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Preface to the Second Edition

This book is a revision and extension of the book published by R. Timman, A.J. Her-
mans and G.C. Hsiao based on the lecture notes of courses presented by Timman at
the University of Delaware in 1971 and by Hermans at the Technical University of
Delft. The main topic of the original text is based on linearised free surface water
wave theory. For many years the first edition of the book is used by Aad Hermans as
material for a course in ship hydrodynamics presented to Master students in applied
mathematics and naval architecture at the Technical University of Delft. Influenced
by the progress in the research in water waves and especially in ship hydrodynamics
the contents of the course has changed gradually. For instance in offshore engineer-
ing the topic like the low-frequency motion of objects moored to a buoy has become
an important issue during this period. Therefore an introduction in this field has been
added. For didactic reasons the very simple rather abstract problem of the motion
of a vertical wall is added. The reason to do so is that most effects that play a role
can be treated analytically, while for a general three dimensional object some terms
can only be obtained numerically. The use of numerical programs is normal practice
in this field, therefor an introduction in the theory of integral equations is presented
and some specific problems which may arises, such how to avoid non-physical res-
onance at the so called irregular frequencies may be avoided. In the first edition a
derivation of the structure of the equations of motion in all six degrees of freedom is
presented. Because the functions derived there are not easily computed in a practical
case, we restrict ourselves to the derivation of the equation of motion in one degree
of freedom.

A.J. HermansDelft, The Netherlands
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Preface to the First Edition

In the spring of 1971, Reinier Timman visited the University of Delaware during
which time he gave a series of lectures on water waves from which these notes
grew. Those of us privileged to be present during that time will never forget the
experience. Rein Timman is not easily forgotten.

His seemingly inexhaustible energy completely overwhelmed us. Who could for-
get the numbing effect of a succession of long wine-filled evenings of lively con-
versation on literature, politics, education, you name it, followed early next day by
the appearance of the apparently totally refreshed red-haired giant eager to discuss
mathematical problems with keen insight and remarkable understanding, ready to
lecture on fluid dynamics and optimal control theory or a host of other subjects and
ready to work into the evening until the cycle repeated. He thought faster, knew
more, drank more and slept less than any of the mortals; he literally wore us out.
What a rare privilege indeed to have participated in this intellectual orgy. Timman’s
lively interest in almost everything coupled with his buoyant enthusiasm and infec-
tious optimism epitomised his approach to life, No delicate nibbling at the fringes,
he wanted every morsel of every course.

In these times of narrow specialisation, truly renaissance figures are, if not ex-
tinct, at least a highly endangered species. But Timman was one of that rare breed.
His knowledge in virtually all areas of classical applied mathematics was prodi-
gious. I still marvel that while I was his doctoral student in Delft in the late fifties
working on a problem in electromagnetic scattering he had at the same time students
working in water waves, cavitation, elasticity, aerodynamics and numerical analysis.
He was a boundless source of inspiration to his students in all of these varied fields.

His inattention to detail is legendary but this did not hamper his ability to fo-
cus on what was really important in a problem. With a wave of his large hand he
would dismiss unimportant errors while concentrating on central ideas, leaving to
us the task of setting things right mathematically. This nonchalant attitude toward
minus signs and numerical factors was probably deliberate. He wanted people to see
the forest, not the trees; to focus on the heart of the problem, not inconsequential
superficialities. He had little use for the all too prevalent penchant for examining
someone’s work looking for errors. He would read a paper looking for the gold, not
the dross; looking for what was right, not what was wrong.
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viii Preface to the First Edition

Of course this did not make life easy for those around him but it did make it
interesting. This will be attested to by George Hsiao and Richard Weinacht whose
revised version of the notes from Timman’s water wave lectures appeared as a Uni-
versity of Delaware report. Timman and Hsiao then planned to further revise and
expand these notes and publish them in book form, but the project came to an abrupt
halt with Reinier Timman’s untimely death in 1975. It might have remained unfin-
ished had not Aad Hermans’ visit of Delaware in 1980 breathed new life into it.
Together George Hsiao and Aad Hermans have completed the task of revising the
notes, reorganising the presentation, restoring the factors of 2 which Timman had
cavalierly omitted, and adding some new material. The first four chapters are based
substantially on the original notes, while the fifth chapter and appendices have been
added.

It is gratifying to see the completion of these notes. It is not unreasonable to hope
that they will provide a useful introduction to water waves for a new generation
of mathematicians and engineers. This area was perhaps first among equals in the
broad spectrum of Timman’s interests. If these notes succeed in stimulating a new
generation to concentrate on the challenging problems remaining in this field, they
will serve a fitting memorial to a remarkable man whose like will not be soon seen
again.

R.E. KleinmanNewark, Delaware
March, 1985
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Chapter 1
Theory of Water Waves

This chapter contains the formulation of boundary and initial boundary value prob-
lems in water waves. The basic equations here are the Euler equations and the
equation of continuity for a non-viscous incompressible fluid moving under gravity.
Throughout the book, in most considerations the motion is assumed to be irrota-
tional and hence the existence of a velocity potential function is ensured in simply
connected regions. In this case the equation of continuity for the velocity of the fluid
is then reduced to the familiar Laplace equation for the velocity potential function.

Water waves are created normally by the presence of a free surface along which
the pressure is constant. For the irrotational motion, on the free surface one than
obtains the non-linear Bernoulli equation for the velocity potential function from
the Euler equation. Based on small amplitude waves, linearised problems for the
velocity potential function and for the free surface elevation are formulated.

At first we follow the derivation as can be found in [17, 19] to obtain equations
for the wave potential in still water and as a superposition on a constant parallel
flow potential. The coefficients in the free surface equations are constant. Then we
derive linear equation for the superposition of small amplitude waves on a flow
disturbed by some three dimensional object. If we consider the magnitude of the
steady velocity vector to be small, we obtain for the time-dependent wave potential
function a linear equation with non-constant coefficients.

1.1 Basic Linear Equations

The theory of water waves, to be presented here, is based on a model of non-viscous
incompressible fluid moving under gravity. The equations of motion will be ex-
pressed in a right-handed system of rectangular coordinates x, y, z. In the Euler
representation they read

ut + uux + vuy + wuz = − 1

ρ
px,

A.J. Hermans, Water Waves and Ship Hydrodynamics,
DOI 10.1007/978-94-007-0096-3_1, © Springer Science+Business Media B.V. 2011
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2 1 Theory of Water Waves

vt + uvx + vvy + wvz = − 1

ρ
py − g, (1.1)

wt + uwx + vwy + wwz = − 1

ρ
pz.

Here u = u(x, y, z, t), v = v(x, y, z, t),w = w(x,y, z, t) are velocity components
in the corresponding x, y, z direction; p = p(x, y, z, t) is the pressure; ρ is the den-
sity of the fluid, a constant, and g is the gravitational acceleration. The continuity
equation is

ux + vy + wz = 0. (1.2)

In most of the considerations the fluid motion is considered to be irrotational. This
gives the additional set of equations

uy − vx = 0,

vz − wy = 0,

wx − uz = 0,

(1.3)

which guarantees in a simply connected region the existence of a velocity potential
ϕ with

u = ϕx,

v = ϕy,

w = ϕz.

(1.4)

From (1.2) we see that ϕ satisfies Laplace’s equation,

ϕxx + ϕyy + ϕzz = 0. (1.5)

This greatly facilitates the theory.
In general, however, solutions of Laplace’s equation will not show wave charac-

ter, since the equation is elliptic. Waves are created by the presence of a free surface
and are intimately related to the free surface condition.

1.2 Boundary Conditions

At the moving boundary the condition for a non-viscous fluid is very simple. The
fluid velocity normal to the surface has to be equal to the normal component of the
velocity of the surface itself. If the equation of the surface is given by

y = F(x, z, t), (1.6)



1.2 Boundary Conditions 3

we denote the velocity of a point on the surface by (U,V,W). A normal to the
surface has the direction cosines(

Fx√
F 2

x + F 2
z + 1

,
−1√

F 2
x + F 2

z + 1
,

Fz√
F 2

x + F 2
z + 1

)
(1.7)

and the surface (or boundary) condition reads

uFx − v + wFz√
F 2

x + F 2
z + 1

= UFx − V + WFz√
F 2

x + F 2
z + 1

= −Ft√
F 2

x + F 2
z + 1

, (1.8)

because

FxU − V + FzW + Ft = 0

for a point on the moving surface. Hence from (1.8) we have

v = Ft + uFx + wFz = dF(x, z, t)

dt
, (1.9)

which expresses the fact that, once a fluid particle is on the surface, it remains on
the surface.

We will usually denote the bottom surface by y = H(x, z, t), so that (1.9) reads

v = Ht + uHx + wHz. (1.10)

Mostly in our considerations the bottom is fixed, that is H is independent of t , so
that the term Ht in (1.10) vanishes.

The waves are created at the free surface, which is characterised by the condition
that along this surface the pressure is a constant. Hence in addition to the kinematic
equation

v = ηt + uηx + wηz, (1.11)

for the free surface y = η(x, z, t), we have the condition

p = constant, (1.12)

along y = η(x, z, t). There are two ways of formulating these conditions:

a. From the equations of motion (1.2), we find by inspection, in the case of irrota-
tional motion, the Bernoulli equation

ϕt + 1

2
(u2 + v2 + w2) + gy + p

ρ
= f (t) (1.13)

in which, because of the constant pressure, one can normalise ϕ to result in the
dynamical free surface condition

ϕt + 1

2
(ϕ2

x + ϕ2
y + ϕ2

z ) + gη = constant. (1.14)
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b. The second way expresses that

∂p

∂sx
= 0,

∂p

∂sz
= 0, (1.15)

where sx and sz are coordinates on the free surface, which have their projections
in the x and z directions, respectively. This gives1

∂p

∂sx
= ∂p

∂x
cos (x, sx) + ∂p

∂y
cos (y, sx) = 0,

∂p

∂sz
= ∂p

∂z
cos (z, sz) + ∂p

∂y
cos (y, sz) = 0

(1.16)

or

px + pyηx = 0,

pz + pyηz = 0.
(1.17)

Substituting (1.17) into (1.2), we have the relation

ut + uux + vuy + wuz + ηx(vt + uvx + vvy + wvz) = 0,

wt + uwx + vwy + wwz + ηz(vt + uvx + vvy + wvz) = 0,
(1.18)

which are also valid for rotational flow.

In this way the basic equations are derived. The further development of the theory
is based on small parameter expansions of these equations. To do so an appropriate
small dimensionless parameter has to be specified. Depending on the case consid-
ered, different formulations arise. In the next section we consider the case of a fixed
bottom and where the water region is horizontally extended to infinity while no
floating objects are present. This simplifies the theory considerably. Later we take
other effects into account as well.

1.3 Linearised Theory

In this section we discuss two different cases, where we may obtain linearised equa-
tions for different situations. In the first one we assume that the waves are superim-
posed on a steady constant parallel flow field (current), while the second one deals
with a wave field superimposed on a steady flow field, which obeys a simplified free
surface condition. This steady flow may be generated by a slowly moving vessel.
For fast moving objects one may need a more general non-linear theory for steady
and unsteady boundary conditions. We will deal with some of these problems in
future chapters.

1Note that cos (x, sz) = cos (z, sx) = 0.



1.3 Linearised Theory 5

1.3.1 Small Amplitude Waves in a Steady Current

The simplest approximation is the case where the deviation η of the free surface
above a certain standard level, which is taken as y = 0, is small. We assume that

η(x, z, t) = εη̄(x, z, t), (1.19)

where ε is a small dimensionless parameter. In addition we assume the bottom slope
to be small of the same order of magnitude in ε and put

y = −h + εh1, (1.20)

which will lead to the boundary condition

v = ε(h1t + uh1x + wh1z) (1.21)

from (1.10). For the free surface we obtain from (1.11) and (1.14)

v = ε(η̄t + uη̄x + wη̄z) (1.22)

together with

ϕt + 1

2
(ϕ2

x + ϕ2
y + ϕ2

z ) + εgη̄ = constant. (1.23)

Now, for the solution of (1.5), we assume an expansion

ϕ(x, y, z, t) = ϕ0 + εϕ1 + ε2ϕ2 + · · · , (1.24)

and substitute it in (1.5) and boundary condition (1.21). Equating to zero the coeffi-
cients of like powers of ε, we get first that all ϕk’s are harmonic functions. Moreover,
we have from (1.20) and (1.21)

v0 = ϕ0y = 0,

v1 = h1t + u0h1x + w0h1z,
at y = −h. (1.25)

Similarly, we expand η̄ in (1.19) in the form

η̄ = η1 + εη2 + ε2η2 + · · · , (1.26)

and find from (1.22) the free surface condition at y = εη̄,

v0 = 0 and

v1 = η1t + u0η1x + w0η1z

(1.27)

together with

ϕ0t + 1

2
(ϕ2

0x + ϕ2
0y + ϕ2

0z) = constant,

ϕ1t + u0u1 + v0v1 + w0w1 + gη1 = 0
(1.28)

from (1.23).
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The first approximation ϕ0, u0 = ϕ0x, v0 = ϕ0y,w0 = ϕ0z, corresponds to a per-
manent flow. If we take the special case

u0 = constant,

v0 = 0,

w0 = constant,

we can transform to a coordinate system with the x-axis in the direction of this con-
stant flow and denote the velocity by U . In this case we have ϕ0 = Ux and the con-
stant in (1.23) is equal to 1

2U2. Then we have the boundary condition from (1.25),

v1 = Uh1x at y = −h, (1.29)

and at the free surface y = εη̄, the coefficient of ε for (1.27) and (1.28) gives

ϕ1y = η1t + Uη1x,

ϕ1t + Uϕ1x + gη1 = 0.
(1.30)

Instead of putting this condition (1.30) at y = εη̄, we put it at y = 0. Assuming that
ϕ1 admits an expansion in powers of εη̄, we then have

ϕ1x(x, εη̄, z) = ϕ1x(x,0, z) + εη̄ϕ1xy(x,0, z) + · · ·
= ϕ1x(x,0, z) + εη1ϕ1xy(x,0, z) + O(ε2),

which leads to a modification of the terms of second order or higher. Hence the first
approximation gives the following set of linear equations for ϕ1 and η1:

ϕ1xx + ϕ1yy + ϕ1zz = 0,

ϕ1y = h1t + Uh1x at y = −h,

ϕ1y = η1t + Uη1x

ϕ1t + Uϕ1x + gη1 = 0

}
at y = 0.

