ()bt

BOUNDARY INTEGRAL EQUATIONS 97

According to the Fourier law introduced in Chapter 4 we can write

(5.1)

Solving the differential equations for u, the temperature at a point Q with coordinates

x,y is obtained as

(5.2)

If we assume the temperature at the centre of the circle to be zero, then C= 0.
We now place a cylindrical isolator in the flow and compute how the flow pattern and

temperature distribution changes. The isolator prevents flow to occur in a direction
perpendicular to its boundary, which is computed by

(5.3)

Where n {nx , ny}is the vector normal to the boundary of the isolator (outward
normal). Note that the positive direction of this vector is pointing from the infinite
domain into the isolator. For the solution (5.2) just obtained, we find that this condition
is not satisfied, because the flow in the direction normal to the isolator boundary
(marked with a dotted line in Figure 5.1a) is computed as:

(5.4)

 If we want to find out how the isolator changes the flow/temperature distribution,
then we can think of the problem as divided into two parts: the first being the trivial one,
whose solution we just obtained, the second being one where the solution is obtained for
the following boundary condition:

(5.5)

If the two solutions for the flow normal to the boundary of the isolator are added
then:

(5.6)

i.e. the boundary condition that no flow occurs normal to the isolator is satisfied. The
final solution for the temperature is therefore

(5.7)

00 and
qu u

x y k

Cy
k

q
Qu a 0)(

() 0x y
u u ut k k n n

x yn

()
0 0 sina

yt n q q

() ()
0 sinb at t q

QuQuQu)b()a(

() () 0b at t t

98 The Boundary Element Method with Programming

We now solve the boundary value problem (b) by the Trefftz method. To apply the
Trefftz method, we quite arbitrarily select N points on the boundary of the isolator,
where we wish to satisfy the boundary conditions, equation (5.5) and another set of
points, where we apply fictitious sources. The reason these are called fictitious is that
they are not actually present, but can be thought of as parameters of the global
approximation functions. We have to be careful with the location of these points and this
will be the major drawback of the method. The source points must be placed in such a
way, that they do not influence the results. In our case, the best place is inside the
isolator. Also, we must not place points P too close to the boundary points Q, because,
as we know, when P approaches Q, the fundamental solutions become singular. In
Figure 5.2 we show an example of the choice of locations for load points Pi and
boundary points Qi. We place points Q at quarter points on the boundary of the isolator,
with radius RQ and points P at a circle, with radius RP inside the isolator.

Figure 5.2 Points P for fictitious loads and Q, where boundary conditions are to be satisfied

In the Trefftz method, we attempt to satisfy the given boundary conditions, by
adjusting the magnitude of the fictitious sources Fi applied at Pi. Noting that the
fundamental solutions for the flow in direction n, which we derived in the last chapter, is
T(P,Q), the boundary condition at point Q1 can be satisfied by

(5.8)

Here T(Pi ,Q1) is the flow in direction n(Q1) at point Q1 due to a source at Pi. This is
also sometimes referred to as an influence coefficient. We can now write a similar
equation for each boundary point Qi, a total of 8 equations:

(5.9)

8
()

1 1 i
1

T , Fb
i

i

t Q P Q

8 8
() ()

1 1 2 2
1 1

T , F ; T , F etc.b b
i i i i

i i

t Q P Q t Q P Q

x

y

P1
P8

P7 P3

P2

P6P4

P5

Q1

Q8

Q7
Q3

Q2

Q4 Q6

Q5

RQ

RP

BOUNDARY INTEGRAL EQUATIONS 99

We obtain a system of simultaneous equations, which we can solve for unknown
fictitious sources Fi. Obviously, the number of fictitious sources depends on the number
of equations we can write and hence, on the number of boundary points Qi. It is
convenient, therefore, to have the same number of source points as we have field points.
Once we have solved the system of simultaneous equations and calculated the fictitious
sources Fi,, then the temperature at any point Q on the boundary of the isolator and in the
domain (but outside the isolator) is given by

(5.10)

The flow at a point Q in x and y-directions may be obtained by

(5.11)

5.3 PROGRAM 5.1: FLOW AROUND CYLINDER,
TREFFTZ METHOD

The program shown here allows us to numerically solve the problem of flow around a
cylinder, with a variable number of source points and this allows the reader to get a
better understanding of the Trefftz method and its limitations. We activate the
Laplace_lib, which contains the fundamental solutions of the Laplace equation
governing our problem and the Utility_lib containing the subroutine for solving
equations by the USE statement. Next, we read some information about the problem,
such as heat inflow, conductivity, number of source/boundary points and radius of the
cylinder. We finally, quite arbitrarily, specify that the source points are located on a
circle with radius Rp, which has to be smaller than the radius of the cylinder. We can
later do numerical experiments on the effect of distance between source and boundary
points on accuracy of results. Since the size of the arrays for storing the equation system
is dependent on the number of source points specified, we allocate them at run time.
Next, we loop over all boundary points (DO loop Field_points) and all source points
(DO loop Source_points) to generate the matrix of influence coefficients and the right
hand side. The points Q and P are assumed to be equally distributed over the circle. The

8

1
i

)(

)()(

F,QPUQu

where
QuQuQu

i
b

ba

8

1

)(
)(

8

1

)(
)(

)(
0

)(

F
,

F
,

;

i
i

b
b

y

i
i

b
b

x

b
yy

b
xx

y
QPU

k
y

Qukq

x
QPU

k
x

Qukq

where

qqqqq

100 The Boundary Element Method with Programming

system of equations is solved next with utility program SOLVE. The values of
temperature are computed at boundary points and interior points, the coordinates of
which are specified by the input. Both involve a summation of influences (i.e.,
fundamental solutions multiplied with the fictitious source intensities).

PROGRAM Trefftz
!---------------------------------
! Program to compute the heat flow past a cylindrical isolator
! in a 2-D infinite domain using the Trefftz method
!---------------------------------
USE Laplace_lib ; USE Utility_lib
IMPLICIT NONE ! declare all variables
REAL :: q ! inflow/outflow
REAL :: k ! Thermal conductivity
INTEGER :: npnts ! Number of points P,Q
REAL :: rq ! radius of isolator
REAL :: rp ! radius of source points
REAL(KIND=8),ALLOCATABLE :: Lhs(:,:) ! left hand side
REAL(KIND=8),ALLOCATABLE :: Rhs(:) ! right hand side
REAL(KIND=8),ALLOCATABLE :: F(:) ! fictitious sources
REAL :: dxr(2) ! r,x, r,y
REAL :: vnorm(2) ! normal vector
REAL :: Delth,Thetq,Thetp,xq,yq,xp,yp,xi,yi,r,uq
INTEGER :: npq,npp,ninpts,nin
OPEN(UNIT=10,FILE='INPUT.DAT',STATUS='OLD',ACTION='READ')
OPEN(UNIT=11,FILE='OUTPUT.DAT',STATUS='UNKNOWN',ACTION='WRITE')
READ(10,*) q,k,npnts,rq,rp
WRITE(11,*) ' Program 2: heat flow past a cylinder Trefftz
method'
WRITE(11,*) ' Heat inflow/outflow= ',q
WRITE(11,*) ' Thermal conductivity= ',k
WRITE(11,*) ' Number of Points P,Q= ',npnts
WRITE(11,*) ' Radius of Isolator= ',rq
WRITE(11,*) ' Radius of Sources = ',rp
ALLOCATE (Lhs(npnts,npnts),Rhs(npnts),F(npnts)) !
Delth= 2*Pi/npnts ! increment in angle theta between points
Thetq= Pi/2.0 ! angle theta to first field point Q1
Field_points: &
DO npq= 1,npnts
 Rhs(npq)= q * SIN(Thetq) ! right hand side
 xq= rq*COS(Thetq) ! x-coordinate of field point
 yq= rq*SIN(Thetq) ! y-coordinate of field point
 vnorm(1)= -COS(Thetq) ! normal vector to Q
 vnorm(2)= -SIN(Thetq)
 Thetq= Thetq + Delth ! angle to next field point Q
 Thetp= Pi/2.0 ! angle to first source point P1
 Source_points: &
 DO npp= 1,npnts
 xp= rp*COS(Thetp) ! x-coordinate of source point
 yp= rp*SIN(Thetp) ! y-coordinate of source point
 dxr(1)= xp-xq

BOUNDARY INTEGRAL EQUATIONS 101

 dxr(2)= yp-yq
 r= SQRT(dxr(1)**2 + dxr(2)**2) ! dist. field/source pnt
 dxr= dxr/r ! normalise vector dxr
 Lhs(npq,npp)= T(r,dxr,vnorm,2) !
 Thetp= Thetp + Delth ! angle to next point P

END DO &
Source_points

END DO &
Field_points
Lhs= - Lhs !Multiplication with “–“ to avoid negative pivots
Rhs= - Rhs !
! Solve system of equations: calculate F out of Lhs and Rhs
CALL Solve(Lhs,Rhs,F)
! Postprocessing - Boundary values of temperature
WRITE(11,*) ''
WRITE(11,*) 'Temperatures at Boundary points:'
Thetq= Pi/2.0 ! angle to first field point Q1
Field_points1: &
DO npq= 1,npnts
 uq= 0.0
 xq= rq*COS(Thetq) ! x-coordinate of field point
 yq= rq*SIN(Thetq) ! y-coordinate of field point
 Thetq= Thetq + Delth ! angle to next field point Q
 Thetp= Pi/2.0 ! angle to first source point P1
 Source_points1: &
 DO npp= 1,npnts
 xp= rp*COS(Thetp) ! x-coordinate of source point
 yp= rp*SIN(Thetp) ! y-coordinate of source point
 dxr(1)= xp-xq
 dxr(2)= yp-yq
 r= SQRT(dxr(1)**2 + dxr(2)**2)
 uq= uq + U(r,k,2)*F(npp)
 Thetp= Thetp + Delth ! angle to next source point P
 END DO &
 Source_points1
 uq=uq-q/k*yq
 WRITE(11,*) 'Temperature at field point',npq,' =',uq
 END DO &
 Field_points1
 ! Postprocessing - Interior points
 WRITE(11,*) ''
 WRITE(11,*) 'Temperatures at interior points:'
 READ(10,*) ninpts ! read number of interior points
 Int_points: &
 DO nin= 1,ninpts
 READ(10,*) xi,yi ! coordinates of interior points
 uq= 0.0
 Thetp= Pi/2.0 ! angle to first source point P1
 Source_points2: &
 DO npp= 1,npnts
 xp= rp*COS(Thetp) ! x-coordinate of source point

102 The Boundary Element Method with Programming

 yp= rp*SIN(Thetp) ! y-coordinate of source point
 dxr(1)= xp-xi
 dxr(2)= yp-yi
 r= SQRT(dxr(1)**2 + dxr(2)**2)
 uq= uq + U(r,k,2)*F(npp)
 Thetp= Thetp + Delth ! angle to next source point P
 END DO &
 Source_points2
 uq=uq-q/k*yi
 WRITE(11,*) 'Temperature at x=',xi,', y=',yi,' =',uq
 END DO &
 Int_points
 STOP
END PROGRAM Trefftz

INPUT DATA for program Trefftz

1.0 Problem specification
q,k, npnts, rq,rp q … Heat inflow

 k … Thermal conductivity
npnts … Number of points P,Q
rq … Radius of isolator
rp … Radius of sources

2.0 Interior point specification
Npoints Number of interior points

3.0 Interior point coordinates (Npoints cards)
x,y x,y coordinates of interior points

5.3.1 Sample input and output

Here we show an example of the input for an isolator of radius 1.0 with 32 points P and
Q, where the source points P are situated along a circle with a radius 0.7.

File INPUT.DAT
1.0 1.0 32 1.0 0.7
18
0. -5.
0. -4.5
0. -4.
0. -3.5
0. -3.
0. -2.5
0. -2.
0. -1.5

BOUNDARY INTEGRAL EQUATIONS 103

0. -1.
0. 1.
0. 1.5
0. 2.
0. 2.5
0. 3.
0. 3.5
0. 4.
0. 4.5
0. 5.

File OUTPUT.DAT
Program 2 : heat flow past a cylinder with Trefftz method
Heat inflow/outflow= 1.00000
Thermal conductivity= 1.00000
Number of Points P,Q= 32
Radius of Isolator= 1.00000
Radius of Sources = 0.700000

Temperatures at Boundary points:
Temperature at field point 1 = -1.99996
….
Temperature at field point 32 = -1.96546

Temperatures at interior points:
Temperature at x= 0.000000 , y= -5.00000 = 5.19999
….
Temperature at x= 0.000000 , y= 5.00000 = -5.19999

Figure 5.3 Plot of error in computing the temperature versus the number of points P

Trefftz method, Plot of error %

-7

-6

-5

-4

-3

-2

-1

0
8 16 24 32

Number of points

Er
ro

r %

104 The Boundary Element Method with Programming

The error in the computation of the temperature at the top of the circular isolator
(point Q1) is plotted in Figure 5.3. It can be seen that very accurate results can be
obtained with 24 elements.

5.4 DIRECT METHOD

As we have seen from the simple example, the Trefftz method is not suitable for general
purpose programming. The method is not very user-friendly because, in addition to
specifying points where boundary conditions are to be satisfied, we have to specify a
second set of points where fictitious forces are to be applied. This is certainly not
acceptable, especially if we want to go into three-dimensional problems. In addition, the
convergence of the method can not be guaranteed for a general case as the number of
points Q and P are increased.

5.4.1 Theorem of Betti and integral equations

An alternative to the Trefftz method is the direct method. Here we use the well known
Betti theorem, rather elegantly to get rid of the need to compute fictitious sources or
forces. We also abolish the need for an additional set of points, by placing the source
points P to coincide with field points Q.

Figure 5.4 Application of Betti's theorem, tractions of load case 1 and displacements of load
case 2 for computing W12

Load case 2 Load case 1

Uxy(P,Q)
ty(Q)

Uxx(P,Q)

S

dS
Q

P=1

tx(Q)

P

BOUNDARY INTEGRAL EQUATIONS 105

This means that the method will become more complicated than Trefftz’s, because
we will now have to solve a set of integral equations and to cope with integrals, which
are singular. The direct method, however, is much more user-friendly than Trefftz’s
method and has the advantage that convergence can be guaranteed. We explain the
direct method with an example in elasticity, as engineers associate the Betti theorem
with that type of problem. However, we will see that the integral equations can be
derived for potential problems in a similar way.

Consider an infinite domain with two types of ‘loading’: load case number 1 we
assume to be the case we want to solve and load case number 2, a case where only a unit
load in the x-direction is specified at a point P (see Figure 5.4). Along a dotted line we
show for load case 1 the stresses defined as forces per unit length of the line (dS). These
are the tractions at point Q, with components tx(Q) and ty(Q). For load case 2, we show
the displacements at point Q on S, which are the fundamental solutions Uxx (P,Q) and
Uxy(P,Q).

As already mentioned in Chapter 4, we must cut through the continuum to show
stresses. Here we cut along a dotted line, which forms a closed contour and which has
been chosen quite arbitrarily. By this cut, the continuum is divided into two parts: the
interior and exterior domains. Note that for the following derivation it does not matter
which domain is considered and, therefore, the integral equations are valid for infinite as
well as finite domains.

Figure 5.5 Application of Betti's theorem, displacements of load case 1 and tractions for load
case 2 for computing W21

The theorem of Betti states that the work done by the load of case 1 along the
displacements of case 2 must equal the work done by the loads of case 2 along the
displacements of case 1.

Px= 1

Load case 1 Load case 2

uy(Q)
Txx(P,Q)

Txy(P,Q)

ux(Q)

S

dS

ux(P)

Q

P

106 The Boundary Element Method with Programming

If we assume that there are no body forces acting in the domain (these will be
introduced later), the work done by the first set of tractions and displacements is (Fig
5.4)

(5.12)

The work done by the second set of tractions/forces and displacements is (Fig 5.5)

(5.13)

The theorem of Betti states that W12 = W21 and this gives the first integral equation

(5.14)

A second integral equation can be obtained by placing the unit load in y direction

(5.15)

Using matrix algebra we can combine equations (5.14) and (5.15)

(5.16)

where

(5.17)

Equations (5.16) represent for the two-dimensional problem discussed here a system
of two integral equations which relate tractions t and displacements u at the boundary
directly, thereby removing the need to compute fictitious forces.

PudSQ,PTQuQ,PTQuW x
S

xyyxxx 121

, ,
S S

P P Q Q dS P Q Q dSu U t u

yyyx

xyxx

y

x

yyyx

xyxx

y

x

TT
TT

Q,P,
t
t

Q

UU
UU

Q,P,
u
u

Q

Tt

Uu

S
yyyyxx

S
yyyyxxy

dS)Q,P(T)Q(u)Q,P(T)Q(u

dS)Q,P(U)Q(t)Q,P(U)Q(t)P(u

S
xyyxxx dSQ,PUQtQ,PUQtW12

S
xyyxxx

S
xyyxxxx

dS)Q,P(T)Q(u)Q,P(T)Q(u

dS)Q,P(U)Q(t)Q,P(U)Q(t)P(u

BOUNDARY INTEGRAL EQUATIONS 107

For three-dimensional problems, three integral equations (5.15) can be obtained
where S is a surface and

(5.18)

(5.19)

It can be shown that the Betti theorem can also be arrived at in a mathematical way,
by using the divergence theorem and Green's symmetric identity2. Using this more
general mathematical approach, it can be shown that for potential problems, the
following single integral equation is obtained

(5.20)

where u(Q) and t(Q) are the temperature/potential and the normal derivative respectively
at point Q on S, and U(P,Q) and T(P,Q) are the fundamental solutions at Q for a source
at point P. The integration is carried out over a line S for two-dimensional problems or a
surface S for three-dimensional problems.

5.4.2 Limiting values of integrals as P coincides with Q

We have now succeeded to avoid computing the fictitious forces but have not succeeded
yet in making the method more user-friendly since, we still need two sets of points:
points P where the unit sources/loads are applied and points Q where we have to satisfy
boundary conditions. Ideally, we would like to have only one set of points on the line
where the points Q are specified. The problem is that some integrals in (5.16) or (5.20)
only exist in the sense of a limiting value as P approaches Q.

This is explained in Figure 5.6 for two-dimensional potential problems. Here, we
examine what happens when points P and Q coincide. We define a region of exclusion
around point P, with radius and integrate around it. The integrals in equation (5.20)
can now be split up into integrals over S-S , that is, the part of the curve without the
exclusion zone and into integrals over s , that is, the part of the circular exclusion. As

is taken to zero it does not matter if we integrate over s or S . The right hand side of
equation (5.20) is written as:

(5.21)

SS

QdSQPTQuQdSQPUQtPu ,,

S S S S S S s s

t U dS u T dS t U dS u T dS t U dS u T dS

zzzyzx

yzyyyx

xzxyxx

z

y

x

UUU
UUU
UUU

Q,P,
u
u
u

Q Uu

zzzyzx

yzyyyx

xzxyxx

z

y

x

TTT
TTT
TTT

Q,P,
t
t
t

Q Tt

108 The Boundary Element Method with Programming

 We examine the integrals over s further. For a smooth surface at P, using polar
coordinates, as shown, we change the integration limits of the first integral to 0 and
and substitute for the fundamental solution U. Furthermore, as in the limit P will be
coincident with Q, we can assume t(Q)=t(P) and u(Q)= u(P). Then we have

(5.22)

Figure 5.6 Diagram explaining the limiting value of integrals for two-dimensional potential
problems

The integral approaches zero as approaches zero. Therefore

(5.23)

 The second integral becomes

(5.24)

As cancels out we do not have to take the limiting value of this integral. The
integral equation that has to be used for the case where the source points are located on
the continuous line S, is given by

(5.25)

)(
2
1

2
1)(

2
cos)()(,

00

PudPudPuQdSQPTQu
s

0)(,lim
0

s

QdSQPUQt

SSSS

QdSQPTQuQdSQPUQtPu ,,lim
2
1

0

111
2
1

0

ln
k

)P(tdln
k

)P(t)Q(dSQ,PUQt
s

P

Q

S

S-S

s

n d

d

BOUNDARY INTEGRAL EQUATIONS 109

For a three-dimensional problem, we take the zone of exclusion to be a sphere, as
shown in Figure 5.7.

Figure 5.7 Computation of integrals for the case that P=Q, three-dimensional case

In this case the first integral also approaches zero as approaches zero. The second
integral can be computed as

(5.26)

which for smooth surfaces gives the same result as before. Obviously, the same limiting
procedure can be made for elasticity problems. If P=Q the integral equation (5.16) can
be rewritten as

(5.27)

If the boundary is not smooth but has a corner, as shown in Figure 5.8, then equation
(5.24) has to be modified. The integration limits are changed and now depend on the
angle :

(5.28)

A more general integral equation can be written for potential problems

(5.29)

)(
2
1

4
cos)()(,

2

0 0
2

PuddPuQdSQPTQu
s

)(
22

1)(
2

cos)()(,
00

PudPudPuQdSQPTQu
s

SSSS

QdSQPTQuQdSQPUQtPcu ,,lim
0

0

1 lim , () , ()
2

S S S S

P P Q Q dS Q P Q Q dS Qu U t u

n

S-S

d
d

S

110 The Boundary Element Method with Programming

The reader may verify that

(5.30)

where is defined as the angle subtended at P by s .

Figure 5.8 Limiting value of integral when P is located on a corner

For two and three-dimensional elasticity problems we may write a more general form
of equation (5.25)

(5.31)

where c is as previously defined and I is a 2x2 or 3x3 unit matrix.

5.4.3 Solution of integral equations

Using the direct method, a set of integral equations has been produced that relates the
temperature/potential to the normal gradient, or the displacement to the traction at any
point Q on the boundary. Since we are now able to place the source points coincidental
with the points where the boundary conditions are to be satisfied, we no longer need to
be concerned about these points. Indeed, in the direct method, the fictitious sources no
longer play a role.

To use integral equations for the solution of boundary value problems we consider
only one of the two regions created by cutting along the dotted line in Figure 5.4: the
interior or the exterior region, as shown in Figure 5.9. With respect to the integral
equations, the only difference between them is the direction of the outward normal n,
which is assumed to point away from the solid. The interior region is a finite region, the
exterior an infinite region.

0
lim , () , ()

S S S S

c P P Q Q dS Q P Q Q dS QIu U t u

DforcandDforc 3
4

12
2

1

P

Q
n

S

S S

BOUNDARY INTEGRAL EQUATIONS 111

Figure 5.9 Exterior and interior regions obtained by separating the domain along dotted line

For potential problems, we obtain one integral equation per source point P. For
elasticity problems, we get two or three integral equations per source point, depending
on the dimensionality of the problem. Theoretically, if we want to satisfy the boundary
conditions exactly at all points on the boundary, we would need an infinite number of
points P=Q. In practice, we will solve the integral equations numerically and attempt to
either satisfy the boundary conditions at a limited number of points Q, or specify that
some norm of the error in satisfaction of the boundary conditions is a minimum.

For a boundary value problem, either u or t is specified and the other is the unknown
to be determined by solving the integral equations. The boundary condition where
potential u or displacement u is specified, is also known as the Dirichlet boundary
condition, whereas the specification of flow t or traction t is referred to as a Neuman
boundary condition.

Before we deal with the numerical solution of the integral equations, we must discuss
the integrals a little further. As indicated, limiting values of the integrals have to be
taken, as the region of exclusion around point P is reduced to zero.

The fundamental solutions or kernels of integrals T and U have different types of
singularities, which affect this limiting process. The kernel U varies according to lnr in
two dimensions and with 1/r in three dimensions and is known as weakly singular. As
we see later, the integration of this function poses no great problems. Kernel T has a 1/r
singularity in two dimensions and a 1/r2 singularity in three dimensions. This is also
known as strongly singular. The integral of this function only exists in the sense of a
Cauchy principal value. We will discuss this further in the chapter on numerical
implementation. In the simplest case, we may solve the integral equations by dividing
the boundary for two-dimensional problems into straight line segments over which the
values of u and t are assumed to be constant. We assume points P to be located at the
centre of each segment.

Exterior Interior

n

n

112 The Boundary Element Method with Programming

Figure 5.10 Solution of integral equations by linear segments

In the example shown in Fig 5.10 we assume the solution of a two-dimensional
potential problem with eight segments, where either u or t is specified on the boundary.
We see that this very simple discretisation into constant elements violates the continuity
conditions between elements. However, we will see by numerical experiments, that the
method converges, that is, exact results are obtained, as the number of elements tends to
infinity. The integrals can now be evaluated over each element separately and the
contributions added, that is, equation (5.25) can be re-written as eight equations

(5.32)

Where ue and te is the temperature and flow at the centre of element e. Note that as
there is a smooth surface at the centres of the elements (at points Pi) c is assigned 1/2.
The integrals over the segments are defined as

(5.33)

Using matrix notation, equation (5.32) can be written as

(5.34)

821
2
1 8

1

8

1

,ifortUuTu
e

ee
i

e

ee
i

e

1

u1, t1

8

7
6

5

4

3

2

u2, t2

ee S
ei

e
i

S
ei

e
i)Q(dS)Q,P(UU,)Q(dS)Q,P(TT

tUuT

BOUNDARY INTEGRAL EQUATIONS 113

where

(5.35)

and

(5.36)

Figure 5.11 Discretisation into linear elements for problem of flow past cylinder

If we consider the solution of the heat flow problem, which we solved by the Trefftz
method, then we have a problem where flow {t}0 is specified at the boundary and
temperatures are unknown (Figure 5.11).

x

y

P1

P8

P7P3

P2

P6
P4

P5

1

n12

3

4

5

6

7

8

1 2 1 21
1 1 1 12

1 2 1 21
2 2 2 22 ,

T T U U

T T T U U U

.
t
t

t,
.

u
u

u 2

1

2

1

114 The Boundary Element Method with Programming

This means that the system of equations can be written

(5.37)

where vector {t}0 is given by

(5.38)

The integrals which have to be evaluated analytically are

(5.39)

The integrals can be evaluated using a local coordinate system ,x y through point P
and polar coordinates, as shown3 in Figure 5.12 where is defined anticlockwise from a
line perpendicular to the element e with start node A and end node B.

The angle is computed as follows: a unit vector from A to B is defined as:

(5.40)

The vector normal to element n is computed by taking the vector x-product of VAB
with the z-axis. This gives

(5.41)

The cosine and sine of are then computed by

(5.42)

and

(5.43)

BA

BA

yy
xx

L
1

ABv

1cos
r

n r

BA

BA

xx

yy

L
1n

1sin AB r
rv

e
SS

ei
e
i

e
SS

ei
e

i

dS
r
1ln

2
1)Q(dS)Q,P(UU

dS
r2

cos)Q(dS)Q,P(TT

ee

ee

0tUFwithFuT

.
sin
sin

.
2

1

0
2

1

00 qn
n

qt y

y

BOUNDARY INTEGRAL EQUATIONS 115

can be computed by

(5.44)

The first integral is evaluated as:

(5.45)

Figure 5.12 Polar coordinate system used for the analytic evaluation of integral Ti
e

If Pi is at the centre of element e then we have to take the Cauchy principal value of

the integral. As shown in Figure 5.13, the integration is carried out over the region of
exclusion. The reader may verify that because of the anti-symmetry of T shown in
Figure 4.4 we obtain 0i

iT
The second integral is computed as

(5.46)

cos 1 1
2 cos 2 2 2

B B B

AA A

e
i A B

rdT d
r

)(sin1cos 1 SIGN
r

rn

2
1 1 1ln ln

2 cos 2 cos cos

tan ln 1
2 cos

B B

A A

A

B

e
i

rd h hdU
k r k

h h
k

Pi

n

rB

rA

B

A

r
d

L

B

A

h

e

cosrd

x

y

116 The Boundary Element Method with Programming

where r= h/cos has been substituted

Figure 5.13 Cauchy principal value computation as Pi approaches the centre of element e

.
For programming purposes, it is convenient to write this expression in terms of r and

(5.47)

If Pi is at the centre of element e of length L then we have

(5.48)

and the diagonal coefficient is computed as

(5.49)

5.5 COMPUTATION OF RESULTS INSIDE THE DOMAIN

The solution of the integral equation only provides values of u and t on the boundary of
the domain. Since we have defined global shape functions in the form of fundamental
solutions, the results at any point inside the domain can be readily computed. In contrast
to the FEM, where results at all nodes or Gauss points are computed as part of the
solution, we compute the interior results as a post-processing exercise. To compute, for
example, the temperature/potential at a point Pa inside the domain, we simply rewrite
equation (5.20)

(5.50)

1
2

ln
2

2
2

L
k

LU

Pi

e

,

,

1 sin ln 1 cos
2

A A

B B

r
e
i

r

U r r r
k

220 L
ABAB rr,,h

S
a

S
aa QdSQ,PTQuQdSQ,PUQtPu

BOUNDARY INTEGRAL EQUATIONS 117

or in discretised form using line segments

(5.51)

where

(5.52)

The flows at Pa in x- and y-directions are computed by taking derivatives of (5.50)

(5.53)

where the derivatives of U have been presented previously and the derivatives of T are
given for two-dimensional problems as

(5.54)

For constant boundary elements, equation (5.53) can be replaced by

(5.55)

where the integrals

(5.56)

can be evaluated analytically over element e.

8

1

8

1 e

e
a

e

e

e
a

e
a t)P(Uu)P(TPu

ee S
ea

e

S
ea

e)Q(dS)Q,P(UU,)Q(dS)Q,P(TT

S
a

S
aaay

S
a

S
aaax

QdSQ,P
y
TQuQdSQ,P

y
UQtkP

y
ukPq

QdSQ,P
x
TQuQdSQ,P

x
UQtkP

x
ukPq

x y

x y

T U Un n
x x x y

T U Un n
y y x y

E

e

E

e

ee
ya

ee
yaay

E

e

E

e

ee
xa

ee
xaax

uRtSkPq

uRtSkPq

1 1

1 1

ee

ee

S
a

e
ya

S
a

e
xa

S
a

e
ya

S
a

e
xa

QdSQP
y
TRQdSQP

x
TR

QdSQP
y
USQdSQP

x
US

,;,

,;,

118 The Boundary Element Method with Programming

Using the notation in Figure 5.12 with node Pi replaced by Pa we can evaluate the
integrals analytically in terms of the local coordinates ,x y .

(5.57)

The contribution of element e to the flux in ,x y -direction is given as:

(5.58)

This has to be transformed into global directions x,y by

(5.59)

where nx ,ny are the components of the vector normal to element e.
The final fluxes are computed by summing all element contributions

(5.60)

5.6 PROGRAM 5.2: FLOW AROUND CYLINDER,
DIRECT METHOD

We can now write a computer program for the solution of the flow around a cylinder
problem, which was previously solved with the Trefftz method. The input section of the
program is very similar to Program 5.1, except that no source points have to be
specified. The circle is divided into nseg straight line segments. At the centre of each
segment the boundary condition t0 is specified. The coefficient matrices, equation (5.35),
are set up with the results of the analytical integration, as computed in section 5.4.3. In
setting up the coefficient matrices we distinguish between diagonal and off-diagonal
coefficients. The diagonal coefficients are computed for the case where points Pi are
coincidental with the centre of the segment (also sometimes called self effects).

2 2

1
2

1 ln cos / cos
2

1 cos sin cos sin
2

1 cos cos
2

e
xa B A

e
ya B A

e
xa B B A A

e
ya B A

S
k

S
k

R
h

R
h

e e e e e
x a xa xa

e e e e e
y a ya ya

q P k S t R u

q P k S t R u

e e e
x a x x y y

e e e
y a x y y x

q P q n q n

q P q n q n

E

e

e
yay

E

e

e
xax qPq;qPq

11

BOUNDARY INTEGRAL EQUATIONS 119

PROGRAM Direct_Method
!---------------------------------
! Program to compute the heat flow past a cylindrical
! isolator in an 2-D infinite domain using the direct BE
! method with constant line segments
!---------------------------------
USE Utility_lib ! subroutine to solve equations
REAL :: q ! inflow/outflow
REAL :: k ! Thermal conductivity
INTEGER :: nseg ! Number of segments
REAL :: rq ! radius of isolator (inner)
REAL :: rqo ! radius of isolator (outer)
REAL(KIND=8),ALLOCATABLE :: Lhs(:,:) ! [DT]
REAL(KIND=8),ALLOCATABLE :: F(:) ! {F}
REAL(KIND=8),ALLOCATABLE :: u(:) ! Temp at segment centers
REAL,ALLOCATABLE :: Rhs(:,:) ! [DU]
REAL,ALLOCATABLE :: t0(:) ! Applied flows
REAL,ALLOCATABLE :: xA(:,:),xB(:,:) ! Start/end coords of seg
REAL,ALLOCATABLE :: xS(:,:) ! Coords of points Pi
REAL,ALLOCATABLE :: Ve(:,:),Vn(:,:) ! Vectors A-B and n
REAL :: vrA(2),vrB(2) ! Vectors to point A and B of seg
REAL :: lens ! Length of segment
C= 0.5/Pi
OPEN(UNIT=10,FILE='INPUT.DAT',STATUS='OLD',ACTION='READ')
OPEN(UNIT=11,FILE='OUTPUT.DAT',STATUS='UNKNOWN',ACTION='WRITE')
READ(10,*) q,k,nseg,rq
WRITE(11,*) 'Heat flow past a cylinder (direct BE method)'
WRITE(11,*) 'Input values:'
WRITE(11,*) ' Heat inflow/outflow= ',q
WRITE(11,*) ' Thermal conductivity=',k
WRITE(11,*) ' Radius of Isolator= ',rq
WRITE(11,*) ' Number of segments= ',nseg
ALLOCATE (Lhs(nseg,nseg),Rhs(nseg,nseg),F(nseg))
ALLOCATE (xA(2,nseg),xB(2,nseg),t0(nseg),u(nseg))
ALLOCATE (xS(2,nseg),ve(2,nseg),vn(2,nseg))
C1=0.5/(Pi*k)
Delth= 2.0*Pi/nseg ! increment in angle theta
rqo=rq/COS(Delth/2.0) ! outer radius of isolator
Thet= (Pi-Delth)/2.0
! Compute start/end coordinates of segments
xA(1,1)= rqo*COS(Thet)
xA(2,1)= rqo*SIN(Thet)
Segments: &
DO ns= 1,nseg-1
 Thet= Thet + Delth
 xB(1,ns)= rqo*COS(Thet)
 xB(2,ns)= rqo*SIN(Thet)
xA(1,ns+1)= xB(1,ns)
xA(2,ns+1)= xB(2,ns)
END DO &

120 The Boundary Element Method with Programming

Segments
xB(1,nseg)= xA(1,1)
xB(2,nseg)= xA(2,1)
! Compute centre coordinates of segments (coll. point coords)
Segments1: &
DO ns= 1,nseg
 xS(1,ns)= (xB(1,ns) + xA(1,ns))/2.0
 xS(2,ns)= (xB(2,ns) + xA(2,ns))/2.0
END DO &
Segments1
! Compute applied tractions at centers of elements
Thet= Pi/2.0
Segments2: &
DO ns= 1,nseg
 t0(ns)= q*SIN(Thet)
 Thet= Thet + Delth
END DO &
Segments2
! Assemble matrices DT and DU
Segments3: &
DO ns=1,nseg
lens= dist(xA(:,ns),xB(:,ns),2)
! Vector parallel and normal to segment A-B
dx= xA(1,ns) - xB(1,ns)
dy= xA(2,ns) - xB(2,ns)
ve(1,ns)= dx/lens
ve(2,ns)= dy/lens
vn(1,ns)= ve(2,ns)
vn(2,ns)=-ve(1,ns)
Points_Pi: &
DO np=1,nseg
rA= Dist(xA(:,ns),xS(:,np),2)
rB= Dist(xB(:,ns),xS(:,np),2)
vrA(1)= xA(1,ns)- xS(1,np)
vrA(2)= xA(2,ns)- xS(2,np)
vrB(1)= xB(1,ns)- xS(1,np)
vrB(2)= xB(2,ns)- xS(2,np)
COSThA= DOT_PRODUCT(vn(:,ns),vrA)/rA
COSThB= DOT_PRODUCT(vn(:,ns),vrB)/rB
SINThA= DOT_PRODUCT(ve(:,ns),vrA)/rA
SINThB= DOT_PRODUCT(ve(:,ns),vrB)/rB
ThetA= ACOS(COSThA)*SIGN(1.0,SinThA)
ThetB= ACOS(COSThB)*SIGN(1.0,SinThB)
IF(np == ns) THEN ! Diagonal coefficients
Lhs(np,np)= 0.5
Rhs(np,np)= lens*C1*(LOG(lens/2.0)-1.0)

ELSE ! off-diagonal coeff.
Lhs(np,ns)= C*(ThetB-ThetA)
Rhs(np,ns)= C1*(rB*SINThB*(LOG(rB)-1)+ThetB*rB*COSThB &
 - rA*SINThA*(LOG(rA)-1)-ThetA*rA*COSThA)
END IF

BOUNDARY INTEGRAL EQUATIONS 121

END DO &
Points_Pi
END DO &
Segments3
F= MATMUL(Rhs,t0) ! compute right hand side vector
CALL Solve(Lhs,F,u) ! solve system of equations
! output computed temperatures
WRITE(11,*) 'Temperatures at segment centers:'
Segments4: &
DO ns= 1,nseg
 WRITE(11,'(A,I5,A,F10.3)') &
' Segment',ns,' T=',u(ns)-q/k*xS(2,ns)
END DO &
Segments4
DEALLOCATE (xS)
! Compute Temperatures and flows at interior points
READ(10,*,IOSTAT=IOS) NPoints
IF(NPoints == 0 .OR. IOS /= 0) THEN
 PAUSE 'program Finshed'
 STOP
END IF
ALLOCATE (xS(2,NPoints)) ! re-use array Xs
WRITE(11,*) &
'Temperatures(T) and flow (q-x,q-y) at interior points:'
DO n=1,NPoints
 READ(10,*) xS(1,n),xS(2,n)
END DO
Interior_points: &
DO np=1,Npoints
 up= 0.0
 qx= 0.0
 qy= 0.0
 Segments5 : &
 DO ns=1,nseg
 rA= Dist(xA(:,ns),xS(:,np),2)
 rB= Dist(xB(:,ns),xS(:,np),2)
 vrA(1)= xA(1,ns)- xS(1,np)
 vrA(2)= xA(2,ns)- xS(2,np)
 vrB(1)= xB(1,ns)- xS(1,np)
 vrB(2)= xB(2,ns)- xS(2,np)
 COSThA= -DOT_PRODUCT(vn(:,ns),vrA)/rA
 COSThB= -DOT_PRODUCT(vn(:,ns),vrB)/rB
 SINThA= -DOT_PRODUCT(ve(:,ns),vrA)/rA
 SINThB= -DOT_PRODUCT(ve(:,ns),vrB)/rB
 H= RA*CosThA
 ThetA= ACOS(COSThA)*SIGN(1.0,SinThA)
 ThetB= ACOS(COSThB)*SIGN(1.0,SinThB)
 IF(ThetB-ThetA > Pi) ThetA= 2.0*Pi + ThetA ! B- A < 180

o

 dT= C*(ThetB-ThetA)
 dU= C1*(rB*SINThB*(LOG(rB)-1)+ThetB*rB*COSThB &
 - rA*SINThA*(LOG(rA)-1)-ThetA*rA*COSThA)

122 The Boundary Element Method with Programming

 dSx= C/k*(ThetB-ThetA)
 Fact= CosthB/CosthA
 IF(Fact > 0.0) THEN
 dSy= -C/k*LOG(Fact)
 ELSE
 dSy= 0.
 END IF
 dRx= -C/H*(costhB*SINThB - cosThA*sinThA)
 dRy= C/H*(costhB**2 - cosThA**2)
 up= up + dU*t0(ns) - dT*u(ns)
 qxp= -k*(dSx*t0(ns)-dRx*u(ns)) ! q-x'
 qyp= -k*(dSy*t0(ns)-dRy*u(ns)) ! q-y'
 qx= qx + qxp*vn(1,ns) - qyp*vn(2,ns)
 qy= qy + qxp*vn(2,ns) + qyp*vn(1,ns)
 END DO &
 Segments5
 Up= Up - q/k*xS(2,np) ! superimpose solutions
 qy= qy + q
 WRITE(11,'(5(A,F10.3))') &
 'x=',xS(1,np),', y=',xS(2,np),', T=',up,', q-x=',qx,', q-
y=',qy
END DO &
Interior_points
STOP
END PROGRAM Direct_Method

INPUT DATA for program Direct_method

1.0 Problem specification

q,k, nseg, rq q Heat inflow
 k Thermal conductivity
 nseg Number of segments
 rq Radius of isolator

4.0 Interior point specification
Npoints Number of interior points

5.0 Interior point coordinates (Npoints cards)
x,y x,y coordinates of interior points

5.6.1 Sample input and output

Here we show the input file for the calculation of the problem in Figure 5.11, with 16
segments and interior points along a horizontal and vertical line and the output file
generated by Program 5.2.

BOUNDARY INTEGRAL EQUATIONS 123

File INPUT.DAT :
1.0 1.0 16 1.0
28
0. 1.
…
1. 0.
…
10. 0.

File OUTPUT.DAT:
Heat flow past a cylinder (direct BE method)
Input values:
Heat inflow/outflow= 1.00000
Thermal conductivity= 1.00000
Radius of Isolator= 1.00000
Number of segments= 16
Temperatures at segment centers:
 Segment 1 T= -2.026

 Segment 16 T= -1.872
Temperatures(T) and flow (q-x,q-y) at interior points:
x=0.000, y=1.000, T= -2.026, q-x= 0.000, q-y= 0.032
.....
x=10.000 y=0.000, T= 0.000, q-x= 0.000, q-y= 1.010

Figure 5.14 Error in the temperature at segment 1 for different no of elements (points)

Direct method, Plot of error %

0,000

1,000

2,000

3,000

4,000

5,000

6,000

8 16 24 32

Number of points

Er
ro

r %

124 The Boundary Element Method with Programming

Figure 5.15 Heat flow in vertical direction along horizontal line results for different meshes

Figure 5.16 Flow past a cylindrical isolator: contour lines of temperature

1

1,2

1,4

1,6

1,8

2

0 2 4 6 8 10

x coordinate

H
ea

t f
lo

w
 q

y 8 seg.
16 seg.
32 seg.
48 seg.

BOUNDARY INTEGRAL EQUATIONS 125

The error in the temperature at segment 1 versus the number of elements (collocation
points) is plotted in Figure 5.14. It can be seen that the error falls below 1% for 24
elements. A plot of the heat flow in vertical direction along a horizontal line depending
on the number of segments is shown in Figure 5.15. The theoretical value of qy should
approach the value of 2.0 exactly on the boundary. It can be seen that as we get very
near to the boundary the values are significantly in error and that this error depends on
the element size adjacent to the interior point. As we will see later, this is typical of the
boundary element method and will be more pronounced when numerical integration is
used. However with the higher order elements introduced next we will see that results
exactly on the boundary can be computed with an alternative method. Figure 5.16 and
5.17 finally show the graphical display of the results as it may be produced by a
postprocessor. Figure 5.16 shows the contours of the temperature distribution whereas in
Figure 5.17 the flow vectors are depicted by arrows whose magnitude depends on the
value of heat flow. It can be seen that the temperature contours align normal to the
boundary as they should and that the flow vectors approach zero values at the bottom
and the top of the circular isolator.

Figure 5.17 Flow past a cylindrical isolator: flow vectors

5.7 CONCLUSIONS

In this chapter we have introduced the Trefftz and boundary integral equation methods.
Although we found that the Trefftz method is not suitable for general purpose
programming it can be used to demonstrate the basic principles involved, because of its
simplicity. A short program can be written and used for numerical experiments. As the

126 The Boundary Element Method with Programming

original idea by Trefftz, conceived in the days before computers, was not found to be
suitable, improvements to the method were sought. This lead initially to the so called
indirect method, where sources were assumed to be distributed instead of concentrated at
a point. This allowed, with similar limiting procedures as shown in this chapter, the
placing of source points on the same contour as the boundary points, therefore
alleviating the need for two sets of points. We have not discussed this method here as it
has been largely superseded by the direct method, which avoids the computation of
fictitious sources/forces altogether.

Using the well known theorem of Betti, we developed boundary integral equations
relating tractions to displacements, or temperatures/potentials to normal gradients. We
found that using a limiting procedure, source points can be placed on the boundary to be
coincidental with the points where we satisfy given boundary conditions, thereby
rendering the method usable for general purpose programming. However, we find that
evaluating some boundary integrals causes difficulties, since the integrands tend to
infinity at certain points. Some of the integrals exist only in the sense of a principal
value. Indeed, the advanced mathematics involved, which may have prevented matching
the success of the FEM in the early days, stems from the difficulty in evaluating these
integrals. If simple elements, that is, line segments, such as the ones used here for
solving the 2-D heat flow problem are defined, where the known boundary condition
and the unknown are assumed to be constant, then the integration can be carried out
analytically. For 3-D elasticity triangular elements with constant variation have been
proposed, but the analytical evaluation of the integrals becomes rather involved.
However, even for the simple heat flow example, we find that these constant elements
are not very accurate and many elements are needed to model a smooth surface.

To the author’s best knowledge, it was Lachat and Watson4 who first thought of the
idea of introducing isoparametric boundary elements of the same type as the ones
already in use in the FEM at that time. These are commonly attributed to Ergatoudis5,
although the basic concept can be found in old mathematics books. The method,
previously known as the Boundary Integral Equation method, became the Boundary
Element Method (BEM). Analytical integration is no longer a feasible way of computing
the coefficients of the system of equations and we have to revert to numerical
integration. For engineers, who usually find no pleasure in writing pages of analytical
evaluation of integrals, this of course was a godsend. Using the Gauss integration
method introduced in Chapter 3, the evaluation of the integrals can now be reduced to
evaluating sums. However, because of the nature of the integrals we must be very
careful that the accuracy is adequate. In contrast to the FEM, where less may be better,
(i.e., the application of reduced integration for the evaluation of element stiffness) we
will find that the BEM is much less forgiving when it comes to the accuracy of the
integrals. The boundary element method using higher order isoparametric elements, is
the method used almost exclusively in modern general purpose computer programs. We
will therefore deal, in some depth, with the numerical implementation of the method in
the next chapter.

BOUNDARY INTEGRAL EQUATIONS 127

5.8 EXERCISES

Exercise 5.1
Use Program 5.1 (Trefftz method) to find out the influence of the following on the
accuracy of results of the heat flow example in Fig 5.1:
(a) when the distance between source points P and field points Q is reduced to ½ and ¼

of the value used in section 5.3.
(b) when the number of points P,Q is increased to twice and three times the value used

in section 5.

Exercise 5.2
Expand Program 5.1 (Trefftz method), so that in addition to temperatures flow vectors q
may be computed at interior points.

Exercise 5.3
Use program 5.2 (Direct_method), to compute the heat flow problem solved by the
Trefftz method. Investigate the influence of the number of segments on results by using
8, 16 and 32 segments. Plot the norm of the error to show convergence.

Exercise 5.4
Modify program 5.1, so that potential problems for general boundary shapes can be
analysed, by allowing points P and Q to be specified as input instead of being generated
automatically. Test the program by analysing the flow past an elliptical isolator.

Exercise 5.5
Modify program 5.2, so that potential problems for general boundary shapes can be
analysed, by allowing boundary segments and boundary conditions to be specified as
input. Test the program by analysing the flow past an elliptical isolator.

5.9 REFERENCES

1. Trefftz, E. (1926) Ein Gegenstück zum Ritzschen Verfahren. Proc. 2nd Int. Congress

in Applied Mechanics, Zürich, p.131.
2. Beer G. and Watson J.O. (1995) Introduction to Finite and Boundary Element

Methods for Engineers. J. Wiley.
3. Banerjee P.K. (1994) Boundary Element Methods in Engineering Science. McGraw

Hill.
4. Lachat, J.C. and Watson, J.O. (1976) Effective numerical treatment of boundary

integral equations. Int. J. Num. Meth. Eng.10: 991-1005.
5. Ergatoudis J.G., Irons B.M. and Zienkiewicz O.C. (1968) Curved, Isoparametric

'Quadilateral' Elements for Finite Element Analysis, Int. J. Solids & Struct. 4: 31-42.

6
Boundary Element Methods –
Numerical Implementation

There is nothing more powerful
than an idea whose time has come

V. Hugo

6.1 INTRODUCTION

In the previous chapter we derived boundary integral equations relating the known
boundary conditions to the unknowns. For practical problems, these integral equations
can only be solved numerically. The simplest numerical implementation is using line
elements, where the knowns and unknowns are assumed to be constant inside the
element. In this case, the integral equation can be written as the sum of integrals over
elements. The integrals over the elements can then be evaluated analytically. In the
previous chapter we have presented constant elements for the solution of two-
dimensional potential problems only. The analytical evaluation over elements would
become quite cumbersome for two- and three-dimensional elasticity problems. Constant
elements were used in the early days of the development, where the method was known
under the name Boundary Integral Equation (BIE) Method1. This is similar to the
development of the FEM, where triangular and tetrahedral elements, with exact
integration, were used in the early days. In 1968, Ergatoudis and Irons2 suggested that
isoparametric finite elements and numerical integration could be used to obtain better
results, with fewer elements. The concept of higher order elements and numerical
integration is very appealing to engineers because it alleviates the need for tedious
analytical integration and, more importantly, it allows the writing of general purpose
software with a choice of element types. Indeed, this concept will allow us to develop
one single program to solve two- and three-dimensional problems in elasticity and

130 The Boundary Element Method with Programming

potential flow, or any other problem for which we can supply a fundamental solution
(see Chapter 18).

The idea of using isoparametric concepts for boundary elements seems to have been
first introduced by Lachat and Watson3 and this prompted a change of name of the
method to Boundary Element Method. This chapter is about the numerical
implementation of isoparametric boundary elements, using the basic concepts that were
already discussed in detail in Chapter 3.

6.2 DISCRETISATION WITH ISOPARAMETRIC ELEMENTS

We consider the numerical solution of the boundary integral equations using
isoparametric elements where linear or quadratic functions are assumed for the variation
of the known and the unknown boundary values. Recalling from Chapter 3, we have for
a one-dimensional isoparametric element and for potential problems the following
interpolations

(6.1)

Consider the example in Figure 6.1, where the boundary of a two-dimensional
potential problem is divided into linear isoparametric elements.

Figure 6.1 Discretisation of two-dimensional problem into linear boundary elements

FluxtNt

Potential/eTemperaturuNu

GeometryN

e
nn

e
nn

e
nn xx

1

2

3
4

5

6

7

8

1
1u

1

2

3

45

6

7

8

2
1

1
2 uu

2
2u

NUMERICAL IMPLEMENTATION 131

Equations (6.1) are based on a local numbering as explained in Chapter 3. In order to
enforce continuity conditions, we also define a global numbering of the nodes. That is,
we define a global vector containing the potentials/temperatures at all nodes.

(6.2)

The relation between local and global numbering is known as the element
connectivity or incidences. For example, element 1 has connectivity vector {1,2}, which
means that the values of u for the two nodes of the element appear at the first and second
position in the global vector {u}. Although we usually wish to enforce continuity of u,
this is not necessary for t, the boundary flux, which may be discontinuous.

We now consider the numerical treatment of the integral equation.

(6.3)

Substituting equations (6.1) for t(Q) and u(Q) and splitting the integrals into a sum of

integrals over elements gives (leaving out the limiting value process, which we now
implicitly assume)

(6.4)

where E is the total number of elements and N is the number of nodes per element. The
process is generally known as discretisation of the integral equation. Since te

n and ue
n,

being nodal values are constant with respect to the integration, they can be taken out of
the integral and equation (6.4) can be rewritten

(6.5)

The integration has now been changed to a sum of integrations of Kernel shape
function products over elements. We will deal with this in detail later.

Theoretically, Betti's theorem should be valid for any location P and, therefore, we
can write equation (6.5) for an infinite number of points Pi . In practice, we select a
limited number of points only. Since for potential problems either t or u must be known

1

2

u
uu

SSSS

QdSQPTQuQdSQPUQtPcu ,,lim
0

E

e S

N

n

e
n

E

e S

N

n

e
n

e

n

e

n
dSPTuNdSPUtNPcu

1 11 1

,,

E

e S
n

N

n

e
E

e S
n

N

n

e

e

n

e

n
dSPTNudSPUNtPcu

1 11 1

,,

132 The Boundary Element Method with Programming

on the boundary, there will be as may unknowns as there are nodes. In the simplest
numerical method, also known as point collocation, we therefore obtain the necessary
integral equations by placing points Pi in turn at all the nodes of the mesh.

(6.6)

where I is the total number of nodes, which has to equal to the number of unknowns.
This would mean, however, that the theorem by Betti is only satisfied for certain

locations of P. In an alternative approach we seek to minimise the error in the
satisfaction of the Betti theorem. This approach is also known by the term weighted
residual methods, because weighting functions are used in the minimisation of the
residual error. In the most popular method, the Galerkin method, the interpolation
functions are used as weighting functions. The Galerkin method will not be discussed
here because it is more complicated and it is not clear if the additional complexity and
increased numerical work will result in a significant increase in accuracy4.

Equation (6.6) can be re-written as

(6.7)

where

(6.8)

where Se is the element length and is the intrinsic coordinate.
For elasticity problems, the integral equation which has to be discretised is given as

(6.9)

In discretised form this equation is written as

(6.10)

E

e S
in

N

n

e

E

e S
in

N

n

e
i

e

n

e

n

IidSPTNu

dSPUNtPcu

1 1

1 1

2,1,

,

I1,2itUuTPcu
E

e

N

n

ee
ni

E

e

N

n

ee
nii nn

....
1 11 1

ee S
in

e
ni

S
in

e
ni dSPTNTdSPUNU ,,,

0
lim , () , ()

S S S S

c P P Q Q dS Q P Q Q dS QIu U t u

1 1 1 1
n n

N NE E
e e e e

i ni ni
e n e n

Pcu T u U t

NUMERICAL IMPLEMENTATION 133

where, for two-dimensional problems

(6.11)

For three-dimensional problems

(6.12)

where Se is the element area and are the intrinsic coordinates.
Since there are two or three integral equations per location Pi, we now get 2I or 3I

equations depending on the Cartesian dimension. As we will see later in the section on
assembly, Equation (6.10) can be written in matrix form, where coefficients are
assembled in a similar way as in the FEM. For this it is convenient to store the
coefficients for element into arrays [U]e and [T]e. For potential problems we have for
example

(6.13)

The arrays are of size NxI, where N is the number of element nodes and I is the
number of collocation points. For elasticity problems, the arrays are of size 2Nx2I, for
two-dimensional problems and 3Nx3I, for three-dimensional problems. In the following
section we will deal with the numerical integration of Kernel shape function products
over elements.

6.3 INTEGRATION OF KERNEL SHAPE
FUNCTION PRODUCTS

The evaluation of integrals (6.8) or (6.12) over isoparametric elements is probably the
most crucial aspect of the numerical implementation of BEM and this is much more
involved than in the FEM. The problem lies in the fact that the functions which have to
be integrated exhibit singularities at certain points in the elements. Here we first discuss
the treatment of “improper” integrals that exist as Cauchy principal values and then
discuss the numerical treatment of the other integrals.

ee S
in

e
ni

S
in

e
ni dSPNdSPN ,,, TTUU

e

e

S
in

e
ni

S
in

e
ni

,dS,,P,N

,dS,,P,N

TT

UU

11 21

12 22

.e

elem nodes
U U

U U U coll pnts

134 The Boundary Element Method with Programming

6.3.1 Singular integrals

How an integral can be evaluated depends on the type of singularity. In general, we can
say that a weakly singular integral (functions of order lnr for 2-D and 1/r for 3-D
problems) can be evaluated using numerical integration, that is the Gauss Quadrature
discussed in Chapter 3. However, care has to be taken that an appropriate accuracy is
maintained, by choosing the number of integration points as a function of the closeness
of the collocation point to the region of integration. Theoretically the integrals of
functions which are strongly singular (functions of order 1/r for 2-D problems and 1/r2

for 3-D problems) are improper integrals and only exist as Cauchy principal values5.
However, we can show that for integration on a flat surface approaching the collocation
point the symmetric part of the kernel is zero and the anti-symmetric part
approaches on one side and on the other side of the point. If we assume a flat
integration region extending equal distances to the left and right of point Pi , the integral
of the anti-symmetric part also becomes zero.

Figure 6.2 Variation of Txy over a flat boundary

To explain this, consider a problem in 2-D elasticity with a flat surface at point Pi as
shown in Figure 6.2. For this problem the angle between vector r and n is 900 and
therefore cos is zero.

According to Equation (4.64)

(6.14)

22
3 ,

2
, , 3 , ,

2 cos 0

2 cos , ,

xx x

xy x y x y y x x y y x

CT C r
r

C CT r r C n r n r n r n r
r r

Pi

r

n

xyT

xyT

Q

NUMERICAL IMPLEMENTATION 135

From the distribution of the anti-symmetric part of Txy , shown in Figure 6.2 we can
see that given the restrictions stated above the integral of Txy will give zero value. As a
consequence, the diagonal coefficients only contain the “free term” c as computed in
Equation (5.24). One could devise a scheme whereby we assume a flat boundary very
near the collocation point, extending equally in both directions and use normal Gauss
integration over parts, which exclude this flat region, so that we do not have to worry
about computing the Cauchy principal value of the integral. However, the
implementation of this is not trivial and we still have to deal with the determination of
the “free term” which for corners and edges in a 3-D analysis, is also not trivial.

Two general approaches exist for the determination of the Cauchy principal value
integral. One is a mathematical approach, by Guiggiani and Casalini6, the other is based
on simple engineering considerations. Since the second is simpler to implement, it will
be the one used for the programs in this book.

6.3.2 Rigid body motion

The concept is based on the fact that we do not need to actually compute the integrals
because the coefficients may be determined from the fact that for a pure rigid body
translation of an elastic domain, there must be no change in shape of the body and
therefore, applied tractions must be zero. We note that strongly singular integrals arise
only for the T kernel and only if the collocation point Pi coincides with one of the
element nodes. Let us rewrite equation (6.10)

(6.15)

where g(n) stands for the global node number of a node with the local node number n,
therefore separating in the first sum all the terms that involve a strongly singular
integration. To generate a rigid body translation for a two-dimensional finite domain we
substitute ux=1 and uy=0 (translation in x-direction) and ux=0 and uy=1 (translation in y-
direction) for all nodes and set all tractions to zero. For a plane problem we now can
write 2 sets of equations

(6.16)

and

(6.17)

The equations can now be solved for the strongly singular terms including the free term.
For the first set of equations we get:

1 1 1 1 1 1
() ()

n n n

N N NE E E
e e e e e e

i ni ni ni
e n e n e n

g n i g n i

Pcu T u T u U t

1 1 1 1
() ()

1 1 1
0

0 0 0

N NE E
e e

i ni ni
e n e n

g n i g n i

Pc T T

1 1 1 1
() ()

0 0 0
0

1 1 1

N NE E
e e

i ni ni
e n e n

g n i g n i

Pc T T

136 The Boundary Element Method with Programming

(6.18)

The consequence of 6.18 is that the strongly singular terms, including the free term can
be determined by simply summing up all coefficients - except the terms to be evaluated -
of one equation and changing the sign of the sum. The advantage of this scheme is that
not only do we avoid the strongly singular integration, but we also get the free term at no
additional expense.

Figure 6.3 Rigid body translation in x-direction of a domain with radius R

For an infinite domain we cannot apply a rigid body translation. However, if we
consider a two-dimensional domain to be bounded by an auxiliary surface, i.e., a circle
of radius R (see Figure 6.3), where R is approaching infinity, then we may apply a rigid
body translation.

We must consider now - in addition to the integrals which extend over the boundary
of the problem S - also the ones over the boundary SR , the auxiliary surface , that is

(6.19)

1 1 1 1
() ()

1 1 1
0 0 0

N NE E
e e

i ni ni
e n e n

g n i g n i

Pc T T

1 1 1 1
() ()

1 1 1
((,))

0 0 0
R

N NE E
e e

i ni ni i
e n e n S

g n i g n i

P P Q dSc T T T

R

SR

S

n
Rd

1xu

NUMERICAL IMPLEMENTATION 137

The integral over SR is known as the azimuthal integral4. Substituting cos 1 and
, cosxr for two-dimensional elasticity problems, typical integrals are given by (see

Figure. 6.3)

(6.20)

and

(6.21)

The azimuthal integral of matrix T can therefore be written as

(6.22)

where I is a 2x2 unit matrix.

Figure 6.4 Rigid body mode for three-dimensional infinite domain problem

2
22

3
0

, 2cos 1 1
R

xx
S

CT P Q dS C Rd
R

IT
RS

dSQP,

01os2
2

0
3

2 RdsincoscossinCsinc
R

CdSQ,PT
RS

xy

y

R

Rd
Rd

x

z

138 The Boundary Element Method with Programming

We see that since R cancels out, the integral is valid for any radius of the circle,

including a radius of infinity, so the method of computing the strongly singular terms by
rigid body translation is also valid for infinite domains.

For three-dimensional elasticity problems, the infinite domain is assumed to be a
sphere of radius R. Typical values of the azimuthal integral are (see Figure 6.4):

(6.23)

and

(6.24)

so equation (6.22) is equally valid for three-dimensional problems, except that I is a 3x3
unit matrix.

Figure 6.5 Rigid body mode for semi-infinite domain problem

11cos3,
2

0

2

0

2
32

2 RdRdC
R
C

dSQPT
RS

xx

2

0

2

0
32

2 0cossinsincos1sinos3

,

RdRdCc
R
C

dSQPT
RS

xy

y

R

Rd

Rdx

z

NUMERICAL IMPLEMENTATION 139

For the case where the domain is semi-infinite, then the integration limits of the
integral are from 0 to and we have

(6.25)

(6.26)

For potential problems, we may consider a concept similar to the rigid body motion,
by assuming that for uniform temperature at all nodes of the boundary and no internal
heat generation, there can be no heat flow.

For a finite region we have

(6.27)

6.3.3 Numerical integration

It has already been mentioned that it is very important to maintain an adequate accuracy
of the numerical integration. If this is not done, then significant errors may be introduced
in the solution. In Chapter 3 we introduced the numerical integration by Gauss and
pointed out that in this method the function to be integrated is approximated by a
polynomial.

Here, we attempt to find an error bound for the integration of functions of type (1/r),
(1/r2) and (1/r3) - which are not polynomials - depending on the number of Gauss points.
Obviously, when point Pi is very close to the integration region, then the function varies
very rapidly and higher and higher order polynomials are needed to approximate the
function to be integrated and the number of required integration points has to increase.
The error estimate that is introduced next allows us to ensure that the error made by
numerical integration is nearly constant, regardless of the proximity of point Pi.

The Gauss integration formula in one dimension is (see Chapter 3)

(6.28)

where N is the number of integration points.
Stroud and Secrest8 provide a formula for the upper bound of error

(6.29)

IT 2
1,

RS

dSQP

f
N N

N

N 2

2

2 !22
42

n

N

n
n fWf

1

1

1

2
22

32
0 0

1, 3cos 1
2

R

xx
S

CT P Q dS C Rd Rd
R

1 1 1 1
() ()

N NE E
e e

i ni ni
e n e n

g n i g n i

c P T T

140 The Boundary Element Method with Programming

Considering the integration over an element of length L with point Pi located at a
distance R on the side (Figure 6.6), and taking f()=1/r we obtain

(6.30)

and for the integration error

(6.31)

Therefore the integration error is a function of the distance r from point Pi to the
integration region. Various schemes have been proposed 4,7 for determining the number
of Gauss points on the basis of equation (6.31).

Figure 6.6 Integration over one-dimensional element

 However, the actual functions to be integrated are more complicated than has been
assumed above, because they involve products of the fundamental solution with the
shape function and the Jacobian. In addition, it makes a difference if the Pi is located at
the edge of the element as shown in Figure 6.6, or if it is located on the side. Finally the
shape of the element (curved or straight) will also have an influence. For two-
dimensional problems the integrals to be evaluated can be simplified to

(6.32)

The idea is to determine the error in the integration as a function of the location of Pi
if we integrate with a large number of Gauss points first to determine the actual value of
the integral and then lower the number of Gauss points. If we do this for a large number
of possible locations of points Pi then we can obtain contours of error for a given number
of Gauss points. Figure 6.7 for example shows the contours of integration error 10-3 for a
curved iso-parametric element for different integrals and for 4 Gauss Points. The
contours can be interpreted in such a way that if point Pi lies on the contour then the
error is exactly 10-3, if it is outside it is less, if on the inside it is greater. It can be seen
that near the Gauss points Pi can be placed closer to the element. To devise a table for
the required number of Gauss points one may take an envelope that ensures that for all

122

2N

2

2

2
L!22

NNN

N

r
Nf

N24
4

r/L

Pi

r

L R

1

1

1() ()
()ni n iI N J d

r

NUMERICAL IMPLEMENTATION 141

points on or inside the envelope the accuracy of integration is assured. This has been
proposed by Eberwien et al 7.

Figure 6.7 Contours showing the location of points Pi where the integration with 4 Gauss points
gives an error of 10-3 (second subscript of I indicates that this is for a 1/r singularity)

Table 6.1 Number of Gauss points (Eberwien et al7)

The result is summarised in Table 6.1 as limiting values of R/L for an integration
order of 4 and 5. Experience showed that the minimum number of integration points
should not be lower than 3 and that it is more efficient to keep the maximum integration
order low. This means that we have to subdivide the region of integration, so that the
minimum ratios of R/L according to Table 6.1, are obeyed.

Cases where the point is very close to the element occur when there is a drastic
change in element size, or the boundary surfaces are very close to each other, for
example, in the case of a thin beam. Care has to be taken not to go to extremes with the
value of R/L, because we must avoid cases where points Pi are too unevenly distributed
since Betti’s reciprocal theorem is only satisfied at these points.

We convert Table 6.1 into a FUNCTION Ngaus which returns the number of Gauss
points according to the value of R/L.

142 The Boundary Element Method with Programming

INTEGER FUNCTION Ngaus(RonL,ne,RLIM)
!---
! Function returns number of Gauss points needed
! to integrate a function o(1/rne)
! according to Eberwien et al.
!--
REAL , INTENT(IN) :: RonL ! R/L
INTEGER , INTENT(IN) :: ne ! order of Kernel (1,2,3)
REAL, INTENT(OUT) :: Rlim(2) ! array to store values of
table
SELECT CASE(ne)
 CASE(1)
 Rlim= (/1.4025, 0.7926/)

 CASE(2)
 Rlim= (/4.1029, 1.6776/)

 CASE(3)
 Rlim= (/3.4170, 1.2908/)

 CASE DEFAULT
END SELECT
DO N=1,2 ! Determine minimum no of Gauss points needed
 IF(RonL >= Rlim(N)) THEN
 Ngaus= N+2
 EXIT
 END IF

END DO
IF(Ngaus == 0) THEN ! Point is too close to the surface

 Ngaus=5 ! this value will trigger subdivision
END IF
RETURN
END FUNCTION Ngaus

6.3.4 Numerical integration over one-dimensional elements

In the integration of Kernel-shape function products care has to be taken because in
some cases the function has a singularity or is discontinuous over the element depending
on the location of Pi. Therefore, we have to distinguish integration schemes for the case
where Pi is one of the element nodes and where it is not.
The integrals which have to be evaluated over the isoparametric element, shown in
Figure 6.8, are for potential problems

(6.33) dJ,PTNT,dJ,PUNU
1

1
in

e
ni

1

1
in

e
ni

NUMERICAL IMPLEMENTATION 143

where U(Pi,) and T(Pi,) are the fundamental solutions at Q() for a source at point Pi ,
J() is the Jacobian and Nn() are linear or quadratic shape functions.

When point Pi is not one of the element nodes, both integrals can be evaluated by
Gauss Quadrature and the integrals in equation (6.33) can be replaced by two sums

(6.34)

where the number of integration points M is determined as a function of the proximity of
Pi to the integration region as explained previously. If Pi is close to the integration region
a subdivision will be necessary.

Figure 6.8 One dimensional element, integration where Pi is not one of the element nodes

When Pi is one of the element nodes, functions U and T tend to infinity within the
integration region. Consider the two cases in Figure 6.9:

(a) Pi is located at point 1 and n in the equation (6.33) is 2:
 This means that although Kernels T and U tend to infinity as point 1 is approached,

the shape function tends to zero, so the integral of product Nn()U(Pi) and
Nn()T(Pi) tend to a finite value. Thus, for the case where Pi is not at node n of the
element, the integral can be evaluated with the formulae (6.34) without any
problems.

(b) Pi is located at point 2 and n in the equation (6.33) is 2:
 In this case, Kernels T and U tend to infinity and the shape function to unity and

products Nn()U(Pi) and Nn()T(Pi) also tend to infinity. Since Kernel U has a
singularity of order ln(1/r), the first product cannot be integrated using Gauss

R L Pi

1

3
2

m

M

1m
mmimn

e
ni

m

M

1m
mmimn

e
ni

WJ,PUNU

WJ,PTNT

144 The Boundary Element Method with Programming

Quadrature. The integral of the second product only exists as a Cauchy principal
value. However, these are the diagonal terms of the coefficient matrix that can be
evaluated using equation (6.18), (6.19) or (6.27).

Figure 6.9 Integration when Pi is one of the element nodes

For the integration of the product with ln(1/r), we can use a modified Gauss
Quadrature called Gauss-Laguerre8 integration

(6.35)

where M is the number of integration points.
The weights and coordinates are given by the Subroutine Gauss_Laguerre_coor, which

is listed at the end of this section. Note that for this integration scheme 0 at the
singular point and the limits are from 0 to 1, so a change in coordinates has to be made
before equation (6.35) can be applied.

This change in coordinate is given by (see Figure 6.10):

(6.36)

For the case where we integrate over a quadratic element, the integrand is discontinuous
if Pi is located at the midside node. The integration has to be split into two regions, one
over -1< <0, the other over 0< <1. For the computation of product Nn()U(Pi), the
intrinsic coordinates for the 2 sub-regions are computed by (see Figure 6.10):

(6.37)

)(fWd)ln()(f m

M

1m
m

1

0

1

2nodeatisPwhen21
1nodeatisPwhen12

i

i

L

Pi

1 3 2

N2
T,U

Pi

3 2

N2

T,U

L

1

(a) (b)

2subregionfor
1subregionfor

NUMERICAL IMPLEMENTATION 145

To evaluate the first integral in equation (6.8) we must substitute for r as a function of .
For a linear element we may simply write r= J and obtain

(6.38)

Figure 6.10 Integration when Pi and n coincide

The first integral may be evaluated with Gauss-Laguerre:

(6.39)

d
dWJ

k
N

d
d
dJ

k
NU

m

M

m
mmn

n
e
ni

1

1

0

2
1

1ln
2

1

Pi

3
2

N2

U

1

1
1

0
1

2
1

0

Pi

3

N1 U

1

0
1

1
1

2
1

0

2

Pi 1 3 2

N3

U

1
1

0
0

1
1

1

0
1 1

0 0

1 1ln
2

1 1 1 1ln ln
2 2

e
ni n

n n

dU N J d
k J d

d dN J d N J d
k k Jd d

146 The Boundary Element Method with Programming

whereas the second part is integrated with normal Gauss Quadrature. The Jacobian
can be easily obtained by differentiation of equations (6.36) and (6.37). The

second integral in (6.38) can be evaluated using normal Gauss Quadrature. For quadratic
elements, the substitution for r in terms of is more complicated. One may
approximately substitute r= a where a is the length of a straight line between the end
nodes of the element. This should give a small error for elements which are nearly
straight. A more accurate computation r as a function of is presented by Eberwien7.

A SUBROUTINE which provides the coordinates and weights for a Gauss Laguerre
integration is given below.

