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VII 

P R E F A C E  

The book aims to cover in a unitary way both the deterministic and statistical topics 
of the mechanics of sea waves. Furthermore, it aims to highlight some recent progress 
on the dynamics of random wind-generated waves and on long-term wave statistics. 
Finally, it aims to give a fresh approach to traditional concepts. In this regard, some 
original proofs are given (see the conclusive notes of each chapter), new evidence 
from small scale field experiments is used to introduce crucial topics like wave forces,  
and some widely worked examples are given (e.g. an example of 17 pages for the 
calculation of the largest wave loads on a submerged tunnel during its lifetime). 

The text is intended for researchers and graduate students, but the style is such that 
most of the book is suitable for undergraduate students. This is because the various 
formulae are proved from the fundamental equations, and the harder concepts are 
explained with both examples and sometimes also with short stories. Strictly speaking, 
it is assumed that the reader has knowledge of calculus and basic mechanics (e.g. 
volumes 1 and 2 of Calculus by T.M. Apostol, and Physics I by R. Resnick, D. 
Halliday, and K.S. Krane). The fundamentals of strength of materials are needed for a 
part of chapter 12. 

Chapters 1 and 2 cover the dynamics of the periodic waves. Chapter I starts from 
the differential equations of motion to obtain the velocity potential. Chapter 2 applies 
the linear momentum equation and the energy equation to control volumes with 
surface waves. As a consequence, in chapter I you will find solutions for the velocity 
potential of progressive waves (with and without a current), and of waves interacting 
with vertical walls. While, in chapter 2 you will find the solutions to problems like 
those of shoaling, refraction, set-down, and group celerity. 

Chapter 3 covers the beach processes. How large is the run-up? How is the 
planform evolution of a nourishment project? How is the deformation of a beach after 
the construction of a detached breakwater or a groin? These problems are dealt with 
analytically. The starting point is the formal solution for the beach planform evolution 
under the assumption of small curvature of the contour lines. 

Chapters 4 and 5 cover the short-term wave statistics. Chapter 4 introduces the 
basic concepts (sea state, autocovariance of the surface displacement, frequency 
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spectrum, and so on). It also explains how to obtain the autocovariance and the 
frequency spectrum from the time series data, and how to infer the nature of a sea 
state from these functions. Chapter 5 gives formal solutions and experimental 
evidence for the statistics of wave height and wave period in a sea state. 

Chapters 6 and 7 cover the long-term wave statistics. Chapter 6 explains how to 
obtain the probability of exceedance of the significant wave height at a given location. 
Then, it introduces the concept of triangular equivalent storm: for each actual sea 
storm, a triangular storm exists with the same probability that the largest wave height 
exceeds any fixed threshold. Chapter 7 applies this concept to give the formal 
solutions for return periods of sea storms with some given characteristics. This chapter 
also discusses in depth the relationship between the return period, the lifetime, and 
the probability of occurrence. 

Chapters 8, 9, and 10 cover the dynamics of the random wind-generated waves. 
Chapter 8 gives the velocity potential of a sea state to the first approximation in a 
Stokes' expansion. Also, the cases of wind waves interacting with vertical walls are 
dealt with in detail. This chapter points out some very big differences between wind- 
generated waves and periodic waves, in what concerns reflection and diffraction. 
Then, chapter 9 develops the recent theory of quasi-determinism of the highest waves 
in a sea state: if a wave with a given height H occurs at a fixed point Xo, and H is very 
large with respect to the mean wave height at this point, we can expect the water 
surface and velocity potential near Xo to be very close to some well precise 
deterministic forms. 

Chapter 10 deals with the more exciting topic. The highest waves in a random sea 
state belong to quasi-deterministic (three-dimensional) wave groups. The wave group 
is like a family and each individual wave is a member of this family, with a life cycle. 
The characteristics of these wave groups are deeply investigated in view of the 
applications (wave loads on structures). And, through this investigation, we arrive at a 
new insight into random wind-generated waves: these waves are higher on the time 
domain than on the space domain and they possess a sort of genetic code. 

Chapters 11 and 12 cover the wave loads on offshore structures. Chapter 11 firstly 
deals with the so-called large bodies on which waves exert only the inertia force. Then 
it considers the small bodies on which waves also exert a significant drag force. The 
problem of a long structure (what is the maximum expected wave height on a long 
structure like a floating tunnel?) completes this chapter. Then chapter 12 is entirely 
devoted to worked examples of wave force estimates. 

Chapter 13 covers the wave loads on coastal structures: first, wave forces on 
vertical breakwaters; then, stability of the rubble mound breakwaters under the action 
of sea states of given characteristics. 

Chapter 14 deals with topics which call for an overall overview of offshore and 
coastal engineering. The first topic is comparison between the effects of tsunamis and 
of wind waves, from the open sea to the coast. The second topic is small scale models, 
and the third topic is wave measurements for the various needs. 

These subjects, which I approached in an organic way for the first time in my Italian 
book Idraulica Marit t ima (UTET, 1997), serve as three courses to graduate students 
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in civil engineering or ocean engineering, courses that my assistants and I give in the 
University of Reggio Calabria. 

Firs t  c o u r s e  (wave theory and coastal structures) 
a.1) dynamics of the periodic waves: chapters 1 and 2, except sects. 2.5.4 and 2.6.3 

(set-down); 
a.2) short-term wave statistics: chapters 4 and 5; 
a.3) long-term wave statistics: chapter 6 except sect. 6.3 (directional wave 

prediction), chapter 7 till sect. 7.5 (design sea state for coastal structures), and 
Appendix A; 

a.4) stability of coastal structures: chapter 13; 
a.5) small scale models and wave measurements: sects. 14.2.1, 14.2.2 and 14.3. 

S e c o n d  c o u r s e  (advanced wave theory and offshore structures) 
b.1) design wave for offshore structures: from sect. 7.6 to sect. 7.8; 
b.2) dynamics of the random wind-generated waves: chapters 8, 9, and 10, except 

the formal proof from sect. 9.6 to sect. 9.10; 
b.3) wave loads on offshore structures: chapters 11 and 12; 
b.4) discussion on the small scale models: from sect. 14.2.3 to sect. 14.2.5. 

T h i r d  c o u r s e  (beach processes) 
c.1) variation of the mean water level from offshore to coast: sects. 2.5.4 and 2.6.3; 
c.2) wave actions on coasts: chapter 3; 
c.3) prediction of the wave height for given wave direction: sects. 6.3 and 7.9; 
c.4) comparison between effects of tsunamis and effects of wind waves: sect. 14.1. 
The first course is introductory to the others, so that a student can attend only 

course a), or a) and b), or a) and c), or a), b), and c). 
The sections from 9.6 to 9.10 and Appendix B go beyond the three courses and are 

intended for researchers only. It is also advisable to limit a few of the more analytical 
parts. Specifically, for sect. 2.10 (shoaling and set-down of waves on current) one 
could give the introduction (sect. 2.10.1) and conclusion (sect. 2.10.9). Of course there 
is also the possibility to cut off a few parts, so as to shorten the courses, if necessary. In 
particular, course a) could omit the wave-current interaction (sects. 1.9 and 2.10), and/ 
or the way to obtain the continuous spectrum (from sect. 4.4.3 to sect. 4.4.6). Finally, 
there are a few introductory sections which have been given for the sake of 
completeness, and which can be omitted if the relevant subjects are treated in other 
courses. These are: sects. 1.1-2 and 2.1-2 which give the concepts of fluid mechanics 
needed to develop the wave theory, and sects. 5.1-2 which introduce the random 
Gaussian processes. 

Paolo Boccotti 
Reggio Calabria, Italy 
May 1999 
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XIII  

NOTATION 

Some symbols  used in only one section are not  included in the following list. 

a 

a 

a - (ax ,  ay, az) 
A 

C 

c~ 
CFR 

C~, Ci~ 
Cl, C2, C3, C4 

d 
D 
D 
D 
2 

e 

e 

E 
Zf 

E X  

f 
f -- (fx,L,f~) 
F 
F 
Fo, F~ 
V-(Fx,  Fv, F~) 
.S 
, J/// 

g 
G 
G 

wave amplitude 
triangle height 
particle acceleration 
area 

width 
threshold of the surface displacement 
duration of the equivalent triangular storm 
threshold or special value of the wave crest elevation 
berm height 

propagation speed 
diffraction coefficient 
Fresnel integral with integrand cosine 
drag coefficient, inertia coefficient 
safety factors 
wave crest elevation 

still water depth 
diameter 
directional spreading function 
mean persistence 
duration of a storm or of the design sea state 

potential + kinetic energy per unit mass 
eccentricity 
frequency spectrum 
mean wave energy per unit surface 
nondimensional frequency spectrum 
expected number per unit time 

general function 
force per unit length 
general function 
horizontal force per unit extension of upright breakwater 
horizontal force, vertical force 
force 
distribution function of the frequency spectrum 
speed drop factor 

acceleration of gravity 
longshore diffusivity 
general function 
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h 
H 
/4, 

ix, iy, iz 
g 

k 

K~ 

1 
L 
L 

m 

my 

mo 
M 
M 

l'l 

n , N , ~ 4  ~ 

n - -  (nx ,  ny ,  n z )  

P 
P 
P 
P 
p* 

Q 

r 

R 
R 
Re 
Ro, Rv 
Rv 
R - (ICx, R~) 

S 

S 
S 
S 
SD, Su 
SFR 
J 

threshold or special value of the significant wave height 
wave height 
significant wave height 

unit vectors 
Irribarren number 

wave number 
nondimensional wave number 
Keulegan-Carpenter number 

length of a structure 
wavelength 
lifetime of a structure 

mass 
jth order moment of the frequency spectrum 
variance of the surface displacement of a sea state 
moment of a force or of a force per unit length 
determinant of a covariance matrix 

parameter of the spreading direction function 
number being specified every time 
unit normal vector to a surface 

pressure 
probability density function 
probability of exceedance 
weight 
weight in still water 
probability 

flow rate per unit length 

polar coordinate (the r-curves are straight lines through the origin) 
radius 
return period 
Reynolds number 
reactions of the foundation 
run-up 
radiation stress tensor 

local propagation axis 
directional wave spectrum 
velocity head 
total uplift pressure per unit length of breakwater 
set-down, set-up 
Fresnel integral with integrand sine 
nondimensional directional spectrum 
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t 

to 

T 
T 
T* 
T, 
J 

H 

H 

U 

u - ( G , u , , u z )  

~ -  ( ~ , ~ , ~ )  
V 

w 

W 

W 

w~, w~ 
W 

X 

X 

X o -  (Xo, yo) 
X 
X -  (X, Y) 

Y 
Y 
Y 

Y 

OL 

OL 

A 

A 
Ap 

time 
special time instant 
wave period 
time lag 
abscissa of the absolute minimum of the autocovariance function 
interarrival time of a random point process 
very large time interval 
greatest lag used for obtaining the spectrum from the autocovariance 

dummy variable 
current velocity, wind speed 
parameter of the probability of H, 
particle displacement 

particle velocity 
random variable 

dummy variable 
nondimensional frequency 
parameter of the probability of H, 
parameters of the probability of H, for a given wave direction 
volume 

dummy variable 
horizontal coordinate axis 
fixed point of the horizontal plane 
ancillary variable related to H, 
vector whose initial point is Xo 

horizontal coordinate axis 
component of vector X 
ancillary variable related to the probability of exceedance of H, 
fetch 

vertical coordinate axis with the origin at the mean water level 

angle between x-axis and direction of wave advance 
quotient between wave height and r.m.s, surface displacement of a sea state 
quotient between wave height and Hs 
Phillips's parameter 

polar coordinate (the fl-curves are circles centred at the origin) 
quotient between wave crest elevation and r.m.s, surface displacement 

of a sea state 

specific weight 

delta function 
variation of the mean water level due to the wave motion 
actual pressure +pgz 
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T]ph 

q~ 
~b 
• = (e~, e , )  

~u 

phase angle 

vertical coordinate axis with the origin at the seabed 

surface displacement 
fluctuating pressure head at points which remain always beneath the 

water surface 

angle between the y-axis and the direction of wave advance 
azimuth of the direction of wave advance 
angle between the y-axis and the dominant direction of the spectrum 

slope angle 
scale factor 

coefficient of friction 

kinematic viscosity ( 1 0  . 6  m 2 s -1 in calculations) 

distance offshore 
ratio between wave crest elevation and wave height 

water density (1030 kg/m 3 in calculations) 

r.m.s, surface displacement of a sea state 

time lag between crest and trough 
threshold of interarrival time 

velocity potential 
covariance of the surface displacement and the velocity potential 
norm of q~ 
mean energy flux 

shape parameters of the JONSWAP spectrum 

autocovariance function 
narrow bandedness parameter 
covariance of surface displacements 

angular frequency 
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0 
a 

A 
b 
B 
C 

C 
cl 
CF 

d 
e 

f 
F 

FR 
G 
h 

deep  wa te r  1 

wa te r  (aqua)  
t r iangle  he ight  
b reak ing  
t r iangle  base 
cu r ren t  
cent re  
c losure  
crest  
diffract ion 
en te r ing  
seabed  ( fundus)  
Fou r i e r  
F resne l  
g roup  
high waves  

SUBSCRIPTS 

in 
rn 

m o  

n 

o 

Obl 

p 
p h  
p r  
R 
S 

SO 

st 
S . W .  

V 

W 

iner t ia  
abscissa m a x i m u m  / m i n i m u m  
m o d e l  
nou r i shed  beach ,  na tura l ,  nomina l  
ho r i zon ta l  2 

ou tgo ing  
p e a k  3 

p ressure  h e a d  
p r o t o t y p e  
reac t ion  
solid 4 

soil 
still wa te r  
same wave  
ver t ical  
wave  

1 Exceptions: m0 stands for zeroth order moment of the frequency spectrum; in sects. 9.6-10 and in 
Appendix B, r/0, ~b0 stand for r/(0), ~ (0). 

2 Exception: xo, Yo, to where the subscript o denotes a special value of x, y or t. 
3 Exception: hp in sect. 7.10 where p denotes a given probability. 
4 Exceptions: Hs where s stands for "significant"; v, in chap. 2 where s denotes the local propagation axis. 

SYMBOLS 

< f (t) > = t e m p o r a l  m e a n  

V = m e a n  value  of the  r a n d o m  var iable  V 

f = der ivat ive  

f 
! 

first o rde r  in the  Stokes  expans ion ,  or o the r  mean ings  be ing  specified 
every  t ime; the apex is also used  to dis t inguish b e t w e e n  the d u m m y  
var iable  and the i n d e p e n d e n t  var iable  of an indef ini te  in tegra l  

f l! = second o rde r  in the  S tokes  expans ion  

G = quant i ty  r e l evan t  to the  equ iva l en t  wa te r  v o l u m e  
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A B B R E V I A T I O N S  

e.t.s. 

1.h.s. 

MWL 

p.d.f. 

RC 1990, RC 1991, RC 1992, RC 1993, 
RC 1994 

r . m . s .  

r.h.s. 

equivalent triangular storm 

left-hand side 

mean water level 

probability density function 

experiments in the natural laboratory of Reggio 
Calabria 

root mean square 

right-hand side 
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Chapter 1 
PERIODIC WAVE PATTERN: 
THE APPROACH OF DIFFERENTIAL CALCULUS 

1.1 The irrotational flow, the continuity equation, the Bernoulli equation 

The  condi t ion  

Ov~ _ O, Ovy = O, (1.1) 
Oy oz 

where  re, v~ are the velocity componen t s ,  is necessary  and sufficient for a two- 
dimensional y-z mot ion  of a rigid body  to be i r rotat ional .  Such a condi t ion is only 
sufficient for a two-d imens iona l  y-z water  flow. Indeed  a given water  mass does not  
have a form, and hence  it can unde rgo  such a de fo rma t ion  that  condi t ion (1.1) is not  
satisfied and the flow is still i r ro ta t ional  [see fig. 1.1]. The  necessary  and sufficient 
condi t ion for a two-d imens iona l  y-z mot ion  of a small vo lume of wate r  dx dy dz not  
to be ro ta t iona l  is 

Ov~ Ov~ 
= . (1.2) 

Oy Oz 

dz 

8 5  

I 

i 
I 
1 

Fig. 1.1 Possible deformation of a small water mass in an irrotational flow. 
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Such a condition guarantees that a clockwise rotation 6c~ of face dx dz is balanced 
by an equal anticlockwise rotation 8c~ of face dx dy (or vice versa an anticlockwise 
rotation of dx dz is balanced by an equal clockwise rotation of dx dy). 

We shall see that wave motions are generally assumed to be irrotational, and that 
in a very common case the orbits of the particles are circular. Obviously the two 
facts (irrotational motion and circular orbit) do not contradict each other. To 
understand this point we can think of the Ferris wheel in an amusement park. The 
head of the man in fig. 1.2 moves along a circular trajectory of radius R, and his feet 
also move along a circular trajectory of radius R. Nevertheless the man does not 
rotate, and indeed his head always remains above his feet. The orbits of the various 
particles forming the man are circular, but the man does not rotate simply because 
those orbits have different centres. We shall see that the motion of water particles in 
a wave is similar to the motion of the man's particles on the wheel. 

Fig. 1.2 The head and feet of the man on the Ferris wheel move along circular trajectories with 
the same radius and different centres. 

If condition (1.2) is satisfied, that is to say, if the motion is irrotational, a function 
05 (y, z, t) does exist, for which: 

0q5 0q5 (1.3) 
Vy= Oy, Vz-- OZ" 

With this function, namely "velocity potential", the continuity equation takes the 

form 
024 

02(~ t = 0, (1.4) 
Oy 2 Oz 2 

and the Bernoulli equation, the form 

O~ 1 [ ( O ~ 2 +  (O(~2] _ f(t) 
p + pgz + p--~-+-~p \Oy / k, Oz J J ' 

(1.5) 
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where f(t) is an arbitrary function of time. The Bernoulli  equation says: the 1.h.s. of 
(1.5) can vary with time, but at any fixed time it does not vary from one point to 
another.  

Let us briefly recall the reasoning leading to the continuity equation and 
Bernoulli  equation. Having to deal with a y-z flow the abstraction of two- 
dimensional space is convenient,  and hence we shall resort  to a small "volume" 
dy dz in order  to prove equations (1.4) and (1.5). Naturally, if one prefers the more 
concrete three-dimensional  approach, one can resort to a small volume dx dy dz. In 
that case, all terms in the following equations must be multiplied by dx, which does 
not modify the final result. 

To prove the continuity equation we shall write that the water  mass entering the 
small volume dy dz in the small time interval dt is equal to the water  mass going out 
of the same volume in the same time interval. The result is 

(vy ) (v~ Ov~dz ) OVy d y dz dt + p d y dt - 
P Oy 2 Oz 2 

- p  4 ~yy d z d t + p  -t Ozz dz  dydt, (1.6) 

where the 1.h.s. gives the entering mass and the r.h.s, gives the outgoing mass [see 
fig. 1.3a]. Equat ion (1.4) proceeds straightforwardly from (1.6) on cancelling a few 
terms and using definition (1.3). 

IV z -t- ~ ~  

i! dy _ Vy 
Oy 1 

Ov z dz  

Oz 2 

.y,z 

Vy + ~ ~  

p +  ~ ~  apdz 
Oz 2 

op [ I 
oy2  p-o,  2 [ 1 

p + ~ ~  @dy 
ay 2 

Ov z dz 
Oz 2 

apdz 
Oz2 

(a) (b) 

Fig. 1.3 (a) Reference scheme for the continuity equation. (b) Reference scheme for the 
Bernoulli equation. 
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As to the Bernoulli equation, it proceeds on applying Newton's second law to 
any small volume dy dz under ideal flow assumptions, that is under the assumption 
that the shear stress is negligible [see fig. 1.3b]. The result is 

Op dY)dz_  ~ +  Op d__yy)dz_pdydzay (1.7a) 
@ 2  O y 2  

@ OP dZ)dY-@-~ OP dz) 2 Oz 2 (1.7b) 

Acceleration a of the particle being at point y, z (the centre of the small volume) 
at time t is given by 

Vp (t + dt) - Vp (t) a - -  

dt 

where vp denotes the velocity of the specific particle (called P) which at time t is at 
point y, z. Therefore vp(t) coincides with the velocity v at point y, z at time t; while 
vv(t + dt) is the velocity at time t + dt at the point being occupied by particle P. 
Since at time t + d t  particle P is at point 

y + vydt, z + vzdt, 

we have 

Ov Ov Ov 
ve(t + dt) - v (y + Vy dt, z + Vz dt, t + dt) - v + -~y v, dt + -~z Vz dt + - ~  dt, 

and hence 

Ov Ov Ov 
a---~yV, +--~z Vz + 0--7-" (1.8) 

With this formula and definition (1.3), the equations (1.7a-b) are reduced to 

0 1 ( 0 q 5 ) 2 + 1  (O0"]2+p - 0  
oy p + 2 P \  oy / T P \  Oz J --g- ' 

[ °+ 1 
0 1 ( 0 4 ~ 2 + 1  (O0~2+p - 0  
Oz P + Pgz +-2P\ oy J -2P\ Oz J --& ' 

from which follows that the sum 

1 (04)~2+1  (O0~2+p__ 
P + Pgz +-2 P \ oy ) -2 P \ Oz ) Ot 

does not vary if we move along y for a fixed z and t, nor if we move along z for a 
fixed y and t; which can be expressed in the form (1.5). 
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Before concluding this introductory section, we need to explain the reason for 
the unusual y - z  reference frame in place of the more common x-z .  The reason is 
that, throughout the book, y will be the direction of wave propagation (at least 
whenever this direction is constant), and clearly if the wave travels along the y-axis, 
the flow is two-dimensional y-z .  

1.2 The differential equations of an irrotationai flow with a free surface 

1.2.1 The free surface equation 

Let us assume that the two-dimensional irrotational flow has a free surface, and 
let us call ~(y, t) the vertical displacement of this free surface. Our first goal is to put 
in mathematical form what we have just said, namely "~(y, t) is the surface 
displacement". 

In order to express in mathematical form that ~(y, t) is the vertical elevation of 
the air-water boundary, we shall resort to the small control volume of fig. 1.4. 
Specifically we shall say that the water mass entering this volume in a small time 
interval dt is equal to the sum of the water mass leaving the volume and of the water 
mass piling up in the volume in the same interval dt. Doing so, we shall implicitly 
specify the physical meaning of ~/(y, t). 

The water mass entering the small volume in a small time interval dt is 

I " 0~ 
m~ - p dz dt 

- d  - ~ Y  " 

The water mass going out of the small volume is 

too. - p + d dzd t  with d r / -  Or/dy. (1.9) 
~, Oy 2 Oy 

f ~  

~ l y  ~ 

Fig. 1.4 The small volume used for obtaining equation (1.13). 
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The water mass piling up is 

A m - p ( - - ~ d O d y .  

In these equations, ~7 and 0q5 are, respectively, the surface displacement and the 
0y 

horizontal particle velocity at the left side of the control volume. 
Equation (1.9) can be rewritten in the form 

I ' O ( - - ~ y O 2 O d y )  [ O ( - - ~ - y ) ( O 2 ~ ) d y ] O r l d y d t  mou - p + dz dt + p + OY 2 -d OY 2 =7 =7 -~Y ' 
(1.10) 

so that the equation 

yields 

mo, - me + Am = 0 

J ~ 02q5 dz + (-~Y)z Or/ Or/ _ 0 (1.11) 
Oy 2 + ot  ' 

apart from some negligible terms. Let us consider the integral on the 1.h.s. of this 
equation. Thanks to the continuity equation (1.4), we have 

]~ 02~ dz - -J~ 02~ dz - - ( - ~ z l  ~+ OY 2 -d Oz = =-e' (1.12) 

where the term (O~/Oz)z=_ d is zero because it represents the vertical particle 
velocity at the bottom, which is zero if the bottom is horizontal. Therefore equation 
(1.11) is reduced to 

0(__0~_z ) z 0(__~_y )z Or/ OI7 (1.13) 
= , -  =, ~ + Ot 

which is the general equation of the free surface. 

In the proof we have assumed the bottom to be horizontal. But the same result holds even 
if the bottom is sloping. In this more general case d denotes the bottom depth at the left side 
of the small control volume, so that the bottom depth at the right side is d + (dd/dy) dy. 
Therefore, the lower limit in the integral on the r.h.s, of equation (1.10) changes, and (1.11) 
takes a new term: 

J ' O 2 Ch d z + O(_~y )z Orl O(_~y )z d d Orl 
Oy - - T  - - +  _ = _ .  d y  Ot 

=0 .  (1.14) 
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Moreover the boundary condition becomes 

O(__~Z) _ _ - - -  O(__~y)~ d d 
. . . .  / . . . .  t dY 

which taken together with (1.12) and (1.14) leads us again to the equation (1.13) of the free 
surface. 

1.2.2 The system of equations 

On the whole, in an irrotational two-dimensional flow with a free surface, 
functions 0 and ~7 must satisfy the following system of equations: 

(__~)~ 1 [ (0~)2 + (Oq;) 2] _ i f ( t )  (1 15a) 
+2Lk0yj \ O z J  l - ' ='q z =r l  

O(__~Z )~ O(__~y ) Or/ &/ (1 15b) 
: , , -  0--7' 

02-~-f- 02~ = O, (1.15c) 
Oy Oz 

O(-~z )~ = d -  O. (1.15d) 

The first one says that the pressure is zero on the free surface (atmospheric pressure 
being taken as reference pressure); it proceeds straightforwardly from the Bernoulli 
equation. The second one is the general equation of the free surface, which we have 
just obtained. The third and fourth ones are, respectively, the continuity equation 
and the condition of the solid boundary which have been rewritten in order to get a 
general overview of the whole system of equations. As to the solid boundary 
condition, it has been specified for a horizontal bottom, which is the case being 
examined in the rest of this chapter. 

1.3 Introduct ion to wave mechanics  

A vertical plate swinging in a periodic way at one end of a channel generates 
waves on the free surface. If we take a photo of the water surface we get a picture of 
the surface displacement ~7 as a function of abscissa y along the propagation axis 
(the channel's axis). Function ~7 (Y) at a fixed instant represents the waves on the 
space domain [see fig. 1.5a]. If we record the surface displacement at a fixed point 
as a function of time t, we get the waves on the time domain [see fig. 1.5b]. 

From figs. 1.5a-b of the waves on the space domain and on the time domain, we 
get the definitions of the basic parameters: wave height H which represents the 
difference in height between crest and trough; wavelength L which represents the 
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(a) 

Z 

. L 

~_ Y 

~\ I_0 

't 1 

(b) 

Fig. 1.5 (a) Waves on the space domain. (b) Waves on the time domain. 

distance between the two extreme zeros of the wave; wave period T which 
represents the time lag between the two extreme zeros of the wave. Besides these 
three parameters,  it is convenient to define 

(i) the wave amplitude 

(ii) the angular frequency 

(iii) the wave number 

a - H I 2 ,  

aJ = 2 7r / T,  

k :_ 27r/L.  

The scheme of fig. 1.6 should be useful to understand the wave motion. Each 
point in the figure moves along a circular orbit, with constant speed. The time taken 
to cover the orbit (circumference) is T, and the figure shows two instant pictures 
taken at a time interval of T / 4  from each other. The line connecting the points 
represents a wave. We see the wave advance of L / 4  in a time interval of T/4 ,  and 
this means that the propagation speed (celerity) of the wave is 

c = L / T .  

The speed v of each point is generally different from c, indeed 

v = 2 7 r R / T  

(R is the radius of the circular orbits). The particle speed v is not only generally 
different f r om4he  propagation speed c of the wave, but we can even vary v 
arbitrarily without modifying c: it suffices to fix period T and length L (which 
depends only upon the distance between the circumferences) and let radius R vary. 
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rotation 

Fig. 1.6 Each point moves along a circular orbit of radius R in a time T; the line connecting the 
points is a wave whose propagation speed is LIT. 

Finally, a last item before passing to the mathematical t reatment of the wave 
motions. Let us imagine that we make a blob of two colours (e.g. red and black) 
within the water mass in a wave. If we put the red on top of the black, generally we 
should see that the red remains over the black, just as we see that the man's head 
remains above his feet on the wheel in fig. 1.2. In other words, we should see that 
the blob does not rotate, which denotes irrotational flow. 

1.4 Stokes' theory to the first order 

1.4.1 A physical approach 

Let us fix the period and the swinging amplitude, and let us set the wavemaker  in 
motion. Waves with a height H~ will form. 

Let us stop the wavemaker,  and let us set the engine in a different manner: same 
period, smaller swinging amplitude. Then let us start again. Waves with a height H2 
smaller than HI will form. The wave period will be the same as before. Indeed the 
wave period proves to be the same as the swinging period of the wavemaker.  

Let us repeat the process many times: each time with the same period T and with 
wave heights smaller and smaller. Doing so, in the first wave generations, which are 
the ones with the greater heights, we shall note asymmetry between the wave crest 
and trough: the crest will be steeper than the trough. Then, we shall find that a 
gradual lowering of the wave height, under the same period, leads to waves with 
smaller asymmetry: the wave approaches a sinusoid with a wavelength which 
depends on d and T. 

Summarizing: 

as H 0 (d and T fixed) r/(y t) H 2 ( T  27r t~ " , - - ~ c o s  y (1 16) 
2 \ L  T / ' " 

where, for the moment,  wavelength L is unknown. Function (1.16) represents a 
periodic wave of length L on the space domain and it represents a periodic wave of 
period T on the time domain. The negative sign in the cosine implies that the wave 
travels along the y-axis (with a positive sign the wave would travel in the opposite 
direction). 
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Generating waves with smaller and smaller heights (and a fixed period) we shall 
also note that the velocity components, at any fixed depth, will tend to fluctuate in 
space-time like r/(y, t): Vy in phase with r/, and Vz with some phase angle. Moreover, 
the particle speed will prove to be proportional to the wave height. In this, the 
phenomenon is similar to the one depicted in fig. 1.6. In that figure the wave height 
is equal to 2R, and the particle speed is equal to 27rR / T. Therefore, if we reduce R 
with the same T, the wave height and the particle speed are reduced in the same 
way. 

From these observations on particle velocity, we can draw the following identikit 
of the velocity potential: 

as H ~ 0 (d and T fixed): q5 (y, z, t) = 

2(_L_ = Hfl (z; d, T, L)cos Y T - ~ t  + e) +f2 (t), (1.17) 

where fl(z; d, T, L) denotes a function of z, in which parameters d, T and L may be 
present. For the moment, functions fl and f2 and phase angle e are unknown. 

1.4.2 The system of linear equations 

The equations (1.16) and (1.17) show that both r/and q5 are infinitesimal of order 
H. In particular, the fact that r/ is infinitesimal enables us to rewrite equations 
(1.15a-b) in the form 

g~7+ (-&)z + (  02qS)z 1 [ ( 0q~2+  (0q5~2] 
:0 OzOt : 0 r / + 2  \ Oy J k, Oz J ] 

1 { 0 [(&b~2+(0qS~2]} z 1 
+ 7  -&z kOyJ 20zJ J =0 r l -  7 f ( t ) ,  

+ 
Z=0 

(1.18a) 

(--~z) (02c~ '~[O(- - f f f -y )z (02c) )  z ] &7 0rl (1.18b) :0+\Oz2)z:0 - :0+ OzOy 0-7' 
where the value of a function at z = r/has been expressed as: [value of the function at 
z = 0] + [value of the derivative with respect to z, at z = 0] x r/. Neglecting the terms 
of orders smaller than or equal to H 2, equations (1.18a-b) are reduced to 

( & ) z  1 0O -- -g~7 + -p- f (t), (1.19a) 
=0  

0(_ ) _ 07/. (1.19b) 
\OZ/z =o Ot 
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At this point, the problem is how to obtain functions fl, f2, length L and phase c 
(provided they exist) in such a way that the two forms (1.16) and (1.17) of r /and q5 
satisfy equations (1.19a-b) as well as (1.15c-d). The problem has only one solution, 
as will be evident from the following analysis. 

1.4.3 Solut ion for  c) 

Substituting the forms of r /and  q5 in (1.19a), we have 

d H 1 
H fl(0; d, T ,L)  co sin(ky -co t  + c) + -d~-f2(t) - - g - ~ c o s ( k y  -cot) + p f ( t ) ,  

and the only way for the function of y and t on the 1.h.s. of this equation to be equal 
to the function of y and t on the r.h.s., for every y and t, is that 

1 -1 )q (0; d, T, L) - --~- gco , (1.20a) 

rc (1.20b) c -  2 , 

f2(t) - P f ( t  dt'. (1.20c) 

(Clearly, an arbitrary constant can be added to f2(t), but such a constant proves to 
be wholly insignificant for what follows.) Thanks to (1.20b-c) the identikit (1.17) of 
q5 becomes more precise: 

1 Ii ') 
(y, z, t) - - H  f~ (z; d, T, L) sin (ky - cot ) + P f ( t  at'. (1.21) 

The more general form of f~ so that this function of ~ satisfies (1.15c) is 

f~ (z; d, T, L) = A exp (kz) + B exp ( - k z ) ,  

with A and B arbitrary constants. The values of these constants can be obtained 
thanks to condition (1.20a) and equation (1.15d). The result is 

A - - 1 gco-' exp (kd) B - -  - -  1 gco-1 exp ( -kd)  
2 exp (kd) + exp (-kd)  ' 2 exp (kd) + exp (-kd)  ' 

so that (1.21) becomes 

H -1 cosh [k (d + z)] sin (ky - cot) + -7 f (t dt'. 
05 (y, z, t) - g -~co  cosh (kd) {1.22) 
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1.4.4 The linear dispersion rule 

At this stage there is only equation (1.19b) to be satisfied, and only one 
parameter is left unknown: L or k - 27r / L. The use of functions (1.16) and (1.22) in 
equation (1.19b) yields 

2 
k tanh (kd) - w , (1.23) 

g 

that is, in terms of L and T rather than of k and w, 

L-  gT22rr t a n h (  2rrd)L (1.24) 

which relates L to d and T. Such a relation is most commonly used in ocean 
engineering, both in the form (1.23) and in the form (1.24), and it is called the linear 
dispersion rule. 

1.4.5 The effect o f  f unc t ion  f (t) 

Since f ( t )  is an arbitrary function of time, the velocity potential (1.22) is 
indeterminate. But the functions which are of interest, that is to say v (y, z, t), and 
p (y,z, t), prove to be independent of f (t) and thus they are definite. In particular, 
the components of vector v proceed through (1.3) and prove to be 

H -1 cosh [k (d + z)] t),  (1.25a) ~ w  k c o s ( k y - w  
Vy (y, z, t) - g 2 cosh (kd) 

n -1 sinh[k(d + z)] t). (1.25b) ~ w  k s i n ( k y - w  Vz (y, z, t) - g 2 cosh (kd) 

As to the pressure, it is obtained by means of the Bernoulli equation (1.5). The 
result is 

H cosh [k (d + z)] cos (ky wt) p (y, z, t) - - p g z  + pg ~ 
2 cosh (kd) 

(where the terms of orders smaller than or equal to H 2 have been neglected), and 
hence the fluctuating pressure head proves to be 

rlph (Y, Z, t) -- H cosh [k (d + z)] 
2 cosh (kd) 

cos ( k y -  wt). (1.26) 

Clearly the formulae for p and ~ph are valid for z _< ~, and the formula for ~/ph 
requires in addition z to be smaller than or equal to zero. Indeed (1.26) presupposes 
that the static pressure is -pgz .  To this purpose, note that, in the whole text, Zlph 
denotes the fluctuating pressure head only at points which are always beneath the 
water surface, where (1.26) is of course valid. 
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1.5 Analysis of the linear dispersion rule 

1.5.1 Calculation of L from d and T 

It is convenient to define 

L0 z 

and rewrite (1.24) in the form 

gT 2 

271- 

L -  Lo tanh ( 2 L d )  • 

(1.27) 

(1.28) 

Since the range of tanhx is (0,1), it follows that 

L <L0 ,  

with L approaching L0 on deep water. 

The calculation of L can be done through an iterative approach, by means of 

Li - L0 tanh (27r d L~_~ J '  (1.29) 

for i - 1, 2, 3 and so on. In this way the following inequalities are obtained: 

{ L~ < L if i is an odd number, 
L; > L if i is an even number. 

To verify these inequalities, one has simply to analyse the quotient Li/L that 
proceeds from (1.28), (1.29)" 

LiL = tanh (27r d ) / t a n h  ( 2 L d )  " L i _ ~  

Indeed, being L0 > L, it follows: L1 < L and consequently L2 > L which in turn 
implies L3<L, and so on. Sequence (1.29) converges, that is the difference 
}Lz- Li_~] approaches zero as i grows. 

1.5.2 Calculation of d/L from d/Lo 

From (1.28) it follows that 

d tanh rc - . (1.30) 
L Lo 

The value of d/L which satisfies this equation is equal to the special value 2 for 
which the function 

f (x) - xtanh (27r x) (1.31) 
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is equal to the given value d/Lo. Function (1.31) is strictly increasing, it being the 
product of two functions, x and tanh (27rx), which are strictly increasing. Therefore, 
only one abscissa corresponds to a given ordinate [cf. fig.l.7]. To obtain 2, one 
calculates f(x) at regular increments Ax until f (x)> d/Lo is found. At this point, 
one goes back a step ZXx, then fixes a smaller Ax, and continues until the abscissa 2 
is reached with the desired degree of precision. 

f(x) 

.f=x 

a__ 
I-,o 

X 

d 
L 

Fig. 1.7 Input: d/Lo. Output: d/L. 

In the following there are a number of parameters which depend on kd, and we 
shall represent these parameters as functions of d/Lo. This is because for every 
k d -  27rd/L there is exactly one d/Lo and vice versa. 

1.5.3 The concept of deep water 

From (1.29) we have 

L1 - 0.996L0 

which yields 

d 1 
if ~ =  

Lo 2 '  

d 1 
0.996Lo < L < Lo if 

Lo 2 

1 the difference between L and L0 is smaller than This means that, for d/Lo--~ ,  

0.4%. The difference between L and L0 gets even smaller for d/Lo > --.1 For this 
1 2 

reason, the waves on water depth d > ~ L0 are called waves on deep water. 
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1.5.4 A s impl i f icat ion  valid f o r  waves  on deep water 

The modes of at tenuation from the free surface to the seabed are 

A1 (z) - 
cosh [k (d + z)] 

cosh (kd) 

A2(z )  - 
sinh [k (d + z)] 

cosh (kd) 

The first one is the mode of the horizontal velocity and the pressure fluctuation (cf. 
equations 1.25a and 1.26); the second one is the mode of the vertical velocity (cf. 
equation 1.25b). 

The two modes can be rewrit ten in the form 

A1 (z) - exp (kd)exp (kz) + exp ( - k d ) e x p  ( - k z )  
exp (kd) + exp ( -kd)  

A2 (z) - exp (kd) exp (kz) - e x p ( - k d ) e x p  ( - k z )  

exp (kd) + exp ( -kd)  

from which, bearing in mind that Ikzl < kd, we get 

lim A1 ( z ) -  exp (kz) - O, lim A2 (z) - exp (kz) - O. 
k d ~ o c  k d ~ e c  

Therefore,  for high values of kd, both A1 and A2 can be assumed to be equal to 
exp(kz). Such an assumption leads to errors on A1 and A2 within 0.04 if d/Lo - 0.5, 
within 0.02 if d/Lo - 0 . 6 ,  and within 0.01 if d/Lo = 0.7. In appraising these errors, 
bear  in mind that A1 and A2 range between 0 and 1. 

1.5.5 Analy t i ca l  exercise: get an explicit  f o r m  f o r  the wavelength  

From the definition of wave celerity (c - L/T)  and the definition of L0, we have 

c 2 L/Lo 
gd 27r d/L ' 

from which, using the linear dispersion rule, we get 

Since 

c _ / t a n h ( k d )  
V 

• 

t a n h  x - x - ~ - 

3 
X O (x s) a s x ~ 0 ,  

(1.32) 

(1.33) 
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where O means of the order, and since 

x / l + x -  1 + l x +  O(x 2) 
2 

it follows that 

a s x ~ 0 ,  

x 2 
ta----x-x = 1 - ~ + O (x 4) as x --+ 0, 

which enables us to rewrite (1.32) in the form 

c - 1 (kd)2 
- ~- 0 (kd) 4 as kd -+ O. (1.34) 

v/gd 6 

At this stage, let us express kd in terms of d/Lo. To this end let us rewrite (1.30) in the form 

kd tanh (kd) = 2re d/Lo, 

from which, using (1.33), we get 

(kd) 2 = 27r 
( ) 2  d 

d + O  d as -+0  
L0 L0 L0 

that enables us to rewrite (1.34) in the form 

d c = 1  2rr d +-O as 
x/~d 6 L0 L0 

m --+ 0. 

Hence, the formula 

and consequently 

(1 2re d)v/-gd, 
c --- 6 L0 

L - - - ( 1  2rc6 Lod ') v /-g-d T " (1.35) 

For d/Lo <_ 0.20, (1.35) leads to an error on L within 0.25%, that is negligible. Equation 
(1.35) is useful since it covers the range of small d/Lo where the sequence (1.29) converges 
more slowly. 

1 . 6  T h e  f l o w  f i e l d  

1.6.1 Velocity and acceleration 

F r o m  equa t ions  (1.25a-b) of Vy and Vz, one can draw the s u m m a r y  of f ig. l .8a.  
Such a f igure shows the par t ic le  veloci ty  in a wave,  on the space domain ,  at a f ixed 
t ime  instant .  The  hor izonta l  par t ic le  veloci ty  is posi t ive u n d e r  a wave  crest  and  
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negative under a wave trough. The vertical particle velocity is positive between a 
crest and the following trough, while it is negative between a trough and the 
following crest. This is correct given that the water surface is rising between a crest 
and the following trough: the trough has just passed and the crest is arriving. 

The summary is re-proposed in fig.l.8b, on the time domain, at a fixed point. We 
see that the horizontal particle velocity is positive when a wave crest passes over the 
fixed point, and is negative when a wave trough passes. We also see that the vertical 
velocity is negative on the time interval between a crest and the following trough, 
and in fact during this interval the water surface at the fixed point is going down. On 
the contrary, the vertical velocity is positive during the interval between a trough 
and the following crest, and in fact during this time interval the water surface at the 
fixed point must rise. 

(a) 

I 
:,'::::/:,~:::::7::~:7i:}.: ':7:!).> :i .: , :: .,{? ! i:::/! 5 . , : - ,  :,. := : : : : i f  :i::  " ,' ,." . Z - < - :  ::7 . : .  

(b) 

nd vz 

Fig. 1.8 Direction of vy and vz" (a) at a fixed time instant; (b) at a fixed point. 

From (1.25a-b) of the particle velocity we draw the particle acceleration, by 
means of equation (1.8). Neglecting the terms of order H 2, the result is 

H cosh [k (d + z)] sin (ky  - cot), 
ay (y, z, t) - g - ~  k cosh (kd)  

H k sinh [k (d + z)] t) 
a~ (y, z, t) - - g  7 -  cosh  (ka)  cos ( k y -  ~ . 

J 

7- 
J 

-7 

f ~'~  t 

ay and az 

Fig. 1.9 Direction of ay and az at a fixed point. 
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Fig. 1.9 shows the particle acceleration on the time domain,  at a fixed point. We 
see the horizontal acceleration is negative on the time interval be tween a crest and 
the following trough, which is consistent with the fact that the horizontal velocity on 
this time interval at the fixed point passes from maximum to minimum. As to the 
vertical acceleration, it is positive in the interval between a zero down-crossing and 
a zero up-crossing of the surface displacement; and this is consistent with the fact 
that  under  a zero down-crossing the vertical velocity reaches a minimum and under  
a zero up-crossing it reaches a maximum. 

1.6.2 Particle d i sp lacement  

Let us fix a water  particle P; as an example let us think of the particle that at 
t = 0 is at point y = 0,z (z being arbitrarily fixed). Let us call re(t) and U(t) 
respectively the velocity and the position of the particle relative to its initial position 
(y = 0, z). The velocity vp can be expressed in the form 

• p ( t ) - ,  (o, z, t)+ o[_ y (o, z, t)] my (t)+ °[-bT z (o, z, t) 1 (t), 

where the first term on the r.h.s, is of order H, while the second one and the third 
one are of order H 2. Therefore the velocity vp(t) is equal to v ( 0 , z , t )  apart  from 
some difference of order H 2, and hence the particle displacement is given by 

Uy(t)-- vy(O,z,t ' )dt ' ,  

Uz (t) - Vz (0, z, t') dt' ,  

that  is, with the formulae (1.25a-b) for vy and vz, 

H _2 k 
U y ( t ) - g  2 

cosh[k(d + z)] sin(~ot), 
cosh(kd) 

H _2 k ~ 0 3  U z ( t ) - g  2 
sinh [k (d + z)] [cos (~t) - 1]. 

cosh (kd) 

Vector  U (t) represents an elliptic orbit whose horizontal and vertical diameters  
are respectively 

Do - H cosh [k (d + z)] , (1.36) 
tanh (kd) cosh (kd) 

D =H 
sinh [k (d + z)] 

sinh (kd) 
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Three comments.  First: if we change the initial abscissa y, the phases of Uy and 
Uz generally change, but the orbit does not change, that is Do and Du do not change. 
Second: as kd --. oc, for any fixed kz, Do and D~ tend to coincide with each other, 
and consequently the orbit becomes circular. Third: the horizontal particle 
displacement (Do) reduces itself, from the water  surface to the seabed, according 
to an hyperbolic law [see (1.36)], while the horizontal displacement at the 
wavemaker  reduces itself linearly. The consequence is that the first two or three 
waves after the wavemaker  show some differences from what is expected by (1.16). 

1.7 Stokes' theory to the second order 

1.7.1 The system o f  equations exact to the second order 

Surface displacement and velocity potential  are expressed in the form 

~1 = r/' q- f/" q- o (H2) ,  ~ _= ~' -t- ~" q- o ( H 2 ) ,  (1.37) 

where r/' and ~b' are the terms of order  H, the formulae for which are respectively 
(1.16) and (1.22), r/" and 05" are the terms of order  H 2 which we shall obtain in what 
follows, and o(H 2) is for terms of orders smaller than H 2, that is terms of order  H 3, 
H 4, and so on. 

From definition (1.37) we have 

(~)Z (O~)I')Z (02~')Z 0* __ ( 0 ' ' ~  q__ q- ~7' -k o ( n 2 ) .  
: ,  \ Ot )z:o Ot :0 OzOt :0 

This is the form exact to the order H 2 of one of the terms of the system of equations 
(1.15). Similarly, we can also write the form exact to the order  H 2 of the other terms 
of the aforesaid system of equations. The result is 

I g, '  [ + gr/"+ 
\ Ot J~:o 

(O~tl) ( 02~t'~ 71I 1 (OqS'~ 2 

+ ot + \~zOZ/z + g \ T I ~ :  =0 =0 0 

1 0~'~ 2 

+7 (OZjz£ 

7f(z  , (1.38a) 

k Oz/z:o 

IO~lt l ( 0 2 ~ t l t  "q- OZ --J- k OZ2 7] -- ( O(/)t ~ 01]1"-~ - O 't 
:0 :0 \ OY Jz:o Oy - &  

OT]" + ~  
Ot 

(1.38b) 

020 , 020" 020, a:O ,, 
0y2 -JI- 0y2 -11- ~ -~- ---------~ Oz 2 Oz 

= 0 ,  (1.38c) 

k Oz/~:_. 
(00" l +k, Oz : - 0 ,  -d 

(1.38d) 
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where the framed terms form the linear equations which are satisfied if r/' and qS' are 
given by (1.16) and (1.22). Therefore the framed terms can be cancelled. 

1.7.2 S o l u t i o n  f o r  rl" a n d  0"  

In order to solve the system (1.38a-d) of the two unknown functions r/" and 4/' 
we differentiate with respect to time all terms of (1.38a), multiply by g all terms of 
(1.38b), and finally add (1.38b) to (1.38a); in doing so we eliminate r/", that is we 
obtain an equation with only the unknown function ~", and the known functions 
r/' and qS'. Then, substituting r/' and qS' by their expressions (1.16) and (1.22), we 
get 

Ot 2 )=o + g k,-~Z jz=o 
3 H 2 ~ 3 1 1 -  1 1 

- -8-- tanh 2 (kd) ~ sin [2 ( k y -  a~t)]. (1.39) 

Therefore function ~" must satisfy this equation proceeding from (1.38a-b) as 
well as the equations (1.38c-d). The solution is a function of the kind 

ch"(y,z,t) = A c o s h [ 2 k ( d  + z )]s in[2(ky-co t )]  + Bt + Cy, 

where A, B and C are unknown  constants. (One more arbitrary constant can be 
added to this function, but this new constant is insignificant for what follows.) 
Substituting this expression of qS" in (1.39) we get 

A -  3 H2co 1 
32 sinh 4 (kd) 

At this stage, having obtained the expression of qS" (apart from constants B and 
C), we can obtain the expression of r/" by means of (1.38a). The result is 

rl " ( y , t ) - ~ ~ H 2 c°2 { -  1 
16 g sinh 2 (kd) 

B 
+ F1 (kd )cos[2 (ky -co t ) ]~  g ) 

where 

F1 (kd) - 3 - 1 cosh (2kd) 
tanh 2 (kd) + 3 . (1.40) sinh 4 (kd) 

Constant B can then be obtained given that the mean surface displacement is zero, 
so that the water mass in the tank is the same under the wave motion as when it is 
calm. 

The conclusion is 

H 2 0.)2 
~" (y,t) = ~ ~ F 1  ( k d ) c o s [ Z ( k y -  wt)], (1.41a) 

16 g 
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dp" (y,z,t) - 3 H2aj 1 cosh[2k(d + z)]s in[2(ky-  wt)]+ 
32 sinh 4 (kd) 

H 2 (./,32 1 t + C y ,  
16 sinh 2 (kd) 

where constant C will be obtained in sect. 2.7. 

(1.41b) 

1.8 Non-linearity effects 

F~ (kd) [function (1.40)] is positive all over its domain [see fig. 1.10], and, as a 
consequence,  the sum of r/" and r/' leads to a wave profile like that of fig. 1.11: the 
crest sharpens and the trough flattens. Thus the non-linear theory succeeds in 
predicting the characteristic asymmetry between crest and trough (see sect. 1.4.1). 

Fig. 1.10 

0 I I I I ! I I i I / 

0 0.5 1.0 

The function F1 defined by (1.40). 

d/iL0 - 

The quotient  between the amplitude of the nonlinear term ~/ 
of the linear term r/' is 

27r H 

8 Lo 
~ - -  F~ (kd) , 

" and the amplitude 

and hence it becomes greater  as H/Lo becomes greater  and/or as d/Lo becomes 
smaller (fig. 1.10 shows that F~ (kd) grows as d/Lo gets smaller). 

The non-linearity effects also attack the pressure head waves. Let  us see how. 
The second order component  of the fluctuating pressure head can be obtained by 

means of (1.5) and is related to 4)' and 4/' by the equation 

r/~, 1 0~" 1 
h -  g Ot 2g 

(.o+'.) 2 
\-~--y J + t,,--O-z-z ) ] (1.42) 
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v A  A A A A ~ t 
v v v v V A V A V  ~ "- 

' " t 

Fig. 1.11 The second order term ~" makes the wave crest steeper, and flattens the wave trough. 

which we rewrite in the form 

ph ph l  -JI- T]ph2 

where rl"phi is the term depending on qS", a n d  T];th2 is the term depending o n  (O~'/Oy) 2 
and (Od?'/Oz)2: 

•1;, 
1 H 2 a j 2 {  3 1 } 

h~ ( y , z , t ) - -  16 g sinh4(kd ) c o s h [ 2 k ( d +  z ) ] c o s [ 2 ( k y - c o t ) ]  + sinh2(kd ) , 

(1.43a) 

~7" , t) 1 H 2 CO 2 1 
ph2 (Y z,  - - - -  

4 g tanh(kd) sinh (2kd) 

+ sinh: [k (d + z)] sin: (icy - cot)}. 

{cosh 2 [k (d + z)] cos 2 ( k y  - cot) + 

(1.43b) 

I I  _ _  I !  I I  Let us consider now what happens if we add the non-linear term ~ph ~phl ~- ~ph2 
l II to the linear term TIp h (given by 1.26). The effect of T]phl iS similar to the effect of ~7": 

II it enhances the crest elevation and reduces the trough depth. On the contrary, rlph2 
" /r/" reduces the crest elevation and enhances the trough depth. As kd - -+  oc, T]phl I ph2 

I I  I I  approaches zero. As k d  -+ O, ?]phl/7]ph2 t e n d s  to infinity. Therefore, as k d  ~ oc, 7]ph2 
I !  o I I  prevails o n  ?]phi, vice versa as k d  -~ O. Specifically, for d / L o  > 0.20, ~]ph2 prevails and 

hence the pressure head waves undergo a deformation like that of fig. 1.12; while 
II T]phl prevails if d / L o  < 0.20 and hence on this domain the pressure head waves 

undergo a deformation of the same kind as that of the surface waves, even if in a 
I t  more at tenuated form because of the effect of rlph2. 

Finally, a comparison of (1.43a-b) with (1.26) reveals that the non-linear term of 
the fluctuating pressure head decreases, from the water surface to the seabed, more 
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t 

(r/" ~ prevails Fig. 1.12 Pressure head waves on deep water where the second nonlinear term ~ ph2] 

(rl " over the first nonlinear term ~ phi). 

rapidly than  the l inear term. There fo re  the incidence of the non-l inear  t e rm is 
greater  near  the water  surface than near  the bot tom.  

1.9 Wave-current interaction. Part I: velocity potential and wavelength 

1.9.1 S o l u t i o n  f o r  the ve loc i ty  p o t e n t i a l  

Let  us consider  the case of a periodic wave travell ing on a current  of velocity u, 
in the limit H -+ 0 for fixed d, T and u. Let  us assume the current  to be paral lel  to 
the wave direction. The  current  direct ion can be the same or opposi te  to the 
direction of wave advance,  that  is u can be positive or negative.  

The  surface d isplacement  will have the same form (1.16) valid in absence of a 
current ,  except  for a different  relat ion be tween  wave n u m b e r  and water  depth  and 
wave period; that  is 

H 
r/(y, t) = ~ cos (kcy - cot), 

2 

where  kc is the wave n u m b e r  general ly  different  f rom k, which must  be de termined.  
This new wave number  will depend  not only on d and T, but  also on u. As to the 
velocity potential ,  it will be the sum of two terms: one of the uniform current  and 
one like (1.22) [the velocity potent ia l  of a wave without  current].  Accordingly  we 
write 

O(y , z , t )  = uy + A cosh {kc (d + z)] sin (k~y - cot) + F (t), 
cosh(k~d) 

where  A is a d imensional  constant  and F (t) a function of time, both  of which are to 

H _~ [cf.(1.22)]. be de te rmined .  Wi thou t  the current  ( u -  0), A is equal  to g 2 

Natural ly ,  with the current ,  A will depend  on u. 

Let  us seek k~, A and F (t) such that  r / a n d  q5 satisfy the differential  equat ions  
(1.15a-b-c-d) of general  validity. As to (1.15c-d), it is easy to verify that  they are 
satisfied wha teve r  the kc, A and F( t ) .  Let  us now pass to the two most  exacting 
equat ions,  that  is to say (1.15a-b). 
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This time OO/Oy is the sum of the finite term u and of a term of order  H being due 
to the wave. Therefore  the terms 

-~y~)] and O(__~y )z Orl 
=~ =,, Oy 

respectively of (1.15a) and of (1.15b) are no longer negligible to Stokes'  first order, 
and these equations yield 

1 u 2 1 
g2coskcy__=_ - cot) . . . .  Aa~ cos (key cot) + P(t)  + - ~  + uAkc cos (kcy cot) -7 f (t), 

(1.44a) 

Akctanh (kcd) sin (kcy - cot) = 
H H 

- u ~ kc sin (key - cot) + 
2 2 

co sin (kcy - cot), (1.44b) 

where /~  (t) denotes the derivative of F (t). Equat ion (1.44a) is satisfied if and only if 

H (co- ukc) -1 A - g - ~ -  

F(t)  - 1 u2t + l f ( t ' )dt '  
2 p ' 

and therefore 

H (co- uk~) -1 cosh[kc (d + z)] sin (kcy-cot) 
c) (y, z, t) - uy + g -~- cosh (kcd) 

__L u2t + i  f (t,) dt,. 
2 p 

(1.45) 

(Clearly, an arbitrary constant can be added to F (t), but it has no effect on the wave 
mechanics.) Finally, (1.44b) is satisfied if and only if 

k~tanh (k~d) (co - -  bl''c/21( "~ 
- -  • ( 1 . 4 6 )  

g 

This is the equation that relates k~ to d, T and u, and for u = 0 it coincides correctly 
with the linear dispersion rule. 

1.9.2 So lu t ion  f o r  the wave leng th  

If we multiply by d both sides of (1.46) and use definition (1.27) of L0, we can 
rewrite (1.46) in the form 

d tanh 7r - a  - (147)  
Lc Lc ' " 
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where  Lc denotes  the wavelength  on current:  

L c -  27r/kc, 

and where  a 

d/Lo 

b _ _  

L0 

with C o -  L 0 / T  and u ~ 0. [Note, the r.h.s, of (1.47) assumes the indeterminate  
form 0.  oc as u ---+ 0, and it approaches  d/Lo. Thus (1.47) reduces itself correctly to 
(1.30) as u approaches  zero.] 

The d/L~ satisfying (1.47) is equal  to the positive value of x (provided that  it 
exists) such that  function 

f~ (x) _= x tanh  (27rx) 

is equal  to function 
f2 (x) - a ( x -  b )  2 . 

Therefore ,  in order  to get the wavelength  Lc on the current ,  we must  seek the d/Lc 
such that  

f, ( ~ ) -  f2 ( - ~ - )  • (1.48) 

The two functions fl (x) and f2 (x) are represen ted  in fig. 1.13 for d/Lo-  0.2 and a 
few values of u/co. The graph of f2 (x) is a parabola  whose ordinate  at x - 0 is equal  
to d/Lo whatever  the u/co. The vertex of the parabola  falls at x - b, and thus it falls 
on the positive x-axis or on the negative x-axis, according to whe ther  u is greater  or 
smaller than zero. 

If u is greater  than zero, (1.48) has two solutions: (d/Lc)l smaller than b and 
(d/L~)2 greater  than b [cf. fig. 1.13a]. We discard the second solution, that  is (d/L~)2, 
if we assume d/Lc to be a cont inuous function of u, so that  

d d 
lim - -  = . (1.49) 
,,-~o Lc L 

Indeed  (d/L~)~---+ d/L as u--+ 0; while (d/Lc)2 being grea ter  than b, tends to 
infinity. 

If u is smaller than zero, we have three cases: 
(i) weak  negative current:  (1.48) admits two solutions, 
(ii) transit ion from weak  to strong negative current: (1.48) admits only one 

solution; 
(iii) strong negative current:  (1.48) does not admit  any solution, which means  

that  the wave is not able to travel against the stream. 
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Fig. 1.13 The wavelength on given water depth d/Lo = 0.2 for: (a) a positive current; (b) no 
current; (c) a low negative current; (d) the critical negative current; (e) a strong negative 
current, for which the equation (1.47) does not admit any solution (the wave is not able to 
travel against the stream). 
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The three cases are represented in figs. 1.13c-d-e. In the case of the weak negative 
current, the solution to be discarded is again the second one because the first 
solution satisfies condition (1.49) as u approaches zero, whereas the second solution 
tends to infinity. The transition from weak to strong negative current occurs for a 
critical value of lU/Col, which we shall call lU/C0]crit,  that depends on d/Lo. 

As discussed above, as u -~ 0, the vertex of the parabola representing f2 (x) falls 
at an infinitely large x. Specifically, as u ~ 0+, the vertex of the parabola is at 
x --, + oc, while as u ~ 0_, the vertex of the parabola is at x -+ - o c .  Moreover,  as 
x- - ,  0, the curvature of the parabola approaches zero. Therefore,  as u - +  0 the 
parabola approaches a horizontal line of ordinate d/Lo, on any finite interval 
including the origin x = 0, [see fig. 1.13b]. 

The whole set of pictures 1.13a-e shows that 

d <~d e:~Lc>L if u > 0 ,  
L~ L 

d d 
> ~=~Lc<L if u < 0 .  

Lc L 

Thus, according to intuition, the wavelength grows if waves and current have the 
same direction, while the wavelength shortens if waves and current have opposite 
directions. 

1.9.3 The critical negative current 

Let us discuss further the case of the negative current (u < 0). Firstly we consider 
what is the value of lU/C0lcrit for the basic case of d/Lo --, oc. Since Lc < L if u < 0, it 
follows 

d d 
- - ~  o c  a s  ~ o c .  

Lc L0 

Therefore equation (1.47) reduces itself to 

d (d d 
~ = a  as 
Lc Lc Lo 

---~ (2~ ~ 

and is satisfied by only one value of d/Lc, if 

a b -  u = 1 .  
Co 4 

As a consequence: 

l u  I _ 1  d 
- ~ 0  crit 4 as L0 

--+ OO. 

For the case of a finite d/Lo, we have to seek the U/Co such that equation (1.47) is 
satisfied by only one d/Lc. This operation can be executed numerically. In doing so 
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one finds that ]U/Colcrit grows from 0 to the asymptotic value 

d/Lo > 0.10, ]u/c0[,it takes the asymptotic value. 

1 
4 '  as d/Lo grows. For 

1.10 Prel iminary remarks on three dimensional  waves 

The surface displacement of a wave whose propagation direction makes an 
arbitrary angle 0 with y-axis is given by 

H 
r/(x, y, t) = ~ cos (kx sin 0 + ky cos 0 - cot). (1.50) 

2 

To prove this, let us imagine a point moving with a uniform speed L I T  along a 
straight line making an angle 0 with the y-axis. If the point starts from x - 0, y - 0 at 
time t = 0, its position is given by 

L L 
X p  = ~ t sin O, yp = t cos O, 

T T 

so that the surface displacement at this point proves to be 

- ~  cos t sin 2 0 + 27r t cos 2 0 -  - 
2 T T 2 ' 

and hence it keeps constant in time, which confirms that the trajectory and speed of 
the wave is coincident with the trajectory and speed of the point. 

The velocity potential associated with surface displacement (1.50) is 

H co-1 cosh[k(d + z)] s in(kxs inO + kycosO - cot). (1.51) 
q5 (x, y, z, t) - g 2 cosh (ka) 

Here we can readily verify that the two functions (1.50) and (1.51) satisfy equations 
(1.19a-b) [provided that f (t) = 0 in (1.19a)] as well as the boundary condition at the 
bot tom (equation 1.15d). Note: these equations, having been obtained for the two- 
dimensional flow y-z, retain their validity even for the three-dimensional flow x-y-z,  
as can be easily inferred from the fact that they depend only on z not on y. As to 
f ( t )  = 0, we have already seen v and p do not change whatever the f ( t )  and 
therefore it is justified and advisable to put directly f (t) - 0 in the equation (1.19a). 

Of the whole system of the linear flow equations, that is the system consisting of 
(1.15c-d) and (1.19a-b), the only equation which needs to be adjusted from the two- 
dimensional to the three-dimensional flow is (1.15c). For the three-dimensional 
flow it becomes 

02(75 (92(75 0q2(75 - -0  
O x----T + O y---5- + O z--5- - , 

which is satisfied by function (1.51). 
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1.11 Wave reflection 

1.11.1 General solut ion for  r I and 

Let us consider the flow field if a wave train attacks an infinitely-long vertical 
breakwater .  Let us assume that the breakwater  is along line y - 0, and the direction 
of the incident waves makes an angle 0 with the y-axis [see fig.1.14]. 

On the grounds of some intuitive considerations we could at once say that 
specular reflection will occur and that the height and period of the reflected waves 
will be equal to the height and period of the incident waves; but we believe it to be 
instructive to prove such intuitive knowledge. Therefore  we assume that the 
direction of the reflected waves makes an unknown angle 0 with the y-axis, and in 
addition we allow the possibility that the reflected waves have a height H and a 
period T different from height H and period T of the incident waves. 

The ~7 and ~ of the incident waves are given by (1.50) and (1.51), and the r /and 
(~ of the reflected waves are given by the same equations (1.50-51) with/-) ,  cb,/~, 
and 0 in place of H, :v, k and 0" 

reflected waves 

r/(x, y t) H _ (1.52a) , - - - c o s ( / ~ s i n 0 + / < y c o s 0  © t + e ) ,  
2 

/ t  - - I  c o s h f ( d  + z)] s in( /~xsin0+/~ycos0-cbt  + e). 
~b (x, y, z, t) - g - ~  ~ cosh (/<d) 

(1.52b) 

We cannot exclude some phase angle between the reflected and the incident waves, 
and this is why in the expressions of the reflected waves we have put a phase angle c 
which must be determined.  

The flow field before the wall is given by the sum of the incident waves 
(equations 1.50-51 of ~/and ¢5) and the reflected waves (equations 1.52a-b): 

~/////~/////////////////////////~ 

Fig. 1.14 Reflection: reference scheme. 

~////////////////////////////////~ 
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H 
~7 (x, y ,  t) -- 

2 

. - . . .  

H 
~ c o s ( k x s i n O  + k y c o s O - ~ t ) +  -~-- cos ( /~  sin 0 + /cy  cos 0 - © t  + e), 

(1.53a) 

H 
~ ( x , y , z , t )  - g 2 _ ~  cosh [k (d + z)] sin ( k x  sin 0 + k y  cos 0 - cot) + 

cosh (kd) 

. . , _ .  N 

H --1 cosh [k (d + z)] sin (/¢x sin 0 + /cy  cos (~ &t + e) 
+ g 2 c o  - - . cosh (kd) 

(1.53b) 

The  b o u n d a r y  condi t ion  is 

tha t  is 

0(_~y)~ -- 0, 

= 0  

Hod -1 k cos 0 
cosh [k (d + z)] 

cosh (kd) 
cos (kx sin 0 - co t) 

= _ ~ & - i / ~  cos 0 cosh [/~ (d + z)] 
cosh (/~d) 

N 

cos (kx sin 0 - cO t + e), 

(1.54) 

(1.55) 

and it is satisfied for every x, z and t if and only if 

© - co => fc - k ,  I2I - H ,  O -  T r -  O, c - n 2 rc with n - 0 , 1 , 2 . . .  (1.56) 

Because  of the equali t ies  (1.56), the two funct ions (1.53a-b) can be rewr i t t en  in the 
fo rm 

(x, y, t) - H cos ( k x  sin 0 - cot) cos ( k y  cos 0), (1.57a) 

c~ (x, y ,  z ,  t) -- g H ~  -1 cosh [k (d + z)] sin ( k x  sin 0 - cot) cos ( k y  cos 0). (1.57b) 
cosh(kd)  

Verify that functions (1.53a-b) satisfy the linear flow equations, that is to say the system 
consisting of the equations (1.15c-d) and (1.19a-b), with f (t) = 0. Apply the following; if a 
pair of functions r/l, ~l satisfy a homogeneous linear system, and a second pair of functions 
r/2, ~b2 satisfy the same system, then the sum T]l + ?]2, (ill _ql_ (]52 also satisfies this system of 
equations. Here ~71, ~l  a re  functions (1.50-51), ~2, ~b2 are functions (1.52a-b) and ~/1 + ~72, 
~bl + q~2 are functions (1.53a-b). 

To prove (1.56), bear in mind that two cosine functions are equal to each other all over 
their domains, if and only if they have the same frequency, same amplitude and phase angle 
of some multiple of 27r. Then, examining the 1.h.s. and r.h.s, of (1.55) as functions of t for any 
fixed pair x, z, you will easily realize that © must be equal to co, which implies /~ -  k. 
Similarly, examining the 1.h.s. and r.h.s, of (1.55) as functions of x for any fixed pair z, t, 
you will easily realize that/~ sin 0 must be equal to k sin 0, which implies sin 0 = sin 0. The rest 
of the proof follows straightforwardly. Note: if the breakwater were not at y = 0 but at some 
parallel line, the phase angle c would be generally different from n 27r. 
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1.11.2 The orthogonal attack 

In the basic case of 0 = 0, in which the wave  a t tacks  the b r e a k w a t e r  o r thogona l ly ,  
the flow b e c o m e s  two-d imens iona l  y - z  and the fo rmulae  for r} and q5 reduce  
themselves to 

~7 (Y, t) = H cos (wt) cos ( k y ) ,  

O ( y , z , t )  - - g H c c - '  cosh[k(d  + z)] s in (co t )cos(ky) ,  
cosh (kd) 

and hence the velocity components are 

Vy(y , z , t )  - gHcc-~ k cosh [k (d  + z)] sin(cct) s i n ( k y ) ,  
cosh (kd) 

vz (y, z, t) - - gHc~- l k  sinh [k (d + z)] sin (a:t) cos (ky). 
cosh (kd) 

T h r e e  ins tant  p ic tures  of this basic case are given in fig. 1.15. 

i | 
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"",,wall 
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-L - ~ L  -~ -~ 0 
2 4 

Fig. 1.15 Three snapshots of the wave field before an upright breakwater attacked orthogonally. 
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At time t = 0, both l,,y and Vz are zero everywhere, given that both Vy and Vz are 
proportional to sin (c~ t). At  that time (t = 0) the surface displacement gets up to its 
maximum (positive or negative) at each location. In particular, at the wall, the 
surface displacement at t = 0 is equal to the crest-to-trough height of the incident 
wave. 

At  time t = T~ 4 the surface displacement is zero everywhere given that r/ is 
proportional to cos (cot). The horizontal velocity has its negative maximum at 

3 
y = - L / 4 ,  and it has its positive maximum at y = - - - L .  The vertical velocity has 

4 
its negative maximum at the wall (y = 0) and at y = -  L, and it has its positive 
maximum at y = - L / 2. 

At  time t = T~ 2 the surface displacement is opposite with respect to the surface 
displacement at t = 0. Thus a consistent picture emerges, where: 

(i) at time t = 0 ,  the water  surface is higher than the MWL in the 
compartments  @ and @, and is lower than the MWL in the compartments  @ 
and @ (fig. 1.15); 

(ii) vice versa, at time t = T/2 the water surface is lower than the MWL in 
the compartments  @ and @, and is higher than the MWL in the compartments  @ 
and @; 

(iii) consistently, at the intermediate time instant t = T/4, the water flows 
from the compartments  @ and @ towards the compartments @ and @. 

There are some points (nodes) where the surface displacement is always zero, 
and where the horizontal velocity attains its absolute maximum. These points are at 

1 3 5 .. wavelength from the wall. Then there are the antinodes, at 0, 1 1 3 
4 '  4 '  4 ' "  2 '  ' 2 ' " "  

wavelength from the wall, where the wave height (on the time domain) and the 

vertical velocity attain their absolute maximum. 
The wave height at the antinodes is 2H (that is, the height of the wave on the 

time domain), which is twice the wave height that would be there without the wall. 
The velocity maxima are also twice greater than the maxima in the absence of the 
wall. 

1.11.3 The pressure distribution on the breakwater 

Whatever  the angle 0 of the waves, the maximum pressure at any fixed section of 
the breakwater,  according to Stokes' first order, is given by 

p(z)= -pgz + pg/-/ 
cosh [k (d + z)] 

cosh (kd) 

which proceeds from equation (1.57b) of ~b, and can be rewritten in the equivalent 
form (apart from a term of order H2): 
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cosh [k (d + z)] if z < O ,  
p (z) - - p g z  + pgH cosh (kd) 

- p g ( H - z )  if 0 _ < z < _ H .  

(1.58) 

The wave pressure, that is the difference between (1.58) and the static pressure, is 
shown in fig. 1.16a. 

(a) 

MWL 
A7 

p g ~  
H 

cosh (kd) 

pgd _______. I= _ L  

H 
p g ~  

cosh (kd) 

ax=H+~ 
H 2 1 

L tanNkd) 

Fig. 1.16 The pressure exerted on an upright breakwater by a wave crest: (a) Stokes' linear 
theory; (b) Saintflou's model. 

Fig. 1.16b shows Saintflou's model (1928). According to this model, we have to 
evaluate the two ends of the pressure distribution, that is 

(i) the elevation where the pressure becomes zero, which is the highest 
elevation reached by the water surface; 

(ii) the pressure at the lowest point of the wall. 
We then get the pressure distribution by linear interpolation between these two 
ends. Since the incidence of the second order term diminishes from the free surface 
to the seabed [cf. sect. 1.8], the second order term is taken into account in the 
evaluation of T ] m a x  [the maximum surface displacement at the wall]: 

H 2 1 
7]max - -  H + 7r ~ 

L tanh (kd) 

while the pressure at the lowest point of the wall is calculated with the linear theory 
that is with (1.58)" 

p (z - - d )  - pgd + pg 
H 

cosh (kd) 
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1.12 Wave diffraction 

1.12.1 The solution o f  Penny  and Price (1952) 

Let us consider now the flow field if a wave train attacks a semi-infinite vertical 
breakwater .  The breakwater  is along the line y -  0, its origin is at x -  0 and its 
thickness is negligible with respect to the wavelength.  The flow field that would be 
there without the breakwater  is the one given by formulae (1.50-51) for r / and  ¢. 

The surface displacement and the velocity potential  to Stokes'  first order,  in 
polar  coordinates,  are given by 

~(r,/3, t) - H [F(r,/3;co, O)cos(cot) + G(r,~;co, O)sin(cot)] (1.59a) 
T 

H -1 cosh [k (d + z)] [G (r,/3; co, 0) cos (cot) - F (r,/3; co, 0) sin (cot)] 
¢ (r,/3, z, t) - g 2 co cosh (kd) 

(1.59b) 
where  

f(r,/~;co, O) ~ A(Ul)COSql -+-A(u2)cosq2 - B(Ul)sinql - B(u2)sinq2, (1.60a) 

G(r, fl;co, O) - A ( U l ) s i n q l  + A(u2)sinq2 + B(Ul)COSql -Jr- B(u2) cosq2, (1.60b) 

_ 1 [SFR (u) -- CpR (u)] (1.60c) A (u) - T1 [1 + SpR (u) + CrR (u)], B (u) ~ 

1o (2) Io (2) SrR (u) - sin x 2 dx, CvR (u) -- cos x 2 dx, (1.60d) 

Ul - 2v/kr/rcsin [2 ( ~ + 0 - - 2 )  1 , lg2 - -2v/kr/rcsin [2 ( / 3 -  0 + 2 ) ] ,  (1.60e) 

ql - kr sin (fl + 0), q2 - - k r  sin (fl - 0), (1.6Of) 

cf. fig. 1.17 for the symbols. 

Iy S 
f 

I X 

Fig. 1.17 Reference scheme for the interaction between waves and a semi-infinite breakwater. 
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Let us arbitrarily fix a point r,/3 and let us write F and G in place of F (r,/3; co, 0) 
and G (r,/3; co, 0). The surface displacement on the time domain, at the fixed point, 
has its maxima and minima at time instants tm such that 

Wtm -- arctan ( G ) .  (1.61) 

Equation (1.61) admits two solutions: 

and 

G F 
sin(~tml) -- , c o s  (C~tml) = 

v/F2 _+_ G 2 v / f 2  _+_ a 2 

G F 
sin (Lotto2) - -  --  , COS (COtm2) --- --  

v/F2 _+_ 6 2 v/F2 -+- 6 2 

which, once substituted in (1.59a), give 

H v/F2 + G 2, r] (/ml) - - T  ~](tm2 ) __ n v / F 2  _~_ G 2 "  (1.62) 
2 

T h e r e f o r e  tml is the time instant of the crest and tin2 the time instant of the trough at 
the fixed point. Clearly, instants tml and tin2 generally change from a point to 
another since they depend on functions F and G. The wavefronts [see fig. 1.18] are 
the lines connecting points with the same value of tml (or tin2). 

0 L 2L 3L 

I incident wave direction 

Fig. 1.18 Wavefronts behind a semi-infinite breakwater. 

1.12.2 T h e  d i f f r a c t i o n  c o e f f i c i e n t  

From (1.62) it follows that the wave height (that is, the height of the wave on the 
time domain) is 

H (r,/3) - H v/F 2 + G 2 . 
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Fig. 1.19 Diffraction coefficient if the incident waves approach the wall orthogonally: (a) behind 
the breakwater; (b) along the wave beaten wall. 

y/L 

(a) 

1.02 1.02 .97 1.130 .99 1.13 .97 .72 / ,~  
/ 

/ 
1.02 1.03 1.05 .92 1.12 1.02 .75 p~;3 .39 

/ 
/ 

.99 .97 1.01 1.04 1.07 .78 / ~ 3  .38 .29 
/ 

.98 .98 .93 1.12 .83 z54 .37 .28 .23 / i ~  / / / 

.98 1.02 1.04 .92 /_(5 .36 .27 .22 .19 
/ 

/ incident  w a v e  
.99 1.03 1.07 /~7 .35 .27 .22 .19 .17 direct ion 

/ 

1.00 1.00 1 ~  T~8 .28 ,9¢4 .21 .18 .171 
) 
- x / L  

-i -i 8 i i i i ; 6 

(b) 

1.~00' 1.67 I~98 2119 2".30 2".34 2".31 2".23 2".12 1.99 1~87 1 

05 i 115 
- x / L  

2 215 

Fig. 1.20 Diffraction coefficient for a case of inclined attack: (a) behind the breakwater; (b) 
along the wave beaten wall. 
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As a consequence ,  the diffraction coefficient, which is defined as the quot ient  
be tween  the wave height  at a given point  and the height  of the incident  waves, is 
given by 

Cd (r, ~) -- 4 F  2 + G 2 . 

The Cd for two different  angles of the wave direction are given in figs. 1.19 and 1.20. 
Of course,  the diffraction coefficient at the shel tered  side of the b r eakwa te r  gets 
smaller and smaller  with the distance f rom the tip of the b reakwate r .  At  the wav~- 
bea ten  side of the b r e a k w a t e r  ( / 3 -  27r), Cd takes on a m a x i m u m  at about  

wavelength,  or at somewha t  more  than a wavelength  according to whe the r  the wave 

at tack is wal l -or thogonal  (0 = 0) or inclined at 45 °. In both  cases the max imum Cd is 
nearly 2.3, that  is the m a x i m u m  wave height  at the wall is 2.3 t imes grea ter  than the 
height  of the incident  wave. 

The calculation of wave diffraction essentially consists in evaluating the Fresnel integrals 
[defined by (1.60d)]. In the numerical evaluation of these integrals one should bear in mind 
the nature of the function to be integrated. Such a function, that is s i n  (7t-x 2 / 2 )  or cos (Trx 2/2), 
is a pseudo-sinusoid that progressively shrinks as x grows. If xi and xi+l are the abscissas of 
two consecutive maxima of function sin (7rx2/2) [see fig. 1.21], then they are given by 

7r x~ - i27r + 7r 
2 2 '  

7I" 2 ( i+  1)2rr + rr X - -  - - -  2 i+1 2 

(with i positive integer or 0), so that 

2 
X i + l  

2 
< X i +  1 - -  X i < (1.63) 

Xi  

sin(~x2/2) 

X4 

Fig. 1.21 The function sin (7rx2/2) the integral of which (Fresnel integral) must be evaluated to 
obtain the diffraction coefficients. 
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Such an inequality is useful in the choice of the integration step Ax. As an example if one 
wishes to evaluate the integral 

J] sin (2x )ax 
with at least 12 steps for each pseudo-sinusoid, thanks to (1.63) it suffices that one fixes 

1 2 
~ X  = ~ ~  . 

12 lul 

In the calculation one should bear in mind that u may be positive or negative. Since the 
integrand is an even function, it is convenient to take l ul as the upper limit of integration, 
and then multiplying the result by u/I u I. 

Conclusive  note  

The theory of the periodic waves was introduced by Airy (1845) and was fully 
developed by Stokes (1847). The first graphic method  for the wavelength Lc on a 
current  should be that of Jonsson et al. (1970). The wave-current  interaction is 
usually t reated with a reference f lame moving with the current  velocity. Our  choice 
for the fixed reference f lame is in view of the developments  of sect. 2.10. The fixed 
reference f lame appears  more suitable for obtaining the formal solution for the 
shoaling and set-down of waves on a current. 

Analytical  solutions for the interaction waves-vertical wall are available also for 
the wall of finite length and the breakwater  gap. The first one (Montefusco, 1968) 
gives the velocity potential  as a series expansion of products of odd Mathieu 
functions. The second one (Sobey and Johnson, 1986) gives the velocity potential  as 
a series expansion of products of even Mathieu functions. 
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Chapter 2 
PERIODIC WAVE PATTERN: 
THE CONTROL VOLUME APPROACH 

2.1 The linear m o m e n t u m  equation for a control volume 

2.1.1 The case o f  control volume W within the water mass 

Let us fix a volume within the water mass, and call this volume W and its 
boundary A. Then let us imagine we can colour the water mass that at a fixed time t 
occupies W, and call the coloured water mass m. 

Newton's  second law for the mass m is 

Z E ( t )  - ~ v(t + d t )dm - v(t) dm , (2.1) 
i m 

where E are all the forces acting on m, including body forces. Mass m at time t 
occupies volume W, while at time t + d t it occupies the volume 

W + JAY(t). n dA dt, 

where n is the unit vector which has a direction normal to surface A, positive 
outward. Referring to fig. 2.1, the volume occupied by the coloured water at time 
t + d t is equal to the volume occupied by the coloured water at time t, plus the 
darkened volume minus the dotted volume. Therefore 

I, v(t + dt)dm - Jw pv(t + dt) dW + .I,~ pv (t + dt) v (t). n dA dt, 

where the first integral on the r.h.s, of this equation gives the linear momentum of 
the water occupying volume W at time t + dt, and the next integral adds the linear 
momentum of the coloured water which has flown out of W in the small time dt, and 
subtracts the linear momentum of the non-coloured water which has entered W in 
the small time d t. 
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V, 

" ,  • A 

::?!t 

Fig. 2.1 Reference scheme for equation (2.2): W is the volume within the dashed surface; A is 
the dashed surface; m is the water mass that occupies W at time t. 

Hence, we can rewrite (2.1) in the form 

- / g v ( t + d t ) d W +  p v ( t + d t ) v ( t ) . n d A d t -  p v ( t ) d W  , Z e i ( t )  - ~  w w 
i 

that is (apart from some negligible terms) 

I 0v JA Z Fi -- /9 dW + /gvv. ndA.  (2.2) 
i W Ot 

As it is well known, W is called control volume and A is called control surface, and 
(2.2) is the linear momentum equation for a control volume. 

N 

2.1.2 The case o f  control volume W piercing the free surface 

Let us consider a control volume bounded by the seabed, by the free surface at a 
fixed time t, and by four vertical planes [see fig. 2.2a]. In this case, equation (2.2) 
can be rewritten in the form 

Fz - p -  dW + p v v - n d A  + p v v - n d A ,  (2.3) 
w Ot F.S. 

where F.S. denotes the free surface, a n d / i  denotes the four vertical planes. For the 
step from (2.2) to (2.3), we have resolved the control surface A into three parts: 
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(a) (b) 
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Fig. 2.2 

plan plan 

(a) Usual  control  volume W. (b) Open  control  vo lume W. 

the free surface, the four vertical planes, and the seabed which does not give any 
contribution to the integral since on the seabed v - n -  0. 

Here it is more convenient to reason in terms of W the volume bounded by the 
seabed and by four infinitely high planes. Since 

J I I d p v d W -  p ~ d W +  pvv.  ndA,  (2.4) 
dt ~ w Ot F.S. 

equation (2.3) is rewritten in the form 

d I pvdW+J pvv-ndA (2.5) 
i 

that is the linear momentum equation for a control volume piercing the free surface. 
For a periodic wave motion, equation (2.5) implies that 

< ~ E > - < [  p v v . n d A  > ,  (2.6) 
i JA 

where the symbol < -  > denotes the average with respect to time: 

1 I] ''+r 
< f (t) > - --~ ,, f (t) dt (arbitrary to). (2.V) 

Equation (2.6) shows that the mean value of the resultant force acting on the 
control volume is equal to the mean value of the net efflux of linear momentum 
from the control volume. 

In the case of an ideal f low, the forces E in equation (2.6) reduce themselves to 
(i) the weight ( -P i~ )  of the water mass in W; 
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mass; 
(ii) the force Ff that the seabed and/or some solid bodies exert on the water 

(iii) the pressure force acting on the lateral surface A" 

- ~ p n d A ,  

where the minus is due to the fact that the unit vector n is oriented toward the 
outside of the control volume. Therefore, under ideal flow assumptions, (2.6) is 
rewritten in the form 

-P i z  + Ff > - < J~ p n +  pvv.  ndA >. (2.8) < 

To check (2.4), note that 

I p v ( t + d t ) d W - J  pv(t+dt)dW+IF pv(t+dt)v( t ) .ndtdA,  
w .s. 

I~ pv (t) dW - Iw pv (t) dW. 

2.2 T h e  e n e r g y  e q u a t i o n  for a contro l  v o l u m e  

2.2.1 The energy per unit mass 

Newton's second law, when applied to a small water mass dm, can be written in 
the form 

F x - d m  dvx , 
dt 

Fy - d m  dry 
dt ' 

Fz - dm dvz + dm g, 
dt 

where dv represents the velocity variation of the given small mass dm in the small 
time interval d t, and where F here is the resultant of all the forces, except weight, 
acting on the small mass. Multiplying both sides of the first equation by Vx, both 
sides of the second equation by Vy, and both sides of the third equation by Vz, and 
adding up these equations we arrive at 

dv~ F~v~ + Fyvy + F~v~ - dm Vx - ~  
dry dvz ] 

_qt_ Vy - - ~ - ' [ -  V z "-~-- '[ ' -gv z 

which is rewritten in the form 

F - v  - dm de 
dt 

(2.9) 
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where  e is the energy (potent ia l  and kinetic) per  unit mass: 

1 2 e - - - v  + g z .  
2 

(2.10) 

Let  us subdivide the coloured mass m, which at t ime t occupies the volume W, 
into many  small masses dm, and let us apply equat ion  (2.9) to each of these masses 
(dm being the mass of a small volume dx dy dz).  There fo re  we have N equalit ies 
like (2.9), one for each of the small masses dm. Then  adding up these N equalities, 
we obtain 

Z ( F ' v ) / - ~ a m  de . (2.11) 
i=1 

Pay attention to the symbols! dv/dt  represents the quotient between the velocity 
variation of the given small mass in a small time interval dt, and dt itself. While Ov/Ot 
represents the quotient between the velocity variation at a fixed point in a small time interval 
dt, and dt itself. Thus in the case of dv/dt, the velocity variation depends on two causes: the 
fact that the time instant is slightly changed and the fact that also the position in space is 
slightly changed. While in the case of Ov/Ot the velocity variation depends only on the fact 
that the time instant is slightly changed. There is the same kind of difference also between 
de/dt and Oe/Ot. 

2.2.2 The case o f  the con tro l  v o l u m e  W within the water mass  

The explicit form o f  the 1.h.s. o f  (2.11) 
Let  us assume that  the shear stresses are negligible. U n d e r  this hypothesis ,  each 

small volume dx dy dz is subjected only to two components  of Fx: the first one acting 
on the left face dy dz and the second one acting on the right face dy dz. Let  us 
consider  the contr ibut ion to the sum 

N 

i=1 

from a row of small volumes along a line paral lel  to the x-axis [see fig. 2.3]. This 
contr ibut ion,  which we call part ial  sum, is 

part ial  sum = dy dz (p~ - p2 )v~ l  -t- dy dz (P2 - p 3 ) v x 2  + ... -I- dy dz (p~ - p,+ ~ )vx~, 

which can be rewri t ten  in the form 

part ial  sum = dy  d z  [p~ v , j  -+-p2 ( v x 2 -  Vxl ) -+- . . . -+-pn(Vxn  --  Vxn- l ) --  Pn+ I Vxn] , 

which in its turn can be rewri t ten  in the form 

part ial  sum = [ ( P l V x l - P n + l  vx~)dydz] + E n ] dxdydz 
i=2 ~ O X ~  

(2.12) 
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Hence ,  adding  up the cont r ibu t ions  of all the rows of small  vo lumes  dx dy dz, we 
ob ta in  

Iz I °~x (Fxvx)i - - pVx n . ix d A  + p d W  
i=1 W ON 

w h e r e  the two integrals  on the r.h.s, co r respond ,  respect ively ,  to the t e rms  within  
the  first square  pa ren theses ,  and to the s u m m a t i o n  within the second  square  
p a r e n t h e s e s  on the r.h.s, of (2.12). 

T h r o u g h  the same  reason ing  we can show that  

I~ j 0~y Z (Fyvy)i-  - pry n .  iy d A  + p d W  
i=1 W Oy 

IA 1" °~ Z (Fzvz)~ - - pvz n " iz d A  + p d W  
i=1 w Oz ' 

and,  consequen t ly ,  we arr ive at 

IA I O~yO~z~d~ (F. v ) i -  - p v -  n d A  + p ( O v x +  + 
/=1 W ~ OX -~y ~Z J 

which is r e d u c e d  to 

Ovx 
given tha t  

Ox 

0Vy 

+ O y  + 

N ~A ( F - v ) i -  - p v .n  dA, 
i=1 

Ovz is equa l  to zero (cont inui ty  equa t ion) .  
Oz 

(2.13) 

__ I g 

dz ---- ~ dz 

~-- dx---~ ~--- dx ----~ 

Fig. 2.3 Under ideal flow assumptions, the summation ~(Fxvx)i relevant to the row of small 
i 

volumes 1, 2, ..., n is equal to dydz(pl - p2)vxl + dydz(p2 - p3)vx2 + ... + dydz(p,, - pn+l)Vxn- 



Periodic wave pattern: the control volume approach 45 

The explicit f o rm  o f  the r.h.s, o f  (2.11) 
The r.h.s, of (2.11) can be rewritten in the form 

~ d m  de 1 • - --d-[ e ( t + d t ) d m -  e ( t ) d m  , 
?l m 

(2.14) 

and hence in the form 

~ d m  de 0e 
- p d W  + p e  w-n  dA (2.15) 

• w O t  ' 

where the logical step from (2.14) to (2.15) is the same as that which we have 
already done from (2.1) to (2.2). 

New formulat ion  o f  (2.11) 
Equations (2.13) and (2.15) enable us to rewrite (2.11) in the form 

I 0e (p + pe) v . n dA  - - p d W .  (2.16) 
w Ot 

2.2.3 The  case o f  the con t ro l  v o l u m e  W p i e r c i n g  the f ree  sur face  

Let us pass to volume W whose definition has been given in sect. 2.1.2. Since 

j I 0e J d p e d W  - p ~  d W  + pew. n d A ,  
dt ~ w Ot F.s. 

(2.16) is rewritten in the form 

JA (p + pe) v .  n dA  - J p e r .  n dA - 
F . S .  

d J pe dW. (2.17) 
dt 

Here, 

(i) replacing pe with (p + pe) in the integral over F.S., which is simply a formal 
step since pressure p is zero on the free surface, 

(ii) subdividing the control surface into three components"/i, which is formed by 
the four vertical planes, the free surface F.S., and the seabed, we reduce (2.17) to 

j" (p + pe)v. ndA - ---d-d l 
f 

p e d W .  (2.18) 
~i dt J 
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Finally, averaging with respect to time, we arrive at 

< I~ (p + pe)v. n dA > -  0 (2.19) 

which is exact under the ideal flow assumption given that we have neglected the 
shear stresses. 

2.3 Rad ia t ion  stress, m e a n  energy  flux, m e a n  wave  energy  per unit surface 

2.3.1 Radiation stress 

As an exercise, try to apply equation (2.8) to the control volume of fig. 2.4. From 
the r.h.s, of this equation, you will get four double integrals, one for each of the 

N 

vertical planes forming the lateral surface A. In particular, the integral relevant to 
the left y-parallel plane will be 

~2[  r/(Xl, y, t) 

< p ( x l , y , z , t ) ( - i x )  ÷ pv(xl ,y ,z , t )[ -Vx(Xl ,y ,z , t )]dz  dy >. 
1 d - d ( x l ,  Y) 

At this stage you will realize that the definition of the vectors 

Rx - < pix + pvv~dz >, 
- d  

(2.20a) 

j ~r/ 

R y  - -  < p iy  -q- p v Vy dz > 
- d  

(2.20b) 

X l  X 2 

/ 
I J 

t t I 
: ::: . . . . . . . . . . .  ~:  : : I :11 I:.. . . . . . . .  ..... : : :  ...... 

. . . . . . . .  l I , : I i . . . . .  
t | : : : I 

,21 

Fig. 2.4 For this control volume, the equations (2.8) and (2.19) are rewritten in the form (2.21) 
and (2.24), respectively. 
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leads to a much more  compact  expression.  Indeed  you will be able to write the 
result  of the exercise in the form 

[ x2 I y2 
< - P i .  + E > - - Ry (x, y, ) -+- Ry (x, y2) dx -¢- - Rx (x~, y) + Rx (x2, y) dy. 

Vl Yl 

(2.21) 

To get this compact  form, you must  also use the fact that  

IiI I I' < ... dz dy > - < ... dz > dy, 
. d Y 1 d 

since the limits of in tegrat ion yl and y2 are independen t  of t ime t. 
The  x, y components  of equat ion  (2.21) are 

< Ffx  > - -  --By x (x, y,) + By x (x, Y2) dx q- -Rxx (xl, y) + Rxx(X2, y) dy, 
. 

< Fly  > - -  -Ryy (x, y,) 4- Ryy (x, Y2) dx -q- -Rxy (x,, y) 4- Rxy (x2, y) dy. 

(2.22a) 

(2.22b) 

As for the z -component ,  it is reduced  to 

< F f ~ >  = < P > ,  

since it can be shown that  Rxz and Ry~ are zero in a wave motion.  
The  tensor  

. 

is called radiation stress tensor. 

Usually, the radiation stress tensor is defined as the difference between the tensor R just 
defined and the same tensor under static conditions (where Rxy and Ryx are zero and Rxx and 

1 2). Ryy are equal to-~-pgd Thus the definition we adopt here is somewhat different from the 

usual definition of radiation stress. But it looks more convenient especially for giving the 
formal solution of sect. 2.10. 

2.3.2 Mean  energy f lux  

As a fur ther  exercise, try to apply equat ion  (2.19) to the control  volume of fig. 
2.4. Also in this case you will obtain four double  integrals,  one for each of the 
vertical planes forming the lateral  surface A.  In part icular ,  the integral  re levant  to 
the left y-paral lel  side will be 

Ii < [p (x~, y, z, t) + pe (x~, y, z, t)] [-v~ (x~, y, z, t)] dz dy > .  
d (x 1 , y) 
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So you will realize that, defining the new vector 

- < (p + pe)vdz > ,  (2.23) 
-d 

you will be able to greatly compact the resulting expression, which will be reduced to 

ji ji --~y (X, Yl) + ~y (X, Y2) dx + - ~ (x~, y) + ~ (x2, y) dy - 0. (2.24) 
1 1 

The vector • is called mean energy flux. 

2.3.3 M e a n  w a v e  energy  p e r  un i t  s u r f a ce  

Besides tensor R and vector ~, it is convenient to define 

-- [mean energy per unit surface, in the wave motion] + 
- [energy per unit surface in static condition], 

that is 
1 I 0 ~ - -  < pe dz > - p gz dz .  (2.25) 

- d - d 

The usefulness of this definition will become apparent in sect. 2.9. 

2.4 F o r m u l a e  for radiat ion  stress and  m e a n  e n e r g y  f lux o f  progres s ive  w a v e s  

2.4.1 P r o g r e s s i v e  w a v e s  o n  gen t le  s l opes  

What has been shown in sects. 2.1-2-3 holds generally, that is for waves travelling 
over arbitrarily shaped bottoms, or even for waves interacting with some structures 
(provided that F s includes also the forces exerted by these structures). In the rest of 
this chapter we shall deal only with the progressive waves, that is with the waves 
which do not interact with structures. As to the seabed, we shall allow it to be 
generally non-horizontal, but we shall assume the changes in water depth to take 
place very gradually (see fig. 2.5 and the relevant caption for the meaning of very 

gradually) .  
Referring to the aforesaid fig. 2.5, in the area Ax Ay where the water depth is 

assumed to be constant, from Stokes' theory, we have 

H 2 (,o 2 
rl(s,t) - ~H cos (ks - cot) -~ F~ (kd)cos[Z(ks  - cot)] + o (H2), (2.26a) 

2 16 g 
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. . . . .  : :  :. • : : ~ I  ~ ' - ~  , _ , :  

Y•/•as" 
local wave 

y direction 

X 
-f ~ ~ A x  

z 
Ay~ ~- 

Fig. 2.5 The  assumpt ion  is m a d e  that  the b o t t o m  has a small  slope, so that  the wa te r  dep th  is 
r e g a r d e d  as a lmost  cons tant  in any a rea  with sides Ax,  Ay of a few wavelengths .  

3 H 2 1 
(s, z, t) - g --a~H2 -i cOShcosh Ik (d(kd) + z)] sin ( k s  - c~t) + 32 c~ s i n h  4 ( k d )  " 

H 2 
• cosh [2k (d + z)l sin [2 ( k s  - cJt)] - - -  co 2 1 t + Cs  + 0 (H2), 

16 sinh 2 (kd) 

(2.26b) 

where s is the local wave direction, F~ ( k d )  is given by (1.40) and C is a constant of 
order H 2 which is still unknown (it will be obtained only in sect. 2.7). Clearly, the 
velocity components vx and v~, being necessary to the radiation stress tensor R, the 
mean energy flux ~ and the mean wave energy per unit surface ~, proceed from the 
velocity potential (2.26b) through the equations 

11' x --  COS O~, 
Os 

00 sin c~, 
Vy - -  OS 

where c~ is the angle that the local wave direction makes with the x-axis [cf. again 
fig. 2.51. 
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2.4.2 T h e  f o r m u l a e  f o r  R~y a n d  Ryx 

From definitions (2.20a-b) we have lj]j 
Rxy -- Ryx -- ~ -d 

that is 

l ifjo { H_, cosh [k (d + z)] 
- g k 

Rxy -- Ryx /9 --~ - d 2 cosh (kd) 

p Vx Vy dz dt, (2.27) 

cos (ks - a3t sin c~ cos c~ dz dt. 

(2.28) 

The integrand having order H 2 c a n  give at the most a contribution of order H 3 on 
the interval of integration (0, r/). This is why in the step from (2.27) to (2.28), the 
upper limit of integration has been changed from ~ to 0. 

Bearing in mind that 

1 [r cos 2 (ks - cot) dt - 1 
T J0 2 '  

from (2.28) we obtain 

_ 1 H2 [ 
Rxy - Ryx 1---6 pg 1 + 2kd  ] sinc~ cosc~. 

sinh (2kd) J 
(2.29) 

2.4.3 T h e  f o r m u l a e  f o r  R xx a n d  Ryy 

From definitions (2.20a-b) we have 

R x ,  - --~- -~  

lj;j  
R .  - T -d 

p + pv~Z dz d t, 

p + pvyZ dz d t 

which we rewrite in the form 

R x x - I i  + I z + L x ,  

Ryy - 11 + I2 + Ly, 

on defining 
- p v 2 dz dt ,  

I~x - r  o -~ x 

1jTI  
_-- p v 2 dz dt 

Ly T o -d Y ' IITj  
-- p d z  dt, 

L T o  o 
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lfTj0 
- p dz dt. (2.30) 

12 r 0 - .  

The only difference between g~ and Rxy is that the integrand is V2x instead of Vx vy. 
Since v~ v y -  v 2, cosc~sinc~ whereas v 2-x v2, cos2c~, it follows that L~ has the same 
expression as R,y with only cos2c~ in place of cosc~sin~. Similarly, Ly has the same 
expression as R~y with sin2c~ in place of cos c~ sin c~: 

1 { 2kd 1 L,x - 16 pgH2  1 + sinh (2kd) cOS2OL' 

1 [ 2 k d ] . 2  
L,, - 16 pgH2  1 + sinh (2kd) sin c~. 

Let us pass to 11 and/2. The pressure proceeds from the velocity potential (2.26b) 
through the Bernoulli equation, and to Stokes' second order proves to be 

H cosh [k (d + z)] (ks cot) + -~6 p sinh 4 (kd) p - - p g z  + pg 2 cosh (kd) cos - H 2 c o  2 1 

H 2 1 1 
• cos{2(ks - cot)] + p 1--6- co2 v: . sinh 2 (kd)  2 p(  " + v2) (2.31) 

cosh [2k (d + z)]" 

For getting I1 exact to the order H 2, it is sufficient to take into account the terms of 
order H of the pressure: 

1jTj 
I~ - --T- o o - p g z  + pg ~ cos (ks - cot) dz  d t ,  

where we have used the fact that 

H cosh [k (d + z)] = H + o ( H )  if z I O ( H ) .  
cosh (kd) 

Evaluating the integral, we obtain 

1 11 - ~ p g H  2 . 

At this stage only/2 remains to be evaluated, for which we obtain 

H 2 1 1 : (2.32) 1 2 ~ co 2 d p g H  
12 - -~ pgd  + p 16 sinh 2 (kd)  16 " 

The three terms on the r.h.s, of this equation derive from, respectively, the first, the 
fourth and the fifth terms on the r.h.s, of (2.31). As for the second and the third 
terms on the r.h.s, of (2.31), they give no contribution to 12. 
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The conclusion is that Rxx, being the sum of 11, 12 and Lx, proves to be 

Rxx - -~ pgd 2 + pgH2 sinh(2kd) (1 + COS 20L) "q- COS 20L], 

and Ryy, being the sum of 11, 12 and L,, proves to be 

1 [ 
Ryy - -~ pgd: + pgH: sinh (2kd) 

(1 + sin2a) + sin2a]. (2.33) 

2.4.4 The f o r m u l a  f o r  go 

The x-component of vector ~ (defined by 2.23) is given by 

~x -- --T- o -d + ,ogz + -~ p + Vs cos a d z  dt, (2.34) 

where the integrand is of order H 2, and thus we can reduce the interval of 
integration from ( -d ,  ~7) to ( -d ,  0) making at the most an error of an order smaller 
than H 2. Therefore we rewrite (2.34) in the form 

1° 1 I r  [ H cosh [k (d + z)] (bx-- ~ pg 
-d 0 2 cosh (kd) 

cos (ks - a;t)lVs cosa dt dz, 

from which we easily arrive at 

1 ~,~ - --ff p g H 2 -: - 1 + 2kd 
sinh (2kd) 

COSOz. 

Similarly, we get 

1 c[ (by - ~ pgH2 -~ 1 + 2kd ] sin OL, 
sinh (2kd) ] (2.35) 

~ z = 0 ,  

from which we conclude that vector ~ has the following norm: 

~b - 1  c I -~ pgH2-~ 1+  2kd ] 
sinh (2kd) ' 

and has the same direction as the local s-axis. 

(2.36) 
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2.4.5 The formula  for  ~ 

With the definition (2.10) of e, equation (2.25) becomes 

--T o pgz dz at + - 7  o d -2 p (v~2, + vf) dz at, 

where the interval of integration of the second double integral can be reduced from 
to ( - d ,  r/) to ( - d ,  0), since the integrand is of order  H 2. Then, it can be readily 
verified that each of the two double integrals (when divided by T) is equal to 

1 pgH2, so that 
16 { _  1 pgH2" (2.37) 

8 

2.4.6 Comment:  even the radiation stress tensor can be obtained with only the 
linear wave theory 

In the analysis leading to the formulae for tensor R, vector ~ and scalar { ,  we 
have resorted once to the terms of order H 2 of r /and 4); specifically when we have 
evaluated integral /2 which was necessary to get the formulae for Rxx and Ryy. And 
even in this occasion, we have used only the nonlinear terms of ~, not those of r/. 
Here below we show that, thanks to an alternative procedure,  we can also obtain/2 
without resorting to the nonlinear terms of ~. Our goal is to prove that the 
nonl inear  wave theory is not necessary to deal with p h e n o m e n a  like the 
transformation of waves on shallow water, the variation of the mean water level 
and the longshore drift, whose t rea tment  is based on tensor R and vector ~. 

If we change the order of the two integrals in equation (2.30) of/2, we can rewrite 
this equation in the form 

I ° h - < p > dz, (2.38) 
- d  

d 
. . . .  Z 

...3 t.-. d$ 

q 

d8 

Fig. 2.6 The small control volume used to obtain < p > at a given depth beneath the mean water 
level. 
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where < p > represents the average pressure being dependent  on z. To get < p > we 
can use (2.31) of p (and this is the straight path of sect. 2.4.3), or we can also apply 
the linear momentum equation to the small control volume of fig. 2.6. The z- 
component  of this equation when averaged over a wave period yields 

p g ~ d s d q +  < p  >z ~ d s d q -  p <  12 2 > dsdq,  (2.39) 
= - -  Z Z : Z  

where the two terms on the 1.h.s. are respectively the mean weight and the mean 
vertical force on the base, and the term on the r.h.s, is the mean flux of linear 
momentum (z-component).  Being ~ arbitrary, equation (2.39) is reduced to 

< p  > - - - p g z - p < v 2 > .  
z 

Here < v 2 >, exact to the order H 2, can be obtained with only the linear form of ~b, 
and the result is 

H 2 _ _  ~-2 k 2 sinh2 [k (d + z)] 
< p > - - pgz - p g 2  8 cosh 2 (kd) + O (H2). 