(1.31)

For a fixed flat bottom, h1 is constant so that h1x = h1t = 0. For smooth functions,
one can easily eliminate η1 in the surface condition and obtain the formulation for
the first-order approximation (dropping subscript 1):

ϕxx + ϕyy + ϕzz = 0,

ϕy = 0 at y = −h,

U2ϕxx + 2Uϕxt + ϕtt + gϕy = 0 at y = 0.

(1.32)

Here the surface elevation η can be computed by

η = −1

g
(ϕt + Uϕx) . (1.33)
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Now given initial conditions, problems defined by (1.32) can be solved by means
of the Laplace or Fourier transform method. As for illustration, we shall consider a
few simple examples in Chap. 2.

1.3.2 Small Amplitude Waves in a Small Velocity Flow Field

Here we derive a free surface for unsteady waves superimposed on the steady free
surface generated by a steady velocity field. This steady field may be generated
by an object positioned in a constant parallel flow field. In general this leads to a
very complicated condition, however if the magnitude of the velocity is small it can
be simplified significantly. If no waves are present the magnitude of the velocity
is characterised by a small non-dimensional Froude number F = U√

gL
, where L

is some length scale that plays a role in the problem, for instance the length of
the disturbing object. It is assumed that this Froude number is small. In Sect. 5.2
we consider the diffraction of short waves if the steady flow field is generated by a
parallel flow and is disturbed by a blunt object such as a sphere or a circular cylinder.
In these cases we take for L the radius of the sphere or cylinder. Here we derive the
free surface condition for such a case.

The easiest way is to follow the derivation, presented in Sect. 1.3.1, to determine
a useful formulation for the steady potential. In this case of constant water depth
the only small parameter is the Froude number F = U√

gL
. Again we assume that the

deviation of the free surface around y = 0 will be small. However we can not say
that the free surface elevation is of O(F ). The order of magnitude of the elevation
follows from the derivation and will turn out to be O(F 2). For the steady case the
kinematic free surface condition (1.11) becomes

v = uηx + wηz. (1.34)

We assume that u,v and w are of the same order of magnitude O(F ). Hence for
small values of η the kinematic condition reduces to

v = 0 at y = 0. (1.35)

The dynamic free surface condition now determines the order of magnitude of the
corresponding free surface elevation. If we assume that in the far field the potential
equals the unperturbed parallel flow Ux we obtain

η = −1

2g
(u2 + v2 + w2 − U2). (1.36)

Because of the specific form of the free surface condition (1.35) the steady potential
described here is called the double body potential. For this potential we use the
notation ϕr , the velocity components are written as (ur , vr ,wr) = ∇ϕr and the free
surface elevation as ηr . If one is interested in the total steady potential one must
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derive an appropriate free surface condition also describing the wavy pattern. This
will be done in Sect. 2.4. Our goal here is to derive a linearised free surface condition
for the unsteady wave potential.

We assume that the potential ϕ can be decomposed as follows:

ϕ(x, y, z, t) = ϕr(x, y, z) + ϕ0(x, y, z) + ϕw(x, y, z, t). (1.37)

The potential ϕ0 describes the steady wave pattern if waves are not present. Later
we will show that this potential ϕ0 = o(ϕr), while as we have seen ϕr = O(F ). For
this reason we neglect this term in the low Froude number small wave expansion
and write

ϕ(x, y, z, t) = ϕr(x, y, z) + ϕw(x, y, z, t). (1.38)

The free surface elevation η(x, z, t) is assumed to be of the form

η(x, z, t) = ηr(x, z) + η0(x, z) + ηw(x, z, t). (1.39)

The function η0 = o(ηr ), while ηr = O(F 2), so we neglect η0 and write

η(x, z, t) = ηr(x, z) + ηw(x, z, t). (1.40)

We assume that the elevation of the free surface above the level y = ηr(x, z) is
small O(ε). The condition for the wave potential at the bottom remains the same as
before, however the free surface condition changes significantly. In principle the two
small parameters are independent of each other. If the small Froude number is large
compared with ε, we may introduce a new coordinate system (x′, y′ −ηr(x

′, z′), z′).
The additional terms in the Laplace equation are small and may be neglected. The
additional terms in the free surface condition may be neglected as well. If the two
parameters are of the same order of magnitude we may linearise with respect to
y = 0 directly, else it is defined at y = ηr . The kinematic condition as in (1.27),
becomes

vw = ηwt + urηwx + wrηwz, (1.41)

and if we use the surface condition the dynamic condition becomes

ϕwt + urϕwx + wrϕwz + gηw = 0. (1.42)

We eliminate ηw by means of differentiation of (1.42) with respect to t, x and z

respectively. The additional terms due to differentiation along the double body free
surface ηr are O(F 3) and may be neglected. For the wave potential we obtain the
following formulation (we omit the primes):

ϕwxx + ϕwyy + ϕwzz = 0,

ϕwy = 0 at y = −h,

(
∂

∂t
+ ur

∂

∂x
+ wr

∂

∂z

)2

ϕw + g
∂ϕw

∂y
= 0 at y = 0.

(1.43)
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The coefficients in the free surface condition depend on the local velocity. Although
the formulation for the wave potential is linear, no simple solutions for a wave pat-
tern can be given. In the case of the diffraction of short wave by a smooth object
we will use an asymptotic wave theory. This method is developed in acoustic and
electromagnetic theory, it is generally called the ray method. In Chap. 5 we present
this asymptotic method.





Chapter 2
Linear Wave Phenomena

A few simple examples of the linearised boundary and initial-boundary value prob-
lems formulated in the previous chapter will be solved by the Fourier or Laplace
transform method. Through these simple examples, basic wave phenomena or ter-
minologies in water waves will be introduced. These are phase velocity, dispersion
relation, group velocity, wave fronts, to name a few.

Of particular importance is the asymptotic behaviour of the free surface elevation
for large values of relevant spaces and for time variables. This behaviour can be
best obtained by the method of stationary phase (see Sect. 9.1). In this connection,
the method of characteristics for treating first-order non-linear partial differential
equations for the phase function is employed. Hence a brief summary of the concept
of characteristics is included in Sect. 9.2.

A systematic derivation of oscillatory source singularity functions is presented
for the disturbance below the free surface with and without current in Sects. 2.3
and 2.7.2. In Sect. 2.4 we derive for the steady case the field for a pressure distur-
bance at the free surface and for a point source below the free surface in Sect. 2.7.1.
These source functions are often called Green functions and are used in numerical
codes. One may derive different formulations for the functions as is shown.

2.1 Travelling Plane Waves

2.1.1 Plane Waves

It is easy to obtain travelling plane waves. As in Chap. 1 for small amplitude waves
the linearised problem is defined by (1.32). For simplicity we restrict ourselves to
the situation where U = 0. We consider two cases according to the water depth. We
begin with the infinite depth. In this case the boundary value problem (1.32) consists
of the Laplace equation

ϕxx + ϕyy + ϕzz = 0 (2.1)

A.J. Hermans, Water Waves and Ship Hydrodynamics,
DOI 10.1007/978-94-007-0096-3_2, © Springer Science+Business Media B.V. 2011
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together with the surface conditions

ϕtt + gϕy = 0 at y = 0 (2.2)

and the condition at infinity

ϕy → 0 as y → −∞. (2.3)

We seek a solution ϕ(x, y, z, t) of (2.1)–(2.3) in the form

ϕ(x, y, z, t) = Aei(αx+βz)+ky+iωt , (2.4)

where α,β, k,ω and A are constants. Clearly (2.3) will be satisfied if k is positive.
Substituting (2.4) into (2.1) and (2.2) we obtain

k = α2 + β2 and − ω2 + gk = 0. (2.5)

Set α = −k cos θ and β = −k sin θ which clearly satisfy the first equation of (2.5)

for any k. The second one gives that k = ω2

g
which is known as the dispersion

relation—a relation between wave number k and frequency ω. Then the potential
function has the form

ϕ(x, y, z, t) = A exp

{
−iω

[
ω

g
(x cos θ + z sin θ) − t

]
+ ω2

g
y

}
, (2.6)

and consequently the water height is given by

η(x, z, t) = − 1

g
ϕt = −A

iω

g
exp

{
−iω

[
ω

g
(x cos θ + z sin θ) − t

]}
(2.7)

through use of (1.33). This formula represents plane waves.
For θ = 0, we have plane waves travelling along the x-axis, independent of the

z-coordinate:

η(x, t) = − iω

g
Ae−i( ω2

g
x−ωt) = A1e−i ω2

g
(x−ct)

, (2.8)

where c = g
ω

is the velocity of the wave (or phase velocity) and A1 = − iω
g

A is the
amplitude of the wave. The real part of (2.8) corresponds to the real values wave
height.

We now consider a wave train consisting of two plane waves in the x-direction
with slightly different frequencies ω and ω + δω. The total wave height may be
written as

η(x, t) = A1 cos(kx − ωt) + A2 cos((k + δk)x − (ω + δω)t

= A(x, t) cos(kx − ωt + θ(x, t))), (2.9)
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where the amplitude function A(x, t) and the phase function θ(x, t) are slowly vary-
ing functions. They can be written as

A(x, t) =
√

A2
1 + A2

2 + 2A1A2 cos(δkx − δωt) and

tan θ(x, t) = A2 sin(δkx − δωt)

A1 + A2 cos(δkx − δωt)
.

(2.10)

The amplitude moves with the velocity δω
δk

. It will be shown in Sect. 2.1.2 that the
wave energy is proportional to the square of the amplitude, hence we may expect
that the energy moves with a velocity

cg = lim
δω→0

δω

δk
= dω

dk
. (2.11)

This velocity cg is called the group velocity.
The corresponding problem for finite water depth can be treated in the same way.

We write

ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt .

Then in this case we have from (2.2) the surface condition

ϕ̂y = ω2

g
ϕ̂ at y = 0, (2.12)

while the condition at infinity (2.3) is replaced by the boundary condition (1.32). In
terms of ϕ̂ we have

ϕ̂y = 0 at y = −h. (2.13)

For travelling waves in the direction of the x-axis, i.e., ϕ̂ = ϕ̂(x, y), a simple ma-
nipulation by the method of separation of variables leads to the solution

ϕ(x, y, t) = A cosh[k(y + h)]e−i(kx−ωt), (2.14)

where the wave number k and the frequency ω are related by the dispersion relation

ω2 = gk tanh(kh). (2.15)

Waves with a different wave number travel with a different phase velocity c which
is defined by

c = ω

k
=

√
g tanh(kh)

k
. (2.16)

Note that for kh small, since tanh(kh) = kh + O((kh)3), we have c = √
gh which

is the case without dispersion. Observe again that if we let h → ∞, we recover
the case of infinite depth, (2.5). The dispersion causes a wave pattern, which at a
certain place x and time t is a superposition of harmonic waves to be distorted at
other places, because the components travel with different velocities. In the case of
dispersion, it is difficult to determine the concept of ‘wave speed’.
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2.1.2 Wave Energy Transport

For the description of plane waves it is sufficient to restrict the considerations to
the one-dimensional case. We represent at t = 0 the water height η(x,0) by the real
integral

η(x) =
∫ ∞

0
C(k) cos(kx)dk +

∫ ∞

0
S(k) sin(kx)dk (2.17)

with

C(k) = 1

π

∫ ∞

0
η(x) cos(kx)dx, and

S(k) = 1

π

∫ ∞

0
η(x) sin(kx)dx.

Since C(k) and S(k) are respectively even and odd functions, setting

A(k) = 1

2
(C(k) + iS(k)), (2.18)

we can rewrite η(x) as a complex integral

η(x) =
∫ ∞

−∞
A(k)e−ikx dk. (2.19)

A simple calculation shows that

η(x) = 2�
∫ ∞

0
A(k)e−ikx dk =

∫ ∞

−∞
A∗(k)eikx dk, (2.20)

where A∗(k) is the complex conjugate of A(k).
For an understanding of the wave dispersion phenomenon, it is necessary to con-

sider the energy propagation in the wave (linearised approximation). If the function
η(x) belongs to L2, i.e.,

∫ ∞
−∞ η(x)2 dx exists, the potential energy is given by

E = 1

2
ρg

∫ ∞

−∞
η(x)2 dx = 1

2

∫ ∞

−∞

(∫ ∞

−∞
A(k)e−ikx dk

)(∫ ∞

−∞
A∗(k′)eik′x dk′

)
dx

from (2.19) and (2.20). The latter integral can now be calculated by making use of
the Fourier inversion theorem and the fact that

∫ ∞
−∞ ei(k′−k)x dx = 2πδ(k′ − k).

This gives

E = 1

2
ρg2π

∫ ∞

−∞
|A(k)|2 dk. (2.21)

Hence from (2.18) we have

E = ρgπ

4

∫ ∞

−∞
{C(k)2 + S(k)2}dk. (2.22)
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If the dispersion relation ω = ω(k) is known (for convenience we extend the defini-
tion of ω(−k) = −ω(k)), then we can compute the water height η at any arbitrary
time t as follows:

η(x, t) =
∫ ∞

−∞
A(k)ei(ωt−kx) dk =

∫ ∞

−∞
A(k)e−i(ωt−kx) dk (2.23)

in terms of the phase velocity c = ω/k. Here it is assumed that the initial conditions
are such that the wave propagates only in the projection of the positive x-axis.