SUBROUTINE Gauss_Laguerre_coor(Cor,Wi,Intord)
!------------------------------------
! Returns Gauss_Laguerre coordinates and Weights
! for 1 to 4 Gauss points
!------------------------------------
IMPLICIT NONE
REAL, INTENT(OUT) :: Cor(8) ! Gauss point coordinate
REAL, INTENT(OUT) :: Wi(8) ! weigths
INTEGER,INTENT(IN) :: Intord ! integration order
SELECT CASE (Intord)
CASE (1)
 Cor(1)= 0.5 ; Wi(1) = 1.0
CASE(2)
 Cor(1)= .112008806 ; Cor(2)=.602276908
 Wi(1) = .718539319 ; Wi(2) =.281460680
CASE(3)
 Cor(1)= .063890793 ; Cor(2)= .368997063 ; Cor(3)= .766880303
 Wi(1) = .513404552 ; Wi(2) = .391980041 ; Wi(3) =.0946154065
CASE(4)
 Cor(1)= .0414484801 ; Cor(2)=.245274914 ; Cor(3)=.556165453
 Cor(4)= .848982394
 Wi(1) = .383464068 ; Wi(2) =.386875317 ; Wi(3) =.190435126
 Wi(4) = .0392254871
CASE DEFAULT
CALL Error_Message('Gauss points not in range 1-8')
END SELECT
END SUBROUTINE

6.3.5 Subdivision of region of integration

In some cases, when point Pi is near the element, the number of Gauss points required
will exceed 4 in table 6.1. In this case it is necessary to subdivide the element into sub
regions of integration. A simple approach is to subdivide the element into equal
subdivisions depending on the value of R/L. If according to the R/L value the maximum
number of Gauss points available is exceeded, the element is subdivided into K regions
where

NUMERICAL IMPLEMENTATION 147

(6.40)

 Where INT means a rounding up of the result and min/R L is the minimum value
of R/L for 4 Gauss points in table 6.1.

Figure 6.11 Subdivision of integration region

Note that for each sub region of integration the coordinates of the Gauss points have
to be defined in a local coordinate system , whereas the shape functions are functions
of . For one-dimensional boundary elements the Gauss formula (6.34) is replaced by

(6.41)

where K is the number of sub regions and M(k) is the number of Gauss points for sub
region k. The relationship between and is given by

(6.42)

where 1 and 2 are the start and end coordinates of the sub region. In the example
shown in 6.11 this is (0 , 1) for sub region 1 and (-1 , 0) for sub region 2. If a uniform
subdivision is assumed the Jacobian J for the transformation from to is for all
regions.

(6.43)

()

1 1
()

1 1

,

,

M kK
e

ni n m i m m m
k m

M kK
e
ni n m i m m m

k m

T N T P J J W

U N U P J J W

1 2
1 ()
2 K

1J
K

min/ /K INT R L R L

Pi

R

L
L/2

Subregion 1

L/2

Subregion 2

148 The Boundary Element Method with Programming

The proposed scheme is not very efficient since the sub regions will have different
minimum distances R to Pi and therefore should have different integration order also. A
more efficient method would be to provide more subdivisions near Pi and less further
away.

6.3.6 Implementation for plane problems

A SUBROUTINE Integ2P is shown below which integrates the Kernel/shape function
products over one-dimensional isoparametric elements for potential problems.

SUBROUTINE Integ2P (Elcor,Inci,Nodel,Ncol,xP,k,dUe,dTe)
!--
! Computes Element contributions[dT]e and [dU]e
! for 2-D potential problems
! by numerical integration
!---
IMPLICIT NONE
REAL, INTENT(IN):: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes
INTEGER , INTENT(IN):: Ncol ! Number of points Pi
REAL, INTENT(IN) :: xP(:,:) ! Array with coll. point coords.
REAL, INTENT(IN) :: k ! Permeability/Conductivity
REAL, INTENT(OUT) :: dUe(:,:),dTe(:,:)
REAL :: epsi= 1.0E-4 ! Small value for comparing coords
REAL ::Eleng,Rmin,RonL,Glcor(8),Wi(8),Ni(Nodel),Vnorm(2),GCcor(2)
REAL :: UP,Jac,dxr(2),TP,r,pi,c1,c2,xsi,eta,dxdxb
REAL :: RLIM(2),xsi1,xsi2,RJACB
INTEGER :: i,m,n,Mi,nr,ldim,cdim,nreg,ndiv,ndivs
pi=3.14159265
ldim= 1
cdim=ldim+1
CALL Elength(Eleng,Elcor,Nodel,ldim) ! Element Length
!--
! Integration off-diagonal coeff. -> normal Gauss Quadrature
!---

dUe= 0.0 ; dTe= 0.0 ! Clear arrays for summation
Colloc_points: &
DO i=1,Ncol

Rmin= Min_dist(Elcor,xP(:,i),Nodel,ldim,inci)! Distance to Pi
 RonL= Rmin/Eleng ! R/L
 Mi= Ngaus(RonL,1,RLIM)! Number of Gauss points for (1/r) sing.
 IF(Mi == 5) THEN ! check if subdivisions are required
 NDIVS= INT(RLIM(2)/RonL))+1
 RJACB= 1/NDIVS
 Mi=4
 ELSE
 NDIVS=1
 RJACB=1.0
 END IF

NUMERICAL IMPLEMENTATION 149

 Call Gauss_coor(Glcor,Wi,Mi) ! Assign coords/Weights
 Xsi1=-1
 Subregions: &
 DO NDIV=1,NDIVS
 IF(NDIVS > 1) THEN
 Xsi2= Xsi1+2/NDIVS
 Gauss_points: &
 DO m=1,Mi
 xsi= Glcor(m)
 IF(NDIVS > 1) Xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVS
 CALL Serendip_func(Ni,xsi,eta,ldim,Nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,Nodel,Inci,elcor)
 CALL Cartesian(GCcor,Ni,ldim,elcor) ! Coords of Gauss pt
 r= Dist(GCcor,xP(:,i),cdim) ! Dist. P,Q
 dxr= (GCcor-xP(:,i))/r ! rx/r , ry/r
 UP= U(r,k,cdim) ; TP= T(r,dxr,Vnorm,cdim) ! Kernels
 Node_points: &
 DO n=1,Nodel
 IF(Dist(Elcor(:,n),xP(:,i),cdim) < epsi) EXIT ! Pi is n
 dUe(i,n)= dUe(i,n) + Ni(n)*UP*Jac*Wi(m)*RJACB
 dTe(i,n)= dTe(i,n) + Ni(n)*TP*Jac*Wi(m)*RJACB
 END DO &
 Node_points
 END DO &
 Gauss_points
 END DO &
 Subregions
END DO &
Colloc_points
!------------------------------
! Diagonal terms of dUe
!------------------------------
c1= 1/(2.0*pi*k)
Colloc_points1: &
DO i=1,Ncol
 Node_points1: &
 DO n=1,Nodel
 IF(Dist(Elcor(:,n),xP(:,i),cdim) > Epsi) CYCLE ! Pi not n
 Nreg=1
 IF(n == 3) nreg= 2
!---
! Integration of logarithmic term
!--
 Subregions: &
 DO nr=1,Nreg
 Mi= 4
 Call Gauss_Laguerre_coor(Glcor,Wi,Mi)
 Gauss_points1: &
 DO m=1,Mi
 SELECT CASE (n)
 CASE (1)

150 The Boundary Element Method with Programming

 xsi= 2.0*Glcor(m)-1.0
 dxdxb= 2.0

 CASE (2)
 xsi= 1.0 -2.0*Glcor(m)
 dxdxb= 2.0

 CASE (3)
 dxdxb= 1.0
 IF(nr == 1) THEN
 xsi= -Glcor(m)

 ELSE
 xsi= Glcor(m)

 END IF
 CASE DEFAULT
 END SELECT
 CALL Serendip_func(Ni,xsi,eta,1,Nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,1,Nodel,Inci,elcor)
 dUe(i,n)= dUe(i,n) + Ni(n)*c1*Jac*dxdxb*Wi(m)

 END DO &
 Gauss_points1

 END DO &
 Subregions
!--
! Integration of non logarithmic term
!---
 Mi= 2
 Call Gauss_coor(Glcor,Wi,Mi) ! Assign coords/Weights
 Gauss_points2: &
 DO m=1,Mi
 SELECT CASE (n)
 CASE (1:2)
 c2=-LOG(Eleng)*c1
 CASE (3)

 c2=LOG(2/Eleng)*c1
 CASE DEFAULT
 END SELECT
 xsi= Glcor(m)
 CALL Serendip_func(Ni,xsi,eta,ldim,Nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 dUe(i,n)= dUe(i,n) + Ni(n)*c2*Jac*Wi(m)
 END DO &
 Gauss_points2
 END DO &
 Node_points1
END DO &
Colloc_points1
RETURN
END SUBROUTINE Integ2P

The above integration scheme is equally applicable to elasticity problems, except that

when integrating functions with Kernel U when Pi is one of the nodes of the element we

NUMERICAL IMPLEMENTATION 151

have to consider that only Uxx and Uyy have a logarithmic and non-logarithmic part. The
logarithmic part is integrated with Gauss-Laguerre, for example:

(6.44)

The non-logarithmic part is integrated using Gauss Quadrature.

Figure 6.12 Structure chart for SUBROUTINE Integ2E

A SUBROUTINE for integrating over one-dimensional elements for elasticity is

written. The main differences to the previous subroutine are that the Kernels U and T are

1

0

1

(1)(3 4) 1ln ,
4 1

(1)(3 4)
4 1

e
xxni n i

M

n m m m
m

dU N P J d
E d

dN J W
E d

Determine r,dsxr,Jacobian etc. for kernel computation

Determine distance of Pi to Element, R/L and No. of Gauss points

Colloc_Points: DO i=1,Number of points Pi

Gauss_Points: DO m=1,Number of Gauss points

Node_Points: DO n=1,Number of Element Nodes

Direction_P: DO j=1,2 (direction of force at P)

Direction_Q: DO k=1,2 (direction of U,T at Q)

Sum coefficients [U] and [T]

Zero coefficient arrays [U] and [T]

152 The Boundary Element Method with Programming

now 2x2 matrices and we have to add two more Do-loops for the direction of the load at
Pi and the direction of the displacement/traction at Q(. A structure chart of
SUBROUTINE Integ2E is shown in Figure 6.12, where for the sake of clarity, the
subdivision of the region of integration is not shown.

For the implementation of symmetry, as will be discussed in Chapter 7 two additional
parameters are used: ISYM and NDEST. The first parameter contains the symmetry
code, the second is an array that is used to eliminate variables which have zero value,
because they are situated on a symmetry plane.

Note that the storage of coefficients is by degree of freedom number rather than node
number. There are two columns per node and two rows per collocation point. The
storage of the element coefficients [U]e is as follows:

(6.45)

SUBROUTINE
Integ2E(Elcor,Inci,Nodel,Ncol,xP,E,ny,dUe,dTe,Ndest,Isym)
!--
! Computes [dT]e and [dU]e for 2-D elasticity problems
! by numerical integration
!---
IMPLICIT NONE
REAL, INTENT(IN) :: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(IN) :: Ndest(:,:) ! Node destination vector
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes
INTEGER , INTENT(IN):: Ncol ! Number of points Pi
INTEGER , INTENT(IN):: Isym
REAL, INTENT(IN) :: E,ny ! Elastic constants
REAL, INTENT(IN) :: xP(:,:) ! Coloc. Point coords
REAL(KIND=8), INTENT(OUT) :: dUe(:,:),dTe(:,:)
REAL :: epsi= 1.0E-4 ! Small value for comparing coords
REAL :: Eleng,Rmin,RonL,Glcor(8),Wi(8),Ni(Nodel),Vnorm(2),GCcor(2)
REAL :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r
&,dxdxb,Pi,C,C1,Rlim(2),Xsi1,Xsi2,RJacB
INTEGER :: i,j,k,m,n,Mi,nr,ldim,cdim,iD,nD,Nreg,NDIV,NDIVS,MAXDIVS
Pi=3.14159265359
C=(1.0+ny)/(4*Pi*E*(1.0-ny))
ldim= 1 ! Element dimension
cdim=ldim+1
MAXDIVS=1
CALL Elength(Eleng,Elcor,nodel,ldim) ! Element Length

dUe= 0.0 ; dTe= 0.0 ! Clear arrays for summation

pnts.coll
UUUU
UUUU
UUUU

U

nodeselement

xyxxxyxx

yyyxyyyx

xyxxxyxx

e

22221212

21211111

21211111

NUMERICAL IMPLEMENTATION 153

Colloc_points: DO i=1,Ncol
Rmin= Min_dist1(Elcor,xP(:,i),Nodel,inci,ELeng,Eleng,ldim)

RonL= Rmin/Eleng ! R/L
!---
! Integration off-diagonal coeff. -> normal Gauss Quadrature
!---

Mi= Ngaus(RonL,1,Rlim) ! Number of Gauss points for o(1/r)
NDIVS= 1
RJacB=1.0
IF(Mi == 5) THEN ! Determine number of subdiv. In
 IF(RonL > 0.0) NDIVS= INT(RLim(2)/RonL) + 1
 IF(NDIVS > MAXDIVS) MAXDIVS= NDIVS
 RJacB= 1.0/NDIVS
 Mi=4
END IF
Call Gauss_coor(Glcor,Wi,Mi) ! Assign coords/Weights
Xsi1=-1
Subdivisions: DO NDIV=1,NDIVS
 Xsi2= Xsi1 + 2.0/NDIVS
 Gauss_points: DO m=1,Mi
 xsi= Glcor(m)
 IF(NDIVS > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVS
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL Cartesian(GCcor,Ni,ldim,elcor) ! coords of Gauss pt
 r= Dist(GCcor,xP(:,i),cdim) ! Dist. P,Q
 dxr= (GCcor-xP(:,i))/r ! rx/r , ry/r
 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 Node_points: DO n=1,Nodel
 Direction_P: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j) ! line number in array
 END IF
 IF (id == 0) CYCLE
 Direction_Q: DO k= 1,2
 nD= 2*(n-1) + k ! column number in array
 IF(Dist(Elcor(:,n),xP(:,i),cdim) > epsi) THEN
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(j,k)*Jac*Wi(m)*RJacB
 dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(j,k)*Jac*Wi(m)*RJacB
 ELSE
 dUe(iD,nD)= dUe(iD,nD) + &
 Ni(n)*C*dxr(j)*dxr(k)*Jac*Wi(m)*RJacB
 END IF
 END DO Direction_Q
 END DO Direction_P
 END DO Node_points
 END DO Gauss_points
 Xsi1= Xsi2
 END DO Subdivisions

154 The Boundary Element Method with Programming

 END DO Colloc_points
!---
! Integration diagonal coeff.
!---
 C= C*(3.0-4.0*ny)
Colloc_points1: DO i=1,Ncol
 Node_points1: DO n=1,Nodel

 IF(Dist(Elcor(:,n),xP(:,i),cdim) > Epsi) CYCLE
 Nreg=1
 IF (n == 3) nreg= 2
 Subregions: DO nr=1,Nreg
 Mi= 4
 Call Gauss_Laguerre_coor(Glcor,Wi,Mi)
 Gauss_points1: DO m=1,Mi
 SELECT CASE (n)
 CASE (1)
 xsi= 2.0*Glcor(m)-1.0
 dxdxb= 2.0
 CASE (2)
 xsi= 1.0 -2.0*Glcor(m)
 dxdxb= 2.0
 CASE (3)
 dxdxb= 1.0
 IF(nr == 1) THEN
 xsi= -Glcor(m)
 ELSE
 xsi= Glcor(m)
 END IF
 CASE DEFAULT
 END SELECT
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 Direction1: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j) ! line number in array
 END IF
 IF (id == 0) CYCLE
 nD= 2*(n-1) + j ! column number in array
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*C*Jac*dxdxb*Wi(m)
 END DO Direction1
 END DO Gauss_points1
 END DO Subregions
 Mi= 2
 Call Gauss_coor(Glcor,Wi,Mi)
 Gauss_points2: DO m=1,Mi
 SELECT CASE (n)
 CASE (1)
 C1=-LOG(Eleng)*C
 CASE (2)

NUMERICAL IMPLEMENTATION 155

 C1=-LOG(Eleng)*C
 CASE (3)
 C1=LOG(2/Eleng)*C
 CASE DEFAULT
 END SELECT
 xsi= Glcor(m)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 Direction2: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j) ! line number in array
 END IF
 IF (id == 0) CYCLE
 nD= 2*(n-1) + j ! column number in array
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*C1*Jac*Wi(m)
 END DO Direction2
 END DO Gauss_points2
 END DO Node_points1
END DO Colloc_points1
RETURN
END SUBROUTINE Integ2E

6.3.7 Numerical integration for two-dimensional elements

Here we discuss numerical integration over two-dimensional isoparametric finite
boundary elements. We find that the basic principles are very similar to integration over
one-dimensional elements in that we separate the cases where Pi is not one of the nodes
of an element and where it is. Starting with potential problems, the integrals which have
to be evaluated (see Figure 6.13) are:

(6.46)

When Pi is not one of the element nodes, then the integrals can be evaluated using
Gauss Quadrature in the and direction. This gives

(6.47)

1 1

1 1

, , , ,

, , , ,

M K
e
ni n m k i m k m k m k

m k
M K

e
ni n m k i m k m k m k

m k

U N U P Q J W W

T N T P Q J W W

1 1

1 1
1 1

1 1

, , , ,

, , , ,

e
ni n i

e
ni n i

U N U P Q J d d

T N T P Q J d d

156 The Boundary Element Method with Programming

Figure 6.13 Two-dimensional isoparametric element

Figure 6.14 Sub-elements for numerical integration when Pi is a corner node of element

5

6

4 7

8

1
2

3

2

1

5

6

4 7

8

1
2

3

2

1

5

6

4 7

8

1
2

3

2

1
5

6

4 7

8

1
2

3

2

1

Pi Pi

Pi Pi

R

L

Pi

1

3

2
5

6 4

7

8 L

NUMERICAL IMPLEMENTATION 157

The number of integration points in direction M is determined from Table 6.1,
where L is taken as the size of the element in direction, L , and the number of points in

 direction K is determined by substituting for L the size of the element in direction
(L) in Figure 6.13.

When Pi is a node of the element but not node n, then Kernel U approaches infinity as
(1/r) but the shape function approaches zero, so product NnU may be determined using
Gauss Quadrature. Kernel T approaches infinity as o(1/r2) and cannot be integrated using
the above scheme. When Pi is node n of the element, then product NnU cannot be
evaluated with Gauss Quadrature. The integral of the product NnT only exists as a
Cauchy principal value but this can be evaluated using equations (6.17) and (6.18).

For the evaluation of the second integral in equation (6.46), when Pi is a node of the
element but not node n and for evaluating the first integral, when Pi is node n, we
propose to split up the element into triangular subelements, as shown in Figures 6.14 and
6.15. For each subelement we introduce a local coordinate system that is chosen in such
a way that the Jacobian of the transformation approaches zero at node Pi. Numerical
integration formulae are then applied over two or three subelements depending if Pi is a
corner or mid-side node.

Figure 6.15 Sub-elements for numerical integration when Pi is a mid-side node of element

4

1 2

5

3

6

7

8

Pi

1

3

2

4

1 2

5

3

6

7

8

Pi

2

3

1

4

1 2

5

3

6

7

8

Pi

1

3

2

4

1 2
5

3

6

7

8

Pi

2

3

1

158 The Boundary Element Method with Programming

Using this scheme, the first integral in equation (6.46) is re-written as

(6.48)

The equation for numerical evaluation of the integral using Gauss Quadrature is given
by

(6.49)

where ,J is the Jacobian of the transformation from , to
The transformation from local element coordinates to subelement coordinates is given

by

(6.50)

where l(n) is the local number of the nth subelement node and the shape functions are
given by

(6.51)

Tables 6.2 and 6.3 give the local node numbers l(n) in equation (6.50), depending on
the number of the subelement and the position of Pi .

Table 6.2 Local node number l(n) of subelement nodes, Pi at corner nodes

Subelement 1 Subelement 2 Pi at node
n= n= n= n= n= n=

1 2 3 1 3 4 1
2 3 4 2 4 1 2
3 1 2 3 4 1 3
4 1 2 4 2 3 4

The Jacobian matrix of the transformation (6.50) is given by

(6.52)

)n(l

3

1n
n)n(l

3

1n
n),(N,),(N

1 1 1
1 2 34 4 21 1 , 1 1 ; 1N N N

2(3)

() 1 1 1

, , , , ,
i

M K
e
ni n m k i m k m k m k m k

g n P s m k

U N U P Q J J W W

2(3) 1 1

() 1 1 1

,
, , , ,

,i

e
ni n i

g n P s

U N U P Q J d d

J

NUMERICAL IMPLEMENTATION 159

where

(6.53)

Table 6.3 Local node number l(n) of subelement nodes, Pi at mid-side nodes

Subelement 1 Subelement 2 Subelement 3 Pi at
node n= n= n= n= n= n= n= n= n=

5 4 1 5 2 3 5 3 4 5
6 1 2 6 3 4 6 4 1 6
7 4 1 7 2 3 7 1 2 7
8 1 2 8 3 4 8 2 3 8

The Jacobian is given by

(6.54)

The reader may verify that for 1 the Jacobian is zero. Without modification, the
integration scheme is applicable to elasticity problems. In equations (6.46) we simply
replace the scalars U and T with matrices U and T.

6.3.8 Subdivision of region of integration

As for the plane problems we need to implement a subdivision scheme for the
integration. In the simplest implementation we subdivide elements into sub regions as
shown in Figure 6.16. The number of sub regions N in and N in direction is
determined by

(6.55)

Equation 6.47 is replaced by

(6.56)

JdetJ

n
n

n
n

n

n

n
n

n
n

n

n

),(
N

,),(
N

),(
N

,),(
N

3

1

3

1

3

1

3

1

() ()

1 1 1 1

() ()

1 1 1 1

, , ,

, , ,

N N M l K j
e
ni n m k i m k m k

l j m k

N N M l K j
e
ni n m k i m k m k

l j m k

U N U P Q J J W W

U N T P Q J J W W

min min[/ /] ; [/ /]N INT R L R L N INT R L R L

160 The Boundary Element Method with Programming

where M(l) and K(j) are the number of Gauss points in and direction for the sub
region.

Figure 6.16 Subdivision of two-dimensional element

The relationship between global and local coordinates is defined as

(6.57)

where 1 2 1 2, and , define the sub-region. The Jacobian is given by

(6.58)

6.3.9 Infinite elements

Since the integration over infinite elements is carried out in the (finite) local coordinate
space no special integration scheme need to be introduced for infinite “decay” elements.
However, special consideration has to be given to infinite “plane strain” elements9 . This
is explained on an example of an infinitely long cavity (tunnel) in Figure 6.17. For a
“plane strain” element there is no change of the value of the variable in the infinite
direction and Equation 6.12 becomes.

(6.59)

Pi

R

Subregion 2

Subregion 1

L

L
Subregion 3

Subregion 4

1 2

1 2

1 ()
2

1 ()
2

N

N

1J
N N

1 1 1 1

1 1 1 1

, , , ; , , ,e e
i i i iP J d d P J d dU U T T

NUMERICAL IMPLEMENTATION 161

For a two-dimensional element the sides of the element going to infinity must be
parallel, so J is o(r2). (,)iP QT is o(1/ r2) so the product (,)iP Q JT is o(1) and may be
integrated using Gauss Quadrature. However, (,)iP QU is o(1/r), the product

(,)iP Q JU is o(r) and therefore the integral, with going to infinity, does not exist.
However we may replace the integral

(6.60)

with

(6.61)

where Q is a point dropped from Q to a “plane strain” axis, as shown in Figure 6.17.

Figure 6.17 A cavity (tunnel) with the definition of the “plane strain” axis

Replacement of 6.60 with 6.61 has no effect on the satisfaction of the integral equation
because tractions must integrate to zero around the cavity.

6.3.10 Implementation for three-dimensional problems

A sub-program, which calculates the element coefficient arrays [U]e and []e for
potential problems, or [U]e and []e for elasticity problems, can be written based on
the theory discussed. The diagonal coefficients of []e cannot be computed by
integration over elements of Kernel-shape function products. As has already been
discussed in section 6.3.2, these can be computed from the consideration of rigid body
modes. The implementation will be discussed in the next chapter. In Subroutine Integ3
we distinguish between elasticity and potential problems by the input variable Ndof

1 1

1 1

(, (,))e
i iP Q J d dU U

1 1

1 1

((,) (,))e
i i iP Q P Q J d dU U U

Plane strain axis

Q

Q

162 The Boundary Element Method with Programming

(number of degrees of freedom per node), which is set to 1 for potential problems and to
3 for elasticity problems.

Figure 6.18 Structure chart for computation of [T] and if [U] if Pi is one of the element nodes

Subroutine INTEG3 is divided into two parts. The first part deals with integration
when Pi is not one of the nodes of the element over which the integration is made. Gauss
integration in two directions is used here. The integration of e

niT and e
niU is carried

out concurrently. It should actually be treated separately, because the functions to be
integrated have different degrees of singularity and, therefore, require a different number

Colloc_Points: DO i=1,Number of points Pi

Determine distance of Pi to Sub-lement and No. of
Gauss points in and Direction

Gauss Points eta: DO k=1,Number of Gauss in direction

Determine r,dsxr,Jacobian etc. for kernel computation

Node_Points: DO n=1,Number of Element Nodes

Direction_P: DO j=1,2 (direction of force P)

Direction_Q: DO k=1,2 (direction of U,T at Q).

Sum coefficients [U]
 IF (n /= Pi) sum [T]

Zero coefficient arrays [U] and [T], Determine L and L

Traingles: DO i=1,Number of triangles

Determine number of triangular sub-elements needed

Gauss Points xsi: DO m=1,Number of Gauss in direction

Determine row number for storage

Determine column number for storage

NUMERICAL IMPLEMENTATION 163

of Gauss points. For simplicity, both are integrated using the number of Gauss points
required for the higher order singularity. Indeed, the subroutine presented has not been
programmed very efficiently but, for the purpose of this book, simplicity was the
paramount factor. Additional improvements in efficiency can, for example, be made by
carefully examining if the operations in the DO loops actually depend on the DO loop
variable. If they do not, then that operation should be taken outside of the corresponding
DO loop. Substantial savings can be made here for a program that involves up to seven
implied DO loops and which has to be executed for all boundary elements.

The second part of the SUBROUTINE deals with the case where Pi is one of the
nodes of the element which we integrate over. To deal with the singularity of the
integrand the element has to be subdivided into 2 or 3 triangles, as explained previously.
Since there are a lot of implied DO loops involved, we show a structure chart of this part
of the program in Figure 6.18.

A subdivision of the integration region has been implemented, but in order to improve
clarity of the structure chart is not shown there. The subdivision of integration involves
two more DO loops.

SUBROUTINE
Integ3(Elcor,Inci,Nodel,Ncol,xPi,Ndof,E,ny,ko,dUe,dTe,Ndest,Isym)
!--
! Computes [dT]e and [dU]e for 3-D problems
!---
IMPLICIT NONE
REAL, INTENT(IN) :: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(IN) :: Ndest(:,:) ! Node destination vector
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes
INTEGER , INTENT(IN):: Ncol ! Number of points Pi
REAL , INTENT(IN) :: xPi(:,:) ! coll. points coords.
INTEGER , INTENT(IN):: Ndof ! Number DoF /node (1 or 3)
INTEGER , INTENT(IN):: Isym
REAL , INTENT(IN) :: E,ny ! Elastic constants
REAL , INTENT(IN) :: ko
REAL(KIND=8) , INTENT(OUT) :: dUe(:,:),dTe(:,:)
REAL :: Elengx,Elenge,Rmin,RLx,RLe,Glcorx(8),Wix(8),Glcore(8)&
,Wie(8),Weit,r
REAL :: Ni(Nodel),Vnorm(3),GCcor(3),dxr(3),Jac,Jacb,xsi,eta,xsib&
,etab,Rlim(2)
REAL :: Xsi1,Xsi2,Eta1,Eta2,RJacB,RonL
REAL :: UP(Ndof,Ndof),TP(Ndof,Ndof) ! for storing kernels
INTEGER :: i,m,n,k,ii,jj,ntr,Mi,Ki,id,nd,lnod,Ntri,NDIVX&
,NDIVSX,NDIVE,NDIVSE,MAXDIVS
INTEGER :: ldim= 2 ! Element dimension
INTEGER :: Cdim= 3 ! Cartesian dimension
ELengx=&
Dist((Elcor(:,3)+Elcor(:,2))/2.,(Elcor(:,4)+Elcor(:,1))/2.,Cdim)
ELenge=&
Dist((Elcor(:,2)+Elcor(:,1))/2.,(Elcor(:,3)+Elcor(:,4))/2.,Cdim)
dUe= 0.0 ; dTe= 0.0 ! Clear arrays for summation

164 The Boundary Element Method with Programming

!---
! Part 1 : Pi is not one of the element nodes
!---
Colloc_points: DO i=1,Ncol
 IF(.NOT. ALL(Inci /= i)) CYCLE ! Check if inci contains i
 Rmin= Min_dist1(Elcor,xPi(:,i),Nodel,inci,ELengx,Elenge,ldim)
 Mi= Ngaus(Rmin/Elengx,2,Rlim) ! Number of G.P. in xsi dir.
 RonL= Rmin/Elengx
 NDIVSX= 1 ; NDIVSE= 1
 RJacB=1.0
 IF(Mi == 5) THEN ! Subdivision in required

IF(RonL > 0.0) NDIVSX= INT(RLim(2)/RonL) + 1
Mi=4

 END IF
 Call Gauss_coor(Glcorx,Wix,Mi)
 Ki= Ngaus(Rmin/Elenge,2,Rlim)
 RonL= Rmin/Elenge
 IF(Ki == 5) THEN ! Subdivision in required

IF(RonL > 0.0) NDIVSE= INT(RLim(2)/RonL) + 1
Ki=4

 END IF
 IF(NDIVSX > 1 .OR. NDIVSE>1) RJacB= 1.0/(NDIVSX*NDIVSE)
 Call Gauss_coor(Glcore,Wie,Ki)
 Xsi1=-1.0

Subdivisions_xsi: DO NDIVX=1,NDIVSX
 Xsi2= Xsi1 + 2.0/NDIVSX
 Eta1=-1.0
 Subdivisions_eta: DO NDIVE=1,NDIVSE
 Eta2= Eta1 + 2.0/NDIVSE
 Gauss_points_xsi: DO m=1,Mi
 xsi= Glcorx(m)
 IF(NDIVSX > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVSX
 Gauss_points_eta: DO k=1,Ki
 eta= Glcore(k)
 IF(NDIVSE > 1) eta= 0.5*(Eta1+Eta2)+eta/NDIVSE
 Weit= Wix(m)*Wie(k)*RJacB
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xPi(:,i),Cdim) ! Dist. P,Q
 dxr= (GCcor-xPi(:,i))/r ! rx/r , ry/r
 IF(Ndof .EQ. 1) THEN
 UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim) ! Pot. problem
 ELSE
 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 END IF
 Direction_P: DO ii=1,Ndof
 IF(Isym == 0)THEN
 iD= Ndof*(i-1) + ii ! line number in array
 ELSE
 iD= Ndest(i,ii) ! line number in array

NUMERICAL IMPLEMENTATION 165

 END IF
 IF (id == 0) CYCLE
 Direction_Q: DO jj=1,Ndof
 Node_points: DO n=1,Nodel
 nD= Ndof*(n-1) + jj ! column number in array
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(ii,jj)*Jac*Weit
 dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(ii,jj)*Jac*Weit
 END DO Node_points
 END DO Direction_Q
 END DO Direction_P
 END DO Gauss_points_eta
 END DO Gauss_points_xsi
 Eta1= Eta2
 END DO Subdivisions_eta
 Xsi1= Xsi2
 END DO Subdivisions_xsi
 END DO Colloc_points

!---
! Part 1 : Pi is one of the element nodes
!---
Colloc_points1: DO i=1,Ncol
 lnod= 0
 DO n= 1,Nodel ! Determine which local node is Pi

IF(Inci(n) .EQ. i) THEN
 lnod=n
END IF

 END DO
 IF(lnod .EQ. 0) CYCLE ! None -> next Pi
 Ntri= 2
 IF(lnod > 4) Ntri=3 ! Number of triangles
 Triangles: DO ntr=1,Ntri

CALL Tri_RL(RLx,RLe,Elengx,Elenge,lnod,ntr)
Mi= Ngaus(RLx,2,Rlim)
IF(Mi == 5) Mi=4 ! Triangles are not sub-divided
Call Gauss_coor(Glcorx,Wix,Mi)
Ki= Ngaus(RLe,2,Rlim)
IF(Ki == 5) Ki=4
Call Gauss_coor(Glcore,Wie,Ki)
Gauss_points_xsi1: DO m=1,Mi
 xsib= Glcorx(m)
 Gauss_points_eta1: DO k=1,Ki
 etab= Glcore(k)
 Weit= Wix(m)*Wie(k)
 CALL Trans_Tri(ntr,lnod,xsib,etab,xsi,eta,Jacb)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 Jac= Jac*Jacb
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xPi(:,i),Cdim)
 dxr= (GCcor-xPi(:,i))/r
 IF(Ndof .EQ. 1) THEN

166 The Boundary Element Method with Programming

 UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim) ! Potential
 ELSE
 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 END IF
 Direction_P1: DO ii=1,Ndof
 IF(Isym == 0)THEN
 iD= Ndof*(i-1) + ii ! line number in array
 ELSE
 iD= Ndest(i,ii) ! line number in array
 END IF
 IF (id == 0) CYCLE
 Direction_Q1: DO jj=1,Ndof
 Node_points1: DO n=1,Nodel
 nD= Ndof*(n-1) + jj ! column number in array
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(ii,jj)*Jac*Weit
 IF(Inci(n) /= i) THEN ! diagonal elements of dTe
 dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(ii,jj)*Jac*Weit
 END IF
 END DO Node_points1
 END DO Direction_Q1
 END DO Direction_P1
 END DO Gauss_points_eta1
 END DO Gauss_points_xsi1

 END DO Triangles
END DO Colloc_points1
RETURN
END SUBROUTINE Integ3

6.4 CONCLUSIONS

In this chapter we have discussed in some detail, numerical methods which can be used
to perform the integration of Kernel-shape function products over boundary elements.
Because of the nature of these functions, special integration schemes had to be devised,
so that the precision of integration is similar for all locations of Pi relative to the
boundary element over which the integration is carried out. If this is not taken into
consideration, results obtained from a BEM analysis will be in error and, in extreme
cases, meaningless.

The number of integration points which has to be used to obtain a given precision of
integration is not easy to determine. Whereas error estimates have been worked out by
several researchers based on mathematical theory, so far they are only applicable to
regular meshes and not to isoparametric elements of arbitrary curved shape. The scheme
proposed here for working out the number of integration points has been developed on a
semi-empirical basis, but has been found to work well.

We have now developed a library of subroutines which we will need for the writing
of a general purpose computer program. All that is needed is the assembly of coefficient
matrices from element contributions, to specify the boundary conditions and to solve the
system of equations.

NUMERICAL IMPLEMENTATION 167

6.5 EXERCISES

Exercise 6.1
Check the accuracy of integration, using Subroutine Integ2P for a one-dimensional
boundary element by performing the numerical integration of

(6.62)

(where U and T are the Kernels for potential problems) for a straight line element with
linear shape function located parallel to the x-axis of length 2 for n=1, with two different
locations of Pi (shown in Figure 6.19):
(a) along the element
(b) perpendicular to the centre of the element
Do this for values of R/L= 0.5, 0.1 , 0.05 and compare with the analytical solution using
aprogram such as MATHEMATICA.
Modify Subroutine Integ2P to disable the subdivision of the region of integration and
compare the results with the analytical solution

Figure 6.19 2-D problem for checking accuracy of numerical integration

Exercise 6.2
Check the integration schemes proposed for two-dimensional boundary elements using
Subroutine INTEG3 by performing the integration of equations

(6.63)

for a square element with linear shape function of size 2x2, as shown in Figure 6.20 for
n=1 with two different locations of Pi:
(c) In the same plane as the element
(d) perpendicular to the centre of the element
for values of R/L= 0.5, 0.1 , 0.05. Compare with the analytical solution using
MATHEMATICA or similar.

iP

iP x

1 1

R
R

L

ee S
in

e
ni

S
in

e
ni dSPTNTdSPUNU ,,,

, , ,

, , ,

e

e

e
ni n i

S

e
ni n i

S

U N U P Q dS

T N T P Q dS

168 The Boundary Element Method with Programming

Figure 6.20 3-D problem for checking the accuracy of numerical integration

6.6 REFERENCES

1. Deist, F.H. and Georgiadis, E. (1973) A computer system for three-dimensional stress

analysis in elastic media. Rock Mechanics 5: 189-202.
2. Ergatoudis, J.G.,Irons, B.M.and Zienkiewicz O.C. (1968) Three dimensional analysis

of arch dams and their foundations. Proc. Symp. Arch Dams. Inst. Civ. Eng.
3. Lachat, J.C. and Watson, J.O. (1976) Effective numerical treatment of boundary

integral equations. Int. J. Num. Meth. Eng.10: 991-1005.
4. Beer G. and Watson J.O. (1991) Introduction to Finite and Boundary Element

Methods for Engineers. J.Wiley.
5. Kreyszig E. (1999) Advanced Engineering Mathematics. J.Wiley.
6. Guigiani M and Casalini P.(1987) Direct computation of Cauchy principal value

integrals in advanced boundary elements. Int. J. Num. Meth. Eng.24:1711-1720.
7. Eberwien U., Duenser C., Moser W. (2005) Efficient calculation of internal results in

2D elasticity BEM. Engineering Analysis with Boundary Elements 29: 447-453.
8. Stroud, A.H. and Secrest, D. (1966) Gaussian Quadrature Formulas. Prentice-Hall,

Englewood Cliffs.
9. Beer G and Watson J.O. (1989) Infinite Boundary Elements. Int. J. Num. Meth. Eng.

28: 1233-1247.

x

yz

2

2

iP

iP

R

7
Assembly and Solution

Intellektuelle Erkenntnisse sind papier
(Intellectual findings are just paper)

H. Hesse

7.1 INTRODUCTION

The previous chapter, dealing with the numerical integration of Kernel-Shape function
products, addressed probably the most important aspect of the boundary element
method. We note that this is much more involved than the integration used in the FEM
for determining the element stiffness matrix.

In the current chapter we will find that subsequent steps in solving the integral
equations are fairly straightforward and similar to the FEM, especially with respect to
the assembly of element contributions into the global coefficient matrix. In this book we
will discuss two approaches: one where we first assemble the coefficient matrices and
then solve for the boundary unknowns and another where the assembly and solution are
intermixed. The analogy to this in the FEM is the direct solution and the Element by
Element solution using iterative solvers1. We will see that the iterative solution approach
is very suitable to parallel processing. The assembly and direct solution is discussed in
this chapter and the iterative solution strategy in the subsequent chapter, where also
aspects of parallelisation will be discussed.

The system of equations will be different to the FEM, as we have to deal with non-
symmetric and fully populated coefficient matrices. The fact that the equation system is
fully populated has been claimed to be one of the main drawbacks of the method.
However, because the system of equations obtained is always significantly smaller, it
more than compensates for this and, as we will see later, computation times required for

170 The Boundary Element Method with Programming

the solution are usually much lower than the FEM. We will also see in chapter 11, that if
we introduce the concept of multiple boundary element regions sparsity is introduced to
the system of equations.

At the end of this chapter we will have all the procedures necessary for a general
purpose program, which can solve steady state problems in potential flow and elasticity.
The program, however, will only give us values of the unknown at the boundary. As
already pointed out, a special feature of the BEM is that results at any point inside the
domain can be computed with greater accuracy as a postprocessing exercise. This topic
will be dealt with in Chapter 9.

7.2 ASSEMBLY OF SYSTEM OF EQUATIONS

We start with potential problems. In the previous section we discussed the computation
of element contributions to equation (6.7), that is

(7.1)

We recall the notation used

(7.2)

For the solution of the system of equations it is convenient to replace the double sums
by a matrix multiplication of the type

(7.3)

where vectors {u}, {t} contain potential/temperature and fluxes respectively for all
nodes in global numbering system

(7.4)

 and [T], [U] are global coefficient matrices assembled by gathering element
contributions. In the global coefficient arrays, rows correspond to collocation points Pi
and columns to the global node number. The gathering process is very similar to the
assembly process in the FEM, except that whole columns are added. For the gathering
process we need the Connectivity or Incidences of element e, which refer to the global
node numbers of the element.

Referring to the simple 2-D mesh with linear elements in Figure 7.1 the incidences of
are given in Table 7.1.

E

1e

N

1n

ee
ni

E

1e

N

1n

ee
nii nn

tUuTPcu

tUuT

NumberNode

intponCollocatioT

numberElement

e
in

T
1 2, ,u u u

ASSEMBLY AND SOLUTION 171

Table 7.1 Connectivity (Incidences)

Element Node 1 Node 2
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 7
7 7 1

Figure 7.1 2-D BE mesh for explaining assembly (potential problems)

For example, to assemble the contributions of element 3 with connectivity (/3,4/),
columns of the coefficient matrix [T]3 are added to the global matrix [T]

(7.5)
iP

TT
TT
TT
TT
TT
TT
TT

T

numbersNode

7
6
5
4
3
2
1

76521

3
27

3
17

3
26

3
16

3
25

3
15

3
24

3
14

3
23

3
13

3
22

3
12

3
21

3
11

43

1 2

3

4

7

6
5

 1

 2

 3

 4

 5

 6

7

 3

3

4

172 The Boundary Element Method with Programming

For elasticity problems there is more than one unknown per node, so columns are
numbered according to the degree of freedom, rather than node number. For two-
dimensional elasticity problems, each node has two degrees of freedom and the
incidences of element 3 are expanded to destinations shown in table 7.2.

Table 7.2 Destinations

Node 1 Node 2 Element

x y x y
1 1 2 3 4
2 3 4 5 6
3 5 6 7 8
4 7 8 9 10
5 9 10 11 12
6 11 12 13 14
7 13 14 1 2

For element 3 the destination vector is (/5,6,7,8/) and the assembly is

(7.6)

Note that destination numbers are now used for numbering the columns.
Coming back to potential problems and assuming that, as in the introductory example

solved with the Trefftz method, the flux t is known on all boundary nodes and solution u
is required, we assemble the left hand side, perform the matrix multiplication on the
right and solve the system of equations. Alternatively, multiplication [U]{t} can be
made element by element at the assembly level, without explicitly creating the matrix
[U], therefore saving on storage space. This would also allow us to consider
discontinuous distribution of normal gradients or tractions. For the simple example in
Figure 7.1, equation (7.1) can be replaced by

(7.7) FuT

3
22

3
22

3
12

3
12

3
22

3
22

3
12

3
12

3
21

3
21

3
11

3
11

3
21

3
21

3
11

3
11

87654321

yyxyyyxy

yxxxyxxx

yyxyyyxy

yxxxyxxx

TTTT
TTTT
TTTT
TTTT

NumbersnDestinatio

T

ASSEMBLY AND SOLUTION 173

where the coefficients of the right hand side vector {F} are given by

(7.8)

Figure 7.2 2-D mesh for explaining assembly (2-D elasticity problems)

Often, however, we have a mixed boundary value problem where u is prescribed on
some portion of the boundary and t on the other. We must therefore exchange columns
so that coefficients which multiply with unknowns are on the left hand side and
coefficients which multiply with known values are on the right. We consider the simple
example in Figure 7.3, where temperatures u are prescribed along element 4 and flow
values are prescribed on elements 1,2 and 3. Note that since the outward normals are
different at the corner nodes, the flow values are discontinuous there, i.e., different for
the element left and right of the node. However, there can only be one temperature value
at a node.

Writing equations (7.1) in longhand we obtain:

(7.9)

7

1e

N

1n

ee
nii n

tUF

4
2

4
2

4
1

4
1

3
2

3
2

3
1

3
1

2
2

2
2

2
1

2
1

1
2

1
2

1
1

1
1

4
2

4
2

4
1

4
1

3
2

3
2

3
1

3
1

2
2

2
2

2
1

2
1

1
2

1
2

11
1 1

tUtUtUtUtUtUtUtU

uTuT

uTuTuTuTuTuTPcu

iiiiiiii

ii

iiiiiii

1,2 3,4

5,6

7,8

13,14

11,12
9,10

 1

 2

 3

 4

 5

 6

7

 3

5,6

7,8

174 The Boundary Element Method with Programming

The assembly procedure has to be modified, so that we put all known values on the
right hand side and all unknown ones on the left side of the equation.

Known values are

(7.10)

Unknown values are

(7.11)

Figure 7.3 Example of two-dimensional potential problem with mixed boundary conditions

After placing unknown values on the left and known values on the right, equation
(7.9) is written as

(7.12)

41

3
2

3
1

2
2

2
1

1
2

1
1

u;u
t;t;t;t;t;t

4
2

4
1

3
3
1

2
22

2
1

1
2

t;t

uuu;uuu

4
4

21
4

1

3
2

3
2

3
1

3
1

2
2

2
2

2
1

2
1

1
2

1
2

11
1

4
2

4
2

4
1

4
1

3
3

1
2

22
2

1
1
2

1

uTuT

tUtUtUtUtUtU

tUtU

u)TT(u)TT(Pcu

ii

iiiiii

ii

iiiii

Dirichlet
BC
u known

Neuman BC
t known

Neuman BC
t known

1 2

3 4

1

3
4 2

Neuman BC
t known

1 2

2

1

1 2 1

2

1 ... global node no.
1 ... local (element) node no.

1 ... element no.

ASSEMBLY AND SOLUTION 175

In equation (7.12) the global numbering for the nodes has been implemented. This
equation can now be written for source points Pi located at nodes 1,2,3,4 as a matrix
equation (7.13). The diagonal elements involving T are highlighted by brackets. As
explained in 6.3.1., we compute and assemble these diagonal coefficients by considering
“rigid body modes”.

(7.13)

The coefficients Fi of the right hand side vector {F} is computed as

(7.14)

For problems in elasticity, the assembly process for mixed boundary value problems
is similar but, since the assembly is by degrees of freedom rather than node numbers,
boundary conditions will also depend on the direction. An example of this is given in
Figure 7.4.

Figure 7.4 Example of discontinuous boundary condition in elasticity: fixed beam

To summarise the assembly process we note that element contributions are assembled
into the global matrix by gathering the coefficients according to incidences or
destinations (in the case of elasticity problems). Depending on the boundary codes
defined at a particular node, the coefficients e

niT and e
niU are assembled either into the

left or right hand side. So the information that is needed for the assembly is the
Connectivity or Destination vector and the boundary code for each element. Note that
the boundary code is defined locally for each element and can have two values at a
particular node.

4
4

21
4

1

3
2

3
2

3
1

3
1

2
2

2
2

2
1

2
1

1
2

1
2

11
1 1

uTuT

tUtUtUtUtUtUF

ii

iiiiiii

F

t

u

u

t

UTTTTU

UTTTTU

UTTTTU

UTTTTU

4
2

3

2

4
1

4
24

3
14

2
24

2
14

1
24

4
14

4
23

3
13

2
23

2
13

1
23

4
13

4
22

3
12

2
22

2
12

1
22

4
12

4
21

3
11

2
21

2
11

1
21

4
11

4321

1 2

3 4

tx = ty= 0

tx = ty= 0

tx = 0 , ty

ux=uy= 0

ux= 0

176 The Boundary Element Method with Programming

7.2.1 Symmetry

In many cases it is possible to take into account the symmetry of a problem and thereby
considerably reduce the amount of analysis effort. In the FEM such conditions are
simply implemented by generating only part of the mesh and providing the appropriate
boundary conditions at the plane(s) of symmetry. In the BEM we can take a different
approach, alleviating the need to have boundary elements on the symmetry plane. For
example, for the problem shown in Figure 7.5, of a circular excavation in an infinite
domain, nodes do not exist on the plane of symmetry.

Figure 7.5 Example with one plane of symmetry and mesh used to explain implementation

The approach in dealing with symmetry conditions in the BEM will be explained
here. Consider the simple mesh for the analysis of a circular excavation consisting of a
total of 8 elements shown in Figure 7.5b. The idea is to input only elements on the right
hand side of the symmetry plane (elements 1 to 4) and to automatically generate the
elements on the left (elements 11 to 41). The incidences of all elements are:

Element i j Element i j

1 4 5 11 5 41
2 3 4 21 41 31
3 2 3 31 31 21
4 1 2 41 21 1

Symmetry
 plane

1

y

x

1
2

3

4

5 Displaced
 shape

2

(a) (b)

3

4

11

12

13

14

14

13

12

ASSEMBLY AND SOLUTION 177

Note that the sequence of nodes for all mirrored elements is reversed. This is
important because it affects the direction of the outward normal vector n. The
coordinates of nodes at the left of the symmetry plane can be computed from those on
the right by:

Node x y

21 -x2 y2

31 -x3 y3

41 -x4 y4

Substantial savings in computational effort can be made, if during assembly we
consider that the unknowns on the left hand side of the symmetry plane can be
determined from the ones on the right. For potential problems we simply have u2

1= u2 ,
u3

1= u3 and u4
1= u4.

Figure 7.6 Example with two planes of symmetry

For elasticity problems we have (see displaced shape in Figure 7.5 (a))

Node ux uy

21 - ux2 uy2

31 - ux3 uy3

41 - ux4 uy4

1

y

x 1

2

3

2

11

12

22

21 31

32

12

11

22
32

23

178 The Boundary Element Method with Programming

For assembly of the system of equations this means that the coefficients of the

mirrored nodes are assembled in the same location as for the un-primed nodes.
For elasticity problems, the negative signs of the x-component of the displacement

have to be considered during assembly. If this assembly procedure is used, then the
number of unknowns for the problem is reduced to the nodes on the right hand side of
the symmetry plane and on the plane itself. The only additional computational effort will
be the integration of the Kernel shape function products over the mirrored elements. If
conditions of symmetry exist about the x and y axis, then the elements are “mirrored”
twice, as shown in Figure 7.6.

The incidence vectors are now

Element i j Element i j

1 2 3 12 22 32
2 1 2 22 12 22
11 3 21 13 31 23
21 21 11 23 23 1

Note that for all elements, except 12 and 22, the incidences are reversed. The

coordinates of the “mirrored” nodes are

Node x y
11 -x1 y1

32 x3 -y3

21 -x2 y2

22 -x2 -y2

23 x2 -y2

For potential problems we have u2

1= u2
2= u2

3= u2 , u1
1= u1 and u3

1= u3. For elasticity
problems the displacements at the primed nodes are given by

Node ux uy

11 - ux1 0

31 0 -uy3

21 - ux2 uy2

22 - ux2 -uy2

23 ux2 -uy2

ASSEMBLY AND SOLUTION 179

Figure 7.7 Three-dimensional BE mesh with 3 planes of symmetry

The method can be extended to three-dimensional problems. Up to three planes of

symmetry are possible and an element has to be projected seven times. For the mesh in
Figure 7.7, we determine the incidences for the mirrored elements keeping a consistent
outward normal, as shown (anti-clockwise numbering of element 1).

Element i j k l

1 1 2 3 4
11 1 4 31 21
12 1 21 32 41
13 1 41 33 2
14 11 43 37 23
15 11 22 34 43
16 11 42 35 22
17 11 23 36 42

x

y

z

1

2

3

4
n

n

1
11

21
31

51
61

41
71

13
12

23 14
33

43
22

53

13
11

24

13
32

63

180 The Boundary Element Method with Programming

We note that for mirror image number n= 1,3,4 and 6, the incidences have to be
reversed to maintain a consistent outward normal, as shown.

We now discuss the computer implementation of up to 3 symmetry planes. We
specify a symmetry code

Symmetry code

m
Symmetry about No. of mirrored elements

1 y-z plane 1
2 y-z and x-z plane 3
3 All 3 planes 7

For the mirrored nodes we can compute coordinates x, displacements u and tractions

t from the original nodes by

(7.15)

where superscript n denotes the mirror image number, as used in Figures 7.5 to 7.7.
Transformation matrices T are computed as follows
First we define three matrices Tm

(7.16)

In terms of these, the transformation matrices are defined as

(7.17)

For implementation we provide an additional loop for each element which, depending
on the symmetry code, is executed 1,2,4 or 8 times. For no symmetry (code 0) we
consider only the original element. For code 1 (symmetry about y-z plane) we consider
one mirrored image of the element. For symmetry codes 2 and 3, three and seven
mirrored images of the element are considered.

7.2.2 Subroutine MIRROR

Subroutine MIRROR has been written to generate elements across symmetry planes. It
returns the incidence, destination and coordinate vector of the mirrored element, as well
as multiplication factors for the assembly. In the subroutine we assume that if points are
on the symmetry plane, then they have exactly zero coordinate and one must ensure that

tTtuTuxTx nnnnnn ;;

100

010

001

100

010

001

100

010

001

321 TTT ;;

321
7

32
6

31
5

3
4

21
3

2
2

1
1

TTTTTTTTTTTT

TTTTTTT

;;;

;;;

ASSEMBLY AND SOLUTION 181

this is actually the case. We note that for subroutines INTEG to work for the mirrored
elements, we must change the mirrored node numbers to some arbitrary value. Here we
have chosen to add the maximum node number to the incidences. Note that some
numbers of the original node must not be changed if they lie on a specified symmetry
plane. Table 7.3 gives an overview of the node number that must not be changed if it lies
on a specified symmetry plane.

Table 7.3 List of node numbers that should not be changed during “mirroring”

Node is on Mirror image (n) which
must not be changed

x-z plane 3
y-z plane 1
x-y plane 4
2 planes 1 to 3

Destination vectors of the mirrored elements used for the assembly remain the same

as for the original element, except that if incidences are reversed to maintain a consistent
outward normal, then the destination vector must also be reversed. Subroutine Reverse is
used and it has been put in the Utility Library. Note that in the implementation of the
transformation matrices (equation 7.17), only the diagonal terms are considered.

SUBROUTINE Mirror(Isym,nsy,Nodes,Elcor,Fac,Incie,Ldeste &
 Elres_te,Elres_ue,,Nodel,Ndof,Cdim)
!--
! Creates mirror image of an element
!--
INTEGER, INTENT(IN) :: Isym ! symmetry indicator
INTEGER, INTENT(IN) :: nsy ! symmetry count
INTEGER, INTENT(IN) :: nodes ! highest node no
REAL, INTENT(IN OUT):: Elcor(:,:) ! Coords (will be modified)
REAL, INTENT(OUT) :: Fac(:) ! Multiplication factors
INTEGER, INTENT(IN OUT):: Incie(:)! Incidences (will be
INTEGER, INTENT(IN OUT):: Ldeste(:)! Destinations modified)
REAL, INTENT(IN OUT) :: Elres_te(:) ! Element tractions
REAL, INTENT(IN OUT) :: Elres_ue(:) ! Element displacements
INTEGER, INTENT(IN) :: Nodel ! Nodes per element
INTEGER, INTENT(IN) :: Ndof ! d.o.F. per Node
INTEGER, INTENT(IN) :: Cdim ! Cartesian dimension
REAL :: TD(3) ! Transformation vector (diagonal elements of T)
INTEGER :: n,m,Ison1,Ison2,Ison3,i
Fac(1:nodel*ndof)= 1.0
IF(nsy == 1) RETURN
SELECT CASE (nsy-1)
 CASE(1)
 TD=(/-1.0,1.0,1.0/)
 CASE(2)
 TD=(/-1.0,-1.0,1.0/)

182 The Boundary Element Method with Programming

 CASE(3)
 TD=(/1.0,-1.0,1.0/)
 CASE(4)
 TD=(/1.0,1.0,-1.0/)
 CASE(5)
 TD=(/-1.0,1.0,-1.0/)
 CASE(6)
 TD=(/1.0,-1.0,-1.0/)
 CASE(7)
 TD=(/-1.0,-1.0,-1.0/)
END SELECT
! generate coordinates and incidences
Nodes0: &
DO n=1,nodel
Elcor(:,n)= Elcor(:,n)*TD(m)
! Check if point is on any symmetry plane
Ison1= 0 ; Ison2= 0 ; Ison3= 0

 IF(Elcor(1,n)==0.0) Ison1=1
 IF(Elcor(2,n)==0.0) Ison2=1
 IF(Cdim > 2 .AND. Elcor(3,n)==0.0) Ison3=1
 ! only change incidences for unprimed nodes
 IF(ison1==1 .AND. nsy-1 ==1) CYCLE
 IF(ison2==1 .AND. nsy-1 ==3) CYCLE
 IF(ison1+ison2+ison3 > 1 .AND. nsy-1<4) CYCLE
 Incie(n)= Incie(n) + Nodes
END DO &
Nodes0
! generate multiplication factors, elast. Problems only
IF(Ndof > 1) THEN
I=0

 Nodes1: &
 DO n=1,nodel
 Degrees_of_freedom: &
 DO m=1,Ndof
 I=I+1
 Fac(I)= TD(m)
 END DO &
 Degrees_of_freedom
 END DO &
 Nodes1
END IF
! Reverse destination vector for selected elements
SELECT CASE (nsy-1)
 CASE (1,3,4,6)
 CALL &
 Reverse(Incie,elcor,ldeste,Elres_te,Elres_ue,Ndof,Cdim,nodel)
 CASE DEFAULT
END SELECT
RETURN
END SUBROUTINE Mirror

ASSEMBLY AND SOLUTION 183

7.2.3 Subroutine Assembly

A sub-program for assembling the coefficient matrices using a vector of incidences or
destinations, as well as information about the type of boundary and symmetry condition,
is presented. The information about the boundary condition is supplied for each node or
each degree of freedom of an element and the code is 0 for Neuman and 1 for the
Dirichlet condition. Care has to be taken where the boundary condition is discontinuous.
For example, in Figure 7.3, both temperature and flow values are known at the first node
of element 1, but only temperature is known at the second node of element 4 (both nodes
equal 1 in global numbering). For the assembly we must therefore specify a global code,
in addition to a boundary code for each element. Then, if Neuman BC is specified and
the global code is Dirichlet, both T and U are assembled on the right hand side. In the
parameter list vectors, Elres_u and Elres_t are introduced. These will eventually contain
all results of an element. At the stage when the SUBROUTINE is called, however, they
contain only known (prescribed) values with all other values being zero. SUBROUTINE
Assembly can be used for the assembly of two or three-dimensional problems in
potential flow or elasticity. The incidence vector in potential flow problems and the
destination vector in elasticity problems is defined as LDEST.

SUBROUTINE Assembly(Lhs,Rhs,DTe,DUe,Ldest,BCode,Ncode &
 ,Elres_ue,Elres_te,Diag,Ndofe,Ndof,Nodel,Fac)
!---
! Assembles Element contributions DTe , DUe
! into global matrix Lhs and vector Rhs
! Also sums off-diagonal coefficients
! for the computation of diagonal coefficients
!---
REAL(KIND=8) :: Lhs(:,:),Rhs(:) ! Global arrays
REAL(KIND=8), INTENT(IN):: DTe(:,:),DUe(:,:) ! Element arrays
INTEGER , INTENT(IN) :: LDest(:) ! Element destination vector
INTEGER , INTENT(IN) :: BCode(:) ! Boundary code(local)
INTEGER , INTENT(IN) :: NCode(:) ! Boundary code (global)
INTEGER , INTENT(IN) :: Ndofe ! D.o.F´s / Elem
INTEGER , INTENT(IN) :: Ndof ! D.o.F´s / Node
INTEGER , INTENT(IN) :: Nodel ! Nodes/Element
REAL , INTENT(IN) :: Elres_ue(:) ! vector u for element
REAL , INTENT(IN) :: Elres_te(:) ! vector t for element
REAL , INTENT(IN) :: Fac(:) ! Mult. factor for symmetry
REAL(KIND=8) :: Diag(:,:) ! Array containing diagonal coeff of DT
INTEGER :: n,Ncol
DoF_per_Element:&
DO m=1,Ndofe
 Ncol=Ldest(m) ! Column number
 IF(BCode(m) == 0) THEN ! Neumann BC

 Rhs(:) = Rhs(:) + DUe(:,m)*Elres_te(m)*Fac(m)
! The assembly of dTe depends on the global BC

 IF (NCode(Ldest(m)) == 0) THEN
Lhs(:,Ncol)= Lhs(:,Ncol) + DTe(:,m)*Fac(m)

184 The Boundary Element Method with Programming

 END IF
 IF (NCode(Ldest(m)) == 1) THEN

Rhs(:) = Rhs(:) - DTe(:,m) * Elres_ue(m)*Fac(m)
 END IF

 END IF
 IF(BCode(m) == 1) THEN ! Dirichlet BC

 Lhs(:,Ncol) = Lhs(:,Ncol) - DUe(:,m)*Fac(m)
 Rhs(:)= Rhs(:) - DTe(:,m) * Elres_ue(m)*Fac(m)

 END IF
END DO &
DoF_per_Element
! Sum of off-diagonal coefficients
DO n=1,Nodel
 DO k=1,Ndof

l=(n-1)*Ndof+k
Diag(:,k)= Diag(:,k) - DTe(:,l)*Fac(m)

 END DO
END DO
RETURN
END SUBROUTINE Assembly

Element contributions to the coefficient matrix, which have been computed

numerically with SUBROUTINE Integ, have zero values for coefficients Te
ni when

g(n) is point I, because these coefficients are not computed using numerical integration.
In the assembled matrix [T], these coefficients correspond to diagonal elements.
Equation (6.17) or (6.18) can be applied to compute these coefficients.

For example, the assembled diagonal coefficient Tii is given by

(7.18)

where A is the azimuthal integral (see section 6.3.2). The double sum is computed by
SUBROUTINE Assembly and stored in an array Diag for later use.

7.3 SOLUTION OF SYSTEM OF EQUATIONS

After assembly and adding the azimuthal integral as required, a system of simultaneous
equations is obtained. The difference to the system of equations obtained for the FEM is
that it is not symmetric and fully populated. The non-symmetry of the coefficient matrix
had engineers, who were used to symmetric stiffness matrices, baffled for a while. The
question was why, since we have used the theorem by Betti, which Maxwell used to
prove reciprocity and therefore the symmetry of the stiffness matrix, are we not getting a
symmetric coefficient matrix? The answer lies in the fact that we are not solving the
integral equations exactly but by numerical approximation. Instead of enforcing the Betti
theorem at an infinite number of points, as we should, we select a limited number of

ATT
E

1e

N

i)n(g
1n

e
niii

ASSEMBLY AND SOLUTION 185

points which are nodal points of the mesh. It can be shown that as the fineness of the
mesh increases, the coefficient matrices become more and more symmetric. Indeed, in
the limit with an infinite number of elements, full symmetry should be attained. Another
fact that has been discovered is that if boundary elements with linear functions are used,
then the non-symmetry is much less pronounced than if elements with quadratic
variation are used. The reason for this is not quite clear.

The fact that coefficient matrices are fully populated makes things easier in the sense
that we do not need to worry about sparse solvers at this stage. We will see later that
when we introduce multiple regions, for example, to cater for non-homogenities or to
model cracks or faults, we will also introduce sparseness.

The lack of sparseness of course means that no savings can be made by using special
schemes, such as band or skyline storage. The number of degrees of freedom, however,
should be considerably smaller, especially for soil or rock mechanics problems where
the domain can be assumed to extend to infinity.

7.3.1 Gauss elimination

The Gauss elimination method is probably the oldest and most used for solving the
system of equations. Consider the following system of equations

(7.19)

The solution for unknowns u involve two steps

STEP 1: Reduction

Here we introduce zeroes below the diagonal elements, so that we end up with an
upper triangular coefficient matrix.

For example, consider the n-th and i-th equation of a system

(7.20)

To introduce a zero in the n-th column of the i-th equation, we subtract (ain/ ann) times
the equation n from equation i :

(7.21)

where

(7.22)

FAu

ijijnin

njnjnnn

Fuaua

Fuaua

**
i

Fua0

Fuaua

jij

njnjnnn

n
nn

in
ii

nj
nn

in
ijij

F
a
aFF

a
a
aaa

*

*

186 The Boundary Element Method with Programming

The procedure, which is sometimes referred to as elimination of variable n, can be
visualised as a repeated modification of the coefficients a to a* , sometimes referred to as
starring operation. We continue doing the procedure for all the equations until all the
coefficients of A below the diagonal are zero.

STEP 2: Backsubstitution

The results may now be obtained by computing the unknown from the last equation,
which involves one unknown only. The formula for computing the n-th unknown is
given by

(7.23)

The above procedure is easily converted to a subroutine. Subroutine SOLVE shown
here assumes that coefficient matrix Lhs can be stored in memory.

SUBROUTINE Solve(Lhs,Rhs,u)
!---
! Solution of system of equations
! by Gauss Elimination
!---
REAL(KIND=8) :: Lhs(:,:) ! Equation Left hand side
REAL(KIND=8) :: Rhs(:) ! Equation right hand side
REAL(KIND=8) :: u(:) ! Unknown
INTEGER M ! Size of system
REAL(KIND=8) :: FAC
M= UBOUND(Rhs,1)
! Reduction
Equation_n: &
DO n=1,M-1
 IF(Lhs(n,n) < 1.0E-10 .AND. Lhs(n,n) > -1.0E-10) THEN
 CALL Error_Message('Singular Matrix')
 END IF
 Equation_i: &
 DO I= n + 1,M
 FAC= Lhs(i,n)/Lhs(n,n)
 Lhs(i, n+1 : M)= Lhs(i, n+1 : M) - Lhs(n, n+1 : M)*FAC
 Rhs(i)= Rhs(i) - Rhs(n)*FAC
 END DO &
 Equation_i
END DO &
Equation_n
! Backsubstitution
Unknown_n: &
DO n= M,1,-1
 u(n)= -1.0/Lhs(n,n)*(SUM(Lhs(n,n + 1:M)*u(n + 1:M)) - Rhs(n))
END DO Unknown_n
RETURN ; END SUBROUTINE Solve

ni

N

1ni
ni

nn
n Fua

a
1u

ASSEMBLY AND SOLUTION 187

As already mentioned previously for the solution of equations involving many
subtractions, it is necessary to use REAL (KIND=8) for the arrays, to avoid an
accumulation of round-off error. For a 3-D elasticity problem involving 1000 nodes, the
space required for storing the coefficient matrix in REAL (KIND=8) is 72 Mbytes. For
the solution on small computers this space may not be available and special algorithms
must be devised, where part of the matrix is written onto disk. Methods for the
partitioned solution of large systems are presented, for example by Beer and Watson2.

For the reduction of the system of equations we need three implied DO-loops. In the
implementation the innermost DO-loop is written implicitly using the new feature
available in FORTRAN 90. The innermost DO-loop involves one multiplication and one
subtraction and is executed (M – n) times, where M is the number of unknowns. The DO
loop above it involves a division and is also executed (M – n) times. Finally the
outermost DO-loop is executed M – 1 times. It can be shown, therefore, that the total
number of operations required is 2/3M3 + ½M2 + 1/6M. For large systems the first term
is dominant

This means that, for example, for a problem in three-dimensional elasticity involving
1000 nodes, approx. 2x1010 operations are necessary for the reduction. If we want to
analyse these problems in a reasonable time there is clearly a need for more efficient
solvers. Recently there has been a resurgence of iterative solvers1. The advantage of
these solvers is that the number of operations and hence the solution time is only
proportional to M2 and that they can be adapted easily to run on parallel computers. This
will be discussed in the next chapter.

7.3.2 Scaling

When we look at the fundamental solutions for elasticity we note that kernel U contains
the modulus of elasticity whereas T does not. Depending on the chosen units used we
expect a large difference in values. As we have seen at the beginning of this chapter, if
there is a mixed boundary value problem then there is a mixture of U and T terms in the
assembled coefficient matrix. This may cause problems in the solution of equations,
since very small terms would be subtracted from very large ones. Additionally, we note
that for 2-D problems kernel U varies with ln(1/r) which gives value as r .

For the above reasons scaling of the data is recommended. Scaling is applied in such
a way that all tractions are divided by E and all coordinates by the largest difference
between coordinates (which results in a scaled problem size of unity).

7.4 PROGRAM 7.1: GENERAL PURPOSE PROGRAM,
 DIRECT METHOD, ONE REGION

We now have developed all necessary tools for writing a general purpose computer
program for computing two and three-dimensional problems in potential flow and
elasticity. The first part of the program reads input data. There are three types of data:

188 The Boundary Element Method with Programming

job specification, geometry and boundary data. They are read in by calling three separate
subroutines Jobin, Geomin and BCinput. The job information consists of the Cartesian
dimension of the problem (2-D or 3-D), type of region (finite or infinite), whether it is a
potential or elasticity problem, type of elements used (linear or quadratic), properties,
that is conductivity for potential problems and modulus of elasticity and Poisson's ratio
for elasticity problems and number of elements/nodes. The geometrical information
consists of the coordinates of nodes and element incidences. Finally the boundary
conditions are input. In the program we assume that all nodes have Neuman boundary
condition with zero prescribed value by default. All nodes with Dirichlet boundary
conditions and all nodes having Neumann BC, with non-zero prescribed values have to
be input. After the specification of the BC´s element, destination vectors can be set up
by a call to Subroutine Destination contained in the utility library. As explained
previously destinations are the addresses of the coefficients in the global arrays. Note
that for symmetry it is of advantage to exclude those degrees of freedom which have
zero value and a node destination vector (Ndest) has been included to consider this. As
explained previously a global boundary code vector is needed to cater for the case where
the boundary code is discontinuous at a node. Scaling, as described above, is applied by
a call to SUBROUTINE Scal.

The assembly is made by calling SUBROUTINE Assemb. Since the diagonal
coefficients are not computed using numerical integration but are determined using the
'rigid body mode' method, all off-diagonal coefficients are summed and, if the region is
infinite, the azimuthal integral is added. Diagonal coefficients are stored in a vector Diag
and the boundary condition codes will determine if these are assembled into the left or
right hand side. The system of equations is solved next. Using the element destination
vector, results Elres_u and Elres_t are gathered from global vector u1. As will seen
later, it is convenient for postprocessing to store results element by element.