Now, substitute the r.h.s, of this equation into (2.38). Evaluating the integral and 
using the linear dispersion rule, you will re-obtain formula (2.32) for I2 without 
having resorted to the nonlinear terms of ~b. 

2.5 The problem of the control volume extending from deep to shallow water 

2.5.1 Applicat ion o f  the energy equation 

Let us consider the control volume of fig. 2.7, on a seabed with some x-parallel 
contour lines. Since the cross section of the bottom is constant along the x-axis, also 
the wave height, the wave direction and the mean characteristics of the wave 

Y2: 
I 

jd2 

Yt 
xi x2 ~ d t  

Fig. 2.7 The control volume extending from deep to shallow water, for the basic condition of 
straight contour lines. 
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motion are independent  of x and depend only on y. The period is the same 
everywhere,  indeed the period of the waves on the time domain at any point is 
equal to the period of the wavemaker  (recalling that the periodic waves are 
generated by the periodic swing of a wavemaker) .  We shall call H~ and al 
respectively the wave height and the angle between the wave direction and x-axis 
on depth d~; and we shall call H2 and a2 the wave height and the angle between the 
wave direction and x-axis on depth d2. 

Given that vector ~ is constant along the x-axis, the compact notation ~by(y) is 
used in place of ~bu(x, y), and (2.24) is reduced to 

~v (Y2) = ~v (Y,). (2.40) 

Hence, using formula (2.35) for ~bv, we have 

[ (2kd)2 ] H2Cl [1 q - 
H2c2 1 + sinh(2kd)2 sin a2 - 

(2kd)~ 

sinh (2kd) 1 
sin a l .  

Finally, if the offshore side of the control surface is in deep water  and the nearshore 
side is in a water  depth d, we have 

2kd ] 2 (2.41) H 2 tanh (kd) 1 + sinh (2kd)  sin a - H o sin ao, 

where, of course, H and k are wave height and wave number  on water depth d. 

2.5.2 Application of the linear momentum equation (x-component) 

Given that 
(i) Rxx and Ryx are constant with respect to x, for a fixed y; 
(ii) Fyx is zero (because of the ideal flow assumption, and because the bot tom 

slope is zero along the x-axis); 

(2.22a) is reduced to 

(y2) = (yl)  

which, together  with (2.29) of Ryx, yields 

I l in 2cos 2 H22 1 + sinh(2kd)2 
(2kd)l I sin a l  cos a l .  

If the plane y - y~ of the control surface is in deep water and the plane y - Yz is in a 
water  depth d, we have 

H 2 1 -+- s inh(2kd)  s i n a c o s a  - HZsina0cosa0 .  (2.42) 
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2.5.3 Solution for angle a and height H on given water depth d 

The two equations (2.41) and (2.42) enable us to obtain the two unknowns, that 
is to say H and a. From (2.41) we get the expression for H 2 and use it in (2.42). 
After  these two operations, we obtain 

cos a = cos a0 tanh (kd) = cos a0 C/Co (2.43) 

that is the Snell law of refraction which here has been re-obtained within fluid 
mechanics. Such an equation enables us to obtain angle a on water depth d, once 
angle a0 on deep water is known (bear in mind that, if the wave travels landward on 
deep water, it travels landward also on shallow water, and vice versa; so that a and 
a0 belong to the same quadrant).  

Referring to the basic case in which the wave travels landward, angles a0 and a 
range between 0 and rr, and thus 

sin ao - v/1 - -  c o s  2 0 g 0 ,  

that is, for (2.43), 

sin a - v/1 - c o s  2 og ,  

sin a - V/1 - tanh 2 (kd) C O S  20g 0 . (2.44) 

At  this stage, with cos a and sin a being known, we can operate on either (2.41) 
or (2.42) to obtain H. The result is 

sinh (2kd) 

H - Ho tanh (kd)[sinh (2kd) + 2kd] 
1 -- COS 2Og 0 

1 - tanh 2 (kd)cos2oL0 " 
(2.45) 

This equation enables us to get wave height H on water depth d, once height H0 and 
angle a0 on deep water are known. 

2.5.4 Application o f  the linear momentum equation (y-component) 

Given that both Ryy, Rxy, and <)~y > [the mean force exerted by the seabed per 
unit length of contour lines] are constant with respect to x, (2.22b) reduces itself to 

< fly > = -Ryy (Yl) + Ryy (Y2). (2.46) 

Equation (2.46) can be satisfied only if the water depth undergoes some 
variations of order H 2, which means that, under the wave motion, the water depth 
becomes d + A (d being the depth of still water) with A O ( H  2) depending on d. With 
these variations of the water depth, we have 

I y2 dd 1 l "d2 < fyy > -- pg(d + A) -~y dy - -~ p g ( d 2 2  - d21) q- pg Add, 
Yl dl 
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where 

Rvv (Yl ) -2 pg d 2 2 - ~ + pgd~ A,+ pgH,  [.],, 

2 Ryy (Y2) -- ~ Pg d2 + Pg d2 A2 + pg S 2 2 [']2, 

2kd 
['] - s inh(2kd)  

(1 + sin20z) + sin2a I . 

Hence, (2.46) yields 

Jii d..  2.1 1+1 2 1 
2 [']2- 16 

which can be rewritten in the form 

HI dA 1 2 1 2 
d dd - H2 [']2 . . . . . .  H1 [']1" 

a,t~ dd 16 16 

If the plane y - y~ of the control surface is in deep water and the plane y - Y2 is 
in a water depth d, the last equation yields 

I ~ dA' 1 H 2 [  2kd ] 1 (2.47) 
d ' - - ~  dd' - 16 16 sinh(2kd) (1 + sin2a) + sin2a - H~ sin2ao, 

where A' denotes the variation of the mean water level on water depth d'. 
It is convenient to express wave height H and angle a on water depth d in terms 

of H0 and a0 on deep water. Doing so, we rewrite (2.47) in the form 

J ~ d' dA' dd' - 1 H2 F2 (kd) (2.48) 
,l dd' 16 0 , 

defining 

F2 (kd) - sinh (2kd) ~ l - c°s2a° { 2kd 
tanh (kd)[sinh (2kd) + 2kd] 1 - tanh 2 (kd)cos2ao sinh (2kd) 

[2 - tanh 2 (kd) cos2cto] + 1 - tanh 2 (kd)cos2cto} - sin2ao. (2.49) 

Differentiating both sides of (2.48) with respect to d, we obtain 

dA 1 1 
dd d 16 

H ~ -~d F2 ( k d ) , (2.50) 

which can be given the nondimensional form 

d(A/Ho) 
d(d/Lo) 

2re Ho 1 I1 - kd ]Fe(kd) (2.51) 
16 Lo d/Lo tanh(kd) sinh(kd)cosh(kd) + kd ' 



58 Chapter 2 

where t62 (kd) is the derivative of F2 (kd) with respect to kd, which is automatically 
deducible from (2.49). 

Equat ion (2.51) gives the derivative of A/Ho as a function of d/Lo. Hence, the 
function A/Ho can be obtained by numerical integration. Clearly, we get A/Ho less a 
constant, and this constant is then obtained from the principle of conservation of 
mass in the whole basin. 

For the step from (2.50) to (2.51), use the chain rule: 

d F2 (kd)= d(--d--jd + k) t62 (kd) 
dd 

and obtain the formula for dk/dd from the linear dispersion rule. 

2.6 Practical consequences of the control volume problem 

2.6.1 Shoaling and refraction 

Fig. 2.8 shows the quotient  H/Ho as a function of d/Lo [equation (2.45)] for 
c~0 = 7r/2, that is for the wave direction on deep water being orthogonal  to the 
contour lines. In this case the wave direction keeps orthogonal  to the contour lines 
at any depth. Indeed we can readily verify by means of (2.43) that c~ is equal to 7r/2 
whichever the d, if c~0 -- 7r/2. We shall call shoaling curve the graph of H/Ho as a 
function of d/Lo, for c~0 = 7r/2. This function has a minimum of 0.91 for d/Lo of 
about  0.15; it gradually approaches 1 for increasing d/Lo; and it should tend to 
infinity as d/Lo approaches zero. We use the conditional mood ("it should tend")  
since, as we shall see in the next section, the wave cannot survive on a water  depth 
smaller than a critical threshold. 

H 
//o 

ao=90 ° 

1 

0.91 

d/Lo 
i i i i 

0 .1 .2 .3 .4 .5 

Fig. 2.8 Shoaling: variation of the wave height with the water depth if the wave direction is 
orthogonal to the contour lines. [Obtained by means of equation (2.45).] 
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If the wave direction on deep water  makes  an angle c~0 # 7r/2 with the contour  
lines, then c~ approaches  7r/2 as the water  depth  decreases.  Indeed  from (2.43) we 
deduce that  the smaller  ]cosc~ I is than Icos(c~0)i, the smaller  is d/Lo. In o ther  words, 
whichever  the wave direction on deep water ,  the wave direction on shallow water  
tends to become or thogonal  to the shoreline.  The  variat ion of the wave direction on 
shallow water  is called wave refraction, and it can be easily foreseen by means  of 
(2.43) [see fig. 2.9 for a numerical  example].  

Y d/Lo 
I 

x 0 

/62 o 

/~2° 0.10 

~ o 

/ &  
. i'o 

0.20 

0.30 

0.40 

0.50 
I 

d/Lo 

Fig. 2.9 Refraction" variat ion of the wave direction from deep water  to shoreline.  [Obtained by 
means  of equat ion  (2.43).] 

We shall call shoaling-refraction curves the graphs of H/Ho vs d/Lo for the 
general  cases of c~0 (: 7r/2. Two examples  are given in fig. 2.10. We see that, for a 
fixed d/Lo, the larger 17r/2-c~0[ is, the smaller  is H/Ho. Indeed  from (2.45) it 
follows that  H/Ho ~ 0 as c~0 ---+ 0 or c~0 ~ 7r for any fixed d/Lo. 

Somet imes  we happen  to see some high waves far off the coast and the sea nearly 
calm near  the beach.  Usually,  this p h e n o m e n o n  is just due to the fact that  H/Ho gets 
very small on shallow water  since c~0 is close to 0 or 7r (0 or 7r, according to whe the r  
the wave at tack is f rom the right side or f rom the left side). Indeed,  in these cases 
we see the wave direction on deep water  is near ly parallel  to the coastline. 

2.6.2 Where the wave breaks 

W h e n  the ratio be tween  the wave height and the water  depth  exceeds a critical 
threshold,  the wave breaks.  Here  we shall assume 0.8 as a typical value for this 
critical ratio. 

A too large ratio be tween  the wave height and the water  depth  is not the only 
cause of wave breaking.  A n o t h e r  possible cause is the excess of wave steepness: 
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H 
/-/o 

(or %=135*) 

\ 0.84 ~ o r  a o =170") 

0.45 
dlLo 

i i i i 

0 .1 .2 .3 .4 .5 

Fig. 2.10 Shoaling-refraction: variation of the wave height with the water depth for two distinct 
wave directions on deep water. [Obtained by means of equation (2.45).] 

the wave breaks if the ratio H/L exceeds a critical threshold. Here, following Miche 
(1944) we shall assume this threshold to be equal to 0.14 tanh (kd). 

In summary, the two breaking conditions are 

i st breaking condition: H - 0 . 8 d ,  

2 nd breaking condition: H -  0.14 tanh(kd)L (2.52) 

which can be rewritten in the form 

]st breaking condition: H 0.8 d 

Ho HolLo Lo' 

2 nd breaking condition: 

(2.53a) 

H = 0 . 1 4  tanh 2(kd). (2.53b) 
No Ho/Lo 

It follows that the wave is stable, that is, it does not break, if 

H < M i n ~  0"8 d 0"14 )) 
Ho HolLo Lo ' HolLo tanh2 (kd , (2.54) 

where the symbol Min (a, b) stands for "the smaller of a or b". For a given HolLo, 
the r.h.s, of (2.54) is a function of d/Lo we shall call the limit of stability. The 
breaking depth db is that for which the shoaling-refraction curve intersects the limit 
of stability. 

The limit of stability consists of two branches" branch A (the one on the smaller 
d/Lo) is given by (2.53a), and branch B is given by (2.53b). If the shoaling-refraction 
curve intersects branch A, the breaking occurs because the wave height is 
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too large with respect to the water depth. While, if the shoaling-refraction curve 
intersects branch B, the wave breaking occurs because the wave steepness is too 
large. A case of wave breaking due to an excessively large H/d is shown in fig. 2.11, 
and a case of wave breaking due to an excessive wave steepness is shown in fig. 2.12. 

Of course, the solutions we have obtained in the limit as H --+ 0 for fixed d and T 
lead to the worst predictions near the breaking depth. However,  the prediction for 
what concerns shoaling and refraction proves to be rather effective up to the 
breaker  line. 

2.6.3 The set-down 

The two figures 2.11 and 2.12 show also the variation A of the  mean water level. We 
see A is negative and its absolute value grows as the water depth decreases. In other 
words, the mean water level goes down from deep to shallow water. The lowering 
is rather small (please note that the scale factor of A/Ho in figs 2.11 and 2.12 is ten 
times smaller than the scale factor of H/Ho). The graph of A/Ho has been truncated 
at the breaking depth, since after the wave breaks the flow substantially changes and 
A starts growing, as we shall see in sect. 3.2. Thus the lowering at the breaking depth 
proves to be the largest one, and its absolute value is called set-down (SD). 

As to the calculation, A/Ho is obtained, less a constant, by numerical integration 
of (2.51). Then the principle of conservation of mass enables us to obtain the 
constant as well. Indeed, for this principle, the lowering of the mean water level on 
shallow water must be counterbalanced by an increase on deep water. However,  the 

extentoftheseaondeepwater(d/Lo>2) issolargethatevenaverylowincrease 

is sufficient to compensate  for the lowering on shallow water. In concrete terms, this 
/ 

means the asymptotic value of A/Ho as d/Lo-+ oc ( in practice for d/Lo> 1 )can  
be assumed to be equal to zero. k Z , /  

2.7 A current associated with the wave mot ion  

2.7.1 The mean flow rate 

Let us go on assuming the contour lines to be parallel to the x-axis, and let us 
deal with the mass transport  due to the wave motion. The mean rate of flow per unit 
length through a vertical plane orthogonal  to the y-axis is 

Q - <  vydz > ,  
- d  

and proves to be the sum of two terms of order H2: 
I 'rl t 

Qw - <  vvdz >, 
0 

(2.55a) 

Q~ _= < v " >  d, (2.55b) 



62 Chapter 2 

2 

H 

1 
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Fig. 2.11 Solution to the problem of the breaking depth. Here the wave breaks because the ratio 
between wave height and water depth is too large. 
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Fig. 2.12 Solution to the problem of the breaking depth. Here the wave breaks because the ratio 
between wave height and wavelength is too large. 
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where Qw is known, while Q~ is unknown since 

< v" > = C sin c~, (2.56) 

C being the still unknown constant in the formula (2.26b) for the velocity potential. 
Qw is due to the horizontal particle displacement of the wave motion (hence the 

subscript w which stands for wave). Really in sect. 1.6.2 we have seen that, in half a 
wave period, a water particle is subject to a positive horizontal displacement Do of 
order H, and in the following half period it is subject to a compensating negative 
horizontal displacement - D o .  But if we expand the solution as far as the second 
order, we find that the sum of the positive horizontal displacement and the negative 
horizontal displacement is no longer 0, and indeed it is equal to a positive term of 
order H 2. In other words, the water particle moves forward along the wave 
direction, and the connected discharge per unit length is equal to Q~. As to Qc, it is 
the flow rate per unit length of a steady current (hence the subscript c which stands 
for current) which is necessary to ensure the conservation of mass. 

2.7.2 In front o f  a coast 

In the case of a coast, that is the case of fig. 2.7, the mean flow rate Q must be 
zero on any water depth (otherwise, we would have a progressive increase or 
decrease of the water mass nearshore). Accordingly, we have the situation depicted 
in fig. 2.13a: the wave motion produces a mass transport (average discharge Q~) 
towards the surf zone where a steady seaward current originates, whose flow rate 
Q~ is the opposite of Q,,,. 

Analytically: 
Qc=-Q~, 

and, from this equality and (2.55a-b), we get 

,, ] H 2 
< vy > - - - - g - - a # l k  since. 

d 8 

Since we are able to calculate H and c~ on any fixed water depth d once H0 and c~0 
are given, the last equation enables us to get < Vy" > and (at last!) the constant C of 
the velocity potential (C being related to < Vv" > by 2.56). 

2.7.3 In a strait connecting two seas 

Let us now deal with a strait connecting two seas, we assume the strait to be a 
/ 

straight channel of constant width, passing from deep water (d/Lo > 1 )  to shallow 
\ , - , /  

water, and once again to deep water. In this case the wave motion produces a mass 
transport from one sea to the other, and only a local current arises on shallow water 
[cf. fig. 2.13b]. This current is necessary to ensure the conservation of mass, 
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(a) 

breaking 

(b) i E 

Fig. 2.13 (a) Before a coast: the average discharge Qw of the wave motion is counterbalanced by 
a steady current seaward. (b) In a channel with a saddle: the variation of the average discharge 
Qw, along the longitudinal axis, is counterbalanced by some steady currents near the saddle. 

given that  Q~ varies along the channel  axis because  of the changes in wave height  
and wavelength.  

Specifically, Qc on water  depth  d must  counterba lance  the difference be tween  Q~ 
of deep water  and Q~ of depth  d: 

Qc-=Qwo-Qw,  

that  is 

< vy' > d -  < vydz > - < v y d z >  
0 deep water 0 water depth d 

(2.57) 

which yields 

,, 1 ~2rc H~ 
< vy > - - - j  8 T 

H2 ) 
60 -1 

8 

The  constant  C of the velocity potent ia l  is then  obta ined  thanks  to (2.56). 

On examining figures 2.13a-b, one should bear in mind that the major portion of Qw is 
near the water surface, while Qc is the flow rate of a uniform current (indeed we know 
< vy" > is constant with respect to z). One should also bear in mind that the vertical flow 
connected with the variations of Qw and Qc along the y-axis gives rise to negligible vertical 
velocities, of order H 2 tanA, with tanA being very small because of the assumption of a gentle 
slope. 
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2.8 Wave refraction for an arbitrary configuration of the seabed 

2.8.1 The differential equation of  the wave orthogonal 

In sect. 2.5 we solved the problem of the control volume extending from deep to 
shallow water, for the basic case of straight contour lines. Here  we deal with the 
same problem for the case of arbitrary contour lines. To this end, it is convenient to 
solve preliminarily the refraction problem. 

Let us fix a point P in the horizontal plane, and let us define the natural 
coordinates: s with the local wave direction and q orthogonal  to s. The inclination of 
a small stretch dq of wavefront varies in a small time interval dt of 

(0Cq) 0q c d t -  + ~ d  dt 
da  - _ _ 0__£_c dt, (2.58) 

dq Oq 

where a and c denote respectively the angle of the wavefront and the propagat ion 
speed at point P [see fig. 2.14]. Since 

d s -  cdt, 

(2.58) is rewritten as 

da 1 Oc 
ds c Oq 

Here it is convenient to express Oc/Oq in terms of the derivatives Oc/Ox and Oc/Oy 
(x and y being as usual the fixed axes). Since 

Oc OC Oc 
q0~ dq - ~ ( - d q  sin ~) + ay-7- dq cos a ,  

y 

q 

da 

dq ~ d s  } 

P 

x 

Fig. 2.14 Refraction: the short stretch dq of wave crest, covering the distance ds, rotates through 
dot. 
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it follows that 

dc~ 1 Oc sinc~- ~ c o s  . (2.59) 
ds c Oy 

As we shall see later, equation (2.59) enables us to get the wave orthogonal, that 
is the curve whose tangent vector gives the local wave direction. Specifically, given 
the wave direction on deep water and the wave period, we can obtain the wave 
orthogonal passing at any fixed point P. 

2.8.2 A more convenient form of  the differential equation 

Applying the chain rule, we rewrite (2.59) in the form 

d~ 1 dc Od sinc~ cos . 
ds c dd Ox dd Oy 

Hence, obtaining the formula for dc/dd from (1.28) of L, we arrive at 

dc~ 

ds 

2k (.Od 
sinh (2kd) + 2kd Ox 

sinc~ Od c~) - ~ cos (2.60) 
Oy 

which is more suitable for the finite difference technique. 
To appreciate the effectiveness of (2.60) one should simply try to calculate dc~/ds 

with the finite difference technique at any node i, j (coordinates: xi, yj) of a grid 
(Ax, Ay), for a flat bottom such that 

Od Od 
- const, 

Oy Ox 
= 0 .  

With equation (2.59) one finds 

~,, ds , ] /d(  '~j: cij 1 ci, j+12Ay - ci ' j-1 COS OLij , 

while with equation (2.60) one finds 

d(__d~s )i _ _ 2 k i j d i, j + 1 - d i, j_  1 

j sinh (2kd)q + (2kd)i j 2Ay 

2kq 

sinh (2kd)i j + ( 2 k d ) i  j 
const COS CEij. 

COS Ol i j 

Here it can be easily verified that 
(i) the value obtained by means of (2.59) is approximate because c is not a linear 

function of d; 
(ii) the value obtained by means of (2.60) is exact. 



Periodic wave pattern: the control volume approach 67 

For an arbitrary bottom, the use of (2.60) with the finite difference technique 
leads to only one error  which is due to the fact that generally d is not a linear 
function of x and/or y. While, the use of (2.59) leads to two errors: the first one 
because d is not a linear function of x and/or y, and the second one because c is not a 
linear function of d. 

2.8.3 Solution to the differential equation 

For a wave orthogonal,  c~, x and y are functions of s. We have 

doz c~(s + ds) = c~(s) + ds + o(ds), (2.61a) 
ds 

x(s + ds) - x(s) + dx ds -~ 1 d2x ds 2 + o(ds 2) (2.61b) 
ds 2 ds 2 

y(s + ds) - y(s) + dy ds +__1" d2_~__ y ds 2 q_ o(ds2). (2.61c) 
ds 2 ds 2 

Moreover  we have 
dx dy 

- cos c~, = sin oL, 
ds ds 

and consequently 
_ dc~ d2y dc~ 

d 2 x  - s i n  oz - - ,  - -  c o s  ct 
d s  2 d s  d s  2 d s  

Substituting these expressions of dx/ds, dy/ds, d2x/ds  2 and d2y/ds  2 in equations 
(2.61a-b-c), and resorting to the finite difference technique we obtain 

(, + A , )  = ~ (,) + 

x (~ + A ~ )  = x (~) + c o s  ~ A ~ -  - 

y (s + A s )  = y (s) + s in  c~ A s  + - -  

dog As, 
ds 
1 

sinc~ 
2 

1 
c o s  o~ 

2 

(2.62a) 

dc~ As 2 ' (2.62b) 
ds 

dc~ As 2" (2.62c) 
ds 

In conclusion, given the angle c~0 and an origin on deep water, the wave 
or thogonal  is calculated with finite increments  As through (2.62a-b-c). The 
derivative dc~/ds in these equations is given by (2.60), and the partial derivatives 
Od/Ox and Od/Oy in (2.60) are evaluated by means of the finite difference technique. 

2.8.4 Calculation of  the wave orthogonals: an example 

Let us consider the contour lines of fig. 2.15. The water  depth is symmetrical  with 
respect to the y-axis, that is: 

d ( - x ,  y) = d (x, y) .  



68 Chapter 2 

Therefore, it suffices to indicate the form of d (x, y) only for x > 0. Referring to the 
symbols of the figure we have 

shoreline [ y - R sin/3 - x/R 2 - x 2 
[ y - 0  

if x _< R cos/3, 

if x _> R cos/3. 

As to the water depth: 

d(x,y) - a~ R s i n 3 - y  

tan/3 ' 

where 

if y < R sin/3 - x tan/3, 

if  y > R s in /3  - x t a n / 3 ,  

y )  - /x + (R sin/3 - y)2 _ R] tan A. 

(2.63) 

Preliminarily, obtain the formulae for Od/Ox and Od/Oy from (2.63). Then these 
formulae will be used to compute da/ds by means of (2.60). 

Take R = 600m, fl = 30 °, T = 10s, and a0 = 90 °. Then assume a value of the 
increment As(As = 10m ~ L0/15 is small enough). Finally, to obtain a wave 
orthogonal,  fix a point x0, Y0 of this orthogonal on deep water. 

Three sequences are dealt with: 

a . , x ~ , a n d y , ,  for n - 0,1,  2, ... 

Each n is associated with a new point of the orthogonal: x~, y, are the coordinates of 
this point, and an is the angle that the orthogonal makes with the x-axis at this point. 
The three sequences proceed straightforwardly from equations (2.62a-b-c)" 

OZn+l--OZn+ (d---~s) AS, 
n 

1 s i n a , ( d T s ) A S 2  X,+l - x ~  + cosa ,  A s -  ~- 

Y~ +1 - -  Y. + s in a .  A s  + 
1 
2 c°sa" ~ As2" 

Procedure. First, by means of (2.60), compute (d-~-s) 0, that is ~ 

Then, compute a l  , Xl, and yl . Then compute ( d~s ) , that is da 
so on. 1 ds 

da  

ds 
at point x0, Y0. 

at point X l ,  Yl, and 

The derivatives Od/Ox and Od/Oy prove to be discontinuous at the dashed lines 
(see fig. 2.15a), and consequently also the curvature of the wave orthogonal is 
discontinuous at these lines. A set of wave orthogonals for the given input data is 
shown in fig. 2.15b, and a new set for a0 = 45 ° is shown in fig. 2.15c. 



Periodic wave pattern: the control volume approach 69 
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Fig. 2.15 (a) Contour lines before a promontory. (b) and (c) Wave refraction diagrams for two 
distinct wave directions on deep water. [Obtained by means of equations (2.60) and (2.62a-b-c).] 

2.8.5 The relation between the wave height and the distance between two 
orthogonals 

Let us consider a control vo lume whose  horizontal section is bounded  by two 
adjacent wave orthogonals  ((~ and (~ in fig. 2.16) and two short stretches of 
wavefront ((~ and O in fig. 2.16). 

Equat ion (2.19), for this control volume,  yields 

fblbl-~obo =0, 
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b 1 • 

, 

Fig. 2.16 If the contour lines are not straight, the control volume from deep to shallow water is 
bounded  by two wave orthogonals and two short stretches of wavefront. 

where b0 and ba are the widths of the two stretches of wavefront and ~b0 and ~bl are 
the norms of ~. Hence, with the formula (2.36) for ~b, we obtain 

sinh (2kd) ~/b0 
H - H0 tanh(kd) [sinh(Zkd) + 2kd] b~ '  

where d, H and k are water depth, wave height and wave number at O), and H0 is the 
wave height at @ on deep water. Clearly, this result requires bl to be small enough, for 
the wave height to be nearly constant on the stretch of wavefront. 

2.9 The group celerity 

2.9.1 T h e  t i m e  t a k e n  b y  t he  w a v e  m o t i o n  to c o v e r  a n  i n i t i a l l y  c a l m  b a s i n  

Fig. 2.17a shows a wave flume of constant depth. Let us assume the wavemaker  is 
switched on at time t -  0. We wonder: how much time is needed for the waves to 
get to a fixed point at a distance yo from the wavemaker.  We call to this time. 

To answer the question, we take a control volume extending from y = 0 
(wavemaker) to y -  Yo. In the time interval 0 < t < to, the flow in the control 
volume is not periodic. Indeed, if we took some photographs at a regular time interval 
T (equal to the wave period) we would catch an evolving situation. Initially, we would 
see some waves close to the wavemaker  with the rest of the tank being still calm. 
Then, we would see the wave zone widens gradually. As said above, this means the 
flow is not periodic and, consequently, equation (2.19) is not valid. On the contrary, 
equation (2.18) retains its validity, since it holds whether or not the flow is periodic. 

Integrating (2.18) with respect to t on the interval (0, to), we obtain 

[I ][J 1 (p  + pe) v . n d A  dt  - pe d W  - pe d W  . (2.64) 
t=0 w t = t o  
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Fig. 2.17 (a) Plan view and longitudinal section of a long wave flume. (b) Three pictures taken a 
wave period from each other, while the wave motion advances on an initially still basin (the waves 
are sketched as vertical segments). (c) Details of the group's head. 

Development of the 1.h.s. of (2.64) 
The lateral surface ,4 of the control  volume consists of four parts: the cross- 

section @ at the wavemaker ;  the cross-section @ at Yo ; and the two sides @ and @ of 
the wave flume. Planes © and @ do not  provide any contr ibut ion to the integral on 
the 1.h.s. of (2.64) since the scalar product  v. n at these planes is zero. Nei ther  plane 
@ gives any contr ibut ion to the integral, since v = 0 at this plane till instant to. 
Plane @ remains.  Here,  at the origin of the wave flume, for the whole interval 
(0, to) there is a wave of height H and per iod T, so that  

1.h.s. of (2.64) - b [(p + pe)(-vy)]y= o dz dt. (2.65) 
0 - d  

Assuming that  to is very large with respect to T, we rewrite (2.65) as 

1.h.s. of (2.64) - tob < l ''/ [(p + pe)(-vy)]y=odz > - -  -tob(fby)y=o. 
d 

(2.66) 
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From which, using formula (2.35) for ~by, we arrive at the final form 

-8--1 zc I sink2kd l ( 2 k d )  1.h.s. of ( 2 . 6 4 ) -  - t o  b p g H 2 ~  1 + . 

D e v e l o p m e n t  o f  the r.h.s, o f  (2.64) 
The r.h.s, of (2.64) represents the difference between the energy being present in 

the control volume at time t = 0 when the water is still calm, and the energy at time 
t = to when the waves occupy the whole control volume. Therefore, we can write 

r.h.s, of (2.64) = -byo  ~,  (2.67) 

and, using the formula (2.37) for g~; 

1 
r.h.s, of ( 2 . 6 4 ) - - b y o  -8 p g H  2 . 

So lu t ion  
Having got the expressions of the two sides of (2.64), we obtain 

to - yo . (2.68) 
c 1 +  
2 sink (2kd) 

2.9.2 C o m m e n t  o n  the  m a t h e m a t i c a l  s o l u t i o n  

As said, equation (2.66) calls for to to be very large with respect to the wave 
period; and similarly equation (2.67) calls for Yo to be very large with respect to the 
wavelength. As to (2.67), we also point out that ~ i s  not only the wave energy per 
unit surface, averaged over a wave period, but it is also the wave energy per unit 
surface, averaged over a wavelength at a fixed time instant. This second meaning 
has been applied when obtaining (2.67). 

In simple words, the assumption leading to (2.66) and (2.67) is the same one that 
we use if we write 

sin2x d x -  Xo ~ sin2x dx, 
0 71- 0 

which of course is exact if Xo is equal to nTr (with n an arbitrary integer), but it 
becomes exact as Xo --+ oc even if Xo is not equal to nTr. 

The assumption of a very large to has been made implicitly also in another step of 
our reasoning. Specifically, it was made when we assumed the water at y = Yo to be 
calm till to, and from to forth a wave of height H to occur at this location. In fact, at 
yo, the water will be calm till an instant to'; then for two or three wave periods an 
unsteady flow will take place, with the wave height gradually increasing; then, from 
an instant to' forth, the wave height will take on its final value H. But, if to is very 
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large with respect to T, the duration of the transient gets very small with respect to 
to, and thus it can be neglected as we have done. 

2.9.3 The meaning of group celerity 
Equat ion (2.68) reveals that the propagat ion speed of a wave motion on a calm 

basin is 

c[  2 k d ]  (2.69) 
cc - ~ 1 + sinh (2kd)  

(this being the quotient  yo/to). Here  it can be readily verified that cc is generally 
smaller than c, and on deep water (the case illustrated by fig. 2.17) cc is half the c. 
Let us see the reason for this. 

Fig. 2.17b shows three instant pictures of the wave flume taken an interval T 
from each other. The waves are sketched as vertical segments: the height of the 
segment is equal to the wave height and the interval between two consecutive 
segments is equal to the wavelength. Each single wave advances by a wavelength L 
in a wave period T, so that its propagat ion speed is LIT [see the detail of the 
group's head in fig. 2.17c]. It is not so for the wave group which advances by a 
wavelength in two wave periods, so that its propagat ion speed is c/2. The 
propagat ion speed of the group is smaller than the propagat ion speed of each single 
wave, simply because each single wave goes to die at the group head. In particular, 
in the first picture, wave A is going to die; then in the third picture, two periods 
later, wave B is going to die; then it will be the turn of C, D and so on. [Of course 
the envelope front in fig. 2.17 has been somewhat  simplified. For  a more detailed 
representat ion see Miles (1962).] 

It will be unders tood that  subscript G is for group, and that  cc is the group 
celerity which plays a crucial role in the mechanics of the wind genera ted  waves. 
Indeed,  we shall see in chapter  10 that  the wind-genera ted  waves give rise to 
groups consisting of three or four waves, which travel with the celerity co. We 
shall see that in this case the waves are born at the group 's  tail, grow to a 
maximum height while reaching the envelope centre, and then go to die at the 
group's  head. Such a p h e n o m e n o n  occurs because co, the propagat ion  speed of 
the envelope,  is smaller than the celerity c of each single wave. 

The difference between spontaneous wave groups forming in the sea storms and 
the group of the periodic waves is great. It suffices to note that the group of the 
periodic waves, unlike the sea wave groups, grows longer and longer and its waves 
are already grown up at birth. Indeed, the periodic waves are to the wind generated 
waves as a simple animal species is to the human species. But, clearly the study of 
the elementary species is very helpful to understand the more sophisticated species. 
In particular we shall see that the quotient  cc/c for the sea wave groups is the same 
as for the elementary group of periodic waves. 
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2.10 Wave-current interaction. Part II: shoaling and set-down 

2.10.1 Preliminary analysis: only current without waves 

Let us consider a marine strait. To fix our ideas let us think of the Straits of 
Messina. Along the longitudinal axis, the water  depth reduces itself to a minimum. 
In particular, in the Straits of Messina, the water  depth is at a minimum (nearly 
100 m) somewhat  to the north of Messina. Often, some currents take place where 
the strait has its lowest depth. These currents in the Straits of Messina are due to the 
flow from the Ionian Sea to the Tyrrhenian Sea and vice versa. 

Let us think of a strait as a straight channel of constant width, with a minimum 
water  depth at y = 0 and with water  depth tending to infinity as y ~ + ~ .  As in 
the problem of shoaling-refraction, let us assume the bot tom slope to approach 
zero. 

Let us analyse first the case of a current without waves, with a discharge Q per 
unit length. Referring to fig. 2.18 we call 

the difference between the still water  level and the actual water  level; 

d the depth of the still water; 

- d -  S the water depth; 

u -  Q/d the velocity of the current. 

Under  ideal flow assumptions, the Bernoulli  equation implies 

S m / /2  

2g 
(2.70) 

As a consequence,  u, d and Q are related to each other by 

U z 
Q 

d - uZ/2g 

which can be rewrit ten in the form 

with 

ud 
Q 

: + ( 02 

Q* - v ~ d d .  

(2.71) 

Equali ty (2.71) admits two positive solutions for ud/Q, provided that 

_ 2 Q,. (2.72) 
I QI < Qmax 3v/~ 

These are well known concepts from hydraulics. Clearly, here we are interested 
only in the first solution, that is in the smaller value of ud/Q satisfying (2.71). (In 
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this connection, note that the second solution implies tt -+ 0 as Q ~ 0.) Therefore, 
we must seek the lowest positive x for which the two functions 

f (x) - x ,  

f 2  ( X )  - 1 --~ X 3 

are equal to each other. This particular x coincides with the sought value of u d / Q .  

In the following section we shall deal with the problem of wave shoaling on a 
current. In preparation for this analysis it is useful to do a couple of preliminary 
exercises. 

First  exercise:  verify the linear momentum equation for a control volume 
between two arbitrary ends y~ and y2 [see fig. 2.18]. What we have to do is to 
evaluate < ~y > and Ryy, and verify whether or not equality (2.46) is fulfilled. 

Having assumed that the bottom slope approaches zero, the pressure distribution 
approaches the static form, so that we have 

< fyy > - pg[l -~y dy  - pgc ldd ,  (2.73) 
~ dl 

l '° Ryy - - pgz  + puZdz .  (2.74) 

And, with these formulae for < f~y > and Ryy, equation (2.46) yields 

i 0 j0 
- - ( -  pgz  + p u2) dz  pgc ldd  ~ ( pgz  + pu~) dz  + -~  

-d~ 

w..- (~) u 2 ,, / s = ~  

: i t -- 
j d "~ 

f ] 
i i 

I ' Y 
' P L A N  i i 

| i 
: : 

, i 

Y l  Y~_ 

Fig. 2.18 Reference scheme for a steady current on a channel of varying depth. The bottom 
slope is assumed to approach zero. 
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which can be reduced to 

i 
d2 

- S d d -  d2S2- diS1- 1.5S22 + 1.5S~. 
dl 

This equality can be proved numerically. To this end, you should fix two water 
depths dl and d2 and a discharge Q satisfying inequality (2.72) for each d in (da, d2), 
and you should evaluate S by means of (2.70) and (2.71). 

Second exercise: verify the energy equation for a control volume between two 
arbitrary ends yl and y2. What we have to do is to verify whether or not equality 
(2.40) is fulfilled. 

In this case (current alone) (2.40) implies that 

jo { [ 1 ~]} jo { [g 1 22] } 
- p g z  + p g(z  - S1) + -~ u Ul dZ - - p g z  + p (z - S2) + ~ u u2dz, 

-~1 -4 
(2.75) 

where the 1.h.s. is ~by on water depth d~, and the r.h.s, is ~by on water depth d2. The 
equality (2.75) is actually fulfilled since the two integrands are zero, which can be 
readily proved with the use of definition (2.70) of S. 

It should be noted that the origin of the z-axis at each of the two ends of the 
control volume has been taken at the level of the free surface. In doing so, one 
is able to express the pressure simply as - p g z  both at yl and at y2. But, pay 
attention: the potential energy must be expressed with one fixed reference level. 
That is why the potential energy per unit volume is p g ( z -  $1) at y~, and 
p g ( z -  $2) at Y2; the fixed level being that of the free surface on infinite water 
depth. 

2.10.2 Ef fec t s  o f  a var ia t ion  o f  the m e a n  water  level  on  the l inear m o m e n t u m  
e q u a t i o n  

The presence of waves on the current causes a variation A of the mean water 
level. Such a variation will be of order H 2 will depend on d and will be zero on 
infinite depth. For these statements we refer to what we have shown in sect. 2.5.4 
for waves without current. 

The variation A of the mean water level yields some variations of order H 2 of 
< j)y > and Ryy. Specifically, the mean force exerted by the seabed changes from 
that given by (2.73) to jy2 

< fly > -  Pg (d+A) dd yl ~ dy - pg < ([t + A) dd,  

and hence the variation is j.d2 
< fir > -- Pg A d d ,  

dl 
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that is, in a form more suitable for the next developments, 

I 
d l  

8 < fsy >- -Pg  d dA dd + pg(d2 A2 
,t~ dd 

_ 

- d i a l ) .  (2.76) 

As to the radiation stress, it changes from (2.74) to 

2 
Ryy - -pgz  + pgA +p(u + ~u) dz, 

-d 

where ~u is the variation of the current velocity: 

A (2.77) 

d 
which ensures the constancy of the discharge. And with this au, the variation of the 
radiation stress proves to be 

6R~y = p g ( d -  3S)A. (2.78) 

2.10.3 Effects o f  a variation o f  the mean water level on the energy equation 

Because of the variation of the mean water level, ~y becomes 

1 ] (Dy-- _ - p g ( z - A )  + pg(z - S) + -~ p(u + 8u) 2 (u + 6u)dz,  
d 

so that the variation is 

, ] 6fbv- - p g ( z - A ) + p g ( z - S ) + - ~ p ( u + S u )  2 ( u + 6 u ) d z +  
- -  t i  .fo[ ,] - _ - p g z + p g ( z - S ) + - - ~ p u  2 u d z .  

d 

Hence, using (2.77) of 6u and neglecting the terms of orders smaller than H 2, we 
obtain 

6cbv= p g ( Q -  2Su)A. (2.79) 

2.10.4 Particle velocities and pressure f luctuat ions in waves on currents 

We need to know wave pressure and particle velocity due to the wave motion, 
exact to the first order. We need also to know the mean values of such wave 
pressure and particle velocity (only the horizontal component), exact to the second 
order. We shall call v~y the horizontal particle velocity due to the wave motion, to 
distinguish it from Vy which is the actual horizontal particle velocity (being due to 
waves and current). 

As for the expressions of Ap,  Vwy, and vz exact to the first order, they 
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straightforwardly proceed from the velocity potential (1.45) (bearing in mind that 
the water depth here is d): 

H cosh [kc (d + z)] cos (kcy cot) + o ( H ) ,  (2.80a) A p - -  t o g ~  
2 cosh (kcd) 

H (co - ukc)  -1 kc VwY -- g T  
cosh [kc (ct + z)] 

cosh (kcd) 
cos (kc y - cot) + o ( H )  , (2.80b) 

n (co _ u k c ) - i  kc sinh[kc (a¢ + z)] sin (kcy - cot) + o ( H ) .  
Vz - g - ~  cosh (kccl) 

(2.80c) 

As for < Ap > exact to the second order, we reason as we did in sect. 2.4.6 on the 
small control volume of fig. 2.6, the result being that 

< A p  > to < v2 > tog2 H2 sinh 2 [kc (d + z)] 
. . . .  kc cosh 2 (kcd) 

z - - ~  ( c o -  ukc)  -2 2 + 0 ( 8 2 ) .  

Finally, as for < Vwy > exact to the second order, we reason as we did in sect. 2.7.3 
for obtaining equation (2.57), the result being that 

1 1.2rr H2o 
< V w y > - - ~  

d 8 T 
.2 1 g - ~  (co - ukc) -~ kc + o(H2).  

In concrete terms, a nonzero < Vwy > is necessary to compensate the variation of the 
mass transport of the waves from deep to shallow water. 

To verify the formula (2.80a) use the Bernoulli equation (1.5) with the formula (1.45) for 
the velocity potential. Ap will prove to be the sum of two terms: the first one obtained from 

-p&~/Ot, the second one obtained from 1 ---p(Och/Oy) 2 . Equation (2.80a) will proceed from 
2 

addition of these two terms and simplification. 

2.10.5 Ef fec t s  o f  the wave  m o t i o n  on  the l inear m o m e n t u m  e q u a t i o n  

Possibility o f  applying depth cl rather than cl + A 
In sect. 2.10.2 we have evaluated how the terms of the linear momentum 

equation change due to a variation A of the mean water level. Now we are going to 
see how they change due to the wave motion on the current. To this end, we shall 
reason as if the water depth was d rather than d + A, and, in doing so, we shall make 
an error of an order smaller than H 2. 
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Effects on < fly > 
The variat ion ~ < f~y > is zero: 

a<h, >=0,  (2.81) 

since < &p > is zero at the bo t tom depth. 

Effects on Ryy 
Ryy for the current  alone is given by (2.74). With the waves on the current,  Ryy 

becomes 

Rvy 1 r = - p g z  + A p  + p(u + Vwy) dz dr, 
T o d 

so that the variat ion is 

1j j ° JJ 2 2 d z d t +  1 r ~ - - p g z  + A p  + p(u + Vwy) dz dt. g)Ryy ---T- o -~i A p  + 2pUVwY + PVwy --T- o o 

Hence,  using the formulae of sect. 2.10.4 and neglecting the terms of orders  smaller 
than H : ,  we arrive at 

[-~6 1 kcd ] 8Ryy - p gH: + --ff g (w - ukc)-: k c - -  + pg ~ 
cosh2(kcd) 

7r bl 

2 g T  
H2o . (2.82) 

2.10.6 Ef fec t s  o f  the w a v e  m o t i o n  on  the energy  e q u a t i o n  

In sect. 2.10.3 we have evaluated how the terms of the energy equat ion  change 
due to a variat ion A of the mean  water  level. Now, let us consider how they change 
due to the wave motion.  

The mean  energy flux of a wave on a current  on water  depth d is 

{ 1  zj} ~v - --f- o -d - p g z  + A p  + pg (z - S) + ~ p [(u + Vwy ) -31- V (U _qt_ Vwy ) dz dr, 

so that  the variat ion with respect  to the ~by of the current  alone is 

p + pu v~y + 1 v2 1 
~ey--- T 0 -d -2 p wy AI- ~ pV (bl + Vwy ) dz dr. 
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Hence,  using the formulae of sect. 2.10.4 and neglecting the terms of orders smaller 
than H 2, we arrive at {1 5~)y- pgH 2 g(a~- ukc)-2ukc kcd + 

cosh 2 (kccl) 

1 2kccl+sinh(2kcd) (aJ ukc) - l[ l+ukc(~ ukc) -~]+ 1 ~ 7r S H~ 
+ T 2  g . . . .  cosh 2 ( kc d) -~ uj  + pg 2 T 

(2.83) 

2.10.7 The system of  equations of  the mean water level and wave height 

is: 
The variations 5 < ])y >, 5Ryy and 5 4~y must satisfy equations (2.40) and (2.46), that 

~) < fly > + ~)Ryy (y~) = ~)Ryy (Y2), 

a qSy (yl) = 5~by (y2). 

(2.84a) 

(2.84b) 

Each of these variations consists of two parts, the first one being due to the change 
in the mean water  level and the second one being due to the wave motion. These 
variations have been obtained in sects. 2.10.2-6, and their formulae have been 
gathered in table 2.1 for the reader 's  convenience. 

If we take yl on infinite water  depth, where u, S and A are zero, and y2 on any 
given depth d, equations (2.84a-b) give rise to 

J~ [@6 1 -2 kc~l ] T ru  d' dA' d d ' =  - Hg _ 3SA + H: +--ff g (~-  ukc) kc - - -  ' + --  H o 
d dd' 16 cosh 2 (k~d) 2 gT ' 

(Q-2Su)A+H2{-~6g(a~-ukc)-2ukc kcd 1 + - ~  g 
cosh: (kcd) 

1 } 7rsU2o 
• [1 -~-ukc((.d-ukc) -1] - J f - vu  -~ -~ T 

(2.85a) 

2kcd + sinh (2kcd) (~_ ukc)_l. 
cosh 2 (kcd) 

- g H:° cv -1 , (2.85b) 
16 

where A is the variation of the mean water  level on water depth d, and A' is the 
variation of the mean water level on water depth d'. 

The two unknown functions in equations (2.85a-b) are A(d) and H (d). The wave 
number  kc - 27r/Lc proceeds from (1.46) with d as the water depth. As to d, S and u, 
they are functions of d, which can be specified once the discharge Q per unit length 
is given [cf. sect. 2.10.1]. 

The novelty with respect to the waves without current will not have passed 
unnoticed. Without  the current, the energy equation in the two-dimensional flow 
contains the only unknown H, and the linear momentum equation contains the two 
unknowns H and A. Therefore,  we obtain H from the energy equation and then we 
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Table  2.1 Summary  o f  the variations o f  <jSy>, Ryy and ~b v 

VARIATION DUE TO EQUATION EXPRESSION 

8Ryy 

8 cbv 

Vwy , VZ , /4k p 

Vwy , v~, Ap 

Vwy, v:, Ap 

2.76 

2.81 

2.78 

2.82 

2.79 

j d l  

pg d dA dd + pg (d2 A 2 
d2 dd 

dial) 

pg(a 3S)A 

1 
,o g H 2 --~6 ÷ --~ g ( co u k~ ) - 2 kc 

7c bl 2 
Ho + Pg 2 gT 

kcd 
c o s h  2 (kcc1). 

pg(Q 2Su)A 

pgH2'  -~6 g (o3 ukc) -2 ukc kccl t 
• c o s h  2 (kcd)  

2.83 1 2kcd + sinh(2k~d) (co ukc)-' 
+-5~- g c o s h  2 (kcd )  

1 "> rc s H  2 
[1 ukc) + -s-. + PgT 

+ 

s t ra igh t forward ly  obta in  A f rom the l inear  m o m e n t u m  equat ion .  Whereas ,  with the 
current, we have got a system of two equa t ions  in the two u n k n o w n s  H 2 and A. 

The step from (2.84a-b) to (2.85a-b) should be done in three stages. First stage: 
6Ryy(yl) and 6~b,,(y~) are substituted by the expressions of table 2.1 with d = d l ,  H = H1, 
S -  &, u = Ul, A-A~;  ~Rvy(y:) and 8~b,.(y:) are substituted by the expressions of table 2.1 
with d -  d2,  H = H:, S -  $2, u = u2, A=A2; 6< f t:v > is copied as it is from table 2.1. 
Second stage: a simplification can be done, in particular all terms with d~A1 and d2A2 can 
be cancelled. Third stage: yl is taken on infinite water depth so that A1--+ 0, Ul---+ 0, 
S~ ~ 0 ,  H~---+H0, and y: is taken on water depth d so that A:=A,  u : = u ,  S : = S ,  
H2 = H .  

As an exercise, verify that, for u - 0 ,  equations (2.85a) and (2.85b) are reduced 
respectively to (2.47) and (2.45) with a = a0 = 7v/2. To this end, you should bear in mind 
that kcd ~ kd as u -+ 0. Then, to re-obtain (2.45) and (2.47) exactly, you should make a few 
formal steps like multiplying and dividing by sinh (kd). 
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2.10.8 Solution to the system o f  equations 

The second equation of system (2.85a-b) is of the type 

H 2 = A  +BA, (2.86) 

where 
A -  [g Hg co - 1 - - ~  } l /  B - [2s - e l / { }  

2 T 1 /  ' 

{ ' } -{ - -~6g(aJ-ukc)-Zukc  
kcd 1 + g 

cosh: (kcd) 

2kcd + sinh (2kcd) (co- ukc) -1. 
cosh 2 (kcd) 

1) • [1 + ukc (co- ukc) -1 ] -11- ~ U . 

The first equation is of the type 

with 

i o~ d' dA' 
d - ~  dd' - C + D H  2 -Jr- EA, 

C -  H:° t 7r u H:0 D -  1 + 1 kccl 
16 2 g r ' 16 -ffg(co-ukc)-Zkc , E - - 3 S .  

cosh: (kccl) 

If we multiply all terms of the first equation by D and add the result to the second 
equation, we obtain 

where 

j '~ d' dA' dd' - F + GA (2.87) 
d dd' 

F = _ C + A D ,  G = _ B D + E .  

Now our system consists of equation (2.86) of the two unknowns H 2 and A, and 
equation (2.87) of A alone. The terms A, B, F, and G in these equations are 
functions of d. 

To solve (2.87), let us consider a sequence of growing depths dl ,  d2, ..., d N ,  with 
d~ = d. Then, from (2.87) we have 

J di d' dA' 
de-1 dd' 

d d ' =  (Fi_~ + Gi_lAi_l) - (Fi + GiAi), 

where Fi, Gi are for F, G on water depth di. Provided that the difference di - d i _ l  is 
sufficiently small, the integral on the 1.h.s. of this equation is equal to 

--(di-1 if- di)(Ai- Ai-1), 
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so that the equation yields 

Ai_, - (di-1 q- d i )A i -  2F/_1 q- 2(F~ + GiAi) (2 .88)  

2Gi_ 1 + di_ 1 + di 

which is the solution to the problem. Indeed, provided that du is sufficiently large, 
we a s s u m e  A N = 0 and, by means of (2.88), we can obtain AN-l, AN-Z, and so on, up 
to the sought A on water depth d. Then, once A is known, we obtain also H by 
means of (2.86). The next section shows the details of this procedure. 

2.10.9 Summary  and example o f  calculation 

The input data are H0, T, and Q. The goal is to obtain the wave height H and the 
variation A of the mean water level on a given water depth d (d being the depth of 
the still water). 

Preliminarily, check if condition (2.72) is fulfilled: the absolute value of the given 
flow rate Q per unit length must be smaller than 

2 x/~gdd 
3v/~ 

otherwise the problem does not admit a solution. 
Then fix a sequence of growing depths dl, d2,..., du with d l -  d. We suggest 

taking d i - d ~ _ ~ -  costant _< d/20, and dN > 20d. Then execute the following 
operations for each d/. 

(i) Compute the velocity ui of the current, by means of (2.71). You have to 
seek the lowest positive x satisfying the equality 

( ~ ; ) 2  *__ ~ gdi di x - l +  x 3, with Q~ . 

This particular x, we call x i, coincides with the product uidi/Q, so that 

(ii) Evaluate Si and di" 

Q 
Ui -- Z Xi" 

u 2 
Si ___ i d i -  d i -  Si. 

2 g '  

(iii) By means of (1.47) evaluate the wavelength L cs. You have to seek the 
lowest positive x satisfying the equality 

x tanh(27rx) - a i ( x -  b i) 2 , 

with 

a i 
1 2 

cli / Lo \ c 0 / '  

(ui) b'-Lol Co 
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! 
This particular x, we call x i, is equal to  di/Lci, so that 

Zci - d i  / x t i  • 

If the current is negative, x' might not exist. In that case the wave is not able to i 
travel against the stream. 

(iv) Evaluate the wave number 

kci = 27r / Lci. 

(v) Compute the values of the parameters defined in sect. 2.10.8: 

Ai -- Ig H216 _~_7r2  Si --~1 / { ' } i '  Bi -- [2Siui - Q]/{ '}i  , 

{ . } i_{__~6 g(&_uikci)-2uikci  kcidi _aL l_~ g 
cosh 2 (kci(ti) 

1 } 
• [1 _3f_ u i k c  i ( o f f -  b l ikc i )  -1 ] _ql_ __~ l~ i , 

2kcidi + sinh (2kci~ti ) (a3- U i kci) -1. 

cosh 2 (kcidi) 

C i ~ H20 ~ 71- u i n20 D i - - ~ 6  + 1 -2 kci~ti _ 
16 2 g T ' --ff g(~ - uikci) kci cosh 2 (kcidi) , Ei -3Si ,  

Fi =~ C i  ..ql_ Ai  Di, Gi ~ Bi Di + Ei. 

At this stage, assume AN = 0 and compute AN-1 through (2.88). Hence, go on 
with equation (2.88) and compute AN-Z, AN-3, and so on, up to A1 which is the 
sought A on the given water depth d. Finally, use (2.86) to obtain wave height H on 
the given water depth d: 

H = v/A1 -}- B1 A1. 

You should check the result, assuming a smaller value of the step di - di_l and a 
greater value of du, and then repeat the procedure. The convergence is quick and, 
generally, the suggested values of d i -  dg_l and dN prove to be suitable. The 
procedure entails no serious difficulty. 

Fig. 2.19 shows the result of a calculation for 

H0 - 5m,  T = 10s. 

The figure shows wave height H and variation A of the mean water level on 
d = 15 m versus the discharge of the current. As we can see, if the current is positive 
the wave height is smaller than if the current is null ( Q -  0). Conversely, if the 
current is negative, the wave height grows. These are some intuitive phenomena,  
that now we can predict by means of the solution exact to the order H 2. 
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The two functions H(Q) and A (Q) are cut off on the left side, on the discharge of 
the critical negative current (against which the wave cannot run). We see that near 
this critical discharge, the wave height grows quickly. In addition to this, the 
wavelength gets smaller (cf. sect. 1.9.2), so that we realize that the wave gets very 
steep and breaks. Indeed, the dashed piece of curve indicates the range where the 
wave exceeds the critical steepness. 

On the right side the two functions are cut off at Q = Qmax (the maximum discharge 
for the fixed water depth) which is 99 m 3 s-]/m for the water depth of 15 m. 

As to the wave set-down, we see that it is larger than in absence of the current. 

Conclusive note 

The problem of shoaling was originally solved by Burnside (1915). The radiation 
stress tensor was introduced by Longuet-Higgins and Stewart (1960, 1961), and the 
existence and size of the set-down were predicted by these authors (1962). The 
current associated with the wave motion was predicted by Whi tham (1962). The 
numerical calculation of the wave orthogonals by means of (2.59) probably started 
with Griswold (1963). 

The solution which is commonly used for the shoaling and set-down of waves on 
current was given by Jonsson et al. (1970). This solution is of order  H2; the effects 
of the higher order terms were then considered by Jonsson and Arneborg  (1995), 
and also the effects of the velocity distribution with depth were considered by 
Jonsson et al. (1978). Jonsson et al. (1970) concluded that the conservative 

15 
Him] 

I0 

~..j~t d-15m Ho=5m 
: T=lOs 

~ g  

0 I I 

-I00 -50 0 50 t~n~s'~a] 100 

-0.25 f 
-0.50 
-0.75 / 

Fig. 2.19 Example: wave height and wave set-down on 15 m water depth, for given conditions on 
deep water, vs the flow rate of the current. @ denotes the solution of Jonsson et al. (1970), which 
is quoted in the conclusive note. The shoaling curve of Jonsson et al. practically coincides with the 
one obtained from the procedure of sect 2.10.9. 
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equat ions  are not  applicable for direct calculations. Therefore  they p roposed  a set 
of "practical equat ions".  

The new approach of sect. 2.10, taking into account all terms of order  H 2 due to 
the wave mot ion  or the variat ion of the mean  water  level, yields the formal solution, 
exact to the order  H 2, based on the conservative equations.  This solution is easily 
applicable for direct calculations as shown in sect. 2.10.9. A compar ison with the 
solution based on the practical equat ions of Jonsson et al. (1970) reveals some 
discrepancy only for what  concerns the variat ion of the mean  water  level (see fig. 
2.19). This discrepancy becomes  significant only for large positive Q where  the 
exact solution predicts a wave set-down (increasing quickly as Q approaches  Qmax) 
whereas  the solution based on the practical equat ions predicts a small wave set-up. 
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Chapter 3 
WAVE EFFECTS ON COASTS 

3.1 The control volume from the breaker line to the beach 

The control volume of fig. 3.1 extends from the breaker line to the beach. It is 
bounded by a vertical plane at the breaker line and by two vertical planes piercing 
the shoreline. Let us assume that 

(i) the flow is ideal up to the breaker line, 
(ii) the contour lines are x-parallel. 

From the linear momentum equation for this control volume we have 

i < Fsx > - -Ryx (x, Yb) dx + -Rzx(Xl,  y) + Rzz (x2, y) dy, (3.1a) 
X l Yh 

I x2 I cx~ 
< F~y > + < Ty (x~) > - < Ty (x2) > - -Ryy (x, Yb) dx + -Rxy (x1, y) + Rxy (x2, y) dy, 

x l Yb 
(3.1b) 

where 
(i) the subscript b denotes breaking; 
(ii) T is the shear stress on vertical planes parallel to the y-axis, from the 

breaker line to the beach; 

I 
i 
i 

1 

_m___~ 
. . . . . . .  [~] x~ x2 \\-breaking 

Yl,--- 

Fig. 3.1 The control volume within the surf zone. 



88 Chapter 3 

(iii) the y-upper limit of the integrals is oc since the control volume extends 
well over the shoreline. Of course, the contribution to these integrals is different 
from zero only up to the extreme y where the water arrives on the beach. 
The novelty of (3.1a-b) with respect to (2.22a-b) consists in the shear stress Ty due 
to the real-fluid flow within the surf zone. 

The expressions of the radiation stresses obtained in sect. 2.4 retain their validity 
only up to the breaker line. Luckily, the symmetry of the problem (straight contour 
lines) implies that even in the surf zone, that is for y > Yb, R, < T > and < fl > (the 
mean force per unit length of shoreline) are constant with respect to x. Therefore 
equations (3.1a-b) reduce themselves to 

< fix > = -Ryx (Yb), 

< g  

Note, as the contour lines are x-parallel, fix is a shear force and is nonzero because 
of the real-fluid flow. 

Bearing in mind that the water depth at breaking is db -- SD, from (2.29) of Ryx 
and (2.33) of Ryy we obtain the equations 

- - -  [ 2kbdb 1 (3.2a) 1 2 1 + sin C~b COS C~b, 
< f# > -- 16 pgH b sinh (2kbdb) 

1 < £ > - - -~ pgd2b + pgdb SD 1 2[ 2kbdb (1 + sin20~b) + sin20eb]. (3.2b) 
--~-~pgH~ sinh (2k~&) 

Given that Ryx keeps constant from deep water to the breaker line, < 05x > can also 
be expressed in the alternative forms 

1 [ 2kd 1 (3.3) < fix > - - 1---6 pgH2 1 + sinh (2kd) sin a cos c~, 

where H and c~ are wave height and angle on any fixed water depth d, and 

1 pgH2o sinc~0 cosc~0. (3.4) < h x > - -  1-g 

3.2 The run-up 

3.2.1 Spilling breaker type 

Let us assume that 
(i) the seabed is flat and makes an angle A with the horizontal, 
(ii) the y-component  of the average shear stress exerted by the seabed is null. 

The assumption (ii) is commonly done [cf. Longuet-Higgins (1971)] for the so called 
spilling breaker.  The usual pattern given of this breaker type is: starting from the 
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breaker line the ratio between the wave height and the water depth keeps constant. 
(We shall see shortly when this breaker type takes place.) 

Under  assumptions (i) and (ii), we have 

< )~v > -  21 pgd2b_ tanApg < AW > , (3.5) 

where p < AW > is the mean variation of the water mass per unit length of the 
volume of fig. 3.1. 

Equating the right-hand sides of (3.2b) and (3.5) we obtain 

< cot  { E b sinh(2kbdb) 
(1 + sin 2 a b ) +  sin2 abl} .  

The < A W >  can be expressed also in terms of set-up Sv [which is the 
superelevation of the point of intersection between the mean water surface and the 
shore]. Referring to fig. 3.2, we have 

1 (db - SD)(dh + Su) cotA < Aw>--~- 1 2 - --fd b cotA. 

The last two equalities yield 

Hh - db/Lo Lo 14o 8 \-~o J ~ sinh(2kbdb) 
(1 + sin 2 ab) 4- sin 2 at, , (3.6) 

where all terms of the r.h.s, can be obtained through the procedure of sect. 2.6, for 
given values of Ho/Lo and c~0. 

In the spilling breaker  the set-up coincides with the run-up (Rv) that is the 
highest level where the water arrives on the beach (the wave fades away till its 
height becomes zero). Therefore equation (3.6) gives also the run-up of the spilling 
breaker. 

still water l e v e l \  

1 \ 

T 

mean water level \ ~ "  

Fig. 3.2 The set-up (Su) is the superelevation of the point of intersection between the mean 
water level and the shore. In the spilling breaker type the set-up coincides with the run-up (Ru). 
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Using (3.6) we have obtained fig. 3.3 which shows the quotient Rv/Hb as a 
function of Hb/Lo for the case of an orthogonal wave attack (a0 = 7r/2). The figure 
shows a basic property: the larger the steepness of the wave, the smaller the run-up. 
For the rest, we see that the run-up ranges roughly between 0.1Hb and 0.3Hb. This is 
a small run-up peculiar to the spilling breaker. A greater run-up takes place with 
the new type of breaker which we will deal with in the next section. 

0.3 

R___~u 

I I I I I I ! ! ! 

0 0.05 Hb / Lo 0.10 

Fig. 3.3 Spilling breaker type" quotient Rv/Hb a s  a function of Hb/Lo for an orthogonal attack 
( a 0 -  7r/2). For obtaining this function: fix Ho/Lo, compute db/Lo, Hb/Ho and SD/Ho [by 
means of the equations of sect. 2.6] and then use (3.6). 

3.2.2 Plunging breaker type 

The spilling breaker [fig. 3.4a] occurs if the distance from the breaker line to the 
shore is large with respect to the wavelength (we shall see shortly how large). 
Otherwise the wave overturns and produces a plunging breaker [fig. 3.4b], which is 
a phenomenon with some striking features. Peregrine et al. (1980) found that the 
water rising up the front of the wave into the jet is subject to accelerations well 
greater than g! 

As we have already pointed out, in the spilling breaker there is always some 
water beyond the shoreline. In the plunging breaker, the water withdraws from the 

Ca) (b) 

• ~.: i - :  

• .~ :  . : . ,  . . . . . .  

Fig. 3.4 Breaker types: (a) spilling; (b) plunging. 
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shoreline during the wave cycle. This run-down is then counterbalanced by a run-up 
larger than in the spilling breaker. 

The prediction of the breaker type is usually done from the value of 

.~_= tan A / v/Hb / L0 

called Irribarren's number, which is related to the quotient ]ybt/Lb: 

"~-  (Hh/db)27v / Lb " 

[To prove this, use the relation Lb ~- v/2rcLodb which is exact as db/Lo ---+ 0.] 
Hence, the greater lyhl/Lb is, the smaller is .~ That is: spilling breaker ¢# large 

lybl/Lb e:> small .~; plunging breaker ¢,  small lYh]/Lb ¢:> large J .  To judge from the 
work of Battjes (1974) the spilling breaker should occur for .~ < 0.2 that, with the 
characteristic ratio H~/d~, = 0.8, is equivalent to ]y~l/Lb > 2 + 2.5. 

In the range of the plunging breaker, Rv/Hb grows generally with .7. Looking at 
the data of the U.S. Army Corps of Engineers (1984), we see that Rv/Hb is rather 
close to .7, for .Y smaller than some threshold which depends on the bottom slope. 
In particular 

Rv/Hb ~--.~ for .Y< 0.7 and tanA = 0.10. 

For .Y exceeding this threshold, the rate of grow of Rv/Hh gets smaller and 
smaller. 

The basic matter is thus confirmed also by the plunging breaker: the larger the 
wave steepness, the smaller the run-up. An interesting example of this is sometimes 
visible from the long beach which stretches from Cape Spartivento (eastern side) to 
Cape dell 'Armi (western side) at the extreme south of the Italian peninsula (see fig. 
4.14). We happen to see the waves approaching the beach from the right-hand side 
(south-west) and the foam rushing up the beach from the left-hand side. The waves 
from the right-hand side are generated by a local wind blowing from Sicily. The run- 
up is due to the swells from the south-east which are less steep than the wind waves 
from the south-west. Under roughly the same wave height, the eye is caught by the 
steeper waves and usually the swells are not noticed. The presence of the swells is 
only revealed by the run-up because the run-up is greater if the wave steepness is 
smaller. 

3.2.3 Other breaker types 

Spilling and plunging are the more common breaker types of the wind waves on 
natural beaches. For very large values of J ,  say ,~ in excess of about 3, some new 
breaker types (collapsing or surging) occur. 

A tsunami (see sect. 14.1) can produce a huge run-up. If the greater water depths 
only are considered, tsunami's run-up should be typically nearly equal to Ilk. If we 
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include the shallow flooding, this run-up can be even much greater than Hb (see 
Camfield, 1980). A laboratory run-up of about 1.7 Hb (including the shallow 
flooding) on a beach with a slope of 1/20 is described in detail by Lin et al. (1999). 

3.3 The longshore transport 

3.3.1 The f o r m u l a  f o r  the longshore  transport  rate 

For Newton's third law, the shear force exerted by the water on the beach is 

<Lx>=-  

and hence it is given by any of the three expressions (3.2a), (3.3) and (3.4) 
multiplied by - 1. 

The immersed weight P* (per unit length) of the mobile sand is related to the 

shear force < fax > by P* --  < fax > / ~ ,  

where # is the coefficient of friction between the mobile sand and the beach. P* is 
then related to the cross section A of the mobile layer by 

P* = (% - ",/a) ( 1 -  ~')  A ,  

where 7s is the specific weight of the sand and ~ is the sediment porosity. 
The bulk longshore sediment transport rate is 

Q, = A v , ,  

where v, is a mean longshore sand velocity, which is expressed as 

Vs - K* V/-gdb , 

with K* being dependent on the size of the sand. 
The last four equations taken together yield 

Qs - K ! < fax > v#gdb, (3.7) % 

with the following definitions 

-~ K 
g ~ (Ts/ '~a --  1) (1 -  ~ )  ' (3.8) 

K - K * / # .  

A typical value for K suggested by Komar and Inman (1970) is 0.77. The scatter of 
this factor has been dealt with by Bodge and Kraus (1991). 

With the formulae for < J}x >, that is with (3.2a), or (3.3) or (3.4), formula (3.7) 
for Q, becomes 

1 ~ 2 I 2 k b d b ]  -- K H  b 1 + sin (2ab)v/-gdb (3.9a) 
Q' 32 sinh(2kbdb) ' 
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o r  

1 /~H 2 [1 -t- 
Q ' -  32 

2kd 1 sinh (2kd)  sin (2oz)v/gdb 

(where H and c~ are wave height and angle on any fixed depth d), or 

(3.9b) 

Q _  1 ~H2osin(2c~o) x//-gdb. (3.9c) 
32 

3.3.2 The equation o f  sediment conservation 

So far, we have dealt with x-parallel contour lines. Now let us examine the case 
of a coast with generally curved contour lines. We shall call ~ the offshore distance 
of the shoreline. ~ is parallel to the y-axis, but it has the opposite direction: y is 
landward oriented, ~ is seaward or ien ted .  

Generally, the beach profile is assumed to slide along a horizontal base located at 
a closure depth dc~. Referring to fig. 3.5, we have 

( d c t + B ) ( - ~ t  d 0 d x -  OQ, dx dt. 
Ox 

The 1.h.s. of this equation gives the variation in the small time dt of the volume of 
sediment in a stretch of coast of length dx. The r.h.s, gives the difference between 
the volume of sediment entering and the volume leaving the stretch of coast of 
length dx in the small time interval dt. Clearly, some terms of this equation cancel 
out and it can be rewritten in the form 

O~ 1 OQ, 
Ot d ct + B Ox 

(3.10) 

which is the well-known form of the equation of sediment conservation. 

B / : : :  : 

O~dt d~= N 

Y 

. . . . . . . . . . . .  . . - :  , , 

I 
I 
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I 0Qs dx 
- I Ox 

I ,, 
I 
i 
i 

_ I_ _ _ [ ~  
- [ ~ 7  -~ ax ~- 

breaking -/ 

Fig. 3.5 A variation d~ of the shoreline planform is due to a nonzero OQ,/Ox. 
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3.4 The analytical approach to the problem of beach planform evolution 

The analytical approach to the problem of beach planform evolution was 
originally started by Pelnard-Considbre (1956). The treatment was then developed 
thanks to the radiation stress tensor and the control volume from the breaker line to 
the shore. A very clear picture of the state of the art was given by Dean (1992) in a 
few lectures. 

It is generally assumed that the deviation of the shoreline planform from the 
general shoreline alignment (x-axis) approaches zero: 

0~ +0 (3.11) 
Ox ' 

and in addition it is assumed that 
(i) the water depth at breaking is constant along the x-axis and equal to db; 
(ii) the wave height at breaking is constant and equal to Hb; 
(iii) the angle between the direction of wave advance and the x-axis, at 

breaking, is constant and equal to c~b; 
(iv) the contour lines, at any given cross-section, are straight and parallel to a 

tangent vector to the shoreline; 
where db, Hb and c~b are, respectively, the water depth, the wave height and the 
wave angle at breaking in the case o f  x-parallel  contour  lines. 

Under these assumptions, the bulk sediment transport rate can be evaluated by 
means of (3.9a), with c~b + O~/Ox as the angle between the direction of wave 
advance and the contour lines at breaking: 

Q,(x)  - K  H 2 [1+ 2kbdb ] gx~b sin [2(c~b + _~x)] 
32 b sinh (2kb db) 

Hence, differentiating with respect to x we obtain 
. - . . .  

OQs : g H2 1 + ~ cos (2c~b) 02( (3 12) 
Ox 16 b sinh (2kbdb ) Ox 2 ' " 

where we have used the assumption (3.11). 
From (3.10) and (3.12) we arrive at the equation describing the planform 

evolution of a shoreline 

0~ = G 02~ (3.13) 
Ot Ox 2 ' 

where 

G ~H2 [ 2kbdb ] _ b ~ 1 + cos(2c~b). (3.14) 
16 dcl + B sinh (2k b d b) 
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We shall see in sect. 3.9 that equation (3.13) can be solved analytically for given 
initial conditions. 

Equation (3.13) was obtained originally by Pelnard-Considbre himself (1956) 
but the relation between longshore diffusivity G and wave characteristics was not 
fully specified. Also the relation (3.14), which is still accepted nowadays, is not yet 
exact. Indeed, if the shoreline is not straight at least a part of the contour lines 
will not be straight, and thus at breaking the water depth, the wave height and the 
angle with the x-axis will vary with x. It is true that these variations are 
infinitesimal thanks to assumption (3.11) on O~/Ox; but it is also true that, for the 
same assumption, OQ,/Ox is infinitesimal, and thus we cannot conclude that the 
effect of the aforesaid variations is negligible. On the contrary, we shall see this 
effect to be not negligible. Moreover the effect of the curvature of the contour 
lines can be neglected only under some precise assumptions on the higher order 
derivatives of ~ with respect to x. 

3.5 P r o b l e m  of  beach  p lanform evolut ion:  the case of  contour  lines parallel  
up to deep  water 

3.5.1 A s s u m p t i o n s  

Typically, the contour lines have roughly the same shape as the shoreline. 
Therefore, we assume the offshore distance ~(a/of the contour line of depth d to be 
related to the offshore distance ~ of the shoreline by 

(x) = Ay + (x), 

where Ay is constant along x and depends only on the fixed depth d of the contour 
1 

line. Let us call Ay0 the Ay of the contour line of depth do - ~ L 0  (deep water). 

Thus Ay0 is the distance between the contour line of depth do and the shoreline. 
In what follows we shall make the usual assumption (3.11) and in addition we 

shall assume that 

lay01 Oxn+l <<  Ox ~ 
for n = 1, 2, 3, ..., (3.15) 

where max denotes the maximum with respect to x. 
The assumptions (3.11) and (3.15) are fulfilled by a shoreline of the type 

~(x) a s i n (  27r ) - x + c  , (3.16) 
........ t,"A y o 

provided that . 4 i s  very large (a representing here the amplitude of the shoreline 
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undulation).  Of course, assumptions (3.11) and (3.15) are satisfied also if ~(x) is a 
sum of functions like (3.16): 

N ( ) 
~(x) ~ aisin 27r 

- -  ~ X q I -  Ei , (3.17) 
i = 1  A///Ay0 

which is useful since we can represent  a very large variety of planforms of the 
shoreline through series with the form (3.17). 

3.5.2 The formula for Qs 
Let us consider any cross-section of the beach, as an example cross-section (D in 

fig. 3.6. To obtain the bulk sediment transport  rate we shall assume that the contour  
lines are straight and parallel to a tangent vector to the shoreline at this cross- 
section. In doing so, we shall make an error since the contour lines have a nonzero 
curvature. But, if condition (3.15) is fulfilled this error has some negligible 
consequences,  as we shall see later. 

The direction of wave advance on deep water makes an angle c~0 with x-axis. 
Consequently,  it makes an angle c~0 + 8c~0 with the local direction of the contour 

lines: 8C~o = 0~ . (3.18) 

Ox 

The variation 8c~0 of the deep water angle between the direction of wave advance 
and the contour lines causes some variations in the breaking conditions. We shall 
have 

water depth at breaking = d b +  8db, 

wave height at breaking = Hb + 8Hb, 

angle between direction of wave advance and contour lines at breaking C~b + SCab, 

where db, Hb and C~b are the breaking characteristics if the contour  lines are x- 
parallel. 

Using (3.9a) we have 

[ 2kd 1 sin[2(O~b+~C~b)]V/g(db+Sdb). _ 1 K (Hb + 8Hb)2 1 + sinh (2kd) d= d~ + 5d~ Qs 32 

x , i , ,  ~ . , . ,  , ,. 

: . :  : .: , ' ~ . ,  : :  i ̧ . :  , : ;  + : .~,~ : , . ,  : . . . . . .  ~ • . . . .  • . ~ • • ~ ~  

~ = d 0  

Fig. 3.6 Contour lines with a small curvature. At any cross-section like Q, we assume the 
contour lines to be straight. 
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This formula is rather difficult to handle because ~Hb, 6db, and 8ab depend on 
O~/Ox in a complex way. Certainly, the formula that proceeds from (3.9c) is more 
simple" 

Q, _ 1_~/~H20 sin[2(a0 + 6ao)]v/g(d b + 6db). (3.19) 
32 

Indeed 6a0 is simply equal to O~/Ox, so that only 6db must be sought. What follows 
is devoted to this operation. 

3.5.3 The variation 8db o f  the water depth at breaking 

The problem is in the following terms. We know: if 
(i) the contour lines are straight, 
(ii) the wave period is T, 
(iii) the wave height on deep water is H0, 
(iv) the angle between the direction of wave advance on deep water and the 

contour lines is a0, 
then the water depth and the wave height at breaking are respectively dh and Hb. 
We wonder: how does it change the water depth at breaking if the direction of wave 
advance on deep water changes from a0 into a0 + 8a0? 

Assuming that the quotient between the wave height and the water depth at 
breaking is constant and equal to 0.8, we have 

Hb + 8Hb = Hb = 0.8 (3.20) 
db + 6db db 

which implies 6db -- 6Hh/0.8 . (3.21) 

To get 8Hb let us consider H(x~,x2, d) where 
x~ = wave height on deep water, 
x2 --- angle between the direction of wave advance on deep water and contour lines. 
H(x~,x2, d) gives the wave height as a function of water depth d and of wave 
characteristics x~ and x2 on deep water (for a fixed wave period T), under the 
assumption of straight contour lines. In terms of this function, we have 

1 = H O ,  x 2  = (*l), d = d b Od 1 = HO, x 2  = C~o, d = d b 

which together with (3.21) leads to 

where 
6db -- K, Ho6ao, (3.22) 

1 

H °  0x2 1 =Ho, x2 =ao, d = d b  

K, = . (3.23) 

0.8 
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Function H(Xl,X2, d) proceeds straightforwardly from equation (2.45) of shoaling- 
refraction: 

sinh(2kd) 
n (x1,  x 2 ,  d )  - x 1 tanh (kd)[sinh (2kd) + 2kd] 

1 - -  COS 2 x  2 

1 - tanh 2 (kd) COS 2 x  2 

Differentiating this function, we obtain 

0(~)~ 1 [ ,2 1+[ 1~02 1+[ 1 ~,2 lsin,2o0 , 
l=i_to, x2=~o,d=db---- ~ Ho TI(S2-+ B2)  1 - Ti2-C02 (1 --  Tl~--Cb2) 2 ' 

(3.24a) 

=Ho, x~--~o, d=d~ Lo $2 +-B2 TI (S2 + B2)  TI (S2 + B2) 2 " 

[1  c021+1 E s2 I~E1 c02 
• 1 - T12 CO 2 -q--2 TI (S2  + B 2 )  1 - T I  2 CO 2 

where 

~ Ec02,1- c02,~,Jc,2]} 
(1 - T12 CO 2)2 

(3.24b) 

C1 =_ cosh(kb db), T1 =_ tanh (kb db), B2 =_ 2kb db, $2 =_ sinh (2kb db), 

C2 = cosh(2kbdb), CO - cosao. 

Equation (3.22) with (3.23) and (3.24a-b) represent the solution to the problem 
of 8db. 

To prove the step from (3.20) to (3.21), bear in mind that 

f (xo + ax) = f (Xo) +/(Xo)aX, 

provided that the derivative f(Xo) exists. Thus, for f (x)  -- 1/x, Xo =- db, and 6x _= 8db, we have 

1 = 1 1 8db. 
db+ 8db db d~ 

Hence, the proof proceeds straightforwardly. 

3.5.4 The  relat ion be tween  Q~ a n d  O~/Ox 

Equations (3.18), (3.19) and (3.22) taken together yield 

1 K H2o gx~b 2cos (2ao) + ~ K1 sin (2ao) ~ Ox e s  - K Hao sin (2ao)gx~b + 32 " 

(3 .25)  



Wave effects on coasts 99 

The framed term on the r.h.s, of this formula is the sediment transport rate for the 
case of x-parallel contour lines. The additional term is the variation of the sediment 
transport rate due to the deviation of the shoreline planform from the x-axis. 

To prove the step from (3.19) to (3.25), use the relations 

sin[2(a0 + 6a0)] - sin(2a0) + 2 cos(2a0)6a0, 

, 1 ( g ) - '  
[g(db + 8dh)] ~ --(gd,,) T +--2 ~ 28dh. 

3.5.5 The equation of beach planform evolution 

Combining equations (3.10) and (3.25), we obtain a single equation describing 
the planform evolution of a shoreline" 

0~ = G~ - -  0 2 ~  ( 3 . 2 6 )  
Ot O x  2 ' 

where 

a l  z 
32 d~l+B 

1 H° 1 (3.27) 2cos (2a0) + ~- K~ sin (2a0) ~ . 

We see that the exact equation has the same framework of the traditional (3.13), 
but the longshore diffusivity is markedly different. It suffices to note that G of 
the traditional equation is nearly always positive (usually ab is rather close to 
7r/2, so that COS(2ab) is smaller than zero); while G~ of the exact solution can 
well be smaller than zero for a small a0. We shall see in sect. 3.7 that a negative 
G~ has a clear physical meaning. The consequence of the difference between the 
exact and the traditional solution should be already apparent:  the fact that in a 
few cases the longshore diffusivity is negative rather than positive implies an 
opposite evolution of the beach planform, that is erosion instead of accretion or 
vice versa. 

3.5.6 The effect of  the curvature of  the contour lines on the sediment transport 

Equation (3.25) of Q, has been obtained under the assumption that the contour 
lines at any fixed cross-section are straight. If we counted the effect of contour lines' 
curvature, the expression of Q, would include some additional terms in 

0~ 0~ 
Ayo--~x 2 and Ay2 0 0 x  3 . 

These additional terms can be neglected because of the assumption (3.15). 
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3.6 Problem of beach planform evolution: the case of contour lines parallel 
only within a certain distance from the shoreline 

3.6.1 An idealized configuration of a nourished beach 

The original (unnourished) beach of fig. 3.7 consists of x-parallel contour lines, 
with a berm at a depth d~ [see fig. 3.7]. A restoration program modifies the beach 
profile up to the berm. The new beach contour lines are parallel to the new 
shoreline [see again fig. 3.7]. Therefore,  from offshore to coast, we find first the x- 
parallel contour lines of the original topography, then the berm, and then the 
curved contour lines of the nourished beach. 

m 

. . . . . . . . . . . . . . . . .  "~berm 

sect. A-A 

d n ~. ~ '~" 

sect. B-B 

Fig. 3.7 Our pattern of a nourished beach: the initially straight contour lines are modified up to 
depth dn because of the added sand. 

Also in this case the evolution of the shoreline planform is analytically 
predictable.  To this end, we remake  assumptions (3.11) and (3.15) on the 
derivatives of the shoreline. Moreover,  for getting the transport  rate Q, we assume 
that the contour lines of the nourished beach at any fixed cross-section are straight. 
Doing so, that is neglecting the contour lines' curvature, we shall make a negligible 
error  thanks to assumption (3.15). 

3.6.2 The formula for Q, 

On water  depth d. the wave characteristics are the same that would be there 
without the nourishment;  indeed, the original seabed topography with the x-parallel 
contour lines still remains on water depths larger than d. .  Hence,  on water depth 
d . ,  the wave height takes on a constant value H. and the direction of wave advance 
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makes a constant angle c~, with the x-axis; and H, and c~, are related to H0 and c~0 by 
equations (2.43) and (2.45) of shoaling-refraction: 

cosc~ - cosc~0 tanh (k~d~), (3.28a) 

1 [ 1 _ cos____2oz0_ ]+, (3.28b) 
H,{tanh(k,d,) [sinh(Zk, d,) + 2k, d,]/sinh(Zk, d,)} 7 -  H0 1 -cosZc~, 

where k, is the wave number  on water depth d. .  
The sediment transport rate Q, at any fixed cross-shore section is given by (3.9a) 

or by (3.9b) (this only for d <_ d,); equation (3.9c) is no longer valid because the 
contour lines are parallel to the shoreline only up to water depth d,. It is convenient 
to express Q, in the form (3.9b) with d -  d~ because on water depth d, the wave 
height takes on the constant value H~ and the angle between the direction of wave 
advance and the contour lines of the nourished beach is c~ + ~c~, with 

Ox' 
and c~ constant. Therefore we have 

1 /~ 211 + 2k~d, lsin[2(c~, + 6c~)] v/g(db + 6db), (3.29) 
O '  - 32 Hn L sinh(2kndn) J 

where db -+-6db is the new water depth at breaking and db was the water depth at 
breaking when the contour lines were x-parallel. 

3.6.3 The variation 6db of the water depth at breaking 

The reasoning is essentially the same as in sect. 3.5.3, with the only difference 
that ~)Hb n o w  is the variation of the wave height at breaking for a variation 8c~ of 
the wave direction on depth d, and no variation of the wave height on depth d~. 

Retracing the steps of sect. 3.5.3 we arrive at 

(3.30) 

K2 = HO 3=Hn, x4 . . . .  d=db , ( 3 . 3 1 )  

0 . 8  - -  Ol--~lx3=Hn, x4 . . . . .  d=db 

where 

X 3 ~.~ wave height on water depth d,,  
X 4 ~-~ angle between the direction of wave advance and the contour lines on water 

depth d,. 
H(x3, x4, d) gives the wave height as a function of water depth d and of wave 
characteristics x3 and x4 on water depth d, (for a fixed wave period T) under the 
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assumption of straight contour lines. This function proceeds from the usual 
equations (2.43) and (2.45) of shoaling-refraction: 

{ tanh(k.d.)[sinh(2k~d~) + 2k,,d~]sinh(2kd) }-} 
H(x3, x4,d) -- X3 tanh(kd)[sinh(2kd)  + 2kd]sinh(2knd~) " 

.{ 1 _ C0S2X4 }1 
1 - [tanh (kd) / tanh  (k. d.)] 2 cos2x4 " 

Differentiating it, we get 

(oH)~ 
ON4 3 =Hn, x 4 =ten, d = d  b 

1 $2 ~0~ I ~ / ~ , ~ ~ ] 1 [  . 1 - C O  2 .]+CO TO V/1 - TO 2C02. 
1 - TO 2 C O  2 J 

[ 1 ~,2j~021 El ~02c02] ~ 
(1  - T1 ~ -C--~ i 2 1 - ~-~ 7 - ~  

OI--~IX 3 = nn , x 4 = Ol n , d = d b 

= r.h.s, of (3.24b), 

where we have used (3.28a-b) and the compact symbols 

C1 - cosh(kbdb), T1 - tanh(kbdb), B2 - 2kbdb, $2 - sinh(2kbdb), 

C 2 -  cosh(2kbdb), C O -  cosc~0, T O - t a n h ( k n d n ) .  

3.6.4 The  equat ion  o f  p l a n f o r m  evo lu t ion  o f  the n o u r i s h e d  beach 

Bearing in mind that 8a,  - O~/Ox, from (3.29) and (3.30) we obtain 

es 32 ~ sinh(2k~d~) sin(2c~)v@db + 2 c ° s ( 2 ~ )  ~ O~ _ -~x + 

1 ~ o~ 1 + ~ sin (2c~) g n 0 K 2 ~ . 

Hence, with equation (3.10) of the sediment conservation, we arrive at 

O t  O X  2 ' 

where 

a2 = K n20 ~ b b  l ~ 1 -  C02 [2(2T02C0 2 
32 dc~ + B -To 1 -- TO 2 C O  2 

(3.32) 

~o~ - 1) + K2 v/1 - TO 2 CO 2 TO CO - ~ b  " 

(3.33) 
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Use (3.28a-b) to check this expression of G2, and prove that it correctly coincides with the 
expression (3.27) of G1 for TO = 1. 

3.7 Planform evolut ion of  a natural shoreline 

3.7.1 Analysis o f  the longshore diffusivity G~ 

Let us consider the longshore diffusivity G1 given by (3.27). G~ thought of as a 
function of c~0 proves to be symmetrical with respect to c~0 = 7r/2: 

(2  + - (2--  
[In examining (3.27) of G~, bear in mind that K~ depends on sin (2c~0), so that G~ is 
the sum of a term depending on cos(2c~0) and of a term depending on sin 2 (2c~0).] 
Therefore we limit ourselves to analyse G~ on the domain 

71" 
0<C~o < 

- - 2  ~ 

and, to make this analysis easier, we define 

where 

c ' ,  - 

,, K 

G 1 - -  3 2  

G1  - G' " 1 -+- G 1 ,  

/~ _ _ H 2 o  2 gv/~7]cos(2c~o), 
32 dct+B 

.20 
dct+B 2 

K1 sin (2C~o). 

Here K is positive. As to K~ [definition (3.23)], it is given by the product of a 
positive term and sin (2c~0). Therefore, it follows that 

< 0  for 0 < a 0 <  7r 
4 '  

t 71- 
G 1 - 0  for c~0- 4 '  

> 0  for 7r <c~0< 7r 
4 - 2 '  

/ 

, , / < 0  for 0<C~o<  
71- G~ - 0  for C~o- . 
2 

7l- 

2 ~ 

The conclusion being that G~ is smaller than zero if 0 < c~0 < 7r/4, and is greater 
than zero if c~0 = 7r/2. Hence, given that G~ (c~0) is strictly increasing on [7r/4, 7r/2], it 
will exist rc 

Og0crit 
4 '  
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such that 
< 0 for C~o < OL0critt 

G~ (3.34) 
> 0 for C~o > C~ocrit. 

3.7.2 Whether a foreland undergoes erosion or accretion 

G1 > 0 implies that a foreland is eroded, and, on the contrary, G1 < 0 implies 
that the foreland grows. This is a consequence of equation (3.26) and of the fact that 
O2~/Ox 2 of a foreland is negative. Therefore, basing ourselves on (3.34) we 
conclude the foreland's evolution will be: erosion if c~0 >OL0crit, accretion if 
OZ 0 ~ OZ 0 crit • 

As discussed in sect. 3.5, the difference with respect to the traditional solution is 
remarkable. Indeed the longshore diffusivity G in the traditional equation (3.13) is 
nearly always positive because c~b is usually close to 7r/2 as a consequence of 
refraction. Hence, the traditional solution foresees that the foreland is eroded 
whatever the wave direction on deep water. 

3.7.3 Why the foreland grows or is eroded according to whether the wave 
direction on deep water is very inclined or nearly orthogonal to the 
shoreline 

Fig. 3.8a illustrates the case of waves attacking orthogonally a foreland. The 
sediment transport rate Q, is positive at point Q and negative at point @, because 
of the opposite angle of the wave direction at breaking. As a consequence, the 
sediments are removed from the foreland that gradually gets smaller. 

Fig. 3.8b illustrates the case of an inclined wave attack. Here the sign of Q,o is 
the same as the sign of Q~®, and, as for the absolute value, two contrasting matters 
are involved: for the first one Q~® should prevail over Qso; and, for the second one, 
Q,o should prevail over Q,®. The first fact is that the wave direction at breaking is 
more inclined at location @ than at location @. The second fact is that the wave 
height at breaking is larger at @ than at @, since Q is on the lee side of the 
foreland. For c~0 > C~0cr~t it is the first fact to prevail, so that Q,® is larger than Qso 
and the foreland is eroded. On the contrary, for c~0 < OL0crit it is the second fact to 
prevail, so that Q,o is larger than Q,® and the foreland grows. 

3.8 Stability of a nourished beach 

3.8.1 Analysis o f  the longshore diffusivity G2 

Here we analyse (3.33) to understand how does G2 vary with c~0 and d,/Lo (d, 
being the depth of the nourished beach). It should be noted that G2 depends on c~0 
for the term CO - cosc~0 and depends on d,/Lo for the term TO - tanh (k,d,). 

Specifically, let us analyse the quotient 

G2 (C~o, d~/Lo)/G2 (7r/2, oc), 
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~ao a 

(a) 

(0) 

Fig. 3.8 (a) A foreland attacked orthogonally is eroded because both Q,o and Q,o are directed 
outward. (b) If the foreland is subjected to an inclined attack, erosion will occur if Q,o is smaller 
than Qso, while accretion will occur if Q,o is greater than Q,o" 

where G2 (7r/2, oc) is the value of G2 for the basic case of or thogonal  wave attack 
/ . ,  \ 

and deep  n o u r i s h m e n t  (d , /Lo>+) .  This quo t i en t  has been  (c~0- 7r/2) 
,,, z . /  

represented in fig. 3.9 as a function of c~0, for a few different values of d~/Lo, 
and any fixed H0 and dct + B, and Ho/Lo = 0.05 (here note that the sensitivity of 
the graph to a variation of Ho/Lo is very small). 

1 
For d,/Lo > ~ ,  G2 tends to coincide with G~ and thus we see what was 

illustrated in sect. 3.7.1:G2 smaller than zero for c~0 within a C~0c~t. For d,/Lo smaller 
and smaller, the domain on which G2 is negative shrinks gradually, and in addition 
the largest positive value of G2 grows. 

3.8.2 Different degree of stability of a nourished beach according to its 
depth 

To understand the physical consequences of the analysis on G2, we must bear in 
mind equation (3.32) and fig. 3.10. This shows that 02~ /0x  2 is negative on the 
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Fig. 3.9 The longshore diffusivity G2 as a function of the wave direction on deep water, for a few 
depths of the nourished beach. The nourished beach proves to be the more stable, the greater its depth 
is and the more inclined the waves are (bearing in mind that c~0 = ~ / 2 means orthogonal wave attack). 

central  par t  of the nour ished beach while 0 2 ~/OX 2 is positive on the two sides. 
Therefore ,  if G2 is greater  than zero, the central part  of the nour ished beach is 
e roded  and the two sides grow. This means that  the nour ished beach melts, since 
the nour i shed  material  spreads over the coast. On the contrary,  if G2 is smaller than 
zero the central  part  of the nour ished beach grows. 

The conclusion is that the deeper  the toe of the nour ished beach, the slower the 
erosion is. U n d e r  the same depth of the nour ished beach, the erosion is s t ronger  if 
the wave direction on deep water  is or thogonal  to the general  al ignment  of the 
shoreline. In the case of a deep nour ished beach, the waves whose direction on deep 
water  is very inclined with respect to the shoreline restore (rather  than destroy) the 
nour ished  beach. 

Kamphuis et al. (1986) suggest that/£ in formulae (3.9) for Q, is proportional to Hb/D (D 
being the grain size). With their expression for K, one can obtain the exact forms of G1 and 
G2, using the formal solutions for 5db given in sects. 3.5.3 and 3.6.3. As a result, you will find 
that the range on which G2 is smaller than zero gets larger than in fig. 3.9, which means 
smaller beach erosion. 

,I -I- 

c~---~ >0 ~c2~ ~>0 x 

Fig. 3.10 Curvature of a nourished beach planform. 
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3.8.3 Different degree of  stability of  a nourished beach according to its location 

Under  the same depth dn and wave characteristics on deep water, the nourished 
beach of fig. 3.11a on a long straight coast should be more stable than the nourished 
beach of fig. 3.11b between two promontories.  Indeed the very inclined waves in 
case (b) cannot  reach the nour ished beach that  is shel tered by the two 
promontories.  

x 

~._.~ the-ve;y~clined waves 
cannot reach the 
nourished beach 

Fig. 3.11 The nourished beach (b) is more easily eroded than (a), because it cannot be restored 
by the very inclined waves. 

The difference between the case of fig. 3.11a and the case of fig. 3.11b gets 
relevant only if the nourished beach is deep, since only in this case do the very 
inclined waves fully exert their beneficial action. In such a case, it may even be 
that the nourished beach (a), thanks to the action of the very inclined waves, 
keeps stable. For this to occur, it suffices that the waves with angles smaller than 
OZ0cri t and the waves with angles greater than OZ0cri t have nearly the same frequency 
of occurrence and the same height on deep water. We shall examine this point in 
the next section. 

Of course the stability of a beach nourishment  project is widely affected also by 
factors such as grain size-distribution and fill placement techniques (e.g. Kana and 
Mohan,  1998), which go beyond the scopes of our basic illustration of the wave 
action on a nourished beach. 

3.9 Planform evolution of beach nourishment projects 

3.9.1 The solution for the initial shoreline of rectangular planform 

Equations (3.32-33) are exact whatever the time t provided that dot is equal to d , ,  
or else they are valid only at time t - 0 .  Henceforth we shall assume 

dcl = dn 

and we shall analyse the evolution of an initial shoreline planform. 
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Equat ion  (3.32) with the initial condition 

- a  if _ l b < x <  1 b 
{(x, 0) 2 2 ' 

l b o r x > l b  . . . .  - 0  if x <  2 2 ' 

with a and b any pair of positive values, admits the solution 

_ a {eft [J~l (X, t)l -- erf [~2(x ,  t)]}, (x, t) --f 

with 
1 (x b ) /  

1 

(3.35) 

(3.36a) 

(3.36b) 

where it is assumed that G2 > 0 and t > 0. 
Here  one has simply to obtain the partial derivatives of function (3.35) and verify 

that  these derivatives satisfy equation (3.32). To this end it needs only to recall the 
definition 2Iw -- e -u2 du. eft(w) - ~  0 (3.37) 

As to the initial condition, it suffices to note that  

lim0 u~ 1 (x, t){ -- AVO0--O0 
for every fixed x > -b/2, 
for every fixed x < -b/2, 

for every fixed x > b/2, 

for every fixed x < b/2, 
lim ~/~2 (x, t) { - + ~  

t ~ O  ~ ~ 0(3 

lim erf (w) = 1, 
W---~  O 0  

lim erf (w) - - 1 ,  
W---+ - -  O G  

from which it follows that, as t ~ O, ~ (x, t) approaches zero for any fixed x greater  
than b/2 or smaller than - b / 2  and approaches a for any fixed x between - b / 2  and 
b/2. Of course, ~ is a continuous function of x also as t ~ O, and indeed it goes 
gradually from 0 to a in a ne ighbourhood of order x ~ 2 t  of x -  -b/2, and it goes 
gradually from a to 0 in a neighbourhood of order x ~ 2 t  of x -  b/2. In simple 
words: as t ~ O, (3.35) is the equation of a rectangle of base b and height a, with 
round corners. 
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Fig. 3.12 shows ~ (x) at a few time instants. Function ~, as we can easily verify 
from its expression (3.35), is always positive, for every x and t. Moreover  the area 
between ~(x, t) (the shoreline of the nourished beach) and the x-axis (the original 
shoreline) keeps constant in time. Indeed 

I +~ ~ (x, t) dx - ab, (3.38) 
--OG 

for every t. 

3.9.2 A so lu t ion  f o r  a m o r e  realistic initial cond i t ion  

Function (3.35-36) with G in place of G2 is used [Dean (1992)] to foresee the 
planform evolution of a beach nourishment  project (G being given a simplified form 
valid on shallow water). 

Really function (3.35) satisfies the differential equation, but fails to satisfy 
condition (3.11). Indeed, as t ~ 0, the derivative O~/Ox at x = - b / 2  and x = b/2, 
far from approaching zero, tends to infinity. To obviate this discrepancy, and also to 
get a more realistic initial condition, Walton (1994) has obtained the analytical 
solution for beach fills with tapers at the end. Alternatively, we can resort again to 
function (3.35), but with the following new forms of.  ~/~1 (x, t) and .  ;~2(X, t): 

-'I- ..... ~I (x, t) -~ + ~G2 to -+- G2 t, (3.39a1 

-,( + 9,, ....i. (x, t) T x - 

where it is assumed that G2 > 0 and t _> 0. With these forms of .#~(x , t )  and 
,,~2(x, t), the initial planform of the shoreline is the one that originally (i.e. with 
formulae 3.36a-b fo r ,  "/~l a n d .  J/~2) occurred at instant to. The value of to will be 
defined after a few attempts, so to fit the initial design planform of the nourished 
beach. In summary, we shall have to fix two parameters:  to, and a or b (bearing in 
mind that a .  b is the total area of the gained beach, which obviously is a design 
input). 

I b I 
X ,  

Fig. 3.12 Evolution of an initially rectangular beach planform. 
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3.9.3 The solution valid for unsteady wave conditions 

Solution (3.35) with ~ 1 ,  u~J2 given by (3.39a-b) enables us to foresee the beach 
planform evolution provided that the waves keep constant in time, so that G2 also 
keeps constant. Let us now allow the possibility that the wave height and direction 
are not constant in time. In this case, G2 is no longer a constant, that is we have a 
Gz(t) in place of the constant G2. Nevertheless, function (3.35) satisfies the 
differential equation (3.32) provided that 

1 (x b ) / ~  I: ~ (x, t) - -~- + const  + G2 (t') dt ' ,  

1 (x b ) / ~  I; $ 2  (x, t) - -~- - const + G2(t') dt ' ,  

where const is a positive constant and G2 may be positive or negative. Naturally, the 
constant const (whose dimension is square length) will be obtained after a few 
attempts, so that the initial condition fits the design planform of the nourished 
beach. Also in this case the parameters to be determined are only two, i.e. const and 
a or b, given that a .  b is the known area of the gained beach. 

If 

i t G2 ( t ' ) >  0, dt '  
0 

we shall have something like fig. 3.13a: erosion of the nourished beach. On the 
contrary, if 

IIG2 ( t ' ) <  dt '  0, 

we shall have something like fig. 3.13b: accretion of the nourished beach. 

Ca) (b) 

X, X. 

Fig. 3.13 (a) The integral of Gz(t) is positive: erosion of the nourished beach. (b) The integral of 
G2(t) is negative: accretion of the nourished beach. 
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3.9.4 Example: planform evolution of the nourished beach under unsteady 
wave conditions 

Let  us imagine that  a nour ished  beach is subjected to one hundred  hours  of 
waves with given H0 and L0, and c~0 equal  to 70°; subsequent ly  it is subjected to one 
hundred  hours of waves with the same H0 and L0, and c~0 equal  to 20 °. Let  us 

1 
assume also that  d,,/Lo >_ -~. As we see from fig. 3.9, the G2 of c~0 - 20 ° is nearly 

opposi te  to the G2 of c~0 = 70 °. Hence  

Ii G2(t') dt' 

is zero for t = 200 hours,  and consequent ly  the offshore distance ~ (x) after the two 
hundred  hours is unchanged  with respect  to the initial shoreline.  

Note, fig. 3.9 is based on the assumption of constant H0 and L0, and hence it is suitable 
for the aim of this example. Whereas, for comparing the G2 of two wave trains with different 
values of H0 and/or  L0, one has to resort to equation (3.33). 

3.10 A useful simplification 

3.10.1 The core of the equation of O~/Ot 

Since Q, depends  on < f~ > and on gx/~h, O~/Ot depends  on the longshore 
variat ions of < f,x > and v@db. Here  we shall prove that  the basic dependence  is on 
< f~x > .  To achieve this we shall restar t  the t r ea tmen t  f rom the beginning,  using the 
following simplified forms of Q, and O~/Ot: 

Q, ~ const < f~ > = - c o n s t  < ~ > ,  (3.40a) 

0 ~ _  ~ const OQ, , (3.40b) 
Ot Ox 

where  the constants  are positive. 

3.10.2 Planform evolution of a nourished beach: an approximate equation 

From (3.40a) and (3.3) we have 

I 2kd ] 
Q, -~ c o n s t H  2 1 + s i n h ( 2 k d )  sin(2c~), (3.41) 

where  H and c~ are the wave height  and the angle of the direction of wave advance 
on an arbi t rary  water  depth  d (provided that  the contour  lines are parallel  to each 
other  within this water  depth) .  



112 Chapter  3 

Let us now consider the idealized configuration of a nourished beach described 
in sect. 3.6.1 and fig. 3.7. In this case, it is convenient to apply (3.41) with d = d, ,  
since the wave height on water depth d, takes on the constant value H , ,  and the 
angle between the direction of wave advance and the beach contour lines is equal to 
a~ + O ( / O x  with a n constant. Therefore 

Qs ~- constH2~ [1 + 2kndn ]I 
sinh (2k. d . )  sin (2c~.) + 2 cos (20en) -~x " 

Then with (3.28a-b) relating H. ,  c~. to H0, c~0, it follows that 

,,,,a 2 1 1 -- CO 2 2 V / 1  --  T O  2 CO 2 TO CO + 2 (2 T O  2 CO 2 1) 
Q~ - const H0 - ~  1 - TO 2 CO 2 - ' 

where TO stands for tanh(k,d~) and CO for cosc~0. 
Finally, with this formula for Qs and equation (3.40b) of O~/Ot ,  we arrive at 

0~ • 02~ 
Ot ~- G2 0X 2 ' 

(3.42) 

where G; (that stands for a p p r o x i m a t e  G2) is given by 

* _  2 1 ~/ 1 - C O  2 (2T02C02 1) 
G 2 - c o n s t H  0 - ~  i - TOzCO 2 - . 

1.5 

"~ 1.0 

0.5 

--0.5 

-1.0 

-1.5 

1.5 

(~ dn/L o > 0.5 
(~dn/Lo=0.25 ( ~  ~ 

,0 ~ , / /  60, ' ~° (degre 2 

-10 

-1.5 

Fig. 3.14 The longshore diffusivity obta ined by means of the simplified equat ions  (3.40a-b). The  
exact form is given in fig. 3.9. 
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3.10.3 The prediction of  beach planform evolution by means of the 
approximate equation 

The approximate longshore diffusivity G 2 is shown in fig. 3.14 as a function of c~0 
and d~/Lo. We see that it re-proposes all the essential features of the exact solution 
that was given in fig. 3.9. In particular G 2, like G2, is greater than zero only for c~0 
greater than a threshold O~0cri t which is nearly the same for G 2 and G2. Moreover  G 2, 
like G2, grows as d,,/Lo decreases. 