The total potential energy is conserved; the wave only changes the distribution
of the energy along the x-axis. In fact we have

E(t) = 1

2
ρg

∫ ∞

−∞
|η(x, t)|2 dx

= 1

2
ρg

∫ ∞

−∞
dx

(∫ ∞

−∞
A(k)ei(ωt−kx) dk

)(∫ ∞

−∞
A∗(k′)e−i(ω′t−k′x) dk′

)

with ω′ = ω(k′). The latter integral follows from (2.23) and can be calculated simi-
larly according to the Fourier inversion theorem. We find again

E(t) = ρgπ

∫ ∞

−∞
|A(k)|2 dk. (2.24)

Now we are going to find a measure for the velocity of the energy propagation and
calculate to this end the location of the centre of gravity x̄(t) of the first moment of
the energy, which is defined by

x̄(t) =
∫ ∞
−∞ x|η(x, t)|2 dx∫ ∞
−∞ |η(x, t)|2 dx

, (2.25)

provided both integrals exist. Here the denominator has been shown to be a constant
in time and can be calculated easily from (2.24). The numerator, however, requires
some investigation. Equation (2.23) yields

∫ ∞

−∞
x|η(x, t)2|dx

=
∫ ∞

−∞
x dx

∫ ∞

−∞
A(k)ei(ωt−kx) dk

∫ ∞

−∞
A∗(k′)e−i(ω′t−k′x) dk′

= i
∫ ∞

−∞
dx

∫ ∞

−∞
A(k)d

(
ei(ωt−kx)

)∫ ∞

−∞
A∗(k′)e−i(ω′t−k′x) dk′

+ t

∫ ∞

−∞
dx

∫ ∞

−∞
A(k)

dω(k)

dk

∫ ∞

−∞
A∗(k′)ei(ωt−kx)−i(ω′t−k′x) dk dk′

:= J1 + J2.
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Integrating by parts and taking account the fact that A(k) → 0, as k → ±∞ in view
of Bessel’s inequality, we find

J1 = −i
∫ ∞

−∞
dx

∫ ∞

−∞
dA(k)

dk

∫ ∞

−∞
A∗(k′)ei(ωt−kx)−i(ω′t−k′x) dk dk′.

Then by the Fourier inversion formula, we obtain

J1 = −2π i
∫ ∞

−∞
dA(k)

dk
A∗(k)dk;

J2 = 2πt

∫ ∞

−∞
dω(k)

dk
|A(k)|2 dk.

Adding J1 and J2, we have
∫ ∞

−∞
x|η(x, t)2|dx = 2π

{
−i

∫ ∞

−∞
dA(k)

dk
A∗(k)dk + t

∫ ∞

−∞
dω(k)

dk
|A(k)|2 dk

}
.

(2.26)
We define, as a mean value of a quantity ψ(k) in the k-domain,

ψ̄ =
∫ ∞
−∞ ψ(k)|A(k)|2 dk∫ ∞

−∞ |A(k)|2 dk
, (2.27)

and remark that the first term in (2.26) determines the position of x̄(t) for t = 0.
Hence we find

x̄(t) = x̄(0) + t
dω

dk
, (2.28)

i.e. the centre of gravity propagates with a velocity which is equal to the mean
velocity of dω

dk
. Here dω

dk
is called the group velocity; hence the mean value of the

group velocity dω
dk

is a measure for the speed of propagation of the energy.
The significance of this result becomes clear when we consider an amplitude

spectrum A(k), which extends only over a narrow wave number band:

η(x, t) =
∫ k0+ε

k0−ε

A(k)e−i(kx−ω(k)t dk ε > 0. (2.29)

The centre of gravity satisfies

x̄(t; k0, ε) = x̄(0; k0, ε) + tω′(k0, ε), (2.30)

where ω′(k0, ε) is now the mean value of ω′(k) = dω
dk

over the narrow band
[k0 − ε, k0 + ε]. For small values of ε we simply replace ω′(k0, ε) by ω′(k0).

For small values of t , one can make a more accurate analysis of the motion as
follows. Expanding ω(k) in the form

ω(k) = ω(k0) + (k − k0)ω
′(k0) + (k − k0)

2

2
ω̃′′(k),
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and substituting into (2.29), we may write

η(x, t) =
∫ k0+ε

k0−ε

A(k)e−i{(k0x−ω(k0)t)+(k−k0)(x−ω′(k0)t)− (k−k0)2

2 ω̃′′(k)t} dk

= e−i(k0x−ω(k0)t)

∫ k0+ε

k0−ε

A(k)e−i(k−k0)(x−ω′(k0)t) dk + R, (2.31)

where

R = e−i(k0x−ω(k0)t)

∫ k0+ε

k0−ε

A(k)e−i(x−ω′(k0)t)(k−k0)

·
{

exp

[
i(k − k0)

2

2
ω̃′′(k)t

]
− 1

}
dk.

Using the inequality |eiu − 1| ≤ |u|, we find an estimate of the remainder

|R| ≤
∫ k0+ε

k0−ε

|A(k)| (k − k0)
2

2
|ω̃′′(k)t |dk

≤ 1

3

(
max|k−k0|<ε

|A(k)|
)(

max|k−k0|<ε
|ω′′(k)|

)
ε3t,

which shows that for not too large values of t , the first term of (2.30) gives a good
approximation of η. Assuming, for small ε, A(k) to be constant A(k0) over the
interval, we can integrate:

A(k0)e
−i(k0x−ω(k0)t)

∫ k0+ε

k0−ε

e−i(k−k0)(x−ω′(k0)t) dk

= A(k0)e
−ik0(x− ω(k0)

k0
t) 2 sin[(x − ω′(k0)t)ε]

x − ω′(k0)t
.

Fig. 2.1 Wave train
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Hence we have, for small ε and t not too large,

η(x, t) ∼= A(k0)e
−ik0(x− ω(k0)

k0
t) 2 sin[(x − ω′(k0)t)ε]

x − ω′(k0)t
(2.32)

as shown in Fig. 2.1.
This represents a modulated wave; the amplitude moves with the group velocity

ω′(k) (the dotted enveloping curves) while the phase moves with the phase velocity
ω(k0)/k0 (the inscribed solid curves).

2.2 Cylindrical Waves

The boundary value problem for a cylindrical wave, at zero speed, U = 0, is defined
by the same equations in (1.32) for small amplitude waves. For harmonic oscilla-
tions we put

ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt ;
η(x, z, t) = η̂(x, z)eiωt .

(2.33)

Then the potential function ϕ̂(x, z, t) satisfies the Laplace equation

ϕ̂xx + ϕ̂yy + ϕ̂zz = 0 (2.34)

and the surface equation

ϕ̂y = ω2

g
ϕ̂ for y = 0. (2.35)

For infinite depth, we have again the condition

φ̂ finite for y → −∞. (2.36)

Since the problem now is axially symmetric, it is natural to make use of cylindrical
coordinates x = r cos θ, z = r sin θ, y = y. Thus (2.34) reads

1

r

∂

∂r

(
r
∂ϕ̂

∂r

)
+ ∂2ϕ̂

∂y2
= 0. (2.37)

We introduce dimensionless coordinates

r̄ = rω2

g
, ȳ = yω2

g
.

The transform leaves the differential equation (2.37) invariant, but the boundary
condition (2.35) becomes

ϕ̂ = ϕ̂ȳ for ȳ = 0. (2.38)
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We solve this problem by the method of separation of variables and assume that

ϕ̂(r̄, ȳ) = eλȳR(r̄),

where R(r̄) is a solution of the ordinary differential equation

1

r̄

d

dr̄

(
r̄

dR

dr̄

)
+ λ2R = 0.

The boundary condition (2.38) gives that λ = 1. Thus we obtain

ϕ̂(r̄, ȳ) = eȳ
{
AH

(1)
0 (r̄) + BH

(2)
0 (r̄)

}
, (2.39)

where H
(i)
0 are Hankel functions of order zero, and A and B are constants to be

determined from the radiation condition as follows.
As is well known, for large values of r̄ we have

H
(1)
0 (r̄) ≈

√
2

πr̄
ei(r̄− π

4 ), and

H
(2)
0 (r̄) ≈

√
2

πr̄
e−i(r̄− π

4 ).

With time dependence eiωt , only the solution

ϕ(r̄, ȳ, t̄ ) = BeȳH
(2)
0 (r̄)eiωt (2.40)

represents outgoing waves. For large values of r̄ it behaves as

ϕ(r̄, ȳ, t̄) ≈ Beȳ

√
2

πr̄
e−i(r̄−ωt− π

4 ),

and the phase is defined by

r̄ − ωt = ω2

g

(
r − g

ω
t

)
,

which gives g
ω

for the phase velocity.
The water height η is given by

η(r̄, t) = − iω

g
BeȳH

(2)
0 (r̄)eiωt (2.41)

from (2.33), (1.33) and (2.40). Here it is understood that either the real or the imagi-
nary part of the right-hand side of (2.41) is to be taken. We usually take the real part.
This is an example of centred outgoing waves. The solution is obviously singular at
r = 0 and ∀∀∀y. In the next Sect. 2.3 we will see that the far field of an harmonic point
singularity has such a far-field behaviour.
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2.3 Harmonic Source Singularity

It is of interest to determine the field disturbance of the free surface due to an har-
monic singularity in a point below or at the free surface. As will be shown in Chap. 3,
many methods to solve the problem of diffraction of waves by an object we make
use of a distribution of singularities at the surface of the object. Here we will de-
termine the field generated by such a singularity. As an example we treat the finite
water depth case. The singularity is written as a Dirac δ-function in the right-hand
side of the Laplace equation

ϕxx + ϕyy + ϕzz = δ(x − x0, y − y0, z − z0)e
iωt . (2.42)

If we introduce ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt , the boundary value problem to be
solved becomes

ϕ̂xx + ϕ̂yy + ϕ̂zz = δ(x − x0, y − y0, z − z0),

ϕ̂y = 0 at y = −h,

ϕ̂y = ω2

g
ϕ̂ at y = 0.

(2.43)

This formulation is not complete. We must add a condition at large horizontal dis-
tance from the source. The solution must fulfil the radiation condition. The distur-
bance for large values of R = √

(x − x0)2 + (z − z0)2 may only consist of outgoing
waves. The solution must have the form

ϕ(x, y, z, t) ≈ A(R,y)e−i(kR−ωt), (2.44)

where the amplitude function tends to zero if R → 0.
There are several ways to solve this problem. We shall employ the method of

Fourier transform to obtain a solution. We introduce the following exponential trans-
form of ϕ̂ with respect to the x and z coordinates

φ(α,y,β) =
∫ ∞

−∞

∫ ∞

−∞
ei(αx+βz)ϕ̂(x, y, z)dx dz. (2.45)

The inverse transform is

ϕ̂(x, y, z) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i(αx+βz)φ(α, y,β)dα dβ. (2.46)

We introduce the transform in the Laplace equation and the boundary conditions
for ϕ̂ and obtain an ordinary differential equation for φ with appropriate boundary
conditions

φyy − (α2 + β2)φ = ei(αx0+βz0)δ(y − y0),

φy = 0 at y = −h,

φy = ω2

g
φ at y = 0.

(2.47)
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The singularity in the right-hand side of the differential equation can be replaced by
the following conditions for the function φ(α,β, y):

lim
ε→0

(φy(α, y0 + ε,β) − φy(α, y0 − ε,β)) = ei(αx0+βz0),

lim
ε→0

(φ(α, y0 + ε,β) − φ(α,y0 − ε,β)) = 0.
(2.48)

The solution of the problem is written as φ+ for y0 < y ≤ 0 and φ− for
−h < y < y0. A convenient choice of the solution is

φ+ = A cosh(k(y + h)) + B sinh(k(y + h)),

φ− = C cosh(k(y + h)).

Here k is defined as the distance to the origin in the Fourier space which is the
positive root of k2 = α2 + β2. With this choice the bottom condition is fulfilled
automatically. The constants A,B and C are determined by the condition at the free
surface y = 0 together with the conditions at y = y0. After some manipulations we
find the solution for y0 < y ≤ 0,

φ+ = −cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k{k sinh(kh) − ν cosh(kh)} ei(αx0+βz0), (2.49)

and for −h < y < y0,

φ− = −cosh(k(y + h)){ν sinh(ky0) + k cosh(ky0)}
k{k sinh(kh) − ν cosh(kh)} ei(αx0+βz0), (2.50)

where ν = ω2

g
. We now apply the inverse transform given by (2.46) to φ+

ϕ̂+(x, y, z) = −1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i(α(x−x0)+β(z−z0))

· cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k{k sinh(kh) − ν cosh(kh)} dα dβ. (2.51)

It is convenient to introduce polar coordinates, both in the physical space and the
Fourier space. We introduce

x − x0 = R cos θ, z − z0 = R sin θ (2.52)

and

α = k cosϑ, β = k sinϑ. (2.53)

The solution can then be written as

ϕ̂+(x, y, z) = −1

4π2

∫ 2π

0

∫ ∞

0
e−ikR cos(ϑ−θ)

· cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k sinh(kh) − ν cosh(kh)

dϑ dk. (2.54)
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The integration with respect to ϑ can be carried out by making use of the following
definition of the Bessel function J0:

J0(kR) = 1

2π

∫ 2π

0
e−ikR cos(ϑ−θ) dϑ. (2.55)

Hence, if we follow the same procedure for ϕ̂−, we obtain

ϕ̂+(x, y, z) = −1

2π

∫ ∞

0

cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k sinh(kh) − ν cosh(kh)

J0(kR)dk,

ϕ̂−(x, y, z) = −1

2π

∫ ∞

0

cosh(k(y + h)){ν sinh(ky0) + k cosh(ky0)}
k sinh(kh) − ν cosh(kh)

J0(kR)dk.