PROGRAM General_purpose_BEM
!--
! General purpose BEM program
! for solving elasticity and potential problems
!--
USE Utility_lib ; USE Elast_lib ; USE Laplace_lib
USE Integration_lib
IMPLICIT NONE
INTEGER, ALLOCATABLE :: Inci(:,:) ! Element Incidences
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) ! Element BC´s
INTEGER, ALLOCATABLE :: Ldest(:,:) ! Element dest. vector
INTEGER, ALLOCATABLE :: Ndest(:,:) ! Node destination vector
REAL, ALLOCATABLE :: Elres_u(:,:) ! Results , u
REAL, ALLOCATABLE :: Elres_t(:,:) ! Results , t
REAL, ALLOCATABLE :: Elcor(:,:) ! Element coordinates
REAL, ALLOCATABLE :: xP(:,:) ! Node co-ordinates
REAL(KIND=8), ALLOCATABLE :: dUe(:,:),dTe(:,:),Diag(:,:)
REAL(KIND=8), ALLOCATABLE :: Lhs(:,:),F(:)
REAL(KIND=8), ALLOCATABLE :: u1(:) ! global vector of unknown
CHARACTER (LEN=80) :: Title
INTEGER :: Cdim,Node,m,n,Istat,Nodel,Nel,Ndof,Toa

ASSEMBLY AND SOLUTION 189

INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t
INTEGER :: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy
REAL,ALLOCATABLE :: Fac(:) ! Factors for symmetry
REAL,ALLOCATABLE :: Elres_te(:),Elres_ue(:)
INTEGER,ALLOCATABLE :: Incie(:) ! Incidences 1 element
INTEGER,ALLOCATABLE :: Ldeste(:) ! Destination vector
REAL :: Con,E,ny,Scat,Scad
!---
! Read job information
!---
OPEN (UNIT=1,FILE='INPUT',FORM='FORMATTED') ! Input
OPEN (UNIT=2,FILE='OUTPUT',FORM='FORMATTED')! Output
Call Jobin(Title,Cdim,Ndof,Toa,Nreg,Ltyp,Con,E,ny,&
 Isym,nodel,nodes,maxe)
Nsym= 2**Isym ! number of symmetry loops
ALLOCATE(xP(Cdim,Nodes)) ! Array for node coordinates
ALLOCATE(Inci(Maxe,Nodel)) ! Array for incidences
CALL Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim)
Ndofe= Nodel*Ndof ! Total degrees of freedom of element
ALLOCATE(BCode(Maxe,Ndofe)) ! Element Boundary codes
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,ndof)
ALLOCATE(Ldest(maxe,Ndofe)) ! Elem. destination vector
ALLOCATE(Ndest(Nodes,Ndof))
!---
! Determine Node and Element destination vectors
!---
CALL Destination(Isym,Ndest,Ldest,xP,&

Inci,Ndofs,nodes,Ndof,Nodel,Maxe)
!--
! Determine global Boundary code vector
!---
ALLOCATE(NCode(Ndofs))
DoF_o_System: &
DO nd=1,Ndofs
 DO Nel=1,Maxe
 DO m=1,Ndofe
 IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN
 NCode(nd)= NCode(nd)+BCode(Nel,m)
 END IF
 END DO
 END DO
END DO &
DoF_o_System
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat)
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe)) ! Elem. coef.
ALLOCATE(Diag(Ndofs,Ndof)) ! Diagonal coefficients
ALLOCATE(Lhs(Ndofs,Ndofs),F(Ndofs),u1(Ndofs)) ! global arrays
ALLOCATE(Elcor(Cdim,Nodel)) ! Elem. Coordinates
ALLOCATE(Fac(Ndofe)) ! Factor symmetry
ALLOCATE(Incie(Nodel)) ! Element incidences

190 The Boundary Element Method with Programming

ALLOCATE(Ldeste(Ndofe)) ! Element destination
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe))
!--
! Compute element coefficient matrices
!--
Lhs(:,:) = 0.0; F(:) = 0.0; u1(:) = 0.0
Elements_1:&
DO Nel=1,Maxe
 Symmetry_loop:&
 DO nsy= 1,Nsym
 Elcor(:,:)= xP(:,Inci(Nel,:)) ! gather element coordinates
 Incie= Inci(nel,:) ! incidences
 Ldeste= Ldest(nel,:) ! and destinations
 Fac(1:nodel*ndof)= 1.0
 Elres_te(:)=Elres_t(Nel,:)
 IF(Isym > 0) THEN
 CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,&

 Incie,Ldeste,Elres_te,Elres_ue &
 ,nodel,ndof,Cdim)
 END IF
 IF(Cdim == 2) THEN
 IF(Ndof == 1) THEN
 CALL Integ2P(Elcor,Incie,Nodel,Nodes&

,xP,Con,dUe,dTe,Ndest,Isym)
 ELSE
 CALL Integ2E(Elcor,Incie,Nodel,Nodes&

,xP,E,ny,dUe,dTe,Ndest,Isym)
 END IF
 ELSE
 CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,Ndof &
 ,E,ny,Con,dUe,dTe,Ndest,Isym)
 END IF
 CALL Assembly(Lhs,F,DTe,DUe,Ldeste,BCode(Nel,:),Ncode &
 ,Elres_u(Nel,:),Elres_te,Diag&

,Ndofe,Ndof,Nodel,Fac)
 END DO &
 Symmetry_loop
END DO &
Elements_1
!--
! Add azimuthal integral for infinite regions
!--
IF(Nreg == 2) THEN
 DO m=1, Nodes
 DO n=1, Ndof
 IF(Ndest(m,n) == 0)CYCLE
 k=Ndest(m,n)
 Diag(k,n) = Diag(k,n) + 1.0
 END DO
 END DO
END IF

ASSEMBLY AND SOLUTION 191

!---
! Add Diagonal coefficients
!---
Collocation_points: &
DO m=1,Ndofs
 Nod=0
 DO n=1, Nodes
 DO l=1,Ndof
 IF (m == Ndest(n,l))THEN
 Nod=n
 EXIT
 END IF
 END DO
 IF (Nod /= 0)EXIT
 END DO
 DO k=1,Ndof
 DoF=Ndest(Nod,k)
 IF(DoF /= 0) THEN
 IF(NCode(DoF) == 1) THEN
 Nel=0
 Pos=0
 DO i=1,Maxe
 DO j=1,Ndofe
 IF(DoF == Ldest(i,j))THEN
 Nel=i
 Pos=j
 EXIT
 END IF
 END DO
 IF(Nel /= 0)EXIT
 END DO
 F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos)
 ELSE
 Lhs(m,DoF)= Lhs(m,DoF) + Diag(m,k)
 END IF
 END IF
 END DO
END DO &
Collocation_points
!---
! Solve system of equations
!---
CALL Solve(Lhs,F,u1)
CLOSE(UNIT=2)
OPEN (UNIT=2,FILE='BERESULTS',FORM='FORMATTED')
! Gather Element results from global result vector u1
Elements_2: &
DO nel=1,maxe
 D_o_F1: &
 DO nd=1,Ndofe
 IF(Ldest(nel,nd) /= 0)THEN

192 The Boundary Element Method with Programming

 IF(NCode(Ldest(nel,nd)) == 0) THEN
 Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd))
 ELSE
 Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd))
 END IF
 END IF
 END DO &
 D_o_F1
 Elres_u(nel,:)= Elres_u(nel,:) * Scad
 Elres_t(nel,:)= Elres_t(nel,:) / Scat
 WRITE(2,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe)
 WRITE(2,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe)
END DO &
Elements_2
END PROGRAM

To make the program more readable and easier to modify, the reading of the input

has been delegated to subroutines. This also gives the reader some freedom to determine
the input FORMAT and implement simple mesh-generation facilities.

SUBROUTINE Jobin(Title,Cdim,Ndof,Toa,Nreg,Ltyp,Con,E,ny &
 ,Isym,nodel,nodes,maxe)
!--
! Subroutine to read in basic job information
!--
CHARACTER(LEN=80), INTENT(OUT):: Title
INTEGER, INTENT(OUT) :: Cdim,Ndof,Toa,Nreg,Ltyp,Isym,nodel
INTEGER, INTENT(OUT) :: Nodes,Maxe
REAL, INTENT(OUT) :: Con,E,ny
READ(1,'(A80)') Title
WRITE(2,*)'Project:',Title
READ(1,*) Cdim
WRITE(2,*)'Cartesian_dimension:',Cdim
READ(1,*) Ndof ! Degrees of freedom per node
IF(NDof == 1) THEN
 WRITE(2,*)'Potential Problem'
ELSE
 WRITE(2,*)'Elasticity Problem'
END IF
IF(Ndof == 2)THEN
 READ(1,*) Toa ! Analysis type (plane strain= 1,plane stress= 2)
 IF(Toa == 1)THEN
 WRITE(2,*)'Type of Analysis: Solid Plane Strain'
 ELSE
 WRITE(2,*)'Type of Analysis: Solid Plane Stress'
 END IF
END IF
READ(1,*) Nreg ! Type of region
IF(NReg == 1) THEN
 WRITE(2,*)'Finite Region'

ASSEMBLY AND SOLUTION 193

ELSE
 WRITE(2,*)'Infinite Region'
END IF
READ(1,*) Isym ! Symmetry code
SELECT CASE (isym)

CASE(0)
WRITE(2,*)'No symmetry'

CASE(1)
WRITE(2,*)'Symmetry about y-z plane'

CASE(2)
WRITE(2,*)'Symmetry about y-z and x-z planes'

CASE(3)
WRITE(2,*)'Symmetry about all planes'

END SELECT
READ(1,*) Ltyp ! Element type
IF(Ltyp == 1) THEN
WRITE(2,*)'Linear Elements'

ELSE
WRITE(2,*)'Quadratic Elements'

END IF
! Determine number of nodes per element
IF(Cdim == 2) THEN ! Line elements
 IF(Ltyp == 1) THEN
 Nodel= 2
 ELSE
 Nodel= 3
 END IF
ELSE ! Surface elements
IF(Ltyp == 1) THEN
 Nodel= 4
ELSE
 Nodel= 8
END IF

END IF
! Read properties
IF(Ndof == 1) THEN
 READ(1,*) Con
 WRITE(2,*)'Conductivity=',Con
ELSE
 READ(1,*) E,ny
 IF(ToA == 2) ny = ny/(1+ny) ! Solid Plane Stress
 WRITE(2,*)'Modulus:',E
 WRITE(2,*)'Poissons ratio:',ny
END IF
READ(1,*) Nodes
WRITE(2,*)'Number of Nodes of System:',Nodes
READ(1,*) Maxe
WRITE(2,*)'Number of Elements of System:', Maxe
RETURN
END SUBROUTINE Jobin

194 The Boundary Element Method with Programming

SUBROUTINE Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim)
!------------------------------------
! Inputs mesh geometry
!-------------------------------------
INTEGER, INTENT(IN) :: Nodes ! Number of nodes
INTEGER, INTENT(IN) :: Maxe ! Number of elements
INTEGER, INTENT(IN) :: Nodel ! Number of Nodes of elements
INTEGER, INTENT(IN) :: Cdim ! Cartesian Dimension
REAL, INTENT(OUT) :: xP(:,:) ! Node co-ordinates
REAL :: xmax(Cdim),xmin(Cdim),delta_x(Cdim)
INTEGER, INTENT(OUT):: Inci(:,:) ! Element incidences
INTEGER :: Node,Nel,M,n
!---
! Read Node Co-ordinates from Inputfile
!---
DO Node=1,Nodes
 READ(1,*) (xP(M,Node),M=1,Cdim)
 WRITE(2,'(A5,I5,A8,3F8.2)') 'Node ',Node,&
 ' Coor ',(xP(M,Node),M=1,Cdim)
END DO
!---
! Read Incidences from Inputfile
!---
WRITE(2,*)''
WRITE(2,*)'Incidences: '
WRITE(2,*)''
Elements_1:&
DO Nel=1,Maxe
READ(1,*) (Inci(Nel,n),n=1,Nodel)
WRITE(2,'(A3,I5,A8,24I5)')'EL ',Nel,' Inci ',Inci(Nel,:)

END DO &
Elements_1
RETURN
END SUBROUTINE Geomin

SUBROUTINE BCInput(Elres_u,Elres_t,Bcode,nodel,ndofe,ndof)
!--
! Reads boundary conditions
!---
REAL,INTENT(OUT) :: Elres_u(:,:) ! Element results , u
REAL,INTENT(OUT) :: Elres_t(:,:) ! Element results , t
INTEGER,INTENT(OUT) :: BCode(:,:) ! Element BC´s
INTEGER,INTENT(IN) :: nodel ! Nodes per element
INTEGER,INTENT(IN) :: ndofe ! D.o.F. per Element
INTEGER,INTENT(IN) :: ndof ! D.o.F per Node
INTEGER :: NE_u,NE_t
WRITE(2,*)''
WRITE(2,*)'Elements with Dirichlet BC´s: '
WRITE(2,*)''
Elres_u(:,:)=0 ! Default prescribed values for u = 0.0

ASSEMBLY AND SOLUTION 195

BCode = 0 ! Default BC= Neumann Condition
READ(1,*)NE_u
IF(NE_u > 0) THEN

Elem_presc_displ: &
DO n=1,NE_u
 READ(1,*) Nel,(Elres_u(Nel,m),m=1,Ndofe)
 BCode(Nel,:)=1
 WRITE(2,*)'Element ',Nel,' Prescribed values: '
 Na= 1
 Nodes: &
 DO M= 1,Nodel
 WRITE(2,*) Elres_u(Nel,na:na+ndof-1)
 Na= na+Ndof
 END DO &
 Nodes
END DO &
Elem_presc_displ

END IF
WRITE(2,*)''
WRITE(2,*)'Elements with Neuman BC´s: '
WRITE(2,*)''
Elres_t(:,:)=0 ! Default prescribed values = 0.0
READ(1,*)NE_t
Elem_presc_trac: &
DO n=1,NE_t
 READ(1,*) Nel,(Elres_t(Nel,m),m=1,Ndofe)
 WRITE(2,*)'Element ',Nel,' Prescribed values: '
 Na= 1
 Nodes1: &
 DO M= 1,Nodel
 WRITE(2,*) Elres_t(Nel,na:na+ndof-1)
 Na= na+Ndof
 END DO &
 Nodes1
END DO &
Elem_presc_trac
RETURN
END SUBROUTINE BCInput

7.4.1 User’s manual

The input data which have to be supplied in file INPUT are described below. Free field
input is used, that is, numbers are separated by blanks. However, all numbers, including
zero entries must be specified.

The input is divided into two parts. First, general information about the problem is
read in, then the mesh geometry is specified. The problem may consist of linear and
quadratic elements, as shown in Figure 7.8. The sequence in which node numbers have
to be entered when specifying incidences is also shown. Note that this order determines
the direction of the outward normal, which has to point away from the material. For 3-D

196 The Boundary Element Method with Programming

elements, if node numbers are entered in an anticlockwise direction, the outward normal
points towards the viewer.

Figure 7.8 Element library

INPUT DATA SPECIFICATION FOR General_purpose-BEM program

1.0 Title specification
TITLE Project Title (max 60 characters)

2.0 Cartesian dimension of problem
Cdim Cartesian dimension
 2= two-dimensional problem
 3= three-dimensional problem

3.0 Problem type specification
Ndof Degree of freedom per node
 1= potential problem

2,3= elasticity problem

4.0 Analysis type (Only input for Ndof= 2 !!)
Toa Type of analysis
 1= Plane strain
 2= plane stress

5.0 Region type specification
Nreg Region code
 1= finite region
 2= infinite region

Linear

Quadratic

2

1

2

1
3

n

n

1

2

3 4

1
2

3
4

5 6

7

8

n

n

2-D 3-D

ASSEMBLY AND SOLUTION 197

6.0 Symmetry specification

ISym Symmetry code
 0= no symmetry
 1= symmetry about y-z plane
 2= symmetry about y-z and x-z planes
 3= symmetry about all 3 planes

7.0 Element type specification
Ltyp Element type
 1= linear
 2= quadratic

8.0 Material properties
C1, C2 Material properties
 C1= k (conductivity) for Ndof=1
 = E (Elastic Modulus) for Ndof=2,3
 C2= Poisson´s ratio for Ndof=2,3

9.0 Node specification
Nodes Number of nodes

10.0 Element specification
Maxe Number of elements

11.0 Loop over nodes
x, y, (z) Node coordinates

12.0 Loop over all elements
Inci (1:Element nodes) Global node numbers of element nodes

13.0 Dirichlet boundary conditions
NE_u Number of elements with Dirichlet BC

14.0 Prescribed values for Dirichlet BC for NE_u elements
 Nel, Elres_u(1 : Element D.o.F.) Specification of boundary condition

 Nel = Element number to be assigned BC
 Elres_u = Prescribed values for all degrees

 of Freedom of element: all d.o.F
 first node; all d.o.F second node etc.

15.0 Neumant boundary conditions
NE_t Number of elements with Neuman BC
 Only specify for no-zero prescribed values.

16.0 Prescribed values for Neuman BC for NE_t elements
Nel, Elres_t(1 : Element D.o.F.) Specification of boundary condition

 Nel = Element number to be assigned BC
 Elres_t = Prescribed values for all degrees

 of Freedom of element: all d.o.F
 first node; all d.o.F second node etc.

198 The Boundary Element Method with Programming

7.4.2 Sample input file

For the example of the heat flow past a cylindrical isolator, which was solved with the
Trefftz method and the direct method with constant elements, we present the input file
for an analysis with 8 linear elements and no symmetry (Figure 7.9).

Figure 7.9 Discretisation of cylindrical isolator used for sample inputfile

File INPUT

Flow past cylindrical isolator, 8 linear elements
2 ! Cdim , 2-D problem
1 ! Ndof , potential problem
2 ! Nreg , Infinite region
0 ! ISym , no symmetry
1 ! Ltyp , linear element
1.00 ! C1 , Conductivity
 8 ! Nodes
 8 ! Number of Elements
0.0 1.000 ! Coordinates
0.707 0.707
1.0 0.0
0.707 -0.707
0.0 -1.0
-0.707 -0.707
-1.0 0.0
-0.707 0.707
 1 2 ! Incidences
 2 3

1

y

x3

2

1

2

4
5

6

7

8

3

45

6

7

8

1.0

ASSEMBLY AND SOLUTION 199

 3 4
 4 5
 5 6
 6 7
 7 8
 8 1
 0 ! no Dirichlet BC’s
 8 ! Neuman BC’c
 1 1.000 0.707
 2 0.707 0.000
 3 0.000 -0.707
 4 -0.707 -1.000
 5 -1.000 -0.707
 6 -0.707 0.000
 7 0.000 0.707
 8 0.707 1.000

7.5 CONCLUSIONS

In this chapter we have developed a general purpose program, which can be used to
solve any problem in elasticity and potential flow, or if we substitute the appropriate
fundamental solutions, any problem at all. This versatility has been made possible
through the use of isoparametric elements and numerical integration. In essence, the
boundary element method has borrowed here ideas from the finite element method and,
in particular, the ideas of Ergatoudis, who first suggested the use of parametric elements
and numerical integration.

Indeed, there are also other similarities with the FEM in that the system of equations
is obtained by assembling element contributions. In the assembly procedure we have
found that the treatment of discontinous boundary conditions, as they are encountered
often in practical applications, needs special attention and will change the assembly
process.

The implementation of the program is far from efficient. If one does an analysis of
runtime spent in each part of the program, one will realise that the computation of the
element coefficient matrices will take a significant amount of time. This is because, as
pointed out in Chapter 6, the order of DO loops in the numerical integration is not
optimised to reduce the number of calculations. Also in the implementation, all matrices
must be stored in RAM, and this may severely restrict the size of problems which can be
solved.

We have noted that the system of equations obtained is fully populated, that is, the
coefficient matrix contains no zero elements. This is in contrast to the FEM, where
systems are sparsely populated, i.e., containing a large number of zeroes. The other
difference with the FEM is that the stiffness matrix is not symmetric. This has been
claimed as one of the disadvantages of the method. However, this is more than
compensated by the fact that the size of the system is significantly smaller.

The output from the program consists only of the values of the unknown at the
boundary. The unknown are either the temperature/displacement or the flow normal to

200 The Boundary Element Method with Programming

the boundary/boundary stresses. The computation of the complete flow vectors/stress
tensor at the boundary, as well as the computation of values inside the domain is
discussed in Chapter 9.

7.6 EXERCISES

Exercise 7.1
Using Program 7.1 compute the problem of flow past a cylindrical isolator, find out the
influence of the following on the accuracy of results:

(a) when linear and quadratic boundary elements are used.
(b) when the number of elements is 8,16 and 32.

Plot the error in the computation of maximum temperature against number of elements.

Exercise 7.2
Modify the problem computed in Exercise 7.1 by changing the shape of the isolator, so
that it has an elliptical shape, with a ratio vertical to horizontal axis of 2.0. Comment on
the changes in the boundary values due to the change in shape.

Exercise 7.3
Using Program 7.1, compute the problem of a circular excavation in a plane strain
infinite pre-stressed domain Figure 7.10, find out the influence of the following on the
accuracy of results:

(a) when linear and quadratic boundary elements are used.
(b) when the number of elements is 8,16 and 32.

Plot the error against the number of elements.

Hint: This is the elasticity problem equivalent to the heat flow problem in Exercise 7.1.
The problem is divided into two:

1. Continuum with no hole and the initial stresses only
2. Continuum with a hole and Neuman boundary conditions. The boundary conditions
are computed in such a way that when stresses at the boundary of problem 1 are added
to the ones at problem 2, zero values of boundary tractions are obtained. To compute
the boundary tractions equivalent to the initial stresses use equation (4.28).

ASSEMBLY AND SOLUTION 201

Figure 7.10 Circular excavation in an infinite domain

Exercise 7.4
Modify the problem computed in Exercise 7.3 by changing the shape of the excavation,
so that it has an elliptical shape with a ratio vertical to horizontal axis of 2.0. Comment
on the changes in the deformations due to the change in shape.

Figure 7.11 Potential problem with boundary conditions

Exercise 7.5
Using program 7.1, compute the potential problem of the beam depicted in Figure 7.12.
Assume k=1.0 and a prescribed temperature of 0.0 at the left end and a prescribed flux
of 1.0 at the right end. Construct two meshes, one with linear and one with quadratic
boundary elements. Comment on the results.

01.k

1.0

0.25 01.t

0t

0t

0u

010 .y
00

01000
.

.E

Traction free surface

1 m

202 The Boundary Element Method with Programming

Exercise 7.6
Using program 7.1, analyse the problem of the cantilever beam depicted in Figure 7.12.
Plot the displaced shape and distribution of the normal and shear tractions at the fixed
end. Construct two meshes, one with linear and the other with quadratic boundary
elements. Comment on the results.

Figure 7.12 Example of cantilever beam

Exercise 7.7
Using program 7.1, compute the problem of the cantilever beam depicted in Figure 7.12.
but apply a vertical movement of unity to the top support instead of traction at the free
end. Plot the displaced shape and verify that this is just a rigid body rotation of the
beam.

7.7 REFERENCES

1. Smith I M and Griffiths D.V. (2004) Programming the Finite Element Method.

J.Wiley
2. Beer G and Watson J.O. (1992) Introduction to Finite and Boundary Elements for

Engineers. J.Wiley.

 ty=-1.0
00

01000
.

.E

1.0

0.25

8
Element-by-element techniques
and Parallel Programming

I am a little world
made cunningly of elements

Donne

8.1 INTRODUCTION

In the previous Chapter we considered “traditional” techniques of assembly and solution
involving element matrix assembly (additive) followed by Gaussian elimination
performed on the resulting non-symmetric, fully-populated, linear equation system. We
noted that computer storage requirements for the element matrix coefficients become
demanding, as do processing requirements, for large numbers of elements particularly in
three dimensions.
 Typical single processor storage capacity, at the time of writing, is about 2Gb or
roughly 200 million 64-bit locations. Therefore, the number of assembled boundary
element equations that can be handled by one processor is approximately 14,000,
implying a 3-D model with less than about 5000 nodes.
 Consider a cubical cavity (cavern) in an infinite elastic medium with each of its 6 faces
meshed by n*n boundary elements. For linear elements, the number of nodes (equations)
is close to 6n**2 (18n**2) and for quadratic elements 18n**2 (54n**2), so a linear
element mesh would be restricted to about 30*30 elements per face and a quadratic one
to about 16*16, if no symmetries can be exploited.

204 The Boundary Element Method with Programming

8.1 THE ELEMENT-BY-ELEMENT CONCEPT

This arose in finite element work, probably first in “explicit” time marching analyses,
where a solution, say u, t units of time after a previous one, say v, can simply be
obtained by a matrix*vector multiplication of the form

(8.1)

where M and K are the system “mass” and “stiffness” matrices respectively. The above
product A v can be carried out “piece-by-piece”, as long as the sum of the “pieces”
adds up to A. For example

(8.2)

 or any other suitable partitioning. Then taking, for example, the last partitioning

(8.3)

gives the same result as without partitioning. In boundary element or finite element
work, element assembly involves just such a partitioning where the appropriate “pieces”
of A are the element matrices themselves. So whenever a matrix*vector multiplication is
needed a global A need never be assembled at all and instead the product computed as:

(8.4)

 where eA is the element matrix and ev is the appropriate part of v, gathered for element
e as described in Section 7.2. In essence the idea is to replace the double sum in
Equation 7.1 by a single sum and a matrix*vector multiplication.

(8.5)

To extend this idea to solving sets of linear equations we have to look for a solution
technique at the heart of which is a matrix*vector product like equation (8.1).
Fortunately a whole class of iterative methods for equation solution is of this type. For
example there are the “gradient” methods for symmetric systems, typified by the
preconditioned conjugate gradient method (PCG) or the generalised minimum residual
methods for non-symmetric systems, for example GMRES, which are appropriate for
boundary element equations.

Following Chapter 7 we can write the final system of equations in the following form

()tu M K v A v

1 2 1 0 0 2 .5 1 .5 1
3 4 3 0 0 4 2 3 1 1

A

1 1 1 1 2

1 22 2 2

v v v v 2v1 2 .5 1 .5 1
3v 4v3 4 v 2 3 v 1 1 v

v

e eu A v

1 1

E E
e e e e

e e

cu T u U t

PARALELL PROGRAMMING 205

(8.6)

Where 0R is the “residual” or error for a first trial solution of u namely 0u . In

elasticity problems with only Neumann boundary conditions, for example, mK would

be the assembled matrix T and u a vector of displacements. However, we note that
in an element by element (EBE) iterative solution the system of equations (8.6) need
never be actually assembled.

Figure 8.1 Pseudo-code for BiCGStab

 For the BEM we could choose any of the GMRES-type class of solution techniques. In
particular, we select the BiCGStab algorithm, which has been shown to be effective in
Finite Element work1. It follows the two-stage (“Bi”) procedure shown in Figure 8.1
being dominated by two matrix*vector products such as

(8.7)

0 0mR F K u

0 0 0

0 0 0

1 1

01
1 11 2 1 1

01

11 2 1 1

Set ; 0 or some intial estimate

ˆ ˆchoose such that 0

 1, 2,3....

ˆ
 ;

ˆ

T

mk k
T
k

k k Tk k k
k

kk k k

k niter

P R u

R R R

FOR DO
Q K P

R R
u u P

Q R

R R Q

1 1 2

1 2 1 2
11 2 1 2

1 2 1 2

1 2 1 2

1 0

1 1
01

 ;

ˆ
 ;

ˆ

 (converged)

mk k

T
k k

k k Tk k k
k k

kk k k

T
k k

k k k k Tk k k k
k k

S K R

R S
u u R

S S

R R S

R R
P R P Q

R R

IF EXIT
END DO

1 1mk kQ K P

206 The Boundary Element Method with Programming

carried out on an element by element basis. All other operations involve vector dot-
products.

8.1.1 Element-by-element storage requirements

We are not now interested in storing the fully assembled Ndofs*Ndofs system of
Program 7.1, but rather the element level arrays dTe and dUe which are of size
Ndofs*Ndofe (assuming both have to be stored). In fact our storage requirements will be
somewhat greater than for the assembled system, but of course we look forward to
employing a parallel environment in which this storage will be distributed across the
number of parallel processors available, npes.

Returning to our cubical “cavern” mesh, for linear elements the dUe (and dTe)
boundary element coefficient matrices will need 12*18*n**2/npes locations
(24*54*n**2/npes for quadratic elements). In this way we can solve much larger
problems given that a sufficient number of processors is available. A very significant
additional advantage when we come to parallel processing is that the time-consuming
computation of dUe and dTe will also take place in parallel. Since this part of the
computation involves no communication between processors it is an example of
“perfectly” parallelisable code and with 1000 processors we shall compute the element
matrix coefficients 1000 times faster than in serial mode.

Before going on to parallel processing, we go through two intermediate stages.
Starting from Program 7.1 we first make the (very small) alterations so that we retain
traditional assembly, but solve the resulting equations iteratively using the BiCGStab(l)
algorithm (Program 8.1). Then we illustrate the change to an element-by-element
iterative solution strategy (Program 8.2) and finally progress to the fully parallelised
version (Program 8.3).
 Example analyses illustrate the efficiency of parallelism in terms of processing speed
and problems involving up to 60,000 boundary elements are solved.

8.2 PROGRAM 8.1 : REPLACING DIRECT BY ITERATIVE
SOLUTION

PROGRAM General_purpose_BEM
!--
! General purpose BEM program
! for solving elasticity and potential problems
! This version iterative equation solution by BiCGStab(l)
!--
USE bem_lib ! contains precision
IMPLICIT NONE ! Ndof changed to N_dof
INTEGER, ALLOCATABLE :: Inci(:,:) ! Element Incidences
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) ! Element BC´s
INTEGER, ALLOCATABLE :: Ldest(:,:) ! Element destination vector
INTEGER, ALLOCATABLE :: Ndest(:,:) ! Node destination vector

PARALELL PROGRAMMING 207

REAL(iwp), ALLOCATABLE :: Elres_u(:,:) ! Element results , u
REAL(iwp), ALLOCATABLE :: Elres_t(:,:) ! Element results , t
REAL(iwp), ALLOCATABLE :: Elcor(:,:) ! Element coordinates
REAL(iwp), ALLOCATABLE :: xP(:,:) ! Node co-ordinates
REAL(iwp), ALLOCATABLE :: dUe(:,:),dTe(:,:),Diag(:,:)
REAL(iwp), ALLOCATABLE :: Lhs(:,:),F(:)
REAL(iwp), ALLOCATABLE :: u1(:) ! global vector of unknowns
CHARACTER (LEN=80) :: Title
INTEGER :: Cdim,Node,m,n,Istat,Nodel,Nel,N_dof,Toa
INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t
INTEGER :: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy,its,ell
REAL(iwp),ALLOCATABLE :: Fac(:) ! Factors for symmetry
REAL(iwp),ALLOCATABLE :: Elres_te(:),Elres_ue(:)
INTEGER,ALLOCATABLE :: Incie(:) ! Incidences for one element
INTEGER,ALLOCATABLE :: Ldeste(:) ! Destination vector 1 elem
REAL(iwp) :: Con,E,ny,Scat,Scad,tol,kappa
!---
! Read job information
!---
OPEN (UNIT=11,FILE='prog81.dat',FORM='FORMATTED') ! Input
OPEN (UNIT=12,FILE='prog81.res',FORM='FORMATTED') ! Output
Call Jobin(Title,Cdim,N_dof,Toa,Nreg,Ltyp,Con,E,ny,&
 Isym,nodel,nodes,maxe)
Nsym= 2**Isym ! number of symmetry loops
ALLOCATE(xP(Cdim,Nodes)) ! Array for node coordinates
ALLOCATE(Inci(Maxe,Nodel)) ! Array for incidences
CALL Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim)
Ndofe= Nodel*N_dof ! Total degrees of freedom of element
ALLOCATE(BCode(Maxe,Ndofe)) ! Element Boundary codes
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,n_dof)
READ(11,*) tol,its,ell,kappa ! data for bicgstab(l)
ALLOCATE(Ldest(maxe,Ndofe)) ! Elem. destination vector
ALLOCATE(Ndest(Nodes,N_dof))
!--
! Determine Node destination vector and Element dest vector
!--
CALL Destination(Isym,Ndest,Ldest,xP,Inci,Ndofs,nodes,&
N_dof,Nodel,Maxe)
!---
! Determine global Boundary code vector
!---
ALLOCATE(NCode(Ndofs))
NCode=0
DoF_o_System: &
DO nd=1,Ndofs
 DO Nel=1,Maxe
 DO m=1,Ndofe
 IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN
 NCode(nd)= NCode(nd)+BCode(Nel,m)
 END IF

208 The Boundary Element Method with Programming

 END DO
 END DO
END DO &
DoF_o_System
IF(N_dof ==1)E= Con
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat)
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe))! Elem. coef. matrices
ALLOCATE(Diag(Ndofs,N_dof)) ! Diagonal coefficients
ALLOCATE(Lhs(Ndofs,Ndofs),F(Ndofs),u1(Ndofs)) ! global arrays
ALLOCATE(Elcor(Cdim,Nodel)) ! Elem. Coordinates
ALLOCATE(Fac(Ndofe)) ! Factor for symmetric
elements
ALLOCATE(Incie(Nodel)) ! Element incidences
ALLOCATE(Ldeste(Ndofe)) ! Element destination
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe)) ! Tractions of
Element
!--
! Compute element coefficient matrices
!--
Lhs(:,:) = 0.0_iwp; F(:) = 0.0_iwp; u1(:) = 0.0_iwp; Diag(:,:) =
0.0_iwp
Elements_1:&
DO Nel=1,Maxe
 Symmetry_loop:&
 DO nsy= 1,Nsym
 Elcor(:,:)= xP(:,Inci(Nel,:))!gather element coord
 Incie= Inci(nel,:) ! incidences
 Ldeste= Ldest(nel,:) ! and destinations
 Fac(1:nodel*n_dof)= 1.0_iwp
 Elres_te(:)=Elres_t(Nel,:)
 IF(Isym > 0) THEN
 CALL Mirror(Isym,nsy,Nodes,Elcor,Fac, &
 Incie,Ldeste,Elres_te,Elres_ue,nodel,n_dof,Cdim)
 END IF
 IF(Cdim == 2) THEN
 IF(N_dof == 1) THEN
 CALL Integ2P(Elcor,Incie,Nodel,Nodes, &
 xP,Con,dUe,dTe,Ndest,Isym)
 ELSE
 CALL Integ2E(Elcor,Incie,Nodel,Nodes, &
 xP,E,ny,dUe,dTe,Ndest,Isym)
 END IF
 ELSE
 CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,N_dof &
 ,E,ny,Con,dUe,dTe,Ndest,Isym)
 END IF
 CALL Assembly(Lhs,F,DTe,DUe,Ldeste,BCode(Nel,:),&
 Ncode,Elres_u(Nel,:),Elres_te,Diag,Ndofe,N_dof,Nodel,Fac)
 END DO &
 Symmetry_loop
END DO &

PARALELL PROGRAMMING 209

Elements_1
!--
! Add azimuthal integral for infinite regions
!--
IF(Nreg == 2) THEN
 DO m=1, Nodes
 DO n=1, N_dof
 IF(Ndest(m,n) == 0)CYCLE
 k=Ndest(m,n)
 Diag(k,n) = Diag(k,n) + 1.0_iwp
 END DO
 END DO
END IF
!---
! Add Diagonal coefficients
!---
DO m=1,Ndofs ! Loop over collocation points
 Nod=0
 DO n=1, Nodes
 DO l=1,N_dof
 IF (m == Ndest(n,l))THEN
 Nod=n
 EXIT
 END IF
 END DO
 IF (Nod /= 0)EXIT
 END DO
 DO k=1,N_dof
 DoF=Ndest(Nod,k)
 IF(DoF /= 0) THEN
 IF(NCode(DoF) == 1) THEN
 Nel=0 ; Pos=0
 DO i=1,Maxe
 DO j=1,Ndofe
 IF(DoF == Ldest(i,j))THEN
 Nel=i ; Pos=j ; EXIT
 END IF
 END DO
 IF(Nel /= 0)EXIT
 END DO
 F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos)
 ELSE
 Lhs(m,DoF)= Lhs(m,DoF) + Diag(m,k)
 END IF
 END IF
 END DO
END DO
!---
! Solve system of equations iteratively
!---
CALL bicgstab_l(Lhs,F,Ndofs,u1,0.0_iwp,tol,its,ell,kappa)

210 The Boundary Element Method with Programming

! Gather Element results from global result vector u1
Elements_2: &
DO nel=1,maxe,maxe - 1
 D_o_F1: &
 DO nd=1,Ndofe
 IF(Ldest(nel,nd) /= 0)THEN
 IF(NCode(Ldest(nel,nd)) == 0) THEN
 Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd))
 ELSE
 Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd))
 END IF
 END IF
 END DO &
 D_o_F1
 Elres_u(nel,:)= Elres_u(nel,:) * Scad
 Elres_t(nel,:)= Elres_t(nel,:) / Scat
 WRITE(12,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe)
 WRITE(12,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe)
END DO &
Elements_2
END PROGRAM General_purpose_BEM

 Figure 8.2 Boundary mesh for cubical cavity

The changes required to create Program 8.1 from Program 7.1 are minimal. Libraries
Utility_lib, Elast_lib, Laplace_lib and Integration_lib are unchanged (apart from

PARALELL PROGRAMMING 211

minimised output) and have been combined into a single library bem_lib, which also
contains the iterative solution subroutine bicgstab_l. For reasons associated with global
variable names used later in parallelised programs, the number of degrees of freedom
per element, called Ndof in Program 7.1, has been changed to N_dof. In the iterative
algorithm there are variables ell (INTEGER) and kappa (REAL) which have to be
declared and input, and since the process must be terminated somehow there are
declarations and input of an iteration termination counter its (INTEGER) and a
convergence tolerance tol (REAL). The only other change is the replacement of the
direct solver solve by the iterative one bicgstab_l ; further, because the sample input file
(although for a “small” problem) takes an example with 600 elements, the output has
been truncated to list only the first and last node, coordinate, element and so on.
Therefore in the output Elements_2 loop the counter increment is maxe–1 rather than 1.

8.2.1 Sample input file

The example chosen is of a cubical cavern in an infinite elastic medium loaded with a
uniform traction on all 6 faces and meshed by 600 linear elements (see Figure 8.2).

Square excavation 3D
 3
 3
 2
 0
 1
0.1000E+04
0.0000E+00
 602
 600
10.000 0.000 0.000
10.000 1.000 0.000
 9.000 1.000 0.000
 9.000 0.000 0.000
 8.000 1.000 0.000
 8.000 0.000 0.000
............................
10.000 5.000 9.000
10.000 6.000 9.000
10.000 7.000 9.000
10.000 8.000 9.000
10.000 9.000 9.000
 1 2 3 4
 4 3 5 6
 6 5 7 8
 8 7 9 10
 10 9 11 12
 12 11 13 14
.......................
597 131 133 598

212 The Boundary Element Method with Programming

598 133 135 599
599 135 137 600
600 137 139 601
601 139 141 602
602 141 143 331
 0
 600
 1 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0
 2 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0
 3 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0
 4 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.0
...
596 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0
597 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0
598 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0
599 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0
600 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 0.0
1.E-9 50 4 .7

 Young’s modulus is 1000.0 and Poisson’s ratio zero. The iteration tolerance is 1.e-9, a
maximum of 50 iterations is specified and the iterative algorithm parameters are set to
ell=4 and kappa = 0.7.

8.2.2 Sample output file

 Project:
 Square excavation 3D

 Cartesian_dimension: 3
 Elasticity Problem
 Infinite Region
 No symmetry
 Linear Elements
 Modulus: 1000.00000000000
 Poissons ratio: 0.000000000000000E+000
 Number of Nodes of System: 602
 Number of Elements of System: 600
Node 1 Coor 10.00 0.00 0.00
Node 602 Coor 10.00 9.00 9.00

 Incidences:

EL 1 Inci 1 2 3 4
EL 600 Inci 602 141 143 331

 Elements with Dirichlet BC´s:

PARALELL PROGRAMMING 213

 Elements with Neuman BC´s:

 Element 600 Prescribed values:
 -10.0000000000000 0.000000000000000E+000
0.000000000000000E+000
 -10.0000000000000 0.000000000000000E+000
0.000000000000000E+000

It took BiCGSTAB_L 4 iterations to converge

-0.00508 0.00508 0.00508 -0.00787 0.00123
0.00787 0.00079 -0.00079 0.02236 -0.00123
0.00787 0.00787
0.00000 0.00000 10.00000 0.00000 0.00000
10.00000 0.00000 0.00000 10.00000 0.00000
0.00000 10.00000
-0.02236 0.00079 0.00079 -0.00787 -0.00123
-0.00787 -0.00508 -0.00508 -0.00508 -0.00787
-0.00787 -0.00123
-10.00000 0.00000 0.00000 -10.00000 0.00000
0.00000 -10.00000 0.00000 0.00000 -10.00000
0.00000 0.00000

 These results are the same as those produced by Program 7.1 to 5 decimal places.

8.3 PROGRAM 8.2 : REPLACING ASSEMBLY BY THE
ELEMENT-BY-ELEMENT PROCEDURE

PROGRAM EBE_BEM
!--
! General purpose BEM program for solving elasticity problems
! This version EBE with bicgstab(l)
!--
USE bem_lib ; IMPLICIT NONE ! N_dof replaces Ndof
INTEGER, ALLOCATABLE :: Inci(:,:) ! Element Incidences
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) ! Element BC´s
INTEGER, ALLOCATABLE :: Ldest(:,:) ! Element destination vector
INTEGER, ALLOCATABLE :: Ndest(:,:) ! Node destination vector
REAL(iwp), ALLOCATABLE :: Elres_u(:,:) ! Element results , u
REAL(iwp), ALLOCATABLE :: Elres_t(:,:) ! Element results , t
REAL(iwp), ALLOCATABLE :: Elcor(:,:) ! Element coordinates
REAL(iwp), ALLOCATABLE :: xP(:,:) ! Node co-ordinates
REAL(iwp), ALLOCATABLE :: dUe(:,:),dTe(:,:),lhs(:,:),Diag(:,:)&
,pmul(:)
REAL(iwp), ALLOCATABLE :: km(:,:),qmul(:)
REAL(iwp), ALLOCATABLE :: store_dUe(:,:,:),store_dTe(:,:,:)
REAL(iwp), ALLOCATABLE :: F(:) ! global RHS
REAL(iwp), ALLOCATABLE :: u1(:) ! global vector of unknowns

214 The Boundary Element Method with Programming

CHARACTER (LEN=80) :: Title
INTEGER :: Cdim,Node,m,n,Istat,Nodel,Nel,N_dof,Toa
INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t
INTEGER :: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy
INTEGER :: its,iters,ell
REAL(iwp),ALLOCATABLE :: Fac(:) ! Factors for symmetry
REAL(iwp),ALLOCATABLE :: Elres_te(:),Elres_ue(:)
INTEGER,ALLOCATABLE :: Incie(:) ! Incidences for one element
INTEGER,ALLOCATABLE :: Ldeste(:),g(:)
REAL(iwp)::Con,E,ny,Scat,Scad,tol,kappa,alpha,beta,rho,gama,
&omega,norm_r,r0_norm,error,one=1._iwp,zero=.0_iwp
LOGICAL:: converged
REAL(iwp),ALLOCATABLE::s(:),GG(:,:),Gamma(:),
&rt(:),y(:),y1(:),r(:,:),uu(:,:)
!---
! Read job information
!---
OPEN (UNIT=11,FILE='prog82.dat',FORM='FORMATTED') ! Input
OPEN (UNIT=12,FILE='prog82.res',FORM='FORMATTED')! Output
Call Jobin(Title,Cdim,N_dof,Toa,Nreg,Ltyp,Con,E,ny,&
 Isym,nodel,nodes,maxe)
Nsym= 2**Isym ! number of symmetry loops
ALLOCATE(xP(Cdim,Nodes)) ! Array for node coordinates
ALLOCATE(Inci(Maxe,Nodel)) ! Array for incidences
CALL Geomin(Nodes,Maxe,xp,Inci,Nodel,Cdim)
Ndofe= Nodel*N_dof ! Total degrees of freedom of element
ALLOCATE(BCode(Maxe,Ndofe)) ! Element Boundary codes
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,n_dof)
READ(11,*) tol,its,ell,kappa ! BiCGStab data
ALLOCATE(Ldest(maxe,Ndofe)) ! Elem. destination vector
ALLOCATE(Ndest(Nodes,N_dof))
!--
! Determine Node destination vector and Element dest vector
!---
CALL Destination(Isym,Ndest,Ldest,xP,Inci,Ndofs,nodes,&
 N_dof,Nodel,Maxe)
!--
! Determine global Boundary code vector
!---
ALLOCATE(NCode(Ndofs))
NCode=0
DoF_o_System: DO nd=1,Ndofs
 DO Nel=1,Maxe
 DO m=1,Ndofe
 IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN
 NCode(nd)= NCode(nd)+BCode(Nel,m)
 END IF
 END DO
 END DO
END DO DoF_o_System

PARALELL PROGRAMMING 215

IF(N_dof ==1)E= Con
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat)
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe),lhs(Ndofs,Ndofe))!
Elem.coef.matrices
ALLOCATE(store_dTe(Maxe,Ndofs,Ndofe),store_dUe(Maxe,Ndofs,Ndofe))
! store els
ALLOCATE(Diag(Ndofs,N_dof)) ! Diagonal coefficients
ALLOCATE(F(Ndofs),u1(Ndofs)) ! global arrays
ALLOCATE(Elcor(Cdim,Nodel)) ! Elem. Coordinates
ALLOCATE(Fac(Ndofe)) ! Factor for symmetric elements
ALLOCATE(Incie(Nodel)) ! Element incidences
ALLOCATE(Ldeste(Ndofe),pmul(Ndofe),km(N_dof,N_dof)&
 ,g(N_dof),qmul(N_dof))
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe)) ! Tractions of Element
!--
! Compute element coefficient matrices
!--
Lhs=zero; F = zero; u1 = zero; Diag = zero;store_dUe = zero;
store_dTe = zero
Elements_1:&
DO Nel=1,Maxe
 Symmetry_loop:&
 DO nsy= 1,Nsym
 Elcor(:,:)= xP(:,Inci(Nel,:))
 Incie= Inci(nel,:)
 Ldeste= Ldest(nel,:)
 Fac(1:nodel*n_dof)= 1.0_iwp
 Elres_te(:)=Elres_t(Nel,:)
 IF(Isym > 0) THEN
 CALL Mirror(Isym,nsy,Nodes,Elcor,Fac&
 Incie,Ldeste,Elres_te,Elres_ue,nodel,n_dof,Cdim)
 END IF
 IF(Cdim == 2) THEN
 IF(N_dof == 1) THEN
 CALL Integ2P(Elcor,Incie,Nodel,Nodes,
 &xP,Con,dUe,dTe,Ndest,Isym)
 ELSE
 CALL Integ2E(Elcor,Incie,Nodel,Nodes,
 &xP,E,ny,dUe,dTe,Ndest,Isym)
 END IF
 ELSE
 CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,N_dof &
 ,E,ny,Con,dUe,dTe,Ndest,Isym)
 END IF
! Now build global F and diag but not LHS
 CALL rhs_and_diag(F,DTe,DUe,Ldeste,BCode(Nel,:),Ncode
 &,Elres_u(Nel,:),Elres_te,Diag,Ndofe,N_dof,Nodel,Fac)
 END DO &
 Symmetry_loop
 store_dUe(Nel,:,:) = dUe; store_dTe(Nel,:,:) = dTe
END DO &

216 The Boundary Element Method with Programming

Elements_1
!--
! Add azimuthal integral for infinite regions
!--
IF(Nreg == 2) THEN
 DO m=1, Nodes
 DO n=1, N_dof
 IF(Ndest(m,n) == 0)CYCLE
 k=Ndest(m,n)
 Diag(k,n) = Diag(k,n) + 1.0_iwp
 END DO
 END DO
END IF
!---
! Store active Diagonal coefficients
!---
DO m=1,Ndofs ! Loop over collocation points
 Nod=0
 DO n=1, Nodes
 DO l=1,N_dof
 IF (m == Ndest(n,l))THEN
 Nod=n ; EXIT
 END IF
 END DO
 IF (Nod /= 0)EXIT
 END DO
 DO k=1,N_dof
 DoF=Ndest(Nod,k)
 IF(DoF /= 0) THEN
 IF(NCode(DoF) == 1) THEN
 Nel=0 ; Pos=0
 DO i=1,Maxe
 DO j=1,Ndofe
 IF(DoF == Ldest(i,j))THEN
 Nel=i ; Pos=j ; EXIT
 END IF
 END DO
 IF(Nel /= 0)EXIT
 END DO
 F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos)
 END IF
 END IF
 END DO
END DO
!---
! Solve system of equations element by element
!---
ALLOCATE(s(ell+1),GG(ell+1,ell+1),Gamma(ell+1),&
rt(Ndofs),y(Ndofs),y1(Ndofs),r(Ndofs,ell+1),uu(Ndofs,ell+1))
! initialisation phase
u1 = zero ; y = u1 ; y1 = zero

PARALELL PROGRAMMING 217

Elements_2 : DO Nel = 1 , Maxe
 Dte = store_DTe(Nel,:,:); DUe = store_DUe(Nel,:,:)
 Ldeste = Ldest(Nel,:); pmul = y(Ldeste)
 CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)&
 ,Ncode,Ndofe,Fac)
 y1 = y1 + MATMUL(lhs,pmul)
END DO Elements_2
DO i = 1 , nodes
 CALL get_km(Cdim,i,y,Diag,g,qmul,km)
 y1(g) = y1(g) + MATMUL(km,qmul)
END DO
 y=y1; rt = F - y
 r=zero ; r(:,1) = rt ; uu = zero ; gama = one ; omega=one
 norm_r = norm(rt);r0_norm = norm_r;error = one ; iters = 0
! bicgstab(ell) iterations
iterations : DO
 iters = iters + 1 ; converged = error < tol
 IF(iters==its.OR. converged) EXIT
 gama = - omega*gama ; y = r(:,1)
 DO j = 1 , ell
 rho = DOT_PRODUCT(rt,y) ; beta = rho/gama
 uu(:,1:j) = r(:,1:j) - beta * uu(:,1:j) ; y = uu(:,j)
 y1 = zero
 Elements_3: DO Nel = 1 , Maxe
 Dte = store_DTe(Nel,:,:); DUe = store_DUe(Nel,:,:)
 Ldeste = Ldest(Nel,:); pmul = y(Ldeste)
 CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)&
 ,Ncode,Ndofe,Fac)
 y1 = y1 + MATMUL(lhs,pmul)
 END DO Elements_3
 DO i = 1 , nodes
 CALL get_km(Cdim,i,y,Diag,g,qmul,km)
 y1(g) = y1(g) + MATMUL(km,qmul)
 END DO
 y=y1; uu(:,j+1) = y
 gama = DOT_PRODUCT(rt,y); alpha = rho/gama
 u1=u1+ alpha * uu(:,1)
 r(:,1:j) = r(:,1:j) - alpha * uu(:,2:j+1)
 y = r(:,j)
 y1 = zero
 Elements_4: DO Nel = 1 , Maxe
 Dte = store_DTe(Nel,:,:); DUe = store_DUe(Nel,:,:)
 Ldeste = Ldest(Nel,:); pmul = y(Ldeste)
 CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)&
 ,Ncode,Ndofe,Fac)
 y1 = y1 + MATMUL(lhs,pmul)
 END DO Elements_4
 DO i = 1 , nodes
 CALL get_km(Cdim,i,y,Diag,g,qmul,km)
 y1(g) = y1(g) + MATMUL(km,qmul)
 END DO

218 The Boundary Element Method with Programming

 y=y1 ; r(:,j+1) = y
 END DO
 GG = MATMUL(TRANSPOSE(r),r)
 CALL form_s(gg,ell,kappa,omega,gamma,s)
 u1 = u1 - MATMUL(r,s);r(:,1)=MATMUL(r,Gamma)
 uu(:,1)=MATMUL(uu,Gamma)
 norm_r = norm(r(:,1)) ; error = norm_r/r0_norm
END DO iterations
WRITE(12,'(/,A,I5,A,/)')"It took BiCGSTAB_L ",iters," iterations
to converge"
! Gather Element results from global result vector u1
Elements_5: &
DO nel=1,maxe , maxe - 1
 D_o_F1: &
 DO nd=1,Ndofe
 IF(Ldest(nel,nd) /= 0)THEN
 IF(NCode(Ldest(nel,nd)) == 0) THEN
 Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd))
 ELSE
 Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd))
 END IF
 END IF
 END DO &
 D_o_F1
 Elres_u(nel,:)= Elres_u(nel,:) * Scad
 Elres_t(nel,:)= Elres_t(nel,:) / Scat
 WRITE(12,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe)
 WRITE(12,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe)
END DO &
Elements_5
END PROGRAM EBE_BEM

The essential difference between this program and the preceding one is that we do not
now store the Ndofs*Ndofs array Lhs. However, in this version, storage is allocated to
all the element dUe and dTe matrices as store_dUe and store_dTe respectively. The
basic BiCGStab algorithm is unchanged, but has to be “unscrambled” from the
bicgstab_l subroutine, because instead of a simple MATMUL operation to complete the
matrix*vector product of equation (8.1) we have to carry this operation out element-by-
element as in equation (8.4). Since the iterative algorithm is not now hidden in a
subroutine there are additional declarations of REALs alpha, beta etc, but these need
not concern the user. The same applies to arrays s, GG etc.

The early part of the program, up to the call to subroutine Scal, remains unchanged.
In the subsequent array allocations lhs is used for the element-sized “left hand side” in
the element-by-element matrix*vector product, so Lhs can be deleted. The three-
dimensional storage arrays are added, as are pmul, km, g and qmul which are necessary
for the addition of diagonal components.

In the Elements_1 loop, instead of calling subroutine Assembly, we call
rhs_and_diag, which merely omits to form Lhs, but otherwise forms F and Diag as

PARALELL PROGRAMMING 219

before. At the end of the loop, the element matrices are stored. The section adding the
azimuthal integral for infinite regions is unchanged. In the next loop F is augmented
from Diag as before, but of course there is no Lhs.

We now proceed to a new section for solving the equation system element-by-
element. This contains two new subroutines form_lhs and get_km. The first of these
combines element dUe and dTe matrices appropriately and the second gets the
appropriate part of Diag for its addition into the matrix*vector multiplication. In the first
case the “gather” vector is Ldeste and in the second it is g.

So in the BiCGStab process there are three matrix*vector products: Elements_2, to
start the process and Elements_3 and Elements_4 in the “ell” loop. The usual value of
ell is taken to be 4 but this can be changed by the user.

The results are collected from the global result vector u1 in exactly the same manner
as in the previous program.

8.3.1 Sample input file

The input file is precisely the same as for the previous program.

8.3.2 Sample output file

 Project:
 Square excavation 3D

 Cartesian_dimension: 3
 Elasticity Problem
 Infinite Region
 No symmetry
 Linear Elements
 Modulus: 1000.00000000000
 Poissons ratio: 0.000000000000000E+000
 Number of Nodes of System: 602
 Number of Elements of System: 600
Node 1 Coor 10.00 0.00 0.00
Node 602 Coor 10.00 9.00 9.00

 Incidences:

EL 1 Inci 1 2 3 4
EL 600 Inci 602 141 143 331

 Elements with Dirichlet BC´s:
 Elements with Neuman BC´s:
 Element 600 Prescribed values:
 -10.000 0.000E+000 0.000E+000
 -10.000 0.000E+000 0.000E+000

220 The Boundary Element Method with Programming

It took BiCGSTAB_L 4 iterations to converge

 -0.00508 0.00508 0.00508 -0.00787 0.00123
0.00787 0.00079 -0.00079 0.02236 -0.00123
0.00787 0.00787
 0.00000 0.00000 10.00000 0.00000 0.00000
10.00000 0.00000 0.00000 10.00000 0.00000
0.00000 10.00000
 -0.02236 0.00079 0.00079 -0.00787 -0.00123 -
0.00787 -0.00508 -0.00508 -0.00508 -0.00787 -
0.00787 -0.00123
 -10.00000 0.00000 0.00000 -10.00000
0.00000 0.00000 -10.00000 0.00000 0.00000 -
10.00000 0.00000 0.00000

The output can be seen to be the same as for Program 8.1 to 5 significant figures. The

iterative algorithm converged in 4 iterations in this case.

8.4 PROGRAM 8.3 : PARALLELISING THE
ELEMENT_BY_ELEMENT PROCEDURE

PROGRAM PARALLEL_BEM
!--
! General purpose BEM program for solving elasticity problems
! This version parallel with bicgstab(l)
!--
USE bem_lib_p; USE precision; USE timing; USE utility; USE
mp_module
USE global_variables1; USE gather_scatter6
IMPLICIT NONE ! Ndof changed to N_dof
INTEGER, ALLOCATABLE :: Inci(:,:) ! Element Incidences
INTEGER, ALLOCATABLE :: BCode(:,:), NCode(:) ! Element BC´s
INTEGER, ALLOCATABLE :: Ldest(:,:) ! Element destination vector
INTEGER, ALLOCATABLE :: Ndest(:,:) ! Node destination vector
REAL(iwp), ALLOCATABLE :: Elres_u(:,:) ! Element results , u
REAL(iwp), ALLOCATABLE :: Elres_t(:,:) ! Element results , t
REAL(iwp), ALLOCATABLE :: Elcor(:,:) ! Element coordinates
REAL(iwp), ALLOCATABLE :: xP(:,:) ! Node co-ordinates
REAL(iwp),ALLOCATABLE :: &
dUe(:,:),dTe(:,:),lhs(:,:),Diag(:,:),pmul(:)
REAL(iwp), ALLOCATABLE :: km(:,:),qmul(:),Diag1(:,:)
REAL(iwp), ALLOCATABLE :: store_dUe_pp(:,:,:),store_dTe_pp(:,:,:)
REAL(iwp), ALLOCATABLE :: F(:),F1(:) ! global RHS
REAL(iwp), ALLOCATABLE :: u1(:),y_cop(:) ! vector of unknowns
CHARACTER (LEN=80) :: Title
INTEGER :: Cdim,m,n,Nodel,Nel,N_dof,Toa,N_tot

PARALELL PROGRAMMING 221

INTEGER :: Nreg,Ltyp,Nodes,Maxe,Ndofe,Ndofs,ndg,NE_u,NE_t
INTEGER:: nod,nd,i,j,k,l,DoF,Pos,Isym,nsym,nsy,its,iters,ell
REAL(iwp),ALLOCATABLE :: Fac(:) ! Factors for symmetry
REAL(iwp),ALLOCATABLE :: Elres_te(:),Elres_ue(:)
INTEGER,ALLOCATABLE :: Incie(:) ! Incidences for one element
INTEGER,ALLOCATABLE :: Ldeste(:),g(:)
REAL(iwp) :: Con,E,ny,Scat,Scad,tol,kappa,alpha,beta,rho,gama,
&omega,norm_r,r0_norm,error,one=1._iwp,zero=.0_iwp
LOGICAL:: converged
REAL(iwp),ALLOCATABLE::s(:),GG(:,:),Gamma(:),rt(:),y(:),y1(:),r(:
,:),uu(:,:)
timest(1) = elap_time(); CALL find_pe_procs(numpe,npes)
!---
! Read job information
!---
OPEN (UNIT=11,FILE='prog83.dat',FORM='FORMATTED',ACTION='READ') !
Input
IF(numpe==1)OPEN(UNIT=12,FILE='prog83.res',FORM='FORMATTED',ACTIO
N='WRITE')!O/P
IF(numpe==1) WRITE(12,*) "This job ran on ",npes," processors"
Call Jobin(Title,Cdim,N_dof,Toa,Nreg,Ltyp,Con,E,ny,&
 Isym,nodel,nodes,nels)
Nsym= 2**Isym ! number of symmetry loops
ALLOCATE(xP(Cdim,Nodes)) ! Array for node coordinates
ALLOCATE(Inci(nels,Nodel)) ! Array for incidences
CALL Geomin(Nodes,nels,xp,Inci,Nodel,Cdim)
Ndofe= Nodel*N_dof ! Total degrees of freedom of element
ALLOCATE(BCode(nels,Ndofe)) ! Element Boundary codes
ALLOCATE(Elres_u(nels,Ndofe),Elres_t(nels,Ndofe))
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,n_dof)
READ(11,*) tol,its,ell,kappa ! BiCGStab data
ALLOCATE(Ldest(nels,Ndofe)) ! Elem. destination vector
ALLOCATE(Ndest(Nodes,N_dof))
!--
! Determine Node destination vector and Element dest vector
!--
CALL Destination(Isym,Ndest,Ldest,xP,Inci,Ndofs,&
nodes,N_dof,Nodel,nels)
!--
! Determine global Boundary code vector
!--
ALLOCATE(NCode(Ndofs)); CALL calc_nels_pp ! elements per
processor
IF(numpe==1) WRITE(12,*) "Elements on first processor ",nels_pp
NCode=0
DoF_o_System: &
DO nd=1,Ndofs
 DO Nel=1,nels
 DO m=1,Ndofe
 IF (nd == Ldest(Nel,m) .and. NCode(nd) == 0) THEN
 NCode(nd)= NCode(nd)+BCode(Nel,m)

222 The Boundary Element Method with Programming

 END IF
 END DO
 END DO
END DO &
DoF_o_System
IF(N_dof ==1)E= Con
CALL Scal(E,xP(:,:),Elres_u(:,:),Elres_t(:,:),Cdim,Scad,Scat)
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe),lhs(Ndofs,Ndofe))!
Elem.coef.matrices
ALLOCATE(store_dTe_pp(Ndofs,Ndofe,nels_pp), &
 store_dUe_pp(Ndofs,Ndofe,nels_pp)) ! store el matrices
on procs
ALLOCATE(Diag(Ndofs,N_dof),Diag1(Ndofs,N_dof))!Diag cos
ALLOCATE(F(Ndofs),u1(Ndofs),F1(Ndofs)) ! global arrays
ALLOCATE(Elcor(Cdim,Nodel)) ! Elem. Coordinates
ALLOCATE(Fac(Ndofe)) ! Factor for symmetric elements
ALLOCATE(Incie(Nodel)) ! Element incidences
ALLOCATE(Ldeste(Ndofe),pmul(Ndofe),km(N_dof,N_dof),g(N_dof),qmul(
N_dof))!dest.
ALLOCATE(Elres_te(Ndofe),Elres_ue(Ndofe)) ! Tractions of Element
!--
! Compute element coefficient matrices
!--
Lhs=zero; F1 = zero; u1 = zero; Diag1 = zero; N_tot =
Ndofs*N_dof
store_dUe_pp = zero; store_dTe_pp = zero ; ielpe = iel_start
Elements_1:&
DO Nel=1,nels_pp
 Symmetry_loop:&
 DO nsy= 1,Nsym
 Elcor(:,:)= xP(:,Inci(ielpe,:))
 Incie= Inci(ielpe,:)
 Ldeste= Ldest(ielpe,:)
 Fac(1:nodel*n_dof)= 1.0_iwp
 Elres_te(:)=Elres_t(ielpe,:)
 IF(Isym > 0) THEN
 CALL Mirror(Isym,nsy,Nodes,Elcor,Fac, &
 Incie,Ldeste,Elres_te,Elres_ue,nodel,n_dof,Cdim)
 END IF
 IF(Cdim == 2) THEN
 IF(N_dof == 1) THEN
 CALL Integ2P(Elcor,Incie,Nodel,Nodes,&
 xP,Con,dUe,dTe,Ndest,Isym)
 ELSE
 CALL Integ2E(Elcor,Incie,Nodel,Nodes, &
 xP,E,ny,dUe,dTe,Ndest,Isym)
 END IF
 ELSE
 CALL Integ3(Elcor,Incie,Nodel,Nodes,xP,N_dof &
 ,E,ny,Con,dUe,dTe,Ndest,Isym)
 END IF

PARALELL PROGRAMMING 223

! Now build global F and diag but not LHS
 CALL rhs_and_diag(F1,DTe,DUe,Ldeste,BCode(ielpe,:),Ncode &
 ,Elres_u(ielpe,:),Elres_te,Diag1,Ndofe,N_dof,Nodel,Fac)
 END DO &
 Symmetry_loop ; ielpe = ielpe + 1
 store_dUe_pp(:,:,Nel) = dUe; store_dTe_pp(:,:,Nel) = dTe
END DO &
Elements_1
CALL MPI_ALLREDUCE(F1,F,Ndofs,MPI_REAL8,MPI_SUM&
 ,MPI_COMM_WORLD,ier)
CALL MPI_ALLREDUCE(Diag1,Diag,N_tot,MPI_REAL8,MPI_SUM&
 ,MPI_COMM_WORLD,ier)
!--
! Add azimuthal integral for infinite regions
!--
IF(Nreg == 2) THEN
 DO m=1, Nodes
 DO n=1, N_dof
 IF(Ndest(m,n) == 0)CYCLE
 k=Ndest(m,n)
 Diag(k,n) = Diag(k,n) + 1.0_iwp
 END DO
 END DO
END IF
!---
! Store active Diagonal coefficients
!---
DO m=1,Ndofs ! Loop over collocation points
 Nod=0
 DO n=1, Nodes
 DO l=1,N_dof
 IF (m == Ndest(n,l))THEN
 Nod=n ; EXIT
 END IF
 END DO
 IF (Nod /= 0)EXIT
 END DO
 DO k=1,N_dof
 DoF=Ndest(Nod,k)
 IF(DoF /= 0) THEN
 IF(NCode(DoF) == 1) THEN
 Nel=0 ; Pos=0
 DO i=1,nels
 DO j=1,Ndofe
 IF(DoF == Ldest(i,j))THEN
 Nel=i ; Pos=j ; EXIT
 END IF
 END DO
 IF(Nel /= 0)EXIT
 END DO
 F(m) = F(m) - Diag(m,k) * Elres_u(Nel,Pos)

224 The Boundary Element Method with Programming

 END IF
 END IF
 END DO
END DO
IF(numpe==1) WRITE(12,*) "Time before eq solution is ",&
elap_time()-timest(1)
!---
! Solve system of equations element by element
!---
ALLOCATE(s(ell+1),GG(ell+1,ell+1),Gamma(ell+1),y_cop(Ndofs),
& rt(Ndofs),y(Ndofs),y1(Ndofs),r(Ndofs,ell+1),uu(Ndofs,ell+1))
! initialisation phase
u1 = zero ; y = u1 ; y_cop = y; y1 = zero ; neq = Ndofs
ielpe = iel_start
Elements_2 : DO Nel = 1 , nels_pp
 Dte = store_DTe_pp(:,:,Nel); DUe = store_DUe_pp(:,:,Nel)
 Ldeste = Ldest(ielpe,:); pmul = y(Ldeste)
 CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:),Ncode,Ndofe,Fac)
 y1 = y1 + MATMUL(lhs,pmul) ; ielpe = ielpe + 1
END DO Elements_2
CALL MPI_ALLREDUCE(y1,y,neq,MPI_REAL8,MPI_SUM,MPI_COMM_WORLD,ier)
DO i = 1 , nodes
 CALL get_km(Cdim,i,y_cop,Diag,g,qmul,km)
 y(g) = y(g) + MATMUL(km,qmul)
END DO
rt = F - y
r=zero ; r(:,1) = rt ; uu = zero ; gama = one ; omega=one
norm_r = norm(rt) ; r0_norm = norm_r ; error = one
iters = 0
! bicgstab(ell) iterations
iterations : DO
 iters = iters + 1 ; converged = error < tol
 IF(iters==its.OR. converged) EXIT
 gama = - omega*gama ; y = r(:,1)
 DO j = 1 , ell
 rho = DOT_PRODUCT(rt,y) ; beta = rho/gama
 uu(:,1:j) = r(:,1:j) - beta * uu(:,1:j) ; y = uu(:,j)
 y1 = zero ; y_cop = y ; ielpe = iel_start
 Elements_3: DO Nel = 1 , nels_pp
 Dte = store_DTe_pp(:,:,Nel); DUe = store_DUe_pp(:,:,Nel)
 Ldeste = Ldest(ielpe,:); pmul = y(Ldeste)
 CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)&
 ,Ncode,Ndofe,Fac)
 y1 = y1 + MATMUL(lhs,pmul) ; ielpe = ielpe + 1
 END DO Elements_3
 CALL MPI_ALLREDUCE(y1,y,neq,MPI_REAL8,MPI_SUM&
 ,MPI_COMM_WORLD,ier)
 DO i = 1 , nodes
 CALL get_km(Cdim,i,y_cop,Diag,g,qmul,km)
 y(g) = y(g) + MATMUL(km,qmul)
 END DO

PARALELL PROGRAMMING 225

 uu(:,j+1) = y
 gama = DOT_PRODUCT(rt,y); alpha = rho/gama
 u1=u1+ alpha * uu(:,1)
 r(:,1:j) = r(:,1:j) - alpha * uu(:,2:j+1)
 y = r(:,j)
 y1 = zero ; y_cop = y ; ielpe = iel_start
 Elements_4: DO Nel = 1 , nels_pp
 Dte = store_DTe_pp(:,:,Nel); DUe = store_DUe_pp(:,:,Nel)
 Ldeste = Ldest(ielpe,:); pmul = y(Ldeste)
 CALL form_lhs(lhs,DTe,DUe,Ldeste,BCode(Nel,:)&
 ,Ncode,Ndofe,Fac)
 y1 = y1 + MATMUL(lhs,pmul) ; ielpe = ielpe + 1
 END DO Elements_4
 CALL MPI_ALLREDUCE(y1,y,neq,MPI_REAL8,MPI_SUM&
 ,MPI_COMM_WORLD,ier)
 DO i = 1 , nodes
 CALL get_km(Cdim,i,y_cop,Diag,g,qmul,km)
 y(g) = y(g) + MATMUL(km,qmul)
 END DO
 r(:,j+1) = y
 END DO
 GG = MATMUL(TRANSPOSE(r),r)
 CALL form_s(gg,ell,kappa,omega,gamma,s)
 u1 = u1 - MATMUL(r,s);r(:,1)=MATMUL(r,Gamma)
 uu(:,1)=MATMUL(uu,Gamma)
 norm_r = norm(r(:,1)) ; error = norm_r/r0_norm
END DO iterations
IF(numpe==1) WRITE(12,'(/,A,I5,A,/)')&
 "It took BiCGSTAB_L ",iters," iterations to converge"
! Gather Element results from global result vector u1
Elements_5: &
DO nel=1,nels , nels - 1
 D_o_F1: &
 DO nd=1,Ndofe
 IF(Ldest(nel,nd) /= 0)THEN
 IF(NCode(Ldest(nel,nd)) == 0) THEN
 Elres_u(nel,nd) = Elres_u(nel,nd) + u1(Ldest(nel,nd))
 ELSE
 Elres_t(nel,nd) = Elres_t(nel,nd) + u1(Ldest(nel,nd))
 END IF
 END IF
 END DO &
 D_o_F1
 Elres_u(nel,:)= Elres_u(nel,:) * Scad
 Elres_t(nel,:)= Elres_t(nel,:) / Scat
 WRITE(12,'(24F12.5)') (Elres_u(nel,m), m=1,Ndofe)
 WRITE(12,'(24F12.5)') (Elres_t(nel,m), m=1,Ndofe)
END DO &
Elements_5
IF(numpe==1) WRITE(12,*) "This analysis took ", elap_time() -
timest(1)

226 The Boundary Element Method with Programming

CALL shutdown()
END PROGRAM PARALLEL_BEM

Comparing this parallelised program with the previous one, we see a simple logical
development. Extra libraries are USEd to include routines needed for parallel processing
and the basic library is bem_lib_p rather than bem_lib but the user sees a basically
unchanged coding. New arrays F1 and Diag1 are needed to hold the parts of F and Diag
on the different processors until they are accumulated into F and Diag. N_tot is the total
number of entries in Diag. Otherwise the declarations are unchanged.

The first sign of parallelisation is the need to establish the number of parallel
processors being used (npes) and their “rank” (numpe). So numpe takes values 1 to
npes. This is done by subroutine find_pe_procs. Before this, the clock is started to
assess the time taken in different parts of the program (timing). To maintain simplicity,
all processors read the input data although it might be better for one processor to do the
reading and then “broadcast” to the other processors. The first processor (numpe=1) is
used for output and the number of processors being used is listed. The next task is, given
the number of elements in the analysis from Jobin, to calculate the number of elements
to be allocated to each processor. This is done by simple division using calc_nels_pp so
that there will be nearly the same number nels_pp on each processor. There is no need
to employ other than a “naïve” serial distribution - first 10, second 10 etc. As a check the
number of elements on the first processor is output.

The next section establishing Ncode remains unchanged, but in the subsequent array
allocations each processor will only hold its own element matrices and so the storage
arrays become store_dUe_pp and store_dTe_pp respectively. These could have
(slightly) different sizes nels_pp. We can then proceed to compute the element
coefficient matrices and store them. An important parameter established in the parallel
libraries is iel_start, which is the number of the first element on each processor. So
when counting round the elements, we count Nel = 1 , nels_pp rather than Nel = 1 ,
Maxe and counter ielpe replaces Nel to identify an element in parallel. In the call to
rhs_and_diag we calculate only the parts of F and Diag which reside on that particular
processor as F1 and Diag1. Therefore, after the Elements_1 loop we need MPI routine
MPI_ALLREDUCE with parameter MPI_SUM to collect the contributions from all
processors and add into F and Diag. The “azimuthal integral” and “Diagonal
coefficients” sections of the program are unchanged and the analysis time after element
calculation (which can be quite significant) is printed.

In the equation solution section, the parallel coding looks very similar to its serial
counterpart. The element loops are over nels_pp rather than Maxe and one has to be
careful to use element counter ielpe rather than Nel where appropriate. To compute a
total vector y, the partial vectors y1 have always to be collected using
MPI_ALLREDUCE. Gathering the element results is unchanged and it is necessary to
close down MPI using subroutine shutdown. By comparing Programs 8.2 and 8.3 the
hope is that the serial Fortran programmer will see that the step to parallel analyses is
indeed a small one.

PARALELL PROGRAMMING 227

8.4.1 Sample input file

The input is precisely the same as for the previous two programs.