Thus, even from the approximate solution, we arrive at the two essential concepts: 
the waves nearly orthogonal to the shoreline destroy the nourishment, while the very 
inclined waves restore the nourishment; the demolition gets less intense and the 
restoration gets more intense as the depth of the nourished beach grows. 

Conclusion: the simplified forms (3.40a-b) are effective to understand the main 
trend of the beach planform evolution; and, thanks to these simplified forms, also 
the prediction of the beach planform evolution caused by coastal structures gets 
easier, as we shall see in the following section. 

3.11 Beach planform evolution caused by structures 

3.11.1 A general equation for the evolution trend of a beach near to coastal 
structures 

In order to predict the beach planform evolution caused by a structure we shall 
model the beach as an ideal absorber which does not alter the wave motion in front 
of it. It does not reflect nor transmit energy. The absorber is located at the original 
shoreline (x-axis) as is shown in figs. 3.15 and 3.17 which illustrate, respectively, the 
case of a groin and of a detached breakwater.  

Let us consider any small control volume of width 5x such as the one of fig. 
3.15b. Let us compare this control volume with the same control volume without 
the absorber [cf. fig. 3.15c]. The difference, for what concerns the x-component of 
the linear momentum equation, is that in the control volume of fig. 3.15b there is 
the force < ff:~(x)> 5x exerted by the absorber while in the control volume of fig. 
3.15c there is the effiux of linear momentum Rvx(x, 0) 5x. The other terms are the 
same in the two control volumes, given that the ideal absorber does not alter the 
wave motion before it. Therefore, the x-component of the linear momentum 
equation for the control volume of fig. 3.15b is equal to the x-component of the 
linear momentum equation for the control volume of fig. 3.15c, apart from two 
differences: the presence on the 1.h.s. of the force exerted by the absorber; and 
the absence on the r.h.s, of the linear momentum effiux from the upper x-parallel 
side of the control volume. Since both the small control volumes, the one of fig. 
3.15b and the one of fig. 3.15c, must satisfy the linear momentum equation, it 
follows that 

< f (x) > - - R .  (z, 0). 
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Hence,  by means of (3.40a-b), we get 

0~ _ ~ const 
Ot 

OR~ (x, O) 

(a) 

(b) Y~ 

(c) 
& 

i i 
L J  

incident 
0 wave direction 

(3.43) 

T g~fx,O) 
/ min~ 

~'vative /~/derivative X 

~ : .  i original shoreline 

(e) ~ ~e~ • . ~,: ,,'~" .-: ,:, ~. ............. 

I~ ~ .h~o 

Fig. 3.15 (a) Groin. (b) Beach thought of as an ideal absorber. (c) Absorber removed: 
comparing (c) to (b) we realize that < ])x(X) > =  -Ryx(X, 0). (d) Function Ryx(X, 0). (e) Evolution 
trend of the shoreline planform obtained by means of (3.43). The Ryx of the diffracted waves was 
contributed by P. Filianoti. 
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where, as said, const is a positive constant. The derivative O~/Ot gives the evolution 
trend: if O~/Ot is positive the dry beach grows; if O~/Ot is negative the dry beach gets 
narrower;  the larger the absolute value of O~/Ot, the larger is the deformation of the 
dry beach. 

Equat ion (3.43) is a general  tool to predict the evolution trend of a beach in 
consequence of the building of some coastal structure. One has to estimate the Ry~ at the 
original shoreline (assumed to coincide with the x-axis), as if the beach was not there. 
Then the evolution trend is simply given by the opposite of the derivative ORy~/Ox. 

To a first approximation, one assumes a constant water  depth (the mean water 
depth within the shoreline and the groin's tip or detached breakwater) .  As for the 
radiation stress Rye, it can be obtained analytically for a few configurations of basic 
interest (we shall see two examples in the next section). 

With this approach, we can estimate the diffraction effect which is the principal 
responsible for the beach deformation near  coastal structures. 

3.11.2 The cases of  a groin and of  a detached breakwater 

Groin 
For the case of the groin (fig. 3.15), we obtain Ry~ from the formula (1.59b) for 

the velocity potential  of the waves interacting with a semi-infinite reflecting wall 
(the groin). In (1.59b), ~ is given in terms of the polar coordinates r,/3. Thus we 
must resort to the conversion rules 

O O d x _  00 ( _ d x s i n / 3 ) + 0 O  ( _ d x c o s / 3 )  
Ox Or - -~  r ' 

(3.44a) 

00 04) (_  dy sin/3) 04~ dy - dy cos ~ + 
oy Or r 

(3.44b) 

which have been written in the coarse form (without cancelling dx and dy) in order  
to make easier their verification by means of fig. 3.16. 

Fig. 3.15d shows Ryx(x, 0), and fig. 3.15e shows the evolution trend of the beach. 
Ryx is zero at the groin where v~ is zero. The derivative ORy~/Ox has its negative 
maximum at the wave beaten side of the groin, and its positive maximum at a 
certain distance from the lee side. Therefore  the maximum beach accretion is at the 
wave beaten side of the groin, and the maximum erosion at a certain distance from 
the lee side. 

Note, in equation (1.59) 0 is the angle between the orthogonal to the wall and the 
direction of wave advance. Accordingly, in fig. 3.15, 0 denotes the angle between the 
orthogonal to the groin and the direction of wave advance. 

Note also that the Ryx(x,O) shown in the figure has been obtained through the more 
realistic theory of the wind waves (chap. 8) with a characteristic directional spectrum and an 
inclined dominant direction. Resorting to the periodic wave pattern, one would find a 
sequence of local maxima and minima of Ryx(x, 0) for x > 0. As a consequence, the 
disturbance of the groin would affect the shoreline for a great distance. 
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Fig. 3.16 

= -  \ 

Aid for checking equations (3.44a-b). 

Detached breakwater 
In the case of the detached breakwater (fig. 3.17), the radiation stress Ry, 

approaches zero as Ix] tends to infinity, since we have assumed the wave attack to 
be orthogonal to the original shoreline. Moreover, for symmetry, Ryx is zero at x = 0 
(breakwater centre). Before x = 0, Ryx has a local maximum since the wave 
diffracted by the left tip of the breakwater attacks the beach from the left side. On 
the contrary, after x -- 0, Ryx has a minimum (negative maximum) because the wave 
diffracted by the right tip of the breakwater attacks the beach from the right side. 
The aforesaid local maximum and minimum of Ry, are located roughly opposite the 
two tips of the detached breakwater. Thus, in the strip between these two tips, 
ORyx/Ox is smaller than zero, which results in beach accretion. Outside this strip, 
ORy,/Ox is greater than zero, which results in beach erosion. 

Conclusive note 

The solution for the set-up is due to the works of Longuet-Higgins and Stewart 
(1963 and 1964) and of Bowen et al. (1968). The solution for the longshore 
sediment transport is due to the works of Longuet-Higgins (1970-1971) and Komar 
and Inman (1970). 

As previously said, the traditional solution for the evolution of a beach planform 
is due to Pelnard-Considbre (1956). Dean and Yoo (1992), Work and Dean (1995), 
and Work and Rogers (1997) pointed out that the longshore variation in the wave 
direction and height modifies the rate of evolution of a nourished beach, and they 
gave some improved solutions. However, these solutions are still approximate 
in that some terms being linearly dependent on c9~/0x are neglected or assumed 
to be constant. The solutions given in sects. 3.5-8 are novelties. They are exact as 
c9~/cgx--+ 0 under the assumption of sect. 3.5.1, at the initial time instant (the 
solution for the ideal nourished beach is exact whatever the time instant, provided 
d~ = dd). 

The pattern of sect. 3.11, based on the radiation stress tensor of the diffracted 
waves, is a new proposal. Indeed, so far the equation (3.13), which is valid if the 
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beach deformation is due to wave refraction, is applied also to beaches with groins 
or detached breakwaters,  where the deformation is essentially due to wave 
diffraction. For example, Larson et al. (1997) apply equation (3.13) with two 
different values of G" one for the lee-shore and the other one for the rest of the 
shoreline. 

i x 
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(a) Detached breakwater. (b), (c), (d), (e) [see caption of fig. 3.15]. 
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Chapter 4 
W I N D  GENERATED WAVES: 
BASIC CONCEPTS 

4 . 1  T h e  s e a  s t a t e  

Fig. 4.1 shows a record of the surface displacement ~ at a fixed location at sea. As 
with the periodic waves, ~(t) represents the free surface elevation above the mean 
water level. A single wave is a piece of r/(t) between two consecutive zero up- 
crossings; the wave period is the interval between the two extreme zero up- 
crossings; the wave crest is the highest local maximum and the wave trough is the 
lowest local minimum of the wave; the wave height is measured from trough to crest. 
We see from the figure that the waves generally have different sizes and shapes. 

By i d e a l  s ea  s ta t e  we mean an infinitely long stationary time series of wind 
generated waves. To understand this definition, let us imagine we gather a number  
of sets of N consecutive waves and we estimate the mean height and period of each 
of these sets: H~, T~ will be respectively the mean wave height and the mean wave 
period of the first set, H2, T2 will be the mean wave height and the mean wave 
period of the second set, and so on. For a small N, say N - 5 ,  the pairs (H1, T~), 
(H2, T2), ... will generally be very different from one another.  However,  as N grows, 
the differences between these pairs will tend to vanish, and as N ---+ oc all the pairs 
will become equal to each other. This is a simple way to introduce the ideal sea state 
whose mathematical  description will be given in the next section. 

By rea l  s ea  s ta t e  we mean a sequence of a few hundred wind-generated waves 
(typically 1 0 0 " 3 0 0  waves). Such a sequence is sufficiently short to be nearly 

~ T 1 

t J t 

T2 T3 T4 T5 T6 

Fig. 4.1 Record of sea waves at a fixed point. 
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s ta t ionary ,  and  it is long e n o u g h  for its statistical p rope r t i e s  to be meaningfu l .  In 

o the r  words ,  it can be t hough t  of as a s equence  d rawn  f rom an ideal  sea state,  and  

we can assume tha t  its m e a n  wave  height  and pe r iod  are very  close to the m e a n  

wave  he ight  and  per iod  of this ideal  sea state.  

If we d rew a sequence  of a few waves  f rom an ideal  sea s ta te  (i.e. f rom a 
s ta t ionary  r a n d o m  process) ,  the m e a n  wave  height  and  pe r iod  of this s equence  
could be very  d i f ferent  f rom the m e a n  wave  height  and  pe r iod  of the ideal  sea state.  
O n  the con t ra ry ,  if we r e c o r d e d  a s equence  of a few t h o u s a n d  sea waves ,  genera l ly  

it could  not  be  though t  of as a s equence  f rom an ideal  sea state,  in tha t  the 

a s sumpt ion  of s t a t ionary  t ime series might  be grossly unsat isf ied.  For  example ,  the 

first ha l f  of  the s equence  might  be long  to a s tage of near ly  ca lm sea, while the 

second  hal f  migh t  include a sea s torm. 

The best duration of a real sea state is that leading to the smallest difference between the 
first half and the second half. To seek the best duration of a sea state, we have resorted to 
the time series of experiment RC 1990 in the Straits of Messina off Reggio Calabria. 

From the wave records we have obtained a number of sequences, each consisting of N / 2  
consecutive waves. The first sequence goes from wave number 1 (the first recorded wave) to 
wave number N/2; the second sequence goes from wave number N/2 + 1 to wave number 
N, and so on. Then we have evaluated the root mean square surface displacement of each 
sequence: a~ is the r.m.s, of the first sequence, O" 2 the r.m.s, of the second sequence, and so 
on. Finally, we have defined the random variable 

V / ~  0"i+1 1, 
cri 

and we have obtained the variance of this variable: 
n--1 

v 2  : 
i (n -- 1) : 

where n is the number of sequences of N/2 waves. 
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Fig. 4.2 Degree of difference between the first half and the second half in a sequence of N waves 
(from experiment RC 1990). 
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This operation has been repeated with different values of number N (of course N is an 
even number). As a result we have obtained the function 

v/Vf - f (U) 

that gives the degree of difference between the first half and the second half of the sequence 
of N waves. This function is represented by fig. 4.2 which shows that the degree of difference 
is minimum for N of about one hundred. 

4.2 The theory of the sea states 

4.2.1 Genera l  ove rv i ew  

Let  us choose  a poin t  at sea and to m a k e  the ideas m o r e  specific let us th ink of 
the poin t  as be ing at the cent re  of the T y r r h e n i a n  Sea. A t  a cer ta in  t ime ins tant  
waves  begin  forming  at this point .  These  waves  may  be unde r  the inf luence of the 
wind in a gene ra t ing  area,  or m a y  also be waves  out  of their  gene ra t ing  area.  In the 
first case they  are called wind waves and in the second case they are called swells. 

L e t  us r eco rd  ~/(t) at the  f ixed po in t  a f te r  some  t ime  f rom the  b e g i n n i n g  of the  
wave  m o t i o n ,  say f rom ins t an t  ti,f to ins tan t  tsup, with  tsup- ti,f = d u r a t i o n  of a 
rea l  sea s ta te ,  t ha t  is a few h u n d r e d  consecu t ive  waves .  L e t  us now suppose  tha t  
the  s ame  s t o r m  is r e p e a t e d  m a n y  t imes ,  each  t ime  wi th  the  s a m e  speed ,  d i r ec t ion  
and  d u r a t i o n  of the  wind  all ove r  the  T h y r r h e n i a n  Sea. T h e n  let  us imag ine  we 
r e c o r d  the  sur face  d i s p l a c e m e n t  ~/(t) at the  f ixed poin t ,  each  t ime  s ta r t ing  at 
instant tinf and  end ing  at ins tan t  tsup. W e  call ~/~ (t), 712 (t), ..., f/,, (t) the  r eco rds  so 
o b t a i n e d .  

Accord ing  to the theo ry  of the sea s tates  to the first o rde r  in a S tokes '  expans ion ,  
each of the n t ime series ~/1 (t), ~/2 (t), ..., ~/, (t) is a piece of a new rea l iza t ion  of a 
s ta t ionary  Gauss ian  process.  Each  rea l iza t ion  of this process  has an infinite 

I 

E 

(/) 

1 2 for i such Fig. 4.3 Definition of spectrum: the small dark area is equal to the partial sum ~ - ~ - a i  
that coi belongs to the small interval of amplitude 8cJ. i 
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duration, and thus it represents the ideal sea state introduced in sect. 4.1. The 
analytical form of the process is 

N 

~l(t) - ~ aicos(~it + Ci) , (4.1) 
i = 1  

where it is assumed that frequencies a~i are different from each other, number N is 
infinitely large, phase angles ci are uniformly distributed on (0,27r) and are 
stochastically independent of each other, and all amplitudes ai are of the same 
order. Finally, the frequency spectrum E(a~), which is defined as 

1 
E (co)6~ - Z -4 -a~ for i such that co- ~co/2 < (-~i < ( d  + 8C0/2 (4.2) 

i 
z _ ,  

[see fig. 4.3], is assumed to be continuous and to be the same in each realization. 
Under  these hypotheses, (4.1) represents a stationary Gaussian random process. 
We shall prove this statement in sect. 5.1. The fact that (4.1) is exact to the first 
order in a Stokes' expansion will be explained in sect. 8.2, where the theory will be 
developed on the space-time. At the present stage and as far as chap. 7, we deal 
only with the waves on the time domain at some fixed point. 

4.2.2 Numerical  simulation o f  a sea state 

For a deeper insight into the theory it is useful to see how a sea state can be 
numerically simulated. To this end we must fix the spectrum E (co) (we shall see later 
some characteristic shapes of the spectrum). Then let us fix a very large number N, 
say N = 10 9. Let us now subdivide the aJ-axis into 10 9 small intervals, so that the 
integral of the spectrum over each of these small intervals is equal to  10-9m0,  where 

J 
OG 

m0 - E(~) d~. (4.3) 
0 

Let us call 031 the centroid's abscissa of the first small strip of the spectrum (small 
because its area is one billionth of the total area of the spectrum), c02 the centroid's 
abscissa of the second small strip, and so on as far as aJ109 . Let us fix the amplitudes 
a /a l l  equal to v/2mo/N. 

This is the simplest way to fulfil the assumptions on a i and co/. These a i and coi will 
be left unchanged in the whole set of realizations of the random process. At this 
stage only the set of ci remains to be fixed. To this end, let us write the integers from 
1 to 10 9, each of them on a new sheet of paper. Then let us put these sheets of paper 
into a box. Let us shuffle and draw the first number. Let us multiply this number by 
(27r/109), so obtaining Cl. Let us put again the drawn number into the box, shuffle 
again and draw a new number from which we get c2 (being understood that the 
drawn number  must be multiplied by 27r/109). Let us go on as far as draw No 10 9 
from which we shall obtain c~09 . 

The ones so obtained will be the phase angles c i of the first realization of the 
process. For obtaining the phase angles c/ of the second realization, we have to 
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repeat the whole procedure: to draw the first number; to multiply it by (2rr/109); to 
put the sheet again into the box; to shuffle; to draw the second number, and so on. 
Clearly, we are speaking of an ideal procedure! 

4.3 Some basic relations in the theory of the sea states 

4.3.1 Def in i t ions  

The standard deviation 

c r -  V/< r]2(t)>, (4.4) 

with the temporal mean covering the whole duration of the sea state, gives the most 
direct idea of the strength of the wave motion. The larger the c7, the higher the 
waves. 

The parameter most commonly used is probably the significant wave height being 
defined as 

H, - 4~. (4.5) 

The first theories (in the 50's) gave H, as equal to H1/3 that is the average height of 
the highest one-third of all the waves of a particular sea state. To better understand 
the meaning of H~/3, let us think of ordering the wave heights of a sea state" H1 is 
the highest wave height, He the second highest wave height, and so on as far as H,, 
that is the smallest wave height (n being the number of the waves forming the sea 
state). Then H~/3 proceeds from the following operation 

H1 + H2 -+-... -+- nn/3 
n/3 

In other words, the researchers who started the modern ocean engineering aimed to 
introduce a significant average being representative of the greatest wave heights 
occurring in a sea state. Later the term significant average wave height was 
shortened to the form significant wave height. As to fix H, equal to 4(r, now we 
know that H~/3 is systematically smaller (of 5 " 1 0 % )  with respect to 4or. 
Nevertheless, H, is still used for the strength of the wave motion, like some old 
units of length are used in place of the metre. 

The peak frequency (symbol COp) is the frequency of the highest peak of the 
spectrum. The peak period is the wave period associated with the peak frequency: 

L - 

Lp denotes the wavelength relevant to the peak period, and Lpo is the wavelength 
on deep water: gT 2 

Lpo - P • 

27r 
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The symbol mj denotes the jth order moment  of the spectrum 

mj - wJE (a2) dw. (4.6) 
0 

The zeroth moment,  that is the integral of the spectrum over (0, ec), has been 
already defined in sect. 4.2.2 [see definition (4.3)]. 

The definition of autocovariance is 

- < , ( t ) , ( t  + r )  > ,  (4.7) 

and thus it is the mean value of the product of the surface displacement at time t and 
the surface displacement at the later time t + T. Naturally, this mean value depends 
on T, that is the autocovariance is a function of T. 

The definit ion of autocovar iance may look abstract  like some useless 
mathemat ical  exercise. On the contrary, we shall see in chap. 9 that the 
autocovariance takes on a central role in the light of the quasi-determinism theory. 
Moreover,  we shall also see in this chapter how the autocovariance can be applied 
to make a quick and clear "diagnosis" of a sea state; in short, the use of 
autocovariance is like the use of X-rays in medicine. We shall also see in chap. 5 
that the basic statistical properties of the waves in a sea state depend on the 
characteristics of the absolute minimum of the autocovariance. 

4.3.2 The relation between variance of the surface displacement and spectrum 

Let us prove that 

With (4.1) of ~(t) we get 

i 
oo 

< r/2 (t) > - E (w) dco. (4.8) 
0 

N N 

< r/2 (t) > - -  < Z E aiajcOs(cvit -+- Ci) COS(CVjt -+- Cj) >, 
i=1 j = l  

and hence, interchanging the order of temporal mean and summation, we write 
N N 

< ~l: (t) > -  Z E aiaj < cos(wit + ei)cos (wit + ej) > .  (4.9) 
i=1 j = l  

Here we have - l i f  i - j ,  
< COS(Wit + ~i) COS(C@/-}- ~'j) > 2 

- 0  if i C j, 
given that co/¢ wj if i ¢ j. Therefore (4.9) is reduced to 

/~1 1 a 2 
< ~]2 ( t )  > - -  2 -  i 

(4.10) 

(4.11) 
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which completes the proof, in that definition (4.2) of spectrum implies 

/~l  1 a 2 - E (co) dco i 
• 0 

4.3.3 T h e  r e l a t i o n  b e t w e e n  a u t o c o v a r i a n c e  a n d  s p e c t r u m  

Let us prove that 
~b ( r )  - E (co) cos (coT) dco. (4.12) 

0 

To arrive at this relation we have to start from the definition (4.7) of 
autocovariance, and use (4.1) of r/(t). The result is 

N N 

~ ( T )  - Z Z aiaj < cos (coit -+- Ei)COS [coj (t-Jl- r )  --Jv cj] > ,  
i=l j=l 

where the order of temporal mean and summation has been interchanged. Then 
applying the addition formula to the second cosine we obtain 

N N 

~ ( T )  - Z Z aiaj[cos(cojT) < cos  (coit q- ei)cos (cojt + ej) > + 
i=1 j = l  

- sin (cc~ T) < cos(wit + ei) sin(cojt + e~) >]. 

Here the first temporal mean is given by (4.10), and the second temporal mean is 
zero whichever the i and j, and therefore 

N 

~ 1  2 (CU i T) (4.13) O ( T )  - --~ a i C O S  . 

Let us consider the summation on the r.h.s, of this equation. Since 

{contribution to Ni~l l 2 ( ~ i T ) f r o m t h e t e r m s w h o s e f r e q u e n c y co i i s b e t w e e a i cos 

co - 8co/2 and co + 8co/2} - 

- { -2- i 
i 

we have 

i o o  ~ 1  a: (co, T) E (co) cos (coT) dco 
i=  1 T i COS ~ o 

that together with (4.13) completes the proof of (4.12). 
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4.3.4 The three basic properties of the autocovariance 

The main propert ies of the autocovariance are: 

1st property: ~b ( -  T) = ~b (T),  

2nd property: [~b (T)[ < ~b (0) for T ¢ 0, 

3rd property: lim ~b (T) - 0. 

The first p roper ty  proceeds straightforwardly from relation (4.12) be tween  
autocovariance and spectrum. The second property can be readily proved from 
(4.12), given that the spectrum is positive and continuous. The third proper ty  can be 
deduced as follows. 

If we fix a very large I rl the function cos(wT) (function of co) has a very small 
period 6w = 27r/I r ] ,  so that E (w) keeps practically constant while cos (wr) makes a 
full cycle. Therefore  the contribution to the integral 

] ~E (w) cos (wr) dw 
0 

from the small interval 5w approaches zero. The same conclusion holds for each 
small interval 6~, and consequently the integral approaches zero as I TI -+ ~ .  

4.3.5 A few alternative ways to express the variance of  the surface displacement 

Gather ing 

(i) the definition (4.4) of or, 

(ii) the definition (4.5) of Hs, 
(iii) the definition (4.6) of mj, 

(iv) the relation (4.8) between < ~/2 (t) > and the spectrum, 

(v) the relation (4.12) between ~b(T) and the spectrum, 

we obtain the following equalities 

H2 
< ~/2 (t) > -  a 2 - ~ = m0 - E (w)dw - ~b (0). 

16 0 

4.4 How to obtain the input data of the theory 

4.4.1 A few parameters that can be readily obtained 

The surface displacement of a sea state is measured at a fixed sampling rate. For 
a good description of the waves,  Atsamp [the time interval between successive 
measurements]  should not exceed 1/15 of Tp. 

The elevation of the free surface is measured above a fixed level generally 
different from the mean water level. Nevertheless,  the surface displacement ~/can 
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be deduced easily (one has simply to est imate the average of the measured  
elevations and to subtract  this average from these elevations).  

Thus we obtain the data (r/~, r/2, ..., ~7,,) of a real sea state. Then  from these data, 
we can s t raightforwardly compute  the s tandard deviation: 

2 2 2 
( 7 " -  T]I -~  ~]2 -q- "'" -~  ~]n . 

/7 

Hence,  multiplying cr by 4, we obtain the significant wave height. 
Even  the autocovar iance can be obta ined quite simply. For  example,  let us 

imagine we have a wave record of 10 minutes  with a sampling rate of 10 per second. 
At  the end we shall have obta ined 6000 sampled data (~7~, r/2, . . . ,  7]6000) taken at 
regular  intervals of 0.1 s. Thus to evaluate,  say, ~ (T)  for T = l s, it will suffice to 
per form the following operat ion:  

2 / ) ( 1 S )  - -  T]l 7111 -~- 7127112 -~  "'" _31_ 7]5990/]6000 

5990 

which gives the mean  value of the product  of the surface displacements  at time t and 
the surface displacement  at t ime t + ls .  

Obta ining the spect rum is not  as simple, and hence the rest of this section is 
devoted  to this operat ion.  

4.4.2 T h e  F o u r i e r  s e r i e s  a n d  t he  l i ne  s p e c t r u m  

Given an odd number  n of data (~/~, 712 , . . . ,  7In ) recorded with a sampling interval 
Atsamp, that  is to say recorded at instants 

tl = 0, t2 = AGmp, ..., t,, = (n - 1)Atsamp, 

the function 

1)/2, (.Z) i - -  

with 

N - ( n  

N 
Z I II 

~ ] F ( t )  - -  a i c o s ( c v i t )  i f-  a i s in ( ca i t )  
i = I  

is such that 

27r i a' 2 X-~ ,, 
- -  - - '  - - -  Z.., rlj cos(ccit j) ,  a i - 
A tsamp n i /// j - l  

~]F ( t l )  --  ?],, ~TF (t2) - -  ~]2, " " ,  77F ( I n )  - -  ~]n" 

2 £ rlj sin(coitj) 
17 j = l  

~Tf (t) is the Four ier  series which is periodic of per iod TF - nm/samp" 

(t  + - ( t ) .  

Such a series can also be given the form 
N 

~lf (t) - Z ai cos(c~it + c,) ,  
i=l 

(4.14) 
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' a". [Write COS(aJit-4-~i) in the form COS (a3i t) COS Ci where ai, ~i are related to a i, i 
I II - s i n  (edit) sine~ to obtain the relation between ai, ~i and a i, a i .] 

The spectrum EF(W) of function ~/F (t) consists of a sequence of delta functions: 

N 
1 2 (~ ((.U __ (.x)/) " 

EF(CO) --  Z - ~  ai 
i=1 

It is the line spectrum whose graph is a sequence of vertical arrows with heights 

1 a 2 at frequencies (.d i 
2 i 

The fact that  ~TF(t) is periodic with a per iod TF implies that  also the 
autocovariance ~F (T) is periodic with a period TF. Indeed 

fF  ( T) - < rIF (t) rIF (t + T) > -  < rIF (t) ~lF (t + T + TF) > - ~F ( T + TF) . 

Autocovar iance @F(T) is related to amplitudes ai and frequencies wi of the Fourier  
series by N 

~F (T) -- ~ a ~ c o s  (wiT),  (4.15) 
Z - 

and, for a wide interval after the origin T = 0, it proves to be nearly coincident with 
~ ( T ) .  Some discrepancies between the two functions arise only for large T, which is 
unders tandable  if one thinks that ~ (T) is defined for T smaller than the duration of 
the sea state, whereas ~F (T) is defined even for arbitrarily large T. 

4.4.3 T h e o r e t i c a l  f o u n d a t i o n s  to o b t a i n  the c o n t i n u o u s  s p e c t r u m  

Let us define the function 

E"F(W) 2 I 7 - ~ ~be(T) cos (wT)dT 
71" 0 

that, thanks to (4.15), is rewrit ten in the form 

-~ 2 1 a~ cos ((.x2 iT) cos (wT) dT .  
/_-1-5- 0 

(4.16) 

This function satisfies the following property: 

wj +2 27r/.7 .... 

EF (w) dw - - -  
,1 wj-2 2rc/,7 

j 2  
1 a 2 1 sin(27rx) dx for any fixed 2 as 3 ~  oc (4.17) 
2 J _~ 7r x 

(where it is unders tood  that, for x - 0 ,  the quot ient  s in(27rx) /x  has to be 
subst i tuted by its limit as x ~ 0). The integral on the r .h .s . rapidly  converges on 1 
if we fix larger and larger values of 2. This implies that EF(W) (the integrand on 
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the  1.h.s.) has  an inf ini te ly  high and  n a r r o w  p e a k  at wj, and  the  a rea  u n d e r  this 

p e a k  is 1 2 -~ aj. 

The  conclus ion is tha t  bo th  EF(W) and EF(W) as ,~Z----+ ec consist  of the same  
sequence  of infinitely high and na r row peaks  on f requenc ies  a4, w2, ... WN. 

For verifying (4.17), use the definition (4.16) of EF(~). Pay attention to the fact that index 
j is fixed, while index i varies from 1 to N. Replace variable w with 

J 

Apply the addition formula to cos(wjT+27rxT/.U). Note that all the terms of the 
summation are negligible with respect to the one for i - j .  Note that cos2(wjT) and 
cos (27rxT/.7) are functions like the ones of fig. 4.4, so that you can use the equality 

cos 2 (wiT)cos xT dT 1 27r - - -  cos x dT 
0 . 2 o 

as . ~  oc, 

where 1 - -  on the r.h.s, is the average of cos 2. Then you will be able to prove equation (4.17) in 
2 

a few simple steps. 

4 .4 .4  The problem of the continuous spectrum 

Given  tha t  the con t inuous  spec t rum of the ideal  sea s tate  mus t  of necessi ty  be 
similar  to the line spec t rum of the real  sea state,  we seek  a con t inuous  spec t rum tha t  
is equivalent to the line spec t rum.  W e  shall judge  the equ iva lence  th rough  two main  
features:  

(i) the cumula t ive  funct ion 

I ~ E (w') dw'  
- o 

J E(co') dw'  
0 

(ii) the  au tocova r i ance  

I 
OG 

O(T)  - E (w)cos (wT) dw. 
0 

Clearly,  the au tocova r i ance  of the spec t rum Ee(w) is r e ( T ) ;  and the cumula t ive  
funct ion  is 

_ o 

J0 

l a 2  
Ee (w ' )  dw'  Z 2 J 

J 
N 

, 1 Ee (w') dw Z -~ a~ 
i = l  

for j such tha t  wj < w. 
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Fig. 4.4 J is very large, a~j and x are fixed, and T is the independent  variable. Therefore the 
function cos[(27r/57)xT] varies much more gradually than cos2(0JjT). 

4.4.5 How to obtain the continuous spectrum 

The gist of sect. 4.4.3 is: evaluate 

r .7 

I(~) - | ~p (T)cos (~T)dT ,  (4.18) 
d 0 

for increasing values of the upper limit 3 ,  and you will obtain a continuous 
function that, apart from a constant, approximates the line spectrum better and 
better. An example is given by figs. 4.5-6-7. We see a line spectrum, the same in 
each figure, and function (4.18) for a few different 3 : 3  -~ 2.5Tp in fig. 4.5, 3 
~- 5Tp in fig. 4.6, 3 TM IOTp in fig. 4.7. (The graphs are given in a normalized form, 
and this is why the spectrum's peak is equal to 1 in each picture.) 

We see the result of integral (4.18) fits the line spectrum better as 3 grows. We 
start from a small 3 with a sketch, and then we tend to the exact picture as 
3 - +  oc. The interesting point is that even the sketches accurately reflect the 
essential features of the line spectrum. In order to realize this crucial point, let us 
take one of these sketches as the continuous spectrum. Specifically, let us assume 

- const I (oJ) if I (~) >_ 0, (4.19) 

E(~) _ 0  if I(oJ)<0, 

with const such as to satisfy condition (4.8). Then, let us compare S(oJ) and 0(T)  
from this spectrum with .~F (0J) and OF(T) from the line spectrum. We see that the 
agreement between 5 ( ~ )  and .~F (~) and 0 (T) and OF (T) is rather good even for 3 
~- 2.5Tp (fig. 4.5), and becomes nearly perfect for 3 ~  5Tp (fig. 4.6) and 3 TM lOTp 
(fig. 4.7). 

Naturally, for large I TI, ~ (T) will deviate from 2/) F ( T ) ,  since 0 (T) ~ 0 as IT I ~ oc, 
while ~)F(T) is periodic. But what is important is that the two autocovariances 
are coincident on a large interval after the origin. Indeed, we shall see in chap. 5 
that the basic statistical properties of a sea state depend only on the first wave of 
the autocovariance (that is the wave including the origin T = 0); moreover  the 
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Fig. 4.5 A typical line spectrum from a record of wind waves. The continuous spectrum has been 
obtained by means of (4.18-19) with .Y -~ 2.5Tp. The two lower panels show the function .~(~)  
and the autocovariance ~ (T) (points: line spectrum, continuous line" continuous spectrum). 

configuration of the wave groups depends only on the first two or three waves of the 
autocovariance,  that we shall call core of  the autocovariance. 

The conclusion is that a number  of continuous spectra, sometimes appearing 
very different from each other, are equally equivalent to the line spectrum. 
Therefore  the continuous spectrum is indeterminate!  

In practice this indeterminacy is not an obstacle, because two sea states with two 
different spectra like the ones of fig. 4.6 and fig. 4.7 have the same basic statistical 
properties.  Hence,  we can assume at our choice the one or the other of the two 
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Fig. 4.6 The line spectrum is the same as in fig. 4.5; the continuous spectrum has been obtained 
with 3 - 5Tp in (4.18). We see that now the .~(c~) and ~(T) of the continuous spectrum coincide 
perfectly with the .~(c~) and ~(T) of the line spectrum. 

spectra. For convenience, the best choice is to take the smallest 3 giving the full 
equivalence between the continuous spectrum and the line spectrum. This is 
because the spectrum shape gets simpler. Typically, 3 =  4 + 5Tp is large enough. 

For T < 5 Tp, ~)F (T) is usually very close to the ~ (T) obtained from the time series 
data of ~7(t), so we can use this ~(T)  in place of ~F(T). Before we obtain the 
spectrum, we do not know Tp, and therefore the question arises, how to estimate 
4 - 5T p? A good preliminary estimate can be done on taking Tp equal to the average 
period of the two highest waves of function ~(T).  
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Fig. 4.7 The line spectrum is the same as in the two previous figures" ,~has  been raised up to 
lOTp. The result is a more indented spectrum. The agreement between the continuous spectrum 
and the line spectrum for what concerns .7(,~) and ~(T) keeps on being excellent. 

To make the study of this section easier, it will be useful to bear  in mind that three 
autocovariances are involved: 

(i) the one obtained straightforwardly from the time series data of ~l(t), through the 
definition itself of autocovariance; 

(ii) the one obtained from the continuous spectrum; 
(iii) the one obtained from the line spectrum. 

The first two have been denoted by the symbol ~ (T), while the third one has been denoted 
by ~F (T)- The three functions prove to be coincident with one another  on a wide interval 
after the origin. For large IT] they become different from one another: the first function is 
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Fig. 4.8 A sea state consisting of wind waves and swells: the continuous spectrum has been 
obtained by means of (4.18-19). 

defined only for IT[ smaller than the duration of the wave record; the second function 
approaches zero as I TI ~ ~ ;  the third function is periodic with a period equal to the length 
of the wave record. 

4.4.6 The case o f  wind waves superimposed on swells 

The one shown in the previous section is a typical spectrum of the wind waves 
but  the method is efficient even for the swells. An example is given in fig. 4.8 which 
shows the spectrum of wind waves of 2s period on swells of 6.5s. The highest peak 
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Fig. 4.9 A very broad spectrum: about a half of the energy content belongs to wind waves and a 
half to swells with a frequency nearly three times smaller. Here too the continuous spectrum has 
been obtained by means of (4.18-19). 

of the spectrum is that of the wind waves, the second peak is that of the swells. The 
two peaks of E (a~) give rise to the two steps of .~(c~); of course the two domains 
where .  ~-(a~) has a high rate of growth are those of the two peaks of E(a~). We see 
that the 25% of the spectrum's energy belongs to the swells and the remaining 75% 
to the wind waves. 
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This is the picture emerging both from .7(co) and from o% (co), which are nearly 
coincident with each other. ~ has been taken of 20 s, that is about ten times the 
Tp of the wind waves and three times the Tp of the swells. Generally,  as we 
noted, the best value of ~ i s  nearly 5Tp but in this case the spectrum consists of 
two stumps with some very different Tp, so that we must make a compromise,  
taking g -  greater  than five times the smaller Tp and smaller than five times 
the larger Tp. For the rest, the continuous spectrum E(co) is deeply equivalent to 
the line spectrum, as we can judge on comparing S(co) to ZF (co) and ~b(T) to 

Lastly, let us consider an extremely chaotic sea state, where some wind waves are 
superimposed on swells of nearly the same height. This case is illustrated in fig. 4.9 
where ~ h a s  been taken of 25 s, that is somewhat less than four times the Tp of the 
swells, which is equal to 6.7s. Also in this case the equivalence between the 
continuous spectrum and the line spectrum clearly emerges if we compare S(c0) to 
SF (co) and ~b(T) to 2/¥ (T). 

Really those of figs. 4.8-9, rather than spectra of surface waves, are the spectra of some 
pressure head waves beneath the water surface. However, for the aims of this section, it 
does not matter whether the spectrum is of the surface waves or of the pressure head waves. 
Resorting to the pressure head waves is useful for didactic purposes, since a spectrum with a 
fixed ratio between swells' energy and wind waves' energy can be found more easily in these 
waves. 

4.5 A mathematical form of the wind wave spectrum 

4.5.1 The JONSWAP spectrum 

As previously mentioned, when a wind generates waves and hence waves and 
wind have nearly the same direction, we speak of wind waves. Such waves typically 
have a spectrum like that of fig. 4.6 where E (co) approaches rapidly zero on the left 
side and approaches zero more gradually on the right side. A mathematical form 
suggested for describing this characteristic spectrum shape is 

E(co) - AgZco -5 exp ~ exp ln)~lexp - 2 X z c o p  - -  _ - - ' 2 " m .  2 " 

This is the so called JONSWAP spectrum (Hasselmann et al., 1973) which is 
effective for deep water: 

1 
d > -~ Lpo. 

The variations of the spectrum on shallow water will be dealt with in chap. 8. 
The J O N S W A P  spectrum was the final result of a work developed in the 50's and 

60's. Phillips was the first to observe in the 50's that the spectrum approaches zero, 
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for large a~, as co-s. The term A g2 co-s in the formula (4.20) is due to him, and indeed 
A is called the Phillips parameter. The form 

[ 5 (-~)41 (4.21) E(aJ) - A g2co-Sexp - 

was introduced by Pierson and Moskowitz in the 60's. The last improvement,  that is 
the introduction of the second exponential function, was due to the J O N S W A P  
project in the early 70's. 

According to the researchers of the JONSWAP project, the more characteristic 
values of the shape parameters X~ and )(~2 are 

- 0.07 if co _< (.Up, 4.22 
X ~ - 3 . 3 ,  X2 - 0 . 0 9  if c0>a~p, 

( ) 

but we can as well assume 

Xl = 3, X2=0.08,  

with some negligible consequences. The spectrum with values (4.22) of parameters 
X1 and X2 is called the mean JONSWAP.  It is shown by fig. 4.10 in the 
nondimensional form E(aJ)/E(~p) as a function of co/aJp. It should be noted that 
such a nondimensional form depends only on the values of X~ and X2. Therefore, 
fig. 4.10 represents the mean JONSWAP spectrum, whatever the peak frequency a~p 
and Phillips' parameter.  

As to parameter  A, it depends on the characteristics of the wave generation: the 
smaller is fetch ~ and the greater is wind speed u, the larger is A. The researchers 
of the J O N S W A P  project suggested the relation 

A _ 0.076 ( g ~ )  -°22 
U2 

As an exercise, the reader could verify that the peak of the Pierson and Moskowitz 
spectrum occurs at co - COp. To this end, it suffices to differentiate (4.21) with respect to co and 

EIEm~ 

0 I 

(D] ~Op_ 

Fig. 4.10 The mean JONSWAP spectrum. 
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verify that the derivative is zero only for a~ = Wp. Then for verifying that also the JONSWAP 
spectrum [function (4.20)] has its maximum at aJ = CVp, it will suffice to note that 

(i) the second exponential function in (4.20) is equal to X1 at a~ = Wp and approaches 1 
as Icy- (.dpl grows; 

(ii) X1 takes on values greater than 1. 
Therefore the second exponential function in (4.20) makes even more prominent the peak 
at a~p. 

4.5.2 The relation between Tp and Hs 

With the J O N S W A P  spectrum in (4.3), we get 

l}d  
Here it is convenient to replace the dimensional variable a~ with the nondimensional 
variable 

w = 

and it is convenient to define the nondimensional spectrum 

(s 4){ [,w 
g ~ ( w ) - w  -Sexp 4 w -  exp lnXlexp - 2X2 - --- 2 (4.24) 

that will be repeatedly used in what follows. Substituting w for a~ in (4.23), we have 

m 0 - -  A g  2 (.u; 4 ~ ( w )  d w .  
0 

The integral of ~(w) is evaluated numerically and, with values (4.22) of X~ and X2, 
the result is 0.305. Therefore 

m0 - 0.305AgZa~p4. (4.25) 

Hence, bearing in mind that m0 - H 2 / 1 6  and Tp - 27r/~p we arrive at the following s 
relation: 

~/ 1 27r @H,  (4.26) 
r , -  o.3o5----3- 4 g  

As previously mentioned, the value of A depends on the characteristics of the 
wave generation. A typical value for design conditions is 

A =0 .01 ,  

with which, the relation between Tp and Hs becomes 

- 8.57r , /Hs. (4.27) 
v 4g 
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Fig. 4.11 The points P~ in a lake and P2 off a coast have the same relatively small g/~/U 2. 
Consequently, the waves at these points will be very steep. 

Note  that, even a variat ion of 20% on A leads to a variat ion of only 5% on the 
numerical  coefficient 8.5 in (4.27). 

Relat ion (4.26) shows that the peak  period gets smaller under  the same 
significant wave height for a larger A. Since we saw in sect. 4.5.1 that the smaller the 
fetch and the s t ronger  the wind the larger is A, we can see a characteristic feature of 
the wind waves. The reader  may have observed a relatively small fetch lashed by a 
strong wind (two possible situations are shown in fig. 4.11 just to fix the ideas). In 
that case it will have been noted  that the waves b reak  even on deep water. The 
p h e n o m e n o n  is due to the fact that the waves are too steep owing to the large A. 
Indeed  from (4.26) it follows that the characteristic wave steepness is 

/4, = 2 v /0 .305A 
tp0 7r 

4.5.3 Dynamic similarity between stormy seas and slight seas 

Let us consider a sea state consisting of small wind waves genera ted  by a weak 
wind, say waves of 

H~ = 0.30m. 

Relat ion (4.26) with the characteristic value A = 0.01 of Phillips' pa rame te r  gives a 
peak  per iod 

Tp - 2.33s, 

for this sea state. Let  us consider now a s tormy sea state, say one with 

H, = 9.0m. 

Here,  relat ion (4.26) with A = 0.01 gives 

Tp = 12.79s. 
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Therefore the first sea state is the small scale model (1:30) of the second sea state, with 
the same Froude number. Indeed the quotient between the wave periods of the two 
sea states is equal to the square root of the quotient between the wave heights. 
The dynamic similarity is full, in that the normalized autocovariance is the same for 
the model sea state and the prototype sea state. Which means that the same 
statistical properties exist in the model sea state as in the prototype sea state (this 
statement will be proved in chap 5); in particular the probability of a wave height 
greater than a threshold c~ Hs (~ being arbitrarily fixed) is the same for the model 
sea state and the prototype sea state. 

Let us prove that the normalized autocovariance is the same for the model sea 
state and the prototype sea state. From relation (4.12) between the autocovariance 
and the spectrum, and formula (4.20) of the JONSWAP spectrum, we have 

 (T)-f0 Ag2c°-5 expl--4- exp{ln lexpl - (&_  p)2 

Then, replacing ~ with w =_ W/~p and using definition (4.24) of ~ (w), we arrive at 

(w) cos dw 
¢ ( r )  0 joo 
~(0) f ( w )  dw 

0 

(4.28) 

Hence, given T~ Tp we can obtain ~(T)/~b (0) leaving/4, and ~p out of consideration. 
This implies that ~(T)/~b(O) as a function of T/Tp does not change from the 
prototype sea state to the model sea state. 

4.6 Possibil ity of  testing small scale models  in sea or lakes 

4.6.1 The main obstacle 

We shall see in sect. 14.2 that the proper dynamic similarity for ocean structures 
requires the constancy of the Froude number. Therefore the conclusion of the 
previous section should open the road for natural small scale models: models of 
ocean structures being tested directly in sea or lakes rather than in the laboratory 
tanks. In practice this is difficult, because it is not at all easy to find pure wind waves 
of a size suitable for small scale models. Indeed the waves of this size usually 
include a significant swell component. The swell preserves the period of the 
generating area but has a smaller height. Therefore, relation (4.26) often results in a 
large underestimate of the Tp of the swells. 

The trouble is that even the presence of some small swells can spoil the dynamic 
similarity. To realize this point it suffices to look at fig. 4.12 which shows the 
spectrum of the surface waves and the spectra of the pressure head waves at a few 
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Fig. 4.12 Autocovariances and spectra of surface waves and of pressure head waves beneath  the 
water  surface. We see that the ratio between swell ampli tude and wind-wave amplitude grows as 
the depth increases. The reason is that the swell is less at tenuated,  owing to its greater  period. The 
spectra are given in a normalized form, and this is why the peak has the same height in each 
picture. 
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growing depths beneath the water surface (note that the spectra are normalized and 
this is why they all have the same height). To judge from the surface waves we 
should conclude that a sea state with this spectrum is a good small scale model of a 
sea storm. Indeed the significant wave height is of 0.23 m and the peak period is of 
2.00 s, which, in a scale of 1:35, lead to a prototype with H~ = 8.0m and Tp -- 11.8s, 
which are realistic values of a severe storm in the Mediterranean Sea. 

However,  the dynamic similarity is spoiled by some small swells whose presence 
is revealed by the small bump on the angular frequency of 0.95 rad/s. Indeed the 
swells, even if markedly smaller than the wind waves, are able to upset the flow field 
beneath the water surface. Note in particular in fig. 4.12 the spectrum of the 
pressure head waves 1.5m beneath the mean water level: the swell's peak has 
overtaken the wind wave's peak. This upset takes place since the swells undergo a 
lower attenuation with depth, owing to their greater period. Therefore, the ratio 
between the swell amplitude and the wind wave amplitude grows from the water 
surface to the seabed. 

Clearly, a situation like that of fig. 4.12 is quite unreal for the prototype, indeed 
the peak period of the pressure head waves would be of 

(27r/0.95) ~ - 39s ! 

Here is the problem: the waves of a size suitable for small scale models often 
include a swell component with a period several times greater than the period of the 
wind waves, whereas in a severe storm this is impossible. Keep in mind that a 
spectrum having a wind wave peak at a frequency c01 and a swell peak at a 
frequency 0.3 2 implies that some time before, in some far-off area, there were wind 
waves of frequency 0.12 . 

4.6.2 An exceptionally favourable site 

Several small scale models were recently executed off the beach at Reggio 
Calabria (east coast of the Straits of Messina). The model tests of a few different 
structures were successful thanks to some exceptionally favourable environmental 
conditions. The most important is that the sea states often consist of pure wind waves 
with the typical size of a big laboratory tank (0.20 m < Hs < 0.40 m, 1.8 s < Tp < 2.6 s). 
An example of these pure wind waves with a laboratory size is given by fig. 4.13. We 
see the surface wave spectrum has no peak on low frequencies, which is confirmed 
by the spectra of the pressure head waves beneath the water surface. 

It is not easy to find sea waves with an Hs smaller than 0.50 m and spectra like the 
ones of fig. 4.13. Off Reggio Calabria this is possible for a few days in a month 
thanks to: 

(i) the high stability of a local NNW wind, the so called wind of the Straits 
blowing from Messina towards Reggio Calabria; 

(ii) the orientation of the coast. The coast being oriented from SW to NE it is 
naturally sheltered from the swells travelling towards the north; 

(iii) the relatively short fetch (about 10 km). 
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Fig. 4.13 Normal ized  autocovar iances  and spectra of surface waves and of pressure  head waves 
at growing depths benea th  the water  surface. They  are pure  wind waves with a size suitable for 
small scale models.  
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Fig. 4.14 
Calabria. 
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Straits of Messina. The arrow points to the location of the natural laboratory of Reggio 

Probably similar conditions occur in some lakes, and we have to look at the lakes 
rather than at the sea for developing the natural models. However the laboratory of 
Reggio Calabria possesses an additional series of favourable conditions making it 
special. 

First: the high stability of the local wind, which we have already pointed out as a 
cause of the near absence of swells (this wind blowing from the north opposes the 
swells from the south). Clearly, the wind stability is also useful for operating. 
Indeed, the wind often keeps steady from morning to evening, which provides many 
suitable hours to test the models. 

Second: the small tide amplitude (typically within 0.10m). The small tide 
amplitude is a requisite for the small scale models. The tide amplitude of Reggio 
Calabria has not yet raised any difficulty. 

Third: the clearness of the water, which is really exceptional to be found in front 
of a city. The water is extremely clear because of the Straits' current that flows twice 
a day. It is quite obvious that the clearness of the water is another requisite for a 
natural laboratory. Indeed, in the sea or in the lake the small scale model of an 
ocean structure requires a lot of underwater work. 

In fixing the model scale one has to bear in mind that the most typical/4,  at 
Reggio Calabria is about 0.30m. Therefore, if one wishes to test an offshore 
platform under 15 m of significant wave height, the model scale should be 1:50 or, if 
one wishes to test a submerged floating tunnel under H~ ~ 10m, the model scale 
should be 1:30. The 1:50 scale model of an offshore platform (height 3 m, base 
diameter 2 m, water depth 2.5 m) and the 1:30 scale model of a floating tunnel 
(diameter 0.90m, depth of the centre 1.5 m, water depth 3 m) were tested in the 
natural laboratory of Reggio Calabria as we shall see in chap. 11. 
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4.7 Inferring the nature of waves from the bandwidth 

4.7.1 T h e  c o n c e p t  o f  i n f i n i t e l y  n a r r o w  s p e c t r u m  

The knowledge  of the bandwidth  is useful to unders tand  the nature  of a sea state. 
To realize the relat ion be tween  bandwidth  and wave characteristics it is convenient  
to start f rom the concept  of inf ini te ly  n a r r o w  spec t rum.  

Let us refer to the theory  of the sea states and let us take the spectrum of fig. 
4.15, a very high triangle with a very small base 6aJ, and a finite area m0. The 
surface displacement  at a fixed time to can be writ ten in the form 

N 
rl(to) - ~ aicos(Wpto + 6a~ito + ei) ,  (4.29) 

i=1 

where  
~(-z)i --  (-~-)i -- ~Up. 

The surface displacement  at the instant to + n Tp, with n an arbi t rary integer, can be 
wri t ten as 

N I ~('~)i 71- ] rl ( to + n Tp ) - Z a i cos (CZ p t o + ~) a~ i to + e i ) + nZTr + n 2 . (4.30) 
i= 1 (.Up 

Hence  rl(to + n Tp) ~ 1, (4.31) 
 (to) 

provided that  n << Wp 
5cu 

E 

Fig. 4.15 Infinitely narrow spectrum. 

~i0) I-----4 

CO 
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Equat ion (4.31) proceeds straightforwardly from (4.29) and (4.30); it suffices to 
note that the argument  of the ith cosine in (4.30) differs from the argument  of the 
ith cosine in (4.29) of n27r, plus a term smaller than n(6a;/2a;p)27r. 

As an example, let us assume 

COp / 5cO = 10  6, n = 10. 

Then, the difference between the ith cosine of the summation (4.30) and the ith 
cosine of the summation (4.29) will be smaller than 7r/105 (as can be easily 
verified). This means that rl(to + 10Tp) will be nearly coincident with ~(to). 
Naturally,  even more so, the conclusion holds for rl(to + Tp), rl(to +2Tp), ..., 
~7(to + 9Tp). Through the same reasoning, we can also realize that ri(to + 106Tp) 
will be generally different from rl(to). 

Being to arbitrary, we conclude that r/(t) will locally approach a periodic function 
of period Tp. Then we can easily prove this to be a sinusoidal function. The 
difference with respect to a pure sinusoidal function is that each wave shows a small 
r andom variation from the preceding one, and the sum of these small variations, 
after a very large number  of waves, can give rise to some large variation of the wave 
height. 

In conclusion, a sea state with an infinitely narrow spectrum would be similar to a 
sequence of periodic waves. However  there would be a substantial difference as the 
wave height would vary largely though very gradually. Clearly, the narrower  the 
spectrum, the closer the waves would be to this ideal condition. Vice versa, the 
wider the spectrum, the more irregular the waves, that is, the greater  the differences 
among consecutive waves. 

4.7.2 B a n d w i d t h  parame te r s  c a n d  v 

It is helpful to express a comment  on a sea state with only a few key parameters .  
Among  these parameters  we should include an index of how much the waves 
deviate from the ideal condition of the infinitely narrow spectrum. Such an index is 
called bandwidth parameter, and is generally 0 for the infinitely narrow spectrum 
and approaches 1 as the bandwidth grows. 

Cartwright and Longuet-Higgins (1956) used the bandwidth parameter  

c -  1 -  m2 
morn4 

which really is not always efficient, in that it is too sensitive to the high frequency 
noise. Let us see why with an example. 

The moments  of the spectrum of fig. 4.16 are 

mo = mol + mol /n  = mol  (1 + n-l) ,  

2 if_ ( t o O l / n ) / 7  2 2 2(1  if- 17), m2  --  m01 (Mp (.Up --  m01 (.Up 
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4 + ( m o l / n ) n  4 0,j4 0.14 (1 + F/3), m4 -- m01Cdp p -- m01 p 

and hence  

(1 + n)2 
e - 1 - (1 + n-~)(1 + / , . / 3 )  

Thus,  c approaches  1 as n --+ oc, which suggests the idea of an ex t reme difference 
with respect  to the case of the infinitely nar row spectrum. Really,  as n --+ oc, the 
waves with this spec t rum are practically the same as the waves with the infinitely 
nar row spectrum. With  the naked  eye these waves look exactly like the waves of the 
infinitely nar row spectrum, and only if we used a magnif ier  should we find that  their  
surface is pi t ted with a lot of very small ripples. 

Thus, in this case c misses the mark.  The  fact is that  resort ing to c is equivalent  to 
judging by the n u m b e r  of the local maxima  (or minima)  being present  in each wave; 
the grea ter  this number ,  the grea ter  the difference f rom the infinitely nar row 
spectrum. With  the spec t rum of fig. 4.16, each wave has an infinitely large number  
of local maxima  due to the very small noise on the wave surface, and this is why e 
gets the upper  limit. 

For  the same reason,  c is equal  to 1 also for the J O N S W A P  spectrum. Indeed  
also with the J O N S W A P  spectrum, the waves are affected by a high f requency 
noise of very small ampli tude.  The  noise is due to the high f requency tail of the 
spec t rum which approaches  zero as co -s as co--+ oc. Consequen t ly  m4 tends to 
infinity and c approaches  1, just as in the above example.  

In 1975 Longuet -Higgins  used a new bandwid th  parameter :  

/ )  m . m o m 2  

E 

~ m o l  

m o l / n  ,_top N 

\ , 
n% 

Fig. 4.16 The spectrum used for the analysis of the bandwidth parameters. 
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whose range is (0, c~). This new parameter  is more effective than e. However, for 
the spectrum of fig. 4.16 it tends to infinity. 

4.7.3 Narrow bandedness parameter ~* 

Let us define 

~* - absolute value of the quotient between the absolute minimum and the 
absolute maximum of the autocovariance, 

that is 

where 

T* -- abscissa of the absolute minimum of the autocovariance function. 

If the spectrum is infinitely narrow, the autocovariance approaches a cosine, and 
thus ~* approaches 1. As the bandwidth grows, ~* gets smaller and smaller 
approaching 0. Therefore ~* is a narrow bandedness parameter,  i.e. it is the one's 
complement of a bandwidth parameter.  

It is a natural parameter  in that it appeared from the solution for the wave height 
probability. Indeed, as we shall see later, the distribution of the wave heights is 
governed by this parameter; and two sea states having the same ~* and Hs have also 
the same distribution of the wave heights. The smaller the ~*, the larger are the 
discrepancies of this distribution from that pertaining to the infinitely narrow 
spectrum. This is because ~* succeeds in giving a clear idea of how much the waves 
deviate from the condition of the infinitely narrow spectrum. 

Using ~* we shall not be muddled by the high frequency noise. For example the 
autocovariance of the spectrum of fig. 4.16 is 

~(T)  = mol cos (a;p T) + - -  
1 

mol cos (na;p T) . 
n 

As n - +  c~, this ~(T)  is a cosine affected by a very small noise. Therefore ~* 
approaches 1 as in the case of the infinitely narrow spectrum; that is ~* correctly 
classifies the waves with this spectrum as very close to the waves with the infinitely 
narrow spectrum. 

Really, ~* is efficient if the absolute minimum of the autocovariance is also the 
first minimum of this function. Indeed the above mentioned solution for the wave 
height distribution requires that the absolute minimum of ~(T)  is also the first 
minimum after the origin. The fact (rather rare) that this condition is not satisfied is 
itself important to understand the nature of the sea state, as we shall see in sect. 
4.7.5. 
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4.7.4 Understanding the nature of the waves from ~* 

The quotient ~(T)/~(O) as a function of T/Tp [function (4.28)] is shown in fig. 
4.17, for the mean JONSWAP spectrum (X~ = 3.3; X2 - 0 . 0 8 ) .  From this figure we 
see that 

~* = 0.73 for the mean JONSWAP spectrum. 

The dependence of ~* on the spectrum shape proves to be rather weak. Letting )(~1 
range from 1 to 7, which according to the researchers of the JONSWAP project is 
the whole range of variability of this parameter,  ~* grows from 0.65 to 0.75. The 
variability of ~* due to the second shape parameter  X2 is even smaller. In summary, 
based on the J O N S W A P  spectrum, we conclude that 

0.65 < ~* < 0.75 

is the typical domain of the wind waves. 
The experience, based on a few thousand sea states recorded in the natural 

laboratory of Reggio Calabria, confirms (0.65, 0.75) as the typical domain of ~* for 
the wind waves. If ~* falls below 0.60, we are probably dealing with wind waves 
superimposed on swells. Indeed the presence of wind waves and swells leads to a 
wider spectrum, and consequently to a smaller ~*. 

An efficient way to properly understand the nature of a sea state is to compare 
the ~* of the surface waves with the ~* of the pressure head waves beneath the 
water surface. Two emblematic examples are those of figs. 4.12 and 4.13 which were 
discussed in sect. 4.6. In the case of the wind waves (fig. 4.13), the spectrum shrinks 
gradually from the water surface to the seabed, since it sheds its high frequency tail; 
accordingly ~* grows from the surface waves to the pressure head waves. The 
opposite occurs if the wind waves are superimposed on some smaller swells (fig. 

[-0.731 . . . .  

-1 

r * .  
I j 

~ N  
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Fig. 4.17 Normalized autocovariance obtained from the mean JONSWAP spectrum. 
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4.12). Here, as the depth grows the high frequency peak (the one of the wind waves) 
gets smaller more rapidly than the low frequency peak (the one of the swells). 
Therefore,  generally there is a critical depth where the two peaks of the spectrum 
take on the same height. At this critical depth the bandwidth reaches its maximum, 
and hence ~* has a minimum. 

4.7.5 The nature o f  the waves if the first local min imum o f  the autocovariance 
is not the absolute min imum 

Looking at fig. 4.12, we note that the absolute minimum of the autocovariance 
occurs at T* ~ 1 s as far as the critical depth, while the absolute minimum occurs at 
T* ~ 3 s for larger depths. Now, the T* of 1 s is of the wind waves, while the T* of 3 s 
is of the swells. Indeed, our wind waves have a peak period of about 2 s, so that the 
crest-trough interval is typically about 1 s; while our swells have a peak period of 
somewhat more than 6s, so that the crest-trough interval is typically about 3 s. 
Therefore,  at a certain depth beneath the water surface, T* passes from the wind 
wave's value to the swell's value. 

Close to the depth where swells overcome wind waves, the first local minimum of 
the autocovariance ceases to be the absolute minimum. At this depth the 
autocovariance is mainly affected by the swells, but the wind waves still have a 
considerable weight so that they leave a clear track of themselves in the local 
minimum of the autocovariance at T ~ 1 s. Clearly, at greater depths, the weight of 
the wind waves becomes negligible, the local minimum of the autocovariance at T of 
i s disappears, and the absolute minimum of ~ (T) comes back to coincide with the 
first local minimum, with the only difference being that this time it occurs at T of 3 s. 

We therefore realize that the case of the first local minimum not being the absolute 
minimum of the autocovariance is the special case of wind waves superimposed on 
somewhat higher swells. In the sea state of fig. 4.12, this phenomenon occurred at 
some depth beneath the water surface, affecting only the pressure head waves. 

Conclusive note 

The link between sea state and Gaussian random process was first noticed by 
Longuet-Higgins (1952). The theory of the sea states then ripened in the 60's, 
thanks to the contribution of several authors [see the references at the end of chap. 
8 which gives the theory on the space-time]. 

The central role we have attributed to the autocovariance proceeds from the 
quasi-determinism theory (see chap. 9). In particular the fact that the main 
statistical properties of a sea state are coded in the first two waves of the 
autocovariance (the core of the autocovariance) is a consequence of the aforesaid 
theory. Also the narrow bandedness parameter  ~* proceeds from a corollary of this 
theory, as we shall see in sect. 9.10. 

The continuos spectrum is usually estimated following the Blackman-Tukey 
method (1958), or the method based on the Fourier Transform of the time series 
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data (Bendat  and Piersol, 1986). With the first method,  E(a~) is obtained through 
the relation 

E (a~) - 2 ~ (T) cos (a~ T) d T 
7l- 0 

which proceeds from the Wiener-Khinchine theorem. In the applications, ~(T) is 
the autocovariance obtained from the time series data through definition (4.7). 
Given that ~(T) gets less and less reliable as T approaches the length of the record, 
it is common practice to multiply ~(T) by some deterministic window function 
which is close to 1 near the origin and approaches 0 as T grows. 

With the second method the record is divided into a number  of segments. The 
line spectrum is obtained for each segment, and these line spectra are averaged to 
obtain the continuous spectrum. A time window is usually used to eliminate the 
discontinuities at the beginning and end of each segment. 

Here we have followed an alternative approach which removes the degree of 
subjectivity inherent in both the above cited methods: choice of the window in the 
first method (Moskowitz, 1964) and choice of the number  of segments in the second 
method (Borgman, 1972 and Harris, 1974). We have used I~F(T) (the periodic 
autocovariance associated with the line spectrum) rather than ~(T),  and we have 
obtained the continuous spectrum through (4.18-19). The advantage is that for 
.7> 5Tp the solution converges, in that the core of the autocovariance associated 
with the continuous spectrum keeps constant. 
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Chapter 5 

ANALYSIS OF THE SEA STATES: 
THE TIME DOMAIN 

5.1 Why the surface displacement represents a stationary Gaussian process 

5.1.1 Outline of the proof 

The random process (4.1) with the assumptions we have made on N, a~, w~ and c~ 
is stationary and Gaussian. This means that the probability that ~7(t) of a given 
realization falls within a fixed small interval (w, w + dw) is equal to the probability 
that ~l(to) at any fixed time to, in a realization taken at random, falls in the fixed 
small interval (w, w + dw); and this probability is given by 

P(~I- w ) d w -  v/27rm ° exp 2m0 dw. (5.1) 

Before proving this property let us get a deeper  insight into the meaning of the two 
above ment ioned probabilities. The first one [probability that ~7(t) of a given 
realization falls within the fixed small interval] is equal to the quotient  between the 
time in which ~/is between w and w + dw and the total time [see fig. 5.1]. The second 
one [probability that ~l(to) at a fixed to in a realization chosen at random falls within 
the fixed small interval] is equal to the quotient  between the number  of realizations 

Fig. 5.1 p (~7 = w)dw is the probability that the surface displacement falls in the small interval 
w, w + dw. It is equal to the quotient between the summation (dtl + dt2 + ...) and the total time. 
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in which the surface displacement r /at  time to is within (w, w + dw) and the total 
number of realizations. 

Now let us see how equation (5.1) is achieved. First, let us consider two arbitrary 
random variables V1 and V2. If 

= v2 v,, (5.2) 

that reads "if the mean value of the nth power of V1 is equal to the mean value of 
the nth power of 1/2, whichever the n", then the two variables have the same 
probability density function, that is 

p (v, = w) = p (v2 = w). (5.3) 

This rather intuitive property which proceeds formally from the theorem of 
moments will enable us to prove (5.1). 

Before the proof of (5.1), it is also worth specifying that we shall adopt two 
different symbols for the mean value: one for the temporal mean, the other for the 
ensemble average. Specifically, < ~Tn(t)> will denote the mean value of the nth 
power of ~7(t) in a given realization of the process; and r/" (to) will denote the mean 
value of the nth power of ~7 at the fixed time to. 

5.1.2 Proof relevant to any given realization 
From equation (4.1) of r/(t) we have 

< r/4(t)> lim 1 IT  [ / ~  )14 N N N N  - aicos(aJit + ei 
.'T ~ oc ~ 0 "= 

• l i m  1 -1 . .7 COS (edit .71_ ei ) COS ((,ujt -Jr- ~j) COS (tOm t -b em)COS ((-Un t -Jr- e~) dt. 
.'7--+oo , ~  J0 

(5.4) 

d t - ~ Z ~ Z  
i=1 j=l  m=l n=l 

aiajaman" 

Besides the four assumptions of sect. 4.2, we assume (.z) i ¢ O,)j _Jr_ O.)m + 0.,) n (this being 
only a sufficient condition for the proof) and hence we have 

lim 1 l 7 COS (a)it + Ei)COS(Cdjt + gy)COS(COmt + em)COS(COnt if- ¢ ~ ) d t -  
.,7--+oo 7 o 

_ 1  i f i - j C m - n  or i - m T ~ j - n  or i - n C j - m ,  
4 

_ _ 3  if i - j - m - n ,  
8 

= 0 otherwise, 

and (5.4) reduces itself to 
N 

Ni~l ~ 1 a~a2 i~l 3a~ < ?7 4 ( t ) > -  3 7 J -3f- -~  . 
• = /= 1 (jT~i) "= 

(5.5) 
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Here  the assumptions of sect. 4.2 on N and a i come into play (N being infinitely 
large, a i being of the same order  of one another) .  U n d e r  these hypotheses,  (5.5) can 
be rewri t ten in the form 

N N 
1 a~ 2 (5.6) < r / 4 ( t ) > - 3 ~ Z  ~- aj 

i=1 j=l  

which taken toge ther  with (4.11) yields 

< ~]4 ( t ) > -  3 [<  T]2 ( /)  > ]  2 __ 3m20" 

Now, assuming that  (5.1) is actually the probabil i ty of the surface displacement,  
we get the same value of < r/4 (t) >:  

i 
+oc 

< ~]4(t) > - -  w4p (rl - w )  d w  - 

-(x) 

1 ( 
V/27rm0 -~ w 4exp 

w2 ) 
2 m 0  dw - 3m2°" 

By the same way of reasoning we can prove that, wha tever  the n, < rl"(t) > takes 
on the same value if evaluated  f rom equat ion  (4.1) of r/(t) or f rom equat ion (5.1) of 
the probabil i ty of r/(t). If n is odd the proof  is trivial, indeed it can be readily verified 
that  < ~7"(t) > is zero whe ther  one proceeds  from (4.1) or f rom (5.1). The proof  is 
trivial also for n = 2: f rom (4.1) we obtain < r /2( t )> = m0, and the same result 
proceeds  from (5.1). The first non-trivial  proof, for which the assumption N ---, oc is 
needed,  is the one concerning < r/4(t) > which we have given in this section. The 
proofs per ta ining to < ~]6 (t) >, < r/8 (t) > and so on are like the proof  for < r]4(t) >. 

The fact that  

< r/" (t) > obta ined from (4.1) = < r/~ (t) > obta ined from (5.1) Vn 

implies that  (5.1) is actually the probabil i ty of r/(t). 

Let us verify the step from (5.5) to (5.6) for the particular case in which all the a i are 
equal to each other, that is 

ai -=a Vi. 

3 ( N  2 _ N ) a  4 _k__~Na4 and the r.h.s, of (5.6) is In this case, the r.h.s of (5.5) is equal to ~ 

equal to 3 N 2 a  4 ' so that their quotient approaches 1 as N --+ oc. 
4 

5.1.3 P r o o f  relevant  to the ensemble  at a f i x e d  time instant 

Fixing any time to ,  from (4.1) we have 

( to )  = /14 a~cos(~ito + c~ . (5.7) 
i=1 
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H e r e  it is conven ien t  to define 

gi - ('Uito + C i - - 2 7 r i n t [ ( c ~ i t o  + ci)/27r], 

where  
int (x) - t runca ted  value of x, 

and rewri te  (5.7) in the form 

N N N N 

T]4(t°)-  ~ Z Z Z aiajama~ COS~i COS~j COS~ m COSg n . 
i=1 j=l m=l n=l 

(5.8) 

Given  that  gi, like ei, are uni formly  dis t r ibuted in (0,270 and are stochastical ly 
i n d e p e n d e n t  of one  another ,  we have 

_1_ 
4 

COSgi COSg] COSg m COSg n _ 3 

8 

- 0  

if i= j= /=m=n or i = m C j = n  or i=n=/=j=m,  

(5.9) 
if i = j = m = n ,  

otherwise,  

and consequen t ly  the equa t ion  (5.8) of ~74 (to) reduces  itself to 

N N 

f/4(to) -- 3 Z 
i=1 j=l(j¢:i) 

N 
1 22 / ~ 1 3  a 4 ~ a i a j +  . ~ i" 

C o m p a r i n g  this with equa t ion  (5.5) of < ~74 (t) >, we see that  

7]4 (to)  __ < r/4(t) > .  

Similarly, we can verify the equal i ty  

- < ( t )  > v , ,  

which implies that  the probabi l i ty  of ~7(to) ( re levant  to the ensemble  at a fixed t ime 
instant)  is equal  to the probabi l i ty  of ~7(t) re levant  to any given realizat ion.  

Check (5.9). If i ¢ j ¢ m ¢ n, you obtain 

COS~i COSCj COS~m COS~n - -  

0 0 0 0 (27r)4 COSW1 COSW2 COSW3 COSW4 dw4 dw3 dw2 dwl 0 

where 1/(27r) 4 is the joint probability density function p ( g / -  Wl, gj - w2, em = w3, Ym -- W4). 
Then you can easily verify that also the terms with i - j ¢- m ¢ n and i - j - m ¢ n are zero. 
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As  to the  t e rms  with i = j ~= m = n they  give 

COSgi COSg/COSgm COSgn -- COS2gi COS2gm -- 

I2~rj2u 1 1 
0 0 (27T) 2' COS2 wl  COS2W2 d w 2  d w l  - -  4 ' 

where 1/(2rc) 2 is the joint probability density function p(gi = Wl, g~ = w2). Finally, the terms 
with i = j  = m = n give 

COSCi COSgj COSg m COSg n COS4gi 1 4 3 - --- - -  COS W 1 dw1 -- , 
0 2re 8 

where 1/2re is the probability density function p(g~ = wl). 

5.1.4 The process is ergodic 

Really, r/(t) of a sea state is a stationary ergodic Gaussian random process. The 
fact is that generally we omit the attribute ergodic, both because the attributes here 
are a good deal, and because the term ergodic is not very familiar. In simple words, 
the process is stationary Gaussian since p [r/(to) = w] at any fixed time to is given by 
(5.1), and is ergodic Gaussian since p [r/(t) = w] in any realization is given by (5.1). 
To better understand this concept, we give an example of a stationary Gaussian 
process being not ergodic, and an example of an ergodic Gaussian process being not 
stationary. 

Let us consider the process 
~]i ( t )  = Vi ,  

where the i th realization is a constant function of time, with the value of the 
constant being generally different for each realization. If the ~ are distributed 
according to (5.1), that is if 

P (V - w) - 1 exp 
v/2rcm0 2too 

the random process is stationary Gaussian but not ergodic. 
Let us consider now a stationary ergodic Gaussian process and let us imagine to 

bring the origin of each realization to coincide with a zero of r/. Thus, our process 
keeps ergodic Gaussian, but it is no longer stationary since p [~ (0) = w] is given by a 
delta function rather than by (5.1). 

5.2 Joint probability of surface displacements 

5.2.1 The mathematical  f o r m  

Let us define n random variables V1, V2,..., V, each of them representing the 
surface displacement r /or  a derivative of any order of r / taken at instants generally 
different from one another. 
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For example 

V1 - rl(to), V2 - il(to + T), ..., V, - i)(to + T ' ) ,  

where the dot denotes the derivative, and to is any fixed time instant and T, T' are 
fixed time lags. The product 

p (V1 = w1, V2 = w2, ... ,  Vn = W n ) d W l  dw2 . . .  d w ,  

represents the probability that V1 falls in a fixed small interval dw~ including Wl; V2 
falls in a fixed small interval dw2 including w2, and so on. 

In sect. 5.1 we have proved that p[rl(to) = w] is a Gaussian (normal) probability 
density function. Expanding the reasoning from the probability density of a single 
variable to the joint probability density of a set of random variables, we can prove 
that p (V1 = Wl, V2 - w2, ..., V, = w,) is multivariate Gaussian, that is to say 

p (1/1 = Wl, v~ = w~, ..., v ,  = w,)  = 1 exp[_ 1 ~ ~ M i j w i w j l  ' (5.10) 
(27r) "/2x/M 2M i=1 j = l  

where Mq and M are, respectively, the i, j cofactor and the determinant of the 
covariance matrix of V1, V2, ..., V,: 

Mq - i, j cofactor, 
M _= determinant of 

v~ VlV~ ... VlV.~  

v ~  v~ ... v ~ v .  
• • , 

• o 

• . 

• o 

v.v~ v. ½ ... v ~ j 
n 

The elements of this matrix are ensemble averages like r/4 (to) obtained in sect. 
5.1. Since the ensemble averages are equal to the temporal means, the elements of 
the covariance matrix can be obtained also from temporal means. This approach is 
advisable. 

5.2.2 H o w  to ge t  a c o v a r i a n c e  m a t r i x  

We seek the covariance matrix of rl(to), il(to) which will be applied later (as usual, 
to is any fixed time). The result is 

0) 
il(to)rl(to) i7 2 (to) 0 m2 
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Here,  apart from the 1,1 entry that is simply the variance of the surface 
displacement, the other elements proceed from the following operations 

- aicos(a;it + ei) - a j~s in (~ j t  + cj) d t -  Tl(to)il(to) < ~l(t) il(t) > - ~ o 

- - a ia j~j  ~ o cos(~it + ei) sin(a:~t + ej) dt - O; 
i=1 ]=1 

1 j. E 
- -  a i w i s i n  ( w i t  -+- e i )  dt  - 

- < ( t )  > - , 7  o 

~ ~  ,~'1 1'7o /~~ l a 2  2 - -  aiaj( .z)  iO.)j - - 7 /  sin (~vit + ci) sin(~jt + e j ) d t -  -~- iO-)i - -  m 2 .  
i = 1  j = l  = 

(5.12) 

In these equations, we have understood that .~Z-tends to infinity; we have used the 

fact that the mean value of sin (~it + ci) sin ( ~ t  + cj) is i if i - j  or else is 0, and the 
2 

fact that the mean value of cos (~it + Gi) sin ( ~ t  + cj) is always 0. 

Check the rightmost equality (5.12). Hint: start from the question "which is the 
contribution to the summation from the small waves whose frequency ~i is within a fixed 
small interval ~, ~ + 8~ ?". Then, use the definition (4.2) of spectrum and the definition (4.6) 
of moments of the spectrum. The reasoning is essentially the same we did for the summation 
on the r.h.s, of (4.13). 

5.3 Rice's problem 

We shall call b up-crossing (symbol b+) the up-crossing of a fixed threshold b 
from the random function ~/(t) [see fig. 5.2]. Our goal is .d/+'(b; J - ) ,  the n u m b e r  orb+ 
in a g iven very large interval  . ~  To this end we start subdividing the time axis into 
very small intervals dt, and define 

p+ (b)dt ~ probability that any fixed dt, say ( -  d t / 2 ,  dt/2),  includes a b+. 

./L'(b;.~ -) is equal to the probability p+ (b)dt multiplied by the number ( 3 / d t )  of 
small intervals in . ~  

.... l +  ( b ; 3 )  - p +  

Let us define now p+ (b, w) dt dw, the probability that 

(i) the small interval ( - d t / 2 ,  dt/2) includes a b+ ; 
(ii) the derivative of ~/at the time of this b+ falls within a fixed small interval 

w, w + d w .  
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l ~ 1 st c r e s t  e l e v a t i o n  > b 2 nd c r e s t  e l e v a t i o n  > b 

. . . . .  \ . . . . . . . . . . .  . . . .  . . . .  L . . . .  .k.  . . . . . . . . . . .  

I i ......... i . . . . . . .  i ...... .... 

Fig. 5.2 A b+ is an up-crossing of some fixed threshold b. 

t -~, 

The relation between p+ (b) and p+ (b, w) proceeds straightforwardly from their 
definitions: 

I + 
p+(b) - p+(b,w)dw. (5.14) 

o 

The joint probability of (i) and (ii) is equal to the probability that 

( 1 dtw, b + l  dtw)" (iii) r](0) falls within b - - ~ -  ~ , 

(iv) ~)(0) falls within (w, w + dw). 

Fig. 5.3 is helpful to understand this equality, that is to say it is helpful to understand 
that 

probability of (i) and (ii) = probability of (iii) and (iv). (5.15) 

In an analytical form this equality is 

p+ (b, w) dt dw = p ['7 (0) = b, ~ (0) = w]w dt dw. 

Here the joint p.d.f, on the r.h.s, is multivariate Gaussian and the relevant 
covariance matrix is (5.11), so that we get 

p+(b ,w)-  1 [ 1 (m2 +m0 ] - b 2 w 2) w .  ( 5 . 1 6 )  
2Try/m0 m2 exp 2m0m2 

Finally, equations (5.13), (5.14), and (5.16) taken together yield 

m2 exp g .  (5.17) 
_ 1 .... m 2m ~+ (b; ~ )  ~ 0 0 

This is a result with some important consequences, as we shall see in the rest of this 
chapter. But before we see these consequences, it is worth making some remarks on 
the crucial step of our reasoning, that is to say, on equality (5.15). 
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J - T  

_1 

b 

0 
L-dt-d 

Fig. 5.3 The probabil i ty that  the small interval ( - d t / 2 ,  dt /2)  contains a b+ of the surface 
displacement  with a derivative be tween  w and w + dw is equal  to the probabil i ty that, at t = 0, the 

surface displacement  falls be tween  b -  1 1 - - w  dt and b + -  w dt and its derivative falls be tween  w 
2 2 

and w + dw. 

5.4 Rice's logic 

Equation (5.15) is crucial in that it relates an unknown horizontal probability to a 
known vertical probability. Here by horizontal probability we mean the probability 
that a given value of the random function occurs on a fixed small interval dt: 
horizontal because dt belongs to the horizontal coordinate. By vertical probability 
we mean the probability that the random function falls within a fixed small interval 
dr/at a fixed time instant: vertical because dr/belongs to the vertical coordinate. The 
logic leading to (5.15) is general and enables us to solve an entire class of problems 
relevant to the differentiable random processes. This is why it is worth examining 
this logic closely. 

Let us suppose that the events (i) and (ii) [cf. the definition of sect. 5.3] jointly 
occur. Specifically, a b+ occurs at time 8t with 

- d t / 2  <at < dt/2, (5.18) 

and the derivative of the random function f/ at this instant falls between w and 
w + dw, with w > O. It follows that 

rl(O) = b -  wSt, (5.19a) 

w - / ) ( 0 )  8t < / / (0)  < w - / ) ( 0 )  8t + dw. (5.19b) 

The two pairs of inequalities (5.18) and (5.19b) and the equality (5.19a) imply 

b -  w dt/2 < rl(O ) < b + w dt /2 ,  (5.20a) 

w -  I#(0)l dt /2  < ~/(0)< w + I#(0)l dt/2 + dw. (5.20b) 

Since the small intervals dt and dw are independent  of each other, we can take dt so 

small that i/) (0) 1 dt 
0, (5.21) 

dw 
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so that the inequality (5.20b) reduces itself to 

w </ / (0)  < w + dw. (5.22) 

Conclusion: having assumed the occurrence of both event (i) and event (ii) we 
have proved that the events (iii) and (iv) occur too. Indeed the pair of inequalities 
(5.20a) describe just the event (iii) and the pair of inequalities (5.22) describe just 
the event (iv). The proof is valid under the assumption (5.21) on dt and dw. 

Through a similar reasoning we can also verify the converse: if the events (iii) 
and (iv) occur, then the events (i) and (ii) also occur, provided that dt and dw satisfy 
condition (5.21). Hence, the relation (5.15) between the probability of (i) and (ii) 
and the probability of (iii) and (iv) is proved under the assumption that dt and dw 
satisfy condition (5.21). 

This proof is sufficient. Indeed, the probability of (i) and (ii) is proportional to 
the product dt dw, and also the probability of (iii) and (iv) is proportional to dt dw. 
Therefore if one succeeds in proving (as we have done) that for a particular pair 
dt, dw the probability of (i) and (ii) is equal to the probability of (iii) and (iv), then it 
follows that the two probabilities are equal to each other whichever the pair dt, dw. 

It is as if we had proved that a prism with a small base dA and a relatively large 
height dh of a homogeneous material @ has the same weight of a prism of the same 
base dA and height dh of a homogeneous material @, and hence we should have 
concluded that, given any volume with a shape generally different from the prism, 
the weight of this volume of material @ and the weight of this volume of material (2) 
are equal to each other. Clearly, in this comparison, the volume of small base dA 
and relatively large height dh stands for dt dw, with dt and dw satisfying condition 
(5.21); the weight of the volume of material @ stands for the probability of (i) and 
(ii); the weight of the volume of material @ stands for the probability of (iii) and 
(iv). 

5.5 Corollaries of Rice's problem 

5.5.1 The mean  wave per iod  

The mean wave period is given by the quotient between the very large time 
interval g -  and the number/U+ ( 0 ; 3 )  of zero up-crossings in this interval: 

T - ~/~++ (0; 3 )  (5.23) 

(bearing in mind that the number of waves is equal to the number of zero up- 
crossings). With (5.17) of ~ + ( b ; 3 ) ,  (5.23) becomes 

-T - 27r,/mo (5.24) 
V m2 

that is the formula of the mean period. 
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With the J O N S W A P  spectrum we have 

m o  

m 2  

i 
o o  

-4 ~(w) dw Ag2ajp 
o 

i 
oo  

A ~ 2 ( . j - 2  2 c .... g p w { (w) dw 
0 

where ~(w)  is defined by (4.24), and hence 

[ ~ {(w)  dw 
t 0 T - T p  -~ 

J w dw 
o 

The two integrals can be numerically evaluated for given values of the shape 
parameters ~ and ~)~2 in the expression of ~ (w), and with the values of the mean 
J O N S W A P  spectrum (~1 = 3.3, X2 = 0.08) the result is 

k 

T - 0.78 Tp. (5.25) 

Hence, with the formula (4.27) of Tp we obtain 

T - 6.6~r~/H' 
4g 

(5.26) 

5.5.2 The general inequality o f  the crest elevation probability 

If a wave has a crest higher than a fixed threshold b then it contains at least a b+ 
[cf. fig. 5.2]. Hence, the number  of waves whose crest exceeds a fixed threshold b is 
smaller than or equal to the number  of b+. Only if the spectrum is infinitely narrow 
the waves approach the sinusoidal function so that there is only one local maximum 
per wave, which implies: the number  of wave crests higher than a fixed threshold b 
is equal to the number  of b+, for every b. Summarizing, we write 

- . A +  ( b ; J )  if the spectrum is infinitely narrow, 

~/¢~:r (b ; .~)  _< ~A'+ (b ; .7)  in general; 
(5.27) 

where A'c~ (b; .'.7) is the number  of waves whose crest exceeds a fixed threshold b, in 
a very large time .~ ,  and ./f'+ (b; .U) is the number  of b+ in the interval .U, which has 
been already defined. 

The probability P ( U >  b) of a wave with a crest elevation exceeding a fixed 
threshold b is equal to the quotient between .A'~r (b; .~Z-) and .A'+ (0; 7 )  (this being 
equal to the number  of waves), that is 

b)=.4; (0; 3 ) .  (5.28) 
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From (5.27) and (5.28) it follows that 

f-~4~+ ( b ; 3 ) / ~  (0; 3 )  if the spectrum is infinitely narrow, 
P(g~ > b) 

_< ~ (b; Z)/~++ (0; 3 )  in general; 

Hence, using the formula (5.17) for ~4)" ( b ; 3 ) ,  we obtain 

P(~  > b) ~ - exp(-b2/2m°) if the spectrum is infinitely narrow, (5.29a) 

( <_ exp(-b2/2mo) in general. (5.29b) 

The nondimensional form 

P(/3) = exp(-/32/2) (5.30) 

proceeding from (5.29a) gives the probability that a wave crest in a stationary 
Gaussian process with an infinitely narrow spectrum is higher than /3 times the 
standard deviation of this process (with/3 being arbitrarily fixed). It will be used 
later in the analysis of the wave forces on ocean structures. 

5.5.3 The wave height probability under the assumption of infinitely narrow 
spectrum 

We have just recalled that a single wave approaches a sinusoidal function if the 
spectrum is infinitely narrow. Another consequence of this is that the wave height is 
twice the crest elevation. Therefore 

P(wave height > H ) - P ~ > - ~ - )  i f the  spectrum is infinitely narrow, 

which yields 

( - ' 2 )  
P(wave height > H) - exp 8m0 if the spectrum is infinitely narrow. (5.31) 

This is one of the more commonly applied expressions in ocean engineering; the so 
called Rayleigh distribution. It gives the probability of exceedance of the wave 
heights under the assumption of infinitely narrow spectrum. 

In what follows we shall express (5.31) in the alternative form 

h, exp E 2 ( ) lif the spect,um is infinitely narrow 

where P (H;/4= = h) is the probability of a wave height exceeding a fixed threshold 
H, in a sea state with a given significant wave height. For the step from (5.31) to 
(5.32) it suffices to use the definition/4= = 4xFm~. 
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Besides the probability of exceedance, we shall use also the probability density 
function p(H;  H, = h) that is related to the probability of exceedance by 

p (H; 14, - h) - - dP (H; H, - h) . (5.33) 
dH 

Clearly, the product p (H; H~ = h ) d H  gives the probability of a wave height within 
the fixed small interval H , H  + dH,  in a sea state with a given significant wave 
height. Equation (5.32) and (5.33) yield 

p (H; H, - h) - 4 - ~  exp - 2  if the spectrum is infinitely narrow. (5.34) 

Finally, for the experimental verification of the wave height distribution the 
nondimensional form 

P ( a ) -  e x p ( - - ~ /  if the spectrum is infinitely narrow (5.35) 

is commonly used. It gives the probability that the quotient between the wave 
height and the root mean square surface displacement of the sea state exceeds any 
fixed threshold a. Here we use the simplest symbol [P(a)] because this is the 
probability most commonly used in dealing with field measurements.  

5.5.4 The  general  inequal i ty  o f  the m e a n  wave  he ight  

The mean crest elevation 
The mean value of a random nonnegative variable is equal to the integral over 

(0, ~ )  of the probability of exceedance [see sect. 5.10.3]. In particular the mean 
crest elevation is given by 

so that using (5.29a-b) we obtain 

J ' ~ P ( Y  > b) db, 
0 

x/~0 if the spectrum is infinitely narrow, 

v/m0 in general. 

(5.36) 

The mean trough depth 
The stationary Gaussian process is statistically symmetrical, which means in 

particular the mean trough depth to be equal to the mean crest elevation: 

~ ( - ! =  ~ .  
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For verifying this equality is suffices to note that the process - r / ( t )  is also stationary 
Gaussian and that the troughs of r/(t) are the crests of - ~ ( t )  (from which the 
symbol ~ ( - / t h a t  stands for crest elevation of the process - r / ( t ) ) .  

The mean wave height 
For getting the mean wave height we should perform the following operation 

- B _  + + ... + H .  
, (5.37) 

n 

where / /1  is the height of the first wave of the sea state, H2 the height of the second 
wave, and so on as far as H, being the height of the last wave. For the wave 
definition, (5.37) can be rewritten in the form 

/_ /_  + + + + ... + + = + ( 5 . 3 8 )  
/7 

indeed the wave height is the sum of the crest elevation and the trough depth. 
From (5.36) and (5.38) it follows that 

H f -  v / ~ ~  if the spectrum is infinitely narrow, (5.39a) 

t _< v/~v/-m--~ in general. (5.39b) 

Put into words, this means that the mean wave height is generally smaller than 
v / ~  x/~m~ and becomes equal to v / ~  v/N~ in the limit as the bandwidth approaches 
zero. 

5.6 Solved and still unsolved problems 

How to know whether or not a problem relevant to the stationary Gaussian 
process is formally solvable for an arbitrary bandwidth? One should try to split the 
problem into the estimates of one or more probabilities that some given events 
occur in a finite number of given infinitesimal time intervals. If one succeeds in 
doing this, the problem is formally solvable. However, if the problem needs the 
estimate of only one probability that a given event occurs in a given interval of finite 
extent, then the closed solution, at present, is not achievable. 

The first class of problems should be dedicated to S.O. Rice, since he gave the 
general solution to these problems (see references). A classic problem of this class 
is that of the mean wave period, which calls for the estimate of the probability that a 
zero up-crossing occurs in a given infinitesimal interval dt [cf. sects. 5.3 and 5.5.1]. 

The closed solution for the probability that a given interval (t 1, t2) of finite extent 
contains at least one zero up-crossing has not yet been obtained. If this solution was 
obtained, we should be able to get, as a simple corollary, the distribution of the 
random times between successive zero up-crossings, that is the wave period 
distribution. Indeed, the distribution of the random times between successive points 
of a random point process is related to the probability that at least one point occurs 
in a fixed interval by a general equation that will be deduced in sect. 7.3.3. 
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For the probability of a wave height within a fixed small interval H, H + d H  we 
should estimate the probability that the following events jointly occur: 

(i) a fixed small interval (to, to + dt) contains a 0+; 
(ii) a fixed small interval (to + T, to + T + d T )  contains a 0+; 
(iii) a fixed small interval (to + T', t,, + T' + dT'), with T' < T, contains a local 

maximum with an elevation between b and b + db (b and db fixed, b < H); 
(iv) a fixed small interval (to + T", to + T" + d T " ) ,  with T' < T" < T, contains 

a local minimum with an elevation between b -  H -  d H  and b -  H; 
(v) no other 0+ occurs on (t~,, to + T); 
(vi) no other local maximum with an elevation greater than b occurs on 

(to, to + T); 
(vii) no other local minimum with an elevation smaller than b - H occurs on 

(to, t o+T) .  

Dividing the joint probability of the seven events (i) ... (vii) by the probability of (i) 
we should obtain the probability of a wave with a height within (H, H + dH),  
period within (T, T + d T), crest elevation within (b, b + d b ) ,  interval between the 
first zero up-crossing and the crest within (T', T' + dT'), interval between the first 
zero up-crossing and the trough within (T", T " +  d T"). Then integrating this 
probability over 

{ ( T , T ' , T " , b ) [ T  E ( O , ~ ) , T '  c (O,T) ,T"  c (T', T) ,and b c (O,H)} 

we should arrive at the sought probability of a wave whose height falls within the 
fixed small interval (H, H + dH). 

It will have been understood that the general solution for the wave height 
probability is beyond our present skill. Indeed, apart from the overall complexity, 
we should estimate all of three probabilities that some given events [the events (v), 
(vi) and (vii)] occur on a fixed time interval of finite extent. 

The formal solution for the wave height probability in the limit H / a  --+ ~ was 
obtained in the early 80's as a corollary of the theory of quasi-determinism. It was 
the first closed solution to a problem outside the Rice's class. 

5.7 The period of a very high wave and the wave height probability under 
general bandwidth assumptions 

5.7.1 Elements  o f  the quas i -de termin ism theory 

Let us consider the set of the waves with a given height H, say H = 3a in a 
stationary Gaussian process. (Really, the probability to find a wave height being 
exactly equal to 3~ is zero, and thus it is understood that we fix a small interval dH 
and take the set of the waves whose height is between H and H + dH, specifically 
between 3a and 3 a +  dH.)  The waves of this set will be different, even very 
different, from one another. 
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If we fixed a larger H, say H - 8cr, we should find that the waves contained in the 
set differ much less from one another  and, in the limit as H/cr ~ oc, all waves of the 
set, apart  from a negligible share, would prove to be equal to one another.  More 
specifically, each wave of the set would occupy the centre of a well defined group 
that is the sum of a deterministic f ramework and a residual random noise of a 
smaller order. The form of the deterministic component  is 

~(T) - ~ (T)  - ~ , ( T -  T*) H 
(0) - ~(T*) 2 ' (5.40) 

where  T* is the abscissa of the absolute minimum, being assumed to be also the first 
minimum, of the autocovariance. 

With the J O N S W A P  spectrum, the deterministic group (5.40) becomes 

 /w/{cos 
Io /W/{l cos(  w , 

H 

This is shown in fig. 5.4 for the case of the mean J O N S W A P  spectrum 
(X~ = 3.3, X2 = 0.08), for which T* proves to be equal to 0.44Tp. 

This is a short summary of the quasi-determinism theory. This theory deals with 
the mechanics of the wind generated waves, and hence it will be shown later 
(chapter  9). But the quasi-determinism theory has also two important  consequences 
on wave statistics, that is on the subject of this chapter. 

5.7.2 Per iod  Th o f  a very h igh  wave  

The first consequence of the quasi-determinism theory is that a wave of given 
height H has a well defined period, with a probability approaching 1, as H/cr ~ oc. 
This is 

Th -- period of the central wave of the group (5.40), (5.41) 

where the subscript h stands for high waves. With the mean J O N S W A P  spectrum, 
Th can be simply taken from fig. 5.4: 

Th --0.92Tp for the mean J O N S W A P  spectrum. (5.42) 

Clearly, the limit as H/cr ---, oc of the regression T (H) of wave periods versus 
wave heights coincides with Th" 

lim T (H) - Th, 
H I ~  --, 

and hence it can be calculated by means of (5.41) for any given spectrum. This is 
very useful since the numerical  simulations of the stationary Gaussian process re- 
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Fig. 5.4 The function (5.40) obtained from the mean JONSWAP spectrum. 

veal that T (H) converges on its limit for H/a > 4 " 5, and the periods of the waves 
with H/a > 7 • 8 are typically very close to this limit. 

5.7.3 The wave height probability under general bandwidth assumptions 

The second consequence of the quasi-determinism theory, in the field of wave 
statistics, deals with the very wave height probability. Let us see how quasi- 
determinism theory and wave height probability are related to each other. 

A wave of given height H necessarily has crest elevation and trough depth 
between 0 and H. Fig. 5.5a shows two possibilities. These possibilities are oc 2 
because the crest elevation can take on any value between 0 and H and the time 
interval between the crest and the trough can take on any positive value. The 
situation is more suitably represented in the plane T-~, where T is the crest-trough 
lag, and ~ is the quotient between the crest elevation and the crest-to-trough wave 
height. In particular the two waves @ and @ of fig. 5.5a are represented by two 
distinct points in the plane 7--~ [see fig. 5.5b]. 

Let us imagine we examine a very large time interval ~ ,  we gather all waves 
whose height is within a fixed small interval H, H + dH, and we mark the points 
representative of these waves in the plane T-~. For a finite H/cr the marked points 
would spread over the plane T-~. [For example, the number of points falling in 
rectangles like A or B (see fig. 5.5b) in general would not be negligible.] On the 
contrary, as H/c ~ oc we would look at a great concentration: all the points but a 

negligible share would fall in an open 2-ball with centre at T* 1 and radius of 
' 2 

order (H/c) -~. Moreover all the points in this small 2-ball would be associated with 
waves whose profile is very close to the deterministic profile (5.40). In partial 
confirmation of this, the wave of given height H very large, according to (5.40), has 
crest elevation H/2 and crest-trough lag T*, and thus it is represented by the point 

T*, 1 .  2 m the plane ~--~. 
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Fig. 5.5 (a) The waves with a fixed height H generally show a large variety of ~ and r. (b) 
Plotting ~ vs r, generally we get a wide cloud of points. Only in the limit as HIe --+ ~ ,  all points 
would gather at a special location, something like a black hole. This special location is at 

1 
~- = T*, , ~ -  ~-. 

If we associated a mass with each point in the plane r -~  (the same mass for each 
point), in the case of a finite H / o  we should find the mass rather uniformly 
distributed over the plane 7--~. While as H/cr ~ ~ ,  the whole mass but a negligible 

share would pile up at point T* 1 which would become something like a black 
' 2 '  

hole. The mass density would vary widely in the black hole, despite its radius being 

very small, in the order of (H/a )  -~. Specifically, the mass density would approach 

zero from the centre to the outskirts of the black hole. 

All this will be formally proved in chap. 9. Moreover in sect. 9.10.1 we shall count 
all the points being present in the black hole. That is to say, we shall integrate the 
number  of points over a small 2-ball with a radius of order (H /a )  -~ and centre at 

point T*, ~.1 Clearly, once we shall have obtained the number of points, that is the 
2 

number of waves whose height falls within the fixed small interval H , / 4  + dH, during 



Analysis of the sea states: the time domain 171 

the very large time interval 7 ,  we shall arrive at once at the wave height 
probability. The result is 

_ 1 H 2 ] 
P(wave height > H ) -  Kexp 4(1 + ~b*) m~ (5.43) 

where K depends on the quotient between the absolute minimum and the absolute 
maximum of ~b(T), and on the quotient of the curvatures of these maximum and 
minimum. Its value is equal to 1.21 for the Pierson and Moskowitz spectrum, 1.15 
for the mean JONSWAP spectrum, and naturally is 1 for the infinitely narrow 
spectrum. 

The form (5.43) has been compared with the data of numerical simulations of 
stationary Gaussian processes, and for the processes with the characteristic spectra 
of sea waves, (5.43) proves to be efficient for H/cr greater than 3 + 4 (we shall see 
this in more details in sect. 9.10.4). For H/o-> 6, which is the range of practical 
interest for ocean engineering, the effect of K proves to be negligible. This means 
that for H/c~ > 6 we can assume K = 1, that is 

P(wave height > H) - e x p [ -  1 H ~ ] .  (5.44) 
4(1 + ~b*) m0 

This, without any appreciable consequence, in the sense that for a given P we get 
practically the same H whether using (5.43) or (5.44) (provided, of course, that 
H,/c~ > 6). Therefore we can use (5.44) for the practical applications. We can use it 
in the alternative form 

or in the form 

P(H;H,-h)-exp[-l+~b*4 (~)  2] (5.45) 

- °L2 ] (5.46) P(c~) - exp 4(1 +~b*) 

which gives the probability that the quotient between a wave height and the root 
mean square surface displacement of the sea state exceeds any fixed threshold c~. 

Another useful formula is that of the probability density function, which 
proceeds from the probability of exceedance through (5.33), and proves to be 

8 H [ 4 (__~_)21 
p (H;/4, - h) - 1 + ~* h 2 exp 1 + ~b* " (5.47) 

It should be noted that the forms (5.44-45-46) of the probability of exceedance 
reduce themselves correctly to (5.31-32-35), and the form (5.47) of the probability 
density function reduces itself to (5.34), if the spectrum is infinitely narrow so that 
~ * = 1 .  

Finally, it is useful to get the expressions of the probability of exceedance and of 
the probability density function, for the case of the mean JONSWAP spectrum. We 
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have already seen in sect. 4.7.4 that the ~b* of this spectrum is equal to 0.73, and 
hence: 

mean J O N S W A P  spectrum 

P ( H ; H , - h ) -  exp [-2.31 ( ~ ) 2 ] ,  

. [ p (H;/4, - h) - 4.62 ~ exp -2.31 

(5.48a) 

(5.48b) 

5.8 Experimental verification 

5.8.1 The two basic graphs 

A typical verification of the wave statistics calls for the measurement  of the 
surface displacement ~7(t) of a sea state and the following operations: 

(i) to calculate the standard deviation cr of the time series data of r/(t); 
(ii) to evaluate the autocovariance ~(T)  from the time series data of r/(t); 
(iii) to obtain T* from ~b(T), and ~b*- ~b(T*)/~(0)[; 
(iv) to compute the wave group (5.40) from ~(T)  (we mean the nondimen- 

sional wave group ~ (T)/H); 
(v) to obtain Th from the wave group (5.40) (Th is the period of the wave 

whose crest falls at T -  0) ; 
(vi) to single out the waves from the time series data of r/(t), and to measure 

their heights HI, H:, ..., H~ and periods T1, T:, ..., T~; 
(vii) to divide the height of~ each single wave by ~, and to divide the period by 

Th, SO to get a set of pairs a l ,  T1; a2,  T2; ...; a , ,  T,; where 

O/'i : Hi T i - -  Ti 
cr ' Th " 

The operations ( i) . . .  (vii) can be ~ p e a t e d  for an arbitrarily large number  of 
wave records, and the sets of pairs ai, T/of the different sea states can be gathered 
so as to make up a single big set. The sea states can be recorded in different areas, 
and under environmental  conditions which are even very different from one 
another. Only one must take care to discard the sea states where the absolute 
minimum of ~b(T) is not also the first local minimum on the positive domain of this 
function (it is something that may happen if the wind waves are superimposed on 
some slightly higher swells as was shown in sect. 4.7.5). 

In order to verify the theor)L we have to draw two~ graphs. The first one is the 
representat ion on the plane a - T  of all the pairs c~i, T/. The result, as evident, will be 
a point cloud. For the second graph we have to work only on the nondimensional 
values c~i, from which we get the experimental P(c~). Let us imagine, for example, 
we have 10 5 values of OL i and that 2 . 1 0  3 of these Og i exceed the threshold c~ - 5, then 

2.103 
P(5) - IO----T--= 2 . 1 0  -2 . 
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It is convenient  to resort  to a semilogarithmic coordinate paper  where the functions 
(5.35) and (5.46) are represented by two parabolas. Indeed from these two 
functions we have respectively 

2 1 c~ 
In ~ = if the spectrum is infinitely narrow,  

P 8 
l ct 2 

In ~ -  in general.  
P 4(1 + ~*) 

We shall represent  the experimental  P (c~) (obtained from the set of the c~i) and the 
two functions (5.35) and (5.46). As to ~* (which is necessary for 5.46), we shall take 
the average of the ~* in the set of wave records. 

5.8.2 Graphs obtained from field data 

Basing ourselves on the theory of sect. 5.7 we expect that the ordinates of the 
rightmost points c~, T of the first graph are close to 1. ( Indeed the rightmost points 
are those with the largest c~ = H/o, and in sect. 5.7.2 we have seen that a wave with 
a very large H/cr must have a per iod T very close to Th, and hence a 
nondimensional  period T very close to 1.) We also expect that the experimental  
P(c~) approaches the function (5.46) as c~ grows. An apparent  confirmation of both 
the predictions is given by figs. 5.6-7 being obtained from the data of the experiment  
RC 1990. 

Typically, the point cloud c~, T appears as in fig. 5.6, with the maximum width 
roughly on c~ = 2. As to the P (c~), we see the data points for small c~ to be practically 
coincident with the function (5.35). Then, for c~ > 3, the data points deviate gradu- 

T 

m 

I 

0 1 2 3 4 5 6 7 8 9 
I 

Fig. 5.6 Data points T~ =- T~/Th, o~i = Hi/o obtained from the experiment RC 1990. We see that 
the T of the highest waves are very close to 1. 
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Fig. 5.7 Probability P(a) obtained from the experiment RC 1990. We see that P(a) approaches 
the form (5.46) for increasing a. 

ally from (5.35) and move towards (5.46). Starting from a = 4, the data points are 
practically coincident with the function (5.46). This implies that the experimental 
P(a) all over its domain is smaller than or equal to (5.35), which confirms also the 
inequality (5.39b) on the mean wave height (bearing in mind that the mean value of 
a nonnegative random variable is equal to the integral from 0 to ~ of its probability 
of exceedance). 

5.8.3 Non-linearity effects 

In conclusion, the theory of the sea states to the first order in a Stokes' expansion 
enables us to foresee the basic things on wave height and wave period variability. 
This does not mean that a sea state is wholly a stationary Gaussian process, as 
predicted by the aforesaid theory. Indeed this theory is not able to predict the 
profile distortion due to the non-linearity effects. Going into detail, in an actual sea 
state, the probability of exceedance of the crest elevation is generally different from 
the probability of exceedance of the trough depth; for the surface waves, the 
probability of exceedance of the crest elevation is greater than the probability of 
exceedance of the trough depth; vice-versa for the pressure head waves beneath the 
water surface. Hence, there is an apparent difference with respect to the stationary 
Gaussian processes which are statistically symmetrical. 
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On the other hand, as we have seen, there is an excellent agreement between sea 
states and Gaussian process for what concerns the wave height probability. The 
reason for this agreement is that the non-linearity affects the crest elevation and the 
trough depth, but does not affect the crest-to-trough wave height. Similarly, the 
non-linearity shortens the wave crest and lengthens the wave trough, but does not 
affect the wave period. 