(2.56)

Until this point the radiation condition is not used. We will see that to define a proper
inverse transform it has to be used. The integrands of the functions ϕ̂+,− each have
a singularity for a real value of the denominator. Hence, the integrals are not well
defined. The equation k sinh(kh) − ν cosh(kh) = 0 has one real root together with
an infinite number of purely imaginary roots. From the theory of Fourier integral we
know that the contour of integration has to pass, in the complex k-plane, above or
below the singularity. The choice is determined by the radiation condition. A way to
determine the correct choice is to introduce a small artificial damping in the fluid. If
we assume the far field to be of the form e−i(kR−ωt) we see that the only choice for
vanishing waves is to introduce a complex wave number of the form k = k̄ − ik̃. The
negative imaginary part of the wave number may be generated by some artificial,
non-physical, damping. This indicates that the singularity on the real axis must be
passed above. Representation (2.56) for ϕ̂ consists of different forms depending on
whether y is larger or smaller than y0. This might be not practical. One may obtain a
single expression if we use some lemmas from the theory of complex functions. We
use the following lemma for analytic functions f (z) and g(z), while the function
f (z) has simple zeros zi in the complex plane. If we define f (z) = z sinh(zh) −
ν cosh(zh) and g(z) = cosh(zp){ν sinh(zq) + z cosh(zq) respectively, then for
|z| → ∞ the function g(z)

f (z)
→ 0 fast enough and we have

g(z)

f (z)
= g(0)

f (0)
+

∑
i

g(zi)γi

(
1

z − zi

+ 1

zi

)
with γi = 1

fz(zi)
, (2.57)

which is an expansion of g(z)
f (z)

in rational fractions of z, see [21], Sect. 7.4.
The integrands of both integrals in the expression for ϕ̂(x, y, z) (2.56) has in-

finitely many simple poles k = ±ki (i = 0,1,2, . . .) in the complex k-plane. We
have

ki sinh(kih) − ν cosh(kih) = 0. (2.58)

The positive real zero is k0, while the positive imaginary roots are ki = iκi (i =
1,2, . . .), see Fig. 2.2.
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Fig. 2.2 The singularities in
the complex k-plane

According to (2.57) we may write

g(k)

k sinh(kh) − ν cosh(kh)
=

∞∑
i=0

g(ki)

(
α+

i

k − ki

+ α−
i

k + ki

)
, (2.59)

where we used the fact that in our case g(k) is antisymmetric and g(0) = 0 and
where αi is defined as

α±
i = ±ki

(ν + k2
i h − ν2h) cosh(kih)

. (2.60)

If we work out the integrands of (2.56) we find one expression for ϕ̂(x, y, z), valid
for −h < y ≤ 0. We obtain

ϕ̂(x, y, z) = −1

2π

∞∑
i=0

k2
i − ν2

ν + k2
i h − ν2h

cosh(ki(y + h)) cosh(ki(y0 + h))

·
∫ ∞

0

(
1

k − ki

− 1

k + ki

)
J0(kR)dk. (2.61)

The integral in the right hand side can, by introducing k = −k∗ in the second part,
be rewritten as

J (ki) = 1

2

∫ ∞

−∞
H

(1)
0 (kR)

k − ki

dk + 1

2

∫ ∞

−∞
H

(2)
0 (kR)

k − ki

dk. (2.62)

Due to the asymptotic behaviour of the Hankel functions we may close the first
integral in the upper half of the complex k plane, while the second one may be
closed in the lower half. In this way the contributions of the contours at |k| → ∞
tend to zero. If the path of integration in (2.62) passes the singularity k = k0 in the
upper plane we obtain the following result for i = 0:

J (k0) = −π iH(2)
0 (k0R), (2.63)
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Fig. 2.3 Line of integration

and for i = 1,2, . . .

J (ki) = π iH(1)
0 (iκiR) = 2K0(κiR), (2.64)

where K0(z) is the modified Bessel function. The contribution of H
(2)
0 (k0R) rep-

resents an outgoing circular wave, while the contribution of each K0(κiR) is expo-
nential decaying for large values of R. This confirms the right choice of the contour
of integration, see Fig. 2.3. We notice that the use of an artificial damping to shift k0
actually is not the only way to find the correct contour of integration. If one chooses
the contour to pass underneath k0 the wavy behaviour is described by H

(1)
0 (k0R),

describing an incoming circular wave field. Waves travelling towards the source
clearly which disobey the radiation condition.

The expression for the total field now becomes

ϕ(x, y, z, t) = eiωt ϕ̂(x, y, z)

with

ϕ̂(x, y, z) = i(k2
0 − ν2)

2(ν + k2
0h − ν2h)

cosh(k0(y + h)) cosh(k0(y0 + h))H
(2)
0 (k0R)

+ 1

π

∞∑
i=1

κ2
i + ν2

ν − κ2
i h − ν2h

cos(κi(y + h)) cos(κi(y0 + h))

× K0(κiR). (2.65)

If we take the real part of (2.65) and multiply it with −4π we have the famous result
of F. John. The different factor originates from the normalisation of the point source.
This formulation can be used to compute the disturbance due to a unit point source
at finite difference from the source. However, the series does not converge close to
the source. This was to be expected, because of the singular, −1

4πr
, behaviour of ϕ̂,

where r = √
(x − x0)2 + (y − y0)2 + z − z0)2 is the distance to the singularity.

We expect to find a useful solution near the singularity if we write it as

ϕ̂(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ(x, y, z), (2.66)

where r̃ = √
(x − x0)2 + (y + 2h + y0)2 + (z − zo)2 is the distance to the mirror

image, with respect to the bottom, of the source point. For ψ(x, y, z) we obtain the
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following problem:

ψxx + ψyy + ψzz = 0,

ψy = 0 at y = −h,

ψy − νψ = 1

4π

{
∂

∂y

(
1

r
+ 1

r̃

)
− ν

(
1

r
+ 1

r̃

)}

:= g(x, z;x0, y0, z0)

at y = 0.

(2.67)

We apply the double Fourier transform to the function ψ ,

�(α,y,β) =
∫ ∞

−∞

∫ ∞

−∞
ei(αx+βz)ψ(x, y, z)dx dz (2.68)

and introduce polar coordinates (2.56) in the Fourier space. The ordinary differential
equation and boundary conditions for � become

�yy − k2� = 0,

�y = 0 at y = −h,

�y − ν� = G(k;x0, y0, z0) at y = 0.

(2.69)

We make use of the known transform of −1
4πr

, the point source for an infinite fluid
where no free surface is present

F

( −1

4πr

)
= −1

2k
ei(αx0+βz0)−k|y−y0|. (2.70)

This formula can be obtained by means of the double Fourier transform to the
Laplace equation, as before, in the case of an infinite fluid. If we apply this for-
mula to g(x, z;x0, y0, z0) we obtain

G(k;x0, y0, z0) = −k + ν

k
e−kh cosh(k(y0 + h))ei(αx0+βz0) (2.71)

and the solution of (2.69) becomes

�(α,y,β) = −k + ν

k
e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − ν cosh(kh)
ei(αx0+βz0). (2.72)

The inverse Fourier transform is defined as

ψ(x, y, z) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
�(α,y,β)e−i(αx+βz) dα dβ. (2.73)

With the introduction of polar coordinates in the physical (2.52) and Fourier (2.53)
space we obtain with the use of (2.55) the total field

ϕ(x, y, z, t) = eiωt ϕ̂(x, y, z)
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with

ϕ̂(x, y, z) = − 1

4πr
− 1

4πr̃

− 1

2π

∫ ∞

0

(k + ν)e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − ν cosh(kh)
J0(kR)dk.

(2.74)

If we introduce some artificial damping in the problem we observe that the contour
of integration passes above the real pole in the integrand. This finally leads to the
expression

ϕ̂(x, y, z)

= − 1

4πr
− 1

4πr̃

− 1

2π
−
∫ ∞

0

(k + ν)e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − ν cosh(kh)
J0(kR)dk

+ i

2

(k0 + ν)e−k0h sinh(k0h) cosh(k0(y + h)) cosh(k0(y0 + h))

νh + sinh2(k0h)
J0(k0R),

(2.75)

where −∫ indicates the principal value of the integral. If we are interested in the deep
water case we may obtain an expression for the source potential by using (2.75) for
large values of h. We obtain for the limit h → ∞,

ϕ̂(x, y, z) = − 1

4πr
− 1

4π
−
∫ ∞

0

k + ν

k − ν
ek(y+y0)J0(kR)dk + i

2
νeν(y+y0)J0(νR).

(2.76)
This result may be rewritten as

ϕ̂(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

4π
−
∫ ∞

0

2k

k − ν
ek(y+y0)J0(kR)dk+ i

2
νeν(y+y0)J0(νR),

(2.77)
where r̄ = √

(x − x0)2 + (y + y0)2 + (z − z0)2 is the distance to the mirror point,
with respect to the unperturbed free surface.

The contour of integration may be deformed to obtain different forms of (2.74).
We can rewrite the integral as a contribution of the pole and an integral along the
vertical axis of the complex k-plane. Instead of the way the solution is written in
(2.76) one also may write the solution as the sum −( 1

4πr
+ 1

4πr̄
), where − 1

4πr̄
is the

field of a singularity located at (x0,−y0, z0) in an infinite fluid, and use an integral
expression for this term. There are more choices possible, they are sometimes used
in the literature for different reasons.
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2.4 The Moving Pressure Point

We consider the field generated by a pressure point disturbance at the free surface,
moving in the direction of the positive x-axis. For small amplitude waves the lin-
earised free surface condition is defined by (1.32). We suppose the bottom at infinity,
y = −∞. Hence the bottom condition is replaced by the condition that ϕ remains
finite as y → −∞. We look for a very simple solution in a steady flow, for which
everywhere at y = 0 except at x = z = 0 the pressure vanishes. By introducing the
dimensionless coordinates

x̄ = xg

U2
, ȳ = yg

U2
, z̄ = zg

U2
,

we can formulate the boundary value problem as follows;

ϕx̄x̄ + ϕȳȳ + ϕz̄z̄ = 0,

ϕx̄x̄ + ϕȳ = 0 at ȳ = 0, (x̄, z̄) �= (0,0),

ϕ finite as ȳ → ∞.

(2.78)

We seek solutions of (2.78) by means of a Fourier transform with respect to x̄,

ϕ̂(α, ȳ, z̄) =
∫ ∞

−∞
eiαx̄ϕ(x̄, ȳ, z̄)dx̄ (2.79)

with its inverse transform

ϕ(x̄, ȳ, z̄) = 1

2π

∫ ∞

−∞
e−iαx̄ ϕ̂(α, ȳ, z̄)dᾱ. (2.80)

This leads to the boundary value problem for ϕ̂(α, ȳ, z̄):

ϕ̂ȳȳ + ϕ̂z̄z̄ − α2ϕ̂ = 0,

−α2ϕ̂ + ϕ̂ȳ = 0 at ȳ = 0,

ϕ̂ finite as ȳ → −∞.

(2.81)

A simple solution of (2.81) can be found in the form

ϕ̂ = eα2ȳF (z̄),

where F(z̄) satisfies the equation

(α4 − α2)F + Fz̄z̄ = 0.

Consequently, we take as a possible solution

ϕ(x̄, ȳ, z̄) = A

2π

∫ ∞

−∞
exp

{−iαx̄ + α2ȳ + iα(α2 − 1)
1
2 z̄

}
dα, (2.82)
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for A being a constant. Note that ϕ(x̄, ȳ, z̄) is not defined for x̄ = ȳ = z̄ = 0. From
(1.33) we find the free surface elevation

η(x̄, z̄) = Ai

2πU
lim
ȳ→0

∫ ∞

−∞
(
αeα2ȳ

)
exp

{
i
(−αx̄ + α(α2 − 1)

1
2 z̄

)}
dα (2.83)

which apparently is infinite for x̄ = z̄ = 0.
In order to get a better insight into the shape of the surface we shall evaluate this

expression (2.83) for large values of x̄ and z̄; that is distances to the origin that are
large compared to the reference length U2/g. This evaluation is performed by the
method of stationary phase (see Sect. 9.1).

We note that if we let R = (x̄2 + z̄2)
1
2 , x̄ = R cosϑ and z̄ = R sinϑ , then for each

fixed ϑ , (2.83) can be written in the form

∫ ∞

−∞
g(α) exp(iRf (α))dα,

where

g(α) := Ai

2πU
α and

Rf (α) := −αx̄ + α(α2 − 1)
1
2 z̄.

Hence the stationary points are solutions of the equation

∂

∂α

{−αx̄ + α(α2 − 1)
1
2 z̄

} = 0. (2.84)

(cf. (9.13)).
Let α0 be a solution of (2.84). We obtain therefore the asymptotic form of η(x̄, z̄):

η(x̄, z̄) ∼= Ai

πU
α0

√√√√π iα0(α
2
0 − 1)

3
2

2z̄(2α2
0 − 3)

exp
{
i
(−α0x̄ + α0(α

2
0 − 1)

1
2 z̄

)}
(2.85)

The phase function is of the most importance. If we put

ψ = −α0x̄ + α0(α
2
0 − 1)

1
2 z̄, (2.86)

we obtain from (2.84)

−x̄ + 2α2
0 − 1√

α2
0 − 1

z̄ = 0. (2.87)
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Fig. 2.4 Kelvin pattern

Setting α0 = 1
cos θ

, we obtain from (2.86) and (2.87) the equations

x̄ = −ψ(2 cos θ − cos3 θ) = −1

4
ψ(5 cos θ − cos(3θ)),

z̄ = −ψ cos2 θ sin θ = −1

4
ψ(sin θ + sin(3θ))

(2.88)

for the curves of constant phase ψ , which give the wave pattern. These curves are
all similar with the origin as centre, and have wave cusps at x̄ = z̄ = 0 (or θ = π/2)
and at the points where dx̄

dθ
= dz̄

dθ
= 0. Since

dx̄

dθ
= −ψ sin θ(2 − 3 cos2 θ) and

dz̄

dθ
= −ψ cos θ(3 cos2 θ − 2),

it follows that at the points

x̄ = −ψ
4
√

6

9
, z̄ = −ψ

2
√

3

9

corresponding to cos θ = √
2/3, there are cusps (it is understood that the expres-

sion (2.85) is not valid in the neighbourhood of cusps). A typical curve is shown
in Fig. 2.4. We see that the curve intersects the x̄-axis at the points x̄ = −ψ (corre-
sponding to θ = 0). The cusps lie on a straight line, through the origin, which makes
a fixed angle with the x̄-axis. The pattern obtained this way is called the Kelvin wave
pattern.

