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Nomenclature

� bevel angle
� transverse stretching factor
� vertical stretching factor
� displacement (weight)
�m displacement (mass)
� polar coordinate
� heel angle
� rotation angle
� Curvature
� length stretching factor
� Density
� scale factor
� Torsion
	 polar coordinate
	 trim angle
� displacement volume
A Area
Ams midship section area
Awp waterplane area
A affine stretching matrix
B Beam
Bi(t) B-spline basis function
CB block coefficient
Cms midship section coefficient
Cp prismatic coefficient
CV volumetric coefficient
Cwp waterplane coefficient
CWS wetted surface coefficient
C0, C1, C2 degrees of parametric continuity
F Force
g acceleration due to gravity
G0, G1, G2 degrees of geometric continuity
H mean curvature
I moment of inertia tensor

k unit vector in positive Z direction
K Gaussian curvature
L Length
L heel restoring moment
m Mass
M trim restoring moment
M general transformation matrix
M moment vector
M vector of mass moments
n unit normal vector
p Pressure
r cylindrical polar coordinate
r radius vector
rB center of buoyancy
R spherical polar coordinate
R rotation matrix
s arc length
S(x) section area curve
t curve parameter
T Draft
u, v surface parameters
u, v, w solid parameters
V Volume
w(t) mass / unit length
w(u, v) mass / unit area
wi NURBS curve weights
wij NURBS surface weights
x, y, z cartesian coordinates
xB x-coordinate of center of buoyancy
xF x-coordinate of center of flotation
x(t) parametric curve
x(u, v) parametric surface
x(u, v, w) parametric solid

Abbreviations

BM height of metacenter above center 
of buoyancy

CF center of flotation
DLR displacement-length ratio
DWL design waterline
GM height of metacenter above center 

of gravity
KB height of center of buoyancy above 

base line
KG height of center of gravity above 

base line

KM height of metacenter above base line
LBP length between perpendiculars
LCB longitudinal center of buoyancy
LCF longitudinal center of flotation
LOA length overall
LPP length between perpendiculars
LWL waterline length
VCB vertical center of buoyancy
WS wetted surface



Preface

During the 20 years that have elapsed since publication of the previous edition of Principles of Naval Architecture,
or PNA, there have been remarkable advances in the art, science, and practice of the design and construction of
ships and other floating structures. In that edition, the increasing use of high speed computers was recognized and
computational methods were incorporated or acknowledged in the individual chapters rather than being presented
in a separate chapter. Today, the electronic computer is one of the most important tools in any engineering environ-
ment and the laptop computer has taken the place of the ubiquitous slide rule of an earlier generation of engineers.

Advanced concepts and methods that were only being developed or introduced then are a part of common engi-
neering practice today. These include finite element analysis, computational fluid dynamics, random process meth-
ods, and numerical modeling of the hull form and components, with some or all of these merged into integrated
design and manufacturing systems. Collectively, these give the naval architect unprecedented power and flexibility
to explore innovation in concept and design of marine systems. In order to fully utilize these tools, the modern naval
architect must possess a sound knowledge of mathematics and the other fundamental sciences that form a basic
part of a modern engineering education.

In 1997, planning for the new edition of PNA was initiated by the SNAME publications manager who convened a
meeting of a number of interested individuals including the editors of PNA and the new edition of Ship Design and

Construction. At this meeting, it was agreed that PNA would present the basis for the modern practice of naval ar-
chitecture and the focus would be principles in preference to applications. The book should contain appropriate
reference material but it was not a handbook with extensive numerical tables and graphs. Neither was it to be an el-
ementary or advanced textbook; although it was expected to be used as regular reading material in advanced under-
graduate and elementary graduate courses. It would contain the background and principles necessary to understand
and intelligently use the modern analytical, numerical, experimental, and computational tools available to the naval
architect and also the fundamentals needed for the development of new tools. In essence, it would contain the ma-
terial necessary to develop the understanding, insight, intuition, experience, and judgment needed for the success-
ful practice of the profession. Following this initial meeting, a PNA Control Committee, consisting of individuals hav-
ing the expertise deemed necessary to oversee and guide the writing of the new edition of PNA, was appointed. This
committee, after participating in the selection of authors for the various chapters, has continued to contribute by
critically reviewing the various component parts as they are written.

In an effort of this magnitude, involving contributions from numerous widely separated authors, progress has not
been uniform and it became obvious before the halfway mark that some chapters would be completed before oth-
ers. In order to make the material available to the profession in a timely manner it was decided to publish each major
subdivision as a separate volume in the “Principles of Naval Architecture Series” rather than treating each as a sep-
arate chapter of a single book.

Although the United States committed in 1975 to adopt SI units as the primary system of measurement, the transi-
tion is not yet complete. In shipbuilding as well as other fields, we still find usage of three systems of units: English
or foot-pound-seconds, SI or meter-newton-seconds, and the meter-kilogram(force)-second system common in engi-
neering work on the European continent and most of the non-English speaking world prior to the adoption of the SI
system. In the present work, we have tried to adhere to SI units as the primary system but other units may be found
particularly in illustrations taken from other, older publications. The Marine Metric Practice Guide developed jointly
by MARAD and SNAME recommends that ship displacement be expressed as a mass in units of metric tons. This is
in contrast to traditional usage in which the terms displacement and buoyancy are usually treated as forces and are
used more or less interchangeably. The physical mass properties of the ship itself, expressed in kilograms (or metric
tons) and meters, play a key role in, for example, the dynamic analysis of motions caused by waves and maneuvering
while the forces of buoyancy and weight, in newtons (or kilo- or mega-newtons), are involved in such analyses as
static equilibrium and stability. In the present publication, the symbols and notation follow the standards developed
by the International Towing Tank Conference where � is the symbol for weight displacement, �m is the symbol for
mass displacement, and � is the symbol for volume of displacement.

While there still are practitioners of the traditional art of manual fairing of lines, the great majority of hull forms,
ranging from yachts to the largest commercial and naval ships, are now developed using commercially available soft-
ware packages. In recognition of this particular function and the current widespread use of electronic computing in
virtually all aspects of naval architecture, the illustrations of the mechanical planimeter and integrator that were
found in all earlier editions of PNA are no longer included.

This volume of the series presents the principles and terminology underlying modern hull form modeling soft-
ware. Next, it develops the fundamental hydrostatic properties of floating bodies starting from the integration
of fluid pressure on the wetted surface. Following this, the numerical methods of performing these and related
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computations are presented. Such modeling software normally includes, in addition to the hull definition function,
appropriate routines for the computation of hydrostatics, stability, and other properties. It may form a part of a com-
prehensive computer-based design and manufacturing system and may also be included in shipboard systems that
perform operational functions such as cargo load monitoring and damage control. In keeping with the overall theme
of the book, the emphasis is on the fundamentals in order to provide understanding rather than cookbook instruc-
tions. It would be counterproductive to do otherwise since this is an especially rapidly changing area with new prod-
ucts, new applications, and new techniques continually being developed.

J. RANDOLPH PAULLING

Editor
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Geometry is the branch of mathematics dealing with the
properties, measurements, and relationships of points
and point sets in space. Geometric definition of shape
and size is an essential step in the manufacture or pro-
duction of any physical object. Ships and marine struc-
tures are among the largest and most complex objects
produced by human enterprise. Their successful plan-
ning and production depends intimately on geometric
descriptions of their many components, and the posi-
tional relationships between components.

Traditionally, a “model” is a three-dimensional (3-D)
representation of an object, usually at a different scale
and a lesser level of detail than the actual object.
Producing a real product, especially one on the scale of
a ship, consumes huge quantities of materials, time, and
labor, which may be wasted if the product does not
function as required for its purpose. A physical scale
model of an object can serve an important role in plan-
ning and evaluation; it may use negligible quantities
of materials, but still requires potentially large amounts
of skilled labor and time. Representations of ships in the
form of physical scale models have been in use since an-
cient times. The 3-D form of a ship hull would be de-
fined by carving and refining a wood model of one side
of the hull, shaped by eye with the experience and intu-
itive skills of the designer, and the “half-model” would
become the primary definition of the vessel’s shape.
Tank testing of scale ship models has been an important
design tool since Froude’s discovery of the relevant dy-
namic scaling laws in 1868. Maritime museums contain
many examples of detailed ship models whose primary
purpose was evidently to work out at least the exterior
appearance and arrangements of the vessel in advance
of construction. One can easily imagine that these mod-
els served a marketing function as well; showing a
prospective owner or operator a realistic model might
well allow them to relate to, understand, and embrace
the concept of a proposed vessel to a degree impossible
with two-dimensional (2-D) drawings.

From at least the 1700s, when the great Swedish naval
architect F. H. Chapman undertook systematic quantita-
tive studies of ship lines and their relationship to per-
formance, until the latter decades of the 20th century,
the principal geometric definition of a vessel was in the
form of 2-D scale drawings, prepared by draftsmen,
copied, and sent to the shop floor for production. The
lines drawing, representing the curved surfaces of the
hull by means of orthographic views of horizontal and
vertical plane sections, was a primary focus of the de-
sign process, and the basis of most other drawings. An
intricate drafting procedure was required to address the
simultaneous requirements of (1) agreement and consis-
tency of the three orthogonal views, (2) “fairness” or

quality of the curves in all views, and (3) meeting the
design objectives of stability, capacity, performance,
seaworthiness, etc. The first step in construction was
lofting: expanding the lines drawing, usually to full size,
and refining its accuracy, to serve as a basis for fabrica-
tion of actual components.

Geometric modeling is a term that came into use
around 1970 to embrace a set of activities applying
geometry to design and manufacturing, especially with
computer assistance. The fundamental concept of geo-
metric modeling is the creation and manipulation of a
computer-based representation or simulation of an ex-
isting or hypothetical object, in place of the real object.
Mortenson (1995) identifies three important categories
of geometric modeling:

(1) Representation of an existing object
(2) Ab initio design: creation of a new object to meet

functional and/or aesthetic requirements
(3) Rendering: generating an image of the model for

visual interpretation.

Compared with physical model construction, one
profound advantage of geometric modeling is that it re-
quires no materials and no manufacturing processes;
therefore, it can take place relatively quickly and at
relatively small expense. Geometric modeling is essen-
tially full-scale, so does not have the accuracy limita-
tions of scale drawings and models. Already existing in
a computer environment, a geometric model can be
readily subjected to computational evaluation, analysis,
and testing. Changes and refinements can be made and
evaluated relatively easily and quickly in the fundamen-
tally mutable domain of computer memory. When 2-D
drawings are needed to communicate shape informa-
tion and other manufacturing instructions, these can be
extracted from the 3-D geometric model and drawn by
an automatic plotter. The precision and completeness
of a geometric model can be much higher than that of ei-
ther a physical scale model or a design on paper, and
this leads to opportunities for automated production
and assembly of the full-scale physical product. With
these advantages, geometric modeling has today as-
sumed a central role in the manufacture of ships and
offshore structures, and is also being widely adopted for
the production of boats, yachts, and small craft of es-
sentially all sizes and types.

1.1 Uses of Geometric Data. It is important to realize
that geometric information about a ship can be put to
many uses, which impose various requirements for pre-
cision, completeness, and level of detail. In this section,
we briefly introduce the major applications of geometric
data. In later sections, more detail is given on most of
these topics.

Section 1
Geometric Modeling for Marine Design
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1.1.1 Conceptual Design. A ship design ordinarily
starts with a conceptual phase in which the purpose or
mission of the vessel is defined and analyzed, and from
that starting point an attempt is made to outline in rela-
tively broad strokes one or more candidate designs which
will be able to satisfy the requirements. Depending on the
stringency of the requirements, conceptual design can
amount to nothing more than taking an existing design for
a known ship and showing that it can meet any new re-
quirements without significant modifications. At the other
extreme, it can be an extensive process of analysis and
performance simulation, exploring and optimizing over a
wide range of alternatives in configuration, proportions,
leading dimensions, and proposed shapes. Simulation

based design of ships often involves a variety of computer
simulation disciplines such as resistance, propulsion, sea-
keeping, and strength; radar, thermal, and wake signa-
tures; and integration of such results to analyze overall
economic, tactical, or strategic performance of alterna-
tive designs.

1.1.2 Analysis. The design of a ship involves much
more than geometry. The ability of a ship to perform its
mission will depend crucially on many physical charac-
teristics such as stability, resistance, motions in waves,
and structural integrity, which cannot be inferred di-
rectly from geometry, but require some level of engi-
neering analysis. Much of the advancement in the art of
naval architecture has focused on the development of
practical engineering methods for predicting these char-
acteristics. Each of these analysis methods rests on a
geometrical foundation, for they all require some geo-
metric representation of the ship as input, and they can-
not in fact be applied at all until a definite geometric
shape has been specified.

Weight analysis is an essential component of the de-
sign of practically any marine vehicle or structure.
Relating weights to geometry requires the calculation of
lengths, areas, and volumes, and of the centroids of
curves, surfaces, and solids, and knowledge of the unit
weights (weight per unit length, area, or volume) of the
materials used in the construction.

Hydrostatic analysis is the next most common form
of evaluation of ship geometry. At root, hydrostatics is
the evaluation of forces and moments resulting from the
variable static fluid pressures acting on the exterior sur-
faces of the vessel and the interior surfaces of tanks, and
the static equilibrium of the vessel under these and other
imposed forces and moments. Archimedes’ principle
shows that the hydrostatic resultants can be accurately
calculated from the volumes and centroids of solid
shapes. Consequently, the representation of ship geome-
try for purposes of hydrostatic analysis can be either as
surfaces or as solids, but solid representations are far
more commonly used. The most usual solid representa-
tion is a series of transverse sections, each approxi-
mated as a broken line (polyline).

Structural analysis is the prediction of strength and
deformation of the vessel’s structures under the loads

expected to be encountered in routine service, as well as
extraordinary loads which may threaten the vessel’s in-
tegrity and survival. Because of the great difficulty of
stress analysis in complex shapes, various levels of ap-
proximation are always employed; these typically in-
volve idealizations and simplifications of the geometry.
At the lowest level, essentially one-dimensional (1-D),
the entire ship is treated as a slender beam having cross-
sectional properties and transverse loads which vary
with respect to longitudinal position. At an intermediate
level, ship structures are approximated by structural
models consisting of hundreds or thousands of (essen-
tially 1-D and 2-D) beam, plate, and shell finite elements
connected into a 3-D structure. At the highest level of
structural analysis, regions of the ship that are identified
as critical high-stress areas may be modeled in great de-
tail with meshes of 3-D finite elements.

Hydrodynamic analysis is the prediction of forces,
motions, and structural loads resulting from movement
of the ship through the water, and movement of water
around the ship, including effects of waves in the ocean
environment. Hydrodynamic analysis is very complex,
and always involves simplifications and approxima-
tions of the true fluid motions, and often of the ship
geometry. The idealizations of “strip theory” for sea-
keeping (motions in waves) and “slender ship theory”
for wave resistance allow geometric descriptions con-
sisting of only a series of cross-sections, similar to a
typical hydrostatics model. More recent 3-D hydrody-
namic theories typically require discretization of the
wetted surface of a ship and, in some cases, part of the
nearby water surface into meshes of triangular or
quadrilateral “panels” as approximate geometric in-
puts. Hydrodynamic methods that include effects of
viscosity or rotation in the water require subdivision of
part of the fluid volume surrounding the ship into 3-D
finite elements.

Other forms of analysis, applied primarily to military
vessels, include electromagnetic analysis (e.g., radar
cross-sections) and acoustic and thermal signature
analysis, each of which has impacts on detection and
survivability in combat scenarios.

1.1.3 Classification and Regulation. Classification
is a process of qualifying a ship or marine structure for
safe service in her intended operation. Commercial ships
may not operate legally without approval from gov-
ernmental authorities, signifying conformance with vari-
ous regulations primarily concerned with safety and
environmental issues. Likewise, to qualify for commer-
cial insurance, a vessel needs to pass a set of stringent
requirements imposed by the insurance companies.
Classification societies exist in the major maritime coun-
tries to deal with these issues; for example, the American
Bureau of Shipping in the United States, Lloyds’ Register
in the U.K., and the International Standards Organization
in the European Union. They promulgate and administer
rules governing the design, construction, and mainte-
nance of ships.
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Although final approvals depend on inspection of the
finished vessel, it is extremely important to anticipate
classification requirements at the earliest stages of de-
sign, and to respect them throughout the design process.
Design flaws that can be recognized and corrected easily
early in the design cycle could be extremely expensive
or even impossible to remediate later on. Much of the in-
formation required for classification and regulation is
geometric in nature — design drawings and geometric
models. The requirements for this data are evolving rap-
idly along with the capabilities to analyze the relevant
hydrodynamic and structural problems.

1.1.4 Tooling and Manufacturing. Because manu-
facturing involves the realization of the ship’s actual
geometry, it can beneficially utilize a great deal of geo-
metric information from the design. Manufacturing is the
creation of individual parts from various materials
through diverse fabrication, treatment, and finishing
processes, and the assembly of these parts into the final
product. Assembly is typically a hierarchical process,
with parts assembled into subassemblies, subassemblies
assembled into larger subassemblies or modules, etc.,
until the final assembly is the whole ship. Whenever two
parts or subassemblies come together in this process, it
is extremely important that they fit, within suitable toler-
ances; otherwise one or both will have to be remade or
modified, with potentially enormous costs in materials,
labor, and production time. Geometric descriptions play
a crucial role in the coordination and efficiency of all
this production effort.

Geometric information for manufacturing will be
highly varied in content, but in general needs to be
highly accurate and detailed. Tolerances for the steel
work of a ship are typically 1 to 2 mm throughout the
ship, essentially independent of the vessel’s size, which
can be many hundreds of meters or even kilometers for
the largest vessels currently under consideration.

Since most of the solid materials going into fabrica-
tion are flat sheets, a preponderance of the geometric in-
formation required is 2-D profiles; for example, frames,
bulkheads, floors, decks, and brackets. Such profiles can
be very complicated, with any number of openings,
cutouts, and penetrations. Even for parts of a ship that
are curved surfaces, the information required for tooling
and manufacturing is still typically 2-D profiles: mold
frames, templates, and plate expansions. 3-D informa-
tion is required to describe solid and molded parts such
as ballast castings, rudders, keels, and propeller blades,
but this is often in the form of closely spaced 2-D sec-
tions. For numerically controlled (NC) machining of
these complex parts, which now extends to complete
hulls and superstructures for vessels up to at least 30 m
in length, the geometric data is likely to be in the form of
a 3-D mathematical description of trimmed and
untrimmed parametric surface patches.

1.1.5 Maintenance and Repair. Geometry plays
an increasing role in the maintenance and repair of
ships throughout their lifetimes. When a ship has been

manufactured with computer-based geometric descrip-
tions, the same manufacturing information can obvi-
ously be extremely valuable during repair, restoration,
and modification. This data can be archived by the en-
terprise owning the ship, or carried on board. Two im-
portant considerations are the format and specificity of
the data. Data from one CAD or production system will
be of little use to a shipyard that uses different CAD or
production software. While CAD systems, and even
data storage media, come and go with lifetimes on the
order of 10 years, with any luck a ship will last many
times that long. Use of standards-based neutral formats
such as IGES and STEP greatly increase the likelihood
that the data will be usable for many decades into the
future.

A ship or its owning organization can also usefully
keep track of maintenance information (for example, the
locations and severity of fatigue-induced fractures) in
order to schedule repairs and to forecast the useful life
of the ship.

When defining geometric information is not available
for a ship undergoing repairs, an interesting and chal-
lenging process of acquiring shape information usually
ensues; for example, measuring the undamaged side and
developing a geometric model of it, in order to establish
the target shape for restoration, and to bring to bear NC
production methods.

1.2 Levels of Definition. The geometry of a ship or
marine structure can be described at a wide variety of
levels of definition. In this section we discuss five such
levels: particulars, offsets, wireframe, surface models,
and solid models. Each level is appropriate for certain
uses and applications, but will have either too little or
too much information for other purposes.

1.2.1 Particulars. The word particulars has a
special meaning in naval architecture, referring to the
description of a vessel in terms of a small number (typi-
cally 5 to 20) of leading linear dimensions and other vol-
ume or capacity measures; for example, length overall,
waterline length, beam, displacement, block coefficient,
gross tonnage. The set of dimensions presented for par-
ticulars will vary with the class of vessel. For example,
for a cargo vessel, tonnage or capacity measurements
will always be included in particulars, because they tell
at a glance much about the commercial potential of the
vessel. For a sailing yacht, sail area will always be one of
the particulars.

Some of the more common “particulars” are defined
as follows:

Length Overall (LOA): usually, the extreme length of the
structural hull. In the case of a sailing vessel, spars
such as a bowsprit are sometimes included in LOA,
and the length of the structural hull will be presented
as “length on deck.”

Waterline Length (LWL): the maximum longitudinal ex-
tent of the intersection of the hull surface and the wa-
terplane. Immediately, we have to recognize that any
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vessel will operate at varying loadings, so the plane of
flotation is at least somewhat variable, and LWL is
hardly a geometric constant. Further, if an appendage
(commonly a rudder) intersects the waterplane, it is
sometimes unclear whether it can fairly be included in
LWL; the consensus would seem to be to exclude such
an appendage, and base LWL on the “canoe hull,” but
that may be a difficult judgment if the appendage is
faired into the hull. Nevertheless, LWL is almost uni-
versally represented amongst the particulars.

Design Waterline (DWL): a vessel such as a yacht which
has minimal variations in loading will have a planned
flotation condition, usually “half-load,” i.e., the mean
between empty and full tanks, stores, and provisions.
DWL alternatively sometimes represents a maximum-
load condition.

Length Between Perpendiculars (LBP or LPP): a com-
mon length measure for cargo and military ships,
which may have relatively large variations in loading.
This is length between two fixed longitudinal loca-
tions designated as the forward perpendicular (FP)
and the aft perpendicular (AP). FP is conventionally
the forward face of the stem on the vessel’s summer
load line, the deepest waterline to which she can
legally be loaded. For cargo ships, AP is customarily
the centerline of the rudder stock. For military ships,
AP is customarily taken at the aft end of DWL, so
there is no distinction between LBP and DWL.

Beam: the maximum lateral extent of the molded hull
(excluding trim, guards, and strakes).

Draft: the maximum vertical extent of any part of the ves-
sel below waterline; therefore, the minimum depth of
water in which the vessel can float. Draft, of course, is
variable with loading, so the loading condition should
be specified in conjunction with draft; if not, the DWL
loading would be assumed.

Displacement: the entire mass of the vessel and contents
in some specified loading condition, presumably that
corresponding to the DWL and draft particulars.

Tonnage: measures of cargo capacity. See Section 13 for
discussion of tonnage measures.

Form coefficients, such as block and prismatic coeffi-
cient, are often included in particulars. See Section
10 for definition and discussion of common form
coefficients.

Obviously, the particulars furnish no detail about the
actual shape of the vessel. However, they serve (much
better, in fact, than a more detailed description of shape)
to convey the gross characteristics of the vessel in a very
compact and understandable form.

1.2.2 Offsets. Offsets represent a ship hull by
means of a tabulation or sampling of points from the hull
surface (their coordinates with respect to certain refer-
ence planes). Being a purely numerical form of shape
representation, offsets are readily stored on paper or in
computer files, and they are a relatively transparent
form, i.e., they are easily interpreted by anyone familiar

with the basics of cartesian analytic geometry. The com-
pleteness with which the hull is represented depends, of
course, on how many points are sampled. A few hundred
to a thousand points would be typical, and would gener-
ally be adequate for making hydrostatic calculations
within accuracy levels on the order of 1 percent. On the
other hand, offsets do not normally contain enough in-
formation to build the boat, because they provide only 2-
D descriptions of particular transverse and longitudinal
sections, and there are some aspects of most hulls that
are difficult or impossible to describe in that form
(mainly information about how the hull ends at bow
and stern).

An offsets-level description of a hull can take two
forms: (1) the offset table, a document or drawing pre-
senting the numerical values, and (2) the offset file, a
computer-readable form.

The offset table and its role in the traditional fairing
and lofting process are described later in Section 8. It is
a tabulation of coordinates of points, usually on a regu-
lar grid of station, waterline, and buttock planes. The off-
set table has little relevance to most current construc-
tion methods and is often now omitted from the process
of design.

An offset file represents the hull by points which are
located on transverse sections, but generally not on any
particular waterline or buttock planes. In sequence, the
points representing each station comprise a 2-D polyline
which is taken to be, for purposes of hydrostatic calcu-
lations, an adequate approximation of the actual curved
section. Various hydrostatics program packages require
different formats for the offset data, but the essential file
contents tend to be very similar in each case.

1.2.3 Wireframe. Wireframes represent a ship hull
or other geometry by means of 2-D and 3-D polylines or
curves. For example, the lines drawing is a 2-D wire-
frame showing curves along the surface boundaries,
and curves of intersection of the hull surface with spec-
ified planes. The lines drawing can also be thought of as
a 3-D representation (three orthogonal projections of a
3-D wireframe). Such a wireframe can contain all the in-
formation of an offsets table or file (as points in the
wireframe), but since it is not limited to transverse sec-
tions, it can conveniently represent much more; for ex-
ample, the important curves that bound the hull surface
at bow and stern.

Of course, a wireframe is far from a complete surface
definition. It shows only a finite number (usually a very
small number) of the possible plane sections, and only a
sampling of points from those and the boundary curves.
To locate points on the surface that do not lie on any
wires requires further interpolation steps, which are
hard to define in such a way that they yield an unequivo-
cal answer for the surface location. Also, there are many
possibilities for the three independent 2-D views to be
inconsistent with each other, yielding conflicting or am-
biguous information even about the points they do pre-
sume to locate. Despite these limitations, lines drawings
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and their full-size equivalents (loftings) have historically
provided sufficient definition to build vessels from, espe-
cially when the fabrication processes are largely manual
operations carried out by skilled workers.

1.2.4 Surface Modeling. In surface modeling, math-
ematical formulas are developed and maintained which
define the surfaces of a product. These definitions can
be highly precise, and can be (usually are) far more com-
pact than a wireframe definition, and far easier to mod-
ify. A surface definition is also far more complete: points
can be evaluated on the vessel’s surfaces at any desired
location, without ambiguity. A major advantage over
wireframe definitions is that wireframe views can be
easily computed from the surface, and (provided these
calculations are carried out with sufficient accuracy)
such views will automatically be 100 percent consistent
with each other, and with the 3-D surface. The ability to
automatically generate as much precise geometric infor-
mation as desired from a surface definition enables a
large amount of automation in the production process,
through the use of NC tools. Surface modeling is a suffi-
ciently complex technology to require computers to
store the representation and carry out the complex eval-
uation of results.

1.2.5 Solid Modeling. Solid modeling takes an-
other step upward in dimensionality and complexity to
represent mathematically the solid parts that make up
a product. In boundary representation, or B-rep, solid
modeling, a solid is represented by describing its
boundary surfaces, and those surfaces are represented,
manipulated, and evaluated by mathematical opera-
tions similar to surface modeling. The key ingredient
added in solid modeling is topology: besides a descrip-
tion of surface elements, the geometric model contains
full information about which surface elements are the
boundaries of which solid objects, and how those sur-
face elements adjoin one another to effect the enclo-
sure of a solid. Solid modeling functions are often
framed in terms of so-called Boolean operations — the
union, intersection, or subtraction of two solids — and
local operations, such as the rounding of a specified set
of edges and vertices to a given radius. These are high-
level operations that can simultaneously modify multi-
ple surfaces in the model.

1.3 Associative Geometric Modeling. The key con-
cept of associative modeling is to represent and store
generative relationships between the geometric ele-
ments of a model, in such a way that some elements can
be automatically updated (regenerated) when others
change, in order to maintain the captured relationships.
This general concept can obviously save much effort in
revising geometry during the design process and in mod-
ifying an existing design to satisfy changed require-
ments. It comes with a cost: associativity adds a layer of
inherently more complex and abstract structure to the
geometric model — structure which the designer must
comprehend, plan, and manage in order to realize the
benefits of the associative features.

1.3.1 Parametric (Dimension-Driven) Modeling.

In parametric or dimension-driven modeling, geometric
shapes are related by formulas to a set of leading dimen-
sions which become the parameters defining a paramet-
ric family of models. The sequence of model construction
steps, starting from the dimensions, is stored in a linear
“history” which can be replayed with different input di-
mensions, or can be modified to alter the whole paramet-
ric family in a consistent way.

1.3.2 Variational Modeling. In variational model-
ing, geometric positions, shapes, and constructions are
controlled by a set of dimensions, constraints, and for-
mulas which are solved and applied simultaneously
rather than sequentially. These relationships can include
engineering rules, which become built into the model.
The solution can include optimization of various aspects
of the design within the imposed constraints.

1.3.3 Feature-Based Modeling. Features are groups
of associated geometry and modeling operations that en-
capsulate recognizable behaviors and can be reused in
varying contexts. Holes, slots, bosses, fillets, and ribs are
features commonly utilized in mechanical designs and
supported by feature-based modeling systems. In ship
design, web frames, stiffeners, and shell plates might be
recognized as features and constructed by high-level
operations.

1.3.4 Relational Geometry. Relational geometry
(RG) is an object-oriented associative modeling frame-
work in which point, curve, surface, and solid geometric
elements (entities) are constructed with defined depend-
ency relationships between them. Each entity in an RG
model retains the information as to how it was con-
structed, and from what other entities, and consequently
it can update itself when any underlying entity changes.
RG has demonstrated profound capabilities for con-
struction of complex geometric models, particularly
involving sculptured surfaces, which possess many de-
grees of parametric variability combined with many con-
strained (“durable”) geometric properties.

The underlying logical structure of an RG model is a
directed graph (or digraph), in which each node repre-
sents an entity, and each edge represents a dependency
relationship between two entities. The graph is directed,
because each dependency is a directed relationship,
with one entity playing the role of support or parent and
the other playing the role of dependent or child. For ex-
ample, most curves are constructed from a set of “con-
trol points”; in this situation the curve depends on each
of the points, but the points do not depend on the curve.
Most surfaces are constructed from a set of curves; the
surface depends on the curves, not the other way
around. When there are multiple levels of dependency,
as is very typical (e.g., a surface depending on some
curves, each of which in turn depends on some points),
we can speak of an entity’s ancestors, i.e., all its sup-
ports, all their supports, etc., back to the beginning of
the model — all the entities that can have an effect on
the given entity. Likewise, we speak of an entity’s
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descendants as all its dependents, all their dependents,
etc., down to the end of the model — the set of entities
that are directly or indirectly affected when the given
entity changes. The digraph structure provides the com-
munication channels whereby all descendants are noti-
fied (invalidated) when any ancestor changes; it also
allows an invalidated entity to know who its current
supports are, so it can obtain the necessary information
from them to update itself correctly and in proper
sequence.