8.4.2 Sample output file

 This job ran on 4 processors
 Project:
 Square excavation 3D
 Cartesian_dimension: 3
 Elasticity Problem
 Infinite Region
 No symmetry
 Linear Elements
 Modulus: 1000.00000000000
 Poissons ratio: 0.000000000000000E+000
 Number of Nodes of System: 602
 Number of Elements of System: 600
Node 1 Coor 10.00 0.00 0.00
Node 602 Coor 10.00 9.00 9.00
 Incidences:
EL 1 Inci 1 2 3 4
EL 600 Inci 602 141 143 331
 Elements with Dirichlet BC´s:
 Elements with Neuman BC´s:
 Element 600 Prescribed values:
 -10.000 0.000E+000 0.000E+000
 -10.000 0.000E+000 0.000E+000
 Elements on first processor 150
 Time before eq solution is 1.85099999999875
It took BiCGSTAB_L 4 iterations to converge
 -0.00508 0.00508 0.00508 -0.00787 0.00123
0.00787 0.00079 -0.00079 0.02236 -0.00123
0.00787 0.00787
 0.00000 0.00000 10.00000 0.00000 0.00000
10.00000 0.00000 0.00000 10.00000 0.00000
0.00000 10.00000
 -0.02236 0.00079 0.00079 -0.00787 -0.00123 -
0.00787 -0.00508 -0.00508 -0.00508 -0.00787 -
0.00787 -0.00123
 -10.00000 0.00000 0.00000 -10.00000 0.00000
0.00000 -10.00000 0.00000 0.00000 -10.00000
0.00000 0.00000
 This analysis took 2.813629999999903

The output is again unchanged to five significant figures. The number of processors
used was 4 and the speedup due to parallelisation, even on such a small problem, is
shown in Table 8.1, the results being produced on a Bull computer

228 The Boundary Element Method with Programming

Table 8.1 Results for 600 element problem

Processors Analysis time

(seconds
1 8.3
2 4.6
4 2.8

8.4.3 Results from larger analyses

When the number of elements was increased to 9600 the results obtained using a Bull
computer and the UK National HPCx system are shown in Table 8.2

Table 8.2 Results for 9600 element problem

Analysis time (seconds) Processors
Bull HPx

32 490
64 260
128 140 63
256 45
512 43

The scaling is satisfactory up to about a couple of hundred processors but not beyond.
Recall that this analysis could not be run on a single processor because of storage
limitations. Increasing the number of elements to 21600 leads to the following results on
HPCx shown in Table 8.3

Table 8.3 Results for 21600 element problem

Processors Analysis time

(seconds)
512 288

1024 249

In this case there is no advantage in going beyond about 500 processors, but this quite

large problem is solved in about 4 minutes – “coffee break time”.
A concern when using iterative methods is that iteration counts may become “large”

as problems get bigger. The counts for the above analyses are listed below in Table 8.4

PARALELL PROGRAMMING 229

Table 8.4 Convergence statistics for BiCGStab

Equations Iterations to

Converge
1800 4

28800 15
64800 49

It can be seen that the increase in iteration count with problem size is modest. A

second concern about iterative methods relates to the conditioning of the system
equations. When Poisson’s Ratio was increased to 0.5 the iterations to convergence
increased by only about 50%2.

8.5 CONCLUSIONS

In this chapter we have illustrated how the basic program from the previous Chapter can
be modified easily to use an iterative equation solution technique rather than a direct
one. The purpose behind this is then to extend further to replace traditional element
assembly by an element-by-element approach whereby no large system matrices are ever
assembled at all. This opens up the prospect of a simple parallel processing strategy for
boundary element methods. When this is done, solution times can be dramatically
reduced and much larger problems solved. Finally readers should note that the new
libraries referred to are not listed but are available for download from the web (see
information in the preface).

8.6 REFERENCES

1. Smith, I.M. and Griffiths,D.V. (2004) Programming the Finite Element Method,

J.Wiley
2. Smith, I.M. and Margetts,L. (2007) Parallel Boundary Element Analysis of Tunnels,

Proceedings EUROTUN 2007, Vienna.

9
Postprocessing

Man soll auf alles achten, denn man kann alles deuten
(You should consider everything

 because you can interpret everything)
H. Hesse

9.1 INTRODUCTION

In the previous Chapters we developed a general purpose computer program for the
analysis of two and three-dimensional problems in elasticity and potential flow. This
program only calculates the values of unknowns (temperature/displacements or
boundary flow/tractions) at the nodes of boundary elements. In this chapter we will
develop procedures for the calculation of other results which are of interest. These are
the flow vector or the stress tensor at the boundary and at points inside the domain.

There are two types of approximations involved in a boundary element analysis. The
first is that the distribution of temperature/displacement, or boundary flow/stress, is
approximated at the boundary by shape functions defined locally for each element. The
second approximation is that the theorem by Betti is only ensured to be satisfied at the
nodal points on the boundary elements (collocation points).

Because we use fundamental solutions, the variation of temperature/displacements
inside the domain is known in terms of boundary values. It is therefore possible to
compute the results at any point inside the domain as a postprocessing exercise, after the
analysis has been performed. This is in contrast to the FEM, where results are only
available at points inside finite elements. Now the results at interior points can be part of
a graphical postprocessor, with the option that the user may freely specify locations
where results are required. Instead of using interpolation between values at nodal points
of elements, we can use a direct procedure to determine the contour lines and this will be
discussed later.

In the discussion on the computation of results we distinguish between values inside
the domain and on the boundary. For the computation of results the integral equation for

232 The Boundary Element Method with Programming

the displacement (5.16) or temperature/potential (5.20) can be used. The strain tensor is
determined by taking the derivatives of the displacement solution. However, we note
that the singularity of the Kernels increase by one order and tend to infinity as the
boundary is approached. Special consideration has to be given to this case and therefore
we will deal separately with the computation of values on the boundary and internal
values.

Because of the increased singularity of the Kernels, special care has to be taken in the
numerical integration when points are very close to the boundary and a subdivision of
the integration region will become inevitable.

9.2 COMPUTATION OF BOUNDARY RESULTS

For the computation of postprocessed results on the boundary, we use a procedure which
is essentially the same as the one used in the finite element method for computing results
inside elements. Along a boundary element we know (after the solution), the variation of
both u and t because of the approximation introduced in 6.2. We can therefore compute
fluxes or stresses tangential to the boundary by differentiation of u. In the following we
will discuss two and three-dimensional potential and elasticity problems separately.

9.2.1 Potential problems

The temperature distribution on a boundary element in terms of nodal values e
nu is

(9.1)

For two-dimensional problems we define a vector V in the direction tangential to the
boundary (Figure 9.1) where

(9.2)

and e
nx is a vector containing the coordinates of the element nodes. The flow in

tangential direction is given by

(9.3)

where x is the inverse of the Jacobian given as

(9.4)

N

n

e
nnuNu

1

N

n

e
n

n
x u

x
Nk

x
ukq

1

1

N
en
n

n

NV x x

22

1

yx VVx

POSTPROCESSING 233

Figure 9.1 Local coordinate system for computing boundary values

For three-dimensional problems we construct, at a point inside the element, a local
orthogonal coordinate system x and y , with directions as specified by vectors v1 and v2
as outlined in section 3.9 (see Figure 9.2), where v1 is in the direction.

Figure 9.2 Local coordinate systems for surface element

The components of the flow vector in the local directions are

(9.5)

1

1 1

N
en

x n
n

N N
e en n

y n n
n n

Nu uq k k k u
x x x

N Nu u uq k k k u u
y y y y y

V
x

x

y

x

y

x

y
z

1v v
2v

v

234 The Boundary Element Method with Programming

To compute the values of / x etc. we consider a view normal to the surface of the
element (Figure 9.3) in order to more clearly show the relationship between the skew
and the orthogonal axes.

Figure 9.3 View normal to surface of element

The unit vectors ,v v in the direction , are computed by

(9.6)

where ,J J are stretch factors given by

(9.7)

The relationship between ,x y and , is (see Figure 9.3)

(9.8)

where

(9.9)

Solving equations (9.8) for ,

(9.10)

2 2 2 2 2 2 ; x y z x y zJ V V V J V V V

1
1 1 1 1 ;
J J J J

x xv v V v V

cos

sin

x J J

y J

2cos ; sin v v v v

1 cos 1() ;
sin sin

x y y
J J

y

v

, x

2v

1v

POSTPROCESSING 235

and taking the derivatives we obtain

(9.11)

The theory just outlined may be programmed into a subroutine which computes
boundary flows at a point on the boundary element with intrinsic coordinates , ().

SUBROUTINE BFLOW(Flow,xsi,eta,u,Inci,Elcor,k)
!--
! Computes flow vectors in direction tangential to the
! Boundary
!---
REAL , INTENT(OUT) :: Flow(:) ! Flow vector
REAL , INTENT(IN) :: xsi,eta ! intrinsic coord. of point
REAL , INTENT(IN) :: u(:,:) ! Nodal temps/potentials
INTEGER, INTENT (IN) :: Inci(:) ! Element Incidences
REAL, INTENT (IN) :: Elcor(:,:) ! Element coordinates
REAL, INTENT (IN) :: k ! Conductivity
REAL, ALLOCATABLE :: Vxsi(:),Veta(:),DNi(:,:),V3(:)
INTEGER :: Nodes,Cdim,Ldim
REAL :: Jxsi,Jeta,v1(3),v2(3),CosT,SinT,DuDxsi,DuDeta,V3_L
REAL :: DxsiDx,DxsiDy,DetaDx,DetaDy
Nodes= UBOUND(ELCOR,2) ! Number of nodes
Cdim= UBOUND(ELCOR,1) ! Cartesian Dimension
Ldim= Cdim-1 ! Local (element) dimension
ALLOCATE (Vxsi(cdim),Dni(Nodes,Ldim),v3(cdim))
IF(ldim > 1) ALLOCATE (Veta(cdim))
! Compute Vector(s) tangential to boundary surface
CALL Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci)
Vxsi(1)= Dot_Product(Dni(:,1),Elcor(1,:))
Vxsi(2)= Dot_Product(Dni(:,1),Elcor(2,:))
IF(Cdim == 2) THEN
 CALL Vector_norm(Vxsi,Jxsi)
 Flow(1)= -k*Dot_product(Dni(:,1),u(:,1))/Jxsi
ELSE
 Vxsi(3)= Dot_Product(Dni(:,1),Elcor(3,:))
 CALL Vector_norm(Vxsi,Jxsi)
 Veta(1)= Dot_Product(Dni(:,2),Elcor(1,:))
 Veta(2)= Dot_Product(Dni(:,2),Elcor(2,:))
 Veta(3)= Dot_Product(Dni(:,2),Elcor(3,:))
 CALL Vector_norm(Veta,Jeta)
 v3= Vector_ex(Vxsi,Veta)
 Call Vector_norm(v2,v3_L)
 v1=Vxsi
 v2= Vector_ex(v3,v1)
 DuDxsi= Dot_Product(Dni(:,1),u(:,1))
 DuDeta= Dot_Product(Dni(:,2),u(:,1))
 CosT= DOT_Product(Vxsi,Veta)

1 cos 1 ; ;
sin sinx J y J y J

236 The Boundary Element Method with Programming

 SinT= ABS(DOT_Product(V2,Veta))
 DxsiDx= 1/Jxsi
 DxsiDy= -CosT /(Jxsi*SinT)
 DetaDx= 0.0
 DetaDy= 1/(Jeta*SinT)
! Flow in local coordinate directions
 Flow(1)= -k*DuDxsi*DxsiDx
 Flow(2)= -k*(DuDxsi*DxsiDy+DuDeta*DetaDy)
END IF
RETURN
END SUBROUTINE BFLOW

9.2.2 Elasticity problems

The computation of boundary values of stress for elasticity problems is similar to the
one for potential problems. For elasticity, displacements u inside a boundary element are
given in terms of nodal displacements e

nu by

(9.12)

For two-dimensional problems, the strain in tangential direction is computed by

(9.13)

where

(9.14)

Figure 9.4 Computation of tangential strain

N

n

e
nnN

1

uu

x
x

u
x x

u v

v
x

x

y

u

xu

x

y

u

u
u

POSTPROCESSING 237

The derivatives of the displacements are given by

(9.15)

Figure 9.5 Computation of stresses for plane strain problems

The stresses in tangential direction are computed using Hooke`s law. For plane stress
conditions we have (Figure 9.5):

(9.16)

where yt is the traction normal to the boundary.
For plane strain we have

(9.17)

The local stress pseudo-vector for plane stress is

(9.18)

and for plane strain

(9.19)

N

n

e
yn

n
N

n

e
xn

n uNu
uNu

1

y

1

x ,

yxx tE

1
1 1x x y

E t

0

x x

y y

z

xy x

t

t

()

x

y

x y

x

t

t

t

y x

x

yt

x

xt

y
xy

238 The Boundary Element Method with Programming

The stresses may be transformed into global directions using Eq (4.36). For three-
dimensional problems we compute the strain components in local ,x y directions. These
strains are obtained in the same way as for two-dimensional problems by projecting the
displacement vector u onto the unit tangential vectors v and v and by taking the
derivatives to ,x y (see Fig. 9.2). The strains in the local directions are given by

(9.20)

where

(9.21)

The components of stress in the local orthogonal system are shown in Figure 9.6.
According to Chapter 4, stresses in the tangential plane are related to strains by

(9.22)

Using (9.20) and equilibrium conditions with boundary tractions zyx t,t,t , as shown
in Figure 9.6, the stresses may be computed as

(9.23)

where

(9.24)

1

2 2

1 1 2

x
x

y
y

yx
xy

u
x x
u
y y y

uu
y x y y x

u v

u uv v

u u uv v v

yxyx

zxyy

zyxx

G

E

E

1

)(1

)(1

yzyxzxyxyx

zz

zxyy

zyxx

ttG
t

tC)(C

tC)(C

21

21

1
;

1
221 CEC

; e en n
n n

N Nu uu u

POSTPROCESSING 239

The stresses may be transformed into the global x ,y ,z coordinate system by applying
the transformation (4.36). The theory is translated into SUBROUTINE Bstress, which
computes the stress components in the tangential plane at a point with the intrinsic
coordinates , on a boundary element. The subroutine is very similar to Bflow, except
that in addition to u, we have to specify t in the list of input parameters and we must
provide an indicator specifying whether plane stress or plane strain is assumed for a 2-D
analysis.

Figure 9.6 Stresses and boundary tractions at a boundary point

SUBROUTINE BStress(Stress,xsi,eta,u,t,Inci,Elcor,E,Ny,IPS)
!--
! Computes stresses in a plane tangential to the
! Boundary Element
!---
REAL , INTENT(OUT) :: Stress(:)! Stress vector
REAL , INTENT(IN) :: xsi,eta ! intrinsic coordinates
REAL , INTENT(IN) :: u(:,:) ! Nodal displacements
REAL , INTENT(IN) :: t(:,:) ! Nodal Tractions
INTEGER, INTENT (IN) :: Inci(:) ! Element Incidences
REAL, INTENT (IN) :: Elcor(:,:) ! Element coordinates
REAL, INTENT (IN) :: E,Ny
INTEGER , INTENT (IN):: IPS
REAL, ALLOCATABLE :: Vxsi(:),Veta(:),DNi(:,:),Ni(:),trac_GP(:)
REAL :: Jxsi,Jeta,v1(3),v2(3),v3(3),v3_L,CosT,SinT
REAL :: DxsiDx, DxsiDy, DetaDx, DetaDy
REAL :: C1,C2,G,tn,ts,ts1,ts2
REAL , ALLOCATABLE :: Dudxsi(:),Dudeta(:),Strain(:)
INTEGER :: Nodes, Cdim, Ldim
Nodes= UBOUND(Elcor,2)
Cdim= UBOUND(Elcor,1)
ldim= Cdim-1
ALLOCATE (Vxsi(cdim),Veta(cdim),Dni(Nodes,Ldim),Ni(Nodes))

x

y

z

x

y
yx

xt

yt
zt

240 The Boundary Element Method with Programming

ALLOCATE (Dudxsi(Cdim),Dudeta(Cdim),trac_GP(Cdim))
! Compute Vector(s) tangential to boundary surface
CALL Serendip_deriv(DNi,xsi,eta,ldim,nodes,inci)
CALL Serendip_func(Ni,xsi,eta,ldim,nodes,inci)
trac_GP(1)= Dot_Product(Ni,t(:,1))
trac_GP(2)= Dot_Product(Ni,t(:,2))
Vxsi(1)= Dot_Product(Dni(:,1),Elcor(1,:))
Vxsi(2)= Dot_Product(Dni(:,1),Elcor(2,:))
IF(Cdim == 2) THEN
! 2-D Calculation
 ALLOCATE (Strain(1))
 CALL Vector_norm(Vxsi,Jxsi)
 V1(1:2)= Vxsi
 V3(1)= Vxsi(2)
 V3(2)= - Vxsi(1)
 tn= Dot_Product(v3(1:2),trac_GP)
 ts= Dot_Product(v1(1:2),trac_GP)
 DuDxsi(1)= Dot_Product(Dni(:,1),u(:,1))
 DuDxsi(2)= Dot_Product(Dni(:,1),u(:,2))
 Strain(1)= Dot_Product(DuDxsi,V1(1:2))/Jxsi
! Compute stresses in local directions
 IF(IPS == 2) THEN ! plane stress
 Stress(1)= E*Strain(1) + ny*tn
 Stress(2)= tn
 Stress(3)= 0
 Stress(4)= ts
 ELSE ! Plane strain
 Stress(1)= 1/(1.0-ny)*(E/(1.0+ny)*Strain(1) + ny*tn)
 Stress(2)= tn
 Stress(3)= ny*(Stress(1)+ Stress(2))
 Stress(4)= ts
 END IF
 DEALLOCATE (Strain)
ELSE
! 3-D Calculation
 ALLOCATE (Strain(3))
 trac_GP(3)= Dot_Product(Ni,t(:,3))
 Vxsi(3)= Dot_Product(Dni(:,1),Elcor(3,:))
 CALL Vector_norm(Vxsi,Jxsi)
 Veta(1)= Dot_Product(Dni(:,2),Elcor(1,:))
 Veta(2)= Dot_Product(Dni(:,2),Elcor(2,:))
 Veta(3)= Dot_Product(Dni(:,2),Elcor(3,:))
 CALL Vector_norm(Veta,Jeta)
 v3= Vector_ex(Vxsi,veta)
 CALL Vector_norm(v3,v3_L)
 v1=Vxsi
 v2= Vector_ex(v3,v1)
 DuDxsi(1)= Dot_Product(Dni(:,1),u(:,1))
 DuDxsi(2)= Dot_Product(Dni(:,1),u(:,2))
 DuDxsi(3)= Dot_Product(Dni(:,1),u(:,3))
 DuDeta(1)= Dot_Product(Dni(:,2),u(:,1))

POSTPROCESSING 241

 DuDeta(2)= Dot_Product(Dni(:,2),u(:,2))
 DuDeta(3)= Dot_Product(Dni(:,2),u(:,3))
 CosT= DOT_Product(Vxsi,Veta)
 SinT= ABS(DOT_Product(V2,Veta))
 DxsiDx= 1/Jxsi
 DxsiDy= -CosT /(Jxsi*SinT)
 DetaDx= 0.0
 DetaDy= 1/(Jeta*SinT)
! Strains
 Strain(1)= Dot_product(DuDxsi,v1)*DxsiDx
 Strain(2)= Dot_product(DuDxsi,v2)*DxsiDy&
 + Dot_product(DuDeta,v2)*DetaDy
 Strain(3)= Dot_product(DuDxsi,v1)*DxsiDy&
 + Dot_product(DuDeta,v1)*DetaDy&
 + Dot_product(DuDxsi,v2)*DxsiDx
 tn= Dot_Product(v3,trac_GP)
 ts1= Dot_Product(v1,trac_GP)
 ts2= Dot_Product(v2,trac_GP)
! Compute stresses in local directions
 C1= E/(1.0-ny**2) ; C2= ny/(1.0-ny) ; G=E/(2*(1.0+ny))
 Stress(1)= C1*(Strain(1)+ny*strain(2))+ C2*tn
 Stress(2)= C1*(Strain(2)+ny*strain(1))+ C2*tn
 Stress(3)= tn
 Stress(4)= G*Strain(3)
 Stress(5)= ts2
 Stress(6)= ts1
 DEALLOCATE (Strain)
END IF
! Transformation of local stresses in global stresses
CALL Stress_Transformation(v1,v2,v3,Stress,Cdim)
RETURN
End SUBROUTINE BStress

9.3 COMPUTATION OF INTERNAL RESULTS

For the computation of results which are not on the boundary the integral equation for
the temperature/potential and the displacement is used.

9.3.1 Potential problems

To compute temperature/potential at a point Pa we rewrite equation (5.20)

(9.25)

Flows at Pa in x-, y-and z-directions are given by

S
a

S
aa QdSQ,PTQuQdSQ,PUQtPu

242 The Boundary Element Method with Programming

(9.26)

where derivatives of U have been presented previously and derivatives of T are for two-
dimensional problems

(9.27)

and for three-dimensional problems

(9.28)

The derivatives of fundamental solutions T for three-dimensional space have a
singularity of 1/r2 for 2-D and 1/r3 for 3-D problems and are therefore hypersingular. We
now extend the Laplace_lib to include the derivatives of the fundamental solution.

FUNCTION dU(r,dxr,Cdim)
!-------------------------------
! Derivatives of Fundamental solution for Potential problems
! Temperature/Potential
!------------------------------
REAL,INTENT(IN):: r ! Distance between source and field point
REAL,INTENT(IN):: dxr(:)! Distances in x,y directions div. by r
REAL :: dU(UBOUND(dxr,1)) ! dU is array of same dim as dxr
INTEGER ,INTENT(IN):: Cdim ! Cartesian dimension (2-D,3-D)
REAL :: C
SELECT CASE (CDIM)
 CASE (2) ! Two-dimensional solution

S
a

S
aaaz

S
a

S
aaay

S
a

S
aaax

QdSQP
z
TQuQdSQP

z
UQtkP

z
ukPq

QdSQP
y
TQuQdSQP

y
UQtkP

y
ukPq

QdSQP
x
TQuQdSQP

x
UQtkP

x
ukPq

,,

,,

,,

,2

,2

cos
2

cos
2

x y x

x y y

T U Un n r
x x x y r

T U Un n r
y y x y r

,3

,3

,3

cos
4

cos
4

cos
4

x y z x

x y z y

x y z z

T U U Un n n r
x x x y z r

T U U Un n n r
y y x y z r

T U U Un n n r
z z x y z r

POSTPROCESSING 243

 C=1/(2.0*Pi*r)
 dU(1)= C*dxr(1)
 dU(2)= C*dxr(2)
 CASE (3) ! Three-dimensional solution
 C=1/(4.0*Pi*r**2)
 dU(1)= C*dxr(1)
 dU(2)= C*dxr(2)
 dU(3)= C*dxr(3)
 CASE DEFAULT
END SELECT
RETURN
END FUNCTION dU
FUNCTION dT(r,dxr,Vnorm,Cdim)
!-------------------------------
! derivatives of the Fundamental solution for Potential problems
! Normal gradient
!------------------------------
INTEGER,INTENT(IN) :: Cdim ! Cartesian dimension
REAL,INTENT(IN):: r ! Distance between source and field point
REAL,INTENT(IN):: dxr(:)!Distances in Cartesian dir divided by R
REAL,INTENT(IN):: Vnorm(:) ! Normal vector
REAL :: dT(UBOUND(dxr,1)) ! dT is array of same dim as dxr
REAL :: C,COSTH
COSTH= DOT_PRODUCT (Vnorm,dxr)
SELECT CASE (Cdim)
 CASE (2) ! Two-dimensional solution
 C= 1/(2.0*Pi*r**2)
 dT(1)= C*COSTH*dxr(1)
 dT(2)= C*COSTH*dxr(2)
 CASE (3) ! Three-dimensional solution
 C= 3/(4.0*Pi*r**3)
 dT(1)= C*COSTH*dxr(1)
 dT(2)= C*COSTH*dxr(2)
 dT(3)= C*COSTH*dxr(3)
 CASE DEFAULT
END SELECT
RETURN
END FUNCTION dT

The discretised form of equation (9.25) is

(9.29)

where e
nu and e

nt are the solutions obtained for the temperature/potential and boundary
flow on node n on boundary element e and

1 1 1 1

() ()
N NE E

e e e e
a n a n n a n

e n e n

u P T P u U P t

244 The Boundary Element Method with Programming

(9.30)

The discretised form of equation (9.26) is given by

(9.31)

where

(9.32)

The components of S and R are defined as

(9.33)

The integrals can be evaluated numerically over element e using Gauss Quadrature, as
explained in detail in Chapter 6. For 2-D problems this is

(9.34)

and

(9.35)

E

e

E

e

N

n

e
n

e
n

N

n

e
n

e
na utkP

1 1 11

RSq

.,;,

.,;,

etcQdSNQP
y
TRQdSNQP

x
TR

etcQdSNQP
y
USQdSNQP

x
US

ee

ee

S
na

e
yn

S
na

e
xn

S
na

e
yn

S
na

e
xn

e
zn

e
yn

e
xn

e
n

e
zn

e
yn

e
xn

e
n

z

y

x

and

q

q

q

R

R

R

;

S

S

S

RSq

ee S
ena

e
n

S
ena

e
n QdSNQPUUQdSNQPTT)(),(,)(),(

1

1

(, ()) () ()

(, ()) () ()

K
e
n a k n k k k

k
K

e
n a k n k k k

k

U U P Q N J W

T T P Q N J W

1

1

(, ()) () () .

(, ()) () () .

K
e
xn a k n k k k

k
K

e
xn a k n k k k

k

US P Q N J W etc
x

TR P Q N J W etc
y

POSTPROCESSING 245

For 3-D problems the equations are

(9.36)

and

(9.37)

The number of Gauss points in and direction M,K needed for accurate integration
will again depend on the proximity of Pa to the element over which the integration is
carried out. For computation of displacements, Kernel T has a singularity of 1/r for 2-D
problems and 1/r2 for 3-D. Kernel R has a 1/r2 singularity for 2-D and a 1/r3 singularity
for 3-D problems and the number of integration points is chosen according to Table 6.1.

9.3.2 Elasticity problems

The displacements at a point Pa inside the domain can be computed by using the integral
equation for the displacement

(9.38)

The strains can be computed by using equation (4.31)

(9.39)

Finally, stresses can be computed by using equation (4.45)

(9.40)

or

(9.41)

where the derived fundamental solutions S and R are defined as

(9.42)

S
a

S
aa dSQQPdSQQPP uTtUu ,,

, ,a a a
S S

P P Q Q dS P Q Q dSBu BU t B u

S
a

S
a dSQQPdSQQP uDBTtDBUD ,,

S
a

S
a dSQQPdSQQP uRtS ,,

Q,P,Q,P aa DBTRDBUS

M

m

K

k
mkmkmknmka

e
n

M

m

K

k
mkmkmknmka

e
n

WW),(J),(N)),(Q,P(TT

WW),(J),(N)),(Q,P(UU

1 1

1 1

1 1

(, (,)) (,) (,) .
M K

e
xn a k m n k m k m k m

m k

S U P Q N J W W etc
x

246 The Boundary Element Method with Programming

and the pseudo-stress vector is defined as

(9.43)

Matrices S and R are of dimension 3x2 for two-dimensional problems and of
dimension 6x3 for three-dimensional problems.

Matrix S is given by1

(9.44)

The coefficients of S are given by:

(9.45)

Values x, y, z are substituted for i, j, k. Constants are defined in Table 9.1 for plane
stress/strain and 3-D problems and

Matrix R is given by

(9.46)

xzzxzyxzx

yzzyzyyzx

xyzxyyxyx

zzzzzyzzx

yyzyyyyyx

xxzxxyxxx

SSS

SSS

SSS

SSS

SSS

SSS

S

DforandDfor

xy

y

x

xz

yz

xy

z

y

x

23

2
3 , , , , , ,() (1)ijk ki j kj i ij k i j kn

CS C r r r n r r r
r

xzzxzyxzx

yzzyzyyzx

xyzxyyxyx

zzzzzyzzx

yyzyyyyyx

xxzxxyxxx

RRR

RRR

RRR

RRR

RRR

RRR

R

POSTPROCESSING 247

where1

(9.47)

x, y, z may be substituted for i, j, k and cos has been defined previously. Values of the
constants are given in Table 9.1.

Table 9.1 Constants for fundamental solutions S and R

 Plane strain Plane stress 3-D

n 1 1 2
C2 1/4 (1+ 1/8
C3 1-2 (1- 1-2
C5 G/(2 (1- G/2 G/(4 (1-
C6 4 4 15
C7 1-4 (1-3 1+ 1-4

For plane stress assumptions the stresses perpendicular to the plane are computed

by 0z , whereas for plane strain ()z x y .
Subroutines for calculating Kernels S and R are added to the Elasticity_lib.

SUBROUTINE SK(TS,DXR,R,C2,C3)
!--
! KELVIN SOLUTION FOR STRESS
! TO BE MULTIPLIED WITH t
!--
REAL, INTENT(OUT) :: TS(:,:) ! Fundamental solution
REAL, INTENT(IN) :: DXR(:) ! rx , ry, rz
REAL, INTENT(IN) :: R ! r
REAL, INTENT(IN) :: C2,C3 ! Elastic constants
REAL :: Cdim ! Cartesian dimension
INTEGER :: NSTRES ! No. of stress components
INTEGER :: JJ(6), KK(6) ! sequence of stresses in pseudo-vector
REAL :: A,C2,C3
INTEGER :: I,N,J,K
Cdim= UBOUND(DXR,1)
IF(CDIM == 2) THEN
 NSTRES= 3
 JJ(1:3)= (/1,2,1/)
 KK(1:3)= (/1,2,2/)
ELSE
 NSTRES= 6
 JJ= (/1,2,3,1,2,3/)

3 , , , 6 ,
5

, , , ,1

3 , , 7

(1) cos (())

(1) ()

((1))

ij k ik j jk i i j k

kij i j k j i kn

k i j j ik i jk k ij

n C r r r C r r r
C

R n n r r n r r
r

C n n r r n n C n

248 The Boundary Element Method with Programming

 KK= (/1,2,3,2,3,1/)
END IF
Coor_directions:&
DO I=1,Cdim

Stress_components:&
DO N=1,NSTRES

 J= JJ(N)
 K= KK(N)
 A= 0.
 IF(I .EQ. K) A= A + DXR(J)
 IF(J .EQ. K) A= A - DXR(I)
 IF(I .EQ. J) A= A + DXR(K)
 A= A*C3
 TS(I,N)= C2/R*(A + Cdim*DXR(I)*DXR(J)*DXR(K))
 IF(Cdim .EQ. 3) TS(I,N)= TS(I,N)/2./R

END DO &
Stress_components

END DO &
Coor_directions
RETURN
END SUBROUTINE SK
SUBROUTINE RK(US,DXR,R,VNORM,C3,C5,C6,C7,ny)
!--
! KELVIN SOLUTION FOR STRESS COMPUTATION
! TO BE MULTIPLIED WITH u
!--
REAL, INTENT(OUT) :: US(:,:) ! Fundamental solution
REAL, INTENT(IN) :: DXR(:) ! rx , ry, rz
REAL, INTENT(IN) :: R ! r
REAL, INTENT(IN) :: VNORM(:) ! nx , ny , nz
REAL, INTENT(IN) :: C3,C5,C7,ny ! Elastic constants
REAL :: Cdim ! Cartesian dimension
INTEGER :: NSTRES ! No. of stress components
INTEGER :: JJ(6), KK(6) ! sequence of stresses in pseudo-vector
REAL :: costh, B,C
Cdim= UBOUND(DXR,1)
IF(CDIM == 2) THEN
 NSTRES= 3
 JJ(1:3)= (/1,2,1/)
 KK(1:3)= (/1,2,2/)
ELSE
 NSTRES= 6
 JJ= (/1,2,3,1,2,3/)
 KK= (/1,2,3,2,3,1/)
END IF
COSTH= DOT_Product(dxr,vnorm)
Coor_directions:&
DO K=1,Cdim
 Stress_components:&
 DO N=1,NSTRES

POSTPROCESSING 249

 I= JJ(N)
 J= KK(N)
 B= 0.
 IF(I .EQ. J) B= Cdim*C3*DXR(K)
 IF(I .EQ. K) B= B + ny*DXR(J)
 IF(J .EQ. K) B= B + ny*DXR(I)
 B= COSTH *(B – C6*DXR(I)*DXR(J)*DXR(K))
 C= DXR(J)*DXR(K)*ny
 IF(J .EQ.K) C= C + C3
 C= C*VNORM(I)
 B= B+C
 C= DXR(I)*DXR(K)*ny
 IF(I .EQ. K) C=C + C3
 C= C*VNORM(J)
 B= B+C
 C= DXR(I)*DXR(J)*Cdim*C3
 IF(I .EQ. J) C= C – C7
 C= C*VNORM(K)
 US(K,N)= (B + C)*C5/R/R
 IF(Cdim .EQ. 3) US(K,N)= US(K,N)/2./R
 END DO &
 Stress_components
END DO &
Coor_directions
RETURN
END

The discretised form of equation (9.38) is written as

(9.48)

where

(9.49)

The discretised form of equation (9.41) is written as

(9.50)

where

(9.51)

E

e

E

e

N

n

e
n

e
n

N

n

e
n

e
naP

1 1 11

uRtS

)(),(;)(),(QdSNQPQdSNQP na
S

e
nna

S

e
n

ee

RRSS

E

e

E

e

N

n

e
n

e
n

N

n

e
n

e
naP

1 1 11

uTtUu

)Q(dSN)Q,P(;)Q(dSN)Q,P(na
S

e
nna

S

e
n

ee

TTUU

250 The Boundary Element Method with Programming

These integrals may be evaluated using Gauss Quadrature, as explained in Chapter 6.
For 2-D problems they are given by

(9.52)

For 3-D elasticity we have

(9.53)

 The number of Gauss points in and direction M,K needed for accurate
integration, will again depend on the proximity of Pa to the element over which the
integration is carried out. For computation of displacements Kernel T has a singularity
of 1/r for 2-D problems and 1/r2 for 3-D. The number of integration points M and K are
chosen according to Table 6.1. A subdivision of the region of integration as outlined in
Chapter 6 will be necessary for points that are close.

9.4 PROGRAM 9.1: POSTPROCESSOR

Program Postprocessor for computing results on the boundary and inside the domain is
presented. This program is exacuted after General_purpose_BEM. It reads the INPUT
file which is the same as the one read by General_Purpose_BEM and contains the basic
job information and the geometry of boundary elements. The results of the boundary
element computation are read from file BERESULTS, which was generated by
General_purpose BEM program and contains the values of u and t at boundary points.
The coordinates of internal points are supplied in file INPUT2 and the internal results
are written onto file OUTPUT. The program first calculates fluxes/stresses at the nodes
of specified boundary elements and then temperatures/displacements and fluxes/stresses
at specified points inside the domain. In the case of symmetry conditions being applied
the integration has to be carried out also over the mirrored elements. A call to
Subroutine MIRROR takes care of this. For calculation of internal points, the integration
is carried out separately for the computation of potentials/displacements and
flow/stresses, as the Kernels have different singularities. This may not be the most
efficient way and an over-integration of the first Kernels may be considered to improve
the efficiency, since certain computations, like the Jacobian, for example, may only be
computed once for a boundary element. Another improvement in efficiency can be made
by lumping together internal points, so that only one integration loop is needed for all

1

1

(, ()) () ()

(, ()) () () .

K
e
n a k n k k k

k
K

e
n a k n k k k

k

P Q N J W

P Q N J W etc

U U

T T

.etcWW),(J),(N)),(Q,P(

WW),(J),(N)),(Q,P(

M

m

K

k
mkmkmknmka

e
n

M

m

K

k
mkmkmknmka

e
n

1 1

1 1

TT

UU

POSTPROCESSING 251

points requiring the same number of integration points. In this case the number of
computations of the Jacobian can be reduced significantly. Using table 6.1 and element
subdivision it will be found later that the internal points may be placed quite close to the
boundary.

PROGRAM Post_processor
!--
! General purpose Postprocessor
! for computing results at boundary and interior points
!--
USE Utility_lib;USE Elast_lib;USE Laplace_lib
USE Integration_lib
USE Postproc_lib
IMPLICIT NONE
INTEGER, ALLOCATABLE :: Inci(:) ! Incidences (one elem.)
INTEGER, ALLOCATABLE :: Incie(:,:) ! Incidences (all elem.)
INTEGER, ALLOCATABLE :: Ldest(:) ! Destinations (one elem.)
REAL, ALLOCATABLE :: Elcor(:,:) ! Element coordinates
REAL, ALLOCATABLE :: El_u(:,:,:)!
REAL, ALLOCATABLE :: El_t(:,:,:)! Results of System
REAL, ALLOCATABLE :: El_ue(:,:) ! Diplacements of Element
REAL, ALLOCATABLE :: El_te(:,:) ! Traction of Element
REAL, ALLOCATABLE :: Disp(:) ! Diplacement results Node
REAL, ALLOCATABLE :: Trac(:) ! Traction results of Node
REAL, ALLOCATABLE :: El_trac(:) ! Traction results Element
REAL, ALLOCATABLE :: El_disp(:) ! Displacement of Element
REAL, ALLOCATABLE :: xP(:,:) ! Node co-ordinates of BE
REAL, ALLOCATABLE :: xPnt(:) ! Co-ordinates of int. point
REAL, ALLOCATABLE :: Ni(:),GCcor(:),dxr(:),Vnorm(:)
CHARACTER (LEN=80) :: Title
REAL :: Elengx,Elenge,Rmin,Glcorx(8),Wix(8),Glcore(8),Wie(8)
REAL :: Jac
REAL :: Xsi1,Xsi2,Eta1,Eta2,RJacB,RonL
REAL, ALLOCATABLE :: Flow(:),Stress(:)! Results for bound.Point
REAL, ALLOCATABLE :: uPnt(:),SPnt(:) ! Results for int Point
REAL, ALLOCATABLE :: TU(:,:),UU(:,:) ! Kernels for u
REAL, ALLOCATABLE :: TS(:,:),US(:,:) ! Kernels for q,s
REAL, ALLOCATABLE :: Fac(:),Fac_nod(:,:) ! Fact. for symmetry
INTEGER :: Cdim,Node,M,N,Istat,Nodel,Nel,Ndof,Cod,Nreg
INTEGER :: Ltyp,Nodes,Maxe,Ndofe,Ndofs,Ncol,ndg,ldim
INTEGER :: nod,nd,Nstres,Nsym,Isym,nsy,IPS,Nan,Nen,Ios,dofa,dofe
INTEGER :: Mi,Ki,K,I,NDIVX,NDIVSX,NDIVE,NDIVSE,MAXDIVS
REAL :: Con,E,ny,Fact,G,C2,C3,C5,C6,C7
REAL :: xsi,eta,Weit,R,Rlim(2)
OPEN (UNIT=1,FILE='INPUT',FORM='FORMATTED')
OPEN (UNIT=2,FILE='OUTPUT',FORM='FORMATTED')
Call Jobin(Title,Cdim,Ndof,IPS,Nreg,Ltyp,Con,E,ny,&
 Isym,nodel,nodes,maxe)
Ndofe= nodel*ndof
ldim= Cdim-1

252 The Boundary Element Method with Programming

Nsym= 2**Isym ! number of symmetry loops
ALLOCATE(xP(Cdim,Nodes)) ! Array for node coordinates
ALLOCATE(Incie(Maxe,Nodel),Inci(Nodel),Ldest(Ndofe))
ALLOCATE(Ni(Nodel),GCcor(Cdim),dxr(Cdim),Vnorm(Cdim))
CALL Geomin(Nodes,Maxe,xp,Incie,Nodel,Cdim)
! Compute constants
IF(Ndof == 1) THEN
 Nstres= Cdim
ELSE
 G= E/(2.0*(1+ny))
 C2= 1/(8*Pi*(1-ny))
 C3= 1.0-2.0*ny
 C5= G/(4.0*Pi*(1-ny))
 C6= 15
 C7= 1.0-4.0*ny
 Nstres= 6
 IF(Cdim == 2) THEN
 IF(IPS == 1) THEN

! Plane Strain
 C2= 1/(4*Pi*(1-ny))
 C5= G/(2.0*Pi*(1-ny))
 C6= 8
 Nstres= 4
 ELSE
 C2= (1+ny)/(4*Pi)

! Plane Stress
 C3= (1.0-ny)/(1.0+ny)
 C5= (1.0+ny)*G/(2.0*Pi)
 C6= 8
 C7= (1.0-3.0*ny)/(1.0+ny)
 Nstres= 4
 END IF
 END IF
END IF
ALLOCATE(El_u(Maxe,Nodel,ndof),El_t(Maxe,Nodel,ndof)&
,El_te(Nodel,ndof),El_ue(Nodel,ndof),Fac_nod(Nodel,ndof))
ALLOCATE(El_trac(Ndofe),El_disp(Ndofe))
CLOSE(UNIT=1)
OPEN (UNIT=1,FILE='BERESULTS',FORM='FORMATTED')
WRITE(2,*) ' '
WRITE(2,*) 'Post-processed Results'
WRITE(2,*) ' '
Elements1:&
DO Nel=1,Maxe
 READ(1,*) ((El_u(nel,n,m),m=1,ndof),n=1,Nodel)
 READ(1,*) ((El_t(nel,n,m),m=1,ndof),n=1,Nodel)
END DO &
Elements1
ALLOCATE(Elcor(Cdim,Nodel))
CLOSE(UNIT=1)
OPEN (UNIT=1,FILE='INPUT2',FORM='FORMATTED')

POSTPROCESSING 253

ALLOCATE(Flow(Cdim),Stress(Nstres))
!--
! Computation of boundary fluxes/stresses
!---
WRITE(2,*) 'Results at nodes of Boundary Elements:'
READ(1,*) Nan,Nen
IF(Nan > 0) THEN
 Element_loop: &
 DO NEL= Nan,Nen
 Inci= Incie(nel,:)
 Elcor= xp(:,Inci(:))
 Eta= -1.0
 Eta_loop: &
 DO Net=1,NETA
 Xsi= -1.0
 Xsi_loop: &
 DO Nxs=1,NXSI .
 IF(Ndof == 1) THEN
 Flow= 0.0
 Call BFLOW(Flow,xsi,eta,El_u(Nel,:,:),Inci,Elcor,Con)

 WRITE(2,'(A,I5,A,F6.2,A,F6.2)') 'Element',Nel,&
 ' xsi=',xsi,' eta=',eta
 WRITE(2,'(A,2F10.3)') 'Flux: ',Flow
 ELSE
 Stress= 0.0
 Call BStress(Stress,xsi,eta,El_u(Nel,:,:)&
 ,El_t(Nel,:,:),Inci,Elcor,E,ny,IPS)
 WRITE(2,'(A,I5,A,F6.2,A,F6.2)') 'Element',Nel,&
 ' xsi=',xsi,' eta=',eta
 WRITE(2,'(A,6F9.2)') ' Stress: ',Stress
 END IF
 Xsi= Xsi +1
 END DO Xsi_loop
 Eta=Eta+1.0
 END DO Eta_loop
 END DO Element_loop
END IF
ALLOCATE(uPnt(NDOF),SPnt(NSTRES),UU(NDOF,NDOF),TU(NDOF,NDOF))
ALLOCATE(TS(Nstres,Ndof),US(Nstres,Ndof))
ALLOCATE(xPnt(Cdim),Fac(Ndofe))
ALLOCATE(Disp(Cdim),Trac(Cdim))
WRITE(2,*)''
WRITE(2,*) 'Internal Results:'
WRITE(2,*)''
Internal_points: &
DO
 READ(1,*,IOSTAT=IOS) xPnt
 IF(IOS /= 0) EXIT
 Write(2,'(A,3F10.2)') 'Coordinates: ',xPnt

! Temperatures/Displacements at Points inside a region
 uPnt= 0.0

254 The Boundary Element Method with Programming

 Element_loop1: &
 DO NEL= 1,MAXE
 Symmetry_loop1:&
 DO nsy=1,Nsym
 Inci= Incie(nel,:)
 Elcor= xp(:,Inci(:))
 IF(ldim == 2) THEN
 ELengx= Dist((Elcor(:,3)+Elcor(:,2))/2.&
 ,(Elcor(:,4)+Elcor(:,1))/2.,Cdim) ! Lxsi
 ELenge= Dist((Elcor(:,2)+Elcor(:,1))/2.&
 ,(Elcor(:,3)+Elcor(:,4))/2.,Cdim) ! Leta
 ELSE
 Call Elength(Elengx,Elcor,nodel,ldim)
 END IF
 Ldest= 1
 Fac= 1.0
 Fac_nod=1.0
 El_ue(:,:)=El_u(Nel,:,:)
 El_te(:,:)=El_t(Nel,:,:)
 IF(Isym > 0) THEN
 DO Nod=1,Nodel
 dofa= (nod-1)*Ndof+1
 dofe= dofa+Ndof-1
 El_trac(dofa:dofe)= El_te(Nod,:)
 EL_disp(dofa:dofe)= El_ue(Nod,:)
 END DO
 CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,Inci&
 ,Ldest,El_trac,EL_disp &
 ,nodel,ndof,Cdim)
 DO Nod=1,Nodel
 dofa= (nod-1)*Ndof+1
 dofe= dofa+Ndof-1
 El_te(Nod,:)= El_trac(dofa:dofe)
 El_ue(Nod,:)= El_disp(dofa:dofe)
 Fac_nod(Nod,:)= Fac(dofa:dofe)
 END DO
 END IF
 Rmin= Min_dist(Elcor,xPnt,Nodel,ldim,Inci)
 Mi= Ngaus(Rmin/Elengx,Cdim-1,Rlim)
 NDIVSX= 1 ; NDIVSE= 1
 RJacB=1.0
 RonL= Rmin/Elengx
 IF(Mi == 5) THEN ! subdivision required
 IF(RonL > 0.0) NDIVSX= INT(RLim(2)/RonL) + 1
 IF(NDIVSX > MAXDIVS) MAXDIVS= NDIVSX
 Mi=4
 END IF
 CALL Gauss_coor(Glcorx,Wix,Mi) ! Coords/Wghts x dir
 Ki= 1 ; Wie(1)= 1.0 ; Glcore(1)= 0.0
 IF(Cdim == 3) THEN
 Ki= Ngaus(Rmin/Elenge,Cdim-1,Rlim) !

POSTPROCESSING 255

 RonL= Rmin/Elenge
 IF(Ki == 5) THEN
 IF(RonL > 0.0) NDIVSE= INT(RLim(2)/RonL) + 1
 IF(NDIVSE > MAXDIVS) MAXDIVS= NDIVSE
 Ki=4
 END IF

 CALL Gauss_coor(Glcore,Wie,Ki) ! Coords/Weights
 END IF
 IF(NDIVSX > 1 .OR. NDIVSE>1) THEN
 RJacB= 1.0/(NDIVSX*NDIVSE)
 END IF
 Xsi1=-1.0
 Eta1=-1.0
 Subdivisions_xsi:&
 DO NDIVX=1,NDIVSX
 Xsi2= Xsi1 + 2.0/NDIVSX
 Subdivisions_eta:&
 DO NDIVE=1,NDIVSE
 Eta2= Eta1 + 2.0/NDIVSE
 Gauss_points_xsi: &
 DO m=1,Mi
 xsi= Glcorx(m)
 IF(NDIVSX > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVSX
 Gauss_points_eta: &
 DO k=1,Ki
 eta= Glcore(k)
 IF(NDIVSE > 1) eta= 0.5*(Eta1+Eta2)+eta/NDIVSE
 Weit= Wix(m)*Wie(k)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim&
 ,nodel,Inci,elcor)
 Fact= Weit*Jac*RJacB
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xPnt,Cdim) ! Dist. P,Q
 dxr= (GCcor-xPnt)/r ! rx/r , ry/r etc
 IF(Ndof .EQ. 1) THEN
 TU= U(r,Con,Cdim) ; UU= T(r,dxr,Vnorm,Cdim)
 ELSE
 TU= UK(dxr,r,E,ny,Cdim)
 UU= TK(dxr,r,Vnorm,ny,Cdim)
 END IF
 Node_loop1:&
 DO Node=1,Nodel
 Disp= El_ue(Node,:)* Fac_nod(Node,:)
 Trac= El_te(Node,:)* Fac_nod(Node,:)
 uPnt= uPnt + (MATMUL(TU,Trac)-&
 MATMUL(UU,Disp))* Ni(Node)* Fact
 END DO &
 Node_loop1
 END DO &
 Gauss_points_eta

256 The Boundary Element Method with Programming

 END DO &
 Gauss_points_xsi
 Eta1= Eta2
 END DO Subdivisions_eta
 Xsi1= Xsi2
 END DO Subdivisions_xsi
 END DO Symmetry_loop1
 END DO Element_loop1
 WRITE(2,'(A,3F10.3)') ' u: ',uPnt
!--
! Computation of Fluxes/Stresses at Points inside a region
!--
 SPnt= 0.0
 Element_loop2: &
 DO NEL= 1,MAXE
 Symmetry_loop2: &
 DO nsy=1,Nsym
 Inci= Incie(nel,:)
 Elcor= xp(:,Inci(:))
 IF(ldim == 2) THEN
 ELengx= Dist((Elcor(:,3)+Elcor(:,2))/2.&
 ,(Elcor(:,4)+Elcor(:,1))/2.,Cdim) ! Lxsi
 ELenge= Dist((Elcor(:,2)+Elcor(:,1))/2.&
 ,(Elcor(:,3)+Elcor(:,4))/2.,Cdim) ! Leta
 ELSE
 Call Elength(Elengx,Elcor,nodel,ldim)
 END IF
 Ldest= 1
 Fac= 1.0
 El_ue(:,:)=El_u(Nel,:,:)
 El_te(:,:)=El_t(Nel,:,:)
 IF(Isym > 0) THEN
 DO Nod=1,Nodel
 dofa= (nod-1)*Ndof+1
 dofe= dofa+Ndof-1
 El_trac(dofa:dofe)= El_te(Nod,:)
 EL_disp(dofa:dofe)= El_ue(Nod,:)
 END DO
 CALL Mirror(Isym,nsy,Nodes,Elcor,Fac,Inci&
 ,Ldest,El_trac,EL_disp &
 ,nodel,ndof,Cdim)
 DO Nod=1,Nodel
 dofa= (nod-1)*Ndof+1
 dofe= dofa+Ndof-1
 El_te(Nod,:)= El_trac(dofa:dofe)
 El_ue(Nod,:)= El_disp(dofa:dofe)
 Fac_nod(Nod,:)= Fac(dofa:dofe)
 END DO
 End IF
 Rmin= Min_dist(Elcor,xPnt,Nodel,ldim,Inci)
 Mi= Ngaus(Rmin/Elengx,Cdim,Rlim)

POSTPROCESSING 257

 NDIVSX= 1 ; NDIVSE= 1
 RJacB=1.0
 RonL= Rmin/Elengx
 IF(Mi == 5) THEN
 IF(RonL > 0.0) NDIVSX= INT(RLim(2)/RonL) + 1
 IF(NDIVSX > MAXDIVS) MAXDIVS= NDIVSX
 Mi=4
 END IF
 CALL Gauss_coor(Glcorx,Wix,Mi) ! Coords/Wghts x dir
 Ki= 1 ; Wie(1)= 1.0 ; Glcore(1)= 0.0
 IF(Cdim == 3) THEN
 Ki= Ngaus(Rmin/Elenge,Cdim,Rlim)
 RonL= Rmin/Elenge
 IF(Ki == 5) THEN ! subdivide
 IF(RonL > 0.0) NDIVSE= INT(RLim(2)/RonL) + 1
 IF(NDIVSE > MAXDIVS) MAXDIVS= NDIVSE
 Ki=4
 END IF
 CALL Gauss_coor(Glcore,Wie,Ki) ! Coords/Wghts h dir
 END IF
 IF(NDIVSX > 1 .OR. NDIVSE>1) RJacB= 1.0/(NDIVSX*NDIVSE)
 Xsi1=-1.0
 Eta1=-1.0
 Subdivisions_xsi1:&
 DO NDIVX=1,NDIVSX
 Xsi2= Xsi1 + 2.0/NDIVSX
 Subdivisions_eta1: &
 DO NDIVE=1,NDIVSE
 Eta2= Eta1 + 2.0/NDIVSE
 Gauss_points_xsi2: &
 DO m=1,Mi
 xsi= Glcorx(m)
 IF(NDIVSX > 1) xsi= 0.5*(Xsi1+Xsi2)+xsi/NDIVSX
 Gauss_points_eta2: &
 DO k=1,Ki
 eta= Glcore(k)
 IF(NDIVSE > 1) eta= 0.5*(Eta1+Eta2)+xsi/NDIVSE
 Weit= Wix(m)*Wie(k)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim&
 ,nodel,Inci,elcor)
 Fact= Weit*Jac*RJacB
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xPnt,Cdim) ! Dist. P,Q
 dxr= (GCcor-xPnt)/r ! rx/r , ry/r etc
 IF(Ndof .EQ. 1) THEN
 TS(:,1)= dU(r,dxr,Cdim)
 US(:,1)= dT(r,dxr,Vnorm,Cdim)
 ELSE
 CALL SK(TS,DXR,R,C2,C3)
 CALL RK(US,DXR,R,VNORM,C3,C5,c6,C7,ny)

258 The Boundary Element Method with Programming

 END IF
 Node_loop2:&
 DO Node=1,Nodel
 Disp= El_ue(Node,:)* Fac_nod(Node,:)
 Trac= El_te(Node,:)* Fac_nod(Node,:)
 SPnt= SPnt + (MATMUL(TS,Trac)- &
 MATMUL(US,Disp))* Ni(Node)* Fact
 END DO Node_loop2
 END DO Gauss_points_eta2
 END DO Gauss_points_xsi2
 Eta1= Eta2
 END DO Subdivisions_eta1
 Xsi1= Xsi2
 END DO Subdivisions_xsi1
 END DO Symmetry_loop2
 END DO Element_loop2
 IF(Ndof == 1) THEN
 WRITE(2,'(A,6F10.3)') ' Flux: ',SPnt
 ELSE
 IF(CDIM == 2) THEN
 IF(IPS==1) THEN
 SPnt(4)=SPnt(3)
 SPnt(3)= ny*(SPnt(1)+SPnt(2))
 ELSE
 SPnt(4)=SPnt(3)
 SPnt(3)= 0
 END IF
 END IF
 WRITE(2,'(A,6F10.3)') ' Stress: ',SPnt
 END IF
END DO Internal_points
END PROGRAM Post_processor

9.4.1 Input specification

INPUT DATA SPECIFICATION FOR Postprocessor

1.0 Boundary results
 Nan, Nen First element and last element on
 which boundary results are to be computed
2.0 Internal point specification loop
 x, y, (z) Coordinates of internal points

 Specify as many as required.

POSTPROCESSING 259

9.5 GRAPHICAL DISPLAY OF RESULTS

In an engineering application, the graphical display of the results is indispensable. The
display of the vector or scalar fields can be as diagrams of variation of a quantity along a
line or as contour plots. The detailed description of the graphical postprocessing is
beyond the scope of this book and the reader is referred to the literature on this subject.
One approach to contouring is mentioned here, because it is unique to the BEM. In the
BEM we are fortunate to actually have a continuous distribution of results inside the
domain which is differentiable without any restriction. To take full advantage of the
increased accuracy of results as compared to the FEM one may look beyond the usual
interpolation schemes used there.

The idea is to determine the contours in the domain, by using a predictor/corrector
scheme. For contours that start on the boundary, the starting point (0 0,x y) is first
determined for a particular contour value 1f of the function f(x,y) to be contoured by
using interpolation of boundary values. Next, the directions tangential and normal to the
contour are determined from the condition that the value of the result to be contoured
remains constant along the contour, i.e.

(9.54)

Along a contour the change in f must be zero, i.e.

(9.55)

The vectors normal and tangential to the contour are

(9.56)

To obtain unit vectors, the components of the vectors must divided by the length

(9.57)

The method of contouring works as follows: A first estimate of a point on the contour
(1 1,x y) is computed, by drawing a straight line of a specified length L in the direction
given by t :

(9.58)

Next the stress is computed at the point at (1 1,x y).

1(,)f x y f

 and

f f
x y
f f
y x

n t

22f ft n
x y

0f fdf dx dy
x y

1 0 L
t
tx x

260 The Boundary Element Method with Programming

 The error of the prediction determined as

(9.59)

This error is now corrected using the direction n computed at the point. Further points
on the contour are determined by repeated application of prediction and correction until
the contours meets a boundary (see Figure 9.7) or closes. It is clear from figure 9.7 that
the length of the predictor must be continuously adjusted to ensure convergence of the
algorithm. In the case where a contour does not start from the boundary a search for the
starting point of the contour may be carried out from the boundary. Further details can
be found in Noronha et al2.

Figure 9.7 Explanation of the contouring algorithm

We show on an example in 2-D elasticity how the derivatives are determined. Taking
the derivative of the stress solution we can obtain the change in the stress tensor in the x
direction by

(9.60)

and in y direction by

(9.61)

where for example

(9.62)

t

n

x

y

L

0 0(,)x y

1 1(,)x y
1(,)f x y f

1 1 1(,)f x y f

, ,a a
S S

P Q Q dS P Q Q dS
x x x

S Rt u

, ,, , , ,2
, 3

2 () (1)ijk j ji k i k
ijk x ki kj ij

S r rr r r rCS r C n
x r x x x x x xr

, ,a a
S S

P Q Q dS P Q Q dS
y y y

S Rt u

POSTPROCESSING 261

Figure 9.8 shows contour plots obtained with the new algorithm.

Figure 9.8 Example of a contour plot of major and minor principal stresses for a tunnel
subjected to self weight.

9.6 CONCLUSIONS

In this chapter we have discussed methods for obtaining results other than values of
temperature/displacement and fluxes/tractions at the nodes of boundary elements. These
additional results are flows/stresses at internal points. Results exactly on the boundary
elements, can be obtained by a method also known as the “stress recovery”, whereby we
use the shape functions of the element to determine tangential flows/stresses. The results
at internal points are obtained with the fundamental solutions and are more accurate than
comparable results from FEM, because they satisfy the governing differential equations
exactly and – for infinite domain problems – include the effect of the infinite boundary
condition. The task of computing internal results can be delegated to a postprocessor,
where the user may either interactively interrogate points or define planes inside the
continuum where contours are to be plotted.

It has been found that due to the high degree of singularity of the Kernel functions,
care must be taken that internal points are not too close to the boundary. If the proposed
numerical integration scheme is used, then there is a limiting value of R/L below which
the results are in error. However, since we are able to compute the results exactly on the
boundary, we may use a linear interpolation between the internal point and a point
projected onto the boundary element. Finally, a method to compute very accurate
contours of stresses has been presented. This scheme is based on the fact that, in contrast
to the FEM, the functions that describe the variation of results are differentiable, without
any loss of accuracy.

262 The Boundary Element Method with Programming

9.7 EXERCISES

Exercise 9.1
Use Program 9.1 to compute for exercise 7.1 the flow in vertical direction along a
horizontal line. Compare with the theoretical solution.

Exercise 9.2
Use Program 9.1 to compute for exercise 7.3, the stress in vertical direction along a
horizontal line. Compare with the theoretical solution.

Exercise 9.3
Use Program 9.1 to compute for exercise 7.4 the flow in horizontal direction along a
vertical line in the middle of the rectangular region. Compare with the theoretical
solution.

Exercise 9.4
Use Program 9.1 to compute for exercise 7.6 the normal and shear stress along a vertical
line, as shown in Figure 9.9. Do a graphical comparison with the theoretical solution.

Figure 9.9 Cantilever beam with internal points

9.8 REFERENCES

1. Banerjee P.K. (1994) The Boundary Element Methods in Engineering, McGraw-

HillBook Company, London.
2. Noronha M., Müller A and Pereira A.M.B. (2005) A novel pure-BEM approach for

post-processing and non-linear analysis. Proceedings McMat2005, Joint
ASME/ASCE/SES Conference on Mechanics and Materials.

 ty=-1.0

1.

0.25

0.5

10
Test Examples

Die Wahrheit wird gelebt, nicht doziert

(Truth is lived not taught)
H. Hesse

10.1 INTRODUCTION

We have now developed all the software required to perform a boundary element
analysis of problems in potential flow and elasticity. The examples which we can
analyse will, however, be restricted to homogeneous domains and linear material
behaviour. Before we proceed further in an attempt to eliminate these restrictions, it is
opportune to pause and learn, on test examples, a few things about the method especially
with respect to the accuracy that can be attained. The purpose of this chapter is twofold.
Firstly, the reader will learn how problems are modelled using boundary elements, with
examples of simple meshes in two and three dimensions. Secondly, we will show, by
comparison with theory and results from finite element meshes, the accuracy which can
be obtained. We will also point out possible pitfalls, which must be avoided. As with all
numerical methods, examples can be presented that favour the method and others that
don’t. Here we find that the BEM has difficulty dealing with cantilevers with small
thickness where two opposing boundaries are close to each other. On the other hand it
can deal very well with problems which involve an infinite domain. Also we will find
that values at the surface are computed more accurately. This gives an indication of the
range of applications where the method is superior as compared with others: those
involving a large volume to surface ratio (including infinite domains) and those where
the results at the boundary are important, for example stress concentration problems. In
the following, several test examples will be presented ranging from the simple 2-D
analysis of a cantilever beam to the 3-D analysis of a spherical excavation in an infinite
continuum. In all cases we show the input file required to solve the problem with

264 The Boundary Element Method with Programming

program 7.1 and 9.1 and the output obtained. The results are then analysed with respect
to accuracy with different discretisations. Comparison is made with theoretical results
and in some cases with finite element models.

10.2 CANTILEVER BEAM

10.2.1 Problem statement

The cantilever beam is a simple structure, which nevertheless can be used to show
strengths and weaknesses of numerical methods. Here we analyse a cantilever beam with
decreasing thickness and we will find that this causes some difficulties for the BEM. The
problem is stated in Figure 10.1. An encastre beam is subjected to a distributed load of
10 KN at the end. The material properties are assumed to be: E= 10 000 MPa and 0.0.
We gradually decrease the thickness t of the beam and observe the accuracy of results.

Figure 10.1 Cantilever beam: Dimensions and loading assumed

10.2.2 Boundary element discretisation and input

Figure 10.2 Boundary element Mesh 1 (…corner node, … mid-side node)

kN/m 10
0

y

x

t
t

m5

1

x

y

23 45 67 89 1011

121416182022

13

1517192123

24

1 2 3 4 5

6

78910 11

12
0
0

y

x

u
u

m 1

10 kN t

L

TEST EXAMPLES 265

Figure 10.2 shows the discretisation used (12 parabolic boundary elements) and the
dimension of the first mesh analysed with a ratio of t/L of 0.2. The element and node
numbering as well as the boundary conditions are shown.

The input file for this problem for program 7.1 is
Cantilever beam
 2 ! Cdim 2-D
 2 ! Ndof Elasticity
 2 ! ToA Plane stress
 1 ! Nreg finite region
 0 ! no symmetry
 2 ! Quadratic elements
0.1000E+05 0.0000E+00 ! E,Ny
 24 ! Number of nodes
 12 ! Number of Elements
 0.000 0.000 ! Coordinates
 1.000 0.000
 0.500 0.000
 2.000 0.000
 1.500 0.000
 3.000 0.000
 2.500 0.000
 4.000 0.000
 3.500 0.000
 5.000 0.000
 4.500 0.000
 5.000 1.000
 5.000 0.500
 4.000 1.000
 4.500 1.000
 3.000 1.000
 3.500 1.000
 2.000 1.000
 2.500 1.000
 1.000 1.000
 1.500 1.000
 0.000 1.000
 0.500 1.000
 0.000 0.500
 1 2 3 ! Incidences
 2 4 5
 4 6 7
 6 8 9
 8 10 11
 10 12 13
 12 14 15
 14 16 17
 16 18 19
 18 20 21
 20 22 23

266 The Boundary Element Method with Programming

 22 1 24
 1 ! Prescribed Dirichlet
 12 0.0 0.0 0.0 0.0 0.0 0.0
 1 ! Prescribed Neuman
 6 0.0 -10.0 0.0 -10.0 0.0 -10.0

10.2.3 Results

The output obtained from the program 7.1 is:

Project:
Cantilever beam
 Cartesian_dimension: 2
 Elasticity Problem
 Type of Analysis: Solid Plane Stress
 Finite Region
 No symmetry
 Quadratic Elements
 Modulus: 10000.00
 Poissons ratio: 0.0000000E+00
 Number of Nodes of System: 24
 Number of Elements of System: 12
Node 1 Coor 0.00 0.00
…
Node 24 Coor 0.00 0.50

 Incidences:
EL 1 Inci 1 2 3
…
EL 12 Inci 22 1 24

 Elements with Dirichlet BC´s:
 Element 12 Prescribed values:
 0.0000000E+00 0.0000000E+00
 0.0000000E+00 0.0000000E+00
 0.0000000E+00 0.0000000E+00

 Elements with Neuman BC´s:
 Element 6 Prescribed values:
 Node= 1 0.0000000E+00 -10.00000
 Node= 2 0.0000000E+00 -10.00000
 Node= 3 0.0000000E+00 -10.00000

 Results, Element 1
 u= 0.000 0.000 -0.027 -0.030 -0.014 -0.008
 t= 298.892 6.277 0.000 0.000 0.000 0.000
 …
 Results, Element 6
 u= -0.075 -0.508 0.075 -0.508 0.000 -0.508
 t= 0.000 -10.000 0.000 -10.000 0.000 -10.000

TEST EXAMPLES 267

 …..
 Results, Element 12
 u= 0.000 0.000 0.000 0.000 0.000 0.000
 t= -298.892 6.277 298.892 6.277 0.000 11.876

The input file for this problem for program 9.1 is

1 12
2.0 0.1
2.0 0.2
2.0 0.3
2.0 0.4
2.0 0.5
2.0 0.6
2.0 0.7
2.0 0.8
2.0 0.9

The output obtained from program 9.1 is

Post-processed Results
Results at Boundary Elements:
Element 1 xsi= -1.00 eta= -1.00
 Stress: -296.90 -6.28 0.00 -298.89
Element 1 xsi= 0.00 eta= -1.00
 Stress: -269.50 0.00 0.00 0.00
Element 1 xsi= 1.00 eta= -1.00
 Stress: -242.10 0.00 0.00 0.00
…
Element 12 xsi= -1.00 eta= -1.00
 Stress: 298.89 0.00 0.00 -6.28
Element 12 xsi= 0.00 eta= -1.00
 Stress: 0.00 0.00 0.00 -11.88
Element 12 xsi= 1.00 eta= -1.00
 Stress: -298.89 0.00 0.00 -6.28

 Internal Results:
Coordinates: 2.00 0.10
 u: -0.038 -0.107
 Stress: -144.657 0.818 0.000 -8.323
Coordinates: 2.00 0.20
 u: -0.028 -0.107
 Stress: -108.503 0.604 0.000 -12.658
Coordinates: 2.00 0.30
 u: -0.019 -0.107
 Stress: -72.370 0.421 0.000 -15.590
Coordinates: 2.00 0.40
 u: -0.009 -0.107

268 The Boundary Element Method with Programming

 Stress: -36.182 0.205 0.000 -17.311
Coordinates: 2.00 0.50
 u: 0.000 -0.107
 Stress: 0.000 0.000 0.000 -17.886
Coordinates: 2.00 0.60
 u: 0.009 -0.107
 Stress: 36.183 -0.206 0.000 -17.311
Coordinates: 2.00 0.70
 u: 0.019 -0.107
 Stress: 72.370 -0.421 0.000 -15.590
Coordinates: 2.00 0.80
 u: 0.028 -0.107
 Stress: 108.503 -0.603 0.000 -12.658
Coordinates: 2.00 0.90
 u: 0.038 -0.107
 Stress: 144.655 -0.814 0.000 -8.322

A total of three analyses were carried out gradually reducing the value of t to 0.5 and

0.2m. The results of the analyses are summarised in Table 10.1 and compared with
results obtained from the classical beam theory1 (Bernoulli hypothesis). Compared are
the maximum deflection at the free end and the bending stresses at the fixed end. Note
that the maximum bending stresses are obtained directly from the analysis (these are
equal to the tractions tx at node 1 and 2 on element 12).

Table 10.1 Summary of results for cantilever beam with parabolic boundary elements

Max. deflection (mm) Max. stress (MPa) t t/L Mesh
Computed Beam theory Computed Beam theory

1.0 0.2 1 0.508 0.500 0.299 0.300
0.5 0.1 1 3.704 4.000 1.105 1.200
0.2 0.04 1 36.74 62.50 4.38 7.50

The displacement results obtained for a ratio t/L of 0.2 include the additional effect of

shear and are more accurate than the results computed by beam theory. It can be seen
that results deteriorate rapidly with decreasing value of t/L and that for a ratio t/L of 0.04
the error is unacceptable. Note that for an equivalent finite element mesh, no problems
arise if the thickness is reduced.

Considering that the accuracy of integration introduced with the integration scheme in
Chapter 6 is quite high the reasons for this deterioration in accuracy is probably the fact
that the collocation points are very close to each other in one direction and far away in
the other. Since the theorem by Betti will only be satisfied at the collocation points, there
seems to be a detrimental effect if these points are very unevenly spaced. Apparently a
close proximity of the collocation points also causes a lack of diagonal dominance of the
system of equations. Numerical experiments have shown that even if the precision of

TEST EXAMPLES 269

integration is further increased, errors still persist if the ratio t/L is decreased to a very
low value.

Figure 10.3 Adaptive meshes: (a) Mesh 2 and (b) Mesh 3 (only corner nodes shown)

Table 10.2 Results for refined meshes

Max. deflection (mm) Max. stress (MPa) t t/L Mesh
Computed Beam theory Computed Beam theory

1.0 0.2 1 0.508 0.500 0.299 0.300
0.5 0.1 2 3.993 4.000 1.192 1.200
0.2 0.04 3 62.234 62.50 7.459 7.500

A relatively simple remedy to this problem is to increase the number of elements as the
ratio t/L is decreased. Such adaptive meshes for t/L=0.1 and 0.04 are shown in Figure
10.3.As can be seen from Table 10.2 the accuracy of results is now greatly improved.
The variation of normal stress and shear stress along a vertical line at a distance of 2.0 m
from the fixed end is computed using Program 9.1 and plotted in Figure 10.5. The
computed distribution is in good agreement with the theory for both normal and shear
stresses

10.2.4 Comparison with FEM

We now make a comparison with the finite element method. The mesh shown in Fig
10.4 has the same discretisation on the boundary as the BEM mesh. If we change the
thickness to length ratio we see in Table 10.3 that this has no effects on the results.
When we compare the stress distributions in Figure 10.5 we can see that the FEM
exactly represents the bending stress, but will only be able to approximate the parabolic
distribution of the shear stress by a constant distribution.

(a)

(b)

270 The Boundary Element Method with Programming

Figure 10.4 Finite element mesh

Figure 10.5 Comparison of results

Table 10.3 Results of finite element analysis

Max. deflection (mm) Max. x (MPa) t/L Mesh
Computed Beam theory Computed Beam theory

0.2 1 0.515 0.500 0.300 0.300
0.1 1 4.031 4.000 1.200 1.200
0.04 1 62.58 62.50 7.500 7.500

m5

x

y

m 1

T heory

FEM

BEM

TEST EXAMPLES 271

10.2.5 Conclusions

The conclusions from this example are that there is very little difference in the
discretisation effort and computing time between the FEM and the BEM for this
example. We found that for slender beams the program leads to significant errors for
coarse discretisations. However, there are ways in which we may improve these results,
for example by using schemes other than point collocation, namely the Galerkin method
mentioned briefly in Chapter 6. However this will result in significantly higher
computation effort so that the BEM may loose some advantage. Another elegant and
efficient way would be to include in the fundamental solution the classical beam bending
theory. If this is done then there is only need to discretise the centerline of the beam
thereby avoiding all the difficulties which we have experienced. A good description of
this method is given by Hartmann2.

10.3 CIRCULAR EXCAVATION IN INFINITE DOMAIN

10.3.1 Problem statement

Consider an excavation made in an infinite, homogeneous, elastic space. The elastic
space is assumed to have a modulus of elasticity of 10 000 MPa, a Poisson’s ratio of zero
and to have been pre-stressed with a stress field of x= 0.0 MPa, y= -3.0 MPa,
(compression) and xy= 0.0 MPa.