2.5 Wave Fronts

In view of (2.7) and (2.23), we now consider the general representation for the free
surface elevation:

η(x, z, t) =
∫ ∞

−∞
A(k)e−i(kx cos θ+kz sin θ−ωt) dk. (2.89)

In particular, we are interested in the asymptotic behaviour of η for large values of
t . We apply the method of stationary phase, see Sect. 9.1, to (2.89). The method
requires the determination of the value of k for which the phase

�(x, z, k) = −ωt + k(x cos θ + z sin θ)
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= −t

[
k

(
x

t
cos θ + z

t

)
− ω(k)

]
(2.90)

is stationary. (Here we consider � as depending on the three parameters x
t
, z

t
and t .

For each pair of values of x
t

and z
t
, the asymptotic expansion for η is considered for

large t .) This leads to the consideration of solutions of the equations

d�

dk
= 0 or − dω

dk
t + x cos θ + z sin θ = 0. (2.91)

Let k0 be any solution of (2.91). Then the approximate result for large t is

η(x, z, t) = A(k0)

√
2π

t |ω′′(k0)|e−i(k0x cos θ+k0z sin θ−ω(k0)t− π
4 sgnω′′(k0)) (2.92)

provided that d2�(k0)

dk2 �= 0, i.e. ω′′(k0) �= 0.
The lines � = constant are lines of constant phase; these lines are called wave

fronts. We can define a partial differential equation for the wave fronts from the
dispersion relation ω = H(k). In fact, we can express k0 in terms of x, z, t and θ

from (2.92) so that differentiations of (2.91) (with k = k0) with respect to these
variables yield

�x = k0 cos θ + (x cos θ + z sin θ − ω′
0t)

∂k0

∂x
= k0 cos θ,

�z = k0 sin θ + (x cos θ + z sin θ − ω′
0t)

∂k0

∂z
= k0 sin θ,

�t = −ω0 + (x cos θ + z sin θ − ω′
0t)

∂k0

∂t
= −ω0,

(2.93)

with ω0 = H(k0). The first two equations of (2.93) imply that

k2
0 = �2

x + �2
z

with which the third one shows that the dispersion relation ω0 = H(k0) gives a
partial differential equation for the phase function � , the Hamilton-Jacobi equation

�t + H(

√
�2

x + �2
y ) = 0 or

�t + H(

√
p2 + q2) = 0,

(2.94)

where p = �x = k0 cos θ and q = �z = k0 sin θ are the conjugate variables to x

and z, respectively. We have just seen that the wave fronts correspond to level curves
of the Hamilton-Jacobi equation. But in wave phenomena one expects the dual con-
cept of rays to appear also. The rays in the present case are the characteristics of the
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Fig. 2.5 Wave fronts

above Hamilton-Jacobi equation, i.e. the solutions of the system of ODE’s:

dx

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂x
= 0,

dz

dt
= ∂H

∂q
,

dq

dt
= −∂H

∂z
= 0

(2.95)

(see Sect. 9.2 for a brief summary of the concepts of characteristics). From the
(2.95) it is easy to see that in the x, z, t-space, the characteristics are straight lines
for constant t as in (2.91).

2.6 Wave Patterns

In Sect. 2.5, the Hamilton-Jacobi equation (2.94) for the wave fronts was derived
from the equations in a rather complicated way. At first we gave an exact solution
η of the linearised problem (1.32), (1.33) with U = 0, to which we later applied an
asymptotic expansion, which resulted in a first-order partial differential equation.
The result obtained is more or less similar to the characteristic equation for hyper-
bolic equations, although the wave fronts are by no means characteristic surfaces
for the equations, which do not even have real characteristics.

In order to give a direct derivation we first define a wave front on the two-
dimensional x, y-plane as a curve along which a transverse derivative of the so-
lution ϕ of the equation considered is much larger than the tangential derivative.
This means that, introducing new coordinates ξ1 transverse to the wave fronts and
ξ2 along the wave fronts (Fig. 2.5), we must have that ϕξ1 
 ϕξ2 , i.e. there should
exist a constant K 
 1 such that ϕξ1 ≈ Kϕξ2 . Here ξ1 and ξ2 are supposed to be
functions of x and y with derivatives of order unity with respect to K . We introduce
a new coordinate s = Kξ1 such that

ϕs = 1

K
ϕξ1 = O(1). (2.96)

We now illustrate this procedure by considering a simpler equation than the equation
of water waves, the Klein-Gordon equation in dimensionless form

ϕxx − ϕtt − a2ϕ = 0, (2.97)
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where a is a constant. We first derive the Hamilton-Jacobi equations for the phase
function to the methods used in Sect. 2.5 and will refer to it as an indirect method.
For solutions of the form Aei(kx−ωt) we easily find the dispersion relation between
k and ω,

ω =
√

a2 + k2 � H(k) (2.98)

which gives the Hamilton-Jacobi equation from (2.94) with � = J :

Jt + H(Jx) = 0, (2.99)

where Jx = k. The characteristics of (2.99) are solutions of the equations

dx

dt
= ∂H

∂Jx

= k√
a2 + k2

,

dp

dt
= dJx

dt
= −∂H

∂x
= 0,

(2.100)

thus the characteristics are straight lines of the form

x − k√
a2 + k2

t = constant, (2.101)

corresponding to the group velocity dH
dk

= k√
a2+k2

.

Now let us examine the above problem by the direct method. Using (2.96),
a straightforward calculation shows that

ϕxx = K2ϕssξ
2
1x + K(2ϕsξ2ξ1xξ2x + ξ1xxϕs) + ϕξ2ξ2ξ

2
2x + ϕξ2ξ2xx,

ϕtt = K2ϕssξ
2
1t + K(2ϕsξ2ξ1t ξ2t + ξ1t t ϕs) + ϕξ2ξ2ξ

2
2t + ϕξ2ξ2t t .

(2.102)

Substituting into (2.97) gives

K2ϕss(ξ
2
1x − ξ2

1t ) + K{ϕs(ξ1xx − ξ1t t ) + 2ϕsξ2(ξ1xξ2x − ξ1t ξ2t )}
+ ϕξ2ξ2(ξ

2
2x − ξ2

2t ) + ϕξ2(ξ2t − ξ2t t ) − a2ϕ = 0. (2.103)

As K → ∞, we obtain the characteristic equation for (2.97). This is obvious be-
cause a characteristic would be a line along which the second derivative may be
discontinuous. Now, regarding the constant a as a large number with respect to
some reference length and identifying K with a, we have the equation

ϕss(ξ
2
1x − ξ2

1t ) − ϕ = 0, (2.104)

to the first order of approximation. If we want this equation to represent the motion
along the wave fronts, we must put the term (ξ2

1x − ξ2
1t ) equal to a constant which

we choose to be −1, i.e.,

ξ2
1x − ξ2

1t = −1. (2.105)
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Clearly, this gives immediately the Hamilton-Jacobi equation, ξ1t =
√

1 + ξ2
1x ,

which reduces to (2.99) with ξ1 replaced by (−1/a)J .
The same scheme can be applied to the problem of the moving singularity defined

by the time independent form (1.32) and (1.33), i.e.:

ϕxx + ϕyy + ϕzz = 0,

U2ϕxx + gϕy = 0, for y = 0.

In terms of the dimensionless variables x = x
L
, y = y

L
and z = z

L
, we have

ϕxx + ϕyy + ϕzz = 0,

ϕxx + gL

U2
ϕy = 0, for y = 0.

(2.106)

Here L denotes a proper reference length.
We are only interested in the wave pattern, hence in the lines of constant phase

of η (which from (1.33) amounts to the same as for ϕx at y = 0). We further remark
that from the nature of (2.106) we know that the wave is only appreciable at the
upper layer of the water. Hence we introduce the coordinates ξ1 and ξ2 in the x, z-
plane, where the lines ξ1 = constant represent wave fronts, the derivative ϕξ1 is large
with respect to ϕξ2 but the derivative ϕy must be of the same order of magnitude as
ϕξ1 . Therefore, we introduce a coordinate s = Kξ1 and a coordinate Y = Ky in
terms of which we have

ϕxx = K2ϕssξ
2
1x + K(2ϕsξ2ξ1xξ2x + ξ1xxϕs) + ϕξ2ξ2ξ

2
2x + ϕξ2ξ2xx,

ϕzz = K2ϕssξ
2
1z + K(2ϕsξ2ξ1zξ2z + ξ1zzϕs) + ϕξ2ξ2ξ

2
2z + ϕξ2ξ2zz,

and

ϕyy = K2ϕYY .

From (2.106), we have then

K2ϕss(ξ
2
1x + ξ2

1z) + K2ϕYY + O(K) = 0, (2.107)

together with the surface condition

K2ϕssξ
2
1x + K

(
gL

U2

)
ϕY + O(K) = 0, for Y = 0. (2.108)

This yields the first approximation

ϕss(ξ
2
1x + ξ2

1z) + ϕYY = 0,

ϕssξ
2
1x + ϕY = 0, for Y = 0,

(2.109)

where we identify K with gL

U2 .
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Since ξ2
1x + ξ2

1z and ξ2
1x are slowly varying variables, we introduce constants,

α and β defined by

α2 = ξ2
1x + ξ2

1z, and β = ξ2
1x.

This leads to the problem

α2ϕss + ϕYY = 0,

βϕss + ϕY = 0, for Y = 0,

which has a solution

ϕ = eis+.αY .

This solution which goes to zero as Y → ∞ (α > 0) can satisfy the surface condition
only if

α = β

or

ξ2
1x + ξ2

1z = ξ4
1x. (2.110)

It should be emphasised that these considerations are only valid to an order of mag-
nitude of 1/K . The present approach is a variation of the ray method in geometrical
optics. Higher-order approximations can be derived in a similar manner.

The characteristic equations of the first-order partial differential equation (2.110)
take the form

ẋ = 4p3 − 2p, ṗ = 0,

ż = −2q, q̇ = 0,

ξ̇1 = (4p4 − 2p2 − 2q2),

with p = ξ1x and q = ξ1z, where the dot · notation denotes differentiation to some
parameter, say, τ . Hence p and q are constants and we have the parametric equations
for the rays,

x = 2p(2p2 − 1)τ,

z = −2qτ,

ξ1 = (4p4 − 2p2 − 2q2)τ.

(2.111)

From (2.110) we have

q = −p

√
p2 − 1. (2.112)

To eliminate τ from (2.111) by making use of (2.112), we finally obtain

x = ξ1
(2p2 − 1)

p3
, z = ξ1

√
p2 − 1

p3
,



2.7 Singularity in a Steady Current 35

which reduces to (2.88) if we set p = − 1
cos θ

. This shows that the curves ξ1 = con-
stant are indeed the curves of constant phase.

2.7 Singularity in a Steady Current

2.7.1 Steady Singularity

As in the case of an oscillatory point source in still water it is useful to have the
solution of a steady moving point source, or a point source in a steady current,
available. For finite water depth the formulation becomes

ϕxx + ϕyy + ϕzz = δ(x − x0, y − y0, z − z0),

ϕy = 0 at y = −h,

υϕxx + ϕy = 0 at y = 0,

(2.113)

where we introduced the notation υ = U2

g
. To obtain a physically valid solution

we have to add a far-field condition, comparable with the radiation condition in
the oscillatory case. Here the requirement becomes that in front of the disturbance
no wavy pattern is observed. In the downstream region a wavy disturbance may be
present. In the deep water case it is similar to the disturbance of the moving pressure
point. It is also noticed that a solution of (2.113) can not be unique, because we
always may add an arbitrary constant. We make use of this fact later. We follow the
same procedure as described before (2.66) to solve (2.113),

ϕ(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ(x, y, z), (2.114)

where r̃ denotes the distance to reflected, with respect to the bottom, source point.
For ψ(x, y, z) we obtain the formulation

ψxx + ψyy + ψzz = 0,

ψy = 0 at y = −h,

ψy + υψxx = 1

4π

{
∂

∂y

(
1

r
+ 1

r̃

)
+ υ

∂2

∂x2

(
1

r
+ 1

r̃

)}

:= r(x, z;x0, y0, z0)

at y = 0.

(2.115)

If we apply the double Fourier transform to the function ψ ,

�(α,y,β) =
∫ ∞

−∞

∫ ∞

−∞
ei(αx+βz)ψ(x, y, z)dx dz, (2.116)
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we obtain the following ordinary differential equation and boundary conditions
for �:

�yy − (α2 + β2)� = 0,

�y = 0 at y = −h,

�y − υα2� = R(α,β;x0, y0, z0) at y = 0.

(2.117)

Application of (2.70) leads to the following expression for R(α,β;x0, y0, z0),

R(α,β;x0, y0, z0) = −k + υα2

k
e−kh cosh(k(y0 + h))ei(αx0+βz0), (2.118)

where k = √
α2 + β2. The solution of (2.117) becomes

�(α,y,β) = −k + υα2

k
e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − υα2 cosh(kh)
ei(αx0+βz0). (2.119)

The inverse transform (2.73) of �(α,y,β) becomes

ψ(x, y, z) = −1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−kh cosh(k(y + h)) cosh(k(y0 + h))

· k + υα2

k

e−i(α(x−x0)+β(z−z0))

k sinh(kh) − υα2 cosh(kh)
dα dβ (2.120)

and after the introduction of polar coordinates in the Fourier plane (2.52), (2.53)

ψ(x, y, z) = −1

4π2

∫ ∞

0

∫ 2π

0
e−kh cosh(k(y + h)) cosh(k(y0 + h))

· (1 + kυ cos2 ϑ)e−ik((x−x0) cosϑ+(z−z0) sinϑ)

sinh(kh) − kυ cos2 ϑ cosh(kh)
dk dϑ. (2.121)

The integral is singular at k = 0. Therefor we make use of the fact that we may add
a constant, with respect to x, y and z to the solution of (2.113). Hence a solution of
(2.113) may be written as

ϕ(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ̃(x, y, z) (2.122)

with

ψ̃(x, y, z) = −1

4π2

∫ ∞

0
dk

∫ 2π

0
dϑ

e−kh

sinh(kh) − kυ cos2 ϑ cosh(kh)

· {cosh(k(y + h)) cosh(k(y0 + h))(1 + kυ cos2 ϑ)

· e−ik((x−x0) cosϑ+(z−z0) sinϑ) − 1
}
. (2.123)
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This solution does not fulfil the condition that upstream (x → −∞) no wavy dis-
turbance may be present. To obey this condition a path of integration along the
singularity on the real k-axis has to be chosen. Depending on the sign of cosϑ the
choice will be different.