Relational geometry is characterized by a richness
and diversity of constructions, embodied in numerous
entity types. Under the RG framework, it is relatively
easy to support additional curve and surface construc-
tions. A new curve type, for example, just has to present
a standard curve interface, and be supported by some
defined combination of other RG entities — points,
curves, surfaces, planes, frames, and graphs (univariate
functions) — then it can participate in the relational
structure and serve in any capacity requiring a curve;
likewise for surface types.

Relational geometry is further characterized by sup-
port of entity types which are embedded in another en-
tity of equal or higher dimensionality (the host entity):

Beads: points embedded in a curve
Subcurves: curves embedded in another curve
Magnets: points embedded in a surface
Snakes: curves embedded in a surface
Subsurfaces and Trimmed Surfaces: surfaces embed-

ded in another surface
Rings: points embedded in a snake
Seeds: points embedded in a solid.

These embedded entities combine to provide power-
ful construction methods, particularly for building accu-
rate and durable junctions between surface elements in
complex models.

1.4 Geometry Standards: IGES, PDES/STEP. IGES
(Initial Graphics Exchange Specification) is a “neutral”
(i.e., nonproprietary) standard computer file format
evolved for exchange of geometric information between
CAD systems. It originated with version 1.0 in 1980 and
has gone through a sequence of upgrades, following de-
velopments in computer-aided design (CAD) technology,
up to version 6.0, which is still under development in
2008. IGES is a project of the American National
Standards Institute (ANSI) and has had wide participa-
tion by U.S. industries; it has also been widely adopted
and supported throughout the world. Since the early
1990s, further development of product data exchange
standards has transitioned to the broader international
STEP standard, but the IGES standard is very widely
used and will obviously remain an important medium of
exchange for many years to come.

The most widely used IGES format is an ASCII (text)
file strongly resembling a deck of 80-column computer
cards, and is organized into five sections: start, global,

directory entry, parameter data, and terminate. The
directory entry section gives a high-level synopsis of
the file, with exactly two lines of data per entity; the
parameter data section contains all the details. The use
of integer pointers linking these two sections makes
the file relatively complex and unreadable for a human.

Because it is designed for exchanges between a wide
range of CAD systems having different capabilities and
internal data representations, IGES provides for commu-
nication of many different entity types. Partial imple-
mentations which recognize only a subset of the entity
types are very common.

Except within the group of entities supporting B-rep
solids, IGES provides no standardized way to represent
associativities or relationships between entities.
Communication of a model through IGES generally re-
sults in a nearly complete loss of relationship informa-
tion. This lack has seriously limited the utility of IGES
during the 1990s, as CAD systems have become progres-
sively more associative in character.

STEP (STandard for the Exchange of Product model
data) is an evolving neutral standard for capturing, stor-
ing, and communicating digital product data. STEP goes
far beyond IGES in describing nongeometric information
such as design intent and decisions, materials, fabrication
and manufacturing processes, assembly, and mainte-
nance of the product; however, geometric information is
still a very large and important component of STEP repre-
sentations. STEP is a project of the International
Standards Organization (ISO). PDES Inc. was originally a
project of the U.S. National Institute of Standards and
Technology (NIST) with similar goals; this effort is now
strongly coordinated with the international STEP effort
and directed toward a single international standard.

STEP is implemented in a series of application proto-

cols (APs) related to the requirements and interests of
various industries. AP-203 (Configuration Controlled
Design) provides the geometric foundation for many
other APs. It is strongly organized around B-rep solid
representations, bounded by trimmed NURBS surfaces.
The application protocols currently developed specifi-
cally for shipbuilding are: AP-215 Ship Arrangements,
AP-216 Ship Molded Forms, AP-217 Ship Piping, and AP-
218 Ship Structures.

1.5 Range of Geometries Encountered in Marine Design.
The hull designs of cargo ships may be viewed as rather
stereotyped, but looking at the whole range of marine
design today, one cannot help but be impressed with the
extraordinary variety of vessel configurations being pro-
posed, analyzed, constructed, and put into practical
service for a broad variety of marine applications. Even
the cargo ships are evolving subtly, as new methods of
hydrodynamic analysis enable the optimization of their
shapes for improved performance. In this environment,
the flexibility, versatility, and efficiency of geometric
design tools become critical factors enabling design
innovation.



THE GEOMETRY OF SHIPS 7

The concept of a point is absolutely central to geometry.
A point is an abstract location in space, infinitesimal in
size and extent. A point may be either fixed or variable
in position. Throughout geometry, curves, surfaces, and
solids are described in terms of sets of points.

2.1 Coordinate Systems. Coordinates provide a sys-
tematic way to use numbers to define and describe the lo-
cations of points in space. The dimensionality of a space
is the number of independent coordinates needed to
locate a unique point in it. Spaces of two and three dimen-
sions are by far the most common geometric environ-
ments for ship design. The ship and its components are
fundamentally 3-D objects, and the design process bene-
fits greatly when they are recognized and described as
such. However, 2-D representations — drawings and CAD
files — are still widely used to document, present, and
analyze information about a design, and are usually a
principal means of communicating geometric informa-
tion between the (usually 3-D) design process and the
(necessarily 3-D) construction process.

Cartesian coordinates are far and away the most
common coordinate system in use. In a 2-D cartesian co-
ordinate system, a point is located by its signed dis-
tances (usually designated x, y) along two orthogonal
axes passing through an arbitrary reference point called
the origin, where x and y are both zero. In a 3-D carte-
sian coordinate system there is additionally a z coordi-
nate along a third axis, mutually orthogonal to the x and
y axes. A 2-D or 3-D cartesian coordinate system is often
referred to as a frame of reference, or simply a frame.

Notice that when x and y axes have been estab-
lished, there are two possible orientations for a z axis
which is mutually perpendicular to x and y directions.
These two choices lead to so-called right-handed and
left-handed frames. In a right-handed frame, if the ex-
tended index finger of the right hand points along the
positive x-axis and the bent middle finger points along
the positive y-axis, then the thumb points along the
positive z-axis (Fig. 1).

Right-handed frames are conventional and preferred
in almost all situations. (However, note the widespread
use of a left-handed coordinate system in computer
graphic displays: x to the right, y vertically upward, z
into the screen.) Some vector operations (e.g., cross
product and scalar triple product) require reversal of
signs in a left-handed coordinate system.

In the field of ship design and analysis, there is no
standard convention for the orientation of the global co-
ordinate system. x is usually along the longitudinal axis
of the ship, but the positive x direction can be either for-
ward or aft. z is most often vertical, but the positive z di-
rection can be either up or down.

In a 2-D cartesian coordinate system, the distance be-
tween any two points p � (p1, p2) and q � (q1, q2) is cal-
culated by Pythagoras’ theorem:

d � |q � p| � [(q1 � p1)2 � (q2 � p2)2]1/2 (1)

In 3-D, the distance between two points p � (p1, p2,
p3) and q � (q1, q2, q3) is:

d � |q � p| � [(q1 � p1)2 � (q2 � p2)2

� (q3 � p3)2]1/2 (2)

In a ship design process it is usual and advantageous
to define a master or global coordinate system to which
all parts of the ship are ultimately referenced. However,
it is also frequently useful to utilize local frames having
a different origin and/or orientation, in description of
various regions and parts of the ship. For example, a
standard part such as a pipe tee might be defined in
terms of a local frame with origin at the intersection of
axes of the pipes, and oriented to align with these axes.
Positioning an instance of this component in the ship
requires specification of both (1) the location of the
component’s origin in the global frame, and (2) the ori-
entation of the component’s axes with respect to those
of the global frame (Fig. 2).

Local frames are also very advantageous in describing
movable parts of a vessel. A part that moves as a rigid
body can be described in terms of constant coordinates
in the part’s local frame of reference; a description of the
motion then requires only a specification of the time-
varying positional and/or angular relationship between
the local and global frames.

Section 2
Points and Coordinate Systems

Fig. 1 Right hand rule.
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The simplest description of a local frame is to give
the coordinates XO � (XO, YO, ZO) of its origin in the
global frame, plus a triple of mutually orthogonal unit
vectors {êx, êy, êz} along the x, y, z directions of the
frame.

Non-cartesian coordinate systems are sometimes
useful, especially when they allow some geometric sym-
metry of an object to be exploited. Cylindrical polar co-
ordinates (r, �, z) are especially useful in problems that
have rotational symmetry about an axis. The relation-
ship to cartesian coordinates is:

x � r cos�, y � r sin�, z � z (3)

or, conversely,

r � [x2 � y2]1/2, � � arctan (y / x), z � z (4)

For example, if the problem of axial flow past a body
of revolution is transformed to cylindrical polar coordi-
nates with the z axis along the axis of symmetry, flow
quantities such as velocity and pressure are independent
of �; thus, the coordinate transformation reduces the
number of independent variables in the problem from
three to two.

Spherical polar coordinates (R, �, 	) are related to
cartesian coordinates as follows:

x � R cos� cos	, y � R cos� sin	, z � R sin� (5)

or conversely,

R � [x2 � y2 � z2]1/2,

� � arctan(z/[x2 � y2]1/2), (6)

	 � arctan (y / x)

2.2 Homogeneous Coordinates. Homogeneous coordi-
nates are an abstract representation of geometry,
which utilize a space of one higher dimension than
the design space. When the design space is 3-D, the
corresponding homogeneous space is four-dimensional

(4-D). Homogeneous coordinates are widely used for
the underlying geometric representations in CAD and
computer graphics systems, but in general the user
of such systems has no need to be aware of the fourth
dimension. (Note that the fourth dimension in the
context of homogeneous coordinates is entirely dif-
ferent from the concept of time as a fourth dimen-
sion in relativity.) The homogeneous representation
of a 3-D point [x y z] is a 4-D vector [wx wy wz w],
where w is any nonzero scalar. Conversely, the homo-
geneous point [a b c d], d � 0, corresponds to the
unique 3-D point [a / d b / d c / d]. Thus, there is an
infinite number of 4-D vectors corresponding to a given
3-D point.

One advantage of homogeneous coordinates is that
points at infinity can be represented exactly without ex-
ceeding the range of floating-point numbers; thus, [a b c

0] represents the point at infinity in the direction from
the origin through the 3-D point [a b c]. Another primary
advantage is that in terms of homogenous coordinates,
many useful coordinate transformations, including
translation, rotation, affine stretching, and perspective
projection, can be performed by multiplication by a suit-
ably composed 4 � 4 matrix.

2.3 Coordinate Transformations. Coordinate trans-
formations are rules or formulas for obtaining the coor-
dinates of a point in one coordinate system from its
coordinates in another system. The rules given above re-
lating cylindrical and spherical polar coordinates to
cartesian coordinates are examples of coordinate trans-
formations.

Transformations between cartesian coordinate sys-
tems or frames are an important subset. Many useful co-
ordinate transformations can be expressed as vector and
matrix sums and products.

Suppose x � (x, y, z) is a point expressed in frame co-
ordinates as a column vector; then the same point in
global coordinates is

X � (X, Y, Z) � XO � Mx (7)

where XO is the global position of the frame origin, and
M is the 3 � 3 orthogonal matrix whose rows are the unit
vectors êx, êy, êz. The inverse transformation (from
global coordinates to frame coordinates) is:

x � M�1 (X � XO) � MT (X � XO) (8)

(Since M is orthogonal, its inverse is equal to its trans-
pose.) A uniform scaling by the factor � (for example, a
change of units) occurs on multiplying by the scaled
identity matrix:

(9)

� 0 0

0 � 0

0 0 �

⎫
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪
⎩

S�� I�

Fig. 2 Local and global frames.
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while an unequal (affine) scaling with respect to the
three coordinates is performed by multiplying by the di-
agonal matrix:

(10)

Rotation through an angle � about an arbitrary axis
(unit vector û) through the origin is described by the
matrix:

(11)

where
R11 � cos� � u2

x (1 � cos�)
R12 � �uz sin� � uxuy (1 � cos�)
R13 � uy sin� � uxuz (1 � cos�)
R21 � uy sin� � uyux (1 � cos�)
R22 � cos� � u2

y (1 � cos�)
R23 � �ux sin� � uyuz (1 � cos�)
R31 � �uy sin� � uzux (1 � cos�)
R32 � ux sin� � uzuy (1 � cos�)
R33 � cos� � u2

z (1 � cos�)

Sequential transformations can be combined through
matrix multiplication. In general, it is essential to
observe the proper order in such sequences, since the re-
sult of the same two transformations performed in oppo-
site order is usually different. For example, suppose the
transformations represented by the matrices M1, M2, M3

(multiplying a column vector of coordinates from the
left) are applied in that order. The matrix product M �
M3M2M1 is the proper combined transformation. Note
that if you have a large number of points to transform, it
is approximately three times more efficient to first ob-
tain M and then use it to process all the points, rather
than applying the three transformations sequentially to
each point.

2.4 Homogeneous Coordinate Transformations.
When 4-D homogeneous coordinates are used to re-
present points in three-space, the transformations are
represented by 4 � 4 matrices. 3-D coordinates are ob-
tained as a last step by performing three divisions.

Scaling, affine stretching, and rotations are performed
by the 4 � 4 matrices:

(12)
S 0

0 1

⎫
⎪
⎭

⎧
⎪
⎩

A 0

0 1

⎫
⎪
⎭

⎧
⎪
⎩

R 0

0 1

⎫
⎪
⎭

⎧
⎪
⎩

R R R

R R R

R R R

⎫
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪
⎩

R �

11 12 13

21 22 23

31 32 33

 x

y

z

� 0 0

0 � 0

0 0 �

⎫
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪
⎩

A �

where S, A, and R are the 3 � 3 matrices given above for
transformation of three-vectors.

Translation is performed by a 4 � 4 matrix:

(13)

where (tx, ty, tz) is the 3-D displacement vector. This ex-
ample also illustrates the alternative, frequently used in
computer graphics literature, of representing a point by a
4-D row vector [wx wy wz w], and a transformation as a
4 � 4 matrix multiplication from the right.

2.5 Relational Frames. In relational geometry, there
is a Frame class of entities whose members are local
frames. Most frame entities are defined by reference to
three supporting points (Frame3 entity type):

(a) The first point is the origin XO of the frame
(b) The x axis of the frame is in the direction from XO

to the second point
(c) The x, y-plane of the frame is the plane of the

three points.

Provided the three points are distinct and non-
collinear, this is exactly the minimum quantity of infor-
mation required to define a right-handed frame. Frames
can also be defined by a point (used for XO) and three ro-
tation angles (RPYFrame entity type).

Frames are used in several ways:

• Points can be located using frame coordinates and co-
ordinate offsets and/or polar angles in a frame
• Copies of points (CopyPoint), curves (CopyCurve),
and surfaces (CopySurf) can be made from one frame to
another. The copy is durably related in shape to the sup-
porting curve or surface and can be affinely scaled in the
process
• Insertion frame for importing wireframe geometry and
components in a desired orientation.

2.6 Relational Points. The objective of almost all re-
lational geometry applications is to construct models
consisting of curves, surfaces, and solids, but all of these
constructions rest on a foundation of points: points are
primarily used as the control points of curves, surfaces
are generally built from curves, solids are built from sur-
faces. Many of the points used are made from the sim-
plest entity type, the Absolute Point (AbsPoint), speci-
fied by absolute X, Y, Z coordinates in the global
coordinate system. However, relational point entity
types of several kinds play essential roles in many mod-
els, building in important durable properties and en-
abling parametric variations.

= [wx wy wz w] � �
t t t 1

1 0 0 0

0 1 0 0

0 0 1 0

x y z

[w �x �  w �y �  w �z �  w �] � [wx wy wz w]T
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and radius (‘e5’) to establish the transverse pontoon
cross section. From here, it is a short step to a consis-
tent surface model having the 7 parametric degrees of
freedom established in these relational points.

A curve is a 1-D continuous point set embedded in a 2-D
or 3-D space. Curves are used in several ways in the def-
inition of ship geometry:

• as explicit design elements, such as the sheer line,
chines, or stem profile of a ship
• as components of a wireframe representation of
surfaces
• as control curves for generating surfaces by various
constructions.

3.1 Mathematical Curve Definitions; Parametric vs.
Explicit vs. Implicit. In analytic geometry, there are three
common ways of defining or describing curves mathe-
matically: implicit, explicit, and parametric.

Implicit curve definition: A curve is implicitly defined
in 2-D as the set of points that satisfy an implicit equa-
tion in two coordinates:

f(x, y) � 0 (14)

Section 3
Geometry of Curves

Fig. 3 Relational points used to frame a parametrically variable model of
a tension-leg platform (TLP). (Perspective view; see explanation in the text.)

Some point entity types represent points embedded
in curves (“beads”), points embedded in surfaces
(“magnets”), and points embedded in solids (“seeds”)
by various constructions. These will be described
in more detail in following sections, in conjunction
with discussion of parametric curves, surfaces, and
solids. Other essentially 3-D relational point entities
include:

Relative Point (RelPoint): specified by �X, �Y, �Z off-
sets from another point

PolarPoint: specified by spherical polar coordinate dis-
placement from another point

FramePoint: specified by x, y, z frame coordinates, or
frame coordinate offsets �x, �y, �z from another
point, in a given frame

Projected Point (ProjPoint): the normal projection of a
point onto a plane or line

Mirror Point (MirrPoint): mirror image of a point with
respect to a plane, line, or point

Intersection Point (IntPoint): at the mutual intersection
point of three planes or surfaces

CopyPoint: specified by a point, a source frame, a desti-
nation frame, and x, y, z scaling factors.

Figure 3 shows the application of some of these
point types in framing a parametric model of an off-
shore structure (four-column tension-leg platform).
The model starts with a single AbsPoint ‘pxyz,’ which
sets three leading dimensions: longitudinal and trans-
verse column center, and draft. From ‘pxyz,’ a set of
ProjPoints are made: ‘pxy0,’ ‘p0yz,’ and ‘px0z’ on the
three coordinate planes, then further ProjPoints ‘p00z,’
‘px00,’ ‘p0y0’ are made creating a rectangular frame-
work all driven by ‘pxyz.’ Line ‘col_axis’ from ‘pxyz’ to
‘pxy0’ is the vertical column axis. On Line ‘l0’ from
‘pxyz’ to ‘p00z,’ bead ‘e1’ sets the column radius; ‘e1’ is
revolved 360 degrees around ‘col_axis‘ to make the hor-
izontal circle ‘c0,’ the column base. On Line ‘l1’ from
‘p0yz’ to ‘p0y0’ there are two beads: ‘e2’ sets the height
of the longitudinal pontoon centerline and ‘e3’ sets its
radius. Circle ‘c1,’ made from these points in the X � 0
plane, is the pontoon cross-section. Similarly, circle ‘c2’
is made in the Y � 0 plane with variable height (‘e4’)
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and radius (‘e5’) to establish the transverse pontoon
cross section. From here, it is a short step to a consis-
tent surface model having the 7 parametric degrees of
freedom established in these relational points.

A curve is a 1-D continuous point set embedded in a 2-D
or 3-D space. Curves are used in several ways in the def-
inition of ship geometry:

• as explicit design elements, such as the sheer line,
chines, or stem profile of a ship
• as components of a wireframe representation of
surfaces
• as control curves for generating surfaces by various
constructions.

3.1 Mathematical Curve Definitions; Parametric vs.
Explicit vs. Implicit. In analytic geometry, there are three
common ways of defining or describing curves mathe-
matically: implicit, explicit, and parametric.

Implicit curve definition: A curve is implicitly defined
in 2-D as the set of points that satisfy an implicit equa-
tion in two coordinates:

f(x, y) � 0 (14)

Section 3
Geometry of Curves

Fig. 3 Relational points used to frame a parametrically variable model of
a tension-leg platform (TLP). (Perspective view; see explanation in the text.)
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point, in a given frame
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Mirror Point (MirrPoint): mirror image of a point with
respect to a plane, line, or point

Intersection Point (IntPoint): at the mutual intersection
point of three planes or surfaces

CopyPoint: specified by a point, a source frame, a desti-
nation frame, and x, y, z scaling factors.

Figure 3 shows the application of some of these
point types in framing a parametric model of an off-
shore structure (four-column tension-leg platform).
The model starts with a single AbsPoint ‘pxyz,’ which
sets three leading dimensions: longitudinal and trans-
verse column center, and draft. From ‘pxyz,’ a set of
ProjPoints are made: ‘pxy0,’ ‘p0yz,’ and ‘px0z’ on the
three coordinate planes, then further ProjPoints ‘p00z,’
‘px00,’ ‘p0y0’ are made creating a rectangular frame-
work all driven by ‘pxyz.’ Line ‘col_axis’ from ‘pxyz’ to
‘pxy0’ is the vertical column axis. On Line ‘l0’ from
‘pxyz’ to ‘p00z,’ bead ‘e1’ sets the column radius; ‘e1’ is
revolved 360 degrees around ‘col_axis‘ to make the hor-
izontal circle ‘c0,’ the column base. On Line ‘l1’ from
‘p0yz’ to ‘p0y0’ there are two beads: ‘e2’ sets the height
of the longitudinal pontoon centerline and ‘e3’ sets its
radius. Circle ‘c1,’ made from these points in the X � 0
plane, is the pontoon cross-section. Similarly, circle ‘c2’
is made in the Y � 0 plane with variable height (‘e4’)



In 3-D, two implicit equations are required to define a
curve:

f(x, y, z) � 0, g(x, y, z) � 0 (15)

Each of the two implicit equations defines an implicit
surface, and the implicit curve is the intersection (if any)
of the two implicit surfaces.

Explicit curve definition: In 2-D, one coordinate is ex-
pressed as an explicit function of the other: y � f(x), or
x � g(y). In 3-D, two coordinates are expressed as ex-
plicit functions of the third coordinate, for example: y �
f(x), z � g(x).

Parametric curve definition: In either 2-D or 3-D,
each coordinate is expressed as an explicit function of a
common dimensionless parameter:

x � f(t), y � g(t), [z � h(t)] (16)

The curve is described as the locus of a moving point,
as the parameter t varies continuously over a specified
domain such as [0, 1].

Implicit curves have seen little use in CAD, for appar-
ently good reasons. An implicit curve may have multiple
closed or open loops, or may have no solution at all.
Finding any single point on an implicit curve from an ar-
bitrary starting point requires an iterative search similar
to an optimization. Tracing an implicit curve (i.e., tabu-
lating a series of accurate points along it) requires the
numerical solution of one or two (usually nonlinear) si-
multaneous equations for each point obtained. These are
serious numerical costs. Furthermore, the relationship
between the shape of an implicit curve and its
formula(s) is generally obscure.

Explicit curves were frequently used in early CAD
and CAM systems, especially those developed around a
narrow problem domain. They provide a simple and
efficient formulation that has none of the problems just
cited for implicit curves. However, they tend to prove
limiting when a system is being extended to serve in a
broader design domain. For example, Fig. 4 shows sev-
eral typical midship sections for yachts and ships. Some
of these can be described by single-valued explicit equa-
tions y � f(z), some by z � g(y); but neither of these for-
mulations is suitable for all the sections, on account of
infinite slopes and multiple values, and neither explicit
formulation will serve for the typical ship section (D)
with flat side and bottom.

Parametric curves avoid all these limitations, and are
widely utilized in CAD systems today. Figure 5 shows how
the “difficult” ship section (Fig. 4D) is produced easily by
parametric functions y � g(t), z � h(t), 0 	 t 	 1, without
any steep slopes or multiple values.

3.2 Analytic Properties of Curves. In the following, we
will denote a parametric curve by x(t), the boldface letter
signifying a vector of two or three components ({x, y} for
2-D curves and {x, y, z} for 3-D curves). Further, we will
assume the range of parameter values is [0, 1].

Differential geometry is the branch of classical
geometry and calculus that studies the analytic proper-
ties of curves and surfaces. We will be briefly present-
ing and utilizing various concepts from differential
geometry. The reader can refer to the many available
textbooks for more detail; for example, Kreyszig (1959)
or Pressley (2001).Fig. 4 Typical midship sections.

Fig. 5 Construction of a parametric curve.

THE GEOMETRY OF SHIPS 11
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The first derivative of x with respect to the parameter
t, x�(t), is a vector that is tangent to the curve at t, point-
ing in the direction of increasing t; therefore, it is called
the tangent vector. Its magnitude, called the parametric

velocity of the curve at t, is the rate of change of arc
length with respect to t:

ds/dt � (x� 
 x�)1/2 (17)

Distance measured along the curve, known as arc

length s(t), is obtained by integrating this quantity. The
unit tangent vector is thus t̂� x�(t)/(ds/dt) � dx/ds. Note
that the unit tangent will be indeterminate at any point
where the parametric velocity vanishes, whereas the tan-
gent vector is well defined everywhere, as long as each
component of x(t) is a continuous function.

Curvature and torsion of a curve are both scalar quan-
tities with dimensions 1/length. Curvature is the magni-
tude of the rate of change of the unit tangent with re-
spect to arc length:

� � | dt̂ /ds | � | d2x /ds2 | (18)

Thus, it measures the deviation of the curve from
straightness. Radius of curvature is the reciprocal of cur-
vature: � � 1/�. The curvature of a straight line is identi-
cally zero.

Torsion is a measure of the deviation of the curve
from planarity, defined by the scalar triple product:

� � �2 | dx /ds d2x /ds2 d3x /ds3 | 
(19)

� �2 | t̂ dt̂ /ds d2 t̂ /ds2 |
The torsion of a planar curve (i.e., a curve that lies en-

tirely in one plane) is identically zero.
A curve can represent a structural element that has

known mass per unit length w(t). Its total mass and mass
moments are then

(20)

(21)

with the center of mass at x � M/m.

3.3 Fairness of Curves. Ships and boats of all types
are aesthetic as well as utilitarian objects. Sweet or “fair”
lines are widely appreciated and add great value to many
boats at very low cost to the designer and builder.
Especially when there is no conflict with performance
objectives, and slight cost in construction, it verges on
the criminal to design an ugly curve or surface when a
pretty one would serve as well.

“Fairness” being an aesthetic rather than mathematical
property of a curve, it is not possible to give a rigorous
mathematical or objective definition of fairness that every-
one can agree on. Nevertheless, many aspects of fairness
can be directly related to analytic properties of a curve.

M�
0

1

w( t) x( t)(ds / dt)dt�

m�
0

1

w( t)(ds / dt)dt�

It is possible to point to a number of features that are
contrary to fairness. These include:

• unnecessarily hard turns (local high curvature)
• flat spots (local low curvature)
• abrupt change of curvature, as in the transition from a
straight line to a tangent circular arc
• unnecessary inflection points (reversals of curvature).

These undesirable visual features really refer to 2-D
perspective projections of a curve rather than the 3-D
curve itself; but because the curvature distribution in per-
spective projection is closely related to its 3-D curvatures,
and the vessel may be viewed or photographed from
widely varying viewpoints, it is valuable to check these
properties in 3-D as well as in 2-D orthographic views.

Most CAD programs that support design of curves
provide tools for displaying curvature profiles, either as
graphs of curvature vs. arc length, or as so-called porcu-

pine displays (Fig. 6).
Based on the avoidance of unnecessary inflection

points in perspective projections, the author has advo-
cated and practiced, as an aesthetic principle, avoidance
of unnecessary torsion; in other words, each of the prin-
cipal visual curves of a vessel should lie in a plane —
unless, of course, there is a good functional reason for it
not to. If a curve is planar and is free of inflection in any
particular perspective or orthographic view, from a view
point not in the plane, then it is free of inflection in all
perspective and orthographic views.

3.4 Spline Curves. As the name suggests, spline
curves originated as mathematical models of the flexi-
ble curves used for drafting and lofting of freeform
curves in ship design. Splines were recognized as a sub-
ject of interest to applied mathematics during the 1960s
and 70s, and developed into a widely preferred means of
approximation and representation of functions for prac-
tically any purpose. During the 1970s and 80s spline
functions became widely adopted for representation
of curves and surfaces in computer-aided design and
computer graphics, and they are a nearly universal stan-
dard in those fields today.

Splines are composite functions generated by splicing
together spans of relatively simple functions, usually
low-order polynomials or rational polynomials (ratios of
polynomial functions). At the locations (called knots)
where the spans join, the adjoining functions satisfy cer-
tain continuity conditions more or less automatically.
For example, in the most popular family of splines, cubic
splines (composed of cubic polynomial spans), the
spline function and its first two derivatives (i.e., slope
and curvature) are continuous across a typical knot. The
cubic spline is an especially apropos model of a drafting
spline, arising very naturally from the small-deflection
theory for a thin uniform beam subject to concentrated
shear loads at the points of support.

Spline curves used in geometric design can be explicit
or parametric. For example, the waterline of a ship
might be designed as an explicit spline function y � f(x).
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However, this explicit definition will be unusable if the
waterline endings include a rounding to centerline at ei-
ther end, because dy/dx would be infinite at such an end;
splines are piecewise polynomials, and no polynomial
can have an infinite slope. Because of such limitations,
explicit spline curves are seldom used. A parametric
spline curve x � X(t), y � Y(t), z � Z(t) (where each of
X, Y, and Z is a spline function, usually with the same
knots) can turn in any direction in space, so it has no
such limitations.

3.5 Interpolating Splines. A common form of spline
curve, highly analogous to the drafting spline, is the cubic
interpolating spline. This is a parametric spline in 2-D or
3-D that passes through (interpolates) a sequence of N 2-
D or 3-D data points Xi, i � 1,...N. Each of the N-1 spans
of such a spline is a parametric cubic curve, and at the
knots the individual spans join with continuous slope and
curvature. It is common to use a knot at each interior
data point, although other knot distributions are possible.
Besides interpolating the data points, two other issues
need to be resolved to specify a cubic spline uniquely:

(a) Parameter values at the knots. One common way
of choosing these is to divide the parameter space uni-
formly, i.e., the knot sequence {0, 1/(N � 1), 2/(N �
1),...(N � 2)/(N � 1), 1}. This can be satisfactory when
the data points are roughly uniformly spaced, as is some-
times the case; however, for irregularly spaced data,
especially when some data points are close together,
uniform knots are likely to produce a spline with loops
or kinks. A more satisfactory choice for knot sequence is
often chord-length parameterization: {0, s1/S, s2/S,...,1},

where si is the cumulative sum of chord lengths
(Euclidean distance) ci between data points i � 1 and i,
and S is the total chord length.

(b) End conditions. Let us count equations and
unknowns for an interpolating cubic spline. First, the un-
knowns: there are N � 1 cubic spans, each with 4D coef-
ficients, where D is the number of dimensions (two or
three), making a total of D(4N � 4) unknowns.
Interpolating N D-dimensional points provides ND equa-
tions, and there are N � 1 knots, each with three conti-
nuity conditions (value, first and second derivatives), for
a total of D(4N � 6) equations. Therefore, two more con-
ditions are needed for each dimension, and it is usual to
impose one condition on each end of the spline. There
are several possibilities:

• “Natural” end condition (zero curvature or second
derivative)
• Slope imposed
• Curvature imposed
• Not-a-knot (zero discontinuity in third derivative at
the penultimate knot).