Figure 10.6 Problems to be solved: Infinite space (a) without (b) with excavation

0y

0t 0t

0y

(a) (b)

272 The Boundary Element Method with Programming

Required are the displacements and the changed stress distribution due to excavation. To
obtain this solution we actually have to solve two problems (Figure 10.6): One (trivial)
one where no excavation exists and one where the supporting tractions t0 computed in
the first step are released, i.e., applied in the opposite direction.
We can use equation (4.28) to solve the problem (a) i.e. to compute the tractions t0 as

(10.1)

10.3.2 Boundary element discretisation and input

To solve problem (b) we use the BEM with two planes of symmetry. For the first mesh a
single parabolic element (Figure 10.7) is used. Subsequently two (Mesh 2) and four
elements (Mesh 3) are used for a quarter of the boundary. The mesh is subjected to
Neuman boundary conditions with values of t0 computed using (10.1) and applied as
shown in Figure 10.7.

Figure 10.7 Boundary element mesh with Neuman boundary conditions

If the element would be able to describe an exact circle then the values of traction ty0
should be exactly –3.0 at node 1 and 0.0 at node 2. However, since the element can only
describe a parabola, the y-component of the normal vector will not be exactly –1.0 at
node 1 and not exactly 0.0 at node 2. Therefore, a small geometrical error occurs due to
the coarse discretisation. Alternatively we could specify the values of traction that
correspond to an exact circle (-3.0,-2.12, 0.0) The input file for program 7.1 for this
problem is

 Circular hole
 2 ! 2-D
 2 ! Elasticity problem
 1 ! Plane strain
 2 ! Finite Region

 1

2

39862.

1212.

2810.

Axes of symmetry

0
0

00

yyn

.
t

TEST EXAMPLES 273

 2 ! double symmetry
 2 ! quadratic elements
0.1000E+05 0.0000E+00 ! E,Ny
 3 ! Nodes
 1 ! Elements
 0.000 1.000 ! Coordinates
 1.000 0.000
 0.707 0.707
 1 2 3 ! Incidences
 0 ! Dirichlet BC
 1 ! Neumann BC
 1 0.00000 -2.98681 0.00000 -0.28103 0.00000 -2.12132

The output obtained from program 7.1 is

Project:
 Circular hole
 Cartesian_dimension: 2
 Elasticity Problem
 Type of Analysis: Solid Plane Strain
 Infinite Region
 Symmetry about y-z and x-z planes
 Quadratic Elements
 Modulus: 10000.00
 Poissons ratio: 0
 Number of Nodes of System: 3
 Number of Elements of System: 1
Node 1 Coor 0.00 1.00
Node 2 Coor 1.00 0.00
Node 3 Coor 0.71 0.71
 Incidences:
EL 1 Inci 1 2 3
 Elements with Dirichlet BC´s:
 Elements with Neuman BC´s:
 Element 1 Prescribed values:
 0.00 -2.986810
 0.00 -0.281030
 0.00 -2.121320
 Results, Element 1
 u= 0.00000 -0.00060 0.00029 0.00000 0.00021 -0.00041
 t= 0.00000 -2.98681 0.00000 -0.28103 0.00000 -2.12132

The input file for this problem for program 9.1 is

1 1
1.1 0
1.2 0
1.3 0

274 The Boundary Element Method with Programming

1.4 0
1.5 0

The output obtained from program 9.1 is

Post-processed Results
 Results at Boundary Elements:
Element 1 xsi= -1.00 eta= -1.00
 Stress: 2.85 3.03 0.00 -0.27
Element 1 xsi= 0.00 eta= -1.00
 Stress: -1.52 1.47 0.00 1.52
Element 1 xsi= 1.00 eta= -1.00
 Stress: -0.08 -5.52 0.00 0.80

 Internal Results:
Coordinates: 1.10 0.00
 u: 0.000 0.000
 Stress: -0.647 -4.205 0.000 0.000
Coordinates: 1.20 0.00
 u: 0.000 0.000
 Stress: -0.927 -3.103 0.000 0.000
Coordinates: 1.30 0.00
 u: 0.000 0.000
 Stress: -1.046 -2.380 0.000 0.000
Coordinates: 1.40 0.00
 u: 0.000 0.000
 Stress: -1.079 -1.875 0.000 0.000
Coordinates: 1.50 0.00
 u: 0.000 0.000
 Stress: -1.067 -1.508 0.000 0.000

10.3.3 Results

A theoretical solution for this problem has been obtained by Kirsch3. In Table 10.4 the
results at the boundary for the 3 meshes are compared. It can be seen that even the coarse
mesh, with only one element per quarter, gives acceptable results for this problem.

Table 10.4 Results for meshes with parabolic boundary elements

Mesh No.
Elem

Max. deflection
(mm)

Max. stress
(MPa)

Min. stress
(MPa)

1 1 0.60 -8,52 2.85
2 2 0.60 -8.99 2.99
3 4 0.60 -9.00 3.00

Theory 0.60 -9.00 3.00

TEST EXAMPLES 275

The internal results along a horizontal line are shown in Figure 10.8. It can be seen that
there is good agreement even for coarse meshes.

Figure 10.8 Distribution of vertical stress along a horizontal line

10.3.4 Comparison with FEM

The problem was analysed with the FEM with 3 different meshes of finite elements with
quadratic shape function, as shown in Figure 10.9. Symmetry was considered by
appropriate boundary conditions at the symmetry planes. This discretisation has the same
variation of displacements along the excavation boundary as the boundary element mesh.
Note that in the FEM we have to truncate the mesh at some distance away from the
excavation. A truncation of 2 diameters away from the excavation is used here. At the
truncation surface all displacements are assumed to be fixed. In order to eliminate the
truncation error, coupled analyses were also made, where boundary elements were used
at the edge of the FE mesh (see Chapter 16 on methods of coupling)

Figure 10.9 Finite element meshes used

Mesh 1 Mesh 2 Mesh 3

BEMor

 0yx u,u

4

5

6

7

8

9

0 0,1 0,2 0,3 0,4 0,5

dista nce (m)

y
(M

Pa
) 4 elements

8 elements

16 elements

Exac t

Mesh 1
Mesh 2
Mesh 3

276 The Boundary Element Method with Programming

Table 10.5 shows the results of the analysis. It can be seen that they are less accurate
than the ones obtained for the BEM and that the truncation error is significant.

Table 10.5 Results for meshes with parabolic finite elements

 FEM Coupled
Mesh No.

Elem
umax
(mm)

max
(MPa)

umax
(mm)

max
(MPa)

1 2 0.480 -6.840 0.535 -8.48
2 6 0.494 -7.189 0.583 -9.01
3 16 0.506 -8.165 0.598 -8.97

Theory 0.600 -9.000 0.600 -9.00

10.3.5 Conclusions

In contrast to the previous example this one favours the boundary element method. We
see that with the FEM we have two sources of error: one associated with the truncation
of the mesh that is necessary because the method is unable to model infinite domains, the
other one is that in the FEM the variation of the unknown has to be approximated by
shape functions inside the continuum as well as along the boundary surface. It can be
seen that without much additional effort the first error can be virtually eliminated by
using the coupled method and by specifying boundary elements at the truncated
boundary. This example demonstrates that the BEM is most efficient when the ratio
boundary surface to volume is very small. For problems in geomechanics, where the
soil/rock mass can be assumed to have infinite extent, this ratio actually approaches zero.

10.4 SQUARE EXCAVATION IN INFINITE ELASTIC SPACE

10.4.1 Problem statement

This example was chosen to demonstrate the ability of the BEM to model stress
concentrations. The problem is identical to the previous one, except that the shape of the
excavation is square instead of circular. The exact solution for this problem is not known
but according to the theory of elasticity, a singularity of the vertical stress occurs as the
corner is approached. It is known4 that for a corner with a subtended angle of 180o
(crack) the displacements tend to zero with r and the stresses tend to infinity with

r1 . A boundary element with quadratic variation of displacements will not be able to
model this variation, so we expect some loss of accuracy for coarse meshes.

TEST EXAMPLES 277

While there is obviously no point in trying to compute an infinite value of stress, the
variation of the displacement can be used to compute intensity factors5. So the aim is
rather to predict the variation of displacements accurately.

Figure 10.10 Problem statement with result points A,B,C

10.4.2 Boundary element discretisation and input

For the solution of the problem we again use the conditions of symmetry on two planes
and 4 meshes, three of which are shown in Figure 10.11. The first three simply represent
a uniform subdivision into 2,4 and 16 elements. Mesh 4 is a graded mesh, where the
element size has been reduced near the corner.

Figure 10.11 Meshes used (mid-side nodes not shown for graded mesh 4)

003.

x

y

A

B C

1

2

1 23

5

4

Mesh 1 Mesh 2 Mesh 4

278 The Boundary Element Method with Programming

The input file for program 7.1 for Mesh 1 is

 Square excavation – Mesh 1
 2
 2
 1
 2
 2
 2
0.1000E+05
0.0000E+00
 5
 2
 0.000 1.000
 1.000 1.000
 0.500 1.000
 1.000 0.000
 1.000 0.500
 1 2 3
 2 4 5
 0
 2
 1 0.00000 -3.00000 0.00000 -3.00000 0.00000 -3.00000
 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

The output obtained from program 7.1 is

Project:
 Square excavation – Mesh 1
 Cartesian_dimension: 2
 Elasticity Problem
 Type of Analysis: Solid Plane Strain
 Infinite Region
 Symmetry about y-z and x-z planes
 Quadratic Elements
 Modulus: 10000.00
 Poissons ratio: 0
 Number of Nodes of System: 5
 Number of Elements of System: 2
Node 1 Coor 0.00 1.00
Node 2 Coor 1.00 1.00
Node 3 Coor 0.50 1.00
Node 4 Coor 1.00 0.00
Node 5 Coor 1.00 0.50
 Incidences:
EL 1 Inci 1 2 3
EL 2 Inci 2 4 5
 Elements with Dirichlet BC´s:
 Elements with Neuman BC´s:
 Element 1 Prescribed values:

TEST EXAMPLES 279

 0.00 -3.00
 0.00 -3.00
 0.00 -3.00
 Element 2 Prescribed values:
 0.00 0.00
 0.00 0.00
 0.00 0.00
 Results, Element 1
 u= 0.00000 -0.00072 0.00018 -0.00031 0.00014 -0.00063
 t= 0.00000 -3.00000 0.00000 -3.00000 0.00000 -3.00000
 Results, Element 2
 u= 0.00018 -0.00031 0.00020 0.00000 0.00021 -0.00012
 t= 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

The input file for program 9.1 for Mesh 1 is

1 2
1.1 0
1.2 0
1.3 0
1.4 0
1.5 0

The output obtained from program 9.1 is

Post-processed Results
 Results at Boundary Elements:
Element 1 xsi= -1.00 eta= -1.00
 Stress: 3.80 3.00 0.00 0.00
Element 1 xsi= 0.00 eta= -1.00
 Stress: 1.80 3.00 0.00 0.00
Element 1 xsi= 1.00 eta= -1.00
 Stress: -0.20 3.00 0.00 0.00
Internal Results:
Coordinates: 1.10 0.00
 u: 0.000 0.000
 Stress: 0.132 -2.107 0.000 0.000
Coordinates: 1.20 0.00
 u: 0.000 0.000
 Stress: 0.026 -2.074 0.000 0.000
Coordinates: 1.30 0.00
 u: 0.000 0.000
 Stress: -0.071 -1.954 0.000 0.000
Coordinates: 1.40 0.00
 u: 0.000 0.000
 Stress: -0.161 -1.796 0.000 0.000
Coordinates: 1.50 0.00
 u: 0.000 0.000

280 The Boundary Element Method with Programming

 Stress: -0.239 -1.627 0.000 0.000

The boundary stresses obtained from Program 9.1 are plotted in Figure 10.12. It can be
seen that the magnitude of the stress concentration depends on the fineness of the
boundary element mesh near the corner and that a fine graded mesh can reasonably
approximate the theoretical stress distribution at the corner.

Figure 10.12 Distribution of tangential stress on Boundary BCA

10.4.3 “Quarter point” elements

A numerical trick can be used to simulate a singularity: if we move the “midside” node
of an element to the “quarter point” on one side, then it will be shown that the Jacobian
tends to zero as the nearest corner node is approached.

Consider the simple element in Figure 10.13, which is located along the x-axis with
one point at the origin. In the derivation we transform the intrinsic coordinate which
ranges from -1 to +1 to , which ranges from 0 to 1.
Expressed in this new coordinate system the three shape functions of a quadratic element
are given by

(10.2)

-5

0

5

10

15

-1 0 1

 (M
Pa

) mesh 1
mesh 2
mesh 3
mesh 4
mesh 5

B C A

212141212 231 N;N;N

TEST EXAMPLES 281

The coordinate x of a point with local coordinate can be computed by the
interpolation

(10.3)

Substituting for the coordinates of the nodes (0125000 321 .x,.x,.x) we obtain

(10.4)

Substitution of this into (10.2) we obtain

(10.5)

Assuming an iso-parametric formulation the variation of the displacement u is given by

(10.6)

Figure 10.13 “Quarter point” boundary element

Taking point 1 as the singular point we may substitute r=x and therefore the
displacements tend to zero with r .The strains are computed by taking the derivative of
the displacements and are given by

(10.7)

where c and d are constants. Since for elastic material the stresses x are proportional to

the strains we see that they go to infinity with ro 1
In Figure 10.12 is shown that with the simple expedient of moving the third node point

of the element near the corner, we can obtain similar or slightly better results for the
mesh 3 with the midside node moved to the “quarter point” (mesh 5) than with the

ii xNx

2x

xxN;xxN;xxN 244321 231

3213211 43422 xxxxxxxiix uuuxuuuxuuNu

r
dc

x
u x

x

00.x 01.x

x

y

01. 01.00.
250.x

00. 50. 01.

282 The Boundary Element Method with Programming

graded mesh 4. Such elements have been successfully used for the computation of stress
intensity factors6.

10.4.4 Comparison with finite elements

Comparing with finite element results we find that results are influenced not only by the
discretisation along the boundary, but also the subdivision inside the elastic space. In
fact, any result for the stress concentration at the edge can be obtained depending on the
element subdivision. A reasonably fine graded mesh is shown in Figure 10.14. It consists
of 40 Elements with quadratic variation of displacements. The distribution of the
tangential stress along a vertical line in Figure 10.15 however, shows that the general
trend of the theoretical distribution can not be obtained.

Figure 10.14 Finite Element mesh

10.4.5 Conclusions

In this example we have shown how the boundary element method deals with
singularities as they sometimes arise when we have corners. These singularities are of
course only theoretical, since there is no such thing as a perfect corner in nature. Also,
stresses can not reach an infinite value because they will be limited by a maximum value
that a material can sustain. In fracture mechanics we may compute stress intensity
factors based on the variation of displacements near the crack. The BEM is well suited
for the computation of such factors, but this topic is beyond the limited scope of this
book and will not be discussed further. For more information the reader may consult
Aliabadi7. We have shown in the comparison with the FEM, that since we only have to
worry about approximating the variation of displacements in one direction, i.e., along the

 0yx u,u

TEST EXAMPLES 283

boundary, the task of finding the mesh which gives the most accurate result is simplified.
In the FEM the result will depend on the approximation of the displacements inside the
elastic space as well, so refinement has to be made in two directions. For a comparable
discretisation on the boundary, however, we find that the BEM gives the better answer
for this problem.

Figure 10.15 Distribution of vertical stress

10.5 SPHERICAL EXCAVATION

All problems analysed so far were two-dimensional. In order to show how more drastic
savings can be made when using the BEM we show an example in 3-D.

10.5.1 Problem statement

The example is similar to the example of a circular excavation in an infinite domain
except that the excavation is now spherical and the virgin stress is given by

(10.8)

10.5.2 Boundary element discretisation and input

Two fairly coarse discretisations are used. Both meshes consist of only 3 boundary
elements, one consists of linear the other of parabolic elements. Three planes of

0 0 0 1,0 0 0 0 T

284 The Boundary Element Method with Programming

symmetry are assumed, so only one octant of the problem had to be considered. The
meshes are shown in Figure 10.17.

Figure 10.16 Problem statement

Figure 10.17 Boundary meshes used

Although the tractions 0t to be applied should be computed according to

(10.9)

Mesh 1 Mesh 2

2

1

3

5

4

7

6 1

x

y

z

2

3

0

0

0
0

z zn
t

1.0 MPa
1 R m

TEST EXAMPLES 285

It is easier to compute them assuming the surface to correspond exactly to a sphere. The
error in doing this is expected to compensate for the error in describing the geometry by
a fairly coarse discretisation. In this case the tractions are computed by

(10.10)

The input file for program 7.1 for Mesh 1 is

 Spherical excavation - linear elements
 3
 3
 2
 3
 1
0.1000E+04
0.0000E+00
 7
 3
 1.000 0.000 0.000
 0.707 0.000 0.707
 0.500 0.500 0.707
 0.707 0.707 0.000
 0.000 0.707 0.707
 0.000 1.000 0.000
 0.000 0.000 1.000
 1 2 3 4
 4 3 5 6
 3 2 7 5
 0
 3
 1 0. 0. 0. 0. 0. -0.707 0. 0. -0.707 0. 0. 0.
 2 0. 0. 0. 0. 0. -0.707 0. 0. -0.707 0. 0. 0.
 3 0. 0. -0.707 0. 0. -0.707 0. 0. -1.0 0. 0. -0.707

The output obtained from program 7.1 is

Project:
 Spherical excavation - linear elements

 Cartesian_dimension: 3
 Elasticity Problem
 Infinite Region
 Symmetry about all planes
 Linear Elements
 Modulus: 1000.000

0

0

0
0

sinz

t

286 The Boundary Element Method with Programming

 Poissons ratio: 0.0000000E+00
 Number of Nodes of System: 7
 Number of Elements of System: 3
Node 1 Coor 1.00 0.00 0.00
Node 2 Coor 0.71 0.00 0.71
Node 3 Coor 0.50 0.50 0.71
Node 4 Coor 0.71 0.71 0.00
Node 5 Coor 0.00 0.71 0.71
Node 6 Coor 0.00 1.00 0.00
Node 7 Coor 0.00 0.00 1.00

 Incidences:

EL 1 Inci 1 2 3 4
EL 2 Inci 4 3 5 6
EL 3 Inci 3 2 7 5

 Elements with Dirichlet BC´s:

 Elements with Neuman BC´s:

 Element 1 Prescribed values:
 Node= 1 0.0000000E+00 0.0000000E+00 0.0000000E+00
 Node= 2 0.0000000E+00 0.0000000E+00 -0.7070000
 Node= 3 0.0000000E+00 0.0000000E+00 -0.7070000
 Node= 4 0.0000000E+00 0.0000000E+00 0.0000000E+00
 Element 2 Prescribed values:
 Node= 1 0.0000000E+00 0.0000000E+00 0.0000000E+00
 Node= 2 0.0000000E+00 0.0000000E+00 -0.7070000
 Node= 3 0.0000000E+00 0.0000000E+00 -0.7070000
 Node= 4 0.0000000E+00 0.0000000E+00 0.0000000E+00
 Element 3 Prescribed values:
 Node= 1 0.0000000E+00 0.0000000E+00 -0.7070000
 Node= 2 0.0000000E+00 0.0000000E+00 -0.7070000
 Node= 3 0.0000000E+00 0.0000000E+00 -1.000000
 Node= 4 0.0000000E+00 0.0000000E+00 -0.7070000
 Results, Element 1
 u= 0.154E-03 0.000E+00 0.000E+00 0.744E-04 0.000E+00-0.468E-03
 0.480E-04 0.480E-04-0.467E-03 0.113E-03 0.113E-03 0.000E+00

 t= 0.000 0.000 0.000 0.000 0.000 -0.707
 0.000 0.000 -0.707 0.000 0.000 0.000

 Results, Element 2
 u= 0.113E-03 0.113E-03 0.000E+00 0.480E-04 0.480E-04-0.467E-03
 0.000E+00 0.744E-04-0.468E-03 0.000E+00 0.154E-03 0.000E+00

 t= 0.000 0.000 0.000 0.000 0.000 -0.707
 0.000 0.000 -0.707 0.000 0.000 0.000

TEST EXAMPLES 287

 Results, Element 3
 u= 0.480E-04 0.480E-04-0.467E-03 0.744E-04 0.000E+00-0.468E-03
 0.000E+00 0.000E+00-0.723E-03 0.000E+00 0.744E-04-0.468E-03

 t= 0.000 0.000 -0.707 0.000 0.000 -0.707
 0.000 0.000 -1.000 0.000 0.000 -0.707

The input file for Mesh 1 for program 9.1 is

 1 3
 1.1 0 0
 1.2 0 0
 1.3 0 0
 1.4 0 0
 1.5 0 0
 2.0 0 0
 4.0 0 0
 6.0 0 0
10.0 0 0

The output obtained from program 9.1 is

Project:
 Spherical excavation - linear elements

 Cartesian_dimension: 3
 Elasticity Problem
 Infinite Region
 Symmetry about all planes
 Linear Elements
 Modulus: 1000.000
 Poissons ratio: 0.0000000E+00
 Number of Nodes of System: 7
 Number of Elements of System: 3
Node 1 Coor 1.00 0.00 0.00
Node 2 Coor 0.71 0.00 0.71
Node 3 Coor 0.50 0.50 0.71
Node 4 Coor 0.71 0.71 0.00
Node 5 Coor 0.00 0.71 0.71
Node 6 Coor 0.00 1.00 0.00
Node 7 Coor 0.00 0.00 1.00

 Incidences:

EL 1 Inci 1 2 3 4
EL 2 Inci 4 3 5 6
EL 3 Inci 3 2 7 5

288 The Boundary Element Method with Programming

 Post-processed Results

 Results at Boundary Elements:
Element 1 xsi= -1.00 eta= -1.00
 Stress: -0.04 0.12 -0.47 -0.08 0.08 0.17
Element 1 xsi= 1.00 eta= -1.00
 Stress: -0.23 0.04 0.00 -0.14 0.30 0.70
Element 1 xsi= -1.00 eta= 1.00
 Stress: -0.04 0.12 -0.47 -0.08 0.06 0.17
Element 1 xsi= 1.00 eta= 1.00
 Stress: -0.24 0.05 0.00 -0.13 0.28 0.70
Element 2 xsi= -1.00 eta= -1.00
 Stress: 0.12 -0.04 -0.47 -0.08 0.17 0.06
Element 2 xsi= 1.00 eta= -1.00
 Stress: 0.05 -0.24 0.00 -0.13 0.70 0.28
Element 2 xsi= -1.00 eta= 1.00
 Stress: 0.12 -0.04 -0.47 -0.08 0.17 0.08
Element 2 xsi= 1.00 eta= 1.00
 Stress: 0.04 -0.23 0.00 -0.14 0.70 0.30
Element 3 xsi= -1.00 eta= -1.00
 Stress: 0.10 0.10 0.71 0.00 0.00 0.00
Element 3 xsi= 1.00 eta= -1.00
 Stress: -0.12 0.06 0.74 -0.09 0.03 0.07
Element 3 xsi= -1.00 eta= 1.00
 Stress: 0.06 -0.12 0.74 -0.09 0.07 0.03
Element 3 xsi= 1.00 eta= 1.00
 Stress: -0.11 -0.11 1.05 -0.21 0.14 0.14

 Internal Results:

Coordinates: 1.10 0.00 0.00
 u: 0.142E-03 0.316E-11-0.532E-10
 Stress: -0.135 0.137 -0.365 0.000 0.011 0.000
Coordinates: 1.20 0.00 0.00
 u: 0.127E-03-0.862E-12 0.780E-10
 Stress: -0.134 0.111 -0.244 0.000 0.000 0.000
Coordinates: 1.30 0.00 0.00
 u: 0.115E-03-0.209E-12 0.486E-10
 Stress: -0.121 0.091 -0.176 0.000 0.000 0.000
Coordinates: 1.40 0.00 0.00
 u: 0.103E-03-0.340E-12 0.337E-10
 Stress: -0.108 0.075 -0.132 0.000 0.000 0.000
Coordinates: 1.50 0.00 0.00
 u: 0.930E-04-0.117E-14 0.712E-11
 Stress: -0.095 0.062 -0.101 0.000 0.000 0.000

TEST EXAMPLES 289

10.5.3 Results

According to the highlighted value in the output from 7.1, the maximum displacement
for mesh 1at the top is 0.72 mm compared to a theoretical value of 0.9. To obtain the
correct stress results of the excavation problem we must add the virgin stress to the
values highlighted in the output from 9.1. According to the highlighted value we obtain a
maximum compressive stress in the z-direction at the boundary of -1.47 MPa, compared
to a theoretical value of -2.0 MPa.

Figure 10.18 Distribution of vertical stress

The results are obviously improved for Mesh 2. For the mesh with parabolic boundary
elements the maximum displacement at the crown is computed as 0.88 mm. The
maximum value of stress at the meridian of the sphere is computed as 2.02 MPa
compared with the theoretical solution of 2.0. The results for the internal stresses are
summarized in Figure 10.18 where the vertical stress is plotted along a horizontal line
originating from the meridian. It can be seen that even a relatively coarse mesh with 3
quadratic elements gives a reasonable accuracy.

10.5.4 Comparison with FEM

To be able to model this problem with the FEM we have to truncate the mesh, as with
the 2-D example. A fairly coarse mesh is shown in Figure 10.19. The mesh has 135
degrees of freedom, as compared with 16 degrees of freedom for the boundary element
mesh 2. The maximum displacement obtained from this analysis is 0.084 which
represents a poor agreement with the theory. A much finer mesh would be required.

0,0

0,5

1,0

1,5

2,0

1,0 1,5 2,0 2,5 3,0

R/a

z (
M

Pa
)

linear elements
parabo lic elements
exact

290 The Boundary Element Method with Programming

Figure 10.19 Finite element mesh

10.6 CONCLUSIONS

The purpose of this chapter was to show on a number of simple examples, how the
method works and the sort of accuracy that can be expected. We have seen that some
examples favour the BEM, while others do not. On the cantilever example it has been
shown that care has to be taken to avoid situations where two boundary elements are too
close to each other. The method based on point collocation implemented in this book
shows that significant errors can be observed if surfaces are too close to each other and
the mesh is coarse. On the other hand we have shown that for problems involving
infinite domains, as they occur, for example in geotechnical engineering, accuracy,
efficiency and user friendliness is superior to the FEM.

After reading this chapter the reader should have learned how to generate boundary
element meshes and input files for Programs 7.1 Generel_purpose_BEM and 9.1
Post_processor. A good appreciation of the method, the accuracy that can be obtained
and the pitfalls that should be avoided should also have been gained. The reader may
now proceed to learn more about more advanced topics.

TEST EXAMPLES 291

10.7 REFERENCES

1. Krätzig W.B. and Wittek U.(1995) Tragwerke 1. Springer, Berlin
2. Hartmann F. (1989) Introduction to Boundary Elements, Theory and Applications.

Springer, Berlin
3. Kirsch (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre.

Zeitschrift des Vereins deutscher Ingenieure, 42,797-807
4. Kanninen,M.F. and Popelar, C.H. (1985) Advanced Fracture Mechanics. Oxford

Science Series15, Oxford University Press, New York.
5. Ingraffea, A.R. and Manu, C. (1980) Stress intensity factor computation in three

dimensions with quarter point elements, International Journal for Numerical
Methods in Engineering, 15, 1427-1445.

6. Aliabadi M.H. (2002) The Boundary Element Method, Volume 2. J. Wiley.

11
Multiple regions

Imagination is more important than knowledge..

A. Einstein

11.1 INTRODUCTION

The solution procedures described so far are only applicable to homogeneous domains,
as the fundamental solutions used assume that material properties do not change inside
the domain being analysed. There are many instances, however, where this assumption
does not hold. For example, in a soil or rock mass, the modulus of elasticity may change
with depth or there might be various layers/inclusions with different properties. For
some special types of heterogeneity it is possible to derive fundamental solutions, for
example, if the material properties change in a simplified way (linear increase with
depth). However, such fundamental solutions are often complicated and the
programming effort significant1.

In cases where we have layers or zones of different materials, however, we can
develop special solution methods based on the fundamental solutions for homogeneous
materials in Chapter 4. The basic idea is to consider a number of regions which are
connected to each other, much like pieces of a puzzle. Each region is treated in the same
way as discussed previously but can now be assigned different material properties. With
this method we are able to solve piecewise homogeneous material problems. As we will
see later, the method also allows simulating contact and cracking propagation problems.

Since at the interfaces between the regions both t and u are not known, the number of
unknowns is increased and additional equations are required to solve the problem. These
equations can be obtained from the conditions of equilibrium and compatibility at the

294 The Boundary Element Method with Programming

region interfaces. There are two approaches which can be taken in the implementation of
the method.

In the first, we modify the assembly procedure, so that a larger system of equations is
now obtained including the additional unknowns at the interfaces. The second method is
similar to the approach taken by the finite element method. Here we construct a
“stiffness matrix”, K, of each region, the coefficients of which are the fluxes or tractions
due to unit temperatures/displacements. The matrices K for all regions are then
assembled in the same way as with the FEM. The second method is more efficient and
more amenable to implementation on parallel computers. The method may also be used
for coupling boundary with finite elements, as outlined in Chapter 12. We will therefore
only discuss the second method here. For the explanation of the first approach the reader
is referred for appropriate text books2,3.

11.2 STIFFNESS MATRIX ASSEMBLY

The multi-region assembly is not very efficient in cases where sequential
excavation/construction (for example, in tunnelling) is to be modelled, since the
coefficient matrices of all regions have to be computed and assembled every time a
region is added or removed. Also, the method is not suitable for parallel processing since
there the region matrices must be assembled and computed completely separately.
Finally, significant efficiency gains can be made with the proposed method where only
some nodes of the region are connected to other regions.

The stiffness matrix assembly, utilises a philosophy similar to that used by the finite
element method. The idea is to compute a “stiffness matrix” KN for each region N.
Coefficients of KN are values of t due to unit values of u at all region nodes. In potential
flow problems these would correspond to fluxes due to unit temperatures while in
elasticity they would be tractions due to unit displacements. To obtain the “stiffness
matrix” KN of a region, we simply solve the Dirichlet problem M times, where M is the
number of degrees of freedom of the BE region nodes. For example, to get the first
column of KN, we apply a unit value of temperature or of displacement in x-direction, as
shown in Figure 11.1 while setting all other node values to zero.

Figure 11.1 Example of computation of “stiffness coefficients”: Cantilever beam subjected to a
unit displacement 1xu showing the traction distribution obtained from Program 7.1

1xu

xt

MULTIPLE REGIONS 295

For computation of Dirichlet problems we use equation (7.3), with a modified right
hand side

(11.1)

Here ,T U are the assembled coefficient matrices, 1t is the first column of the

stiffness matrix KM and 1u is a vector with a unit value in the first row ,i.e

(11.2)

If we perform the multiplication of 1T u it can be easily seen that the right hand

side of equation (11.1) is simply the first column of matrix T . The computation of

the region “stiffness matrix” is therefore basically a solution of i iU t F , with

N right hand sides iF , where each right hand side corresponds to a column in T .

Each solution vector it represents a column in K , i.e.,

(11.3)

For each region (N) we have the following relationship between {t} and {u}:

(11.4)

To compute, for example, the problem of heat flow past an isolator, which is not
impermeable but has conductivity different to the infinite domain, we specify two
regions, an infinite and a finite one, as shown in figure 11.2. Note that the outward
normals of the two regions point in directions opposite to each other (Figure 11.3). First
we compute matrices KI and KII for each region separately and then we assemble the
regions using the conditions for flow balance and uniqueness of temperature in the case
of potential problems and equilibrium and compatibility in the case of elasticity. These
conditions are written as

(11.5)

 The assembled system of equations for the example in Figure 11.2 is simply:

(11.6)

1 1U t T u

1

1
0
0

u

1 2
N t tK

N NNt uK

;I II I IIt t t u u

I IIt uK K

296 The Boundary Element Method with Programming

which can be solved for u if t is known.

Figure 11.2 Example of a multi-region analysis: inclusion with different conductivity in an

infinite domain

Figure 11.3 The two regions of the problem

11.2.1 Partially coupled problems

In many cases we have problems where not all nodes of the regions are connected (these
are known as partially coupled problems). Consider for example the modified heat flow

1 Region II, k2

2

3

4

5

6

7

8

Region I, k1

1

2

3

4

5

6

7
8

1

2

3

4

5

6

7
8

n

n

Region I (infinite) Region II (finite)

MULTIPLE REGIONS 297

problem in Figure 11.4 where an additional circular impermeable isolator is specified on
the right hand side.

Figure 11.4 Problem with a circular inclusion and an isolator

Here only some of the nodes of region I are connected to region II. It is obviously
more efficient to consider in the calculation of the stiffness matrix only the interface
nodes, i.e. only of those nodes that are connected to a region. It is therefore proposed
that we modify our procedure in such a way that we first solve the problem with zero
values of u at the interface between region I and II and then solve the problem where
unit values of u are applied at each node in turn.

For partially coupled problems we therefore have to solve the following types of
problems (this is explained on a heat flow problem but can be extended to elasticity
problems by replacing t with t and u with u):

1. Solution of system with “fixed” interface nodes

The first one is where boundary conditions are applied at the nodes which are not
connected to other regions (free nodes) and Dirichlet boundary conditions with
zero prescribed values are applied at the nodes which are connected to other
regions (coupled nodes). For each region we can write the following system of
equations:

(11.7) 0
0

0

N
N Nc

N
f

t
B F

x

1 Region II, k2

2

3

4

5

6

7

8

Region I, k1

9

10

11

12

13

14

15
16

298 The Boundary Element Method with Programming

where NB is the assembled left hand side and N
oF contains the right hand side

due to given boundary conditions for region N. Vector N
cot contains the heat flow

at the coupled nodes and vector N
fox either temperatures or heat flow at the free

nodes of region N, depending on the boundary conditions prescribed (Dirichlet or
Neumann).

2. Solution of system with unit values applied at the interface nodes

The second problem to be solved for each region is to obtain the solution due to
Dirichlet boundary condition of unit value applied at each of the interface nodes in
turn and zero prescribed values at the free nodes. The equations to be solved are

(11.8)

where N
nF is the right hand side computed for a unit value of u at node n. The

vector N
cnt contains the heat flow at the coupled nodes and N

fnx the temperature

or heat flow at the free nodes, for the case of unit Dirichlet boundary conditions at
node n. Nc equations are obtained where Nc is the number of interface nodes in the
case of the potential problem (in the case of elasticity problems it refers to the
number of interface degrees of freedom). Note that the left hand side of the system
of equations, [B]N, is the same for the first and second problem and that

nF simply corresponds to the nth column of T .

After the solution of the first two problems N
ct and N

fx can be expressed in terms of
N
cu by:

(11.9)

where N
cu contains the temperatures at the interface nodes of region N and the

matrices NK and NA are defined by:

(11.10)

0

0

N N N
Nc c
cN N N

f f

t t
u

x x

K

A

1,2
N

N cn
cnN

fn

t
B F n N

x

1 1;
c c

N N
N N

c cN c cNt t x xK A

MULTIPLE REGIONS 299

3. Assembly of regions, calculation of interface unknowns

After all the region stiffness matrices KN have been computed they are assembled
to a system of equations which can be solved for the unknown cu .
For the assembly we use conditions of heat balance and uniqueness of temperature
or equilibrium and compatibility as discussed previously. This results in the
following system of equations

(11.11)

where [K] is the assembled “stiffness matrix” of the interface nodes and {F}is the
assembled right hand side. This system is solved for the unknown cu at the nodes
of all interfaces of the problem.

4. Calculation of unknowns at the free nodes of region N

After the interface unknown have been determined the values of t at the interface
(N

ct) and the value of u or t at the free nodes (N
fx) are determined for each

region by the application of

(11.12)

Note that N
cu is obtained by gathering values from the vector of unknown at all

the interfaces cu .

11.2.2 Example

The procedure is explained in more detail on a simple example in potential flow.
Consider the example in Figure 11.5 which contains two homogeneous regions.
Dirichlet boundary conditions with prescribed zero values are applied on the left side
and Neuman BC’s on the right side as shown. All other boundaries are assumed to have
Neuman BC with zero prescribed values. The interface only involves nodes 2 and 3 and
therefore only 2 interface unknowns exist.

For an efficient implementation it will be necessary to renumber the nodes for each
region, i.e. introduce a separate local numbering for each region. This will not only
allow each region to be treated completely independently but also save storage space,
because nodes not on the interface will belong to one region only.

cu FK

0

0

N N N
Nc c
cN N N

f f

t t
u

x x

K

A

300 The Boundary Element Method with Programming

Figure 11.5 Example for stiffness assembly, partially coupled problem with global node
numbering; local (element) numbering shown in italics.

Figure 11.6 The different problems to be solved for regions I and II (potential problem)

On the top of Figure 11.6 we show the local (region) numbering that is adapted for
region I and II. The sequence in which the nodes of the region are numbered is such that
the interface nodes are numbered first. We also depict in the same figure the problems

u= 0

u= 0

u= 0

Region I

u= 0 t= t0

Region II

4 1

2 3

2

1

3

4

It10

It20

IIt20

IIt10

It11

It12

It21

It22

IIt22

IIt21

IIt12

IIt11

1 1Iu 2 1IIu

2 0Iu 1 1IIu

1 0Iu

2 1Iu

1 0Iu

2 1Iu

1

4

2Region I

1

3

4

5

6

7

8

5

6

Region II

2

3

0u 0tt

1 2 1 21

212 1

2

1

2 1

2 12

MULTIPLE REGIONS 301

which have to be solved for obtaining vector cot and the two rows of matrix K and A.
It is obvious that for the first problem to be solved for region I , where for all nodes u=0,

cot will also be zero. Following the procedure in chapter 7 and referring to the
element numbering of Figure 11.5 we obtain the following integral equations for the
second and third problem for region I.

(11.13)

for i=1,2,3,4. In Equation 11.13, two subscripts have been introduced for t: the first
subscript refers to the node number where t is computed and the second to the node
number where the unit value of u is applied. The roman superscript refers to the region
number. The notation for and U T is the same as defined in Chapter 7, i.e. the first
subscript defines the node number and the second the collocation point number; the
superscript refers to the boundary element number (in square areas in Figure 11.5).

This gives the following system of equations with two right hand sides

(11.14)

After solving the system of equations we obtain

(11.15)

where

(11.16)

2 2 4 4 1 2
2 1 11 2 21 1 31 2 41 2 1

2 2 2 4 4 3 2
3 1 12 2 22 1 32 2 42 1 2

1 1

1 1

I I I I
i i i i i i

I I I
i i i i i i

u U t U t U t U t T T

u U t U t U t U t T T

IIIIII
cfcc ; uAxuKt

I I11 12 11

2 21 22 2

I 3 31 32

4 41 42

; ;

;

I I II
I

c cI I I

I I I
I

f I I I

t t utt u
t t t u

t t t
x

t t t

K

A

2
14

1
24

2
14

1
24

2
13

1
23

2
13

1
23

2
12

1
22

2
12

1
22

3
11

2
21

2
11

1
21

4241

3231

2221

1211

4
24

4
14

1
24

2
14

4
23

4
13

2
23

2
13

4
22

4
12

2
22

2
12

4
21

4
11

2
21

2
11

TTTT

TTTT

TTTT

TTTT

tt

tt

tt

tt

UUUU

UUUU

UUUU

UUUU

II

II

II

II

302 The Boundary Element Method with Programming

where ct and cu refer to the values of t and u at the interface.
For region II we have for the case of zero u at the interface nodes

(11.17)

This gives

(11.18)

which can be solved for the values at the interface and free nodes

(11.19)

In our notation I
cot refers to the values of t at the interface for the case where u=0 at

the interface. I
cox refers to the values of u at the free nodes (where Neumann boundary

conditions have been applied).
For 2 31 and 1u u we obtain

(11.20)

The solutions can be written as

(11.21)

0
6
24

6
14

0
6
23

6
13

0
6
22

6
12

0
6
21

6
11

40

30

20

10

7
24

6
14

5
24

6
14

8
24

8
14

7
23

6
13

5
23

6
13

8
23

8
13

7
22

6
12

5
22

6
12

8
22

8
12

7
21

6
11

5
21

6
11

8
21

8
11

tUU

tUU

tUU

tUU

u

u

t

t

TTTTUU

TTTTUU

TTTTUU

TTTTUU

II

II

II

II

8 8 6 5
2 20 1 10 1 2 30

6 7 6 6
1 2 40 1 2 0

II II II
i i i i

II
i i i i

U t U t T T u

T T u U U t

I I10 20
0

40 30

;
II II

co fII II

t u
t x

t u

8 8 6 5 6 7 5 8
1 12 2 22 1 2 32 1 2 42 1 2

8 8 6 5 6 7 7 8
2 11 2 21 1 2 31 1 2 41 2 1

1

1

II II II II
i i i i i i i i

II II II II
i i i i i i i i

U t U t T T u T T u T T

U t U t T T u T T u T T

II II II II II IIII II
0 0;c c c f f ct t u x x uK A

MULTIPLE REGIONS 303

where

(11.22)

The equations of compatibility or preservation of heat at the interface can be written
as

(11.23)

Substituting (11.16) and (11.22) into (11.23) we obtain

(11.24)

where

(11.25)

This system can be solved for the interface unknowns. The calculation of the other
unknowns is done separately for each region. For region I we have

(11.26)

Whereas for region II

(11.27)

If we consider the equivalent elasticity problem of a cantilever beam, we see (Figure
11.7) then for region II the problem where the interface displacements are fixed gives
the tractions at the interface corresponding to a shortened cantilever beam. If ux=1 is
applied only a rigid body motion results and therefore no resulting tractions at the
interface occur. The application of uy=1 however will result in shear tractions at the
interface.

0cu tK

3

2

1

2

2

1

1

2

2

1 0
u

u

u

u

u

u
;

t

t

t

t
II
c

II
c

I
c

I
c

II
c

II
c

I
c

I
c

II II I101 11 12 1

202 21 22 2

II II 303 31 32

404 41 42

; ; ;

; ;

IIII II II II
II

c co cIIII II II II

IIII II II
II

c co IIII II II

tt t t u
t t u

tt t t u

uu u u
x x

uu u u

K

A

2 1011 22 12 21

3 2022 11 21 12

; ;
II II I II

c II II I II

u tt t t t
u t

u tt t t t
K

I I I II I;c c f ct u x uK A

II II II II II IIII II
0 0;c c c f f ct t u x x uK A

304 The Boundary Element Method with Programming

Figure 11.7 Effect of application of Dirichlet boundary conditions on region II of cantilever
beam (elasticity problem)

11.3 COMPUTER IMPLEMENTATION

We now consider the computer implementation of the stiffness matrix assembly method.
We divide this into two tasks. First we develop a SUBROUTINE Stiffness_BEM for the
calculation of matrix K. If the problem is not fully coupled, then this subroutine will
also determine the matrix A and the solutions for zero values of u at the interface.
Secondly we develop a program General_purpose_BEM_Multi.

For an efficient implementation (where zero entries in the matrices are avoided) we
must consider 3 different numbering systems, each one is related to the global
numbering system as shown in Figure 11.5:

1. Element numbering. This is the sequence in which the nodes to which an element

connects are entered in the element incidence vector. In the example in Figure 11.5
we have only two element nodes (1,2). Table 11.1 has two main columns: One
termed “in global numbering” which shows the node numbers as they appear in
Figure 11.5 and the other termed “in region numbering” as they appear on the top of
Figure 11.6.

2. Region numbering. This numbering is used for computing the “stiffness matrix” of

a region. For this the element node numbers are specified in “region numbering”.

1xu

1yu

MULTIPLE REGIONS 305

Table 11.2 depicts the “region incidences” i.e. the sequence of node numbers of a
region.

3. Interface numbering. This is basically the sequence in which the interface nodes

are entered in the interface incidence vector. For the example problem the interface
incidences are given in Table 11.3. This sequence is determined in such a way that
the first node of the first interface element will start the sequence. Note that the
interface incidences are simply the first two values of the region incidence vector.

For problems involving more than one unknown per node the incidence vectors have to
be expanded to Destination vectors as explained in Chapter 7.

Table 11.1 Incidences of boundary elements in global and local numbering

Table 11.2 Region incidences

 1. 2. 3. 4.
Region I 2 3 4 1
Region II 3 2 5 6

Table 11.3 Interface incidences

 1. 2.
Region I 2 3
Region II 3 2

.

in global numbering in region numbering Boundary
Element
number 1. 2. 1. 2.

1 1 2 4 1
2 2 3 1 2
3 3 4 2 3
4 4 1 3 4
5 2 5 2 3
6 5 6 3 4
7 6 3 4 1
8 3 2 1 2

306 The Boundary Element Method with Programming

11.3.1 Subroutine Stiffness_BEM

The tasks for the Stiffness_BEM are essentially the same as for the
General_Purpose_BEM, except that the boundary conditions that are considered are
expanded. We add a new boundary code,2 , which is used to mark nodes at the interface.

The input parameters for SUBROUTINE Stiffness_BEM are the incidence vectors
of the boundary elements, which describe the boundary of the region, the coordinates of
the nodes and the Boundary conditions. Note that the vector of incidences as well as the
coordinates has to be in the local (region) numbering. SUBROUTINE AssemblySTIFF
is basically the same as SUBROUTINE Assembly, except that a boundary code 2 for
interface conditions has been added. Boundary code 2 is treated the same as code 1
(Dirichlet) except that columns of [T]e are assembled into the array RhsM (multiple
right hand sides). SUBROUTINE Solve is modified into Solve_Multi, which can
handle both single (Rhs) and multiple (RhsM) right hand sides.

The output parameter of the SUBROUTINE is stiffness matrix K and for partially
coupled problems in addition matrix A as well as {t}c. The rows and columns of these
matrices will be numbered in a local (interface) numbering. The values of 0fu and

0ct are stored in the array El_res which contains the element results. They can be
added at element level.

We show below the library module Stiffness_lib which contains all the necessary
declarations and subroutines for the computation of the stiffness matrix. The symmetry
option has been left out in the implementation shown to simplify the coding.

MODULE Stiffness_lib
USE Utility_lib ; USE Integration_lib ; USE Geometry_lib
IMPLICIT NONE
INTEGER :: Cdim ! Cartesian dimension
INTEGER :: Ndof ! No. of degeres of freedom per node
INTEGER :: Nodel ! No. of nodes per element
INTEGER :: Ndofe ! D.o.F´s / Elem
REAL :: C1,C2 ! material constants
INTEGER, ALLOCATABLE :: Bcode(:,:)
REAL, ALLOCATABLE :: Elres_u(:,:),Elres_t(:,:) ! El. results
CONTAINS
SUBROUTINE Stiffnes_BEM(Nreg,maxe,xP,incie,Ncode,Ndofc,KBE,A,TC)
!---
! Computes the stiffness matrix of a boundary element region
! no symmetry implemented
!--
INTEGER,INTENT(IN) :: Nreg ! Region code
INTEGER,INTENT(IN) :: maxe ! Number of boundary elements
REAL, INTENT(IN) :: xP(:,:) ! Array of node coordinates
INTEGER, INTENT(IN):: Incie(:,:) ! Array of incidences
INTEGER, INTENT(IN):: Ncode(:) ! Global restraint code
INTEGER, INTENT(IN):: Ndofc ! No of interface D.o.F.

MULTIPLE REGIONS 307

REAL(KIND=8), INTENT(OUT) :: KBE(:,:) ! Stiffness matrix
REAL(KIND=8), INTENT(OUT) :: A(:,:) ! u due to uc=1
REAL(KIND=8), INTENT(OUT) :: TC(:) ! t due to uc=0
INTEGER, ALLOCATABLE :: Ldeste(:,:)! Element destinations
REAL(KIND=8), ALLOCATABLE :: dUe(:,:),dTe(:,:),Diag(:,:)
REAL(KIND=8), ALLOCATABLE :: Lhs(:,:)
REAL(KIND=8), ALLOCATABLE :: Rhs(:),RhsM(:,:) ! right hand sides
REAL(KIND=8), ALLOCATABLE :: u1(:),u2(:,:) ! results
REAL, ALLOCATABLE :: Elcor(:,:)
REAL :: v3(3),v1(3),v2(3)
INTEGER :: Nodes,Dof,k,l,nel
INTEGER :: n,m,Ndofs,Pos,i,j,nd
Nodes= UBOUND(xP,2) ! total number of nodes of region
Ndofs= Nodes*Ndof ! Total degrees of freedom of region
ALLOCATE(Ldeste(maxe,Ndofe)) ! Elem. destination vector
!--
! Determine Element destination vector
!---
Elements:&
DO Nel=1,Maxe
 k=0
 DO n=1,Nodel
 DO m=1,Ndof
 k=k+1
 IF(Ndof > 1) THEN
 Ldeste(Nel,k)= ((Incie(Nel,n)-1)*Ndof + m)
 ELSE
 Ldeste(Nel,k)= Incie(Nel,n)
 END IF
 END DO
 END DO
END DO &
Elements
ALLOCATE(dTe(Ndofs,Ndofe),dUe(Ndofs,Ndofe))
ALLOCATE(Diag(Ndofs,Ndof))
ALLOCATE(Lhs(Ndofs,Ndofs),Rhs(Ndofs),RhsM(Ndofs,Ndofs))
ALLOCATE(u1(Ndofs),u2(Ndofs,Ndofs))
ALLOCATE(Elcor(Cdim,Nodel))
!---
! Compute and assemble element coefficient matrices
!---
Lhs= 0
Rhs= 0
Elements_1:&
DO Nel=1,Maxe
 Elcor(:,:)= xP(:,Incie(nel,:))! gather element coords
 IF(Cdim == 2) THEN
 IF(Ndof == 1) THEN
 CALL Integ2P(Elcor,Incie(nel,:),Nodel,Nodes,xP,C1,dUe,dTe)
 ELSE
 CALL Integ2E(Elcor,Incie(nel,:),Nodel,Nodes&

308 The Boundary Element Method with Programming

 ,xP,C1,C2,dUe,dTe)
 END IF
 ELSE
 CALL Integ3(Elcor,Incie(nel,:),Nodel,Nodes,xP,Ndof &
 ,C1,C2,dUe,dTe)
 END IF
 CALL AssemblyMR(Nel,Lhs,Rhs,RhsM,DTe,Due&
 ,Ldeste(nel,:),Ncode,Diag)
END DO &
Elements_1
!--
! Add azimuthal integral for infinite regions
!--
IF(Nreg == 2) THEN
 DO m=1, Nodes
 DO n=1, Ndof
 k=Ndof*(m-1)+n
 Diag(k,n) = Diag(k,n) + 1.0
 END DO
 END DO

END IF
!---
! Add Diagonal coefficients
!---
Nodes_global: &
DO m=1,Nodes
 Degrees_of_Freedoms_node: &
 DO n=1,Ndof
 DoF = (m-1)*Ndof + n ! global degree of freedom no.
 k = (m-1)*Ndof + 1 ! address in coeff. matrix (row)
 l = k + Ndof - 1 ! address in coeff. matrix (column)
 IF (NCode(DoF) == 1) THEN ! Dirichlet - Add Diagonal to Rhs
 CALL Get_local_DoF(Maxe,Dof,Ldeste,Nel,Pos)
 Rhs(k:l) = Rhs(k:l) - Diag(k:l,n)*Elres_u(Nel,Pos)
 ELSE ! Neuman - Add Diagonal to Lhs
 Lhs(k:l,Dof)= Lhs(k:l,Dof) + Diag(k:l,n)
 END IF
 END DO &
 Degrees_of_Freedoms_node

END DO &
Nodes_global
! Solve problem
CALL Solve_Multi(Lhs,Rhs,RhsM,u1,u2)
!--------------------------------------
! Gather element results due to
! “fixed” interface nodes
!--------------------------------------
Elements2: &
DO nel=1,maxe
 D_o_F1: &
 DO nd=1,Ndofe

MULTIPLE REGIONS 309

 IF(NCode(Ldeste(nel,nd)) == 0) THEN
 Elres_u(nel,nd) = u1(Ldeste(nel,nd))
 ELSE IF(NCode(Ldeste(nel,nd)) == 1) THEN
 Elres_t(nel,nd) = u1(Ldeste(nel,nd))
 END IF

 END DO &
 D_o_F1

END DO &
Elements2
!------------------------------------
! Gather stiffness matrix KBE and matrix A
!------------------------------------
Interface_DoFs: &
DO N=1,Ndofc
 KBE(N,:)= u2(N,:)
 TC(N)= u1(N)
END DO &
Interface_DoFs
Free_DoFs: &
DO N=Ndofc+1,Ndofs
 A(N,:)= u2(N,:)

END DO &
Free_DoFs
DEALLOCATE (Ldeste,dUe,dTe,Diag,Lhs,Rhs,RhsM,u1,u2,Elcor)
RETURN
END SUBROUTINE Stiffnes_BEM

SUBROUTINE Solve_Multi(Lhs,Rhs,RhsM,u,uM)
!---
! Solution of system of equations
! by Gauss Elimination
! for multple right hand sides
!---
REAL(KIND=8) :: Lhs(:,:) ! Equation Left hand side
REAL(KIND=8) :: Rhs(:) ! Equation right hand side 1
REAL(KIND=8) :: RhsM(:,:) ! Equation right hand sides 2
REAL(KIND=8) :: u(:) ! Unknowns 1
REAL(KIND=8) :: uM(:,:) ! Unknowns 2
REAL(KIND=8) :: FAC
INTEGER M,Nrhs ! Size of system
INTEGER i,n,nr
M= UBOUND(RhsM,1) ; Nrhs= UBOUND(RhsM,2)
! Reduction
Equation_n: &
DO n=1,M-1
 IF(ABS(Lhs(n,n)) < 1.0E-10) THEN
 CALL Error_Message('Singular Matrix')
 END IF
 Equation_i: &
 DO i=n+1,M
 FAC= Lhs(i,n)/Lhs(n,n)

310 The Boundary Element Method with Programming

 Lhs(i,n+1:M)= Lhs(i,n+1:M) - Lhs(n,n+1:M)*FAC
 Rhs(i)= Rhs(i) - Rhs(n)*FAC
 RhsM(i,:)= RhsM(i,:) - RhsM(n,:)*FAC
 END DO &
 Equation_i
END DO &
Equation_n
! Backsubstitution
Unknown_1: &

DO n= M,1,-1
 u(n)= -1.0/Lhs(n,n)*(SUM(Lhs(n , n+1:M)*u(n+1:M)) - Rhs(n))
END DO &
Unknown_1
Load_case: &
DO Nr=1,Nrhs
 Unknown_2: &
 DO n= M,1,-1
 uM(n,nr)= -1.0/Lhs(n,n)*(SUM(Lhs(n , n+1:M)*uM(n+1:M , nr))&
 - RhsM(n,nr))
 END DO &
 Unknown_2
END DO &
Load_case
RETURN
END SUBROUTINE Solve_Multi

SUBROUTINE AssemblyMR(Nel,Lhs,Rhs,RhsM,DTe,DUe,Ldest,Ncode,Diag)
!---
! Assembles Element contributions DTe , DUe
! into global matrix Lhs, vector Rhs
! and matrix RhsM
!---
INTEGER,INTENT(IN) :: NEL
REAL(KIND=8) :: Lhs(:,:) ! Eq.left hand side
REAL(KIND=8) :: Rhs(:) ! Right hand side
REAL(KIND=8) :: RhsM(:,:) ! Matrix of r. h. s.
REAL(KIND=8), INTENT(IN):: DTe(:,:),DUe(:,:) ! Element arrays
INTEGER , INTENT(IN) :: LDest(:) ! Element destination vector
INTEGER , INTENT(IN) :: NCode(:) ! Boundary code (global)
REAL(KIND=8) :: Diag(:,:) ! Diagonal coeff of DT
INTEGER :: n,Ncol,m,k,l
DoF_per_Element:&
DO m=1,Ndofe
 Ncol=Ldest(m) ! Column number
 IF(BCode(nel,m) == 0) THEN ! Neumann BC
 Rhs(:) = Rhs(:) + DUe(:,m)*Elres_t(nel,m)

! The assembly of dTe depends on the global BC
 IF (NCode(Ldest(m)) == 0) THEN
 Lhs(:,Ncol)= Lhs(:,Ncol) + DTe(:,m)
 ELSE

MULTIPLE REGIONS 311

 Rhs(:) = Rhs(:) - DTe(:,m) * Elres_u(nel,m)
 END IF
ELSE IF(BCode(nel,m) == 1) THEN ! Dirichlet BC
 Lhs(:,Ncol) = Lhs(:,Ncol) - DUe(:,m)
 Rhs(:)= Rhs(:) - DTe(:,m) * Elres_u(nel,m)
 ELSE IF(BCode(nel,m) == 2) THEN ! Interface
 Lhs(:,Ncol) = Lhs(:,Ncol) - DUe(:,m)
 RhsM(:,Ncol)= RhsM(:,Ncol) - DTe(:,m)
END IF

END DO &
DoF_per_Element
! Sum of off-diagonal coefficients
DO n=1,Nodel
 DO k=1,Ndof
 l=(n-1)*Ndof+k
 Diag(:,k)= Diag(:,k) - DTe(:,l)
 END DO

END DO
 RETURN
END SUBROUTINE AssemblyMR
END MODULE Stiffness_lib

11.4 PROGRAM 11.1: GENERAL PURPOSE PROGRAM,
DIRECT METHOD, MULTIPLE REGIONS

Using the library for stiffness matrix computation we now develop a general purpose
program for the analysis of multi-region problems. The input to the program is the same
as for one region, except that we must now specify additional information about the
regions. A region is specified by a list of elements that describe its boundary, a region
code that indicates if the region is finite or infinite and the symmetry code. In order to
simplify the code, however symmetry will not be considered here and therefore the
symmetry code must be set to zero.
The various tasks to be carried out are

1. Detect interface elements, number interface nodes/degrees of freedom

The first task of the program will be to determine which elements belong to an
interface between regions and to establish a local interface numbering. Interface
elements can be detected by the fact that two boundary elements connect to the
exactly same nodes, although not in the same sequence, since the outward normals
will be different. The number of interface degrees of freedom will determine the
size of matrices K and A.

2. For each region

a. Establish local (region) numbering for element incidences

312 The Boundary Element Method with Programming

For the treatment of the individual regions we have to renumber the
nodes/degrees of freedom for each region into a local (region) numbering
system, as explained previously. The incidence and destination vectors of
boundary elements, as well as coordinate vector, are modified accordingly.

b. Determine K and A and results due to “fixed” interface nodes

The next task is to determine matrix K. At the same time we assemble it into
the global system of equations using the interface destination vector. For
partially coupled problems, we calculate and store, at the same time, the results
for the elements due to zero values of cu at the interface. These values are
stored in the element result vectors Elres_u and Elres_t. Matrix A and the
vector {t}c are also determined and stored.

3. Solve global system of equations

The global system of equations is solved for the interface unknowns cu

4. For each region determine ct and fu

Using equation (11.27) the values for the fluxes/tractions at the interface and (for
partially coupled problems) the temperatures/displacements at the free nodes are
determined and added to the values already stored in Elres_u and Elres_t. Note that
before Equation (11.27) can be used the interface unknowns have to be gathered
from the interface vector using the relationship between interface and region
numbering in Table 11.3.

PROGRAM General_purpose_MRBEM
!--
! General purpose BEM program
! for solving elasticity and potential problems
! with multiple regions
!--
USE Utility_lib; USE Elast_lib; USE Laplace_lib
USE Integration_lib; USE Stiffness_lib
IMPLICIT NONE
INTEGER, ALLOCATABLE :: NCode(:,:) ! Element BC´s
INTEGER, ALLOCATABLE :: Ldest_KBE(:) ! Interface destinations
INTEGER, ALLOCATABLE :: TypeR(:) ! Type of BE-regions
REAL, ALLOCATABLE :: Elcor(:,:) ! Element coordinates
REAL, ALLOCATABLE :: xP(:,:) ! Node co-ordinates
REAL, ALLOCATABLE :: Elres_u(:,:) ! Element results
REAL, ALLOCATABLE :: Elres_t(:,:) ! Element results
REAL(KIND=8), ALLOCATABLE :: KBE(:,:,:) ! Region stiffness
REAL(KIND=8), ALLOCATABLE :: A(:,:,:) ! Results due to ui=1
REAL(KIND=8), ALLOCATABLE :: Lhs(:,:),Rhs(:) ! global matrices

MULTIPLE REGIONS 313

REAL(KIND=8), ALLOCATABLE :: uc(:) ! interface unknown
REAL(KIND=8), ALLOCATABLE :: ucr(:)! interface unknown(region)
REAL(KIND=8), ALLOCATABLE :: tc(:) ! interface tractions
REAL(KIND=8), ALLOCATABLE :: xf(:) ! free unknown
REAL(KIND=8), ALLOCATABLE :: tcxf(:) ! unknowns of region
REAL, ALLOCATABLE :: XpR(:,:) ! Region node coordinates
REAL, ALLOCATABLE :: ConR(:) ! Conductivity of regions
REAL, ALLOCATABLE :: ER(:) ! Youngs modulus of regions
REAL, ALLOCATABLE :: nyR(:) ! Poissons ratio of regions
REAL :: E,ny,Con
INTEGER,ALLOCATABLE:: InciR(:,:)! Incidences (region)
INTEGER,ALLOCATABLE:: Incie(:,:)! Incidences (global)
INTEGER,ALLOCATABLE:: IncieR(:,:) ! Incidences (local)

 INTEGER,ALLOCATABLE:: ListC(:) ! List of interface nodes
INTEGER,ALLOCATABLE:: ListEC(:,:) ! List of interface Elem.
INTEGER,ALLOCATABLE:: ListEF(:,:) ! List of free Elem.
INTEGER,ALLOCATABLE:: LdestR(:,:) ! Destinations(local

numbering)
INTEGER,ALLOCATABLE:: Nbel(:) ! Number of BE per region
INTEGER,ALLOCATABLE:: NbelC(:) ! Number of Interf. Elem./reg.
INTEGER,ALLOCATABLE:: NbelF(:) ! Number of free elem./region
INTEGER,ALLOCATABLE:: Bcode(:,:) ! BC for all elements
INTEGER,ALLOCATABLE:: Ldeste(:,:) ! Destinations (global)
INTEGER,ALLOCATABLE:: LdesteR(:,:)! Destinations (local)
INTEGER,ALLOCATABLE:: NodeR(:) ! No. of nodes of Region
INTEGER,ALLOCATABLE:: NodeC(:) ! No. of nodes on Interface

 INTEGER,ALLOCATABLE:: ListR(:,:) ! List of Elements/region
INTEGER,ALLOCATABLE:: Ndest(:,:)
INTEGER :: Cdim ! Cartesian dimension
INTEGER :: Nodes ! No. of nodes of System
INTEGER :: Nodel ! No. of nodes per element
INTEGER :: Ndofe ! D.o.F´s of Element
INTEGER :: Ndof ! No. of degrees of freedom per node
INTEGER :: Ndofs ! D.o.F´s of System
INTEGER :: NdofR ! Number of D.o.F. of region
INTEGER :: NdofC ! Number of interface D.o.F. of region
INTEGER :: NdofF ! Number D.o.F. of free nodes of region
INTEGER :: NodeF ! Number of free Nodes of region
INTEGER :: NodesC ! Total number of interface nodes
INTEGER :: NdofsC ! Total number of interface D.o.F.
INTEGER :: Toa ! Type of analysis (plane strain/stress)
INTEGER :: Nregs ! Number of regions
INTEGER :: Ltyp ! Element type(linear = 1, quadratic = 2)
INTEGER :: Isym ! Symmetry code
INTEGER :: Maxe ! Number of Elements of System
INTEGER :: nr,nb,ne,ne1,nel
INTEGER :: n,node,is,nc,no,ro,co
INTEGER :: k,m,nd,nrow,ncln,DoF_KBE,DoF
CHARACTER(LEN=80) :: Title
!---
! Read job information

314 The Boundary Element Method with Programming

!---
OPEN (UNIT=1,FILE='INPUT',FORM='FORMATTED') ! Input
OPEN (UNIT=2,FILE='OUTPUT',FORM='FORMATTED')! Output
Call JobinMR(Title,Cdim,Ndof,Toa,Ltyp,Isym,nodel,nodes,maxe)
Ndofs= Nodes * Ndof ! D.O.F's of System
Ndofe= Nodel * Ndof ! D.O.F's of Element
Isym= 0 ! no symmetry considered here
ALLOCATE(Ndest(Nodes,Ndof))
Ndest= 0
READ(1,*)Nregs ! read number of regions
ALLOCATE(TypeR(Nregs),Nbel(Nregs),ListR(Nregs,Maxe))
IF(Ndof == 1)THEN
 ALLOCATE(ConR(Nregs))
ELSE
 ALLOCATE(ER(Nregs),nyR(Nregs))
END IF
CALL Reg_Info(Nregs,ToA,Ndof,TypeR,ConR,ER,nyR,Nbel,ListR)
ALLOCATE(xP(Cdim,Nodes)) ! Array for node coordinates
ALLOCATE(Incie(Maxe,Nodel)) ! Array for incidences
CALL Geomin(Nodes,Maxe,xp,Incie,Nodel,Cdim)
ALLOCATE(BCode(Maxe,Ndofe))
ALLOCATE(Elres_u(Maxe,Ndofe),Elres_t(Maxe,Ndofe))
CALL BCinput(Elres_u,Elres_t,Bcode,nodel,ndofe,ndof)
!--
! Determine Element destination vector for assembly
!--
ALLOCATE(Ldeste(Maxe,Ndofe))
Elements_of_region2:&
DO Nel=1,Maxe
 k=0
 DO n=1,Nodel
 DO m=1,Ndof
 k=k+1
 IF(Ndof > 1) THEN
 Ldeste(Nel,k)= ((Incie(Nel,n)-1)*Ndof + m)
 ELSE
 Ldeste(Nel,k)= Incie(Nel,n)
 END IF
 END DO
 END DO
END DO &
Elements_of_region2
!---
! Detect interface elements,
! assign interface boundary conditions
! Determine number of interface nodes
!---
ALLOCATE(ListC(Nodes))
NodesC=0
ListC=0
Elements_loop: &

MULTIPLE REGIONS 315

DO ne=1,Maxe
 Elements_loop1: &
 DO ne1=ne+1,Maxe
 IF(Match(Incie(ne1,:),Incie(ne,:))) THEN
 BCode(ne,:)= 2 ; BCode(ne1,:)= 2 ! assign interface BC
 Element_nodes: &
 DO n=1,nodel
 Node= Incie(ne,n)
 is= 0
 Interface_nodes: &
 DO nc=1,NodesC
 IF(Node == ListC(nc)) is= 1
 END DO &
 Interface_nodes
 IF(is == 0) THEN
 NodesC= NodesC + 1
 ListC(NodesC)= Node
 END IF
 END DO &
 Element_nodes
 EXIT
 END IF
 END DO &
 Elements_loop1
END DO &
Elements_loop
NdofsC= NodesC*Ndof
ALLOCATE(InciR(Nregs,Nodes),IncieR(Maxe,Nodel))
ALLOCATE(KBE(Nregs,NdofsC,NdofsC),A(Nregs,Ndofs,Ndofs))
ALLOCATE(Lhs(NdofsC,NdofsC),Rhs(NdofsC),uc(NdofsC),tc(NdofsC))
ALLOCATE(NodeR(Nregs),NodeC(Nregs))
ALLOCATE(ListEC(Nregs,maxe))
ALLOCATE(ListEF(Nregs,maxe))
ALLOCATE(LdesteR(Maxe,Ndofe))
ALLOCATE(Ldest_KBE(Ndofs))
ALLOCATE(NCode(Nregs,Ndofs))
ALLOCATE(LdestR(Nregs,Ndofs))
ALLOCATE(NbelC(Nregs))
ALLOCATE(NbelF(Nregs))
LdesteR= 0
Ncode= 0
NbelF= 0
NbelC= 0
!---
! Assign local (region) numbering
! and incidences of BE in local numbering
!--
ListEC= 0
ListEF= 0
DoF_KBE= 0
Regions_loop_1: &

316 The Boundary Element Method with Programming

DO nr=1,Nregs
 node= 0
 Elements_of_region: &
 DO nb=1,Nbel(nr)
 ne= ListR(nr,nb)
 Interface_elements: &
 IF(Bcode(ne,1) == 2) THEN
 NbelC(nr)= NbelC(nr) + 1
 ListEC(nr,NbelC(nr))= ne
 Nodes_of_Elem: &
 DO n=1,Nodel
! check if node has allready been entered
 is=0
 DO no=1,node
 IF(InciR(nr,no) == Incie(ne,n)) THEN
 is= 1
 EXIT
 END IF
 END DO
 IF(is == 0) THEN
 node=node+1
 InciR(nr,node)= Incie(ne,n)
 IncieR(ne,n)= node
 ELSE
 IncieR(ne,n)= no
 END IF
 END DO &
 Nodes_of_Elem
 END IF &
 Interface_elements
 END DO &
 Elements_of_region
 NodeC(nr)= Node ! No of interface nodes of Region nr
 NdofC= NodeC(nr)*Ndof ! D.o.F. at interface of Region nr
 Elements_of_region1: &
 DO nb=1,Nbel(nr)
 ne= ListR(nr,nb)
 Free_elements: &
 IF(Bcode(ne,1) /= 2) THEN
 NbelF(nr)= NbelF(nr) + 1
 ListEF(nr,NbelF(nr))= ne
 Nodes_of_Elem1: &
 DO n=1,Nodel
 is=0
 DO no=1,node
 IF(InciR(nr,no) == Incie(ne,n)) THEN
 is= 1
 EXIT
 END IF
 END DO

 IF(is == 0) THEN

MULTIPLE REGIONS 317

 node=node+1
 InciR(nr,node)= Incie(ne,n)
 IncieR(ne,n)= node
 ELSE
 IncieR(ne,n)= no
 END IF

END DO &
Nodes_of_Elem1

 END IF &
 Free_elements
 END DO &
 Elements_of_region1
 NodeR(nr)= node ! number of nodes per region
 !--
 ! Determine Local Element destination vector
 !--
 Elements:&
 DO Nel=1,Nbel(nr)
 k=0
 ne= ListR(nr,Nel)
 DO n=1,Nodel
 DO m=1,Ndof
 k=k+1
 IF(Ndof > 1) THEN
 LdesteR(ne,k)= ((IncieR(ne,n)-1)*Ndof + m)
 ELSE
 LdesteR(ne,k)= IncieR(ne,n)
 END IF
 END DO
 END DO
 END DO &
 Elements
 !--
 ! Determine Local Node destination vector
 !--
 n= 0
 DO no=1, NodeR(nr)
 DO m=1, Ndof
 n= n + 1
 LdestR(nr,n)= (InciR(nr,no)-1) * Ndof + m
 END DO
 END DO
!--
! Determine global Boundary code vector for assembly
!--
 NdofR= NodeR(nr)*Ndof ! Total degrees of freedom of region
 DoF_o_System: &
 DO nd=1,NdofR
 DO Nel=1,Nbel(nr)
 ne=ListR(nr,Nel)
 DO m=1,Ndofe

318 The Boundary Element Method with Programming

 IF (nd == LdesteR(ne,m) .and. NCode(nr,nd) == 0) THEN
 NCode(nr,nd)= NCode(nr,nd)+BCode(ne,m)
 END IF
 END DO
 END DO
 END DO &
 DoF_o_System
END DO &
Regions_loop_1
Regions_loop_2: &
DO nr=1,Nregs
!-----------------------------------
! allocate coordinates in local(region) numbering
!-----------------------------------
 ALLOCATE(XpR(Cdim,NodeR(nr)))
 Region_nodes: &
 DO Node=1,NodeR(nr)
 XpR(:,Node)= Xp(:,InciR(nr,node))
 END DO &
 Region_nodes
!--
! Determine interface destination vector for region assembly
!--
 No_o_Interfaceelements:&
 DO n=1, NbelC(nr)
 ne= ListEC(nr,n)
 DoF_o_Element:&
 DO m=1, Ndofe
 DoF= Ldeste(ne,m)
 IF(Ldest_KBE(DoF) == 0)THEN
 DoF_KBE= DoF_KBE + 1
 Ldest_KBE(DoF)= DoF_KBE
 END IF
 END DO &
 DoF_o_Element
 END DO &
No_o_Interfaceelements
 NdofR= NodeR(nr)*Ndof ! Total degrees of freedom of region
 NdofC= NodeC(nr)*Ndof ! D.o.F. of interface of Region nr
 E=ER(nr)
 ny=nyR(nr)
 CALL Stiffness_BEM(nr,XpR,Nodel,Ndof,Ndofe&
,NodeR,Ncode(nr,:),NdofR,NdofC,KBE(nr,:,:)&
,A(nr,:,:),tc,Cdim,Elres_u,Elres_t,IncieR&
,LdesteR,Nbel,ListR,TypeR,Bcode,Con,E,ny,Ndest,Isym)
 DO ro=1,NdofC
 DoF= LdestR(nr,ro)
 Nrow= Ldest_KBE(DoF)
 Rhs(Nrow)= Rhs(Nrow) + tc(ro)
 DO co=1, NdofC
 DoF= LdestR(nr,co)

MULTIPLE REGIONS 319

 Ncln= Ldest_KBE(DoF)
 Lhs(Nrow,Ncln)= Lhs(Nrow,Ncln) - KBE(nr,ro,co)
 END DO
END DO
DEALLOCATE (XPR)

END DO &
Regions_loop_2
DEALLOCATE(tc)
!------------------------------
! solve for interface unknown
!------------------------------
CALL Solve(Lhs,Rhs,uc)
!-----------------------------
! compute and add effect of interface displ.
!-----------------------------
Regions_loop_3: &
DO nr=1,Nregs
! gather region interface displacements
 NdofC= NodeC(nr)*Ndof
 ALLOCATE(ucr(NdofC))
 Interface_dof: &
 DO n=1,NdofC
 DoF= LdestR(nr,n)
 ucr(n)= uc(Ldest_KBE(DoF))
 END DO &
 Interface_dof
!---
! Store Interfacedisplacements into Elres_u
!---
 Interface_DoF1:&
 DO nd=1, NdofC
 DO n=1, Nbel(nr)
 ne=ListR(nr,n)
 DO m=1,Ndofe
 IF(nd == LdesteR(ne,m))THEN
 Elres_u(ne,m)= Elres_u(ne,m) + ucr(nd)
 END IF
 END DO
 END DO
 END DO &
 Interface_DoF1
! effects of interface displacement in local (region)

numbering
 NdofR= NodeR(nr)*Ndof
 NdofF= (NodeR(nr) - NodeC(nr))*Ndof ! d.o.F , free nodes
 ALLOCATE(tc(NdofC),xf(NdofF),tcxf(NdofR))
 tc= 0.0; xf= 0.0; tcxf= 0.0
 tc= Matmul(KBE(nr,1:NdofC,1:NdofC),ucr)
 xf= Matmul(A(nr,1:NdofF,1:NdofC),ucr)
tcxf(1:NdofC)= tc
tcxf(NdofC+1:NdofR)= xf

320 The Boundary Element Method with Programming

 !---
 ! Store Interface tractions into Elres_t
 !---
 DO nd=1, NdofC
 DO n=1, NbelC(nr)
 ne=ListEC(nr,n)
 DO m=1, Ndofe
 IF(nd == LdesteR(ne,m))THEN
 Elres_t(ne,m)= Elres_t(ne,m) + tcxf(nd)
 END IF
 END DO
 END DO
 END DO
 !---
 ! Store Results of free nodes into Elres_u or Elres_t
!---
DO nd=NdofC+1, NdofR
 DO n=1, NbelF(nr)
 ne=ListEF(nr,n)
 DO m=1, Ndofe
 IF(nd == LdesteR(ne,m))THEN
 IF(Ncode(nr,nd) == 0)THEN
 Elres_u(ne,m)= Elres_u(ne,m) + tcxf(nd)
 ELSE IF(Bcode(ne,m) == 1)THEN
 Elres_t(ne,m)= Elres_t(ne,m) + tcxf(nd)
 END IF
 END IF
 END DO
 END DO
 END DO
 DEALLOCATE(tc,xf,tcxf,ucr)
END DO &
Regions_loop_3
!--------------------------
! Print out results
!--------------------------
CLOSE(UNIT=2)
OPEN(UNIT=2,FILE= 'BERESULTS',FORM='FORMATTED')
Elements_all: &
DO nel=1,Maxe
 WRITE(2,*) ' Results, Element ',nel
 WRITE(2,*) 'u=' , (Elres_u(nel,m), m=1,Ndofe)
 WRITE(2,*) 't=' , (Elres_t(nel,m), m=1,Ndofe)
END DO &
Elements_all
END PROGRAM General_purpose_MRBEM

MULTIPLE REGIONS 321

11.4.1 User’s manual

The input data to be supplied in the data file INPUT are described below. Free field
input is used, that is, numbers are separated by blanks. However, all numbers including
zero entries must be specified.