We notice that for cosϑ > 0 and x − x0 > 0 we may close the integral with
respect to k in the fourth quadrant of the complex k-plane. For cos2 ϑ < h

υ
we find

a simple pole on the real k-axis. This means that to obtain a wavy contribution this
singularity on the real axis must be inside the contour. We obtain a contribution of
the pole plus an integral along the negative imaginary axis. This integral represents
an exponentially decaying contribution. If however x − x0 < 0 we close the integral
in the first quadrant and we obtain a contribution of an integral along the positive
imaginary axis only.

Next we consider cosϑ < 0 and x − x0 > 0 and we may close the integral in the
first quadrant of the complex k-plane. We obtain a contribution of the singularity on
the real axis if we chose the pole inside the contour. Again the integral along the
imaginary axis is exponentially decaying. If x − x0 < 0 we may close the contour
in the fourth quadrant. This gives rise to a decaying contribution only.

We may reformulate the integral part of the solution by splitting up the integration
with respect to ϑ into four parts of length π/2 and to combine the integral. In this
way we obtain

ψ̃(x, y, z) = − 1

π2

∫ ∞

0
dk

∫ π
2

0
dϑ

e−kh

sinh(kh) − kυ cos2 ϑ cosh(kh)

{
cosh(k(y + h))

· cosh(k(y0 + h))(1 + kυ cos2 ϑ) cos((x − x0)

· cosϑ) cos((z − z0) sinϑ) − 1
}
. (2.124)

In the Handbook of Physics [19], Wehausen gives further details of this expression.
To obtain an expression for the deep water case we let h → ∞ in expression

(2.123) and obtain.

ϕ(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

2π2

∫ ∞

0
dk

∫ π

0
dϑ

1

1 − kυ cos2 ϑ

· ek((y+y0)−i(x−x0) cosϑ) cos(k(z − z0) sinϑ) (2.125)

where we used (2.70) to obtain the contribution of a singularity at the point
(x0,−y0, z0), hence r̄ is defined as

√
(x − x0)2 + (y + y0)2 + (z − z0)2. The con-

tour in the k-plane has to be chosen as before. For cosϑ > 0 the contour passes the
singularity in the upper plane, while for cosϑ < 0 the contour passes the singularity
in the lower plane. The contribution of the pole gives a far-field pattern comparable
with the moving pressure point wave field described in Sect. 2.4.
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2.7.2 Oscillating Singularity

The boundary value problem for the disturbance of a steady flow is described
in (1.32). We consider a harmonic point source and assume that the potential func-
tion can be written as

φ(x, y, z, t) = eiωt φ̂(x, y, z).

The boundary value problem for the disturbance of a point source in (x0, y0, z0)
becomes

ϕxx + ϕyy + ϕzz = δ(x − x0, y − y0, z − z0)e
iωt . (2.126)

If we introduce ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt , the boundary value problem to be
solved becomes

ϕ̂xx + ϕ̂yy + ϕ̂zz = δ(x − x0, y − y0, z − z0),

ϕ̂y = 0 at y = −h,

υφ̂xx + 2iτ ϕ̂x − νϕ̂ + ϕ̂y = 0 at y = 0,

(2.127)

where we introduced the parameters ν = ω2/g, υ = U2/g,and τ = (ωU)/g; notice
that τ 2 = νυ .

ϕ̂(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ(x, y, z). (2.128)

Introduction of the double Fourier transform leads to the following ordinary differ-
ential equation for the transform of ψ ,

�yy − (α2 + β2)� = 0,

�y = 0 at y = −h,

�y − (υα2 + 2τα + ν)� = S(α,β;x0, y0, z0) at y = 0.

(2.129)

Application of (2.70) leads to the following expression for S(α,β;x0, y0, z0),

S(α,β;x0, y0, z0) = −k + υα2 + 2τα + ν

k
e−kh cosh(k(y0 + h))ei(αx0+βz0),

(2.130)
where k = √

α2 + β2. The solution of (2.129) becomes

�(α,y,β) = −k + υα2 + 2τα + ν

k
e−kh

· cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − (υα2 + 2τα + ν) cosh(kh)
ei(αx0+βz0). (2.131)

The inverse transform of �(α,y,β) gives the solution of (2.127). The choice of the
path of integration will be elucidated in the deep water case. Hence we consider the
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limit h → ∞. We rewrite expression (2.131) in the form

�(α,y,β) =
(

1

2
− L (k,α)

)
ek(y+y0)ei(αx0+βz0)

k
. (2.132)

The function L (k,α) becomes, in polar coordinates in the Fourier plane,

lim
h→∞L (k, θ) = k

k − (υα2 + 2τα + ν)
= gk

gk − (ω + kU cos θ)2
. (2.133)

Finally we obtain an expression for ϕ̂(x, y, z) where we still have to choose the
proper path of integration in the complex k-plane

ϕ(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

2π2

∫ ∞

0

∫ π

0

gk

gk − (ω + kU cos θ)2

· ek((y+y0)−i(x−x0) cosϑ) cos(k(z − z0) sinϑ)dk dϑ. (2.134)

We will investigate the zeros of the denominator. The quadratic equation has two
zeros,

gk± = 1 − 2τ cosϑ ± √
1 − 4τ cosϑ

2τ 2 cos2 ϑ
ω2. (2.135)

First of all we notice that, for values of ϑ for which we have

1 − 4τ cosϑ < 0, (2.136)

we find no singularities of the integrand along the real k-axis. Hence for τ > 1/4 we
find a ϑ interval where the k-integral is regular for 0 ≤ ϑ < γ with cosγ = 1/(4τ).
For τ < 1/4 we have γ = 0. Next, to determine the contour of integration when two
poles lie on the positive real axis we have to consider the condition in the far field.
It is easy to show that for ϑ > γ both roots of the quadratic equation are situated on
the positive real axis of the complex k-plane. It is convenient to consider the poles
for small values of U and ω successively. In both cases τ becomes small, so we
consider the two poles for τ → 0. We find

lim
τ→0

k− = ω2

g
and lim

τ→0
k+ = g

U2 cos2 ϑ
. (2.137)

In the oscillatory case without current we have seen that the contour passes the pole
in the first quadrant of the complex k-plane, for all values of ϑ . Actually we could
carry out the ϑ integral in that case. Hence, we conclude that this is also the case for
the singularity in k−.

In the case of a steady source in a current we have seen that we have to con-
sider the sign of cosϑ because in the downstream direction the far field shows a
wavy character. Hence for cosϑ > 0 the contour of integration passes k+ in the first
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Fig. 2.6 Lines of integration

quadrant, while for cosϑ < 0 the contour passes k+ in the fourth quadrant of the
complex k-plane (see Fig. 2.6). Finally the solution can be written as

ϕ(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

2π2

{∫ ∞

0

∫ γ

0
+

∫
C1

∫ π
2

γ

+
∫

C2

∫ π

π
2

}

· gkek((y+y0)−i(x−x0) cosϑ)

gk − (ω + kU cos θ)2
cos(k(z − z0) sinϑ)dk dϑ. (2.138)



Chapter 3
Boundary Integral Formulation and Ship
Motions

In the field of ship hydrodynamics the application of integral equations to solve the
linear ship motion problem is widely used. For linear problems harmonic in time
there are different ways to formulate an integral equation. A popular formulation,
described in this chapter, is the one in the frequency domain. A less frequently used
approach is a formulation in the time domain. The advantage of the latter approach
is that the source function is rather simple and that it can be extended to the non
linear case with some minor effort. For the steady ship wave problem a non-linear
approach is the currently most used. In this chapter we give an introduction to these
formulations. These methods consist of a description by means of regular Fredholm
integral equations. In this chapter we present the method based on Green’s theo-
rem. To outline the method and the difficulties encountered we treat a simpler case,
namely the diffraction of an acoustic wave by a smooth object. Hence we first con-
sider the Helmholz equation for the scattering of acoustic waves, instead of the free
surface problem.

A short introduction is given to the linear ship motion problem. The structure
of the equations of motion is explained by the treatment of an object that is free
to move in one degree of freedom, namely the vertical heave motion. The coeffi-
cients equations of motion of the general problem, with six degrees of freedom,
can be determined by means of the numerical solution of the integral equations for
the potential. In the same way the exciting forces may be computed. For the zero
forward speed case this approach is generally used. Extension to the forward speed
case is possible if the steady flow field around the ship does not differ much from
the uniform velocity. Here we describe a way to apply a slow speed approximation.

3.1 Scattering of Acoustic Waves

The equation for a time dependent acoustic disturbance ū(x, y, z, t) is the well-
known wave equation

ūxx + ūyy + ūzz = 1

c2
ūt t , (3.1)
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where c is the specific velocity of sound in the medium. We look for harmonic wave
solutions of this equation. Hence we look for solutions of the form

ū(x, y, z, t) = u(x, y, z)eiωt . (3.2)

The function u now becomes a solution of the Helmholz equation

uxx + uyy + uzz + ω2

c2
u = �u + k2u = 0 (3.3)

where � is the three-dimensional Laplace operator and k = ω
c

is the wave number.
The acoustic field due to a point source is a solution of

�ũ + k2ũ = δ(x − ξ, y − η, z − ζ ). (3.4)

The solution can be constructed by either introduction of spherical coordinates or in
analogy with the method used in Sect. 2.3 by means of a double Fourier transform
performed for instance in the x and z coordinates. We follow the former procedure.
The solution of (3.4) only depends on the distance

r =
√

(x − ξ)2 + (y − η)2 + (z − ζ )2 = |xxx − ξξξ |

to the source. We obtain the following ordinary differential equation for ũ(R),

ũrr + 2

r
ũr + k2ũ = 0 for r �= 0. (3.5)

Hence the singular solution of (3.4) becomes a linear combination of ũ± = e±ik|xxx−ξξξ |
|xxx−ξξξ | .

The solution of the source problem must consist of outgoing waves only, hence we
choose

ũ = − 1

4π

e−ik|xxx−ξξξ |

|xxx − ξξξ | . (3.6)

The choice of the factor − 1
4π

is easily checked by taking the limit case for k → 0.
The result reduces to the singular solution of the Laplace equation where we require
a unit outgoing flux through a sphere around the source.

We shall construct some possible boundary integral formulation for the scattering
problem. We consider a plane incident wave scattered by a smooth penetrable or
impenetrable convex object. The general boundary condition on the object is Au +
B ∂u

∂n
= 0, where n is along the normal at the scattering surface S , see Fig. 3.1.

In analogy with the ship wave problem we take as boundary condition ∂u
∂n

= 0. To
obtain an integral equation along the surface we first consider a point (x, y, z) in the
domain D−, inside the object and apply Green’s theorem to the functions u and ũ.
In the case of exterior scattering this is an artificial problem. We do so because it
will give us insight into the behaviour the mathematical formulation of the exterior
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Fig. 3.1 Scattering object

physical scattering problem. We denote the field in D− by u−. The Green’s theorem
can be written in the form∫∫∫

D−
(u�ũ − ũ�u)dV =

∫∫
S

(
u

∂ũ

∂n
− ũ

∂u

∂n

)
ds, (3.7)

where n is the outward normal to the surface of the object. Notice that ũ is a solution
of (3.4), hence we have to distinguish three positions of the point xxx = (x, y, z). We
find

u−(xxx) =
∫∫
S

(
u−(ξξξ)

∂ũ(xxx,ξξξ)

∂nξξξ

− ũ(xxx,ξξξ)
∂u−(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ D−,

u−(xxx)

2
=

∫∫
S

(
u−(ξξξ)

∂ũ(xxx,ξξξ)

∂nξξξ

− ũ(xxx,ξξξ)
∂u−(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ S ,

0 =
∫∫
S

(
u−(ξξξ)

∂ũ(xxx,ξξξ)

∂nξξξ

− ũ(xxx,ξξξ)
∂u−(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ D+.

(3.8)

The field in the external region D+ can be written as uinc + u+. Application of the
Green’s theorem in the external field yields

0 =
∫∫
S

(
u+(ξξξ)

∂ũ(xxx,ξξξ)

∂nξξξ

− ũ(xxx,ξξξ)
∂u+(ξξξ)

∂nξξξ

)
dsξξξ + J∞ for xxx ∈ D−,

−u+(xxx)

2
=

∫∫
S

(
u+(ξξξ)

∂ũ(xxx,ξξξ)

∂nξξξ

− ũ(xxx,ξξξ)
∂u+(ξξξ)

∂nξξξ

)
dsξξξ + J∞ for xxx ∈ S ,

−u+(xxx) =
∫∫
S

(
u+(ξξξ)

∂ũ(xxx,ξξξ)

∂nξξξ

− ũ(xxx,ξξξ)
∂u+(ξξξ)

∂nξξξ

)
dsξξξ + J∞ for xxx ∈ D+.