These can be mixed, i.e., there is no requirement that
the same end condition be applied to both ends or to all
dimensions.

3.6 Approximating or Smoothing Splines. Splines are
also widely applied as approximating and smoothing
functions. In this case, the spline does not pass through
all its data points, but rather is adjusted to pass optimally
“close to” its data points in some defined sense such as
least squares or minmax deviation.

Fig. 6 Curvature profile graph and porcupine display of curvature distribution. Both tools are revealing undesired inflection points in the curve.
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3.7 B-spline Curves. A B-spline curve is a continuous
curve x(t) defined in relation to a sequence of control

points {Xi, i � 1,...N} as an inner product (dot product)
of the data points with a sequence of B-spline basis

functions Bi(t):

(22)

The B-spline basis functions (“B-splines”) are the
nonnegative polynomial splines of specified order k (�
polynomial degree plus 1) which are nonzero over a
minimal set of spans. The order k can be any integer
from 2 (linear) to N. The B-splines are efficiently and
stably calculated by well-known recurrence relations,
and depend only on N, k, and a sequence of (N � k) knot
locations tj, j � 1,...(N � k). The knots are most com-
monly chosen by the following rules (known as “uni-
form clamped” knots):

tj � 0, 1 	 j 	 k (23)

tj � ( j � k)/(N � k � 1), k 
 j 
 N (24)

tj � 1, N 	 j 	 N � k (25)

For example, Fig. 7 shows the B-spline basis func-
tions for cubic splines (k � 4) with N � 6 control points.

The B-splines are normalized such that

(26)

for all t, i.e., the B-splines form a partition of unity. Thus,
the B-splines can be viewed as variable weights applied
to the control points to generate or sweep out the curve.
The parametric B-spline curve imitates in shape the
(usually open) control polygon or polyline joining its
control points in sequence. Another interpretation of B-
spline curves is that they act as if they are attracted to
their control points, or attached to the interior control
points by springs.

The following useful properties of B-spline paramet-
ric curves arise from the general properties of B-spline
basis functions (see Fig. 8):

Bi ( t)�1�
i�1

N

x( t)� Xi Bi ( t)�
i�1

N

• x(0) � X1 and x(1) � XN, i.e., the curve starts at its
first control point, and ends at its last control point
• x(t) is tangent to the control polygon at both end points
• The curve does not go outside the convex hull of the
control points, i.e., the minimal closed convex polygon
enclosing all the control points
• “Local support”: each control point only influences a
local portion of the curve (at most k spans, and fewer at
the ends)
• If k or more consecutive control points lie on a
straight line, a portion of the B-spline curve will lie ex-
actly on that line
• If k or more consecutive control points lie in a plane,
a portion of the B-spline curve will lie exactly in that
plane. (If all control points lie in a plane, so does the en-
tire curve.)
• The parametric velocity of the curve reflects the spac-
ing of control points, i.e., the velocity will be low where
control points are close together.

Fig. 7 B-spline basis functions for N � 6, k � 4 (cubic splines) with uniform knots.

Fig. 8 Properties of B-spline curves.
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Figure 8 illustrates some of these properties for k � 4,
N � 6.

A degree-1 (k � 2) B-spline curve is identical to the
parameterized polygon; i.e., it is the polyline joining the
control points in sequence, with parameter value t �
(i � 1)/(N � 1) at the ith control point. A B-spline curve
x(t) has k � 2 continuous derivatives at each knot; there-
fore, the higher k is, the smoother the curve. However,
smoother is also stiffer; higher k generally makes the
curve adhere less to the shape of the polygon. When k �
N there are no interior knots, and the resulting paramet-
ric curve (known then as a Bezier curve) is analytic.

3.8 NURBS Curves. NURBS is an acronym for
“NonUniform Rational B-splines.” “Nonuniform” reflects
optionally nonuniform knots. “Rational” reflects the rep-
resentation of a NURBS curve as a fraction (ratio) in-
volving nonnegative weights wi applied to the N control
points:

(27)

If the weights are uniform (i.e., all the same value),
this simplifies to equation (26), so the NURBS curve with
uniform weights is just a B-spline curve. When the
weights are nonuniform, they modulate the shape of the
curve and its parameter distribution. If you view the be-
havior of the B-spline curve as being attracted to its con-
trol points, the weight wi makes the force of attraction
to control point i stronger or weaker.

NURBS curves share all the useful properties cited in
the previous section for B-spline curves. A primary advan-
tage of NURBS curves over B-spline curves is that specific
choices of weights and knots exist which will make a
NURBS curve take the exact shape of any conic section,
including especially circular arcs. Thus NURBS provides a
single unified representation that encompasses both the
conics and free-form curves exactly. NURBS curves can
also be used to approximate any other curve, to any de-
sired degree of accuracy. They are therefore widely
adopted for curve representation and manipulation, and
for communication of curves between CAD systems. For
the rules governing weight and knot choices, and much
more information about NURBS curves and surfaces, see,
for example, Piegl & Tiller (1995).

3.9 Reparameterization of Parametric Curves. A curve
is a one-dimensional point set embedded in a 2-D or 3-D
space. If it is either explicit or parametric, a curve has a
“natural” parameter distribution implied by its construc-
tion. However, if the curve is to be used in some further
construction, e.g., of a surface, it may be desirable to have
its parameter distributed in a different way. In the case of
a parametric curve, this is accomplished by the functional
composition:

y(t) � x(t�), where t� � f(t). (28)

If f is monotonic increasing, and f(0) � 0 and f(1) �
1, then y(t) consists of the same set of points as x(t),

x( t)� wi Xi Bi ( t) � wi Bi ( t)�
i�1

N

�
i�1

N

but traversed with a different velocity. Thus reparame-
terization does not change the shape of a curve, but it
may have important modeling effects on the curve’s
descendants.

3.10 Continuity of Curves. When two curves join or
are assembled into a single composite curve, the
smoothness of the connection between them can be
characterized by different degrees of continuity. The
same descriptions will be applied later to continuity be-
tween surfaces.

G0: Two curves that join end-to-end with an arbitrary
angle at the junction are said to have G0 continuity, or
“geometric continuity of zero order.”

G1: If the curves join with zero angle at the junction (the
curves have the same tangent direction) they are said
to have G1, first order geometric continuity, slope
continuity, or tangent continuity.

G2: If the curves join with zero angle, and have the same
curvature at the junction, they are said to have G2

continuity, second order geometric continuity, or cur-
vature continuity.

There are also degrees of parametric continuity:

C0: Two curves that share a common endpoint are C0.
They may join with G1 or G2 continuity, but if their
parametric velocities are different at the junction,
they are only C0.

C1: Two curves that are G1 and have in addition the same
parametric velocity at the junction are C1.

C2: Two curves that are G2 and have the same paramet-
ric velocity and acceleration at the junction are C2.

C1 and C2 are often loosely used to mean G1 and G2,
but parametric continuity is a much more stringent con-
dition. Since the parametric velocity is not a visible at-
tribute of a curve, C1 or C2 continuity has relatively little
significance in geometric design.

3.11 Projections and Intersections. Curves can arise
from various operations on other curves and surfaces.
The normal projection of a curve onto a plane is one
such operation. Each point of the original curve is pro-
jected along a straight line normal to the plane, resulting
in a corresponding point on the plane; the locus of all
such projected points is the projected curve. If the plane
is specified by a point p lying in the plane and the unit
normal vector û, the points x that lie in the plane satisfy
(x � p) 
 û � 0. The projected curve can then be de-
scribed by

x(t) � x0 (t) � û[(x0 (t) � p) 
 û] (29)

where x0(t) is the “basis” curve.
Curves also arise from intersections of surfaces with

planes or other surfaces. Typically, there is no direct
formula like equation (29) for finding points on an
intersection of a parametric surface; instead, each point
located requires the iterative numerical solution of a
system of one or more (usually nonlinear) equations.
Such curves are much more laborious to compute than
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direct curves, and there are many more things that can
go wrong; for example, a surface and a plane may not in-
tersect at all, or may intersect in more than one place.

3.12 Relational Curves. In relational geometry,
most curves are constructed through defined relation-
ships to point entities or to other curves. For example,
a Line is a straight line defined by reference to two con-
trol points X1, X2. An Arc is a circular arc defined by
reference to three control points X1, X2, X3; since there
are several useful constructions of an Arc from three
points, the Arc entity has several corresponding types.
A BCurve is a uniform B-spline curve which depends
on two or more control points {X1, X2,...XN}. A
SubCurve is the portion of any curve between two
beads, reparameterized to the range [0, 1]. A ProjCurve

is the projected curve described in the preceding sec-
tion, equation (29).

One advantage of the relational structure is that a
curve can be automatically updated if any of its sup-
porting entities changes. For example, a projected
curve (ProjCurve) will be updated if either the basis
curve or the plane of projection changes. Another im-
portant advantage is that curves can be durably joined
(C0) at their endpoints by referencing a given point en-
tity in common. Relational points used in curve con-
struction can realize various useful constraints. For
example, making the first control point of a B-spline
curve be a Projected Point, made by projecting the sec-

ond control point onto the centerplane, is a simple way
to enforce a requirement that the curve start at the cen-
terplane and leave it normally, e.g., for durable bow or
stern rounding.

3.13 Points Embedded in Curves. A curve consists of
a one-dimensional continuous point set embedded in 
3-D space. It is often useful to designate a particular
point out of this set. In relational geometry, a point em-
bedded in a curve is called a bead; several ways are pro-
vided to construct such points:

Absolute bead: specified by a curve and a t parameter
value

Relative bead: specified by parameter offset �t from an-
other bead

Arclength bead: specified by an arc-length distance from
another bead or from one end of a curve

Intersection bead: located at the intersection of a curve
with a plane, a surface, or another curve.

A bead has a definite 3-D location, so it can serve any
of the functions of a 3-D point. Specialized uses of beads
include:

• Designating a location on the curve, e.g., to compute a
tangent or location of a fitting
• Endpoints of a subcurve, i.e., a portion of the host
curve between two beads
• End points and control points for other curves.

A surface is a 2-D continuous point set embedded in a 2-
D or (usually) 3-D space. Surfaces have many applica-
tions in the definition of ship geometry:

• as explicit design elements, such as the hull or
weather deck surfaces
• as construction elements, such as a horizontal rectan-
gular surface locating an interior deck
• as boundaries for solids.

4.1 Mathematical Surface Definitions: Parametric vs.
Explicit vs. Implicit. As in the case of curves, there are
three common ways of defining or describing surfaces
mathematically: implicit, explicit, and parametric.

• Implicit surface definition: A surface is defined in 3-D
as the set of points that satisfy an implicit equation in the
three coordinates: f(x, y, z) � 0.
• Explicit surface definition: In 3-D, one coordinate is
expressed as an explicit function of the other two, for
example: z � f(x, y).
• Parametric surface definition: In either 2-D or 3-D,
each coordinate is expressed as an explicit function of
two common dimensionless parameters: x � f(u, v), y �

g(u, v), [z � h(u, v)]. The parametric surface can be de-
scribed as a locus in three different ways:

° 1. the locus of a moving point {x, y, z} as the param-
eters u, v vary continuously over a specified domain
such as [0, 1] � [0, 1], or

° 2, 3. the locus of a moving parametric curve (param-
eter u or v) as the other parameter (v or u) varies contin-
uously over a domain such as [0, 1].

A fourth alternative that has recently emerged is so-
called “subdivision surfaces.” These will be introduced
briefly later in Section 5.

Implicit surfaces are used for some CAD representa-
tions, in particular for “constructive solid geometry”
(CSG) and B-rep solid modeling, especially for simple
shapes. For example, a complete spherical surface is very
compactly defined as the set of points at a given distance
r from a given center point {a, b, c}: f(x, y, z) � (x � a)2

� (y � b)2 � (z � c)2 � r2 � 0. This implicit representa-
tion is attractively homogeneous and free of the coordi-
nate singularities that mar any explicit or parametric rep-
resentations of a complete sphere. On the other hand, the
lack of any natural surface coordinate system in an im-

Section 4
Geometry of Surfaces



16 THE PRINCIPLES OF NAVAL ARCHITECTURE SERIES

direct curves, and there are many more things that can
go wrong; for example, a surface and a plane may not in-
tersect at all, or may intersect in more than one place.

3.12 Relational Curves. In relational geometry,
most curves are constructed through defined relation-
ships to point entities or to other curves. For example,
a Line is a straight line defined by reference to two con-
trol points X1, X2. An Arc is a circular arc defined by
reference to three control points X1, X2, X3; since there
are several useful constructions of an Arc from three
points, the Arc entity has several corresponding types.
A BCurve is a uniform B-spline curve which depends
on two or more control points {X1, X2,...XN}. A
SubCurve is the portion of any curve between two
beads, reparameterized to the range [0, 1]. A ProjCurve

is the projected curve described in the preceding sec-
tion, equation (29).

One advantage of the relational structure is that a
curve can be automatically updated if any of its sup-
porting entities changes. For example, a projected
curve (ProjCurve) will be updated if either the basis
curve or the plane of projection changes. Another im-
portant advantage is that curves can be durably joined
(C0) at their endpoints by referencing a given point en-
tity in common. Relational points used in curve con-
struction can realize various useful constraints. For
example, making the first control point of a B-spline
curve be a Projected Point, made by projecting the sec-

ond control point onto the centerplane, is a simple way
to enforce a requirement that the curve start at the cen-
terplane and leave it normally, e.g., for durable bow or
stern rounding.

3.13 Points Embedded in Curves. A curve consists of
a one-dimensional continuous point set embedded in 
3-D space. It is often useful to designate a particular
point out of this set. In relational geometry, a point em-
bedded in a curve is called a bead; several ways are pro-
vided to construct such points:

Absolute bead: specified by a curve and a t parameter
value

Relative bead: specified by parameter offset �t from an-
other bead

Arclength bead: specified by an arc-length distance from
another bead or from one end of a curve

Intersection bead: located at the intersection of a curve
with a plane, a surface, or another curve.

A bead has a definite 3-D location, so it can serve any
of the functions of a 3-D point. Specialized uses of beads
include:

• Designating a location on the curve, e.g., to compute a
tangent or location of a fitting
• Endpoints of a subcurve, i.e., a portion of the host
curve between two beads
• End points and control points for other curves.

A surface is a 2-D continuous point set embedded in a 2-
D or (usually) 3-D space. Surfaces have many applica-
tions in the definition of ship geometry:

• as explicit design elements, such as the hull or
weather deck surfaces
• as construction elements, such as a horizontal rectan-
gular surface locating an interior deck
• as boundaries for solids.

4.1 Mathematical Surface Definitions: Parametric vs.
Explicit vs. Implicit. As in the case of curves, there are
three common ways of defining or describing surfaces
mathematically: implicit, explicit, and parametric.

• Implicit surface definition: A surface is defined in 3-D
as the set of points that satisfy an implicit equation in the
three coordinates: f(x, y, z) � 0.
• Explicit surface definition: In 3-D, one coordinate is
expressed as an explicit function of the other two, for
example: z � f(x, y).
• Parametric surface definition: In either 2-D or 3-D,
each coordinate is expressed as an explicit function of
two common dimensionless parameters: x � f(u, v), y �

g(u, v), [z � h(u, v)]. The parametric surface can be de-
scribed as a locus in three different ways:

° 1. the locus of a moving point {x, y, z} as the param-
eters u, v vary continuously over a specified domain
such as [0, 1] � [0, 1], or

° 2, 3. the locus of a moving parametric curve (param-
eter u or v) as the other parameter (v or u) varies contin-
uously over a domain such as [0, 1].

A fourth alternative that has recently emerged is so-
called “subdivision surfaces.” These will be introduced
briefly later in Section 5.

Implicit surfaces are used for some CAD representa-
tions, in particular for “constructive solid geometry”
(CSG) and B-rep solid modeling, especially for simple
shapes. For example, a complete spherical surface is very
compactly defined as the set of points at a given distance
r from a given center point {a, b, c}: f(x, y, z) � (x � a)2

� (y � b)2 � (z � c)2 � r2 � 0. This implicit representa-
tion is attractively homogeneous and free of the coordi-
nate singularities that mar any explicit or parametric rep-
resentations of a complete sphere. On the other hand, the
lack of any natural surface coordinate system in an im-
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plicit surface is an impediment to their utilization. Many
implicit surfaces are infinite in extent (e.g., an implicit
cylinder — the set of points at a given distance from a
given line), and defining a bounded portion typically re-
quires projections and intersections to be performed.

Explicit surface definitions have seen some use in
ship form definitions, but usually problems arise similar
to those illustrated in Fig. 4, which restrict the range of
shapes that can be accommodated without encountering
mathematical singularities. A well-known example of ex-
plicit definition of nominal ship hull forms is the series
of algebraic shapes investigated by Wigley (1942) for
purposes of validating the “thin-ship” wave resistance
theory of Michell. The best known of these forms, com-
monly called the “Wigley parabolic hull” (Fig. 9), has the
explicit equation:

y � (B/2) 4(x/L)(1 � x/L)[1 � (z/D)2] (z 	 0) (30)

� (B/2) 4(x/L)(1 � x/L) (z � 0) (31)

As can easily be seen from the formulas, both the wa-
terlines (z � constant) and underwater sections (x �
constant) are families of parabolas. The simplicity of the
explicit surface equation permitted much of the compu-
tation of Michell’s integral to be performed analytically,
allowing an early comparison of this influential theory
with towing-tank results.

Parametric surface definitions avoid the limitations of
implicit and explicit definitions and are widely employed
in 3-D CAD systems today. Figure 10 shows a typical
round-bottom hull surface defined by parametric equa-
tions. The parameter lines or isoparms u � constant
and v � constant form a mesh (or grid, or 2-D coordinate
system) over the hull surface such that every surface
point corresponds to a unique parameter pair (u, v). This
surface grid is very advantageous for locating other
geometry, for example points and curves, on the surface.

4.2 Analytic Properties of Parametric Surfaces. In the
following we will denote a parametric surface by x(u, v),
the bold face letter signifying a vector of three compo-
nents. Further, we will assume the range of each parame-
ter u, v is [0, 1]. (It is often advantageous to allow the
parameters to go outside their nominal range, provided
the surface equations supply coordinate values there that
make sense and furnish a continuous natural extension of

the surface. But the focus is on the bounded surface patch

corresponding to the nominal parameter range.)
The 2-D space of u and v is commonly referred to as

the parameter space of the surface. The 3-D surface is a
mapping of the parameter-space points into three-space
points, moderated by the surface equations x(u, v). We
will briefly summarize some important concepts of dif-
ferential geometry pertaining to parametric surfaces.
For more details see, for example, Kreyszig (1959) or
Pressley (2001).

The first partial derivatives of x with respect to u and
v, denoted 
x/
u � xu and 
x/
v � xv, are vectors tangent
to the surface in the directions of the lines v � constant
and u � constant respectively. Since they are both tan-
gent to the surface, their cross product xu � xv (if it does
not vanish) is a vector normal to the surface. The normal-
ization of xu � xv produces the unit normal vector n,
which of course varies with u and v unless the surface is
flat. The tangent plane is the plane passing through a sur-
face point, normal to the unit normal vector at that point.

The direction of the unit normal on, for example, one
of the wetted surfaces of a ship may be inward (into the
hull interior) or outward (into the water), depending on
the orientation chosen for the parameters u, v. For many
purposes the normal orientation will not matter; however,
for other purposes it is of critical importance. If surfaces
are discretized for hydrostatic or hydrodynamic analysis,
it is usually necessary to create panels having a consistent
orientation of corner points, e.g., counterclockwise when
viewed from the water; this may well require that the sur-
face normal have a prescribed orientation. When creating
an offset surface, e.g., to represent the inside of skin, it is

Fig. 9 The Wigley parabolic hull, defined by an explicit algebraic
equation (equation 30).

Fig. 10 Yacht hull surface defined by parametric equations (a B-spline
surface).
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Fig. 11 Three-sided patches made from a four-sided parameter space
always involve a coordinate singularity or degeneracy.

necessary to be conscious of the normal orientation of the
base surface, so the offset goes in the right direction.

The angles of the unit normal with respect to the coor-
dinate planes, called bevel angles, are sometimes required
during construction. The angle between n and the unit
vector in the x direction is most often used; this is � �
sin�1(nx). The sign of � will depend on the orientation of
the surface normal; if the normal is outward from the hull
surface, and the positive x-direction is aft, � will be nega-
tive in the bow regions and positive in the stern. A hull
may have one or more stations near midships where � is
zero (this will be the case in a parallel middle body), but
it is also common to have stations near midships that have
a mixture of small positive and negative bevel angles.

A point where xu � xv vanishes (and consequently
there is difficulty in defining the normal direction or the
tangent plane) is called a coordinate singularity of the
surface. This can occur either (1) because one or both of
the partial derivatives vanish, or (2) because xu and xv

have the same direction. A point (often a whole edge of
the surface in parameter space) where one of the partial
derivatives vanishes is called a pole. A point where xu

and xv have the same direction is called a squash or
squash pole because of the “flattening” of the mesh in the
vicinity. Higher order singularities occur when xu and xv

both vanish, or higher derivatives vanish in addition.
Although coordinate singularities are typically ex-

cluded early on in differential geometry, as a practical
matter it is fairly important to explicitly handle the more
common types, because they occur often enough in
practice. For example, in Fig. 10, the surface has a
squash pole at the forefoot (u � 0, v � 1), if in fact the
stem profile and bottom profile are arranged to be tan-
gent at this point (usually a design objective). Three-
sided patches are often useful, always involving a pole or
degenerate edge (Fig. 11), if made from a four-sided
parametric surface patch (without trimming).

Corresponding to arc length measurements along a
curve, distance in a surface is measured in terms of the
metric tensor components. The differential distance ds

from (u, v) to (u � du, v � dv) is given by

ds2 � g11 du2 � 2g12 du dv � g22 dv2 (32)

where

g11 � xu 
 xu, g12 � g21 � xu 
 xv, g22 � xv 
 xv (33)

The differential element of area is ��g du dv where

g � g11 g22 � g2
12 (34)

(It is useful to note that ��g is also the magnitude of
the cross product xu � xv, i.e., it is the divisor required
for the normalization of the normal vector.)

Consequently the area and moments of area of any de-
fined portion of the parametric surface are:

(35)

(36)

with centroid at {Mx/A,My/A,Mz/A}.
If w(u, v) is the surface mass density (e.g., kg/m2), the

mass and mass moments of the same region are:

(37)

(38)

4.3 Surface Curvatures. Curvature of a surface is
necessarily a more complex concept than that of a
curve. At a point P on a surface S, where S is sufficiently
smooth (i.e., a unique normal line N and tangent plane T
exist), several measures of surface curvature can be de-
fined. These are all founded in the concept of normal

curvature (Fig. 12):

• There is a one-parameter family F of normal planes
which pass through P and include the normal line N. Any
member of F can be identified by the dihedral angle �
which it makes with some arbitrary member of F, desig-
nated as � � 0.
• Each plane in F cuts the surface S in a plane curve C,
known as a normal section. The curvature of C at P is
called a normal curvature �n of S (dimensions 1/length)
at this location.
• Normal curvature depends on �. As � varies, �n varies
sinusoidally with respect to �, and in general goes
through maximum and minimum values �1, �2 (the prin-

cipal curvatures).

M� w(u,v) x(u,v) ��g du dv��

m� w(u,v) ��g du dv��

M� x(u,v) ��g du dv��

A� ��g du dv��

Fig. 12 Normal curvature of a surface is the curvature of a plane cut,
and generally depends on the direction of the cut.
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• The directions of the two principal curvatures are or-
thogonal, and are called the principal directions.
• The product �1�2 of the two principal curvatures is
called Gaussian curvature K (dimensions 1/length2).
• The average (�1 � �2)/2 of the two principal curva-
tures is called mean curvature H (dimensions 1/length).

Normal curvature has important applications in the
fairing of free-form surfaces. Gaussian curvature is a
quantitative measure of the degree of compound curva-

ture or double curvature of a surface and has important
relevance to forming curved plates from flat material.
Color displays of Gaussian curvature are sometimes
used as an indication of surface fairness. Mean curvature
displays are useful for judging fairness of developable
surfaces, for which K � 0 identically. Figure 13 shows
example surface patches having positive, zero, and neg-
ative Gaussian curvature.

4.4 Continuity Between Surfaces. A major considera-
tion in assembling different surface entities to build a
composite surface model is the degree of continuity re-
quired between the various surfaces. Levels of geometric
continuity are defined as follows:

G0: Surfaces that join with an angle or knuckle (different
normal directions) at the junction have G0 continuity.

G1: Surfaces that join with the same normal direction at
the junction have G1 continuity.

G2: Surfaces that join with the same normal direction
and the same normal curvatures in any direction that
crosses the junction have G2 continuity.

The higher the degree of continuity, the smoother the
junction will appear. G0 continuity is relatively easy to
achieve and is often used in “industrial” contexts when a
sharp corner does not interfere with function (for exam-
ple, the longitudinal chines of a typical metal workboat).

G1 continuity is more trouble to achieve, and is widely
used in industrial design when rounded corners and fillets
are functionally required (for example, a rounding be-
tween two perpendicular planes achieved by welding in a
quarter-section of cylindrical pipe). G2 continuity, still
more difficult to attain, is required for the highest levels of
aesthetic design, as in automobile and yacht exteriors.

4.5 Fairness of Surfaces. As with curves, the concept
of fairness of surfaces is a subjective one. It is closely re-
lated to the fairness of normal sections as curves.
Fairness is best described as the absence of certain
kinds of features that would be considered unfair:

• surface slope discontinuities (creases, knuckles)
• local regions of high curvature (e.g., bumps and
dimples)
• flat spots (local low curvature)
• abrupt change of curvature (adjoining regions with
less than G2 continuity)
• unnecessary inflection points

On a vessel, because of the principally longitudinal
flow of water, fairness in the longitudinal direction re-
ceives more emphasis than in the transverse direction.
Thus, for example, longitudinal chines are tolerated for
ease of construction, but transverse chines are very
much avoided (except as steps in a high speed planing
hull, where the flow deliberately separates from the sur-
face). Most surface modeling design programs provide
forms of color-coded rendered display in which each re-
gion of the surface has a color indicating its curvature.
This can include displays of Gaussian, mean, and normal
curvature.

A sensitive way to reveal unfairness of physical sur-
faces is to view the reflections that occur at low or graz-
ing angles (assuming a polished, reflective surface).
Reflection lines, e.g., of a regular grid, can be computed
and presented in computer displays to simulate this
process using the visualization technology known as ray

tracing. A simpler and somewhat less sensitive alterna-
tive is to display so-called “highlight lines,” i.e., contours
of equal “slope” s on the surface; for example, s � ŵ 

n(u, v), where ŵ  is a selectable constant unit vector and
n is the unit normal vector.

4.6 Spline Surfaces. Various methods are known to
generate parametric surfaces based on piecewise poly-
nomials. These include the dominant surface representa-
tions used in most CAD programs today. Some may be
viewed as a composition of splines in the two paramet-
ric directions (u and v), others as an extension of spline
curve concepts to a higher level of dimensionality.

From their roots in spline curves, spline surfaces in-
herit the advantages of being made up of relatively sim-
ple functions (polynomials) which are easy to evaluate,
differentiate, and integrate. A spline surface is typically
divided along certain parameter lines (its knotlines) into
subsurfaces or spans, each of which is a parametric
polynomial (or rational polynomial) surface in u and v.
Within each span, the surface is analytic, i.e., it has

Fig. 13 Patches with positive, zero, and negative Gaussian curvature.
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Fig. 15 A ship hull defined as a B-spline lofted surface with eight
master curves.

continuous derivatives of all orders. At the knotlines, the
spans join with levels of continuity depending on the
spline degree. Cubic spline surfaces have C2 continuity
across their knotlines, which is generally considered ad-
equate continuity for all practical aesthetic and hydrody-
namic purposes. Splines of lower order than cubic (i.e.,
linear and quadratic) are simpler to apply and provide
adequate continuity (C0 and C1, respectively) for many
less demanding applications.

4.7 Interpolating Spline Lofted Surface. In Section
3.5, we described interpolating spline curves which pass
through an arbitrary set of data points. This curve con-
struction can be the basis of a lofted surface which in-
terpolates an arbitrary set of parent curves, known as
master curves or control curves. Suppose we have de-
fined a set of curves Xi(t), i � 1, . . . N, e.g., the stem
curve and some stations of a hull. The following rule pro-
duces a parametric surface definition which interpolates
these master curves: Given u and v,

• Evaluate each master curve at t � u, resulting in the
points Xi(u), i � 1, . . . N
• Construct an interpolating spline S(t) passing through
the points Xi in sequence
• Evaluate X(u, v) � S(v).

A little more has to be specified to make this construc-
tion definite: the order k of the interpolating spline, how
its knots are determined (knots at the master curves are
common), and the end conditions to be applied (Fig. 14).

If the master curves Xi are interpolating splines, this
surface passes exactly through all its data points. Note
that there do not have to be the same number of data
points along each master curve, but the data points do
have to be organized into rows or columns; they can’t
just be scattered points. The smoothness of the resulting
surface may not be acceptable unless the data itself is of
very high quality, e.g., sampled from a smooth surface,
with a very low level of measurement error.

4.8 B-spline Lofted Surface. In a similar construction,
B-spline curves can be used instead of interpolating
splines to create another form of lofted surface. Again,
we start with N master curves, but the construction is as
follows: Given u and v,

• Evaluate each master curve at t � u, resulting in the
points Xi(u), i � 1, . . . N
• Construct a B-spline curve S(t) using the points Xi in
sequence as control points
• Evaluate X(u, v) � S(v).

To be definite, we have to specify the order k of the B-
spline, and its knots (which might just be uniform).

The B-spline lofted surface interpolates its first and
last master curves but in general not the others (unless
k � 2). It behaves instead as if it is attracted to the in-
terior master curves. It has the following additional
useful properties, analogous to those of B-spline
curves:

• End tangency: At v � 0, X(u, v) is tangent to the ruled
surface between X1 and X2; likewise at v � 1, X(u, v) is
tangent to the ruled surface between the last two master
curves. This property makes it easy to control the slopes
in the v direction at the ends.
• Straight section: If k or more consecutive master
curves lie on a general cylinder (i.e., their projections
on a plane normal to the cylinder generators are identi-
cal), a portion of the surface will lie accurately on that
same cylinder.
• Mesh velocity: The parametric velocity in the 
v-direction reflects the spacing of master curves, i.e., the
velocity will be relatively low where master curves are
close together.
• Local control: When N � k the influence of any one
master curve will extend over a limited part of the sur-
face in the v-direction (less than k knot spans).

Figure 15 shows lines of a ship hull with bow and
stern rounding based on property (1) and parallel middle
body based on property (2).