5.8.4 A firm landmark 

Sometimes the Italians dream about setting their watches to train departures. 
Well, something like this does actually occur at sea; the wave height probability is 
usually so regular that we can use it to check the wave gauges. 

In the natural laboratory of Reggio Calabria, we resort to graphs like that of fig. 
5.7 for a general check of the wave gauges. An emblematic case occurred in 1990 
with a few capacitance wave staffs. The experimental P(c~) looked somewhat 
different from that of fig. 5.7, in the sense that the data points slightly deviated 
rightward with respect to the function (5.35). This made us think of a gauge's flaw, 
and in fact a few laboratory tests revealed that these gauges had some small 
departures from linearity. 

5.9 Characteristic wave heights 

5.9.1 The formal solution 

Let us fix a number . 7  between 0 and 1: 

0 <.~7-. < 1, 
and let us define 

H~- - the threshold being exceeded by .~7. N wave heights in a sea state 
(N being the total number of waves). 

This definition is simply expressed by the equality 

H, P ( j ; H s - h ) - . ~ - ,  

that, with the formula (5.32) for the probability of exceedance, yields 

H 7  - h in ./~ . 

Then let us define 

HT - the average wave height of the .¢-. N highest waves of a sea state. 
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The definitions of H )  and H< yield 

H 7 -  the average height of the waves higher than H ~ ,  

and consequently 

J ~ H p ( H ; H s - h ) d H  
H T =  I-I> 

J ~ p ( H ; H s - h ) d H  

1 
= h  In S 

1 1 
+ - ~  A ( 1 -  erf ~ / / l n - ~ ) ]  , (5.49) 

where the err function has been already used in chap. 3 [cf. the definition (3.37)]. 

Check the rightmost equality (5.49). Use (5.34) of p ( H ; H ,  = h), and note that the 
integral on the denominator is equal to 3-, and the integral on the numerator can be 
evaluated by parts. 

5.9.2 Analytical exercise: find a well approximate formula for the direct 
evaluation of  H 7  

Equation (5.49) gives the exact solution for H#. But it has the inconvenience of 
containing the erf function that requires a numerical integration. Thus let us seek an 
approximate formula of quick use. 

The function 1 -erfx/-x appearing in (5.49) satisfies the following pair of inequalities 

with 

S 1 (X) < 1 -- erfv@ < $2 (x), 

_ 1  (x 1 SI(X ) - ~ - e  -x -y 13) X-T 
2 

_ 1  (x 1 S 2 (X) - ~  e -x -Y 
3 3 

1 x - y +  x- 
2 7 " 

(5.50) 

For verifying the inequalities (5.50) it suffices to note that 

/ 1 -  e r fx /~-  0, 

}im SI(X) -- 0, 
&(x) - O, 

(5.51) 

and that 

{__~ 1 (x 1 8 )} { .__~~ 1 +} $2 (x) -- - - ~ e  -x --~ + ~ x  -7 < (1 - erfvff) = - - - - ~ e - X x  - < 

{ d  1 e x ( x l  3 < --~S 1 (X) -- - - - ~  --TX • (5.52) 
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The equalities (5.51) and (5.52) imply also that 

lim 1 -  err v/x = 1, lim 1 -  err x/~ = 1. 

As x takes on smaller and smaller values, the difference between 1 -  erfx/~ and $1 (x) or 
$2 (x) progressively grows. However for x > 1, the function 1 - erfx/~ can be very well fitted 
by an intermediate function between $1 (x) and $2 (x). Specifically, the form 

x l 1 _3 1 x-})  for > 1 1 e_X - ~ - - - x  ~-+ x 1 - erfv~ --- - ~ -  2 4- 

proves to be efficient. This approximate form enables us to rewrite (5.49) as 

/-!~ -~ h x + - ~  3 1 5)] (x 1 )  .~- 1 x-7 + x-7 - In for < 0.35. (5.53) 
2 4 .~2" 

5.9.3 The bandwidth effect 

Equat ion (5.49) and its approximate form (5.53) are valid provided the spectrum 
is infinitely narrow, since we have used formula (5.34) for p (H; H, = h). If we use 
formula (5.47) valid for an arbitrary bandwidth,  we obtain again (5.49) (and 5.53) 

multiplied by the factor V/(1 + ~*)/2. 
Thus the characteristic height He- is generally smaller than it is predicted by 

(5.49) or (5.53): the broader  the spectrum the smaller the characteristic height. In 
particular, with the mean J O N S W A P  spectrum, H7  proves to be 7% smaller than is 
predicted by (5.49) or (5.53). But H7  has come into use under  the assumption of 
infinitely narrow spectrum, and whenever  some design rules prescribe H1/3,//1/10, 
H1/loo it is unders tood that these are H1/3, H~/~o, H~/~oo for the infinitely narrow 
spectrum. 

5.10 T h e  m a x i m u m  e x p e c t e d  w a v e  he ight  in a sea  state  o f  g iven  durat ion  

5.10.1 The stochastic independence of  the wave heights and its consequences 
on the result 

Let us consider N consecutive waves of a sea state of given significant height. 
The probability that the largest wave height of this set of N waves is smaller than a 
given threshold H is equal to the probability that all N wave heights are smaller 
than H. (Indeed if the maximum wave height gma x is smaller than H, then all wave 
heights are smaller than H; and if all wave heights are smaller than H, then also Hmax 
is smaller than H.) Thus we can write 

:~(Hm~x < 14;14, = h) = Y ( H ,  < H,  H2 < H, . . . ,H~ < H ; H ,  = h).  (5.54) 
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In literature the probability on the r.h.s, of this equation is expressed in the form 

.-@(HI < H,  H2 < H,  . . . ,  HN < H; Hs - h) - [1 - P(H;  H, - h)] N (5.55) 

that would be exact if the wave heights were stochastically independent of one 
another. Indeed (5.55) says that the joint probability that HI is smaller than H, H2 is 
smaller than H, and so on is equal to the probability that HI is smaller than H 
multiplied by the probability that H2 is smaller than H, and so on. Really, the wave 
heights are not  stochastically independent of one another, and hence it is necessary 
to reflect upon (5.55). 

It is convenient to consider first the condition of infinitely narrow spectrum. In 
this case, if N is finite, the N consecutive waves have only some infinitesimal 
differences from one another [cf. sect. 4.7.1]. Therefore the probability that all N 
waves are smaller than H is equal to the probability that one single wave is smaller 
than H: 

~ ( H 1  < H,  H2 < H ,  . . . ,HN < H; H,  = h) = 1 - P ( H ;  H,  = h) 

if the spectrum is infinitely narrow. 

As a consequence, if the spectrum was infinitely narrow, using (5.55) we would 
largely underestimate the probability that all the wave heights are smaller than H, 
that is we would overestimate largely the probability that Hma x is greater than H, 
which means that our estimate would be conservative. 

If the spectrum has a finite bandwidth like that of the sea wave spectra, using 
(5.55) we make an error of the same kind, i.e. a conservative one, but much smaller. 
The quasi-determinism theory helps us to understand why. Indeed it shows that the 
characteristic wave groups consist of three or four consecutive waves [see the 
pictures of these groups in chap. 10]. Before and after groups, we can find 
everything: a sequence of small random waves or even a new group. In other words 
the three or four waves forming the group are statistically independent from the 
preceding and the following ones. On the contrary, the three or four waves of the 
group are obviously not stochastically independent of one another. In practice, this 
implies that given an exceptionally high wave (centre of a group) we can expect that 
one or two waves before and one or two waves after will also be higher than the 
mean wave height. 

To summarize, with the characteristic spectra of the sea waves we have a 
correlation affecting sequences of three or four consecutive waves, and this is not 
even a full correlation in the sense that the three or four waves do not have the 
same height; with the infinitely narrow spectrum, the correlation is full and affects 
the whole set of N waves. Thus we understand that the greater the N the more 
efficient is the assumption of stochastic independence, and for N of a few hundred 
this assumption will lead to only a small conservative error. In conclusion, equation 
(5.55), assuming the stochastic independence of the wave heights, is efficient for 
engineering purposes, since it is simple and slightly conservative. 
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5.10.2 The formula for  the max imum expected wave height 

Equat ions  (5.54) and (5.55) yield 

r(Hmax > H; H , -  h) - 1 -  [1 - P(H; 14, - h)] N (5.56) 

which leads us at once to the max imum expected wave height Hma x in a sequence of 
N waves. For  a physical in terpre ta t ion of Hmax, let us suppose to take n sets each of 
N consecutive waves from the same sea state. The first set will have a maximum 
wave height Hm~x~, the second set will have a max imum wave height Hmax2 generally 
different from Hmaxt, and so on as far as the nth set whose max imum wave height 
will be Hmax,. The max imum expected wave height Hmax is the average of 

Hmaxl, gmax2, ..., Hmaxn. 
Since the mean  value of a nonnegat ive  r andom variable like Hm~x is equal to the 

integral over  (0, oc) of its probabil i ty of exceedance,  f rom (5.56) we obtain 

Hmax - P (Hmax > H; /4 ,  - h) d H  - 1 - 1 - exp 4 d H  (5.57) 
0 0 l+~b* 

which can be given the nondimensional  form 

El ( C~max-- 1-- - - exp  -- 4 
0 l+~b* 

)l N ~ c ~  2 dc~, (5.58) 

where  d _= H/h. The integrand on the r.h.s, of this equat ion is shown in fig. 5.8 for 
N = 200 and ~ * =  0.73 which is the value pertaining to the mean  J O N S W A P  
spectrum. The integral is equal  to 1.586 which implies the max imum expected wave 
height in a sequence of 200 waves to be equal  to 1.586 times the significant wave 
height. 

1.0 

0.5 

0 0.5 I 1.5 2 

a~a=l.586 ~ ~'max =1.586 

' ' 2 ' . 5  

Fig. 5.8 ~max (N) proceeds from the integral of P(~max > C~) over (0, oc). Here N has been taken 
equal to 200. 
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Usually we have to evaluate the maximum expected wave height in a sea state of 
given durat ion At. To this end equation (5.58) is used with 

At  
N -  f(h----~ ' (5.59) 

and with the expression of T(h) obtained in sect. 5.5.1. Indeed A t / T ( h )  is the 
expected number  of waves in an interval At, in the given sea state. 

5.10.3 Append ix :  the relation between mean value and probabil i ty  o f  
exceedance o f  a nonnegative random variable 

Let us consider a nonnegative random variable V. By p(V = x) dx we mean the 
probability that V takes on a value within a fixed small interval x,x + dx, and by P (V > x) 
we mean the probability that V takes on a value greater than a fixed x, so that 

dP(V > x) 
p ( V = x )  = - 

dx 
Now, probably everybody knows that the mean value of V can be obtained through the 

relation 
V - x p (V - x) dx (5.60) 

0 

which is well documented in every book on probability and statistics, and is also quite easy to 
verify. Perhaps, it is less well-known that the mean value of a nonnegative random variable 
can be readily evaluated from the probability of exceedance. Indeed, evaluating (by parts) 
the integral on the r.h.s, of (5.60), we obtain 

V -  -x  P(V > x) + P (V > x) dx, 
0 0 

from which, bearing in mind that limxP (V > x) - 0 (this being a necessary condition for the 
x---~ oo  

existence of the mean value), it follows that 

V -  P(V > x)dx. 
0 

Conclusive note 

The classic approach of Cartwright and Longuet-Higgins (1956) proceeds from 
Rice's solution (1944-45) for the distribution of the elevations of the local maxima 
of a stationary Gaussian process. Equat ion (5.32) is obtained as a corollary of this 
solution. Then a new solution by Rice (1944-45), the one for the expected number  
per unit time of zero up-crossings, gives (5.24). 

In this chapter  we have followed an alternative approach suggested by the 
author  (1982), which proceeds from Rice's solution (1958) for the expected 
number  per  unit time of b up-crossings, where b is any fixed threshold.  Both  basic 
equat ions  (5.24) and (5.32) are obta ined from this solution, and fur thermore  also 
inequali t ies (5.29b) and (5.39b) are obtained which are valid for an arbitrary 
bandwidth.  
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The very typical discrepancy be tween  data  points and the Rayle igh  distr ibution 
of wave heights was i l lustrated by Har ing  et al. (1976) and Forristal l  (1978) and was 
definit ively poin ted  out, and classified as a bandwid th  effect, by Longuet -Higgins  
(1980). 
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Chapter 6 
THE WAVE CLIMATE 

6.1 The function H~(t) 

6.1.1 Measurements of  H~ 

Let us imagine we take a continuous record of the surface displacement ~ (t) at a 
fixed site. We shall call H~ (t) the significant wave height of the sea state lasting from 
t -  At/2 to t + At /2 :  

47 [ - ~/2 (t') dt' ' 
dt-At/2 

where At is the duration of a sea state./4, (t) is a random continuous function that is 
gradually variable and has a mean value which depends on the site. 

The random funct ion/4,  (t) is not stationary because of a seasonal component. 
Moreover,  it has a strong statistical asymmetry with respect to the mean. Some 
numerical simulations of this function have been recently presented by Cunha and 
Guedes Soares (1999). 

Usually the records of/4, (t) are taken by means of instrumented buoys with a At 
of 20 minutes. This is a rather large duration for a weak sea state (for example, with 
an H, of 0.5 m, we expect about 500 wind waves in 20 minutes). But we aim to get 
with more accuracy the/4,  of the heavier sea states. Thus the choice of fixing a At of 
20 minutes is justified and convenient. 

Usually, the records are intermittent. A typical way of working is: record of ~7 (t) 
for a continuous duration of 20 minutes in three hours or in one hour, which means 
sampling/4,  (t) at a rate of 1/3 per hour or 1 per hour. The data points of/4,  (t) are 
then interpolated (e. g. resorting to a Fourier series) and the interpolation proves to 
be efficient because the function varies gradually. 

6.1.2 Definition of  sea storm 

From function/4, (t) we can single out the sea storms. Let us define a sea storm as 
"a sequence of sea states in which/4,  (t) exceeds a fixed threshold her i t  , and does not 
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fall below this threshold for a continuous time interval greater than 12 hours". As 
for hcrit w e  suggest that we assume it is equal to 1.5 < Hs (t) >, that is 1.5 times the 
mean annual significant wave height. In practice, the one in fig. 6.1a is a single 
storm, and that of fig. 6.1b is also a single storm, while those of fig. 6.1c are two 
distinct storms. 

//s 

O) (c) 

1 st storm_m_J \ 2  nci storm 

t 

Fig. 6.1 (a) A sea storm with a single peak. (b) A sea storm with two peaks. (c) Two distinct sea 
storms (Hs keeps below the threshold hcrit for a span of time greater than 12 hours). 

6.1.3 The probability of  exceedance P(H~ > h) 

We shall see later that, thanks to a general property of the sea storms, the design 
wave can be obtained from P(H~ > h). This is the probability of exceedance of 
Hs (t), that is the share of time in which the significant wave height keeps above any 
fixed threshold h at the location under examination. 

Referring to fig. 6.2, we have 

1 
P(H~ > h) - 3 Z / k t i ( h ) '  

i 

where Ati (h) are the time intervals in which H~ exceeds h at the fixed location, and 
3 is the total time. Hence, for estimating P(Hs > h) it is not necessary to analyse 
each single storm. It simply suffices to count how many times the significant wave 
height has exceeded the fixed threshold h, and to divide this number by the total 
number of measurements. 

6.1.4 The probability density function p (Hs - h) 

Besides P(Hs > h) we shall use p (Hs - h)dh that is the probability that H~ falls 
within a fixed small interval (h, h + dh). It is equal to the share of time in which 
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Hs 

At2 Ah 

A 

Aq At4 

Fig. 6.2 P(H, > h) is the quotient between summation (At1 +/kt2 -~ ...) and total time. Clearly it 
can strongly change from a location to another. 

H~ (t) falls within (h, h + dh), or in other  words, it is equal to the quot ient  be tween  
time in which h < H~ < h + dh and total time. Referr ing to fig. 6.3, we have 

1 
p (/4, -- h )dh  - ./7-- Z dti (h; dh) ,  

i 

where dti (h; dh) is the ith t ime interval in which h </4,  < h + dh. 
The functions P(H, > h) and p (/4, = h) are related to each other  by 

i 
oo  

P (H, > h) - p (H, - h') dh' ,  
h 

p ( / 4 ,  = h ) =  - 
dP(H, > h) 

dh 
(6.1) 

which proceed  f rom the definitions of these two functions. 

j_dh 

T 
h 

1 

T 
h 
1 

dt~ dt2 dr3 dt4 ] dt6 
dt5 

dt7 dt8 
t 

Fig. 6.3 p (H, = h)dh is the quotient between summation (dtl + dt2 + ...) and total time. 
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6.2 The  probabi l i ty  of  the significant wave  height  

6.2.1 The form of  P(Hs > h), and the definition of  ancillary variables X, Y 

On the domain of h greater than h,it, the probability P(Hs > h) often can be 
fitted by 

exp  P (Hs 
k \ w / J  

This is a Weibull distribution whose parameters  u and w depend on the special 
location under  examination and are obtained as described here below. 

Let us imagine we have 20000 Hs data uniformly distributed over the seasons of 
the year, and let us imagine 2000 of these 20000 Hs data exceed 2.5 m. Then we shall 
have 

2000 
- = 0 . 1 0 .  P(Hs > 2.5 m) 20000 

Similarly, we shall obtain P(Hs > 3 m), P(Hs > 3.5 m), and so on. 
For plotting the data it is convenient to resort to two ancillary variables. We shall 

u s e  

1 
X - 100 In (2.5h) with h in metres, Y =- 100 In I n - - .  (6.3) 

P 

With this choice one works typically on X ranging from 100 to 350 and Y ranging 
from 50 to 250. 

If the probability is actually given by (6.2), the data points should be on a straight 
line 

Y = a + bX, (6.4) 

apart from some natural scatter that can be described in terms of confidence 
intervals [see sect. 6.2.4]. After  having obtained the constants a and b of the 
Cartesian equation for this line, we obtain the two parameters u and w of 
P(Hs > h), by means of 

u -  b, (6.5a) 

1 e x p (  a ) with w in metres. (6.5b) 
w -  2.--5 100b 

The verification of these relations is left as an exercise. To this end 
(i) replace in (6.4) X and Y with their expressions (6.3), so obtaining a relation 

between ln ln (1 /P)  and ln(h), with a and b; 
(ii) from (6.2) obtain a new relation between ln ln (1 /P)  and ln(h), with u 

and w; 
(iii) compare these two relations between ln ln (1 /P)  and ln(h). 
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Note, the wave recorders having to work continuously for long periods are subject to 
interruptions due to various causes. If there is no correlation between these interruptions 
and the wave height there is no consequence on the estimate of P(H, > h). Indeed 
P(Hs > h) is equal to the quotient between the number of records where Hs exceeds the 
fixed threshold h and the total number of records. This, whether or not the times between 
successive records are constant, provided these times are stochastically independent of the 
significant wave height. 

6.2.2 A physical interpretation of  the parameters u and w of  P(Hs > h) 

Let us consider the inverse function 

(lnl)  
which gives the threshold h having a probability P to be exceeded by the significant 
wave height. Equat ion (6.6) shows that the significant wave height is proport ional  
to w. This implies that, if w of a location A is twice the w of a location B and both 
these locations have the same u, the wave heights at A will be twice greater than at 
B. For example, the threshold of significant wave height that is exceeded for one 
hour, on average, in 100 years at A will be twice greater than at B; or the maximum 
expected wave height in 100 years at A will be twice greater than at B (really this 
last s tatement also requires that the duration of the storms is equal at the two 
locations, as we shall see in chap. 7). 

As to the parameter  u, it determines the rate of growth of the significant wave 
height as P decreases. To realize this item, let us consider two probability levels, 
say, P - 1:1000 and P = 1:10. From (6.6) we have 

_- (_ln 1000)+ln 10 

from which it appears that the quotient between the significant wave height of 
probability 1:1000 and the significant wave height of probability 1:10 is larger the 
smaller u is. 

In the Oceans both w and u are usually greater than in the Medi terranean Sea. 
The fact that w of the Oceans is greater than w of the Medi ter ranean Sea implies 
that the significant wave height in the Oceans is greater than in the Medi terranean 
Sea. The fact that u of the Oceans is greater than u of the Medi ter ranean Sea 
implies that the difference between Oceans and Medi ter ranean Sea, as to wave 
height,  gets smaller at low levels of the probabi l i ty  of exceedance.  This 
phenomenon  appears from fig. 6.4 showing a P(H, > h) of the Medi terranean 
Sea and a P(H, > h) of the North Sea. [The graph of the two probabilities is given 
in coordinates (X,Y) defined by (6.3).] Look at the ratio between the significant 
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Fig. 6.4 A P (/4, > h) of the Mediterranean Sea and one of the North Sea. [Table 4 of Krogstad 
(1985) was the data source for Halten.] 

wave heights of the two locations at a fixed level of the probability P (that is of the 
ordinate Y). As P gets smaller also this ratio gets smaller. (Bear in mind that the 
aforesaid ratio would be constant were the two lines parallel.) Note also that the 
h (P) of the North Sea is substantially greater than the h (P) of the Mediterranean 
Sea up to the lowest P of any practical interest. 

6.2.3 The expression and the main property of  the probability density 
function p (Hs = h) 

The probability density function p(H~ = h), which is related to P(Hs > h) by 
(6.1), takes on the form 

 exp[ 
The derivative 

d p ( H s - h )  u ( u - 1 ) ( h )  u 2 
dh = I w 2 _ _ _ u - 2  w 2 Qh)2u-2] exp [_ ( h ) , ]  

has one zero on the domain h > 0 only if u > 1. The value of h where the derivative 
is zero is 

hm - w ( l - _ 1 ) ~ - ,  

so that it is smaller than w, and consequently it is also smaller than hcrit (the 
threshold of the sea storms). 
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The consequence  being that  

dp (H, - h) 

dh 

which will be used in sect. 7.1. 

< 0 for h > hcrit, 

6.2.4 Example of a probability estimate 

Fig. 6.5 shows the P(H, > h) of Mazara  del Vallo in the Straits of Sicily. Data:  
14650 values of H, t aken  with a sampling rate  of 1/3 per  hour  from July 1989 to 
D e c e m b e r  1994. 

We see the fitting line pass at points X - 160, Y - 84.5 and X = 260, Y -- 212, 
and hence its Car tes ian equat ion  is 

Y = -119 .5  + 1.275X. 

Therefore ,  f rom the equat ions  (6.5a-b) of u and w, we have 

u = 1.275, w = 1.021 m, 
that  is 

- with h in metres .  (6.8) e (/4, > h) exp - 1.021 

For  many  localities the data points exhibit  a m a r k e d  l inear t rend (on the plane 
X, Y) start ing f rom some Y be tween  0 and 100, as we see in fig. 6.5. In the case 
under  examinat ion,  having about  15000 data we attain the probabi l i ty  level of 

25O 

200 

150 

100 

5O 

0 
0 

911% confidence 

(X=~l,y=200) ~ interv~ 

~ \ (X= 160,Y =84.5) 

x 
5'0 1()0 l iO  200 250 300 -- 

Fig. 6.5 Example of sects. 6.2.4 and 6.3.4: how to obtain P (H, > h) from the data of a waverider. 
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P = 1 : 15000 which co r re sponds  to Y = 225. Real ly ,  the e x t r e m e  da ta  have  some 

wide  conf idence  intervals  (as we shall see short ly)  so that ,  in this case, our  
k n o w l e d g e  is effect ive roughly  up to Y ~ 200. 

In conclusion,  a s t ra ight  line fits the da ta  points  r a t h e r  well  in the range  f rom 

Y = 50 to Y = 200. Clear ly  this line is then  ex t rapo la ted .  H o w  much?  Well ,  the  

e x t r e m e  Y of pract ical  in teres t  lies b e t w e e n  Y = 250 and  Y = 300. H e r e  it should  be 
n o t e d  tha t  the  m a x i m u m  re tu rn  pe r iod  for design pu rposes  is 2000 years ,  and  the 

th resho ld  of significant wave  height  tha t  is e x c e e d e d  for one  hour ,  on average ,  

every  2000 years  has a probabi l i ty  

p _ 1 = 5 . 7 . 1 0  -8 
2 0 0 0 - 3 6 5 - 2 4  

which  is equ iva len t  to Y = 280. 

As to the scatter of the data, it is worth making a few remarks. Indeed this subject is 
partly beyond the classic treatment of the confidence intervals. 

With the classic treatment we assume that our 14650 data are stochastically independent 
of one another. This implies the probability that all 14650 data are smaller than a fixed 
threshold h to be equal to 

[1 - P(Hs > h)] 14650 

We call h005 the h making this probability equal to 0.05. Hence, we have 

[ 1 -  P(H, > h0.05)] 1465° - 0.05 =~ h005- 1.021 In 1 -  0.051/1465° - 5 . 4 7 m .  

Similarly, we can evaluate h0.95 (the probability that all 14650 data are smaller than h095 being 
equal to 0.95), with the result 

h0.95 = 7.43m. 

Conclusion: if P(H, > h) is given by (6.8), then the maximum of a set of 14650 outcomes of 
the random variable Hs is smaller than 5.47 m five times in one hundred, and is smaller than 
7.43 m ninety five times in one hundred. If the maximum is 5.47 m, the extreme datum point 
is 

X = 2 6 2 ,  Y = 2 2 6 .  

If the maximum is 7.43 m, the extreme datum point becomes 

X = 2 9 2 ,  Y = 2 2 6 .  

The horizontal segment whose end points are X = 262, Y = 226 and X = 292, Y = 226 is 
shown in fig. 6.5. It gives the confidence interval within which the extreme datum is expected 
to be contained with a probability of 90%. Clearly the amplitude of the 90% confidence 
interval decreases with Y. For example the 90% confidence interval of the second datum, the 
one of ordinate 

Y = 218 e:~ P = 2/14650, 

is 2/3 of the 90% confidence interval of the first datum. 
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What we have described is the classic approach to the problem of the confidence 
intervals. But, as we have said, the classic approach is not quite satisfactory. The reason is 
simply that the values of H, sampled at a rate of 1/3 per hour, or even more so at a rate of 1 
per hour, are not stochastically independent of one another. To realize this, note that the 
probability of H, exceeding 5 m at noon, given that/4,  is 7 m at 9 a. m., is surely greater than 
the probability of H, exceeding 5 m at noon given that H, is 0.1 m at 9 a. m. Whereas the 
stochastic independence involves these two probabilities being equal to each other. 

The assumption of stochastic independence would be effective were At~amp (the 
sampling interval) of the order of one day; and it would become perfect a s  m tsamp --+ OO. TO 
realize what is the consequence of taking a relatively small ,/~ tsamp , it is helpful to consider 
what would happen if we worked in the limit as  /~tsamp ---+ 0o In this case, all 14650 data 
would be equal to one another because they all would represent the H, at the same time. 
Therefore, in this case, the probability that all 14650 data are smaller than a fixed 
threshold h would be equal to the probability that one single datum is smaller than h, 
which is [ 1 -  P(H, > h)]. Therefore we should have 

i 1 - exp 1.021 - 0.05 => h0.0s - 0.10m <=> X005 - -139,  

[-  ( lh; ;51)  127s 1 - e x p  - 0 . 9 5  => h0.95 - 2.42 m <=> X09s - 180. 

As we can see, the 90% confidence interval should widen and shift leftward: from 
(Xoo5 = 262,X095 = 292) a s  /~/samp ---+ 0(3, t o  (X0.05 = -139, X095 = 180) as Atsamp ~ 0. 

The same trend, even if in a much subdued way will arise in passing from Atsamp --+ oc to 
/~/samp = 3 hours. Therefore, in our condition (Atsamp = 3 hours) we expect the confidence 
interval to be somewhat shifted leftward and to be somewhat wider than the classic 
confidence interval based on the assumption of stochastic independence. 

6.3 The probability of the significant wave height for a given direction of 
wave advance 

6.3.1 The form o f  P(H,  > h) for  a given direction o f  wave advance 

Let  us cons ider  the probabi l i ty  P(H, > h; 01 < 0 < 02) tha t  the significant wave 
height  at a given locat ion exceeds  a fixed th resho ld  h, with the d o m i n a n t  d i rect ion 
being within a fixed sector  (0~, 02). H e r e  too it is conven ien t  resor t ing  to coord ina tes  
(X,Y) def ined by (6.3). The  graph  of P (H, > h; 01 < 0 < 02) in these coord ina tes  is a 
line with a posi t ive curva ture  we shall call sector line. M o r e o v e r  we shall call all- 
directions line, the s traight  line Y - a + bX which represen t s  P(H, > h) regardless  

of the wave direct ion.  The  sector  line necessari ly lies on the left of the al l-directions 
line. I n d e e d  f rom the very defini t ions it follows that  

p(Hs > h; < 0 < 0:) <_ P(/-/s > h). (6.9) 

As has been  said, the slope of the sector  line grows with X, but  over  the data  
range,  usually,  it looks smal ler  than  the slope of the al l-direct ions line (see fig. 6.5). 



192 Chapter 6 

However ,  the asymptote of the sector line as X and/or Y -+ oc cannot take on a 
slope smaller than the all-directions line's (otherwise the two lines would intersect 
each other, and the inequality (6.9) would no longer be satisfied). In the light of 
these remarks it seems reasonable to assume the asymptote of the sector line as X 
and/or Y ---, oc to be parallel to the all-directions line. 

A form that satisfies the assumption on the asymptote and usually fits the data 
points above a certain threshold (of course, provided 6.2 is effective) is 

P(Hs > h; 01 < 0 < 0 2 ) -  exp - - e x p  - . (6.1o) 

This is the difference between two Weibull forms, where the parameters  w~ and w~ 
generally vary from one sector to another,  while u takes on the same value as in the 
probability P(Hs > h). 

Parameters  w~ and w~ must be nonnegative and w~ must be greater  than w~, 
otherwise the probability would take on some negative values. Finally, w~ must be 
smaller than or equal to w [the parameter  of P(Hs > h)], otherwise condition (6.9) 
would no longer be satisfied. 

Since w 9 < w~, the asymptotic form of (6.10) as h ~ oc is 

P(Hs > h; 01 < 0 < 02) - e x p  - as h --+ oc. (6.11) 

The graph of (6.11) in coordinates (X, Y) is a straight line parallel to the all- 
directions line. This means that the asymptote of the sector line, as X and/or 
Y ~ ec, is parallel to the all-directions line, as it was required. 

6.3.2 How to obtain the parameters w~ and w~ 

For the aim of evaluating w~ and w~, we do as follows. First looking at the data, 
we fix two points X~, I11 and X2, Y2 which should belong to the sector line. Since h is 
a function of X, and P is a function of Y, a single pair hi, P1 corresponds to )(1, Y1 
and a single pair h2, P2 corresponds to X2, Y2. Let us assume 

that implies 

From (6.10) we have 

Let us define 

hi < h2 (6.12) 

P~ > P2. (6.13) 

~ 1 ) ( -  1 h~) (6.14a) 
P 1  - -  exp --w--f~ hI - exp w---~ ' 

1 u) 
P2 - exp w--;- h 2 . (6.14b) 

o~ 

_ W u W u 
x - y - . (6.15) 

W u ~ U 
w 3 Ol 
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Then, the equations (6.14a-b) yield a nonlinear system in the two unknowns 2 and 37. 
Clearing 37 from this system, we arrive at 

exp(_h~2/w u) - p~ + [exp(-h22/w u) - p2](hl/h2)Uo (6.16) 

Thus 2 (provided that it exists) is that giving the equality of the two following 
functions: 

f~ (x) = exp (-h~x/w"), x > O, (6.17a) 

- -  - -  , 0 ~ X ~ Xsup, f2 (X) P1 -Jr- [exp ( - h  2 x / w  u) P2] (hl/h2)U (6.17b) 

where X~up is the value of x for which exp (-h2x/w") -P2 is equal to zero: 

X~up = - - l n  . (6.18) 
h2 

After having evaluated 2, we obtain w~ using the definition (6.15) of 2: 

w , -  w . (6.19) 

Then, from w,, we obtain also wf~ by means of (6.14a) or, alternatively, of (6.14b): 

wf3-h~ In exp - - - 7 / - P 1  . (6.20) 

6.3.3 The necessary and sufficient condition for the existence o f  the solution 

Given that 

(i) f2 (0) > f~ (0), as a consequence of the inequalities (6.12-13), 

(ii) f~ (x) and fz(x) are strictly decreasing functions, 

(iii) f2 (x) is defined on [0, Xsup] , 

it follows that 2 exists and is the only solution to (6.16) if 

f2 (Xsup) < fl (Xsup) • 

Since 
fl (Xsup) -- P~ hl/h2)u , f2 (Xsup) -- P1, 

the existence and uniqueness of 2 requires that 

P1 < P~ hl/h2)u" (6.21) 

What does it mean? We have fixed two points X~, Y1 and X2, I72. Generally, there is 
not an equation of the form (6.10) with the given u, whose graph in coordinates 
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(X,Y) contains the two fixed points. The existence and uniqueness of such an 
equation is guaranteed only if the inequality (6.21) is satisfied. 

For a geometrical interpretation of condition (6.21) let us substitute in it P~, P2, 
h~ and h2 respectively by I11, Y2, X1 and X2, using the definitions (6.3) relating Y to P 
and X to h. The result is 

Y~-Y1 < u. (6.22) 
X :  - X1 

This shows that the necessary and sufficient condition for the existence and 
uniqueness of an equation of the form (6.10) (with the fixed u) whose graph in 
coordinates (X,Y) contains the two points X1, Y1 and X2, Y2 is that the slope of the 
straight line containing these two points be smaller than u. 

6.3.4 Example of a probability estimate 

Fig. 6.5 shows also the data of 

P(Hs > h; 135 ° - 11.25 ° < 0 < 135 ° + 11.25°), 

where 0 is the azimuth of the direction of wave advance. The location is naturally 
the same for which in sect. 6.2.4 we got the probability P(Hs > h) regardless of the 
wave direction. 

The points marked by the two arrows are those we suppose the sector line should 
contain. Naturally, this is a tentative pair of points. Then, possibly, we shall have to 
fix a new pair of points till we shall find the line that best fits the data. The two 
points are 

X ~ = 1 1 9 ,  1/1=150,  

X 2 = 2 0 1 ,  Y2=200.  

Since u = 1.275 (this was evaluated in sect. 6.2.4) and 

Y2-  Y1 =0 .61 ,  
X~ - X1 

the condition (6.22) is fulfilled. 
The values of hi, P1 and h2, P2 corresponding, respectively, to X1, Y1 and 

X2, Y2 are obtained through definitions (6.3) relating X to h and Y to P. The 
result is 

hi = 1.315 m, P1 = 1.131.10 -2, 

h2 = 2.985 m, P2 = 6.180- 10 -4. 

The maximum element (Xsup) of the domain of f2 (x) proceeds from (6.18): 

(1.021) 1"275 Q 1 ) - - 1 . 8 8 2  
Xsup = (2.985)1.275 In 6 . 1 8 0 . 1 0  .4 

(1.021m being the value of w which we have obtained in sect. 6.2.4). 
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The functions f~ (x) and f2 (x) [defined by (6.17a-b)] take on the forms 

f~ (x) - exp ( -1 .381x) ,  

f2(x) - 1 .131 .10  -2 + [exp ( - 3 . 9 2 7 x ) - 6 . 1 8 . 1 0 - 4 ]  ° 3 5 2  . 

The abscissa 2 is that  for which the difference f2 (x) - f~  (x) is zero. Fig. 6.6 shows 
that  

- 1.519, 

and hence from the equat ions  (6.19), (6.20) we obtain 

( 1 )  1/1"275 
- - 0.735 m,  w,~ 1.021 1.519 

)- 
- - 1 .131 .10  -2 W~ 1"315 {ln {exp I-- (10"315)~2751.735 }1 

J 

1/1.275 
- 0 .710m.  

At  this stage, w~ and w 9 being known,  the sector line can be computed .  Let  us 
compute  an ordinate  of this line, for example  Y(150). We have 

X -  150 ~ h -  1.793 m ~ P - e x p  

= 5 .808 .10  -3 ~ Y -  163.9. 

Similarly, we compute  the other  values of Y(X),  and hence we can plot the sector 
line Y(X). 

1.5 .10  -2 

1.0.10 -2 

0.5.10 .2 

0 
0 

=1.519 

015 110 i I 2'0 

Fig. 6.6 Example of sect. 6.3.4: solution to equation (6.16). 



196 Chapter 6 

As said, the calculations have to be repeated till one finds the sector line Y(X) 
that best fits the data. In doing so, we should bear  in mind that an equation of the 
form (6.10) generally is able to fit the data only above some lower bound Ymin 
(typically Ym~n ~ 150). Naturally, here too the extreme data points show a scatter 
that may be due also to some uncertainty in the estimate of the dominant  
direction. 

6.4 Probabilities of the significant wave height for a few areas of the globe 

Table 6.1 gives the parameters u and w of the probability P(Hs > h), which 
we have evaluated for a few locations. The Hs data are those of the NDBC 
buoys, up to the year 1997. The Hs data for Halten (North Sea) have been taken 
from table 4 of the paper of Krogstad (1985). The Atlantic is not covered by 
table (6.1) and will be dealt with separately in Appendix A.2.3, because of some 
special features. 

As we noticed in sect. 6.2.4, the data points of P(Hs > h) on the plane X-Y, at 
many localities, exhibit a linear trend starting from Y -  5 0 -  100, and the u, w 
values of table 6.1 represent this linear trend. The graphs of P (Hs > h) on the plane 
X-Y for the three locations of the North Sea, the Bering Sea and the North-Eastern 
Pacific exhibit a linear trend up to the extreme datum point. Whilst, the higher data 
points (Y > 200) of the two locations of Hawaii and the Gulf of Alaska deviate 
somewhat rightward (something like in fig. A.2a of Appendix A, even if in a more 
subdued form). The extreme datum point falls at the upper limit of the 95% 
confidence interval (Hawaii) and at the upper limit of the 80% confidence interval 
(Gulf of Alaska). Therefore some caution should be exercised in dealing with these 
two areas, because they could be affected, to some extent, by the phenomenon of 
the anomalous extreme storms, we shall describe in sect. A.2.3 of Appendix A. 

Table 6.1 Parameters of P (Hs > h) for a few areas of the globe. 

LOCATION 

Halten, Norway - North Sea 

56°5'N, 177°48'W- Bering Sea 

56°17'N, 148°10'W - Gulf of Alaska 

40°50'N, 137°29'W - North-Eastern 
Pacific 

23°24'N, 162°15'W- Hawaii 

NDBC buoy 

46035 

46001 

46006 

51001 

w[m] 

2.083 

2.566 

2.685 

2.877 

2.093 

1.333 

1.382 

1.555 

1.631 

1.550 
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Fig. 6.7 Alghero (West Sardinia)" P (H, > h) regardless of the wave direction, and P (H, > h) for 
some given directions of wave advance. 



Table  6.2 gives the pa rame te r s  u, w of P(Hs > h), and w,, w~ of P(H, > h; 
0~ < 0 < 02), which we have ob ta ined  for a few locations of the M e d i t e r r a n e a n  
Sea. The data  of H, and 0 used for this table are those of the I tal ian 
Hydrog raph ic  Service, for the per iod 1989-1994. F r o m  this table we can see which 
is the sector with the highest  waves of each location. It suffices to read  the values 

Table  6.2 Mediterranean Sea: P(Hs > h) for given directions of wave advance (*) 

LOCATION w [rn] 

La Spezia (SP) 

Alghero (AL) 

Ponza (PO) 

Mazara del Vallo (MZ) 

Crotone (CR) 

Monopoli (MN) 

Pescara (PE) 

0.731 

1.280 

0.874 

1.021 1.275 

0.637 

0.645 

0.625 

1.023 

1.137 

1.200 

.GFt 0.958 

1.143 

1.018 
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, ,------, , 

S E C T O R - ~  @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 
LOCATION 

i I I I f iii11 .307.331 La Spezia .450.669.731.437 ......... ] I 1 :I i . 3 6 7  
Alghero .444 .613 .650 .7501040 ~ 2;6 ; ; ;  :4;; 

. . . .  1 t 653 468 : :  i'i! i l  544 587 477 .639 Ponza .718 .812 .727 .865 . . ~ : ~ i ~ . .  . . 

1 003 735 4401 I: ~ :: 759 756 514 .555 Mazara del Vallo .666 .600 .808 .978 . . . . . 

' ~i Crotone ' t .472 .338 .360 .388 .538 .637 .637 .441 .286 

Monopoli ] : [ :  l;:: I::i::ii :: ......... ........... ::: .592 .512 .645 .512 .590 .549 .429 ; I~:: I;i 

Pescara ] I :: .404 .486 .605 .611 .487 .378 .375 .378 [ ...... ..... ii I ........................ ] ..... 1 

La Spezia .421 .333 .660 .423 .324,...: i I ............. [ i ............. ::I ~ ~i .265 .291 

Alghero .404 .557 .565 .699 .905 •942 534 427 

Ponza .688 .779 .688 .754 .633.458t l I 1 I ,iil : 525 566 460 .609 / ~  ~ : ~ , ~  ~ : ~ .  • • 

........... iii!~ ii~t~j 1 ;:iiii:!iil 1 

Mazara del Vallo .655 .591 .795 .895 .907 .710 .431 ~:~ ~:,:~ : :~!~: : :1"740 .628 .479 .533 

Crotone ]iilil i ] .342 .231 .337 .376 .521 .605 .576 .395 .158 

Monopoli 15:~i3 145~ .601 .484 .565 .522 .410[ ] ii!i [ l 

Pescara [!!i :i;i! ] ii :i [!ili 1.384 .374 .561 .552 .470 .365 .340 i;;; 

(*) See fig. 6.7 for sectors' numbers. 
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of w~," the larger  is w~, the higher  the waves. Indeed  we have seen the sector line 
Y(X) tends to an asympto te  that  moves r ightward more,  the larger  w, gets. As to 
wg, it has a minor  effect: the larger  the w~, the slower is the convergence  of the 
sector line on its asymptote .  This means  that,  under  the same w~, the larger  the 
wg, the smaller  the waves. For  example ,  at Cro tone  the m a x i m u m  w,, belongs to 
two distinct sectors: sector @ ( 0 - 2 9 2 . 5  °) and sector @ ( 0 - 3 1 5 ° ) .  Thus,  to 
decide which of the two sectors has the highest waves, we must  resort  to WI:~. Since 
wf3 of sector @ is smaller  than w~ of sector @ ,  the highest  waves are those of 
sector @ .  

From table 6.2 note that the sea of West Sardinia (Alghero) is by far the strongest near 
the Italian coasts. This is also confirmed by measurements from satellite (which we shall deal 
with in sect. 14.3.3). 

6.5 The maximum expected wave height in a storm with a given history 

The probabi l i ty  that  all waves of the ith sea state of a s torm are smaller than a 
fixed threshold  H is given by (5.55) with N - At/T (hi) (At being the durat ion of the 
sea state, h; the significant wave height of the ith sea state and T(hi) its mean  
period).  

The  probabi l i ty  that  the m a x i m u m  wave height of a s torm is smaller  than a fixed 
threshold H is equal  to the probabi l i ty  that  all wave heights of the s torm are smaller  
than H. This in turn is equal  to the product  of [probabili ty that  all wave heights of 
the first sea state are smaller  than H] x [probabili ty that  all wave heights of the 
second sea state are smaller  than H] x..., that  is to say 

. /  At 

~ffO (Hma x < H )  - H [1 - P ( H ;  H, - h / ) ]  7(h,) 
i=1 

where  ........ / ...... is the total  n u m b e r  of sea states forming the storm. 
The  probabi l i ty  of exceedance  of the m a x i m u m  wave height  in the s torm is the 

complemen t  (relative to 1) of :#  (//max < H)" 

H At 

P (Hma x > H )  - 1 - [1 -- P ( H ;  Ms - hi)] 7(h~) 
i=1 

that  is more  convenient ly  rewri t ten in the form 

P(nmax>n ) - 1-exp{  _At 
i 1 T (h i )  

In [1 - P (H; H, - hi)] }. (6.23) 

This formula  enables  us to evaluate  P(Hmax > H) as a function of H for given H,(t) 
[the t ime history of the storm]. To this end we have to work on a step function like 
the one of fig. 6.8, where  each step is a new sea state. The  result  of the calculation 
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7 ]Hs[ml 

6 

5 

t[hours] 
' 8 ' 1; '24 ' 31 '4b  '4 '8 '  5'6' 64 '72  ' 8'0' 8'8' 9'6 ' 1 ~ ' 1 i 2  -- 

Fig. 6.8 Sea storm and its sea states. 

does not change if we let At approach zero. This is useful from a mathematical  point 
of view, since it enables us to rewrite (6.23) in the form 

P(Hmax > H) - 1 -  exp _ 1 
o T[h(t)]  

~ l n [ 1  - P ( H ;  H~ - h (t))] d t} ,  (6.24) 

where ~ is the duration of the storm. 
After having obtained P(Hmax > H) (as a function of H), we can compute the 

maximum expected wave height of the storm. It suffices to recall that the mean 
value of a nonnegative random variable, like //max, is equal to the integral over 
(0, ~ )  of its probability of exceedance: 

/-/max - -  1 -- e x p  _ l - - L - - -  ln[1 - P ( H ; H s  - h( t ) ) ]  dt  d H .  (6 .25)  
o o T[h(t)]  

The physical interpretation of Hma x is as follows. Let us consider n storms with the 
same time history. The maximum wave height of the first storm will be Hmaxl, the 
maximum wave height of the second storm will be Hmax2, and so on. Hmax is the 
average of Hmaxl, Hmax2, and so on. 

6.6 The concept of "equivalent triangular storm" 

6.6.1 D e f i n i t i o n  

We can associate with each actual sea storm an equivalent triangular storm so 
defined 

(i) the height a of the triangle is equal to the maximum significant wave height 
in the actual storm; 
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(ii) the base b of the triangle (that is the duration of the equivalent triangular 
storm) is such that the maximum expected wave height of the triangular storm is 
equal to the maximum expected wave height of the actual storm. 

According to this definition, the height of the triangle is immediately obtained, 
while the base will be obtained after a few attempts. It is convenient to fix a small 
base (duration of the triangular storm). Thus we shall find the maximum expected 
wave height of the triangular storm to be smaller than the maximum expected wave 
height of the actual storm. Then we shall gradually widen the base till the maximum 
expected wave height of the triangular storm will be equal to the maximum 
expected wave height of the actual storm. 

The computation of Hmax for the triangular storm is done more quickly by means 
of a specific formula. Indeed we have 

I ' ~ / _ l ~ l n [ l - P ( H ; H s - h ( t ) ) ] d t - b  Ja 1---L--ln[l-P(H;H,-h)]dh 
T[h(t)] a o T(h) ' 

which enables us to rewrite the expressions of P(Hmax > H) and Hma x in the forms 

P(Hmax > H ) -  1 -  exp { a  b-- I" -- 1 l n [ 1 -  P(H;  H, - h)] dh} , (6.26a) 
o T(h)  

{ Ja 1 
Hmax - 0 1 - exp -a-- 0 -T (h)  In [1 - P (H; H, - h)] dh } dH.  (6.26b) 

6.6.2 The basic property 

We should expect that P(Hmax > H) of the equivalent triangular storm is 
generally different from P(Hmax > H) of the actual storm. That  is we should expect 

1.0 

0.5 

'P(Hmx>H) 

H 

Fig. 6.9 Having required only that the Hmax of the e.t.s, was equal to the Hma x of the actual storm, 
the P (Hmax > H) of the e.t.s, and of the actual storm were expected to be generally different from 
each other, similar to that shown in the figure. Surprisingly enough it was found that the two 
P(Hmax > H) were practically coincident, which proved to be very useful for applications. 
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Fig. 6.10 A sea storm recorded at La Spezia (Tyrrhenian Sea) and its e.t.s. We see the 
P (Hmax > H) of the e.t.s. (points) coincides with the P (Hmax > H) of the actual storm (continuous 
line). 

a condition like that of fig. 6.9: the two P (Hma x > H) are different from each other 
and only their integrals over (0, oc) are equal (since these integrals represent Hmax). 
On the contrary, the two P(Hmax > H) prove to be nearly coincident. This is a 
general property, that was found on comparing the two P (Hmax > H), the one of the 
triangular equivalent storm and the one of the actual storm, for several scores of 
locations [see an example in fig. 6.10]. 

In conclusion, the actual storms have some irregular histories generally different 
from one another. However, an equivalent triangular storm can be associated with 
each actual storm. The equivalence between this triangular storm and the actual 
storm is full, since they have the same maximum value of the significant wave height 
and have the same probability that the maximum wave height exceeds any fixed 
threshold H. Clearly, dealing with the equivalent triangular storms rather than with 
the actual storms very much simplifies the mathematical treatment. 
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6.6.3 The "equivalent sea" 

We shall call equivalent sea the sequence of the e.t.s. (equivalent triangular 
storms). Thus the equivalent sea consists of the same number of storms as the actual 
sea, each of them with the same maximum H,. As a consequence the return period 
of a storm whose significant wave height exceeds a fixed threshold h is the same in 
the actual sea and in the equivalent sea. Moreover,  we have seen in sect. 6.6.2 the 
probability that the maximum wave height exceeds a fixed threshold H to be the 
same in the actual storm as in its e.t.s., which implies that the maximum expected 
wave height in any given time interval will be the same in the actual sea as in the 
equivalent sea. 

Only one topic remains to be considered: what is the relationship between 
P(H, > h) of the equivalent sea and P(H, > h) of the actual sea? P(H, > h) of the 
equivalent sea is estimated through a simple quotient: 

P(Hs > h) - quotient between time in which H, > h and total time. 

For example, to get P(H, > 4 m) it suffices to take the intervals At(4 m) [see fig. 
6.11] from the e.t.s, whose Hsmax > 4m.  The probability will then be obtained 
through the following operation: 

1 
P (Hs > 4 m) - .y--U- ~ At~ (4 m), 

where ,U is the time interval (typically a few years) under examination. 
Comparisons between the P(H, > h) of the actual sea and the P(H, > h) of the 

equivalent sea show some minor discrepancies for h > hcrit, and these discrepancies 
disappear as h(or  X) grows. (An example is given in fig. 6.12.) Hence we can 
assume for the equivalent sea the same P(H, > h) of the actual sea. 

Conclusion: in the next chapter, which is devoted to the design wave estimate, we 
shall work on the equivalent sea rather than on the actual sea, and in doing so we 
shall very much simplify the treatment, and 

Aq(4m) Ate(4m) 

t 
4m 

1 t =_ 

Fig. 6.11 Example: the P(Hs > 4m) of the equivalent sea is the quotient between the sum 
At~ (4 m) + At2(4 m) + ... and total time. 
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Fig. 6.12 The actual P(H, > h) (continuous line) and the P(H, > h) ofthe equivalent sea (dashed 
line): (a) Mazara del Vallo (Straits of Sicily); (b) La Spezia (Tyrrhenian Sea). 

(i) we shall not introduce any approximation, because the equivalent sea has 
the same return periods of storms of given characteristics; 

(ii) we shall have no additional work because, on the range of practical 
interest, P(Hs > h) estimated for the actual sea is good also for the equivalent sea. 

6.7 S t o r m  dura t ions  

Being essentially interested in the heavier sea storms, we shall consider the set of 
the N heavier  e.t.s, at a given location in a number  of years (t/years). In particular we 
fix 

N - 10 t/years" 

This means that having a record of, say, five years we shall consider the 50 more 
severe storms in these five years. We call al0 and bl0 respectively the mean height 
and the mean base of the N e.t.s, belonging to this set. 

Fig. 6.13 shows the pairs ~ - a/alo, b - b/blo, for three locations of the North- 
Western  Atlantic. The line represents the function 

K 1 exp(K2 a) 
D 

which best fits the regression b (a). In the dimensional form, it yields 

-b (a) - Kl blo exp (K2 -~lO ) . (6.27) 
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Table 6.3 Parameters of equation (6.27) for b (a) 

AREA 

North-Western 
Atlantic 

North-Eastern 
Pacific 

Central 
Mediterranean 
Sea 

LOCATION 

NDBC 41001 
34°40'N, 72°38'W 

NDB C 44004 
38°27'N, 70°41'W 

NDB C 44008 
40°30'N, 69°25'W 

NDB C 46002 
42°32'N, 130°16'W 

NDB C 46005 
46°05'N, 131°00'W 

NDB C 46006 
40°51'N, 137°29'W 

La Spezia 
43°56'N, 9°49'E 

Alghero 
40°33'N, 8°6'E 

Ponza 
40°52'N, 12°57'E 

Mazara del Vallo 
37°31'N, 12°31'E 

Crotone 
39°1'N, 17°13'E 

Monopoli [ 
40°58'N, 17°23'E 

Pescara 
42°24'N, 14°32'E 

a,0[m] 

6.9 

7.2 

6.1 

7.7 

7.9 

8.6 

3.6 

5.2 

3.4 

3.6 

3.2 

2.9 

3.3 

b,0 [hours] 

52 

55 

54 

61 

61 

63 

74 

88 

69 

73 

74 

70 

65 

K1 

1.40 

1.80 

1.12 

0.46 

0.59 

0.115 

Table 6.3 gives the values of the parameters  of (6.27), which we have obtained for a 
few areas of the globe. 

b(a) is decreasing (/(2 negative) because the highest peaks of the random 
process H,(t) are usually sharp and consequently the bases (durations) of their 
equivalent triangular storms prove to be rather  short. The choice of the 
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Fig. 6.13 North-Western Atlantic: normalized bases of the equivalent triangular storms versus 
normalized heights. 

m 

mathematical  form that fits the regression b(a) generally proves to have some 
very small effects on the calculation of the design wave height, which is dealt with 
in the next chapter. 

Conclusive note 

The Weibull model for the probability P (H~ > h) is widely cited in literature, and 
the first systematic use of it was made by Battjes (1970). Some alternative models 
were used, among the others, by Ochi and Whalen (1980) and Ferreira and Guedes 
Soares (1999). The formula (6.10) for the P(Hs > h) relevant to a given wave 
direction is a new proposal. The formula (6.24) for the probability of exceedance of 
the maximum wave height in a storm is due to Borgman (1970 and 1973). The 
concept of equivalent triangular storm was introduced by the author in the 80's, and 
was used to get the solution for return periods of storms with some given 
characteristics [see references at the end of chap. 7]. 
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Chapter 7 
DESIGN WAVES AND RISK ANALYSIS 

7.1 The return period of a sea storm where the significant wave height 
exceeds  a fixed threshold 

7.1.1 Preliminary solution: the probability density funct ion PA (a) for  the 
heights o f  the equivalent triangular storms 

The return period of a given event is the average time interval between two 
consecutive occurrences of this event. In this chapter we shall obtain the formal 
solutions for a few return periods, starting from the return period R (H~ > h) of a 
storm whose significant wave height exceeds a fixed threshold h. To this end, we 
shall refer to the concept of equivalent triangular storm (e.t.s.) and of equivalent sea 
introduced in sect. 6.6, and in the proofs we shall emphasize the geometric point of 
view using terms like triangle, triangle height and triangle base in place of e.t.s., 
Hsmax of the e.t.s, and duration of the e.t.s. 

Let us define 
PA (a) -- probability density function of the triangle height; 
P8 (bla) - conditional probability density function of the triangle base given 

the triangle height; 
.~f'(.~) _-- number of triangles being present in a very large time interval 3 ;  
8t(h, dh, a,b) - time in which H= falls within a fixed small interval (h,h + dh) 

in a triangle of height a and base b. 
Using these definitions, we write 

PA (a) da ./t/'(.U) = number of triangles during _~, 
the height of which belongs to a given interval (a, a + da); (7.1) 

PA (a) da ./J<'(Z) pg(b[a)db = number of triangles during ~3, 
the height of which belongs to a given interval (a, a + da) (7.2) 

and the base of which belongs to a given interval (b, b + db); 

[PA (a) da ~4 ..... ( 7 )  P8 (bla) db] 8t (h, dh, a, b) = time during 3 ,  in which 14= 
belongs to a given interval (h,h + dh), in the triangles the height of (7.3) 

which is between a and a + da and the base of which is between b and b + db. 
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It will have been noted that the 1.h.s. of the first equality, that is PA (a) da ~ 4 / ( ~ ) ,  
multiplied by p ,  (bla) db becomes the 1.h.s. of the second equality, which in turn 
multiplied by 6t(h, dh, a, b) becomes the 1.h.s. of the third equality. In practice, the 
equalities (7.1), (7.2), (7.3) make a sequence. This sequence enables us to gradually 
trace the steps leading to (7.3), which is the true starting point of our analysis. It 
implies I'I" 

A t (h, dh, ~ )  - pA (a) ~4/ ( 3 )pB  (bla) ~3t (h, dh, a, b) db da, (7.4) 
o o 

where At (h, dh, ~ )  denotes the time, during 3 ,  in which Hs is within a small f ixed 
interval (h, h + dh). 

As to 6t(h, dh, a, b), its expression derives at once from its definition. It suffices 
to note that 6t is zero for triangles like @ of fig. 7.1 where a < h; while 6t is equal to 
(dh/a)b  for triangles like @. Therefore  

- (dh/a) b if a > h ,  
6t(h, dh, a,b) - 0  if a_<h. (7.5) 

With this expression of 6t in equation (7.4), we obtain 

At(h ,  d h , 3 ) -  pA(a) j¢~(Z)pB(bla)  dh b d b d a .  (7.6) 
h o a 

Note that the lower limit of the first integral passes from 0 in equation (7.4) to h in 
(7.6), as a consequence of the fact that 6t(h, dh, a, b) - 0 for a < h. Clearly, for the 
linearity property,  the terms ~ /U(3)  and dh in (7.6) can be put outside the integral. 
Then we use the equality 

l 
O<) 

p,  (bla) b db - b (a), 
o 

H= 

I- b =I 

f[dh 
t- 

'" b 

Fig. 7.1 Time duration of Hs within a fixed small interval (h, h + dh), in an e.t.s, of height a and 
base b. This duration is equal to (dh/a)b if a > h, while is zero if a < h. 
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where b(a) ,  introduced in sect. 6.7, represents the mean base amplitude of the 
triangles with a given height a. Therefore  equation (7.6) is rewrit ten in the form 

j oc 1 - -  

A t  (h, dh,  , ~ )  - . / ¢  ....... (g-)  dh  PA (a) --d- b (a) da .  
h 

(7.7) 

More simply A t ( h ,  dh,  7 )  could have been written at once in the form 

A t ( h ,  dh ,~U)  - p ( H ,  - h ) d h 3 ,  (7.8) 

which proceeds from the definition of p (/4, = h) [cf. sect. 6.1.4.]. 
Equat ion (7.7) gives At  in terms of the probability density function PA (a), and 

equation (7.8) gives the same At in terms of the probability density function 
p (H, = h). Hence equating the right-hand sides of the two equations (7.7) and (7.8) 
we obtain the relation between the unknown function PA (a) and the known function 
p (I-Is =h): 

• J~ 1 ~ (a) da (H, - h) ~Jf, (.?7-) PA (a) --a -- P 
h 

Here  differentiating with respect to h both sides of the equation, we get 

1 - dp (Hs - h )  ./~Z-, 
-.J~¢ ........ (Y)  PA (h) --ff b (h) - dh (7.9) 

and hence 
.~P- dp (H, - a) . 

pA (a) -- _ _ a (7.10) 
. J¢"(3)  b (a) da 

(The change of variable, from h in (7.9) to a in (7.10) is simply formal, h and a 
playing the role of dummy variables.) 

Equation (7.10) calls for d p ( H , -  h ) /dh  <_ 0 for the equivalent sea, which can be 
formally proved to be true from the very definition of equivalent sea. [Fix hi, h2 and dh with 
h2 > hi. Prove that the duration of time in which H, is between hi and hi + dh is greater than 
(or equal to) the duration of time in which H, is between h2 and h2 + dh. Hence, the proof 
follows straightforwardly.] 

Note that p (H, - h) of the equivalent sea is very close to p (H, - h) of the actual sea only 
for h > hcrit where dp (H~ - h ) /dh  of the actual sea proves to be always negative (sect. 6.2.3). 

7.1.2 S o l u t i o n  f o r  the  r e t u r n  p e r i o d  R (H~ > h)  

The number  of triangles whose height is greater  than a fixed threshold h, in the 
time interval . ~  is 

i 
o o  

./1/ " ( h , . ~Z- ) -./~t j " (5 7- ) PA ( a ) d a . 
h 
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The return period R (Hs > h), that is to say the average time interval between 
two consecutive triangles with height exceeding h, is related to ~ (h, ~ by 

R (Hs > h) -- 
g -  

3) 

The two last equations yield 

R(H,  > h ) -  Z 

i 
o o  

./U ( Y )  PA (a) da 
h 

that, with the formula (7.10) for PA (a), becomes 

R(H~ > h ) -  

I ~ _a dp (Hs - a) da 
h b (a) da 

The convergence of the integral in the last equation is very quick and, on the 
m 

contrary, b (a) is a very gradually varying function. Hence, we achieve an excellent 
approximate form assuming b (a) to be constant on the interval of integration, that 
is assuming 

b (a) - b (h). 

With this assumption, the expression of R (Hs > h) becomes 

R(H,  > h ) -  

m 

b(h) 

I ~ d p ( H , - a )  
a da 

h da 

from which, integrating by parts, we arrive at 

n (Hs > h) - b (h) . (7.11) 
h p (Hs - h) + P (H, > h) 

Finally, with (6.2) of P(Hs > h) and (6.7) of p(Hs - h), we obtain the following 
simple formula for the return period: 

R (Hs > h) - b (h) exp ( h )  u . (7.12) 
1 + u ( h )  u 

As an example, fig. 7.2 shows R (Hs > h) for Ponza (centre of the Tyrrhenian 
m 

Sea). The values of u and w are given in table 6.2, the function b (h) is given by 
(6.27) and the values of the parameters in this formula are given in table 6.3. 
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To check the step leading to (7.11), use the relation (6.1) between p ( H , -  h) and 
P(H, > h) and the limit 

lim ap (14, - a) = 0 
a---+ o c  

which is a necessary condition for the mean value of/4, (t) to exist. 

7.2 The significant wave height and its persistence vs the return period 

7.2.1 The s igni f icant  wave  height  h (R) 

The threshold h (R) being exceeded by the significant wave height with a given 
return period R can be read at once from graphs like the one of fig. 7.2. It suffices to 
read the abscissa h associated with a given ordinate R. Alternatively, h(R) can be 
evaluated by means of the formula we deduce here below. 

We seek the solution to the equation 

b(h) 

R 
exp ( h ) "  - 1 +  u ( h )  u 

that proceeds from (7.12). To this end, it is convenient to define a tentative value of 
b (h), that we shall call B: 

B -  tentative value of b (h). 

Failing more precise information, we can very well assume B -  b~0. Thus the 
equation becomes 

B exp ( h ) "  - 1 + u ( h )  " R , (7.13) 

where R and B (besides u and w) are known and h is the unknown. Defining 

X m B exp ( h ) " ,  
R 

(7.14a) 

we rewrite (7.13) in the form 

A - 1 +  uln ( R ) ,  

x - A + u l n x .  

(7.14b) 

(7.15) 

The x satisfying this equality is the limit of the sequence 

x / - A + u l n x / _ ~  with x 0 - A ,  (7.16) 
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which is easily obtained since the sequence converges very quickly. Then, from x, 
we get h(R) from the definition (7.14a): 

w [in (I )1 + 
(7.17) 

Naturally, after having obtained h (R) we can evaluate b (h), and hence we take 
B -  b(h), and carry out a second iteration. Usually, the third iteration is 
unnecessary; indeed the difference between h of the second iteration and h of 
the third iteration is negligible. 

Really, equation (7.15) admits two positive solutions, but one can easily prove that the 
smaller one of these two must be discarded. To this end, prove that the 1.h.s. of (7.15) is 
smaller than the r.h.s, for x = B/R (given that the storm duration B is smaller than the return 
period R). This implies that the smallest value of x satisfying (7.15) is smaller than B/R. 
Then, use (7.14a) to prove that x < B/R would imply (h/w)" < O. 

7.2.2 The persistence D (h) 

After having evaluated h(R) it is necessary to obtain D(h) which is the mean 
persistence of Hs above the threshold h in the storms where this threshold is 
exceeded. The expression of D(h) proceeds by dividing 

P(Hs > h ) 3 -  time duration in which Hs > h, in the long interval ~7, 

by 

3 / R  (Hs > h) - number of storms in which H, goes over the threshold h, during ~ .  

Fig. 7.2 
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Ponza (Tyrrhenian Sea): return period R (Hs > h) and persistence D(h). 
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The result is 
D (h) - P (H, > h) R (H, > h),  (7.18) 

which takes on the form 

D(h)  - 

b(h) 

1 

(7.19) 

if P(H,  > h) is given by (6.2). 
As an example the persistence D (h) at Ponza is shown in fig. 7.2. 

7.3 The encounter probability 

7.3.1 G e n e r a l  de f in i t ions  

Fig. 7.3 shows a few points on the time axis. Each of them marks the occurrence 
time of a natural  event of given characteristics. For example, the event could be a 
storm in which the significant wave height exceeds a fixed threshold h at a fixed 
location. 

The random times T~ (T1, T2, ...) be tween the successive occurrence times are 
called interarrival times. The mean value of the interarrival times is, by definition, 
the return period: 

R - T , .  

The product  p (T~ - T) dT will represent  the probabili ty that a T~ is be tween T and 
T + d T  (T being arbitrarily fixed). P(Ti > T) will be the probabili ty of exceedance,  
that is the probability that a Ti exceeds a fixed threshold T. From these definitions it 
follows that 

that is 

p (Ti - r) - - dP(Ti > r) , (7.20) 
dT 

j ~ 

P (T~ > r) - p (T~ - r ' )  d r ' .  (7.21) 
T 

.R=~. 

t 

rl r2 
I I I 

Fig. 7.3 Interarrival times of a point process. 
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Finally, the symbol ~ ( L , R )  will denote the probability that the event with the 
given return period R occurs at least once in the lifetime of a structure: encounter 
probability. 

7.3.2 The  P o i s s o n  process  

In general  the occurrences of the given event are assumed to form a 
h o m o g e n e o u s  Poisson process. This is a wel l -known process, but  for the 
convenience of the reader  we would propose all the same a simple introduction. 

Let us consider a very large time interval ~ and subdivide it into a sequence of 
very small intervals dt, as in fig. 7.4. Let us get ~ / d t  white balls, and blacken g / R  
of these balls. Then let us put all the balls in a box, shuffle the balls and draw them 
at random. Each draw is coupled with a new small interval dt: the first draw with the 
first small interval, the second draw with the second small interval and so on. If the 
drawn ball is black we mark a point in the small interval, otherwise we do not. At  
the end, we shall have marked g / R  points, as many points as black balls, and 
consequently the mean value of the interarrival times T/will be 

=R, 

according to the definition of sect. 7.3.1. 
P (Ti > r) is equal to the probability that, given a small interval with a point, the 

N = r / d t  following small intervals do not contain points. Bearing in mind the 
procedure followed for marking the points, the probability that a given small 
interval does not contain a point is equal to the quotient  between the number  of 
white balls and the total number  of balls, that is 

3 / d t  - ~ / R  = 1 dt 

Y / d t  R ' 

and P ( T / >  r) is equal to the Nth power of this probability with N - r/dt" 

e(Ti > 7")- - -  d t  

Multiplying and dividing the exponent  r / d t  by R, and applying the well-known limit 

lim(1 - x)~ - e -1 , 
x---~0 

dt 

t 

Fig. 7.4 How to generate a Poisson process: subdivide the time axis into a very large number of 
small intervals dt, and draw at random from a box containing white balls and black balls (one 
draw for each small interval). If the drawn ball is black, mark a point in the small interval. 
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we rewrite the expression of P(T~ > r) in the form 

P ( T ~ > r ) -  exp ( - R ) .  

Finally, using the relation (7.20) between the probability density function p (T~ = r) 
and the probability of exceedance P (T~ > r), we obtain 

p ( Ti - r) - l exp ( -  R )  

As to the probability ~(L ,R)  that at least one point falls within a fixed time 
interval L, it is given by 

1 -  ?7°(L, R) - ( 1 -  -R--)'" (7.22) 

Here the 1.h.s. represents the probability that the given time interval L does not 
contain any point, and the r.h.s, represents the Nth power of the probability that a 
fixed small interval dt does not contain a point, where N is the number  of small 
intervals dt in L. Multiplying and dividing the exponent  L/dt by R, and using the 
same limit as before, we obtain 

~ ( L , R ) -  1 -  exp ( - L )  . 

This would be the situation if the process, as it is usually assumed, were the 
Poisson process. Really, it is likely that the occurrences of environmental  events are 
not so random as in the Poisson process. In particular sometimes it is pointed out 
that the occurrences of such events show a tendency to cluster as well as to be 
recurrent. For this reason, in the next section, we shall consider the relation 
between ~ ,  L and R under general assumptions on the random point process. 
Indeed we shall allow the process an arbitrary p(T~ = r). 

7.3.3 The general solution for the encounter probability 

Let us assume that the random point process of the occurrences of an 
environmental  event is generally different from the Poisson process, and let us 
imagine we know the probability density function p (Ti = r) of the interarrival times 
T,.. Consequently we also know the return period of the event, which is equal to the 
mean value of the Ti, and naturally we know the probability of exceedance 
P (T~ > T) that is related to p(T~ = T) by (7.21). Without any more information, we 
seek the probability ~ (L, R) that the given event occurs at least once in a fixed time 
interval L (the lifetime of a structure). 

Let us use a thick mark for the part of the time axis consisting of all the T~ < L 
and of a segment of length L for each Ti > L, as we have done in fig. 7.5. Then, 
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without looking at the time axis (imagine fig. 7.5 is covered by a black sheet) let us 
put a stick of length L over the time axis. ~ ( L , R )  is the probability that, after 
removing the black sheet, we find the stick covers at least one of the points. 

Thus ~ ( L , R )  is equal to the probability that I [the left end of the stick] falls in 
the thick marked  part  of the time axis. Indeed if I falls in this part, then the interval 
L contains at least one point; and, conversely, if the interval L contains at least one 
point, then I must have fallen in the thick marked  part  of the time axis. This is 
instantly obvious on looking at the figure. 

The probability that I falls in the thick marked part  of the time axis is equal to the 
quotient  between the length C ( 3 )  of this part  and the total length of the time axis: 

~ ( L , R )  - C ( 3 ) / ~ ,  (7.23) 

where 

C ( 3 )  - thick marked  part  of the time axis 

(here C is for crassum, the latin translation of thick). 
Let us obtain the expression of C ( J )  in terms of the probability density function 

p ( T / -  T). We have 

p ( T i -  ~-) d T A / ' ( 3 )  -- number  of Ti such that T < Ti < r + d r  in ~ ,  

. . . . .  

zp(Ti  - T) dr~4/'(~,~) - portion of Y occupied by the Ti such that T < Ti < z + dr ,  

where ~ ( ~ )  is the number o f  the interarrival times Ti in ~ .  Hence, it follows that 

p ( T ~ -  T)dT~4/'(~,~) -- number  of T~ > L, in 3 ,  
L 

(7.24a) 

I 
L .... 

Tp(Ti -- 7-) d T ~ ( ~ )  -- portion of Z o c c u p i e d  by the Ti < L. 
0 

(7.24b) 

I 

L 

t 

, ,r4, , r=  , 

Fig. 7.5 The thick marked part of the time axis consists of all the interarrival times T~ < L and of 
a span of time L for each interarrival time T~ > L. 
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The length C ( 7 )  of the thick marked part of the time axis is equal to the sum of all 
the T~ < L (given by 7.24b) plus L multiplied by the number of T~ > L (this number 
being given by 7.24a). Therefore C ( ~ )  is given by 

I 
L ~ IzxD ~.. 

C(.J~ -) - r p ( T ,  - r ) d r . / t  j (.~-) + L p(T~ - r ) d r i P ' ( 7 ) ,  
0 L 

and (7.23) becomes 

N 

~ -  rp  ( T~ - r ) d r  + L p (T~ - r ) d r  , (7.25) 
0 L 

which yields 
l J  L 

- P(Ti  > "r)d7. : P ( L , R )  --R o (7.26) 

Check the step from (7.25) to (7.26). To this end, use (7.20-21), evaluate by parts the first 
integral on the r.h.s, of (7.25), and note that 

R = T~ -,~7-/./;F" ( . 7 ) .  / 

7.3.4 A coro l lary  o f  the genera l  so lu t i on  

The mean value of the interarrival times T~ is equal to the integral over (0, c~) of 
the probability of exceedance: 

R - r , -  
0 

Hence, the general formula for : ~ ( L , R )  can be rewritten in the form 

L 

: ~ ( L , R )  - 

P(Ti > r ) d r  

P(T~ > r ) d r  

which reveals at once that 
< 1, 

as it must be, .S (L ,R)  being a probability. Moreover, from equation (7.26) we 
conclude also that 

L :~(L,R) <_ 
R '  

since P(T~ > T) is smaller than or equal to 1. 
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The two last inequalities yield 

{ < L_L_ i f L < R  
~ ( L , R )  - R 

< 1  i f L > R .  

7.3.5 The fo rmulae  f o r  ~ ( L , R )  f o r  a f ew  given f o rms  o f  p ( T i  -- T) 

Q Delta function: p(Ti - ~) - 5 (~ - R), see fig. 7.6. 
We have 

P ( T / >  r) - 6 (r '  - R ) d r '  - U (r; R), 
T 

where U(T; R) is the step function: 

- 1  if T < R  
U(T;R) - ' 

- 0  if r >  R.  

With the expression of P(Ti > r) in (7.26) we obtain 

1I, { 
- U ( r ; R ) d r  R O ~ ( L , R )  -~- o - 1 

1 
(~) Boxcar" p (Ti - r) - U (7; 2R), see fig. 7.7. 

We have 2R 

P ( T / > r ) - I  ~ 1 U (r"2R) d r ' {  - 1  
2R ' - 0  

2R 

i f L < R ,  

i f L > R .  

T<_2R, 

r >  2R, 

and hence 
= L  l ( R ) 2  

(~) ~ ( L , R )  R 4 
- 1  

if L ___ 2R, 

if L > 2R. 

(7.27) 

(7.28) 

p(Ti=v) 

Fig. 7.6 Q: p ( T / - r )  - delta function. 

P(ri> v) 
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p(  Ti = "r ) 

1 
2R 

0 R 

Fig. 7.7 @: p(T, = T) - boxcar. 

2R 

P(Ti> v) 

0 R 2R 

@ Exponential function'p(T~ - 7-) - 
We have 

1---exp[-@]/~\ see fig. 7.8. 
R \ K/  

J~ 1 ( _ _ ~ _ )  (_~__)  P (Ti > 7-) - -  ~ ~ exp - d~-' - exp - , 

and hence  

I I L  ( R )  ( L )  - exp - d T - - 1 - e x p  - . @ ~(L,R)  --R o 

7.3.6 Comment on the formulae for ~ (L, R) 

We must  m a k e  two remarks .  First: we see ~ (L, R) at tains its m a x i m u m  for given 
L and R, if p(Ti = T) is the delta funct ion ( compare  formula  7.28 for 5~ (L, R) with 
inequal i ty  7.27). In o ther  words,  unde r  the same L and R, ~(L,R)  is m a x i m u m  if 
the in terarr ival  t imes T~ are all equal  to one another ,  i.e. they are all equal  to the 
re tu rn  per iod  R. 

Second remark:  if p(T~ = T) is an exponent ia l  function,  :~(L,R) takes  on the 
same form we ob ta ined  in sect. 7.3.2 for the Poisson process.  In more  detail,  in sect. 
7.3.2 we p roved  that  p (Ti = T) of the Poisson process  is an exponent ia l  function,  
and that  ~(L,R)  of this process  takes  on the fo rm 1 - exp(-L/R). H e r e  we have 
shown that  :~  (L, R) takes  on the form 1 - exp (-L/R) if p (Ti = 7-) is an exponent ia l  

P( Ti = ~) P ( T i > v )  

Fig. 7.8 @: p (T~ -7-) = exponential function. 

%" % -  

R 2R 3R~ 0 k ~ SR ~ 
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function. This is a step forward: indeed the fact that p (L = 7) of the Poisson process 
is an exponential function does not imply that a process whose p(Ti = 7) is an 
exponential function is a Poisson process. To better express this concept, in what 
follows we suggest the example of a process that in spite of being different from the 
Poisson process has p(T~ = 7) given by the exponential function. 

Let us imagine that the values of a lot of interarrival times have been written on 
paper  sheets (one value per paper sheet). These values are distributed according to 
the exponential function so that, for any fixed T, we have a number exp ( - T / R ) J F "  
of values exceeding 7 (~"  being the total number of paper sheets). Let us put the 
paper  sheets in a box, and let us draw: V~ will be the first value drawn, V2 the second 
value drawn, and so on. Let us use the sequence V~, 1/2, ..., V~ to form a process, in 
the following manner. 

We take T1 = T 2  = 7'3 = V1 where 7'1 is the time between the first and the 
second occurrence times, T2 is the time between the second and the third 
occurrence times, and 7"3 is the time between the third and the fourth occurrence 
times. Similarly, we take T4 = 7'5 - T6 = V2, and so on. In doing so, we get a point 
process where the distribution of the interarrival times Ti is exponential,  and 
indeed the share of the Ti greater than any fixed 7 is exp ( - r /R) .  However,  it is 
apparent  that this is not at all the Poisson process described in sect. 7.3.2. It is a 
process that exhibits both recurrence and clustering: recurrence because each time 
we have four occurrences of the event at regular intervals; clustering because 
whenever  a small Vi is drawn, we have four occurrences in a short time. 
Nevertheless, ~ ( L , R )  is the same as that of the Poisson process where the Ti are 
stochastically independent  of one another. 

Thus we realize that the three expressions Q,  Q and 0) of ~(L ,R) ,  not only 
refer to three distributions of the interarrival times Ti very different from one 
another, but they also cover a variety of ways the process actually is: with or without 
recurrence, with or without clustering. 

7.3.7 The design calculation: obtaining R for given ~ and L 

The design rules usually give the lifetime L and the encounter probability ~ .  The 
engineer has first to compute R from these given L and 5~, and then he has to single 
out the environmental event with this return period. The structure must be able to 
withstand such an event with a given safety factor. 

Using the three different forms Q,  Q and Q of 5~ (L, R), the relation which gives 
R from L and ~ proves to be 

0 R = L / ~ ,  

L 
2 ~  (1 + v / 1 -  ~ ) ,  

(1) 
@ R - L / l n  1 - ~  " 
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[Really the equat ion @ of :~(L,R) has two solutions, but  one of the two is 
discarded because it does not  comply with the condition: R ---, oc as ~ ---+ 0 for a 
fixed L.] In the following sect. 7.4 we shall use these three forms of R ( L , ~ )  to 
compute  the design wave. Then  we shall compare  the results obtained,  and thus be 
able to judge whether  or not  our  ignorance on the distr ibution of the interarrival  
times T~ has some significant consequence on the structure design. 

7.4 The chain: lifetime, 
significant wave height 

encounter probability ~ return period 

7.4.1 Worked example 

Let us assume 

L = 50 years, :~ = 0.1 

which, as we shall see in sect. 7.5, are realistic inputs for the design of ocean 
structures. Using formula @ for R (L,:~) obta ined in the foregoing section, we have 

@ R - 5 0 / l n Q 1 _ 0 . 1 1  - ) - 4 7 5 y e a r s .  

Thus, let us evaluate h (R = 475 years) for Ponza that  is character ized by 

u - 1 . 2 0 0 ,  w = 0 . 8 7 4 m ,  a ~ o = 3 . 4 m ,  b l o = 6 9 h o u r s ,  K1 =1.12, / £ 2 = - 0 . 1 1 5 .  

Following the procedure  given in sect. 7.2.1, let us fix a value of B for the first 
i teration: 

B = bl0 = 69 hours .  

Since R = 475 years, f rom (7.14b) we have 

A - l + l . 2 0 0 1 n (  -475"36569 . 2 4 )  = 14.21, 

and hence the terms of the sequence (7.16) are 

x0- -  14.21, 
x~ - 14.21 + 1.200 In 14.21 - 17.39, 
x 2 - 14.21 + 1.200 In 17.39 = 17.64, 
x3 = 14.21 + 1.200 In 17.64 - 17.65, 
x4 = 14.21 + 1.200 In 17.65 - 17.65. 

We see that  the limit of the sequence is 

x = 17.65. 
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With this value in (7.17) we obtain 

h ( R ) -  0"874 [ln ~ 475 " 365 " 2 4 6 9  17. 1.2-00 - 7.82 m. 

The value of B for the second iteration proceeds from (6.27) of b(h)" 

- ( 7 ; 8 2 )  
B - b (7.82 m) - 1.12.69 exp -0.115 - 59 hours, 

and, with this new value of B, we obtain 

A = 14.40, 

2 nd iteration x = 17.86, 

h (R) - 7.90 m. 

The third iteration with B - b (7.90 m) leaves the result unchanged. Therefore, 7.90 m 
is the threshold of significant wave height associated with the return period of 475 
years. 

Now let us repeat the procedure from the start, using formula @ for R (L ,~ ) .  
The result is 

@ R -  50 ( l + v / 1 - 0 . 1 ) - 4 8 7 y e a r s ,  
2.0.1 

h(487 years) - 7.91 m. 

Finally, with formula @ for R (L,2;~) we get 

@ R - 50/0.1 - 500years, 

h (500 years) - 7.93 m. 

The summary is 

@ R - 5 0 0 y e a r s  => h ( R ) - 7 . 9 3 m ,  

@ R - 4 8 7 y e a r s  =~ h ( R ) - 7 . 9 1 m ,  

@ R - 4 7 5 y e a r s  =~ h ( R ) - 7 . 9 0 m .  

7.4.2 Comment on the results of the worked example 

We have to come back to the conclusion of sect. 7.3. We know practically 
nothing about the form of the distribution of the interarrival times T~. This is why 
we have assumed three distributions very different from one another, from which 
we have got three alternative formulae for R (L,5~). Using these formulae in the 
worked example, we have found three different values of R. The differences are 
within 5% (largest difference: R = 500 years with formula @ against R = 475 years 
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with formula @). As to h (R), that is the true target, the differences are within only 
0.4%. 

In reality, the design input (L = 50years, ~ -  0.1) which we have taken is a 
rather severe one. For some smaller lifetimes and/or higher encounter probabilities, 
the differences resulting from the use of the different forms of R ( L , ~ )  prove to be 
somewhat larger. To get an idea of this, let us consider the case of 

L = 15years, 3 = 0.5. 

These are the smallest lifetime and the highest encounter probability granted by 
design rules for some special classes of structures. Using the formulae @, @ and @ 
with these values of L and ~ we get 

@ R = 3 0 . 0 y e a r s  =~ h ( R ) = 6 . 4 5 m ,  

@ R - 2 5 . 6 y e a r s  =~ h ( R ) = 6 . 3 6 m ,  

@ R = 2 1 . 6 y e a r s  ~ h ( R ) = 6 . 2 7 m ,  

where h(R) is here too for Ponza. As we can see even in this extreme case, the 
differences between the values of h (R) do not exceed 3%. 

In the light of these results, it is apparent that we can use any of the alternative 
formulae @, @, or @ with practically negligible differences on the structure design. 
In what follows we shall use formula @, that is 

~ ( L , R ) -  1 -  exp ( - R ) ,  (7.29a) 

R (L'~) - L/ ln ( 1 ) ~ (7.29b) 

The reason for this choice is simply that @ is valid for the Poisson process, so this 
formula is usually known. The more we know after the foregoing analysis is that, 
even in the most probable event that the random point process of the storm 
occurrences differ greatly from the Poisson process, the use of expression @ will 
lead to only negligible errors on the design wave. 

7.5 Coastal structures: the design sea state 

A design sea state with h (R) as significant wave height is used for the coastal 
structures. The upright breakwaters must be able to withstand this sea state with 
some dictated safety factors. The rubble mound breakwaters must be able to 
withstand the design sea state, suffering at the most damages contained within a 
prescribed level. 

We have seen in the foregoing section that the input data for the calculation of 
h (R) are lifetime L and encounter probability ;~. As an example, tables 7.1-2 give 



224 Chapter 7 

t he  m i n i m u m  L a n d  the  m a x i m u m  3 p r e s c r i b e d  by  a few E u r o p e a n  g u i d e l i n e s  on  the  

des ign  of  t he  v a r i o u s  c lasses  of  m a r i t i m e  s t r u c t u r e s  (cf. P u e r t o s  de l  E s t a d o ,  1990).  

A n  a d d i t i o n a l  ve r i f i ca t i on  is r e q u i r e d  for  the  r u b b l e  m o u n d  b r e a k w a t e r s .  

Speci f ica l ly ,  t he  s t r u c t u r e  m u s t  be  ab le  to  w i t h s t a n d ,  wi th  p rac t i ca l ly  no  d a m a g e ,  a 

sea  s t a te  t h a t  has  a r e l a t i ve ly  h igh  e n c o u n t e r  p robab i l i t y .  This  r e l a t i ve ly  h igh  

p r o b a b i l i t y  is spec i f i ed  in t ab l e  7.3. 

T a b l e  7.1 M i n i m u m  lifetime L (years) 

Safety level (1) ___+ 

Structure type I 

Genera l  use 

Special industrial use 

25 

15 

50 

25 

100 

50 

T a b l e  7.2 M a x i m u m  encounter  probabi l i ty  

Economic consequence 
in case of failure (2) 

risk for human life (3) 

small high 

Low 0.20 0.15 

Average  0.15 0.10 

High 0.10 0.05 

T a b l e  7.3 M a x i m u m  encounter  probabi l i ty  ~ (second verification o f  rubble m o u n d  
breakwaters)  

Economic consequence 
in case of failure (2) 

Low 

Average  

High 

small 

0.50 

0.30 

0.25 

risk for human life (3) 

high 

0.30 

0.20 

0.15 

I1~ Level 1: structure of local interest; small risk of loss of human lives or environmental damage in case of 
failure. Level 2: structure of general interest; moderate risk of loss of human lives or environmental damage in 
case of failure. Level 3: structure of protection against floods, or structure of international interest; high risk of 
loss of human lives or environmental damage in case of failure. For more details, see the Italian or Spanish 
guidelines on the design of maritime structures. 

I2~ The judgement is based on quotient Q between cost of losses and investment: 

Q <_ 5 => low; 5 < Q <_ 20 ~ medium; Q > 20 ~ high. 
I3/Risk for human life high or small according to whether human losses are or are not expected in case of 

failure or damage. 
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For  the design of a few s t ructure  componen t s  (e.g. the a r m o u r  of a rubble  
mound) ,  besides the significant wave height,  we have to specify also the dura t ion  
of the design sea state. To this end, we reason  as follows, h(R) is the threshold  
that  is exceeded,  on average,  once in R years; and the pers is tence of H, above this 
th reshold  is a r a n d o m  var iable  whose  mean  value D(h) is given by (7.19). This 
means  that  H, remains on the threshold H on average for a span of t ime of 2D (h). 
We mean  that  h is the mean  value of H, for this span of time. The re fo re  we 

assume 
~ - 2 D ( h )  . 

Fig. 7.9 is helpful to realize this. 
Now we can complete  the calculation for L - 50 years, ~ - 0.1 at Ponza. In sect. 

7.4 we saw that  

R - 475 years,  h (475 years) - 7.90 m, b (7.90 m) - 59 hours ,  

f rom which, using (7.19), we obtain 

D(7.90 m) - 59 - 3.3 hours ,  

1 +1.200(78904)1"200 
and hence 

- 2 . 3 . 3  - 6.6 hours .  

H~ J~(h) = persistence of H s above 
-'1 t "-/ the fixed threshold h 

[ 

2/:)(h) " the mean value of Hs on this 
domain is h 

Fig. 7.9 The  design sea state is applied for coastal structures.  The  significant wave height  of this 
sea state is equal  to the threshold  h being exceeded  with a prescr ibed re turn  period. The  dura t ion 
should be taken of 2D(h )  (twice the average persis tence above the threshold  h). 
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7.6 The return period of a wave with a height exceeding a fixed threshold 

7.6.1 So lu t ion  f o r  the return p e r i o d  R* (H)  

With this section we start a new reasoning that will lead us, in sect. 7.8, to the 
design waves for the offshore structures. 

Here too we resort to a sequence of equalities, where the 1.h.s. of the i + i th 
equality is equal to the 1.h.s. of the ith equality multiplied by a new term. Referring 
to a very large time interval 3 ,  we have 

p (H, = h) dh 3 =  time in which h < H, < h + dh, during ~ ;  

_ p (Hs = h) dh Z =  number of waves in the sea states with h < Hs < h + dh, 
r (h) during 3 ;  

1 3 =  P ( H ; H s -  h) -T(h) p ( H s -  h ) d h  number of waves higher than a given 

threshold H, in the sea states with h < H= < h + dh, during ~ .  

Integrating the 1.h.s. of this last equality over 0 < h < oc we obtain ~ ( H , 3 ) ,  the 
number  of waves with a height greater than H in 3 :  

i 
( x )  

./,t~ .... ( H , 3 )  - P(H;  Hs - h) 1 
o -T(h) 

p (Hs = h) d h 3 .  

The return period R* (H) of a wave with a height exceeding the fixed threshold H 
is equal to the quotient between ,~" and the number of waves higher than H in 
that is 

R* (H) = 3 / . / U  (H, ._~), 

and hence 

EIo 1 ]1 R* (H) - P (H; Hs - h) T (h) p (Hs - h) dh . (7.30) 

As to the functions appearing in this equation, we can use (5.26), (5.48a) and (6.7). 
The integrand in (7.30) has a maximum. Indeed it approaches zero as h---, 0 

because of P (H; Hs = h), and approaches zero as h ---, oc because of p (Hs = h). The 
integral can be evaluated numerically even with a relatively large integration step: 
usually a step of 0.5 m is suitable. Moreover the interval of integration can be 
reduced to (0.3H, 2.0H) without any appreciable consequence. 

7.6.2 A s e e m i n g  p a r a d o x  

Fig. 7.10 shows a typical R* (H) for the Mediterranean Sea (Ponza: w = 0.874 m, 
u = 1.200), and we suspect it stirs up some doubts. Specifically, the fact that the 
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Fig. 7.10 

1000 

100 

10 

0.1 

~* [years] 

(n) 

, ~ , / ~ ( 8 : 4 7 ) - 1  year, 

0 5 10 15 20 
H[m] 

Ponza (Tyrrhenian Sea): return period R*(H). (Obtained by means of 7.30.) 

return period of a wave height exceeding 8.4 m is only 1/10 of a year will probably 
not be easy to accept. We are afraid that the reader 's  doubts would change to a 
refusal if we were to go down to some lower return period. It suffices to say that 

R* (5 m) - 9 hours! 

Really this result seems to go against common sense, and it suggests something is 
wrong in the equation (7.30), or in the calculation, or in both. But it is not so. As to 
the equation, it is based on only a few simple steps, check them little by little and 
you will realize the solution is exact whatever  the H. As to the calculation, anybody 
can quickly implement  a PC program. Anyway, we can do a general  verification 
together.  

Let us estimate how many waves higher than 5 m occur on average in one year, 
during sea states with an H, between 3.75 m and 4.25 m. The quotient  between time 
in which H, is within the range (3.75 m, 4.25 m) and total time is 

P (H,  > 3.75 m ) -  P (H,  > 4.25 m ) -  exp [-(38774. )~ 2 ° ° ] -  ex p [_(4.250.874 )1.200_ 

- 1 .94.10 -3 

and hence H, will be between 3.75 m and 4.25 m, on average for 

3 6 5 . 2 4 . 1 . 9 4 . 1 0  .3 - 17 .0hours /yea r .  

The mean wave period in a sea state with an H, of 4.0 m (4.0 m is the median of the 
range 3.75 m, 4.25 m) is evaluated by means of (5.26), and proves to be 

T - 6 . 6 7 r  4 .9 .8  = 6.6 s. 
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Therefore ,  we expect the 17 hours per  year  in which/4,  is between 3.75 m and 4.25 
m to contain 

17. 3600 
= 9270 waves. 

6.6 

The probabili ty of a wave higher than 5 m in a sea state with an /4, of 4 m is 
calculated by means of (5.48a), and proves to be 

P(5 m; H s -  4 m ) -  exp I -  2.31 (4)2  ] - 0.027, 

so that  the number  of waves higher than 5 m, which we can expect to occur in the 17 
hours in which/4 ,  is between 3.75 m and 4.25 m, is 

The conclusion is that 

9270.0.027 - 250. 

R* (5 m) < 365 .24  = 35 hours,  
250 

that  is the re turn period of a wave higher than 5 m is smaller than 35 hours. 
Smaller, clearly because we have counted only the waves in the sea states with Hs 
between 3.75 rn and 4.25 m. If we also count the other waves higher than 5 m, that 
is to say the waves in the sea states with H~ < 3.75 m and in the sea states with H~ > 
4.25 m, we get the very nine hours of return period we said above. 

The reason why the return period of a wave higher than 5 m seems so small is 
simply that the definition of R*(H) does not correspond with our intuitive idea of 
return period. By return period of a wave higher than 5 m we mean the time that on 
average elapses between two occurrences of some waves higher than 5 m. While 
R*(5 m) is the mean  time interval between two occurrences of a single wave higher 
than 5 m; and it is small because even a few hundred waves higher than 5 m may 
occur together  in a ra ther  short time during a storm. Thus we realize that a more 
effective definition is that of "re turn period of a storm containing at least one wave 
higher than the fixed threshold H" .  We shall call this new return period R(H). 

7.7 The return period of a sea storm containing at least one wave higher 
than a fixed threshold 

7.7.1 Layout of the problem 

Alternat ively to the definition given at the end of the foregoing section, R(H) 
can be also defined as "the return period of a storm whose maximum wave height 
exceeds the fixed threshold H" .  The two definitions are equivalent to each other  
because,  if the maximum wave height exceeds the fixed threshold H, then the storm 
contains at least one wave higher than H; and, conversely, if the storm contains at 
least one wave higher than H then the maximum wave height exceeds H. 
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To obtain R(H) it is helpful to refer to a new alternative definition. Specifically it 
is convenient to pass from the return period of  a storm.., to the return period of a 
wave with the two following features 

(i) to be higher than the fixed threshold H, 
(ii) to be the highest wave of the storm in which it occurs. 

Indeed it is apparent  that the number of storms whose maximum wave height 
exceeds the threshold H is equal to the number of waves having both the properties 
(i) and (ii). 

Then the return period R(H) will be given by 

R (H) - ./f ...... (H, .U;  max) ' (7.31) 

where . ~  is the usual very large time interval and 

...! "(H, .7;  max) - number of waves during .'Z-which 

have both the properties (i) and (ii). (7.32) 

This number, whatever the H, takes on the same value in the actual sea and in the 
equivalent sea. Indeed, we saw in sect 6.6 that the equivalent triangular storms and 
the actual storms have the same probability that the maximum wave height (of the 
storm) exceeds any fixed threshold H. Therefore, we shall refer again to the 
equivalent sea, where the storms are triangles like in fig. 7.1. 

7.7.2 Solut ion for  the return per iod R ( H )  

To obtain . t  "(H, T; max), we start as usual from a sequence of equalities. The 
first three equalities are (7.1-2-3) that here we omit to rewrite, hence the sequence 
goes on as follows 

1 
[PA (a) da ...f" (.7) PB (bla) db] g)t(h, dh, a, b) _ 

r(h) 
= number of waves 

present in the stages of the storms in which H, is between h and h + dh, 
only for the storms whose Hsmax is between a and a + da 
and whose duration is between b and b + d b ,  during .'7; 

• 1 
{PA (a) da ....... ! (.U)pB(bla) db] at(h, dh, a,b) -T(h) p (x ; /4 ,  - h) dx  - 

- number of waves with a height between x and x + dx, in the stages of the storms 
in which H, is between h and h + dh, only for the storms whose /-/,max 

is between a and a + da and whose duration is between b and b + db, during .U; 
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1 
[PA (a) da./F" ( 3 )  PB (b a) db] 5t (h, dh, a, b) -T (h) p (x; H, - h) dx. 

• {~°(Hma x < X; a, b)/[1 - P(x; H, = h)]} = number  of waves which 
are the maximum of their storm, with a height between x and x + dx, 

in the stages of the storms is which H, is between h and h + dh, 
only for the storms whose /-/,max is between a and a t da 
and whose duration is between b and b + db, during 3 .  

(7.33) 

The term {.} on the 1.h.s. of (7.33) is the probability that all other wave heights of the 
storm (apart from the height between x and x + dx in the sea state with H, between 
h and h + dh) are smaller than x. The proof is left as an exercise. [Hint: keep in 
mind that ~(Hmax < x; a, b) is the probability that all waves of the storm have a 
height smaller than x, and recall how we got this probability in sect. 6.5.] 

J¢~ ( H , ~ ;  max) proceeds by integrating the 1.h.s. of (7.33) over 

{(x ,h ,a ,b) lx  c (H, ec),h c (0, oc),a c (h, oc) and b c (0, oc)}. 

Using the formula (7.5) for ~)t(h, dh, a, b), we obtain 

j C ~ ( H , 3 ; m a x )  - & ' ( 3 )  pA (a)pB (bla) b __1 
H O h 0 a T(h) 

- -  p (x; Hs = h ) . 

" {~(Hmax < x;a,b)/[1 - P(x;H,  = h ) ] } d b d a d h d x .  

Then, using the formula (7.10) for PA (a) and the equation 

9(Hmax < x ; a , b ) - e x p { b l a l - - - ~ l n [ 1 - P ( x ; H s -  h ' ) ]dh '} ,  
o r ( h ' )  

we rewrite ~/U ( H , ~ ;  max) in the form 

(H, ~ ,  max) - ~ _ 1 
. o T(h) 

~ p ( x ; H ,  - h)[1 - P(x;H,  - h)] -1. 

f ~ _  dp (Hs - a) 
J h da 

-b(a) o pB(bla)bexp[K(a'x)b] d b d a d h d x '  

where 

1 [" ~ In [1 - P (x; H,  - h')] d h ' .  
K ( a ' x ) - - - a  o -T(h') 

[As for the equation of 2;~(Hmax < x; a, b), we have given it without a comment,  since 
it proceeds immediately from (6.26a).] 
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From the expression of the number . / /  ...... (H, g-; max) and equation (7.31) relating 
this number  to R(H), we get 

R(H) - { I ~ I  ~ _1 
H 0 r (h)  

j OG 

p (x; H, - h) dp (H, - a) 1 
h - -  da b(a) 

I oPB(b a ) b e x p [ K ( a , x ) b ] d b d a d h d x  , 

(7.34) 

where the term [1 - P(x; H, - h)] -~ has been neglected because it has little effect on 
the result, as one can easily verify by numerical evaluation of the integrals. 

To proceed, we should know the form of PB (b]a). However,  rather than looking 
for some formula that fits the data of the equivalent triangular storms it seems more 
effective to assume two very different forms for PB (b]a), obtain R(H) for each of 
these two forms, and see how much the two solutions for R(H) differ from each 
other. If the difference will be a significant one, of course the data analysis of 
PB (bla) will become necessary, otherwise this analysis will be useless. 

As two extreme forms of PB (bla) we assume 

@ pB(bla) -- 6 [ b - b ( a ) ] ,  

@ pB(bla)_  1 exp[--  b 
b(a) L b(a) 

The first one (@) is the delta function: all storms of given H s m a x  - -  a have the same 
duration b that coincides with the mean value b(a). The second one (@) is the 
exponential function: the durations of the storms of given Hsmax--a have a very 
large scatter with respect to their mean value b (a). 

The integral with respect to b in (7.34) proves to be 

j ~  { - b (a )exp  [K(a,x)-b(a)] with f o r m @ o f  pB(bla ) 
PB (bla) bexp [K (a,x) b] db - 2  ' 

0 - b(a)[1 K(a,x)-b(a)] with form @of  pB(b[a). 

As a consequence we obtain the two following alternative formulae for R (H) 

R(H)-{I J 1 -  o ~ I dp(H" - a) r (h-------v- p (x; H, - h) - h da 

@ (7.35) 
m 

E /a/la 1 .exp 
a 0 T (h') 

] - - I n  [1 - P (x; H~ - h')] dh' da dh dx , 
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® 

E1 

R(H) - { I ' I  • _1 
. o r ( h )  I 

OQ 

p (x; H, - h) _ dp (Hs - a) 
h da 

b(a) j "a 1 _ 

a o T (h') 

-2 /-1 
~ l n [ 1 - P ( x ; H s - h ' ) ] d h '  dadhdx , 

where the integrals can be solved numerically with the criteria suggested in the 
following sect. 7.7.3. 

Table 7.4 compares a few values of H(R) for Ponza (w = 0.874 m, u = 1.200) 
obtained with the two alternative formulae for R(H). We see that the differences 
due to the use of the two different formulae are very small especially in the range 
of practical interest for the structure design. This comparison has been done with 
the same outcome also for other locations of the Mediterranean Sea and of the 
Oceans. The conclusion is that the shape of the distribution of the durations of the 
storms has only a very small effect on H(R), and thus we can use formula @ or 
formula @ for R(H) to our liking. We shall use @, that is to say (7.35) because it is 
slightly more conservative, indeed it gives a somewhat greater wave height for a 
given return period. 

Table 7.4 Results obtained from the use of two alternative formulae for R(H) 

FORMULA (~) FOR R (H) 

R [years] 

10 

100 

1000 

H[m] 

8.43 

10.98 

13.39 

15.72 

FORMULA (~) FOR R (H) 

R [years] 

10 

100 

1000 

H[m] 

8.26 

10.82 

13.25 

15.61 

7.7.3 Hints for the calculation of R (H) 

The calculation of R (H) by means of (7.35) is much simpler than it may seem. 
First of all, since the integrand is a regular function, we can use some integration 
steps greater than we would probably choose: steps Ax, Ah, Aa and Ah '  of 0.5 m 
usually prove to be adequate. Moreover  all contributions to the integral, apart from 
a negligible share, come from a small region of the 4-dimensional interval of 
integration, so that we can replace 

lo If... dh' da dh dx, 



Design waves and risk analysis 233 

with 
I 2 H [ O 8 x [ l 5 h l  a 

H dO.3x dh 0.6a 

... dh'  da dh dx.  

Here  for simplicity we have t rea ted  that  of formula  (7.35) as a 4-fold integral.  
Real ly  it is a 3-fold integral  with a one-dimensional  integral  in the a rgumen t  of the 
exponent ia l  function, but  the substance of numerica l  work  is the same. 

To fix our  ideas, let us think of a location of the M e d i t e r r a n e a n  Sea, let us take 
H - 10 m, and let us use in tegrat ion steps Ax, Ah,  Aa  and A h '  of 0.5 m. Then,  the 
first integral  is the sum of the number  of the highest  waves in their  respective 
storms, which have a height  x be tween  10m and 10.5 m, be tween  10.5 m and 11 m, 
and so on (recall that  the integral  mult ipl ied by .Ugives  the n u m b e r  of waves which 
are the m a x i m u m  of their  s torms and are higher  than H, during 7 ) .  We should go 
on as far as infinity, but  it is intuitive that,  in the set of waves higher  than 10 m, the 
amoun t  of those higher  than 20 m will be negligible. This is why the upper  limit of 
the first integral  passes f rom ~ to 2H with practically no error.  

Let  us pass to the second integral,  the one with respect  to h, and to fix our ideas, 
let us take x - 18 m. This integral  is the sum of the n u m b e r  of waves [which are the 
highest  of their  storms and have a height  of 18 m] which belong to sea states with a 
significant height  be tween  0 and 0.5 m, be tween  0.5 m and l m  and so on as far as 
infinity. He re  too it is apparen t  that  the number  of these waves occurring in the sea 
states with a significant wave height  be tween  0 and 0.5 m will be absolutely 
negligible because  the probabi l i ty  of a wave height  of 18 m in a sea state with 
H, < 0.5 m is zero as a ma t t e r  of fact. M o r e o v e r  the n u m b e r  of these waves in sea 
states with a significant wave height  be tween  17.5 m and 18 m is also zero. Indeed,  
such heavy sea states have a negligible probabi l i ty  of occurring, and fu r the rmore  
the probabi l i ty  that  a wave of height  18 m, in a sea state with a given significant 
wave height  of 18 m, is the highest  wave of its s torm is practically zero. Hence  we 
realize that  the whole contr ibut ion to the second integral  will come from an interval  
whose lower limit is grea ter  than zero and whose upper  limit is smaller  than x. The  
interval  (0.3x, 0.8x) proves to be wide enough.  