(3.9)

The minus sign on the left-hand side is due to the fact that the normal is directed
towards the interior of the domain D+. The contribution of a surface in the far
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field is denoted by J∞. We may take a sphere, S∞, with centre at (x0, y0, z0) and
radius r . The far-field integral can then be written as

J∞ = −
∫∫
S∞

(
u+ ∂ũ

∂r
− ũ

∂u+

∂r

)
ds

= lim
r→∞

1

4π

π
2∫

− π
2

2π∫
0

(
u+ ∂ e−ikr

r

∂r
− e−ikr

r

∂u+

∂r

)
r2 sin(θ)dθ dφ. (3.10)

The appropriate far-field conditions are

lim
r→∞u+ = 0 and lim

r→∞ r

(
iku+ + ∂u+

∂r

)
= 0. (3.11)

It is easy to show that r in this formulation can be taken as the distance to the
origin of the coordinate system. The latter condition is the well-known Sommerfeld
radiation condition. Only outgoing waves are permitted in the scattered far field.
We notice that if we had taken as time dependency e−iωt , the sign in the radiation
condition changes. So from now on we take J∞ = 0 in formulation (3.9).

There are several ways to obtain an integral equation for the exterior Neumann
problem. Hence the boundary condition for the function u+ becomes ∂u+

∂n
= − ∂uinc

∂n

on S .

3.1.1 Direct Method

The second relation in (3.9) gives an integral equation for the function u+ on S .
After solving this equation numerically, the function u+ in the domain D+ is then
given by the third relation in (3.9). In a slightly different, commonly used, notation
the integral equation becomes

1

2
u+(x) = −

∫∫
S

(
u+(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

+ G(xxx,ξξξ)
∂uinc(ξξξ)

∂nξξξ

)
dsξξξ

for xxx ∈ S , (3.12)

where

G(xxx,ξξξ) = ũ(xxx,ξξξ) = − 1

4π

e−ikr

r

with r = |xxx − ξξξ |.
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3.1.2 Source Distribution

Let us combine (3.8) and (3.9). If we subtract the two expressions in the domain
D+ we obtain the following expression for u+

−u+(xxx) =
∫∫
S

(
(u+(ξξξ) − u−(ξξξ))

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂(u+(ξξξ) − u−(ξξξ))

∂nξξξ

)
dsξξξ .

(3.13)

The inner problem is an artificial one, so we may choose its boundary condition
on S . We take

u+(ξξξ) = u−(ξξξ) for ξξξ ∈ S

and define

σ(ξξξ) = ∂(u+(ξξξ) − u−(ξξξ))

∂nξξξ

for ξξξ ∈ S . (3.14)

The expression for u+ now becomes

u+(xxx) =
∫∫
S

σ(ξξξ)G(xxx,ξξξ)dsξξξ . (3.15)

This expression can be interpreted as a distribution of sources, over S , with strength
σ(ξξξ) and influence function G(xxx,ξξξ). For the Neumann problem we obtain an inte-
gral equation by differentiating (3.15) with respect to the normal direction at the
surface. We obtain

∂u+(xxx)

∂nxxx

= −∂uinc(xxx)

∂nxxx

= 1

2
σ(xxx) +

∫∫
S

σ(ξξξ)
∂G(xxx,ξξξ)

∂nxxx

dsξξξ . (3.16)

The question now arises whether this integral equation has a unique solution, when
the exterior problem has a unique solution. The answer to this question is that for
certain frequencies the integral equation has a non-unique solution. This is easy to
show by studying the artificial interior formulation for a homogeneous Dirichlet
problem, i.e., u− = 0 for xxx ∈ S . In this case we may formulate an integral equation
for the normal derivative u−

n at S . The first expression in (3.8) reads

u−(xxx) = −
∫∫
S

G(xxx,ξξξ)
∂u−(ξξξ)

∂nξξξ

dsξξξ .

Differentiation of this expression in the direction of the normal yields

∂u−(xxx)

∂nxxx

= −
∫∫
S

∂G(xxx,ξξξ)

∂nxxx

∂u−(ξξξ)

∂nξξξ

dsξξξ for xxx ∈ D−.
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Fig. 3.2 Local
approximation

If we let xxx approach S from the inside region D− we have to evaluate the integral
carefully near the singular point. We consider the integral over the surface of a
small circle, with radius ρ, around the projection of the singular point, on S . We
may consider the surface locally flat, see Fig. 3.2.

The integral may be approximated, for small values of the distance ε to the sur-
face, by

1

4π

∂u−(xxx)

∂nxxx

ρ∫
0

2π∫
0

ε

(R2 + ε2)3/2
R dR dθ = 1

2

∂u−(xxx)

∂nxxx

+ O(ε). (3.17)

Hence we obtain a relation for u−
n at the surface:

1

2

∂u−(xxx)

∂nxxx

+
∫∫
S

∂G(xxx,ξξξ)

∂nxxx

∂u−(ξξξ)

∂nξξξ

dsξξξ = 0 for xxx ∈ S . (3.18)

The integral should be interpreted as the principle value integral over the surface S .
It is well known that, at certain frequencies, the internal homogeneous Dirichlet
problem exhibits resonance. Hence (3.18) has non-zero solutions at these frequen-
cies. This means that the equation for the source function (3.16) has non-unique
solutions at the same frequencies, while in the exterior region no resonance phe-
nomenon occurs. The attempt to find a solution of the exterior Neumann problem
by means of a source distribution breaks down at these irregular frequencies.

3.2 Scattering of Free Surface Waves

For offshore engineering one is interested in the forces and moments acting on fixed
or floating structures. To compute these forces one must take into account the effect
of the scattered field. Hence, we first consider the scattering of free surface waves
due to a fixed floating object. The total wave field results in a pressure distribution



3.2 Scattering of Free Surface Waves 47

Fig. 3.3 Object in waves

along the object. Hence the forces and moments may be computed. If the body is
free to move in its six degrees of freedom it excites waves as well, resulting in the
so-called reaction forces and moments. The forces and moments can be split up in a
part in phase with the motion and a part out of phase with the motion. The first one
is generally associated with the so-called added mass and the second with the wave
damping.

3.2.1 Fixed Object

We first consider the scattering of waves at finite water depth by a fixed object, see
Fig. 3.3. The potential in the outside domain D+ is written as

ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt = (φinc(x, y, z) + φ(x, y, z))eiωt . (3.19)

This potential function φ(x, y, z) has to obey the linearised free surface condi-
tion at �+. In the inner domain D− we define an auxiliary potential function
φ−(x, y, z). In principle one is free to choose a condition at the free surface �−
inside the body. Later we will make use of this fact to avoid the irregular frequen-
cies. We consider the water depth to be finite. We apply Green’s theorem in the
Domain D+:
∫∫∫
D+

(φ�G − G�φ)dV = −
∫∫

S

(
φ(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ(ξξξ)

∂nξξξ

)
dsξξξ , (3.20)

where n is the normal vector pointing into the domain D+. S is the total bounding
surface of the fluid domain consisting of S , the bottom B, the free surface �+
and a closing surface S ∞ in the far field. For the source function, which is often
called the Green’s function, we choose (2.65) or (2.75) for the finite water depth case
and (2.76) for the deep water case. Doing so the integral over the bounding surface
reduces to an integral over the body surface S and the surface at infinity S ∞. If
we make use of the appropriate radiation condition for the scattered waves,

lim
R→∞φ = 0 and lim

R→∞
√

R

(
ikφ + ∂φ

∂R

)
= 0 (3.21)
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where R is the horizontal distance to the origin of the coordinate system the integral
over S ∞ vanishes as well and S reduces to S . If we choose the source function
as mentioned we obtain

0 = −
∫∫
S

(
φ(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ D−,

φ(xxx)

2
= −

∫∫
S

(
φ(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ S ,

φ(xxx) = −
∫∫
S

(
φ(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ D+.

(3.22)

Application of the Green theorem in the domain inside the floating body leads to a
relation for the auxiliary potential φ−:

φ−(xxx) =
∫∫
S

(
φ−(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ−(ξξξ)

∂nξξξ

)
dsξξξ + J � for xxx ∈ D−,

φ−(xxx)

2
=

∫∫
S

(
φ−(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ−(ξξξ)

∂nξξξ

)
dsξξξ + J � for xxx ∈ S ,

0 =
∫∫
S

(
φ−(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

− G(xxx,ξξξ)
∂φ−(ξξξ)

∂nξξξ

)
dsξξξ + J � for xxx ∈ D+,

(3.23)
with

J � =
∫∫
�−

(
φ−(ξξξ)

∂G(xxx,ξξξ)

∂η
− G(xxx,ξξξ)

∂φ−(ξξξ)

∂η

)
dξ dζ. (3.24)

Making use of the free surface condition (2.35) for the source function we obtain

J � =
∫∫
�−

(
ω2

g
φ−(ξ,0, ζ ) − ∂φ−(ξ,0, ζ )

∂η

)
G(xxx, ξ,0, ζ )dξ dζ. (3.25)

We are free to choose a boundary condition on �− for φ−. The most obvious choice
is the free surface condition (2.35). In this case the contribution of (3.25) becomes
zero. This results in an auxiliary inner problem with sloshing modes for both the
homogeneous Neumann and Dirichlet problems. For a simple object, such as, a rect-
angular barge we can determine the frequencies of the eigen-modes for both cases
explicitly.
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3.2.2 Direct Method

We consider the Neumann problem with

∂φ(xxx)

∂nxxx

= −∂φinc(xxx)

∂nxxx

for xxx ∈ S .

Similarly as in the acoustic problem, the second relation of (3.22) may be used as
an integral equation for φ on S :

φ(xxx)

2
= −

∫∫
S

(
φ(ξξξ)

∂G(xxx,ξξξ)

∂nξξξ

+ G(xxx,ξξξ)
∂φinc(ξξξ)

∂nξξξ

)
dsξξξ for xxx ∈ S . (3.26)

The solution of this equation is not unique for certain irregular frequencies, asso-
ciated with a resonant inner problem. This may be avoided by means of a different
choice of the Green’s function. In this case the Green’s function may be extended
by poles and multi-poles inside the object. There is extensive literature available on
this approach in the acoustic case, however, we do not pursue this approach. In the
description of the source distribution a different approach is possible.

3.2.3 Source Distribution

We have seen for the acoustic problem that we may obtain the solution in terms
of a source distribution by adding the two expressions in (3.22) and (3.23). We are
free to choose a boundary condition on S for the inner potential φ−. If we choose

φ− = φ and define σ = ∂φ
∂nξξξ

− ∂φ−
∂nξξξ

on S we obtain

φ−(xxx) =
∫∫
S

σ(ξξξ)G(xxx,ξξξ)dsξξξ + J � for xxx ∈ D−,

φ(xxx) =
∫∫
S

σ(ξξξ)G(xxx,ξξξ)dsξξξ + J � for xxx ∈ D+ ∪ S .

(3.27)

If we choose the free surface condition for the inner potential we have

φ(xxx) =
∫∫
S

σ(ξξξ)G(xxx,ξξξ)dsξξξ for xxx ∈ D+ ∪ S . (3.28)

For φ we have the Neumann condition on S ,

∂φ(xxx)

∂nxxx

= −∂φinc(xxx)

∂nxxx

. (3.29)
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Hence we obtain the following integral equation for the source strength σ :

−∂φinc(xxx)

∂nxxx

= 1

2
σ(xxx) +

∫∫
S

σ(ξξξ)
∂G(xxx,ξξξ)

∂nxxx

dsξξξ for xxx ∈ S . (3.30)

It is easy to show that, for frequencies for which the internal Dirichlet problem has
an eigen solution, hence a sloshing mode, this integral equation becomes singular
and has no unique solution. Hence the simple source distribution along the hull may
not be used at those frequencies.

It is possible to find a unique solution by a different choice of the condition at
y = 0 for the inner potential φ−. For instance we choose the homogeneous Neumann

condition ∂φ−
∂y

= 0 where the inner problem has a unique solution for all frequencies.
We obtain a combined set of equations for the source strength σ on S and the
function φ− at y = 0.

− ∂φinc(xxx)

∂nxxx

= 1

2
σ(xxx) +

∫∫
S

σ(ξξξ)
∂G(xxx,ξξξ)

∂nxxx

dsξξξ

+
∫∫
�−

ω2

g
φ−(ξ,0, ζ )

∂G(xxx, ξ,0, ζ )

∂nxxx

dξ dζ for xxx ∈ S ,

φ−(xxx) =
∫∫
S

σ(ξξξ)G(xxx,ξξξ)dsξξξ

+
∫∫
�−

ω2

g
φ−(ξ,0, ζ )G(xxx, ξ,0, ζ )dξ dζ for xxx ∈ �−.

(3.31)

If the exterior problem has a unique solution, it will be obtained by solving this set of
equations. Then the solution of this set of equations is unique for all frequencies. It
is known that some extremely artificial shapes don’t have a unique solution. The hull
forms used in ship design and offshore applications generally have unique solutions.

3.2.4 Motions of a Floating Object, Ship Motions

If the body moves in one of its six (i = 1,2, . . . ,6) degrees of freedom, the normal
velocity at the hull of the body is given by

∇φ(i) · n = V (i) for xxx ∈ S . (3.32)

The motion of the object consists of a translation XXX of the centre of gravity of the
object and a rotational motion ��� relative to the centre of gravity xxxg of the body.
V (i) corresponds to the translation components XXX for (i = 1,2,3) and to the rota-
tional components ��� for (i = 4,5,6). The combined displacement vector is given
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by ααα = XXX + ��� × (xxx − xxxg) = α̃αα exp(iωt) for harmonic motions. In general notation
we write

∂φ(i)

∂n
= V (i) = iωα̃αα(i) · n. (3.33)

If we write the potential function φ(i)(xxx) as a source distribution, with strength
σ (i)(ξξξ), over S and in the case of an irregular frequency an integral J � over the
plane y = 0 inside the body, we obtain the set of (3.31) with − ∂φinc(xxx)

∂nxxx
replaced by

V (i). For the potential of the incident wave we often use the notation φ(0)(xxx) and
for the scattering potential φ(7)(xxx). The pressure distribution, due to the harmonic
potential function (3.19), along the floating fixed body may be calculated by means
of the linearised version of the Bernoulli equation (1.13),

p(x, y, z, t)

ρ
= −ϕt (x, y, z, t) = −iω(φ0(x, y, z) + φ7(x, y, z))eiωt . (3.34)

The linearised harmonic exciting force and moment can now be computed by means
of integration of the pressure along the hull. The oscillating hydrodynamic excita-
tion forces and moments are

F̃exc = Fexceiωt = −
∫∫
S

pnnndS = ρiωeiωt

∫∫
S

(φ0(x, y, z) + φ7(x, y, z))nnndS,

M̃exc = Mexceiωt = −
∫∫
S

p(xxx −xgxgxg) ×nnndS

= ρiωeiωt

∫∫
S

(φ0(x, y, z) + φ7(x, y, z))(xxx − xgxgxg) ×nnndS.