Fig. 14 A parametric hull surface lofted through five B-spline 
master curves.
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4.9 B-spline (Tensor-Product) Surface. A B-spline sur-

face is defined in relation to a Nu � Nv rectangular array
(or net) of control points Xij by the surface equation:

(39)

where the Bi(u) and Bj(v) are B-spline basis functions of
specified order ku, kv for the u and v directions, respec-
tively. The total amount of data required to define the
surface is then:

Nu, Nv � number of control points for u and v directions
ku, kv � spline order for u and v directions
Ui, i � 1, . . . Nu � ku, knotlist for u-direction
Vj, j � 1, . . . Nv � kv, knotlist for v-direction
Xij, i � 1, . . . Nu, j � 1, . . . Nv, control points.

If the knots are uniformly spaced for both directions,
the surface is a “uniform” B-spline (UBS) surface, other-
wise it is “nonuniform” (NUBS). As in a B-spline curve,
the B-spline products Bi(u)Bj(v) can be viewed as
variable weights applied to the control points. The surface
imitates the net in shape, but does it with a degree of
smoothness depending on the spline orders. Alternatively,
you can envisage the surface patch as being attracted to
the control points, or connected to them by springs.

The following are useful properties of the B-spline
surface, analogous to those of B-spline curves:

• Corners: The four corners of the patch are at the four
corner points of the net.
• Edges: The four edges of the surface are the B-spline
curves made from control points along the four edges of
the net.
• Edge tangents: Slopes along edges are controlled by the
two rows or columns of control points closest to the edge.
• Straight sections: If k or more consecutive columns of
control points are copies of one another translated along
an axis, a portion of the surface will be a general cylinder.
• Local support: If Nu � ku or Nv � kv, the effect of any
one control point is local, i.e., it only affects a limited
portion (at most ku or kv spans) of the surface in the
vicinity of the point.
• Rigid body: The shape of the surface is invariant
under rigid-body transformations of the net.
• Affine: The surface scales affinely in response to
affine scaling of the net.
• Convex hull: The surface does not extend beyond the
convex hull of the control points, i.e., the minimal closed
convex polyhedron enclosing the control points.

The hull surface shown in Fig. 10 is in fact a B-spline
surface; its control point net is shown in Fig. 16.

4.10 NURBS Surface. The generalizations from a uni-
form B-spline surface to a NURBS surface are similar to
those for NURBS curves:

• Nonuniform indicates nonuniform knots are permitted
• Rational reflects the representation of the surface

X(u,v) � X ij Bi(u) Bj(v)�
Nu

i�1
�
Nv

j�1

equation as a quotient (ratio) involving weights applied
to the control points:

(40)

This adds to the data required, compared with a B-
spline surface, only the weights wij, i � 1, . . . Nu, j � 1,
. . . Nv. The NURBS surface shares all the properties —
corners, edges, edge slopes, local control, affine invari-
ance, etc. — ascribed to B-spline surfaces above. If the
weights are all the same, the NURBS surface degener-
ates to a NUBS (Non-Uniform B-Spline) surface.

The NURBS surface behaves as if it is “attracted” to
its control points, or attached to the control points with
springs. We can interpret the weights roughly as the
strength of attraction, or the spring constant (stiffness)
of each spring. A high weight on a particular control
point causes the surface to be drawn relatively close to
that point. A zero weight causes the corresponding con-
trol point to be ignored.

With appropriate choices of knots and weights, the
NURBS surface can produce exact surfaces of revolu-
tion and other shapes generated from conic sections (el-
lipsoids, hyperboloids, etc.) (Piegl & Tiller 1995). These
properties in combination with its freeform capabilities
and the development of standard data exchange formats
(IGES and STEP) have led to the widespread adoption of
NURBS surfaces as the de facto standard surface repre-
sentation in almost all CAD programs today.

4.11 Ruled and Developable Surfaces. A ruled surface

is any surface generated by the movement of a straight
line. For example, given two 3-D curves X0(t) and X1(t),
each parameterized on the range [0, 1], one can construct
a ruled surface by connecting corresponding parametric
locations on the two curves with straight lines (Fig. 17).

The parametric surface equations are:

X(u, v) � (1 � v)X0(u) � vX1(u) (41)

X(u,v) �

�
Nu

i�1
�
Nv

j�1

wij X ij  Bi(u) Bj(v)

�
Nu

i�1
�
Nv

j�1

wij  Bi(u) Bj(v)

Fig. 16 The same B-spline surface shown in Fig. 10 with its control
point net displayed.
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If either or both of the curves is reparameterized, a
different ruled surface will be produced by this construc-
tion. The straight lines (u � constant isoparms) are
called the generators or rulings of the surface. A ruled
surface has zero or negative Gaussian curvature.

A developable surface is one that can be rolled out flat
by bending alone, without stretching of any element.
Conversely, it is a surface that can be formed from flat
sheet material by bending alone, without in-plane strain
(Fig. 18).

The opposite of “developable” is “compound-curved.”
Geometrically, a developable surface is characterized by
zero Gaussian curvature. Developable surfaces are pro-
foundly advantageous in ship design because of their
relative ease of manufacture, compared with compound-
curved surfaces. A key strategy for “produceability” is to
make as many of the surfaces of a vessel as possible
from developable surfaces; this can be 100 percent.

Cylinders and cones are well-known examples of de-
velopable surfaces. A general cylinder is a surface swept
by movement of a straight line that remains parallel to a
given line. A general cone is a surface swept by move-
ment of a straight line that always passes through a given

point (the apex). One design method for developable
surfaces, “multiconic development,” pieces together
patches from a series of cones, constructed to have G1

continuity with one another, to produce a developable
composite surface.

All developable surfaces are ruled. However — and
this is a geometric fact that is widely misapprehended in
manufacturing and design — not all ruled surfaces are

developable. In fact, developable surfaces are a very nar-
row and specialized subset of ruled surfaces. One way to
distinguish developable surfaces is that they are the
ruled surfaces with zero Gaussian curvature. Alterna-
tively, a developable surface is a special ruled surface
with the property that it has the same tangent plane at all
points of each generator.

This latter property of developable surfaces is the
basis of Kilgore’s method, a valid drafting procedure for
construction of developable hulls and other developable
surfaces (Kilgore 1967). Nolan (1971) showed how to im-
plement Kilgore’s method in a computer program for the
design of developable hull forms.

4.12 Transfinite Surfaces. The B-spline and NURBS
surfaces, supported as they are by arrays of points, each
have a finite supply of data and, therefore, a finite space
of possible configurations. Generally, this is not limiting
when designing a single surface in isolation, but many
problems arise when surfaces have to join each other in
a complex assembly. In order for two NURBS surfaces
to join (G0 continuity) with mathematical precision, they
must have (in general):

• the same set of control points along the common edge;
• the same polynomial degree in this direction;
• the same knotlist in this direction; and
• proportional weights on the corresponding control
points.

These are stringent requirements rarely met in
practice.

Further, if a surface needs to meet an arbitrary (non-
NURBS) curve (for example, a parametric curve embed-
ded in another surface), it will have only a finite number
of control points along that edge, and therefore can only
approximate the true curve to a finite precision. In
NURBS-based modeling, therefore, nearly all junctions
are approximate, or defined by intersections. This
causes a large variety of problems in manufacturing and
in transfer of surface and solid models between systems
which have different tolerances.

Transfinite surfaces are generated from curves rather
than points and, consequently, are not subject to the
same limitations. Examples of transfinite surfaces al-
ready mentioned above are:

• Ruled surface: it interpolates its two edge curves
exactly
• Lofted surfaces: they interpolate their two end master
curves
• Developable surface: constructed between two curves
by Kilgore’s method.

Fig. 17 A chine hull constructed from two ruled surfaces.

Fig. 18 A chine hull made from developable surfaces spanning three
longitudinal curves.
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The “Coons patch” (Faux & Pratt 1979) is a transfinite
parametric surface that meets arbitrary curves along all
four edges (Fig. 19).

It is possible in addition (with more complex basis
functions) to impose arbitrary slope and curvature distri-
butions along the four edges of a Coons patch. This has
been the basis of important design systems which pro-
duce G1 or G2 composite surfaces by stitching together a
patchwork of Coons patches.

4.13 Relational Surfaces. As noted above, surfaces
can be constructed by a variety of procedures from point
data (e.g., B-spline surface) and/or curve data (e.g., ruled
surface, lofted surfaces, Coons patch). Construction
from another surface is also possible; for example, a mir-
ror image in a plane. A relational surface retains the in-
formation as to how it was constructed, and from what
supporting entities, and so is able to update itself auto-
matically when there is a change in any of its parents.
Surfaces, in turn, can support other geometric construc-
tions; in particular, points (magnets) and curves
(snakes) embedded in surfaces.

In relational geometry, parametric surfaces are recog-
nized as a “surface” equivalence class with several com-
mon properties:

• divisions for tabulation and display
• normal orientation

and common methods:

• evaluation of point X at (u, v)
• evaluation of derivatives 
X/
u, 
X/
v at (u, v)
• evaluation of unit normal vector n(u, v)
• evaluation of surface curvatures.

Many different surface constructions are supported
by various surface entity types under this class:

B-spline surface: supported by an array of points
ruled surface: supported by two curves
developable surface: supported by two curves
lofted surfaces: supported by two or more master curves
blended surfaces: using Coons patch constructions from

boundary curves
swept surfaces: supported by “shape” and “path” curves
offset surface: supported by a surface, with a constant or

variable normal offset: X(u, v) � X0(u, v) �

d(u, v)n0(u, v), where X0 is the basis surface and n0 is
its unit normal vector

subsurface: the portion of a surface between four
bounding snakes

procedural surfaces: constructed by programming a
moving curve or point that sweeps out a surface ac-
cording to user-defined rules.
Relationships between parent entities can be valuable

in creating surfaces with durable geometric properties.
For example, in the ship model of Fig. 15, there are im-
portant relationships between the master curves. The
first master curve (stem profile) is a projected curve: the
projection of the second master curve onto the center-
plane. In combination with the end tangency properties
of the B-spline lofted surface, this construction assures
that the hull surface meets the centerplane normally
along the whole stem profile, resulting in G2 continuity
between the port and starboard sides along the stem.
The same construction using a projected curve provides
durable rounding at the stern.

4.14 Expansions and Mappings of Surfaces. A map-

ping between two surfaces is a rule that associates each
point on one surface with a point on the other. When the
surfaces are parametric, with the same parameter range,
a simple rule is that the associated points are the ones
with the same parameter values (u, v) on both surfaces.
The mappings we consider here are in that class.

An important mapping is the flat development or ex-
pansion of a curved surface, generally referred to in
shipbuilding as plate expansion. When the surface is de-
velopable, there is special importance in the mapping
that is isometric (length-preserving), i.e., geodesic dis-
tances between any pair of corresponding points on the
3-D surface and the flat development are identical. This
mapping (unique up to rotation and translation in the
plane of development) is the means for producing accu-
rate boundaries for a flat “blank” which can be cut from
flat stock material and formed by bending alone to as-
sume the 3-D shape (Fig. 18). The mapping also provides
the correspondence between any locations or features
on the 3-D shape and the blank, e.g., the traces of frames,
waterlines, or ruling lines which can be marked on the
blank for assistance in bending or assembly, or outlines
of openings, etc., which can be cut either before or after
bending. It is useful to notice that partitioning a devel-
opable surface into individual plates for fabrication can
be done before or after expansion; the results are the
same either way, since any portion of a developable sur-
face is also developable.

The corresponding problem of flat expansions or de-
velopments of a compound-curved surface is much more
complex, as it is known that there exist no isometric

mappings of a compound-curved surface onto a plane.
Thus, some amount of in-plane strain is always required
to produce a compound-curved surface from flat sheet
material. The strain can be introduced deliberately
(“forming”) by machines such as presses and roller plan-
ishers; by thermal processes known as “line heating,” or

Fig. 19 A hull surface generated from its edge curves (B-spline curves)
as two Coons patches.
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incidentally by the elastic and/or plastic deformation ac-
companying stress and welding shrinkage that occurs
during forced assembly of the product. In any case, in-
troduction of in-plane strain is an expensive manufactur-
ing process, and it is highly desirable to minimize the
amount of it that is required. Also, it is very valuable to
predict the flat blank outlines accurately so each plate,
following forming, will fit “neat” to its neighbors, within
weld-seam tolerances.

There exist traditional manual lofting methods for
plate expansion, some of which have been “computer-
ized” as part of ship production CAD/CAM software.
Typically, these methods do not allow for the in-plane
strain and, consequently, they produce results of limited
utility for plates that are not nearly developable. A sur-
vey by Lamb (1995) showed that expansions of a test
plate by four commercial software systems yielded
widely varying outlines.

Letcher (1993) derived a second-order partial differ-
ential equation relating strain and Gaussian curvature
distributions, and showed methods for numerical solu-
tion of this “strain equation” with appropriate boundary
conditions. In production methods where plates are sub-
jected to deliberate compound forming before assembly,
this method has produced very accurate results, even for
highly curved plates. When the forming is incidental to
stress applied during assembly, results are less certain,
as the details of the elastic stress field are not taken into
account, and the process depends to some degree on the
welding sequence (Fig. 20).

The “shell expansion” drawing (Fig. 21), used to plan
layout of frames and longitudinal stiffeners, is a quite dif-
ferent mapping that produces a flat expansion of a curved
surface. The rule of correspondence is that each point on
the 3-D hull is mapped to a point on the same transverse
station, at a distance from the drawing base line that cor-
responds to girth (arc-length) measured along the station
from the keel, chine, or a specified waterline.

4.15 Intersections of Surfaces. Finding intersections
between surfaces is in general a difficult problem, re-
quiring (in all but the simplest cases) iterative numerical
procedures with relatively large computational costs
and many numerical pitfalls. Intersection between two
parametric or two implicit surfaces is especially difficult
and expensive; one of each is a more tractable, but nev-
ertheless thorny, problem.

If we have two parametric surfaces X1(u, v) and X2(s,

t), the governing equations are:

X1(u, v) � X2(s, t) (42)

i.e., three (usually nonlinear) equations in the four un-
knowns u, v, s, t. The miscount between equations and
unknowns reflects the fact that the intersection is usu-
ally a curve, i.e., a one-dimensional point set. Some of
the difficulties are as follows:

• The supposed intersection may not exist.
• The intersection may have varying dimensionality.
Two surfaces might intersect only at isolated points
(where they are tangent), in one or more closed or open
curves, or might have entire 2-D regions in common, or
a mixture of these.
• When the intersection is at a shallow angle, the equa-
tions are ill-conditioned.
• Intersection curves can have cusps, branches, and
other singularities that make them hard to follow.
• It is difficult to get good starting locations. For exam-
ple, if the surfaces are approximated by meshes, it is
quite possible for the meshes to have no intersection
while the surfaces do.

Fig. 20 Plate expansion by numerical solution of the “strain equation.”
(a) The plate is defined as a subsurface between snakes representing the
seams. (b) The required strain distribution is indicated by contours, which
are somewhat irregular on account of the discretization of the plate into

triangular finite elements.

Fig. 21 The “shell expansion” drawing is a 1:1 mapping of the hull
surface to a planar figure used for representing layout of structural

elements such as longitudinal stiffeners.
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A typical computational method might take the fol-
lowing steps:

• Intersect two meshes to find candidate starting
locations.
• Use Newton-Raphson iteration to refine such a start,
finding one accurate point on a candidate intersection.
• “Tracking”: Use further Newton-Raphson steps to find
a series of intersection points stepping along the inter-
section. Be prepared to take smaller steps if the curva-
ture of the intersection increases.
• Terminate tracking when you come to an edge of either
surface, or return to the starting point of a closed loop.
• Assemble the two directions into a single curve and
select a suitable parameterization for it.
• Substitute a spline approximation for the intersection
as a 3-D curve, and two other spline approximations as
2-D parametric curves in each of the surfaces.

However, you can see that this simplified procedure
does not deal with the majority of the difficulties men-
tioned in the preceding paragraph.

An obvious conclusion from this list of difficulties is
to avoid surface-surface intersections as much as possi-
ble. Nevertheless, most CAD systems are heavily de-
pendent on such intersections. Users are encouraged to
generate oversize surfaces that deliberately intersect,
solve for intersections, and trim off the excess. This one
problem explains the bulk of the slow performance and
unstable behavior that is so common in solid modeling
software.

Relational geometry provides construction methods
for durable “watertight” junctions that can frequently
avoid surface-surface intersection. These often take the
form of designing the intersection as an explicit curve,
then building the surfaces to meet it. Two transfinite sur-
faces that share a common edge curve will join accu-
rately and durably along that edge. A transfinite surface
that meets a snake on another surface will make a
durable, watertight join. An intersection of a surface
with a plane, circular cylinder, or sphere can be cut
much more efficiently by an implicit surface. Intersec-
tions with general cylinders and cones are performed
much more efficiently as projections.

Nevertheless, there are situations where surface-sur-
face intersections are unavoidable, so there is an
Intersection snake (IntSnake) that encapsulates this
process. The IntSnake is supported by a magnet on the
host surface, which is used as a starting location for the
initial search; this helps select the desired intersection
curve when there are two or more intersections, and
also specifies the desired parametric orientation.

4.16 Trimmed Surfaces. A general limitation of pa-
rametric surfaces is that they are basically four-sided
objects. This characteristic arises fundamentally from
the rectangular domain in the u, v parameter space. If
we look around us at the world of manufactured goods,
we see a lot of surfaces that are four-sided, but there
are a lot of other surfaces that are not. Parametric sur-

faces with three sides are generally supported in CAD
by allowing one edge of a four-sided patch to be degen-
erate, but this requires a coordinate singularity (pole)
at one of the three corners (Fig. 11). Parametric sur-
faces with more than four sides are also possible (e.g.,
a Coons patch with a knuckle in one or more of its
sides), but such a surface will have awkward slope dis-
continuities in its interior. A parametric surface with a
smooth (e.g., circular or oval) outline, with no corners,
is also possible, but involves either a pole singularity
somewhere in the interior, two poles on the boundary,
or “squash” singularities at two or four places on the
boundary. Surface slopes and curvatures are likely to
be irregular at any of these coordinate singularities or
discontinuities.

The use of trimmed surfaces is the predominant way
to gain the flexibility in shape or outline that parametric
surfaces lack. A trimmed surface is a portion of a base
surface, delineated by one or more loops of trimming

curves drawn on, or near, the surface (Fig. 22).
The base surface is frequently a parametric surface,

but in many solid modeling CAD systems it can be an im-
plicit surface such as a sphere, cylinder, or torus. In gen-
eral, the trimming curves can be arbitrarily complex as
long as they link up into closed loops and do not inter-
sect themselves or other loops. One loop is designated
as the “outer” loop; any other loops enclosed by the
outer loop will represent holes.

4.17 Composite Surfaces. A composite surface is the
result of assembling a set of individual trimmed or
untrimmed surfaces into a single 2-D manifold. Besides
the geometries of the individual component surfaces, a
composite surface stores the topological connections
between them — which edges of which surfaces adjoin.

The most common application of composite surfaces
is for the outer and inner boundaries of B-rep solids. In
this case, the composite surface is required to be topo-
logically closed. However, there are definite applications

Fig. 22 A trimmed surface is the portion of a base surface bounded by
trimming curves. In this case, the base surface for the transom is an

inclined circular cylinder.
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interval. Contours of coordinates X, Y, or Z are the famil-
iar stations, buttocks, and waterlines used by naval ar-
chitects to describe, present, and evaluate ship hull
forms. Any plane section such as a diagonal can be com-
puted as the zero contour of the function F(u, v) � û �
[X(u, v) � p] where û is a normal vector to the plane and
p is any point in the plane.

A contour on a continuous surface normally has the
basic character of a curve, i.e., a one-dimensional contin-
uous point set. However, under appropriate circumstan-
ces a contour can have any number of disjoint branches,
each of which can be closed or open curves or single
points (e.g., where a mountaintop just comes up to the
elevation of the contour). Or a contour can spread out
into a 2-D point set, e.g., where a level plateau occurs at
the elevation of the contour.

Contours are highly useful as visualization tools. For
this purpose it is usual to generate a family of contours
with equally spaced values of F. Families of contours
also provide a simple representation of a solid volume,
adequate for some analysis purposes. Thus, transverse
sections (contours of the longitudinal coordinate X) are
the most common way of representing the vessel enve-
lope as a solid, for purposes of hydrostatic analysis.

Computing contours on the tabulated mesh of a para-
metric surface is fairly straightforward. First, evaluate F
at each node of the mesh and store the values in a 2-D
array. Then, identify all the links in the mesh (in both u
and v directions) which have opposite signs for F at their
two ends. On each of these links calculate the point
where (by linear interpolation) F � 0. This gives a series
of points that can be connected up into chains (poly-
lines) in either u, v-space or 3-D space. Some chains may
end on boundaries of the surface, and others may form
closed loops.

Fig. 23 A ship hull molded form defined as a composite surface made from five patches. A, B, and C are ruled surfaces; D and E are trimmed sur-
faces made from B-spline lofted base surfaces, whose outlines are dashed.

for treating open assemblies of surfaces as a single en-
tity. Figure 23 is an example of the molded form of a ship
hull assembled from five surface patches. For the layout
of shell plating, it is desirable to ignore internal bound-
aries such as the flat-of-side and flat-of-bottom tangency
lines. Treating the shell as a single composite surface
makes this possible.

4.18 Points Embedded in Surfaces. A surface consists
of a 2-D point set embedded in 3-D space. It is often use-
ful to designate a particular point out of this set. In rela-
tional geometry, a point embedded in a surface is called
a magnet. Several ways are provided to construct such
points:

Absolute magnet: specified by a host surface and u, v pa-
rameter values

Relative magnet: specified by parameter offsets �u, �v

from another magnet
Intersection magnet: located at the intersection of a line

or curve with a surface
Projected magnet: normal or parallel projection of a

point onto a surface.

A magnet has a definite 3-D location, so it can always
serve as a point. Specialized uses of magnets include:

• Designating a location on the surface, e.g., for a hole
or fastener
• End points and control points for snakes (curves em-
bedded in a surface).

4.19 Contours on Surfaces. A contour or level set on
a surface is the set of points on that surface where a
given scalar function F(u, v) takes a specified value. The
most familiar use of contours is to describe topography;
in this case, the function is elevation (the Z coordinate),
and the given value is an integer multiple of the contour
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A mesh of polygons (usually triangles and/or quadrilater-
als or quads) can serve as a useful approximation of a
surface for some purposes of design and analysis.

The concept of successive refinement of polygon
meshes has led to a new alternative for mathematical

surface definition known as “subdivision surfaces,”
which is under rapid development at the time of this
writing (Warren & Weimer 2002; Peters & Reif 2008).

5.1 Polygon Mesh. A suitable representation for a
polygon mesh consists of:

Section 5
Polygon Meshes and Subdivision Surfaces

(a) Example triangle mesh. (b) After one cycle of subdivision and smoothing. 

Fig. 24 A triangle mesh and three subdivision surfaces based on it.

(c) After two cycles of subdivision and smoothing. (d) After moving one vertex.
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a list of 3-D points, called vertices or nodes, and
a list of faces, each face being an ordered list of vertices

which form a closed polygon.

The lines connecting adjacent vertices in a face are
called edges or links. An edge can be shared by two ad-
jacent faces, or it can belong to only one face, when it is
part of the mesh boundary. If no edge is shared by more
than two faces, the mesh is said to have manifold topol-

ogy. Figure 24 (a) is a small example of a triangle mesh.
It has five vertices:

1: �1.0, �1.0, 0.0
2: 1.0, �1.0, 0.0
3: 0.0, 0.0, 2.0
4: �1.0, 1.0, 0.0
5: 1.0, 1.0, 0.0

four faces:

1: 1, 2, 3
2: 2, 5, 3
3: 5, 4, 3
4: 4, 1, 3

and eight edges. The four edges connecting to vertex 3
are each shared by two faces. The four edges at the plane
Z � 0 each belong to only one face, so they form the
boundary of the mesh.

A polygon mesh, and especially a triangle mesh, is
easy to render for display as either a surface or a solid.
It is also a commonly accepted representation for many
kinds of 3-D analysis, e.g., aerodynamic and hydrody-
namic flows, wave diffraction, radar cross-section, and
finite element methods.

5.2 Subdivision Surfaces. Given a polygon mesh
consisting of triangle and/or quad polygons, it is easy to
generate a finer polygon mesh by the following linear
subdivision rule:

• insert a new vertex at the center of each original edge,
and at the center of any quad polygon; then
• connect the new vertices with new edges, so each
original face is split into four new faces.

This subdivision can be repeated any number of
times, generating successive meshes of smaller and
smaller polygons. However, subdivision alone does not
improve the smoothness of the mesh; each new face
constructed this way would be exactly coincident with a
portion of the original face that it is descended from.

The key idea of subdivision surfaces is to follow (or
combine) such a subdivision step with a smoothing

step that repositions each vertex to a weighted average
of a small set of neighboring vertices. Then the succes-
sive meshes become progressively smoother, ap-
proaching C2 continuity (comparable to cubic splines)
at almost all points, and C1 continuity everywhere, in
the limit of infinite subdivision. There are several com-
peting schemes for choosing the set of neighbors and
assigning weights.

As an example, Fig. 24 (b) and (c) show the original
“coarse” triangle mesh of Fig. 24 (a) following one and
two cycles of Loop subdivision.

The vertices and edges of the coarse mesh can be
interpreted as a “control point net,” similar in effect to
the control net for a B-spline or NURBS parametric
surface. For example, Fig. 24 (d) shows the effect of
moving vertex 3 to (�1.0, �0.5, 2.0) and regenerating
the mesh.

Smoothing rules can be modified at specified vertices
or chains of vertices, to allow breakpoints and break-
lines in the resulting surface.

A subdivision surface has the following attractive
properties, similar to B-spline and NURBS surfaces:

• Local support: A given control point affects only a
local portion of the surface.
• Rigid body: The shape of the surface is invariant with
respect to a rigid body displacement or rotation of the
control net.
• Affine stretching: The surface scales affinely in re-
sponse to affine scaling of the net.
• Convex hull: The surface does not extend outside the
convex hull of the control points.

Compared with parametric surfaces, subdivision sur-
faces are far freer in topology. The surface inherits the
topology of its control net. A subdivision surface can
have holes, any number of sides, or no sides at all. (A
closed initial net produces a closed surface.)

A major disadvantage of subdivision surfaces as of
this writing is a lack of standardization. Because differ-
ent CAD systems employ different subdivision and
smoothing algorithms, subdivision surfaces cannot gen-
erally be exchanged between systems in a modifiable
form. In the subdivision world, there is not yet any equiv-
alent of the IGES file. (Of course, there are many file for-
mats for exchanging the triangle meshes that result from
subdivision.)
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A curve lying on a surface is a one-dimensional continu-
ous point set whose points also belong to the 2-D point
set of the surface. In relational geometry, such curves
are known as snakes. Most snakes can be viewed as aris-
ing in two steps (Fig. 25):

(1) A parametric curve w(t) is defined in the 2-D pa-
rameter space of the surface, where w is a 2-D vector
with components {u(t), v(t)}

(2) Each point w of the snake is then mapped to the sur-
face using the surface equations Xs(u, v). Consequently,
the snake is viewed as a composition of functions:

X (t) � XS [u(t), v(t)] (43)

The second-stage mapping ensures that the snake is
exactly embedded in the surface. The embedding sur-
face is referred to as the host surface; the snake is a res-

ident or guest of the host surface. In general, the snake
is a descendant of the host surface, and so will update it-
self if the host surface changes.

6.1 Normal Curvature, Geodesic Curvature, Geodesics.
A snake is a 3-D curve and has the same derivative and
curvature properties as other curves. These can be de-
rived by differentiating the parametric equation, equa-
tion (43). The tangent vector is the first derivative with
respect to parameter t:

(44)
dX

dt
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u
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Section 6
Geometry of Curves on Surfaces

Fig. 25 A snake or curve-on-surface is usually defined as a composition
of mappings—from the 1-D parameter space of the snake, to the 2-D

parameter space of the surface, to the surface embedded in 3-D space.

and so involves the first derivatives of the surface.
Curvature of a snake (related to the second derivative
d2X/dt2, and therefore involving the second derivatives
of the surface as well as d2u/dt2 and d2v/dt2), can be
usefully resolved into components normal and tan-
gential to the surface; the first is the normal curvature
of the surface in the local direction of the tangent to the
snake. The tangential component of curvature is called
geodesic curvature, i.e., the local curvature of the
projection of the snake on the tangent plane of the
surface.

Snakes with zero geodesic curvature are called geo-

desic lines or simply geodesics. They play roles similar
to straight lines in the plane; in particular, the shortest
distance in the surface between two surface points is a
geodesic. For example, the geodesics on a planar surface
are straight lines and the geodesics on a sphere are the
great circles.

Projection of a curve onto a surface is a common way
to define a snake (Fig. 26). Most often the projection is
along a family of parallel lines, i.e., along the normals to
a given plane. If the basis curve is Xc(t), the host surface
is Xs(u, v), the direction of projection is specified by a
unit vector û, and the snake’s parameterization is speci-
fied to correspond to that of the basis curve, locating the
point at parameter t on the snake requires intersection of
Xs with the line Xc(t) � pû. In general this requires an it-
erative solution of three equations (the three vector
components of Xs � Xc(t) � pû) in the three unknowns
u, v, p. Note that the projection will become unstable in
a region where the angle between the surface normal n
and û is close to 90°.

Fig. 26 A bow thruster tunnel defined by use of a projected snake. The
basis curve is a circle in the centerplane; it is projected transversely onto
the hull surface, making a projected snake. The curve and snake are con-

nected with a ruled surface for the tunnel wall.
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Fig. 27 Offsets representation of a ship as a solid cut by contours (X � constant).

The history of geometric modeling in engineering
design has progressed from “wireframe” models repre-
senting curves only, to surface modeling, to solid mod-
eling. Along with the increase in dimensionality, there
is a concomitant increase in the level of complexity of
representation. Wireframe and surface models have
gone a long way toward systematizing and automating
design and manufacturing, but ultimately most articles
that are manufactured, including ships and their com-
ponents, are 3-D solids, and there are fundamental
benefits in treating them as such. Wireframe represen-
tations were the dominant technology of the 1970s; sur-
face modeling became well developed during the 1980s;
during the 1990s the focus shifted to solid models as
computer speed and storage improved to handle the
higher level of complexity, and as the underlying math-
ematical, algorithmic, and computational tools re-
quired to support solids were further developed.

We will first briefly review a number of alternative
representations of solids, each of which has some advan-
tages and some limited applications. Of these, boundary
representation or B-rep solids have emerged as the most
successful and versatile solid modeling technology, and
they will therefore be the focus of this section.

7.1 Various Solid Representations.
7.1.1 Volume Elements (Voxels). A conceptually

simple solid representation is to divide space into a 3-D
rectangular array (lattice) of individual cubic volume el-

ements or voxels, and then characterize the contents of
each voxel within a domain of interest. This is a 3-D ex-
tension of the way 2-D images are represented as arrays
of picture elements or “pixels.” For a homogeneous
solid, the voxel information can be as little as one bit,
i.e., is this voxel occupied by material, or is it empty? Or,
if a complex inhomogeneous solid is being described,
numerous attributes can be attached to each voxel; e.g.,
density, temperature, concentration of various chemical
species, etc.