As to the third integral,  to fix our ideas, let us take x -  18 m, h -  11 m. This 
integral  is the sum of the n u m b e r  of waves [which are the highest  of their  storms, 
have a height  of 18 m, and belong to a sea state with an H~ of 11 m] which occur in 
storms whose Hsmax is be tween  11 m and 11.5 m, be tween  11.5 m and 12 m and so on. 
Thus,  fixing an upper  limit of in tegrat ion of 1.5h - 16.5 m is as if, being informed 
that  the sea s torm includes a sea state of H~ - 11 m, we said: the probabi l i ty  that  
Msmax has exceeded  16.5 m is negligible. Of course, this suggestion (changing the 
upper  limit of the third integral  f rom ~ to 1.5h) is the result  of a n u m b e r  of 
calculations for different areas. 

The  fourth integral  remains,  the one in the a rgument  of the exponent ia l  function. 
This exponent ia l  function gives the probabi l i ty  3 (Hmax < x) for a t r iangular  s torm of 
dura t ion  b (a) and m a x i m u m  significant wave height  a. To fix our ideas let us take 
x - 18 m, a - 12 m. Then  the integral  (mult ipl ied by b (a)/a) is the sum: [logarithm 



234 Chapter 7 

of the probability that all waves in the stage of the storm where 0 < Hs < 0.5 m are 
smaller than 18 m] + [logarithm of the probability that all waves in the stage of the 
storm where 0.5 m < Hs < 1.0 m are smaller than 18 m] + ... + [logarithm of the 
probability that all waves in the stage of the storm where 11.5 m < H, < 12 m are 
smaller than 18 m]. Clearly, the probability that all waves in the stage of the storm 
with H, between 0 and 0.5 m are smaller than 18 m is practically equal to 1, and 
consequently the logarithm of this probability is zero. Thus we realize that the lower 
limit of integration can be taken greater  than zero without any appreciable 
consequence on the result. Experience suggests this lower limit can be raised to 0.6a. 

Finally, note that the solution for R(H) is exact provided p(H, = h) is the p.d.f, of 
the significant wave height of the equivalent sea. However,  we can very well use the 
actual p(H, = h), provided H is greater  than about 3hc~it (cf. sect. 6.1.2). Here,  bear  
in mind that p(H, = h) of the equivalent sea tends to coincide with the actual 
p(H~ = h) as h increases (cf. sect. 6.6.3). 

7.7.4 Comparison between R (H) and R* (H) 

The function R* (H) of fig. 7.10 has been plotted again in fig. 7.11 where it is 
compared to R (H). The third line gives 

N (H) - average number  of waves higher than a fixed threshold H, 
in the storms where at least one wave higher than this threshold does occur. 

To obtain N (H) it suffices to write the two following equalities" 

3 /R*  (H) - number  of waves higher than H, in ~ ,  

Y / R  (H) - number of storms containing at least one wave higher than H, in 3 .  

1000 
R,R*[years] 

100 

hlO0 

5 10 15 
O.1 . . . . .  1 . , ,  Lmj~rr~ 

0 20 

w , 

Fig. 7.11 Ponza: return periods R (H) and R* (H). N (H) - R (H)/R (H) is the average number 
of waves exceeding the fixed threshold H in the storms containing at least one of these waves. 
(Obtained by means of 7.30 and 7.35.) 



Indeed  N (H) is the quot ient  be tween these two numbers:  

( H )  - R ( H )  . (7 .36 )  
R* (/4) 

At this stage we can definitively unders tand  that  strange result  of sect. 7.6.2. We 
have seen that  

R* (5 m) - 9 hours;  

now we can add that  

and hence 

1.0 

R (5 m) - 25 days,  

2 5 . 2 4  
U ( 5 m )  - = 66. 

9 

Conclusion" at Ponza,  on average,  once in 25 days, a s torm occurs with wave heights 
exceeding 5 m, and each of these storms contains, on average,  66 waves higher 
than 5 m. This means  that, on average, we have to wait 25 days to see waves higher 
than 5 m, but  the average time interval be tween  two occurrences of a wave higher than 
5 m is only 9 hours,  because each time waves higher than 5 m occur, there is an average 
of 66 of these together .  

7 . 8  O f f s h o r e  s t r u c t u r e s :  t h e  d e s i g n  w a v e  

7.8.1 The max imum wave height in the lifetime 

We have to verify that  offshore structures are able to withstand the reasonably  
highest wave in their lifetime. Following the design rules, we have to take the wave 
height that has a given probabil i ty  :~ of being exceeded in the lifetime L. 

0.5 

0.1 

0 ' ' ' ' :5 ' ' ' ' 2 0 '  

P[H~(50 years)>/-/] 

i ! i i I i I i ~ - - t - ~ ,  

10 15 
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, O[m]= 

Fig. 7.12 Ponza: probability that the largest wave height in fifty years exceeds any fixed 
threshold H. (Obtained by means of 7.37.) 
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The probability that the maximum wave height in the lifetime L exceeds a fixed 
threshold H is equal to the encounter  probability of a storm whose maximum wave 
height exceeds H: 

P[Hmax (g) > H] = .~ [g,R (H)]. 

Indeed,  if the maximum wave height in the lifetime L exceeds H, then at least one 
storm whose maximum wave height exceeds H must occur in this lifetime; and, 
conversely, if at least one storm whose maximum wave height exceeds H occurs in 
the lifetime L, then the maximum wave height in this lifetime exceeds H. 

R (H) is given by (7.35) and ~ ( L , R )  by (7.29a), so that 

P[Hmax(L) > H ] -  1 -  exp - L  _ 1  
i, o r ( h )  i 

o o  

~ p ( x ; H s  - h) _ dp (Hs  - a) . 
h da 

(7.37) 

[- I a b(a)  1 
• exp a o T (h') ~ l n [ 1 -  P(x;Hs - h')] dh'] da dh d x } .  

As an example let us consider again the input data 

L = 50years ,  ~ = 0.1, 

for Ponza (w = 0.874 m, u = 1.200). The P [Hma x (50 years) > H] is shown in fig. 7.12. 
We see this probability is equal to 0.1 (the prescribed value) for H = 15 m that, 
accordingly, is the design wave height, i.e. it is the desired 

H (L) = maximum wave height in the lifetime of a structure. 

Physical meaning: there is a 10% probability that the largest wave height in 50 years 
at Ponza exceeds 15.0 m. 

7.8.2 T h e  sea s tate  w h e r e  the  h i g h e s t  w a v e  in the l i f e t ime  o f  a s t r u c t u r e  wi l l  

OCCHF 

Knowledge of the wave height is not enough for evaluating the wave force. We 
also need to know the wave period, and hence we must try to foresee the 
characteristics of the sea state in which the highest wave in the lifetime of the 
structure will occur. For this goal we reason as follows. 

If we retrace the steps that led us to the formula (7.35) for R (H), we realize that 

. ~  1 [~ dp (H, - a) 
-T(h) p ( x ; H s  - h) J - h da 

n [ lalja 1 
exp 

a o T (h') 

• In [1 - P (x; H ,  = h')] dh '  d a  d h  d x  = 
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and 

= n u m b e r  of waves  which are the highest  of thei r  s torms,  
having a height  b e t w e e n  x and x + dx and be longing  to the stages 

of the s torms in which the significant wave height  
is b e t w e e n  h and h + dh, dur ing  J ,  

I 7 ~ d p  (Hs - a) 
o T ( h )  p ( x ; H , - h )  h - da  " 

[- ja 1 b ( a )  1 
exp _ ') In [1 - P (x;/4, - h')] dh '  da dh dx - 

a o r ( h  

n u m b e r  of waves  which are the h ighest  of thei r  s torms,  having a 
he ight  b e t w e e n  x and x + dx, dur ing  .~7. 

(7.38) 

(7.39) 

Hence ,  if we define 

p (/4, - h; Hmax -- x ) d h  - p robabi l i ty  tha t  a wave  of given height  x, which is the 
highest  wave  of its s torm, occurs in a sea s tate  with a significant wave height  

b e t w e e n  h and h + dh, 

we have  

p (/4, - h; Hmax - x ) d h -  1.h.s. of (7.38)/1.h.s. of (7.39),  

tha t  is 

p ( H  s - -  h; H m a  x - x )  - 

m 

T (h---~- p (x; H, - h) - exp _ 
h da a 0 r (h') 

In [1 - P (x; Hs - h')l dh' da 

m 

l I [ ja 1 (x; H, - h) dp (H, - a) exp b (a) 1 
0 T ( h )  p - - h da a 0 T (h') 

7 

ln[1 - P(x;Hs - h')] dh'] dadh 
,,,,,I 

(7.40) 

Le t  us come back  to our  w o r k e d  example .  W e  have  a highest  wave of 15 m in the 
l ifet ime of 50 years .  Of  course,  if this wave  is the highest  in 50 years ,  it is also the 
highest  of its s torm. As a consequence ,  the probabi l i ty  densi ty  funct ion of the sea 
state whe re  this wave  will occur  is given by (7.40) with x = 15 m. This probabi l i ty  
densi ty  funct ion is p lo t ted  in fig. 7.13 and proves  to be na r row  with the p e a k  at 
h = 7.2 m. This value  will be d e n o t e d  by the symbol  H, (L): 

H, (L) - significant wave  height  of the sea state in which the highest  wave  in the 
l ifet ime of the s t ruc ture  will occur  with the highest  probabi l i ty .  

In the case u n d e r  examina t ion ,  the m a x i m u m  wave height  of 15 m, with the 
highest  probabi l i ty ,  will occur  in a sea state with an H, of 7.2 m. Thus  the highest  
wave  in the 50 years  l ifet ime will be not  only a very  high wave  for the given location,  
bu t  also an except iona l ly  high wave for the very  sea state whe re  it will occur. 
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p(n, =h ;Hm~=lSrn) 

I h [ m ]  
I I I I I I I I 

0 5 7.2 10 

Fig. 7.13 Ponza: p.d.f, of the H, of the sea state where the maximum wave height in fifty years 
will occur. (Obtained by means of 7.40 for the maximum wave height of 15 m.) 

Very well! Indeed, if the wave is exceptionally high for its own sea state, we can 
use the quasi-determinism theory, and hence we can foresee that it will have a very 
precise period. Specifically, we saw in sect. 5.7.2 that a very high wave has a period 
of 0.92 Tp, if the spectrum is the mean JONSWAP.  As to Tp we can use the formula 
(4.26), or lacking information on Phillips' parameter  A, we can use the formula 
(4.27). Therefore in our case we have 

~/ 7.2 = 11.4s Tp - 8.5 7r 4-9 .8  

and consequently the period of the highest wave, which we will call T (L), is 

T (L) = 0.92.11.4 = 10.5 s. 

The conclusion is: 

Ponza: w = 0.874m, u = 1.200 
:=~ 

design specifications: L = 50years,  5~ = 0.1 

f h e i g h t -  15.0m, 
design wave 

period - 10.5 s. 

Let us note, at the end, that the advantages of being able to use the quasi- 
determinism theory are not confined to the wave period estimate. Indeed we shall see 
in chapter  10 that a wave which is exceptionally high with respect to its own sea state, 
with a very high probability, is the central one of a well defined three-dimensional  
group at the apex of its development  stage. The quasi-determinism theory provides 
the velocity potential  of this group, from which one can draw the flow field and hence 
the wave forces on structures. Naturally, at a first degree of approximation,  the flow 
field and wave forces can be evaluated even by means of the periodic wave theory. 
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7.9 Calculations for different wave directions 

7.9.1 Calculation criteria 

There  are some offshore structures which put  up practically the same resistance 
to waves whatever  the wave direction. Then,  there are a few offshore structures and 
most  coastal structures,  which put  up a different resistance to differently inclined 
waves. For  this second family of structures we have to calculate h (R; 0~ < 0 < 02) 
and H(L;O1 < 0 < 02), where the symbols have an apparen t  meaning: only the 
waves whose direction is within a given sector are considered.  

In the various areas there is usually a main sector for which the probabil i ty of 
exceedance P(H, > h; 01 < 0 < 02) proves to be nearly equal  to P(H, > h), at least 
for large values of h. That  is to say 

main sector: P(H, > h; 01 < 0 < 02) ~ P(Hs > h). (7.41) 

It suffices only to read table 6.2 to see that  at each location there is a sector whose 
w~ is very close, somet imes  even equal, to w. Recall  that  P(Hs > h; 0~ < 0 < 02) 
approaches  the asymptot ic  form (6.11) as h grows, and this asymptotic  form 
coincides with P(Hs > h) if w~ - w. 

As a consequence of (7.41), we have 

main sector ~ h (R; 01 < 0 < 02) ,-,,v h (R), 

[ H (L; 01 < 0 < 02) - H (L),  

whereas  
other  sectors ~ h (R; 01 < 0 < 02) < h (R), 

{ H (L; 01 < 0 < < H (L). 

X 
Y 

OUTPUT: h(R;01<O< 02)" INPUT: h(R) 

Fig. 7.14 Enter with the significant wave height of given return period, follow the marked path 
and obtain the significant wave height for the specific direction of wave advance you are 
interested in. 
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A pract ical  way to eva lua te  the wave  height  for a given sector  of the  wave  
di rec t ion  is the  following. W e  first c o m p u t e  the wave  height  regard less  of the  
wave  direct ion,  tha t  is h(R) and/or  H(L) and Hs(L). Then ,  f rom h(R) we get 
h(R;01 < 0 < 02) fol lowing the flow of fig. 7.14. Similarly,  f rom Hs(L) we get 
H~ (L; 01 < 0 < 02). Finally,  as to H(L; 01 < 0 < 02) we assume 

H (Z; 01 < 0 < 02) H (Z) 
= . (7.42) 

/-/s (L; < 0 < /-/s (L) 

In this m a n n e r ,  the  du ra t i on  of the design sea s ta te  for a given sec tor  of the  
wave  d i rec t ion  p roves  to be the same  as the du ra t ion  of the  des ign sea s ta te  
r ega rd less  of the  wave  direct ion.  The  p roo f  of this s t a t e m e n t  is left as an exercise.  
[Hint: no te  tha t  equa t i on  (7.18) has a gene ra l  validity,  and t ake  accoun t  of the  flow 
of fig. 7.14.] 

7 .9 .2  Worked example 

For  Ponza  (w = 0.874 m, u = 1.200), with the design specifications:  L - 50 years ,  
3 = 0.1, which imply  R = 475 years ,  we have  ob ta ined  

h(R) = 7.90 m, ~ = 6.6 hours ,  

H(L) = 15.0 m, H~(L) = 7.20 m, T(L) = 10.5 s. 

H e r e  we comple t e  the pic ture  with the wave  es t imate  for the sectors  

E A S T :  90 ° - 11.25 ° < 0 < 90 ° + 11.25 °, 

N O R T H :  - 1 1 . 2 5  ° < 0 < +11.25 °. 

(We  m e a n  the waves  which advance  eas twards  and the waves  which advance  

no r thwards . )  In table  6.2 we read  

E A S T :  w, - 0.865 m, w 9 - 0.754 m,  

N O R T H :  % - 0.639 m,  w 9 - 0.609 m.  

The  east  sector  is the  ma in  one,  i ndeed  it has a w~ of 0.865 m which is very  close 
to the w of 0.874 m of the p robab i l i ty  P(Hs > h). As a l ready  s ta ted,  for the  ma in  
sec tor  we use the same  wave  heights  ob ta ined  regardless  of the  wave  direct ion.  In 
doing so, we ove re s t ima te  the wave  heights  of the ma in  sector  slightly; in this case, 

the  rise be ing  abou t  1%. 
The  ca lcula t ion  mus t  be done  for the  nor th  sector  whose  w~ is m a r k e d l y  smal ler  

t han  w. 
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The probability of exceedance for this sector, which is 

E( h P (H, > h; N O R T H )  - exp - 0.639 
h )~200] expE (0~09 ~'2°° 1 with h in metres, 

is shown in fig. 7.15 together with the probability of exceedance for all wave 
directions: 

~~s ~ h~ ex~[ ( ~ ) ~~°° ; - with h in metres. 
0.874 

[As usual the graphs of the probabilities have been given in coordinates (X,Y) 
defined by (6.3).] 

We enter with the value of h (R) obtained regardless of the wave direction, that is 
h (R) = 7.90m. For the relation (6.3) between X and h, we have 

h (R) = 7.90m ~ X = 298.3. 

In the probability of exceedance for all wave directions, X -  298.3 is associated 
with Y - 264.2 and this value of Y is associated with X - 263.4 in the probability of 
exceedance for the north sector. Hence, using once again the relation (6.3) between 
X and h, we obtain 

X - -  263.4 ~ h (R; NORTH)  = 5.57 m. 

150 

100 

5O 

0 50 100 150 200 ~ [ 2 ~  350 

Fig. 7.15 The worked example of sect. 7.9.2. 
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The same procedure must be followed to get Hs (L; NORTH)  from H,(L), the 
result being H, (L; NORTH)  = 5.03 m. Then the periods Tp and Th of a sea state 
with an/4,  of 5.03 m can be evaluated by means of (4.27) and (5.42), and prove to be 
Tp = 9.6s, Th = 8.8s. Finally, the maximum height of a wave which advances 
northwards in the lifetime of the structure is obtained by means of (7.42) and proves 
to be 10.5 m. Thus, the picture is 

h (R; NORTH)  = 5.57 m, 2 = 6.6 hours, 
H (L; N O R T H )  - 10.5 m, Hs (L; NORTH)  = 5.03 m, T (L; N O R T H )  = 8.8 s. 

In other words, the design sea state whose dominant wave direction is within the 
north sector has a significant wave height of 5.57 m and a duration of 6.6 hours. 
Moreover  the design wave for this sector has a height of 10.5 m, a period of 8.8 s 
and the maximum probability is that it occurs in a sea state with a significant wave 
height of nearly 5 m. These results are used when dealing with the design of 
structures whose resistance depends on the wave direction (for example resistance 
to the waves which advance northwards being different from the resistance to the 
waves which advance eastwards). Naturally, as was said in the foregoing sections, 
the design sea state will be used for coastal structures, while the design wave will be 
used for offshore structures. 

7.10 Corollary of risk analysis: a general relation between the confidence 
interval and the sampling rate 

7.10.1 The terms of the problem 

In sect. 6.2.4 we have shown that the classic confidence interval (based on the 
assumption of stochastic independence of the outcomes of a random variable) 
serves only as a first approximation to the actual confidence interval of P(H~ > h). 
This is because the outcomes of/4, obtained typically with a sampling rate of 1/3 per 
hour or of i per hour are not stochastically independent of one another. In sect. 
6.2.4 we have also inferred that the actual confidence interval should be wider and 
should be located leftward with respect to the classic confidence interval. How 
much wider, and how much leftward? Now we are able to give some answers to 
these questions. 

The starting point of the reasoning is as follows. Let us imagine we know the 
P (Hs > h) of a location and we take N measurements of/4, with a sampling interval 
~tsamp at this location. We aim to determine the probability that the largest 
measured H~ exceeds a fixed threshold h. 

7.10.2 A general inequality for the confidence interval 

Definitions 
OI - observation interval, the length of which is N .  Atsamp; 
P(Hsmax > h; N, A/samp ) ~ probability that the largest measured Hs in an OI exceeds h. 
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In addition to these definitions, we shall use the definition of P(H= > h) given in 
sect. 6.1.3 and the definition of 3 ( L , R )  given in sect. 7.3.1. 

First inequality for the probability of exceedance of the largest measured H, 
The general inequality 

P(H=max > h; N, Atsamp) ~ ~ [U. A/samp, R(Hs > h)] (7.43) 

proceeds from the following reasoning. The probability that the largest 
measured Hs in an OI exceeds h [1.h.s. of (7.43)] is smaller than (or equal to) 
the probability that H, exceeds h during this OI, which in its turn is equal to the 
probability that at least one sea storm with H= exceeding h occurs during this OI 
[r.h.s. of (7.43)]. 

Inequality (7.43) and inequality (7.27) of the encounter probability yield 

P(Hsmax > h; N, A/samp ) ~ N .  Atsamp . (7.44) 
R(H, > h) 

Second inequality for the probability of exceedance of the largest measured H, 
Let us consider a very large number .~" of realizations of the stationary random 

process H,(t). Let us fix an OI, and let us consider the ith reading time in this OI. 
The number of realizations in which H= on this reading time is greater than the fixed 
threshold h will be equal to P (H= > h)~/fJ'. The same is true of the N reading times 
belonging to the OI. Therefore, the total number of reading times where H= exceeds 
h will be equal to P(H, > h)J~ ..... • N. 

The number of realizations in which the largest measured Hs in the OI exceeds h 
is smaller than or equal to the total number of reading times where/4= exceeds h. 
Hence, the following inequality: 

P(Hsmax > h; N, /~tsamp ) P(H= > h)Jt/'. N 
= P(Hs > h)N 

which taken together with (7.44) yields 

N .  Atsamp ) 
P (Hsmax) h; N, Atsamp) ~ Min R-~H~ > ~ ) ,  P(H, > h)N , (7.45) 

where Min (a, b) stands for "the smaller of a or b". 

Consequence: inequality for the limits of the confidence interval 
Let hp denote the threshold that has a given probability 1 - p  to be exceeded by 

the largest measured H= in the OI (we have already used this symbol in sect. 6.2.4 
when we dealt with the classic confidence interval). The knowledge of hp enables us 
to obtain the confidence interval. As an example the 90% confidence interval has 
h0.05 as lower limit and h0.95 as upper limit, as we saw in sect. 6.2.4. 
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In symbols, hp is defined by 

P(Hsmax > hp; N, Atsamp) -- 1 -  p .  

From this definition and inequality (7.45), it follows that 

with h* such that P 

4, 
hp ( hp (7.46) 

I N .  P(Hs > hp)N] p. 
] 

Atsamp 
Min . . . .  77, , * - 1 - 

R(Hs > h,,) J 
(7.47) 

The 1.h.s. of (7.47) is a monotonic decreasing function of h'p, so that the hp* 
satisfying (7.47) can be easily evaluated. Hence we have got an upper  bound for hp. 

Let us retake the example of sect. 6.2.4. The locality was Mazara del Vallo in the 
Straits of Sicily. From tables 6.2 and 6.3 we obtain for this locality: 

w = 1.021 m, u = 1.275, al0 ---- 3.6 m, bl0 = 73 hours, 

( b (a) - 1.12b10 exp -0 .115  a) 
al0 

from which we can evaluate P(H, > h) by means of (6.2) and R(Hs > h) by means of 
(7.12). The number  N of sampled values of H, was 14650 and /~tsamp was of 3 hours. 

From (7.47) we obtain 

h0.05 - 5.75 m ,  h0.95 - 7.32 m, (/~tsamp 3 hours) 

Hence  the values 

h0.05 = 5.47 m, h0.95 = 7.43 m, (stochastic independence) ,  (7.48) 

which were obtained in sect. 6.2.4 under  the classic assumption of stochastic 
independence of the outcomes of Hs, nearly satisfy the general  condition (7.46) (h0.05 
satisfies this condition, and h0.95 is not far from satisfying it). 

Now, let us reduce A/samp from 3 hours to 1 hour, under  the same number  N of 
sampled values of H, and for the same locality. From (7.47) we obtain 

h0.05- 5.11 m, h 0 . 9 5 -  6.75 m, (/~tsamp- 1 hour), 

and hence the limits (7.48) of the classic confidence interval do not satisfy the 
general  condition (7.46). This means that, with a/~tsamp of i hour, we cannot use the 
classic confidence interval based on the assumption of stochastic independence of 
the outcomes of Hs. Indeed it is certain that the confidence interval will be located 
leftward with respect to the classic confidence interval. 

To check (7.46-47) reason as follows. If hp satisfies (7.47), then P(Hsmax > h~; N, ,/~tsamp ) is 
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smaller than (or equal to) 1 - p  because of (7.45). Hence, the hp making P(Hsmax > hp; 
N, Atsamp) equal to 1 - p  must be smaller than (or equal to) hp. 

7.10.3 Effectiveness of  the general inequality for the confidence interval 

It can be p roved  tha t  the uppe r  limit of the conf idence  interval  is near ly  
coincident  with the hp given by (7.47). On  the cont rary ,  the lower  limit is strictly 
smal ler  than  the h* given by (7.47). In o ther  words,  (7.46) can be t aken  as an 

P 

equal i ty  for the uppe r  limit and as an inequal i ty  for the lower  limit of the 
conf idence  interval:  

upper  limit of the confidence interval: hp ~ hp, 

lower limit of the confidence interval: hp < hp. 

In this regard, the reader could verify that, for a small ( 1 - p )  (upper limit of the 
confidence interval) hp tends to coincide with hp both for small /Aktsamp for which (7.47) is 
reduced to 

N .  '/~/samp 
R(H, > h;) 

= 1 - p, (7.49) 

and for large Atsamp for which (7.47) is reduced to 

P(H, > h*p)N- 1 -  p, (7.50) 

Here below, an outline of the proof. 
For small A/samp , the 1.h.s. of (7.43) is nearly equal to the r.h.s. Hence a small value of 

1 - p  implies that the encounter probability is also small which in turn implies that the r.h.s. 
of (7.43) is nearly equal to the r.h.s, of (7.44). Indeed the encounter probability ~(L,R) 
proves to be nearly coincident with L/R for a small :~ (which can be verified using the 
general form (7.26) of :~(L,R) with a variety of distributions of the interarrival times). 
The conclusion is that (7.44) becomes an equality, and this equality and (7.49) imply that 
hp coincides with hp. 

For large Atsamp, the outcomes of/4, become stochastically independent of one another, 
and hence hp is given by 

1 -[1 -P(H, > hp)] u = 1 - p ,  (7.51) 

and, for small values of 1 - p ,  the hp given by (7.51) approaches the hp given by (7.50). 
To prove this last statement, multiply and divide by P(H, > hp) the exponent N on the 
1.h.s. of (7.51); bear in mind that P(H, > hp) approaches 0 as ( 1 - p )  approaches 0; use 
the limit 

lim (1 - x)~- - e -1 , 
x-+0 

and the equality e -X ~- 1 - x  for small x I. 
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Conclusive note 

The solution of sect. 7.3.2 for the encounter probability was introduced into the 
hydrological practice by Borgman (1963). The reasoning of sect. 7.3.3 leading to the 
general relation for the encounter probability was developed by the author (1983 
and 1986b). The solution for R*(H) (sect. 7.6.1) is due to Jasper (1956). The 
solutions of sects. 7.1 and 7.7-8 for R (Hs > h), R (H), and corollaries H(L) and 
Hs(L) were obtained by the author (1986a-b). The solution of sect. 7.2.1 for the 
significant wave height with a given return period and the proof of sect. 7.10 
yielding a general relation between the confidence interval and the sampling rate 
are novelties. Also the algorithm of sect. 7.9 is a new proposal. 

In common practice (cf. Tucker, 1989, and Massel, 1996) the following formula is 
used: 

R (Us > h) = Atsamp/e(ns > h), 

where mtsamp is the sampling interval of Hs. If P(H~ > h) is given by (6.2) it follows 
that 

h(R) - w[ln(e/Atsamp)] 1/u. 

R is obtained by means of (7.29b) from lifetime L and encounter probability ~ .  The 
design sea state has h(R) as significant wave height, and has a duration equal to 
Atsamp. The design wave height is the maximum expected wave height in this sea 
state. 

A limit of this approach lies in the subjective choice of Atsamp. Here, note that 
P(H~ > h) is independent of Atsamp which only affects the confidence intervals, as 
we have seen in sect. 7.10. Therefore R (Hs > h) proves to be proportional to the 
subjectively chosen Atsamp. 

Another  limit of the common approach is that the highest wave is assumed to 
necessarily occur during the most severe sea state. In order to overcome this second 
limit, Tucker (1989) essentially suggested to resort to R*(H) [obtain the return 
period from L and 5; ~, and compute the design wave height by means of (7.30) from 
this return period]. However, this approach proves to be conservative for the reason 
we have explained in sect. 7.6.2. 

For the same aim (overcoming the second limit) Krogstad (1985) had assumed 
that the time interval in which H~ is between h and h + dh during the lifetime was 
given by the deterministic product p (Hs = h)dh L, thus obtaining 

e[Hmax(g ) > H ] -  1 -  exp L 
o 

1 
p (/-/s - h) T (h )  ln[1 - P(H; Hs - h)]dh}. 

[The reasoning is essentially the same that leads to (6.26a) of the probability of 
exceedance of the maximum wave height in a storm of given history.] This approach 
becomes exact in the limit as L ~ oc, while for some finite L, it proves to be 
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conservative" the more,  the smaller L is. The reason is that the time durat ion in 
which H~ is between h and h + dh during the lifetime is a random variable, and 
p (H~ - h )dhL  is only the mean value of this random variable. 

The solutions given in this chapter  remove the above ment ioned limits, in that 
they are closed solutions under  one assumption: the existence of the equivalent 
triangular storm with the main property described in sect. 6.6.2. This property,  
which can be easily checked, has been found to hold for all storm histories we have 
examined (both from the Medi te r ranean  Sea and from the Oceans).  

The concept of equivalent triangular storm yields also the formal relation, of 
general  validity, be tween D(h) and P(H~ > h). [In particular, if P(H~ > h) is given 
by (6.2), D(h) takes on the form (7.19).] Until now, the statistics of the duration 
given intensity has been dealt with empirically. In particular Graham (1982) and 
Sobey and Orloff (1999) have published some detailed studies for several areas. 
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Chapter 8 
ANALYSIS OF THE SEA STATES IN THE SPACE-TIME 

8.1 The concept of homogeneous wave field 

Starting from Sverdrup and Munk (1947) and Bretschneider (1952), a few basic 
ideas were developed about  the wave generat ion by wind. Here we resort to these 
ideas to introduce the concept of homogeneous wave field. 

First idea. Let us imagine that a wind starts blowing with a speed u on an initially 
calm basin, and that the wind speed and direction are reasonably constant. Let us 
fix a number  of cross-sections along an axis parallel to the wind velocity (see fig. 
8.1a). The significant wave height as a function of time at these cross-sections will 

(a) wind 

I I I I 
(b) 

/ 
tl t2 t3 t4 

Fig. 8.1 (a) Four fetches. (b) Time histories of H, at the ends of the four fetches under the action 
of a steady wind. 
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be as in fig. 8.lb. For a time interval (0, tl) Hs will grow at the same way at all cross- 
sections. From an instant tl, H~ will no longer grow at @, while it will keep on 
growing in the same way at all other cross-sections. From an instant t2, Hs will cease 
growing also at @, while it will keep on in the same way at downdrift cross-sections, 
and so on. 

Second idea. The value of Hs of the steady condition, that is Hsl at @, Ms2 at @, 
and so on, depends on the fetch 9 / a n d  on the wind speed u through a relation of 
the kind 

gHs 

A similar relation proceeds also from the JONSWAP spectrum, or more exactly, 
from the set of results of the JONSWAP project (Hasselmann et al., 1973). Indeed 
the researchers of this project suggested the formulae 

A - 0 . 0 7 6  ( g ~ f )  -°'22 , 

~pu = 27r 3.5 (8.1) 
g 

which, taken with the relation (4.25) between m0 and aJp, yield 

u2 = 1.26.10 -3 (8.2) 

We shall use (8.2) to evaluate how Hs varies along y .  To this end, we define 

dHs 
A - 1 0 0  d~@" Lpo 

H, 

This gives the per cent variation of Hs in one dominant wavelength along the wind 
direction. A can be rewritten in the equivalent form 

d \ u2 gLpo / gHs 
A - 100 u-----5-- /,/2 

d ( g ~ 2 )  

where the formula for the derivative of gHs//U 2 with respect to g~"/l,t 2 proceeds 
from (8.2), and the formula for gLpo/U 2 proceeds from (8.1), with the result that A is 
related to g~ ' /u  2 by the equation 

A - 0.715 \ u2 j . (8.3) 
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Let us consider a case of practical interest, a fetch of 300 km with a wind of 100 
km/hour. We have 

= 3 8 o o  
1,12 

that together with (8.3) yields 

A - 0.04. 

That is an /4, which varies 0.04% in a space of Lpo. Clearly this is the largest 
variation, the one along the wave direction. 

Thus we realize that in the open sea, an area with sides of ten wavelengths can be 
very well regarded as a homogeneous wave field, that is a field where the variations 
of H, from one point to another are negligible. 

8.2 The  wave  field in the o pen  sea 

8.2.1 Basic assumpt ions  and expressions o f  r] and 0 

According to the theory of the sea states, a steady and homogeneous wave field 
is thought of as the sum of a very large number N of small periodic waves, with 
frequencies,  directions and phases general ly different from one another .  
Accordingly, the mathematical form to the first order in a Stokes' expansion is 

N 

rl(x, y, t) - Z aicos(kix sinOi -1- kiy c o s 0 i -  a3it -1- ~i), (8.4a) 
i=1 

N 

O (x, y, z, t) -- g Z aiaJi 
i=1 

_~ cosh [ki (d + z)] sin (kixsinOi + kiy cos0i - coit + Gi) , 
cosh (ki d) 

(8.4b) 

where the relation between the wave number ki and the angular frequency O.) i is 

0.12 
kitanh(kid) - i 

g 

The ith term of the sum (8.4a) gives the surface displacement (and the ith term of 
the sum 8.4b gives the velocity potential) of a periodic wave of amplitude ai, 
frequency c0i and phase ci, whose direction of advance makes an angle 0i with the 
y-axis. From sect. 1.10 we know that the ith term of the sum (8.4a) and the ith term 
of the sum (8.4b) satisfy the system of the linear flow equations in the homogeneous 
form, that is with f ( t ) =  0. It follows that the sum (8.4a) and the sum (8.4b) also 
satisfy the same system of linear equations in the homogeneous form. Naturally, in 



252 Chapter 8 

order to satisfy the system of linear equations with f (t) generally different from 
zero, it suffices to add to (8.4b) the term 

i t  1 f ( t ' ) d t '  
P o 

which does not modify the particle velocity nor the pressure fluctuation. 
The theory of the sea states, as stated in sect. 4.2, requires that 

(i) N tends to infinity; 
(ii) ci are distributed uniformly on the circle and are stochastically 

independent of one another; 
(iii) a~i are different from one another; 
(iv) ai are all of the same order. 

8.2.2 r / a n d  ~ are stat ionary Gaussian processes  

The surface displacement at any fixed point x, y is given by 
N 

f](t) -- Z ai COS (03it 31- Ci),  ( 8 . 5 )  
i=1 

where gi - -  - - ( e i  + kix sin0i q- kiy COS0i) . (8.6) 

The gi, like the ei, are distributed uniformly on the circle and are stochastically 
independent of one another, so that (8.5) represents a stationary Gaussian process 
(the proof was given in sect. 5.1). 

The velocity potential at any fixed point x, y, z is given by 

N 

oh(t) - - ~ { t i s i n ( w i t  4- ~i), (8.7) 
i=1 

where 
-1 cosh [ki (d + z)] 

Cli - -  gaicdi cosh (kid) 

The fact that the ai are of the same order implies that also the hi are of the same 
order, and hence (8.7) represents again a stationary Gaussian process. 

8.2.3 The pressure  head waves beneath the water surface 

The fluctuating pressure head proceeds from the velocity potential (8.4b) 
through the Bernoulli equation. The result is 

U cosh [ki (d + z)] 
~lph (X, y , z , t )  -- Z ai 

/=1 cosh(kid) 
COS (ki X s i n  0 i + ki y c o s  0 i - 0.) i t _Af_ ~i) .  
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At  any fixed point  x, y, z (we mean  a point  that  remains  always benea th  the water  
surface),  rbh is a r a n d o m  function given by 

N 
Tip h ( l )  - -  Z hi COS(0)//.3f_ ~i),  (8 .8 )  

i=1 

where  gi has been  a l ready defined by (8.6), and 

cosh [ki (d + z)] (8.9) 
hi - -  ai 

cosh(kid) 

From the point of view of mathematics, (8.8) represents a new stationary Gaussian 
process, which can be verified by reasoning as we have done in sect. 8.2.2. 

The spectrum of r/ph (t) is defined by the equation 

Z 1  for i such that co < CO i < CO _ql_ 80,3 E ((.x); z) ~(.,u --  T h2i 
i 

which is rewritten in the form 

cosh 2 [k(d + z)] 1 
E (w; z)Sw cosh 2 (kd) Z - ~  a~ f o r / s u c h  that  w < wi < w + 8w, (8.10) 

1 

because  of the relat ion (8.9). The  summat ion  on the r.h.s, of (8.10) is equal  to 
E (w) 8w, and consequent ly  

E(a3; Z) -- c°sh2 [k(d + z)] E(w).  (8.11) 
cosh 2 (kd) 

1 . . . . . .  

o 1 2 

0 1 2 

o 

1 

o 
o 

c e  w a v e s  

1 2 

/~ pressure head waves 
o = - 0 . 1  

, J ~ ~ :=~/~. 

Fig. 8.2 Normalized autocovariance and spectrum of the surface waves and of the pressure head 
waves at a depth of Lp0/10 beneath the mean water level, on deep water. (Obtained by means of 
8.11.) 
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Fig. 8.2 shows the spectrum of the surface waves and the spectrum of the 
pressure head waves at a certain depth beneath  the mean water  level (equation 
8.11). We see that the peak of E(aJ; z) occurs at a frequency slightly smaller than COp. 
Moreover ,  we see that the spectrum beneath  the water surface shrinks, because it 
sheds its high frequency tail. Both these phenomena  are due to the fact that the 
small wave components  undergo an at tenuat ion with depth, which is the larger the 
greater  is frequency. 

8.3 T h e  d i r e c t i o n a l  s p e c t r u m  

8.3.1 Defini t ion and characteristic f o rm s  

The amplitudes, frequencies and directions of the small wave components  give 
rise to a directional spectrum: 

1 
S (co, 0)8co 80 - Z - 2 -  a~ for i such that co < COi < co + ~co and 0 < 0 i < 0 Jr- ~O. (8.12) 

i 

In words: the product  2S (co, 0) 8co 80 represents the sum of the square amplitudes of 
the small wave components  whose frequencies wi and angles 0/ fall in the small 
rectangle (co, co + 8co; 0, 0 + 80) [see fig. 8.3]. The definitions (8.12) of S (co, 0) and 
(4.2) of E(w) yield 

E (co) - S (co, O) dO. (8.13) 
0 

The directional spectrum is generally given in the form 

S (w, 0) - E (w)D (0; w), (8.14) 

2~ 

0+B0-- 

0-'1 

1 

t 

-Sat- 

0 ~o ~o+8~ frequency 

Fig. 8.3 Definition of directional spectrum: the product S (co, 0)8co 80 is equal to the partial sum 

1 a 2 for i such that coi and 0i belong to the small rectangle. 27, 
i 
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where D(0;~) is the directional spreading function. Clearly, the relation (8.13) 
between E (~) and S (~, 0) implies 

j 2~ D (0; c~)dO - 1. (8 .15)  
o 

The directional spreading function of the wind waves on deep water has a typical 
shape that usually is fitted by the cosine-power function 

D(O; a J ) - K ( n ) c o s 2 n [ 2 ( O - - O ) ] w i t h n - n ( c o ) ,  (8.16) 

where K (n) is the normalizing factor 

g ( n )  -- c o s 2 n - - O d O  (8.17) 
2 

being necessary to comply with (8.15). 0 is the angle the dominant wave direction 
makes with the y-axis. As to the parameter n, it generally depends on frequency oJ 
and this is why we have written D (0; o3). Typically, n takes on its largest value at the 
peak frequency %, and consequently the minimum directional spread is associated 
with this frequency. Mitsuyasu et al. (1975) suggest 

-- np (c~/%) 5 if oJ < %, 
n - (8.18) 

- i f  > 

np- -7"5"10-3 \  u2 j 

= / ~  / n  =20 

_~ 0 _~ 
2 2 

Fig. 8.4 The cosine power (COS 2n) directional spreading function. 

(0-0) 
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The graph of function (8.16) is a "bell-shaped" curve where the sharper the peak, 
the larger is n[see fig. 8.4]. One more remark: n is a real number,  as we can infer 

from (8.18), and the cosine of i (0 - 0) may be negative, so that cos 2" is unders tood 
2 

to be the nth power  of the square cosine. Of course a more appropriate  form is 

1 (0 - 0)] cos I2- 
2n 

8.3.2 The nondimensional  directional spectrum 

It is convenient  to resort to the nondimensional  directional spectrum 

Y ( w ,  O) - S(wcop, O)/(Ag2co~ 5 ). (8.19) 

With the J O N S W A P  spectrum and the directional spreading function of Mitsuyasu 
et al. (1975), we have 

~ (w, O) - ~(w) K (n)cos2n [2  (O - -O)l , (8.20) 

where g~ (w) is the nondimensional  frequency spectrum defined by (4.24), and 

-- npW 5 if w < 1 
n - ' (8.21) 

- -  glpW -2"5 if W > 1. 

Thus the nond imens iona l  direct ional  spec t rum 5P(w, 0) depends  on three  
parameters:  X1 and ~2 Of  the J O N S W A P  spectrum and rip of the directional 
spreading function. For the illustrations henceforth we shall take the following 
characteristic values 

X1 = 3, ~)(~2 = 0.08, np = 20. 

8.3.3 A typical double integral concerning the directional spectrum 

Dealing with the mathematical  analysis of a sea state we have to evaluate 

typical integral - f (kX, kY,  kz, coT, 0) S (co, 0) dO dco, (8.22) 
0 0 

where f is some function depending on the special problem, and X, Y, z, T are 
space-time variables. Replacement  of co with w -  co/COp and use of the nondimen- 
sional wave number  

k (8.23) 
~ / ( w ) -  2rc/Lpo 

prove to be very helpful for this job. 
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F r o m  the definition (8.23) and the linear dispersion rule (1.23), we obtain 

[ / ( w ) t a n h  27r~ (w)-T--- 

so that  ~ (w) is equal  to the x for which the function 

f (x) - x tanh 7r Lpo 

is equal  to W2. This function is increasing, so that the abscissa associated with a 
given value of the ordinate  is easily obta ined numerically. 

Using (8.19) and (8.23) we rewrite (8.22) in the form 

-4 f 27r~. X Y typical integral - Ag 2 C~p (w) ,27r / (w)  ,27rZ .~ (w) z 
o o Lpo Lpo Lpo 

27r w ~ ,  O .~/ (w, O) dO dw. 
' Tp 

8.4 Shoaling and refraction of the wind-generated waves 

8.4.1 S u p p l e m e n t a r y  notes on the refraction o f  a per iod ic  wave 

Area  @ of fig. 8.5 is on deep water,  area @ is on shallow water.  The contour  lines 
are parallel  to the x-axis. The bo t tom slope is small, such that the water  in area @ is 
assumed to have a nearly constant  depth d. 

Area (~): depth d 
D Z 

Area@: deep water 

Fig. 8.5 In area @ the waves are given by (8.25) and in area @ by (8.26). The relation between the 
wave heights in the two areas is known [see chap. 2]. The problem of the relative phase of two 
fixed points, one of area @ and one of area @, is unsolved at this time. 
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If in area @ we have 

~7 (x, y, t) - a0 cos g 

then in area @ we have 

~2 o) x sin 00 + ~ y cos 00 - a~t + e 

r/(x, y, t) = a cos (kx sinO + ky cosO- cot + e), 

where k satisfies the linear dispersion rule (1.23), and 

-ao( sinh(2kd) 

tanh (kd) [sinh (2kd) + 2kd] 

1 - sinZO/tanh2(kd) 
1 - s i n 2 0  

(8.25) 

(8.26) 

(8.27a) 

sin0 = sin00 tanh (kd), (8.27b) 

cos0 cos00 > 0. (8.27c) 

Equat ion (8.27a) is simply an alternative form of (2.45). Inequality (8.27c) is the 
mathematical  way to say: if the wave advances landward on deep water, then it 
advances landward also on shallow water. Equation (8.27b) and inequality (8.27c) 
imply that 0 and 00 belong to the same quadrant, and they also imply that 

From (8.27b) we get 

and hence: 

[sin 01 < tanh (kd). (8.28) 

0 0 - a r c s i n [  sin0 ] (8.29) 
tanh (kd) ' 

dOo IcosOl/tanh (kd) dO. (8.30) 
v/1 - sin20/tanh2(kd) 

This last relation shows how does the angle vary on deep water because of a 
variation dO of the angle on water depth d. This relation will be used shortly. 

Let us now complete the analysis of (8.25-26), noting that e is linked to e0 in a not 
easy way. We have 

c = e0 nt-/kg, 

where Ae depends on angle 00, on frequency a~ and on how the water depth 
changes from area @ to area @. For getting Ae we should be able to solve the 
problem: what is the phase angle between two fixed points P0 and P1, one in area 
@ and the other in area @? This problem is very difficult because the known 
expression of the propagation speed c, being exact on a constant depth, leads to 
an error for a sloping bottom; and this error should have some nonnegligible 
effects on Ae, even in the limit for the bot tom slope approaching zero (given 
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that, in this limit, the distance between P0 and P~ tends to infinity). But luckily, 
the solution to the Ae problem is useless for our goals. Indeed,  it suffices to 
know that e is equal to e0 plus some terms depending on angle 00, frequency c~ 
and function d(y). 

8.4.2 The step f r o m  periodic  waves to wind-generated waves 

A sea state is the sum of a very large number  N of small wave components with 
frequencies, directions and phases generally different from one another. Therefore 
the sea state is given by 

N (_~  (.z)2 i) 
Z i rl(x, y, t) - ao i  cos x sinOoz + - ~  y c O S O o z  - -  co i l  -I- Co in area @, 
/=1 

N 
rl(x, y, t ) -- Z ai cos(ki x sinOi + kiy cosOi - ccit + ei) in area @, 

/=l 

where the amplitudes a i are related to the amplitudes a0i by (8.27a), and the angles 
0z are related to the angles 00z by (8.27b-c). 

If the small wave components in area @ satisfy the four assumptions (i)-(iv) of 
sect. 8.2.1, then also the small wave components in area @ do satisfy these 
assumptions. Specifically, since e i is equal to e0i plus a term independent  of e0i, the 
e i are uniformly distributed over the circle and are stochastically independent  of 
one another like the c0i. Therefore r/(t) at any fixed point x, y represents a 
stationary Gaussian process. 

8.4.3 The relation between the directional spectrum on a given water depth 
and the directional spectrum on deep water 

From (8.27a), (8.28), (8.29), and (8.30), the following relation proceeds between 
the directional spectrum S (co, 0) on a water depth d and the deep water spectrum 
So (~, 0): 

_ sinh (2kd) 

S (a~, 0) tanh 2 (kd)[sinh (2kd) + 2kd] 

- 0 otherwise. 

arcsin[ sinO 
' tanh(kd) 

(8.31) 

In using this relation, bear in mind that angles 

0 and arcsin 

belong to the same quadrant.  

sinO ] 

tanh (kd) 
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If So is the JONSWAP-Mitsuyasu spectrum, the directional spectrum S on water 
depth d becomes 

sinh (2kd) ~-s [ 
= tanh 2 (kd)~h--~d) + 2kd] Ag2 exp 

f I- (~-~.)~ } 
S(~,O) -exp/lnXlexPk- ~ -  K(.). 

• c°s2"[2 [ 1  arcsin [tanhkdJ [ sin0 .1 - -S-0°} if [sin0 I 

- 0 otherwise, 

- 

< tanh (kd), 
(8.32) 

m 

where 00 denotes the dominant direction on deep water. [Strictly speaking, a~p 
should be replaced by COp0 that is the peak frequency on deep water. However the 
difference between c% (on the given water depth d) and a~p0, usually, proves to be 
very small so that it is convenient to reason as if the peak frequency does not change 
from deep to shallow water.] 

The nondimensional directional spectrum on water depth d proceeds from (8.32) 
and the definition (8.19): 

J (w ,O)  

sinh [47r/(w) ~p0 ] 

tanh2 [27r S (w)~p01 {sinh [47r/(w)~p0 ] + 47r~(W)~p0 } 

~ (w) K (,,). 

{1 i sin° 11 } • cos 2" ffarcsin - -  
tank (2 -7(w) ~p0) ~-00 

if JsinO] < tanh [27r~(w)~p01 , 

- 0 otherwise, (8.33) 

where {(w)is  given by (4.24), and ~ (w) by (8.24). 
We should use the form (8.20) of Y(w, 0) on deep water, and the form (8.33) on 

shallow water (provided that the contour lines are straight). In fact, in what follows 
we shall use (8.20) on both deep water and on shallow water. This is for appreciating 
the effects of the bottom depth, under the same directional spectrum. However, for 
the illustration of the shoaling-refraction effects we shall resort to (8.33). 

To check (8.31), use the two following equations: 

{ ~ 1  a2 for/suchthata~<coi<a~+Sco and 0 < 0 i < 0 + ~ 0 } =  s (~, o) ~ ~o - . - ~  
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_ { sinh(2kd) ~ 1  -sin20/tanh2(kd) 1 a 2 
tanh (kd)[sinh (2kd) + 2kd] 1 - sin20 ~ ~ 0~ for i such that co < a~ < co + 6~ and 

i 

[ sin0 I s i n 0  ]cosO/tanh(kd) } 
arcsin tanh (kd) < 00i < arcsin tanh(kd) + 80 if sin0] < tanh (kd) , 

~1 - sin20/tanh 2 (kd) 
= 0 otherwise, (8.34) 

1 a2oi So - 7 
i 

for i such that co < OJ i < (.U-3r- ~(.~) and 0 < Ooi < O-3r-~O. 

You obtain the rightmost equality (8.34), using the relation (8.27a) to replace ai with a0i. 
Then use equation (8.29) which relates the angle on deep water to the angle on water depth 
d. Finally, use (8.30) which gives the variation of the deep water angle for a given variation 
of the angle on water depth d. 1 a 2 

To achieve (8.31) you have to express the summation Z - ~ -  0i on the r.h.s, of (8.34) in 
terms of So, and clear the fractions. 

8.4.4 S h o a l i n g - r e f r a c t i o n  e f fec ts  o n  the w i n d  w a v e s  

The nondimensional  directional spectrum (8.33) can be used to get the shoaling- 
refraction curves for the wind waves. Indeed the quotient be tween the variance on 
some given water  depth d and the variance on deep water  is 

j ~  | 2 ~ . ~  dO dw for the 
f 

(w, 0) g i v e n - -  
(7 2 0 J o g po 

~7° ./~(w, 0)dO dw 
0 0 

a s - - - - - - +  Cx:3 

Lpo 

(s.35) 

Fig. 8.6 shows the shoaling-refraction curve, that is to say the square root of (8.35) 
as a function of d/Lpo,  for two different angles of the dominant  wave direction on 
deep water. 

We can get also the frequency spectrum on the given water  depth: 

E(wa~p) -- Ag2c~p 5 . ~ ( w ,  0)d0. 
o 

As an example, fig. 8.7 shows the spectrum on water  depth d = Lp0/10, for two 
different angles of the dominant  wave direction on deep water. 

From fig. 8.6 we see that the shoaling-refraction curve of the wind waves is very 
close to the corresponding curve of the periodic waves. Then, from fig. 8.7 we see 
that shoaling-refraction has only a small effect on the spectrum shape. The 
consequence is that the frequency spectrum on shallow water  can be taken as equal 

2 (this being as the deep water  spectrum multiplied by the constant factor cr2/cr0 
constant with respect to frequency co). 
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(a) 0o=0 

O' 
o0 \ 

wind waves 
periodic waves 

l d /L~,  d/Lo 
- ! I I , l I 

0 0 .1 .2 .3 .4 .5 

(b) ~o=45 ° 

0 
o0 

wind waves 
. . . . .  periodic waves 

d/L~, d/Lo 
i l [ ' 14 l . , 

0 0 .1 .2 .3 .5 

Fig. 8.6 Shoaling-refraction of the periodic waves and of the wind waves. 

Perhaps this will seem a disappointing picture, in the sense that, after rather hard 
work to get the directional spectrum on shallow water, we find the shoaling- 
refraction effects to be nearly obvious (fig. 8.6) or nearly negligible (fig. 8.7). 
Really, shoaling-refraction of the wind waves gets interesting essentially when one 
deals with the length of the wave crest. This face of shoaling-refraction will be 
illustrated in chap. 10, using the quasi-determinism theory and the nondimensional 
directional spectrum (8.33). 

Note that those of fig. 8.7 are normalized spectra, indeed each spectrum is related to its 
maximum value. Accordingly, the figure enables us to conclude the shallow water spectrum 
to be nearly equal to the deep water spectrum apart from a constant factor. That is it enables 
us to conclude, as we have done, that the shape of the shallow water spectrum is nearly equal 
to the shape of the deep water spectrum. 
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0o=45" " 
1 J I  v d/Lp ° > 1 
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Fig. 8.7 Normalized autocovariance and spectrum on shallow water and on deep water. Shallow 
water: continuous line. Deep water: dashed line. We see that the differences are very small. 

8.5 R e f l e c t i o n  o f  the  w i n d - g e n e r a t e d  w a v e s  

8.5.1 A big  d i f f e r e n c e  wi th  re spec t  to the p e r i o d i c  w a v e s  

The surface d isp lacement  ~l(x,y , t )  and the velocity potent ia l  ~ ( x , y , z , t )  of a 
per iodic  wave before  a vertical  reflecting wall are given by (1.57a-b). Hence  ~7 and 
of a sea state, which is the sum of a very large n u m b e r  N of small per iodic  waves,  
are given by 

N 

~7(x, y, t) - 2 E aicos(k ixs inOi  - cvit + c i )cos(k iycosOi) ,  (8.36a) 
i = 1  

N 

-1 c o s h [ k i ( d  -+- z)] s in (k i x s in  Oi - ~i t  + ei)cos(kgycosOi) .  
(x, y, z, t) - 2g E ai°3i cosh (kid) 

i=1  

(8.36b) 

In o ther  words: if we put  a vertical  reflecting wall in the plane y - 0, the r a n d o m  
wave field (8.4a-b) takes  on the form (8.36a-b). 
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Reasoning as usual, we can easily verify that both ~(t) and q$(t) at any fixed 
point are stationary Gaussian processes. But an important  novelty arises: these 
random processes are no longer homogeneous  in space. Indeed it is apparent  that 
the characteristics of ~(t) (as well as of q$ (t)) depend on the distance y from the wall. 
In particular the very variance of r/(t) depends on y, so that we shall denote it by the 
symbol cr 2 (y). 

From (8.36a) we have 
N N 

0 -2 (y) - 4 Z Z aiajcos(kiycosOi)cos(kjycosOj). 
i=1 j=l 

• < cos(kixsinOi- coit + ci)cos(ksxsinO s -cost + es) > 

that  reduces itself to 
N 

/~1 1 cr 2 (y) - 4 ~ a~cos 2 (kiycosOi), (8.37) 

since 0.) i ¢ (.@ if i ¢  j. The contribution to the summation (8.37) from the small 
components  with co < aJg < co + 8aJ and 0 < 0i < 0 + 80 is equal to 

and hence 

4S (co, 0) 6~ 60 cos 2 (kycosO), 

ioc 127r 
or2 (y) -- 4 S(~,O)cos2(kycosO)dOd~. 

0 0 

Finally, replacing the dimensional variable co with the nondimensional w, we arrive at 

Y ( w ,  0)cos 2 2TrY(w) y cos0 dO dw 
cr2(y) = o o Lpo . (8.38) 

°2(0) I~12~y  (w, O)dO dw 
o o 

Fig. 8.8 shows the function (8.38) for the basic condition of deep water and waves 
attacking the wall orthogonally (we mean that the dominant  direction of the 
incident waves is orthogonal  to the wall). For a comparison, the figure also shows 

cos  

of the periodic waves (for the same condition of wave attack orthogonal  to the 
wall). 

This time the difference between wind waves and periodic waves is really 
amazing! The variance of the periodic waves fluctuates between maxima equal to 
the maximum at the wall and minima equal to zero, and the fluctuations go on as far 
as an infinite distance from the wall. The variance of the wind generated waves is a 
damped  oscillatory function of the distance from the wall; and, at only one or two 
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a~(y) 
a~(o) 

0.5 

1 0=0 d/Lpo > -~ , 

/",, i-,, /,,, / 
[~i .......... _i.___x ....... ; , i ", ; 
[ i  ~ ] periodic waves [ / ! / ~ / 

, . . . . . . . .  i;i i ...... i i 

I I I 

0 0.5 1 lyl/Lp, iYl/L 2 

Fig. 8.8 Graph of 0-2 (y)/0-2 (0) [0 -2= variance of the surface displacement, y = distance from the 
wall]. Continuous line: wind waves. Dashed line: periodic waves. It is the basic case of deep water 
and orthogonal attack. 

wavelengths from the wall, it approaches a constant value being equal to half the 
value at the wall. 

The difference is so big that the person who found it could hardly believe it. 
Indeed one of the basic notions of the wave theory is that nodes and antinodes 
follow one another as far as an infinite distance from the wall. Now it emerged that 
the wind waves have a pseudo-node at a quarter  wavelength from the wall, a 
pseudo-antinode at a half-wavelength from the wall, and then nodes and antinodes 
disappear all together. 

The first reaction was that the formula (8.38) or the calculations are wrong! But 
it didn't  take long to realize that it was not so [the reader is invited to verify it 
himself, checking slowly the few steps from (8.36a) to (8.38), and evaluating 
numerically the two integrals, with the formulae (8.20) for Y ( w ,  0) and (8.24) for 
/ (w) ] .  Then the question arises, how is it possible that the sea waves differ so 
greatly from the periodic waves where reflection is concerned? 

The answer to this question came from the quasi-determinism theory. Hence, we 
shall give it in chap. 10. Here we conclude with two further remarks. 

Firstly, under the same spectrum, the pseudo-nodes and antinodes get more 
apparent  on shallow water (cf. fig. 8.9a with fig. 8.8). In particular, we see that the 
first local maximum of 0 -2 (y)/0-2 (0 ) ,  the one at a half-wavelength from the wall, on 
shallow water (d /Lpo = 0.1) is equal to 0.71, while on deep water it is equal to 0.64. 

Secondly, under the same water depth, the pseudo-nodes and antinodes get even 
less apparent  if the dominant  direction of the incident waves is not wall-orthogonal 
(cf. fig. 8.9b with fig. 8.8). In particular, we see that the first local maximum of 
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cr 2 (y)/cr 2 (0) after the wall, in the case of the oblique reflection (0 - 45 °) is equal  to 
0.53, whereas  in the case of the or thogonal  reflection it is equal  to 0.64. 

We shall see in chap. 10 that  even these second order  differences (that is the 
variat ions of the differences be tween  wind waves and periodic waves due to the 
water  depth or the angle of wave attack) find a clear explanat ion in the light of the 
quasi -determinism theory. 

8.5.2 D i f f r a c t i o n  c o e f f i c i e n t s  

The diffraction coefficient Cd of the waves interacting with some solid obstacle is 
defined as the ratio be tween  the root  mean  square surface displacement  at a given 

a'(y) 
a'(O) 

0.5 

(a) • d/L,0 = 1 ,  0=0 

................. .:__!, ........ , 1,,,,, / ,,,, 7 
~11 [ periodic waves [ ] ~ / \ / :'/ .............. ~Z': ....... /i /i / 

J J. t 

0 0.5 1 lyl/Lp, lYl/L 

(b)  • dlLpo > l , 0=45" 

', ......................... _,'._2, ," 
~", [ periodic waves i \ / "' 

.,<y) "/ ..................... 7 ..... ,, / 
a'(O) 

0.5 ~ 

~ d  waves / 

o 

/ 
/ 
I 

/ 
! 

/ 
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• / 
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0.5 1 lYl/LI,, lYl/L 

Fig. 8.9 Once again cr 2 (y)/cr 2 (0) for: (a) shallow water and orthogonal attack; (b) deep water and 
inclined attack. 
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point and the root mean square surface displacement of the incident waves (for the 
periodic waves, Cd coincides with the ratio between the wave height at the given 
point and the height of the incident waves, as we saw in chap. 1). In the case of the 
infinitely long wall we have 

Cd(y)  - 
cr (y) cr (y) cr (0) 

where cr is the root mean square surface displacement of the wave field (8.4a) that 
would be there without the wall. The quotient cr(0)/c~ is equal to 2 and hence we 
have the relation 

Ca (y) - 2 ~  
or(y) 

that enables us to deduce Cd from the function cr 2 (y)/o 2 (0) of figs. 8.8 and 8.9a-b.  
At the wall Cd is equal to 2, and starting from about one wavelength from the wall, 

where cr 2 (y)/cr 2 (0) takes on the constant value 1 it becomes equal 2 , / 1  - v ~  
2' V 2 

8.6 Diffraction of the wind-generated waves 

If we put a semi-infinite vertical wall in the plane y - 0, with the origin at x - 0, 
the wave field (8.4a-b) becomes 

N 

rl(r, fl, t) - ~ ai [F (r, fl; odi, Oi)cos(cdit Jr- ci) q- G(r,  fl; coi, Oi)sin(cdit q- c / ) ] ,  
i = 1  

N _ c o s h  [ki (d + z) ]  
O ( r, fl, z, t) -- g Z a i od i I [ G ( r, f l  ; (.z) i , O i ) c o s ( od i t -+- C i ) -@ 

i=, c o s h ( k i d )  

(8.39a) 

- F  (r, fl; :v~, 0,) sin (cv, t + c,)], (8.39b) 

where r and fl are the polar coordinates [see the definition sketch of fig. 1.17]. The 
ith terms of these two summations represent  the flow field due to an incident wave 
of amplitude az, frequency wi, phase c~, whose direction makes an angle Oi with the 
y-axis. The functions F (r,/3; a~, 0) and G (r,/3; co, 0) were defined in sect. 1.12.1. 

Here  too, it can be easily verified that both ~7(t) and 0(t),  at any fixed point, 
r ep resen t  some s ta t ionary  Gauss ian  processes.  Of course,  they are non- 
h o m o g e n e o u s  r andom processes,  and the var iance cr2(r, fl) of the surface 
displacement here can vary very much from one point to another,  and especially 
from a point before the wall to a point behind the wall. 

From (8.39a) we get 
N 

0 -2 (r, [4) - . ~ a~ [F 2 (r,/3; ~i, Oi) + G 2 (r,/3; Odi, Oi)], 
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which can be expressed in terms of the directional spectrum S (co, 0) of the incident 
waves: e ~ r 27r 

rr2(r,fl) -- / / S(c°, O)[F2(r, fl; c°, O) q- G2(r, fl;c°, O)] dO dco. 
3 o d o  

Hence, the diffraction coefficient, that is equal to the square root of the quotient 
cr 2 (r, fl)/cr 2 [or 2 being the variance of the incident waves], proves to be 

j ~  j e ~ y  (w, 0)[F e (r, fl; w, 0) + 6 2 (r, fl; w, 0)]d0 dw 

Ca(r, fl) - o o (8.40) 
ec 2rr 

J I Y(w,O)dOdw 
0 0 

where functions F and G have been expressed in terms of w rather than of 
because of the relation w - ~/~p. 

Figs. 8.10 and 8.11 show the diffraction coefficient as a function of the 
nondimensional coordinates x/Lp and y/Lp, respectively, for the orthogonal 

m 

reflection (0 - 0) and for a case of oblique reflection [0 - 45 °, J ( w ,  0) given by 
(8.20) for 10- 01 < 45 °, otherwise J ( w ,  0) - 0]. The two figures retain their validity 
for every depth (under the same spectrum). 

Figs. 8.10 and 8.11 should be compared respectively with fig. 1.19 and fig. 1.20. 
The comparison shows that 

(i) in the more sheltered area of the geometric shadow (that is, close to the 
wall and far from the wall's tip), the Cd of the wind waves is practically coincident 
with the Cd of the periodic waves; 

(ii) within the dark part of the geometric shadow [see figs. 8.10 and 8.11], the 
Cd of the wind waves is at least 50% greater than the Cd of the periodic waves; 

(iii) along the wave-beaten wall, the Cd of the wind waves takes on the 
constant value 2 at a short distance from the breakwater 's tip, while the Cd of the 
periodic waves shows an infinite sequence of local maxima greater than 2 and local 
minima smaller than 2. 

It is apparent that the really important matter is (ii), that is the very big 
difference between the Ca of the wind waves and the C~ of the periodic waves in the 
dark area. We shall see in chap. 10 that also this new difference between the wind 
waves and the periodic waves gets a clear explanation in the light of the theory of 
quasi-determinism. 

Note that it suffices to specify r/Leo, fl, w, 0, and d/Lpo to obtain functions F and G. In 
order to realize this point, please go back to the equations (1.60a-f) defining these functions, 
and verify that 

U 1 - -  V/8~(w)r/Lposin[2 ( f l + o - 2 )  1, u2--V/8~(w)r/Lposin[ 1 ( f l -O+2)  1, (8.41a) 

r r s i n ( f l -  0). ql - 27r~f(w) ~ sin(fl + 0), q2 - -27r~f(w) (8.41b) 
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Fig. 8.10 Diffraction coefficient Cd of the wind waves for the orthogonal attack. Comparing this 
figure with fig. 1.19, you will note that, in the dark area, the Cd of the wind waves is at least 50% 
greater than the Cd of the periodic waves. 
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Fig. 8.11 Diffraction coefficient Cd of the wind waves for an inclined attack. Here too, in the dark 
area, the Cd of the wind waves is at least 50% greater than the Ca of the periodic waves (compare 
with fig. 1.20). 
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8.7 Long-crested random waves: the link between periodic waves and wind- 
generated waves 

8.7.1 Two-dimensional and three-dimensional random waves 

The wind-generated waves are random and short-crested. Random, because 
each wave is generally different from the following wave. Short-crested, because 
they are three-dimensional. The differences in size and shape are due to the 
bandwidth; the short-crestedness is due to the directional spread. With regard to 
this, the reader will have noted that for all problems concerning the wave variability 
(e.g. wave height distribution and period-height regression) the directional spread 
was not used. Indeed, as far as chap. 7, it was not necessary to introduce the 
directional spectrum. 

Now, in the two foregoing sections we have met two great differences between 
the wind waves and the periodic waves. We have seen that in the wind waves the 
nodes and antinodes disappear starting from about one wavelength from the 
breakwater; and we have seen that in the sheltered area there is a wide region 
where the Cd of the wind waves is at least 50% larger than the Cd of the periodic 
waves. Thus we wonder, do these great differences depend on the bandwidth or on 
the directional spread? Of course, if we succeed in answering this question, we shall 
be able also to predict the different effects of different sea states. For example, if 
the bandwidth grows under the same directional spread do nodes and antinodes get 
even less apparent? And do the wave heights in the sheltered region increase 
further? 

The question, whether the great differences between wind waves and periodic 
waves depend on the bandwidth or on the directional spread, is also useful to find 
our way in the world of the wave tanks. Indeed the laboratory tanks, for a given 
frequency spectrum, can generate waves with no directional spread (long-crested 
waves or 2-D random waves), and waves with a directional spread (short-crested 
waves, or 3-D random waves). It is apparent that the first ones are cheaper than the 
second ones, because the 2-D random waves are generated by a single wave paddle, 
while the 3-D random waves require a more complex array of small independent 
paddles. The reader can probably see where we are driving at. On the one hand it is 
useless resorting to the expensive 3-D waves to study some phenomenon that 
depends only on the frequency spectrum; on the other hand it is misleading to resort 
to the 2-D waves to study a phenomenon that is affected by the directional spread. 
For example, if we wanted to study how the height of the pressure head wave 
reduces itself from the water surface to the seabed, it would certainly be sufficient 
to resort to the 2-D waves. Indeed, we have seen in sect. 8.2 this attenuation 
depends only on the frequency spectrum. 

8.7.2 Special analytical forms for the two-dimensional random waves 

The mathematical treatment of the 2-D random waves can be done using the 
formulae for the 3-D random waves with a very small directional spread, that is with 
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a very large value of the exponent n of the directional spreading function D (0; co). 
Of course, we can also obtain some special solutions for the 2-D waves, which are 
valuable because of a greater simplicity. For example, the 2-D random waves before 
a vertical breakwater  are expressed by 

N 

rl(x,y,t) - 2 ~ - ~ a i c o s ( k i x s i n - O - c o i t  -Jr- c i )cos(kiycos-O),  (8.42a) 
i=1 

(x, y, z, t) - 2g ~_~N aia37, 1 cosh[ki(d + z)] sin (k~x sinO - edi t  Jr- c i ) c o s ( k i y c o s O ) . -  
cosh(kid) 

/=1 (8.42b) 

These are the formulae (8.36a-b) with: 

Oi - 0 gi. 

The variance of the surface displacement (8.42a) is 

N 

i~l  1 a 2 0), o - 2 ( y ) - 4 .  -~- ic°s2(kiyc°s 

Y cos0 dw a2 (y) 0 { (w) cos 2 2rc~ (w) Lpo 

iOG (72(0) {'(w) dw 

0 

from which it follows 

Similarly, the 2-D random waves interacting with a semi-infinite vertical i 
breakwater  are given by the formulae (8.39a-b) with Oi-  O, and consequently the 
variance at a fixed point r,/3 is 

N 

~1  1 a 2 -0) Jr- G2(r, /3; COi, 0 ) ] ,  crg(r ' /3)-  . T ' [FZ(r'/3;c°" 

from which it follows 

c. (r, 9) - 

Io ,~ (W) [F 2 (r,/3; w,--0) -Jr- GZ(r,/3; w, 0)] dw 

J ~ { ( w ) d w  
0 

8.7.3 Are  the two-dimens ional  random waves closer to the wind waves or to 
the periodic  waves? 

Fig. 8.12 shows the quotient crZ(y)/cr2(0) before an infinitely long vertical 
breakwater  for 

(a) the periodic waves; 



272 Chapter 8 

1 
a2(y) 

a'(0) 

0.5 

0 0 

: \  
PERIODIC WAVES 

! | I 

0.5 1 1.5 lYl/L 

a~(Y) / I IRREGULAR WAVES 2-D [ 

a'(0) ~ 0.65 

0.5 

I i I 

0 0.5 1 1.5 ,:,.--.~"~/rp 2 

a'(y) 

0.5 

WIN_____D_D WAVE______SS (3-I)___~) 

~ 1 

o o.s 1 1.s Iyl/L,, 2 

Fig. 8.12 Comparison between periodic waves, long crested irregular waves and wind waves, with 
regard to reflection. We see the long crested waves behave like the wind waves. 
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Fig. 8.13 Comparison between periodic waves, long crested irregular waves and wind waves, with 
regard to diffraction. Here  the long crested waves behave like the periodic waves. 
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(b) the 2-D random waves; 
(c) the wind waves (3-D random waves). 

We see the function cr 2 (y)/cr2(0) to be practically the same for the 2-D random 
waves and for the wind waves. Hence, we can conclude that the great difference 
between wind waves and periodic waves, as far as reflection is concerned, is due to 
the bandwidth. Even in the absence of directional spread, the aforesaid great 
difference would remain unchanged. [Really, if the dominant direction of the 
incident waves is not wall-orthogonal, the directional spread also somewhat affects 
or2 (y)/~2 (0)1. 

Fig. 8.13 extends the comparison between periodic waves, 2-D random waves 
and wind waves into diffraction. Specifically, the figure shows the diffraction 
coefficient Cd in the sheltered area behind a semi-infinite vertical breakwater.  Here,  
as we can see, the matter changes. The difference between wind waves and 2-D 
random waves is big, while there is a little difference between the 2-D random 
waves and the periodic waves. Indeed we see that the Cd of the 2-D random waves 
are nearly coincident with the Cd of the periodic waves. 

Conclusion: concerning reflection, the 2-D random waves are very close to the 
wind waves, while for diffraction, the 2-D random waves are very close to the 
periodic waves. Referring to the organic evolution we think of the periodic waves as 
the ancestors, the wind waves as the descendants, and the 2-D waves as the link 
between ancestors and descendants. 

8.8 Direct proportion between the maximum expected wave height and the 
diffraction coefficient 

As we have seen, the waves on the time domain in each of the fields we have 
considered represent  some stationary Gaussian processes. As a consequence,  the 
probability of exceedance of the wave height at any fixed point is given by 
(5.45), and the maximum expected wave height in a given interval At is given by 
(5.57-59). 

Naturally, if the wave field is non-homogeneous because the wind-generated 
waves interact with some solid body, the significant wave height generally varies 
from one point to another. That is we have 

Hs (x, y) = hCd (x, y) , 

with h being here the significant height of the incident waves. Therefore the formula 
(5.57-59) for Hmax becomes 

Hmax (X, y) - Cd(x, y) h J ~ 

0 

A t  

1 {1 exp[ 1+ 4 x,,  u21} 'xy du (843, 
m 

where we write ~* (x, y) and T (x, y) because the narrow-bandedness parameter  and 
the mean period generally vary from one point to another. 
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From (8.43) we obtain the ratio between the maximum expected wave height at 
any fixed point x, y and the maximum expected wave height if the solid obstacle 
(breakwater  or something else) was not there. This ratio is 

Hmax(X,y) 
J 1 -  1 - e x p  - 4 7(x, 0 1 + ga* (x, y) u2 Y) du 

Hmax I~ { [ 4 ]}~du 1 - 1 - exp - ~* lg 2 
0 1 +  

Cd(X,y),  (8.44) 

m 
where,  of course, ~b* and T without the specification (x, y) refer to the incident 
waves. Typically, the quotient  between the two integrals on the r.h.s. (8.44) proves 
to be very close to 1, so that we can assume 

nma x ( x ,  y )  ~ Cd  (X,  y )  . (8.45) 
Hm~x 

For the step from (8.44) to (8.45) we reason on the autocovariance only, given that also T 
can be expressed in terms of the autocovariance. Indeed, equations (4.6), (4.12) and (5.24) 
taken together yield 

- -  ~ ~b(0) (8.46) T - 2 r c  i~(0)l . 

Let us consider the wind waves interacting with a semi-infinite vertical breakwater, which 
are extremely non-homogeneous (think of the very big differences in the wave size between 
the wave-beaten side and the lee side). The autocovariance, at a fixed point of polar 
coordinates r,/3, is given by 

N 
~b(T) - ~1= -}-1 ai2 (F~ + G~)cos (COg T) , (8.47) 

where 

Fi = F (r, /3; COi, Oi) , ai -- G (r, /3; coi, Oi) . 

In terms of the directional spectrum of the incident waves, (8.47) becomes 

ioc 12re ~(T) - S(w,O)[F2(r,/3;co, O) + G2(r,/3;co, O)]cos(coT)dOdco, 
0 0 

(8.48) 

and hence we have 

J~ Jz~,7 (w,O)[FZ(r,/3; w,O) + G2 (r,/3; w,O)]cos(2rcwT/Tp)dOdw 
0 0 

[~ I2~ ~/(w,O)[F2(r,~;w,O) + GZ(r,~;w,O)dOdw 
0 0 

(8.49) 
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which enables us to obtain the ~b* at the given point r, 3. Then, the formulae (8.46) for T and 
(8.48) for ~(T) lead  to 

T = T ~  

lO ~ f27r _ ]0 ~9~ (w, O)[F2(r, fl; w, O) -+- G 2 (r,/3; w, 0)] dO d w  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

J/o J/o J (w, 0)w2[F 2 (r,/~; w, O) + G2(r,/3; w, 0)] dO dw ( 8 . 5 0 )  

which gives the mean wave period at point r, 3- 
At this stage, we can evaluate the quotient between the two integrals on the r.h.s, of 

(8.44), and verify this quotient to range between 0.98 and 1.02 in the area covered by figs. 
8.10 and 8.11. Hence, the validity of the simplified equation (8.45). 

8.9 Space-time covariances 

We shall see in chap. 9 that the quasi-determinism theory is expressed in terms of 
the space-time covariances 

7*(X, Y, T;xo, Yo) - < rl(xo, Yo, t)rl(Xo + X ,  yo + Y,t + T) > ,  (8.51a) 

• (X, Y , z ,  T;xo, Yo) - < ~(Xo,Yo, t)d~(Xo + X ,  yo + Y , z , t  + T) > ,  (8.51b) 

where  Xo, Yo is any fixed point. To use this theory it is first necessary to obtain the 
expressions of ~ and ~b in terms of the spectrum S(a;,0). Of course, the 
expression of ~ (or ~b) varies according to whether  the wave field is (8.4a-b) or 
(8.36a-b) or (8.39a-b) or something else. The logical path to obtain these 
expressions is the same we have repeatedly  t raced in this chapter  [e.g. to obtain 
cr 2(y) in sect. 8.5.1 where the various steps were i l lustrated in detail]. For the 
special p rob lem of 7 j, 

(i) substitute in (8.51a) ~7 by its expression, so getting a temporal  mean  of a 
summat ion  on i and j; 

(ii) execute the temporal  mean with the usual procedure: the mean value of 
the product  of two cosine (or sine) functions with a different frequency is zero; the 

mean  value of a square cosine (or sine) is + ;  
, 4  

(iii) doing so, you obtain an equat ion like this: 

N 

i~1 1 a~f(X,  Y, T;xo yo, COi, Oi) (8.52) ~P (X, Y, T; xo, Yo) - .= -~ , , 

where f denotes a function that will be different from one wave field to another; 
(iv) consider the partial sum of the terms whose frequency a;/is within a small 
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interval co, a3 + 8co and angle 0 i is within a small interval 0, 0 + 80; this can be written 
in the form 

1 
f (X, Y, T; Xo, Yo, ~, O) E - 2  a~ for i such that co < 0.3 i < (.z) + ~0.1 a n d  0 < 0 i < 0 + ~ 0  - -  

i 

= f (x,  Y, r; Xo, yo, ~, 0) s (~, 0)a~ ao; (8.53) 

(v) integrating the r.h.s, of (8.53) with respect to co over (0, oc) and with 
respect to 0 over (0,27r), you arrive at 

(X, Y, T; Xo, yo) - S (co, O) f (X, Y, T; Xo, Yo, co, 0)d0 dco; 
o o 

(vi) replace the dimensional variable co with the nondimensional w, and 
express k in terms of ~(w) through the definition (8.23). 

A sequence of the same kind leads to the expression of ~b. 
A few expressions of ~u and ~b are given in the following frames. Such 

expressions can be used with the formula (8.20) or (8.33) for Y ( w ,  0), and the 
equation (8.24) of #(w). 

WAVE FIELD (8.4a-b) 

~ ( X , Y , T ; x o  Y o ) - A g  2a3-4 SP(w, 0) cOS 27r~(w) X ~  
P Lpo o 0 

+ 27r,~ (w) Y T 1 cos 0-27r w dO d w, 
L~0 T~ J 

sin0 + 

(8.54a) 

(X, Y, z, T; Xo, Yo) - Ag3~p s J (w, O) w -~ cosh 27r/(w) d + z 
o o 

/ 
/ c o s h  [27r~ (w)~p0 ]} sin 27r~ (w) X sin0 + 27r,4 (w) Y cosO - 27r w dO dw. 

Lpo Lpo Tp 

(8.54b) 
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WAVE FIELD (8.36a-b) 

gt(X,Y,T;xo,  y o ) - 4 A g 2 %  4 Y(w, 0)cos 27rA:(w) X sin0+ 0 0 Lpo (8.55a) 

-27r w cos 27rW(w) cos0 cos 27rW(w) Yo + Lpo cos0 dO dw, 
T~ L~0 

Ieel 2u { [ Q-~p0 -~p0) / (X, Y, z, T; Xo, Yo) - 4 Ag 3 COp s J (w, O) w -1 cosh 27r X (w) d + z 
0 0 

/ LTpOl} E T I E  Yo 1 X sin0- 27rw cos 2~r~(w) cos0 • cosh 27r~ (w) d sin 27rS (w) Lpo Tp Lpo 

[ (--~po Y ) c o s O d O d w .  (8.55b) • cos 2rr~(w) Yo + gpo 

WAVE FIELD (8.39a-b) 

A2 4I I ~P (X, Y, T; xo, Yo) - g ~p 0 o Y (w, O) [Fo (w, O) Fl (w, O) + Go (w, O) Gl (w, O)] . 

(8.56a) 
( 2 )  (2 T ) }  T + [Fo (w, O)G1 (w, O) - Go (w, O)F1 (w, 0)]s in  7r w dO dw, • cos row Tp rp 

joe j2~ { [ (_~pO _~__TpO)l / (X, Y, z, T; Xo, Yo) - Ag 3cop s o 0 ~¢~(W, O) W -1 cosh 2TrY(w) d + z 

/cosh(27r/Y(W) L-~o)}{-[Fo(w,O)Fl(w,O)+Go(w,O)G1(w,O)]sin(27r 

(2 T ) } d O d w ,  + [Fo(w,O)G1 (w,O)-Go(w,O)F1 (w, 0)]cos 7rw rp 

W 

(8.56b) 

where 
Xo,Yo ~ ro,/3o, 

Xo + X,  yo + Y ¢* rl,/~1, 

Fo (w, O) - F(ro, /3o; w, O), Go (w, O) - G (ro, /3o; w, O), 

El (w, 0) = f(rl,/~1; w, 0), a l  (w, O) =_ a(rl,/~1; w, 0), 

F and G being defined by (1.60a-d) and (8.41a-b). 
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Note  that  5u and ~b of the wave field (8.4a-b) in the open sea are independen t  of 
Xo and yo, which is correct  given that  the wave field is homogeneous .  Then,  the ~u 
and ~b of the wave field (8.36a-b) are i ndependen t  of Xo, which is again correct,  it 
being the wave field before  an infinitely long b reakwa te r  paral lel  to the x-axis. 

Conclusive note 

As said at the end of chap. 4, the theory  of the sea states in space-t ime was due to 
the contr ibut ions  of several  authors,  among whom: Longuet -Higgins  (1957, 1963), 
Phillips (1967), and B o r g m a n  (1969). G o d a  et al. (1978) p robably  were  the first to 
evaluate  the diffraction coefficient of the wind waves. The  au thor  (1988) poin ted  
out  the great  difference be tween  the wind waves and the periodic waves in what  
concerns reflection (figs. 8.8 and 8.9). This great  difference was then verified 
through a small scale field exper iment  (1993). 
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Chapter 9 
THE THEORY OF QUASI-DETERMINISM 

9.1 A sufficient condit ion for occurrence of  a wave of  given height very large 

9.1.1 Condition (9.1) 

Let us consider the surface displacement r/(t) at any fixed point Xo = (Xo, Yo) in a 
random wave field, it being homogeneous like (8.4a-b) or non-homogeneous like 
(8.36a-b) or (8.39a-b). From the theory of the sea states, we know that ~7(t) 
represents a stationary random Gaussian process. 

Let us analyse the p.d.f, of the surface displacement at any fixed time, given the 
condition 

1 , 1 H 
,7(~o) - T H ,  ,7(to + 7" ) -  - T  (9.1) 

where to is an arbitrary time instant, H an arbitrary height and T* is the abscissa of 
the absolute minimum of the autocovariance function, which is assumed to be also 
the first local minimum of this function on the positive domain. 

9.1.2 The probability of  rl(to + T) given condition (9.1) 

The p.d.f, of the surface displacement at time to + T (T being any fixed time lag), 
given condition (9.1), is 

p [~ (to + T) - u 
1 1 . ]_  

1 , 1 H,~7(to + T) - u] p ~(to) - T H,~(to + ~ ) - -  - ~  

I 1 ,) 1 ] p rl(to)--~H,~7(to+T - - - - H  
2 

(9.2) 
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(u being the independent variable). The general form of the probability density 
functions like the ones on the r.h.s, of (9.2) was given in sect. 5.1. Specifically, we 
have 

1 (to + r*) p . ( t o ) - T H , ,  - - - -  
-1 1 H, (to + T) - ul 

2 J (9.3a) 

1 exp { -  1 
(27r)3/2V~ - ~  

1 12]} 
A33 u2 -~ 2 (A 13 - A 23) T n u + (A 11 + A22 - 2A 12) 7 n , 

1 (to + T*) p ,7(to)  - T / - / , , 7  - - -  2-1H] - 2rrx~l exp [ -  -~1  (All q- A22 - 2A12) 1 H 2 7  ' 

(9.3b) 

where Ai] and A are, respectively, the i, j cofactor and the determinant of the 
covariance matrix of ~?(to), ~l(to + T*), rl(to + T): 

A i j -  i, j cofactor 
A -  determinant of / ¢(0) ~;(r*) ~;(r) 

¢(r*) ¢(0) ¢ ( r -  r*)], 
¢(r) ¢ ( r - r* )  ¢(0) ] 

and Aij and A are, respectively, the i, j cofactor and the determinant of the 
covariance matrix of rl(to), rl(to + r*): 

Aij- i, j cofactor (~b(0) 0(T*)~ 

z~ - determinant of \~ (T*)  0(0) ]/ " 

With (9.3a) and (9.3b), equation (9.2) of the conditional p.d.f, becomes 

[ 1 I { 1I u2 _ 1 (to + r*) ~ 2rcA - ~  33 p r l ( t o + T ) - u  ~7(to) - ~ H , ~  - H - exp - A + 

(9.4) 

1 1 H 2 -+- 2(A13 -- A23)-~- H u + (All -+- A22 - 2A12)-~- 
+ 1 ]} 

A (All .qt_ A 2 2  _ 2Ale) -~- H 2 
A33 

where we have used the equality 
A - A33. 

The argument arg (u) of the exponential function on the r.h.s, of (9.4), that is to 
say 1 

[A - z l  u 2 A ) ~ H  u + arg (u) - 2A 33 + 2 (A 13 - 23 

- + 1 q (9.5)  
1 H 2 A ( A n + A 2 2 - 2 A l z ) ~ H  2 + (All + A22 - 2A12)-~- A33 ] 
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is rewritten in the form 

arg(u) - A33 ( H -  Hm) 2 -+- a r g ( u m )  
2A 

where U m is the abscissa of the maximum of this function: 

(9.6) 

A23 - A13 H 
b/m = . ( 9 . 7 )  

A33 2 

(The determinant and the i, i cofactors of a covariance matrix are positive, and this 
is why we have concluded that the function arg(u) has a maximum.) 

The maximum arg(um) proves to be zero. Hence, the conditional p.d.f, is reduced 
to the simple form 

a (to + ~* )  p ~(to + r )  - u ~(to) - T  H,  ~ 

Verify that 

1 H I _ g / A 3 3  ( u -  2- 27rA e x p [ -  -~A33 Hm)2] . 

(9.8) 

arg (Urn) -- O. (9.9) 

You have two alternative ways to do this. First way: from (9.5) and (9.7) obtain 

1 
a r g ( u m ) - -  2AA33 

1 H 2 [--(113 -- A23) 2 + (111 + A22 - 2A12)A33 - -  (All -~- A 2 2  - 2A12)A] 7 " 

Then, replacing A, A;j and fi-ij with their own expressions, you will find that the sum within 
square parentheses on the r.h.s, of this equation is zero. 

Second way (more elegant)" rewrite (9.4) in the form 

p [~ (to + T ) - u  
1 

~ (to) - 5- / - / ,  ~ (to + T* ) - 2 27rA 
A33 (U_Um)2+arg(um) exp - - ~  

which implies 

p ~(to + r )  - .  ~(to) - -5- H,  ~(to + ) - - -5- H d .  - 

I A 3 3  J +°c [A33(U_Um+arg(um)]du-exp[arg(um) ] __ )2 
27r A _ exp - ~  

which in its turn implies (9.9). 

9.1.3 The mean value and the standard deviation o f rl ( to + T) given condition (9.1) 

Equation (9.8) implies that the mean value of ~ (to + T) (given condition 9.1) is Urn" 

~(to+ T)--Um. 
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The formula for Um is (9.7) which is rewritten as 

on defining 

~(to + T) - F(T)  H 

F(T)  - ~b(T) - ~ b ( T -  T*) 
~p(O) - ~(T*) 

(9.10) 

Equat ion (9.8) implies also that the standard deviation of r/(to + T), given condition 
(9.1), is 

o r ( t o + T ) -  A 3 3  - -  

~b 2 (T) + ~b 2 (T - T*) - 2~b (T) ~b(T - T*)[~b (T*)/~b (0)] ] 
g,2 (0) - g,2(T*) 

from which it follows 
a(to + T) < ~ -  v/~b(O), 

since 
~2(0) - g,2(T*) > 0 and Ig,(T*)/g,(0)t < 1. 

(9.11) 

Equality (9.10) and inequality (9.11) imply 

a(to + T) H 
0 as 

~(to + T) cr 
--+ OO,  

provided F (T) is nonzero. In words: given condition (9.1), the quotient between the 
standard deviation and the mean value of ~7(to + T) approaches zero as H / a  ~ ~ .  
Since T is arbitrary, it follows that, given condition (9.1), the random function 
~7(to + T) is asymptotically equal to the deterministic function ~(to + T), as H/cr ~ e~. 
Of course, this conclusion is valid for finite values of T, given that 

F (T)  ~ 0 a n d  a (to + T) --+ a as IT[ ~ oo.  

Note, a is the standard deviation of the random process r/(t), while a(to + T) is a 
conditional standard deviation. Specifically, ~r(to + T) is the standard deviation of r/at time 
to + T, given the condition (9.1). 

9.1.4 P r o o f  that (9.1) is a suf f ic ient  condi t ion  

So far we have not used the property of T*, so that T* can be any fixed time lag. 
Now it is time for the peculiarity of T* to come into the picture. 

Since ~b(0) and ~b(T*) -  ~b(-T*) are, respectively, the absolute maximum and 

the absolute minimum of ~b (T), ~ has its absolute maximum (equal to 1 H) at T - 0 
2 
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the function is decreasing 
/ / - - o n  this domain 

absolute maximum :~ :~ 

! 

-- T* 

/ 

\ absolute minimum 

Fig. 9.1 General characteristics of-~(to + T) [function (9.10)]. 

and its absolute minimum (equal to - 1 H )  at T - T*, and hence at T - 0 there is a 
2 

wave crest, and at T = T* there is a wave trough. 
Since T* is the abscissa of the first local minimum of ~(T)  after T = 0, the 

derivative ) ( T )  is negative on the interval (0, T*)" 

~(T)  < 0 on(0, T*), (9.12) 

which implies 

~)(r) > 0 o n ( - r * , 0 ) ,  

(since ~ is an even function), or alternatively 

~ ( T -  T*) > 0 on(0, T*). (9.13) 

The inequalities (9.12), (9.13) imply that ~ is strictly decreasing for T in [0, T*]. 
Therefore, the wave crest at T = 0 and the wave trough at T = T* belong to the 
same wave, and this wave has a crest-to-trough height equal to H [see fig. 9.1]. 
Hence, the conclusion 

as H/cr -+ oc, condition (9.1) 
becomes sufficient for the occurrence o f  a wave o f  given height H. 
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9.2 A necessary condition for occurrence of  a wave of given height very large 

9.2.1 A general  necessary condi t ion  

A general necessary condition for occurrence of a wave of given height H is that 
the surface displacement is ~H, with ~ in (0,1), at a time to and is ( ~ -  1)H at a later 
time to + r (to being the instant of the wave crest and to + r the instant of the wave 
trough). The mathematical form of this general necessary condition is 

rl(to) - ~H, rl(to + r) - ( { -  1)H with 0 < { < 1 .  

For focusing the general necessary condition, look at fig. 5.5 [sect. 5.7.3] which 
shows two waves with a fixed height H and different values of ~ and 7. 

9.2.2 The probabi l i t y  ~ (H,  r, ~) 

Let us consider the probability that the surface displacement at an instant to falls 
between 

{H and {H + dr/1 

and, at a later instant to + 7, falls between 

(~ - 1) H and (~ - 1) H + dr]2 

to, H, r, cs being arbitrarily fixed, and dr]l, dr]2 being two fixed small intervals. The 
probability under examination is given by 

2~(H,r,{ ) _ 1 exp { -  - 
2~V~ 

1 [/~11 ~ 2H2 -~-/~22 (~--1) 2 H2+ 2A12 ~ (~- 1)H2]} dr]l dr]2 
- .  

(9.14) 

where l~ij and A are, respectively, the i, j cofactor and the determinant of the 
covariance matrix of ~7(to) and rl(to + 7-)" 

l~ij - -  i, ] cofactor 

A - determinant of (~) ¢(0))  • 

Equation (9.14) is rewritten in the form 

1 (H, ~) T~ 
2 ~  v / ¢  2 (0) - ~: (~) 

with 

exp [ - -  ~-f (T, ~) dr]ld~h, 

1 ¢(0) 
f (~' ~) - 2 ~ (0) - ¢ (~) + 2 ¢(0) 7 ~b(r) 

(9.15) 

(9.16) 
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Check (9.16). First, compare the exponential function on the r.h.s, of (9.14) with the 
exponential function on the r.h.s, of (9.15), so obtaining 

f (~-, ~) - _ _  11~ 2 -Jl-J~x22 ( ~  - 1) 2 q-  2 ~ 1 1 2 ~ ( ~  - 1) . 

A 

Then put ~ and ~ij in terms of ~b(0) and ~b(z), obtaining 

~(0) 
f (~, ~) - ~2 (0) - ,2 (~) [2 (~b(0) - ~b (r))(~2 _ ~) + ~b(0)]. 

Hence, using the equality 

you will easily arrive at (9.16). 

~ 2 1 

9.2.3 Analysis of  the function f (r, ~) 

The first term on the r.h.s, of (9.16), that is to say 

1 ~(0) 
2 ~ ( 0 ) - ~ b ( r )  ' 

is independent  of {, and its absolute minimum on the domain r > 0 occurs at r - T* 
[given that T* is the abscissa of the absolute minimum of ~b (r)]. The second term on 
the r.h.s, of (9.16), that is to say 

(o) + ~ (~) 

1 
i Therefore,  the absolute minimum is zero if ~ - ~ ,  and is greater  than zero if ~ g= 

Z / . , . , , ¢  

1 
~ T *  ~ . of the function f (z, ~) for r in (0, co) and ~ in ( - c o  co) occurs at z and ~ 

2 

9.2.4 Condition (9.1) is necessary 
1 .  

The fact that the absolute minimum of f (r, ~) occurs at r -  T*, ~ - ~  implies 
2 

H :~(H,r,~) - + 0  as - - - +  c~, 

~ ,T*, 

, 1 In words" as H/cr ~ oc, the for every fixed pair r, ~ with r ¢ r and/or ~ ¢ ~ .  

probabili ty that the surface displacement is ~H at an instant to and is (~ - 1) H at an 

instant to + r, with r -¢ T* and/or ~ ¢ 1 ,  is negligible with respect to the probability 
z 



288 Chapter 9 

that the surface displacement is 1 H at to and is - _1 H at to + T*. Hence, the idea 
2 2 1 

that a wave with a given height H has necessarily 7 - -  T* and ~ -  ~-, as H/cr -+ exp. 

That is 

as H/cr ~ oc, condition (9.1) becomes necessary for the occurrence o f  a wave o f  
given height H. 

Really, we have got a clue that condition (9.1) is necessary for a wave of given 
height H very large (and this is why we have written hence the idea that rather than 
hence it follows that). The formal proof calls for some harder work and yields as a 
corollary the closed solution for the wave height distribution. Such a proof will be 
dealt with later. Now we go on with the main stream of our reasoning. 

9.3 Th e  water  surface on space- t ime,  if a wave  of  g iven height  very large 
occurs  at a f ixed point  

9.3.1 The condi t ional  p.d.f ,  o f  the surface d isp lacement  at p o i n t  Xo + X and  
t ime to + T given condi t ion  (9.1) 

If a wave with a very large height H occurs at a fixed point Xo (= Xo, yo), how will 
the water surface all around this point be? 

To say "a wave with a height H occurs at Xo", as H/cr ---, oc, is equivalent to say 

"the surface displacement at Xo is equal to 1 H at an instant to and is equal to 
1 2 

- - -  H at instant to + T*". This is the gist of sects. 9.1 and 9.2. Hence, to answer the 
2 

opening question of this section we have to examine the p.d.f, of the surface 
displacement at a point Xo + X at an instant to + T (both the point and instant being 
arbitrarily fixed) given the condition 

1 (Xo, T* 1 H (9.17)  (Xo, to)-5I-I, to+ 

which is the same as (9.1), only that we write ~7 (Xo, to) in place of ~7 (to) because now 
we are dealing with the waves on space-time. 

Through the same reasoning we used to arrive at (9.8), we arrive also at 

1 (Xo, p  (xo+X, t o + T ) - u  ,7(Xo, to+T*)- 

exp E 1 27rB - -2 - f f  

1 .] 

where 

(9.18) 

/~m = B23 - B13 H (9.19) 
B33 2 ' 
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and where Bij and B are the i, j cofactor and determinant  of the covariance matrix of 
,~ (Xo, to), ,~ (Xo, to + T*), ~ (Xo + x ,  to + 7 3  

Bij- i, j cofactor 

B - determinant  of 

~2 ~,(o, T*) ~,(X,T) / 
~'(0, T*) ~2 ~ (x, T - T*) . 

* 2 ~, (x ,  T) ~ (X, T - T ) O-x 

2 In this matrix 0 -2 and cr x are the variances of the surface displacement,  respectively, 
at Xo and at Xo + X, and ~ is the space-time covariance defined by (8.51a), which 
here has been written in the compact form 

(x ,  T) - ~'(X,  Y, 7~; Xo, yo). (9.20) 

9.3.2 The mean value and the standard deviation o f  the surface displacement 
at point  Xo + X and time to + T given condition (9.1) 

The formula (9.18) for the conditional p.d.f implies that the mean value of 
~7 (Xo + X, to + T) given condition (9.17) is 

(Xo + x ,  to + T) - 
~, (x ,  73 - ~ ' (x ,  T - T*) I-/ 

7/(0, 0) - ~u(0, T*) 2 
(9.21) 

Then (9.18) also implies that the standard deviation of T/(Xo + X, to + T), given 
condition (9.17), is 

c~(xo + X, to + T) - ~/ B33B = 

,/or 2 _ ° 2 ~U 2 (X, T) + ~u2 (X, T - T*) - 27 j (X, T) ~U (X, T - T*)[~U (0, T*)/~  (0, 0)] 
x ~,2 (o, o) - ~,2 (o, T*) 

which yields 
0- (Xo + X, to + T) < o-x, (9.22) 

since 
~,2 (0, 0) - ~2 (0, T*) > 0 and I ~'(o, T*)/~'(O,O)I < 1. 

Check (9.21). Equation (9.18) shows that the mean value is Urn. Hence, use the definition 
(9.19) of Urn, and obtain the expressions of B13, B23, and B33 from the covariance matrix. 

Note the differences between the three standard deviations in this section: 

(i) cr is the standard deviation of the random process T/(t) at point Xo, 
(ii) Crx is the standard deviation of the random process ~7 (t) at point Xo + X, 
(iii) cr(Xo + X, to + T) is the standard deviation of T/at point Xo + X at time to + T, given 

condition (9.17). 
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9.3.3 A n  alternative f o r m  fo r  the mean value ~(Xo + X, to + T) given 
condition (9.1) 

The mean value (9.21) is rewritten in the form 

(Xo + X, to + T) - F (X, T)Crx 

where 

H 
, (9.23) 

O "  

1 T )  -  u(X, T - T * )  

F (X, T) - ,~ 1 - ~ ' ( o ,  T*) 

.-.v 

and where ~u(X, T) is the normalized space-time covariance: 
~ v  

- 

~u (X, T) and, consequently, F (X, T) do not depend on ~ nor on Crx; they depend 
only upon the degree of correlation of the random waves at Xo and at xo + X after a 
time lag T. Specifically, ~u(X, T) takes on values within - 1  and 1 for every ~ and ~x. 
It is 1 if ~/~ at Xo is always equal to ~/~x at Xo + X after a time lag T; it is - 1  if ~/~ at 
Xo is always equal to - ~/~x at Xo + X after a time lag T. Finally 7' (X, T) approaches 
zero if ~7/~ at Xo at time t is uncorrelated with ~/~x at Xo + X at time t + T. 

What  is the aim of the alternative form (9.23)? Let us consider the case of an 
extremely non-homogeneous wave field like that of fig. 9.2, where ~ is much smaller 
than ~x. Well, (9.22) and (9.23) reveal at once that the free surface displacement at 
point Xo + X at time to + T is very close to the deterministic value ~ (Xo + X, to + T), 

~ ~f//J//////////////////////i///A 

•Xo÷X 

incident 
w a v ~  

Fig. 9.2 If an exceptionally high wave occurs at Xo, the surface displacement at Xo + X approaches 
a well precise deterministic form. This, even if the waves at Xo are much smaller than at Xo + X. 
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if a wave with a height H exceptionally large with respect to a occurs at Xo. This, 
even if H is very small with respect to the wave heights at Xo + X. 

9.3.4 The ma in  s ta tement  o f  the theory  

In conclusion, formula (9.23) for the mean value and inequality (9.22) for the 
standard deviation imply that 

cr(Xo + X, to + T) H 
--+0 as --+ oc, 

(Xo + x ,  to + T) 

provided F(X, T) is nonzero. Since X and T are arbitrary it follows that, given 
condition (9.17), the random function r/(Xo + X, to + T) (function of X and T) is 
asymptotically equal to the deterministic function ~ (Xo + X, to + T), as H/cr --, oc. 
Of course, this is true within a finite area and for a finite span of time, given that 
~u(X, T), and consequently F(X, T), approaches zero as X] and/or IT] tend to 
infinity. 

The conclusion is: i f  a wave with a given height H occurs at a f ixed point  Xo and H 
is very large with respect to the mean wave height at this point, we can expect the water 
surface near Xo to be very close to the deterministic form (9.21-23). (9.21 and 9.23 
being two alternative forms of the same deterministic function.) 

We shall see in chap. 10 that, if Xo is in the open sea, (9.21-23) represent a three- 
dimensional wave group whose centre passes at Xo; if Xo is before a breakwater,  
(9.21-23) represent  the collision of two wave groups, one approaching the 
breakwater  and one going back seaward after reflection. In short, (9.21-23) show 
what happens if a very high wave occurs at the fixed point Xo. 

In what follows we shall use (9.21) since it seems more suitable for the practical 
applications. 

9.4 The velocity potential if a wave of given height very large occurs at a 
fixed point 

Associated with the deterministic configuration (9.21) is a distribution of velocity 
potential in the water, which to the lowest order in a Stokes' expansion is given by 

{  (Xo + X , z ,  to + T) - 
(X, z, T) - ~ (X, z, T - T*) } H (9.24) 

0) - e ( 0 ,  r ) 2 ' 

where X, z and T are the independent variables and ~b is the covariance of the 
surface displacement and velocity potential of the random wave field (sea state), 
which is defined by (8.51b) and here has been rewritten in the compact form 

~ (X, z, T) - ~ ( X ,  Y , z ,  T; Xo,Yo). (9.25) 
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The surface displacement (9.21) and the velocity potential (9.24) satisfy the 
linear flow equations. In particular we shall prove that ~ and ~b satisfy the first linear 
flow equation under the hypothesis that ~7 and ~b satisfy this equation. That is to say 
we shall prove that 

1 (O~T) - (9.26) 
g 0 =o' 

provided that 

~7 - • (9.27) 
g =o 

With the formulae (9.21) and (9.24) for ~ and ~b and the definitions of the 
covariances 7 t and ~b, the equality (9.26) (to be proved) takes on the form 

H < r/(Xo, t)r/(Xo + X, t + T) > - < r/(Xo, t)r/(Xo + X, t + T - T*) > 

< 77 2 (Xo, t) > -- < ~ (Xo, t) ~1 (Xo, t -~- T*) > (9.28) 

1 0 H < ~(Xo, t)$(Xo + X , z , t +  T) > - < ~(Xo, t)~b(Xo + X , z , t +  T- T*) > l 
9 

< ~2 (Xo9 t) ~ -- ~ " -(XT;7)~(X~ ; +  TT) > =0 g OT 2 

where the common term 

< 7] 2(xo , t )  > -- < ~(Xo, t)~](Xo, t-~- Z*) > 

can be cancelled since it does not depend on T. With the definition of temporal  
mean, the equality (9.28) becomes 

lim 1 17  ~(Xo, t)[r/(Xo + X, t + T) - ~(Xo + X, t + T -  T*)] d t -  
. T ~  oo ~ 0 

= l i m  1 I y . 7 + ~ ~  0 ( g )  ~(Xo, t) 1 0 - --if-4- [$ (Xo + X , z , t  + T) - ~b(Xo + X , z , t  + T -  T*)]z=odt, 
0 1  

and is satisfied since 

~7 (Xo + X, t + T) - 1 O q~ (Xo + X, z, t + T)z__ 0, (9.29a) 
g OT 

1 0 
 (Xo + x , t +  T*) - 

g OT 
~b(Xo + X ,z , t  + T -  T*)z:0, (9.29b) 

as a consequence of (9.27). [(9.29a-b) simply say that ~ and ~b satisfy the first linear 
flow equation at point Xo + X at time t + T and at time t + T -  T*.] 

As an exercise, the reader could verify that the deterministic functions ~ and ~b 
fulfill also the other linear flow equations. It will suffice to use the fact that the 
random functions ~/and ~ satisfy those linear equations. 
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9.5 Theory's generality and consistency with Stokes' theory 

9.5.1 The theory holds for  an arbitrary solid boundary 

Following the theory of the sea states, we assumed that the surface displacement 
at any fixed point represented a stationary Gaussian random process of time. 
However, we did not call for the process to be homogeneous in space. Indeed, we 

2 of the surface displacement at x + X was generally assumed that the variance cr x o 
different from the variance cr 2 of the surface displacement at Xo, which is the case if 
some solid body causes wave reflection or diffraction. 

Thus, the theory holds whichever the configuration of the solid boundary 
(provided, of course, the flow can be regarded as ideal). As a confirmation of this 
important property, let us prove that the deterministic velocity potential 4~ 
automatically fulfils any solid boundary condition, provided the random velocity 
potential ~ fulfils this boundary condition. 