The input is divided into three parts. First, general information about the problem is
read in. Next, the mesh geometry is specified. The problem may consist of linear and
quadratic elements, as shown in Figure 11.8. The sequence in which node numbers have
to be entered when specifying the incidences is also shown. Note that this order
determines the direction of the outward normal, which has to point away from the
material. For 3-D elements, if node numbers are entered in an anticlockwise sense the
outward normal points towards the viewer. Finally, information about regions has to be
specified. For each region we must input the number of boundary elements that describe
the region, the region code (finite or infinite) and the material properties.

Figure 11.8 Element library

INPUT DATA SPECIFICATION FOR General_purpose-BEM program

1.0 Title specification
 TITLE Project title (max 60 characters)
2.0 Cartesian dimension of problem
 Cdim Cartesian dimension
 2= two-dimensional problem
 3= three-dimensional problem

Linear

Quadratic

2

1

2

1
3

n

n

1

2

3 4

1
2

3
4

5 6

7

8

n

n

2-D 3-D

322 The Boundary Element Method with Programming

3.0 Problem type specification
 Ndof Degree of freedom per node
 1 = potential problem
 2,3 = elasticity problem
4.0 Element type specification
 Ltyp Element type
 1= linear
 2= quadratic
5.0 Node specification
 Nodes Number of nodes
6.0 Element specification
 Maxe Number of elements
7.0 Region specification
 Nregs Number of regions

For Nregs regions DO

8.0 Region specification
 TypeR Type of region (1=finite, 2=infinite)
9.0 Symmetrycode
 Isym Symmetry code (must be set to zero)
10.0 Material properties
 C1,C2 Material properties
 C1= k (conductivity) for Ndof=1
 = E (Modulus of elasticity) for Ndof=2
 C2= Poisson´s ratio for Ndof=1
11.0 Number of elements
 Nbel Number of boundary elements/region
12.0 List of elements
 ListR(1:Nbel) List of elements belonging to region

END DO for each region

13.0 Loop over nodes
x,y,(z) Node coordinates

14.0 Loop over all elements
 Inci (1:Element nodes) Global node numbers of element nodes
15.0 Dirichlet boundary conditions
 NE_u Number of elements with Dirichlet BC
16.0 Prescribed values for Dirichlet BC for NE_u elements
 Nel, Elres_u(1 : Element D.o.F.) Specification of boundary condition
 Nel = Elem. number to be assigned BC
 Elres_u = Prescribed values for all

 degrees of freedom of element: all d.o.F
 first node; all d.o.F second node etc.
17.0 Neuman boundary conditions

MULTIPLE REGIONS 323

 NE_t Number of elements with Neuman BC
 Only specify for non-zero prescribed

 values.
18.0 Prescribed values for Neuman BC for NE_t elements

Nel, Elres_t(1 : Element D.o.F.) Specification of boundary condition
 Nel = Elem. number to be assigned BC
 Elres_t = Prescribed values for all

 degrees of freedom of element: all d.o.F
 first node; all d.o.F second node etc.

11.4.2 Sample problem

The example problem is the same as the cantilever in Chapter 10, except that two
regions are specified instead of one. The mesh is shown in Figure 11.9.

Figure 11.9 Cantilever beam multi-region mesh

The input file for this problem is

Cantilever beam multi-region ! Title
 2 ! Cartesian dimension
 2 ! Elasticity problem
 1 ! T.o.A.= plane strain
 2 ! Parabolic elements
 21 ! Nodes
 12 ! Elements
 2 ! Number of regions
 1 ! Region 1: Type of region= Finite
 0 ! No symmetry

kN/m 10
0

y

x

t
t

1
x

y

23 45

6

7

8 910 11

12

14 16

18

20

13 15

171921

1 2

3

45

6

7 8

9

10 11

12 0
0

y

x

u
u m 1

m .52 m .52

I II

324 The Boundary Element Method with Programming

0.1000E+05 0.0000E+00 ! E ,
 6 ! Number of elements
 1 2 3 4 5 6 ! List of elements
 1 ! Region 2: Type of region= Finite
 0 ! No symmetry
0.1000E+05 0.0000E+00 ! E ,
 6 ! Number of elements
 7 8 9 10 11 12 ! List of elements
 0.000 0.000 ! Node coordinates
 1.250 0.000
 0.625 0.000
 2.500 0.000
 1.875 0.000
 2.500 1.000
 2.500 0.500
 1.250 1.000
 1.875 1.000
 0.000 1.000
 0.625 1.000
 0.000 0.500
 3.750 0.000
 3.125 0.000
 5.000 0.000
 4.375 0.000
 5.000 1.000
 5.000 0.500
 3.750 1.000
 4.375 1.000
 3.125 1.000
 1 2 3 ! Element incidences
 2 4 5
 4 6 7
 6 8 9
 8 10 11
 10 1 12
 4 13 14
 13 15 16
 15 17 18
 17 19 20
 19 6 21
 6 4 7
 1
 6 0.0 0.0 0.0 0.0 0.0 0.0 ! Dirichlet BC
 1
9 0.0 -10.0 0.0 -10.0 0.0 -10.0 ! Neumann BC

The output from program 11.1 is as follows

Project:
 Cantilever beam multi-region

MULTIPLE REGIONS 325

 Cartesian_dimension: 2
 Elasticity Problem
 Type of Analysis: Solid Plane Strain
 Quadratic Elements
Number of Nodes of System: 21
Number of Elements of System: 12
Region 1
Finite region
No symmetry
Youngs modulus: 10000.00
Poissons ratio: 0.0000000E+00
List of boundary elements:
1 2 3 4 5 6

 Region 2
Finite region
No symmetry
Youngs modulus: 10000.00
Poissons ratio: 0.0000000E+00
List of boundary elements:
7 8 9 10 11 12

Node 1 Coor 0.00 0.00
Node 2 Coor 1.25 0.00
Node 3 Coor 0.63 0.00
Node 4 Coor 2.50 0.00
Node 5 Coor 1.88 0.00
Node 6 Coor 2.50 1.00
Node 7 Coor 2.50 0.50
Node 8 Coor 1.25 1.00
Node 9 Coor 1.88 1.00
Node 10 Coor 0.00 1.00
Node 11 Coor 0.63 1.00
Node 12 Coor 0.00 0.50
Node 13 Coor 3.75 0.00
Node 14 Coor 3.13 0.00
Node 15 Coor 5.00 0.00
Node 16 Coor 4.38 0.00
Node 17 Coor 5.00 1.00
Node 18 Coor 5.00 0.50
Node 19 Coor 3.75 1.00
Node 20 Coor 4.38 1.00
Node 21 Coor 3.13 1.00

 Incidences:
EL 1 Inci 1 2 3
EL 2 Inci 2 4 5
EL 3 Inci 4 6 7
EL 4 Inci 6 8 9
EL 5 Inci 8 10 11
EL 6 Inci 10 1 12
EL 7 Inci 4 13 14
EL 8 Inci 13 15 16

326 The Boundary Element Method with Programming

EL 9 Inci 15 17 18
EL 10 Inci 17 19 20
EL 11 Inci 19 6 21
EL 12 Inci 6 4 7

Elements with Dirichlet BC´s:

 Element 6 Prescribed values:
 0.0000000E+00 0.0000000E+00
 0.0000000E+00 0.0000000E+00
 0.0000000E+00 0.0000000E+00

 Elements with Neuman BC´s:

 Element 9 Prescribed values:
 0.0000000E+00 -10.00000
 0.0000000E+00 -10.00000
 0.0000000E+00 -10.00000
 .
 .
 Results, Element 9
 u= -7.3849E-02 -0.5012
 7.3849E-02 -0.5012
 1.0140E-09 -0.5011
 .

 .
Results, Element 12
 u= 5.5386E-02 -0.1582
 -5.5386E-02 -0.1582
 1.0792E-09 -0.1582
 t= -147.7 5.933
 147.7 5.933
 -1.2626E-06 12.060

It can be seen that the maximum displacement is 0.5012, as compared with the
theoretical value of 0.500 and that the multi-region method does not result in any loss of
accuracy.

11.5 CONCLUSIONS

In this chapter we have extended the capabilities of the programs, so that problems with
piecewise non-homogeneous material properties can be handled. The “stiffness matrix
assembly” approach taken is quite different from the methods published in text books
and uses some ideas of the finite element method. There are several advantages: since
each region can be treated completely separately the method is well suited to parallel
processing because each processor could be assigned to the computation of the stiffness
matrix of one region. Furthermore, with this method it is possible to model sequential

MULTIPLE REGIONS 327

excavation and construction as is required, for example for tunnelling4. By choosing to
implement the method we have also laid the groundwork for the coupling with the finite
element method so that there is not much more theory to discuss in Chapter 16. The
multi-region method extends the capability of the BEM not only to handle non-
homogeneous domains but also, as will be demonstrated later, can be applied to contact
and crack propagation problems5.

11.6 EXERCISES

Exercise 11.1

Use program 11.1 to analyse the cantilever beam in Figure 11.10 consisting of two
materials. Assume 0 and different ratios of 1 2/E E (1.0, 2.0, 5.0). Compute the
internal stresses for each region using program 9.1 and plot along a vertical line.

Figure 11.10 Dimensions of cantilever beam

Exercise 11.2

Use program 11.1 to analyse the circular excavation in an inhomogeneous prestressed
ground (.1.0, 0vertical horiz) shown in Figure 11.11 (see also Exercise 7.3).
Assume 0 and 2 1/ 0.5E E . Use different values of distance a (2, 5, 10 m).
Determine the effect on the maximum displacements.

0.5 m

0.5 m

5 m

1 /kN m

1E

2E

328 The Boundary Element Method with Programming

Figure 11.11 Description of example for exercise 11.2

11.7 REFERENCES

1. H-Y Kuo and T. Chen(2005) Steady and transient Green’s functions for anisotropic

conduction in an exponentially graded solid. International Journal of Solids and
Structures , 42(3-4): 1111-1128

2. Banerjee P.K. (1994) The Boundary Element Methods in Engineering. McGraw-Hill
Book Company, London.

3. Butterfield,R and Tomlin,G.R. (1972) Integral techniques for solving zoned
anisotropic continuum problems. Int. Conf. Variational Methods in Engineering,
Southampton University: 9/31-9/53

4. Beer G. and Dünser Ch. Boundary element analysis of problems in tunnelling, John
Booker Memorial Symposium, (J.Carter ed). AA. Balkema, Rotterdam.

5. Beer G. (1993) An efficient numerical method for modelling initiation and
propagation of cracks along a material interface. Int. J. Numer. Methods Eng. 36
(21): 3579-3594.

10 m

20 m

2E

1E

a

4 m

12
Dealing with corners and
changing geometry

He who goes beneath the surface
does this at his own risk

O. Wilde

12.1 INTRODUCTION

The multi-region method outlined in the previous chapter works well if interfaces
between regions are smooth, i.e. where interface points have a unique tangent. If the
boundary is not smooth but has corners and edges, i.e. the outward normals are different
at elements adjacent to the node, then the normal flow or normal tractions are also
different on each side. Such a case would arise, for example, if the shape of the inclusion
in the example of the previous chapter is square (Figure 12.1) instead of circular. In this
case, two values of normal flow or two sets of traction vectors would have to be
computed at the corner node instead of one. However, the integral equations allow the
computation at a node of only one value of t for potential problems and one vector of t
for elasticity problems.

In some applications of numerical simulation one has to deal with geometries that
change during the analysis. For example the analysis of tunnel construction involves a
changing excavation surface as the tunnel is constructed.

This chapter deals in some detail with the treatment of corners in the boundary
element method and the efficient analysis of problems with changing geometries.

330 The Boundary Element Method with Programming

12.2 CORNERS AND EDGES

A number of schemes for dealing with the problem of sharp corners, where the solution
for t is not unique have been proposed in the past.

Figure 12.1 Example of a multi-region problem with corners

The following are some methods that have been suggested:

 Numerically round off the corner by using an average outward normal, i.e., an
average of all normal vectors of elements connecting to the node. This is not really
correct, as the geometry of the element should be rounded off too.

 The unknown values of t are computed by extrapolation from the nodes adjacent to

the corner node1. This method is not difficult to implement but its accuracy would
greatly depend on the size of the boundary elements adjacent to the corner.

 Use of auxiliary equations2,6 based on stress symmetry and on the differential

equation of equilibrium to compute extra values of t . Another method to solve the
problem is based on derivations of potentials or displacements on each side of the
corner to get the appropriate number of equations for solving multi valued flow or
tractions3.

 Use discontinuous elements4 introduced in section 3.7.2. Here t is actually not
computed right at the corner but slightly inside the element. Therefore two sets of t
may be computed at each side of the corner.

The approaches which add auxiliary equations to the system of equation have been

implemented and tested6, and it has been found that with a careful implementation they

Region I

Region II

rt
lt

CORNERS AND CHANGING GEOMETRY 331

do improve the results at corners. However, auxiliary equations are somehow artificial
and often the results depend on the fineness of the mesh. Especially for problems with
changing geometries/boundary conditions, where the loading of the current analysis step
depends on the previous steps, these methods do not work correctly and give erroneous
results. It was found that for a multi-region analysis only discontinuous elements give
satisfactory results and guarantee equilibrium at interface elements adjacent to corner
and edge nodes. Therefore only discontinuous elements are discussed in more detail
here.

12.2.1 Discontinuous elements

The method implemented here uses a continuous discretisation of the geometry and a
discontinuous interpolation as explained in chapter 3. By this method the collocation
points, where unknowns are determined, are placed inside elements, whereas the
geometry nodes remain the same. Two programs are developed to demonstrate
discontinuous elements, prog71_discont (single region program) and prog111_discont
(multiple region program). Because we use continuous discretisation of the geometry the
same input files can be used as for the programs prog71 and prog111.

12.2.2 Numerical integration for one-dimensional elements

In this section the numerical integration in 2D is explained for the case of elasticity. The
approach for potential problems is similar. The integrals which have to be evaluated
over a discontinuous element, shown in Figure 3.22, are for elasticity problems

1 1

1 1

, , ,e e
ni n i ni n iN P J d N P J dU U T T (12.1)

where nN are linear or quadratic discontinuous shape functions. The Jacobian J
is evaluated with continuous shape functions and with the coordinates of the element
nodes.

When point iP is not one of the element nodes, both integrals can be evaluated by
Gauss Quadrature and the integrals in Equation (12.1) can be replaced by a sum where
the number of integration points M is a function of the proximity of Pi to the integration
region as explained in Chapter 6

 1

1

,

,

M
e
ni n m i m m m

m
M

e
ni n m i m m m

m

N P J W

N P J W

T T

U U
 (12.2)

332 The Boundary Element Method with Programming

We now investigate the other possibilities for the location of iP .

iP is located at one of the discontinuous nodes inside the element and the shape
function value at this node is zero

Since ()iN O r the singularity of the kernel shape function product cancels out if
Q approaches iP . The integral of the kernel shape function product remains regular,
but the fact, that iP is located inside the element and the integrand is discontinuous
at iP , requires a splitting of the integration region into two sub regions.

Pi
21 3

1 1

1 1

12N

U

1 1

1d 2d

Figure 12.2 Integration when iP is located at local node 1 and the shape function value is zero

The integrals of equation (12.1) have to be evaluated separately and added for the 2 sub
regions

1 12 2

1 11 1

, , ,e e
ni n i ni n i

r r

d dN P J d N P J d
d d

U U T T (12.3)

The local coordinate system is changed from to for the left and the right sub

region in the following way:

CORNERS AND CHANGING GEOMETRY 333

Pi located at node 1:

Left sub region: 1 11 1
2 2

d d
 11

2
dd

d

Right sub region: 1 11 1
2 2

d d
 11

2
dd

d

Pi located at node 2:

Left sub region: 2 21 1
2 2

d d
 21

2
dd

d

Right sub region: 2 21 1
2 2

d d
 21

2
dd

d

Pi located at node 3:

Left sub region: 1 1
2

 1
2

d
d

Right sub region: 1 1
2

 1
2

d
d

iP is located at one of the discontinuous nodes inside the element and the shape
function value at that node is not zero

In this case the kernel shape function product e

niU is weakly singular and e
niT is

strongly singular. e
niT is evaluated with the rigid body motion approach explained in

chapter 6. The diagonal terms of the displacement fundamental solution consist of a

logarithmic function 1ln
r

. For the integration of this function a modified Gauss

Quadrature, Gauss-Laguerre5 is used. The off-diagonal terms consist of non- singular
terms. Thus, these Kernel shape function products can be integrated regularly and in the
same way as explained above.

The logarithmic function 1ln
r

 is integrated in the following form

1

10

1() ln ()
M

m m
m

f d W f (12.4)

As can be seen in equation (12.4) the integration interval is from 0 to 1. This interval

has to be applied for the sub regions as shown in Figure 12.3.

334 The Boundary Element Method with Programming

Pi
21 3

0 1

1
1N

U

1 1

1d 2d

1 0

Figure 12.3 Integration when iP is located at local node 1 and the shape function value is one

The following transformations from intrinsic coordinate to have to be applied
depending on the location of the collocation node inside the element.

Pi located at node 1:

Left sub region: 1 11d d 11d d
d

Right sub region: 1 11d d 11d d
d

Pi located at node 2:

Left sub region: 2 21d d 21d d
d

Right sub region: 2 21d d 21d d
d

Pi located at node 3

Left sub region: 1d
d

CORNERS AND CHANGING GEOMETRY 335

Right sub region: 1d
d

The weakly singular part of the integral of Kernel e

xxU is for example

12

1
1 1

1ln ,e
xx n i

r

dU C C N P J d
r d

 (12.5)

For straight elements the radius r can be expressed in the following way

2
L dr a where a

d
 (12.6)

The factor a is a constant and depends on d d and the element length L . Because
of this, Equation (12.5) can be split into two parts. The first part can be integrated by the
Quadrature of Gauss-Laguerre and the second one can be evaluated regularly

1 12

1
1 0 0

1 1ln lne
xx n n

r

d dU C C N J d N J d
d a d

 (12.7)

The integration limits of the second integral in equation (12.7) are from 0 to 1 and

when using normal Gauss Quadrature, the integral has to be transformed to the limits
1 to 1 as follows

1 1

0 1

1 1ln ln ,n n i
d d dN J d N P J d

a d a d d
 (12.8)

The transformation from to is independent of the location of the collocation

point and the sub region. The transformation has the following form:

1 1 and
2 2

d
d

12.2.3 Numerical implementation

Two dimensional discontinuous elements (linear and quadratic) are implemented in the
single region program prog71_discont and in the multi region program prog111_discont.

336 The Boundary Element Method with Programming

In the Module Integration_lib a new subroutine called Integ2E_Disc is implemented
which manages the integration. This subroutine itself calculates the regular integrals
(when the collocation point is not located at the element). Inside this routine two
subroutines are called (NonsingularIntegration2D and SingularIntegration2D) which
are responsible for the integration when the collocation point is located at the element.
The subroutine NonsingularIntegration2D performs the integration for the case where
the shape function value is zero at the collocation point and the subroutine
SingularIntegration2D is calculating the weakly singular behaviour of the kernel U .
An additional subroutine ShapefunctionDisc has been added to the module
Geometry_lib which calculates the discontinuous shape functions needed in the
subroutines of integration.

MODULE Integration_lib

SUBROUTINE Integ2E_Disc(Elcor,Inci,Nodel,Ncol,xP,E&
,ny,dUe,dTe,Ndest,Isym)
!--
! Computes [dT]e and [dU]e for 2-D elasticity problems
! by numerical integration for discontinuous elements
!---
IMPLICIT NONE
REAL, INTENT(IN) :: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(IN) :: Ndest(:,:) ! Node destinations
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes
INTEGER , INTENT(IN):: Ncol ! Number of points Pi
INTEGER , INTENT(IN):: Isym
REAL, INTENT(IN) :: E,ny ! Elastic constants
REAL, INTENT(IN) :: xP(:,:) ! Array with coll. coords.
REAL(KIND=8), INTENT(OUT) :: dUe(:,:),dTe(:,:)
REAL :: epsi= 1.0E-4
REAL :: Eleng,Rmin,RonL,Glcor(8),Wi(8),Ni(Nodel),Vnorm(2)&
,GCcor(2)
REAL :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r, dxdxb,Pi,C,C1
REAL :: d1,d2
INTEGER :: i,j,k,m,n,Mi,nr,ldim,cdim,iD,nD,Nreg
d1=0.8 ; d2=0.8 ! offsets for discont. nodes
Pi=3.14159265359
C=(1.0+ny)/(4*Pi*E*(1.0-ny))
ldim= 1
cdim=ldim+1
CALL Elength(Eleng,Elcor,nodel,ldim)
dUe= 0.0
dTe= 0.0
Colloc_points: DO i=1,Ncol
 Rmin= Min_dist1(Elcor,xP(:,i),Nodel,inci,ELeng,Eleng,ldim)
 RonL= Rmin/Eleng ! R/L

! Integration off-diagonal coeff. -> normal Gauss Quadrature
 Mi= Ngaus(RonL,1)

CORNERS AND CHANGING GEOMETRY 337

 Mi=8
 Call Gauss_coor(Glcor,Wi,Mi) ! Assign coords/Weights
 Gauss_points: DO m=1,Mi
 xsi= Glcor(m)
 CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xP(:,i),cdim) ! Dist. P,Q
 dxr= (GCcor-xP(:,i))/r ! rx/r , ry/r
 CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)
 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 Node_points: DO n=1,Nodel
 Direction_P: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j) ! line number in array
 END IF
 IF (id == 0) CYCLE
 Direction_Q: DO k= 1,2
 nD= 2*(n-1) + k ! column number in array
 IF(HasEntry(inci, i) == .FALSE.) THEN

! i is not an element node
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*UP(j,k)*Jac*Wi(m)
 dTe(iD,nD)= dTe(iD,nD) + Ni(n)*TP(j,k)*Jac*Wi(m)
 END IF
 END DO Direction_Q
 END DO Direction_P
 END DO Node_points
 END DO Gauss_points

END DO Colloc_points
CALL NonSingularIntegration2D(Elcor,Inci,Nodel,xP&
 ,E,ny,dUe,dTe,Ndest,Isym,d1,d2)

CALL SingularIntegration2D(Elcor,Inci,Nodel,xP&
 ,E,ny,dUe,dTe,Ndest,Isym,d1,d2)

RETURN
END SUBROUTINE Integ2E_Disc

SUBROUTINE NonSingularIntegration2D(Elcor,Inci,Nodel,xP&
,E,ny,dUe,dTe,Ndest,Isym, d1, d2)
!--
! Computes nonsingular Integrals for the element
! when the collocation node coincides with an element node
! and the shape function is zero
!---
IMPLICIT NONE
REAL, INTENT(IN) :: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(IN) :: Ndest(:,:) ! Node destination vector
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes
INTEGER , INTENT(IN):: Isym

338 The Boundary Element Method with Programming

REAL, INTENT(IN) :: E,ny ! Elastic constants
REAL, INTENT(IN) :: xP(:,:) ! Coordinates of disc. nodes
REAL(KIND=8), INTENT(INOUT) :: dUe(:,:),dTe(:,:)
REAL :: epsi= 1.0E-4
REAL :: Glcor(8),Wi(8),Ni(Nodel),Vnorm(2),GCcor(2)
REAL :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r, dxdxb
REAL, INTENT(IN) :: d1, d2
INTEGER :: m,n,Mi,ldim,cdim,iD,nD,nreg, ns, i, j, k
ldim= 1
cdim=ldim+1
Element_nodes: DO n=1,Nodel
 i=Inci(n) ! Collocation node
 Shape_function: DO ns=1, Nodel
 IF(n == ns) CYCLE ! only if N is zero
 Region_Loop: DO nreg=1, 2
 Mi= 8
 Call Gauss_coor(Glcor,Wi,Mi)
 Gauss_points: DO m=1,Mi
 SELECT CASE (n)
 CASE (1) ! Node1
 IF(nreg==1)THEN ! right
 xsi= (1.-d2)/2. + Glcor(m) * (1.+d2)/2.
 dxdxb= (1.+d2)/2.
 ELSE IF(nreg==2)THEN ! left
 xsi= (-1.-d2)/2. + Glcor(m) * (1.-d2)/2
 dxdxb= (1.-d2)/2
 END IF
 CASE (2) ! Node2
 IF(nreg==1)THEN ! right
 xsi= (1.+d1)/2. + Glcor(m)*(1.-d1)/2
 dxdxb= (1.-d1)/2
 ELSE IF(nreg==2)THEN ! left
 xsi= (-1.+d1)/2. + Glcor(m)*(1.+d1)/2
 dxdxb= (1.+d1)/2
 END IF
 CASE (3) ! Node3
 IF(nreg==1)THEN ! right
 xsi= 0.5 + Glcor(m) * 0.5
 dxdxb= 0.5
 ELSE IF(nreg==2)THEN ! left
 xsi= -0.5 + Glcor(m) * 0.5
 dxdxb= 0.5
 END IF
 CASE DEFAULT
 END SELECT
 CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xP(:,i),cdim) ! Dist. P,Q
 dxr= (GCcor-xP(:,i))/r ! rx/r , ry/r
 CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)

CORNERS AND CHANGING GEOMETRY 339

 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 Direction1: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j) ! line number in array
 END IF
 IF (id == 0) CYCLE
 Direction2: DO k= 1,2
 nD= 2*(ns-1) + k ! column number in array
 dUe(iD,nD)= dUe(iD,nD) + Ni(ns)*UP(j,k)*Jac*dxdxb*Wi(m)
 dTe(iD,nD)= dTe(iD,nD) + Ni(ns)*TP(j,k)*Jac*dxdxb*Wi(m)
 END DO Direction2
 END DO Direction1
 END DO Gauss_points
 END DO Region_Loop
 END DO Shape_function
END DO Element_nodes
END SUBROUTINE NonSingularIntegration2D

SUBROUTINE SingularIntegration2D(Elcor,Inci,Nodel,xP,E&
,ny,dUe,dTe,Ndest,Isym, d1, d2)
!--
! Computes nonsingular Integrals for the element
! when the collocation node coincide with an element node
! and the shape function is not zero
!---
IMPLICIT NONE
REAL, INTENT(IN) :: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(IN) :: Ndest(:,:) ! Node destination vector
INTEGER, INTENT(IN) :: Inci(:) ! Element Incidences
INTEGER, INTENT(IN) :: Nodel ! No. of Element Nodes
INTEGER , INTENT(IN):: Isym
REAL, INTENT(IN) :: E,ny ! Elastic constants
REAL, INTENT(IN) :: xP(:,:) ! Coordinates of
discontinuous nodes
REAL(KIND=8), INTENT(INOUT) :: dUe(:,:),dTe(:,:)
REAL :: epsi= 1.0E-4
REAL :: Glcor(12),Wi(12),Ni(Nodel),Vnorm(2),GCcor(2)
REAL :: Jac,dxr(2),UP(2,2),TP(2,2), xsi, eta, r, dxdxb, dxbdxp&
, C, C1, Ellength, Radius
REAL :: f1, f2
REAL, INTENT(IN) :: d1, d2
INTEGER :: m,n,Mi,ldim,cdim,iD,nD,nreg, ns, i, j, k
ldim= 1 ! Element dimension
cdim=ldim+1
Pi=3.14159265359
C=(1.0+ny)/(4*Pi*E*(1.0-ny))
!--
! Integration of off-diagonal coefficients
! for U kernel at singular point

340 The Boundary Element Method with Programming

! -> not singular -> normal gauss quadrature
!---
Element_nodes: DO n=1,Nodel
 i=Inci(n) ! Collocation node
 Shape_function: DO ns=1, Nodel
 ! Node at element -> shape function in integral term
 IF(n /= ns) CYCLE
 Region_Loop: DO nreg=1, 2
 Mi= 8
 Call Gauss_coor(Glcor,Wi,Mi)
 Gauss_points: DO m=1,Mi
 SELECT CASE (n)
 CASE (1) ! Node1
 IF(nreg==1)THEN ! right
 xsi= (1.-d2)/2. + Glcor(m) * (1.+d2)/2.
 dxdxb= (1.+d2)/2.
 ELSE IF(nreg==2)THEN ! left
 xsi= (-1.-d2)/2. + Glcor(m) * (1.-d2)/2
 dxdxb= (1.-d2)/2
 END IF
 CASE (2) ! Node2
 IF(nreg==1)THEN ! right
 xsi= (1.+d1)/2. + Glcor(m)*(1.-d1)/2
 dxdxb= (1.-d1)/2
 ELSE IF(nreg==2)THEN ! left
 xsi= (-1.+d1)/2. + Glcor(m)*(1.+d1)/2
 dxdxb= (1.+d1)/2
 END IF
 CASE (3) ! Node3
 IF(nreg==1)THEN ! right
 xsi= 0.5 + Glcor(m) * 0.5
 dxdxb= 0.5
 ELSE IF(nreg==2)THEN ! left
 xsi= -0.5 + Glcor(m) * 0.5
 dxdxb= 0.5
 END IF
 CASE DEFAULT
 END SELECT
 CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 CALL Cartesian(GCcor,Ni,ldim,elcor)
 r= Dist(GCcor,xP(:,i),cdim) ! Dist. P,Q
 dxr= (GCcor-xP(:,i))/r ! rx/r , ry/r
 CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)
 Direction1: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j)
 END IF
 IF (id == 0) CYCLE

CORNERS AND CHANGING GEOMETRY 341

 Direction2: DO k= 1,2
 nD= 2*(ns-1) + k
 dUe(iD,nD)= dUe(iD,nD)&
 + Ni(n)*C*dxr(j)*dxr(k)*Jac*dxdxb*Wi(m)
 END DO Direction2
 END DO Direction1
 END DO Gauss_points
 END DO Region_Loop
 END DO Shape_function
END DO Element_nodes
!--
! Integration of diagonal coefficients
! for U kernel at singular point
! -> singular -> gauss laguerre quadrature
!---
C= C*(3.0-4.0*ny)
CALL Elength(Ellength,Elcor,Nodel,ldim)
Element_nodes_1: DO n=1,Nodel
 i=Inci(n) ! Collocation node
 Shape_function_1: DO ns=1, Nodel
 IF(n .NE. ns) CYCLE
 Region_Loop_1: DO nreg=1, 2
 Mi= 12
 Call Gauss_Laguerre_coor(Glcor,Wi,Mi)
 Gauss_points_1: DO m=1,Mi
 SELECT CASE (n)
 CASE (1) ! Node1
 IF(nreg==1)THEN ! left
 xsi= -d1 - (1. - d1) * Glcor(m)
 dxdxb= 1.- d1
 ELSE IF(nreg==2)THEN ! right
 xsi= -d1 + (1. + d1) * Glcor(m)
 dxdxb= (1. + d1)
 END IF
 CASE (2) ! Node2
 IF(nreg==1)THEN ! left
 xsi= d2 - (1. + d2) * Glcor(m)
 dxdxb= 1. + d2
 ELSE IF(nreg==2)THEN ! right
 xsi= d2 + (1. - d2) * Glcor(m)
 dxdxb= 1. - d2
 END IF
 CASE (3) ! Node3
 IF(nreg==1)THEN ! left
 xsi= - Glcor(m)
 dxdxb= 1.
 ELSE IF(nreg==2)THEN ! right
 xsi= Glcor(m)
 dxdxb= 1.
 END IF
 CASE DEFAULT

342 The Boundary Element Method with Programming

 END SELECT
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)
 Direction1_1: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j) ! line number in array
 END IF
 IF (id == 0) CYCLE
 nD= 2*(ns-1) + j ! column number in array
 dUe(iD,nD)= dUe(iD,nD) + Ni(n)*C*Jac*dxdxb*Wi(m)
 END DO Direction1_1
 END DO Gauss_points_1
 Mi= 8
 Call Gauss_coor(Glcor,Wi,Mi)

 Gauss_points2: DO m=1,Mi
 SELECT CASE (n)
 CASE (1) ! Node1
 IF(nreg==1)THEN ! right
 xsi= -d2 + (1. + d2) * (1+Glcor(m))/2
 dxdxb= (1.+ d2)
 dxbdxp= 0.5
 ELSE IF(nreg==2)THEN ! left
 xsi= -d2 - (1. - d2) * (1-Glcor(m))/2
 dxdxb= (d2 - 1.)
 dxbdxp= -0.5
 END IF
 CASE (2) ! Node2
 IF(nreg==1)THEN ! right
 xsi= d1 + (1. - d1) * (1+Glcor(m))/2
 dxdxb= 1. - d1
 dxbdxp= 0.5
 ELSE IF(nreg==2)THEN ! left
 xsi= d1 - (1. + d1) * (1-Glcor(m))/2
 dxdxb= - (1.+d1)
 dxbdxp= -0.5
 END IF
 CASE (3) ! Node3
 IF(nreg==1)THEN ! right
 xsi= (1+Glcor(m))/2
 dxdxb= 1.
 dxbdxp= 0.5
 ELSE IF(nreg==2)THEN ! left
 xsi= - (1-Glcor(m))/2
 dxdxb= - 1.
 dxbdxp= -0.5
 END IF
 CASE DEFAULT
 END SELECT
 Radius= (Ellength/2) * ABS(dxdxb)

CORNERS AND CHANGING GEOMETRY 343

 C1= LOG(1/Radius)*C
 CALL Normal_Jac(Vnorm,Jac,xsi,eta,ldim,nodel,Inci,elcor)
 CALL ShapefunctionDisc(Ni,xsi,eta,ldim,nodel,Inci)
 Direction1_2: DO j=1,2
 IF(Isym == 0)THEN
 iD= 2*(i-1) + j
 ELSE
 iD= Ndest(i,j)
 END IF
 IF(iD == 0)CYCLE
 nD= 2*(ns-1) + j
 dUe(iD,nD)= dUe(iD,nD)&
 + Ni(n)*C1*Jac*dxdxb* dxbdxp*Wi(m)
 END DO Direction1_2
 END DO Gauss_points2
 END DO Region_Loop_1
 END DO Shape_function_1
 END DO Element_nodes_1
END SUBROUTINE SingularIntegration2D

For the discontinuous version of both programs (prog71_discont and

prog111_discont) the input files of the continuous versions can be used. At the
beginning of each program, the coordinates of the collocation nodes are calculated from
the node coordinates of the element and given values of 1d and 2d . From the input file
given incidences are transformed to the discontinuous version, too, from which the
degrees of freedom are specified. There were no other major changes necessary.

12.2.4 Test Example – Single Region

To test the implementation the following example a cantilever beam (same example as
used in chapter 10) shown in Figure 12.4 is considered. The example is designed to
show that the discontinuous elements give good results even for the case where no
corners are present.

The diagram in Figure 12.5 shows the vertical displacements along the cantilever
beam. The results for the discontinuous meshes shown in Figure 12.5 are extrapolated
from the discontinuous points to the element nodes according to the interpolation
functions and are compared with discontinuous elements for two different meshes. The
first mesh consists of 3 quadratic elements along the length and the second has 5
elements along the length. For both one element for the height is used.

As is shown in Figure 12.5 the vertical displacements at the length side of the beam
are the same and agree very well with the analytical solution, except for the coarse mesh
with continuous elements. For the discontinuous mesh with 3 elements and for the
continuous mesh with 5 elements on the length side the same accuracy of results are
obtained. These two meshes are comparable because they have exact the same number
of degrees of freedom.

344 The Boundary Element Method with Programming

5,0

1,
0 E=1,0E6 =0,0 ty = 10

Figure 12.4 Cantilever beam

The expected error for the discontinuous displacement at common nodes of adjacent
elements nodes is less then 0.1%.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0 1 2 3 4 5

 Discont 5 Elem
 Cont 5 Elem

 Discont 3 Elem
 Cont 3 Elem

 Analytical

Figure 12.5 Vertical displacements

12.2.5 Test Example – Multiple Regions

This example is a cube with a distributed boundary load of 210 KN/m on the top of the
cube. The geometry is shown in Figure 12.6 and the material parameters for all regions
are E=1000kN/m2, =0. For the purpose of demonstrating the corner problem the cube is
subdivided into four regions. Region 1 and 2 is discretised with 8 linear elements.
Region 3 and 4 consists of 6 linear elements. The points B and D of regions 3 and 4 are
corner nodes. These points are located at the interface between regions and therefore
need special attention. The calculation is done two times, first with the program prog111
which uses continuous elements and then with the program prog111_discont, the
discontinuous version of the multi-region program. If we compare the tractions at
interface elements in Figures 12.7, 12.8 with 12.9 at the interface between regions we

CORNERS AND CHANGING GEOMETRY 345

see that the value, that should be constant, fluctuates widely if continuous elements are
used.

1,0 m 1,0 m 1,0 m

1,
0

m
1,

0
m

1,
0

m

A B C

Region 2

Region 1

Region 3 Region 4

10 KN/m 2

D

Figure 12.6 Vertical Displacements

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1 2 3

tr
ac

tio
ns

 t x

distance x [m]

A B C

 tx continuous
 tx discontinuous

Figure 12.7 Tractions xt at the boundary of regions 3 and 4 along the line ABC
If discontinuous elements are used the tractions, which are now evaluated at points
slightly inside, show no fluctuation and only a small jump which is due to coarseness of
the mesh. Indeed the diagram in Figure 12.7 indicates a gross violation of equilibrium

346 The Boundary Element Method with Programming

conditions if continuous elements are used because for 0 the tractions should be
equal to zero, everywhere.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3

tr
ac

tio
ns

 t y

distance x [m]

A B C

 ty continuous
 ty discontinuous

Figure 12.8 Tractions yt at the regions 3 and 4 along the line ABC

-12

-10

-8

-6

-4

-2

 0

 0 1 2 3

tr
ac

tio
ns

 t y

distance x [m]

A B
C

 ty continuous
 ty discontinuous

Figure 12.9 Tractions yt at the regions 1 along the line ABC

12.3 DEALING WITH CHANGING GEOMETRY

In this chapter we turn our attention to problems where the geometry is changing
throughout the analysis process. Due to the change of the geometry, boundary conditions

CORNERS AND CHANGING GEOMETRY 347

may also change. An example is the modelling of a tunnel excavation process6. Here the
domain is assumed to be of infinite or semi infinite extent and only the boundary of the
tunnel has to be meshed by elements.

Figure 12.10 Example for a staged excavation process in 3D (only half of the mesh shown)

As shown in Figure 12.10 the multiple region BEM7 is used to model the excavation.
In tunnelling with the New Austrian Tunnelling Method, excavation advances in steps of
several meters, either by excavating the full cross section or parts of it. In the example
shown in Figure 12.10 a two stage excavation (top heading and bench) is shown. Figure
12.11 illustrates how excavation is modelled with a multi-region BEM.

Figure 12.11 The steps in modelling excavation

The volumes of material to be excavated are discretised by boundary elements and
represent boundary element regions in a multi-region analysis. According to the multi-
region algorithm explained in the previous chapter, stiffness matrices are calculated for
each region separately. Each excavation step is simulated by the deactivation of a region.

348 The Boundary Element Method with Programming

When a region is deactivated then the tractions at the interfaces of the removed region
have to be applied to the mesh in order to restore equilibrium conditions. We can
observe that boundary conditions for the boundary elements of the region representing
the fully excavated tunnel change from Interface to Neumann condition.

The implementation of the activation and deactivation process in a computer code is
not a trivial task and the detailed discussion related to the architectural design of
software is outside the scope of this book. However, we will point out the drastic effects
that corners and edges can have on the results for problems of changing boundary
conditions if not properly addressed. In the following we restrict ourselves to two-
dimensional problems.

12.3.1 Example

In Figure 12.12 a staged excavation of 10 steps is shown. We assume an excavation in
2D under plane strain conditions and this means excavation with infinite extend out of
plane. This of course is not a real tunnel excavation, but serves well to explain the
method. The mesh consists of 10 regions for top heading and bench. All these finite
regions are embedded in an infinite region, which represent the infinite extent of the
continuum.

LC 2 LC 3 LC 4 LC 5

LC 10LC 9LC 8LC 7LC 6

LC 1

A B

Figure 12.12 Example for a staged excavation process in 2D

The excavation process is modelled by the de-activation of regions that represent
excavated material. First 5 top heading regions are excavated successively and then 5
regions at bench. The sequence of excavation is shown in Figure 12.12. The material
parameters are E= 5000 MN/m2 and =0. The virgin stress field is given as follows:

2 2 2
0 0 05,0 / 5,0 / 0,0 /x y xyMN m MN m MN m .

When regions are removed some elements will change boundary conditions from
Interface to Neumann. The loading for Neumann elements is calculated from the stresses
calculated at previous load cases. For the first stage the virgin stresses are applied.

CORNERS AND CHANGING GEOMETRY 349

Figure 12.13 Discretisation of regions (only corner nodes shown)

The discretisation of the regions is shown in Figure 12.13. For a finite region 3
quadratic elements are used on all sides. The discretisation of the infinite region matches
the mesh of the finite regions.

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0 3 6 9 12 15

di
sp

la
ce

m
en

ts
 u

y
[m

]

chainage [m]

LC1

LC2

LC3

LC4

LC5 - LC9
LC10

 LC1
 LC2
 LC3
 LC4
 LC5
 LC6
 LC7
 LC8
 LC9

 LC10

Figure 12.14 Vertical displacements for LC1 to LC10

In Figure 12.14 the vertical displacements at the top of the excavation (crown) is
shown for all load cases for the sequential calculation using discontinuous elements. To
verify these results an analysis was also performed for the case of the excavation made
in one step (single region problem) for the selected load cases 4 and 7. Because this is a
linear problem the sequential excavation and the one step excavation results should be
the same.

The geometry of these single region meshes is shown in Figure 12.15. Only the
boundary of the excavated part is discretised and the excavation is done in one single
step. As the boundary conditions for all elements are of Neumann type there is no corner

5m

3m

350 The Boundary Element Method with Programming

problem involved for both geometries. Thus, these calculations are performed with
continuous elements.

LC 4 LC 7

Figure 12.15 Single region meshes for LC4 and LC7

The vertical displacements at the crown are shown in Figure 12.16 for the multi
region calculation with discontinuous elements and the single region calculation with
continuous elements. As can be seen the results are in excellent agreement.

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0 3 6 9 12 15

di
sp

la
ce

m
en

ts
 u

y
[m

]

chainage [m]

LC4

LC7

 LC4 Discont
 LC7 Discont

 LC4 SR
 LC7 SR

Figure 12.16 Vertical displacements for LC4 and LC7

In the following the effect of the corner problem is pointed out. For the load cases
LC1 to LC5 the calculations are done twice, first with continuous elements and second
with discontinuous elements, both with the sequential multi-region algorithm. In Figure
12.17 the vertical displacements at the line AB (indicated in Figure 12.12) for the LC1
to LC5 are compared. As can be seen the results for continuous elements contain a large
error and the errors accumulate from each load case to the other.

CORNERS AND CHANGING GEOMETRY 351

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 3 6 9 12 15

di
sp

la
ce

m
en

ts
 u

y
[m

]

chainage [m]

LC1
LC2

LC3 LC4

LC5

 LC1 Discont
 LC2 Discont
 LC3 Discont
 LC4 Discont
 LC5 Discont

 LC1 Cont
 LC2 Cont
 LC3 Cont
 LC4 Cont
 LC5 Cont

Figure 12.17 Vertical displacements for LC1 to LC5 for the calculation with continuous and
discontinuous elements

The reason for these errors is the erroneous calculation of tractions at corner nodes
for continuous elements. In the sequential algorithm the tractions computed at a previous
step is applied as loading of the following calculation step. Because of this fact the
results are getting worse from step to step.

12.4 ALTERNATIVE STRATEGY

The strategy for modelling excavation problems is expensive, especially for 3-D
problems, since the total number of interface degrees of freedom can become quite large
if many excavation stages are considered. An alternative strategy, involving only one
region, is explained for the same example as before and for load cases 1-5. The idea is to
calculate (by the post-processing procedure explained in Chapter 9) after an analysis the
stress distribution along a line that represents the boundary of the next excavation step
(Figure 12.18). However, at the sharp corners A and B the stress is theoretically infinite
and can not be determined by post-processing. To overcome this problem it is suggested
to evaluate the stress very close to the edge. We propose that the location is specified by
an intrinsic coordinate of value 0,90 of the element that will model the new
excavation surface. The final stress distribution for this step is obtained by extrapolation
using a similar procedure as for the discontinuous elements (Figure 12.18 right). Note
that this distance is chosen quite arbitrary and the choice will affect the final results.
After the computation we compute the tractions that will be applied at the next
excavation step as

 t n (12.9)

352 The Boundary Element Method with Programming

Note that the resulting traction to be applied at the new excavation surface for load
case 4 is the sum of tractions obtained by internal stress evaluation for load cases 1 to 3
plus the tractions due to the virgin stress field. For the analysis of the next load case, the
mesh of the single infinite region representing the excavated tunnel surface is changed
by removing the face elements and adding a row of elements representing the next stage
of excavation.

� � � � � � � � 	 �
 � �

�

� � � � � � � � 	 �
 � �

� � � � � � � �

� � � � � 	 � � � � � 	 � �

� � � � � � � � � � � �

� � 	 � � 	 � � � � � � � � � 	 � �

� � � � � � � � � � � �

� 	 � � � � �

�

�

�

Figure 12.18 Vertical displacements at tunnel crown

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0 3 6 9 12 15

di
sp

la
ce

m
en

ts
 u

y
[m

]

chainage [m]

LC1

LC2

LC3

LC4

LC5

 LC1 NEW
 LC2 NEW
 LC3 NEW
 LC4 NEW
 LC5 NEW
 LC1 REF
 LC2 REF
 LC3 REF
 LC4 REF
 LC5 REF

Figure 12.19 Vertical displacements at tunnel crown
The results of vertical displacements along the crown of the tunnel are shown in Figure
12.19 for load cases 1 to 5. These results are compared with the reference solution.
There is some difference and this can be attributed to approximation made for the stress
distribution near the corners. It seems that the resultant excavation force is not

CORNERS AND CHANGING GEOMETRY 353

accurately computed and this error accumulates load case after load case. Obviously
some improvements are possible by adjusting the stress distribution so the resultant
excavation force is closer to the actual one.

12.5 CONCLUSIONS

The correct treatment of corners and edges is of great importance for some applications,
in particular for applications where the boundary conditions as well as the geometry are
changing during the calculation process. It was found out, that from all possibilities to
improve the results at corner nodes discontinuous elements give the best results. Of
course additional degrees of freedom are introduced by this method. For simplicity all
elements have been treated as discontinuous here. This increases the size of the equation
system drastically, especially in 3D. It is much more efficient to use discontinuous nodes
only where they are needed, i.e. only at corner and edge nodes where the traction is
discontinuous. The manner in which the interpolation functions are presented in chapter
3 makes possible a mixture of discontinuous and continuous functions in one element.
When dealing with changing geometries as in sequential excavation problems the multi-
region analysis with discontinuous elements gives good results. However, the effort can
be quite considerable especially for 3-D applications because with each excavation stage
modelled the number of regions and hence the interface degrees of freedom increase. An
alternative method that involves only one region seems attractive but the accuracy still
has to be improved.

12.6 REFERENCES

1. Beer G. and Watson J.O. (1995) Introduction to Finite and Boundary Element

Methods for Engineers. J. Wiley.
2. Gao X.W. and Davies T. (2001) Boundary element programming in mechanics.

Cambridge University Press, London.
3. Sladek V. and Sladek J. (1991) Why use double nodes in BEM? Engineering

Analysis with Boundary Elements 8: 109-112.
4. Aliabadi M. H. (2002) The Boundary Element Method (Volume 2). J. Wiley.
5. Stroud, A.H. and Secrest, D. (1966) Gaussian Quadrature Formulas. Prentice-Hall,

Englewood Cliffs, New Jersey.
6. Duenser C. (2007) Simulation of sequential tunnel excavation with the Boundary

Element Method. Monographic Series TU Graz,Austria.
7. Duenser C., Beer G. (2001) Boundary element analysis of sequential tunnel advance.

Proceedings of the ISRM regional symposium, Eurock: 475-480.

13
Body Forces

Gravitation is not responsible
 for people falling in love

J. Keppler

13.1 INTRODUCTION

The advantages of the boundary element method over the FEM that no elements are
required inside the domain, also has some disadvantages: loading may only be applied at
the boundary, but not inside the domain. A number of problems exist where applying
loading inside the domain is necessary, for example

 where sources (of heat or water) or forces have to be considered inside the domain
 where self weight or centrifugal forces have to be considered
 where initial strains are applied inside the domain, for example when material is

subjected to swelling.

In addition, as we will see later, for the analysis of domains exhibiting nonlinear
material behaviour, for which we cannot find fundamental solutions, the problem can be
considered as one where initial stresses are generated inside the domain.

In this chapter we will discuss methods which allow us to consider such loads
commonly known as body forces. Here we will distinguish between those which are
constant, such as for example, self weight and those which vary inside the domain. We
will find that we can deal with constant body forces in a fairly straightforward way since
the volume integrals which occur can be transformed into surface integrals. In the case
where they are not constant, however, the only way to deal with volume integration is by
providing additional volume discretisation.

We will start this chapter by revisiting Betti’s theorem as derived for integral
equations but now we will consider the additional effect of body forces.

356 The Boundary Element Method with Programming

13.2 GRAVITY

First we deal with gravity forces, for example those generated by self weight. If the
material is homogeneous then these forces per unit volume are constant inside the
domain. We expand Betti`s theorem used in Chapter 5, to derive the integral equations
taking into account the effect of body forces.

Figure 13.1 Application of Betti´s theorem including the effect of body forces

As shown in Figure 13.1 for 2-D problems, the forces of load case 1 consist of
boundary tractions t (components tx and ty) and of body forces b (components bx, by)
defined as forces per unit volume.

The work done by the loads of load case 1 times the displacements of load case 2,
W12 is computed by

(13.1)

 The work done by the displacements of load case 1 times the forces of load case 2,
W21 is the same as explained in Chapter 5

(13.2)

12 (, ,) ()

(() (,) () (,)

x xx y xy
S

x xx y xy
V

W t Q U P Q t Q U P Q dS Q

b Q U P Q b Q U P Q dV

PudSQ,PTQuQ,PTQuW x
S

xyyxxx 121

Load case 2 Load case 1

S

dS

P

Q ()xt Q

()yt Q

P 1x

(,)xxU P Q

(,)xyU P Q
dS

Q xb

yb

dV

P

Q
(,)xxU P Q

(,)xyU P Q
Q

BODY FORCES 357

The integral equations, including the body force effect can be written as:

(13.3)

where the last integral in equation (13.3) is a volume integral. It can be shown1 that for
body forces which are constant over volume V, this integral can be transformed into a
surface integral

(13.4)

where for 2-D and 3-D problems

(13.5)

For 3-D problems the coefficients of G may be computed from1

(13.6)

where x,y,z may be substituted for i, G is the shear modulus, cos has been defined
previously in Chapter 4 and

(13.7)

Vectors n and r are the normal vector and the position vector, as defined in Chapter 4.
For plane strain problems we have1 :

(13.8)

The discretised form of equation (13.3) can be written as

(13.9)

, , ,
S S V

P P Q Q dS P Q Q dS P Q Q dVu U t u U b

dSdVQQP
SV

GbU ,

z

y

x

y

x

G

G

G

G

G
GG ;

1 1cos cos
8 G 2(1)i i iG b n

1cos
r

b r

1 1 12ln 1 cos cos
8 2(1)i i iG b n

G r

1 1 1 1 1
n n

N NE E E
e e e e e

i ni ni i
e n e n e

Pcu T u U t G

358 The Boundary Element Method with Programming

where

(13.10)

For the three-dimensional case, no singularity occurs as P approaches Q and,
therefore, the minimum integration order with which we are able to accurately compute
the surface area of the element can be used. The analysis of problems with constant body
forces proceeds the same way as before, except that an additional right hand side term is
assembled. The final system of equations will be.

(13.11)

where the components of Fb for the i-th collocation point are

(13.12)

13.2.1 Post-processing

When computing internal results the effect of body forces has to be included. For
calculation of displacements

(13.13)

and for computation of stresses

(13.14)

where

(13.15)

Matrix S is obtained by differentiating (13.6) or (13.8) and multiplying with the

constitutive matrix D.

(,) ()
e

e
i i

S

P Q dS QG G

1 1 1 1 1

N NE E E
e e e e e

a na n na n a
e n e n e

Pu U t T u G

1 1 1 1 1

ˆ
N NE E E

e e e e e
a na n na n a

e n e n e

P S t R u S

ˆ ˆ (,) ()
e

e
a a

S

P Q dS QS S

bT u F F

1

E
e

ib i
e

F G

BODY FORCES 359

(13.16)

For 3-D problems we have1

(13.17)

where cos and cos have been defined previously, ij is the Kronecker delta defined
in Chapter 4 and

(13.18)

For plane strain problems we have1

(13.19)

Two subroutines Grav_dis and Grav_stress, which compute matrices G and Ŝ
needed for the gravity load case are added to the library Elasticity.lib . The subroutines
can be used to compute the element contributions for assembly of the right hand side.

, ,

, ,

1cos () cos cos cos1 1ˆ
18 cos () (1 2)()
2

i j j i ij

ij

i j j i i j j i

b r b r
S

r n r n r b n b n

nbcos

, ,

, ,

, ,

2cos ()

2cos cos cos
1 1ˆ cos ()18 1 (1 2ln)cos

1 cos () (1 2)()
2

i j j i

ij ij i j j i

i j j i i j j i

b r b r

S n r n r
r

n r n r b n b n

D3forandD2for

xz

yz

xy

zz

yy

xx

xy

yy

xx

S

S

S

S

S

S

S

S

S

ŜŜ

360 The Boundary Element Method with Programming

SUBROUTINE Grav_dis(GK,dxr,r,Vnor,b,G,ny)
!--
! FUNDAMENTAL SOLUTION FOR Displacements
! Gravity Loads(Kelvin solution)
!--
IMPLICIT NONE
REAL :: GK(:) ! Fundamental solution
REAL,INTENT(IN) :: dxr(:) ! rx/r etc.
REAL,INTENT(IN) :: r !
REAL,INTENT(IN) :: Vnor(:) ! normal vector
REAL,INTENT(IN) :: b (:) ! gravity force vector
REAL,INTENT(IN) :: G ! Shear modulus
REAL,INTENT(IN) :: ny ! Poisson's ratio
INTEGER :: Cdim ! Cartesian dimension
REAL :: c1,c2,costh,Cospsi ! Temps
C1= 1.0/(8*Pi*G)
C2=1.0/(2.0*(1.0-ny))
Costh= DOT_PRODUCT(Vnor ,DXR)Cospsi= DOT_PRODUCT(b,DXR)
 IF(Cdim == 2) THEN
 C1= C1*(2.0*LOG(1.0/r)-1.0)
 GK= C1*(b*costh – C2*Vnor*cospsi)
ELSE
 GK= C1*(b*costh – C2*Vnor*cospsi)
END IF
RETURN
END

SUBROUTINE Grav_stress(SK,dxr,r,Vnor,b,G,ny)
!--
! FUNDAMENTAL SOLUTION FOR Stresses
! Gravity Loads(Kelvin solution)
!--
IMPLICIT NONE
REAL :: SK(:) ! Kernel
REAL,INTENT(IN) :: dxr(:) ! rx/r etc.
REAL,INTENT(IN) :: r !
REAL,INTENT(IN) :: Vnor(:) ! normal vector
REAL,INTENT(IN) :: b (:) ! body force vector
REAL,INTENT(IN) :: G ! Shear modulus
REAL,INTENT(IN) :: ny ! Poisson's ratio
INTEGER :: Cdim ! Cartesian dimension
INTEGER :: II(6),JJ(6) ! Order of stress components
REAL :: c,c1,c2,c3,c4,costh,Cospsi,Cosphi ! Temps
C2=1.0/(1.0-ny)
C3= 1-2.0*ny
Costh= DOT_PRODUCT(Vnor ,DXR)
Cospsi= DOT_PRODUCT(b,DXR)
Cosphi= DOT_PRODUCT(b,Vnor)
IF(Cdim == 2) THEN ! Two-dimensional solution
 C1= 1.0/(8*Pi)

BODY FORCES 361

 C4= 1.0 - 2.0*LOG(1.0/r)
 II(1:3)= (/1,2,1)
 JJ(1:3)= (/1,2,2)
 Stress_components: &
 DO N=1,3
 I= II(N) ; J= JJ(N)
 IF(I == J) THEN
 C= ny*(2.0*costh*cospsi-cosphi)+(1.0-2.0*LOG(1/r))cosphi
 ELSE
 C= 0.0
 END IF
 SK(N)= C2*(C – cospsi*(Vnor(I)*dxr(J)+ Vnor(J)*dxr(I)) &
 - 0.5 *(cospsi*(Vnor(I)*dxr(J)+ Vnor(J)*dxr(I)) &
 + C3*(b(I)*Vnor(J) + b(J)*Vnor(I)))
 END DO
 Stress_components
 SK= C1*SK
ELSE ! Three-dimensional solution
 II= (/1,2,3,1,2,3)
 JJ= (/1,2,3,2,3,1)
 C1= 1.0/(8*Pi*r)
 Stress_components1: &
 DO N=1,6
 I= II(N) ; J= JJ(N)
 C=0.
 IF(I == J) THEN
 C= c2*ny*(costh*cospsi-cosphi)
 ELSE
 C= 0.0
 END IF
 SK(N)= 2.0*costh*(b(I)dxr(J)+ b(J)dxr(I))+ C &
 -0.5 *(cospsi*(Vnor(I)*dxr(J)+ Vnor(J)*dxr(I))&
 + C3*(b(I)*Vnor(J) + b(J)*Vnor(I)))
 END DO &
 Stress_components1
 SK= C1*SK
END IF
RETURN
END

13.3 INTERNAL CONCENTRATED FORCES

It is sometimes necessary to apply concentrated forces inside the domain. An example of
this is the simulation of a pre-stressed rock bolt in tunnelling, where a concentrated force
is generated inside the domain. According to figure 13.2, additional work is done by a
concentrated force F acting at point Q .

362 The Boundary Element Method with Programming

Figure 13.2 Application of Betti´s theorem including the effect of internal concentrated forces

The work done by the loads of load case 1, times the displacements of load case 2,
W12 is computed by

(13.20)

 The work done by the displacements of load case 1 times the forces of load case 2,
W21 is the same as explained in Chapter 5. Using Betti’s theorem the following integral
equation is obtained, which includes the effect of the concentrated laod:

(13.21)

where

(13.22)

The discretised form can be written as

(13.23)

Load case 2 Load case 1

S

dS

P

Q ()xt Q

()yt Q

P 1x

(,)xxU P Q

(,)xyU P Q
dS

Q
xF

yF

P

Q (,)xxU P Q

(,)xyU P Q
Q

12 (, ,) ()

(,) () (,)

x xx y xy
S

x xx y xy

W t Q U P Q t Q U P Q dS Q

F U P Q F Q U P Q

, , ,
S S

P P Q Q dS P Q Q dS P Q Qu U t u U F

()

()
x

y

F Q

F Q
F

1 1 1 1

(,)
n n

N NE E
e e e e

i ni ni i
e n e n

P P Qcu T u U t FU

BODY FORCES 363

The final system of equations will be.

(13.24)

where the components of FP for the i-th collocation point are

(13.25)

13.3.1 Post-processing

When computing internal results, the effect of the internal force has to be included. For
calculation of displacements

(13.26)

whereas for computation of stresses we have

(13.27)

13.4 INTERNAL DISTRIBUTED LINE FORCES

We now consider the effect of distributed line forces that may be shear forces acting in
the rock mass due to a rock bolt. According to figure 13.3, additional work is done by a
distributed force f acting along a line.

The work done by the loads of load case 1 times the displacements of load case 2,
W12 is computed by

(13.28)

where the last integral is over the line on which the distributed force acts. The work done
by the displacements of load case 1 times the forces of load case 2, W21 is the same as
explained in Chapter 5.

The integral equations including the body force effect can be written as:

(13.29)

1 1 1 1

(,)
N NE E

e e e e
a na n na n a

e n e n

P P Qu U t T u F U

1 1 1 1

(,)
N NE E

e e e e
a na n na n a

e n e n

P P QS t R u F S

12 (, ,) ()

(,) () (,

x xx y xy
S

x xx y xy
S

W t Q U P Q t Q U P Q dS Q

f U P Q f Q U P Q dS

, , ,
S S S

P P Q Q dS P Q Q dS P Q Qu U t u U f

(,)iP iP QF FU

PT u F F

364 The Boundary Element Method with Programming

where

(13.30)

The discretised form can be written as

(13.31)

Figure 13.3 Application of Betti´s theorem including the effect of internal distributed forces

To evaluate the last line integral we propose to use internal cells. The cells are
actually exactly like the 1-D boundary elements introduced in Chapter 3 but are used for
the integration only. If the variation of f along the line is linear or quadratic then only
one linear or quadratic cell element is required for the integration. Using the
interpolation as discussed in Chapter 3

(13.32)

where nf are the nodal values of f, we obtain

(13.33)

()

()
x

y

f Q

f Q
f

1 1 1 1

(,) ()
n n

N NE E
e e e e

i ni ni i
e n e n S

P P Q dS Qcu T u U t fU

2(3)

1

()n n
n

Nf f

2(3)

1

(,) () e
i n ni

nS

P Q dS QfU f U

Load case 2 Load case 1

S

dS

P

Q ()xt Q

()yt Q

P 1x

(,)xxU P Q

(,)xyU P Q
dS

Q
xf

yf

P

(,)xxU P Q

(,)xyU P Q
Q

dS
Q

BODY FORCES 365

where

(13.34)

These integrals may be evaluated using Gauss integration. The final system of
equations will be

(13.35)

where the components of Fp for the i-th collocation point are

(13.36)

13.4.1 Post-processing

When computing internal results the effect of the internal force has to be included. For
calculation of displacements at point aP

(13.37)

whereas for computation of stresses we have

(13.38)

where

(13.39)

13.5 INITIAL STRAINS

There are problems where strains are generated inside domains that are not associated
with loading by forces. Examples are thermal strains generated by a temperature increase
and strains due to swelling of soil. Invariably these strains will not be constant over the
whole domain. Therefore, it will no longer be possible to transform the volume integrals

2(3)

1 1 1 1 1

N NE E
e e e e e

a n n n n n na
e n e n n

P S t R u f S

(,)e
ni n i

S

N P Q dSU U

2(3)

1 1 1 1 1
n n

N NE E
e e e e e

a na na n na
e n e n n

Pu U t T u f U

(,)e
na n a

S

N P Q dSS S

2(3)

1

e
ip n ni

n

F f U

pT u F F

366 The Boundary Element Method with Programming

into surface integrals. If we assume that the solid is subjected to a non-uniform
volumetric strain (caused for example by a temperature increase) given by

(13.40)

additional work will be done.

Figure 13.4 Application of the Betti theorem including the effect of initial strains

Referring to figure 13.4, the work done by the displacements/strains of load case 1 times
the forces/stresses of load case 2 is given by:

(13.41)

where QP,QP, yxxx and are the stresses at Q due to a unit force in x direction at
P. Here we assume that only volumetric initial strains are present, even though it is
obvious that shear strains could easily be included. The work done by the displacements
of load case 2 times the forces/stresses of load case 1 is the same as for the case where
no initial strains are applied.

12

0 0

(, ,) ()

, ,

x xx y xy
S

x xx y yx

W u Q T P Q u Q T P Q dS Q

dx P Q dy dy P Q dx

0
0

0

x

y

Load case 2 Load case 1

S

dS

P

Q
()xu Q

()yu Q

P 1x

(,)xxT P Q

(,)xyT P QQ

P

(,)xy P Q

Q

Q

dx
0x dx

dy
0y dy

(,)xy P Q

BODY FORCES 367

Applying Betti’s theorem we obtain

(13.42)

where

(13.43)

For 3-D problems where strain 0z is also present, matrix is expanded to

(13.44)

The fundamental solution is given by2

(13.45)

where x,y,z may be substituted for i,k as usual. The values for the constants are given in
Table 12.1

Table 12.1 Constants for fundamental solution for initial strains

 Plane strain Plane stress 3-D
n 1 1 2
C2 1/4 (1+ 1/8
C3 1-2 (1- 1-2
C4 2 3

A FUNCTION for computing Matrix is written and added to the Elasticity_lib.

FUNCTION SigmaK returns an array of dimension 2x2 or 3x3 with fundamental
solutions for normal stresses.

VSS

dVQQPdSQQPdSQQPP 0,,, utUu

zzzyzx

yzyyyx

xzxyxx

22
3 , , 4 , , (2)ik ik i k i kn

C C r r C r r
r

xx xy

yx yy

368 The Boundary Element Method with Programming

FUNCTION SigmaK(dxr,r,E,ny,Cdim)
!--
! FUNDAMENTAL SOLUTION FOR Normal Stresses
! isotropic material (Kelvin solution)
!--
REAL,INTENT(IN) :: dxr(:) ! rx/r etc.
REAL,INTENT(IN) :: r ! r
REAL,INTENT(IN) :: E ! Young's modulus
REAL,INTENT(IN) :: ny ! Poisson's ratio
INTEGER,INTENT(IN) :: Cdim ! Cartesian dimension
REAL :: SigmaK(Cdim,Cdim) ! Returns array CdimxCdim
INTEGER :: n,i,j
REAL :: G,c,c2,c3,c4 ! Temps
G= E/(2.0*(1+ny))
SELECT CASE (Cdim)
 CASE (2) ! Plane strain solution
 n= 1
 c2= 1.0/(4.0*Pi*(1.0-ny))
 c3= 1.0-2.0*ny
 c4= 2.0
 CASE(3) ! Three-dimensional solution
 n= 2
 c2= 1.0/(8.0*Pi*(1.0-ny))
 c3= 1.0-2.0*ny
 c4= 3.0
 CASE DEFAULT
END SELECT
Direction_Pi: &
DO i=1,Cdim
 Direction_Sigma: &
 DO j=1,Cdim
 IF(i == j) THEN
 SigmaK(i,i)= -c2/r**n*(c3*dxr(i)+c4*dxr(i)**3)
 ELSE
 SigmaK(i,j)= -c2/r**n*(-c3*dxr(i) + c4*dxr(i)**2*dxr(j))
 END IF
END DO &
Direction_Sigma
END DO &
Direction_Pi
RETURN
END FUNCTION SigmaK

The discretised form can be written as

(13.46) 0
1 1 1 1

,
n n

N NE E
e e e e

i ni ni i
e n e n V

P P Q Q dVcu T u U t

BODY FORCES 369

We propose to evaluate the volume integral numerically with the Gauss Quadrature
method. To apply this method, however, the volume where initial strains are specified
needs to be discretised, i.e., subdivided into cells. We use two-dimensional cells for the
discretisation of 2-D problems and three-dimensional cells for 3-D problems. The cells
have already been introduced in Chapter 3. For the interpolation of the strains inside an
element we have for plane problems with either linear (N=4) or quadratic (N=8) shape
functions nN

(13.47)

The last integral in Eq. (13.46) is replaced by a sum of integrals over cells

(13.48)

where

(13.49)

The final system of equations will be.