Voxels are most useful for medium-resolution de-
scriptions of inhomogeneous solids with significant in-
ternal structure. The storage requirements and process-
ing effort are high, and increase as the cube of the
resolution. For example, a voxel description of the
human body at a resolution of 1 mm requires on the
order of 108 voxels (and of course, 1 mm is still a very
coarse resolution for describing most tissues and
anatomical structures).

7.1.2 Contours. Contours or level sets on surfaces
were described in Section 4.19, and were related to the
description of an object as a solid. In naval architecture,
transverse sections (contours of the longitudinal coordi-
nate X) are the standard representation of the envelope
of a vessel for purposes of hydrostatic analysis. The indi-
vidual sections are represented as closed polylines.
Contours are also used within a hydrostatic model to de-
scribe tanks, voids, or compartments inside the vessel.

Section 7
Geometry of Solids

Curves of intersection arising from the intersections
between two surfaces can be recognized as snakes resid-
ing on both of the surfaces. The difficulties that can be
present in computing such intersections have been dis-
cussed above in Section 4.15.

6.2 Applications of Curves on Surfaces. Curves on sur-
faces can play several roles in definition of ship geometry:

• As decorative lines; e.g., cove stripe, boot stripe, hull
decorations

• As boundaries of subsurfaces and trimmed surfaces;
e.g., delineating subdivision of the hull surface into shell
plates for fabrication
• As a junction between surfaces; e.g., the deck-at-side
curve drawn on the hull and used as an edge curve for
the weather deck surface
• As a trace for a linear feature to be constructed on an-
other surface; e.g., a guard, strake, or bilge keel
• As alignment marks to be carried through a plate ex-
pansion process.
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Fig. 27 Offsets representation of a ship as a solid cut by contours (X � constant).
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This is often called an “offsets” representation. Offsets
are also a suitable representation of form for some types
of seakeeping and resistance analyses, primarily those
based on quasi-2-D “strip theory” or “slender body the-
ory” approximations (Fig. 27).

Contours are a simple and compact solid representa-
tion, but obviously they provide very limited detail un-
less contour intervals are small and points are densely
distributed. They do not lend themselves to rendering as
a solid. They are best suited for elongated shapes, where
the surfaces have small slopes with respect to the longi-
tudinal axis, and where the solid being represented has
no relevant internal structure.

7.1.3 Polyhedral Models. A polyhedron is a solid
bounded by planar faces. The representation can be, for
example, a list of 3-D points (vertices) and a list of faces,
each face being a list of vertices which form a closed pla-
nar polygon. Triangle meshes, where each face is a trian-
gle, are a commonly used special case. Triangles have
the advantage of being automatically planar; this is not
generally true of the quadrilateral “panels” formed by the
tabulated mesh of a parametric surface.

A polyhedral mesh, especially a triangle mesh, is easy
to render as a solid. Watertight triangular meshes are
widely used for computer-aided manufacturing such as
stereolithography, communicated by STL files. Polyhedral
models are limited for representing smooth curved sur-
faces, which require fine subdivision if they are not to ap-
pear faceted (Fig. 28).

7.1.4 Parametric Solids. Parametric solids are an
extension of the concept of the parametric curve x(t)
and the parametric surface x(u, v) to one more dimen-
sion. A parametric solid is described by a 3-D vector
function of three dimensionless parameters: x(u, v, w).
Each parameter has a nominal range, e.g., [0, 1]. Under
moderate conditions on the function x, as a moving
point assumes all values in the 3-D parameter space [0,
1] � [0, 1] � [0, 1], it sweeps out a 3-D solid in physical
space. Each of the six faces of the solid is a parametric
surface in two of the parameters.

A simple but often useful example is a ruled solid be-
tween two surfaces x1(u, v) and x2(u, v):

x(u, v, w) � (1 � w) x1 (u, v) � wx2 (u, v) (45)

For example, if x1 is the hull outer surface and x2 is
an offset surface a uniform distance inside x1, the ruled
solid between them represents the shell as a finite-
thickness solid. A 3-D mesh in this solid made by uni-
formly subdividing the u, v, and possibly w parameters
creates a set of curvilinear finite elements suitable for
analyzing the hull as a thick shell. Figure 29 shows an
integral tank modeled as a ruled solid between a sub-
surface on the hull and its vertical projection onto a
horizontal plane at the level of the tank top.

Another readily understood and useful parametric
solid is the B-spline solid

x(u, v, w) = 	
i

	
j

	
k

Xijk Bi (u) Bj (v) Bk (w) (46)

where the Xijk are a 3-D net of control points, and the Bi,
Bj, Bk are sets of B-spline basis functions for the three
parametric directions. Each of the six faces of a B-spline
solid is a B-spline surface in two of the parameters,
based on the set of control points that make up the cor-
responding “face” of the control point net.

Parametric solids are very easily implemented within
the framework of relational geometry, so the solid up-
dates when any ancestor entity is changed. Compared
with B-rep solids, their data structures and required pro-
gramming support are very simple and reliable. They
also have a relatively large amount of internal structure,
i.e., an embedded body-fitted 3-D coordinate system u, v,
w which allows the unique identification of any interior
point, and a way to describe any variation of properties
within the solid. Parametric solids are very useful for
generating “block-structured” grids and finite elements
for various forms of discretized analysis in volumes.

Fig. 28 A triangle mesh model of a ship hull surface. This could be suit-
able for hydrostatic analysis or for subdivision for capacity calculations. Fig. 29 An integral tank defined as a parametric solid.
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Fig. 30 Boolean operations in CSG solid modeling. (Left) A and B are
two primitive solids. (Right) The union is the set of points contained in ei-
ther A or B; the intersection is the set of points contained in both A and

B; the subtraction is the set of points contained in A but not B.

The principal limitation of parametric solids is their
essentially six-faced or “hexahedral” character, topolog-
ically a cube, arising from the cubic geometry of the
parameter space. Parametric solids with fewer than six
faces can be made by allowing some faces and edges to
become degenerate or tangent, but this introduces coor-
dinate singularities—points, lines, or surfaces where the
three partial derivatives 
x/
u, 
x/
v, 
x/
w are not lin-
early independent. Parametric solids with more than six
faces can be made by permitting creases in the boundary
surfaces, but the discontinuities involved extend all the
way across the interior of the solid. Even if these difficul-
ties are handled, parametric solids have nothing like the
flexibility and generality of B-rep solids.

7.1.5 Finite Elements. A wide variety of engineer-
ing problems formulated in terms of partial differential
equations or equivalent variational principles in two or
three dimensions are successfully addressed by the fi-
nite element method. In three dimensions, the problem
domain might be a solid, or a space filled with fluid. The
domain is discretized, i.e., dissected into a large number
of small regions called finite elements, each having a rel-
atively simple topology, e.g., a triangle or quadrilateral in
2-D, a tetrahedron or hexahedron in 3-D. An essential
step in the finite element method is to establish rules for
interpolation of quantities through the interior of an ele-
ment from their values at the element’s vertices or
nodes. These rules, applied to the differential equations
and integrated over an element, lead to element equa-
tions that relate relevant quantities (e.g., forces and dis-
placements in an elasticity problem) at the nodes of the
element. Imposing interelement continuity at the nodes
allows assembly of the individual element equations into
a large system of simultaneous equations, which are
solved numerically. If the governing equations are linear,
and geometry changes are small, the assembled equa-
tions are a linear system which can be solved by stan-
dard methods. More complex solution methods are also
available for nonlinear problems.

Because finite elements can vary widely in shape and
size, they are a very flexible solid representation.
However, in almost all practical situations, the elements
are only an approximation of the true geometry, ade-
quate for purposes of the analysis at hand, which is usu-
ally limited in accuracy by other approximations besides
the geometric ones. Building a finite element model of
any complexity is a labor-intensive process, keeping
track of thousands of nodes and elements. Automatic
finite element meshing is becoming available; for exam-
ple, programs that will fill a solid with tetrahedral ele-
ments. The usual starting point for this process is a B-rep
solid model.

7.1.6 Constructive Solid Geometry. Constructive
solid geometry (CSG) defines solids in terms of so-
called Boolean operations performed on simple primi-

tive solids such as blocks, cylinders, spheres, and
cones. The Boolean operations are the common set-
theoretic operations of union, intersection, and sub-

traction (Fig. 30). The sets being operated on are the
sets of points contained in the CSG solids (including
their bounding surfaces).

A CSG model has the graph-theoretic structure of a
tree, each node of which represents a solid, the leaf
nodes being the original primitive solids, the root node
being the resulting solid, each intermediate node having
an associated Boolean operation (Fig. 31).

CSG provides a simple, high-level description of a
class of solids which is limited, but nevertheless
broad enough to have had significant industrial value
and application. The similarity of the Boolean opera-
tions to common machining operations, e.g., drilling
holes or milling plane cuts or recesses, is an advantage.
CSG representations are compact and inherently valid.
However, evaluation of a CSG model to produce sur-
face data for display or NC machining requires com-
plex operations that are similar to constructing a B-rep
solid model.

7.2 Boundary Representation (B-rep) Solids. In a
boundary representation of a solid, the solid is defined
by describing all of its bounding surfaces (faces). The
faces are typically trimmed portions of planes, or
trimmed parametric or implicit surfaces. To define a
valid solid, the faces are required to effectively form a
watertight enclosure. Generally, there is a further re-
quirement that the faces do not intersect each other ex-
cept along their common edges.

Besides the definitions of the individual faces, it is
common in a boundary representation to store all the
topological information as to how the faces actually do
join — identification of which edges of which face pairs
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adjoin one another. Components of the topology data
structure occur at four levels of dimensionality:

Solid (3-D): a list of shells (one outer shell, and zero or
more inner shells, or voids)

Shell (3-D): a set of faces that form a watertight
enclosure

Face (2-D): a base surface, and a list of edges in
sequence

Edge (1-D): identification of the two surfaces that join,
and what part of their intersection forms the edge

Vertex (0-D): points where edges (and corners of faces)
meet.

The requirements for watertight enclosure, the pres-
ence of a topology data structure, and the support of
high-level functions such as Boolean operations are the
principal ways in which solid modeling programs are dis-
tinguished from surface modelers.

B-rep modeling is the most general solid modeling ap-
proach outlined in this volume. B-rep places no funda-
mental limitations on the range of shapes and topologies
that can be represented. The face and edge information
is available for display, machining, and other operations.
For example, faces and edges are used through applica-
tion of Gauss’s theorem to evaluate mass properties of
solids. Derivation of voxel, polyhedral, and contour rep-
resentations from B-rep is fairly straightforward.

The principal drawback of B-rep modeling is the com-
plex, redundant internal data structures that need to be
generated, maintained, stored, and updated when the

model changes. This demands a lot of memory, process-
ing, and verification and has proved to present a chal-
lenge to reliability and robustness. Although a solid is
required formally to be watertight, in fact much of the
data about edges must be contained in floating point
numbers calculated from intersection routines with
limited precision and resolution; tolerances are ever-
present. An edge typically has three more or less inde-
pendent representations in the data: as a curve in the
parameter space of each of the faces, and as a 3-D curve
in space; none of them agree, except approximately. A
small modification or parametric variation of the model
can easily cause “breakage” to occur (i.e., tolerances to
be exceeded) when edges are recalculated, resulting in
an invalid solid which is difficult to diagnose and cor-
rect. Solid modeling software is continuously evolving
to meet this challenge.

7.3 Parametric and Variational Solid Modeling. The
locations, dimensions, and shapes of geometric elements
in a solid model can be related to formulas and equations
so that a family of related designs can be produced from
one parent parametric model by specifying a set of di-
mensions. This is called dimension-driven or paramet-

ric modeling. The key element is the ability of the design
system to accept, understand, and evaluate the mathe-
matical formulas, and to control the generated geometry
on the basis of such calculations. (Note that this meaning
of the word “parametric” is quite distinct from its usage
in the phrases “parametric curve,” “parametric surface,”
and “parametric solid” in sections above.)

For example, suppose you design deck hardware and
wish to produce a series of cleats of different sizes. The
rope size (diameter) would be a principal parameter, and
all the dimensions controlling the cleat design could be
related to it by formulas. Once such a parametric model
is set up, you generate your series of designs just by set-
ting the “rope size” parameter to successive standard
rope sizes. This obviously saves a lot of repetitive design
effort; very likely it also produces a much more system-
atic and harmonious series of designs than if you sat
down and designed each one from scratch.

In variational modeling, dimensions and shapes can
be related to systems of simultaneous equations and
inequalities with any degree of complexity. These can
include engineering equations as well as geometric con-
straints. For example, in the cleat design, strength of ma-
terials calculations can be included, so the proportions
of the different parts of the cleat adjust themselves to
provide adequate strength at each size. Also, the fact that
bolts come in standard sizes could be included in a vari-
ational model, which might then select the smallest
available bolt size that meets strength criteria, and size
the bolt holes accordingly.

7.4 Feature-Based Solid Modeling. Feature-based
solid modeling combines elements of CSG and B-rep
solid modeling to produce a high-level solids design sys-
tem. The concept of a feature-based model is similar to
the CSG tree, where the primitive solids at the leaves

Fig. 31 Tree structure of a CSG solid model. A, B, and C are three
primitive solids which are combined with two Boolean operations.
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of the tree would today be called “features.” Features
are the basic components of a solid model, whatever
their character. Features include many design elements
that are much more complex than primitive solids; for
example, complex surfaces; complex holes including
countersinks and counterbores; slots, ribs, chamfers,
and fillets. A simple example that illustrates the concept
of a feature is a “through-hole” feature. Generally, a hole
is created by the Boolean subtraction of a cylinder from

the solid part; this is nicely analogous to a drilling oper-
ation (Fig. 30). If the cylinder has fixed dimensions,
however, a parametric change in the thickness of the
part of the solid it penetrates could turn a through-hole
into a blind hole. A through-hole feature, on the other
hand, would know it needs to go all the way through, as
a qualitative property, and would adjust the length and
position of the cylinder automatically so as to durably
achieve this result.

8.1 Molded Form. Regardless of the means of hull
surface definition, the construction material, or the con-
struction method, hull geometry is generally defined in
terms of a molded surface or molded form. In some
cases, the molded surface will be the actual exterior sur-
face of the hull, but more often it is a simplified or ideal-
ized surface whose choice is strongly influenced by the
construction method. The molded surface usually ex-
cludes any local protrusions from the hull, such as keel,
strakes, chines, and guards. When the vessel is con-
structed as a skin over frames, the molded surface is
usually defined as the inside of skin, outside of frames;
this is the case for both metal and wood construction.
When the skin thickness is constant, the molded form
will then be a uniform normal offset of the exterior sur-
face (and vice versa). For a molded plastic vessel the
molded form is often taken as the outside of the hull lam-
inate (i.e., the exterior surface of the hull, same as the
interior surface of the mold), but it could also be the out-
side of frames used to construct a male plug, or the in-
side of frames used to construct a female mold.

The important point is that the relationship between
the molded form and the hull surfaces varies; it needs to
be made explicit and taken into account in all aspects of
the design and construction process.

8.2 Lines Plan. The conventional presentation of the
3-D form of a ship’s hull surface is the lines plan or lines

drawing (Fig. 32). This shows the principal curves and
contours in three orthographic views taken along the
principal axes of the ship:

(a) Plan view, or waterlines plan: vertical projection
onto a horizontal base plane

(b) Profile view, sheer plan, or elevation: transverse
projection onto the centerplane

(c) Body plan: longitudinal projection onto a trans-
verse plane.

It is conventional in the body plan to project the bow
and stern contours separately, arranging the two result-
ing longitudinal views symmetrically across a centerline,
as shown. The selection of a longitudinal position for di-
viding the vessel into “bow” and “stern” is rather arbi-
trary. For most ships, division is made at the midship

section, midway between forward and after perpendicu-
lars. For other hull forms it may be at the center of wa-
terline length, at the maximum beam position, etc., but
should be chosen to minimize crossings of contours in
the body plan view. (Elimination of crossings is not nec-
essarily possible; for example, the widest part of the hull
and the deepest part will often not be at the same longi-
tudinal position.)

The lines displayed in the lines plan are generally the
same in the three views, and consist of the following:

(1) Principal curves: typically boundary lines for the
main hull surface or surfaces; for example, sheer line,
deck-at-side, stem profile, bottom profile, transom out-
lines, chines (if present). These are typically non-planar
3-D curves. Merchant and transport ships often have flat
(planar) regions on the side and/or bottom, delimited by
planar flat-of-side and flat-of-bottom curves.

(2) Sections of the hull surface with families of planes
parallel to the principal planes: transverse planes, result-
ing in stations or sections; vertical planes parallel to the
centerplane, resulting in buttock lines or buttocks; hori-
zontal planes, resulting in waterlines.

These sections can all be classified as contours, as they
are curves of constant X, Y, or Z coordinate respectively.

The surfaces represented in the lines plan can be
either the outside of skin, the inside of skin (outside of
frames), or the inside of frames. The choice may
depend on the intended hull material and method of
construction. Inside of skin is the usual choice for
metal construction; otherwise, outside of skin is most
common.

Note that there is substantial redundancy in the lines
plan. Any two views are in principle enough to define a
3-D curve. The contours in any one of the three views in
principle define the surface. In drafting of a lines plan,
much care is required to make the three views mutually
consistent, within tolerable accuracy.

8.3 Graphical Lines Fairing. Prior to the use of com-
puters for hull surface definition and fairing, lines plans
were developed through drafting procedures. Although
the modern computer-based methods bring significant
advantages, drafting of lines is still widely practiced and,

Section 8
Hull Surface Definition
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the solid part; this is nicely analogous to a drilling oper-
ation (Fig. 30). If the cylinder has fixed dimensions,
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hand, would know it needs to go all the way through, as
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side of frames used to construct a male plug, or the in-
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The important point is that the relationship between
the molded form and the hull surfaces varies; it needs to
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the design and construction process.

8.2 Lines Plan. The conventional presentation of the
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principal axes of the ship:
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and stern contours separately, arranging the two result-
ing longitudinal views symmetrically across a centerline,
as shown. The selection of a longitudinal position for di-
viding the vessel into “bow” and “stern” is rather arbi-
trary. For most ships, division is made at the midship

section, midway between forward and after perpendicu-
lars. For other hull forms it may be at the center of wa-
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should be chosen to minimize crossings of contours in
the body plan view. (Elimination of crossings is not nec-
essarily possible; for example, the widest part of the hull
and the deepest part will often not be at the same longi-
tudinal position.)

The lines displayed in the lines plan are generally the
same in the three views, and consist of the following:
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deck-at-side, stem profile, bottom profile, transom out-
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(planar) regions on the side and/or bottom, delimited by
planar flat-of-side and flat-of-bottom curves.

(2) Sections of the hull surface with families of planes
parallel to the principal planes: transverse planes, result-
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These sections can all be classified as contours, as they
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either the outside of skin, the inside of skin (outside of
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depend on the intended hull material and method of
construction. Inside of skin is the usual choice for
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plan. Any two views are in principle enough to define a
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were developed through drafting procedures. Although
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Fig. 32 The lines plan of a cargo ship.
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of course, has its firm adherents who feel it is a more
intuitive, creative, or artistic process.

The starting point for lines fairing may vary consider-
ably. The objective may be a minor, local variation of an
existing or available form. Scaling of an existing hull (typ-
ically unequal scaling in x, y, and/or z coordinates) is an-
other common starting point. It is also common to start
with particulars such as length, beam, draft, and displace-
ment. In this case, it is usual to develop a curve of section
areas S(x) having the chosen waterline length, displace-
ment, and longitudinal center of buoyancy, then to sketch
a set of sections each having approximately the correct
immersed area for its longitudinal position x. By any of
these means, a more or less rough approximation to the
intended lines is developed. The lines drawing is then re-
fined in an iterative graphical “fairing” process, working
between the three views. The objectives are fourfold:

(a) to bring the three views into complete agreement
with each other;

(b) to make each line in each view a satisfactorily fair
curve;

(c) to meet hydrostatic targets such as displacement
and longitudinal center of buoyancy; and

(d) to achieve visual and aesthetic objectives in the
appearance of the vessel.

Specialized drafting tools are used for this purpose:

• Drafting spline: a thin uniform strip of elastic material
that is bent to shape and held by weights (“ducks”) to
serve as a free-form variable-shape template for a pencil
or ink line.
• Flexible curves: a soft metal core in a plastic jacket
which can be plastically deformed to shape freeform
curves with more radical curvature distributions than
splines.
• Ship curves: an extensive set of drafting templates
(French curves) providing a wide range of curvature
variations.

Splines are used primarily for the longitudinal lines,
which typically have low, smoothly changing curvature.
Flexible curves and ship curves are used primarily for
drafting transverse curves such as stem profile, transom,
and sections.

Typically all the sections are faired, then all the water-
lines, then the sections again, then the buttocks, to com-
plete one cycle. Some draftsmen include diagonals in the
fairing process; these are sections cut by a plane that is
parallel to the X axis, but slopes downward from hori-
zontal at some angle �: Z � Z0 � Y tan �. Some prefer to
spend most of their fairing effort alternating between
sections and diagonals, and develop the buttocks and
waterlines only toward the end.

In practice, it is found that the graphical fairing
process converges linearly in most areas, so at each
cycle the discrepancies are roughly 20 to 30 percent of
those of the previous cycle. Three to five cycles usually
suffice to reduce discrepancies and unfairnesses to

about the limits of graphical accuracy. A region that re-
sists convergence usually indicates an overly rapid tran-
sition of shape which may require either relaxing some
design objectives, or additional contours through the
area to provide more definition.

The graphically faired lines plan has some limitations
which are noted as follows:

• Residual discrepancies and unfairnesses resulting
from the limited accuracy of the drafting operations
(and, in many cases, from the limited patience of the
draftsman).
• It is only a wireframe representation. To obtain infor-
mation for the actual surface at a point that is not on one
of the lines, further interpolation is needed; in general,
there is no unique answer for the location of such a point.

Nevertheless, this drafting process was the founda-
tion of naval architecture for centuries, and was the
means by which many a proud and famous vessel came
into the world.

8.4 Table of Offsets. While the lines plan portrays the
hull form in graphical terms, the table of offsets (or offset

table) is a conventional numerical representation of hull
form which serves as a bridge to lofting and fabrication.

The table of offsets is a pair of 2-D tables showing
curve and surface coordinates at locations specified in
the lines plan. Traditionally, the two tables are titled
“Heights” and “Half-breadths” and consist of Z and Y co-
ordinates, respectively. Columns represent stations, and
rows correspond to particular longitudinal curves (such
as the sheer or a chine), buttocks, and waterlines.
Buttocks are specified in the “Heights” table and water-
lines in the “Half-breadths”; 3-D curves such as the sheer
line appear in both.

Initially, offsets are scaled from the faired lines plan.
They are used to lay down the initial lines during full-size
lofting. Following lofting, the table of offsets can be up-
dated by measurements taken from the laydown. This re-
sults in a “faired” or “corrected” table of offsets, which
will be precious information in case the vessel ever has
to be lofted again.

8.5 Lofting. Lofting is the process of creating a full-
scale (or at least large-scale) lines plan or “laydown” to
serve as a template for fabrication of tooling such as
mold frames and actual vessel components such as
frames, bulkheads, floors, longitudinals, and shell plates.
Lofting is a continuation of the iterative graphical lines
fairing process at full size, so it can be much more pre-
cise. Wood, plastic, or metal battens, held in place by
weights, nails, or screws, become the full-size counter-
parts of the drafting spline and ducks. Since this work is
done on hands and knees and at much larger scale, it is
far more laborious than drafting.

8.6 Wireframe Computer Fairing. An early approach
to computer-aided design and manufacturing of ships
was a more or less literal “computerization” of the draft-
ing procedure. In place of a lines drawing, there is a 2-D
or 3-D geometric model consisting of plane and space
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curves, typically 2-D or 3-D spline curves. These curves
are “faired” by interactively moving their control points,
with the aid of computer displays indicating the distri-
bution of curvature along the curve being modified. The
principal numerical procedure involved is intersection
of a curve with a plane. For example, at some stage in
the fairing process when all the sections have been
faired as far as possible, initial data points for water-
lines are obtained by intersecting the section curves
with horizontal planes. As in graphical fairing, the oper-
ator alternates between 2-D fairing of sections, water-
lines, buttocks, and/or diagonals, until the three views
are in adequate agreement and all the lines are judged
sufficiently fair.

Advantages of wireframe computer fairing over draft-
ing include:

• Precision is not limited by drafting operations, width
of lines, stability of media, etc.
• Elimination of human error in transferring locations
between views
• Automation of some steps allows the operator to work
with a larger number of contours and, therefore, to
achieve a more complete definition
• Curvature profiling tools are much more sensitive
than visual evaluation of curve fairness
• Sufficient accuracy is obtainable to permit NC cutting
of parts from final interpolated curves.

8.7 Parametric Surfaces. Today, the dominant method
of hull surface design is by means of parametric surfaces.
With the help of a computer program and graphical dis-
plays, the naval architect manipulates the control points
or master curves of one or more parametric surface
patches. Evaluations of the resulting form can be quickly
made by contouring, wireframe and rendered views, dis-
play of curve and surface curvatures, weight and hydro-
static analysis, and capacity calculations. More elaborate
evaluations can be made by generating discretized models
for export to external analysis programs such as resist-
ance and seakeeping.

Some of the advantages of designing with a paramet-
ric surface model are:

• The hull surface is completely defined at all times;
points at any position can be precisely located without
ambiguity.
• Since the model is 3-D, the three orthogonal views
(and any other projections or renderings) are automati-
cally in agreement; no effort needs to be expended to
keep them so.
• Global modifications, such as uniform stretching in
each coordinate direction, are typically provided.
• Depending on the construction of the surface model, a
variety of local modifications may be provided to per-
form high-level shape modifications while preserving
particular geometric properties.

• Analysis data can be extracted in a variety of forms,
e.g., transverse sections for hydrostatics and strip-theory
seakeeping, and discretized models for resistance,
propulsion, and survivability.
• The surface definition can be utilized in planning sub-
division, e.g., shell plate layout, compartmentation, and
interior structural elements.
• Manufacturing data can be extracted in a variety of
forms, e.g., full size patterns for parts; and NC machining
instructions.

8.8 Discretization. Many modern forms of analysis
require an approximate representation of the ship hull
in the form of discrete finite elements or panels.
Examples are: aerodynamic and hydrodynamic analy-
sis, 3-D hydrostatics, radiation-diffraction wave-body
analysis, sonar and radar cross-section, and finite-
element structural codes. The process of creating such
discrete analysis models is called discretization, panel-
ization, or sometimes tessellation. Although the analy-
sis itself tends to be compute-intensive — typically the
programs are solving very large systems of simultane-
ous linear equations — nevertheless, data preparation
tends to be laborious and error-prone and is often
the largest obstacle to expanded utilization of such
prediction tools.

Although the specific requirements for different analy-
sis codes vary, there is a lot of common geometric
ground. Most codes require either quadrilateral or trian-
gular panels; some will accept a mixture of the two.
Quadrilateral panels, while often described loosely as
“planar facets,” actually do not need to have coplanar
corners in the geometry (which would be quite restric-
tive); the analysis code will typically substitute a planar
panel formed by projecting the four original corners onto
the plane that is a least-squares fit to the four corners.

Output of a complete parametric surface patch as
panels is typically a very simple operation. The patch is
sampled by tabulating points at uniform intervals in each
parameter. This creates a mesh of NxM panels, where N
and M are the number of subdivisions in each parameter
direction. If a nonuniform distribution of panels is de-
sired, the sampling can be at nonuniform intervals. If tri-
angular panels are required, each quadrilateral can be di-
vided into two triangles along one diagonal.

While some applications will require discretization of
the complete hull surface (for example, a structural code
that deals with the complete hull shell, or a nonlinear hy-
drodynamics code that creates its own panels below a
wavy free surface), most applications require panels
only below the water (hydrodynamics, aerodynamics,
acoustics) or above the water (radar cross-section).
Therefore, dividing a surface at a specified boundary and
panelizing the portion on one side is often an essential
requirement. This can be accomplished by a trimmed
surface or a subsurface.
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9.1 Hydrostatic Forces and Moments; Archimedes’
Principle. In a stationary fluid of uniform density �, and
in a uniform vertical gravitational field of magnitude g,
the static pressure increases linearly with depth (�z)
below the free surface:

p � p0 � �gz (47)

where p0 is the atmospheric pressure acting on the
surface. This is easy to see in the absence of solid
boundaries, because the pressure acting at any point in
the fluid is the only force available to support the
weight of the column of fluid extending from that
point upwards to the surface (plus the weight of the
column of atmosphere above the surface). It is equally
true, though perhaps less obvious, in the presence of
solid boundaries of arbitrary configuration. Consider
the equilibrium of an infinitesimal element of fluid,
with dimensions dx, dy, dz. The forces acting on the
element are:

• its weight, �g dxdydz, acting vertically downward, i.e.,
in the � k direction
• the gradient of pressure (î
p/
x � ĵ
p/
y � k̂
p/
z)
dxdydz.

If these forces are to be in equilibrium, it is necessary
that

• the horizontal components of pressure gradient van-
ish, i.e., pressure is a function of z only; and
• the vertical component of pressure gradient be 
p/
z

� ��g. This equation can be integrated between any two
z positions, yielding equation (47).

The atmospheric pressure p0 acts not only on the wet-
ted surface of the body but also on all nonwetted sur-
faces, producing zero resultant force and moment.
Consequently, it is normally omitted from hydrostatic
calculations.

A solid boundary in the fluid is subject to a force on
any differential area element dS equal to the static pres-
sure p times the element of area, directed normal to the
surface (and, of course, out of the fluid, into the body).
The contribution to force is:

dF � p n dS � ��gz n dS (48)

where n is the unit normal vector. The contribution to
moment about the origin is:

dM � p r � n dS � ��gz r � n dS (49)

where r is the radius vector from the origin to the sur-
face element. The total resultant force and moment on
a body either floating or immersed in the fluid is ob-
tained by integrating these variable force components
over the wetted surface. By application of Gauss’ theo-

rem, the surface integrals are converted to volume
integrals, so

(50)

where k̂ is the unit vector in the vertical upward direc-
tion, and V is the displaced volume. Because this force is
vertically upward, it is called the “buoyant force.” Its mo-
ment about the origin is:

(51)

Equations (50) and (51) are the twin statements of
“Archimedes’ principle”:

• The net buoyant force is vertically upward and is equal
to the weight of fluid displaced by the body (the
displacement)
• The buoyant force effectively acts through the cen-
troid of the immersed volume (rB).

Thus, the calculation of hydrostatic forces and mo-
ments is reduced to calculation of strictly geometric
quantities: volumes, and centroids of volumes. This is a
powerful simplification, and a strong conceptual princi-
ple for thinking about hydrostatic properties throughout
naval architecture.