Z I Let a point x', belong to a solid surface and n be the unit vector orthogonal to 
the solid surface at this point. Knowing that the velocity potential q~ of the random 
waves fulfils the solid boundary condition at x', z' that is knowing that 

n .  VqS-O for x - x '  and z - z ' ,  (9.30) 

m 

we aim to prove that the deterministic velocity potential 4~ also fulfils this solid 
boundary condition. In other words we aim to prove that 

m 

n.  VqS-O for X - x ' - X o  and z - z ' .  (9.31) 

m 

With the formula (9.24) for qS, the equality (9.31) to be proved becomes 

n. V f  < rl(Xo, t) ~(xo + X ,z , t  + T) > - < ~7(Xo, t) ~(xo + X ,z , t  + T -  T*) > HI,  
< r/2 (Xo, t) > - < r/(Xo, t) r/(Xo, t + r*) > 2 / - 0  

for X - x ' - X o  and z - z ' .  

Given that X and z are the only space variables, this equality is rewritten in the 
form 

< ~(Xo, t ) n .  V,(Xo + X , z , t  + r)  > - < ~(Xo, t ) n .  Ve(Xo + X , z , t  + r - r* )  > - o 

for X - x ' - X o  and z - z ' ,  

and is proved since 

n . V ~ ( x o + X , z , t )  - 0  for X - x ' - X o  and z - z ' ,  

for every t, as a straightforward consequence of (9.30). 
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9.5.2 The theory holds for  nearly arbitrary spectra 

The theory is general not only because the solid boundary is arbitrary, but also 
because the spectrum is nearly arbitrary. Indeed the only restriction is that the 
autocovariance must have an absolute minimum which is also the first local 
minimum after T - 0 .  We already saw in chap. 4 that this condition is satisfied by 
the wind waves, and might not be satisfied in special cases of wind waves 
superimposed on swells of somewhat greater height and very different period. 

9.5.3 Consistency with Stokes' theory 

At first glance one could catch a discrepancy between the assumptions of the 
quasi-determinism theory and those of Stokes' theory. Indeed the quasi-determin- 
ism theory calls for the wave height H to be very large, and, on the contrary, Stokes' 
theory calls for the wave height H to be very small. But it takes short time to realize 
that there is no discrepancy. 

In Stokes' theory the wave height H must be very small with respect to wavelength 
L and depth d, while in the quasi-determinism theory H must be very large with 
respect to the standard deviation cr of the surface displacement in the sea state. Hence, 
the two assumptions are not inconsistent with each other, given that H can well be 
very small with respect to d and L, even if it is very large with respect to or. 

9.6 Formal proof of the necessary condition. Part I: symbols and 
assumptions 

The formal proof of the conclusive statement of sect. 9.2: "condition (9.1) is 
necessary..." remains to be given. It was not given in sect. 9.2 to make easier the 
overall view of the theory. 

We adopt the compact symbols 

r/, and ~r  in place of ~7(t)and ~ ( r ) ,  

and 
(x - H/~.  

Then, aiming to make the algorithms easier, we assume without loss of generality 
that both the zeroth and the second moment of the spectrum are equal to 1: 

m 0 = ~ 2 = l ,  m 2 = l ,  (9.32) 

which implies 
~ 0 -  1, ~ 0 -  - 1 ,  (9.33a) 

[ ~ r l < l  and [~rl < 1  if T ¢ 0 .  (9.33b) 

The moment m4 will appear in some intermediate steps of the proof, and this 
could suggest the idea that our analysis does not cover spectra like JONSWAP 
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which has not m 4  (the moments  of the J O N S W A P  spectrum exist as far as m3); but 
the mat ter  is not so. Let us see why. 

Let us fix Wsup such that 

I COsup c o 2 E  ( ~ )  dw 
o 

--- 1, (9.34) 

i o~ ~ 2 E  dw 
o 

and let us define the spectrum 

{ - E(w) if (M ~ 0.)sup , 

E(w) - 0  if cu > (.Usup, 

which obviously has the moments  of any order. What  we have done is to cut off a 
part  of the high frequency tail, of negligible energy content. Indeed (9.34) implies 

I I E (w)dw << E (w)dw. 
a~sup 0 

Passing from a random process with E(w) (=JONSWAP spectrum) to the 
random process with E (w) (=JONSWAP spectrum with a high frequency cutoff) is 
like passing from the function 

a 
r/(t) - a c o s ( w t ) + - ~ T 5  cos(nwt) as n --+ oc, (9.35) 

to the function 
r/(t) -- acos(wt) .  

Indeed, the high frequency term 

n 1.5 
cos(,, t) 

gives a negligible contribution to m0 and m 2 ,  while it makes infinitely large m4" 

m 0 - -  
1 2 1 a 2 

2 2 / 7 3 ,  

m 2  - m 
1 2 1 a 2 

2 2 n 

m 4  - 
1 a2c04 _+_ 1 a2  0.34 F/ 
2 2 

From (9.35) we easily realize that the high frequency term does not alter the crest 
elevation, nor the trough depth, nor the time interval between the crest and trough, 
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nor the wave period. It simply ruffles the wave surface with a lot of very small 
ripples. Therefore the high frequency term can be neglected when the goal of the 
analysis is concerned with the wave height, or the crest elevation, or the trough 
depth, or the time lag between crest and trough, or the wave period. 

This is why in the proof we assume the high frequency cutoff and the existence of 
m4. Then, given that 

-- (d4@)T m4 ~, dr4 =0' 

I 'd4~bdT4 < (d4@)TdT4 =0 for T ¢ 0 ,  

the existence of m4 implies also the existence of the fourth derivative of ~(T). 

9.7 Formal proof of the necessary condition. Part II: core of the proof 

9.7.1 T h e  d e f i n i t i o n  a n d  t h e  g e n e r a l  f o r m  o f  E X  (c~, r ,  ~) 

Let us consider the expected number per unit time 

E X  (c~, T, ~) dc~ d~- d~  

of local maxima of the surface displacement ~7(t) (at the fixed point Xo) whose 
elevation is between 

@~ and (~+d~)c~, 

and which are followed by a local minimum with an elevation between 

(~-1)c~ and ( ~ - l ) c ~ - d c ~ ,  

after a time lag between 
r and r+d~-  

(c~, r, ~ being arbitrarily fixed). Calling ~ the probability that a fixed small interval 
dt contains such a local maximum of r/(t) (i.e. a local maximum of the given 
elevation being followed after the fixed time lag by a local minimum of the given 
elevation), we have 

E X  (c~, T, ~) dc~ d T  d~  = ~ Y / d t  (9.36) 
Z 

where ~ 3 / d t  is the number of the local maxima with the given characteristics 
which occur in a very large time J .  

Equation (9.36) shows that our expected number per unit time represents a 
Rice's problem (cf. sect. 5.6). The solution of this problem leads to 

10j E X ( c~ , T , ~ ) - c~ l u l w p [ rl o - ~ C~ , iT o - O , i~ o - U , rl ~ - ( ~ - l ) c~ , i% - O , Fl ~ - w ] d w d u . 
- o c  0 
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This is r ewr i t t en  in the form 

iol E X ( ~ , ~ , ~ )  - ~p[~0- ~ ,  ~)0- 0 , , ) ~ - 0 , ~ -  (~- 1)~1 l u l w .  
- - o o  0 

• P [4)o = u , / )~  = w I r/0 = @~,//o = O,/ /~ = O, r/~ = ( {  - 1)  c~] dw du,  

(9.37) 

and the joint  p.d.f, be fore  the integral  is expressed  in the form 

1 e x p [  1 ] p [ r / 0 - @ ~ , ~ ) 0 - 0 , ~ ) ~ - 0 , ~ / ~ - ( ~ - 1 ) c ~ ] - ( 2 7 r ) Z x / ~  - ~ f ( ~ - , ~ ) c ~  2 , 

where  
jt~'CT, ~) -- 4(M1~ + M14) (~2_  ~) + 2Mll  

M 

(9.38) 

(9.39) 

and whe re  M~j and M are respect ively  the i, j cofactor  and de t e rminan t  of the 
covar iance  matr ix  of r/o, ~)o,//~, r/~: 

Mij -  i, j cofactor  

M _-- d e t e r m i n a n t  of 

1 0 V~ ~b~ 

o 1 

6 -45  1 0 " 

~b~ - ~  0 1 

Check the solution to Rice's problem. To this end, you have to obtain the probability 
on the r.h.s, of (9.36). This probability is equal to the integral over 

{(u, w)lu E ( -oc ,  0) and w c (0, oo)} 

of the probability that 

(i) T0 falls between ~ c~ and (~ + d~) c~, 
(ii)/)0 falls between u and u + du (u < 0), 
(iii)//0 falls between -luldt/2 and luldt/2, 
(iv) ~= falls between ( 4 -  1)c~ and ( ~ -  1)c~- dc~, 
(v) 4)~ falls between w and w + dw (w > 0), 
(vi)//~ falls between - w d 7 / 2  and wdr/2.  

The logic is the same as we developed in sects• 5.3 and 5.4. 

Check also (9.38-39) of the joint p.d.f. [hint: use the general form (5.10) of these 
probability density functions, and note that M44 = Mll]. Finally, check the covariance matrix, 
reasoning as we did in sect. 5.2.2. 

9.7.2 The exact f o rm o f  the conditional p.d.f, on the r.h.s, o f  (9.37) as c~ ~ oc 

Let  us cons ider  pre l iminar i ly  the p.d.f, of the second der ivat ive  /70, given the 
condi t ion  

7/0 = @~,//0 = 0,//~ = 0, r/~ - (~ - 1) cx. (9.40) 
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It can be given the compact form 

P [~)0 = u I r/0 = ~a,//0 = 0,//~ = 0, r/, = ( ~ -  1)a] = 

( { [ _ C55 exp Css - C15 ~ - C45 (~ - 1) a , 
- 27r C ~ u - Cs5 

(9.41) 

which proceeds from essentially the same steps leading to (9.8). Here  it will be 
unders tood that Cq and C are the i, j cofactor and the determinant  of the covariance 
matrix of ~70,//0,//~, r/~,/)0: 

Cq = i, j cofactor 

C = determinant  of 

1 0 ~,  % - 1  

0 1 - ~ - ~  0 

~ - ~  1 0 "~ . 

~p, - ~ ,  0 1 ~ 

- 1  0 "~ ~ m4 

Equat ion  (9.41) implies that the mean value of ~)0 given the condition (9.40) is 

00 = K1 
where 

/(1 - 
- C 1 5 ~ -  C 4 5 ( ~ -  1) 

C55 

and that the standard deviation is 

s tandard deviation of / ) 0 -  , /  C 
V C55 

Equat ions  (9.42) and (9.44) imply that 

~)0/oz - KI (7-, ~), 

(standard deviation of/~o/a) ~ 0 J 
as a ~ c c  

(9.42) 

(9.43) 

(9.44) 

so that we write 

p [(4)o/O~) = u[r/o = ~a,//o = 0,//~ = 0, r/~ = ( ~ -  1)oz] = 5 [ u -  K1 (7-,~)] as a ~ oc, 
(9.45) 

where,  as usual, ~5 ( u -  Uz) represents the delta function at u = Uz. 
With the same sequence of steps leading to (9.45) we also arrive at 

p [(4)~/a) = wit/0 = ~a,¢/0 = 0,¢/~--0,  r/~ = ( ~ -  1)a] = 6 [ w -  K2(~-,~)] as ce ---+ oc, 
(9.46) 
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where 
K2 (~, ¢) - 

-D~5 { - D45 (~  - -  1) 

Dss 
(9.47) 

and where Di] is the i, j cofactor of the covariance matrix of ~/0, ~)0,//~, ~/~,/)~" 

D~j-  i, j cofactor of 

1 0 ~ ~b, ~ 

0 1 - ~  - ~  -~'~ 

~ - ~  1 0 0 . 

~ - ) ;  0 -1  m4 

Equations (9.45) and (9.46) yield 

p [ ( # o / ~ )  - u ,  ( # ~ / ~ )  - w Iv0 - ¢ ~ , , ) 0  - 0 ,  ~ - 0 ,  v~ - (~ - ~ ) ~ ]  - 

= 6[u  - K ,  ( r ,  ~),  w - 1(2 (T ,  ~)] a s  a + o c ,  

where (5 (u - Urn, W - Wm) is the delta function of two variables. 

9.7.3 The evaluation o f  the double integral on the r.h.s, o f  (9.37), as a ---+ oc 

The last equation enables us to evaluate the double integral on the r.h.s, of 
(9.37). The result is joj  
as a--+ oc, lulwp[i)o--U,i)~--wlrlo--@~,ib--O, iT~--O, r l~ - - (~ - l )a ]dwdu- -  

- - o c  0 

_ J ' - I g , ( r , ~ ) l g ~ ( ~ , ~ ) ~  2 if K ~ ( r , ~ ) < 0  and K2(T,~)>0,  
( 9 . 4 8 )  

- 0 otherwise, 

which is rewritten in the alternative form 

as a -+  oc, lu wp[i)o-U,i)~-wl~lo-@~,i lo-O, i l ~ - O , q ~ - ( ~ - l ) a ] d w d u -  
- - o c  0 

t" 
_ J -- IK1 (T, ~)K2 (T, ~)lOg 2 

[ < IK1 (r, ~)K2 (r, g)l a 2 

given that 

KI(T* , I )  - 

1 T* if r -  and { -  
2 '  

1 
if r / :  T* and/or { ¢ 2 '  

1 1 -+- ~r* 
2 1 - ~bv* 

<0 ,  K2(T ,  1~ 1 1 + ~ ,  > 0 .  
\ 2 J '  2 1-~br* 

(9.49) 

(9.50) 
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Check (9.48). To this end, divide the plane u-w into the four quadrants (1 st quadrant: 
u > 0, w > 0; 2 nd quadrant: u > 0, w < 0; 3 rd quadrant: u < 0, w < 0; 4 th quadrant: u < 0, 
w > 0). The double integral covers the fourth quadrant. The conditional p.d.f, in this integral 
gathers at point u =/(1 (r, {)a, w = K2 (r, ~)a. Therefore, if this point belongs to the fourth 
quadrant, the integral is equal to 

IK1 (~, ¢)1 ~ /~  (~, ¢)", 
or else it is zero. 

Then check (9.50). It suffices to use the definitions (9.43) and (9.47) and obtain the 
expressions of the cofactors Cij and Dij for r = T*. 

9.7.4 The final f o rm o f  E X  (a, r, ~) 

Equa t ion  (9.49) and formula  (9.38) for the joint p.d.f, enable  us to rewrite  (9.37) 
in the form 

as a --+ oo, E X  (a, r, {) 

- IKl(~,  ~)/(2 (~,  ~)[ r p ~ 2 , / V  exp - f ( ~ ,  ~)~2 
\ - -  ] 

1 
- T* - - -  (9.51a) if 7- and ~ 2 '  

o3 [1 1 
_< I//1 ( r ,  ~)K2 ( r,  ~)l (27r)2 v /M (r)  exp - ~- f ( r ,  ~)a :  

1 (9.51b) if r ¢ T* a n d / o r  ~ ¢ - ~ ,  

where  we write M ( r ) ,  in place of M, to outline that  the de te rminan t  M of the 
covariance matrix depends  on r. 

9.8 Formal proof of the necessary condition. Part III: the central inequality 

9.8.1 Theorem 

The function f (r ,~) {r  c (0, oo), { c ( - c ~ ,  + ~ ) }  given by (9.39) satisfies the 
inequali ty 

f ( r , { ) > f  T ,  if r ¢ T  a n d / o r { g : ~ .  

Proof 
f (r, {) thought  of as a function of {, for any fixed r, has its absolute min imum at 

1 
z m :  

2 1 
, - - .  (9.53) f ( r , { )  > f  if {¢- 2 



The theory of quasi-determinism 301 

This absolute minimum is 

?IT,  _~_/ - M11-M14M (9.54) 

and is a function of r.  

The numerator  and the denominator on the r.h.s, of (9.54) are given by 

M l l -  M14 - 1 - ~_)2 r - -  ~ 2  r -t- ~-)r + ~2r~/-)r - 2/)r~2r, 

2"'2 M - 1 - ~ 2 _  2~2 + ~ 4  2 ~ 2 ~ _  ~2 + ~ ~  
T T 5 

(9.55) 

and are related to each other by 

M - (Mll - M14)(1 - ~<) - @2 r [(1 + %)(1 + ~.) - ~ 2 r ] .  (9.56) 

In the Appendix (sect. 9.8.3) we prove the inequality 

[(1 + ~b~)(1 + ~5~) - ~2] > 0, (9.57) 

which together with the equation (9.56) yields 

M < (M,~ - M14)(1 - g'T), 

and this inequality and equation (9.54) taken together give 

Finally, this last inequality implies 

given that 

f ( r ,  1 )  > f ( T * ,  1 )  if r=/=T*, (9.58) 

~ > ~ r *  if r#T* ,  

- -  f T* 1 (9.59) 
' 1 - ~ b r *  

The two inequalities (9.53) and (9.58) prove the theorem. 

Note: the p.d.f. (9.38) must approach zero as I~ --+ oc, which implies that f (r, ~) must 
approach + oc as 1~1 ---+ oc, or equivalently that Mll + M14 must be greater than zero for 

1 every r ( r  ¢-0). And that is why we have assumed the one at ~ - ~  to be the minimum 

rather than the maximum of f (r, ~) thought of as function of ~, for any fixed r. 
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9.8.2 Corollary 

The equality (9.51a) and the inequalities (9.51b) and (9.52) imply that 

0 as c~ ~ ec, (9.60) 

1 
for every fixed pair T, ~ such that T ¢ T* and/or ~ ¢ - - .  

2 1 
In words: EX (a, T, ~) looks like a delta function at T -  T*, ( -  ~ ,  as a -+ co. 

9.8.3 Appendix: proof of the inequality (9.57) 

Originally, it was guessed that the inequality (9.57) should hold good for any 
z ¢ 0, whatever  the spectrum. Then, the formal proof followed after a few attempts. 
First it was found that the function on the 1.h.s. of (9.57) is related to the cofactors 
M22 and M23 by 

[(1 + ¢~)(1 + ~ )  - ~2] _ M22 + M23 
1 - ¢ ~  

Then,  the sum M22 --~ M23 was shown to be always greater  than zero, which yields 
(9.57). The reasoning made to show that M22 -~ M23 is always greater  than zero was 
as follows. 

The joint p.d.f. 

1 1 1 
p (r/0 - 0,//0 - w, i/7 - u w, r/~ - 0) - exp (M33 u 2 ] (27r)zx/~ ---~-~ + 2Mz3u n t- mzz)W 2 , 

where u and w are two independent  variables, must approach zero, for every u, as 
Iwl ---, ec. This implies that the function of u 

M33 u 2 -+- 2M23 u -F M22 

must be greater  than zero, for every u. This function has a minimum (bearing in 
mind that the cofactors i, i are greater  than zero). This minimum is 

and hence the inequality 

M22M33 - M223 > 0 (9.61) 

follows. Since 
M33 -- M22 
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the inequality (9.61) is rewrit ten in the form 

+ - > 0 

which implies 
M22 + M23 > 0, (9.62) 

M:: - M23 > 0, 

since M22 is greater  than zero. The inequality (9.62) completes the proof. 

9.9 Formal proof of the necessary condition. Part IV: conclusion 

9.9.1 Def in i t ions  o f  EX,.w (c~, 3-, ~) and  E X  (c~) 

Let us define 
EXs.w. (~, r, ~) dc~ dr  d~, 

the expected number  per unit time of local maxima of the surface displacement ~/(t) 
(at the fixed point Xo), maxima whose elevation falls be tween ~c~ and (~ + d~)c~ and 
are followed by local minima of elevation between (~ - 1)c~ and (~ - 1)c~ - dc~ after 
a time lag between 3- and 3- + dz (c~, 3- and ~ being arbitrarily fixed), with the local 
max imum and the local min imum which must be, respectively, the crest and trough o f  
the same wave. The underl ined condition will be called the same wave condition 
(symbol s.w.). 

Let us define also E X  (c~)dc~, the expected number  per unit time of waves whose 
height falls within a fixed small interval c~, c~ + dc~. 

The following relation proceeds straightforwardly from the two definitions: 

E X  (c~) - EX,.w. (c~, T, ~) d~ dT. (9.63) 
o o 

9.9.2 The relat ionship be tween  EXs.w. (c~, 7-, ~) and  E X  (c~, r ,  ~) 

From the definitions of E X  and EXs.w. it follows that 

E X ,  w <_ E x  

EXs.w. (c~, T, ~ ) / E X  (c~, T, ~) ~ 0 as 3- ~ ~ .  

(We have the second of these relations, because the probabili ty that the same wave 
condition is fulfilled for large values of the time lag 3- is negligible.) 

One more relation between EX,.w. and E X  proceeds from sect. 9.1. Indeed, a 

corollary of sect. 9.1 is that, given a local maximum of elevation 1 --c~, and given a 
2 
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local minimum of elevation 1 , - - - a  after a time lag T ,  these are the crest and trough 
2 

of the same wave, as a ---, oc. Therefore 

a s  a ~ ~ .  

Finally the set of these relations between EX, w and EX, and the limit (9.60) 

imply EXsw (a,-c, ~) -+ 0 as a -+ oc, 

1 for every fixed pair T, ~ such that ~- # T* and/or ~ ¢ ~ .  

9.9.3 Condition (9.1) is necessary 

The consequence is that the whole contribution to the integral on the r.h.s, of 
(9.63), apart from a negligible share, proceeds from a neighborhood of point 

, 1 In this neighborhood, EX, w coincides with EX which is given by ~ - - T ,  ~¢~-.  
(9.51a): 

(c~ 1 ~) ( } ) ( , 1 )  a 3 
(27r) 2 v /M( r  * ) 

EXs.w. , r *+5~ ,~ -+~  - K1 r*, K~ r ,  

[ (1~-4 -~-+51 ~) ] - _ _ ~  T* +5"r, a 2 as a -~ ° e X p  0(3. 

This is rewritten in the form 

(o 1 )  EXs.w. , T* + 57, -~ + 5~ -]gl(Z*,2)g2(z*,}) OZ 3 

(27r)2 v/M(T * ) 

1 (T*, • exp [ - ~ f "  1 )  c~2] exp 1 2 K~5(2 ] as a---, ec. (9,64) --~ (K;~ + )~ 

A( 
where the formulae for K1, K2, M, f T* 
next section. 

Since K; and K~ are nonzero, 

EXs.w. @, T* 

has the same order as 

}) K* and K* will be gathered in the 
T ~ 

1 )  + 5~-, ~-+ 5~ 

EX,.w ~ ,  
1) T*,-~ 
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only if 8r  and 8~ have an order smaller than or equal to Og -1. Therefore the 
1 

neighborhood of point r - T*, ~ - making the whole contribution (apart from a 
2 

negligible share) to the integral on the r.h.s, of (9.63) has a radius of order a -~. 

The conclusion is that a wave of height a --+ oc has necessarily the two following 
characteristics 

(i) time lag between crest and trough equal to T*, apart from a random 
difference 8r  of order a -1" 

(ii) quotient between the crest elevation and the crest-to-trough height equal to 

1 apart from a random difference 8~ of order a -1 
2 '  

This proves that condition (9.1) is necessary for occurrence of a wave of given 
height H if the quotient a - H/cr tends to infinity. Also the meaning of necessary 
condition becomes more clear: as H/cr --+ co, the wave of given height H fulfils the 
condition apart from some random difference of a smaller order. 

9.9.4 Detai ls  o f  equa t ion  (9.64) 

The terms on the r.h.s, of (9.64) have the following expressions: 

- K2(T* 1 1 + ~r* (9.65a) 
2 1 - ~ r *  ' 

M(T*) (1 ~ 2 , ) ( 1  - ,@2 ) T* (9.65b) 

~- (T,  2 )  1 (9.65C) 
' 1 - ~r* ' 

K* - ( (3~27~ __ @r* (1 + @r*) (9.65d) 
= T*, ~=~- 

(Oq2?~ 
K ~ - -  (942/= * 1 T,~= T 

8 
1 +  ~br, 

(9.65e) 

Note also that 

2; -o 

= T*~ ~=T 

which has been used for the second exponential function on the r.h.s, of (9.64). 

(1 ) (2 )  The formulae for K~ T*, , K2 T*, and f T*, have been simply 
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rewritten for the convenience of the reader, indeed they were already given [cf. 
(9.50) and (9.59)]. The formula for M(T*) proceeds from (9.55) with r -  r*. A 
Finally, the formulae for K;  and K~ are obtained by differentiating twice f (r, ~). 

The formula for the second derivative of f (r, ~) with respect to ~ is easily obtained from 
the definition (9.39) of this function. For obtaining the second derivative with respect to r at 

* 1 i t i s c ° n v e n i e n t w ° r k i n g ° n ( 9 " 5 4 ) ° f f (  "r 2 )  The result is r ,  , . 

{02f\! __1 
~-~T2/,  = 1 / 2 -  M 3 [ ( ]~ ' I I I - I~14)M2-(MI1-MI4)MI~-2(]~ l I - I~ / I I4 )M]~/ I -~-N(Ml l -M14) i~2]  • 

The derivatives M, Mll-/~/14, /~ and ]~)/11- ]~/14 are obtained from the formulae for M 
• = r*~  and Mll - M 1 4  [see sect• 9•8.1] Once these derivatives will be obtained, put r and since 

= r *  ~, - 0 at r yOU will be able to cancel all the terms containing ~ .  Then you will realize 
that a further big simplification is possible. Specifically, all terms from the underlined part of 
the formula for 02f/Or 2 will cancel out. Moreover, all terms containing the third derivative 
and/or the fourth derivative of ~, will cancel out, and with such a large number of cancelled 
terms, the compact form (9.65d) will be achieved. 

9.10 Corollary: the closed solution for the wave height distribution 

9.10.1 Solution for the expected number EX(c~) 

EX (c~) is deduced by integration of (9.64) over the neighborhood (with a radius 

of order c~ -~) of point T -  T*, ~ _  --.1 With the new variables 
2 

we have 

E x ( . )  - 

u - c ~ S r ,  w - c ~ 8 ~ ,  

o exp[  ( 1 ) ]  
(27r)Zv/M ( T )  ~ ?  r*,  2 

• exp ---ff + w ) dwdu 
--OO --OO 

as c~ --~ ~ .  

Then, using twice the fact that the integral over ( -oo ,  + oc) of exp ( - x  2) is equal to 
v/-~, we readily evaluate the double integral. The result is 

rc v/M ( T*31(* I(* 

where the constants are given by (9.65a-e). 
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9.10.2 Solution for  the p.d.f, p (a) 

The probability p ( a ) d a  that a wave height falls within a fixed small interval 
(a, a + da)  is 

p (a)da = E X  (a)da/EX+, (9.67) 

where EX+ is the expected number  per unit t ime of zero up-crossings (0+) of the 
surface displacement r/(t). This expected number  is the reciprocal of the mean wave 
period: 

EX+ - 1 / - T -  1/2re, 

where the rightmost equality proceeds from (5.24) of T and from the fact that we 
have taken m0 and m2 as units. 

With the formula (9.66) for E X  (a) and the value of EX+, equation (9.67) yields 

1 + VSr, a exp - oc (9.68) 
4(1--~br , )  a s a - +  . p ( a )  - ~/2~r* (1 - ~br*) 2(1 - ~br*) 

9.10.3 Solution for  the probability P(a)  

The probabili ty of exceedance P (a) is obtained by integration over (a, oc) of the 
probabili ty density function. The result is 

, [ ° 2 ]  
1+~5 r exp - 4 ( 1 - ~ r , )  a s a - - + ~ .  (9.69) 

P (a) - ( 2 ~ r *  (1 - ~br*) 

Since we have taken m0 - 1, m2 - 1, a is the quotient  between the wave height 
and x/-~7, and ~r*, ~ *  represent  the quotients 

~br* - ~(T*)/mo - -~b*, 

~r* --~(T*)/m2. 

The formula (9.69) was given in advance in sect. 5.7.3. There,  it was written in a 
few alternative ways, and the constant before the exponential  function was 
generically denoted by K. Now we see that 

K_-  I + ~ T *  

~2~r*  (1 - ~br*) 

In sect. 5.7.3 we also said that  K can be taken to be 1 for the practical applications. 
On the contrary, the exact value of K must be applied for a careful test of the 
formula against the data from numerical  simulations. 
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9.10.4 Tests against data from numerical simulations of Gaussian random 
processes 

Forristall  (1984) published a few data of 

(P) - a (P)given spectrum/OL (P) infinitely narrow spectrum' 

where  a (P) is the inverse function of P (a). These data were obta ined from a careful 
numerical  simulation of Gaussian r andom processes. Now we have got the exact 
form of ~ (P) as a ~ c~ or P --+ 0: 

~(p) _ [.(l - ~br,)ln(K/P) ]-~ 
 i-1765 as 0 <9.70) 

(~) Pierson-Moskowitz spectrum 

~Pr* =-0.65, ffrOffiO.40 

1.00 

0.95 
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0.80 
x~ 

. . . . . . . .  | . . . . . . . .  i . . . . . . . .  , . . . . . . . .  i . . . . . .  
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• . ~ 

P 
, , , | . . . .  , . . . . . . . .  i . . . . . . . .  | . . . . . . . .  | . . . . . . .  

10 ~t 10 -3 10 .2 10 a 

(~) boxcar spectrum 
. .  

~Pr*--0.55 , tPr*--0.69 

~-- 1.20~¢--~ 

! 
i 

oJp 

(~) boxcar spectrum 

l p r .=- -0 .41  , ~r.=0.65 

'- 1.5a~----~ 

[ I 
a~p 

Fig. 9.3 Check of the closed solution for the probability of the wave height. The data points were 
obtained by Forristall (1984) through numerical simulations of random Gaussian processes. 
Abscissa: the probability of exceedance; ordinate: the quotient between the wave height with the 
given spectrum and the wave height with the infinitely narrow spectrum. 
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(which straightforwardly proceeds from 9.69), and we can check this formula 
against Forristall 's data. 

The data of ~ ( P )  (see fig. 9.3) were obtained for three distinct shapes of the 
spectrum. The lines represent  the function ~ (P) obtained by means of (9.70) for 
these spectra. Basing ourselves on the theory, we expect that the convergence of the 
data points to the theoretical lines occurs as P ~ 0, that is on the left side of the 
figure; and this is just what happens. But the figure tells us something more. It 
shows that the convergence of the data points on the asymptotic form (asymptotic in 
that it is exact as P --+ 0) is quicker, the narrower  the spectrum is: for the very broad 
rectangular  spectrum (~* = 0.41), the convergence occurs for P between 10 .4 and 
10-3; for the somewhat  narrower  rectangular spectrum (~* = 0.55), the convergence 
occurs for P between 10 -3 and 10-2; for the characteristic spectrum of the wind 
waves (~* = 0.65) the convergence occurs even for P = 0.20. In other words, in a 
Gaussian random process with a characteristic spectrum of the sea waves, equation 
(9.69) proves to be fully effective for P < 0.20 which corresponds to c~ > 3.5. 

Hence,  the first important  evidence that the theory of quasi-determinism, which 
is exact as H/c7 --+ oc, is effective to predict the propert ies of the realistically high 
waves. 

Conclusive note 

This is included at the end of chap. 10. 

References 

These are incorporated in those at the end of chap. 10. 
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Chapter 10 
USES AND CONSEQUENCES 
OF THE QUASI-DETERMINISM THEORY 

10.1 The first way to employ the theory 

10.1.1 The technique o f  calculation with theoretical spectra 

The two basic equations are (9.21) and (9.24). In chap. 9 they were given with the 
compact symbols (9.20) and (9.25) used to ease the mathematics. With the full 
symbols, the aforesaid equations become 

~(xo+X,  yo+Y,  t o + T ) -  
~P (X, Y, T; Xo, Yo) - ~P (X, Y, T -  T*; Xo, Yo) H 

T(O,O,O;xo,Yo)- ~P(O,O,T*;xo,Yo) 2 ' 
(10.1a) 

O(xo+X, yo+Y,z,  t o + T ) -  
q~ (X, Y, z, T; xo - q~ (X, Y, z, T - T*; Xo, yo) H 

~(O,O,O;xo,Yo)- ~(0,0, T*;xo,Yo) 2 
(lO.lb) 

The formulae for the covariances ~u and (b were obtained in chap. 8 for three wave 
fields" (8.4a-b) (open sea), (8.36a-b) (interaction with an infinitely long 
breakwater), (8.39a-b) (interaction with a semi-infinite breakwater). 

The first operation in applying (10.1a-b) is to evaluate T*, that is the abscissa of 
the absolute minimum (which is assumed to be also the first local minimum) of the 
autocovariance ~ (T) at point Xo, Yo. For the waves in the open sea, ~ (T) is the same 
for every point of the wave field and can be obtained from the frequency spectrum; 
and indeed in chap. 4 we have already seen that T* is equal to 0.44 rip for the mean 
JONSWAP spectrum [cf. fig. 4.17]. 

At all events, ~(T)  can be easily obtained from the formula for the space-time 
covariance with X -  Y -  0. As an example, for the waves in the open sea, the 
space-time covariance is given by (8.54a) from which we obtain. 

,Y(w, 0) cos 7:w d0dw 
q;(T) ~P (O, O, r;xo, yo) o o Tp 

,(o) (o, o, O;xo,yo) f  J(w, 
O) dO d W J o Jo 
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The integrals of the rightmost equality can be evaluated numerically, which yields 
~b(T)/~b(O) as a function of T/Tp, and hence we obtain T*/_Tp. 

The second operation is to obtain the functions ~ and q5 for the special case of 
interest. In particular for the waves in the open sea g* and ~b are given by (8.54a-b), 
and hence (10.1a-b) take on the form 

rl(xo+X, yo+Y, to+ T) H I°°12~ - - Y (w, 0) {cos [ARG1 (w, 0)] + 
- ~  0 0 

(a0.Za) 
-cos  [ARG2 (w, O)]} dO dw/DO, 

r 1~ r | 2 ~ j  (w, O)w-IAT1 (w) {sin [ARG1 (w, 0)] + H 
~b(Xo + X, yo + Y,z, to + T) -g--j-%-'  ~o ao 

(lO.2b) 
- sin [ARG2 (w, 0)]} dO dw/DO. 

These equations have been written in a suitable form for PC, thanks to the 
following definitions: 

E ARG1 (w, O) - 27r (w) X sinO+ iS (w) -~Y cosO - w , 
L~o L~o 

ARG2(w,O) - 27r [~(w) X sin0+~(w) Y cos0-  w ( T -  T*)] 
L,o L,o ~, ' 

DO _ Io I i ~ j  (w,O) [l _ cos (27rw T* 

A T I ( w ) -  cosh I2rrS (w) (-~p0 + -~p0)] /cosh (2rc,~ (w) -~p0), 

A T 2 ( w ) -  sinh I27r~/(w) (~p0 + ~ p 0 ) l / c o s h  (2rr,(. (w) ~p0 ) . 

Of course, from the formula for ~b we obtain particle velocities and accelerations 
and pressure fluctuations. In particular, from (10.2b) we have 

-Vy(Xo+X, yo+Y,z,  t o + T ) -  OY -g-~-- p ~pO o a ao (w,O)w-lATl(w)~/(w). 
(10.3a) 

• cos0 {cos [ARG1 (w, 0)] - cos [ARG2 (w, 0)]} dO dw/DO, 

0~ H -1 27r f~f2~ -Vx(Xo +X,  yo + V, z to+ T) - - j j ~9 ~(w, O)w-lATl(w)~/(w). , ~-X -g--~COp ~ o o 
(10.3b) 

• sin0 {cos [ARG1 (w, 0)] - cos [ARG2 (w, 0)]} dO dw/DO, 
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V~ (Xo + X ,  Yo + Y, z to + T) - O0 H 1 2re (w, O)w-IAT2 ( w ) ~  (w). 
' Oz - g - - 2 %  o 

(10.3c) 
• {sin [ARG1 (w, 0)] - sin [ARG2 (w, 0)]} dO dw/DO, 

027 H 27r I°°I2~ 
- ~ ~ ~ Y ( w , O ) A T 1  (w)/S(w) • ay(Xo + X ,  Yo + Y, z, to + T) OYOT - g 2 Lpo o o 

(lO.3d) 
•cosO {sin [ARG1 (w, 0)] - sin [ARG2 (w, 0)]} dO dw/DO, 

027 H 27r J°° I2~ 
- - - ~ ~ ~9 ~' ( w ,  O ) A T 1  ( w ) ~  ( w )  • ax(xo + X ,  yo + Y , z ,  to + T) OXOT - g 2 Lpo o o 

(lO.3e) 
• sinO{sin[ARG1 (w, 0)] - sin[ARG2(w, 0)]} dO dw/DO, 

027 H 2re I~ J2~  
- -- = - -  - -  J ( w , O ) A T e ( w ) / ' ( w )  • a~ (Xo + X ,  3'0 + Y, z, to + T) Oz OT - g 2 Lpo o o 

(lO.3f) 
• {cos [ARG1 (w, 0)] - cos [ARG2 (w, 0)]} dO dw/DO, 

0-0 H I °° [ 2 ~ y  (w, O)AT1 (w) . Ap(xo + X ,  yo + Y , z ,  to + T) - - p ~ - -  p g - ~  o ao " 

(10.3g) 
• {cos {ARG1 (w, 0)] - cos [ARG2 (w, 0)]} dO dw/DO. 

We see that  r/, vx, G, Vz, 8x, a y ,  a z ,  and Ap are given by double  integrals with 
respect  to w and 0. These  integrals can be numerical ly evaluated even with some 
relatively large steps A w, A0. General ly,  A w -  0.02 and A 0 -  0.07 prove to be 
suitable; even if A w -  0.05 is large enough at least over the domain  IX] < 2Lp, 
I YI < 2Lp, I TI < 2Tp. As to the limits of integration,  we suggest taking Win f - -  0.5 and 
Wsup -- 2.5, which means  that  the interval of integrat ion is reduced  to 0.5w p, 2.5Wp 
(this interval being wide enough for the characterist ic spectra of the wind waves).  
Finally, if we apply the directional spreading function (8.16) the interval of 
integrat ion with respect  to 0 usually can be reduced  from the whole circle to 

_ E 

0in f - -  0 -  I rad, 0su p - -  0 + 1 rad.  

10.1.2 A f e w  suggest ions  f o r  calculations 

Let us consider the set of w and 0 values used for the numerical  integration.  It is 
convenient  to associate an integer  index with each of these values" e.g. wi.f ~ i - 1, 
Win f -71- / ~ W  =~ i - -  2 . . . ,  and 0inf =~ j -- 1, 0inf + A0 =~ j -- 2, .... Hence,  the nondimen-  
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sional spectrum Y (w, 0) and the nondimensional wave number  ~ (w) will be stored 
in memory,  respectively, as a matrix and as a vector. As to Y (w, 0), we shall use 
(8.20) or (8.33). As to,4' (w) it can be obtained by means of (8.24) with d/Lpo as input. 

Typically, the calculation has to be performed for many pairs X, Y and several 
values of T. This is why storing in memory J ( w , O )  and ~(w)  is useful: the 
calculation of Y (w, 0) and ~ (w) will be done only once rather than a number  of 
times equal to the product of the number of pairs X, Y by the number  of T values. 
Similarly, one easily recognizes that it is highly convenient to store in memory a 
vector for sin0 and a vector for cos0. 

Of course, the more complex algorithms are those of the diffracted waves. 
Indeed (10.1a) with (8.56a) of ~u (interaction with a semi-infinite breakwater)  
becomes of the type 

-~ (Xo + X,  yo + Y, to + T) - 

(, (, fa(w,O;X,Y;xo, yo)COS ww +f2(w,O;X,Y;xo, yo)sin ww 
H o o T~ 

T )  dO dw 

J~ ]2~f3 (w, O; xo, Yo) dO dw 
0 0 (10.4) 

where functions fa, f2 and j~ have some rather long expressions which include 
Fresnel integrals. The machine time for the denominator  is rather short because 
there is only one double integral to be evaluated. On the contrary, the numerator  
calls for the evaluation of a number of double integrals equal to the product of the 
number  of points X, Y and the number of times T. 

Here, a great saving of machine time is achieved on defining: 

Ii (w; x ,  r;  xo, yo) - fl (W, O; X,  Y; xo, yo) dO, (10.5a) 
0 

I2(w;X, V;xo, yo) - fz(w,O;X, r;xo, yo) dO, (10.5b) 
0 

and rewriting (10.4) in the form 

~(Xo + X,  yo + Y, to + T) - 

I1 (W; X, Y; Xo, Yo) cos 7c w 
H o 

T ) + I2 (w; X, Y; xo, Yo) sin (27r w dw 

j . ec i27r 
f3 (w, O; Xo, Yo) dO dw (10.6) 

0 0 

If, for each point X, Y, we shall store in memory the vectors Ii(w) and I2(w), we 
shall avoid repeating the calculation of the same pair f~, f2. As an example, let us 
imagine we have to compute ~ at 10 instants T, at 6000 points X, Y, with 100 values 
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of w and 30 values of 0 (which is a realistic condition). With (10.4) we should 
execute 

10. 6000. 100 .30  = 180 million 

calculations of f~ and f2. While, with the sequence (10.5a-b) + (10.6) we should 
execute 

6000. 100 .30  = 18 million 

calculations of f~ and f2. Since practically the whole machine time is needed for the 
calculations of the functions fl and f2, passing from 180 million to 18 million pairs fl ,  
f2 to be calculated means reducing the machine time to one tenth. 

Of course, it is useful also to store in memory the Fresnel integrals. Coming back 
to the previous example, we have to calculate 18 million pairs f~, f2, each of them 
calling for 4 Fresnel integrals, which makes 

18 million. 4 = 72 million 

Fresnel integrals to be evaluated. Thus it is convenient  to store in memory SFR (X) 
(the Fresnel integral with integrand sine) and CFR(X) (the Fresnel integral with 
integrand cosine) with some fixed increment. As an example if the increment is 0.01 
and we have to evaluate SFR (4.932) we shall simply find this value by interpolation, 
using the two known values of SFR (4.93) and SFR (4.94). Following these suggestions, 
a calculation like that of the example (10 instants T, 6000 points X, Y) for the more 
complex case (reflection t diffraction) takes nearly five minutes of Pent ium PC 
time. 

10.1.3 Uses of  the theory 

The theory of quasi determinism can be used in place of the periodic wave 
theory. It is valuable because it predicts what happens on the space-time just when 
the highest waves do occur. As an example Xo,Yo could be the location of an 
offshore structure and H the maximum expected wave height in the lifetime of this 
structure. Then the theory is able to predict the configuration of the water  surface 
and the particle velocities and accelerations and the pressure fluctuations when this 
maximum wave height occurs at the structure. 

But the theory can be also used for some interactive processing. Let us see an 
example. In chap. 8 we have found an amazing difference between the wind waves 
and the periodic waves in what concerns reflection. How is it possible that nodes and 
antinodes practically disappear in the wind waves? Here  we shall use the theory 
starting from the question "what happens if a wave with an exceptionally large 
height H should occur at a point Xo, yo at the breakwater?" .  The answer will bring us 
into the core of the phenomenon.  If we shall not realize at once what we are 
interested to (specifically why nodes and antinodes disappear) we shall choose a new 
point Xo, yo and get the new answer (hence the interactive processing). Generally, the 
answers of the theory are simple and enlightening, as we shall verify in the next 
sections. 
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dominant A J  

Fig. 10.1 We know that a wave of exceptionally large height H occurs at time to at point Xo, Yo at 
the centre of the framed area. The pictures show what we can expect to occur before and after to. 
The nondimensional  time lag T/Tp is given on the right side of each picture. The wave of given 
height H is that at the central position of the group in the third picture (T -- 0). The arrow points 
to this wave during its evolution. [Obtained by means of (10.2a).] 
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These are the more conventional ways to use the theory, starting from some 
theoretical spectrum. Then there is a new way we shall deal with in sects. 10.8-9-10. 

10.2 A three d imens ional  wave group 

What happens if a wave of exceptionally large height H should occur at a given 
point Xo, Yo in the open sea? The answer is given by fig. 10.1. The framed area is the 
same in each picture, and point Xo, Yo is at the centre of this area. The input data are: 
deep water, nondimensional spectrum (8.20) with )~1 = 3 and np = 20. 

We see a three dimensional wave group passing at Xo,Yo. Thus, the theory 
implicitly reveals the existence of a well defined physical unit that is the 3-D wave 
group. The theory reveals also two basic features of this group. First: the individual 
waves have a propagation speed greater than the group's speed, so that each of 
them runs along the envelope from the tail where it is born to the head where it dies 
(the arrow points to an individual wave during its evolution). Second: the wave 
group has a development stage which is followed by a decay stage; in the 
development stage the three-dimensional envelope shrinks, so that the height of the 
central wave grows up to a maximum. 

As we see, the answer of the theory is simple and clear: "If you record an 
exceptionally high wave at a point at sea, you can expect that most probably it is the 
centre of a well defined group at the apex of its development". 

The wave groups are similar to the human families. Let us think of the house of 
Medici of Florence. Throughout the fourteenth and fifteenth century this family had 
a development stage up to a maximum at the age of Lorenzo the Magnificent. Then, 
during the two following centuries the family had a progressive decay. In the four 
centuries from 1300 AD to 1700 AD a lot of individuals of this family were born, 
grew up and died. The same is true of the waves: the group is like the family, the 
individual waves are like the members of the family. The wave group at the apex of 
the development stage is like the house of Medici at the age of Lorenzo the 
Magnificent, and the wave at the centre of the group at the apex of its development 
is like Lorenzo the Magnificent in the years of his full maturity. 

The propagation speed of the wave group is nearly equal to the group celerity cc 
[cf. sect. 2.9] associated with the period Tp, and the propagation speed of each 
individual wave is nearly equal to the wave celerity c associated with Tp. Therefore, 
on deep water, the propagation speed of each individual wave is nearly twice the 
propagation speed of the wave group. The fact that each individual wave moves 
along the envelope leads to a few amazing transformations: the wave that goes to 
occupy the central position of the group at the apex of the development stage nearly 
doubles its height in a run of only one wavelength! Moreover, as an individual wave 
approaches the central position of the group, its wave period and its wavelength 
reduces itself. As it leaves the central position, a compensating stretch occurs. 

An essential picture of wave replacement at the central position of the group is 
given in fig. 10.2, where the waves are sketched as vertical segments (it is the 
conventional representation we already gave in fig. 2.17). The three configurations 
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Fig. 10.2 Replacement of a wave at the envelope centre on deep water. The waves are 
represented by vertical segments like in fig. 2.17. 

(a), (b) and (c) have been taken one period apart from each other. They show wave 
B being replaced by wave C at the group's centre. 

At sea, the replacement at the central position of a group can become well 
evident. This occurs if a high wave like B in the first picture of fig. 10.2a is spilling 
near the crest. Then this wave leaves the central position (second picture) and it 
sheds its whitecap. Then the next wave (C) takes the central position and in its turn 
it starts spilling near the crest. In these cases the whitecap is like a crown passing 
from one wave to the next one. 

10.3 The waves  are higher on the time domain than on the space domain! 

Fig. 10.3a shows the wave group on the time domain at point Xo, yo. Fig. 10.3b 
shows the wave group on the space domain at time T = T*/2, when the envelope 
centre passes at Xo, Yo. Henceforth we shall call fig. 10.3a "record" since it is the ideal 
record of the wave group of fig. 10.1 taken by an ideal gauge at point Xo, yo; and we 
shall call fig. 10.3b "snapshot" since it catches the group at a fixed time instant. 
Finally, we shall refer to the point Xo, Yo simply as yo given that we deal only with the 
waves along the y-axis (propagation axis). 
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DEEP WATER 

(a) TIME DOMAIN : Y--O 

/ , ~  wave height =H 

-1 o T*/2 7"* 1 
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Fig. 10.3 (a) Ideal record of the group of fig. 10.1 taken at point Xo, Yo. (b) Ideal snapshot of the 
group taken when the envelope centre passes at Xo, Yo. The heights of the waves on the space 
domain (panel b) are smaller than the heights of the waves on the time domain (panel a). This is a 
general property due to the fact that each single wave moves along the envelope. 

We note at once that the wave heights are smaller in the snapshot than in the 
record. This is an unexpected feature, and indeed hitherto a cornerstone of the 
wave theory was: the wave height is the same on the time domain and on the space 
domain. The new finding can be given a precise explanation as shown below. 

Wave A is covered by the record for a time interval starting at T~ and ending at 
T2, while it is caught by the snapshot at a later time (T*/2). This is why A is smaller 
in the snapshot: both the snapshot and the record show wave A in its decay stage 
(the wave has left the central position of the group) but the snapshot catches A after 
it is recorded. 

Wave C is covered by the record for a time interval starting at T3 and ending at 
T4, while it is caught by the snapshot at a previous time (T*/2). This is why C is 
smaller in the snapshot than in the record: both the snapshot and the record show 
wave C in its development stage (the wave has not yet reached the central position 
of the group) but the snapshot catches C before it is recorded. 

Fig. 10.4 should help us to better understand this phenomenon. Indeed it shows a 
few snapshots of wave A from the time when this wave passes at Yo to the time of 
fig. 10.3b. Moreover, the figure shows a few snapshots of wave C from the time of 
fig. 10.3b to the time when it passes at Yo. 
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Fig. 10.4 Two "snapshots" of wave A before the time instant of fig. 10.3b, and two "snapshots" of 
wave C after this time instant. 

The same difference between space domain and time domain, even if in a more 
attenuated form, affects wave B at the group centre. Let us observe the snapshot: the 
wave crest is in front of the envelope centre. Hence shortly before, while passing at Yo, 
the wave crest was somewhat higher than in the snapshot. Then we see in the snapshot 
that the trough of wave B is behind the envelope centre. Hence, some time later, when 
it passes at Yo it will be somewhat deeper than in the snapshot. 

This phenomenon is general: if we photograph a wave group passing at any point 
and we compare the snapshot to the record taken at this point, we shall find that the 
waves are smaller in the snapshot than in the record. This is simply because the 
waves in the group's head are decreasing and the waves in the group's tail are 
increasing, so that the record catches the decreasing waves before the snapshot and 
the increasing waves after the snapshot. The result being that both the decreasing 
waves and the increasing waves are higher in the record than in the snapshot. 

10.4 Effects of water depth and of spectrum shape on the wave group 

10.4.1 Effects of  the water depth 

We have seen that the crest-to-trough heights on the space domain are smaller 
than on the time domain, as a consequence of the fact that the individual waves 
move along the envelope. Thus we expect that the greater the difference between 
the space domain and the time domain (as to the wave height) will be, the larger the 
relative propagation speed of the individual waves is with respect to the envelope. 
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1 
Since this relative speed is ~ c on deep water  and approaches  zero on shallow water  

2 
(cf. sect. 2.9.3), we expect that  the difference be tween time domain  and space 
domain  will be greater  on deep water  and will tend to disappear  on very shallow 

water. 
Fig. 10.5 shows the wave group on the time domain  (GT) and the wave group on 

the space domain  (GS), on shallow water  (d/Lpo = 0.1); for the rest, the input data 
are the same as in fig. 10.3, and in part icular  the spectrum is the same. In line with 
our prediction,  we see that  the difference be tween  GS and GT is smaller on shallow 
water  (fig. 10.5) than on deep water  (fig. 10.3). 

Since 
(i) the difference be tween  GS and GT is smaller on shallow water  than on 

deep water,  
(ii) under  the same spectrum, GT does not  change from deep water  to shallow 

water,  
it follows that GS changes f rom deep water  to shallow water. Specifically, the wave 
heights are larger in the GS of shallow water  than in the GS of deep water,  

SHALLOW WATER 

(a)  TIME DOMAIN : Y--0 

(~) / ? k ( ~  wave height =H 

(b) SPACE DOMAIN: T=T*/2 

(~)0.95H :-., 

wave direction 

+1 0 -1 2 

Fig. 10.5 The same as in fig. 10.3 with the only difference that the waves here are on shallow 
water (d/Lpo -- 0.1). 
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Fig. 10.6 The wave group on the space domain: (a) on deep water, (b) on shallow water. 

and this difference is greater for the waves of the group's tail and of the group's 
head. The effect being that the GS of shallow water consists of a greater number of 
waves (or, more precisely, of a greater number of waves high enough to be noticed). 
The scheme of fig. 10.6 should help to realize this item. 

The fact that the group on shallow water consists of more waves than on deep 
water is clearly evident in the three dimensional pictures (fig. 10.7). A comparison 
between fig. 10.7 (shallow water) and fig. 10.1 (deep water) reveals that the length 
of the wave crest and the wavelength are both smaller on shallow water. This, 
naturally, under the same spectrum. 

10.4.2 Effects of the spectrum shape 

The basic properties of the wave group are independent of the spectrum shape; 
in particular, whichever the spectrum, the wave group has a development stage in 
which the three dimensional envelope shrinks gradually, and a decay stage in which 
the envelope stretches. The spectrum shape affects the conformation of the 
envelope. Specifically, if the frequency spectrum gets narrower, the envelope 
becomes longer; if the directional spread decreases, the wave crest widens. An idea 
of the effect of the directional spread on the length of the wave crest is given by fig. 
10.8. (To appreciate this effect better, we have resorted to an extremely narrow 
spreading direction function, with np = 50.) 

At this stage it should be clear that the directional spread of the spectrum is 
responsible for the short-crestedness. We have already realized this item in sect. 8.7 
and now we can appraise it from the three dimensional pictures. It remains only to 
wonder which is the relation between the directional spread of the spectrum and the 
directions of propagation of the waves. 

There is a general belief that the directions of propagation of the waves in a sea 
state are very different from one another. According to this, we should expect that 
an exceptionally high wave at a fixed point Xo, Yo is due to a collision of wave groups 
with different directions; similar to that shown in fig. 10.9a. But, as we have seen, 
the matter  is not so, at least for the wind waves. Indeed the quasi-determinism 
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dominant S 
wave direction 

Fig. 10.7 The same as in fig. 10.1 with the only difference being that the waves here are on 
shallow water ( d / L p o  - 0.1). We see that the wavelength is smaller than on deep water, the wave 
crest is shorter and the wave group consists of a greater  number  of individual waves. 
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Fig. 10.8 With a smaller directional spread, the wave crest gets longer. Here is what happens on 
passing from n p  - 20 to n p  - -  50. 

theory shows that an exceptionally high wave, most probably, is due to a single 
wave group travelling in the dominant direction of the spectrum. Indeed, both in fig. 
10.1 and in fig. 10.7, we assumed 0 - 0 and found that the wave group travels along 
the y-axis. 

10.5 Shoaling and refraction of the wave group 

Because of refraction the fan of wave directions shrinks. Indeed, whichever the 
direction on deep water, the direction of propagation close to the shoreline tends to 
become orthogonal to this line [cf. fig. 10.10]. 

We saw in sect. 10.4 that a smaller water depth under the same spectrum leads to 
some shorter wave crests; and we saw also that a smaller directional spread of the 
spectrum, under the same water depth, leads to some longer wave crests. Now, from 
deep to shallow water the waves experience both these phenomena, because both 
the water depth and the directional spread of the spectrum get smaller. Owing to 
the reduction of the water depth the wave crest becomes shorter. Conversely, owing 
to the reduction of the directional spread, the wave crest widens. Generally, these 
two opposite trends are nearly equivalent to each other, so that the length of the 
wave crest remains nearly unchanged from deep to shallow water. 

Fig. 10.11 shows three pictures of wave groups at the apex of their development 
stage (time T = 0) on different water depths. Here, the shoaling-refraction effects 
have been taken into account, and the formula (8.33) for Y (w, O) has been used. 
We can clearly see that the length of the wave crest is practically constant from deep 
to shallow water. 
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Fig. 10.9 (a) If the directions of the wave groups of a sea state were markedly different from one 
another, an exceptionally high wave would probably occur because of the collision of two groups. 
(b) The quasi-determinism theory removes this idea, showing that an exceptionally high wave 
most probably occurs because of the transit of a single wave group which travels in the dominant 
direction of the spectrum. 

In the case of fig. 10.11 the dominant  direction on deep water  was or thogonal  to 
the contour  lines, and this is why the direction of advance of the wave groups on the 
various depths was nearly or thogona l  to the contour  lines. If the dominant  direction 
on deep water  is not  o r thogonal  to the contour  lines, then the direction of the wave 
groups changes gradually f rom deep to shallow water  (see an example in fig. 10.12). 
These  changes in direction are well predicted by equat ion  (2.43) with Tp as the wave 
period. 

directional spread 
on deep water 

- - ~ / / /  

••--d•ctional spread 
~// on shallow water 

Fig. 10.10 The directional spread of the spectrum reduces itself from deep water to shallow water 
because of refraction. 
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10.6 Explanation of the first big difference between sea waves and periodic 
waves 

10.6.1 Formation of  an exceptionally high wave in the water sheet before a 
breakwater 

The first big difference between sea waves and periodic waves concerns 
reflection. You will r emember  that, starting from about one wavelength from the 
wall, the variance < 7]2 ( t )  > of the sea waves takes on a constant value equal to half 
the value at the wall [cf. fig. 8.8]. This implies that the diffraction coefficient Ce 
takes on the constant value v ~  rather  than fluctuating between 0 and 2 like in the 
periodic waves. As a further consequence,  the maximum expected wave height in a 
time interval At, at any point, starting from about one wavelength from the wall, is 
1/x/2 times smaller than at the wall (bearing in mind from sect. 8.8 that the 
maximum expected wave height at any fixed point is proport ional  to the Cd of this 
point). Whereas,  in the periodic waves, the wave height at the antinodes (even very 
far from the wall) is the same as at the wall. 

Why such a big a difference between sea waves and periodic waves? The quasi- 
determinism theory enables us to answer this question. 

X 

~ff~ n a n t  
w a v e  d i r e c t i o n  

................... : ~.: i~ ~:i: .... i:i ̧,~:~I~? ¸ 

Fig. 10.11 Three "snapshots" of groups at the apex of their development on decreasing depths. 
(Obtained by means of 10.2a and 8.34.) 
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Let  us see first what happens when the maximum expected wave height occurs at 
a fixed point Xo,yo of the breakwater ;  then let us see what happens when the 
maximum expected wave height occurs at a fixed point Xo, yo at some distance, say 
3Lp, from the breakwater .  Clearly, we shall use the formula ( lO.la)  with the (8.55a) 
of ~. 

Fig. 10.13 answers the quest ion "what  happens  if a wave of given exceptionally 
large height occurs at a point Xo, Yo at the b reakwate r?" .  This point  is at the centre 
of the f l amed  part  of the breakwater ,  and the input data are the basic ones 
[nondimensional  spectrum (8.20) with X~ - 3 and np - 20, 0 - 0, deep water]. We 
see a wave group that  approaches  the breakwater ,  hits it, is reflected, and goes 
back seaward.  It will have been  noted that, while the wave group is approaching 
the wall its envelope gradually shrinks; and, on the contrary,  while the wave 
group goes back seaward,  the envelope stretches. This means  that  the wave group 
is at the apex of its deve lopment  stage when it arrives at the breakwater .  In short, 
the answer is: if you record an exceptionally high wave at the wall, most  probably,  
it is the central  wave of a group hitting the b reakwater ,  at the apex of its 
deve lopment  stage. 

Let  us pass to the second question: what happens if a wave of given exceptionally 
large height occurs at a point Xo, Yo, 3L; before the breakwater?  The answer is given 

37 

wave d i ~  450 

Fig. 10.12 A new series of three "snapshots" of wave groups at the apex of their development. 
Here the dominant direction on deep water is no longer orthogonal to the coastline. 
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Fig. 10.13 Formation of an exceptionally high wave at a point of an upright breakwater. A wave 
group at the apex of its development hits the breakwater, is reflected, and goes back seaward. 
(Obtained by means of 10.1a and 8.55a.) Continued opposite page. 
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Fig. 10.13 Continued. 
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Fig. 10.14 Formation of an exceptionally high wave at a point Xo, Yo three wavelengths before a 
breakwater. Here we see two wave groups, the first one is reflected and goes to collide with the 
second wave group approaching the breakwater. The exceptionally high wave is produced by the 
overlapping of the central waves of the two groups. (Obtained by means of 10.1a and 8.55a.) 
Continued opposite page. 
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Fig. 10.14 Continued. 
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in fig. 10.14 which shows a big novelty: two groups! The first wave group hits the 
breakwater at time T = -6Tp, is reflected, goes back seaward and collides with the 
second wave group approaching the breakwater. The central waves of the two 
groups overlap fully at the fixed point Xo, Yo, yielding the given exceptionally large 
wave height. This wave height is very large because both wave groups reach the 
apex of their development when they come into collision (the two envelopes being 
at the extreme contraction). Hence, the answer is: if you record an exceptionally 
high wave at a point far from the breakwater, most probably it is the outcome of 
two wave groups at the apex of their development, which strike each other in full at 
this point. 

These two answers of the quasi-determinism theory remove the curtain from the 
reflection phenomenon. 

10.6.2 Why the maximum expected wave height at any point far from the 
breakwater is smaller than at the breakwater 

Occurrence of an exceptionally high wave at a point of the breakwater requires 
only that a group at the apex of its development strikes this point. The very high 
wave will be the central one of the group, whose height doubles because of 
reflection. 

Occurrence of an exceptionally high wave at a point Xo, Yo far from the breakwater 
calls for an event that has a much smaller probability to occur: two wave groups at 
the apex of their development must strike each other in full just at this point. The 
very high wave will be produced by the overlapping of the central waves of the two 
groups, and its height will be the sum of the heights of these two waves. 

This is why the maximum expected wave height at a point far from the breakwater 
is smaller than the maximum expected wave height at a point on the breakwater. 

10.6.3 Why nodes and antinodes disappear 

We have seen how a very high wave occurs at a point (3Lp before the wall) 
which, according to the classic theory of the periodic waves, should be an antinode. 
What should we find if the fixed point was the location of a node, say 3.25Lp before 
the wall? The answer is straightforward: just the same process; that is, two wave 
groups at the apex of their development come into collision at this point. There is 
only one minor difference: the time lag between the two groups. Indeed, if the two 
groups have to strike each other in full 3Lp before the wall, it is necessary that the 
time lag is 12Tp [cf. fig. 10.15]. While, if the collision has to occur 3.25Lp before the 
breakwater, the time lag must be of 13Tp. 

Of course, the probability of two wave groups at 12 Tp from each other is equal to 
the probability of two wave groups at 13Tp from each other. Consequently, the 
probability of a given wave height very large at 3Lp from the wall is equal to the 
probability of the same wave height at 3.25Lp from the wall. Or in other words: 
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Fig. 10.15 The trajectories of the two wave groups from fig. 10.14. 

the maximum expected wave height at 3Lp from the wall (where an antinode was 
expected) is equal to the maximum expected wave height at 3.25Lp from the wall 
(where a node was expected). 

Nodes and antinodes would survive also in the wind waves, were the wave 
groups longer than they actually are. If the spectrum was infinitely narrow, the wave 
group would consist of a sequence of many waves of nearly the same height. In this 
case, at the point Yo = -3Lp ,  the waves of the same group would overlap in phase 
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(a) (b) 

Fig. 10.16 (a) A typical sea wave group. (b) How the wave groups would be if the spectra were 
much narrower than they are. The waves of group (a) overlap one another  up to one wavelength 
from the breakwater.  The waves of group (b) overlap one another up to many wavelengths from 
the breakwater.  
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coherence: wave crest @ returning seaward + wave crest (2) approaching the wall, 
wave crest @ + wave crest @ and so on [see fig. 10.16b]. Hence, the wave height at 
this point would be 2H as at the wall. Conversely, at point Yo = -3.25Lp, the waves 
of the same group would overlap in opposition: crest of wave returning seaward + 
trough of wave approaching the wall, and vice-versa. Hence, the wave height at this 
point would be zero: node. 

Thus, we realize that the disappearance of nodes and antinodes is due to the 
small length of the wave groups. And, given that the length of a wave group 
depends only on the frequency spectrum, we realize also why nodes and antinodes 
disappear in the long-crested waves as well. 

10.6.4 Why a few pseudo-nodes and pseudo-antinodes remain near the 
breakwater 

A half-wavelength before the wall, the crest of the group's central wave 
approaching the wall overlaps in phase coherence the crest of the group's head 
wave returning seaward; and the crest of the group's central wave returning 
seaward overlaps in phase coherence the crest of the group's rear wave approaching 
the wall. Of course, the largest wave height at this point (a half-wavelength from the 
wall) will be smaller than the largest wave height at the wall. Indeed, the largest 
wave height at the wall will be twice the height of the group's central wave, while 
the largest wave height at a distance of a half-wavelength from the wall will be the 
sum of the heights of the group's central wave and of the preceding (or following) 
wave. 

1 Lp from the wall In conclusion, the maximum wave height at the distance o f ~  

will be rather large because two waves of the same group necessarily overlap one 
another in phase coherence at this point. But this maximum wave height will also be 
necessarily smaller than the maximum wave height at the wall. Hence, the origin of 
the pseudo-antinode. 

10.6.5 Why the pseudo-antinode becomes more evident on shallow water 

Take a snapshot of the wave group on deep water, e.g. that of fig. 10.3b. Measure 
the elevations of the central wave crest and of the preceding wave crest. Then add 
up these two elevations. Doing so, you will obtain the elevation of the wave crest at 
the first pseudo-antinode if the wave group hits a breakwater. Indeed, the crest 
elevation a half-wavelength before the wall is equal to the sum of the elevations of 
two consecutive crests taken at the same time. 

Now do likewise with fig. 10.5b that shows the wave group, under the same 
spectrum, on shallow water. You will obtain a greater crest elevation because the 
wave heights are greater in fig. 10.5b than in fig. 10.3b (the reason for this, having 
been explained in sect. 10.4). Hence, we realize why, under the same spectrum, the 
maximum expected wave height at a half-wavelength from the wall is greater on 
shallow water than on deep water. 
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10.6.6 W h y  the p s e u d o - a n t i n o d e  becomes  less ev iden t  in the ob l ique  ref lect ion 

Fig. 10.17 shows what happens if a wave of given exceptionally large height 
occurs at a point Xo, yo on the breakwater,  in a case of inclined wave attack: the 
dominant direction of the spectrum of the incident waves makes a 25 ° angle with 
the wall-orthogonal. We see that the wave group travels in the dominant direction 
of the spectrum, hits the wall (at the apex of its development stage), is subjected to 
specular reflection and returns seaward. 

In this manner  the centre of the wave crest approaching the breakwater  does not 
collide with the centre of the wave crest returning seaward [see the scheme of fig. 
10.18]. Hence, we realize why the maximum expected wave height at the first 
pseudo-antinode is smaller than in the orthogonal reflection, as we found on 
comparing fig. 8.9b with fig. 8.8. 

10.7 Explanation of the second big difference between sea waves and 
periodic waves 

The second big difference between sea waves and periodic waves concerns 
diffraction. The Cd (and consequently the maximum expected wave height) is 
surprisingly high in the dark area [see figs. 8.10 and 8.11]. On the other hand the Cd 
in the more sheltered area is practically the same as the Cd of the periodic waves. 
What is the reason for this? 

To answer this question let us see what happens when the maximum expected 
wave height in a very large time interval occurs at a point Xo, Yo of the more 
sheltered area; and what happens when the maximum expected wave height occurs 
at a point Xo,yo of the less sheltered area (dark area). 

More sheltered area 
As to the point of the more sheltered area, we fix 

xo = l.5 Lp, yo = O+ , 

where 0+ means in contact with the lee wall. Fig. 10.19 shows what happens when 
the maximum expected wave height in a very large time interval occurs at this point: 
a wave group strikes the breakwater 's  tip in full; thus one half of the wave crest hits 
the wall and one half enters the sheltered area and produces the exceptionally large 
wave height at the fixed point. 

The configuration of the water surface has been obtained by means of (10.1a) with 
(8.56a) of ~u. Since the Cd of the fixed point is 0.2, while the Cd of the wave beaten wall is 2, 
the height H of fig. 10.19 has been taken ten times smaller than the height H of fig. 10.13. 
(Always, bear in mind that the maximum expected wave height at a point is proportional to 
the Cd of this point.) 
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Fig. 10.17 Formation of an exceptionally high wave at a point Xo, Yo of a breakwater, if the 
dominant direction is not wall-orthogonal. A wave group at the apex of its development hits the 
breakwater and is subjected to specular reflection. (Obtained by means of 10.1a and 8.55a.) 
Continued opposite page. 
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Fig. 10.17 Continued. 
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Fig. 10.18 If the waves are inclined with respect to the wall-orthogonal, the incident and reflected 
waves of a group do not strike each other in full. 

Less sheltered area 
As to the point of the less sheltered area, we fix 

x o - L p ,  y o - 4 L p .  

Note that the Cd of the wind waves at this point is 0.49 while the Cd of the periodic 
waves is 0.30. Fig. 10.20 answers the question "what happens when the maximum 
expected wave height occurs at this point?" Here we see a great novelty: for the first 
time the quasi-determinism theory shows a wave group that does not travel in the 
dominant direction of the spectrum; the dominant direction is wall-orthogonal, 
while the group attacks from the left side. 

To explain this novelty, here is a short story. Two researchers, Paul and John 
analyse a wave record taken at the fixed point Xo, yo of the less sheltered area, and 
find an exceptionally high wave in this record. Then, John reasons as follows: "The 
dominant direction of the spectrum is wall-orthogonal, which means: the highest 
wave groups, most probably, approach the barrier orthogonally. Hence, our 
exceptionally high wave, most probably, has been produced by a wave group which 
stroke the breakwater 's  tip in full." He takes the pencil and sketches the trajectory 
of this wave group (see fig. 10.21a). 

Paul objects to this reasoning: "Suppose it was a wave group, so to say, 
anomalous, that is a group whose direction did not coincide with the dominant 
direction of the spectrum. With this t r a j ec to ry -  (see fig. 10.21b) - the wave group 
would have nearly struck our point in full; indeed, it would have only grazed the tip 
of the breakwater  with its right wing." Paul concludes: "It's true, the percentage of 
groups like mine which do not travel in the dominant direction is very small; but it's 
also true that even with a small deviation from the dominant direction, the wave 
height considerably grows at our point Xo, yo. Weighing the pros and cons, I am 
inclined to believe that the group's trajectory was as in my sketch." 
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It is not easy to decide who's right, but the quasi-determinism theory takes a 
definite position: Paul is right! Had the recorded wave height H been infinitely 
great with respect to the r.m.s, surface displacement at the fixed point Xo, yo, the 
probability that the matter  is as in Paul's opinion would even approach 1. 

This is, of course, if the point Xo, Yo belongs to the less sheltered area. Indeed, 
John's  interpretat ion holds good if the exceptionally high wave is recorded at a 
point Xo, Yo of the more sheltered area (the case of fig. 10.19). And, in fact, even a 
very inclined wave group would be far from striking a point in the more sheltered 
area in full. 

The conclusion is evident: the heights of the wind waves in the less sheltered area 
(the dark area) are unexpectedly great, because a few wave groups are able to 
nearly strike this area in full. We realize also that the long crested waves, having no 
directional spread, have some much smaller heights in the dark area. 

10.8 The second way to employ the theory 

10.8.1 Techn ique  o f  calculation with the t ime series data o f  the surface 
d i sp lacement  

Let us fix two points @ and @ at sea. The distance between these two points 
should be within about ten wavelengths (this condition guarantees that in the open 
sea the two points belong to a homogeneous  wave field, cf. sect. 8.1). We allow the 
wave field to be generally non-homogeneous  because of reflection, diffraction and/ 
or refraction. 

Let us take a record of a sea state, simultaneously, at point @ and @. Then we 
wonder  "what happens at point @ if a wave of given very large height H should 
occur at point @?". We can use the time series data to answer this question. Let us 
see how. 

Equat ion (10.1a) is rewrit ten in the form 

~ (Xo + X ,  yo + Y, to + T) - 

< rl(xo,Yo, t)rl(Xo +X,  yo + Y , t +  T) > - < ~l(Xo,Yo, t)rl(Xo +X,  yo + Y , t +  T -  T*) > H 
< T]2(Xo, Yo, t) > -- < rl(Xo, Yo, t)rl(Xo, Yo, t + T*) > 2 

(10.7) 

Therefore,  if we take point @ as Xo,Yo and point @ as Xo + X ,  Yo + Y [see fig. 10.22], 
we have 

~2 (to + T) - < T]I (t)r]2 (t + T) > - < TIe (t)r]2 (t + T -  T*) > H 
2 (10.8) 

< T]I (t) > - < T]I (t)T]I (t + T*) > 2 ' 

where 
'/]1 ( t )  - -  r/(t) recorded at @, 

~2 ( t ) -  r/(t) recorded at @. 
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Fig. 10.19 Formation of an exceptionally high wave at a point Xo, yo on the lee wall, one and a half 
wavelengths from the tip. The exceptionally high wave (we mean that it is exceptionally high for 
the point where it occurs) is pointed by an arrow. It is due to a wave group striking the 
breakwater 's tip in full. (Obtained by means of 10.1a and 8.56a.) 



Uses and consequences of the quasi-determinism theory 341 

~ 2 ( t  ° _Jr_ T) is the expected surface displacement at point @, if a wave of given 
exceptionally large height H occurs at @ (to being the instant when the crest of this 
wave passes at point @). T* in (10.8) is the abscissa of the absolute minimum of the 
autocovariance ~b(T) at point @" 

~b(r)  - < ~/1 (t)f/l (t + T) > .  

Of course, the calculation can be done for an arbitrarily large number of points, 
and the expected surface displacement at point j if a wave of given very large height 
H occurs at point i is given by 

fla.(to + T ) -  < rli(t)rlj(t-b T ) > -  < rli(t)rlj(t q- T - T * ) >  H 
< f]~ (t) > -- < f]i (t) f]i (t-At- r * )  > 2 ' 

where T* is the abscissa of the absolute minimum of the autocovariance at point i: 

~ ( T )  - < f]i (t) f]i (l -~- T )  > .  

Let us take sampling interval Atsamp of 0.1s, wave record of 300s, two wave 
gauges like in fig. 10.22. Then, as an example, let us consider the average 
< r/~ (t)r/2 (t + T) > for T -  0.5s [this average being necessary for obtaining ~2 by 
means of (10.8)]. It is given by 

1 
[~/~ (0) r/2 (0.5s) + r/~ (0.1s) r/2 (0.6s) + ... + r/1 (299.5s) ~/2 (300 s)] 

2996 

(the sampled data are 3001 from each of the two gauges, and the products rh • r/2 
available for this average are 2996). 

Note, it is not necessary to specify the location of @ relative to @, in that X and 
Y do not appear in the formula for -~2(to + T). 

10.8.2 Technique o f  calculation with time series data o f  the surface 
displacement and o f  the fluctuating pressure head 

Equation (10.1b) is rewritten in the form 

O(Xo + X, yo + Y,z ,  to + T) - 

<~l(Xo, yo, t)O(xo+X, yo+Y,z,t+V)>-<~l(Xo, yo, t)O(xo+X, yo+Y, z , t+T-Z*)>  H 
< ~2(xo, yo, t) > - < ~(~o, yo, t),(xo,yo, t + r*) > 2 

This gives the expected velocity potential if a wave of given very large height H 
occurs at point Xo, Yo. Hence, we can obtain the expected fluctuating pressure head 
by means of 

~lph(Xo + X, yo + Y,Z, to + T) - 1 O -~(Xo + X, yo + Y ,z  to + T) - (10.9) 
g OT 

<~l(Xo, Yo, t)~lph(xo+X, yo+Y,z,t+T)>-<71(Xo, Yo, t)rlph(Xo+X, yo+Y,z , t+T-T*)> H 

< ,~ (~o, yo, t) > - < ~ (~o, yo, t)~ (~o, yo, t + r*) > 

where rlph is the fluctuating pressure head of the random sea waves. 
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Fig. 10.20 Formation of an exceptionally high wave at a point Xo, Yo of the area where the 
diffraction coefficients proved to be surprisingly great (dark area of fig. 8.10). Here is a novelty: 
the wave group travels in a direction slightly different from the dominant wave direction (the 
dominant wave direction is wall-orthogonal while the group attacks from the left). Continued 
opposite page. 
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Fig. 10.20 Continued. 
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(b) Paul' sketch 

breakwater 

Fig. 10.21 Paul and John notice an exceptionally high wave in a record taken at point Xo, Yo behind 
the breakwater. They give two different explanations of how this wave occurred. Who's right? 

Let  us imagine we record  the surface d isplacement  at a point  Q and the 
fluctuating pressure  head  at a point  Q benea th  the water  surface. Then,  equat ion 
(10.9) enables  us to obtain the expected  fluctuating pressure  head  at Q if a wave of 
given very large height  H occurs at Q). Indeed,  taking G as Xo, Yo and Q as 
Xo + X ,  Yo + Y ,  z we have 

~ (to + :r) - 
< ~ ( t ) ~ =  (t + v) > - < ~ (t),l~= (t + : r _  ~r*) > H 

< 7]~ (t) > -- < f]l (/)T]I (t --~ T*)  > 

? 
f 

Xo,Yo 
X 

Fig. 10.22 Graphic aid for the step from (10.7) to (10.8). 

"-----x o +X , Yo + Y 
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w h e r e  711 (t) is the time series data of the surface displacement at @, and 7]ph2 (t) is 
the time series data of the fluctuating pressure head at @, and T* is the abscissa of 
the absolute minimum of the autocovariance of ~/1 (t). 

Note, equation (10.9) requires that the point Xo + X, yo + Y, z is permanently beneath 
the water surface. Indeed, to obtain this equation, we have assumed that the Bernoulli 
equation holds at this point at every time instant. 

10.8.3 T e c h n i q u e  o f  ca lcu la t ion  wi th  the t ime  series data o f  the f l u c t u a t i n g  
p r e s s u r e  h e a d  

If a pressure head wave with a given exceptionally large height H occurs at a 
fixed point Xo, Yo, Zo, at a time to, we can expect that the pressure head waves and the 
surface waves near Xo, Yo, Zo are given, respectively, by 

~Tph(Xo + X ,  yo + Y,  Zo + Z,  to + T) - 

H 
[< rlph(Xo yo, Zo t)~Tph(Xo + X ,  yo + Y,  zo + Z , t  + T) > - < ~Tph(Xo,Yo, Zo, t) " - -  9 9 

2 

"~Tph(Xo+X, yo+ Y,  Z o + Z , t +  T - -  T*) > ] / I <  ~72ph(Xo,Yo, Zo, t) > + 

-- < ~Tph (Xo, Yo, Zo, t)rlph (Xo, Yo, Zo, t + T*) >], (lO.lOa) 

-O (Xo + X ,  yo + Y,  to + T) - 

H 
[< ~Tph(Xo yo, Zo, t )~7(xo+X,  yo+ Y , t +  T) > - < ~Tph(Xo,Yo, Zo t) .  

2 

+ ,yo + >l/r< zo,,  > + 
l i t _  

- < ~Tph (Xo, Yo, Zo, t)rlph (Xo, Yo, Zo, t + T*) >/ ,  (lO.lOb) 
, , , , , i  

_1 

where T* is the abscissa of the absolute minimum of the autocovariance ~(T) of the 
pressure head waves at Xo, Yo, Zo: 

~ ( T) - < ~lph (Xo, Yo, Zo, t) ~Tph (Xo, Yo, Zo, t + T) > .  

The use of the theory with only the time series data of the fluctuating pressure 
head is very convenient. Indeed the pressure transducers have a very high precision 
and low cost, and work well also in sea water. 

As to the employment of (10.10a), let us suppose to record the fluctuating 
pressure head at two fixed points (~ and Q beneath the water surface. Then the 
expected fluctuating pressure head at Q, if a pressure head wave of given 
exceptionally large height H occurs at (~, is given by 

< ~ ( t ) ~  (t + T) > - < ~ ( t ) ~  (t + T -  T*) > H 
~h: (to + T) = 

< ~12ph~ (t) > - < Zlphl (t)~Tph~ (t + T*) > 2 ' 
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where 7]phl (t) and T]ph2 (t) are the time series data of the fluctuating pressure head 
obtained at the two fixed points, and T* is the abscissa of the absolute minimum of 
the autocovariance of the pressure head waves at @: 

~)(T) ~ < T]phl (t)?lphl (t q- T) >. 

Check equations (10.10a-b). First, consider the pressure head waves at the fixed point 
Xo, yo, Zo, and prove that the condition 

~ (to) - H ,) H 2 T]ph(to + T : 
' 2 

becomes necessary and sufficient for the occurrence of a pressure head wave of given height 
H, as H/cr ~ oe (here cr being the r.m.s, fluctuating pressure head at the fixed point). To this 
end, bear in mind that rlph (t) at any fixed point represents a stationary Gaussian random 
process, and retrace all the steps of sects. 9.1 and 9.2. 

Then, to achieve (10.10a) retrace step by step also sect. 9.3. The only difference being 
that now you have to consider the conditional p.d.f, of the fluctuating pressure head at point 
Xo + X ,  yo + Y, Zo + Z, at time to + T, given the condition 

H ~Tph (Xo, Yo, Zo, to + T*) - H . (10.11) ~ph(Xo, Yo, Zo, to)-- 2 '  2 

Use the same procedure also to achieve (10.10b). This time, consider the conditional p.d.f, of 
the surface displacement at point Xo + X ,  yo + Y, at time to + T, given the condition (10.11). 
All these conditional p.d.f.s, take on the general form (9.18), and each time you have only to 
specify the proper entries of the covariance matrix. 

10.8.4 T h e  use  o f  the  t h e o r y  w i t h  t i m e  ser ies  d a t a  is v e r y  e a s y  e v e n  w i th  a v e r y  
c o m p l e x  s o l i d  b o u n d a r y . t  

In the writer 's opinion the most remarkable  property of the quasi-determinism 
theory is that it holds whatever the configuration of the solid boundary  (of course, 
provided the flow is frictionless). This property is fully appreciated when working 
with the time series data of ~7 and/or rlph. It does not mat ter  at all how complex the 
solid boundary  is, and, more important,  it does not mat ter  at all whether  the 
problem of the interaction between waves and this solid boundary  has been solved. 
We have simply to obtain a few time-series data of r /and/or  rlph and use equations 
(10.7), or (10.9) or (10.10a-b), with these time series, to predict what happens if a 
wave of given exceptionally large height occurs at a given point. 

The answers, as we shall see in the next two sections, are surprisingly clear and 
enable us to unders tand the essential features of the wave mot ion  under  
examination. 

10.9 The "genetic code" of  the sea waves 

Fig. 10.23 shows the formation of a wave of a given exceptionally large height at 
the centre of the framed area in the open sea. The phenomenon  is the same as we 
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wave direction y 

Fig. 10.23 Question: what happens if an exceptionally high wave should be recorded at pile @? 
Answer: the three dimensional picture. 
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have already seen in fig. 10.1, with the only difference being that the wave attack is 
from the right side and there is an array of nine piles. These nine piles of small 
sections were actually put at sea for the experiment  RC 1990, and their plan is 
shown in the lowest part  of fig. 10.23. 

Let us observe the first picture of this figure: wave B occupies the central position of 
the group and is at piles @-@. After  a wave period Tp, the envelope centre falls 
be tween wave B and wave A: wave B has become smaller because it has left the 
central position of the group, and wave A has become higher because it is going to 
occupy the central position of the group. One more period Tp (third picture) and wave 
A passes the array @-@ and occupies the central position of the group. 

Replacement  of wave A with wave B at the envelope centre is evident also in fig. 
10.24 which shows the records made by an ideal array of gauges at the piles. We see 
that wave B occupies the central position of the group at points @ and @, while at 
points @-@ wave A has replaced B. The centre of the wave crest passes at 

FROM A THEORETICAL SPECTRUM 
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Fig. 10.24 Same question as in fig. 10.23: what happens .... ? Answer: the time series at the piles. 
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point  @ and at point  @, and from @ to @, wave B becomes  smaller  and longer,  
and, conversely,  wave A becomes  higher  and shorter.  

Fig. 10.25, like fig. 10.24, shows what  happens  at points @-@ if a wave of given 
except ional ly  large height  should occur at point  @. Fig. 10.24 was obta ined  by 
means  of (10.2a) with a theoret ical  spectrum, while fig. 10.25 was obta ined  by 
means  of (10.7) with the t ime series data  of a sea state. The  likeness of the two 
figures is really amazing! 

Wha t  we see in fig. 10.25 is something like the genetic code of the sea state. It 
contains the informat ion  on what  happens  if an except ional ly high wave should 
occur at a given point  (specifically, at point  @). The  genetic code can be extracted 
f rom the t ime series data  of a gauge ar ray  with the technique descr ibed in sect. 
10.8.1, and it is not necessary  that  these t ime series include some very high 

GENETIC CODE 
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Fig. 10.25 Same question as in fig. 10.23: what happens .... ? Answer: once again the time series at 
the piles. The previous figure (fig. 10.24) was obtained by means of (10.2a) with the theoretical 
spectrum (8.20), while this figure was obtained by means of (10.7) from the time series data of the 
experiment RC 1990!! Specifically, the time series data of a sea state (540s, 250 individual waves) 
were used to obtain the averages on the r.h.s, of equation (10.7). 
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at  " point  

t 

wave  direct ion 

0 wave  crest  

Fig. 10.26 The dominant direction is estimated with precision from the relative phase of the 
points @-@. Indeed the group's central crest (in the genetic code) is perfectly straight. 

wave. In this, the genetic code of the sea state is like the genetic code of the human  
beings. Indeed ,  for obtaining the genetic code of a human  being, even a few cells are 
enough;  and, similarly, for obtaining the genetic code of a sea state, even a few 
scores of consecutive waves are enough.  

It will have been  noted  that  the genetic code (fig. 10.25) fully confirms 
rep lacement  of wave A with wave B at the central  posit ion of the group,  and the 
re la ted big t ransformations:  wave B becoming smaller  and longer, and wave A 
growing and shrinking. This confi rmat ion comes out in the whole set of records of 
the exper iment  RC 1990. 

Of course the input data for the theoretical group of figs. 10.23 and 10.24 are those of the 
sea state from which we extracted the genetic code of fig. 10.25: d - 3 m, Tp - 2.20 s, 0 - 20 °. 
As to angle 0, it can be evaluated very carefully from the relative phases of wave A at the 
points @-(2) [cf. the scheme of fig. 10.26]. 

10.10 The determinism arises from within the random waves 

10.10.1 Comparison between records of exceptionally high waves and the 
genetic code 

In the following pages a few records of very high waves are shown toge ther  with 
the genet ic  codes of their  sea states. These  are the highest waves of four small scale 



Uses and consequences of the quasi-determinism theory 351 

field exper iments  in the na tura l  l abora tory  of Reggio  Calabria.  In each of these 
exper iments  a gauge array was used to record the surface d isp lacement  and/or  the 
f luctuating pressure  head  at some fixed points. 

By the highest wave of an experiment we m e a n  the wave with the highest  quot ien t  
H/cr in the whole set of zero up-crossing waves and zero down-crossing waves 
ob ta ined  by the gauge array. According  to the zero up-crossing definition, which 
was in t roduced  in sect. 4.1 and hi ther to  followed, an individual  wave is the se- 

(a) GENETIC CODE (b) ACTUAL WAVES 
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Fig. 10.27 (a) Genetic code: what happens at points @-@ in the open sea if a zero down-crossing 
wave of given exceptionally large height should occur at point @. (b) What really occurred when 
a very high wave was recorded at point @; it was the wave with the greatest H/c~ of the 
experiment RC 1990. 
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(a) GENETIC CODE 
__> __> __+> 

A ~ B C 

[...,, 

r[s] 
, • , t , t , I , L , I +, I , I , l , I , I 

-6 -4 -2 0 2 4 6 8 10 12 14 

D 1 2 m  + 

® ® ® @ @ @ ® @  ® 
o ,, . . . . . . .  

0 - 1 6 "  

~-~ 6 m  

7 . 5 m  

Fig. 10.28 (a) Genetic code: what happens at the various points before the breakwater if a wave 
of given exceptionally large height should occur at point O (we mean that the wave is 
exceptionally high with respect to the mean wave height at this point). See panel (b) of this figure 
on the next page. 
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(b) ACTUAL WAVES 
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Fig. 10.28 (b) What really occurred when a very high wave was recorded at point @; it was the 
wave with the largest H/~ of the experiment RC 1991. See panel (a) of this figure on the previous 
page. 

quence of a crest and the following trough; according to the zero down-crossing 
definition an individual wave consists of a trough and the following crest. Of course, 
the quasi-determinism theory holds also with the zero down-crossing definition; 
only that the r.h.s, of (10.1a-b) must be multiplied by -1 .  

Experiment R C 1990 
The highest wave was recorded at point @. It was a zero down-crossing wave 

with H = 9.6o. Fig. 10.27b shows the record made by the gauge array, and the arrow 
points to the highest wave. Then fig. 10.27a shows what happens if a wave of given 
very large height H should occur at point @. It is the genetic code of the sea state 
where the exceptionally high wave was recorded. 
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Let  us examine this code. The relative phases at the traverse of points @-@ 
reveal that  0 was about  10 °. Hence,  if the centre of the wave crest passed at point @ 
it had to pass very close to point @. The replacement  of wave A with wave B at the 
centra l  posi t ion of the group is well evident;  note  the character is t ic  big 
t ransformations from point @ to @ along the path of the crest centre. 

The actual waves (record) are more irregular, but the essential features are the 
same as in the genetic code. 

There were nine piles, each with an ultrasonic probe above the water surface and a 
pressure transducer beneath the water surface. The sampling device was able to receive 16 
signals simultaneously, and hence two gauges had to be disconnected (the disconnected 
gauges were those of pile 6). The figure shows only the pressure head waves, the surface 
waves can be seen in the paper of Boccotti et al. (1993). 

Experiment R C 1991 
A small upright b reakwater  of 12m was built and an array of pressure 

transducers was assembled before this b reakwater  [see the sketch in the lowest part  
of fig. 10.28a]. These gauges were 0.60m below the mean water  level and were 
permanent ly  beneath  the water  surface. The gauges far from the wall were 
supported by horizontal beams of small section. 

The highest wave was a zero up-crossing with H = 9.6a. It was recorded at point 
@, in the course of record 51. Fig. 10.28a shows what happens at the various points 
if a wave of given exceptionally large height H should occur at point @ (of course, 
we mean  exceptionally large for this point). Fig. 10.28b shows what really happened.  
The likeness is evident. 

A few comments  for a deeper  understanding.  The time histories of the genetic 
code are consistent with one another  in depicting the following scene: a wave group 
approaching the wall from the left strikes point @ in full, then the centre of the 
wave crest hits the wall (nearly in the centre),  and returns seaward passing close to 
point @. [The angle between the direction of wave advance and the wall-orthogonal 
can be est imated with precision from the relative phases at the traverse of gauges 
@-@, and it proves to be of 16°.] Note that wave A at the wall has left the central 
position of the group and wave B is going to replace it. As a consequence,  the wall is 
bea ten  by a sequence of two big waves of nearly the same height. 

The double peak of the high wave crest at the wall is very characteristic of the pressure 
head waves and is associated with the occurrence of a high vertical water jet. These water 
jets damaged the wire connections, and this is why a few time series are lacking. 

In the case under examination, the genetic code does not foresee that the exceptionally 
high wave is due to the collision of two groups, although the point Xo, yo is far from the wall. 
The reason is that, if the centres of two groups collided at location @, the centre of the first 
group would hit just the left tip of the breakwater and hence only a part of the group's 
energy would be reflected. The genetic code foresees that the exceptionally high wave is due 
to the collision of two groups only if we take Xo, Yo to the right of point @, for example if we 
take @ as Xo, yo. Indeed if the centre of the reflected group has to pass at this point, it must 
hit the wall at a certain distance from the tips. 
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Fig. 10.29 (a) Genetic code: what happens if a wave of given exceptionally large height should 
pass through the platform. (b) What really occurred when a very high wave was recorded amid 
the columns" it was the wave with the largest H/o- of the experiment RC 1992. 



356 Chapter 10 

Experiment R C 1992 
The field laboratory of this experiment is shown in fig. 11.1. The structure is the 

1:50 scale model of a gravity offshore platform. 
The highest wave which passed through the platform was a zero up-crossing with 

a height somewhat greater than 8a. Fig. 10.29a [obtained by means of (10.7) and 
(10.9) from the time series data] shows what happens if a wave of given 
exceptionally large height should pass at point @ amid the columns. Specifically, 
it shows the expected surface displacement at point @ and the expected pressure 
fluctuations at four points of the structure. The differences 

/ kP l -2  - - P l  - P 2 ,  

Ap3-4 = P3 - P4 ,  

give an idea of the fluctuating horizontal force. All time histories here are given in a 
normalized form. This means that a surface wave of, say, 8 times the r.m.s, surface 
displacement has the same height (in the figure) as a pressure head wave of 8 times 
the r.m.s, fluctuating pressure head. 

Here too, the records taken in the highest wave are close to the expected time 
histories of the genetic code. 

Experiment R C 1993 
The field laboratory of this experiment is shown in fig. 11.6. The structure is the 

1:30 scale model of a submerged tunnel. 
The highest wave was a zero down-crossing of the force-process Fy (t). The height 

was H = 10aF, [H here has the dimensions of a force and CrF, is the standard 
deviation of the force-process Fy (t)]. Fig. 10.30a shows the expected time histories 
of the surface displacement above the tunnel, the pressure fluctuations at a few 
points, and the forces Fy (t) and Fz (t), when a wave of the process Fy (t) with a given 
exceptionally large height occurs. 

According to the genetic code the exceptionally large trough-to-crest displacement 
of the horizontal force should occur because a wave group passes over the tunnel 
when a wave (B) is going to replace the preceding one (A) at the central position. 

As usual, panel (b) of the figure shows what really occurred when the 
exceptionally high wave was recorded; and once again the likeness with the 
prediction of the genetic code is apparent. Note, the crest of the second highest 
surface wave is deformed because of a flaw of the ultrasonic probe (this probe does 
not work well with spilling or almost breaking waves). Nevertheless,  the 
configuration of the wave group is well evident in the record of the pressure 
transducer @ beneath the water surface at the same location of the ultrasonic probe. 

According to the theory of the sea states, the force on a solid body represents a stationary 
Gaussian random process of time (provided the flow is frictionless). Therefore the quasi- 
determinism theory can be applied also to the force on the tunnel. In particular, if a wave of 
given exceptionally large trough-to-crest height of the process Fy(t) (horizontal force) occurs 
at an instant to (we mean that to is the instant of the positive peak), the expected time 
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Fig. 10.30 (a) Genetic code: what happens if an exceptionally high wave of Fy(t) [horizontal force 
on the cylinder] should occur. (b) What really occurred when a very high wave of Fv(t) was 
recorded. 
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histories of the surface displacement at any point x, y, the pressure fluctuation at any point x, 
y, z, and the horizontal and vertical forces are given, respectively, by 

< Fy(t)~l(x, y, t + T) > - < Fy(t)~(x,  y, t + T -  T*) > H 
(x, y, to + T) - 

< FZ(t) > - < Fy(t) Fy(t ÷ T*) > 2 ' 
y 

< Fy( t )Ap(x ,  y, z, t + T) > - < Fy( t )Ap(x ,  y, z, t + T -  T*) > H 
A p  (x, y, z, to ÷ T) - 

< F~(t) > - < Fy(t)Fy(t + T*) > 2 ' 

m 

Fy(to + T ) -  

Fz(to + T ) -  

< Fy(t)Fy(t + T) > - < Fy(t)Fy(t + T -  T*) > H 

< FZ(t) > - < Fy(t)Fy(t + T*) > 2 
Y 

< Fy(t)Fz(t + T) > - < Fy(t)Fz(t + T -  T*) > H 

< F2(t) > - < Fy(t)Fy(t + T*) > 2 ' 
y 

where T* is the abscissa of the absolute minimum of the autocovariance of Fy(t). 

10.10.2 T h e  g e n e t i c  c o d e  is l i n e a r  

Of course, the very high waves, besides a residual random nature, also exhibit some 
non-linearity effects. A clear example is the double peak of the pressure head waves of fig. 
10.28b, which is associated with the occurrence of a vertical water jet at the breakwater. 

The genetic code is unable to foresee these non-linearity effects. Indeed, it proves 
to be strictly linear even if it is obtained from the time series data. In other words, the 
genetic code is able to foresee the essential features of sea waves: the existence of the 
three-dimensional groups, the characteristic mechanics of these groups in the open 
sea, and the way of interaction of these groups with any solid body. But, it is not able 
to foresee the local deformations of the individual waves due to non-linearity. 

10.10.3 C o n c l u s i o n  

Comparing fig. 10.27b with 10.27a, 10.28b with 10.28a, 10.29b with 10.29a, and 
10.30b with 10.30a, we see the chaotic (wind-generated) waves approach a deterministic 
archetype. This archetype is contained in the very chaos of the sea storm, and it can be 
extracted and seen. The highest waves tend to this archetype but, necessarily, retain 
something of the chaos where they are born. The quasi-determinism theory says that 
the deterministic archetype would stand out from the chaos only with an infinitely high 
energy concentration (H /cr  ~ e~). The deterministic archetype is like Michelangelo's 
prisoner searching the extreme energy to free himself from the marble's grasp. 

C o n c l u s i v e  n o t e  o f  chapters  9 and I0  

The quasi-determinism theory was introduced by the author in a series of papers 
from 1981 to 1989. The theory for the time domain, including the formula for the wave 
height probability, was given in the early papers of 1981, 1982. The experimental 
verification off the beach of Reggio Calabria was made by the author and his students. 
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Fig. 10.31 Michelangelo Buonarroti: Prisoner named Atlantis; Florence, Academy's gallery (see 
mention in sect. 10.10.3). Photo by Alinari, Florence. 
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Chapter 11 
ANALYSIS OF THE WAVE FORCES 
ON OFFSHORE STRUCTURES 

11.1 Wave forces on gravity offshore platforms 

For  the exper iment  RC 1992, besides the array of t ransducers  at the platform, 
there was also a second array of t ransducers  with the same configuration. The 
second array was assembled at a certain distance from the pla t form model,  where 
the waves were not  disturbed. The t ransducers  of the second array were suppor ted  
by piles of small section and high stiffness [see fig. 11.1]. 

2 n° gauge  array: 
equivalent  water  mass  

1 st g~ 

platf 

I 
d=2.5m 

l 
Fig. 11.1 The field laboratory for the experiment RC 1992. Foreground: the 1:50 scale model (with 
some minor variations) of the support structure of a gravity offshore platform. The prototype was 
described by Dawson (1983), and the 1:120 scale model was tested in a wave flume by Garrison et 
al. (1974). 
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Thanks to the two arrays of gauges it was possible to compare the force on the 
platform with the force on an equivalent water mass (i.e. one with the same volume 
and shape of the solid body). Specifically, it was possible to evaluate the horizontal 
diffraction coefficient 

F2o (t) > 
Go = , (11.1) 

V/< FZo(t) > 

where Fo (t) is the horizontal force on the solid body and Fo (t) is the horizontal force 
on the equivalent water mass, which is called the Froude-Krylov force. The Cdo of 
the columns was close to 2, while the Cdo of the base consisting of nineteen cylinders 
ranged between 1.2 and 1.6 according to the wave characteristics. The waves were 
the 1:50 scale model (same Froude number) of ocean waves with an H~ ranging 
from 10 m to 20 m. 

The analysis of a few hundred records showed that the amplitudes of the 
pressure fluctuations, at corresponding points of the platform and of the equivalent 
water mass, were nearly equivalent to each other. In particular the standard 
deviation 

V/< (t) > 

of the pressure fluctuation at point Q was nearly coincident with the standard 
deviation 

< Ap _ (t) > 

of the pressure fluctuation at point @. Thus the question came: how is it possible 
that the wave force on the solid body is markedly larger than the wave force on the 
equivalent water mass if the amplitude of the pressure fluctuations on the solid 
body and on the equivalent water mass are nearly equal to each other? 

The "genetic code" was investigated. Two questions were put. First: what can we 
expect will occur on the platform's boundary if a wave of given very large height 
should be recorded at point @? Second: what can we expect will occur on the 
boundary of the equivalent water mass, if a wave of given very large height should 
be recorded at point @? The answers to these questions are shown, respectively, in 
figs. 11.2a-ll.3a and in figs. 11.2b-ll.3b. The calculation was done with (10.9) from 
the time series data of the surface displacement and the fluctuating pressure head of 
one of the records. 

Note that the pressure head wave takes 0.134 s to cover the distance from point 
O to point Q at the platform's column, while it takes only 0.067 s (half the time!) to 
cover the same distance from point Q to point Q in the undisturbed wave field. 
Then, the pressure head wave takes 0.60s to cover the distance from point @ to 
point @ at the platform's base, while it takes 0.30 s (again half the time) to cover the 
same distance from point Q to point @ in the undisturbed wave field. 

The result is that between the first half and the second half of the solid body 



(a) p la t form's  column 

@ 
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(b) equivalent water mass 

/ 

Fig. 11.2 (a) Pressure head waves at points @ and @ of the columns, if a wave of given very large 
height passes at point @ amid the columns. (b) Pressure head waves at points @ and @ of the 
equivalent water volume, if a wave of given very large height passes at point @. 

(a) p l a t fo rm ' s  base 

o.6os, 

(b) equivalent  wate r  mass  

Fig. 11.3 (a) Pressure head waves at points @ and @ of the platform's base if a wave of given very 
large height passes at point @ amid the columns. (b) Pressure head waves at points @ and @ of 
the equivalent water volume, if a wave of given very large height passes at point @. 
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there is a phase angle which is twice as large as the phase angle between the first 
half and the second half of the equivalent water mass (the first half being the wave 
beaten one, and the second half being the sheltered one). The larger phase angle 
implies a larger pressure difference between the first half and the second half of the 
solid body. 

Note that if we redouble the phase angle between two points (where the pressure 
fluctuations have the same amplitude and frequency) we increase the pressure 
difference between these two points only if the original phase angle is smaller than 120 ° . 
This condition is usually satisfied by pairs of points like @ and @ at the platform's base, 
at least in the design sea states which have some very large wavelengths. Even more so, 
the aforesaid condition (the original phase angle being smaller than 120 ° ) is satisfied by 
pairs of points like @ and @ which are only one column's diameter apart. 

To summarize, the horizontal forces on the base and on the columns of the 
platform are larger than the horizontal forces on the equivalent water masses, 
essentially because the propagation speed of the pressure head waves drops at the 
base and columns. The drop in the propagation speed is the same at the column and 
at the base. However, the percentage rise of the horizontal force due to this drop is 
greater for the column, since it has a smaller diameter. In sect. 11.4.3 we shall give 
the relation between the force enhancement  and the drop in the propagation speed. 

11.2 Local perturbation of the flow field at an offshore structure 

11.2.1 Why does the propagation speed drop? 

Let us examine the variations of the flow field from a water vertical cylinder to a 
solid cylinder of the same diameter. To this end, let us assume ideal flow and small 
wave amplitude, which means neglecting the shear stress and the flux of momentum 
with respect to the local inertia. 

Let us consider the water vertical cylinder. The pressure fluctuation at point A of 
the cylinder's boundary [see fig. 11.4] has some zero up-crossings at the instants tA~ 
and tA3. At these instants, the control volume before point A has a positive local 

inertia J Ovy 
I y - p  dW. 

w Ot 
If the water cylinder is replaced with a solid cylinder of the same diameter, the 
absolute value of Iy reduces itself (Ovy/__Ot becomes zero at point A of the solid 
boundary); while the pressure at point A [the left end of the control volume] does 
not change, provided the length Ay of the control volume is such that the local 
perturbation gets negligible at point A .  Therefore, the pressure at point A at 
instants tA1 and tA3 grows if the water cylinder is replaced with the solid cylinder. 

Through the same reasoning we conclude the pressure at point A, at time tA2 of 
the zero down-crossing, is reduced if the ideal water cylinder is replaced with the 
solid cylinder (this time the local inertia Iy is negative and its absolute value gets 
smaller because of the presence of the solid body). 
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Fig. 11.4 The time taken by the pressure head wave to cover the distance from A to B at the 
vertical water cylinder is tB2 - tA2. If A and B belong to the solid cylinder, the time gets longer: 
tB2- tA2 + 2At .  This_can be proved by applying the linear momentum equation to the small 
control volumes A - A  and B - B .  

Because of the rise at times tA1 and tA3 and the fall at time tA2 , the pressure 
fluctuation at point A is subjected to a negative time shift ( - A t )  if the ideal water 
cylinder is replaced with the solid cylinder. Similarly, through the analysis of the 
control volume before point B, we can conclude that replacing the ideal water 
cylinder with the solid cylinder we would find a positive time shift (+At)  of the 
pressure fluctuation at point B. 

The conclusion, as we see from fig. 11.4, is that 
(i) in the case of the ideal water cylinder the pressure head wave takes the 

t i m e  tB2 - -  tA2 to pass from point A to point B; 
(ii) in the case of the solid cylinder, the pressure head wave takes the time 

(t~2 - tA2) + 2At  to cover the same distance from point A to point B. 