(13.50)

This means that the presence of initial strains will result in an additional right hand
side { }F where the components of F for the i-th collocation point are

(13.51)

13.5.1 Post-processing

In post-processing the effect of the initial strains has to be included. For calculation of
displacements at point aP we use Eq. (13.42)

(13.52)

For obtaining strains and stresses we have to take the derivative of the displacement

(13.53)

FFuT

0 0
1

(,) (,)
N

e
n n

n

N

c
0 ni 0

1 1

,
cN N

i n
c nV

P Q Q dV

c
ni ,)

c

n i
V

N P Q dV

c
ni 0

1 1

cN N

i n
c n

F

0, , ,a a a a
S S V

P P Q Q dS P Q Q dS P Q Q dVu U t u

, , ,

, 0

, ,

 ,

j a j a j a
S S

j a
V

P P Q Q dS P Q Q dS

P Q Q dV

u U t u

370 The Boundary Element Method with Programming

From this equation the strains and stresses may be computed using Equations (4.34)
and (4.45). If strains or stresses are evaluated inside a region that is subjected to initial
strains then the integrand in last integral in (13.53) approaches infinity as Q approaches

aP and special care has to be taken in evaluating this integral. If we assume a small
volume of exclusion around aP , then we can split the integral into two parts (Figure
13.5).

(13.54)

Figure 13.5 Region of exclusion for the computation of volume integral

The first integral only exists as a Cauchy principal value and we will discuss its

evaluation in Chapter 15. The second integral can be evaluated analytically. If we
assume that 0 , then we can assume 0 to be constant (i.e. 0 0() ()aQ P) and we
have

(13.55)

The volume integral can be transformed into an integral over the surface of the
exclusion S

(13.56)

We explain the analytical integration on an example in plane strain.

, 0 , 0 , 0, , ,j a j a j a
V V V V

P Q Q dV P Q Q dV P Q Q dV

, 0 0 ,, ,j a a j a
V V

P Q Q dV P P Q dV

, , ,j a a
V S

P Q dV P Q dVn

aP

V

V

d

S

BODY FORCES 371

The two components of the integral in (13.55) are:

(13.57)

 According to Figure 13.5 we have , ,; ; cos ; sinx yr r rn r .

Therefore we have for example:

(13.58)

Applying Equations (4.34) and (4.45) with (13.53) we obtain for the stress

(13.59)

where

(13.60)

and

(13.61)

The coefficients of ˆ are given by2

(13.62)

0 0
1 1 1 1 1 1

ˆ ()
cNN N NE E

e e e e c
a n n n n n n a

e n e n c n

P PS t R u H

xxx xx xx

x
xxx xxy

x
x

x x x x
x x x

x

x x x x

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ
ˆ ˆˆ ˆ for 2 D and for 3 D

ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

y z

yy yyy yyz

zz zzy zzz
yy yyy

y yy yz
y yy

yz yzy yzz

z zy zz

c
ni

ˆˆ ,)
c

n a
V

N P Q dV

7
3 141

, , , , , , , ,

2 2
3 , , 15 , 6 , , ,

ˆ , 2

(1)

(1)

ijk ik jk ijn

ik j k jk i k ik j k jk i k

i j ij k i j k

C
P Q C C

r
n r r r r r r r r

n C r r C r C r r r

0 0

0 0

, ,

, ,

x a xx a x x a yx a y
S S

y a xy a x y a yy a y
S S

P P Q n dS P P Q n dS

P P Q n dS P P Q n dS

2
32

4
0

1 5, sin sin sin
15xx a x

S

C
P Q n dS C d

372 The Boundary Element Method with Programming

and those of H

(13.63)

where the constants are given in Table 12.2.

Table 12.2 Constants for fundamental solutions

 Plane strain Plane stress 3-D
n 1 1 2
C7 1-4 (1-3 1-4
C3 1-2 (1- 1-2
C14 1 (1-3 1-4
C15 1 (1- 1-2
C6 4 5
C16 G/(4(1- G(1+)/4 G/(15(1-
C12 1 1 7-5
C17 1-4 1 2+10

13.6 INITIAL STRESSES

The last type of body forces considered here are initial stresses. As will be seen later in
the chapter on plasticity, these may correspond to the plastic stresses generated when a
point goes into the plastic range. The capability to deal with initial stresses, therefore,
will be important for the application of the BEM to nonlinear material response, in
particular plasticity. The consideration of initial stresses follows a similar line as the
consideration of initial strains. We start again with the theorem of Betti, but instead of
initial strains we consider stresses applied inside the domain. If they exist, it is obvious
that additional work will be done.

Referring to Figure 13.6 the work done by the tractions/stresses of load case 1 times
the displacement/strains of load case 2 is given by:

(13.64)

16 12 172ijk ik jk ijH C C C

12

0 0 0

(, ,) ()

, , ,

x xx y xy
S

x xxx y xyy xy xxy

W t Q U P Q t Q U P Q dS Q

dy E P Q dx dx E P Q dy dx E P Q dy

BODY FORCES 373

where , , xxx xyy xxyE E E are the fundamental solutions for strains at point Q due to a
unit x-force at P.

Figure 13.6 Application of the theorem of Betti including the effect of initial strains

The work done by the forces/stresses of load case 2 times the displacements of load case
one is the same as for the case without initial stresses.
After applying the theorem by Betti we obtain

(13.65)

The detailed implementation of initial stresses is discussed in Chapter 15, dealing with
non-linear problems.

13.7 NUMERICAL INTEGRATION OVER CELLS

The integrals over the cells are evaluated numerically using Gauss Quadrature. For the
line integrals in (13.34) we use linear cells. Changing from x,y coordinates to intrinsic
coordinate we get

(13.66)

0, , ,
S S V

P P Q Q dS P Q Q dS P Q Q dVu U t u

Load case 2 Load case 1

S
dS

Q
()xt Q

()yt Q

P 1x

(,)xxU P Q

(,)xyU P QQ
0x

Q Q
dx

xxxE dx

dy
xyyE dy

0y

0xy

xxyE

1

1

(,) () (,) ()e
ni n i n i

S

N P Q dS N P Q J dU U U

374 The Boundary Element Method with Programming

The numerical integration is given by

(13.67)

The number of Gauss points M is determined from the minimum distance of iP to the
cell, as explained in Chapter 6, J is the Jacobian and Wm are weight factors.

For the volume integrals occurring in (13.49) we use plane cells for 2-D problems and
three-dimensional cells for 3-D problems. For plane problems the expression in intrinsic
coordinates is

(13.68)

The numerical integration formula is

(13.69)

where the number of integration points in , directions M and K are determined
according to the proximity of iP to the cell. For three-dimensional problems we have

(13.70)

The numerical integration formula is

(13.71)

13.8 IMPLEMENTATION

For the implementation into general purpose program 7.1 we insert a call to a subroutine
Body_force that adds the influence of body forces. Here we will only show one example
of an implementation of body force: the effect of initial volumetric strains defined at a
given cell mesh for a plane elasticity problem. Although the implementation will be
general and allow for a variation of initial strains inside the domain, the input will be
restricted, for purposes of simplicity, to a constant strain for all cells. Following the
explanations given in this Chapter, the reader may however have no great difficulty in

1

() (,) (())
M

e
ni n m i m m m

m

N P J Q WU U

1 1
c
ni

1 1

,) (,) , (,)) (,)
c

n i n i
V

N P Q dV N P Q J d d

c
ni

1 1

(,) , (,)) (,)
M K

n m k i m k m k m k
m k

N P Q J W W

1 1 1
c
ni

1 1 1

(, ,) , (, ,)) (, ,)n iN P Q J d d d

c
ni

1 1 1

(, ,) , (, ,)) (, ,)
L M K

n m k l i m k l m k l m k l
l m k

N P J W W W

BODY FORCES 375

programming the other body force effects and extend this to 3-D applications.
Subroutine Body_force will read first the information about the number of cell nodes,
cells and the initial strain to be applied. Then the coordinates of the cell nodes and the
incidences of the cells are read in. Next the additional right hand side is computed.
According to Eq. (13.51) the right hand side is given by:

(13.72)

The implementation therefore involves 5 Do loops: One over collocation points i,
number of cells cN , over cell nodes N and over the Gauss points m and k. In the
innermost DO loop there is a matrix vector product. Note that in the Subroutine it is
assumed that the cells are sufficiently far away from the collocation points so that a
constant number of Gauss points is sufficient. A listing in Subroutine Body force is
given below.

SUBROUTINE Body_force(F,CDim,xP,NCol,Isym,E,ny)
!--
! Adds contribution of body force terms (initial strain)
! to the right hand side vector F
! This implementation is only for linear cells and plane
! problems
!--
USE Utility_Lib; USE Elast_lib; USE Integration_lib
IMPLICIT NONE
INTEGER , INTENT(IN) :: CDim
REAL , INTENT(IN) :: E
REAL , INTENT(IN) :: ny
INTEGER , INTENT(IN) :: NCol
INTEGER , INTENT(IN) :: Isym
REAL , INTENT (IN) :: xP(Cdim,Ncol)
REAL(KIND=8), INTENT(INOUT) :: F(CDim*Ncol) ! right hand side
INTEGER, ALLOCATABLE :: InciC(:,:) ! Cell Incidences
INTEGER, ALLOCATABLE :: Inci(:)
REAL, ALLOCATABLE :: xPC(:,:) ! Cell Node co-ordinates
REAL, ALLOCATABLE :: Ni(:),Elcor(:,:)
INTEGER :: NodesC,Ncells,NodelC,ldimC,IOS
INTEGER :: m,n,k,Node,Nc,i,ii,jj,Mi,Ki,iD
REAL :: Eps0(2),SigK(Cdim,Cdim),GCcor(3)
REAL :: Glcorx(8),Glcore(8),Wix(8),Wie(8),Vnorm(3)
REAL :: Jac,Weit,xsi,eta,r,dxr(Cdim)
IF(Cdim > 2) RETURN ! This coding is for plane problems only
IF(ISym > 0) RETURN ! Symmetry not considered here

c
ni 0

1 1

0
1 1 1 1

(,) , (,)) (,)

c

c

N N

i n
c n

N N M K

n m k i m k m k m k n
c n m k

N P Q J W W

F

376 The Boundary Element Method with Programming

READ(1,*,IOSTAT=IOS) NodesC
IF(IOS /= 0) RETURN ! No body force effects
Write(2,*) 'Number of cell nodes=',NodesC
READ(1,*) Ncells
Write(2,*) 'Number of cells=',Ncells
READ(1,*) Eps0
Write(2,*) 'Eps0=',Eps0
NodelC=4 ! only linear elements considered
ldimC= 2 ! plane cells
ALLOCATE(xPC(Cdim,NodesC)) ! Array for node coordinates
ALLOCATE(InciC(Ncells,NodelC),Inci(NodelC))
ALLOCATE(Ni(nodelC),ELCOR(Cdim+1,nodelC))
!---
! Read Cell Node Co-ordinates
!---
DO Node=1,NodesC
 READ(1,*) (xPC(M,Node),M=1,Cdim)
 WRITE(2,'(A5,I5,A8,3F8.2)') 'Node ',Node,&
 ' Coor ',(xPC(M,Node),M=1,Cdim)
END DO
!---
! Read Cell Incidences
!---
WRITE(2,*)''
WRITE(2,*)'Incidences: '
WRITE(2,*)''
DO Nc=1,Ncells
 READ(1,*) (InciC(Nc,n),n=1,NodelC)
 WRITE(2,'(A3,I5,A8,4I5)')'EL ',Nc,' Inci ',InciC(Nc,:)
END DO
!--
! compute contribution to right hand side
!--
Colloc_points: DO i=1,Ncol
 Cells: DO nc=1,Ncells
 Mi=4 ; Ki=4 ! cell is sufficiently far away from Pi
 Call Gauss_coor(Glcorx,Wix,Mi)
 Call Gauss_coor(Glcore,Wie,Ki)
 Elcor(1:2,:)= xPC(1:2,InciC(nc,:))
 Elcor(3,:)= 0.0 ! we are using 2-D boundary element as a cell
 Inci=InciC(nc,:)
 Gauss_points_xsi: DO m=1,Mi
 xsi= Glcorx(m)
 Gauss_points_eta: DO k=1,Ki
 eta= Glcore(k)
 CALL Serendip_func(Ni,xsi,eta,ldimC,nodelC,Inci)
 Call Normal_Jac(Vnorm,Jac,xsi,eta,ldimC,nodelC,Inci,elcor)
 Weit= Wix(m)*Wie(k)*Jac
 CALL Cartesian(GCcor,Ni,ldimC,elcor)
 r= Dist(GCcor(1:2),xP(:,i),Cdim)
 dxr= (GCcor(1:2)-xP(1:2,i))/r

BODY FORCES 377

 SigK= SigmaK(dxr,r,E,ny,Cdim)
 Direction_P: DO ii=1,Cdim
 iD= Cdim*(i-1) + ii ! Position in F array
 Direction_Q: DO jj=1,Cdim
 Node_points: DO n=1,NodelC
 F(iD)= F(iD) + Ni(n)*SigK(ii,jj)*Weit*Eps0(jj)
 END DO Node_points
 END DO Direction_Q
 END DO Direction_P
 END DO Gauss_points_eta
 END DO Gauss_points_xsi
END DO Cells
END DO Colloc_points
DEALLOCATE(xPC)
DEALLOCATE(InciC)
DEALLOCATE(Ni,Elcor)
RETURN
END Subroutine Body_force

In Program General_purpose_BEM we have to insert a call to Body_force as shown

….
END DO &
Elements_1
CALL Body_force(F,CDim,xP,Nodes,Isym,E,ny)
!--
! Add azimuthal integral for infinite regions
!--
…

13.8.1 Input data specification for Body_force

The input data for the cell mesh and the specification of the initial strain is supplied via
file INPUT. If no body force effects are present SUBROUTINE Body_force returns
immediately. The geometry of the cell and the sequence of the input of node numbers is
shown in Figure 13.7.

INPUT DATA SPECIFICATION FOR Body_force

1.0 Node specification

Nodes Number of cell nodes
2.0 Element specification

Ncells Number of cells
3.0 Initial strain specification

 Eps0(1:2) Initial strains 0x , 0y

378 The Boundary Element Method with Programming

4.0 Loop over nodes
 x, y, (z) Node coordinates

5.0 Loop over all cells
 Inci (1:4) Incidences of cells

Figure 13.7 Linear plane cell

13.9 SAMPLE INPUT FILE AND RESULTS

 To test the Subroutine a small example in included here. It is an example of a circular
opening in an infinite domain, where part of the domain is subjected to swelling. The
effect of the swelling on the deformations at the boundary of the hole is required. The
material properties for the domain are assumed to be E= 1000.0 and The swelling
zone is assumed to be subjected to an initial strain of 0.1 in the vertical direction. The
mesh with quadratic boundary elements and linear cells is shown in Figure 13.8. Note
that the numbering for the cells is completely separated from the numbering of the
boundary elements so we can start with number 1.

The file INPUT is

Circular hole with swelling
 2 ! Cdim
 2 ! Ndof
 1 ! Toa Plane strain
 2 ! Nreg infinite eregion
 0 ! ISym no symetry
 2 ! Ltyp quads
0.1000E+05 0.0000E+00
 8 ! Nodes
 4 ! Elements
 1.000 1.000
 0.707 0.707
 1.000 0.000
 0.707 -0.707
 0.000 -1.000

1 2

34

BODY FORCES 379

 -0.707 -0.707
 -1.000 0.000
 -0.707 0.707
 1 3 2
 3 5 4
 5 7 6
 7 1 8
 0
 0
 6 ! Cell Nodes
 2 ! Cells
0.0 0.1 ! vertical strain
 -1.000 2.000
 0.000 2.000
 1.000 2.000
 1.000 2.500
 0.000 2.500
 -1.000 2.500
 1 2 5 6
 2 3 4 5

Figure 13.8 Problem specification

1,0

1,0

2,0

Area subjected to swelling

0,5

380 The Boundary Element Method with Programming

Figure 13.9 Mesh used

The output obtained from the program is

Project:
 Circular hole with swelling
 Cartesian_dimension: 2
 Elasticity Problem
 Type of Analysis: Solid Plane Strain
 Infinite Region
 No symmetry
 Quadratic Elements
 Modulus: 10000.00
 Poissons ratio: 0.0000000E+00
 Number of Nodes of System: 8
 Number of Elements of System: 4
Node 1 Coor 1.00 1.00
Node 2 Coor 0.71 0.71
Node 3 Coor 1.00 0.00
Node 4 Coor 0.71 -0.71
Node 5 Coor 0.00 -1.00
Node 6 Coor -0.71 -0.71
Node 7 Coor -1.00 0.00
Node 8 Coor -0.71 0.71
 Incidences:
EL 1 Inci 1 3 2
EL 2 Inci 3 5 4
EL 3 Inci 5 7 6
EL 4 Inci 7 1 8

1
2

3

4

5

6

7

8

1

23

4

1 2

1 2 3

456

BODY FORCES 381

 Elements with Dirichlet BC´s:
 Elements with Neuman BC´s:
 Number of cell nodes= 6
 Number of cells= 2
 Eps0= 0.0000000E+00 0.1000000
Node 1 Coor -1.00 2.00
Node 2 Coor 0.00 2.00
Node 3 Coor 1.00 2.00
Node 4 Coor 1.00 2.50
Node 5 Coor 0.00 2.50
Node 6 Coor -1.00 2.50
 Incidences:
EL 1 Inci 1 2 5 6
EL 2 Inci 2 3 4 5
Results, Element 1
 u=-0.471E-02-0.245E-01-0.171E-02-0.195E-01-0.323E-02-0.257E-01
 t= 0.000 0.000 0.000 0.000 0.000 0.000
 Results, Element 2
 u=-0.171E-02-0.195E-01 0.612E-03-0.120E-01-0.397E-03-0.142E-01
 t= 0.000 0.000 0.000 0.000 0.000 0.000
 Results, Element 3
 u= 0.612E-03-0.120E-01-0.798E-03-0.156E-01 0.802E-03-0.123E-01
 t= 0.000 0.000 0.000 0.000 0.000 0.000
 Results, Element 4
 u=-0.798E-03-0.156E-01-0.471E-02-0.245E-01-0.104E-02-0.251E-01
 t= 0.000 0.000 0.000 0.000 0.000 0.000

13.10 CONCLUSIONS

In this chapter we have dealt with the treatment of various types of effects occurring
inside the domain, where no boundary elements exist. We have loosely called these
effects body forces, even though some of these, for example the initial strains were not
forces at all. With the capability to deal with these effects the range of application of the
BEM has been expanded and we have also laid the foundations for the chapter that deals
with plasticity. In the solution of material non-linear problems we can visualise the
redistribution of stresses due to plasticity, as body forces which are generated once
plasticity occurs.

The effect of body forces is essentially an additional right hand side that is generated
in the system of equations. If the body forces are constant, then this term can be
computed as a surface integral using numerical integration. Otherwise, a mesh of cells
has to be created in order to enable a volume integration to be carried out. Those critical
of the BEM might suggest that the main attraction of the method, surface instead of
volume discretisation, would be lost. However this is not the case. Cells are only needed
where internal loading occurs and there are no additional degrees of freedom associated
with the nodes of a cell mesh. This is demonstrated by the example shown where cells
were only provided in the swelling zone. An equivalent finite element discretisation

382 The Boundary Element Method with Programming

would have to cover the entire domain, including the part where no swelling occurs.
Also note that the number of unknowns at the nodes of the boundary elements was not
increased by the fact that cells were required to compute the right hand side of the
system of equations.

The implementation of body forces requires additional fundamental solutions which
have been added to the library. It is obvious that volumetric loading effects also occur in
potential problems but the discussion of these in more detail is beyond the scope of this
book.

We have only shown one example of implementation: the treatment of initial strains
as they may occur in problems where part of the domain, is subjected to swelling.
However with the knowledge of programming gained in previous chapters and the
explanation of the theory in this chapter the reader should be able to perform the
implementation of the other types of body forces into program General_purpose_BEM.

13.11 EXERCISES

Exercise 13.1
Write a Subroutine similar to SUBROUTINE Body_force that computes the right hand
side for gravity as discussed in section 13.2. Implement this into program
General_Purpose_BEM and test on an example of a cube subjected to self weight.

Figure 13.10 Test example for exercise 13.1

1,0m

1,0N

1,0m

1,0N

Note: Apply this
load as traction

BODY FORCES 383

Exercise 13.1
Write a Subroutine similar to SUBROUTINE Body_force that computes the right hand
side for concentrated forces in the domain. Test on the example in Figure 13.10 of a hole
in an infinite domain subjected to a pre-stressing force of a rock bolt.

Figure 13.11 Test example for Exercise 13.2

Exercise 13.2
Write a Subroutine similar to SUBROUTINE Body_force that computes the right hand
side for distributed line forces in the domain. Test on the example in Figure 13.10 of a
hole in an infinite domain subjected to a distributed force (for example of a grouted rock
bolt).

13.12 REFERENCES

1. Brebbia A., Telles J.C.F and Wrobel, L.C. (1984) Boundary Element Techniques.

Springer Verlag, NewYork
2. Banerjee P.K. The Boundary Element Methods in Engineering, McGraw-Hill,

London.

1,0m

1,0 /N m

1,0m

14
Dynamic Analysis

Do not worry about your difficulties in Mathematics,
 I can assure you mine are still greater.

Albert Einstein

14.1 INTRODUCTION

So far we have discussed problems that are independent of time and neglected inertial
effects. It is therefore appropriate to extend the discussion of the theory and
implementation to problems in dynamics. We have already seen that the Boundary
Element Method has distinct advantages over the Finite Element Method for static
problems involving infinite domains. This advantage is even more pronounced for
dynamic problems since we will see that the fundamental solutions used in the BEM
implicitly fulfil the radiation conditions. It is known that the FEM which requires the
truncation of the mesh has the problem that waves may be reflected at truncation
boundaries. In this Chapter we will only give an overview of the implementation of
dynamic problems. For more details the reader is referred to relevant publications1,2,3.

In dynamics we distinguish between cases where the field variables are dependent on
time in a harmonic or general way. A field variable at a point Q which depends on time
in a harmonic way can be expressed as

(14.1)

where 1i , a(Q) is the amplitude at point Q and is the frequency. The use of
complex numbers allows compact representation of sinusoidal and cosine effects.
Equation (14.1) can also be written as

(,) ()(sin cos)u Q t a Q t i t

386 The Boundary Element Method with Programming

(14.2)

The solution for these types of problems can be carried out in the “frequency domain”
reducing the problem to the determination of the time-independent variable a(Q) at
frequency .

If the field variables are not harmonic then the solution has to proceed in the “time
domain” also known as a transient problem.

A “frequency domain” analysis may be motivated by:

 Analysing the response due to steady state excitations of the type
0(,) () i tp Q t p Q e assuming that a steady state has been reached, i.e.

that the influence of transient effects has become negligible.
 Transformation of a problem involving non-harmonic excitation from the

time domain into the Laplace domain. We can also use a Fourier transform
of the type

(14.3)

For each value of the transformed unknown ˆ(,)a Q can be calculated
for discrete values of . The advantage of this is that a greater range of
fundamental solutions is available in the frequency domain.

In this Chapter we will first start with the simplest problem, namely the scalar wave
equation in the frequency domain and then proceed to the time domain. Next, general
dynamic problems are discussed. This follows the philosophy of the book where
potential problems with one degree of freedom where introduced first for static
problems.

14.2 SCALAR WAVE EQUATION, FREQUENCY DOMAIN

The scalar wave equation governs many physical phenomena for example the transverse
motions of membranes or the propagation of pressure in an acoustic fluid. For a time
harmonic problem the governing differential equation is given by

(14.4)

or

(14.5)

where in the case of propagation in a fluid u is the pressure amplitude and /k c , also
known as the wave number. c denotes the wave velocity which is a material constant and

(,) () i tu Q t a Q e

ˆ(,) 1 / 2 (,) i tu Q t a Q e d

2 2 2
2

2 2 2 0u u u k u F
x y z

2(,) (,) (,) 0u Q k u Q F Q

DYNAMICS 387

F is the body source distribution. The Equation (14.4) is also known as the Helmholz
equation.

14.2.1 Fundamental solutions

The fundamental solution for the pressure amplitude (, ,)U P Q is for a point source of
unit amplitude located at point P, i.e. the solution of:

(14.6)

where ()P Q is the Dirac delta function. The Dirac delta function is defined as

(14.7)

The fundamental solution for the pressure at Q is given by

(14.8)

where r is the distance between P and Q.
Note that for the static case this reverts to (,) 1/ 4U P Q r . The derivatives of the

pressure are given by

(14.9)

where x,y,z may be substituted for j and , jr has been defined in Chapter 4. The
derivative of U in the direction n, here referred to as T, is given by

(14.10)

where cos has been defined in Chapter 4. If we integrate the three-dimensional
solution over z we obtain the solution for the plane problem as

(14.11)

where 1
0H and 1

1H are Hankel functions of the first kind and order 0 and 1, respectively.

2 () 0U k U P Q

(, ,)
4

ikreU P Q
r

,
, 2 (1)

4
j ikr

j
r

U ikr e
r

1 1
0 , 1() ; ()

4 4j
i ikU H kr U H kr

, , , 2
cos (1)
4

ikr
x x y y z zT U n U n U n ikr e

r

() 0 when

() 1

P Q P Q

P Q d

388 The Boundary Element Method with Programming

The Hankel functions can be expanded to4

(14.12)

where 0.57721 (Euler constant) and here only the first terms of the expansion are
shown. A plot of the fundamental solution for U is shown in Figure 14.1.

14.2.2 Boundary integral equations

As with the static system the reciprocal theorem of Betti can be used to obtain the
integral equation. In the absence of body sources (distributed over the domain) we obtain

(14.13)

where the pressure gradient is defined as uq
n

 and ĉ depends on the boundary shape.

Figure 14.1 Plot of the fundamental solution U for real part and / 4k c

1
0

1
1

2() 1 (ln)
2

2 1() (ln)
2 2 2

i xH x

i ix x xH x
x

ˆ () (, ,) (,) (, ,) (,)
S S

cu P U P Q q Q dS T P Q u Q dS

DYNAMICS 389

14.2.3 Numerical implementation

In a well posed boundary value problem either u or q is specified on the boundary.
Furthermore the integral equation (14.13) must be satisfied for any source point P. If we
ensure the satisfaction at a discrete number of points Pi then we can get as many
equations that are necessary to compute all the unknowns (point collocation).

The solution of (14.13) can be achieved by discretisation of the boundary of the
problem as for the static case. We introduce the interpolations

(14.14)

where J is the number of element nodes, jN are shape functions introduced in Chapter 3
and ,e e

j ju q are nodal values of u and q at element e.
The discretised form of equation (14.13) is

(14.15)

where E is the number of elements and

(14.16)

The integration over the boundary elements can be carried out using Gauss
Quadrature as for the static case. However all variables must be declared COMPLEX
type in the program. An example of programming the fundamental solution is given
below. The complex function Hankel0 may be obtained from mathematical libraries or
may be programmed using the approximation given here (however, note that only a very
limited number of terms are considered).

 COMPLEX FUNCTION UW(r,k,Cdim)
 !-------------------------------
 ! Fundamental solution for scalar wave equation
 ! Pressure
 !------------------------------
 USE Hankel
 REAL,INTENT(IN) :: r ! Distance between P and Q
 REAL,INTENT(IN) :: k ! wave number
 INTEGER,INTENT(IN) :: Cdim ! Cartesian dimension (2-D,3-D)
 REAL :: Pi
 COMPLEX :: C0,Hankel0
 Pi= 3.141592654
 SELECT CASE (CDIM)
 CASE (2) ! Two-dimensional solution

1 1

(,) () ; (,) ()
J J

e e
j j j j

j j

u Q N u q Q N q

1 1 1 1

ˆ
j

J JE E
e e e e

i ji j ji
e j e j

cu P T u U q

, , , , ,
e e

e e
ji j i ji j i

S S

U N U P Q dS Q T N T P Q dS Q

390 The Boundary Element Method with Programming

 C0= CMPLX(0,0.25)
 UW= C0*Hankel0(k*r)
 CASE (3) ! Three-dimensional solution
 C0= CMPLX(0,k*r)
 UW= 1/(4.0*k*r*Pi)*EXP(C0)
 CASE DEFAULT
 UW=0.0
 WRITE (11,*)'Cdim not equal 2 or 3 in Function UW(...)'
 END SELECT
 END FUNCTION UW

14.3 SCALAR WAVE EQUATION, TIME DOMAIN

For the case where u=u(Q,t) is not harmonic but transient, the scalar wave equation is
given by

(14.17)

where overdots mean differentiation with respect to time t, c is the wave velocity and F
is a specified body source. The assumption is of an isotropic and homogeneous medium.
For a well posed problem we must have initial and boundary conditions. The initial
conditions at time 0 are specified as

(14.18)

The condition 0 0() () 0u Q v Q is termed initial rest or quiescent past,

14.3.1 Fundamental solutions

A fundamental solution of the differential equation can be found by assuming an
impulsive point source at P applied at time t , in an infinite domain. Therefore we
seek the solution of

(14.19)

where a Dirac Delta function has been introduced for the time and space. The Dirac
Delta function for the space has been discussed previously; the one for the time is
defined as

(14.20)

2
1 0u u F
c

0 0(,0) () ; (,0) () u Q u Q u Q v Q

2
1 () () 0U U P Q t
c

() 0 when

() 1

t t

t d

DYNAMICS 391

The 3-D fundamental solution for the pressure U at point Q at time t due to an
impulsive source at point P at time is given by

(14.21)

The gradient of the pressure, T, in direction n is given by

(14.22)

.

Figure 14.2 Diagram explaining causality

Figure 14.3 Heaviside function

1(, , ,) (/)
4

U P Q t t r c
r

cos 1 1(, , ,) (/) (/)
4

T P Q t t r c t r c
r r c

P

Q

Impulse applied at time t

Impulse felt at time /t r c
r

Wave speed c

0()H t t

t

0t

1.0

392 The Boundary Element Method with Programming

The interpretation of the fundamental solution U is as follows (Figure 14.2): If an
impulse is applied at P then the wave takes some time to reach point Q (this is also
known as causality). This time depends on the speed of the wave c and the distance (r)
of the point Q from P, and is computed as r/c. Therefore point Q will only feel the
impulse after a time lag of r/c.

Integration of (14.21) in the z-direction gives the plane solution as

(14.23)

and

(14.24)

where H is the Heaviside function defined as (Figure 14.3):

(14.25)

14.3.2 Boundary integral equations

Before we proceed with deriving the integral equations the concept of the convolution
integral, which is commonly used in structural dynamics5, is explained on a system with
one degree of freedom. The system is subjected to a transient load P(t) and we want to
determine the response of the system due to this loading, u(t). We divide the transient
loading P(t) into a sequence of impulses of magnitude P(t)d (Figure 14.4a). The
response of the system to one such impulse can be written as

(14.26)

where ()h t is the response due to a unit value of ()P t (Figure 14.5).
If we integrate all the impulses over time t, the response due to the given loading P(t)

is obtained as (Figure 14.4b)

(14.27)

This is also known as the Duhamel integral equation.

2 2 2
1(, , ,) (/)

2 ()
cU P Q t H t r c

c t r

3/ 22 2 2

cos(, , ,) /
2 ()

rcT P Q t H t r c
c t r

0 0

0 0

() 0 for
() 1 for

H t t t t
H t t t t

() () ()du t P d h t

0

() () ()
t

u t P h t d

DYNAMICS 393

The time convolution* integral can also be written as

(14.28)

Figure 14.4 a) transient load and b) response of the system

Figure 14.5 Response of system to a unit impulse applied at time

* The word convolution is a term that has been coined by mathematicians. The term is
akin to the word “folding” which is actually the term used in German (Faltung). It refers
to the time integration of a product.

t

()P t

d

()P

t

()u t
)a

)b

t

()h t

() () ()u t P h t

394 The Boundary Element Method with Programming

The integral can be approximated numerically using the Convolution Quadrature
Method (CQM) first introduced by Lubich6

(14.29)

where t is a time step so that t n t , ˆ()h s is the Laplace transform7 of h and nw are
the convolution quadrature weights.

Figure 14.6 Load cases considered for the derivation of the integral equation

The reciprocal theorem in dynamics specifies a relationship between two dynamic
states. It is an extension of the reciprocal theorem by Betti (a rigorous proof is given by
Wheeler8). We apply the reciprocal theorem to the scalar wave problem and two distinct
dynamical “load” cases. The first load case is the one, the solution of which we want to
obtain at a time instant t. The second load case is the case where a unit impulse is
applied at time (Figure 14.6). The reciprocal theorem gives

(14.30)

0

ˆ() () (), ()
n

n k
k

P h t w h s t P k t

0 0

0

() (,) (, , ,) (,)

 (, , ,) (,)

t t

S
t

S

t u P d T P Q t u Q dSd

U P Q t q Q dSd

Load case 2 Load case 1

U(P ,Q,t)
T(P ,Q,t)

q(Q,t)
u(Q,t)

S

dS
Q

P ()t

Q

P
u(P,t)

DYNAMICS 395

or rearranging and introducing the above notation for the time integrals

(14.31)

where

(14.32)

Taking the limiting value as P approaches the boundary

(14.33)

where ĉ is the jump term arising from taking the limit as Q approaches the boundary.

14.3.3 Numerical implementation

For the solution of the integral equation we have to discretise the problem in space as for
the static case. Since the numerical integration using the CQM previously introduced is
quite complex because it involves a Laplace transform we propose an alternative
approach.

Figure 14.7 Discretisation in time with a constant shape function

(,)u Q t

t

1 (1)nt n t t

nt n t

nu 1nu1nu

0

0

(, , ,) (,) (, , ,) (,)

(, , ,) (,) (, , ,) (,)

t

t

U P Q t q Q t U P Q t q Q d

T P Q t u Q t T P Q t u Q d

ˆ (,) [(, , ,) (,) (, , ,) (,)]
S

cu P t U P Q t q Q T P Q t u Q dS

(,) [(, , ,) (,) (, , ,) (,)]
S

u P t U P Q t q Q T P Q t u Q dS

396 The Boundary Element Method with Programming

We discretise the total time into arbitrary small steps of size t , then we have

(14.34)

where ()nN t are shape functions in time and nu and nq are the pressure and pressure
gradient at time step n (at time nt n t). If we assume the variation of u and q to be
constant within one time step t , then the convolution integrals may be evaluated
analytically. In this case the shape functions are

(14.35)

where H is the Heaviside function. The time interpolation is shown in Figure 14.7.
Substituting (14.34) into (14.33) we obtain the integral equation discretised in time

and written for the time Nt (time step N):

(14.36)

The convolution integrals are approximated by

(14.37)

and

(14.38)

where

(14.39)

This means that only the fundamental solutions are inside the integrals and these may
be integrated analytically3.

The time discretised integral equation now becomes

(14.40)

1

(, , ,) (,) ()
N

N n Nn
n

U P Q t q Q q Q U

1

(, , ,) (,) ()
N

N n Nn
n

T P Q t u Q u Q T

1 1

ˆ () () () () ()
N N

N Nn n Nn n
n nS S

cu P U q Q dS Q T u Q dS Q

1 1

(,) () () ; (,) () ()
N N

n n n n
n n

u Q t N t u Q q Q t N t q Q

1 1

(, , ,) ; (, , ,)
n n

n n

t t

Nn N Nn N
t t

U U P Q t d T T P Q t d

1() ()n n nN t H t t H t t

ˆ () [(, , ,) (,) (, , ,) (,)]N N N
S

cu P U P Q t q Q T P Q t u Q dS

DYNAMICS 397

or taking the sum outside the integral

(14.41)

For each time step N we get an integral equation. In a well posed boundary value
problem either u or q is specified on the boundary and the values of u and q are known at
the beginning of the analysis (t=0). Furthermore the integral equation (11.41) must be
satisfied for any source point P. If we ensure the satisfaction at a discrete number of
points Pi then we can get for each time step N as many equations that are necessary to
compute the unknowns. Similar to static problems we specify the points Pi to be the
node points of the boundary element mesh (point collocation). To solve the integral
equation we introduce the discretisation in space of Chapter 3:

(14.42)

where ,n nu q are pressure and pressure gradients at Q; ,e e
nj nju q refer to values of u and q

at node j of element e at time step n and Nj are shape functions. Substitution of (14.42)
into (14.41) gives

(14.43)

where

(14.44)

and

(14.45)

J is the Jacobian and E is the number of Elements.
If we define vectors nu and nq to contain all nodal values of pressure and

pressure gradient at the nodes at time increment N we can rewrite Equation (14.43) in
matrix form

(14.46)

1 1

ˆ () () () () ()
N N

N Nn n Nn n
n nS S

cu P U q Q dS Q T u Q dS Q

1 1

() ; ()
J J

e e
n j nj n j nj

j j

u Q N u q Q N q

1 1 1 1 1 1

ˆ ()
N J N JE E

e e e e
N i ijNn nj ijNn nj

n e j n e j

cu P U q T u

()
e

e
ijNn Nn i j

S

U U P N J dS

()
e

e
ijNn Nn i j

S

T T P N J dS

1 1

N N

n nn n
n n

T u U q

398 The Boundary Element Method with Programming

If we solve for time step N, the results for the previous time steps are known and can
be put to the right hand side:

(14.47)

or

(14.48)

where the vector F contains the effect of the time history. The coefficients of F are

(14.49)

14.4 ELASTODYNAMICS

We now turn our attention to general problems in elasticity. The differential equation for
dynamics in the frequency domain can be written in matrix form as:

(14.50)

where b is a body force vector

(14.51)

and

(14.52)

1 1

1 1

N N

N N n nN N n n
n n

T u U q T u U q

N NN NT u U q F

1 1

1 1 1 1 1 1

N J N JE E

e e
i ijNn nj ijNn nj

n e j n e j

F U q T u

2()G Gu u b u

2 2 2

2

2 2 2

2

2 2 2

2

 ;
x

y

z

x y x zx
u
u

y x y zy
u

z x z y z

u

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

0 0

 0 0

0 0

x y z

x y z

x y z

DYNAMICS 399

 is the mass density and G, are elastic constants introduced in Chapter 4 and is the
frequency.

The differential equation for dynamics in the time domain can be written in matrix
form as:

(14.53)

where the acceleration vector is defined as

(14.54)

Equation (14.51) can be re-written in terms of pressure and shear velocities, 1 2,c c

(14.55)

where 2 2
1 2(2) / , /c G c G .

14.4.1 Fundamental solutions

Fundamental solutions are obtained for a concentrated impulse applied at P at time i.e.
for the case of a body force of

(14.56)

where is the Dirac Delta function introduced earlier.
For 3-D problems the fundamental solution for the displacement is given by:

(14.57)

14.4.2 Boundary integral equations

The integral equation is obtained in a similar way as for the scalar wave equation except
that vectors u and t are used for the displacements and tractions.

()G Gu u b u

x

y

z

u
u

u

u

2 2 2
1 2 2()c c cu u b u

() ()jb P Q t

2

1

, ,
, ,2 2

1 21 2
1/

, ,
1/

1() ()
1(, , ,)

4
3 ()

i j
ij i j

cij

i j ij
c

r r r rt r r t
c cc c

U P Q t
r

r r t r d

400 The Boundary Element Method with Programming

The integral equation is given by

(14.58)

where U and T are matrices containing the fundamental solutions.

14.4.3 Numerical implementation

For the solution of the integral equation we discretise the problem in time as well as in
space as for the scalar wave equation. If we discretise the total time into equal (arbitrary
small) steps of size t then we have

(14.59)

Following the steps for the scalar problem and assuming a constant shape function we
obtain the discretised integral equation for time step N as

(14.60)

where

(14.61)

Introducing the space discretisation

(14.62)

where ,n nu t are displacements and tractions at Q, ,e e
nj nju t refer to values of u and t at

node j of element e at time step n and jN are shape functions. Substitution of (14.62)
into (14.60) gives

(14.63)

where

(14.64)

ˆ (,) [(, , ,) (,) (, , ,) (,)]
S

P t P Q t Q P Q t Q dScu U t T u

1 1

(,) () () ; (,) () ()
N N

n n n n
n n

Q t N t Q Q t N t Qu u t t

1 1

ˆ () () () () ()
N N

N Nn n Nn n
n nS S

P Q dS Q Q dS Qcu U t T u

1 1

(, , ,) ; (, , ,)
n n

n n

t t

Nn N Nn N
t t

P Q t d P Q t dU U T T

1 1

() ; ()
J J

n j nj n j nj
j j

Q N Q Nu u t t

1 1 1 1 1 1

ˆ ()
N J N JE E

e e e e
N i ijNn nj ijNn nj

n e j n e j

Pcu U t T u

()
e

e
ijNn Nn i j

S

P N J dSU U

DYNAMICS 401

and

(14.65)

where J is the Jacobian.

If we define vectors nu and nt to contain all nodal values of displacements and
tractions at the nodes at time increment N we have

(14.66)

or

(14.67)

where the vector F contains the effect of the time history:

(14.68)

14.5 MULTIPLE REGIONS

The approach used for the dynamic analysis with multiple regions is very similar to the
one introduced for statics in Chapter 11. The difference is that instead of applying unit
Dirichlet boundary conditions at the interface between regions we apply unit impulses.
We only consider a fully coupled problem to simplify the explanation that we present
here. The details of a partially coupled analysis are given by Pereira et al.9

Figure 14.8 Example for explaining the analysis of multiple regions

()
e

e
ijNn Nn i j

S

P N J dST T

1 1

N N

n nn n
n n

T u U t

N NN NT u U t F

1 1

1 1 1 1 1 1

N J N JE E

e e
i ijNn nj ijNn nj

n e j n e j

F U t T u

Region II

Region I

()u t

402 The Boundary Element Method with Programming

Consider the problem of an inclusion (with different properties) in an infinite domain
in Figure 14.8. We separate the regions and show the displacements and tractions.
Between the regions the conditions of equilibrium and compatibility must be satisfied

(14.69)

where ,I IIt t are interface tractions for region I and II and 0t are applied tractions.

,I IIu u are the interface displacements. We attempt to derive a relationship between
the tractions and the displacements at the interface between each region.

Figure 14.9 Separated regions

For this we consider each region separately and apply a (transient) unit displacement
at each node while keeping the other displacements zero. We use the concept of the
Duhamel integral introduced earlier to obtain the transient tractions due to transient unit
displacements. If we do this then we obtain the following relationship between tractions
and displacements for region i

(14.70)

where (,)itK is a unit displacement impulse response matrix whose coefficients
represent the transient traction components due to an impulsive unit displacement

()t applied at time . Matrix (,)itK can be computed in the Laplace domain using
the CQM introduced above. This is discussed in detail by Pereira10.

To solve the fully coupled problem the time may be divided into n time steps t .
Then Equation (14.70) may be written for time step n as

(14.71)

0 0 ; I II I IIt t t u u

It

IIt

0

() , ()
t

i i it t t dt K u

0
0

() (()) () ()
n

i ii

m

n t n m t m t m tt K u t

DYNAMICS 403

where ()i n tK is a “dynamic stiffness matrix” of region i similar to the one obtained in
Chapter 11. Introducing the compatibility and equilibrium equations (14.69) we obtain
the equations for the solution of interface displacements at time n t 9

(14.72)

14.6 EXAMPLES

Here we show two examples involving multiple regions. The first is meant to ascertain
the accuracy of the method, the second to show a practical application.

14.6.1 Test example

A standard benchmark example commonly used to validate transient dynamic
formulations is the wave propagation in a rod, as shown in Figure 14.10. The material
properties of the rod are E = 2.1x1011 N/m2, = 0 and = 7850 kg/m3 (steel). The road
is divided into two regions. A Heaviside compression load of magnitude 1 kN/m2 is
applied on the free end of the rod.

Figure 14.10 Step function excitation of a free-fixed steel rod

In the following, all results are normalized by their corresponding static values, i.e.,
the displacements by su 1.4218x10 11m and the tractions by 1st kN/m2, respectively.
The displacements at points A and B (free end and coupled interface) and the traction in
longitudinal direction at the fixed end are plotted versus time in Figure 14.11 and Figure
14.12, respectively. These results are obtained for different time step sizes. Taking as
reference a parameter = c t / r, where r is the element length, it is possible to identify

1

0 0
0

(0) (0) ()

() (()) (()) () ()

I II

n
I II

m

n t

n t n m t n m t m t m t

K K u

t K K u t

404 The Boundary Element Method with Programming

a range of values that depend on the time step size where the results are satisfactory i.e.,
stable and accurate. It can be observed, that the results are in good agreement with the
analytic solution and with the numerical results for single region problem published for
example by Schanz11. Excellent agreement with the analytic solution is obtained for the
time step = 0.25, however the results for = 0.10 are unstable. The larger time steps
(e.g., = 1.50) tend to smooth the results due to larger numerical damping and introduce
some phase shift. Nevertheless, the results for all time step sizes inside the interval
0.20< <1.50 are satisfactory.

 0

 0.5

 1

 1.5

 2

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

di
sp

la
ce

m
en

t u
x/
u s

time [sec]

node A

node B

Analytical:
= 1.50
= 1.00
= 0.50
= 0.25
= 0.10

Figure 14.11 Longitudinal normalized displacements at nodes A and B.

Figure 14.12 Longitudinal normalized tractions at the fixed end (node C).

 0

 0.5

 1

 1.5

 2

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

tr
ac

tio
n
t x
/t

s

time [sec]

node C

Analytical:
= 1.50
= 1.00
= 0.50
= 0.25
= 0.10

DYNAMICS 405

14.6.2 Practical application

This is a practical application in tunnelling. The tunnel depicted in Figure 14.13 is
located in a piecewise heterogeneous rock mass with two different properties. The
loading is a suddenly applied point load of magnitude F at the tunnel face.

Figure 14.13 Problem statement

Figure 14.14 Boundary element mesh

406 The Boundary Element Method with Programming

The boundary element mesh consists of 2 regions and linear boundary elements, as
shown in Figure 14.14. Results of the analysis are shown in Figure 14.15, for two
different time steps and values of ratios of Young’s modulus.

Figure 14.15 Contours of absolute displacement for two different ratios of modulus and times

14.7 REFERENCES

1. Banerjee P.K. (1994) The Boundary Element Methods in Engineering, McGraw Hill

Book Company, London.
2. Manolis G.D. and Beskos D.E. (1988) Boundary Element Methods in

Elastodynamics. Unwin-Hyman, London.
3. Dominguez, J. (1993) Boundary Elements in Dynamics. Computational Mechanics

Publications, Southampton.
4. Bonnet, M. (1995) Boundary Integral Equation Methods for Solids and Fluids,

J.Wiley.
5. Chopra A.K. (2007) Dynamics of Structures. Pearson Prentice Hall.
6. Lubich C. (1988) Convolution quadrature and discretized operational calculus I.

Numerische Mathematik. 52: 129-145.
7. Kreyszig, E. (1999) Advanced Engineering Mathematics. J. Wiley
8. Wheeler L.T and Sternberg E. (1968) Some theorems in classical elastodynamics.

Arch. Rational Mech. Anal. 31:51-90.
9. Pereira A. (2006) A Duhamel integral approach based on BEM to 3-D elasto-dynamic

multi-region problems. IABEM, Verlag der TU Graz, Austria, 71-74.
10. Pereira A. (2008) PhD thesis, Graz University of Technology, Austria.
11. Schanz M. (2001) Wave propagation in viscoelastic and poroelastic continua.

Springer, Berlin

15
Nonlinear Problems

(Everything flows)
Aristotle

15.1 INTRODUCTION

So far we have discussed problems where there is a linear relationship between applied
loading and displacement, or between applied flow and temperature/potential. The
system of equations

(15.1)

corresponds to a linear analysis, if {u} is a linear function of {F}.
The linearity of (15.1) is only guaranteed if certain assumptions are made when

deriving the system of equations. These assumptions are:

1. The relationships between flux and temperature/potential or stresses and strains are
linear

2. Matrix T is not affected by changes in geometry of the boundary that occurs during
loading

3. Boundary conditions do not change during loading

Indeed, we have implicitly relied on these assumptions to be true in all our previous
derivations of the theory.

An example where the first assumption is violated is elasto- or visco-plastic material
behaviour (this is generally referred to as material nonlinear behaviour). The second one
is violated if displacements significantly change the boundary shape (large displacement
problems). Finally, the third no longer holds true for contact problems, where either the

FuT

408 The Boundary Element Method with Programming

Dirichlet boundary or the interface conditions between regions change during loading,
thereby affecting the assembly of T . An example of an elastic sphere on a rigid
surface, shown in Figure 15.1. After deformation two nodes, indicated by dark circles
may change from Neuman to Dirichlet boundary condition.

Figure 15.1 Example of nonlinear analysis: contact problem

If one of the above-mentioned assumptions are not satisfied, then the relationship
between {u} and {F} will become nonlinear. In a nonlinear analysis matrix T becomes
itself a function of the unknown vector {u}. It is therefore not possible to solve the
system of equations directly.

In this chapter we shall discuss solution methods for nonlinear problems starting with
the general solution process. We will then discuss two different types of nonlinear
behaviour, plasticity and contact problems. We shall see that solution methods for these
types of problems are very similar to the ones employed by the finite element method.
We will also find that the BEM is well suited to deal with contact problems because
boundary tractions are used as primary unknown.

15.2 GENERAL SOLUTION PROCEDURE

The method proposed is to first find a solution with the assumption that the conditions
for linearity are satisfied, i.e. we solve

(15.2)
00 0T x F

Original Deformed

409 NONLINEAR PROBLEMS

where 0T is the “linear” coefficient matrix. With solution vector 0x (which contains
either displacements or tractions depending on boundary conditions) a check is then
made to see whether all linearity assumptions have been satisfied, for example, we may
check if the internal stresses (computed by post-processing) violate any yield condition,
or if boundary conditions have changed because of deformations. If any one of these
“linearity” conditions has not been satisfied this means that matrix T has changed
during loading, i.e, instead of equation (15.2) we have

(15.3)

Here 1T is the changed matrix, also referred to as “tangent” matrix, and 1R is a
residual vector. Therefore the solution has to be corrected.

We compute the first correction to {x}, x as

(15.4)

where the overdot means increment and proceed with these corrections until the residual
vector {R} approaches zero.

Final displacements/tractions are obtained by summing all corrections:

(15.5)

where N is the number of iterations to achieve convergence. The solution is assumed to
have converged if the norm of the current residual vector is much smaller than the first
residual vector, i.e., when

(15.6)

 where Tol is a specified tolerance.
 Alternative to the system of equations (15.4) we may use the “linear” matrix

throughout the iteration, that is, equation (15.4) is modified to

(15.7)

This will obviously result in slower convergence but will save us computing a new
left hand side and a new solution of the system of equations, only a re-solution with a
new right hand side is required. This will be the approach that we will consider here.

0 1 Nx x x x

0 11T x F R

1 11T x R

1 10T x R

TolN

1R
R

410 The Boundary Element Method with Programming

15.3 PLASTICITY

There are two ways in which nonlinear material behaviour may be considered: elasto-
plasticity and visco-plasticity1. Regardless of the method used, the aim is to obtain initial
strains or stresses. Using the procedures outlined in Chapter 13 residuals {R} may be
computed directly from initial stresses.

15.3.1 Elasto-plasticity

In the theory of elasto-plasticity we define a yield function 0....),,(21 CCF which
specifies a limiting value of stress (C1, C2, etc., are plastic material parameters).
Stress states can only be such that F is negative (elastic states) or zero (plastic states).
Positive values of F are not allowed. Here we restrict the discussion to materials that
exhibit no hardening, although it is clear that the numerical procedures are applicable to
hardening materials also.

Figure 15.2 Mohr-Coulomb yield surface showing elastic and inadmissible stress state

A popular yield function for soil and rock material is the Mohr-Coulomb2 condition
which can be expressed as a surface in principal stress space by

(15.8) 1 3 1 3() sin cos 0
2 2

F c

n-1)

()n

411 NONLINEAR PROBLEMS

where 31 and are maximum and minimum principal stresses, c is cohesion and the
angle of friction. The yield function is plotted as a surface in the principal stress space in
Figure 15.2. We assume that the loading is applied in increments. After the solution it
may occur that stresses that were in an elastic state at a previous load increment n-1 (i.e.
F < 0) change to an inadmissible state (F> 0) at the current increment n (Figure 15.2).
 Therefore, this stress state has to be corrected back to the yield surface. To do this we
have to isolate the plastic and elastic components. If the state of stress is such that F() <
0, then theory of elasticity governs the relationship between stress and strain, i.e. (see
Chapter 4)

(15.9)

For stress states where F() = 0, elastic strains e as well as plastic strains p may be
present, i.e. the total strain , , consists of two parts3

(15.10)

For this case the stress-strain law can only be written incrementally as

(15.11)

where epD is the elasto-plastic constitutive matrix and d is the total strain increment.

To determine epD we must determine the plastic strain increment. This is

(15.12)

where Q is a flow function whose definition is similar to F. If Q F then this is known
as associated flow rule. On the yield surface (F=0) we can write for the stress increment

(15.13)

The stress increment can therefore be split into two parts (one elastic and one plastic)

(15.14)

The condition that 0F is not allowed means that for any increment d the change in F
must be zero, i.e.

(15.15)

D

epd dD

e p

p
Qd

e p
Qd d d d dD D D

0F d

e pd d d

412 The Boundary Element Method with Programming

Substitution of (15.13) into (15.15) gives after some algebra

(15.16)

Substituting of (15.16) into (15.13) gives for the plastic stress increment

(15.17)

where

(15.18)

This relationship only holds true if the stress state is actually on the yield surface (F=0).
In the case where during a load increment a point goes from an elastic to a plastic state
and violates the yield condition in the process (i.e. F>0) then the plastic stress increment
has to be related to the plastic strain increment rather than the total strain increment.

Figure 15.3 Determination of plastic part of the strain increment

Using a simple linear approximation the plastic strain increment is computed by (Figure
15.3):

(15.19)

where has been substituted for d to indicate that the increments are no longer
infinitesimally small and

(15.20)

1 where
TF F QdD D

p pd dD

1 T

p ep
Q FD D D D D

()

() (1)
()

() ()

n

n n
Fr

F F

p r

F

F

1n

n

p

413 NONLINEAR PROBLEMS

Table 15.1 gives an overview of the factor r for different situations of the stress state at
the beginning (n-1) and the end of the load increment (n).

Table 15.1 Values of r for various cases

Case n-1 n r
1 F < 0 F < 0 0.0
2 F < 0 F > 0 Eq. (15.20)
3 F = 0 F > 0 1.0
4 F = 0 F < 0 0.0

After a load increment the stresses have been wrongly computed if they are outside

the yield surface (F>0). They should have to be computed according to

(15.21)

where

(15.22)

Therefore the stresses have to be corrected by

(15.23)

 This stress can be assumed as an “initial stress” generated in the domain. Equation
(15.20) is only approximate since a linear variation has been used. Therefore, when
checking the stress state after the correction applied it will not lie exactly on the yield
surface. The discussion of so called “return algorithms” to ensure this are beyond the
scope of this text and the reader is referred to the relevant literature on this subject4.

15.3.2 Visco-plasticity

The concept of visco-plasticity allows F() to be greater than zero5. A positive yield
function simply means that the stress state has a higher plastic potential. The stresses are
then allowed to creep back to a lower plastic potential (Figure 15.4) and eventually to the
yield surface. This takes into consideration the fact that the material requires time to
“react” to changes in stress and also allows the consideration of creep behaviour.

The strain rate, at which “creeping” takes place, is assumed to be proportional to the
plastic potential. That is

(15.24)

where

1 ()P
QF

t

0 p

e p

p p p prD D

414 The Boundary Element Method with Programming

(15.25)

In the above equations is a material parameter describing its time dependent

behaviour (viscosity).
A visco-plastic analysis proceeds in time steps and a visco-plastic strain increment is

computed at each time step by:

(15.26)

where t is a time increment. The initial stresses for the computation of the residual are

(15.27)

The time increment t cannot be chosen freely but has to satisfy certain stability
conditions to prevent oscillations5.

Figure 15.4 Explanation of the concept of visco-plasticity

0

00

Ffor;F)F(

Ffor;)F(

P
P t

t

0 P PD

p

()n

n-1)

1

2

3

415 NONLINEAR PROBLEMS

15.3.3 Method of solution

For the solution of problems in plasticity we use a similar method as in Finite Elements
known as the “initial stress” method. In this method we compute initial stresses as
outlined in the previous section and apply this as loading. For this we have to amend the
discretisation of the problem. In addition to surface elements we require the specification
of volume cells in the parts of the domain that are likely to yield, for the integration of
initial stresses. These volume cells have been discussed in Chapter 3. Figure 15.5 shows
examples of discretisations for a cantilever beam and a circular hole in an infinite
domain. The discretisations actually look almost like finite element meshes and it could
be argued that one might as well use finite elements for this problem.

However, there are subtle differences:
 There is no requirement of continuity, i.e. elements do not need to connect to each

other as finite elements need.

 There are no additional unknown associated with the mesh of volume cells.
Therefore the system of equations does not increase in size.

 The representation of stress is still more accurate than with the FEM.

 The mesh of cells only needs to cover zones where plastic behaviour is expected.

Figure 15.5 Volume cells for the example of a cantilever beam and a circular hole

The iterative process is described in the structure chart in Fig 15.6. First we may

divide the total applied load into increments to optimise the number of iterations. Then
we solve for the unknown displacements/tractions with the applied loading. With the
boundary results we compute the stresses at each cell node and check the yield
condition. If F>0 is detected then the “initial stress” is computed as explained
previously. The residual vector R is computed as will be explained later and a new

416 The Boundary Element Method with Programming

solution mx computed and accumulated. The iterations proceed until the norm of the
residual vanishes.

Figure 15.6 Structure chart for plasticity

Determine r,dsxr,Jacobian etc. for kernel computation

Determine distance of Pi to Element, R/L and No. of Gauss points

Load_step: DO i=1,Number of Load steps (cases)

Iterations: DO m=0, Max. number of iterations

Cells: DO c=1, Number of Cells

Cell_nodes: DO j=1, No. of cell nodes

Initialize

Solve for mx

Calculate and ()F

() ?F

0 0
Exit Continue

Calculate 0

Calculate 0
c c
ji jE

Calculate R

?R
Tol

Exit Continue
Tol

Solve for boundary unknowns 0x

1m mx x x

417 NONLINEAR PROBLEMS

15.3.4 Calculation of residual {R}

After the initial (linear) analysis the system of equations that has to be solved is

(15.28)

where the components of the residual vector are given by

(15.29)

and

(15.30)

where C is the number of Cells, N is the number of cell nodes and 0
c

n is the “initial
stress” increment computed at node n of cell c.

The evaluation of integrals c
niE is similar to the evaluation of c

ni , that has been

discussed in section 13.7. For plane problems the expression for c
niE in intrinsic

coordinates is

(15.31)

Using Gauss Quadrature the formula can be replaced by

(15.32)

where M and K are the number of integration points in and directions, respectively.

For 3D problems we have

(15.33)

and the integration formula is

(15.34)

1 1
, (, (,)) (,)

M K
c
ni n m k i m k m k m k

m k
N P Q J W WE

1 1 1

1 1 1

, , , , d d dc
ni n iN P Q J

1 1 1
, , (, (, ,)) (, ,)

L M K
c
ni n m k l i m k l m k l m k l

l m k
N P Q J W W WE

T x R

1

2

R
R R

0
1 1

C N
c c

i ni n
c n

R E

1 1

1 1

, , d d
c

c
ni n i n i

V

N P Q dV N P Q J

418 The Boundary Element Method with Programming

with L, M and K being the number of integration points in , and directions.
The matrix E is given by

(15.35)

with the coefficients

(15.36)

where x,y,z may be substituted for i,j,k and the constants are given in Table 15.2

Table 15.2 Constants for fundamental solution E

 Plane strain Plane stress 3-D
n 1 1 2
C 1/8 G (1+ G 1/16 G
C3 1-2 (1- 1-2
C4 2 3

The above formulae are valid for the case where none of the cell nodes is the
collocation point. The special case where one of the cell nodes coincides with a
collocation point, Pi, the kernel c

niE tends to infinity with o(1/r) for 2-D problems and
o(1/r2) for 3-D problems. To evaluate the volume integral for this case we subdivide a
cell into sub cells, as shown in Figure 15.7.

Figure 15.7 Cell subdivision for the case where cell point is a collocation point (plane
problems)

3 , , , 4 , , ,,ijk k ij j ik i jk i j kn
CE P Q C r r r C r r r

r

xxx xxz

zxx zxz

E E

E E
E

Boundary Element

Subcell

Pi

419 NONLINEAR PROBLEMS

For 2-D problems the subdivision is carried out in exactly the same way as for the
evaluation of the boundary integrals for 3-D problems, i.e., the square domain is mapped
into triangular domains where the apex of the triangle is located at Pi (see section 6.3.7).
Equation (15.31) is rewritten as

(15.37)

where sc is the number of sub-cells, which is equal to 2 if the collocation point Pi is at a
cell corner node, or 3 if it is a middle node of the cell. The computation of the Jacobian
J of the transformation from sub element coordinates , to intrinsic coordinates

, is explained in 6.3.7. Since the Jacobian of this transformation tends to zero with
o(r) as point Pi is approached, the singularity is cancelled out.

Figure 15.8 Subdivision method for computing singular volume integrals (3-D problems).

For three-dimensional problems, if one of the nodes of the cell is a collocation point,
a subdivision, analogous to the 2-D case, into tetrahedral sub-cells with locally defined
co-ordinate, as shown in Figure 15.8, is used. The integral over the cell is expressed as

(15.38)

1 1

1 1 1

1 1 1

(,)(, (,)) (,)
(,)

(, (,)) (,) (,) (,)

sc
c
ni i n

m

sc J K

i j k n j k j k j k j k
m j k

P Q N J d d

P Q N J J W W

E

E

1 1 1

1 1 1 1

1 1 1 1

(, ,)(, (, ,)) (, ,)
(, ,)

(, (, ,)) (, ,) (, ,)

sc

i n
m

sc J K L

i j k l n j k l j k l j k l
m j k l

P Q N J d d d

P Q N J JW W W

E

E

1

2

3

Pi

1 2

6 5

8
7

3 4

420 The Boundary Element Method with Programming

where sc is the number of sub-cells which equals to 3 for collocation point at a corner
node, and 4 for collocation point at a mid-node. J is the Jacobian of the transformation
from ,, to ,, coordinates.

This transformation is given by

(15.39)

Where l(n) is an array that indicates the local number of node l. For the sub-cell 2 in
Figure 15.8 for example () (4,1,2,3,8)l n . More details can be found in [6].
 The shape functions are defined as

(15.40)

The Jacobian is defined as

(15.41)

where

(15.42)

The Jacobian tends to zero with o(r2) thereby cancelling out the singularity. Having
computed the residual R due to an initial stress state 0 we solve the problem for the

boundary unknowns x . The next step is to compute stress increments at the cell and
boundary nodes.

5 5 5

() () ()
1 1 1

(, ,) ; (, ,) ; (, ,)n l n n l n n l n
n n n

N N N

1 2

3 4

5

1 1(1)(1)(1) ; (1)(1)(1)
8 8
1 1(1)(1)(1) ; (1)(1)(1)
8 8
1 (1)
8

N N

N N

N

J

5

()
1

(, ,) etc.n
l n

n

N

421 NONLINEAR PROBLEMS

15.3.5 Computation of stresses at cell nodes

For computation of the internal stress results the following equation is used7,8

(15.43)

which is derived in the same way as Eq. (13.59).
The coefficients of Ê are given by

(15.44)

and those of F by

(15.45)

where the constants are given in Table 15.3.

Table 15.3 Constants for fundamental solution Ê

 Plane strain Plane stress 3-D
n 1 1 2
C2 -1/4 -(1+ -1/8
C3 1-2 (1- 1-2
C4 2 3
C12 1 1 7-5
C13 1-4 (1-3 2-10
C18 -1/8(1- - /8 -1/30(1-

The discretized form of (15.43) is

(15.46)

0 0

, ,

ˆ ,

a a a
S S

a a
V

P P Q Q dS P Q Q dS

P Q Q dV P

S t R u

E F

2
3 4 , ,1

4 , , , , , , , , 4 , , 6 , , , ,

ˆ
ijkl ik jl jk il ij kl ij k ln

il j k jk i l ik j l jl i k kl i j i j k l

CE C C r r
r
C r r r r r r r r C r r C r r r r

18 12 13ijkl jk il ik jl ij klF C C C

0 0
1 1 1 1 1 1

ˆ
N N C NE E

e e e e c c
a n n n n n n a

e n e n c n

P PR u S t E F

422 The Boundary Element Method with Programming

The integrals e
nR and e

nS are evaluated as explained in Chapter 9. The integrals
ˆ c

nE can be evaluated using Gauss Quadrature as explained previously if the point aP is
not one of the cell nodes. If Pa coincides with the nodes of cells, then the integrand tends
to infinity with o(r2) for 2-D and o(r3) for 3-D problems and special attention has to be
given to the evaluation of ˆ c

nE . As explained in Chapter 13 for the case with initial
stresses a small zone of exclusion is assumed around aP and this results in the “free

term” 0 aPF . Now, however we need to evaluate the strongly singular integral ˆ c
nE

over the cells excluding the spherical region with radius .

Figure 15.9 Polar coordinates for integration with a spherical region of exclusion

For this the singularity isolation method9 is used. The singularity is isolated be rewriting
the strongly singular domain integral in the form

(15.47)

The first integral on the right had side of Eq. (15.47) is weakly singular and can be
integrated numerically using the cell subdivision technique. The strong singularity has
been moved to the second integral and can be treated semi-analytically. For this the
domain is divided into a singular and a regular domain. The singular domain is bounded
by the faces of the cells that contain point aP surrounded by the region of exclusion as

z
cS

y

x

r
aP

dr
cosd

d

cdS()cR S

0 0 0

0

ˆ ˆ(,) () (,) () ()

ˆ () (,)

a a a
V V

a a
V

P Q Q dV P Q Q P dV

P P Q dV

E E

E

423 NONLINEAR PROBLEMS

shown in Figure 15.9. Using a polar coordinate system with the origin at aP , the volume
integral over the domain is rewritten as

(15.48)

where Ê̂ is the part of the kernel which is not a function of r (i.e., term within square
brackets in equation (15.43)). Therefore the singularity is isolated and after some
transformation9 the volume integral can be replaced by a surface integral

(15.49)

where n is the vector normal to cS , the boundary of the cell surrounding the point aP .

The strong singularity in the kernel Ê is now isolated and the numerical evaluation with
Gauss Quadrature can be performed by

(15.50)

where

(15.51)

sc is the number of cell surfaces as indicated in Fig. 15.10 and SJ is the Jacobian of the
transformation of coordinates over the cell boundaries (see section 3.9).
The implementation in 2-D follows the same procedure.

15.3.6 Computation of Boundary Stress

The method presented in the previous section for determining the stresses at internal
points can not be used for points exactly on the boundary due to the higher singularity of
the integral. We have already presented an alternative method for computing the stress
tensor on the boundary itself using the variations of the displacements and tractions over
boundary elements in Chapter 9. All that is required here is to modify this procedure by
taking into consideration the effect of the initial stresses.

()2

0
0 0

1 ˆˆ ˆlim sin
c

c

R S

V

dV dr d d
r

E E

ˆˆ ˆ ln
c cV S

dV r dSE E r n

1 1 1 1

1 1 1

ˆ ˆ (, (, ,)) ((,))

ˆ(,) (, (,)) ln((, (,)) (,)

sc J K L
c
n a j k l n a j k l

m j k l

sc J K

a a j k a j k s j k j k
m j k

P Q N n P J J W W W

n P P Q r P Q J W W

E E

E r •n

(,) 1 if
(,) 0 if

a a

a a

n P n P
n P n P

424 The Boundary Element Method with Programming

The stresses in the local directions ,x y (tangential and normal to the boundary) are
given by

(15.52)

Figure 15.10 Integration over cell boundaries

for plane strain where 0x and 0 y are the initial stresses in local directions. For plane

stress we simply substitute with and E with E where

(15.53)

and set 0z . In the 3D case, we have

(15.54)

where

1 2 0 0

1 2 0 0

0

() ()

() ()
x x y z z x

y y x z z y

z z

xy xy xy

xz x yz y

C C t

C C t

t

G

t t

0 0

0 0 0

1
1 1

()

x x y y x

y y xy x z x x y y z

E t

t t

2
(1 2) and

1 (1)
EE

1
2

3

425 NONLINEAR PROBLEMS

(15.55)

The stresses can be transformed to the global coordinate system using (4.37) or
(4.39). Indeed the same method may be also used to compute results inside cells. This is
much simpler than the method proposed above but also less accurate. The advantage is
that the Kernels involved have a much lower singularity and no elaborate schemes are
required. Using this method first the displacements are computed at the cell nodes. The
variation over a cell is then approximated by the shape functions

(15.56)

The strains inside the cell are computed by

(15.57)

The stresses are computed according to Eq. (15.52) and (15.54) but there is no need
to use local coordinates and a transformation.

15.3.7 Example

To illustrate the application of the method we present the analysis of a thick-walled
cylinder subjected to internal pressure under plane strain conditions. The Von Mises
yield function is used and a linear elastic-ideal plastic material behaviour is considered.
The material parameters used are:

Youngs Modulus E= 12000 MPa
Poisson’s ratio v= 0.3
yield stress Y= 24 MPa

The problem dimensions and loading are shown in Figure 15.11. Due to the

symmetry of the problem, only a quarter of the cylinder is analyzed. The mesh used
consists of 36 quadratic boundary elements and 72 quadratic volume cells. The solution
proceeds in increments where, after each iteration, the yield condition is checked at all
the nodes of the cells. If the residual is sufficiently small, convergence is achieved and
the analysis is stopped. After applying the full load we can notice that all the points
belonging to the first row of the cell are plastic, however the plastic zone goes slightly
bit into the second row of the cells.

Some results of the nonlinear analysis are presented. Figure 15.12 shows a plot of the
tangential stress distribution. Comparing the boundary element results with the results
from the analytical solution10 we can observe very good agreement.

1 22 ;
11

EC C

1

N

n n
n

Nu u

 ; etc.yx n n
x xn y yn

uu N N
u u

x x y y

426 The Boundary Element Method with Programming

Figure 15.11 Example problem and discretisation used

Figure 15.12 Tangential stress distribution in a thick-walled cylinder

pi = 14MPa
ri = 100mm

re = 200mm

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 100 120 140 160 180 200

σ t
 [

M
Pa

]

r [mm]

analytical solution
BEM

427 NONLINEAR PROBLEMS

15.4 CONTACT PROBLEMS

The second type of nonlinear problem we will discuss here is where boundary conditions
change during loading. An example of a contact problem is where interface conditions
between regions change. A practical application of this is delamination/slip and crack
propagation. For these type of problems we have a condition, similar to the yield
condition discussed previously, which determines when the continuity conditions for an
interface no longer apply. In the case of crack propagation, for example, we may have a
condition based on tensile strength of the material which determines when nodes
separate. For problems with joints we may have a criterion based on the angle of friction
and cohesion which determines when slip occurs.

In our discussion here we will concentrate on relatively simple problems: ones where
contact initially exists and where it is lost due to some conditions being violated. We will
see that the theory we will develop11 can be applied to delamination and joint problems.

15.4.1 Method of analysis

We start with the multi-region method developed in Chapter 10. Consider the beam in
Figure 15.13 consisting of two regions.

Figure 15.13 Cantilever beam with interface

We recall Equation 11.27 that can be used to compute the tractions at the
interface ct . For regions I and II we have

(15.58)

where cot is a vector of tractions assuming fixed interface displacements, K is the
stiffness matrix of the interface nodes and cu is a vector containing displacements at

II
c

IIII
c

II
c

I
c

II
c

I
c ; uKttuKtt 00

Region I

Region II

I
nt

II
nt

I
st

II
st

1
1

2

3 4

12

3 4

428 The Boundary Element Method with Programming

the interface nodes. Since the beam is fixed on the left our problem has only 2 interface
unknowns.

For contact problems it is convenient to work with components in direction normal to
interface nt and in a direction tangential to interface st instead of global components

yx tt and . Also, to separate delamination and slip it is required that the local components
be used for the displacements as well. The relationship between global and local
components is given by:

(15.59)

where Tg is the transformation matrix, as discussed in Chapter 3 and

(15.60)

In terms of local components equations (13.58) are rewritten as

(15.61)

where NK is the transformed stiffness matrix , i.e.,

(15.62)

The conditions at the interface normally stipulate that the equations of equilibrium
and compatibility have to be satisfied , i.e.,

(15.63)

We may now define conditions for compatibility. For example the condition

(15.64)

stipulates that the traction normal to the interface has to be smaller than or, at most,
equal to the tensile strength, T, of the material. If tn has reached T then delamination
occurs, that is, the compatibility condition is no longer applied to that point in the
direction normal to the interface.