In SI units, the standard density � of fresh water at 4°
Celsius is 1000 kg/m3, or 1.000 metric ton/m3. The stan-
dard acceleration of gravity g is 9.80665 m/sec2; this
value is supposed to represent conditions at sea level
and 45° latitude. Consequently, the standard specific
weight �g of fresh water is 9.80665 kN/m3. Forces, in-
cluding the hydrostatic bouyant force, are expressed in
newtons (N). Masses are expressed in metric tons (also
known as “tonnes”), or kg for small craft. Displacement,
too, is much more often expressed as a mass (metric
tons or kg) than as either a force or volume. Pressure is
expressed in N/m2; standard atmospheric pressure is
101.3 kN/m2, equivalent to 10.13 m depth of water. In
naval architecture, it is conventional to use the symbol �
for displaced volume, and � for displacement force. �m

can be used for displacement mass.
Because of the importance of Archimedes’ principle,

we should briefly examine each of the idealizations it is
based on:
• Constant density: Water is slightly compressible, with
a bulk modulus of approximately 20,400 atm. (fresh
water) or 22,450 atm. (sea water). In a typical draft of 10
meters, this produces a density variation of only about
0.005 percent.

Much more significant variations of density occur be-
cause of variations in temperature and salinity (concen-

M � ��g z r � n dS � rB � F��

F ���g z n dS � �g k̂ dx dy dz � �g k̂V�� ���

Section 9
Displacement and Weight
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tration of dissolved salts). Sea water has a specific grav-
ity of about 1.020 to 1.030, i.e., 2 to 3% denser than fresh
water; 1.025 is a commonly accepted average value. The
most saline surface waters occur in the tropics. Between
the maximum density of water at approximately 4° C and
the warmest waters occurring naturally at the sea sur-
face (about 35° C) there is a 0.6 percent difference in
specific gravity due to thermal expansion.

In rare situations, there is significant density gradient
within the typical draft range of ships and marine struc-
tures, resulting from density stratification — warmer
and/or fresher water overlaying cooler and/or more
saline layers, most commonly resulting from fresh water
runoff. Soft mud is sometimes treated as a fluid with spe-
cific gravity of 1.25 to 1.50 in the hydrostatic analysis of
a stranded ship.

When stratification is significant, hydrostatic calcula-
tions can still be based on Archimedes’ principle. The
body is cut into horizontal layers, and each layer has
buoyant support equal to its volume times the specific
weight of the fluid at that depth:

(52)

where A(z) is the horizontal cross-section area of the
body at depth z.
• Uniform gravitational field: Below the water surface,
the acceleration due to gravity diminishes with depth be-
cause there is less mass below and more mass overhead.
The effect of this within a 10 m typical draft is only about
1 part in 2.5 � 105.

There is also a geographic variation in the effective
gravitational acceleration, resulting primarily from the
earth’s rotation. Centrifugal force offsets some of the ac-
celeration due to gravity, and the rotation also results in
oblateness, i.e., slight variation in the polar vs. equatorial
radii. Together these effects cause g to be about 0.26 per-
cent below the standard value at the equator, and 0.26
percent above at the poles. These variations are of no
consequence in regard to flotation, since the specific
weight of water and the weight of the vessel are equally
affected.

• Vertical gravitational field: In fact, we live on an ap-
proximately spherical earth (radius about 6,367 km),
with an approximately radial gravitational field. The cur-
vature of the earth is small enough to be neglected for all
but the largest marine structures. For example, a ship of
1 km length should have a hog of approximately 2 cm
amidships to fit the curve of the earth. This will increase
in proportion to the square of the ship length.
• Neglect of atmospheric pressure: As noted above, the
justification for ignoring atmospheric pressure in hydro-
static analysis is that it is a constant pressure acting
equally on all the surfaces of the ship, and consequently
producing zero resultant force and moment. About the
only area of naval architecture in which the presence of

F � g k̂ �(z) A(z) dz�

atmospheric pressure has to be considered is cavitation
of propellers. Cavitation occurs when the absolute static
pressure in the fluid drops below the vapor pressure, re-
sulting in formation of local vapor bubbles (boiling).
Absolute static pressure in this case has to include all
pressure components including atmospheric pressure.

9.2 Numerical Integration. Many of the formulas in-
volved in calculation of hydrostatic and mass properties
are expressed in terms of single or multiple integrals.
Multiple integrals are computed as a series of single
integrals. In rare cases, the integrands encountered are
known analytically and are simple enough to permit
analytic integration, but far more often the integrands
are only known or stored as tabulations of values, gener-
ally as arrays in computer memory. In these cases, the
integrals must be calculated by numerical quadrature
methods.

The integral expression

(53)

(representing the area between the curve y vs. x and the
x-axis) is only meaningful if y is defined at all values of x
in the range of integration, a to b. However, when y is a
tabulation, the table only furnishes y values (ordinates)
yi at a discrete set of x values (abscissae) xi, i � 0, . . . N
(with x0 � a, xN � b). Numerical quadrature consists of
two fundamental steps:

• Adoption of some continuous function of x (the inter-

polant) that matches the given ordinates at the given
abscissae
• Integration of the continuous interpolant over the
given interval.

9.2.1 Sum of Trapezoids. The simplest interpolant is
a piecewise linear function joining the tabulated points
(xi, yi) with straight lines. When the xi are irregularly
spaced, it is easiest to calculate the integral as the sum of
individual trapezoids. The area from xi�1 to xi is (yi�1 �
yi) � (xi � xi�1)/2, so the integral is approximated by

(54)

as seen in Fig. 33.
Note that the sum of trapezoids can be applied even

when the integrand has finite discontinuities, provided
the table has two abscissae xj�1, xj at the discontinuity,
and furnishes different ordinates yj�1, yj on the two
sides. (The trapezoid between these two identical ab-
scissae has zero area.)

9.2.2 Trapezoidal Rule. When the tabulation is at
uniformly spaced abscissae (including the endpoints
of the interval), then the intervals in equation (54) are

x

x

0

N

y dx � 1 / 2 (yi�1 � yi)(xi � xi�1)� �
N

i�1

a

b

y dx�
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constant, xi � xi�1 � �x, and the sum of trapezoids
takes the simpler form (the “trapezoidal rule”):

(55)

Note: The trapezoidal rule can be seriously in error if
the function has discontinuities; in such cases, the sum of
trapezoids will usually give a much more accurate result.

9.2.3 Simpson’s First Rule. When (1) the tabulation
is at uniformly spaced abscissae, (2) the number of inter-
vals is even (number of abscissae is odd), and (3) the
function is known to be free of discontinuities in both
value and slope, then a piecewise parabolic function can
be a more accurate interpolant. This leads to “Simpson’s
first rule”:

(56)

Note: When the three conditions above are not met,
Simpson’s rule can be much less accurate than the trape-
zoidal rule or sum of trapezoids.

� . . . � 2yN�2� 4yN�1� yN )
x

x

0

N

y dx � �x / 3(y0 � 4y1 � 2y2 � 4y3�

� . . . � 2yN�1� yN )

x

x

0

N

y dx � �x / 2(y0 � 2y1 � 2y2�

9.3 Planimeters and Mechanical Integration. During
the centuries in which graphical design operations were
so central to ship design, an important traditional tool of
the naval architect has been an area-measuring mechan-
ical instrument known as a planimeter. This is a clever
device with a stylus and indicator wheel; when the user
traces one full circuit of a plane figure with the stylus, re-
turning to the starting point, the indicator wheel rotates
through an angle proportional to the area enclosed by
the figure.

More complex versions of this instrument, known as
integrators, are able to additionally accumulate read-
outs proportional to the moments of area and moments
of inertia of the figure. The previous edition of this book
contains a mathematical derivation of how the planime-
ter works. Today, with the great majority of area, vol-
ume, weight, and hydrostatic calculations performed by
computer programs, planimeters are likely relegated to
the same dusty drawer as the slide rule.

9.4 Areas, Volumes, Moments, Centroids, and Moments
of Inertia. Volume is usually calculated as an integral of
areas. In the general volume integral

(57)

the integration can be performed in an y order. The
usual choice in ship design is to take the x axis longitu-
dinal, and integrate last with respect to x:

(58)

where

(59)

i.e., S(x) is the area of a plane section normal to the x-
axis at location x, the so-called section area curve or
section area distribution of the ship.

The area of an arbitrary plane region R in the x, y-
plane, enclosed (in the counterclockwise sense) by a
closed curve C � 
R, is:

(60)

Green’s theorem allows some area integrals to be ex-
pressed as line integrals around the boundary 
R. In gen-
eral 2-D form, Green’s theorem is (Kreyszig 1979)

(61)

where P and Q are arbitrary differentiable functions of x
and y. One way to cast equation (60) into this form is to
choose P � �y and Q � 0; then

(62)A �
R
dx dy � �


R
y dx
��

R

(
Q / 
x�
P / 
y) / dx dy �

R

(P dx � Q dy)
��

A�
R
dx dy��

S(x) � dy dz��

V� S(x) dx�

V� dx dy dz,���

Fig. 33 Numerical integration rules. (a) Sum of trapezoids. (b)
Trapezoidal rule. (c) Simpson’s first rule (being applied to rather unsuit-

able data).
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Alternatively, we could choose P � 0 and Q � x; then

(63)

Often the boundary C can be approximated as a
closed polygon (polyline) P of N segments Ci, i � 0,...N
� 1, connecting points xi, i � 0,...N � 1, where each xi

is a two-component vector {xi, yi}. (The last segment
connects point xN�1 back to point x0.) The line integral
equation (63) becomes a sum over the N straight
segments:

(64)

Segment i runs from xi�1 to xi; it can be parameter-
ized as xi�1 (1 � t) � xit, with 0 	 t 	 1; i.e.,

x � xi�1(1 � t) � xi t, (65)

y � yi�1(1 � t) � yi t (66)

so dy � (yi � yi�1)dt. Thus the contribution from Ci is

(67)

and this allows the enclosed area A to be easily com-
puted as the sum of N such terms.

Note that the polygonal region R cannot have any in-
terior holes because its boundary is defined to be a sin-
gle closed polygon. However, polygonal holes are easily
allowed for by applying the same formula [equation (67)]
to each hole and subtracting their areas from the areas
of the outer boundary.

This same general scheme can be applied to compute
integrals of other polynomial quantities over arbitrary
polygonal regions. The first moments of area of R with
respect to x and y are defined as

(68)

These have dimensions of length cubed. mx can be
put in the form of Green’s theorem by choosing Q � 0
and P � �xy; then

(69)

Similarly, my can be put in the form of Greens’s theo-
rem by choosing Q � 0 and P � �y2/2; then

(70)my �

R

�y2 / 2dx


mx �

R

�xy dx


{mx, my} �
R

{x, y} dx dy��

� (xi�1�xi)(yi�yi�1) / 2

Ai �
0

1

[xi�1(1� t)�xit](yi�yi�1)dt�

A � Ai where  Ai �
Ci

x dy�
i�1

N

�

A �
R
dx dy �


R
x dy
��

Replacing the boundary with a polygon as before, the
x- and y-moments of area are:

(71)

(72)

There is a need for some purposes to compute mo-
ments of inertia of plane regions. Moments of inertia
with respect to the origin are defined as follows:

(73)

These have units of length to the fourth power.
Application of Green’s theorem and calculations similar
to the above for an arbitrary closed polygon result in:

(74)

(75)

(76)

The centroid (center of area) is the point with coordi-
nates mx/A, my/A. Note that the centroid is undefined
for a polygon with zero enclosed area, whereas the mo-
ments are always well defined. This suggests postponing
the division, de-emphasizing section centroids, and per-
forming calculations with moments as far as possible,
especially in automated calculations where attempting a
division by zero will either halt the program or produce
erroneous results.

For example, there is generally no need to calculate
the centroid of a section. The 3-D moments of displaced
volume for a ship are

(77)Mx � x dx dy dz � x S(x) dx��� �
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Fig. 34 Triangular prismatic element used for hydrostatic calculations
with a triangular-paneled discretization.

(78)

(79)

The 3-D centroid (CB, center of buoyancy) is the point
with coordinates Mx/V, My/V, Mz/V.

For complex bodies such as offshore structures, the
cutting of sections is difficult, and the sections them-
selves may be quite complex. Also, section properties can
change rapidly in a short distance, often requiring a large
number of closely spaced sections to achieve an ade-
quate representation. A fully 3-D approach to hydrostatic
calculations is then advantageous. A 3-D discretization of
the body, analogous to approximation of sections by
polygons in 2-D, then becomes preferable. We assume the
discretization is in the form of a triangle mesh having all
watertight junctions (i.e., no gaps between adjacent trian-
gles). Applying Archimedes’ principle, the hydrostatic
force and moment can be calculated from the volume and
centroid of the solid enclosed by the triangle mesh sur-
face including the waterplane area. We calculate this
solid as the sum of a set of triangular prismatic elements,
each formed by taking one triangular panel, projecting it
onto the plane z � 0, and connecting the panel to its pro-
jection with three vertical trapezoidal faces (Fig. 34). The
volume of the prism will be positive if the panel faces
downward, i.e., if its outward normal has a negative z

component; otherwise, the prism volume is negative.
The corner points of the panel are x1, x2, x3, num-

bered in counterclockwise order as viewed from the
water. (It is essential that each triangle have this consis-
tent orientation.) Half the cross-product of two sides

a � (x2 � x1) � (x3 � x1)/2 (80)

Mz � z dx dy dz � mz(x) dx��� �

My � y dx dy dz � my (x) dx��� � is a vector normal to the panel (pointing outward, into
the water), with magnitude equal to the panel area.
Points on the panel are parameterized with parameters
u, v as follows:

x(u, v) � x1 � (x2 � x1)u � (x3 � x1)v (81)

where the range of v is 0 to 1 and the range of u is 0 to
1 � v. In particular, over the panel surface,

z � z1 � (z2 � z1)u � (z3 � z1)v (82)

We perform integrations over the triangle that is the
vertical projection of the panel onto the z � 0 plane (the
top of the prism), e.g.,

(83)

where Q is any function of x and y, and A � �a3, the
(signed) area of the waterplane triangle. (A is positive
for a panel whose normal has a downward component.)

The volume and moments of volume of the prism are
evaluated as follows:

V � A (z1 � z2 � z3) / 3 (84)

Mx � A [(x1 � x2 � x3)(z1 � z2 � z3)

+ x1z1 + x2z2 + x3z3] / 12
(85)

My � A [(y1 � y2 � y3)(z1 � z2 � z3)

+ y1z1 + y2z2 + y3z3] / 12
(86)

Mz � A [(z1 � z2 � z3)2
� z

2
1 � z

2
2 � z

2
3] / 24 (87)

The waterplane area of this prism is A, with its
centroid at {(x1 � x2 � x3)/3, (y1 � y2 � y3)/3, 0}.
Its contributions to the waterplane moments of 
inertia are:

Ixx � A [y2
1 � y

2
2 � y

2
3 � y1y2 � y2y3 � y3y1] / 6 (88)

Ixy � A [(x1 � x2 � x3)(y1 � y2 � y3)

� x1y1 � x2y2 � x3y3] / 12
(89)

Iyy � A [x2
1 � x

2
2 � x

2
3 � x1x2 � x2x3 � x3x1] / 6 (90)

9.5 Weight Estimates, Weight Schedule. Archimedes’
principle states the conditions for a body to float in
equilibrium:

• its weight must be equal to that of the displaced fluid,
and
• its center of mass must be on the same vertical line as
the center of buoyancy.

The intended equilibrium will only be obtained if the
vessel is actually built, and loaded, with the correct
weight and weight distribution. Preparation of a reason-
ably accurate weight estimate is therefore a critical step
in the design of essentially any vessel, regardless of size.
Enormous expense and disappointment await the de-
signer who shortcuts this element of design.

Q(x, y) dx dy � 2 A
0

1

0

1�v

Q(x, y) du dv�� � �
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The general principles of weight prediction are well-
known. Weight is the product of mass times accelera-
tion due to gravity, g. The total mass will be the sum of
all component masses, and the center of mass (or cen-

ter of gravity) can be figured by accumulating x, y, z

moments:

(91)

(92)

where mi is a component mass and {xi, yi, zi} is the loca-
tion of its center of mass. The resultant center of mass
(center of gravity) has coordinates

{xG, yG, zG} � {Mx/m, My/m, Mz/m}. (93)

In SI units, the mass units in naval architecture are
typically kg for small craft, or metric tons for ships, and
the term “weight estimate,” although widely used, is
something of a misnomer. Weights, i.e., the forces ex-
erted by gravity on these masses, are used in such appli-
cations as static equilibrium and stability analysis.

In some situations, primarily in regard to dynamic
analysis of maneuvering and motions in waves, the mass
moments of inertia are also of importance. The total mo-
ments of inertia with respect to the global coordinates x,
y, z are defined as follows:

(94)

(95)

(96)

(97)

(98)

(99)

where mi is the mass of the ith item, and (ixx)i, (ixy)i,
etc., are its mass moments of inertia with respect to its
own center of mass.

The mass moments of inertia of the complete ship
about its center of mass are obtained from the parallel-

axis theorem. Let x�, y�, z� be the centroidal coordinate
frame parallel to the global coordinates, with origin at
the center of mass, i.e., x� � x � xG, etc. Then the com-
ponents of mass moments of inertia with respect to the
centroidal frame are:

Ix�x� � Ixx � M (y2
G � z

2
G) (100)

Iy�y� � Iyy � M (z2
G � x

2
G) (101)

Iz�z� � Izz � M (x2
G � y

2
G) (102)

Izx � Ixz � [mizixi�(izx) i]�
I

Iyz � Izy � [miyizi�(iyz) i]�
I

Ixy � Iyx � [mixiyi�(ixy) i]�
I

Izz � [mi(x
2
i � y2

i )�(izz) i]�
I

Iyy � [mi(z
2
i �x2

i )�(iyy) i]�
I

Ixx � [mi(y
2
i �z2

i )�(ixx) i]�
I

{Mx,My,Mz} � {xi,yi,zi}mi�
i

m � mi�
i

Ix�y� � Ixy � M xGyG (103)

Iy�z� � Iyz � M yGzG (104)

Iz�x� � Izx � M zGxG (105)

The weight schedule is a table of weights, centroids,
and moments arranged to facilitate the above calcula-
tions. Today it is most commonly maintained as a
spreadsheet, with the tremendous advantage that its to-
tals can be updated continuously as component
weights are added and revised. Often it is useful to cat-
egorize weight components into groups, e.g., hull,
propulsion, tanks, and cargo. Some 3-D modelers allow
unit weights to be assigned to geometric elements, and
will maintain a weight schedule that dynamically up-
dates to reflect changes in geometry, as well as unit
weights.

Some component weights can be treated as points,
e.g., an engine or an item of hardware. Some weights are
distributed over curves and surfaces; their mass calcula-
tion has been outlined in Sections 3 and 4. Weights that
are complex-shaped volumes or solids are generally the
most difficult to evaluate; for example, ballast castings
and tank contents. Here the general techniques of vol-
ume and centroid computation developed for hydrostat-
ics can be brought to bear.

Of course, the vessel can vary from the design during
construction. The architect, builder, and owner/operator
all have an interest in monitoring weights and center of
gravity throughout construction and outfitting so the
flotation, stability, capacity, and performance require-
ments and objectives are met when the vessel is placed
in service. Weight analysis and flotation calculations are
an ongoing concern during operation of the vessel, too,
as cargo and stores are loaded and unloaded. Often this
is performed by on-board computer programs which
contain a geometric description of the ship and its parti-
tioning into cargo spaces and tanks.

9.6 Hydrostatic Stability. Hydrostatic stability is the
principal topic of Moore (2009) and Tagg (2009). Here
we provide a brief introduction relating the subject to
vessel geometry, and focusing primarily on an upright
equilibrium attitude.

Archimedes’ principle provides necessary and suffi-
cient conditions for a floating object to be in equilib-
rium. However, further analysis is required to deter-
mine whether such an equilibrium is stable. The
general topic of stability of equilibrium examines
whether, following a small disturbance that moves a
given system away from equilibrium, the system tends
to restore itself to equilibrium, or to move farther away
from it.

A ball resting at the low point of a concave surface is
a prototype of stable equilibrium (Fig. 35). If the ball is
pushed a little away from center, it tends to roll back. Its
characteristic motion under this restoring force is an os-
cillation about the equilibrium position. Another way to
characterize stable behavior is that a small disturbance
produces small results.
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Fig. 35 Illustration of various types of equilibrium. (a) Unconditionally
stable. (b) Unconditionally unstable. (c) Neutral. (d) Conditionally stable,

globally unstable.

The same ball resting at a maximum of a convex sur-
face is a typical unstable equilibrium. Following a small
displacement in any direction, the ball tends to acceler-
ate away from its initial position. In an unstable system,
a small disturbance produces a large result.

On the boundary between stable and unstable behav-
ior, there is neutral stability, represented by a ball on a
level plane. Here, there is no tendency either to return to
an initial equilibrium, or to accelerate away from it.

Stability can depend on the nature of the disturbance.
Picture the ball resting at the saddle point on a saddle-
shaped surface. In this situation, the system is stable
with respect to disturbances in one direction and simul-
taneously unstable with respect to disturbances in other
directions. A ship can be stable with respect to a change
of pitch and unstable with respect to a change in roll, or
(less likely) vice versa. In order to be globally stable, the
system must be stable with respect to all possible “direc-
tions” of disturbance, or degrees of freedom.

A 3-D rigid body has in general six degrees of free-
dom: linear displacement along three axes and rotations
with respect to three axes. Let us first examine hydro-
static stability with respect to linear displacements.
When a floating body is displaced horizontally, there is
no restoring force arising from hydrostatics. This results
in neutral stability for these two degrees of freedom.

Likewise, rotation about a vertical axis results in no
change in volume or restoring moment, so is a neutrally
stable degree of freedom.

The vertical direction is more interesting. In the case
of a fully submerged neutrally buoyant rigid body, the
equilibrium is neutral; a small displacement in z does
not change the vertical (buoyant) force, since the vol-
ume is constant. (Note, however, that a submerged
compressible body will always be unstable with respect
to vertical displacement. If the disturbance is a slight
downward displacement, the increased pressure in-
duces a decrease in volume; this reduces the buoyant
force, so the body tends to sink. Conversely, if the dis-
turbance is a slight upward displacement, the body ex-
pands, displacing more fluid, so it tends to rise toward
the surface.)

A rigid body floating in equilibrium with positive wa-
terplane area Awp is always stable with respect to verti-
cal displacement. If the disturbance is a small positive
(upward) displacement in z, say dz, the displaced vol-
ume decreases (by �Awpdz), decreasing buoyancy rela-
tive to the fixed weight, so the imbalance of forces will
tend to return the body to its equilibrium flotation. �gAwp

is the coefficient of stiffness with respect to the vertical
degree of freedom: the hydrostatic restoring force per
unit of displacement distance, exactly like a “spring con-
stant” in mechanics.

The two remaining degrees of freedom are rotations
about horizontal axes; for example, for a ship, trim (ro-
tation about a transverse axis) and heel (rotation about
a longitudinal axis). For a fully submerged rigid body,
the stability of these degrees of freedom depends en-
tirely on the vertical position of the center of gravity
(CG) with respect to the center of buoyancy (CB).
Archimedes’ principle states that equilibrium requires
that the center of gravity and the center of buoyancy lie
on the same vertical line. If the two centers are coinci-
dent, the submerged body can assume any attitude, with
neutral stability. If they are distinct, there will be exactly
one attitude of stable equilibrium, with the CG below the
CB, and exactly one attitude of unstable equilibrium
with the CG above the CB.

For floating bodies, the rotations about horizontal
axes are generally very important, and hydrostatically in-
teresting, degrees of freedom. The question is, will the
vessel return to an upright attitude following a small
displacement in heel or trim? And, how strong is her ten-
dency to do so? In Moore (2009), it is shown that the cen-
troid of waterplane area, also known as the center of

flotation (CF), is a pivot point about which small rota-
tions can take place with zero change of displacement;
and the stability of these degrees of freedom depends on
the moments of inertia of the waterplane area about
axes through the CF:

dL/d� � g�[Ixx � �(zB � zG)] (106)

dM/d	 � g�[Iyy � �(zB � zG)] (107)
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where:
L and M are the restoring moments about the longitudi-
nal and transverse axes respectively;

� and 	 are heel and trim angles;
Ixx and Iyy are the moments of inertia of the waterplane

area about longitudinal and transverse axes through
CF;

� is the displacement volume;
zB and zG are the vertical heights of the center of buoy-

ancy and center of gravity respectively.

Because these coefficients pertain to small displace-
ments from an equilibrium floating attitude, they are
called transverse and longitudinal initial stabilities.
Their dimensions are moment/radian (i.e., force �
length / radian). They are usually expressed in units of
moment per degree.

Initial stability is increased by increased moment of
inertia of the waterplane, increased displacement, a
higher center of buoyancy, and a lower center of gravity.
Because of the elongated form of a typical ship, the lon-
gitudinal initial stability is ordinarily many times greater
than the transverse initial stability.

It is common to break these formulas in two, stating
initial stabilities in terms of the heights of fictitious
points called transverse and longitudinal metacenters Mt

and Ml above the center of gravity G:

dL/d� � g��(zMt � zG) � �(zMt � zG) (108)

dM/d	 � g��(zMl � zG) � �(zMl � zG) (109)

where

zMt � zB � Ixx / � (110)

zMl � zB � Iyy / � (111)

zMt � zG and zMl � zG are called transverse and lon-
gitudinal metacentric heights. There is an alternative
conventional notation for these stability-related vertical
distances:

B represents the center of buoyancy;
MT the transverse metacenter;
ML the longitudinal metacenter;
G the center of mass; and
K the “keel” or baseline.

Then,

BMT � zMt � zB � transverse metacentric radius
BML � zMl � zB � longitudinal metacentric radius
KMT � zMt � zK � height of transverse metacenter
KML � zMl � zk � height of longitudinal metacenter
KB � zB � zk � center of buoyancy above baseline
KG � zG � zk � center of gravity above baseline
GMT � zMt � zG � transverse metacentric height
GML � zMl � zG � longitudinal metacentric height.

In terms of metacentric heights, in this notation, the
initial stabilities become simply:

dL/d� � � GMT (112)

dM/d	 � � GML (113)

Note that the metacenters are widely different for
transverse and longitudinal inclinations. Metacentric
heights are typically 10 to 100 times larger for longitudi-
nal inclination, owing to the elongated form of most
vessels.

It is conventional in naval architecture to compare ves-
sels of different sizes and proportions in terms of a num-
ber of ratios or dimensionless coefficients characterizing
the form or shape. These so-called form coefficients cor-
relate to a useful degree with resistance, seakeeping and
capacity characteristics, and provide considerable guid-
ance in selecting appropriate proportions and displace-
ment for a new ship design.

The leading dimensions involved in the standard form
coefficients are: displaced volume �, waterplane area
Awp, midship section area Ams, length L, waterline beam
B, and draft T. Any of these quantities might be very
clearly defined or might be ambiguous to varying de-
grees, depending on the type of vessel and its specific
shape; these issues were discussed in Section 1.2.1 in re-
lation to “particulars.” For example, appendages might
or might not be included in displacement and/or length.
Ams may refer to the midship section (at the midpoint of
L) or to the maximum section, which can be somewhat

different. Of course, any uncertainty in the leading di-
mensions will produce corresponding variations in their
ratios. To be definite about form coefficients, it is neces-
sary to explicitly state the loading condition and, often,
to specify which volumes are included and excluded. It
is common to refer to “bare-hull” or “canoe-body” form
coefficients when appendages are excluded.

10.1 Affine Stretching. A given ship form can be
transformed into a triply infinite family of other ships by
a combination of linear (uniform) stretchings along the
three principal axes. Uniform stretching by different
amounts along different axes is called affine transforma-
tion in geometry. Suppose we start with a base ship form
of length L, beam B, and depth D and apply multiplica-
tive factors of �, �, � along the longitudinal, transverse,
and vertical axes respectively; then we arrive at a new
ship with leading dimensions �L, �B, �D. The displace-
ment will be multiplied by a factor of ���, the midship
section area by a factor of ��, and the waterplane area

Section 10
Form Coefficients for Vessels



THE GEOMETRY OF SHIPS 45

where:
L and M are the restoring moments about the longitudi-
nal and transverse axes respectively;

� and 	 are heel and trim angles;
Ixx and Iyy are the moments of inertia of the waterplane

area about longitudinal and transverse axes through
CF;

� is the displacement volume;
zB and zG are the vertical heights of the center of buoy-

ancy and center of gravity respectively.

Because these coefficients pertain to small displace-
ments from an equilibrium floating attitude, they are
called transverse and longitudinal initial stabilities.
Their dimensions are moment/radian (i.e., force �
length / radian). They are usually expressed in units of
moment per degree.

Initial stability is increased by increased moment of
inertia of the waterplane, increased displacement, a
higher center of buoyancy, and a lower center of gravity.
Because of the elongated form of a typical ship, the lon-
gitudinal initial stability is ordinarily many times greater
than the transverse initial stability.

It is common to break these formulas in two, stating
initial stabilities in terms of the heights of fictitious
points called transverse and longitudinal metacenters Mt

and Ml above the center of gravity G:
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gitudinal metacentric heights. There is an alternative
conventional notation for these stability-related vertical
distances:

B represents the center of buoyancy;
MT the transverse metacenter;
ML the longitudinal metacenter;
G the center of mass; and
K the “keel” or baseline.

Then,

BMT � zMt � zB � transverse metacentric radius
BML � zMl � zB � longitudinal metacentric radius
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KG � zG � zk � center of gravity above baseline
GMT � zMt � zG � transverse metacentric height
GML � zMl � zG � longitudinal metacentric height.

In terms of metacentric heights, in this notation, the
initial stabilities become simply:

dL/d� � � GMT (112)

dM/d	 � � GML (113)

Note that the metacenters are widely different for
transverse and longitudinal inclinations. Metacentric
heights are typically 10 to 100 times larger for longitudi-
nal inclination, owing to the elongated form of most
vessels.

It is conventional in naval architecture to compare ves-
sels of different sizes and proportions in terms of a num-
ber of ratios or dimensionless coefficients characterizing
the form or shape. These so-called form coefficients cor-
relate to a useful degree with resistance, seakeeping and
capacity characteristics, and provide considerable guid-
ance in selecting appropriate proportions and displace-
ment for a new ship design.

The leading dimensions involved in the standard form
coefficients are: displaced volume �, waterplane area
Awp, midship section area Ams, length L, waterline beam
B, and draft T. Any of these quantities might be very
clearly defined or might be ambiguous to varying de-
grees, depending on the type of vessel and its specific
shape; these issues were discussed in Section 1.2.1 in re-
lation to “particulars.” For example, appendages might
or might not be included in displacement and/or length.
Ams may refer to the midship section (at the midpoint of
L) or to the maximum section, which can be somewhat

different. Of course, any uncertainty in the leading di-
mensions will produce corresponding variations in their
ratios. To be definite about form coefficients, it is neces-
sary to explicitly state the loading condition and, often,
to specify which volumes are included and excluded. It
is common to refer to “bare-hull” or “canoe-body” form
coefficients when appendages are excluded.