11.2.2 Is this a g o o d  phys i ca l  interpretat ion? 

The reasoning we have done for a vertical cylinder is true also for a horizontal 
cylinder. It suffices to think of the circle of fig. 11.4 as the cross section of a 
horizontal cylinder. Hence, if the reasoning is correct, we should expect to find the 
propagation speed of the pressure head waves also dropping at a submerged 
horizontal cylinder. 
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In addition, if we extend the analysis done for the two horizontal control volumes 
A - A  and B-B to the vertical control volumes C-C and D-D (see fig. 11.5), we arrive 
at a new interesting prediction on what should occur on a horizontal cylinder. Let us 
see it here below. 

When a wave crest passes over the horizontal cylinder, the local inertia Iz of the 
control volume above C is negative. If the horizontal water cylinder is replaced with 
a solid cylinder of the same diameter, the absolute value of Iz decreases, while the 
pressure at the upper limit C of the control volume does not change, provided the 
height Az is large enough to make the local perturbation negligible at point C. 
Therefore,  the pressure at point C, at time tl when the wave crest is over this point, 
must grow if the water cylinder is replaced with the solid cylinder. Then the analysis 
of the control volume below point D shows that the pressure is reduced at this point 
of the solid cylinder at time tl. 

Finally, applying the linear momentum equation to the two control volumes at 
time t2 of the wave trough, we can conclude that replacement of the ideal water 
cylinder with the solid cylinder causes pressure decrease at C and pressure increase 
at D. Hence, from the ideal water cylinder to the solid cylinder, the amplitude of the 
pressure fluctuation grows at point C of the upper half-cylinder and decreases at 
point D of the lower half-cylinder. 

w.c. = w a t e r  c y l i n d e r  
s.c. = so l id  cy l inder  

AT P O I N T  C 

(+) 

SoCo 

t2 t 

C-Y" "s.c. 

C 

I 
I 
I 

Az I 
I !jc 

Z 

AT P O I N T  D 

(-) 

WoC. 

t2 

(+ ) /  w e .  

Fig. 11.5 Passing from an ideal water cylinder to a solid cylinder (here we are dealing with a 
horizontal cylinder), the amplitude of the pressure head waves grows at the upper half-cylinder 
and decreases at the lower-half. This is proved by applying the linear momentum equation to the 
small control volumes C-C and D-D. The method of reasoning is the same that we followed to 
explain the drop in the propagation speed. 
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These predictions were made after having observed the characteristic drop in the 
propagation speed at the base and at the columns of the offshore platform. Thus, a 
new experiment (RC 1993) was designed to verify 

(i) whether or not the propagation speed of the pressure head waves also 
drops at the horizontal cylinder; 

(ii) whether or not the amplitude of the pressure fluctuation grows at the 
upper half-cylinder and decreases at the lower half-cylinder. 

11.3 Wave forces on submerged tunnels 

11.3.1 Horizontal forces 

For analysing the wave forces on a horizontal cylinder, the model of a submerged 
tunnel was assembled. The scale of the model was 1:30 since the wave heights in the 
natural laboratory of Reggio Calabria are roughly 1:30 of the wave heights of heavy 
Mediterranean storms. Two models were studied: first, the model of a big tunnel 

T 
d=3m 

1 

2 nd gauge array: 
equivalent water cylinder 

1 ~t gauge array: 
solid cylinder _. i ! 

. . . . . . . .  . . . .  . . . . . .  1 _ , +  _ 

wave direction 

® ® 
® ® @ ® 

® ® @. .@ 

® ® 

cross-section of the cylinder rad ian t  c r o w n  

Fig. 11.6 The field laboratory for the experiment RC 1993. (The ultrasonic probe to the left of 
probe @ was needed only for a careful estimate of the wave direction.) 
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containing a railway and highway (prototype diameter: 27 m), then the model of a 
relatively small tunnel containing only the railway (prototype diameter: 13.5 m). 
The model of the larger tunnel is shown in fig. 11.6. 

Once again there were two arrays of gauges with the same configuration. The 
first one was at the model of the tunnel and the second one at a certain distance 
from it, where the waves were not disturbed. The aim, of course, was to compare 
the force on the cylinder with the Froude-Krylov force, that is to say, with the force 
on an ideal water cylinder equivalent to the solid cylinder (which we shall call 
simply the ideal water cylinder). 

Fig. l l.7a shows the expected fluctuations of the pressure head on the boundary 
of the solid cylinder if a wave of given very large height passes at point @ above this 
solid cylinder. Similarly, fig. l l.7b shows the expected fluctuations of the pressure 
head on the boundary of the ideal cylinder, if a wave of given very large height 
passes at point @ above this cylinder. The calculations were made by means of 
(10.9) from the time series data of the surface displacement and the fluctuating 
pressure head of one of the records. 

We can see the full confirmation of the drop in the propagation speed of the 
pressure head waves. Specifically, we see that the pressure head wave takes 0.43 s to 
pass from point @ to point @ of the solid cylinder; while it takes 0.22 s (half the 
time!) to cover the same distance from point @ to point @ in the undisturbed wave 
field. Then we see that the time taken to pass from point @ to point @ of the solid 
cylinder is 1.7 times greater than the time taken to cover the same distance from 
point @ to point ® of the undisturbed wave field. Finally, the time taken to pass 
from point @ to point @ of the solid cylinder is 2.3 times greater than the time 
taken to cover the same distance from point @ to point @ of the undisturbed wave 
field. Thus, on average, the propagation speed at the solid cylinder is twice as small 
as in the undisturbed wave field. It is a general property: 380 out of 380 records with 
the big tunnel showed a drop of about 50% in the propagation speed. This, despite 
the large variety of wave conditions, which, at the prototype level, ranged from sea 
states with an Hs of 6 m to sea states with an Hs of 14 m. 

There was a similar response in the 200 records made with the small tunnel (the 
one for the railway only), the only difference being that the reduction factor of the 
propagation speed was somewhat smaller: 1.75 against 2. 

The fact that the propagation speed at the big tunnel was twice as small as in the 
undisturbed wave field implied that the horizontal force on this tunnel was nearly 
twice the corresponding Froude-Krylov force (Cdo between 1.8 and 2.0). The Cao of 
the small tunnel was nearly a 10% smaller because of the smaller drop in the 
propagation speed. 

11.3.2 Vertical forces 

The vectors in fig. 11.8 show the amplitudes of the pressure fluctuations at the 
gauge locations of the solid cylinder and of the ideal water cylinder, with the 
following conventions: 
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(a)  solid cylinder 

J ~ ~ J 

- ~  I 0.43s t 

(b) equivalent water cylinder 

Fig. 11.7 (a) Pressure head waves at points of the horizontal cylinder, if a wave of given very large 
height passes at point @. (b) Pressure head waves at points of the equivalent water cylinder, if a 
wave of given very large height passes at point @. 
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(i) the amplitude of the pressure fluctuation at point @ (the lowest point of 
the ideal cylinder) is taken as the reference amplitude (amplitude as_); 

(ii) the norm of the vector represents the absolute value of the difference 

A i ~  ai 1, 
a5 

where ai is the amplitude of the pressure fluctuation at the ith point; 
(iii) if the amplitude of the pressure fluctuation at a point is greater than the 

reference amplitude (that is if Ai> 0), the vector at this point is inward normal to 
the cylinder. 

Clearly, by amplitude of the pressure fluctuation we mean the root mean square 
pressure fluctuation. The term amplitude is simply used because it seems more 
effective. 

The graph of fig. 11.8 should communicate at once the outcome of the 
experiment. Indeed we see that, from the ideal cylinder to the solid cylinder, the 
amplitude of the pressure fluctuations grows at the upper half-cylinder, and on the 
contrary decreases at the lower half-cylinder, what confirms the prediction of sect. 
11.2.2. 

The graph of fig. 11.8 can be thought of as the pressure distribution under a wave 
crest (naturally, we mean the wave pressure). The ratio between the pressure force 
on the solid cylinder and the pressure force on the ideal cylinder is equal to 1.75. 
This ratio proves to be nearly coincident with the vertical diffraction coefficient 

V/< (t) > 
Cd,, = , (11.2) 

/ <  F2 (0 > v 

where F~ (t) is the vertical wave force per unit length on the solid cylinder, and F~ (t) 
is the vertical wave force per unit length on the ideal cylinder. 

The graph of fig. 11.8 is the average of 380 graphs like this, one for each record of 
the experiment with the big tunnel. The same diagram with only a slightly smaller 
quotient between the two pressure forces (1.65 against 1.75) emerged also from the 
200 records with the small tunnel. 

In conclusion, the vertical wave force on the solid cylinder is greater than the 
vertical wave force on the ideal water cylinder because the amplitude of the 
pressure fluctuations grows at the upper half-cylinder and decreases at the lower 
half-cylinder. Thus, the cause of the increase of the force F, from the ideal water 
cylinder to the solid cylinder is completely different from the cause of the increase 
of the force Fo: the increase of the vertical force depends on a variation of the 
amplitude of the pressure fluctuations, whereas the increase of the horizontal force 
depends on a variation of the phase of these fluctuations. However, the increase of 
the vertical force shows a high correlation with the increase of the horizontal force: 
Cd~ proves to be systematically nearly a 10% smaller than Cdo. 
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Fig. 11.8 Amplitude of the pressure head waves on the solid cylinder and on the equivalent water 
cylinder. The amplitude of the pressure head waves at point Q has been taken as the reference 
amplitude. Reading example: .79 at Q means that the amplitude of the pressure head waves at Q 
is a 79% greater than at @; -.18 at @ means that the amplitude of the pressure head waves at Q 
is a 18% smaller than at G. 

11.3.3 A characteristic asymmetry of the fluctuations of the vertical force 

Using the theory of the sea states, one can verify that Fo and F~, as well as Fo and 
F~, are stationary Gaussian processes. Now, the processes of the horizontal forces Fo 
and Fo are really very similar to the Gaussian processes, and in particular they are 
statistically symmetrical with respect to the mean value. On the other hand the 
processes F, and F~ exhibit a characteristic non-linearity effect. Fig. 11.9 should be 
effective to illustrate these ideas. 

Panel (a) of fig. 11.9 gives the probability that a peak of the process Fo (t) exceeds 
a threshold which is /3 times the standard deviation of this process, i.e. the 
probability that the peak exceeds the threshold 

9V/< F~o (t) >. 

One of the two sets of data points is relevant to the positive peaks, the other is 
relevant to the negative peaks, and the continuous line represents the function 
(5.30). Similarly, the panels (b), (c), and (d) of the figure show the probability of 
exceedance of the positive peaks and of the negative peaks, respectively, of Fo (t), of 
F~ (t) and of F~ (t). 

We see that in the case of the horizontal force, the distribution of the positive 
peaks and the distribution of the negative peaks are nearly coincident with one 
another. While, in the case of the vertical force, there is a large difference: the 
positive peaks are higher than the negative peaks. This difference is a non-linearity 
effect that can be foreseen if one takes into account the second order terms of the 
pressure fluctuation. We shall see how in sect. 12.3.4. 
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Fig. 11.9 Probability of exceedance of the positive peaks (crests) and of the negative peaks 
(troughs) of: (a) the horizontal force on the equivalent water cylinder; (b) the horizontal force on 
the solid cylinder; (c) the vertical wave force on the equivalent water cylinder; (d) the vertical 
wave force on the solid cylinder. 
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11 .4  T h e  d i f f r a c t i o n  c o e f f i c i e n t s  o f  t h e  f o r c e s  

11.4.1 The basic property 

How does the force on the horizontal cylinder fluctuate, if a wave of given very 
large height H passes over the cylinder? The answer is given by fig. 11.10 both for 
the solid cylinder and for the equivalent water  cylinder. The force on the equivalent 
water  cylinder has been multiplied by the diffraction coefficient (C do or Cd~ 
according to whether  the force is horizontal or vertical). 

And  again how does the horizontal force on the offshore platform fluctuate if a 
wave of given very large height H passes through the platform? The answer is given 
by fig. 11.11 both for the solid platform and for the equivalent water  mass. Here  too 
the force on the equivalent water  mass has been multiplied by the diffraction 
coefficient Cdo. 

The two figures show what we have called the genetic code; specifically, it is the 
genetic code of the forces, which was obtained with the quasi-determinism theory 
and the time series data of the experiments RC 1992 and RC 1993. 

The figures show that Fo (t) is very close to the product  Cdo Fo (t), and similarly 

(a) Horizontal force on the tunnel 

o o  

T/'/'p 

(b) Vertical force on the tunnel 

Fig. 11.10 Time history of the force if a wave of given very large height passes over the horizontal 
cylinder: continuous line = wave force on the solid cylinder; points - diffraction coefficient (which 
is a constant) × wave force on the equivalent water cylinder. [Obtained by averaging the "genetic 
codes" of the records of experiment RC 1993.] 
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(a) Force on platform's base 

-: k 0  T/Tp 

(b) Force on platform's column 

TITp 

Fig. 11.11 Time history of the force if a wave of given very large height passes through the 
offshore gravity platform: continuous line = force on the solid body; points = diffraction 
coefficient (which is a constant) x force on the equivalent water volume. [Obtained by averaging 
the "genetic codes" of the records of experiment RC 1992.] 

F~ (t) is very close to the product  Cd~ F~ (t). It is a crucial property that we express 
SO: 

maximum expected wave: [ Fo (t) - Cdo Fo (t), 
( F~ (t) - Cd~ F~ (t). 

In words: we can obtain the time dependent  force exerted by the group of the 
maximum expected wave by multiplying the force on the equivalent water mass by 
a constant factor (Cdo for the horizontal force and Cd~ for the vertical force). 

The genetic code of figs. 11.10-11 does not include the non-linearity effects. Now, 
we have seen in sect. 11.3.3 these effects to be negligible for the horizontal force- 
processes Fo (t) and Fo (t) and to be not negligible for the vertical force-processes 
F~(t) and F~(t). However,  the incidence of the non-linearity effects (i.e. the 
percentage enhancement  of the positive peaks and the compensating lowering of 
the negative peaks) is nearly equivalent for the process F~ (t) and for the process 
F~(t), as we can realize on comparing fig. 11.9c with fig. 11.9d. Thus the 
computation of Fu (t) as product of F~ (t) by the constant Cd~ proves to be effective 
even if we take into account the non-linearity effects. 

Conclusion: the evaluation of the forces on offshore structures (we mean the 
class of structures hitherto considered) gets much simpler, and the diffraction 
coefficients Cdo and Cd~ take on an importance much greater than one may think 
from their definitions (11.1) and (11.2). 
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11.4.2 Analytical and numerical solutions 

The analytical solution to the linear wave diffraction problem for a vertical 
circular cylinder extending from the seabed and piercing the free surface was 
obtained by Mac Carny and Fuchs (1954). The analytical solution for the interaction 
between periodic waves and a horizontal submerged cylinder (being understood it 
is a circular cylinder) was obtained by Ursell (1950) and completed by Ogilvie 
(1963). The analytical solution for the interaction between periodic waves and a 
group of truncated circular cylinders was developed by Linton and Evans (1990) 
and Kim (1992) (case of bottom mounted cylinders), and by Yilmaz (1998) (case of 
cylinders piercing the free surface). 

A numerical method for the interaction between periodic waves and solid objects 
of arbitrary shape is well established and is due to the work of Garrison and Rao 
(1971) and Garrison and Chow (1972). In this numerical method the velocity 
potential of the scattered waves is given as the result of a distribution of point wave 
sources over the surface of the solid object. The sum of this velocity potential and 
the velocity potential of the incident waves must satisfy the boundary condition at a 
number of points of the solid surface. 

The aforesaid analytical solutions, and especially the one for the horizontal 
cylinder, are given by rather complex formulae. The numerical solutions in their 
turn call for much work on computer. 

For an illustration of these solutions, fig. 11.12 shows the diffraction coefficient 
for the circular cylinder extending from the seabed and piercing the free surface. 
Line @ is the classic solution of Mc Camy and Fuchs (1954) for the periodic waves, 
and line @ is the solution based on the theory of the sea states with the usual 
characteristic spectrum of the wind waves. [According to the theory of the sea states 

Cao ~ riodic waves 

(~) theory of the sea s t a t e s / / / / ~ ~ ~  

R/L , R/Lp 
I 0 I I I I 

0 0.05 0.1 0.15 

Fig. 11.12 The diffraction coefficient of the vertical circular cylinder extending from the seabed 
and piercing the free surface. Line @ was contributed by F. Arena. 
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the horizontal force represents a stationary Gaussian process whose standard 
deviation can be obtained from the directional spectrum of the incident waves. The 
way of reasoning is the one followed in sect. 8.6 to get the diffraction coefficients of 
the wind waves behind a vertical breakwater.] 

The term diffraction coefficient refers to waves and wave forces. The first meaning is: 
quotient between the standard deviation of the surface displacement of waves interacting 
with some solid body and the standard deviation of the incident waves. The second meaning 
is: quotient between the standard deviation of the force on a solid body and the standard 
deviation of the Froude-Krylov force. 

11.4.3 A formula of general validity 

In the foregoing sections we have suggested an approach different from the 
classic one. The classic approach consists in obtaining the solution, preferably the 
analytical solution, for the diffraction coefficient of bodies with more and more 
complex forms. Here,  we have tried to understand what is the cause of the 
diffraction coefficient, looking at the results of two field experiments in the light of 
the quasi-determinism theory. Thus we have realized something valid regardless of 
the body shape, whether it is the column or the big base of the gravity platform, or 
the submerged tunnel. First, we have understood that Cdo is essentially due to a 
drop in the propagation speed of the pressure head wave at the isolated offshore 
body. Then we have understood the reason for this drop, which in its turn has 
enabled us to understand that Cd~ is the effect of a variation in amplitude of the 
pressure fluctuations. Here below, basing ourselves on  these ideas, we suggest a 
general criterion for estimating the diffraction coefficient. 

(a) 
f / \ 

/ \ ~, 
- 

I I F~ [ ~  water cylinde 

\ / 
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At  
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(0) 

Y; Fo" 
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T , 
IF,' ~ ~'" 

A t  e -  
T 

t 

Fig. 11.13 Wave forces on the left (wave beaten) half-cylinder, and on the right (sheltered) half- 
cylinder. (a) Ideal water cylinder. (b) Solid cylinder. 
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We refer to the sketch of fig. 11.13a showing the cross-section of a vertical water  
cylinder. Let  us think of the cylinder as being subjected to two horizontal  wave 
forces F '  ° ( t )  and F '  o' (t) , the first one acting on the left half-cylinder (the wave 
bea ten  half),  and the second one acting on the right half-cylinder (the shel tered 
half). These  forces have the same ampli tude and frequency,  and a phase angle e__: 

Fo (t) - F sin (w t + e_/2), 

Fo'(t) - F sin (co t - _e/2). 

Here  e__ is the average phase angle be tween  opposi te  points like P '  and P "  [see fig. 
11.14]. Naturally,  we mean  the weighted average with respect  to cos/3, that  is 

J '~/Z(2R cos8  27r/L)cos8 d 8  
0 

- [~/2 cos8 d~ 
, / 0  

where  the te rm within the parenthesis  on the r.h.s, is the phase angle be tween  point  
P '  and point  P". The  result is 

7l- 
e - k R .  (11.3) 
- 2 

The solid cylinder [see fig. 11.13b] is subjected to two wave forces having the same 
ampli tude F and f requency w and a phase angle e greater  than _e: 

Fo (t) - F sin (co t + e /2) ,  

Fo' (t) - F sin (co t - e /2) .  

wave direction 

m 
v 

e l  f _/ ~ p" 

I \ 

\ / 

\ / 

phase angle = 2Rcosfl  2 ~  
L 

water cylinder 

Fig. 11.14 Graphic aid for deduction of (11.3). 
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We have 
e - ~ e _ ,  (11.4) 

where ~ is the reduction factor (greater than 1) of the propagation speed of the 
pressure head waves at the solid cylinder, which we shall call s p e e d  d r o p  fac tor .  

Thus, the pressure forces on the water cylinder and on the solid cylinder are 
respectively 

Fo (t) - Ff  (t) - Fo' (t) - F [sin(cot + £/2) - sin(cot - £/2)], 

Fo (t) - Fo (t) - Fo' (t) - F [sin (cot + e/2) - sin (co t -  e/2)], 

from which it follows that the diffraction coefficient is 

Cdo -- ~ / <  [sin (cot + e /2)  - sin (cot -  ~/2)]2 > 
< [sin (cot + £/2) - sin (cot - £/2)]2 > 

Isin(c/2)l 

Isin(c/2)l 

Finally, using the relations (11.3) and (11.4), we obtain 

sin ( ~ 2 4 k R )  

Cdo = for the vertical cylinder. (11.5) 

sin 

The same reasoning is true also for a horizontal cylinder, with only one 
difference. In the case of the vertical cylinder, Fo is parallel to the propagat ion 
axis. In the case of a horizontal cylinder, Fo is orthogonal  to the cylinder axis, and 
hence is affected by the wave direction. The larger the angle 0 that the wave 
direction makes with the orthogonal  to the cylinder axis, the smaller is the 
relative phase £. Specifically we have 

71" 
c - k R  cosO, 
- 2 

and accordingly 

sin  . os0) 4 
Cdo = for the horizontal cylinder. (11.6) 

Isin kR cos0) 
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11.4.4 Hints for the use of  the general formula 

The formula of the foregoing section can be applied to submerged bodies like the 
platform's base or the tunnel, taking Tp as the wave period. As to the speed drop 
factor ./@~, basing ourselves on the results of the experiments RC 1992 and RC 1993, 
we suggest 

for the platform's base: .~7~ = 1.75, 

for the small tunnel (Iz~l/e = 5):  ~ = 1.75, 

for the big tunnel (Izcl/R = 3 ) :  = 2 . 0 .  

As to the platform's columns the matter is somewhat more complex. Probably 
owing to the interaction between columns and surface waves, Cdo is not only due to 
the drop in the propagation speed, but also to a small variation of the amplitude of 
the pressure fluctuation. The . ~  proves to be nearly 1.75 so that according to (11.5) 
also Cdo should be nearly 1.75 (for a small _e, like in the case of the column, Cdo tends 
to coincide with . ~ ) .  The increase in Cdo due to the variation in amplitude of the 
pressure fluctuation proved to be of about 10 + 15% in the experiment RC 1992. 
Thus we suggest to take 

columns: Cdo = 2. 

Finally, Ca~ is strictly correlated to Cdo, and we can take 

G~ =0.9(5,0 

for both, the small tunnel and the big tunnel. 
Of course, we can achieve a precise estimate of the diffraction coefficient of any 

given structure if, like in the experiments RC 1992 and RC 1993, we work with the 
two gauge arrays. We advise doing this work for the design of a structure, since it 
enables a person to get a very clear idea on Cdo and C,~. Furthermore,  for this 
special aim the technique of the small scale field experiment is easier than one may 
think. This, thanks to an interesting property of the spectra of the force-processes, 
we are going to illustrate. 

11.4.5 Why the diffraction coefficients can be estimated rather easily through 
the small scale field experiments 

The reader  will remember  that a big problem for the small scale field 
experiments is due to the swells. The case of fig. 4.12 was clear enough: wind 
waves with an excellent size for small scale models; a trifling presence of swells on 
the water surface; how this trifling presence was able to upset the spectra of the 
pressure head waves beneath the water surface. The conclusion was that this sea 
state could not be taken as a small scale model of a severe storm. 

The sea state of fig. 4.12 was recorded just during the experiment RC 1993. The 
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spectra shown by the figure are the ones of the surface waves above the tunnel, and 
of the pressure head waves at points @, @ and @ [see fig. 11.6]. At the smaller 
depth (point @), the swell is already of the same order of magnitude as the wind 
wave; at point @ the swell overtakes the wind wave; at the larger depth (point @) 
the wind wave is very small with respect to the swell. 

Look now at fig. 11.15. This gives the spectra of the horizontal force Fo (t) and of 
the vertical force Fu (t). We should like to say: magic! All traces of swells have 
disappeared! Was it not for the small bump in the spectrum of Fo (t), one would 
think that there were no swells. Here below we explain this phenomenon.  

The sketch of fig. 11.16 shows the pressure fluctuation at two points of the y-axis 
(parallel to the wave direction) at the depth of the cylinder centre. Two cases are 
performed: (a) a wind wave; (b) a swell with a period three times larger than the 
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~ .  T[s] 0.0 
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Fig. 11.15 Spectrum and autocovariance of the force on the horizontal cylinder. The spectra of the 
pressure head waves on the cylinder were given in fig. 4.12. The swell peak, which was the highest 
in the spectrum of the pressure head waves, here has practically disappeared! Why? The answer, 
in the two following figures. 
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wind wave's .  We  assume the ampl i tude  of the pressure  f luctuat ion to be the same 
for the wind wave and for the swell. However ,  we see the largest  pressure  difference 
(APmax) be tween  the wave bea ten  half-cylinder and the shel tered  half-cylinder 
proves  to be marked ly  larger  in the wind wave. There  are two reasons for this. First, 
under  the same At, a three  t imes smaller  wave per iod implies a three  t imes larger 
APmax ; then there  is the fact that  At  of the wind wave is three  t imes larger  than At  
of the swell (since the swell is three  t imes faster than the wind wave) ,  and hence we 
get a Apmax of the wind wave which is nine t imes larger  than the /kPmax of the swell. 
(This reasoning is somewha t  simplified, it becomes  exact  if R/L is small and the 

wate r  is deep.)  
Conclusion: the force Fo is 

Fo(t)-Fcos(wt)+~Fcos w , 

where  the first t e rm on the r.h.s, is due to the wind wave and the second t e rm is due 

to the swell. This force has a spec t rum with a peak  of 1 F 2 on the f requency w of 
2 

wave direction 

(a) [wind wave ] 

A max. pressure difference 
int A and point B 

t . 

(b) I swell ] 

max. pressure differenee 
A between point A and point B 

Fig. 11.16 Even if the pressure fluctuations of the wind wave and of the swell have the same 
amplitude at the depth of the cylinder's centre, the difference [pressure on the wave beaten half- 
cylinder] - [pressure on the sheltered half-cylinder] is the greatest by far in the wind wave. 
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the wind wave and a second peak of 1 1 F  2 on the frequency a~/3 of the swell. 
81 2 

Hence the swell's share of the standard deviation of the force-process is only 

1 _ 1 ) / ~ / 1 _ ~  1 
( ~ / 1 +  81 -8--~ 

which makes 0.6%, and consequently the alteration of Cdo due to the presence of 
the swell is really very small. 

Let us pass to the vertical force. Here,  the incidence of the swell is even smaller. 
Indeed we see in fig. 11.15 the spectrum of F~ (t) to exhibit no trace of swells. 

The sketch of fig. 11.17 helps to realize why, under the same amplitude of the 
pressure fluctuation at the depth of the cylinder centre, the wind wave exerts a 
vertical force much greater than the swell. Indeed the figure shows that the pressure 
difference between the upper half-cylinder and the lower half-cylinder is markedly 
larger in the wind wave. This is a consequence of the fact that the attenuation of Ap 
is the larger, the smaller the wave period is. 

Conclusion: the forces are, in practice, affected only by the wind wave. Hence, it 
is not true that the sea state of fig. 4.12 with wind waves of 2 s superimposed on 
swells of 6 s is not at all suitable as a small scale model of a severe storm. On the 
contrary, it can be an excellent model, provided the target is the pressure forces 
rather than the pressures pure and simple. In practice this sea state can be used for 
getting graphs like the ones of figs. 11.10-11 giving the wave force vs time, or for 

I wind wave [ I swell I 

..---- t 

F~wave crest 

wave trough 

j "-... t 

Fv wave crest 
I t 

F vwave trough 

Fig. 11.17 Even if the pressure fluctuations of the wind wave and of the swell have the same 
amplitude at the depth of the cylinder's centre, the difference [pressure on the upper half- 
cylinder] - [pressure on the lower half-cylinder] is the greatest by far in the wind wave. 
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evaluating the diffraction coefficient. Thus the small scale field experiments gain a 
new point: finding pure wind waves of small size is not always necessary; for a few 
aims like the evaluation of Cdo and Cd~, even some "dirty" wind waves, like the ones 
of fig. 4.12, are suitable. 

11.5 Wave  forces on space f lame  structures 

11.5.1 The number  Ke (Keulegan-Carpenter) 

So far we have dealt with some large structures: the columns of the gravity 
offshore platform, the submerged tunnel and, especially, the big base of the gravity 
platform. The ideal flow pat tern works well for these structures as we have seen in 
the foregoing sections. Not so, for the space frame structures whose members  have 
some smaller diameters. 

Usually, the ideal flow pat tern is applied for KE < 2 • 3, KE being the Keulegan- 
Carpenter  number: 

Vmax T 
KE---- 

D 

where Vma x is the maximum particle velocity at the depth of the cylinder centre. 

KE can be conveniently expressed also in terms of Hph (the height of the pressure head 
wave at the depth of the cylinder centre) provided this depth is always beneath the free 
surface. Indeed with the linear theory we have 

yielding 

H cosh [k(d + z)] cosh [k (d + z)] 
Vma x - -  g - - ~ - O . l - l k  , g p h  - -  H 

cosh (kd) cosh (kd) 

KE = Hph 7c . (11.7) 
D tanh (kd) 

This is an useful formula for evaluating Ke when we work in the field. Indeed, a simple 
pressure transducer suffices to measure the height Hp~. 

11.5.2 Experimental evidence for  the validity o f  the ideal f low pattern 

How do we decide whether  or not the flow can be regarded as ideal? Certainly, 
the flow at the equivalent water volume can be regarded as ideal. Thus, we should 
investigate whether  or not the forces on the solid body are of the same kind as the 
forces on the equivalent water mass. 

When a wave crest passes at the centre of a water cylinder, whether  it is 
horizontal or vertical, the horizontal force is zero, while the vertical force has a 
minimum (here we are referring to a horizontal cylinder). When  a wave trough 
passes at the cylinder centre, the horizontal force is again zero, while the vertical 
force has a maximum. Therefore a simple criterion for realizing whether  the forces 
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on the solid cylinder are like the forces on the equivalent water cylinder is to check 
the phase angles between waves and horizontal forces and waves and vertical 
forces. Let us see an example. 

Fig. 11.18 shows the record of the individual wave with the largest KE (hE ~ 2.5) 
taken during the experiment RC 1993 (the surface wave was recorded above the 
cylinder axis). We see that under the highest wave crest, the horizontal force is zero 
while the vertical force has a local minimum. This suggests that there is no apparent 
alteration due to non-ideal flow near the solid body. 

A good way to further examine the nature of the force on the solid body is to 
look at the distribution of the crest-to-trough heights of the force process. Fig. 11.19 
shows the probabilities of exceedance of the crest-to-trough heights of the processes 
Fo(t) and Fo(t). (The figure was obtained from the whole set of data of the 
exper iment  RC 1993.) The nearly perfect  agreement  be tween these two 
probabilities is a further proof that the wave force on the solid cylinder is of the 
same kind as the wave force on the equivalent water cylinder, so that the flow at the 
solid cylinder can be regarded as ideal. 

11.5.3 Morison's equation 

With the real flow pattern, the sectional wave force (in-line force) on a rigid 
cylindrical member  is calculated by means of Morison's equation (Morison et al., 
1950) which can be written in the form (Borgman, 1958): 

f(t) = Ci.fi. (t) ÷ CdgpRvsectVsect, (11.8) 

SURFACE WAVE ~ 

t[s] 
I i I i I i I J I i I i 

286 288 290 292 294 296 

Fig. 11.18 Horizontal  cylinder of the experiment  RC 1993: first inspection of the flow 
characteristics for the wave with the largest KE(Ke~ 2.5). The full correspondence of wave 
crest - zero of the horizontal force - minimum of the vertical force reveals the typical features of 
the ideal flow. Note that the greatest sea state KE (cf. Burrows et al., 1997) of the experiment  was 
of about 0.8. 
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where 
f in  ( t )  - -  p T l ' R 2 a s e c t ,  ( 1 1 . 9 )  

and where Vsect , asect are respectively the velocity vector  and the accelerat ion vector  
normal  to the pipe. We allow the cylindrical m e m b e r  to be or iented at r andom 
because the frame structural e lements  also have different orientat ions,  as we shall 
see in the worked  example of sect. 12.2. 

Morison 's  equat ion  is thus the sum of two terms, the first one represent ing the 
inertia force, i.e. the force acting on the equivalent  water  mass multiplied by the 
factor C~, (inertia coefficient) that  is generally greater  than 1. The second term in 
Morison 's  equat ion  represents  the drag force that is the same kind of force exerted 
by a steady current.  

Besides the in-line force there is a lift ( t ransverse)  force which is related to 
vortex shedding. For  a vertical cylinder, the lift force is i rregular  even with the 
periodic waves, the quot ient  fundamenta l  lift f r equency /wave  f requency generally 
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Fig. 11.19 Horizontal cylinder of the experiment RC 1993: a new test on the flow characteristics. 
The probability of exceedance of the crest-to-trough heights of the force process is practically the 
same for the ideal water cylinder and for the solid cylinder. It is a further evidence that the flow in 
that experiment could be regarded as ideal. 
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grows with Ke (Williamson, 1985 and Justesen, 1989), and the amplitude is usually 
expressed in the form 

f lift max - -  Ctift pR 2 Vmax 

where C~ilt is the lift coefficient. For a horizontal cylinder the lift force proves to be 
substantially in antiphase with the inertia force (cf. Chaplin and Subbiah, 1997). 

The form (11.9) of fi, (t) is right in the assumption that R/L is small so that the integral of 
the acceleration over the cylinder section is nearly equal to the product of the area by the 
acceleration at the section's centre. This assumption is generally acceptable, given that R/L 
is rather small on the range of validity of the real flow pattern. Let us evaluate an upper 
bound of R/L on this range. 

From (11.7) we know that 

R = 7r //p______Lh __11 1 (11.10) 
L 2 L KE tanh(kd) '  

and, accordingly, the extreme value of R/L for a given Ke occurs when Hph/L takes on its 
maximum. Since the height Hph of the pressure head wave at any depth z is smaller than the 
wave height H, from (2.52) it follows 

G h  < O. 14 tanh (kd) 

that, taken together with (11.10), yields 

R 
L 

7r 0.14 - - <  
2 K~ 

11.5.4 Force coefficients 

Cin and Cdg depend on Ke and on the Reynolds number 

R E -  VmaxD//y, 

and this dependence is illustrated by the well-known graphs of Sarpkaya and 
Isaacson (1981). (Usually, Vsect, max is used for KE and Re. However, for the principal 
members, Vsect, max is typically equal to, or close to, Vmax.) 

Ci, increases with the increasing of Re in a different manner  according to Ke, 
reaches a maximum, and then converges on an asymptotic value. Cdg decreases with 
the increasing of RE in a different manner  according to Ke, reaches a minimum, and 
then tends to an asymptotic value. Following Sarpkaya and Isaacson, these 
asymptotic values can be assumed as 1.85 and 0.62, respectively, for C/~ and Cdg. 

Looking at the above mentioned graphs which give the coefficients versus RE for 
several values of lle, one can see that, for Re > 104 ge, both Ci~ and Cdg are rather 
close to their asymptote. Hence, for a first approximation, we shall assume 

° 

fin - -  1.85, Cdg --0.62 for Re/Ke - D2/u T > 104. (11.11) 
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These values of Ci~ and Cdg are valid for smooth pipes. For roughened pipes 
(with rigid and/or soft excrescences), the asymptotic value of Cdg grows (even 
markedly) and the asymptotic value of Ci~ decreases. 

More recently Sumer and Fredsoe (1997), basing themselves on data of Justesen 
(1989), have suggested a different picture for the smooth pipes on the range 
5 < KE < 20. In particular, on this range, the asymptotic values of Ci~ and Cdg 
deviate from those suggested by Sarpkaya and Isaacson: the asymptote of Ci~ being 
smaller than 1.85 and that of Cdg being greater than 0.62. The largest deviations 
occur at KE of 1 0 -  15, where the asymptote of Ci, falls at about 1.4 and the 
asymptote of Cdg rises up to nearly 1.0. Here, note that Ci, = 1.4, Cdg - -  1.0 instead 
of the values (11.11) lead to a somewhat smaller in-line force for a KE of 10 + 15. 

Finally, also C~is, depends generally on RE and Ku, and Sarpkaya and Isaacson's 
graphs show that it is about 0.2 for RE greater than about 5.105. 

11.5.5 The weight of  the drag component 

Let us consider the basic case of a vertical cylinder. It is the case in which both 
the inertia force and the drag force act along the wave propagation axis (y-axis): 

f~ = G~ p:rRZay, fdg = CdgpRIvylV~ 

(for simplicity we write f~n, fdg in place of f~ny, fdgy). If the wave is periodic, we have 

Vy --- Vma x COS ( u . ) t ) ,  ay - - -  - -Vma  x CO sin (cot). 

Hence we can write 

f =fi~ +)~g = f/nmax - s in  (cot) + - -  Gi n 7F 2 K lcos( /)tcos( t) , 

which points out that 
17c2 Cin fmax--finmax for Ke<_-~ Cdg 

For example, with the asymptotic values C/, = 1.85 and Cdg- 0.62, f m a x  coincides 
with f/nmax for KE < 15; that is to say, the drag component does not affect the force 
peak if KE is smaller than 15. 

11.6 The long-structure problem 

11.6.1 The terms of  the problem 

Let us think of a long structure such as a submerged tunnel or a breakwater  and 
let us assume that the dominant direction is orthogonal to the axis of this structure. 
Let us fix a point P of the axis and let us consider 

(i) the probability of exceedance of the wave height at P, 
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(ii) the probability of exceedance of the wave height at the centre of the wave 
crest which passes at point P. 

If the waves are random 3-D (wind generated waves), the crest-to-trough height 
at the crest centre is greater than or equal to the wave height at point P. It is equal 
only in the special case that the crest centre passes at point P. As a consequence, the 
probability (ii) is greater than the probability (i). Whereas, if the waves were random 
2-D (no directional spread), the two probabilities would be equal to each other. 

Now, keeping in mind that the probability (i) is the same for the 3-D random 
waves and for the 2-D random waves (under the same frequency spectrum), it 
follows that the probability (ii) is greater for the 3-D waves than for the 2-D waves. 

Then, if we think that a long structure is usually beaten by several wave crests at 
the same time, we easily realize that the maximum expected wave height on the 
whole structure (in a given time interval) will be greater in the case of the 3-D 
random waves than in the case of the 2-D random waves. Were the waves two 
dimensional, the maximum expected wave height at any fixed point P would be 
equal to the maximum expected wave height on the whole structure. The waves 
being three dimensional, the maximum expected wave height on the whole 
structure will be greater. How much greater? Here is the problem to be solved. 

11.6.2 D e v e l o p m e n t  

Line I of fig. 11.20 represents (~max (N), that is to say the maximum expected wave 
height in a sequence of N waves. (Of course we are speaking of the nondimensional 
wave height c~, i.e. the quotient between the wave height and the significant height 
of its sea state.) L ine / / r ep resen t s  (~max (2N); the meaning is the same as that of line 
I apart from the number of waves that here is 2N. Finally line III  represents 
(~max (3N). These three lines have been obtained by means of (5.58). 

For example, the ordinate of the three lines on the abscissa N=200 are 

(~max (200) - 1.617, ~max (2-200) - 1.712, (~max (3" 200) -- 1.765, 

that is: the maximum expected wave height in a sequence of 200 waves is equal to 
1.617 H,, the maximum expected wave height in a sequence of 400 waves is equal 
to 1.712 H,, and the maximum expected wave height in a sequence of 600 waves is 
1.765/-/,. 

Also the data points in fig. 11.20a represent &m~x (N), C~max (2N) and C~ma~ (3N) and 
have been obtained from the time series data of the experiment RC 1990. As to the 
~* needed for obtaining the lines I, H and I l l  by means of (5.58), we have taken the 
mean value of this parameter in the aforesaid experiment. 

The same lines I, H and III  representative of (~max (N), ~max (2N) and (~max (3N) as 
functions of N are also in the panels (b) and (c) of fig. 11.20. But the data points in 
these two panels are representative of C~max (N, n, Ax), where 

N - number of consecutive waves recorded at each point; 
n - number of points where the records are taken at the same time; 
Ax -- distance between two of these points. 
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Fig. 11.20 (a) Line I: maximum expected c~ in a sequence of N waves; line H: maximum expected 
c~ in a sequence of 2N waves; line III: maximum expected c~ in a sequence of 3N waves. 
Continuous lines: from equation (5.58); data points from experiment  RC 1990. (b) and (c) The 
continuous lines are the same as in panel (a), while the data points give the maximum expected c~ 
in a sequence of N waves recorded simultaneously at n distinct points. The symbol specifies the 
number  n of points and the distance Ax between these points. The alignment of the points was 
nearly parallel to the wavefront. 
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In other words, the data of fig. 11.20b-c represent the maximum expected ~ in a set of 
n N waves recorded simultaneously at n different points: N waves per each point (we 
mean that the wave gauges are laid along a straight line parallel to the wavefront). 

Also the data of fig. 11.20b-c proceed from the experiment RC 1990, where the 
aligned wave gauges were @-@ [see the gauge map in fig. 10.23]. Specifically 
~m~x(N, 2, Lpo/3) was obtained with the wave heights recorded simultaneously by 
pairs of gauges like @-@, @-@, @-@, and so on. Indeed the distance between two 
gauges was 1.25 m and Lpo was on average of 7.5 m, so that the distance between 
two gauges was Lpo/6. (The waves were on deep water so that Lpo was nearly 
coincident with Lp.) 

For example, in panel (b) of fig. 11.20 we see 

(~max (200, 2, Lpo/3) - 1.678, 

which means that, if we take simultaneously two records each of 200 consecutive 
waves at two points being Lpo/3 apart and being roughly aligned with the wavefront, 
we can expect that the maximum wave height in the set of the 200-2  - 400 waves 
recorded at the two points is equal to 1.678 H,. Similarly, we see that 

~max(200, 3, Lpo/3) -- 1.728, 

which means that, if we take simultaneously three records each of 200 consecutive 
waves at three points P1, P2 and P3, with P~ P2 = P2 P3 - Lpo/3 and P1, P2 and P3 being 
roughly aligned with the wavefront, we can expect that the maximum wave height in 
the set of the 200-3 = 600 waves recorded at the three points is equal to 1.728/4,. 

If the distance Ax between two gauges tends to infinity, the maximum expected 
c~ in the set of 2N waves recorded simultaneously by the two gauges (N per each 
gauge) will coincide with the maximum expected & in a sequence of 2N waves 
recorded by only one gauge in a time interval which is twice as long. On the 
contrary, if Ax approaches zero, the maximum expected c~ in the set of 2N waves 
recorded simultaneously by the two gauges will coincide with the maximum 
expected c~ in a sequence of N waves recorded by only one gauge. Indeed, in this 
case, the two gauges being placed at the same point also take the same wave record. 
In general, as the distance Ax grows, the maximum expected ~ in the set of 2N 
waves recorded simultaneously by the two gauges (N waves per each gauge) passes 
gradually from (~max (N) to (~max (2N), that is it passes from line I to line H of fig. 
11.20. An apparent confirmation comes from fig. 11.20c that shows 

~max (N) < (~max (N, 2, Lpo/6) < ~max (N, 2, Lpo/2) < C}max(2N) • 

11.6.3 Suggested solution 

The problems that are encountered in the design practice are of two kinds. The 
first one is the problem of the submerged tunnel (see fig. 12.8), that is a structure 
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with some non-constant influence lines. For example, the largest bending moment  
in the tunnel varies according to where the maximum wave height on the whole 
structure occurs (we shall see this in the worked example of sect. 12.3). The largest 
bending moment  and shear force typically occur if the maximum wave height occurs 
at a pier or at a span centre. 

The second problem is that of the caisson breakwater,  that is a long structure 
with some constant influence lines. Indeed, wherever the maximum wave height 
occurs, the maximum pressure force and overturning moment  on a single caisson 
will be nearly the same. 

For the first problem we have to evaluate the maximum expected wave height at 
a set of discrete points. For the second problem we have to evaluate the maximum 
expected wave height on a segment line (the longitudinal axis of the structure). 

First problem. The maximum expected wave height at a set of n points, being 
aligned with the wavefront and being at least Lpo/2 apart, can be evaluated as the 
maximum expected wave height at a fixed point, with a fictitious mean period of 
Tin. This approach can be followed with any formula for the maximum wave 
height, that is with the formulae (5.58-59), or (6.25) or (7.37). In other words the 
maximum wave height at the n points in a given time interval is estimated as the 
maximum wave height that would occur at a single fixed point if the time interval 
was n times larger. It is the same as using line H of fig. 11.20 to estimate the 
maximum expected ~ in a set of 2N waves simultaneously recorded at two 
different points (N per each point). The condition that the distance between the 
points must be larger than Lpo/2 is typically fulfilled in the cases that occur in 
design practice. Was it not satisfied, the suggested cri terion would be 
conservative. 

Second problem. Let us imagine we align a set of n points at a distance of Lpo/3 
from each other along the structure axis. Well, if we adopted the method suggested 
for the first problem [replacing T by T/n in formulae (5.58-59), (6.25), and (7.37)] 
we would overestimate the maximum expected wave height at these n points. But 
the maximum expected wave height on the whole segment line is actually somewhat 
larger than the maximum expected wave height at the set of n points. (The 
difference between the maximum expected wave height on the segment line and the 
maximum expected wave height at the n points can be evaluated by means of the 
quasi-determinism theory; and it proves to be of a few per cent if the distance 
between two successive points is equal to Lp0/3.) 

In the light of these remarks we suggest to estimate the maximum expected wave 
height on the whole segment line of length 1 by means of (5.58-59), or (6.25), or 
(7.37) with a fictitious mean period T/n, with 

l 
n -  1 ( la .12)  

Lpo/3 

Data from shallow waters are still lacking. However,  in sect. 10.5 we saw that the 
length of a wave crest keeps practically constant from deep to shallow water, and 
accordingly we suggest using formula (11.12) also for structures on shallow water. 
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Conclusive note 

The small scale field exper iments  R C  1992 on the gravity offshore p la t form and 
R C  1993 on the submerged  tunnel  were  descr ibed by the au thor  (1995 and 1996). 
The  long-s t ructure  p rob lem is a novelty.  
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Chapter 12 
CALCULATION OF THE WAVE FORCES 
ON OFFSHORE STRUCTURES 

12.1 Calculation of the wave forces on a gravity offshore platform 

Let us estimate the force exerted by the highest wave in the lifetime of a gravity 
offshore platform. The plan and the front view of the platform are given in fig. 12.1, 
and for a three dimensional picture reference is made to fig. 11.1. The water depth 
d is 125 m; the reservoirs have a height of 50m and a diameter  of 20m; the 
columns' diameter  gradually tapers from 20 m to 12 m. (The deck is not shown in 
the figure, since it is not subjected to wave loads and hence it does not concern our 
analysis.) 

level 

1 
25m 

I 
75m 

50m 

1 

12m 

f--.2Om-~ 

125m 

X 

Fig. 12.1 Plan and front view of a gravity offshore platform; the positions of the columns in the 
plan are denoted by letter C. 
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The logic is that of sect. 7.8. Specifically, by means of (7.37) we can evaluate 
the probability that the largest wave height in the lifetime L exceeds any fixed 
threshold H. Hence we obtain the threshold H being relevant to the prescribed 
probability. Finally, (7.40) enables us to estimate the H, of the sea state where 
wave height H will most probably occur. It is the procedure outlined by figs. 7.12 
and 7.13. 

Here we assume the following characteristic values for the North Sea: 

H -  30m, Hs - 15m; 

from which, using (4.27) we obtain 

Tp - 16.5 s ~ L p o  - 425 m, L p  - 408 m. 

As we noticed in sect. 7.8.2 the highest wave in the lifetime is very great even for the 
heavy sea state where it occurs, and indeed the quotient H/Hs for the highest wave 
in the lifetime proves to be greater than or equal to 2. This is an important property 
that enables us to apply the quasi-determinism theory for the calculation of the 
force exerted by the highest wave in the lifetime. 

The logic of the quasi-determinism theory is that, knowing that a very high wave 
(H - 30m in a sea state of Hs - 15 m) occurs at the platform's centre (point Xo, Yo), 
we can predict with confidence the configuration of the wave group and the load 
exerted on the structure. 

The horizontal axes are shown in fig. 12.1 (bearing in mind that x-y are the 
coordinate axes, and X-Y are the local coordinate axes with the origin at Xo, yo). The 

m 

dominant wave direction is assumed to be y-parallel ( 0 -  0). Hence also the 
propagation of the wave group is y-parallel. 

The calculation is made in four steps. 
First step: estimate of KE. The double integral in equation (10.3a) of Vy (being 

necessary to get KE) is numerically evaluated, and the hints of sect. 10.1 should 
make this task rather easy. As to the nondimensional spectrum J (w, 0), we use the 
classic form (8.20) with 

X~-3.3, np - 2 0 .  

(As said, the second shape parameter  of the JONSWAP spectrum, that is X2, plays 
only a minor role, and can definitively be given the characteristic value 0.08.) 

The Ke of the base proves to be markedly smaller than the unit, and the Ke of the 
columns exceeds 2 about 50 m beneath the mean water level and is nearly 6 at the 
mean water level. Hence, following common practice we should not apply the ideal 
flow pattern to the upper portions of the three support columns. However the 
difference is small if we resort, as we shall do, to the ideal flow pattern for the whole 
structure. 

Second step" calculation of Cdo. As to the Cdo of the columns, following the 
suggestion of sect. 11.4.4, we assume it to be equal to 2. Thus the calculation must 
only be done for the base consisting of 19 cylinders and 24 interstices between the 
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cylinders. Each interstice has an area of 0.0403D 2 (D being the diameter  of a single 
cylinder). Therefore  the area of the platform's base is 

A - 197r 202 + 24.0.0403 • 202 - 6356m 2 . 
4 

For calculating Cdo we refer to the circular cylinder of the same area whose radius is 

R - ~/63567r = 45m. 

Hence,  taking .~/@ - 1.75 for the platform base [cf. sect. 11.4.4], from (11.5) we 
obtain 

s i n (  1"757r440827r 45) 

Cdo = = 1.57. 
sin~Tr 27r 45) 

4 4 0 8  

Third step" calculation of the wave force on the platform's base. To this end we 
should evaluate the pressure force on the equivalent water  mass, using the formula 
(10.3g) of Ap. However ,  this calculation is rather  long because of the volume shape, 
so that it is advisable to resort to the alternative form 

IVy -- I pay dW, (12.1) 
W 

where W is the volume of the equivalent  water  mass. We should obtain 19 + 24 
contributions to this integral: from the 19 cylinders and the 24 interstices. The 
coordinates of the centres of the 19 + 24 volumes must be stored on a computer.  
Hence we have to write a program that evaluates the particle acceleration ay 
(function 10.3d) at the centre  of each of these volumes,  multiplies this 
acceleration by the water  density p and by the volume. Doing so we get the 
horizontal  force on a water  mass equivalent  to the platform's  base. Then, 
multiplying this force by C~o = 1.57 we arrive at the horizontal  force on the 
platform's base. Of course, the calculation must be done for a number  of values 
of T, so as to obtain the fluctuating wave force. 

Fourth step: calculation of the horizontal force on the platform's columns. The 
force on the columns is evaluated essentially like the force on the base. First, we 
compute the horizontal force on an equivalent water  mass by dividing the columns' 
volume in a number  of small disks. There are only two differences with respect to 
the calculation done for the platform's base: the Cdo which is 2 instead of 1.57, and 
the volume W not constant in time. Indeed W is the column's volume from the base 
(z = - 7 5  m) to the free surface elevation. Therefore,  we have to evaluate the free 
surface elevation at each column, which can be done by means of (10.2a). 
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Fig. 12.2 shows the results: 
(i) the surface displacement at Xo, Yo (the platform's centre), 
(ii) the horizontal force on the base, 
(iii) the horizontal force on the three columns, 
(iv) the total horizontal force. 

The water density has been assumed to be 

p = 1030 kg /m 3 . 

We see the main force is that on the base. Of course the same calculation also yields 
the overturning moment  which is chiefly due to the force on the three columns. 

The figure reveals the characteristic time history of the forces produced by the 
wave groups: the force fluctuation grows up to a maximum when the central wave 

I I wave group [ 
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[ three columns J 
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, , ~ . f - ? ~ - ~  ~ _T[s] 
-5 0 10 15 ~ 25 30 

3.62"10SN I pressure force on 
~ I the p l a t f o r m  

, ~ ,  , / ,  ~, , ~ r [ ~ ]  
-25 -20 ~ 5///  10 1 5 ~ . _ ~ 2 5  30 " 

. . 8 

Fig. 12.2 Worked example: the horizontal forces on the gravity platform. 
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passes t h rough  the p la t form,  and then  decreases.  This is m a r k e d l y  different  f rom 
the force exe r t ed  by a t rain of per iodic  waves.  No te  also tha t  the wave and the 
horizontal force have a phase angle of a quarter of circle because of the inertial 
nature of the force. 

12.2 Calculat ion of  the wave  forces on a space frame structure 

12.2.1 The largest zero down-cross ing wave mus t  be considered 

The heights of the maximum expected zero up-crossing wave and of the 
maximum expected zero down-crossing wave in the lifetime are equal to each other. 
As for the surface displacement and the flow field, the prediction concerning the 
highest zero down-crossing wave can be done by means of the quasi-determinism 

m 

theory with a minus in the equation of ~ and ~. 
Fig. 12.3 shows the surface displacement ~ at the fixed point Xo for the case in 

which the wave of given very large height H is a zero up-crossing and for the case in 

(a )  z.u. wave  g r o u p  

@ ® ® ®  

/ 
/ I 

® ® ® ® 

\ 

(b) z.d. wave  g r o u p  

® ® ® ® ® 

Fig. 12.3 (a) The group of the maximum expected zero up-crossing wave. (b) The group of the 
maximum expected zero down-crossing wave. If the drag force is not negligible, the maximum 
force exerted by group (b) is greater than the maximum force exerted by group (a). 
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which it is a zero down-crossing. We shall call z.u. the group of the maximum 
expected zero up-crossing wave height (fig. 12.3a), and z.d. the group of the 
maximum expected zero down-crossing wave height (fig. 12.3b). 

Generally it makes no difference whether we consider z.u. or z.d. As an example, 
in the case of the gravity offshore platform, z.d. and z.u. exert some opposite forces, 
so that the absolute value of the largest wave force does not change from z.u. to z.d. 
Not so in the case of a jacket platform. Let us see why. 

The largest drag force occurs when the highest wave crest passes through the 
platform, because the horizontal particle velocity is at its maximum and the volume 
of the submerged (loaded) part of the structure is also at its maximum. The largest 
inertia force occurs when the central zero of the highest wave passes through the 
platform, because the horizontal particle acceleration is at its maximum. Hence the 
largest drag force is positive, whereas the largest inertia force is positive or negative 
according to whether the highest displacement is between a trough and the 
following crest as in z.d., or between a crest and the following trough as in z.u. 

As a consequence, the largest wave force (sum of the drag force and the inertia 
force) is greater in z.d. than in z.u. This largest wave force of z.d. is necessarily 
positive and occurs on time interval Q,  whilst the largest wave force of z.u. may be 
positive and occur on Q,  or may be negative and occur on G.  

Conclusion: for the space frame structures we must resort to the highest zero 
down-crossing wave and apply the formulae for ~ and ~ with a minus in both of 
them. Therefore for the calculation of the wave forces in the next two sections it will 

. . . . . .  s: 2 . 5  m 

s: 4 . 0  m 

1 2 5 m  

Fig. 12.4 Scheme of the legs and two diagonals of an ideal frame structure. 
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be u n d e r s t o o d  that  e q u a t i o n  (10 .2a)  of  ~ and  e q u a t i o n s  (10 .3a-g)  o f  the part ic le  
velocity and acceleration and of the pressure fluctuation must be multiplied by - 1. 

12.2.2 Wave forces on the legs 
Fig. 12.4 shows the scheme of four legs and two diagonals of an ideal flame 

structure. We shall assume the same design wave height as for the gravity platform 
(it will be noted that the water depth is also the same), and we shall compute the 
wave forces. 

The legs of the flame structure have a KE greater than 2 even at the depth of the 
seabed. Therefore this is a case of applicability of the real flow pattern. 

The quotient Re/Ke of the legs is nearly 10  6 and therefore, assuming that the 
cylinder is smooth, we take Cin = 1.85 and Cdg = 0.62 [cf. sect. 11.5.4]. (Note that 
RE/KE depends only upon the cylinder's diameter, the wave period and the 
kinematic viscosity, and thus it can be readily obtained.) 
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Fig. 12.5 Worked example: the horizontal force on the four legs of the space flame structure. 



400 Chapter 12 

For computing the wave forces, let us apply Morison's equation and quasi- 
determinism theory, with the platform's centre as Xo. Since the wave group travels 
in the dominant wave direction, that is y-parallel, the wave force (in-line force) is 
also y-parallel. Of course, the calculation must be done at different elevations from 
the seabed to the free surface, since Vy and ay vary with the vertical elevation. 

The calculation of Vy and ay, which is needed to obtain the wave force, calls for 
the numerical evaluation of the integrals in the two equations (10.3a) and (10.3d). 
The result is shown in fig. 12.5 giving 

(a) the surface displacement at Xo, 
(b) the inertia force, 
(c) the drag force, 
(d) the total in-line force. 

In line with the predictions of sect. 12.2.1, we see the largest force (nearly 1.5 • 107 N) 
occurs between the central zero and the crest of the highest zero down-crossing 
wave (H = 30 m). 

12.2.3 Wave forces on the diagonals 

The quotient RE/KE of the diagonals is 4.105, so that we take again Ci~ = 1.85 
and Cdg = 0.62. 

As to the calculation, some more operations are needed. Indeed we have to 
obtain Ysect (the velocity vector normal to the diagonal). Referring to fig. 12.6, we 
have 

f Vsect- (Vxsin2a + VzCOSasina)ix + Vyiy -3t- (Vz cos2oz -q- Vx sinacosa)iz, 
diagonal Q: 

asect- (axsin2a + azCOSasina)ix + ayiy -[-(azCOS2a + axsinacosa)iz, 

diagonal (~ ' {  Vsect- Vxix + (VysinZa- vzcosasina)iy + (VzCOSZa- Vysinacosa)iz, 
asec t -  axix + (aysin2a- azCOSasina)iy + (az cos2ce- ay sina cosa)iz.  

diagonal ~ diagonal (~) 
Z 

~¢~ss.section 

/~a/aX~/dlongitudinal 

 ,cross sect, on 
Fig. 12.6 Graphic aid for applying Morison's equation to diagonals Q and (~ of the space flame 
structure. 
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Hence,  the formula  (11.8) for the force per  unit length yields 

diagonal  @: 
fy -- CinpTrRZay -+- C@ p R .  

• ~/(v~ sin2oL + vz cosc~ sin~) 2 + v 2 + (vz cos2c~ + Vxsin~cosoL)2Vy 
y 

diagonal  @: 

fy -- CinPTrR 2 (ay sin2~ - az coso~ sinoL) + C @ p R  " 

V/ x ) 2  • v 2 -+- (Vy sin 2 c~ - vz cos c~ sin c~)2 4- (vz cos 2c~ - Vy sin c~ cos c~ • 

• (vy sin2c~ - v~ cos c~ sin c~), 

where  the particle velocity and accelerat ion are those at the centre of the cross- 
section. The calculation can be done by means  of equat ions  (10.3a-f). 

The y -componen t  of the wave force on the diagonal  @ and the y -componen t  of 
the wave force on the diagonal  @ are shown in fig. 12.7. We see the force to be 
larger on diagonal  @ than on @. This is because @ is parallel  to the wave direction 
while @ is or thogonal .  

w a v e  

30m 

0 - 2 5  - - 

T[s] 
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-25 

1.15.106 N horizontal f o r c e  

/ - ~  o n  d i a g o n a l  1 

. .<-'--T'x, . ./.\ . ..--'-T-~. . ~r,1 
-~-'-~ -~o ~ , , ~  7: ~ A ~  ,o ~ O . i o ~  

! 

-25 

I horizon~ force I 
8.3.10 s N on diagonal 2 

, , ~ , ~ , r[sl 

-~o -5~_-o~ 5 ~o~---~ ~ / : - - - - ~  20 25 -"'-"30 
5.4.105N 

Fig. 12.7 Worked example: wave force on diagonals @ and @ of the space frame structure• 
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There is one last item left. The force on each member is calculated as if this 
member  was isolated, and indeed both Cin and Cdg were obtained for isolated 
cylinders. Doing so, we don't  consider the interference effect which can only be 
treated experimentally for each special case. The problems connected with these 
experimental investigations are dealt with in sect. 14.2.3. 

12.3 Design of a submerged tunnel. I: calculation of the wave forces 

12.3.1 Description of the structure 

The tunnel of fig. 12.8 is at the same water depth as the gravity platform 
(d - 125 m); the structure is 30 m beneath the water surface and its diameter is 25 
m. Each pier consists of the central nucleon of the gravity platform's base. The 
central cylinder of this nucleon has been raised up to 70 m above the seabed and 
supports the tunnel. 

The buoyancy is 4.95 • 1 0  6 N/m. The shell of reinforced concrete should be about 
2 m thick which makes a weight of about 3 .5 .10 6 N/m. In addition there is the 
weight of the railroad and highways. Therefore it is reasonable to assume the 
weight to be equal to the buoyancy (floating tunnel). 

diameter: 25m 
D  0m/ "- 

70ml ~ 5 i m  ~ 

250m 250m 

of the tunnel pier 

Fig. 12.8 A submerged tunnel. 
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12.3.2 The design wave 

Probably H, varies along the tunnel; this is because of the structure 's  length and 
also because a part  of the tunnel may be sheltered by some prominence  of the coast. 
For  example a tunnel connecting Sicily to the mainland would only be subjected to 
heavy sea states close to Sicily. As to the shear stress and bending moment ,  they 
have a maximum if the centre of a wave crest passes over one of the piers (which 
will be proved in the next section). 

For  our calculation, let us assume that the tunnel is subjected to heavy sea states 
for a stretch of 1000 m. Then let us assume that the P(H, > h) on this stretch is 
given by (6.2) with w - 0.874 m and u - 1.200 (these being the values of w and u we 
have also taken for the example in chap. 7). Finally, let us assume the dominant  
wave direction to be or thogonal  to the tunnel. This is a realistic condition, given 
that the tunnel will connect two coastlines. 

The stretch of tunnel being subjected to the heavy sea states includes five piers. 
The distance between piers (250 m) is larger than Lpo e v e n  in the design sea state 
(as we shall see shortly); even more so in the less severe sea states. Therefore,  
following the suggestions of sect. 11.6.3, the maximum wave height in the lifetime at 
the five piers can be est imated by means of (7.37) with T/5 in place of T. 

The function P[Hmax (L) > H l [equation (7.37)] is shown in fig. 12.9. Clearly, L 
has been taken as 100 years because the structure is of great importance and its 
failure would cause loss of human life. For  the same reason the encounter  
probabili ty is given the lowest value in table 7.2, that is ~ - 0.05. With these values 
the maximum wave height at the five piers in the lifetime proves to be 

H (L) - 17.7 m. 

In sect. 7.8.1 for the same location (same w and u) we obtained H ( L )  - 15.0m 
for one fixed point and L - 50years,  ~ -  0.1. This means that the step from 

1.0 

0.5 

P[Hmax(100years, at 5 piers)>H] 

. . . . . . . . . . . . . .  H[ml 
o 5 lO 15 ~ 2o 

Fig. 12.9 Worked example: the probability that the largest wave height in 100 years at five piers 
exceeds any fixed threshold H. 
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t o  
L - 50 years, 5; ~ - 0.1, 1 fixed point 

L -  100 years, ~ ;~-  0.05, 5 fixed points 

leads to an 18% increase in H (L): 10% of this 18% is due to the fact that L and 
are more conservative, and the remaining 8% is due to the five points in place of 
only one. 

The meaning of the 17.7 m wave height is the following. Let us imagine we take 
some continuous wave records above the five piers, for a very large time interval. In 
the first 100 years we shall find five values (generally different from one another)  of 
the maximum wave height at each point. Say 

first 100 years: 

H m a x l  - 13.2m, H m a x 2 -  14.0m, Hmax3 - -  14.7m, H m a x 4 -  13.8m, Hm~x5 - 14.2m, 

so that 
first 100 years" Hmaxl_ 5 --- 14.7 m. 

Then in the following 100 years we shall find a new set of values, say 

second 100 years" 

Hmaxl - -  16.3m, Hmax2 - -  14.2m, Hmax3 - -  14.7m, H m a x 4 -  15.9m, Hmax5 - -  14.1m, 

so that 
second 100 years: Hm~_5 - 16.3m. 

So on in the following intervals of 100 years. The height H ( L ) -  17.7 m is the 
threshold being exceeded by Hmaxl-5 five times in one hundred,  on average. That is, 
on average, Hmaxl-5 exceeds 17.7m five times in 100 intervals of 100 years. 

The probabili ty density function of the significant wave height of the sea state 
where the maximum wave height of 17.7 m will occur can be estimated by means of 
(7.40), again with T/5  in place of T. The calculation can be done numerically with 
Hmax - -  17.7 m, and the result is shown in fig. 12.10. We see that the maximum wave 
height of 17.7 m will occur most probably in a sea state with an Hs of 8.0 m. 

Conclusion: design wave of 

H -  17.7 m in a sea state of Hs - 8.0 m, 

for which, equation (4.27) gives 

Tp - 12.1 s, Lpo TM Lp --228 m. 

12.3.3 The  h o r i z o n t a l  wave  load  

We know that an exceptionally high wave ( H -  17.7 m, Hs - 8.0m) occurs at a 
point Xo, Yo of the tunnel, and hence, by means of the quasi-determinism theory, we 
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p[Hs=h; Hmax(at 5 piers)=17.7m] 

I 

1 

. . . .  , , i , {  / , , h,[m] 
5 ~ 10 

Fig. 12.10 Worked example: the p.d.f, of the Hs of the sea state where the maximum wave height 
in 100 years will occur. 

can foresee which loads will most probably be exerted. Let us take the tunnel-axis 
as x-axis and let us assume that the dominant direction is y-parallel (0 - 0). As for 
the rest: the usual nondimensional spectrum Y(w,O) that was applied also for 
calculating the wave loads on the platforms. 

First step: the Ke proves to be smaller than 1 and hence this is a classic case of 
applicability of the ideal flow pattern. 

Second step: calculation of Cdo. Since the quotient depth-of-the-centre/radius is 
of 42 .5 /12 .5 -  3.4, following the suggestion of sect. 11.4.4, we take ~ - 2 . 0  that 
leads to 

s i n (  27r422827r 12.5) 

Cdo = = 1.93. 

s i n (  7r422827c 12.5)1 

Third step" calculation of the wave load per unit length. Because of the relatively 
small value of the quotient R/Lp, the wave force per unit length on the equivalent 
water cylinder can be easily calculated by means of the equation 

fy --  pTrR2ay ,  

where ay is the particle acceleration at the depth of the cylinder centre, which is 
calculated by means of (10.3d). Then for getting the force per unit length on the 
tunnel, one has to multiply by Cdo. 

Calculating fy for a number of X and T we obtained the horizontal loads of fig. 
12.11. These are the local maxima (with respect to time) of the horizontal load, 
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wh i ch  o c c u r  w h e n  a z e r o  pas se s  o v e r  the  t unne l .  T h e  a b s o l u t e  m a x i m u m  occurs  

w h e n  the  c e n t r a l  z e r o  of  the  g r o u p ' s  c e n t r a l  w a v e  pas ses  o v e r  t he  t unne l .  I t  is 

lYy Imax-- 6 . 5 - 1 0  5 N / m .  

T=-15.4s 
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Fig. 12.11 Worked example: the local maxima (with respect to time) of the horizontal wave load 
on the tunnel. 
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12.3.4 T h e  v e r t i c a l  w a v e  l o a d  

In sect. 1.8 we saw that, on deep water, the non-linearity effects on Ap essentially 
depend on the kinetic term of the Bernoulli equation, so that we can write 

Ap = Ap' + Ap", 

0 +  with A p ' - - - p  0t ' 

Ap" = 1 V2 V2 
- 7 p (  x + y + v z) • (12.2) 

As an exercise, it could be proved that, on deep water, the Ap" of a periodic wave 
does not change in time nor in the horizontal plane, and varies only with depth z [use 
equation (1.51) of ~ and the simplified attenuation form of sect. 1.5.4 to prove this 
statement]. A straight consequence of this proof is that Ap" does not contribute to 
the horizontal wave load. 

On the contrary, Ap" contributes to the vertical load, given that it varies with z. 
Therefore the vertical wave load per unit length on the equivalent water cylinder 
must be calculated by means of the equation 

f ~ - f ' ~ + f ~ ,  
with 

f '  - zXp' {y, z (y)] - zXp' [y, z+ (y)] dy ,  
- R  

f"  - Ap" [y, z_ (y)] - Ap" [y, z+ (y)] dy, (12.3) 
- R  

where 

z _ ( y )  - Z c -  ~ / R  2 _ y2, z+(y)  - Zc+ ~/R2 _ y2.  

Since the radius of the cylinder is rather small with respect to the wavelength, f '  
can be more rapidly calculated by means of the alternative expression 

f'z - pTrRZaz, 

where a~ is the vertical particle acceleration given by (10.3f). As to f~', we have to 
apply equation (12.3) with (12.2) of Ap". To this end it is convenient to prepare 
some subroutines for v~, vy and v~ (equations 10.3a-c). 

Adding f'~ to f '  we obtain the vertical wave force per unit length on the 
equivalent water cylinder. Then, multiplying this force by Cd~ we obtain the vertical 
wave force per unit length on the solid cylinder. As to Cdu, following the suggestion 
of sect. 11.4.4, we take it equal to 0.9 Ceo. 

Fig. 12.12 shows the vertical wave load for a few X and T. The general meaning is 
the same as in fig. 12.11: the figure shows the local maxima (with respect to time) of 
the positive and negative vertical load. These local maxima occur when a wave crest 
or a wave trough passes over the tunnel. 
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Fig. 12.12 Worked example: the local maxima (with respect to time) of the vertical wave load on 
the tunnel. 

The asymmetry between positive (upward) and negative (downward) wave 
forces is apparent. It is due to the fact that Ap" reduces the pressure, more on the 
upper half-cylinder than on the lower half-cylinder, so giving rise to a positive 
vertical force. This positive force, which is nearly constant during the wave cycle, is 
added to f'z (the fundamental  wave force) which is positive under the wave trough 
and negative under the wave crest. 

The largest positive value (+) and the largest negative value ( - )  occur 
respectively beneath the trough and beneath the crest of the group's central wave. 
They are 

( f  ~+) )max-- 6.2" 10 5 N / m ,  (f(z-))max = 5.4" 10 5 N/m.  
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Without  the non-linear term we should obtain 

l i nea r  component" (f'z(+))max -- (fz(-))max- 5.8" 10 5 N/m. 

Hence, the non-linearity increases the vertical positive force of 7%, and lowers the 
vertical negative force of the same amount.  They are variations nearly equivalent to 
those observed during the experiment  RC 1993. 

12.3.5 What are the loads by the group's sides? 

The diagram of the largest wave load with a small conservative rectification is a 
triangle with a base of 600 m. Fig. 12.13 shows the bending moment  produced by 
this wave load (assumed to be a static load), for the case that the diagram centre 
(centre of the wave crest) falls on one of the piers. 

We note the bending moment  approaches zero rapidly by the sides of the load 
triangle. This observation helps us to realize an important  item. Let us look at it. 

If an exceptionally high wave occurs at a point above the tunnel, the quasi- 
determinism theory enables us to foresee the configuration and evolution of the 
group including this wave. But the theory does not give any information on the 
waves surrounding this group. Now, let us think ab absurdo that by the side of our 
wave group there is a new group of the same height (we say ab absurdo because our 
group is that of the maximum expected wave height). Then, even if we assumed a 
full phase coherence between the two groups, the increase in the largest bending 
moment  would only be of 2%. 

Conclusion: the knowledge of the load exerted by a single wave group suffices to 
estimate the largest stress in the structure. 

~ f y  -3" 
m~,,"6.5" 10 5 N/m =_L 

I 6 0 0 m  LI 

V Mmax=2.7"10 9N'm 

Fig. 12.13 Worked example: the maximum horizontal wave load on the tunnel and the bending 
moment. 
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12.3.6 The bending moment and the forces on piers 

Fig. 12.14a shows the influence line of the bending moment  (we mean  the absolute 
value of the bending moment) ,  and fig. 12.14b shows the influence line of the 
constraint 's  reaction. The influence line is of the same type both for the horizontal  
and for the vertical wave load. The numerical  values given by the figure are those of 
the horizontal  wave load. The abscissa is the location of the centre of the wave crest 
and the ordinate is the largest bending moment  or constraint 's  reaction of the 
continuous beam. We see that the largest bending moment  and constraint 's  reaction 
occur if the centre of the wave crest passes over one of the constraints (piers): 

[m[max: 2.69. 1 0 9 N - m ,  Ro max = 1.32.108 N, 

where  Ro denotes the horizontal reaction of the constraint. While, if the centre of 
the wave crest passes over the span's centre, we have 

IMImax - 2.20. 1 0 9 N . m ,  Ro m a x  - -  0.98 .10  8 N. 

Given that  the quotient  between the vertical and the horizontal load is 

( f  (+ ) )  ( f  (z-))max z /max ___ 0.95,  = 0.83,  

If, [max IfY [max 

3.10 9 
[N.m] 

2.10 9 

10 9 

L A 

(a): bending moment (absolute value) 

L aL aL 

1.5.10 a 
[NI 

10 a 

.5.10 a 

(b): constraint's r e a c t i o n  

~ f 

Fig. 12.14 Worked example: the influence lines of the bending moment and of the constraint's 
reaction. Abscissa: location of the centre of the wave crest; ordinate maximum moment (or 
maximum constraint's reaction) on the whole tunnel. 
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it follows that the bending moment  and constraint 's reaction due to the vertical 
positive load and vertical negative load are, respectively, 5% and 17% smaller than 
those given in fig. 12.14. The bending moment  and constraint 's reaction of the 
negative vertical load are increased because of the weight of freight cars and trucks 
(see fig. 12.15). The conclusion is that the largest bending moment  is nearly 
constant whatever the neutral axis. 

Note that, judging from fig. 12.11, one could think that the positive horizontal load 
is smaller than the negative horizontal load; but this is only a seeming asymmetry. It 
is due to the fact that we have assumed the wave of the maximum expected height 
(H - 17.7 m) to be a zero up-crossing. I fwe assume it to be a zero down-crossing (the 
probability being the same), we find that the positive horizontal load exceeds the 
negative horizontal load. Whereas,  whether  the highest wave is zero up-crossing or 
zero down-crossing, its positive vertical load exceeds the negative vertical load. 

The  m a x i m u m  o v e r t u r n i n g  m o m e n t  on the  p ie r  is 1 .32 .108 .82 .5  - 
= 1.09. 101°N • m (1.32. 108N being the maximum horizontal force exerted by 
the tunnel and 82.5 m being the elevation of the tunnel 's  centre above the seabed). 
Then there is the wave force on the pier, which can be calculated in the same way as 
the wave force on the base of the gravity offshore platform. It is an additional 
horizontal force of 0.30.108 N which yields an additional overturning moment  of 
0 .09 .10  ~° N . m .  On the whole, the force exerted by the tunnel and the force 
exerted by the water flow yield 

M - 1 . 1 8 . 1 0 1 ° N . m ,  F - 1 . 6 2 . 1 0 8 N ,  

where F and M are, respectively, the horizontal force and the overturning moment  
on the pier. 

The static analysis of the pier will be an useful exercise. To this end, consider a 
rectangular base equivalent to the actual base. The rectangular base with the same area and 
moment of inertia of the actual base has a width of 45.3 m and a height of 48.6 m. As for the 

5.4-10 s N/m highest wave ~ , , ~ I N . . .  

J 

"U 
g 6.2.10 N/m 

Fig. 12.15 W o r k e d  example:  compar i son  of vert ical  loads on the tunnel .  

two colums 
of freight cars 
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weight, assume that the reservoirs are 2 m thick and are filled with water and/or sand at the 
designer's choice. For the general stability analysis, refer to sect. 13.3.1. 

It will be found that the safety of the sea bottom foundation increases if the reservoirs are 
filled with sand. In examining this result, note that sand in place of water means a larger 
vertical load on the ground and a smaller eccentricity of this load. (Because of the larger 
load the bearing pressure tends to increase and, on the other hand, because of the smaller 
eccentricity, the bearing pressure tends to diminish.) Finally, it will be found that, with 
K~ = 20 in equation (13.9) [see sect. 13.3.1], the safety factor against the soil failure will 
prove to be greater than 2. As for the rest, there will be no problem for the safety against 
sliding and overturning. 

12.4 Design of a submerged tunnel. II: the effect of currents 

The tunnel  having to cross a strait will probably be subjected to some currents. 
Let  us imagine an extremely strong current  of as much as 5 m/s! This current  would 
exert  a force per  unit length 

[fy[ - 0.50. 1030.12 .5 .52  - 1.6-105 N / m  

(12.5 m being the tunnel 's  radius and 0.50 the Cdg of a circular cylinder in the 
transcritical flow regime of a steady current).  Even if such a strong current  kept  
constant along the tunnel, the horizontal  force exerted on the pier would be 
0.40.108 N and the largest bending moment  in the tunnel would be 0.83.109 N -  m,  

against the 1.32.108 N of the force and the 2.69. 1 0 9 N  • m of the bending moment  
exerted by the wave. This means that even an exceptional current  would load the 
structure less than the design wave. And  as to being an exceptional current  there is 
no doubt. It suffices to say that the waves of the design sea state would not be able 
to travel against such a current. Indeed the peak period (which is nearly the average 
wave period in a wave group) is 12.1 s that implies a Co of 18.9 m/s and hence a [Ucritl 
of 18.9/4 = 4.7 m/s [see sect. 1.9.3]. 

Of course it is difficult to imagine that the highest wave in the lifetime would 
occur jointly with the strongest current. A more realistic condition may be the 
design wave on a current  of 2 m/s. Table 12.1 shows how a wave with a period of 
12.1 s is t ransformed on a current  of 2m/s.  The table gives the wavelength Lc 
obtained by means of (1.47), the quotient  H/Ho obtained through the procedure  of 
sect. 2.10.9, and the quotient  

force due to a wave on the current  ~,@= 
force due to a wave without the current  

that is H 
g --~- kc cosh [kc (d + Zc)]/cosh (kcd) 

, _ ~  
g H0 k cosh [k (d + Zc)]/cosh (kd) 

2 

where Zc is the depth of the cylinder's centre. The numera tor  on the r.h.s, of the last 
equat ion represents  the particle acceleration ay for a wave on the current,  and the 
denomina tor  represents  the particle acceleration ay for a wave without the current  
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(we mean the acceleration at the depth of the cylinder centre). On account of the 
large d/Lo, the height of the wave without the current is H0. As for the particle 
acceleration for the wave on the current, with the linear theory, is given by 

Ovy Ovy 
- -  ~ +  u ,  

ay -  Ot Oy 

where the two derivatives on the r.h.s, can be obtained from the formula (1.45) for 
the velocity potential. 

Table 12.1 The effect of a 2 m/s current (adverse or favourable) 

. [m/s]  Lc[ml 

177 

273 

/4//4o 

1.31 

0.83 

1.19 

0.85 

In practice, we can simply multiply by the constant factor 3 all the wave loads 
obtained in the foregoing section. [Really, the values of ~ in table 12.1 have been 
obtained for the horizontal wave loads, but nearly the same values also hold for the 
vertical wave loads.] 

We also have to add the drag force 

= p n ( .  + + 

where Vwy is the horizontal particle velocity due to the wave motion, which is given by 
(2.80b). As for the drag coefficient, with the current alone, we should have a C~g of 0.5 
(transcritical flow regime); while, with the waves alone, we should assume a Cdg of 0.62 due 
to the very large value of RE. Anyway, the drag force plays only a secondary role, indeed at 
the time instant in which the inertia force attains its maximum of about 6.105 N/m, the drag 
force should be of about 0.3-105 N/m. 

12.5 Design of a submerged tunnel. III: the risk of resonance 

12.5.1 The terms of  the problem 

In sect. 12.3 we have evaluated the forces exerted by the highest waves. But even 
the small waves represent  a potential  danger for the tunnel. Indeed the tunnel, 
which consists of long beams, has a relatively small eigenfrequency that is equal (as 
we shall see later) to the peak frequency of waves with a significant height of about  
0.15 m. Thus, at first glance, we could fear the occurrence of resonance. Really, 
such a risk does not exist, as will be made clear in the following analysis. 

12.5.2 The spectrum of  the force-process 

Let us obtain the frequency spectrum of the horizontal force on the equivalent 
water  cylinder. For simplicity, let us consider a square section. 
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The horizontal force per unit length is given by 

fy - Ap ( - b ,  z) - Ap (b, z) dz,  
- b  

where b is half the side of the square [see fig. 12.16]. If the wave is periodic of 
amplitude a, this force becomes 

f~ - 2 p g a  1 s i n ( k b c o s O )  1 .  
coshkd k 

• {sinh [k(d + Zc + b)] - sinh [k(d + Zc - b ) ] } s in ( kx s inO - a~t + ~), 

where 0 is the angle between the direction of wave advance and y-axis, and e is an 
arbitrary phase angle. Hence,  the horizontal force in a sea state is 

N 
1 

fy - 2 p g  ~ a i sin (kibcosOi) 1 . 
i=~ c o s h k i d  ki (12.4) 

• {sinh {ki (d + Zc + b)] - sinh [ki (d + Zc - b)]} sin (k ix  s i n 0 i -  (sdit -Jr- ~i) 

that, thanks to the assumptions on ai, a~i, ei and N [see sect. 5.1], represents  a 
stationary Gaussian process at any fixed location x. 

From the general  definition of spectrum, the spectrum of process (12.4) is given 

Eo (co)6cc - 4p2g 2 ~ 1 a 2 1 1 / cosh 2 (kid) sin2 (kib cos0/) k~ " 
i (12.5) 

by 

• { s i n h [ k i ( d  + Zc + b ) ] -  s inh[k i (d  + zc  - b)]} 2 for i such that ~ < C~3 i < O.)+ ~O.), 

z 

2b 

~--2b--~ 

wave direction 
i .  
w -  

Fig. 12.16 Simple scheme used for obtaining the spectrum of the force process• 
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which implies 

E o ( ~ )  - 4p2g 2 1 1 {sinh[k(d + Zc + b)] - sinh [k(d + zc  - b)]} 2" 
oosh2  ( k d )  k 2 

27r ( 1 2 , 6 )  

• I S (c~, O)sin 2 (kb  cosO) dO. 
o 

With the JONSWAP-Mitsuyasu directional spectrum, and the nondimensional 
frequency w, equation (12.6) becomes 

Eo (W~p) - 4Ap2 g6 a.;p 9 1 1 
~2 (w) cosh 2 [27r~ (w) d/Lpo] 

{sinh [27rS(w)(d + zc + b)/Lpo] + 

(12.7) 

-s inh[ZTr~(w) (d + Zc - b) /Lpo]} 2 S ( w ,  0)sin 2 27r~(w) Lpo - -  cos01 dO. 
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Fig. 12.17 Worked example: normalized autocovariance and spectrum of the force on the tunnel 
in the design sea state. 
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The same sequence is repea ted  to also get the spectrum of fz. The result is 

Ev (WCOp) - 4Ap 2 g6 0.1~9 1 1 

,~2 (W) cosh 2 [27r,( (w)d/Lpo] 

j 2rr 
_cosh[2rc,g(w) (d + zc _ b)/Lpo]}2 ~9~(w,O) 1 

0 cos20 

{cosh [2rr,((w) (d + Zc + b)/Lpo] + 

• 2 sin 
b 

2rr~ (w) ~ c o s 0  
Lpo 

dO 

(12.8) 

(for cos0 = 0 the integrand having to be subst i tuted by its limit as cos0 ~ 0). 
The two spectra are shown in fig. 12.17 which is relevant  to the design sea state: 

Hs = 8.0m, Tp = 12.1 s. We see that  these spectra are very narrow (~b*= 0.9) and 
their peak  frequency is coincident with the peak  frequency COp of the wave spectrum, 
like the spectra of the exper iment  RC  1993 (cf. fig. 11.15). 

To prove the step from (12.5) to (12.6), start from the question "which is the contribution 
to the summation from the small wave components whose angle falls in a fixed small interval 
O, O+60?". 

12.5.3 The force  exerted by waves with a resonance f r equency  

The tunnel  is a cont inuous beam on a very large number  of bearings,  and its first 
e igenfrequency is 

 tunnel } m,3 

1.0 

0.5 

,0 I I 

0.0 0.5 1.0 1.5 2.0 

Fig. 12.18 Worked example: spectrum of the force exerted by small waves with a peak frequency 
COp equal to the first eigenfrequency of the tunnel. Note that the peak frequency of the force 
spectrum is nearly equal to half the peak frequency COp of the wave spectrum. 
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where E is Young's modulus of the reinforced concrete, J the moment  of inertia, 1 
the span length, and m the mass of a single span. The term 92EJ/13 is the stiffness 
coefficient. With 

E = 2.06.101° N / m  2, J = 9.63" 10 3 m 4, rn = 1.26. 108 kg, 1 = 2.5-10 2 m, 

it follows 
~Utunnel-- 4.30 rad/s  ~ Ttunnel = 1.46 s. 

What sea state has a Tp of 1.46 s? With (4.26) relating H, to Tp, and a conservative 
value of A (A = 0.02), we get an H, of 0.16 m. 

The spectrum Eo (equation 12.7) is shown in fig. 12.18; and the root mean square 
fy obtained from this spectrum is of only 6 . 1 0  -s N/m. Moreover,  we see that here 
the peak frequency of the force is nearly half the peak frequency C~p of the waves. 
The fact is that a spectrum with a peak period of about 1.5 s, at the depth of the 
tunnel (more than 30 m) is subject to a huge attenuation, and the peak frequency of 
the force-spectrum proves to be smaller than the peak frequency of the waves, 
because the lower the frequency the smaller the attenuation. 

The conclusion is that there is no appreciable wave force fluctuating with the 
eigenfrequency of the tunnel. 



418 

This Page Intentionally Left Blank



419 

Chapter 13 
STABILITY ANALYSIS 
OF COASTAL STRUCTURES 

13.1 W a v e  pressure  on a wall  

13.1.1 Difference between p~ and Ap 

Ap has been defined as the difference between the actual pressure at a point 
beneath the free surface and the term -pgz" 

Ap - p  + pgz. 

Hence Ap takes on the physical meaning of difference between actual pressure and 
pressure at rest provided that the point is beneath the free surface and provided 
that z < 0. In other words, Ap gives the difference between actual pressure and 
pressure at rest, at any time instant, only for the points which are always beneath 
the free surface. 

To obtain the total thrust of wave pressure, we must also express the difference 
between actual pressure and pressure at rest above the mean water level (z > 0), 
and above the free surface (specifically, between the mean water level and the 
free surface when a wave trough is at the wall). It is thus convenient to define 

p ~  - p - p , , ,  

where Pw is associated with each point in space, and p~ is the pressure at rest, 
which is the hydrostatic pressure for z _< O, and is 0 (atmospheric pressure) for 
z > O. Clearly, from the definitions, it follows that p~ and Ap are coincident with 
each other, at any time instant, at the points which always keep beneath the free 
surface: 

p~ - Ap for the points always beneath the free surface. 

p~ is the so called wave pressure, and its distribution on a vertical wall was already 
shown by fig. 1.16. 

Lastly, let us consider the difference between Pw/% and r/ph. Both represent the 
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fluctuating pressure head, but ~]ph, in this book, is associated only with the points 
which are always beneath the free surface, while pw/% is associated with any point 
in space. 

13.1.2 A marked asymmetry between crest and trough o f  pressure head waves 
at a vertical wall 

Fig. 13.1 shows a record of the pressure head wave Pw/% at various depths of a 
vertical wall. The array of the gauges is shown by fig. 13.2. The record was taken in 
the course of the experiment RC 1994 with pure wind waves (0.035 < Hs/Lpo < 
< 0.040). The dominant wave direction in this experiment was nearly orthogonal to 
the wall, and the water depth was such that 

d 
0.15 < < 0.20. (13.1) 

gp 0 

Looking at fig. 13.1 we note that the higher transducers measure some pressures 
different from zero only in the short intervals when the highest wave crests hit the 
wall. We see also that the transducers @ and @ remain uncovered when the deeper 
wave troughs occur at the wall, so that they record a constant pressure (the 

t[s] 
292 ' 294 ' 296 ' 298 ' 300 ' 302 

Fig. 13.1 Wave pressure recorded at various depths of an upright section (see fig. 13.2 for the 
gauge map). 
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atmospheric pressure) for a few time instants (also transducer @ remains 
uncovered for a very short time, with the deepest wave trough). 

Then a somewhat more deeper insight reveals a noticeable asymmetry between 
the crest and the trough of the highest pressure head wave: the trough depth 
markedly exceeds the crest elevation (we are referring to transducers always 
beneath the free surface). The pressure under the wave trough has a very regular 
behaviour whereas the pressure under the wave crest grows regularly until a certain 
instant, hence it decreases showing a local minimum just at the centre of the crest, 
and finally it retakes its regular way. 

This is not a random phenomenon.  On the contrary, this phenomenon occurs 
regularly in the highest waves of each sea state. We have already seen another 
example in fig. 10.28b. There, a wave group hit the wall when a wave was replacing 

high tide ~ @ 

v _ low.~]d;__. 1 ...... -~___~ ~ - @  (~) @ 

d=l.45m ~ ( ~  @ 
] ® 

~'- 0.65m -~ 

1. 
2.20m 

SECTION ] 

pressure transducers 

,12m 

[pi2AN ] 

Fig. 13.2 The field laboratory of the experiment RC 1994. 

12m 

ultrasonic probes 
depth: 2.3m 

6m 

2m ~- 
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the preceding one at the group's central position, i.e. when the group centre was 
occupied by two waves of nearly the same height. And indeed, in that case, the 
pressure drop at the crest centre was apparent in two consecutive waves. 

The asymmetry trough-crest is an apparent effect of non-linearity, being very 
large since the wave height at the wall is redoubled. Specifically, the pressure drop 
at the crest centre is associated with the occurrence of some high water jets. These 
jets will have been noticed by anybody who has witnessed a severe storm. The jets 
observed in the course of the experiments RC 1991 and RC 1994 attained heights of 
the order of ten times H, (an emblematic photo was shown by Boccotti et al., 1993). 

And now look at the consequences of the aforesaid asymmetry on the probability 
of exceedance of the crest elevation and of the trough depth of the pressure head 
waves. Fig. 13.3 shows these two probabilities of exceedance for a point being 
always beneath the free surface. (Naturally, the crest elevation and the trough 
depth were divided by the standard deviation of the pressure head waves.) We see 
that at the probability threshold of 1:1000, the trough depth is 60% larger than the 
crest elevation! 

P 

10 -4 

10-3 

10 -2 

10-1 

® positive peaks 
[] negative peaks 

J 

,r [/  " , /  

/ r tot 
I I i 
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1 2 ~ 3 

eq.(5.30) 
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/ '  ,.1~ 

JI / ,,' 
i" ' "'[/! 

0 4 

| ,_ 

~,0-15 

Fig. 13.3 Probability of exceedance of positive peaks (crests) and negative peaks (troughs) of 
Pw (t) at a point of the vertical wall, always beneath the water surface. 
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13.1.3 Pressure distribution on a vertical wall 

Fig. 13.1 also shows the force-process, that is the total thrust of wave pressure per 
unit extension of upright section, versus time. For each crest and for each trough of 
this force-process the distribution of wave pressure on the upright section was 
obtained. Moreover ,  for each experimental  distribution a theoretical distribution 
was computed in the following way. 

(a) Input data 
(a.l) -(+) - t,~ p~ measured at the lowest point of the front wall at the instant of the 

wave crest; 
(a.2) p ~ - t -  Pwl measured at the lowest point of the front wall at the instant of 

the wave trough; 
(a.3) Th --= the high wave period [cf. sect. 5.7.2] obtained from the autocovariance 

of the incident waves (being recorded by the ultrasonic probes in the undisturbed 
wave field). 

(b) Computation of  the theoretical wave pressure distribution: wave crest 
(b.1) The virtual wave height H/+/ is  evaluated by means of 

H(+) 1 (+) = ~ P w cosh (kd) 
% 

based on the linear theory (with k being the wave number  associated with period Th 
and water  depth d at the wall); 

(b.2) the distribution of wave pressure is computed by means of the linear theory 
with wave height H (+) and period Th, that is to say 

l 
- 7a H (+) cosh (k¢) 

p~ cosh (kd) 

- -  ")/a (d  -71- H (+)- ¢) 

if 0 _ < ( _ < d ,  

if d _ < ( _ < d + H  (+) 

(13.2) 

where ¢ is the vertical coordinate with origin at the lowest point of the front wall. 

(c) Computation of  the theoretical wave pressure distribution: wave trough 
(c.1) The virtual wave height H / - / i s  evaluated by means of 

H(_ / 1 (-t = ~ p  cosh(kd);  
% 

(c.2) the distribution of wave pressure is computed by means of the linear theory 
with wave height H (-/ and period Th, that is to say 

l 
_ - %  H(_ ) cosh (k¢) 

pw cosh (kd) 

- - p , ,  otherwise. 

provided pw > -p , , ,  
(13.3) 
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In summary,  the theoretical  distributions are obtained from the wave pressures 
measured  at the lowest point of the wall. This is because the wave height at the wall 
is indeterminate in that the waves give r&e to vertical jets. 

Fig. 13.4 compares  the theoretical  distribution with the actual distribution of 
wave pressure on the wall. The dashed line is the average of the actual pressure 
distributions, and the continuous line is the average of the theoretical  distributions. 
Specifically, fig.13.4a shows the average of the 1200 pressure distributions produced 
by the 1200 highest crests and by the 1200 deepest  troughs of the force-process, in a 
total of 12000 waves of this process which were recorded in the course of RC 1994 
(we mean the highest crests and the deepest  troughs with respect to the s tandard 
deviation of the force-process). Thus (a) is the 1/10 pressure distribution, and, 
similarly, (b) and (c) are respect ively the 1/100 and the 1/1000 pressure  
distributions. We see that the actual distributions are close to the theoretical  
distributions, and especially the actual pressure force is practically coincident with 
the theoretical  pressure force. 

~ 1.5 

L--1 .98  ~ -  3 . 0 0 - - ~  

1.5 

~"--  2 . 4 8  " 

{; /d  I 1"1  I 

-~ - 4 . 0 6  ~ '  

1.5~/d [(c) 1:1000 I 

0 

~ - - -  2 . 8 1  - ' -  - 4 . 6 2  :--' 

Fig. 13.4 (a) Average of the highest 1:10 wave pressure distributions of a sea state. (b) and (c) 
The same, respectively, for the highest 1:100 and 1:1000 pressure distributions. The continuous 
lines were obtained by means of the linear wave theory from the Pw measured at the lowest point 
of the front wall, and from the Th of the incident waves. Reading example: 2.81 in (c) means that 
the wave pressure is 2.81 times the r.m.s, wave pressure at the lowest point of the front wall. 
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13.1.4 The 1/1000 pressure distribution on a vertical wall 

The 1/1000 distribution can be assumed for design purposes, given that 
(i) this distribution is the average of the highest 1/1000 pressure distributions, 
(ii) the design sea state typically contains a few thousand waves. 

The 1/1000 pressure distribution (fig. 13.4c) shows that the wave pressure at the 
lowest point of the front wall under  the wave crest is 2.8, and is 4.6 under  the wave 
trough. The scaling factor in these graphs is unders tood to be the s tandard deviation 
O'pw Of p~(t) at the lowest point of the front wall; so that, p~ = 2.8 stands for 
p~ = 2.8 Crp. 

Thus, for evaluating the 1/1000 distribution of the wave pressure on relatively 
deep walls like that of the experiment  RC 1994, we shall use the linear wave theory 
with the wave period Th and the water  depth d at the wall, and with wave height 

H(+t = 1 2.8~p~ cosh(kd) ,  
% 

for the positive wave pressure, and wave height 

H (-) = ~ 4.6Crp~ cosh (kd), 
7a 

for the negative wave pressure 
The quotient  Crp~/a between the standard deviation of p~ at the lowest point of 

the front wall and the s tandard deviation of the surface displacement r/ of the 
incident waves can be obtained from (8.36b). The exact solution proves to be very 
close to the simple relation 

%2or 

cosh (kd) 

which taken together  with the formulae of H (+/ and H (-) yields 

H (+) - 5.6cr, (13.4a) 

H (-) - 9.2o-. (13.4b) 

13.1.5 Wave pressure on sloped seawalls 

At present  the knowledge of wave pressure on sloped seawalls is effective only 
for the basic case of the periodic wave. In particular Neelamani  et al. (1999) have 
investigated the action of two-dimensional periodic waves on smooth sloped 
seawalls, for a large variety of input conditions. What  follows in this section is based 
on their work. 

The flow field is thought of as the sum of the incident wave and of a reflected 
wave with a phase shift c and a height H generally smaller than the height H of the 
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incident wave. Thus the flow field far from the slope is given by 

rl(y, t) H H - - -  cos (ky - wt) + cos (ky + cot + e), 
2 5 -  

(13.5a) 

H -1  cosh (k¢) sin (ky wt) H -1  cosh (k¢) 
~ ( y , ¢ , t ) - g - ~ w  cosh (kd) - - g - ~ w  sin(ky+wt+e). cosh (kd) 

(13.5b) 

The wave pressure formula which proceeds from (13.5b) seems to be effective at 
the slope, even if (13.5b) does not satisfy the slope boundary condition. According 
to this pressure formula, the maximum (positive) wave pressure at the slope is 

pw(¢)  = p g - -  H cosh (k¢) V/1 + (/_~/n)2 ql_ 2 (H/H)cos [2k ¢ cotgA + e] 
2 cosh (kd) 

(13.6) 

where k is the wave number on water depth d. Equation (13.6) is effective for 
0 < ¢ < d - H / 2 .  

The phase shift is predicted through the method of Sutherland and O'Donoghue 
(1998): (_d cotg)~_~ 122 

c -  - 8 . 8 4 7 r k ~ ~ )  . 

. . . . .  

The reflection coefficient H/H depends on the Irribarren number 

37- tanA/v/H/Lo. 

Neelamani et al. (1999), basing themselves on the works of Ahrens et al. (1993) and 
Seeling and Ahrens (1995), use the following empirical formulae 

( H ) _ e x p { d c o t g A  Htanh3(kd)]} for 27>4 .0 ,  -H- ~ L {-0 .686-  3.37 L 

( H ) - I -  exp(--0.063 24 --0.5 H ) f o r g  < 2.5 
d - " 

l 
d 

t :..:, y 

Fig. 13.5 Reference scheme for the problem of the sloped seawall. 
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Then a linear interpolation is used for ~ between 2.5 and 4.0: 

/4 ( H )  .~7- 2.5 ( H )  4 - 3  

H -  -H  1 4 . 0 - 2 . 5  + H 2 4 . 0 - 2 . 5  

For ~ > d - H / 2  the maximum wave pressures are stochastic even for the 
periodic waves, and their expected value is expressed by means of the following 
formulae: 

p~(~) = p g H (0.42 + 0.15J)  for d - H / 2  < ¢ < d, 

pw(~) = p g H[0.25 + 0.125.57 - 0.25(( - d) /H)  for d < ~ < 1.62d, 

which are effective for 

3 < c o t g A < 6  and 0 . 5 < . ~ < 9 . 0 .  

Finally, the largest negative Pw for 0 < ( <  d -  RD is opposite in sign to the 
largest positive Pw given by (13.6). As to RD (the run-down) we can use some 
empirical formulae based on the works of Van der Meer and Breteler (1990) and of 
Schuttrumpf et al. (1994). 

Remaining is the range of C between d - RD and d, where the largest negative p~ 
is evaluated by means of 

Pw(~) = 0.85 p g(~ - d). 

It should be noted that this prediction method provides the maximum wave 
pressure at every point of the slope, and the occurrences of these maxima are not 
contemporary. 

13.2 Forces  on a vertical  breakwater  

13.2.1 The weight  in still water 

On the left side of fig. 13.6 we see a breakwater 's caisson (sketched as a 
rectangular parallelepiped) on its rubble mound; on the right side, we see the same 
caisson equally immersed in water (let us think of a big crane bearing the caisson in 
this position). In still water the vertical force exerted by the water on the left 
caisson is assumed to be equal to the vertical force exerted on the right caisson. 
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Fig. 13.6 The force exerted by water is the same on the two caissons. 

This is because in the left configuration the water wets the whole of the caisson's 
base. In conclusion, the left caisson is subjected to the same buoyancy as the right 
caisson. 

The resultant of P (weight) and S,~ (buoyancy) is called the weight in still water: 

P* =_P-S~. 

This vertical force is computed with the specific weight in still water 

7s 7s - % ,  

for the part  of the structure beneath  the mean water level. 

13.2.2 The uplift force, the horizontal force and the overturning moment 

The wave pressure at the tip O2 of the base is p/+) under  the wave crest and p/-/  
w w 

under  the wave trough; while the wave pressure at the tip O~ is zero, provided the 

(a) (b) 
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Fig. 13.7 The wave pressure on the wall and on the base: (a) under a wave crest; (b) under a wave 
trough. 
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water behind the breakwater is still. Usually, the wave pressure is assumed to vary 
linearly between the two tips of the base [see fig. 13.7]. 

The horizontal force (F) on the breakwater is equal to the wave force on the 
front wall. The wave force on the base is called uplift force Sw. Under the wave crest 
both F and Sw give a positive contribution to the overturning moment; while under 
the wave trough the contribution of F is positive and the contribution of Sw is 
negative. 

The formulae for F, Sw and M (per unit length of upright section) with the 
distribution of wave pressure (13.2) and (13.3), are: 

(a) wave crest 1 H(+)2 
H(+) +-~ % 

F--")/a k t anh (kd )+  [ . .  
-~- ")/a ~H (+) ~//"--- 

if H(+)_< ~P, 

1 ~{/'2~ if H (+) > ~/Y 
2 ] - ' 

(13.7a) 

1 H (+) 
Sw - -~- % cosh(kd) b, (13.7b) 

1 H (+) H (+) 1 + kd sinh (kd) - cosh (kd) M ----f')'a b 2 
cosh (kd) + ")/a k2 cosh (kd) 

+ 

i H(+)2(d H (+)) 
+ 5  -% + 3 

+ [ ( d l y / / )  1 ( d e @ ]  --~-")/a ( H(+)- ~f/') <Z//" @~-- J - 2  ~2"~'2 ~---3 

if H(+)< ~ ' ,  

(13.7c) 

if H(+)_> ~//'; 

(b) wave trough 
H (-) sinh (k<crit) 1 2] 

F -- - ")/a k cosh (kd) + -2 ")/a (d - ~rit) , (13.7d) 

1 H (-) 
S w  - -  - T ")/a cosh(kd) b, (13.7e) 

1 H (-) b 2 
m - - ~ % cosh(kd) + % 

H/-) 1 + k¢cri t sinh (k~cri t) -- cosh (k<cri t) 
k 2 cosh (kd) 

+ 

1 2 [ 1 (d__¢crit)] -+- -~ q/a ( d - ~rit) ~ri t -~-S (13.7f) 

In these expressions ~ "  is the crest elevation of the breakwater, and b is the base 
width [see fig. 13.7]. As for (,it, it is the elevation (above the base) where Pw 
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J 

d 

b ~, Ot '" b ' 

Fig. 13.8 Hint for the worked examples of sect. 13.3.2: compute the force on the caisson as if the 
foot-protections were not there. 

b e c o m e s  equa l  to -pst, which p roceeds  f rom the numer ica l  solut ion to the e q u a t i o n  

H (-) 

cosh(kd) c o s h  ( k ~ c r i  t )  --- d - ~crit • 

For improving the stability against overturning and also for lowering the bearing 
pressures at the heel of the upright section, the base is usually widened with two short 
brackets (see fig. 13.8). As a consequence the vertical wave force consists not only of Sw but 
also of the wave pressure force on the upper face of the front bracket. This is typically a 
small additional force that can well be neglected. For example, we have obtained the safety 
factors of tables 13.1-2 (worked examples of sect. 13.3.2) neglecting the aforesaid additional 
force. If we were to count this additional force as well, all critical safety factors would be 
slightly raised (less than 1%). 

Then there are the foot-protection blocks which also alter the wave force to a certain 
extent, in that they reduce the water depth. We should assume the actual water depth and 
compute the wave pressure on O3-O2-O1 by linear interpolation between the two known 
values of Pw, the one at 03 and the one at O1 (that is zero). Here we suggest computing 
simply the wave pressure as if the foot-protection blocks were not there. Indeed, in so doing, 
we shall arrive nearly at the same final result. For the two worked examples of sect. 13.3.2, 
the use of one or the other of these two methods leads to differences within 1% on the forces 
and on the overturning moments. 

13.3 Design of vertical breakwaters 

13.3.1 Stability analys& 

Fig. 13.9 shows the forces  on the b r e a k w a t e r :  the weight  P* in still wa te r ,  the 

wave  forces F and  Sw, and  the hor izon ta l  and  vert ical  reac t ions  Ro and R~ of the 

rubb le  m o u n d .  For  the equi l ibr ium,  we have  

Inol = IFI, 

Rv =P*-Sw,  
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where S~ is positive under the wave crest and negative under the wave trough. The 
position of R~ is such that the free body is in equilibrium: 

M + R~eR -- P*ep. (13.8) 

Under  the wave crest the axis of rotation is O~ so that ev = eel and eR = eR1; and 
under the wave trough the axis is 02 so that ee = e e 2  and eR = eR2. 