Analogous to plasticity the yield function can be written as

(15.65)

Another condition may be that the shear traction is limited by

(15.66)

uTutTt g
T ;g

y

x

s

n

y

x

s

n

u

u
;

u

u
;

t

t
;

t

t
uutt

II
c

IIII
cg

II
c

I
c

II
cg

I
c ; uKtTtuKtTt 00

IIIIII ; uutt

Ttn

tantct ns

TKTK NT
g

N

TttF nn1

429 NONLINEAR PROBLEMS

where c is the cohesion and the angle of friction. If tantct ns slip occurs, that is,
the compatibility condition is no longer applied to that point in the direction tangential to
the interface.

The corresponding yield function is written as:

(15.67)

The consequence is that when either F1 or F2 is zero the assembly is changed: Instead
of adding all stiffness coefficients we assemble the corresponding stiffness coefficients
for region I and II into different locations in K.

Consider, for example, the problem in Figure 15.13. The equations for compatibility
at node 1 are (since only one node is involved we have left out the subscript denoting the
local (region) node number):

(15.68)

With the vector of interface unknown only involving the ones at node 1

(15.69)

For the example with only one interface node we may write for the region stiffness
matrices (see 11.2.2.)

(15.70)

and the following assembled interface stiffness matrix is obtained

(15.71)

If F1 =0 then the normal displacement and - as a consequence – also the shear
displacement of region I are independent of region II. The vector of interface unknown is
expanded to

(15.72)

II
s

I
ss

II
n

I
nn uuuuuu 11 and

II
ss

I
ss

II
sn

I
sn

II
ns

I
ns

II
nn

I
nn

tttt

tttt

22

K

1

1

s

n
c

u

u
u

tantctt,tF nsns2

II
s

II
n

I
s

I
n

c

u

u

u

u

u

 and
I I II II
nn ns nn nsI II
I I II II
sn ss sn ss

t t t t

t t t t
K K

430 The Boundary Element Method with Programming

And the stiffness matrix is defined as

(15.73)

If F2 =0 then slip occurs and compatibility does not apply to the shear displacement.
The vector of interface unknown is given by

(15.74)

In the stiffness matrix only the terms associated with the normal components are
added

(15.75)

15.4.2 Solution procedure

Only in exceptional cases will it occur that a point is reached when the yield functions
are exactly 0. As with plasticity we will have the condition that if the yield function is
checked after the application of a load increment with traction t we find that
either 0or 0 21 tt FF . In the first case this means that the material has been
stressed beyond the tensile strength, in the second that the friction law has been violated.

In the first instance the excessive stress, i.e., the one which caused the yield condition
to be violated is computed by

(15.76)

II
ss

II
sn

II
ns

II
nn

I
ss

I
sn

I
ns

I
nn

tt

tt

tt

tt

00

00

00

00

K

II
s

I
s

n

c

u

u

u 1

u

0

0

I II I II
nn nn ns ns

I I
sn ss
II II
sn ss

t t t t

t t

t t

K

Ttt np

431 NONLINEAR PROBLEMS

whereas in the second case

(15.77)

We now propose the following solution procedure:

1. The system is solved in the normal way using the interface compatibility and
equilibrium conditions.

2. The yield conditions F1 and F2 are computed at each interface node. If both are zero
then the analysis is finished.

3. If one of the yield conditions is greater than zero residual tractions are computed
according to equations (15.76) or (15.77).

4. The interface matrix K is re-assembled taking into consideration the relaxed
continuity conditions for interface points which are separating or slipping.

5. The system is solved with the residual tractions applied as loading in the opposite
direction.

6. Points 2 to 5 are repeated until the yield conditions are satisfied at all interface
nodes.

The extension of the method to three dimensions is straightforward. In 3-D we have

two instead of one shear traction (11 and ss tt) and when we check the yield condition we
have to work with a resultant shear traction. This is given by

(15.78)

15.4.3 Example of application

As an example of application we present an analysis of the delamination of a cantilever
beam. The beam consists of two finite regions described by quadratic boundary
elements, as shown in Figure 15.14. At the interface the tensile strength of the material
was assumed to be zero. Shear loading is applied to the bottom half of the beam as
shown. Figure 15.15 shows the distribution of normal stress at the interface after the
linear analysis. It can be clearly seen that the yield condition for tension is violated.
Figure 15.16 shows that after iteration step 1, delamination starts as a consequence.
Further examples of the application of the method to the modelling of faulted rock can
be found in [12,13]. The method can also be applied to the simulation of dynamic crack
propagation14.

tantctt nsp

2
2

2
1 sss ttt

432 The Boundary Element Method with Programming

Figure 15.14 Mesh used for cantilever analysis

Figure 15.15 Distribution of normal stress at the interface

Figure 15.16 Displaced shape of beam after first iteration

Region I

Region II

Corner node

Midside node

t= 1.0

T= 0

433 NONLINEAR PROBLEMS

15.5 CONCLUSIONS

In this chapter we attempted to show that the treatment of nonlinear problems is almost
as straightforward as with the FEM. Only two types of nonlinear problems have been
discussed: plasticity and contact problems. In the first type, additional volume
discretisation is needed and the BEM looses a bit of its attraction. However, it was
pointed out that the internal cell discretisation does not add to the number of unknown
and that all the advantages of the BEM are still retained. It must be admitted, however,
that the effort in programming, especially dealing with hyper-singular integrations, is
rather involved.

We have also found that for contact problems the BEM is better suited than the FEM
because the interface stresses required for checking the yield conditions are directly
obtained from the solution. In the FEM these would have to be determined by
differentiation of the computed displacement field. The purpose of this chapter has been
to demonstrate that any type of nonlinear problem can be solved with the BEM.
However, the computer implementation has not been discussed in any detail here
because it would be beyond the scope of an introductory text.

15.6 REFERENCES

1. Hill R.(1950) The Mathematical Theory of Plasticity. Oxford University Press.
2. Pande G., Beer G. and Williams J. (1990) Numerical methods in rock mechanics.

J.Wiley, Chichester.
3. Simo J.C. and Hughes T.J.R. (1998) Computational Inelasticity. Volume 7 of

Interdisciplinary Applied Mathematics. Springer-Verlag New York.
4. Ortiz M. and Popov E. (1985) Accuracy and stability of integration algorithms for

elastoplastic constitutive relations. Int. J. Numer. Methods Eng. 21: 1561-1576.
5. Cormeau I.C. (1975) Numerical stability in quasi-static elasto-viscoplasticity. Int. J.

Numer. Methods Eng. 9 (1).
6. Ribeiro S.A.T. (2006) Elastoplastic boundary element method with adaptive cell

generation. Monographic Series TU Graz, Austria.
7. Venturini W.S. (1983) Boundary Element Method in Geomechanics. Springer,

Berlin.
8. Telles J.C.F. (1983) The Boundary Element Method Applied to Inelastic Problems.

Springer, Berlin.
9. Gao X.-W. and Davies T.G. (2002) Boundary Element Programming in Mechanics.

Cambridge University Press, Cambridge.
10. Prager W. and Hodge P.G. (1951) Theory of Perfectly Plastic Solids. John Wiley &

Sons, New York.
11. Beer G. (1993) An efficient numerical method for modeling initiation and

propagation of cracks along material interfaces. Int. J. Numer. Methods Eng. 36
(21), 3579-3594.

434 The Boundary Element Method with Programming

12. Beer G. and Poulsen B.A. (1994) Efficient numerical modelling of faulted rock

using the boundary element method. Int. J. Rock. Mech. Min. Sci. & Geomech.
Abstr. 31 (5): 485-506.

13. Zaman, Booker and Gioda (eds) Modeling and Applications in Geomechanics.
J.Wiley, Chichester.

14. Tabatabai-Stocker B. and Beer G. (1998) A boundary element method for modeling
cracks along material interfaces in transient dynamics. Comun. Numer. Meth.
Engng.14:355-365.

16
Coupled Boundary Element/
Finite Element Analysis
 Marriage à la mode

 O. C. Zienkiewicz

16.1 INTRODUCTION

In the introduction we compared the boundary element method (BEM) with its main
“competitor” the finite element method (FEM). Although in the specific example the
impression was given that a BEM analysis would be superior to the FEM this was not
meant to imply that this is always the case. In a famous paper written more than two
decades ago1, O.C. Zienkiewicz pointed out that benefits could be gained by combining
the two methods of analysis, thereby gaining the “best of both worlds”. This was at a
time when BEM protagonists claimed that the BE could do everything better and there
was almost no collaboration between the two groups. Zienkiewicz, in his inimitable
style, chose the title “Marriage a la mode” which shows a double meaning: marriage a la
mode means a marriage of convenience, not love, but also there is a double meaning
with the word mode (displacement mode =shape function).

There are several reasons why one would want to consider the combination of the two
methods:

 Some problems, for example those involving highly heterogeneous material, require

additional effort to solve with the BEM.

 For some problems no fundamental solutions of the governing differential equations
can be found or in certain cases the solutions are extremely complex.

436 The Boundary Element Method with Programming

 Users familiar and happy with a FEM package would want to upgrade the program
capabilities by including, for example, an efficient modelling of an infinite domain.
Many well known commercial packages have capabilities for the specification of a
user defined element stiffness, so the implementation of the Subroutine
Stiffness_BEM introduced in Chapter 11 would be fairly straight forward.

As will be seen here, the coupling of the FEM and BEM is not very difficult. Indeed,

we have already set the foundation for this in Chapter 11, where we explained how the
“stiffness matrix” of a region can be computed. In essence, for coupling we have to find
a way of harmonising the differences between the two methods. The main difference is
that nodal tractions are used as primary unknown in the BEM, whereas nodal point
forces are used in the FEM. The “stiffness matrix” obtained for the BE region turned out
to be unsymmetrical and this may cause some problems because symmetric solvers are
usually employed in the FEM. Therefore we will also show how the BEM stiffness
matrix can be “symmetrised”.

16.2 COUPLING THEORY

There are basically two approaches to coupling the boundary and finite element
methods. In the first approach, the BE region is treated as a large finite element and its
stiffness is computed and assembled into the global stiffness matrix. In the second
approach, finite elements are treated as equivalent BE regions and their “stiffness
matrix” is determined and assembled, as explained in Chapter 10 for multiple regions.
The choice of coupling method depends mainly on the software available for the
implementation, i.e., if boundary element capabilities are to be added to a finite element
program, or finite element capabilities to a boundary element one. In the following we
will discuss the theoretical basis and implementation of each approach. The coupling
theory is discussed using problems in elasticity. However, as demonstrated throughout
this book, potential problems can be considered in an analogous way.

16.2.1 Coupling to finite elements2

The FEM leads to a system of simultaneous equations which relate displacements at all
the nodes to nodal forces. In the BEM, on the other hand, a relationship between nodal
displacements and nodal tractions is established.

Consider the cantilever beam in Figure 16.1 consisting of one BE region connected to
two finite elements. We refer to the assembly of two finite elements as Finite Element
Region. Following the procedures in Chapter 11, we can obtain for the BE region a
relationship between tractions ct and displacements cu at the interface (equation
11.27)

(16.1)
cBEcc uKtt 0

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 437

Figure 16.1 Cantilever beam: discretisation into finite and boundary elements

In the above, 0ct is a vector containing tractions, if all interface displacements are
zero, and KBE is the pseudo “stiffness matrix” of the BE region.

For the example problem we have

(16.2)

For the finite element region we can write a relationship between interface
displacements and interface nodal forces as

(16.3)

where 0cF is the force vector at the interface when all interface displacements are zero
and KFE the condensed stiffness matrix of the finite element region which involves only
the interface nodes. In equations (16.1) and (16.3) we have already implicitly assumed
that compatibility conditions are satisfied (i.e., displacements of the BE and FE regions
are the same at nodes 1-3). Figure 16.2 shows the forces that exist at the interface. For
the BE region these are boundary stresses, whereas for the FE region these are nodal
point forces.

cFEcoc uKFF

3

3

2

2

1

1

3

3

2

2

1

1

y

x

y

x

y

x

c

y

x

y

x

y

x

c

u

u

u

u

u

u

;

t

t

t

t

t

t

ut

1

2

3

4

5

6

7

BE Region I

1

2

3

438 The Boundary Element Method with Programming

Figure 16.2 Interface between finite element and boundary regions showing interface forces

In the first method of coupling we propose that the boundary tractions be converted
into equivalent nodal point forces.

Figure 16.3 Calculation of Fx2 by principle of virtual work

To compute the x-component of the equivalent nodal point force at node 2, for
example, we apply a unit virtual displacement in the x-direction at that point (Figure
16.3). For equilibrium to be satisfied, the work done by the tractions must be equal to
that done by the equivalent nodal forces at node 2.

2

3

2

3
2xt

1

2

1

2

3
1xtFx2

12xu

2
2xt

2
1xt

dS tx dS

xu

S

1

2

3

4

5 BE Region I

Fx3

Fy3

3

2

1

3
2xt

3
2yt

1

2

1

2

3
1xt

Fx2

Fx1

Fy2

Fy1

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 439

This gives

(16.4)

Substituting the interpolation for tractions and displacements

(16.5)

(where j is 2 for element 2 and 1 for element 3) we obtain

(16.6)

A second equation can be obtained by applying a virtual displacement in y direction.
Based on this approach a general equation can be derived for computing the equivalent
nodal point force at a point k

(16.7)

where the outer sum is over all boundary elements that connect to point k, the inner sum
is over all nodes of the element and j is the local number of node k.

For 2-D problems we have

(16.8)

where I is the unit matrix and

(16.9)

The integration over elements can be conveniently carried out using numerical
integration (Gauss Quadrature) with two points. For 2-D problems this gives

(16.10)

dSutF
S

xxx 12

1
2

1
j

e
xjjx

n

e
xnnx NuNu;tNt

31
3

22
3
1122

2
22

2
112

32

1 dSN)tNtN(dSN)tNtN(F x
S

xx
S

xx

1

N

e e
k jn n

Elements n
with k

F N t

e e
jn jnNN I

e

e
jn j n e

S

N N N dS

1 2

11
jn j n j n m

m

N N N Jd N N JW

440 The Boundary Element Method with Programming

whereas for 3-D problems

(16.11)

Equation (16.1) can now be expressed in terms of equivalent nodal point forces by

pre-multiplying with N

(16.12)

where N is assembled from element contributions e
jnN .

For the example in Figure 16.1 this matrix is given by

(16.13)

Matrix NKBE is now a “true” stiffness matrix in the finite element sense, i.e., one that
relates nodal point displacements to nodal point forces. However, since KBE is not
symmetric, this matrix is also unsymmetrical.

Although there is in principle no problem in dealing with unsymmetrical matrices,
and they actually occasionally do occur sometimes in nonlinear FEM analysis, some
solvers used for finite elements are specialised in dealing with symmetric system of
equations and, in some cases, it may be convenient if all stiffness matrices are
symmetric. One way of getting a symmetric matrix is to use the principle of minimum
potential energy to derive the equilibrium equations at the interface3.

Considering for simplicity only the forces/tractions due to interface displacements we
can compute the total potential energy at the interface as

(16.14)

where the first expression on the left hand side is the work done by the FE region and the
second is the one done by the BE region. Taking the minimum of potential energy we
obtain

(16.15)

The operation in the square parentheses means that a symmetric stiffness matrix for
the BE region can be obtained by adding the transpose and by halving the result. This

1 1 2 2

1 11 1
jn j n j n m k

k m

N N N Jd d N N JW W

0 BEc c c cF N t N t NK u

2 2
11 12
2 2 3 3
21 22 11 12

3 3
21 22

0

0

N N

N N N N N

N N

T T
FE BEc c c cu K u u NK u

1 1 0
2 2

TT
FE FE BE BEc c

c

K K u NK NK u
u

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 441

way of stating the equilibrium condition is commonly used in the FEM. However, its
application here is not quite correct since in the derivation of KBE an interpolation of
both displacement and traction has been assumed at the interface. It has been shown
however that acceptable results can be obtained for most applications.

Having obtained a “true” stiffness matrix for the BE region, the further steps in the
computation of coupled problems are fairly straightforward. The boundary element
region is treated as a super (finite) element and its stiffness is assembled in the usual way
to obtain the system equations.

Figure 16.4 Fully and partially coupled discretisations

In the implementation we distinguish between fully coupled and partially coupled
analyses. In a fully coupled analysis all nodes of the boundary element region are
connected to the finite element region and no loading is assumed at the interface. An
example of this type of analysis is the problem of an excavation in an infinite domain
solved by a coupled discretisation, as shown in Figure 16.4 (a). In this case, the infinite
boundary element region can be considered as a large finite element which accurately
represents the effect of the infinite domain. This is a good example of gaining the “best
of both worlds” as the alternative to the coupled mesh shown would be either to extend
the finite element region a large distance away and apply artificial boundary conditions
there or to use infinite finite elements. Both methods require more mesh generation and
computational effort and result in loss of accuracy. The reason for a coupled analysis
may be that a thin lining is to be modelled, which is done more efficiently with shell
elements. In a fully coupled analysis only the stiffness matrix of the BE region needs to
be determined and pre-multiplied with N in order to change it to a true stiffness matrix
that can be assembled.

BE region

FE region

BE region

(a) (b)

442 The Boundary Element Method with Programming

An example of a partially coupled analysis is shown in Figure 16.4 (b). Here we
consider the additional effect of a ground surface and another (existing) excavation. In a
partially coupled analysis we first solve the problem with the interface nodes fixed and
obtain an interface traction vector 0ct . Then we compute the pseudo stiffness matrix of
the region. Before we assemble our finite element system, both 0ct and KBE have to be
pre-multiplied with N, yielding a nodal point force vector as well as a stiffness matrix.

The only additional programming required for the implementation of a coupled
analysis capability is the assembly of transformation matrix N and the pre-multiplication
of the stiffness matrix KBE and, in the case of a partially coupled analysis, the traction
vector tBE with this matrix. If required, a “symmetrisation” procedure may be applied as
explained above.

We develop a function Mtrans which returns the transformation matrix N, an array of
dimension Ndofsc x Ndofsc, where Ndofsc is the number of interface degrees of
freedom. The input parameters of this function are number of interface elements, number
of interface nodes, incidence vector for each element and coordinates of interface nodes.

FUNCTION MTrans(Nelc,Ndofsc,xPc,Incic)
!---
! Function returns the assembled matrix N
! for the conversion of a pseudo stiffnes matrix
! into a true stiffness matrix
!---
INTEGER, INTENT (IN):: Nelc ! No. of interface elements
INTEGER, INTENT (IN):: Ndofsc ! No. of interface nodes
REAL, INTENT (IN) :: xPc(:,:) ! Coords of interface nodes
INTEGER, INTENT (IN):: Incic(:,:) ! Incidences of interface elem
REAL :: Mtrans(Ndofsc,Ndofsc) ! Function returns array
REAL :: MMjn(Ndof,Ndof)
REAL :: Glcor(2),Wi(2),Wie(2),Ni(Nodel),Elcor(Cdim,Nodel)
REAL :: xsi,eta,Jac,Weit,Mjn
INTEGER :: Inci(nodel)
Mtrans= 0.
ldim= Cdim - 1
Mi= 2 ; Ki= 1 ; Wie=1.0
CALL Gauss_coor(Glcor,Wi,2) ! 2x2 integration
IF (Cdim == 3) THEN
 Ki=2
 Wie= Wi
END IF
Interface_elements: &
DO Nel= 1,Nelc
 Inci(:)= Incic(nel,:)
 Elcor(:,:)= xPc(:,Inci(:))
 Nodes_of_elem1: &
 DO j=1,nodel
 Nodes_of_elem2: &
 DO n=1,nodel
 Mjn= 0.

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 443

 Gauss_points_xsi: &
 DO m=1,Mi
 xsi= Glcor(m)
 Gauss_points_eta: &
 DO k=1,Ki
 eta= Glcor(k)
 Weit= Wi(m)*Wie(k)
 CALL Serendip_func(Ni,xsi,eta,ldim,nodel,Inci)
 Jac= Jacobean(xsi,eta,zeta,ldim,nodel,Inci,Elcor
 Mjn= Mjn + Ni(j)*Ni(n)*Jac*Weit
 END DO &
 Gauss_points_eta
 END DO &
 Gauss_points_xsi
 MMjn= 0.
 DO nd=1,ndof
 MMjn(nd,nd)= Mjn
 END DO
 nrow= (Inci(j)-1)*Ndof+1

 ncol= (Inci(n)-1)*Ndof+1
 Mtrans(nrow:,ncol:)= MMjn
 END DO &
 Nodes_of_elem2
 END DO &
Nodes_of_elem1
END DO &
Interface_elements
RETURN
END FUNCTION MTrans

16.2.2 Coupling to boundary elements

The coupling of finite elements to boundary elements follows the same steps as for the
multi-region method discussed in Chapter 11. We may consider an assembly of finite
elements as a boundary element region. Using standard FEM procedures we obtain the
following system of equations for the finite element region

(16.16)

where the notation has been defined at the beginning of this chapter. The equations
which we get for each region in the BEM are

(16.17)

where the roman superscript denotes the region number.
For coupling the finite element region all that is required is to convert (16.16) into a

form such as (16.17). This is simply the inverse relationship to (16.12), i.e.

cFEcoc uKFF

I
c

I
BE

I
c

I
c uKtt 0

444 The Boundary Element Method with Programming

(16.18)

where the inverse of N has to be determined. Since N is a sparsely populated and
diagonally dominant matrix this does not pose any problems.

After having obtained the pseudo stiffness matrix of the finite element region
1

FEN K and, for partially coupled problems, the equivalent traction vector 1
0cN F

we proceed in the same way as for multi-region problems.

16.3 EXAMPLE

The example presented here is that of a circular excavation in an infinite domain. The
problem geometry, material properties and initial stress field assumed are shown in
figure 16.5 (a). The discretisation into quadratic finite and boundary elements is shown
in Figure 16.5 (b). One plane of symmetry is assumed.

Figure 16.5 Example problem specification and coupled mesh used for analysis

Some results of the analysis are shown here. Figure 16.6 shows the displaced shape
and 16.7 the distribution of the maximum compressive stress in the finite element region.
The distribution of maximum compressive stress along a nearly horizontal line through
the Gauss points of finite elements and inside the boundary element region shows good
agreement with the theoretical results.

1 1 1
0 FEc c c ct N F N F N K u

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 445

Figure 16.6 Displaced shape after excavation

Figure 16.7 Contours of maximum compressive stress

446 The Boundary Element Method with Programming

Figure 16.8 Distribution of maximum compressive stress, comparison with theory

16.4 DYNAMICS

Here we extend the coupling method to dynamics. The dynamic equilibrium equations
which arise from finite element discretisation (see Bathe4) can be written as

(16.19)

where M , C , K are the assembled mass, damping and stiffness matrices and

u , u , u are the acceleration, velocity and displacement vectors. The time may be
discretised into n time steps of size t . Assuming an average acceleration within the
time step the system of differential equations can be transformed into a system of
algebraic equations (Newmark method4)

(16.20)

where t n t and (1)t n t

... Analysis

min

Theory

M u C u K u F

()tK u F

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 447

The “dynamic stiffness matrix” is given by:

(16.21)

and

(16.22)

Since we have already worked out a “dynamic stiffness matrix” of the boundary element
region in Chapter 14 the coupling procedure is now straightforward. For a fully coupled
problem the system of equations is given by

(16.23)

16.4.1 Example

The example is that of a concrete column embedded in a semi-infinite soil mass. The
description of the problem can be seen in Figure 16.9. The top of the column is subjected
to a suddenly applied load p(t) of 1 MN/m2 . The material properties for the column are:
spec. weight= 2500 kg/m3, E=30 000 MN/m2 , =0.2. For the soil we have: spec.
weight= 2000 kg/m3, E=100 MN/m2 , =0.2.

Figure 16.9 Description of example

Figure 16.10 shows the mesh used for the analysis it consists of a finite element region
that describes the column and a boundary element region that describes the semi-infinite
ground. The mesh has 1500 degrees of freedom. Figure 16.11 shows the time-dependent

2
4 2

tt
K M C K

2
4 4() () ()

2 () () ()

t t t
tt

t t t
t

F M u u u

C u u F

()
BE FE BE FE

tNK K u F F

()p t

()p t

t

448 The Boundary Element Method with Programming

displacements at the top of the column obtained from the analysis. The results compare
well with a reference solution with the FEM that used 1 Million elements.

Figure 16.10 Coupled mesh

Figure 16.11 Displacement at the top of the column

16.5 CONCLUSION

In this chapter we have shown how the capability of a finite or boundary element
program can be easily extended so that the advantages of both methods can be combined
giving the user “the best of both worlds”. We have shown one example where the
capability of the BEM in dealing with infinite domains was exploited. Many other such
examples exist and we will show in the next chapter one industrial application that could

(seconds)

 COUPLED BOUNDARY ELEMENT/FINITE ELEMENT ANALYSIS 449

not have been analysed with either method given the restrictions regarding time and
computing resources.

Although it is true that both methods can deal with almost any problem that arises in
engineering (and comprehensive text books on the FEM and BEM assert this), it is also
clear that they are more appropriate for some applications and less so for others. It
should have become clear to the reader, for example, that the BEM is well suited for
problems involving a small ratio of boundary surface to volume. Extreme cases of this
are problems which can be considered as involving an infinite volume. Such problems
exist, for example, in geomechanics5, where the earth’s crust has no lateral boundaries.
Another extreme where the ratio boundary surface to volume is very large is the
application to thin shell structures.

Another aspect is the importance that is given to surface stresses. As we have seen in
Chapter 9, stresses at the surface are computed more accurately with the BEM than with
the FEM. We have shown that problems where “body forces” occur in the domain, as for
example plasticity problems, etc., can be handled with the BEM but it has to be admitted
that implementation is much more involved than with the FEM. A final aspect which is
also gaining more importance, is the suitability of the methods for implementation with
regards to computer hardware. The future seems to lie in massive parallel processing and
we have seen in Chapter 8 that the BEM seems to lend itself to parallel programming.

16.6 REFERENCES

1. Zienkiewicz O.C. ,Kelly D.W. and Bettess P. (1979) Marriage a la mode- the best of

both worlds (finite elements and boundary integrals) Chapter 5 of Energy Methods in
Finite Element Analysis (ed. R.Glowinski, E.Y. Rodin and O.C.Zienkiewicz), pp. 82-
107, Wiley, London.

2. Beer G. (1977) Finite element, boundary element and coupled analysis of unbounded
problems in elastostatics. Int. J. Numer. Methods Eng., 11, 355-376

3. Beer G. (1998) Marriage a la mode (finite and boundary elements) revisited. In
Computational Mechanics New Trends and Applications (E.Onate and S.R.Idelsohn
(eds).

4. Bathe K.J. (1982) Finite Element procedures in engineering analysis. Prentice Hall.
5. Beer G., Golser H., Jedlitschka G. and Zacher P. Coupled finite element/boundary

element analysis in rock mechanics - industrial applications. Rock Mechanics for
Industry, Amadei, Kranz, Scott & Smeallie(eds). Balkema,Rotterdam. 133-140.

17
Industrial Applications

Grau ist alle Theorie ...
(Grey is all theory ...)

J.W. Goethe

17.1 INTRODUCTION

So far in this book we have developed software which can be applied to compute test
examples. The purpose of this was to enable the reader to become familiar with the
method, ascertain its accuracy and get a feel for the range of problems that can be
solved. The emphasis in software development has been on an implementation that was
concise and clear and could be well understood. As pointed out in the introduction to
programming, this is not necessarily the most efficient code in terms of storage and
computer resources.

If one wants to tackle real engineering problems one is inevitably faced with the need
to develop efficient code. The programs developed here would be unsuitable for such a
task. Aspects of the software that need to be improved are:

 Greater efficiency in the computation of coefficient matrices by rearranging DO
loops, so that calculations that are independent of the DO loop variable are taken
outside the loop.

 Greater efficiency in data and memory management so that data are only stored in
RAM when they are needed, use of hard disk storage to achieve this (see for
example [1]).

It has been shown in Chapter 8 that a significant gain in efficiency can be achieved

by using element by element techniques and parallel programming. Indeed, to solve

452 The Boundary Element Method with Programming

problems at an industrial scale in a short time, special hardware, such as parallel
computers may have to be used.

In this chapter we attempt to show applications of the boundary element and coupled
methods which have been compiled from a number of tasks that have been carried out
over more than two decades using BEFE2, a combined finite element/boundary element
program. The purpose of the chapter is twofold. Firstly, an attempt is made to
demonstrate the applications for which the BEM may have a particular advantage over
the FEM. These applications include:

 Problems involving stress concentrations at the boundary, such as they occur in
mechanical engineering

 Problems consisting of infinite or semi-infinite domains, such as those occurring in
geotechnical engineering

 Problems involving slip and separation at material interfaces, such as they appear in
mechanical and geotechnical engineering

 Contact and crack propagation problems

The second purpose of this chapter is to show how the very complex problems that
invariably arise in industrial applications can be simplified, so that the analysis can be
performed in a reasonable short time.

It is very rarely the case that a problem can be modelled exactly as it is. In most cases
we have to decrease its complexity. The process of modelling a given complex structure
requires a lot of engineering ingenuity and experience. When we simplify a complex
problem we must ensure that the important influences are retained neglecting other less
important ones. For example, in a structural problem some parts of the structure may not
contribute significantly to its load carrying capacity but are there because of design
considerations.

One very significant modelling decision is if a 3-D analysis needs to be carried out.
Obviously this would result in much greater analysis effort. As an example in
geotechnical engineering consider a tunnel which is very long compared to its diameter.
If we are only interested in the displacements and stresses at a cross section far away
from the tunnel face, then a plane strain analysis would obviously suffice. Another way
of simplifying a problem is the introduction of planes of symmetry. As we have seen in
some of the examples in Chapter 10, this results in considerable savings. Obviously if
the prototype to be analysed is symmetric there is no loss in modelling accuracy. In
some cases, however, symmetry planes can be assumed without significant loss in
accuracy even if the prototype itself is not exactly symmetric.

In the following we will present background information on each application, in some
cases together with a story associated with it. We will start with the description of the
problem and how it was simplified. We show the boundary element mesh generated and
the results obtained. Comments are made on the quality of the results. The problem areas
are divided into mechanical, geotechnical, geotechnical civil engineering and reservoir
engineering.

INDUSTRIAL APPLICATIONS 453

17.2 MECHANICAL ENGINEERING

17.2.1 A cracked extrusion press causes concern

A small company in Austria manufactures rolled thin tubes by extrusion. The extrusion
press in use was 35 years old and made of cast iron (see Figure 17.1). During a routine
inspection cracks were detected on the surface of the cast iron casing, as indicated. The
company was in the process of ordering a new press, however delivery was expected to
take more than six months. There was some concern that something dramatic might
happen during the extrusion process with the press suddenly breaking, meaning not only
a danger to lives but also the possibility of losing the press. With full order books the
latter was a very serious economic threat.

Figure 17.1 35 year old drawing of extrusion press with location of cracks indicated

The aim of the analysis was therefore to determine:

 If the existing cracks would propagate
 If this propagation would lead to a sudden collapse of the structure

The geometry of the part to be analysed was fairly complicated and had to be

reconstructed from the original plans. For the purpose of the analysis it was assumed
that there were two planes of symmetry, as shown in Figure 17.2, although this was not
strictly true.

The cylindrical bar restraining the casing was not explicitly modelled but instead
appropriate Dirichlet boundary conditions were applied. Each time a tube is extruded the
casing is loaded with a force of 3700 tons (37 MN), as shown by the arrows. Although

Cracks
observed

454 The Boundary Element Method with Programming

this load is actually applied dynamically it was assumed to be static for the purpose of
the analysis.

Figure 17.2 Boundary element model showing axes of symmetry and holding bar

The drawing in Figure 17.2 actually looks like a finite element mesh but if viewed
from the symmetry planes (Fig. 17.3) one can notice that, in contrast to a FEM
discretisation, there are no elements inside the material. The mesh consists of a total of
1437 linear boundary elements and has 4520 degrees of freedom.

There were two reasons why a boundary element analysis was chosen for this
problem. Firstly, the generation of the mesh was found to be easier, since no internal

INDUSTRIAL APPLICATIONS 455

elements and connection between surfaces had to be considered. Secondly, the task was
to determine surface stresses and then to investigate crack propagation. As outlined
previously, the BEM is well suited for this type of analysis.

Figure 17.3 Boundary element mesh viewed from one of the symmetry planes

Initially, an analysis with only one region was carried out without considering the
presence of cracks. This was done in order to check that the analysis was able to predict
crack initiation. The criteria chosen for this was the maximum tensile strength of the
material, taking into consideration the dynamic nature of the loading and the number of
cycles that the press had so far sustained (approx. 2 million cycles). This analysis was
also carried out to see if the model was adequate and to enable the client to get
confidence in the BEM analysis proposed. The contours of maximum stress obtained
from the single region analysis, shown in Figure 17.4, clearly indicate a stress
concentration at the locations where cracks were observed, of a magnitude which would
cause crack initiation there after a number of cycles.

After this verification of the model, a multi-region analysis was carried out. For this
each of the flanges where the crack was observed was divided into two regions. For
simplicity it was assumed that the crack path was known a priori and is in the diagonal
direction, as observed. Along this assumed crack path an interface was assumed between
regions and the interface was allowed to slip and separate.

456 The Boundary Element Method with Programming

Figure 17.4 Contours of maximum principal stress

Figure 17.5 Displaced shape showing crack opening

INDUSTRIAL APPLICATIONS 457

It was found that in the worst case (lowest parameters assumed for the material) the

crack would tend to propagate to the corners of the flange (Figure 17.5). However, even
with the crack propagated that far the model predicted that there would be no dramatic
failure of the casing. Instead, the deformations would become so large that the press
would become inoperable.

After half a year the new press arrived and was installed. The old press gave service
without any major problems prior to replacement.

The advantages of the BEM over a FEM model may be summarised as:

 The fact that there are no elements inside and no connections were required between

elements on opposing boundaries the mesh generation was simplified. The number
of unknowns and elements was also reduced.

 The stress concentrations were computed more accurately because they are not
obtained using an extrapolation from inside the domain but from boundary results.

 The method was well suited to model crack propagation.

17.3 GEOTECHNICAL ENGINEERING

17.3.1 CERN Caverns

The European Laboratory for Particle Physics (CERN) is the world’s largest research
laboratory for subatomic particle physics. The laboratory occupies 602 hectars across the
Franco-Swiss border and includes a series of linear and circular particle accelerators.
The main Large Electron Positron (LEP) accelerator has a circumference of 26.7 km and
a series of underground structures situated at eight access and detector points (Fig. 17.6).
The LEP accelerator has been operating since 1989 but in 2000 it has been shut down
and replaced by the Large Hadron Collider (LHC) in 2005. This will use all existing
LEP structures but will also require new surface and underground works. Two new
detectors will be installed in two separated cavern systems, called Point 1 and 5.

Here we will present the three-dimensional analysis of the new caverns of Point 53,4
(Fig 17.7). This is an interesting application because point 1 of the LHC was analysed
using the finite element method and a picture of the results appear in the cover of the
book Programming the Finite Element Method 5. According to a report published on this
study the mesh had approx 300 000 degrees of freedom and a supercomputer was
required to solve the problem.

Initially, an elastic analysis was carried out with the single region BE mesh shown in
Figure 17.8. The aim of the analysis was to ascertain the range of validity of 2-D
analyses carried out with a distinct element code.

458 The Boundary Element Method with Programming

Figure 17.6 Photo showing location of the CERN particle accelerator

Figure 17.7 Cavern system at Point 5, showing existing and new structures

INDUSTRIAL APPLICATIONS 459

Figure 17.8 Boundary element mesh, single region analysis

Figure 17.9 Results of single region analysis: contours of maximum compressive stress

Quadratic
boundary elements

“plane strain” infinite
boundary elements

460 The Boundary Element Method with Programming

The overburden above crown is about 75 m. In the analysis therefore the ground
surface was assumed to be sufficiently far away so that its influence on the cavern was
neglected. In order to reduce the number of unknowns “plane strain” infinite elements
were used, as introduced in section 3.7.2. and as indicated in Figure 17.8. The mesh has
a total of 4278 unknowns and the calculation took 10 minutes on a PC. The results of the
analysis are shown in Figure 17.9. Here the maximum compressive stress is plotted on
two planes inside the rock mass. Looking at the horizontal result plane it can be seen that
at a cross-section between the vertical shafts, nearly plane strain conditions are obtained,
warranting a 2-D analysis there.

Figure 17.10 Coupled boundary element / finite element mesh of USC55 cavern

Figure 17.11 Displacements of the concrete shell due to swelling

Infinite ‘plane
strain’ boundary
elements

Linear boundary
elements

Linear cells

Linear ‘brick’
finite elements

Symmetry plane

INDUSTRIAL APPLICATIONS 461

Geologists found that a portion of the soil above the cavern could swell significantly

if subjected to moisture. Therefore, an analysis had to be carried out to determine the
effect of swelling on the final concrete lining. Obviously, this cannot be simplified as a
2-D problem because the concrete lining acts as a 3-D shell structure. For this analysis a
coupled finite element/boundary element analysis was performed with the thin concrete
shell modelled by finite elements. The swelling zone was modelled by linear cells as
explained in Chapter 13. In addition a symmetry plane was assumed between the large
and the small cavern. Even though in reality no symmetry exists this was thought to be
acceptable since the assumption that the second cavern is the same size as the first one
would give results that are on the safe side. The main reason for the choice of this mesh
was that due to time limitations the job had to be completed quickly and only standard
PCs were available for performing the analysis. The coupled mesh of cavern USC 55 is
shown in Figure 17.10. The mesh has a total of 7575 degrees of freedom and the run
took 45 minutes on a standard PC. Most of the computing time was for computation of
the stiffness matrix of the boundary element region

The displacements of the concrete lining due to swelling were determined from the
analysis. These are shown in figure 17.11. From these displacements the internal forces
in the shell (bending moment and normal force) could be determined and used for
designing the reinforcement. The analysis shown here demonstrates that with limited
resources available (time and computer), boundary element and coupled analysis offer
an efficient alternative to the FEM.

17.4 GEOLOGICAL ENGINEERING

17.4.1 How to find gold with boundary elements

The analysis was performed to test a theory of geologists that gold dust was originally
suspended in water and was deposited in the ground in locations that had a significantly
smaller amount of compressive stress than the surrounding rock6. This seems to make
sense, since deposits would naturally occur in voids, i.e., areas where the compressive
stress is zero.

Since Australia is one of the richer countries in terms of gold resources the story
takes place there. In particular, the analysis concentrates on what is presumed to have
occurred in a region of Western Australia (where a deposit was found) during the
Precambrian period (about 800 million years ago). The geologists assume that the region
was shortened in an approximate east/west direction and that the deposit was formed at
approximately 2.5 km of depth below the surface. On this basis it was suggested that a
volume of rock of about 2000x2000x1000 m dimension with the geological structure as
observed in that area should be analysed. The geological structures are shown in Figures
17.12 and 17.13. Figure 17.12 shows contours of the contact between different rock
types, whereas Fig.17.13 shows contours of two faults (termed Lucky and Golden
faults).

462 The Boundary Element Method with Programming

Figure 17.12 Contours of contact between different rock types

Figure 17.13 Contours of Lucky and Golden faults

It was assumed that the block to be analysed was subjected to 2000 m of overburden
(which was subsequently eroded) and to tectonic stresses which were estimated from the
presumed shortening of the region.

INDUSTRIAL APPLICATIONS 463

Figure 17.14 Definition of boundary element regions

Figure 17.15 Block analysed showing stress boundary conditions applied

132
MPa

50
MPa

145
MPa

Region I Region II

Region III Region IV

464 The Boundary Element Method with Programming

Figure 17.16 Contours of maximum compressive principal stress

For the analysis a multi-region boundary element method was used with special
contact/joint algorithms implemented on the interfaces between regions. Figure 17.14
shows a view of the four regions considered. Figure 17.15 shows the block analysed
with stress boundary conditions applied. In this figure the deformation of the blocks and
the movements on the Golden and Lucky faults can be seen. The results of the analysis
can be seen in Figure 17.16 as contours of the maximum (compressive) principal stress
on the contact between regions I and II. One can clearly see an anomaly of the
compressive stress (“hot spot”) and this is near the location where the gold deposit was
assumed to be. So the boundary element method was successfully applied to find gold
deposits. Note that an analysis with a domain type method would be feasible. However,
the mesh generation would be more complicated because of the presence of elements
inside the regions and the necessity to assure proper connectivity.

17.5 CIVIL ENGINEERING

17.5.1 Masjed-o-Soleiman underground power house

The Masjed-o-Soleiman hydroelectric scheme is situated in the south of Iran. The
powerhouse is situated underground. In 2002 the last of 4 turbines were installed in the
existing powerhouse and an extension of the facility to house another 4 turbines was
underway. During the excavation of the extension, cracks were observed in the concrete
walls of the existing powerhouse, which caused some concern. In addition

„hot spot“

INDUSTRIAL APPLICATIONS 465

measurements from pressure cells installed behind the concrete walls recorded
seasonally dependent pressure increases that showed an increasing tendency. Following
a visit by the panel of experts it was decided to carry out a numerical analysis. The aim
of the analysis was to determine the cause of the cracks and to predict if the cracking
would get worse because of continuing excavation activity on the extension.

Figure 17.17 View of hydroelectric plant, the powerhouse cavern is inside the mountain on the
left of the dam

Figure 17.18 Layout of the Caverns indicating existing caverns and caverns being excavated

466 The Boundary Element Method with Programming

Figure 17.17 shows a view of the hydroelectric facility and Figure 17.18 a plan of the
layout showing the existing powerhouse cavern and the extension under construction.
The areas where cracking was observed are shown in Figure 17.19. Special
consideration was given to the circled area near the construction of the extension.

Figure 17.19 Plan of powerhouse depicting areas where cracks were observed

The ground conditions in the vicinity of the caverns, as shown in Figure 17.20, are
dominated by layers of very weak mudstone and sandstone.

Figure 17.20 Geological conditions near the caverns

INDUSTRIAL APPLICATIONS 467

To ascertain the fineness of the mesh required for the analysis and the displacement
patterns, a 3-D Boundary Element analysis was first carried out.

Figure 17.21 Boundary element mesh of caverns and computed deformations

Figure 17.22 Coupled mesh for the analysis of powerhouse cavern and concrete powerhouse
structure

468 The Boundary Element Method with Programming

However, this analysis does not consider the presence of geological features and non-
linear effects, which are important. Figure 17.21 shows the mesh with quadratic (8-node)
boundary elements and the result for the case where both caverns are excavated, plotted
as displacement contours on the excavation surface. It can be seen that for a large
portion of the cavern plane strain conditions can be observed. It was therefore decided
that the mesh could be reduced by the use of infinite plane strain boundary elements as
they have been introduced in Chapter 3.

For a meaningful analysis, however, the effect of the geological features as well as
the non-linear behaviour of the ground had to be considered. For this purpose a coupled
finite element/boundary element mesh was constructed as shown in Figure 17.22. Here
the rock mass in the vicinity of the cavern, as well as the concrete structure of the
powerhouse is discretised into finite elements. Plane strain boundary elements were used
to shorten the mesh in the direction along the cavern, taking into consideration the
displacement conditions, as depicted in Figure 17.21. This analysis allows to consider
the geological features as well as the nonlinear behaviour of the ground (in particular the
mudstone layers).

Figure 17.23 Two of the stages considered in the analysis

Several excavation stages were considered and two of these are shown in Figure
17.23. The mesh on the left models the complete excavation of cavern 1, the one on the
right the construction of the powerhouse structure and the excavation stage of the
extension as existed during the visit of the panel of experts. Figure 17.24 shows the
displaced shape on a section through the end of the existing cavern near the extension
excavation. The deformation of the FEM-BEM interface can be seen especially on top of
the cavern, so an analysis without coupling to BEM would not have yielded meaningful

Existing powerhouse cavern
excavated

Powerhouse structure
installed, excavation of
extension, status Nov. 2003

INDUSTRIAL APPLICATIONS 469

results. A view of the finite element mesh of the powerhouse structure, indicating the
location of the cracks near the extension is shown in Figure 17.25.

Figure 17.24 Displaced shape in a cross-section through the end of the powerhouse.

Figure 17.25 View showing the concrete powerhouse and the location of the cracks

470 The Boundary Element Method with Programming

Figure 17.26 shows one result of the analysis namely the stress distribution in the
concrete wall plotted as principal stress vectors. It can be seen that the observed crack
pattern on the right is perpendicular to the maximum computed principal stress.

Figure 17.26 Predicted stress pattern in wall and crack pattern observed.

This is a nice example of the use of a coupled analysis because it substantially reduces
the effort. Without coupling to BEM the mesh would have to be made much larger, to
reduce the effect of artificial boundary conditions to an acceptable level. It should be
noted here that with the methods for non-linear analysis described in Chapter 15 and for
dealing with heterogeneous ground conditions outlined in Chapter 18 it would have been
possible to completely avoid the discretisation into finite elements of the ground
surrounding the cavern. All that would be required is to subdivide the ground into cells.
However, at the time of the analysis these capabilities were not available.

17.6 RESERVOIR ENGINEERING

17.6.1 Borehole stability

The example relates to some work performed in cooperation with the University of
Kuwait. For oil recovery vertical boreholes are drilled to a depth of several thousand
meters. In order recover as much oil as possible from one bore hole, deviated boreholes
are drilled as shown in Figure 17.27. The angle of deviation of the lateral bore varies
from 30° to 60° and the direction of the deviation with respect to the virgin stress field
also varies. Since the boreholes are drilled in a highly pre-stressed rock mass, mud
pressure has to be applied in order to stabilize the borehole. The questions to be

INDUSTRIAL APPLICATIONS 471

answered by the simulation were with respect to the stability of the rock near the
junction of the vertical and the deviated borehole.

Figure 17.27 Sketch of borehole junction

To determine the areas in the rock mass that are likely to break an elastic analysis
was performed. The result of the analysis was a contour plot of a yield function, ()F .
The yield functions used were the Mohr-Coulomb and Hoek and Brown models. The
mesh used for the analysis for a 45° deviation is plotted in Figure 17.28 on the left.

Figure 17.28 Boundary element mesh (left) and results of the analysis (right) plotted on surface
and dummy plane

472 The Boundary Element Method with Programming

The mesh consists of about 1000 linear boundary elements. Plane strain elements are
used at the ends of the mesh, where the boreholes are truncated, to simulate an infinite
extent of the boreholes, which was assumed to be realistic since the depth of the junction
was 2000 m underground. The analysis took about 5 minutes to run and therefore a great
number of runs could be carried out with various virgin stress fields and mud pressures.
The contours of the yield function showed for which orientation to the virgin stress filed
relative to the deviated borehole and for which mud pressures the failure zone had the
minimum extent. An example of the results obtained can be seen in Figure 17.28 on the
right. The advantages of a boundary element approach can be summarised as follows:

 The mesh generation was much simpler than with finite elements
 The accuracy of the results was probably significant higher compared with a

finite element analysis since no approximation of displacements is assumed in
the rock mass. An automatic mesh generation would probably have computed
distorted elements in the vicinity of the junction degrading the accuracy at this
location.

 The effort would have been significantly larger with the FEM

The analysis presented here, however, is only elastic and therefore does not consider
the non-linear material behaviour. In addition it is assumed that the two boreholes are
excavated instantly and simultaneously which is not very realistic. A non-linear analysis
with internal cells and the sequential excavation algorithm described in Chapter 12 was
proposed but results are not available at the time of writing of the book.

17.7 CONCLUSIONS

In this chapter we have attempted to show, on some practical applications, that the
method is not only of academic interest but can be used to solve real life problems. We
have purposely concentrated on applications where the BEM has been shown to have a
distinct advantage over the FEM in terms of effort to generate the mesh and computing
resources.

However, we do not make the claim that the BEM is always superior to the FEM and
to be fair have included two applications where a combination of the BEM and the FEM
leads to best results. Indeed, we believe that the analyst should be given a choice used
and make a case for more commercial software which allows the use of either method
independently or in combination.

INDUSTRIAL APPLICATIONS 473

17.8 REFERENCES

1. Beer G. and Watson J.O. (1991) Introduction to Finite and Boundary Element

Methods for Engineers, Wiley, Chichester.
2. Beer G. BEFE users manual, CSS, Geidorfgürtel 46, Graz, Austria.
3. Beer G.,Sigl O & Brandl J (1997) Recent developments and application of the

boundary element method. Numerical Models in Geomechanics. Pietruszczak &
Pande (eds), Balkema,Rotterdam, 461-467.

4. Beer G., Golser H., Jedlitschka G. and Zacher P. Coupled finite element/boundary
element analysis in rock mechanics - industrial applications. Rock Mechanics for
Industry. (Amadei,Kranz,Scott&Smeallie(eds). Balkema, Rotterdam. 133-140.

5. Smith I.M. and Griffiths D.V. (1998) Programming the Finite Element Method.
J.Wiley, Chichester.

6. Beer G. and Poulsen B.A. (1994) Efficient numerical modelling of faulted rock using
the boundary element method. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr.31
(5):485-506

18
Advanced topics

Sometimes one pays most for the things
 one gets for nothing.

A. Einstein

18.1 INTRODUCTION

In this Chapter we shall discuss topics which are advanced in the sense that they cover
topics which were still subject to investigation at the writing of the book or that are non-
standard engineering applications.

One particular topic is overcoming the difficulty the BEM has to deal with
heterogeneous material. As we have seen in Chapter 11 only the consideration of
piecewise heterogeneous domain is possible via a multi-region concept. If the
heterogeneity is pronounced then the simulation effort can become considerable. Also,
for some problems a continuous heterogeneity may have to be assumed. Another topic is
the inclusion of linear elements such as reinforcement in concrete technology or rock
bolts in tunnelling. The inclusion of these elements in the FEM is fairly straightforward
because nodes exist inside the domain to which these elements can be connected.
However, in the BEM no such nodes exist. Here, we will show some results which at the
writing of the book were fairly new.

The availability of a code, that could be downloaded free of charge for readers of the
book “Programming the BEM” has led to applications that are beyond the usual
engineering topics. One such application is shown here. It relates to the simulation of
piezo-electric materials i.e. materials which show some reaction (deformation) if
subjected to an electric current. This application has been chosen because it shows that
once the framework of the program has been established even complicated new
applications can be implemented relatively quickly by supplying the appropriate
fundamental solutions. It also shows that the concept of the program includes flexibility
in dealing with any number of degrees of freedom and that the routines for computing
Kernel- shape-function products remain unchanged.

476 The Boundary Element Method with Programming

18.2 HETEROGENEOUS DOMAINS

18.2.1 Theory

The approach is first explained on a problem with 2 different properties but it will
become obvious that the method will also work for a general heterogeneous domain. The
example in Figure 18.1 shows a problem of a tunnel being excavated in a domain with 2
different materials (this is a pure Neumann problem). We could solve this with a multi-
region approach but here we choose a different method.

Figure 18.1 Example with heterogeneous domain

The idea is to start with an analysis that assumes that the whole domain has the same
properties (1 1,E) which are represented by the constitutive matrix 1D . Hence we solve
the following system of equations (see also 7.2)

(18.1)

Next we compute displacements at the boundary nodes and via post-processing the
strains, , at the cell nodes aP

(18.2)

We find that when we compute stresses these should be computed according to:

T u F

, ,a a a
S S

P P Q Q dS P Q Q dSS t R u

ADVANCED TOPICS 477

(18.3)

because this was the assumption made for the analysis. However, this is not correct if the
point is inside the inclusion. Here the stresses should be computed according to

(18.4)

where 2D is the constitutive matrix for material 2. A correction of the stresses has to be
made therefore to the results. The proposal is to follow a similar approach as presented
for plasticity in Chapter 15. A residual “initial stress” is computed inside the inclusion
for the first iteration by

(18.5)

and this is applied as body force to the system. The computation of the residual R is
the same as outlined in Chapter 15. For the pure Neumann problem of Fig. 18.1
increments of the displacements due to the body force are computed by

(18.6)

The next increments of are computed by

(18.7)

With this increment a new initial stress 0 and residual R is computed by

(18.8)

 The iteration proceeds until the norm of the residual is below a specified value.

18.2.2 Example

This example, shown in Figure 18.2, is a block (2m x 2m) with an inclusion in centre
(1m x 1m) under plane strain conditions. The block is fixed at the bottom and loaded on
the top surface with a constant pressure of p = 1N/m². The inclusion is assumed to be 10
times softer than the block. The block is discretised with 4x12 quadratic boundary
elements and the inclusion is discretised with 6x6 quadratic cells. Figure 18.3 shows the
deformed shape of the mesh. The analysis took 39 iterations to converge. The results are
compared with a finite element reference solution. Figure 18.4 shows the vertical
displacements along the left half of the upper block surface. A good agreement with the
reference solution is obtained.

1D

2D

T u R

0 0, ,a a a a
S V

P P Q Q dS P Q Q dV PR u E F

0 1 2D D

0 1 2D D

478 The Boundary Element Method with Programming

Figure 18.2 Description of example problem

Figure 18.3 Deformed mesh

Figure 18.4 Variation of computed displacement on to of the block

0.5

0.5

1.0

0.5 0.51.0

25 / , =0E kN m ν=

2500 / , =0E N m

21 /N m

ADVANCED TOPICS 479

18.3 LINEAR INCLUSIONS

18.3.1 Theory

The treatment of linear inclusions follows a similar approach as with heterogeneities1.
Figure 18.5 shows an example of a tunnel with a rock bolt which will be treated as an
inclusion with different material properties. The rock bolt is assumed to be fully grouted
i.e. in contact to the rock mass along it’s length.

Figure 18.5 Example of a tunnel with a rock bolt

The cross-section of the rock bolt is assumed to be small compared to its length and
therefore the variation of the stress across the section can be assumed to be constant. The
approach is very similar to the previous one, i.e. first an analysis is carried out without
the rock bolt and then a correction made due to the presence of the rock bolt. It is
explained on a plane problem but the extension to 3-D is straightforward.
The first system of equations to be solved is for the Neumann example in Fig. 18.5

(18.9)

After the first analysis the strain in the direction of the rock bolt is computed. Because of
the difference in moduli between the rock and the bolt the stress is different at a point
depending if the point lies in the bolt or in the rock (Fig. 18.6). The difference in the
stress (in the direction of the bolt x) is computed by:

(18.10)

u F

()x xRock xBolt Rock Bolt xE E

480 The Boundary Element Method with Programming

and this will be applied as initial stress.

Figure 18.6 Explanation of difference in stress between rock bolt and rock mass

Figure 18.7 Linear cell element

To compute the strain along the rock bolt we use a line cell as shown in Fig. 18.7.
First we compute the displacements at the cell nodes using Eq. (9.48)

(18.11)

where aP is a cell node. We introduce a local coordinate system specified by vectors

1s along the rock bolt and 2s perpendicular to it (Figure 18.8). The values of the

E

e

E

e

N

n

e
n

e
n

N

n

e
n

e
naP

1 1 11

uTtUu

2

3

1

xRock Rock xE

xBolt Bolt xE strain in direction of bolt
 Modulus of rock
 Modulus of bolt

x

Rock

Bolt

E
E

Cross-sectional area A

ADVANCED TOPICS 481

displacement in direction of the bolt xu are computed at nodal point n of the cell using
the transformation:

(18.12)

Figure 18.8 Local coordinate system

Then the strain in the bolt at nodal point n can be computed by:

(18.13)

where

(18.14)

where xiu is the displacement in bolt direction at node i of the cell and J is the Jacobian
of the transformation from ,yx to . The initial stress at node n of a cell c is computed
by

(18.15)

In general the component iR of the residual vector R due to the “initial stress” is
computed by

(18.16)

x

y

x

y
r

xr

yr1s
2s

() ()x n x n
xn

u u
x x

1 1xn x xn y ynu s u s u

0 ()c
xn Rock Bolt xnE E

2(3)

1

1() () and x n i n xi
i

u N u
x J

0,i i
V

P Q Q dVR E

482 The Boundary Element Method with Programming

Where E is the fundamental solution for strain. E and 0 are based on the global

coordinate system. As the initial stress 0
c
xn in (18.15) is based on a local coordinate

system the fundamental solution is needed in the local system, too. E is calculated with
the local value r which is computed by

(18.17)

where the geometrical transformation matrix is given by

(18.18)

The fundamental solution for displacement is now given in local coordinates (,)x y .
Since only the axial stresses are taken into account, the stress vector 0 in (18.16)

reduces to a scalar 0x and the matrix E reduces to a vector Ê in local coordinates, for
plane problems we have:

(18.19)

The residual (18.16) in the local coordinate system is

(18.20)

The global residual vector R can be obtained with a transformation

(18.21)

The transformed fundamental solution is defined by

(18.22)

The discretised form of (18.21) is computed by

(18.23)
0

1

,
c

C

i i x c
c V

P Q Q dVR E

gr T r

1 2 , gT s s

ˆ xxx

yxx

E
E

E

0
ˆ ,i i x

V

P Q Q dVR E

0
ˆ ,i g i g i x

V

P Q Q dVR T R T E

ˆ
gE T E

ADVANCED TOPICS 483

Assuming that the cross-section of the bolt is small and that the initial stress does not
vary across it, the initial stress at point Q is only a function of i.e.

(18.24)

Substitution into (18.23) gives

(18.25)

or

(18.26)

where

(18.27)

If n is not node i then (18.27) may be evaluated using Gauss Quadrature

(18.28)

where A is the cross-sectional area of the inclusion, which is assumed constant along the
cell here and K is the number of Gauss points required.
If n is node i then the Kernel becomes singular. In this case an analytical integration can
be carried out2

(18.29)

The increment in displacement due to the body force R is computed by

(18.30)

The increment in displacement u at a cell node aP due to an increment in displacement
(computed by equation 18.30) is computed for the subsequent iteration steps as

(18.31)

u R

2(3)

0
1 1

,
c

C
c

i i n xn c
c nV

P Q N dVR E

0
1 1

C N
c c

i ni xn
c n

R E

(,)
c

c
ni i n c

V

P Q N dVE E

1

A , ()
K

c
ni i j n j j

k

P Q N J WE E

1

1

(,) ()ni i n
A

P Q dA N JdE E

0
1 1 1 1

N C NE
e e c c

a n n n xn
e n c n

Pu T u E

2(3)

0 0
1

(()) () c
x i xn

n

Q N

484 The Boundary Element Method with Programming

where

(18.32)

The iterations continue until the residual vanishes.

18.3.2 Example

The example is that of a circular excavation of radius 10 m in an infinite domain with
linear inclusions. In practice this would correspond to a tunnel with fully grouted rock
bolts. For the example the assumption is of an internal pressure of 215 /MN m . The
mesh consists of 40 linear boundary elements for the boundary of the hole and of 24
rock bolts which are discretised into 2 quadratic cells each. A finer mesh with 120 linear
boundary elements and 4 cells per rock bolt was also used.

Figure 18.9 Mesh used for the analysis

Figure 18.10 Variation of displacement along a bolt axis

(,)
c

c
n a n c

V

P Q N dVE E

ADVANCED TOPICS 485

For the analysis the following material properties were assumed: ERock=5 GN/m², =0.3,
EBolt=400 GN/m². The bolts have a cross section of ABolt=0.007854m² and a length of
10m. The analysis took 22 iterations to converge and the results were compared with a
finite element analysis with a very fine mesh in Fig. 18.10. In this figure the
displacement along the axis of the rock bolt is shown. It can be seen that the solutions
compare well with the reference solution.

18.4 PIEZO-ELECTRICITY

This is a good example of how easy it is to implement new capabilities into the general
purpose program 7.1 by changing only a few lines and adding subroutines for computing
a fundamental solution. This application has been worked out by a PhD student from
Venezuela and the application is in piezo-electricity. Some materials react to an applied
current by deforming and the deformation also causes an electric potential, so there is an
interaction between electricity and deformation. These are known as piezo-electric
materials. Apparently some bio-materials exhibit this property and hence the application
of this work is actually bio-engineering. For a piezo-electric material we have a coupling
of the stresses and the electric displacement d3:

(18.33)

We define the electric displacement d and the electric field vector E by

(18.34)

A characteristic of piezo-electric materials is that they behave in an an-isotropic way
therefore the matrix D is an anisotropic constitutive matrix. However, here we restrict
ourselves to transversely isotropic materials and the matrix D presented in section 4.3.1.
is used. For this case the matrix linking the stresses and the electric field vector
(piezoelectric matrix) is

(18.35)

TD e E
d e E

 ;
x x

y y

z z

d E
d E

d E

d E

15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

 0 0 0

e
e

e e e
e

486 The Boundary Element Method with Programming

Where ije are material parameters and the matrix relating electric displacement to the
field vector is given by

(18.36)

Equations (18.32) can be combined into one by

(18.37)

where

(18.38)

Figure 18.11 Calculation of angles 1 2,

The governing differential equation can be written as

(18.39)

where L is the piezo-electric differential operator3 and

(18.40)

11

11

33

0 0
0 0
0 0

ˆ ˆD

ˆ ˆ ; ;
TD eD

d Ee

ˆ 0Lu

ˆ
u

u

y

x

z

0r

1

2

ADVANCED TOPICS 487

u is the displacement vector and is the electric potential that is related to the electric
field vector by

(18.41)

The plane problem has 2+1=3 and the 3-D problem 3+1=4 degrees of freedom. The
fundamental solution of the differential equation for unit values of load and electric field
can be derived using a Radon transformation 4,5. The fundamental solution in 3-D for
Û which combines the displacements and the electric potential is given by

(18.42)

r is the distance between P and Q (length of vector r) and 1 2, are determined
according to Figure 18.11, where 0r is a unit vector in the direction r . The
complementary fundamental solution for the tractions and the electric field in direction n
is given by

(18.43)

Because of the complexity of the fundamental solution which would take very long for
the computation of values at Gauss points of elements a scheme is adopted where a table
of values of M as a function of 1 2, is computed. The required particular values are
then obtained by interpolation. We will see that the most difficult part of the
implementation is the calculation of the fundamental solution; the other changes in the
program are minimal.

18.4.1 Changes required in General_Purpose_BEM

The first change is in the input. Here we allow an additional Analysis Type (=4) in Toa
and allow 4 degrees of freedom for the combined vector û . We have to allow for reading
in a larger number of material constants. In addition we may provide some additional
information about the size of the table to hold the pre-computed values of M. These are
computed in the main program and stored in the arrays of rank 4 in m_GridU and
m_GridT. The size of the increments of 1 2, in the table are determined by the
variables m_step1 and m_step2. The only other change is in the subroutine INTEG3
where additional IF statements are included to call the subroutine that computes the
fundamental solutions using the tables.

SUBROUTINE Integ3(Elcor,Inci,Nodel,Ncol,xPi,Ndof,E,ny,ko,dUe&
 ,dTe,Ndest,Isym,Toa,m_step1,m_step2,m_GridU,m_GridT)
!--
! Computes [dT]e and [dU]e for 3-D problems
! by numerical integration

, , , ; ; x x y y z zE E E

1 2
1ˆ (,) (,)UP Q
r

U M

1 22
1ˆ (,) (,)TP Q
r

T M

488 The Boundary Element Method with Programming

!---
IMPLICIT NONE
REAL, INTENT(IN) :: Elcor(:,:) ! Element coordinates
INTEGER, INTENT(INOUT) :: Toa ! Type of analysis
! Increments for table and arrays for storing table
REAL,INTENT(INOUT) :: m_step1,m_step2
REAL,INTENT(INOUT) :: m_GridU(:,:,:,:),m_GridT(:,:,:,:,:)
……
!---
! Part 1 : Pi is not one of the element nodes
!---
Colloc_points: DO i=1,Ncol
….
 IF(Ndof .EQ. 1) THEN
 UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim)
 ELSE
 IF(Toa.EQ.3)THEN
 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 END IF
 IF(Toa > 3)THEN
 ! piezoelectric solution
 UP=UKa(GCcor,xPi(:,I),NDOF,1,r,m_step1,m_step2,m_GridU)
 TP=TKa(GCcor,xPi(:,I),NDOF,1,Vnorm,r,m_step1,m_step2,m_GridT)
 END IF
 END IF
……
END DO Colloc_points
!---
! Part 1 : Pi is one of the element nodes
!---
Colloc_points1: DO i=1,Ncol
……
 IF(Ndof .EQ. 1) THEN
 UP= U(r,ko,Cdim) ; TP= T(r,dxr,Vnorm,Cdim)
 ELSE
 IF(Toa.EQ.3)THEN
 UP= UK(dxr,r,E,ny,Cdim) ; TP= TK(dxr,r,Vnorm,ny,Cdim)
 END IF
 IF(Toa > 3)THEN
 UP=UKa(GCcor,xPi(:,I),NDOF,1,r,m_step1,m_step2,m_GridU)
 TP=TKa(GCcor,xPi(:,I),NDOF,1,Vnorm,r,m_step1,m_step2,m_GridT)
 END IF
 END IF
…..
END DO Colloc_points1
RETURN
END SUBROUTINE Integ3

Further details and examples are available in [4].

ADVANCED TOPICS 489

18.5 CONCLUSIONS

In this chapter we have dealt with applications where a solution with the BEM was not
previously possible and with applications that go beyond usual engineering problems.
The proposed efficient treatment of heterogeneous material and of reinforcement is still
a subject of research at the writing of the book, but preliminary results look very
promising. Indeed, with a concentrated research effort sponsored by national and
European funds it seems possible that the lag in the development of the BEM as
compared with the FEM can be shortened.
The availability of a numerical toolbox through the book “Programming the boundary
element method” by G. Beer seems to have had a positive effect on the development of
the BEM and several applications in “exotic” areas emanated. One such area is piezo-
electricity and here the “beauty” of the BEM is revealed: only a new fundamental
solution is required to implement a completely new application. Try this with finite
elements. Unfortunately the work of the PhD student was just starting at the writing of
the paper and we hope to present some interesting applications of this in the area of bio-
mechanics (increased healing potential of human bones when subjected to low voltage
electricity) in a second edition.

18.6 REFERENCES

1. Riederer K, Prazeres P.G. and Beer G. (2007) Numerical modeling of ground support

with the boundary element method. ECCOMAS Thematic Conference on
Computational Methods in Tunneling, EURO:TUN 2007.

2. Riederer K. (2009) PhD Dissertation, Graz University of Technology, Austria.
3. Gaul L., Kögl M. and Wagner M. (2003) Boundary Element Method for Engineers

and Scientists. Springer, Berlin.
4. Duarte V. (2009) PhD Thesis, Universidad Central de Venezuela, Caracas,

Venezuela.
5. Thoeni K. Effiziente Berechnung anisotroper Fundametallösungen für die Methode

der Randelemente. Diploma Thesis, Graz University of Technology, Austria.

Appendix
Fundamental Solutions

Supplied by Tatiana Ribeiro

The fundamental solutions presented for static elasticity are in indicial notation. Please
refer to Chapter 1 for the correlation between indicial and vector notation.

A.1. DISPLACEMENT SOLUTION

The displacement iu at an internal point P is computed by

(A.1)

Where ,i iu t are the displacements and tractions and 0 0,jk jk are initial stresses and
strains. The fundamental solutions are given for plane problems by

(A.2)

and in 3D by

(A.3)

For plane as well as for 3-D problems we have

(A.4)

0

0

, , ,

 ,

i ij j ij j ijk jk
S S V

ijk jk
V

u P U P Q t Q dS T P Q u Q dS E P Q Q dV

P Q Q dV

1 , ,
1, lnij ij i jU P Q C C r r
r

1 , ,,ij ij i j
CU P Q C r r
r

2
3 , , 3 , ,, (1) cosij ij i j j i i jn

CT P Q C n r r C n r n r
r

492 The Boundary Element Method with Programming

(A.5)

(A.6)

where r is the distance between the source point P and the field point Q and in the
outward normal. The derivative of r with respect to the Cartesian axis j is given by r,j.
The term cos is computed by

(A.7)

and the values for the constants are given in Table A.1

Table A.1 Constants for fundamental solutions

 Plane strain Plane stress 3-D
n 1 1 2
C 1/8 G (1+ G 1/16 G
C1 3-4 (3- 3-4
C2 1/4 (1+ 1/8
C3 1-2 (1- 1-2
C4 2 3
C5 1 (1- 1-2
C6 4 5
C7 1-4 (1-3 1-4
C8 -1/8 - /8 -1/15
C9 3-4 (3- 4-5
C10 1 (1-3 1-5
C11 -1/16G - /16G -1/30G
C12 1 1 7-5
C13 1-4 (1-3 2-10
C14 1-2 (1-3 1-4
C15 1 (1- 1-2
C16 G/4(1- G /4 G/15(1-
C17 1-4 1 2+10
C18 -1/8(1- - /8 -1/30(1-
C19 G/2 G/2 G/4

3 , , , 4 , , ,,ijk k ij j ik i jk i j kn
CE P Q C r r r C r r r

r

1cos
r

r n

2
3 , , 5 , 4 , , ,,ijk k ij j ik i jk i j kn

CP Q C r r C r C r r r
r

FUNDAMENTAL SOLUTIONS 493

A.2. STRAIN SOLUTION

The strain tensor at an internal point is computed by

(A.8)

where

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

where the constants are given in Table A.1 .

0 0 0 0

, ,

, ,

ij ijk k ijk k
S S

ijkl kl ijkl kl ijkl kl ijkl kl
V V

P S P Q t Q dS R P Q u Q dS

P Q Q dV P E P Q Q dV F P

3 , , , 4 , , ,,ijk j ik i jk k ij i j kn
CS P Q C r r r C r r r
r

4 , , , 6 , , ,2
1

3 4 , , 4 , , , ,

cos
,

j ik i jk k ij i j k
ijk n

j ik k ij i jk i j k j i k i j k

C r r r C r r rCR P Q
r C n n n C r r n C n r r n r r

2
31

4 , , , , , , , ,

4 3 , , , , 6 , , , ,

,ijkl ik jl jk il ij kln

il j k jk i l ik j l jl i k

kl i j ij k l i j k l

CP Q C
r

C r r r r r r r r

C C r r r r C r r r r

8 9 10ijkl jk il ik jl ij klH C C C

4 , , , , , , , ,1

4 , , , , 6 , , , ,

3

,ijk il j k jk i l ik j l jl i kn

kl i j ij k l i j k l

ik jl jk il ij kl

CE P Q C r r r r r r r r
r

C r r r r C r r r r

C

11 9ijkl jk il ik jl ij klF C C

494 The Boundary Element Method with Programming

A.3. STRESS SOLUTION

The stress tensor for an internal point is computed by

(A.15)

where

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

where the constants are shown in Table A1.

0 0 0 0

, ,

ˆ ˆ, ,

ij ijk k ijk k
S S

ijkl kl ijkl kl ijkl kl ijkl kl
V V

P S P Q t Q dS R P Q u Q dS

E P Q Q dV F P P Q Q dV H P

2
3 , , , 4 , , ,,ijk ik j jk i ij k i j kn

CS P Q C r r r C r r r
r

19
4 3 , , , 6 , , ,1

3 4 , , 7 4 , , , ,

, cosijk k ij j ik i jk i j kn

j ik i jk i j k k ij j i k i j k

C
R P Q C C r r r C r r r

r
C n n C r r n C n C n r r n r r

2
3 4 , ,1

4 , , , , , , , , 4 , , 6 , , , ,

ˆ ,ijkl ik jl jk il ij kl ij k ln

il j k jk i l ik j l jl i k kl i j i j k l

CE P Q C C r r
r

C r r r r r r r r C r r C r r r r

18 12 13ijkl jk il ik jl ij klF C C C

19
3 141

4 , , , , , , , ,

4 3 , , 15 , , 6 , , , ,

ˆ ,ijkl ik jl jk il ij kln

il j k jk i l ik j l jl i k

kl i j ij k l i j k l

C
P Q C C

r
C r r r r r r r r

C C r r C r r C r r r r

16 12 17ijkl ik jl jk il ij klH C C C

	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	back-matter.pdf