10.1 Affine Stretching. A given ship form can be
transformed into a triply infinite family of other ships by
a combination of linear (uniform) stretchings along the
three principal axes. Uniform stretching by different
amounts along different axes is called affine transforma-
tion in geometry. Suppose we start with a base ship form
of length L, beam B, and depth D and apply multiplica-
tive factors of �, �, � along the longitudinal, transverse,
and vertical axes respectively; then we arrive at a new
ship with leading dimensions �L, �B, �D. The displace-
ment will be multiplied by a factor of ���, the midship
section area by a factor of ��, and the waterplane area

Section 10
Form Coefficients for Vessels
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by a factor of ��. Most of the standard form coefficients
are invariant under affine stretching.

Note that many useful geometric properties are pre-
served under affine transformation. For example, if the
base ship has a fair surface, then any of its affine trans-
forms will be fair; if some surfaces of the base ship are
developable, then the corresponding surfaces in the
affine transform will also be developable.

An affine transformation with � � � � � is just a uni-
form scaling or dilatation; this produces a geometrically
similar form or geosim of the original form. Geosim
models are used for tank testing. In a geosim transforma-
tion, all lengths scale as �, all areas as �2, and all volumes
(and therefore displacement) as �3.

10.2 Definitions of Form Coefficients. Block coeffi-

cient is defined by the ratio CB � �/LBT, i.e., the ratio of
displaced volume to the volume of a rectangular solid
(block) of length L, beam B, and draft T. A completely
rectangular barge would have a CB of 1. Actual vessels
range between about 0.35 for fast yachts and ships to
0.95 for Great Lakes bulk carriers. A high block coeffi-
cient signifies high cargo capacity relative to the size of
the ship combined with relatively blunt ends which
cause resistance from head seas forward and from flow
separation aft.

Prismatic coefficient is defined by the ratio Cp �
�/LAms, i.e., the ratio of displaced volume to the volume
of a prismatic solid having the cross-section of the mid-
ship section and the length L. Prismatic coefficient meas-
ures the degree to which displacement volume is con-
centrated amidships (low Cp) or distributed into the ends
(high Cp). Wavemaking and frictional resistance are both
sensitive to Cp but in opposite ways. Low-prismatic
forms are better streamlined, so have lower frictional re-
sistance. However, they also have shorter wave systems,
so their wavemaking resistance becomes significant at
lower speeds, and can be many times higher at the same
speed as that of a high-prismatic form. Consequently, the
appropriate Cp depends on the service speed v (in dimen-
sionless form, Froude number F � v/��gL). Optimum Cp

varies from about 0.48 for low speed vessels (Froude
number less than 0.30), such as a sailing vessel optimized
for light wind and upwind performance, or a very low-
powered vessel, to about 0.67 for the highest-speed dis-
placement ships (Froude number about 0.60). For more
information on resistance and form coefficients, see
Lamb (2003) and Larsson & Raven (2009).

Waterplane coefficient is defined by the ratio Cwp �
Awp/LB, i.e., the ratio of waterplane area to the area of
the rectangle enclosing it.

Midship section coefficient is defined by the ratio
Cms � Ams/BT, i.e., the ratio of midship section area to
the area of a rectangle enclosing it. Merchant and trans-
port ships have Cms of 0.98 to 0.99, the midship sections
being nearly rectangular except for a small bilge radius.
Note the identity CB � CpCms.

Volumetric coefficient is defined by the ratio CV �
1000 �/L3, a measure of the general slenderness of the

ship relative to its length. This ranges from about 1.0 for
long, light, fast ships like destroyers to about 20.0 for
short, heavy vessels like tugs and trawlers.

Displacement-length ratio (DLR) is a closely related
dimensional coefficient in traditional use, defined as
(displacement in long tons)/(0.01 L in feet)3; this is equiv-
alent to 28.572 CV.

Volumetric coefficient bears a strong correlation to
wavemaking resistance. At any given Froude number,
wave resistance as a proportion of displacement weight
�g� is roughly proportional to CV. When a ship is sub-
jected to stretching factors �, �, �, the CV and DLR are
scaled by ��/�2.

10.3 Nonuniform Stretching. Nonuniform stretching
of a base ship is a much more general way to create de-
rivative hulls. For example, each x coordinate in the
base hull can be transformed through a univariate func-
tion to a new x coordinate, x� � f(x). Fairness will be
preserved in this transformation if the function f is suffi-
ciently smooth and “gentle.” In general, form coefficients
will not be preserved under a nonuniform stretching, but
must be recomputed from the altered form.

10.4 Form Parameter-Based Ship Design. We have in-
troduced form coefficients as a common way to de-
scribe, evaluate, and compare ship forms. As such, they
appear to be output quantities in the ship design process
— once the hull geometry has been defined in full detail,
then hydrostatic and form coefficients can be calculated.
If one or more of the form coefficients turns out not to
fall in the expected or hoped-for range, the architect has
to face revising the hull geometry to meet form coeffi-
cient requirements. Since the relationship between
geometry and form coefficients is complex, and any
change in geometry likely affects all the form coeffi-
cients, in different ways, this can be a challenging and
time-consuming process.

Design systems have been developed (Nowacki,
Bloor & Oleksiewicz 1995; Abt, Birk & Harries 2003;
Nowacki & Kim 2005) in which hydrostatic and form co-
efficients can effectively serve as inputs to the design
process, rather than outputs. Since the form coefficients
are inputs, they are called “form parameters,” and the
systems are described as form parameter-based. The
key elements of such a system are threefold:

• a parametric scheme for generating candidate hull
geometries
• ability to evaluate hydrostatic and form coefficients
for any candidate hull
• a solution and/or optimization algorithm.

To illustrate this possibility, we develop a concrete
example. Start with the cargo ship of Fig. 32, which has
a parallel middle body extending from X1 � 97.536 m to
X2 � 121.920 m. Divide the ship transversely at these two
locations into three sets of surfaces (three “bodies”):

(1) Forebody, from X0 � 0 to X1

(2) Parallel middle body, from X1 to X2

(3) Afterbody, from X2 to the transom, X3 � 243.840 m.
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Define the nominal lengths of the three parent
bodies as:

L1 � X1 � X0, L2 � X2 � X1, L3 � X3 � X2;

their waterline lengths as:

W1 � �1L1, W2 � L2, W3 � �3L3;

their displacement volumes as:

V1, V2, V3;

and their centers of buoyancy as:

�1L1, X1 � 0.5L2, X2 � �3L3.

(�1, �3, �1, and �3 are all constants that depend on the
original ship geometry.)

Now apply longitudinal affine stretching factors �1,
�2, �3 to the three bodies, and reassemble them into a
complete candidate ship. The result of this construction
is a triply infinite family of candidate ship forms, with �1,
�2, �3 as parameters. (The parent ship is �1 � 1, �2 � 1,
�3 � 1.) To determine these parameters, we will impose
an equal number of conditions (form parameters):

• Displacement volume, �T

• Longitudinal center of buoyancy (as a fraction of wa-
terline), �T

• Prismatic coefficient, CpT.

(The subscript T stands for “target.”)
Next, we need a way to evaluate the form coefficients

as functions of �1, �2, �3. The properties of affine trans-
formation make this easy. First, the waterline length W
is the sum of the body waterlines:

W � �1 �1 L1 � �2 L2 � �3 �3 L3 (114)

Displacement volume is the sum of the three body
volumes:

�T � �1 V1 � �2 V2 � �3 V3 (115)

Likewise, the x-moment of displacement volume is
the sum of the body volumes, each multiplied by the X-
coordinates of its respective centroid:

MX � �1 V1 [�1 �1 L1]

� �2 V2 [�1 L1 � 0.5 �2 L2]

� �3 V3 [�1 L1 � �2 L2 � �3 �3 L3]

� �T �T W (116)

The prismatic coefficient is:

CpT = �T / [Ams W] (117)

where Ams is the midship section area.
Equations (115, 116, 117) are three simultaneous

equations in the three unknowns �1, �2, �3. (Note that in
general, the equations are likely to be nonlinear, though
in this case all but equation (116) can be arranged in lin-
ear form.)

Such a system of simultaneous nonlinear equations
can be attacked with the Newton-Raphson method
(Kreyszig 1979; Press, Flannery, Teukolsky & Vetterling
1988). With any luck, this will provide an efficient and ac-
curate solution. Some numerical pitfalls should be noted.
When the equations are nonlinear, there is no guarantee
that a solution exists; even when they are linear, there is
no guarantee of a unique solution. Convergence to a so-
lution can depend on the values used to start the itera-
tion. In this example, a solution with any of the �’s less
than zero would not be a meaningful result.

A form parameter-based system can also be built
around a general optimization algorithm (Kreyszig
1979; Press, Flannery, Teukolsky & Vetterling 1988),
which seeks to minimize some objective function such
as predicted resistance at a specified operating speed,
or an average surface fairness measure, with equality or
inequality constraints stated in terms of various form
parameters.

During the design of a vessel, the methods of hydrostatic
analysis detailed in Section 9 are applied to tabulate and
graph various hydrostatic properties. This information is
used throughout the design process to assess the hydro-
static equilibrium and stability. If the vessel is subject to
classification, hydrostatic properties must be submitted
as part of that procedure. Further, hydrostatic properties
will be communicated to the owner/operator of the ves-
sel to be utilized during loading and operation. In the
eventuality of a collision or grounding, knowledge of hy-
drostatic properties may be crucial in the conduct and
success of salvage operations. Because the data will be

used for several functions beyond the design office, it is
important that it be developed and furnished in a more or
less conventional and agreed-upon format. Such formats
are well established for conventional vessel types. In the
case of an unconventional vessel, it may be a challenge to
decide on a relevant set of hydrostatic properties, and to
present them in such a way that users of the information
can relate them to the standard conventions.

The input to the hydrostatic calculation is in most
cases a form of offsets on transverse stations, repre-
sented in a computer file. It is important to document the
actual offsets used. Graphic views of the offsets are ben-
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Define the nominal lengths of the three parent
bodies as:

L1 � X1 � X0, L2 � X2 � X1, L3 � X3 � X2;

their waterline lengths as:

W1 � �1L1, W2 � L2, W3 � �3L3;

their displacement volumes as:

V1, V2, V3;

and their centers of buoyancy as:

�1L1, X1 � 0.5L2, X2 � �3L3.

(�1, �3, �1, and �3 are all constants that depend on the
original ship geometry.)

Now apply longitudinal affine stretching factors �1,
�2, �3 to the three bodies, and reassemble them into a
complete candidate ship. The result of this construction
is a triply infinite family of candidate ship forms, with �1,
�2, �3 as parameters. (The parent ship is �1 � 1, �2 � 1,
�3 � 1.) To determine these parameters, we will impose
an equal number of conditions (form parameters):

• Displacement volume, �T

• Longitudinal center of buoyancy (as a fraction of wa-
terline), �T

• Prismatic coefficient, CpT.

(The subscript T stands for “target.”)
Next, we need a way to evaluate the form coefficients

as functions of �1, �2, �3. The properties of affine trans-
formation make this easy. First, the waterline length W
is the sum of the body waterlines:

W � �1 �1 L1 � �2 L2 � �3 �3 L3 (114)

Displacement volume is the sum of the three body
volumes:

�T � �1 V1 � �2 V2 � �3 V3 (115)

Likewise, the x-moment of displacement volume is
the sum of the body volumes, each multiplied by the X-
coordinates of its respective centroid:

MX � �1 V1 [�1 �1 L1]

� �2 V2 [�1 L1 � 0.5 �2 L2]

� �3 V3 [�1 L1 � �2 L2 � �3 �3 L3]

� �T �T W (116)

The prismatic coefficient is:

CpT = �T / [Ams W] (117)

where Ams is the midship section area.
Equations (115, 116, 117) are three simultaneous

equations in the three unknowns �1, �2, �3. (Note that in
general, the equations are likely to be nonlinear, though
in this case all but equation (116) can be arranged in lin-
ear form.)

Such a system of simultaneous nonlinear equations
can be attacked with the Newton-Raphson method
(Kreyszig 1979; Press, Flannery, Teukolsky & Vetterling
1988). With any luck, this will provide an efficient and ac-
curate solution. Some numerical pitfalls should be noted.
When the equations are nonlinear, there is no guarantee
that a solution exists; even when they are linear, there is
no guarantee of a unique solution. Convergence to a so-
lution can depend on the values used to start the itera-
tion. In this example, a solution with any of the �’s less
than zero would not be a meaningful result.

A form parameter-based system can also be built
around a general optimization algorithm (Kreyszig
1979; Press, Flannery, Teukolsky & Vetterling 1988),
which seeks to minimize some objective function such
as predicted resistance at a specified operating speed,
or an average surface fairness measure, with equality or
inequality constraints stated in terms of various form
parameters.

During the design of a vessel, the methods of hydrostatic
analysis detailed in Section 9 are applied to tabulate and
graph various hydrostatic properties. This information is
used throughout the design process to assess the hydro-
static equilibrium and stability. If the vessel is subject to
classification, hydrostatic properties must be submitted
as part of that procedure. Further, hydrostatic properties
will be communicated to the owner/operator of the ves-
sel to be utilized during loading and operation. In the
eventuality of a collision or grounding, knowledge of hy-
drostatic properties may be crucial in the conduct and
success of salvage operations. Because the data will be

used for several functions beyond the design office, it is
important that it be developed and furnished in a more or
less conventional and agreed-upon format. Such formats
are well established for conventional vessel types. In the
case of an unconventional vessel, it may be a challenge to
decide on a relevant set of hydrostatic properties, and to
present them in such a way that users of the information
can relate them to the standard conventions.

The input to the hydrostatic calculation is in most
cases a form of offsets on transverse stations, repre-
sented in a computer file. It is important to document the
actual offsets used. Graphic views of the offsets are ben-
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eficial in this respect (Fig. 27). A longitudinal (body plan)
view gives good indications of the quantity and quality of
data, whether or not appendages were included, etc., but
of course lacks the crucial information of where each sta-
tion was located. An oblique perspective or orthographic
view is a good supplement to the body plan.

11.1 Curves of Form. For a vessel that operates at a
significant range of loadings (displacements), the hy-
drostatic properties must be presented for a range of
flotation conditions. It is customary to use vessel draft
as the independent variable, and to tabulate properties
at a reasonable number of draft values. This information
is presented graphically in the curves of form drawing
(Fig. 36). In the curves of form, the draft is the vertical
axis (presumably, because draft is a vertical measure-
ment), and dependent quantities are plotted horizon-
tally. The plot is complicated by the fact that the various
hydrostatic quantities have different units and widely
varying magnitudes. Therefore, a generic “scale of
units” from 0 to 10 is used, and quantities are scaled by
powers of 10 (and sometimes other factors) to fit on the
plot. The scaling factors and units for each curve must
be supplied in the legends or keys. The range of draft
should go from somewhat below the minimum working
displacement to somewhat above the deepest loading
expected.

Fig. 36 Curves of form for the ship of Fig. 32.

Curves of form present information primarily relevant
to zero-trim conditions. Hydrostatic quantities that are
expected in the curves of form include:

• Displacement (fresh and salt water)
• Longitudinal center of buoyancy
• Vertical center of buoyancy
• Waterplane area (displacement per unit immersion)
• Longitudinal center of flotation
• Transverse metacentric height (above keel)
• Longitudinal metacentric height (above keel).

Other quantities sometimes presented in curves of
form are:

• Wetted surface
• Form coefficients, e.g., block and prismatic
coefficients.

11.1.1 Displacement. Volume displacement � is
the volume of the vessel below the plane of flotation.
Displacement � is the weight of displaced fluid, i.e., �g�.
In SI units, displacement is given in metric tons, or kilo-
grams for small craft. Curves of form usually include
three displacement curves:

• Molded displacement in salt water
• Total (gross) displacement in fresh water
• Total (gross) displacement in salt water.
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Molded displacement for a metal vessel is the volume
of the molded form, i.e., inside of shell or outside of
frames — the reference or control surface of the hull, ex-
clusive of shell plating and other appendages. (Yes, the
shell plating is considered an “appendage”!) Total or
gross displacement includes the volume of shell plating
and other appendages such as rudder, propeller, shaft
bossings, sonar domes, bilge keels, etc. A thruster tun-
nel, moon pool, or other flooded space removed from
the displacement of the molded form should be treated
as a negative appendage.

In a single-screw cargo vessel, the volume of shell
plating is typically less than 1 percent of the molded
volume (as little as 0.5 percent for the largest ships),
and volume of other appendages is only about 0.1 to
0.2 percent.

11.1.2 Longitudinal Center of Buoyancy (LCB).

xB is found by dividing the x-moment of displaced vol-
ume by the displaced volume, equation (77). The longitu-
dinal coordinate of the vessel’s center of mass must be
at xB in order for the vessel to float without trim at this
displacement.

If S(x) is the section area curve at a particular draft,

(118)

Alternatively, the integration can be performed verti-
cally. If Awp(z) is the area of the waterplane at height z
above base, and xw(z) is the x-position of its centroid, then

(119)

The LCB is commonly expressed as a percentage of
waterline length, from bow to stern; or may be in units of
length, usually measured forward or aft of the midship
section. It is usually in the range from 1 percent LWL for-
ward to 5 percent LWL aft of midships. There is fairly
consistent tank-test evidence that minimum resistance
for displacement vessels is obtained with LCB at 51 to 52
percent of waterline length (referring to the molded
form).

11.1.3 Vertical Center of Buoyancy (VCB). zB is
found by dividing the z-moment of displaced volume by
the displaced volume, equation (77). VCB has an impor-
tant effect on initial stability, equation (106).

If S(x) is the section area curve at a particular draft,
and zs(x) is the height of the centroid of the transverse
section, then

(120)

Alternatively, the integration can be performed verti-
cally. If Awp(z) is the area of the waterplane at height z,

zB � �
S(x) zS(x) dx�

S(x) dx�

S(x) zS(x) dx�
�

xB � �
Awp (z) xW (z) dz�

Awp (z) dz�

Awp (z) xW (z) dz�
�

xB � �
x S(x) dx�
S(x) dx�

x S(x) dx�
�

then

(121)

VCB is expressed in length units above the base plane.
11.1.4 Waterplane Area and Incremental

Displacement. The waterplane area Awp has units of
length squared. Its use is primarily to furnish a ready cal-
culation of the incremental displacement due to a small
additional immersion. The volume dV added by a change
dz in draft is Awp dz, therefore dV/dz � Awp. In SI units,
this is usually expressed in tonnes per cm immersion, for
salt water TPC � 1.025Awp/100 � 0.01025Awp, with Awp

in square meters.
11.1.5 Longitudinal Center of Flotation (LCF). xF

(center of flotation, CF) is the centroid of waterplane
area; this is effectively the pivot point for small changes
of trim or heel. If b(x) is the breadth of waterplane as a
function of x, the LCF is calculated as:

(122)

Like LCB, LCF is usually expressed as a percentage of
waterline length, or a distance forward or aft of mid-
ships. There is a general experience that LCF 2 to 4 per-
cent aft of LCB is advantageous in providing a favorable
coupling between heave and pitch motions, resulting in
reduction of pitching motions and of added resistance in
head seas.

11.1.6 Transverse Metacenter. In Section 9.6, equa-
tion (106) was given relating transverse initial stability to
geometric properties of the displaced volume and water-
plane area (and to vertical center of gravity zG):

dL/d� � pg� (zMt � zG) (123)

where zMt � zB � Ixx/�.
zMt � zG is called transverse metacentric height, not

to be confused with height of metacenter, which means
zMt alone. The term Ixx/� is called transverse metacen-

tric radius, and is denoted BMT.
The curves of form need to reflect geometric attrib-

utes, which are fixed in the vessel geometry, as opposed
to variable attributes such as mass distribution. KMT,
KB, and BMT are the candidates from the above list. KMT

is generally chosen over BMT because it is one step
closer to the initial stability, which is the real quantity of
interest.

It is generally desirable, of course, for a vessel to have
positive initial stability. However, too large an initial sta-
bility (unless combined somehow with large mass mo-
ment of inertia about the longitudinal axis, or large roll
damping) produces a quick rolling response (short pe-
riod, high natural frequency) which is uncomfortable
and an impediment to many shipboard operations.
Consequently, most cargo and passenger vessels operate
with GMT in the range 0.5 to 1.5 m.

xF � �
b(x) x dx�
b(x) dx�

b(x) dx�
Awp

zB � �
Awp (z) z dz�
Awp (z) dz�

Awp (z) z dz�
�
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An exception to positive initial stability occurs some-
times in unconventional high-speed craft which are
partially or completely supported by dynamic lift at op-
erating speed. The geometric requirements on form for
high-speed operation may dictate a shape with negative
initial stability; such a vessel is said to “loll” to one side
or the other when floating at rest.

Sailing vessels require substantial roll stability to
counter the steady heeling moments associated with
wind force on their sails, and the opposing hydrody-
namic forces on hull and appendages. Roll stability is
therefore a crucial factor in sailing performance, and
many features of sailing yacht design have the purpose
of enhancing it: shallow, beamy hull forms, deep draft,
concentration of weight in deeply placed ballast, weight
savings in hull, deck, and rigging, and multihull configu-
rations. It is not initial stability that counts, of course,
but rather righting moment available at operating heel
angles; however, for conventional monohull designs, the
initial stability is a good indicator of sail-carrying power.
Some of the highest-performance sailing craft, tri-
marans, can have negative initial stability.

11.1.7 Longitudinal Metacenter. Analysis of longi-
tudinal stability is highly analogous to that of transverse
stability. From equation (123),

dM / d	 � pg� (zM l � zG) � � GML (124)

where zMl � zB � Iyy/�, the longitudinal height of meta-
center, and GML is the longitudinal metacentric height.

The geometric term Iyy/� is longitudinal metacentric
radius. Note that Iyy is the moment of inertia of the water-
plane about a transverse axis through the center of flota-
tion CF. If moment of inertia IYY is calculated with respect
to some other transverse axis, the parallel-axis theorem
must be used to transform to the center of flotation:

Iyy � IYY � Awpx2
F (125)

Normally, longitudinal stability is not a large design
issue because of the elongated form of most vessels. It
can be used operationally to predict the effect of longitu-
dinal weight movements and loading on the trim angle.
This can be expressed as moment to change trim 1 cm:

MT1cm � � GML /(100L) (126)

11.1.8 Wetted Surface. For a vessel floating on a
specified waterline, the total area of its outer surface in
contact with the water is known as its wetted surface. As
this is an area, its units are length squared. Wetted sur-
face is of interest for powering and speed prediction; the
frictional component of resistance is ordinarily assumed
to be in direct proportion to wetted surface area. It also
indicates the quantity of antifouling paint required to
coat the vessel up to this waterline. Wetted surface is
often included in the curves of form.

The calculation of area for a parametric surface has
been outlined in Section 4.2, in terms of the components
of the metric tensor. This calculation is fairly straightfor-
ward, though a complication is that the wetted surface is

usually only a portion of the complete parametric hull
surface, so the domain of integration in u, v space will
have a complex boundary which has to be computed by
intersecting the surface with a plane. In relational geom-
etry, it is convenient to create a subsurface or trimmed
surface (portion of a surface bounded by snakes, one of
which can be an intersection snake along the waterline)
representing the wetted surface; this can be arranged to
update automatically as the draft is varied.

Traditionally, wetted surface is calculated as the sum
of area elements over the hull surface, a double integral
with integration over x done last. The integral is not in a
form that can be reduced by Gauss’ theorem, so the inte-
grand turns out to be relatively complex compared with
most of the integrals required for hydrostatics. On a sym-
metric hull, we can locate any given point X on the hull
by two coordinates:

(a) x � the usual longitudinal coordinate
(b) s � arc length measured from the centerline along

the intersection of the hull with the transverse plane
through x.

In terms of these (dimensional) parameters, the sur-
face point is described as X � {x, y(x, s), z(x, s)}, and the
first derivatives are Xx � {1, yx, zx} and Xs � {0, ys, zs},
where subscripts x and s stand for partial derivatives.
The metric tensor components (equation 33) are

g11 � 1 � y2
x � z2

x (127)

g12 � yxys � zxzs (128)

g22 � y2
s � z2

s � 1 (129)

(the last because s is defined as arc length in the trans-
verse plane), so the metric tensor discriminant becomes:

g � 1 � (yxzs � zxys)2 (130)

This can be expressed in terms of the components of
the unit normal n � {yxzs � zxys, zs, ys}/��

g as: g � 1�
n2

xg and solving for g: g � 1/(1 � n2
x) � sec2�, where � is

the bevel angle with respect to the x axis. Thus the wet-
ted surface area is

WS � ����
g dx ds� ��sec� ds dx (131)

The sec� factor is termed obliquity. For a sufficiently
slender hull, nx is everywhere small and sec� will not
differ appreciably from 1. Then the wetted surface is (ap-
proximately) simply WS � �G(x)dx, where G(x) is wet-
ted girth at station x.

Wetted surface does not transform in any simple way
under affine stretching. Under a geosim transformation,
being an area, it varies simply as �2.

Wetted surface is conventionally nondimensionalized
with a combination of length and displacement to make
the wetted surface coefficient:

CWS � WS/�
�L (132)

where � is displacement volume and L is length. Values
of CWS range from about 2.6 to 2.9 for usual ships of nor-
mal form at design flotation.
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11.2 Bonjean Curves. Bonjean curves are a graphical
presentation of transverse section areas as a function of
draft. For a monohull hull form, with the transverse off-
set expressed explicitly as y � y(x, z), and with the base
plane at the keel (z � 0), the data for Bonjean curves are
the values of

S (x, Z) � 2 �Z
0 y(x, z) dz (133)

For more general hull forms, S(x, Z) is simply the sec-
tion area at station x, up to the z � Z waterplane. The
Bonjean curves result from plotting these values vs. Z
for a series of stations x, usually the same set of stations
used in the lines drawing. These are presented in two al-
ternative formats:

(a) plotted from a common vertical axis (Fig. 37)
(b) plotted from individual vertical axes, each corre-

sponding to the station x (Fig. 38).

In both cases, the Bonjean curves are superimposed
on a (usually stretched) profile view of the ship.

In the days of manual hydrostatic calculations, Bonjean
curves were a useful intermediate form of the displace-
ment calculation, streamlining the figuring of displace-
ment and LCB for an arbitrarily trimmed waterplane (or
variable water surface), which was required for launching
calculations, damaged stability, and longitudinal strength.
With the help of Bonjean curves, the displaced volume and
longitudinal moment of volume up to the arbitrary water-
line Z(x) can be figured by the single integrals:

V � �S[x, Z(x)] dx, Mx� �S[x, Z(x)] x dx (134)

where the integrals are taken over the undamaged
lengths of the ship.

Today, with almost all advanced hydrostatic calcula-
tions performed by computer, Bonjean curves have little
practical role (unless used internally by the program to
accelerate calculations). However, they remain a re-
quirement among the deliverables in many instances of
design contract language, so the naval architect must be
prepared to supply them.

Fig. 37 Bonjean curves plotted from a common vertical axis.
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Fig. 38 Bonjean curves plotted from individual stations.
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Although the hull of a ship accounts for its largest sur-
faces, and often the most complex and demanding sur-
faces in terms of shape requirements, other parts of the
ship also present many geometric challenges. Decks and
bulkheads are typically relatively simple surfaces (pla-
nar in most cases), but need complex outlines in order to
meet the hull accurately. Superstructures are often com-
plex assemblages of many large and small surface ele-
ments, with important aesthetic and functional require-
ments. Hull appendages — for example, stern tube
bossings, bow bulbs, sonar domes, and sailing yacht
keels — must be shaped to perform critical hydrody-
namic functions, and require accurate, usually smooth,
connection to the hull surfaces.

12.1 Interior Decks and Bulkheads. Interior decks
and bulkheads are typically horizontal or vertical planes,
trimmed by intersection with the hull. The longitudinal
subdivision by watertight bulkheads has to meet hydro-
static requirements for damaged flotation and stability.
The bulkheads and/or interior decks also form the prin-
cipal compartmentation of the ship’s interior, so their lo-
cations interact with requirements for locating machin-
ery and cargo. It is highly beneficial in the early stages of
design for the bulkhead and deck positions to be para-
metrically variable, to support optimal resolution of
these space and volume requirements.

12.2 Weather Deck. Weather deck surfaces are
occasionally planes — horizontal or with some fore-and-
aft inclination — but are much more commonly given
camber (transverse shape) in order to encourage shed-
ding of water, to gain structural stiffness, and to gain in-
terior volume without increase of freeboard. In small
craft, it is common for the deck camber to be specified
as a circular arc having a constant ratio of crown to
breadth, typically 6 to 8 percent. The relationship be-
tween radius R, crown h, and chord c (i.e., breadth for a
deck) for a circular arc is

2Rh � h2 � c2/4 (135)

This shows that for constant h/c, R is directly propor-
tional to c:

R/c � (c/h)/8 � (h/c)/2 (136)

If the weather deck is required to be developable, this
imposes substantial constraints on the design. A general
cylinder swept by translation of a camber profile along a
longitudinal straight line is the simplest solution; how-
ever, this tends to make a very flat deck forward, where
it becomes narrow. A shallow cone made from the deck
perimeter curves, with its apex inside the superstruc-
ture, is often an advantageous construction.

Large commercial ships usually have planar deck sur-
faces, the outboard portions slanted a few degrees, com-
bined with some width of flat deck near the centerline.

12.3 Superstructures. In merchant and military
ships, superstructures usually consist of flat surfaces,
making for relatively easy geometric constructions from
trimmed planes and flat quadrilateral or triangular
patches. Where the superstructure meets the deck, some
plane intersections with deck surfaces, or projections
onto the deck, will be required.

An interesting recent trend in military ship design is
the “stealth” concept for reducing detectability by radar.
Since its invention during World War II, radar has been an
extremely important military technology. The basic con-
cept of radar is to scan a region of interest with a focused
beam of pulsed high-frequency radio waves (wavelength
of a few mm or cm) and listen for reflected pulses
(echoes) at the same or nearby wavelengths. The orienta-
tion of the antenna at the time reflection is received gives
the direction of the reflecting object, and the time delay
between emission and reception of the pulse provides the
range (distance). In addition, measuring the frequency
shift of the returned signal indicates the target’s velocity
component along the beam direction.

“Radar cross-section,” a quantity with units of area, is a
standard way to express the radar reflectivity of an object.
Essentially, it is the area of a perfect reflector oriented ex-
actly normal to the radar beam, that would return a signal
of the same strength as the object. Radar cross-section is
highly dependent on the exterior geometry of the object,
and on its orientation with respect to the radar beam.