A static analysis with the extreme wave load is usually done, at least for 
preliminary design purposes. [Then a more realistic evaluation of the response to 
the dynamic loading should be done for final design purposes (Oumeraci, 1994).] 
The stability is examined for three modes of failure. 

Against sliding. We must verify that the safety factor 

C, = #R~ = # ( P * - S ~ )  

IRol IFI 

is greater than a dictated value Clmin > 1. #R~ (friction coefficient × vertical reaction) 
is the limit shear force that can be developed at the base of the caisson. Thus, we 
check that the limit horizontal reaction (that the rubble mound can exert) is suitably 
greater than the actual horizontal reaction the rubble mound is expected to exert. 

Against overturning. We must verify that the safety factor 

P*ev 
C 2 z 

M 

is greater than a dictated value C2min > 1. Indeed were P* ev equal to M, then eR 
would be zero [cf. (13.8)], and hence overturning would occur. Then, C2min should 
be greater than Clmin , given that C~ can approach 1 without breakwater  sliding, 
while a failure will certainly occur before C2 approaches 1. This will be the collapse 
of the foundation, given that as C2 approaches 1, eR approaches zero and hence the 
bearing pressure at O~ tends to infinity. 

F 

I crest] 

ep1 

L 

--em- 

Rv 

I Sw -- Ro ~01 02/ : 

Fig. 13.9 Reference scheme for the stability analysis. 

]trough] 

Ro I Sw 
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Against collapse of the foundation. A common procedure is to check that the 
largest toe pressure is within 4. 105+ 5.105 N / m  2. Here following Meyerhof 
(1953) we shall verify that the safety factor 

1 
--K~ 7,0 2eR 

C3 = 2 (13.9) 
Rv/2eR 

is greater than a dictated value C3min > 1. The numerator  on the r.h.s, of this 
formula gives the bearing capacity and the denominator gives the bearing pressure. 
Here K~ is a parameter  that depends on the angle of internal friction of the soil and 
on the quotient Ro/Ru, and 720 is the specific weight in still water of the soil. 

The verifications of the stability against overturning and collapse of the 
foundation really aim to check the stability against one mode of failure: under the 
wave force, eR is reduced so that the bearing pressure at the heel of upright section 
becomes too large, the soil collapses and the structure tilts and sinks into the ground. 

13.3.2 Worked examples 

A traditional breakwater 
Design a vertical breakwater  for 

(a) Hs of the design sea state: 8 m, 
(b) depth of caisson's base: 20 m, 
(c) crest elevation of the breakwater: 8 m. 
Take 
specific weight: reinforced concrete 2.45.104 N / m  3, sand 1.82-104 N / m  3, 
factors formula (13.9): K~ = 20, 7~o = 8.103 N / m  3, 
friction coefficient: # - 0.6, 
minimum safety factor: Clmin = 1.3, C2min = 1.5, C3min --  2.0. 

The wave period Th is computed by means of (4.27) and (5.42): 

~/ 8 = 1 1 1 s  Th--0.92"8.57r 4.9.------~ " " 

The virtual wave heights H (+/and H (-/given by (13.4a-b) are 

H (+ / -  5.6. 8 _ 11.2 m 
4 

H ( - / -  9 . 2 . 8  _ 18.4 m. 
4 

We fix a tentative width b (this being necessary for computing the uplift force Sw 
and the overturning moment  M); we compute forces and moments of the forces under 
the wave crest and the wave trough by means of (13.7a-f); then we evaluate the 
minimum P* for the safety against sliding; and, from this P*, we obtain the minimum 
em and ee2 for the safety against overturning and collapse of the foundation. 
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In par t icular  with 

b =  2 4 m ,  

we obtain 

P* = 6 . 0 9 . 1 0  6 N / m ,  ep1 = 12.62 m, ep2 = 8.75 m. 

The  b reakwa te r  of fig. 13.10a has these values of P* and ep1 (which are the least 
values to comply with the prescr ibed safety factors),  but  it has a larger  ep2. Thus we 
could reduce  s o m e w h a t  the caisson width p rov ided  we des igned  a h igher  
supers t ruc ture  and/or  a wider  t rapezoidal  wall so as to keep  the min imum P* and ep1.  

A new type of  breakwater 
The one we have just seen is a b r eakwa te r  on a typical depth  for ports. Now let 

us pass to a b r eakwa te r  at a water  depth  twice as large. All data  remain  unchanged  
apar t  f rom the depth  of the caisson's base that  passes f rom 20 m to 40 m. This is not 
an abstract  idea, it is only necessary to consider  the Sines b r eakwa te r  in Por tugal  
which was built on a water  depth  of about  50 m. However ,  that  type was completely 
different; it was a rubble  mound  breakwate r ,  whereas  here  we are dealing with a 
caisson breakwate r .  

A solution is given in fig. 13.10b. The  weight  P* is the min imum to ensure  the 
safety against sliding, and ep1 and ep2 have the least values for the safety against 
over turning and collapse of the foundat ion.  We see that  the b r eakwa te r  on 40 m 
water  depth,  unlike the one on 20 m water  depth,  can fulfil the condit ion of 
min imum weight and min imum width with the cells only part ial ly filled with sand 
and without  a supers t ruc ture  above the mean  water  level (apar t  f rom the wall for 
limiting the over topping  discharge).  

The solution of fig. 13.10b should be effective for three reasons: 
(i) the double function: the caisson can also be used as a reservoir for oil storage with a 

capacity of nearly 500 m3/m; 
(ii) the operations at sea being reduced to a minimum: there is not a heavy 

superstructure to be built above the mean water level; 
(iii) the flexibility: to move the caisson and use it again elsewhere, it is not necessary to 

pull down the superstructure, but it is only necessary to take out the sand from the cells; 
moreover, if in the future somebody wishes to adjust the safety factors, they will simply have 
to change the sand content. 

The caisson works like the reservoirs at the base of the gravity offshore platform of fig. 
12.1. Pumping oil into the reservoir, the water flows out through a lateral hole; pumping oil 
from the reservoir, the water flows in. Thus the reservoir is always full of some liquid that 
may be nearly all oil, or in part oil and in part water, or all water. 

Safety factors of  the two breakwaters 
The results of the verifications are given in tables 13.1 and 13.2. Looking  at the 

safety factors, we realize that  the design of the t radi t ional  b r eakwa te r  of fig.13.10a 
is condi t ioned only by the wave crest, while the design of the new big b reakwa te r  of 
fig.13.10b is condi t ioned both  by the wave crest and by the wave trough. 
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Fig. 13.10 Worked example: (a) traditional breakwater; (b) deep breakwater used also as oil 
reservoir. 

Three final comments. First: one should start from H,0 (the significant wave height 
on deep water), take a characteristic spectrum, evaluate how this spectrum changes on 
the depth of the breakwater (using the equations of sect. 8.4.3), and finally compute 
H~ and Th of this shallow water spectrum. This procedure has been simplified in the 
two worked examples in order to concentrate our attention on the verifications. 

Second comment: the depth of the big breakwater (fig. 13.10b) is within the 
range covered by the experiment RC 1994 while in the case of the traditional 
breakwater (fig. 13.10a) we have a d/Lpo of 0.09 which is smaller than the d/Lpo 
covered by RC 1994. That is, for a preliminary analysis, we have assumed that the 
pressure distribution given in sect. 13.1.4 is valid also outside the range (13.1) 
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covered by the experiment  RC 1994. Of course, some new small scale field 
experiments should be performed so as to cover a wider range of d/Lpo, and also to 
check the results of RC 1994. 

Third comment:  a breakwater  is usually called vertical if the height of the rubble 
mound is smaller than 0.3d, (d, being the depth of the natural  bottom, see fig. 
13.12). According to the conclusion of Kortenhaus and Oumeraci  (1998), based on 
laboratory data, the breakwater  of fig. 13.10a, with the H, of 8 m, could be subjected 
to impulsive loads of high intensity and very short duration if the height of the 
rubble mound was smaller than about 4 m. 

The stability of the two breakwaters  will be re-examined in sect. 13.5.3 according 
to the Japanese practice. 

Table 13.1 Verification of  the breakwater on 20m water depth 

crest 
.... 

trough 

WAVE LOAD 

F IN/m] 

2.37.10 6 

1.77-10 6 

Sw [N/m] 

0.94.10 6 

-1 .55.10 6 

M [N. m/m] 

4.77.10 7 

0.05" 107 

SAFETY FACTOR 

C1 

i i!i!ii! 
i~iiii!!~!~!~i~:~i:~!~!~iiiiii~i~!~!~ii~!~i!i!!i!!i!ii!i~!)i~ii~iiiii!i!iiiiiiiiiii~:~ 

2.60 

C2 

1.62 

C3 

'::~:~:~;~U~:~:~2:~2~:~¢~:~:~;:~::~:~:~:~:~ ;::~;:~::~:~, 

128 3.42 

Table 13.2 Verification of  the breakwater on 40m water depth 

crest 

trough 

F [N/m] 

3.36.10 6 

-3.44-10 6 

Sw [N/m] 

0.86.10 6 

-1 .41.10 6 

M [N-m/m] 

10.88.10 7 

4.80.107 

RESERVOIRS FILLED WITH OIL (*) RESERVOIRS FILLED WITH WATER 

crest 

trough 

C1 

1.70 

i 
C2 C3 

ii!i i i ~  2.28 
;ii!iJ:i~: ii::!i 

f i L 

C1 

1.47 

1.84 

C2 

1.61 

2.90 

C3 

2.52 

2.28 

(*) Specific weight of oil: 8.5 • 1 0  3 N/m 3. 
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13.4 Further verifications of the vertical breakwaters 

13.4.1 Second verification of  the stability against the three principal modes of  
failure 

The wave force used in the foregoing section is F~/lOOO, i.e. the average of the 
N/1000 highest peaks of the force per unit length at any fixed upright section (N 
being the number of waves of the sea state). With the typical durations of the design 
sea states, this average value proves to be very close to the maximum expected 
wave force per unit length at any fixed section. 

Due to the relatively small length of each single caisson, the stability must be 
examined with the maximum expected wave force per unit length on the whole 
breakwater. From what we have seen in sect. 11.6, this force is certainly greater than 
the maximum expected wave force at any fixed upright section. 

Until now, the distinction between the maximum expected wave force per unit 
length on the whole breakwater and the maximum expected wave force per unit 
length at any fixed upright section has not been done. This is a non-conservative 
approach that is counterbalanced to some extent by assuming the maximum 
expected wave force to be constant in time (static analysis). [The effects of the short 
duration of wave loads are pointed out, in particular, by Ling et al. (1999).] 

The most practical way seems to be to continue with the traditional approach, 
and in addition to check that C1 and C3 are greater than 1 and that C2 is greater 
than at least 1.1, even with the maximum expected wave force per unit length on the 
whole breakwater. (The grounds to take Czmin > C1 min having been explained in 
sect. 13.3.1.) 

Let us see what changes to the breakwater of fig. 13.10a are required owing to 
this additional verification. We assume a realistic duration of the design sea state, 
say 2 -  6 hours (see sect. 7.5). The significant wave height was of 8 m, so that 
through (5.26) we obtain 

-- ~/ 8 = 9 . 4 s  T -  6.6- 7r 4 .9 .8  

and consequently the number of waves of the design sea state is 

6. 3600 
N -  = 2300. 

9.4 

The maximum expected wave height in this design sea state at any fixed point is 
obtained by means of (5.57) and proves to be 

/-/max (fixed section) - 1 . 8 9 0 h -  15.1 m. 

According to the conclusions of sect. 11.6.3, the maximum expected wave height on 
the whole breakwater is computed by means of (5.57) with a fictitious mean wave 
period equal to T/n with n given by (11.12). In our case we have Lpo/3 - 76 m, so 
that n -  1 + 1/76 with I in metres, 
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where 1 is the total length of the breakwater.  Table 13.3 gives H m a x  o n  the whole 
breakwater  for two distinct lengths 1 ( 3 ,  in the third column, is the ratio between 
Hmax on the whole breakwater  and Hmax at any fixed section). 

Table 13.3 Maximum expected wave height on the whole breakwater 

1000 m 

5000 m 

Hmax on the whole 
breakwater 

2.17 h - 17.4 m 

2.32 h -  18.6 m 

1.15 

1.23 

The maximum expected wave force per unit length on the whole breakwater  can 
be computed by multiplying the virtual wave heights H/+/and  H/-) by the factor ~ .  
Using the formulae (13.7a-c) with the virtual wave height 3 H / + /  in place of H/+/, 
we obtain the extreme wave forces and the safety factors given in table 13.4. 

The table illustrates only the situation under the wave crest, which is markedly 
the more critical. We see that with a total length of 1000 m the safety factors C1 and 
C3 are still greater than 1 and the safety factor C2 is greater than 1.1, so that the 
breakwater  of fig. 13.10a gets through the second verification. However, with a total 
length of 5000 m, C2 keeps above 1.1, C~ is i and C3 falls below 1. Accordingly, with 
the breakwater  5000 m long, we should adjust the breakwater  size. In practice, it 
would suffice to widen the side of the cell from 6.2 m to 6.5 m, with a consequent 
increase of 0.9 m in the breakwater  width. 

Table 13.4 Second verification of  the breakwater on 20m water depth 

l[m] 

1000 

5000 

WAVE LOAD (CREST) 

F[N/m] 

2.78-10 6 

3.00-10 6 

Sw[N/m] M[N • m/m] 

1.08.10 6 5.61.10 7 

1.16.10 6 6.05.10 7 

SAFETY FACTOR 

C1 

1.09 

1.00 

C2 

1.38 

1.27 

C3 

1.10 

0.72 

Conclusion: the 5000 m long breakwater  must be somewhat wider than the 
1000 m long breakwater.  This is logical, if we think that the longer the breakwater,  
the greater the probability that during its lifetime it is hit by some group of 
exceptionally high waves. In simple terms a long breakwater  is like a long 
battleship, it has a greater probability to be hit. 
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13.4.2 Analysis of circular slips passing through the rubble mound and the 
foundation 

To complete the stability analysis, we must evaluate the safety factor 

C4 Z MRES 
m~ 

for a number of circular slips like the one of fig. 13.11 (varying the position of the centre and 
the radius). Here MREs is the limit counterclockwise moment of the forces (resisting 
moment) with respect to the slip centre and MsL is the actual clockwise moment. The limit 
counterclockwise moment is due to the limit shear stresses that can be developed along the 
slip and to the weight P~ of the ground to the left of the slip centre. The actual clockwise 
moment  is due to the weight P2 of the ground to the right of the slip centre, and to the 
vertical forces -Rv and -Ro exerted by the caisson under the wave action. Of course also the 
safety factor C4 must be greater than a prescribed minimum C4min > 1. 

i 

I 
" I I  I 

I 

Fig. 13.11 Reference scheme for the analysis of a circular slip passing through the rubble mound 
and the foundation (-Ro and -Rv are the forces that the caisson, under the wave action, exerts on 
the soil). 

13.5 The Japanese practice 

13.5.1 Goda's formula 

The Japanese practice, being followed in many countries, is based on the 
distribution of wave pressure of fig. 13.12, given by Goda's formula: 

3 (1 + cos0)H (13.10a) ~m~ -- ~- 
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dn 

Fig. 13.12 Reference scheme for Goda's formula. 

c% 
"I [ 

~p~% 
I= b -i 

( + )  1 c~' 
Pw~ T (1 + cosO) ( + OL"COS20) Ta H, (13.10b) 

p ~+) - c~'"p (+) 
w l  (13.10c) 

p(2 ) _ 1 (1 + cos0)c~'c~'" H 5- 7a , (13.10d) 

where 
1 [  2kd,, J 2 

c~' - 0.6 + ~  sinh (2kd~) 
o~" M i n I ~ d ' ~ - d '  ) H(-~) 2 --~] 

, - -  2 3 a ;  ' ' 

.E l  1 1 oL"'- 1 - d n  cosh(kd~) " 

The meaning of most symbols is illustrated in fig. 13.12. Then d', denotes the water 
depth at a distance of 5/-/, seaward of the breakwater, and 0 is the angle between the 
direction of wave approach and a line normal to the breakwater. (It is recommended 
to rotate the wave direction from the actual direction by an amount as much as 15 ° 
toward the line orthogonal to the breakwater.) According to Tanimoto and 
Takahashi  (1994), for some composite breakwaters  (i.e. breakwaters  with 
d ' / d ,  < 0.7), factor c~" must be increased to take account of the impulsive pressure 
by breaking waves (the possible increase being dependent on the mound shape). 

It is suggested to assume T = T~/3 (the average period of the highest one-third of all 
waves of the design sea state). This period proves to be very close to Th. For example, 
in the records obtained during the experiment RC 1994 the average difference 
between T1/3 and Th was only 0.9%, with a peak of 3.5% in a single sea state. 

As for the wave height, Goda (1974) gives a set of formulae. If the energy losses 
are negligible, we have 

H = 1.811,,  (13.11) 
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or else some smaller wave height is obtained. After  some work on the formulae of 
Goda,  we arrive at the following conclusion" the condition 

dn > 2.5 and dn > 0.12, (13.12) 
H ~ -  L 0 -  

where L0 is the deep water wavelength associated with T1/3, is sufficient to ensure 
that the effects of the energy losses are negligible. Condition (13.12) is often 
fulfilled by the chief breakwaters.  

13.5.2 Stability analysis 

The trend in Japan (Goda,  1992) is to make analysis of circular slips like the one 
in fig. 13.11 and to verify the breakwater  against sliding and against overturning, 
with Clmin- C2min- 1.2 and # -  0.6. The safety factor against overturning is 

defined by _ P*ep - M" 
C2 - M' ' (13.13) 

where M'  is the overturning moment  due to the horizontal wave force and M" is the 
overturning moment  due to the uplift force; whereas,  the definition we have 

followed gives P*ev 
C2 = (13.14) 

M' + M" 

which proves to be always smaller than the C 2 obtained by means of (13.13). 

To prove that C 2 (13.13) is greater than C 2 (13.14), that is to say, to prove that 

P*ee -- M" P*ep > 
M' M' + M" ' 

it is convenient to rewrite this inequality in the form 

* P * M "  M "  P ep q._ ee 

M'  + M" M'  + M" M'  M'  

Hence, the inequality to be proved reduces itself to 

P*ep M" M" 

M' + M" M' M' 

P*ep > 
M' + M" 

which is satisfied, given that P*ep, M '  and M" are positive, and P*ee necessarily must be 
greater  than M '  + M",  otherwise the structure would be unstable. 

13.5.3 Re-examinat ion  o f  the breakwaters  o f  fig. 13.10 

Computing the wave forces on the breakwater  of fig. 13.10a by means of Goda 's  
formula, we obtain 

F - 2 .73 .10  6 N / m ,  Sw - 0.91 • 10 6 N / m ,  M - 5 .35 .10 7 N .  m / m .  
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For the calculation, besides the orthogonal wave attack (0 = 0), we have fixed an 
elevation of the rubble mound of 5 m, and a slope of the seabed of 3%, so that 

d n - 2 3 . 5 m ,  d - 2 0 m ,  d ' - 1 8 . 5 m ,  d '  - 2 4 . 7 m .  

However,  the result is affected only slightly by the elevation of the rubble mound or 
by the bottom slope. Indeed doubling the elevation of the rubble mound (from 5 m 
to 10 m) or varying widely the bottom slope, say from 3% to 10%, we find that the 
wave force and the overturning moment only vary 1+2%. 

We see that the wave force and the overturning moment are nearly 15% larger than 
the ones (F = 2.37.106 N / m ,  M = 4.77.107 N.  m/m) obtained in sect. 13.3.2. With 
this new wave load, the safety factors become 

CI = 1.14, C 2 = 1.44, 

and hence we should widen the upright section and/or increase the thickness of the 
concrete superstructure. 

Let us pass to the big breakwater  of 40 m water depth (fig. 13.10b). Using Goda's  
formula, with an elevation of the rubble mound of 5 m, we obtain 

F = 3 .32.10 6 N/m,  S~ = 0.73.10 6 N/m,  M = 10.45. 107N • m/m.  

(Here too, the size of the rubble mound has a negligible effect on the result, indeed 
raising the rubble mound from 5 m to 10 m, the wave force and the overturning 
moment vary less than 0.5%.) This time, we see the wave force and the overturning 
moment to be close to the ones ( F =  3.36. 106N/m, M = 10.88 • 107N .m/m)  
obtained in sect. 13.3.2. 

Finally, for the best distribution of the masses (sand, oil or water) inside the big 
caisson, Goda's  formula is not helpful. Indeed, the action of the wave trough, not 
being covered by this formula, becomes essential. 

13.6 The problem of the rubble mound breakwaters 

13.6.1 The base given by Hudson 

Fig. 13.13 shows the cross-section of a rubble mound breakwater.  The design of 
these structures is markedly the more empirical in ocean engineering, and the 
reason for this is clear. It suffices to note that they are structures with a very 
complex shape which withstand three-dimensional breaking waves. 

The verification of the stability of these structures lies basically on laboratory 
tests, that we shall deal with in sect. 14.2.4. A preliminary design of the crown wall 
can be done with the verification method of sect. 13.3.1 and the pressure 
distributions of Martin et al. (1999) based on laboratory measurements with 
periodic waves (these distributions being related to wave size, breakwater  
geometry, and armour layer porosity). As for the armour, here below we deal 
with the decision on the size of the concrete armour units. These units with some 
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Fig. 13.13 The rubble mound breakwater of the port of Brindisi (South Italy): (a) armour, (b) 
underlayer, (c) toe, (d) crown wall, (e) core, (f) rear armour. (Courtesy of Grandi Lavori 
FINCOSIT.) 

special forms are" cubes, accropode, tetrapods, among the others. The nominal 
diameter  of the unit is defined by 

D~- (e/")/s) 1/3, 

where P and 7s are, respectively, the weight and the specific weight. 
Let us imagine that a breakwater  with armour  units of some given shape (e.g. the 

tetrapods which are widely used all over the world, see fig. 13.14) is subjected to a 
sequence of sea states with growing H, and fixed 

(i) number  N of waves, 
(ii) significant wave steepness H,/Lpo, 
(iii) nondimensional  spectrum 5 p (w, 0). 

/i m a r m o u r  u n i t  (tetrapod) 

t o e ~  ~filter 

Fig. 13.14 Reference scheme. 
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We shall find a Hscri t such that a fixed number  of units will be displaced. That  is, 
we shall find the significant wave height able to produce a fixed degree of 
damage. 

It is generally assumed, since Hudson (1953, 1961), that the ratio between Hscri t 

and D, is a function like this: 

Hscrit Q 7s Hscrit , S i r ) )  
D ,  = f ' , A , N ,  (w ,  O , (13.15) % Lpo 

where, clearly, the function generally varies with the shape of the block units. 
Hudson himself simplified this function in the following way: 

HscritAD~ - f ( Hscrit )~'N' ")~(w' ' , (13.16) 

where 
A - 7 ~  1. 

% 

Really, Hudson  reasoned in terms of periodic waves, and his formula did not 
include the wave steepness nor the number  N of waves. However  he introduced this 
kind of simplification giving rise to a long sequence of formulae having Hscrit//AOn 

on the 1.h.s. (for Hudson this was Hc~it /AD,,  with Hcrit the height of the periodic 
waves which cause the fixed degree of damage).  

For  understanding the step from (13.15) to (13.16) we reason as follows. The 
force of a current  on a solid block [see fig. 13.15] can be written in the form 

2 

u D 2 F - const % ~, 
g 

on the assumption that the drag coefficient is constant over the range of variability 
of u and D,. The block slides when this force becomes equal to the limit shear force 

?: " 7 i : :"  :i "~i ;: ' . . ' :: ' . '~( ;! :, : %  2 ~ 'ii-.::" :: 9 7 ! 7 5  ~ ?:::, ;.: '!~ ' ,: : ::..7.~..:,i Y - :  

Fig. 13.15 Simple analogy for Hudson's formula: if the product AD,, keeps constant, the velocity 
of the current for which the block slides does not change (provided the variations of Dn are such 
that the drag coefficient can be assumed as a constant). 
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at the base of the block 

Romax - # (% - 'Ta) D 3 gl 

which is the product of the coefficient of friction by the weight in still water of the 
block. Consequence: if, under the same coefficient of friction, we let Dn and % vary 
in such a way that ADn keeps constant, the critical value of the current velocity u for 
which the block slides (that is the value of u for which F = Romax) does not change. 
The step from (13.15) to (13.16) is based on the same idea: the significant wave 
height for which the fixed damage occurs does not change if Dn and % vary in such a 
way that the product AD, keeps constant. 

Note that an increase of the specific weight enables us to reduce the weight of the armour 
units more than we probably would be inclined to believe. Let us assume that 7, is equal to 
2.35-104 N / m  3, so that 

2.35.10 4 
A - - 1 - 1.33. 

1.01.10 4 

An increase of 5% in 7, leads to an increase of 8.5% in A which enables us to reduce Dn of 
the same amount, under the same Hscrit. Conclusion: the weight of the armour unit is reduced 
nearly 20%. 

13.6.2 Formulae for the size of  armour units 

Several formulae with the general form (13.16) were suggested. In particular a 
recent one pertinent to tetrapods and non-breaking waves (i.e. waves which do not 
break before the rubble mound) is 

(0 y05) (.scrt) °2 
Hscrit = .85 + 3.75 N025 , (13.17) 
ADn -Lo 

where N (as said) is the number of waves and L0 is the wavelength on deep water 
associated with the mean period T [from (5.25) L0 is equal to 0.782 Lpo]./U is the 
actual number  of displaced units related to a width (along the longitudinal axis of 
the breakwater)  of one nominal diameter D,. The slope angle A does not appear in 
the formula, because the breakwaters with armour layers of interlocking units are 
generally built with a slope angle of 33 °. Finally, formulae like (13.17) are usually 
obtained through laboratory tests with 2-D random waves and frequency spectra of 
the wind waves. 

Let Hsl, ~ 1 ,  r l  and g01 -- gT~/27r be the characteristics (significant wave height, 
duration, mean wave period and wavelength) of the design sea state for the first 

- - -2/27r be the verification (see sect. 7.5); and let /-/,2, ~2 ,  T2 and Lo2-gT  2 
characteristics of the design sea state for the second verification. Then, we use 
(13.17) with the data of the first design sea state and with a prescribed value (/Ull) of 
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the number  .~¢ ..... of displaced units (related to a width), and compute 

Dn, - nsl(nsl /--L°l)°2 with N1 -- ~1 
A(0.85 + 3.75../t ..... ° '5/N°25)1 1 , T1 

Then we use (13.17) with the data of the second design sea state and with a smaller 
value A/2" of the number  of displaced units, and compute 

D,,2 ns2 (ns2/-L°2)°2 
- with N2 = ~ 2  

A(0.85 + 3.75./¢ ..... ~5/N°25 2)  T2 

With the diameter  D~, the first design sea state displaces A~; armour  units; and with 
the diameter  D,2, the second design sea state (the less severe one) displaces A~2 " 
armour  units. The nominal diameter  D, we shall adopt must be greater than both 
D,1 and D,2. 

According to Van der Meer  (1992), who has introduced the formula (13.17), the 
failure for tetrapods is at ./;t J" 1.5. Therefore we should take 

0 ~ ./12" < ./1~'i" ~ 1.5, 

for the tetrapods. Some design guidelines recommend ~/f~'-0. However  the use of 
A.~2 " -  O, with the design sea state for the second verification, generally, leads to great 
sizes of the units. 

The D, so obtained is suitable for the trunk section, while for the breakwater  
head the D,, or A must be increased and/or the slope of the roundhead must be made 

1 
less steep. For the underlayer,  common practice is to use stones with a mass of 

1 10 
to of the armour.  Finally, formulae like Hudson 's  are used also for the stones in 

15 
the toe. 

C o n c l u s i v e  n o t e  

The experiment  RC 1994 was specially executed for this chapter. The second 
verification of the upright breakwaters,  which takes into account the length of the 
structure, is also a novelty. 
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Chapter 14 
TOPICS CALLING FOR AN OVERALL OVERVIEW OF OFFSHORE 
AND COASTAL ENGINEERING 

14.1 A c o m p a r i s o n  b e t w e e n  t sunami  and wind waves  from the o p e n  sea to 
the coast  

14.1.1 T h e  s o l i t a r y  w a v e  

Tsunamis are extremely long waves generated by submarine earthquakes or 
volcanic eruptions. Given the very small values of d / L o ,  the non linearity effects 
become so big that the linear wave theory is coarsely approximated. Hence, we must 
resort to theories valid in the limit d / L o  ---, O, in particular to the solitary wave theory 
(Laitone, 1961; Grimshaw, 1970). The first approximation of this theory gives 

H 
rl(y, t) - ~ , (14.1a) 

cosh2q 

vy (y, t) - 1 H v@ d (14.1b) 
cosh2q d ' 

ay (y, t) - v/-3 sinhq ( d )  ~5 (14.1c) 
cosh3q g'  

H 
- ~ ,  (14.1d) A p  (y, t) Pg cos-2qn 

with 
(y-c0 

q = - ~  d d 

Note that the maximum of the surface displacement is H and the greatest lower 
bound is zero. Note also that both vy, ay and Ap do not depend on z, so that they are 
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constant from the wave surface to the seabed (this property is predicted also by the 
linear wave theory as cl/Lo --+ 0). 

To a first approximation, the shoaling can be foreseen by means of (2.45) as 
d/Lo ~ O. With a0 = 7r/2 (two dimensional flow) and cl/Lo --+ O, equation (2.45) 
becomes 

H ~ f c T  d "---~0~ 
Ho 4~-d as Lo 

which, together with (1.34) of c, yields 

H ~ - constant 
d 

as ~ 0 ,  
L0 

(14.2) 

which is called Green's  law. 

14.1.2 E v e n  a h igh  t s u n a m i  is no t  d a n g e r o u s  f o r  the o f f s h o r e  s t ruc tures  

Thrust on a gravity offshore plat form 
Let us evaluate the thrust of a 10m solitary wave on the gravity offshore 

platform of sect. 12.1, on 125 m water depth. For simplicity the base of the gravity 
platform is sketched as a circular cylinder with the section area of the actual base. 
We have already seen in sect. 12.1 that the radius of this circular cylinder is of 45 m. 

In each case the maximum horizontal force occurs between the instant of the 
largest Vy (q = 0) and the instant of the largest ay (q = 0.658). In the case under 
examination, the inertia force is much greater than the drag force, and hence the 
maximum force proves to be very close to the force at the instant of the maximum 
acceleration. 

Using Morison's equation with Ci~ = 1.85, Cdg = 0.62 together with the formulae 
(14.1a-b-c) for ~7, Vy and ay, we obtain the following situation at the instant of the 
maximum horizontal force: 

a y = 0 . 1 4 8 m / s  2, V y = 1 . 8 6 m / s ,  ~ = 6 . 7 m ,  

/ F/~ - [1.85. 1030.7r. 452. 0.148] 50 = 8.97.107 N, 

platform base Fdg -- [0.62 1030.45.1.862] 50 = 0.50.107 N, 

F - Fi~ + Feg - 9.47.107 N, 

three columns / 

F/n = 3 [1.85. 1030.7r. 8.352. 0.148] (75 + 6.7) = 1.51.107 N, 

fdg -- 3 [0.62. 1030.8.35.1.862] (75 + 6.7) -- 0.45.107 N, 

F - Fi, + Fdg = 1.96.107 N, 

where the square parentheses give the forces per unit length, which are multiplied 
by the height (50m) of the base, and by the height (75 + 6.7 m) of the piece of 
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column benea th  the water  surface. [The column tapers f rom the 10 m radius at the 
base (z = - 7 5  m) to the 6 m radius at the deck elevation (z = + 25 m), and the 
radius of 8.35 m we have used in the computa t ion  is the average one of the piece of 
column be tween  the base (z = - 7 5 m )  and the water  surface (z = + 6 . 7 m ) . ]  
Conclusion: the max imum horizontal  force exer ted by the tsunami is of 1.14. 108N 
against the 4 .12-108N of the force exerted by the wind waves of sect. 12.1. 

To a first approximation the KE of a cylinder in a solitary wave can be evaluated by 
means of 2 

K E  - -  7FVmax 
Ramax 

which is an alternative way to express the KE with the linear wave theory. Given that 

Vmax = 2.80m/s, ama x = 0.148 m / s  2, 

the KE of the platform base turns out to be 3.7. This is a rather small value of KE, so that we 
could resort to the ideal flow pattern as well. And, with this alternative approach, the 
horizontal force per unit length on the platform base can be expressed in the form 

F(t) - 2p gR H J0 c°sh-2 --d- ( - ~  R cos fl - ct) + 

1 ( .~Rcos /3 -c t ) ] }cos f ld f l  -- cosh-2 I - ~  V/---~ ---d - 

[To check this equation, use formula 14.1d for the pressure. Refer to fig. 11.14. Bear in mind 
that the phase angle of a couple of points like P',  P" in this figure grows of. ~-7~ times from the 
ideal water cylinder to the solid cylinder.] With a . ~  of 1.75 (see sect. 11.4.4), the maximum 
force on the platform base is 0.84-108N against the 0.95. 108N obtained by means of 
Morison's equation. Thus, the total thrust on the platform is 10% smaller than that predicted 
by means of Morison's equation. 

Thrust on a space frame structure 
Of course Morison ' s  equat ion  is suitable for computing the max imum force on 

the four legs of the space frame structure of fig. 12.4. With C/n = 1.85, Cdg = 0.62 this 
max imum force proves to be of 0.59. 107N against the force of 1.45. 107N exerted 
by the wind waves. (In this case, the drag force exceeds the inertia force and the 
max imum horizontal  force occurs when q = 0.205.) 

Comparison between tsunami and wind waves 
The quot ient  force per unit length of  the tsunami/ force per unit length of  the wind 

wave grows towards the seabed,  given that Vy and ay of the tsunami are not 
a t tenuated  with depth. As a consequence the quotient  moment  o f  the t s u n a m i /  
moment  o f  the wind wave is smaller than the quot ient  force o f  the tsunami/ force  of  
the wind wave (we mean  the m o m e n t  of the horizontal  wave forces with respect to 
the seabed level). Specifically, we have 
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gravity 
platform 

f r a m e  

structure 

1.14- 108 _ 0.28 
tsunami force/wind wave f o r c e -  4.12.108 - ' 

tsunami moment /wind  wave m o m e n t -  0 .41 .10  ~° 
1 .97.10 l° = 0.21, 

tsunami force/wind wave f o r c e -  0.59.107 _ 0.40 
1 .45.10 7 

tsunami momen t /wind  wave m o m e n t -  0 .40-10 9 = 0.30 
1.33-109 

14.1.3 The same tsunami has some ruinous effects on a coast 

Using (14.2) for a first approximation,  we find that our solitary wave on 20m 
water depth has a height of about 16 m so that it is going to break. Hence, on a flat 
uniform slope we expect a run-up of nearly 16 m, and an even much greater  one if 
we include the shallow flooding (see sect. 3.2.3). 

For a comparison let us see the run-up of the design sea state of the platform. Van 
der Meer  (1992) suggests the following relation for a smooth impermeable  slope: 

Ru2% = 1.5 @0 for @0 _< 2, 
Hs 

where Rv~% is the threshold being exceeded by the run-up, on average, two times in 
one hundred waves, and @0 is the Irribarren number  on deep water: 

tan A 

4 0  : v/Z4so/L o. 

A typical value of the wave steepness Hso/Lpo is obtained from (4.27): 

from which it follows 

Hso/Lpo = 0.035, 

Ru~0 = 8.0//, tan A. 

Let us assume the 14, of 15 m we used for the calculation of the wind wave thrust 
on the platform (really, this 14, was on 125 m water depth, so that the Hs at breaking 
will be generally smaller than 15 m). At all events, even with an Hs of 15 m at 
breaking and a bot tom slope of, say, 8% the Ru:% would be 8 . 0 . 1 5 . 0 . 0 8  = 9.6 m, 
against the 16 m run-up of the tsunami (not counting the shallow flooding). 

14.2 Small scale models 

14.2.1 The dynamic similarity 

Let us imagine we have to execute the small scale model of waves of some given 
characteristics. We fix A = 100, A being the scale factor of length. Then let us call 
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Tpr, dpr, Lpr, respectively, the period, water depth, and wavelength in the prototype;  
and let us call Tmo, dmo, Lmo these quantities in the model. Given Tpr, dpr, and Lpr w e  

shall easily succeed in getting 

1 
dmo - - ~ d p r  . (14.3) 

100 

1 
But, what must we do to have L m o - - ~  Lpr? To this end, we have to fix scale 

100 
factor of time equal to square root of scale factor of length, that is we must fix 

1 
Tpr • Tmo 10 

Doing so, we shall have 
dmo dpr 

Lmoo Lpro 

which implies 
dmo dpr 
Lmo Lpr 

given that d/L is a function of d/Lo. The last equality together  with (14.3) implies 
that Lmo is 1/100 of Lpr, as required. 

The dynamic similarity with the scale factor of time equal to the square root of 
the scale factor of length is dedicated to Froude. We already referred to it in sects. 
4.5-6 where we discussed the possibility to execute small scale models in the field. 

14.2.2 The reason why Froude's is generally the proper  dynamic similarity 
for  ocean structures 

Let us consider the 1:20 scale model of the breakwater  of fig. 13.10a. We have 

prototype: d - 20 m, H, - 8 m, Th -- 11.1 s, 

so that Froude 's  dynamic similarity yields 

model: d - l m ,  Hs - 0 .40m,  Th -- 1 1 . 1 / x / ~  -- 2.48s. 

Table 14.1 Verification of  the 1:20 scale model of  the breakwater on 20 m water depth 

W A V E  L O A D  

Crest 

Trough 

F [N/m] 

5.92.10 3 

4.42- 103 

Sw [N/m] 

2.35.103 

3.87 • 103 

M IN- m/m] 

5.96.10 3 

0.06.10 3 

S A F E T Y  F A C T O R  

C1 

1.31 

2.60 

C2 

1.62 

128 

C3 

1.98 

3.42 
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A useful exercise could be to compute the wave forces and the safety factors for 
the model. The result is given in table 14.1 which has been obtained by means of the 
formulae (13.7a-f). Comparing this table with table 13.1, we can easily verify that 
the force per unit length in the model is 202 times smaller than in the prototype, and 
the moment  of a force per unit length in the model is 203 times smaller than in the 
prototype. Given that the weight per unit length in the model is 202 times smaller 
than in the prototype (provided the model consists of the same materials as the 
prototype), we realize why all the safety factors take on the same value in the model 
and in the prototype. 

The practical consequence is that we can obtain forces and torques of the 
prototype, simply by multiplying forces and torques of the model by some constant 
factors. The model even seems able to show whether or not any failure will occur, 
given that the safety factors are the same as those of the prototype. From the model 
we can infer only whether or not sliding or overturning will occur. As for the 
collapse of the foundation, the C3 of the model is the same as that of the prototype 
only if the soil is cohesionless as we have assumed. If the soil is cohesive, the C3 of 
the prototype would be smaller than the C3 of the model. (Here, note that 
sometimes the same soil is regarded as cohesionless for the big foundation of the 
prototype and cohesive for the small foundation of the model.) 

A further useful exercise could also be done for the gravity offshore platform 
and the submerged tunnel. Fix a suitable scale factor of length and repeat, for the 
model, the calculations that we did in chap. 12 for the prototype. If you will use the 
same nondimensional spectrum Y(w,  0) that we used for the prototype, you will 
find that the forces on the gravity platform are those of fig. 12.2, divided by the 
constant factor A3; and the loads per unit length on the tunnel are those of figs. 12.11 
and 12.12, divided by the constant factor A2. 

14.2.3 Where Froude's dynamic similarity fails 

Sometimes Froude's dynamic similarity of ocean structures is not effective in the 
sense that the ratio between the forces on the prototype and the forces on the 
model is no longer a constant. This is the case if the forces depend on the Reynolds 
number, given that the Reynolds number differs from prototype to model: 

1 
REmo /~ 1.5 REpr. 

[The proof of this relation is left as an exercise. Use the fact that the ratio between 
the velocities in the prototype and in the model is x/A.] 

As a consequence, for the space frame structures where Morison's equation is 
used, the force measured in the model generally does not go with the constant 
multiple A 3 to the prototype, indeed the force coefficients being dependent  on Re 
will generally differ from model to prototype. However, the dynamic similarity is 
not barred even for the space frame structures. Indeed, for the ratio between the 
forces in the prototype and in the model to take the constant value A3, it is not 
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necessary that Remo is equal to  REpr, but it is sufficient that the force coefficients have 
the same values in the model  and in the prototype,  which can be true even if 

RE,,,o ¢ REpr. 
If we assume that Ci, and Cag take on their own asymptotic values provided 

Dz/u T > 10 4 (see sect. 11.5.4), a sufficient condition for Ci, and Cdg to be equal in 
the model  and in the prototype is that Dz/lJ T should be greater  than 10 4 both in the 
model  and in the prototype.  

Let  us come back to the truss of fig. 12.4. Since the smaller d iameter  is 2.5 m, we 
have 

D {  '~ _ 2.52 
prototype:  \ u T J  - 0- 6 - 3.8.105 

mi,, 1 • 16.5 

(16.5 s being the Tp). In the model  the ratio D2/v T is A ~5 times smaller than in the 
prototype.  Therefore  D2/v T will be greater  than 10 4 also in the model  provided 

that 
3.8. 105/)~ 1.5 >_ 10 4, 

that is 
)~ < 11.3. 

In words: the factor scale of length should not exceed 1 1 - 1 2 .  This leads to an 
unusually large size of the model,  which however  does not create any particular 
problem if the dynamic similarity is per formed in the field. 

14.2.4 Dynamic  similarity for  rubble m o u n d  breakwaters 

Equat ion  (13.16) can be re-proposed in the alternative form 

.jr ...... _ f ( 14, 11, , ,X, N, J ( w , O ) ) , 
AD,, ' Lpo 

where ./f .... is the number  of displaced units. This alternative form reveals at once 
that, under  the Froude ' s  dynamic similarity, the degree of damage should be the 
same in the model  and in the prototype.  Indeed the variables on the r.h.s, have the 
same value in the model  and in the prototype.  

It is probable  that things are more complex. Indeed the displacement of the 
a rmour  units will also be due to drag forces, and hence the model  of a rubble mound 
breakwater  will be somehow similar to the model  of a space frame structure. 
Therefore,  we have to limit A, which could be done, roughly, with the same criterion 
of the space frame structure. Here  below is an example. 

Let  us consider an armour  layer of tetrapods of 5 • 10 5 N being subjected to a sea 
state with an H, of 8 m and a Tp of 12.1 s. We have 

D 2 2.772 
prototype:  ~ - = 6.34.105,  

U Tp 10 -6. 12.1 
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where 2.77 m is the D, of a unit of 5 • 105 N with a specific weight of 2.35 • 1 0  4 N/m 3. 
If we adopt the criterion of the space frame structures shown in the previous 
section, we require that 

6.34-105/A 15 > 104 / ~ 

that is 
A < 15.9. 

Thus the factor scale of length should not exceed 15 + 16. If we adopted a A of 15 
we would have an Hs in the model of about 0.50 m and a weight of the tetrapods 
of about 150N. As for the case of the space frame structure, the size of the 
model would be larger than the usual size of models. However, such a model test 
could be rather easily executed in a natural laboratory like that described in sect. 
4.6.2. 

14.2.5 Models  o f  ports  

Often the small scale models are also used to foresee the wave height within a 
port's basin. Typically, in these cases we have to evaluate some diffraction 
coefficients, and for this aim Froude's dynamic similarity is generally effective. 

As an example, let us resort to a 1"50 scale model for evaluating the Cd of a point 
of polar coordinates 

prototype" r - 1 0 0 m ,  3 - 4 5  °, 

behind a semi-infinite breakwater on 20 rn water depth for wind waves with a Tp of 
10s. Summarizing, we have 

d r 
prototype" d - 20m, Tp - 10 s ,  Lpo -- 156m, = 0.128, = 0.641. 

Lpo Lpo 

The same point in the model has the following coordinates 

model: r - 2 m ,  / 3 - 4 5  ° , 
and for the rest 

model: d - 0.40m, 
d r 

Tp - 1.414 s ,  Lpo - 3.12 m, = 0.128, = 0.641. 
Lpo Lpo 

Function ,((w) [given by (8.24)] is the same in the model and in the prototype, since 
the only parameter of this function is d/Lpo which does not change from the 
prototype to the model. Moreover, the dynamic similarity requires that the 
nondimensional spectrum S'~(w, 0) is the same in the model and in the prototype. 
Therefore, given that r/Lpo, 3, / f(w),  and J ( w ,  0) are the same in the model and in 
the prototype, it follows that the Cd of the model is equal to the Cd of the prototype 
[to prove this, use equations (8.40) and (8.41a-b)]. 

Of course, the execution of a small scale model is useful only in the case of some 
complex configuration of the solid boundary, and the simple example we have 
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given aims only to show that the Cd of the model is identical to the Cd of the 
prototype. 

In dealing with this kind of model tests we should bear in mind the conclusions of 
sect. 8.7.3. Specifically, for the estimate of Cd in the more sheltered region of a 
port's basin, even the periodic waves with period Tp are good. In the water sheet 
before a breakwater attacked orthogonally, even the long crested waves are good 
whilst the use of the short crested waves is necessary for the water sheet before a 
breakwater subjected to an oblique attack, and for the less sheltered region of a 
port's basin. 

1 4 . 3  W a v e  m e a s u r e m e n t s  

14.3.1 W a v e  m e a s u r e m e n t s  f r o m  b u o y s  

Generalities 
The free surface displacement is measured by measuring the vertical acceleration 

of the buoy. The total measurement system accuracy can be within 0.2 m or 5% for 
H,. The buoys can operate even on some thousands metres of water depth. 

Besides the heave, a directional buoy typically measures also the pitch and roll. 
This approach is used in particular by NDBC whose buoys are discus-shaped 
ranging from 3 m to 12m in diameter. Time series records of pitch and roll are 
stored in the onboard computer memory. As for the instruments, a recent project is 
to use low-cost angular rate sensors mounted orthogonally in a buoy (Steele et al., 
1998). The measurements of pitch and roll serve to obtain the directional spreading 
function. 

How to obtain the directional spreading function f rom the measurements o f  pitch 
and roll 

Let us consider the free surface displacement and its space derivatives at some 
fixed point x, y. The surface displacement is given by (8.5), and the space 
derivatives are U 

_ 0 
rl~ (t) -~x rl (x, y, t ) - Z ai ki sin Oi sin (coi t + gi), (14.4a) 

i = 1  

_ 0 N 
~u (t) ~ y  ~7 (x, y, t) - ~ a, ki c o s  0 i sin (a~i t + g/). (14.4b) 

i = 1  

Let us obtain the relation between the average product <~Tx (t)rb(t)> and the 
directional spectrum. We have 

~ 1  k: sin 0i cos Oi S(a~, O)k: sin 0 cos 0 d 0 d co. (14.5) < ~Tx (t)~Ty(t) > - ~a~  i 
• J O  dO 

This average product can be obtained also from the time series data of pitch and 
roll. For this aim it is convenient to resort to the Fourier series of r/x (t) and r/y (t): 
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N 
I It 

fix (t) - Z axi COS (CO i t) + axi sin (CO i t) ,  (14.6a) 
i=1 

N 
# l# 

?]y (t) -- Z ay i c o s  (co i t) Jr- ay i sin (CO i t) .  ( 1 4 . 6 b )  
i=1 

[Note that N in (14.4a-b) stands for the number (very large) of small waves forming 
the sea state. While N in (14.6a-b) is the number of frequencies in the Fourier 
series, which depends upon record length and sampling rate.] 

From (14.6a-b)we get 
N 

i~1 1 (axi ' q -  " ) ( 1 4 . 7 )  
' a It 

< T]x (t)T]y(t)> - - .  -~  ay i axi yi" 

And from (14.5) and (14.7) we conclude that 

IO  t It tt 2~ 1 (Gia,  
/kaj S (coi, O)~ sin O cos O d O - ~ yi -~- axi ayi)" (14.8) 

The two sides of this equation represent the contribution to the average product 
<rl~ ( t ) rb ( t )>  from the components whose frequency is between aJi-  A a ; /2  and 
a;i + A co/2 (A a; being the frequency increment of the Fourier series). 

Using (8.14) we can rewrite (14.8) in the form 
2 t I l# I t  

[ ~D(0; c o i ) s i n ( 2 0 ) d O -  axiayi +axiayi (14.9a) 
Jo A ~ E (~i) k 2 ' i 

where the terms on the r.h.s, are all known (they proceed from the time series data 
of r/(t), r/x (t), and T]y (t)). 

Of course equation (14.9a) alone is not enough to obtain univocally the unknown 
function D(O; a;i). However, some further relations of the same kind can be 
obtained from analysis of the following averages: 

where 
< ~7 (t) r/x (t) >, < rl (t) a; (t) >, < ~7~ (t) - r/2 (t) >, 

~7~ (t) - ~Tx (t) with each component advanced of 90 ° in phase, 

% (t) - ~7y (t) with each component advanced of 90 ° in phase. 

The further relations are 

2 D  ai axi - 11 I t  axi' 
(0; w i ) s i n O d O -  

Jo 2 A  aJ E (~i) ki ' 

2 O  (0 ; CO i) COS 0 d 0 - 

I I t  l /  ! 

ai ayi -- a i ayi 

2 A  co E (Odi) ki ' 

(14.9b) 

(14.9c) 
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J0 a "2 
a ''2 (a'~ + ) 

2rr (a~ -~ yi ) - -  x" xi 

D (0; o.)i) COS 2 0 d 0 - 2A co E (coi) k 2 
i 

(14.9d) 

where a' a" i, ~ are the amplitudes of the Fourier series of r/(t) [cf. sect. 4.4.2]. 

It is assumed that 

oil} 
where K (n~) is the normalizing factor and n~, 0~ are allowed to generally vary with co~ 
(for the wind waves we usually have 0~-  0 V i, as we saw in sect. 8.3.1). The four 
relations (14.9a-d) enable us to get the best pair ni, O~ for each frequency aJi. 

All this reasoning is based on the assumption that the buoy follows the slope of 
the sea surface perfectly, which of course cannot be the case for large buoys. 
However  it is possible all the same to get the pairs n~, 0~ taking the buoy response 
into account. 

How to take the buoy response into account 
Equations (14.4a-b) give the slopes of the free surface at the fixed point. 

Generally, pitch and roll of the buoy will be different from these slopes of the free 
surface because of an amplitude response .~(a~) and a phase response c~(co). The 
actual pitch and roll are 

N 
fix(t) - Z,J~(O.)i) a~ ki sin 0~ sin [&it q- gi -+- Og(COi)], 

i=1 

N 
~v(t) - Z ~-,~(coi) ai kicosOisin [coit + ci + o~(wi)] 

i=1 

[It is assumed that the buoy response is isotropic in direction and this is why the 
same amplitude response and the same phase response are of r/~(t) and ~b(t).] 

We aim to obtain an equation like (14.9a), with the same 1.h.s. of (14.9a) and 
some known terms on the r.h.s. To this end, let us consider the following averages 

oc [.2re 
< r/x (t)r b (t) > - ao ao S (co, O)k 2 .£2 (co) sin 0 cos 0 d 0 d co (14.10a) 

2 10~ 12S < ~ 2  v (t) + r / y ( t )  > - (w,O)kZ.~2(w)dOdw. 
J0 

(14.10b) 

In terms of the Fourier series, the first of these two averages is given by (14.7) and 
the second one is 

1 2 (a'~ + "2 _q_ 2 _q_ "2). (14.11) a a 'i a < f]2 (t) + rlv(t ) > - - 2  x xi y yi 
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From (14.7) and (14.10a) it follows that 

E (coi) k~ .~2 ((.z)i) m co (0", coi) sin (2 O) d 0 - a'xi ayi' + axi . . . .  ayi ,  
do 

(14.12) 

and from (14.10b) and (14.11): 

1 (a, 2 a,, 2 a'2 + yi )" a "2- E (COg) k~ o,~ 2 (O.)i) m 0.2 - -  2 xi Jr- xi -Jl- yz (14.13) 

Finally, (14.12) and (14.13) taken together yield 

2 D  (0; COl)sin (2 0) d 0 - 

t ! It l# 
2 (axi ay i + axi ayi) 

(a~ a ''2 '2 "2" 
+ xi +ayi+ayi) 

Similarly, it is possible to get three equations like (14.9b), (14.9c), and (14.9d) which 
are independent  of both the tilt response factors and the heave response factors. 

Alternative techniques to obtain the directional spreading function 
Some alternative analytical techniques have been developed which do not 

assume the cos 2" directional spreading function. In particular D(O; co) can be 
obtained through the maximum entropy principle and the knowledge that D(O; co) 
must satisfy the four equations (14.9a-d) (Kobune and Hashimoto, 1986). 

The directional spreading function can be obtained also from some alternative 
kind of measurements.  The following are two common surface techniques. First: to 
obtain D(O; co) from the measurement  of pressure and of two components of the 
horizontal particle velocity made by some current meter. Second: to obtain D (0; co) 
from the measurements of the surface displacement or the fluctuating pressure head 
made by a gauge array. The analytical techniques are similar to the ones we have 
described for the pitch-roll-heave data and from the first of these two alternative 
methods we arrive at four equations like (14.9a-d) with the same 1.h.s. as (14.9a-d) 
and some known terms on the r.h.s. 

14.3.2 Instruments for  small scale field experiments 

In the previous chapters we widely referred to small scale field experiments. 
These experiments are similar to those executed in the laboratories. Thus the ideal 
choice should be to use the instruments that have been largely improved from the 
use in the laboratory tanks. Unfortunately, the resistive wave staff (that is the most 
classic wave staff used in the laboratory tanks) works very badly in the field, 
because the sea water has an electrical conductivity which is much greater than that 
of fresh water. 

Hence, it is advisable to resort to instruments such as the ultrasonic wave probes 
which are fixed to some special piles as shown in figs. 11.1 and 11.6. The instrument 
outputs a voltage signal corresponding to the time delay between transmitting and 
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receiving the ultrasonic beam reflected by the water surface. Knowing the velocity 
of the ultrasonic beam, the distance between the water surface and the ultrasonic 
probe is easily derived. However  there are a few inconveniences that one should 
bear in mind. 

First inconvenience: these gauges cannot work very close to each other. The 
distance between two probes should be greater than 2h tan A (see fig. 14.1a). 
Moreover  the cone of the ultrasonic beam must not be intersected by some solid 
surface. This, in particular, bars the use of these probes for measuring the surface 
displacement at a wall. 

Second inconvenience: the ultrasonic probe does not work well with spilling or 
almost breaking waves. We have already raised this item with regard to fig. 10.30, 
where an ultrasonic probe missed recording a breaking wave crest. A typical 
example of this flaw is given in fig. 14.1b. The probe cannot follow the wave surface 
for a few instants just after the passage of the wave crest. This is a consequence of 
the fact that the highest waves are often spilling on the back of the crest. 

Sometimes a few flaws like the one in fig. 14.1b are present in a record of a sea 
state. However  the consequences on the significant wave height, the spectrum, and 
the autocovariance are usually negligible. Moreover ,  the consequences on the wave 
height probability are negligible, in that the flaw attacks only a part  of the wave 
between the crest and the zero down-crossing, without altering crests and troughs. 

In view of the above ment ioned inconveniences, before executing an experiment 
consider whether  is it possible to deal with the pressure head waves rather than with 
the surface waves. Here below, is an example. 

Let us imagine we decide to verify whether  or not it is true that 

fl (Y) -- 02 (y) { o_2 (y) _ < f]2 (y, t) >] 
o (o) 

(b) 

nic probe 

(a) 

Fig. 14.1 Typical flaw in the record of a wave crest, made by an ultrasonic probe. 

t 
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is a damped oscillatory function like that shown in fig. 8.8. For this experiment we 
must build a wall at sea (or also use an existing wall) and we must place an array of 
wave gauges at some growing distances from this wall. 

Why not consider 

~h(Y) 
f z ( y ) -  ~ph(O) [~h (Y) -- < rl2ph (Y, Z, t) > for a fixed z] 

in place of fl(Y)? The relation between f2(Y) and the directional spectrum can be 
obtained as we did for the relation between fl (y) and the directional spectrum; and 
the two functions prove to be very close to each other. 

The point is that theoretically we predict that both fl (y) and f2 (y) should change a 
lot from the periodic waves to the wind waves. Of course, it is the same whether  we 
succeed in verifying this to be true for fl(Y) or for f2(Y). But dealing with f2(y) is 
much simpler. Indeed the pressure head waves are measured by means of pressure 
transducers which have a very high degree of precision, and can work even very 
close to each other. Moreover ,  we have seen that some vertical water jets occur at 
the wall, so that the surface displacement cannot be measured at the wall whereas 
the pressure head waves beneath the water surface can be very well measured at the 
wall. 

14.3.3 Wave measurements from satellites 

Because of the track separation of the orbits, an oceanographic satellite is able to 
cover most of the ocean area. As an example SEASAT covers 95 per cent of the 
global ocean area every 36 hours. The radar altimeter on the satellite transmits a 
pulse centred at about  13.5 GHz vertically downward toward the sea surface, and 
the shape of the return pulse can be related to the significant wave height. The 
altimeter measures over a footprint of the order of 10 km which is centred on the 
satellite subtrack. Typically, the measurements  are made at the constant rate of 1/s 
in which the satellite covers about 7 km. Thus, the radar altimeter gives us the r.m.s. 
surface displacement of the waves on the space domain, which is equal to the r.m.s. 
surface displacement of the sea state on the time domain, provided the wave field is 
homogeneous  in space. 

If we gather the set of Hs values from an area, we find some cluster of data each 
of which corresponds to a new pass of the satellite over this area. Then there are 
several hours without data because the subtrack does not intersect our area. The 
breaks in data may also correspond to times when the altimeter is turned off for 
spacecraft manoeuvres  and occasional altimeter and spacecraft anomalies. 

Young (1999) shows a comparison of buoy and satellite mean monthly values of 
Hs. The satellite data were from some 4 °. 4 ° squares which included buoys. The 
least square linear regression based on about 200 mean monthly values per each 
satellite yields 

Hs buoy - -  OL Hs satellite -~- /~ (14.14) 
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with the a and /3 of table 14.2. These  recent  conclusions are in ag reemen t  with 
previous results ob ta ined  by Car ter  et al. (1992) and Cot ton  and Car ter  (1994). 

Table  14.2 Parameters of  the calibration relationship (14.14) 

Satellite 

GEOSAT 

TOPEX 

ERS1 

1.144 

1.067 

1.243 

/3[m] 

- 0.148 

- 0.079 

+ 0.040 

The fact that the r.m.s, surface displacement of the waves on the space domain (in a 
homogeneous wave field) is equal to the r.m.s, surface displacement of the sea state on the 
time domain can be easily proved from (8.4a). Note, the equality of the two r.m.s., the one 
on the space domain and the one on the time domain, does not contradict the title of sect. 
10.3. Indeed, under the same r.m.s, surface displacement, the probability of exceedance of 
large wave heights is greater on the time domain than on the space domain. 

To prove this statement, resort for simplicity to the long-crested waves (cf. sect. 8.7). 
Consider the waves on the space domain along y (the direction of wave advance) at any fixed 
time instant. Prove that these waves on the space domain represent a stationary Gaussian 
process, which implies (5.44) to be the asymptotic form of the probability of exceedance of 
their heights. Consider the autocovariance of these waves: 

a(Y) - <v(y) v(y + Y)>, 

where Y is an arbitrary space lag, and the angle brackets here denote an average with 
respect to y. Prove the relation 

Io ~b (Y) - E (w)cos (kY) dw. 

Obtain ~ (Y) from any given spectrum, and verify that the ~p* of ~b (Y) is smaller than the 
~* of ~b (T). This conclusion, together with the fact that (5.44) is the asymptotic form of the 
probability of exceedance, completes the proof. 

Conclusive note 

The analytical  t echn ique  for obta in ing  the di rect ional  spec t rum is due to the 

work  of Longue t -Higg ins  et al. (1963) and of Car twr igh t  (1963). The  i m p r o v e m e n t  
for taking account  of the response  of the buoy  is due to Tucke r  (1989). 
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Appendix A 
APPENDIX TO CHAPTERS 6 AND 7: USE OF WAVE HINDCAST 
AND WAVE MEASUREMENTS FROM SATELLITES 

A.1 Long term wave statistics from satellite data 

A.I .1  How to obtain P(Hs > h) from satellite data 

To get the probability P(Hs > h) from the data of a satellite, we must fix an area 
centred at the point of interest for us. On the one hand, the area must be small 
enough for its wave climate to be homogeneous; on the other hand, the area must 
be large enough to get a sufficient number of satellite passes. Usually, sampling 
squares of 4 °. 4 ° are suitable, at least in the oceans far from the coasts. 

The multiple observations of H~ associated with the passage of the satellite 
through the sampling square are not statistically independent  of one another. 
Hence each satellite pass is assumed to produce only one independent  
observation of the wave conditions. This is because dealing with independent  
observations enables us to exactly know the confidence intervals (see sect. 6.2.4), 
so that it is preferable (even if not strictly necessary) to work with independent  
observations. 

Young (1994) follows two alternative methods: (a) to take the mean value of 
each independent pass; (b) to take the maximum value of each pass. However, 
these two methods yield some probability of exceedance different from P(H~ > h). 
Specifically, the average value method yields P(H~ > h), that is the probability of 
exceedance of an instant average Hs over the sampling square ("instant", because 
the satellite passes through the sampling square in a very short time). As to the 
maximum value method, it yields P(H~max > h), that is the probability of exceedance 
of an instant maximum H~ over the sampling square. 

Here, it can be readily verified that P(H~. > h) is smaller than P(Hs > h) on the 
range of large h. On the contrary, P(H, ma~ > h) is greater than P(H~ > h). For a 
sampling square of 4°.4 °, the differences between P(H~max > h) and P(H/> h) 
prove to be relevant: differences on h, for fixed P, even in excess of 25%, as we can 
see in a figure of the paper of Young (1994). 

To get the desired P(Hs > h), without forgoing the convenience of the 
independent observations, we must take at random one value of H~ for each pass. 
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Perhaps, somebody could object that so doing we waste a lot of information given 
that we use only one observation for each pass. But the matter is not so. Let us see 
an example. 

Let us assume the passes over the sampling area are 300 and the number of 
observations for each pass are 100. Hence, we obtain 300 data points of P(H~ > h), 
taking at random one observation for each pass. Then we repeat the procedure 
taking at random a new observation for each pass. In the end we obtain 100 distinct 
P(H, > h), each consisting of 300 data points, and we average these P(Hs > h). The 
result does not change if we obtain the P(H, > h) from the whole set of the 
300. 100 = 30000 observations, truncating the data points at the probability level of 
1/300. 

Of course the average P(H, > h) will be statistically more reliable than each 
single P(H~ > h) obtained from one set of 300 independent observations. Or, in 
other words, the confidence intervals of the average P(H, > h) will be narrower 
than the confidence intervals of each single P(H~ > h) from a single set of 300 
independent  observations. And this is the advantage of having multiple 
observations for each pass. 

A.1.2 Comparison between P(H~ > h) from satellite data and from buoy data 

Fig. A.1 compares a P(H~ > h) obtained from satellite data with a P(Hs > h) 
obtained from buoy data for the same locality. The buoy is at the centre of the 
sampling square of 4o-4 °. It is NDBC 46001 (56°17'N, 148°10'W), in the Gulf of 
Alaska. The satellite is TOPEX. The Hs data from the buoy are 149000 and cover 
the period 1978-1997. The passes of the satellite, which cover the period July 1996 
- February 1999, are 650 with an average of 31 individual observations for each 
pass. 

The satellite data have been corrected by means of the calibration relationship 
(14.14) with the proper values of c~ and/3 of Young (1999). As usual, the graph of 
the probability has been given in terms of the ancillary variables X and Y defined by 
(6.3). 

The agreement between the two P(Hs > h), the one obtained from the satellite 
data and the one obtained from the buoy data, looks encouraging: the difference on 
h at a fixed P level being within 10%. 

A.2 Wave hindcast 

A.2.1 A general overview 

The functions Hs(t) and O(t) (dominant direction vs time) at the grid nodes of a 
basin can be obtained by means of numerical models like WAM (Komen et al. 
1994). The input data are the nl0(t) at the grid nodes (nl0 is the wind velocity 10m 
above the sea level). The model provides the variations in time of the directional 
spectrum at the grid nodes. Let us approach this kind of model. 
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Fig. A.1 Comparison between P(H, > h) from buoy data and P(H, > h) from satellite data. The 
location of the buoy and the sampling area are shown on the right side. (The ancillary variables X 
and Y are defined by 6.3). 

Equation (2.24) for a volume with a small base dx dy reduces itself to 

Oy 
0 

(~b cos0)  + --2- (~b s in0)  - 0.  
Ox 

(A.1) 

where 0 is the angle between vector ~ and y-axis. For the basic case of periodic 
waves on deep water, (A.1) can be rewritten in the form 

(cccosOiy+ccs inOi~) .  V ( 2 a 2  ) - 0 ,  ( A . 2 )  

where we think of the wave amplitude as a function of x and y. [This function being 
a constant, equation (A.2) is obviously satisfied.] The formal step from (A.1) to 
(A.2) is a starting point to approach the numerical wave models. 

The 1.h.s. of (A.2) multiplied by dx dy and T represents the difference between 
the energy leaving dx dy in a wave period and the energy entering dx dy in the same 
time interval. The equation says this difference is equal to zero. Really, the matter is 
not exactly so. Indeed a small amount of energy is supplied by the wind and some 
dissipation of wave energy occurs because of whitecapping. These small positive 
and negative variations cannot be neglected if we aim to look at the wave motion 
over large areas and/or large time intervals. In these cases equation (A.2) is 
adjusted in the following way: 

(CcCOSOiy + ccsinOix) . V ( 2  a2) ) - -  a 2 + A  

Ot 
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where A summarizes the physical processes that bring or take energy from the wave 
motion. 

Finally, for a sea state the last equation is expressed in the form 

[CG(CO)COSOIy q- cc(a;)sinOix]. VS(a;, 0) - -o--O-s(a;,O)+A (~,0) (A.3) 
Ot 

which is the general form of the equation which is integrated by the numerical 
models. In the case of a basin with an extent such that the effects of the Earth 
curvature cannot be neglected, equation (A.3) takes on a more complex form 
where the independent  space variables become latitude and longitude of the 
spherical Earth. 

The wind velocities at the grid nodes, which serve as an input for the wave 
model, can be obtained from some three-dimensional meteorological models. In 
particular, the ECMWF is a numerical weather prediction scheme which daily 
produces four analysis fields. 

Since 1986, the T106/L19 version of this forecast model was operating with a 
nominal horizontal resolution of 1.2 ° and 19 levels in vertical. Then in the 90's the 
T213/L31 version entailed a doubling of horizontal resolution, and an approximate 
doubling of vertical resolution between the boundary layer and the stratospheric 
model levels. The new version brought to a general improvement,  particularly near 
mountainous regions (Simmons, 1991). 

A.2.2 Accuracy of wave hindcast: oceans 

The E R A  project (Gibson et al., 1996) describes the atmosphere over a span of 
time of 15 years: 1979-1993. It uses a horizontal resolution of T106 and 31 levels 
in vertical. Sterl et al. (1998) use the E R A  surface winds as input for the WAM 
wave model. The modelled H, are then compared with observations from NDBC 
buoys. 

Two main conclusions emerge. First: the largest peaks of Hsmod (Hs from the 
numerical model) are systematically smaller than the corresponding peaks of Hsobs 
(Hs obtained from the buoys). Second: under low winds, Hsmod is systematically 
larger than Hsobs. 

What is the size of the error? To answer this question the following parameters 
are considered: 

normalized bias - l O 0 ( H s m o d -  H s o b s ) / H s o b s  , 

scatter index - lOOv/(Hsmod - -  H s o b s ) 2 / H s o b s  . 

A useful additional parameter  is the unbiased regression slope (symbol b). If b > 1, 
H~mod > H~obs on the range of the large H~ and/or H~mod < H~obs on the range of the 
small H~. Vice versa, if b < 1. 
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Table A.1 Comparison between modelled H, (ERA project+cycle 4 of WAM 
model) and H, data from buoys (*) 

AREA 

North Atlantic 

Gulf of Messico 

Hawaii 

North Pacific 

NORMALIZED BIAS 

- 1 4 %  

- 1 0 %  

+ 10% 

+ 8% 

SCATTER INDEX 

23% 

27% 

19% 

19% 

UNBIASED REGRESSION 

SLOPE 

.64 

.67 

.64 

.72 

(*) These figures represent an average of the figures given in table I of Sterl et al. (1998). 
They are relevant to the runs of WAM in high resolution. 

A summary is given in table A.1. We see that the unbiased regression slope is 
systematically smaller than 1, which confirms the overestimate of the small H, 
values and the underestimate of the large H, values. 

The first flaw (underestimate at high winds and waves) is probably a 
resolution effect. Wind and wave peaks are missed because of finite resolution in 
space and time. As for the second flaw (overestimate at low winds and waves), 
there is not a definitive explanation. One possible reason is that the dissipation 
used in the propagation scheme of the wave model is too low, this could account 
for the fact that the overestimate of H, coincides with areas where the incidence 
of swells is high. 

A further important remark to complete the picture is given by Cardone et al. 
(1996) who examine two big storms: the "Halloween storm" from October 26 th to 
November 2 nd 1991, and the "storm of the century" from 12 th to 15 th March 1993. 
They apply four wave models, including cycle 4 of WAM, and develop the wind 
fields using all available conventional data including ship and buoy observations 
from the relatively dense network of buoys off the U.S. Atlantic coast. One 
conclusion is that all the wave models perform very well up to about H, of 12 m, 
which confirms that errors in wave hindcast are due essentially to operational 
marine wind field analyses. But the important remark is that, notwithstanding the 
use of the buoy data to develop the wind fields, all wave models tend to 
underpredict the sea states with H, in excess of 12 m. 

A.2.3 The case of  the U.S. Atlantic coast 

The extreme storm seas of the U.S. Atlantic coast are not only problematic for 
the wave hindcast. Look at fig. A2a. This shows the P(H, > h) obtained from 
twenty year data (1978-1997) of NDBC buoy 41002, some 300 km South of Cape 
Hatteras. (As usual, the graph is on the plane X-Y, definition 6.3.) The 99.9% 
confidence interval is shown, and we see that the largest H, value is just at the upper 
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Fig. A.2(a) P(Hs > h) from the Hs data of NDBC 41002. (b) P(Hs > h) from the Hs data of NDBC 
41001. The two buoys are in the same area. 41002 recorded the storm of the century; 41001 did 
not. (The ancillary variables X and Y are defined by 6.3). 

limit of this confidence interval. The meaning of the 99.9% confidence interval is: if 
the asymptotic form of P(Hs > h) was that represented by the straight line in the 
figure, then sampling 112850 Hs values (as many as the data of NDBC 41002) we 
would only have a 0.05% probability that the largest Hs value falls to the right of 
this confidence interval. 

Note that the great deviation of the extreme data points is only due to two 
outstanding storms, the heavier of which is just the extratropical "storm of the 
century" described by Cardone et al. (1996). To understand this item, please look at 
fig. A2b which gives the probability of exceedance obtained from the Hs data of 
NDBC 41001, a buoy of the same area, which was not in function when these two 
outstanding sea storms occurred. 

It is as if some anomalous sea storms were born in the Western Atlantic. 
Anomalous in two senses. First, because the extreme H~ values of these sea storms, 
at present, cannot be explained through wave hindcast (neither using the very wind 
data recorded at the buoys). Second, because the extreme Hs values of these storms 
contradict the clear asymptotic trend of P(H, > h) which emerges from the mass of 
Hs data of that area. 

A.2.4 Accuracy o f  wave hindcast: Mediterranean Sea 

For some relatively small basins, like Tyrrhenian Sea, Adriatic Sea, or Black Sea, 
the accuracy of the hindcast decreases. This in part is due to the difficulty of 
modelling the coastal transition of the surface boundary layer from sea to land or 
vice versa. This is a sharp transition, and the model is unable to reproduce it closely. 
The result is that the modelled wind speed sometimes is widely approximated. 
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Starting from this fact, Cavaleri et al. (1996) suggest leaving the three- 
dimensional meteorological models and to resort to some simpler two-dimensional 
wind model. Accordingly, u~0 at the grid nodes is estimated from the atmospheric 
pressure at the nodes themselves, which in its turn is obtained by interpolation of 
the pressure data from the meteorological stations at the boundary coastline. 

The task is less simple than one may imagine because of a very large amount of 
errors in the file data of the atmospheric pressure. For the special case of the 
Adriatic Sea, the number  of wrong data was at least an order of magnitude greater 
than was expected! 

A two-dimensional wind model cannot take orography into account. In particular, 
for the Adriatic Sea a correction is necessary to mimic the effect of Apennines (west 
side of the basin) and Dynaric Alps (east side). If the flow associated with the 
pressure field points towards the north, then the whole field is forced towards NW. 
Indeed Apennines and Dynaric Alps channel toward NW the flow which otherwise 
would point northward. 

At present, the accuracy for the Adriatic Sea is as follows: 

normalized bias = +20%, scatter index = 100%, 

[these figures have been obtained from the figures given on page 99 of the book of 
Cavaleri et al. (1996)]. As we can see, notwithstanding the large amount of special 
work done for this basin, the degree of accurancy is still far from that achieved for 
the oceans. 

A.2.5 Risk analysis 

The set of the hindcasted sea storms is costitued. Typically, this set is subdivided 
into a number of homogeneous subsets (we mean homogeneous for what concerns 
the wind direction). For each of these subsets (or also for the whole set) the 
P(Hsmax > h) is estimated. This is the probability that the largest H= in a storm 
exceeds any fixed threshold h. Usually, the data points of P(Hsmax > h) are fitted by 
some Fisher-Tippet form. In particular the Fisher-Tippet I is 

P(Hs m a x  > h ) -  1 -  exp E-exp ( - h - h 2 h i ) ]  , (1.4)  

where h~ and h2 are two parameters to be found through the best fit of the data 
points. 

Finally, the return period R(H, > h) is obtained from P(Hsmax > h) through the 
simple relation 

R (H, > h) - 3 = Atst°rm (A.5) 
(~J~'-/Atstorm)P(Hsmax > h) r(Hsmax > h) ' 

where Ats~orm is the mean interarrival time of the sea storms. In (A.5), ( ~ / A t s t o r m )  

represents the number  of sea storms in a very large time interval 3 and 
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(~/mtstorm)P(nsmax > h) is the number of sea storms, during 3 ,  in which nsmax 
exceeds threshold h. Atstorm is simply obtained as the quotient between the time 
covered by the wave hindcast and the total number  of sea storms found in this interval. 

For given lifetime L and encounter  probability ~ ,  the return period R is 
calculated by means of (7.29b). Hence, the threshold h corresponding to this return 
period is obtained from (A.5). The h so obtained will be the significant wave height 
of the design sea state. 

In the literature we have not found some estimates of the duration of the design 
sea state, nor of the probability that the largest wave height in the lifetime exceeds a 
fixed threshold. Of course, we mean estimates based upon the wave hindcast. 

The assumption that P (Hsmax > h) must have a particular form proceeds from the general 
argument of Fisher and Tippet (1928). Let us consider n outcomes of the same random 
variable V, and let us assume these outcomes to be stochastically independent of one 
another. Let us also define a new random variable (Vmax) as equal to the largest value of the 
n outcomes of V. Then, for a variety of forms of P(V > h) (h being the dummy variable), the 
asymptotic form of P(Vmax > h) as h ~ ~ must respect a well defined functional equation. 
The function (A.4) satisfies this equation. 

A.3 Trend in the wave climate and its effects on engineering 

A.3.1 Uses of  the wave data from satellites and from hindcast 

The wave hindcast can provide Hs(t) and O(t) at some fixed points for time 
intervals of several years. Therefore,  the wave hindcast is fully compatible with the 
methods described in chapters 6 and 7. 

The satellite data can be used for the risk analysis at oceanic locations far from 
the coasts. These data do not supply information on the storm duration, but they 
enable us to estimate P(Hs > h) which is the basic requirement  for the use of the 
solutions of chapter 7. 

However,  it is evident that the degree of precision achievable from the buoy (or 
wave staff) data is the greatest. Therefore,  whenever  possible we should resort to 
these data for risk analysis in engineering. Nevertheless, the use of the other data 
sources can play an important  role in engineering. 

First, the use of the meteorological  data is the main road to wave forecast which 
is obviously important  during operations. Then, there is a field where the wave data 
from satellite and from hindcast play a key role. This is the field of the variations in 
the wave climate, a field of obvious interest for human life, which we shall consider 
in the next section from the point of view of engineering. 

Really, use of meteorological data is not the only way of forecasting. We have already 
cited in chap. 6 the recent studies of Cunha and Guedes Soares (1999) on the nature of the 
random process Hs(t). Well, one of the aims of these studies is to predict the evolution of 
Hs(t) in the next hours starting from the knowledge of H=(t) in the past hours; knowledge 
which can be accurately obtained from a buoy. 
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A.3 .2  Trends in wave climate 

Young (1999) has identified a number  of squares of 4 °. 4 ° on the Earth 's  surface 
with a sufficient number  of passes of the satellites to yield reliable mean monthly 
values of H,. Then, a comparison between the mean monthly values from 1986 to 
1990 and the mean monthly values from 1991 to 1995 has shown that there has been 
no measurable change in the global wave field. 

Some similar conclusions also proceed from wave hindcast. In particular, Sterl et 
al. (1998) conclude that they are unable to confirm a significant change in wave 
height during the E R A  period (1979-1993). However,  they have noted that in the 
North Atlantic there is a trend of the annual mean /4 ,  of + 0.01 m/year which makes 
a rate of growth of about 0.5 per cent per year. 

Through analysis of /7, data obtained from visual observations and from 
shipborne wave recorders, Bacon and Carter  (1991) found a greater trend: an 
average of 2 per cent per year, during the period 1962-1988. This conclusion is not 
necessarily in contrast with the one of Sterl et al. Indeed there is some evidence that 
the climate was more stable during the E R A  period (1979-1993) than in the two 
previous decades. This evidence emerges from the time series of the N A O  index 
given by Hurrel  (1995). (NAO being the normalized pressure difference between 
Portugal and Iceland.) 

Sterl et al. (1998) note also that the trend of the annual m e a n / 4 ,  appears to be 
nearly the same as that of h(P) for any fixed P [recalling h(P) to be the inverse 
function of P(H, > h)]. Hence, if we assume the form (6.2) of P(H, > h), we can 
conclude that a variation of x% of the annual mean H, leads to the same per cent 
variation of the dimensional parameter  w and no variation of the nondimensional  
parameter  u. 

This means that the trend of + 0.5 per cent per year of the annual mean /4 ,  in the 
North Atlantic implies a trend of + 0.5 per cent per year also of w. 

A.3 .3  How to obtain the design waves for  an area where the annual mean H~ 
grows at a given rate 

Let us assume that w has a value Win f at the start of the lifetime, and that w grows 
at a constant rate up to a value Wsup at the end of the lifetime. As a consequence, 
during the lifetime, w will be uniformly distributed on the range (Winf, Wsup). 

Here, let us think of H,(t) as a piecewise stationary random process. Specifically, 
let us imagine we subdivide the time axis into small intervals At, in each of which 
the H,(t) represents a piece of a stationary random process with a P(H, > h) given 
by (6.2). These P(H, > h) have the same u value and values of w uniformly 
distributed on (Winf, Wsu p). 

The solutions of chap. 7 can be easily adapted for this non-stat ionary condition. 
As an example, let us consider the simplest of these solutions, the one for the return 
period R*(H), we gave on sect. 7.6. Let us write p(H, = h; w') and P(H, = h; w'), 
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meaning respectively p(Hs - h) and P(Hs > h) on the time intervals where w - w'. 
Then let us define 

p ( w -  w ' ) d w ' -  probability that parameter w takes on a value within (w', w' + dw') - 

= ratio between time in which w is within (w', w' + dw') and total time. 

For our piecewise stationary process we have 

p ( w -  w ' ) { -  ( w s u p  - Winf)-I if Win f < W t < W s u p ,  (A.6) 

- 0 otherwise 

Let us retrace the steps leading to the expression of R*(H). Now we have 

p(Hs - h; w')dh p(w - w')dw' ~ -  time in which Hs falls between h and h + dh, 
and w falls between w' and w ' +  dw', during 3 ;  

P(H ; H= = h) ~1 p(H= = h; w')dh p(w - w')dw' 3 =  number of waves higher 
J~n) 

than a fixed threshold H in the sea states with h < Hs < h + dh in the periods of 
time in which w' < w < w ' +  dw', during g .  

The integral of this last number over 

{(h, w')lh c (0, ~ ) ,  w' E (Winf, Wsup) } 

yields ~ ( H ,  ~ )  that is the total number of waves higher than H in 3 :  

r s p f  ,/ 1 
~4/'(H, g )  - -  | J 0 , J W i n  f P(H; H= - h) -T(h) p(Hs - h; w ( W s u  p - Winf) dh dw g ' ,  

where p(w = w') has been substituted by its expression (A.6). Finally, the return 
period R* (H), which is equal to ~/J I / ' (H ,  3 ) ,  can be expressed in the form 

[I0" 1 R * ( H ) -  P ( H ' H = - h )  1 1 ' -T(h) p ( H s  - h ) d h  (A.7) 

with the definition 
Wsup 

p(Hs - h) - (Wsup - W i n f ) - 1  p(Hs - h; w')dw'. 
,JWin f 

(A.7) is the form of R*(H) for our piecewise stationary Hs(t). Similarly, we can 
adapt the expressions (7.11) of R(H= > h), (7.18) of D(h), (7.37) of P[Hmax(L) ~ H], 
and (7.40) of p(Hs = h; Hmax = x), replacing in these expressions p(Hs = h) with 
~ ( H s -  h), and P(Hs > h)wi th  -iwsu  ,) ,. 

P(Hs > h) - (Wsup - Winf)-1 P(Hs > h; w dw 
o Win f 

Example. In sect. 7.4.1 we have evaluated the significant wave height of a design 
sea state at a point of the central Mediterranean Sea. Now, let us see how it changes 



Appendix to chapters 6 and 7: use of wave hindcast... 473 

because  of a var ia t ion of the wave climate during the lifetime. Specifically, we shall 
assume that ,  during the lifetime of 50 years,  p a r a m e t e r  w grows at a constant  rate  of 
0.5% per  year  of its initial value. Accordingly,  we have 

u = 1.200, Win f - -  0 . 8 7 4  m, Wsu p --- Win f + ( 5 0 "  O . O 0 5 ) W i n  f --- 1 . 0 9 3  m. 

Then,  using the expression (7.11) of R(Hs > h) with p(Hs > h) and P(H, > h) in 
place, respectively,  of p(H, > h) and P(H, > h) we arrive at 

h (475 years)  = 9.15 m 

against  the 7 .90m obta ined  in sect. 7.4.1 under  the assumpt ion  of w = const 
0.874 m. The result ing increase of the design wave height  is thus 16%. 

Note, with the non-stationary model the solution for h(R) given in sect. 7.2.1 is no longer 
valid. Hence we have to compute the function R(H, > h) and find the h value which 
corresponds to the given value of R. 
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Appendix B 
APPENDIX TO CHAPTERS 9 AND 10: THE WAVE GROUP OF 
THE M A X I M U M  EXPECTED CREST ELEVATION, 
AND THE WAVE GROUP OF THE M A X I M U M  EXPECTED 
CREST-TO-TROUGH HEIGHT 

B.1 The first version of the quasi-determinism theory 

B.I .1  T w o  v e r s i o n s  

Two versions of the theory were given by the author: the first one dealing with 
the crest elevation and the second one with the wave height. The second one is 
more advanced and indeed it brings as a corollary the closed solution for the wave 
height probability. This is why in chapters 9 and 10 we have given the second 
version. 

In this Appendix we re-propose the first version of the theory. Then the two 
versions are shown to be consistent with each other. 

B.1.2 D e f i n i t i o n s  

Let us apply the compact notations and assumptions (9.32) of sect. 9.6 and let us 
deal with the random waves on the time domain at a fixed point Xo, Yo. 

Let us consider p (r/T = wl~  = 3 ) d w ,  the conditional probabili ty of the surface 
displacement at time to + T given a local wave maximum of elevation/3 at time to. 
Of course, having taken m0 - c r  2 - 1,/3 is the quotient  between the height of the 
local wave maximum and the root mean square surface displacement or. 

We have 
p (tit -- wl ~ -- 3) -- E X 1  (/3, w; T) , (B.1) 

ex2(9) 
where 
E X 1  (3, w; T ) d 3 d w  - expected number  per unit time of local wave maxima having 
an elevation between/3 and/3 + d 3 and being followed after a fixed time lag T by a 
surface displacement between w and w + dw; 
E X 2 ( 3 ) d 3 -  expected number  per unit time of local wave maxima having an 
elevation between/3  and/3 + d3. 
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B.1.3 S o l u t i o n  f o r  the  e x p e c t e d  n u m b e r s  E X 1  a n d  E X 2  

Both E X 1  and E X 2  can be turned into Rice's problems. It suffices to note that 

E X 1  (fl, w; T)dfl dw - ~ / d t ,  (B.2) 

where 5;~ is the probability that a fixed small interval dt includes a local maximum 
with the two following attributes: 

(i) to have an elevation between/3 and/3 + dfl, 
(ii) to be followed after a fixed time lag T by a surface displacement between w 

and w + dw. 

Of course, also E X 2 ( f l ) d f l  can be given the form (B.2), with ~ being the 
probability that a fixed small interval dt includes a local wave maximum with the 
only attribute (i). For simplicity we fix the small interval ( - d t / 2 ,  dt/2). 

The solutions are 

I ° E X 1  (fl, w; T ) d f l  dw - lu[p 070 - / 3 ,  ilo - O, ~1o - u, fir - w ) d u  dfl  dw,  
- -00  

I ° E X 2  (/3)dfl - [ulp (~o - fl, i7o - o, #o - u ) d u  d f l ,  
-- (X3 

where the form of E X 2  was obtained by Rice himself. Then with the expressions of 
the two joint p.d.f, we obtain 

-- 1 I° { I [M33u2 ff - E X 1  (/3, w; T) - (27r)av~ -~ uexp - - - ~  

(B.3a) 
+ 2 (M13 fl -q- M34 w) tt -}- (Mll f12 -Jl- M44 W 2 "q- 2M14 flw)]} du, 

E X 2  (/3) - (27r) 3/2 x / M  -~ uexp 2]~ -~- 2M13 flu .ql_ M11 f12) du, (g.gb) 

where M and Mij are, respectively, the determinant and the i, j cofactor of the 
covariance matrix of ~70, ~)0,/)0, ~r: 

M _= determinant,  
M ,  - i, j cofactor of 

1 o -1  ~.~ 
o 1 o 

- 1  0 m4 ff)T ' 

~r - ~ r  ~r  1 

(B.4) 

and M, M~j are the determinant and the i, j cofactor of the covariance matrix of 
r/0, //0, /10, which is obtained by cancelling the fourth row and the fourth column of 
the matrix (B.4): (10 

M -  determinant, 0 1 0 . 
Mij - i, j cofactor of - 1  0 m4 
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In looking at these two matrices, bear in mind that we have taken m0 = I and 
m 2  --- 1. Also bear in mind what was said in sect. 9.6 about the existence of m4. 

Both the integral in equation (B.3a) of EX1 and the integral in equation (B.3b) of EX2 
are of the type 

i 0 U 2 I - -  uexp[-(Ql +2Qzu+Q3)]du,  

where QI, Q2 and Q3 are some constants, with Q~ > 0. Such an integral is split into two 
integrals: 

1 [0 ~lQ2 [0 
I - -  20----7 (2O~u+2O2)exp[-(OlU 2 +202u+O3)] d u + ~ j _  exp[-(OlU 2 +202u+O3)] du. 

The first of these two integrals can be easily evaluated by substitution, and the solution of 
the second one is found in books of applied mathematics like Abramowitz and Stegun's. The 
result is 

I -  v~ exp(-Q3) exp(  ~2 l + e r f  v / ~  
2Q, - ~ +  ~ \ ~ J  " 

B.1.4 The probab i l i t y  densi ty  f u n c t i o n  o f  the sur face  d i sp lacemen t  near  a 
local  wave  m a x i m u m  with a g iven  he ight  

Evaluating the integrals on the right hand sides of (B.3a) and (B.3b) we obtain 
the expressions of EX1 and EX2. Then using these expressions and equation (B.1) 
we arrive at 

- w l f  - fl) - F e x p ( A w  2 + 2Bflw + C/~ 2) /~-~~ 'It-" (Dw + E f l ) e x p ( D w  + Eft) 2. P(~r  
k V "  

} { 1_~ [1 e r f ( / ~ ) ] } ,  (B.5) • [1 + erf(Dw + Eft)] / /~exp((~fl  2) +/~f lexp(E~)  2 + 

where 

A -  l - m 4 ,  B -  ~)T -+- ff)Tm4 C ~ - m 4  -+- @z -+- ~b2rm4 , 
2M 2M ' 2M 

D -  - ( ~ b r + ~ r )  , E -  1 - ~ 2 + ~ b r ~ r  , F_ -  

v/ZM (1 - , ~  - ~2) ~ 2 M  (1 - , 2  _ ~2) 

v a4 
(271") 2 (1 - ~/)2T__,I/dT)'2 ' 

= -m4  /~ = 1 , /7 _ v/rr(m4 - 1) 
2 ( m 4 -  1) ' v/2 ( rn4-  1) (27r) 3/2 

Here it is convenient to define the function 

f (x) - + x exp (x:)(1 + erfx),  
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which enables  us to rewri te  (B.5) in the compac t  form 

P(rlT - w [ ~ -  fl) - Fexp(Aw2 + 2Bflw + Cfl2)f (Dw + Ef l ) / [ f f  exp(C_,fl2)f (E, fl)] . 

(B.6) 

The function f (x) is positive on the whole domain ( - ~ ,  + oc), and approaches zero as 
x ~ -oc.  Indeed as x -~ -o c  the product 

[xexp (x2)] (1 4- erfx) 

1 
is of the type - o c .  0, and approaches ,~-~- as it can be easily verified by means of 

v -- 
L'Hopital 's rule. Moreover, f (x) approaches the asymptotic form 

f (x) = 2x e x p  (X 2) a s  x ---+ -31-oo. (B.7) 

B .1 .5  The form o f  the probability density function as/3 ~ oc 

Being  E > O, f (Eft) takes  on the asymptot ic  form (B.7) as/3 + oc: 

f (E~/3) - 2E~fl exp (/~)2 as fl --+ ~ .  (B.8) 

As to f (Dw + Eft), it takes  on the asymptot ic  form (B.7) as Dw + Eft --+ ~ :  

f (Dw + Eft) - 2 (Dw + E3)exp (Dw + Eft) 2 as Dw + Eft ~ oc. (B.9) 

Equa t i ons  (B.8) and (B.9) enable  us to rewri te  (B.6) in the form 

F ( D W E )  W 2 )--}- p (r/r - w[ ~ -  3) - - ~  --fi- + exp [(A + 2B3w + C32 

+ (Dw + E3) 2 - (C +/~2) 32] as 3 -+ oc and Dw + Eft ~ oc, 

(B.IO) 

f rom which we obta in  

/ [ 'W 1 p ( r l r - w l ~ = 3 ) - -  ~ --~-+E exp . , . 2 ( 1 - ~ - ~ )  as3-~ocandDw+E3-~oc 

(B.11) 

Check the step from (B.IO) to (B.11). Note first that the exponential on the r.h.s, of 
(B.IO) has its maximum at 

DE +B 
Wm - -  --  a --]- D 2 3 .  (B.12) 
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Replacing A, B, D and E with their expressions, you will see that a number  of terms cancel 
out, and (B.12) is reduced to 

W m - - - 2 / ) T / ~ .  

Then, use Wm to rewrite the exponential  on the r.h.s, of (B.10) in the form: 

exponential  on the r . h . s ,  o f  ( B . 1 0 )  = 

= exp ((ac -+- D2) (w - Wm)2--~-t_-[(Aw~" q-2Bi3w., + C/~ 2) + (Dwm-Jr- E/~) 2 -  (C-+- E2)/~2J/• 

(B.13) 

Here  you will be able to prove that the sum within the square parentheses  is zero. To this 

end, first replace A B C .. with their own expressions, and note that C + ff~2 = __ L Hence,  
' ' " 2 " 

you will be able to rearrange the sum within the square parentheses  in the form of a quotient  
where the numera to r  will prove to consist of 111 terms: - ~b 2 + ~b 4 + ~b 2 ~2 + ... which cancel 
out. Of course, the work will be simplified a good deal by resorting to some compact 
notations, e.g. a = ~br, b - Vbr and so on. 

Now you can rewrite the exponential  on the r.h.s, of (B.10) in the form 

where 

A + D 2 =  

exp [(A + D 2) (W -- Wm)2] , 

(1 - m4)(1 - ga 2 - ~2) _4_ (%bv + ~ T )  2 

2 M ( 1 - f  )2r _ ~ 2 )  

Here  you will find that the numera to r  is opposite to M (the determinant  of the covariance 
matrix), so that the exponential  on the r.h.s, of (B.10) can be reduced to the simple form on 
the r.h.s, of (B.11). 

When  the theory was set up, it was guessed that the term within the square parentheses  
on the r.h.s, of (B.13) was equal to zero. Indeed this was the only way for the condition 

J ~ p ( r T r - w f - / 3 )  d w - 1  
- o c  

to be satisfied also in the limit as 13 -+ oc. Then  the verification followed. 

B . 1 . 6  Conclusion: quasi-determinism 

T h e  f o r m  (B.11)  of  t he  c o n d i t i o n a l  p.d.f ,  ho lds  for  w - ~br/3 as 13 ---+ co, g iven  tha t  

/ 
4 / 1  -- 2/) 2 -- ~])2 

D~br + E r > 0  

V 2 M  

(1 -2/) 2 '2 r - ~ r  b e i n g  g r e a t e r  t h a n  z e r o  s ince  it is t he  d e t e r m i n a n t  of  t he  c o v a r i a n c e  

m a t r i x  o f  ~70, ¢/0, fir). 
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Consequently, the form (B.11) holds also for w = gar/3 + A w  with Aw of an order 
smaller than/3, and we have 

V/27r(1 - ~2 _ ~2) 
= + zXwl 9 ) =  exp 

as 3 ~ o c a n d A w o / 3 ,  

/kW2 ] 
2 ( 1 _ ~ 2  "2 

(B.14) 

where the term which multiplies the exponential function on the r.h.s, of this 
equation is equal to 

~F ( D ~ T + E )  
EF 

The integral of the r.h.s, of (B.14) for Aw C ( - ~ ,  + oc) is equal to 1, so that 
equation (B.14) yields 

I ~'~ p (r/r -gar/3 + A w l S -  3 )dAw ~ 1 as/3 -+ oc 

for any fixed u in (0,1). 
In words, the probability that r/r falls within 

approaches 1, as/3 ---+ oc, for any fixed u in (0,1). In other words, the probability 
approaches 1 that 

r/r --+1 as , 3 ~ o c ,  

clearly provided that ~r  ¢-0. Or in other words, as /3-+ oc, the probability 
approaches 1 that the random function r/r is asymptotically equal to the 
deterministic function ~r/3. Of course, this is true only provided that T is finite, 
given that ~r  ---+ 0 as IT[-+ co. 

B.2 Corollaries of the first version 

B.2.1 The  p robab i l i t y  o f  the wave  crest e levat ion 

The general form (i.e. the form without the assumption 9.32 and the compact 
notations) is: if a local wave maximum of given elevation b occurs at a time instant 
to at a fixed Xo, yo, the probability approaches 1 that the surface displacement at xo, yo 
is asymptotically equal to 

(to + T) - ~(T)  b (B.15) ' 

as b/cr ~ oc. 
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Given that the absolute maximum of ~(T) falls at T = 0, the local wave 
maximum of given elevation b is also the highest maximum of its wave. This is 
rather intuitive. An exceptionally high local maximum, with a very high degree of 
probability, is a wave crest. Implicitly, we had anticipated this conclusion by using 
the symbol ~ =/3 for the elevation of the local wave maximum ( ~  being the 
symbol of the crest elevation). A direct consequence is 

 Jc; (b; J-) 
(b; .7) 

-+  1 as b/c~ --+ c o ,  ( B . 1 6 )  

(in words, the number of wave crests exceeding a very high threshold b tends to 
coincide with the number of b up-crossings) which in its turn implies 

P ( ~ ' >  b) - exp ( 2too as b/cr--+ oc. (B.17) 

This result is even more general than the one on the probability of the wave height 
(given in chap. 9). Indeed, here the absolute minimum of the autocovariance is not 
required to also be the first local minimum of this function. 

To prove (B.17), use (5.17), (5.28), and (B.16). 

B.2.2 The m a x i m u m  expected elevation o f  the wave crest 

The maximum expected crest elevation in a sequence of N waves is the integral 
over (0, ~ )  of the probability of exceedance P(Umax > b), and with the asymptotic 
form (B.17) of P ( ~ >  b), it is given by 

Vma x - -  1 - - exp db. (B.18) 
o 2 m o  

The logic leading to this result is the same followed in sect. 5.10 to get the formula 
(5.57) for Hmax. A comparison of the two formulae, that is to say (5.57) for Hmax and 
(B.18) for Umax, shows that 

~5~m ax - -  Hmax . (B.19) 
V/2(1 + ~*) 

H e n c e ,  ~max is generally greater than Hmax/2. 

B.2.3 The space-time formula t ion  

The result (B.15) can be extended from the time domain to the space-time by 
retracing the reasoning of sect. B.1. There is only one difference, we have to deal 
with the surface displacement at time to + T at Xo + X,  yo + Y rather than at Xo, Yo. 
The conclusion is that if a wave crest of given elevation b occurs at point Xo, yo at 
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time to, as b/cr---, oc, the probability approaches 1 that the surface displacement 
approaches the deterministic form 

(Xo + X ,  Yo + Y, to + T) - ~' (X, Y, T; Xo, yo) b. (B.20) 
~P (O, O, O;xo, Yo) 

As usual, this is true provided that X, Y and T are finite. 
Finally, reasoning as we did in sects. 9.4 and 9.5, we can easily verify that the 

velocity potential of the deterministic waves (B.20) is given by the formula 

-~(Xo + X ,  yo + Y , z ,  to + T) - ~b (X, Y , z ,  T;xo, Yo) b 
7J (O, O, O;xo,Yo) 

which holds whatever the configuration of the solid boundary. 

B.3 The relationship between the two versions of the theory 

B.3.1 The g r o u p  p r o d u c i n g  the m a x i m u m  expec ted  wave  he ight  

Let us consider a sea state of very large duration. When the maximum expected 
wave height occurs at a fixed point Xo, Yo, we can expect that the surface 
displacement will be given by (10.1a) with H - Hmax: 

(Xo + X ,  yo + Y, to + T) - ~ (X, Y, T; Xo, yo) - ~' (X, Y, T - T*; Xo, Yo) Omax . 

~P (0, O, O;xo,Yo) - g~ (0, O, r*;xo,Yo) 2 

(B.Za) 
We have seen this function represents a three dimensional wave group passing at 
Xo, yo at the apex of its development stage. Let us imagine we record the wave group 
with two gauges being aligned with the wave direction, the first one at Xo, Yo and the 
second one somewhat before Xo, Yo. The records made by the two ideal gauges at 
points 

@=Xo,  Yo, 

= Xo, Yo - 0.20Lp, 

are shown in fig. B.1. The maximum wave height during the group's evolution 
occurs at Xo, Yo. At this point the envelope centre coincides with the central zero of 
the central wave. The wave crest precedes the envelope centre and hence it is 
decreasing. This means that before point Xo, Yo the wave crest had to be somewhat 
higher, and indeed we see that at point @, some fifth of a wavelength before Xo, yo 
the crest of the central wave is somewhat higher than at point @. Point @ has been 
chosen because at this point the crest of the central wave occupies the envelope 
centre, and is the highest wave crest during the group's evolution. 

Henceforth we shall call 
configuration o f  type (a), the one of the group at point @ with the envelope 

centre being coincident with the wave's central zero; 
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centre 

point (~) /~'~~H ~ [ •3~ H=Hmax$~~~H 
/ / ~  H , 5H 

/ 

r/rp 
, , , , I , , , , I , , , , I , , , , I , , , , I , , , , I , , , , -1 0 1 2 

Yo -.2 Lp Yo 
dominant  wave direction \ / 

~_ y 
® @ 

Fig. B.1 The group of the wave with the maximum expected height, at points @ and @ (@ 
coincides with Xo, Yo and @ is somewhat before @ along the propagation axis). The group exhibits 
its maximum crest elevation at @ and its maximum crest-to-trough height at @. [Obtained by 
means of (B.21); in the figure, Hmax is denoted simply by H.] 

configuration of  type (b), the one of the group at point @ with the envelope 
centre being coincident with the wave crest. 

B.3.2 The group o f  the m a x i m u m  expected crest elevation 

When the maximum expected crest elevation occurs at the fixed point Xo, Yo, we 
can expect that the surface displacement will be given by (B.20) with b - Umax" 

-~ (Xo + X,  yo + Y, to + T) - 
~ ( X , Y , T ; x o , Y o )  Hma x 

(o, o, O;xo, yo) v/2 (1 + ~*) 
(B.22) 

where use has been made of (B.19) relating ~"max to Hmax• Also (B.22) represents a 
three dimensional wave group such as that in fig. 10.1, and the record of the wave 
group taken at point @ = Xo, Yo is given in the lower panel of fig. B.2. This time the 
wave group passes at Xo, yo with a configuration of type (b). The crest of the central 
wave is at its maximum elevation and is exactly at the envelope centre. Hence, 
beyond point @, the wave crest has to decrease since it leaves the envelope centre; 
and on the contrary the wave trough has to grow because it approaches the 
envelope centre. Of course, the rate of decreasing of the wave crest is smaller than 
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centre 
point (~) Y, H=Hmx 

I 

centre 

point ~ 

. . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , 

-1 0 1 

Yo Yo +.2Lp 
dominant wave direction 1 / Y 

® ® 

Fig. B.2 The group of the wave with the maximum expected crest elevation, at points @ and @ 
(@ coincides with Xo, Yo and @ is somewhat beyond this location). The group exhibits its 
maximum crest elevation at @ and its maximum crest-to-trough height at @. [Obtained by means 
of (B.22); in the figure, Hma x is denoted simply by H.] 

the rate of growing of the wave trough, for the simple reason that the wave crest is 
closer to the envelope centre where the rate of change is zero. This is why at point 
@, some fifth of a wavelength beyond point @, the crest elevation is somewhat 
smaller and the trough depth is markedly greater than at @. The result is that the 
wave group passes at point @ with a configuration of type (a) with a wave height 
larger than at point @. 

In brief, we see again the step from a configuration of type (b) to a configuration 
of type (a), which we had seen in fig. B.1. This is because (B.21) and (B.22) 
represent the same three dimensional wave group! The wave group (B.21) passes at 
point Xo, Yo with a configuration of type (a), while the wave group (B.22) passes at 
Xo, Yo with a configuration of type (b). 

B.3.3 The two versions are consistent  with each other 

Is there only a phase difference between the wave groups (B.21) and (B.22)? The 
things are not exactly so. Really, there is one more small difference. Both the wave 
groups attain the apex of their development stage at Xo, yo, therefore the wave group 
(B.21) is at the apex of the development stage with a configuration of type (a), while 



Appendix to chapters 9 and 10: the wave group of the maximum expected... 485 

the wave group (B.22) is at the apex of the development  stage with a configuration 
of type (b). This implies that the greatest crest-to-trough height occurs in the group 
(B.21), and the greatest crest elevation occurs in the group (B.22). Anyway, these 
are some small differences: with the J O N S W A P  spectrum the maximum crest-to- 
trough height of the group (B.21) is a 2% greater than the maximum crest-to-trough 
height of the group (B.22); on the contrary the maximum crest elevation of the 
group (B.22) is a 4% greater than the maximum crest elevation of the group (B.21). 
These small differences appear  from a comparison of figs. B.1 and B.2. 

At this stage, we realize that the two versions of the quasi-determinism theory 
reveal the existence of the same well defined group of three dimensional waves. 
When the greatest wave height occurs at a point (we mean greatest in a very long 
time interval), we can expect that the group's centre has passed at this point at the 
apex of its development  stage and with a configuration of type (a). When the 
highest wave crest occurs, we can expect that the group's centre has passed at this 
point at the apex of its development  stage and with a configuration of type (b). 

Conclusive note 

The first version of the theory was introduced by the author  (1981, 1982a-b, 
1983). Then it was re-proposed in an alternative way by Phillips et al. (1993a-b), 
who obtained also a clear field verification of it through aerial photogrammetry  off 
the U.S. Atlantic coast. 

The proof  that the two versions of the theory are consistent with each other is a 
novelty. 
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