One component of stealth technology is naturally the
development of materials and coatings that are effective
absorbers of electromagnetic radiation at radar frequen-
cies. Another important component is purely geometric:
the use, insofar as possible, of flat faces for the ship’s ex-
terior surface, angled so as to reflect radar away from
the transmitter’s direction (Fig. 39). Whereas a curved
surface presents a moderate cross-section over a range
of angular directions, a flat face produces a compara-
tively very high cross-section, but only in one very spe-
cific direction — the direction of the normal to the face.
The use of flat faces trades off very large cross-sections
in a few particular directions against near-total invisibil-
ity from all other directions. Since the majority of radar
sources directed at a ship will be close to sea level, the
horizontal directions are most important; this considera-
tion promotes use of faces that are inclined inboard 10°
to 15° from vertical, allowing for moderate roll angles.
This inclination also avoids 90° concave corners, e.g., be-
tween the superstructure and the deck, where double re-
flections provide a strong return in any direction normal
to the line of intersection between the two planes.

(A concave corner where three mutually orthogonal
planes meet is particularly to be avoided; this makes the
well-known “corner reflector” configuration used, for
example, on navigational buoys. Triple reflection of a ray

Section 12
Decks, Bulkheads, Superstructures, and Appendages
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Fig. 40 Sonar dome at the forefoot of a hull, formed as an integral
part of the B-spline hull surface by addition of rows and columns of

control points.

a

b

C

off all three surfaces returns it exactly parallel to its ar-
rival direction, producing a large cross section over a
wide range of directions.)

Superstructures for yachts reflect styling as well as
function, and often consist of elaborately sculptured sur-
face elements, often with far more complex geometry
than the hulls. Location and shapes of windows is an im-
portant styling aspect of superstructure design. For exte-
rior rendered views it is effective to model a window as
a black or dark blue surface element.

12.4 Hull Appendages. The most common hull ap-
pendages for ships are bow bulbs, stern tube bossings,
sonar domes, bilge keels, and rudders. Though in each
case there is a possibility of integrating the appendage
with the hull surface (and admitting there are going to be
borderline cases where it is difficult to decide whether
to add on or to integrate), it is often far more convenient
to leave the main hull surface alone and retrofit it by at-
taching the appendage as a separate surface.

For example, Fig. 40(a) shows a B-spline surface for
the forebody of a destroyer, using a 5 � 5 net of control
points. In Fig. 40(b), five rows and five columns of addi-
tional control points have been inserted in order to pro-
vide enough control points in the forefoot area to form
an integrated sonar dome; the dome is shown in Fig.
40(c). However, there are now some 30 superfluous con-
trol points in the bottom and stem regions, and it will be
very difficult to position them all in such a way as to ob-
tain anything like the fairness of the original simple sur-
face in these areas. Figure 41 shows the alternative of
treating the sonar dome as the appendage that it is.
Outside a well-defined line on the hull (a snake), the hull
surface is unaffected by the presence of the dome. The
dome designer is then free to focus on the shape of the

Fig. 39 Ship topsides and superstructure designed for low radar detectability.
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dome, and does not have to worry about side effects on
the remainder of the surface.

A cavity such as a thruster tunnel (Fig. 26) is some-
times treated as a negative appendage. The net free-
flooding volume of the tunnel is subtracted from the sum
of displacement volumes of other (positive) appendages.

12.5 Sailing Yacht Keels. A sailing yacht needs to
generate hydrodynamic lift forces to resist the compo-
nent of sail force that tends to push it sideways. It also
needs roll stability to resist the heeling moments arising
from sail forces. In monohull yachts, a keel appendage is
the most common answer to both these needs. A keel is
the repository for a substantial fraction of the yacht’s
total “all-up” weight — more than 80 percent in extreme
cases — and is shaped so as to carry this weight as low
as possible, while providing an effective lifting shape of
sufficient lateral area, adequate streamlining, and low
wetted surface. It must be stressed that the “lift” re-
quired for a sailboat to sail is a horizontal force compo-
nent, not vertical as in an airplane. A sailing yacht can be
viewed (to a degree) as an airplane flying on its side,
with its two wings — keel on one side and sails on the
other — having quite different shapes and proportions
primarily because of the large difference in density (a
factor of about 830) between the two fluids they operate
in. (However, the analogy can only be taken so far; no
airplane derives significant propulsive force from the dif-
ference in velocity at its right and left wings!)

Fig. 41 A sonar dome formed as an appendage to the original 
fair surface.

13.1 Cargo Capacity and Tonnage. A basic charac-
teristic of any cargo ship is the quantity of cargo she is
able to carry — her cargo capacity. Two fundamental as-
pects of capacity are

• Volume: how much space is available for cargo
stowage?
• Mass or weight: how much load can she carry?

These characteristics are, of course, crucial to the
ship’s commercial success.

The gross deadweight of a ship is the difference
between the full-load displacement (mass) and the
light-ship mass, i.e., mass of hull steel, machinery, and
outfit. The cargo deadweight is the result of deducting
from gross deadweight the maximum values of variable
masses of fuel, stores, fresh water, crew, and their
effects.

Registered tonnage is a volume measurement ex-
pressed in “register tons” of 2.885 cubic meters (100
cubic ft.). The gross tonnage is the volume of all
enclosed spaces of the hull and superstructure. Net

tonnage is the gross measure, less deductions for non-
revenue-producing spaces such as machinery space

and crew quarters. Net tonnage measurements are the
basis for some important operating costs such as har-
bor dues, dockage fees, and canal tolls. Gross tonnage
is used as the basis for drydocking charges, and appli-
cability of various safety rules and regulations. Details
of tonnage and its determination are discussed in
Chapter 8 of Lamb (2003).

13.2 Compartmentation and Subdivision. The inte-
rior space of a ship is subdivided into functional
subspaces or compartments suited to the vessel’s mis-
sion and purpose. This is accomplished by partitions
analogous to the floors, ceilings, and interior walls that
subdivide a building into rooms. The partitions have
structural requirements related to the loads they must
support, and also are integrated into the general struc-
ture of the ship, providing critical stiffening and
reinforcement for the hull shell, weather deck, and
superstructure.

Common classes of compartments are: cargo holds for
dry cargoes, cargo tanks for liquid cargoes, water ballast
tanks, machinery spaces, tanks for consumables, spaces
for stacking containers, accommodation spaces for crew
and passengers, and void spaces. Efficient layout of all

Section 13
Arrangements and Capacity
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these spaces is an important aspect of the design of any
ship, so that it meets its capacity objectives with respect
to both mass and volume of each type of cargo as well as
overall mass and center of gravity when fully loaded. The
subdivision also plays a major role during loading and un-
loading, to ensure that freeboard and longitudinal
strength criteria are met throughout the operations.

In practice, a large majority of partitions lie on planes
parallel to the principal coordinate planes of the ship:

• decks on horizontal planes
• transverse bulkheads (often referred to simply as
“bulkheads”) on transverse planes
• longitudinal bulkheads on planes parallel to the
centerplane.

Most compartments are therefore bounded by orthog-
onal planes on most of their sides; but most have at least
one face that is a portion of the curved hull surface. In
rare cases, curved surfaces are involved as interior par-
titions; for example, in some liquefied natural gas (LNG)
carriers, the cargo is contained in spherical insulated
tanks.

Subdivision is fundamentally a solid modeling prob-
lem: taking a solid region (the interior of the ship) and
subdividing it into smaller solids (the compartments). In
almost all cases, a compartment can be defined as the
Boolean intersection of the ship’s interior volume with a
simple rectangular solid aligned with the axes. (A differ-
ent form of subdivision is breaking a ship down into
units or modules for construction purposes.)

13.3 Compartment Volumes and Centroids. In the
analysis of capacity, the primary geometric quantities of
interest are the volumes and centroids of the individual
compartments. Values are most often required for the
compartment filled to capacity, but there may be a need
to evaluate them for partially filled compartments, up to
an arbitrary waterline level Z. These quantities are calcu-
lated by any of the volume calculation methods dis-
cussed in Section 9.4.

13.4 Dry Cargo Capacity. Dry cargo spaces have ca-
pacities that depend somewhat on the nature of the
cargo. Such spaces are usually fitted with battens (ceil-
ing) on the inside of frames, and are also restricted some-
what by the intrusion of other structural members; for ex-
ample, beams under the overhead deck, or stiffeners on a
bulkhead partition. Such encroachments have slight im-
pact on the volume available for a granular bulk cargo,
but interfere significantly with stowage of cargo packed
in crates, bags, bundles, and bales. Consequently, a dis-
tinction is made between:

grain capacity: the molded volume of the compartment,
less a small deduction for volume of included
structure

bale capacity: the volume of the compartment inside the
batten line, and below the deck beams

Dry cargo capacities are often calculated in terms of
the stowage factors of various cargoes. Stowage factor is

an inverse effective density (cubic meters per ton), tak-
ing into account packing fraction as well as the inherent
solid or liquid density of the material.

13.5 Tank Capacity and Contents. Tanks are com-
partments used for carrying fluid consumables (fuel oil
and fresh water), fluid cargoes, and waste water. A
tank’s full capacity is basically its volume, less the vol-
ume of any structure, piping, etc., interior to the tank.
A tank that has significant interior obstructions can be
assigned a “permeability,” usable volume / total volume
of the space. For any contents besides water, al-
lowance must be made for thermal expansion. For oil,
this is a deduction of typically 2 to 3 percent of the tank
volume. (Of course, water expands too, but the dif-
ference is that an overflow of water is relatively
harmless.)

During loading and operation, it is necessary to know
the fullness of each tank. Various devices are used to
measure the location of the free surface in a tank. A pres-
sure gauge at the bottom of the tank is the simplest
method; this provides a direct indication of the height of
the free surface above the gauge. The hydrostatic pres-
sure in the tank is �g(Z � zg), where � is the density of the
tank contents, g is acceleration due to gravity, Z is the
free surface level, and zg is the vertical coordinate of the
pressure gauge. Other methods involve sonic sensing of
the free surface height, or lowering a float until it reaches
the surface. In some cases, there may not be an accessi-
ble location that allows a vertical measurement for all
possible levels in the tank. In that case, a tube may be
provided inside the tank to guide a sounding chain. Tank
capacity tables or charts must be developed that relate
the volume and centroid of the tank contents to the meas-
urement method.

Ullage is a term for the empty space in a tank, above
the surface of the fluid, or the vertical extent of this
space. Ullage tables express the tank capacity as a func-
tion of ullage rather than depth of fluid.

13.6 Tank Stability Effects. When a vessel changes
attitude (heel and trim), the liquid in a partially filled
tank shifts to a new equilibrium position, taking a new
shape (while maintaining its volume and mass).
Therefore, its center of gravity shifts in a complex way
depending on the shape of the tank. This shift of center
of gravity has important stability effects that go under
the name of free surface effects. For large attitude
changes, calculation of free surface effects requires
treating the complete tank as a solid at a specified atti-
tude, and solving for the free surface height that makes
the solid volume below the free surface equal to the cur-
rent volume contents of the tank.

For small attitude changes, there is a useful linearized
approximation similar to initial stability (equation 106).
Free surface effects are properly accounted for by treat-
ing the liquid mass as if its vertical center is at a meta-
center located above the center of gravity of the liquid at
a distance (metacentric radius) I/V, where V is the vol-
ume of liquid and I is the moment of inertia of the free
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surface about a longitudinal axis (for heel) or transverse
axis (for trim), through the centroid of the free surface.
As in initial stability, the metacentric radius is generally
different for heel and trim. The metacentric radius van-
ishes if the tank is either empty or full, because there is
then no free surface.

13.7 Container Capacity. Today, a great deal of mar-
itime freight is carried in containerships loaded with
standard containers. The modular nature of the cargo is
a profound driver of the geometry of these ships. The
starting point for a design will generally be a stack of the
requisite number of containers with minimum clear-
ances between them. Then, as the hullform is developed
around the envelope of the containers, it is critical to
check lower outboard corners to be sure they are inside
the hull surface and framing.

The three most common container sizes (stacking di-
mensions, length � width � height) are:

20-foot: 6.096 � 2.438 � 2.591m

40-foot: 12.192 � 2.438 � 2.591m

45-foot high cube: 13.716 � 2.438 � 2.896m,

but 48- and 53-foot containers are also in use. Ship ca-
pacity is often stated in terms of “twenty-foot equivalent
units,” abbreviated TEU; this is the capacity for one stan-
dard 20-foot container. Forty- and 45-foot containers are
both considered as 2 TEUs, and container height is not
taken into account in this measure.
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centroidal coordinate frame 43 

centroids (centers of area or volume) 2 8 38 41 43 44

    47 49 56 57 

Chapman, F. H. 1 

child, in directed graphs 5 

chines   10 19 22f 24 34 36 

classification  2 

coefficients 

 bare-hull 45 

 block  3 46 

 canoe-body 45 

 form  4 45 48 

 midship section 46 

 prismatic 4 46 48 

 volumetric 46 

 waterplane 46 

 wetted surface 50 

compartmentation 55 

composite surface 25 26f 

compound curvature 19 

compound-curved surface 22 23 

computer-aided design (CAD) 6 11 

conceptual design 2 

cone   22 

conic section  15 21 

constant density 38 

constructive solid geometry (CSG) 32 32f 33f 

container capacity 57 

continuity 

 geometric 15 19 

 of curves 12 13 15 
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continuity (Cont.) 

 parametric 15 19 

 between surfaces 19 22 23 28 

continuity conditions 12 13 15 19 

contours 

 of hull surface definition 34 36 37 

 as solid representation 30 30f 33 

 of strain distribution 24f 

 on surfaces 19 26 

control curve  20 

control point net 21 21f 28 31 54 

control points 14 

 in B-spline curves 14 

 in B-spline surfaces 20 21 21f 

 in hull appendages 54 54f 

 in parametric surfaces 37 

 in relational curves 5 9 16 

 in subdivision surfaces 28 

 in transfinite surfaces 22 

 in wireframe fairing 37 

control polygon 14 

convex hull 

 of B-spline curve 14 

 of B-spline surface 21 

 of subdivision surfaces 28 

Coon’s patch  23 23f 

coordinate singularity 18 18f 25 

coordinate systems 7 7f 8f 

 Cartesian 7 

 cylindrical polar 8 

 global  7 8f 

 homogenous 8 

 left-handed 7 

 local  7 8f 

 master  7 

 right-handed 7 7f 9 

 spherical polar 8 

coordinate transformations 8 
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coordinates, homogenous 8 9 

CopyPoint  10 

corners, of B-spline surface 21 

cubic spline  12 

curvature 

 compound 19 

 of a curve 12 

 double  19 

 Gaussian 19 19f 22 24 

 geodesic  29 

 mean  19 

 normal  18 18f 29 

 principal  18 

 of surfaces 18 18f 19f 

curvature profiles 12 13f 

curves 

 analytic properties of 11 

 B-spline  14 14f 

 Bezier  15 

 Bonjean  51 51f 52f 

 conic section 15 21 

 continuity of 15 

 control  20 

 definition of 10 

 explicit  11 12 

 fairness of 12 

 flat-of-bottom 34 

 flat-of-side 34 

 flexible  36 

 geometry of 10 

 implicit  10 

 from intersections 15 30 

 master  20 

 mathematical definitions of 10 

 NURBS curves 15 

 parametric 11 11f 12 15 

 planar  12 

 points embedded in 16 
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curves (Cont.) 

 principal  34 

 projection onto surfaces 29 29f 

 from projections 15 

 relational 16 

 snakes  29 29f 

 spline  12 

 subcurves 6 

 on surfaces 29 29f 

 trimming 25 25f 

curves of form 48 48f 

cylinder   22 

cylindrical polar coordinates 8 

D 

deadweight  55 

deck camber  53 

decks   3 53 56 

definition, levels of 3 

degrees of freedom 44 

dependents, in directed graphs 5 

descendents, in directed graphs 5 

design waterline (DWL) 4 

developable surfaces 19 22 22f 23 46 

development  23 

diagonals  26 36 37 

differential geometry 11 17 

digraph   5 

dilatation  46 

dimension-driven solid modeling 33 

dimensionality 7 

dimensionless parameters 16 31 

directed graph (digraph) 5 

discretization  2 17 24f 31 37 42

    42f 

discretized domains 32 

 

 



Index Terms Links 

 

 

displacement  3 4 32 36 38 46

    50 51 55 

 in Archimedes’ principle 38 

 in hydrostatic analysis 48 

 incremental 49 

displacement-length ratio (DLR) 46 

displacement vector 9 

displacement volume 47 55 

double curvature 19 

draft   4 48 

drafting spline 12 36 

drafting tools  36 

dry cargo capacity 56 

ducks   36 

DWL (design waterline) 4 

E 

edge tangents, of B-spline surface 21 

edge, topology data structure 33 

edges 

 of B-spline surface 21 

 of polygon meshes 28 

electromagnetic analysis 2 

end conditions 26 

entities, in relational geometry 5 

equilibrium  38 42 44f 47 56 

equilibrium, stability of 2 43 44f 

expansions of surfaces 23 

explicit curves 11 12 

explicit surfaces 16 17f 

F 

face, topology data structure 33 

faces 

 of B-rep solids 32 

 of polygon meshes 28 

 

 



Index Terms Links 

 

 

fairing   1 

 graphical lines fairing 34 

 wireframe computer fairing 36 

fairness 

 of curves 12 37 

 under nonuniform stretching 46 

 of surfaces 19 47 54 

feature-based modeling 

 definition of 5 

 of solids  33 

finite element analysis 2 

finite elements 2 24f 31 32 37 

first moments of area 41 

flat-of-bottom curve 34 

flat-of-side curve 34 

flexible curves 36 

forebody  46 

form coefficients 4 45 48 

form parameter-based design 46 

form parameters 46 

forward perpendicular (FP) 4 

frame of reference 7 8f 

 coordinate transformations in 8 

 relational 9 

FramePoint  10 

free surface effects 56 

Froude number 46 

G 

Gaussian curvature 19 19f 22 24 

Gauss’s theorem 33 38 50 

generators  22 

geodesic curvature 29 

geodesics  29 

geometric data, uses of 1 

geometric modeling 1 

geometric modeling, associative 5 
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geometry 

 definition of 1 

 differential 11 

 range of, in marine design 6 

 standards for 6 

geosim   46 

girth   24 50 

global coordinate system 7 

global frame  7 8f 

GM    45 49 

grain capacity 56 

graphical lines fairing 34 

Green’s theorem 40 41 

grid, block-structured 31 

gross deadweight 55 

gross tonnage 55 

guest   29 

H 

“Half-breadths” table 36 

half-model  1 

heeling moments 50 55 

heights, metacentric 45 48 49 

“Heights” table 36 

hexahedron  32 

highlight lines 19 

history   5 

homogenous coordinate 

  transformations 9 

homogenous coordinates 8 

host entity  5 

host surface  29 

hull 

 offsets of 4 

 surface definitions of 17 17f 34 35f 

 wireframe of 4 

hull appendages 54 54f 55f 

hydrodynamic analysis 2 
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hydrostatic analysis 2 

hydrostatic analysis, upright 47 

hydrostatic forces 38 

hydrostatic moments 38 

hydrostatic stability 43 44f 

I 

IGES (Initial Graphics Exchange 

  Specification) 3 6 21 28 

implicit curves 10 

implicit surfaces 16 

incremental displacement 49 

inflection points 12 13f 19 

initial stability 45 49 56 

integrals   39 40f 

integration 

 mechanical 40 

 numerical 39 40f 

integrator  40 

interior decks 53 

interpolant  39 

interpolation 

 of spline curves 13 

 of spline lofted surfaces 20 20f 

intersection bead 16 

intersection magnet 26 

Intersection Point (IntPoint) 10 

Intersection snake (IntSnake) 25 

intersections 

 Boolean  56 

 curves from 15 

 of curves in a plane 37 

 of curves on surfaces 29 

 snakes from 30 

 of solids  5 32 32f 

 of surfaces 4 11 17 22 24 30

    33 53 

isometric mappings 23 
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isoparms  17 

K 

keel    45 55 

Kilgore’s method 22 

knotlines  19 

knots, in splines 12 13 

L 

left-handed coordinate system 7 

length between perpendiculars (LBP or 

  LPP) 4 

length overall (LOA) 3 

length, waterline (LWL) 3 

level sets, on surfaces 26 30 

levels of definition 3 

line heating  23 

line integral  40 41 

lines   16 

lines fairing  34 

lines plan (lines drawing) 1 34 35f 

links, of polygon meshes 28 

local coordinate system 7 8f 

local frame  7 8f 

local support 

 of B-spline surfaces 21 

 of subdivision surfaces 28 

locus   11 15 16 

lofted surfaces. See also B-spline lofted 

  surfaces; spline lofted surfaces 

 in relational geometry 23 

 as transfinite surfaces 22 

lofting   1 36 

longitudinal bulkheads 56 

longitudinal center of buoyancy (LCB) 36 47 48 49 

longitudinal center of floatation (LCF) 48 49 

longitudinal chines 19 

longitudinal metacenter 45 48 50 
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longitudinal stability 50 

M 

magnets   6 26 

maintenance  3 

manifold topologies, of polygon 

  meshes 28 

manufacturing 3 

mappings, of surfaces 23 

mass and mass moments 

 of curves 12 

 moments of inertia 43 

 of surfaces 18 

master coordinate system 7 

master curves 20 

matrix, of coordinate transformations 8 

mean curvature 19 

mechanical integration 40 

metacenter  45 56 

 longitudinal 45 48 50 

 transverse 45 48 49 

metacentric heights 45 48 49 

metacentric radius 45 49 50 56 

metric tensor  18 50 

Michell’s integral 17 

midship section 34 

midship section coefficient 46 

Mirror Point (MirrPoint) 10 

model, definition of 1 

model 

 associative geometric 5 

 dimension-driven solid 33 

 feature-based 5 33 

 geometric 1 

 half   1 

 parametric (dimension-driven) 5 

 parametric solid 33 

 polyhedral 31 31f 
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model (Cont.) 

 scale  1 

 solid  5 

 surface  5 

 variational 5 33 

 variational solid 33 

molded form  26 26f 34 49 

molded surface definition 34 

moments  2 38 41 43 

moments, heeling 50 55 

moments of area 18 40 41 

moments of inertia 40 41 43 44 

moments of volume 41 

movable parts 7 

multiconic development 22 

N 

neglect of atmospheric pressure 39 

net, control point 21 21f 28 31 54 

Newton-Raphson iteration 25 

nodes, of finite elements 32 

nonuniform B-spline (NUBS) surface 21 

nonuniform stretching 46 

normal curvature 18 18f 29 

normal section 18 

normal vector 18 26 

normal vector, unit 15 17 19 23 28 

numerical integration 39 40f 

numerically controlled (NC) 

  machining 3 

NURBS (NonUniform Rational B- 

  splines) curves 15 

NURBS surfaces 21 

O 

obliquity  50 

offset file  4 

offset surface 17 23 
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offset table  4 36 

offsets   4 30 

optimization  5 6 11 46 

origin   7 

P 

panelization  37 

parallel-axis theorem 43 50 

parallel middle body 46 

parameter lines 17 

parameter space 17 

parameters  5 16 17 31 42 46

    50 

parametric continuity 15 

parametric curves 11 11f 

 reparameterization of 15 

 spline  12 

parametric (dimension-driven) 

  modeling 5 

parametric solid 31 31f 

parametric solid modeling 33 

parametric surfaces 16 17f 

 analytic properties of 16 

 in hull surface definition 37 

parametric velocity 12 15 

parent, in directed graphs 5 

particulars  3 36 45 

permeability  56 

perpendiculars 4 

pixel   30 

planar curve, torsion of 12 

planimeters  40 

plate expansion 23 24f 

points   7 

 embedded in curves 16 

 embedded in surfaces 26 

 relational 9 10f 

PolarPoint  10 
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pole    18 

polygon   14 27 31 41 

polygon meshes 27 27f 

polygonal holes 41 

polyhedral models 31 31f 

polyline   2 4 14 26 30 41 

porcupine displays 12 13f 

pressure   38 39 

primitive solids 32 32f 33f 

principal curvatures 18 

principal directions 19 

principal curves, of hull surface definition 34 

prism   42 

prismatic coefficient 4 46 48 

procedural surfaces, in relational 

  geometry 23 

projected curve (ProjCurve) 16 

projected magnet 26 

Projected Point (ProjPoint) 10 

projections  15 16 17 20 23 26

    29 31 34 42 

Pythagoras’ theorem 7 

Q 

quadrilateral  32 

R 

radar cross-section 28 37 53 

radar reflectivity 53 54f 

radius, metacentric 45 49 50 56 

rational polynomial 12 19 

ray tracing  19 

reflection lines 19 

registered tonnage 55 

regulation  2 

relational curves 16 

relational frames 9 
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relational geometry (RG) 5 25 31 50 

 beads in  6 16 

 entities in 5 

 magnets in 26 

 snakes in 29 

 surfaces in 23 

relational points 9 10f 

relational surfaces 23 

relative bead  16 

relative magnet 26 

Relative Point (RelPoint) 10 

rendering  1 

repair   3 

reparameterization of parametric 

  curves 15 

representation 1 

resident snake 29 

resistance  2 31 37 45 46 49

    50 

right-hand rule 7 7f 

right-handed coordinate system 7 7f 

rigid body 

 of B-spline surface 21 

 of subdivision surfaces 28 

rings   6 

roll stability  50 

rotations   9 44 

rudders   54 

ruled solid  31 

ruled surface  21 22f 23 

rulings   22 

S 

sailing vessels 50 55 

salinity   38 

scale drawings 1 

scaling   8 9 10 36 46 48 

  See also affine stretching 
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seakeeping  2 31 37 45 

section area curve 40 49 

section area distribution 40 

sections   34 36 42 

seeds   6 

sequential transformations 9 

shell expansion 24 24f 

shell, topology data structure 33 

ship curves  36 

Simpson’s first rule 40 40f 

simulation based design 2 

slender body theory representations 31 

smoothing, of spline curves 13 

snakes   6 29 29f 

solid modeling 5 

solid topology data structure 33 

solids 

 B-rep  5 6 16 25 30 32 

 B-spline  31 

 feature-based modeling of 33 

 geometry of 30 

 parametric 31 31f 

 parametric modeling of 33 

 primitive 32 32f 33f 

 representations of 30 30f 

 ruled  31 

 variational modeling of 33 

sonar domes  54 54f 55f 

sounding  56 

spans 

 in spline curves 12 

 in spline surfaces 19 

sphere   16 29 

spherical polar coordinates 8 

spline   12 13 36 

spline curves  12 

spline lofted surfaces 20 20f 

spline surfaces 19 



Index Terms Links 

 

 

squash   18 

stability 

 free surface effects 55 

 hydrostatic 43 

 initial  45 49 

 longitudinal 50 

 roll   50 

stability of equilibrium 43 44f 

standards  6 

stations   4 18 20 24 26 34

    36 47 50 51 52f 

STEP (Standard for Exchange of 

  Product model data) 3 6 21 

stern, line plan of 34 

stern tube bossings 54 

stowage factors 56 

straight sections 

 of B-spline curve 14 

 of B-spline surface 21 

strain   22 23 24f 

strain equation 24 24f 

strip theory representations 31 

structural analysis 2 

SubCurve  16 

subcurves  6 

subdivision  55 

subdivision surfaces 16 27f 28 

subsurfaces  6 23 

sum of trapezoids 39 40f 

superstructures 53 54f 

support, in directed graphs 5 

surface curvatures 18 18f 19f 20f 

surface modeling 5 

surface patch  17 18f 

surfaces   16 

 B-spline  17f 21 21f 23 

 B-spline lofted 20 20f 

 blended  23 
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 composite 25 26f 

 compound-curved 22 23 

 continuity between 19 

 contours on 26 

 Coon’s patch 23 23f 

 coordinate singularity of 18 18f 

 curves on 29 29f 

 definition of 16 

 developable 19 22 22f 23 46 

 expansions of 23 

 explicit  16 17f 

 fairness of 19 

 geometry of 16 

 host   29 

 implicit  16 

 intersections of 24 

 level sets on 26 

 lofted  22 23 

 mappings of 23 

 molded  34 

 NURBS  21 

 offset  17 23 

 parameter space of 17 

 parametric 16 17f 37 

 points embedded in 26 

 projection of curves onto 29 29f 

 relational 23 

 in relational geometry 23 

 ruled  21 22f 23 

 spline  19 

 spline lofted 20 20f 

 subdivision 16 27f 28 

 swept  23 

 transfinite 22 23f 25 

 trimmed  6 25 25f 

 uniform B-spline (UBS) 21 
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T 

table of offsets 36 

tangent plane  17 

tangent vector 12 29 

tank capacity  56 

tank stability effects 56 

tank testing  1 

tanks   56 

tensor product surface. See B-spline 

  surface 

tessellation  37 

tetrahedron  32 

thermal signature analysis 2 

thruster tunnel 55 

tonnage   3 4 55 

tooling   3 

topology   5 

 of finite elements 32 

 manifold, of polygon meshes 28 

 of subdivision surfaces 28 

topology data structures, for B-rep 

  solids 33 

torsion   12 

transfinite surfaces 22 23f 25 

transformations 

 coordinate 8 

 homogenous 9 

 rotation  9 

 sequential 9 

 translation 9 

transverse bulkheads 56 

transverse chines 19 

transverse metacenter 45 48 49 

trapezoidal rule 39 40f 

trapezoids, sum of 39 40f 

tree    32 

triangle   32 
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triangle mesh 27f 28 31 42 

 hydrostatics 42 

trimmed surfaces 6 25 25f 

trimming curves 25 25f 

twenty-foot equivalent unit (TEU) 57 

U 

ullage   56 

ullage tables  56 

uniform B-spline (UBS) surface 21 

uniform gravitational field 39 

unit normal  17 18 50 

unit normal vector 15 17 19 23 38 

upright hydrostatic analysis 47 

V 

variational modeling 5 33 

variational solid modeling 33 

vectors, of coordinate transformations 8 

velocity, parametric 12 15 

vertex, topology data structure 33 

vertical center of buoyancy (VCB) 48 49 

vertical center of gravity 49 

vertical gravitational field 39 

vessels, form coefficients for 45 

volume   40 42 42f 56 

volume elements 30 

volumetric coefficient 46 

voxels   30 

W 

water line, design (DWL) 4 

waterline length (LWL) 3 

waterlines  17 26 34 36 37 47 

waterplane area 42 44 48 49 

waterplane coefficient 46 

weather deck  53 
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weight analysis 2 43 

weight estimates 42 

weight schedule 43 

weights   2 14 15 21 22 36

    43 

weights (NURBS) 15 21 

wetted surface 17 38 50 

wetted surface coefficient 50 

Wigley parabolic hull 17 17f 

wireframe  4 

wireframe computer fairing 36 

X 

x axis   7 

x coordinate  7 

Y 

y axis   7 

y coordinate  7 

Z 

z axis   7 

z coordinate  7 
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