(3.35)

The harmonic motion of the object gives rise to reaction forces and moments. For
j = 1, . . . ,6 we obtain

F̃j = Fj eiωt = −
∫∫
S

pnnndS = ρiωeiωt

∫∫
S

φj (x, y, z)nnndS,

M̃j = Mj eiωt

= −
∫∫
S

p(xxx −xgxgxg) ×nnndS = ρiωeiωt

∫∫
S

φj (x, y, z)(xxx − xgxgxg) ×nnndS.

(3.36)

The motion is described by Newton’s second law,

(−ω2M + C )YYY =
(

F
M

)
+

(
Fexc

Mexc

)
(3.37)

where YYY = (X1,X2,X3,�1,�2,�3)
T is a vector containing the first-order complex

translation and rotation amplitudes. M is the mass matrix containing the mass of the
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ship and the moments of inertia. The reaction force due to a constant displacement
YYY is described by CYYY , hence the matrix C may be referred to as the linear spring
matrix. The forces and moments also depend on the motion, as can be seen in (3.36).
We rewrite this part of the force in terms of the added mass and wave damping
matrices. If we write

{Fij } =
(

F
M

)
,

we define the added mass matrix A (ω) and wave damping matrix B(ω), with en-
tries Aij and Bij respectively, as follows:

(
F
M

)
= (ω2A (ω) − iωB(ω))YYY . (3.38)

In the frequency domain the equations of motion can now be written as

{−ω2(M + A (ω)) + iωB(ω) + C }YYY =
(

Fexc

Mexc

)
. (3.39)

The coefficients of this set of equations depend on ω. In the time-domain, the equa-
tion for non-harmonic motions may be written as

(M + A )
∂2ỸYY

∂t2
+ C ỸYY +

∫ t

0
K (t − s)

∂ỸYY

∂s
(s)ds =

(
F̃exc

M̃exc

)
. (3.40)

In this equation K (t) is the step-response matrix, whose entries are the step-
response functions Kij . These are oscillating, rapidly-decaying functions which
account for the memory part of the equation of motion. The relation between
frequency-dependent added mass and damping coefficients and the step-response
functions are

A (ω) = A − 1

ω

∫ ∞

0
K (t) sin(ωt)dt,

B(ω) =
∫ ∞

0
K (t) cos(ωt)dt.

(3.41)

The frequency-dependent damping is the Fourier-cosine transform of the step re-
sponse function, hence the inverse transform leads to the relation

K (t) = 2

π

∫ ∞

0
B(ω) cos(ωt)dω. (3.42)

The use of this method to calculate the step-response function is very sensitive to
the accuracy of the damping coefficients at high and small values of the frequency.
The use of asymptotic expansions is recommended [15].
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Fig. 3.4 Heave motion

3.2.5 Heave Motion of a Floating Object

We will justify the structure of (3.40) by a direct formulation of an initial value
problem. We consider a floating object in infinitely deep still water. At t = 0 it is
forced to move in one degree of freedom, namely the vertical direction see Fig. 3.4.
This restriction is not essential, the derivation given below can easily be extended to
six degrees of freedom. The vertical motion is defined as follows:

xxxg = (0,0,0) for t ≤ 0,

xxxg = (0, Y (t),0) for t > 0.
(3.43)

We consider the infinitely deep water case, hence the problem to be solved is

ϕxx + ϕyy + ϕzz = 0,

ϕtt + gϕy = 0, at y = 0,

ϕ → 0, as y → −∞,

∇ϕ ·nnn = Ẏ (t)n2 = f (xxx, t), at S.

(3.44)

We assume that the system is at rest for t ≤ 0 and apply the Laplace transform

�(xxx, s) =
∫ ∞

0
e−stϕ(xxx, t)dt.

The Laplace operator remains unchanged by this transformation. The free surface
and boundary condition are transformed in

s2� + g�y = 0, at y = 0,

∇� ·nnn = F(xxx, s), at S.
(3.45)

To obtain the solution �(xxx, s) we first consider the source function for this problem.
The source function, which obeys the free surface condition in (3.45), follows from

(2.77). If we insert ν = − s2

g
in (2.77) we obtain for a source function with unit

strength

�s(xxx, s) = − 1

4πr
+ 1

4πr̄
− 1

2π

∫ ∞

0

gk

gk + s2
ek(y+y0)J0(kR)dk. (3.46)
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We consider a source in the Laplace plane with strength σ(s). In the time domain
this becomes a source with strength σ(t), at a fixed position, and it is obtained by
the inverse Laplace transform of σ(s)�s(xxx, s). We obtain

ϕs(xxx, t) = −σ(t)

4πr
+ σ(t)

4πr̄

− 1

2π

∫ ∞

0

∫ t

0
σ(τ)

√
gk sin(

√
gk(t − τ))ek(y+y0)J0(kR)dτ dk. (3.47)

The first part of (3.47) is in accordance with the result (13.49) in the book of
Wehausen [19]. This source function may be used in the application of Green’s
theorem to obtain an integral equation for the time dependent potential function
ϕ(xxx, t). However for our purpose it is more convenient to define a Green’s function
G(xxx,ξξξ, s), where xxx = ξξξ is the position of the singularity, in the Laplace domain,
which fulfils the homogeneous boundary condition at the surface S of the floating
object:

∇G ·nnn = 0, at S. (3.48)

Application of Green’s theorem gives

�(xxx, s) =
∫∫
S

G(xxx,ξξξ, s)F (ξξξ, s)dSξξξ

= V (s)

∫∫
S

G(xxx,ξξξ, s)n2(ξξξ)dSξξξ , (3.49)

where V (s) is the Laplace transform of the vertical motion Ẏ (t). One must realise
that the Green’s function G can not be determined explicitly. However the reason
that it is introduced is that we wish to verify the structure of the equation of motion
(3.40). To do so, we define Ga as

Ga = 1

4π

{
− 1

|xxx − ξξξ | + 1

|xxx − ξ̄̄ξ̄ξ |
}

+ ga(xxx,ξξξ, s) (3.50)

where ga = 0 at y = 0 and ∂Ga

∂n
= 0 at the surface S. This gives a unique decompo-

sition of G, i.e.,

G(xxx,ξ, sξ, sξ, s) = Ga(xxx,ξξξ) + Ka(xxx,ξ, sξ, sξ, s). (3.51)

We are now able to rewrite (3.49) in the form

�(xxx, s) = V (s)

∫∫
S

Ga(xxx,ξξξ)n2(ξξξ)dSξξξ + V (s)

∫∫
S

Ka(xxx,ξξξ, s)n2(ξξξ)dSξξξ . (3.52)

The inverse Laplace transform of (3.52) gives

ϕ(xxx, t) = Ẏ (t)ψ(xxx) +
∫ t

0
χ(xxx, t − τ)Ẏ (τ )dτ (3.53)



3.2 Scattering of Free Surface Waves 55

where

ψ(xxx) =
∫∫
S

Ga(xxx,ξξξ)n2(ξξξ)dSξξξ (3.54)

and

χ(t) =
∫∫
S

ka(xxx,ξξξ, t)n2(ξξξ)dSξξξ (3.55)

where ka(xxx,ξξξ, t) is the inverse Laplace transform of Ka(xxx,ξξξ, s). We are now able
to compute the pressure along the hull S.

p(xxx, t) = − 1

ρ
ϕt (xxx, t) = − 1

ρ

{
Ÿ (t)ψ(xxx) +

∫ t

0
χ̇ (xxx, t − τ)Ẏ (τ )dτ

}
. (3.56)

Next we may compute the forces and moments acting on the hull. We restrict our-
selves to the heave force, while the other components can be determined in the same
manner,

F2(t) = − 1

ρ

∫∫
S

ϕt (xxx)n2(xxx)dS = 1

ρ

{
Ÿ (t)

∫∫
S

ψ(xxx)n2(xxx)dS

+
∫∫
S

∫ t

0
χ̇ (xxx, t − τ)Ẏ (τ )n2(xxx)dτ dS

}
. (3.57)

The Newton equation for the heave motion now becomes

M
d2Y(t)

dt2
+ c22Y(t) = F2(t) + Fext(t), (3.58)

where Fext(t) is an external force acting on the object. If we compare result (3.57)
with (3.40) for the heave motion

(M + ā22)
d2Y(t)

dt2
+ c22Y(t) +

∫ t

0
K22(t − τ)

dY(τ)

dτ
dτ = Fext(t), (3.59)

we see that

ā22 = − 1

ρ

∫∫
S

ψ(xxx)n2(xxx)dS,

K22(t) = − 1

ρ

∫∫
S

χ̇(xxx, t)n2(xxx)dS.

(3.60)

In a similar way we may obtain results for the motion in six degrees of freedom
to justify the structure of (3.40) completely, see [14]. The equations for the ship
motions for a ship sailing in waves can be obtained as long as the steady part of the
potential can be described by Ux, which means for thin or slender ships.
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Fig. 3.5 Coordinate system

3.3 Slow Speed Approximation

We first derive the equations for the potential function ϕ(x, t), such that the fluid
velocity u(x, t) is defined as u(x, t) = ∇ϕ(x, t). The total potential function will be
split up in a steady and a non-steady part in the following way:

ϕ(x, t) = Ux + φ(x;U) + φ̃(x, t;U).

In this formulation U is the incoming unperturbed velocity field, obtained by con-
sidering a coordinate system fixed to the ship moving under a drift angle β see
Fig. 3.5. In our approach this angle need not be small. The time dependent part of
the potential consists of an incoming, diffracted and radiated (for the six modes of
motion) wave

φ̃(x, t;U) = φ̃inc(x, t;U) + φ̃(7)(x, t;U) +
6∑

j=1

φ̃(j)(x, t;U)

at frequency ω = ω0 + k0U cosβ , where ω0 and k0 = ω2
0/g are the frequency and

wave number in the earth-fixed coordinate system, while ω is the frequency in the
coordinate system fixed to the ship. The waves are incoming under an angle β , with
respect to the current. To compute the linear wave forces all these components will
be taken into account.

We consider the deep water case, hence h = −∞ and the equations for the total
potential ϕ can be written as:

�ϕ = 0 in the fluid domain De.

At the free surface we have the dynamic and kinematic boundary condition

gη + ϕt + 1

2
∇ϕ · ∇ϕ = Cst

ϕy − ϕxηx − ϕzηz − ηt = 0

⎫⎬
⎭ at y = η. (3.61)

At the body surface we have
∂ϕ

∂n
= V · n

where V is the body velocity relative to the average body-fixed coordinate system.
We assume that the waves are high compared to the Kelvin stationary wave pat-

tern, but that they are both small in nature, hence the free surface boundary condition
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can be expanded at y = 0. We first eliminate η, which leads to the following bound-
ary condition:

∂2

∂t2
ϕ + g

∂

∂y
ϕ + ∂

∂t
(∇ϕ · ∇ϕ) + 1

2
∇ϕ · ∇[∇ϕ · ∇ϕ] = 0 at y = η. (3.62)

To compute the first-order wave potential the free surface has to be linearised
first. We assume φ̃(x, t;U) = φ(x;U) exp (iωt), then for each degree of freedom,
i = 1, . . . ,6, the free surface condition at y = 0 can be written as

−ω2φ + 2iωUφx + U2φxx + gφy = iωD(U ;φ){φ} at y = 0. (3.63)

while for the diffracted potential φ(7) the last term has to be replaced by
D(U ;φ){φinc + φ(7)} and where D(U ;φ) is the following linear differential op-
erator acting on φ. The quadratic terms in φ are neglected.

iωD(U ;φ){φ} = iω{(φxx + φzz)φ + 2∇φ · ∇φ}
+ (2Uφx + φ2

x)φxx + 2(U + φx)φzφxz + φ2
zφzz

+ (3Uφxx + φxφxx + φzφxz)φx + (2Uφxz + φxφxz

+ φzφzz)φz.

The linear problems for φ(j) with j = 1, . . . ,7 are solved by means of a source
distribution along the ship hull, its water line and the free surface y = 0. We write
for each potential function:

4πφ(x) =
∫ ∫

S

σ (ξ)G(x, ξ )dSξ − U2

g

∫
WL

αnσ(ξ)G(x, ξ)dsξ

+ iω

g

∫ ∫
FS

G(x, ξ)D{φ}dSξ for x ∈ De. (3.64)

The distribution along the water line follows after the use of the divergence theorem
in the integral at the free surface y = 0. The function G(x, ξ) is the Green’s func-
tion that obeys the free surface condition (3.63) with D equals zero and αn = ex · n,
where ex equals the unit vector in the x-direction. In general the boundary condi-
tions on the ship are given in the form

∇φ(j) · n = V (j)(x) for x ∈ S and j = 1, . . . ,7,

where V (j) is the normal velocity due to the motion in the j th mode with j =
1, . . . ,6 and V (7) equals the normal velocity of the incident oscillating field. So
V (j), with j = 1, . . . ,3, correspond to the translation components X = X̃ exp (iωt)

and, with j = 4, . . . ,6, to components of the rotational motion � = �̃ exp (iωt)

relative to the centre of gravity xg of the body. The combined displacement vector
is given by α = X + � × (x − xg) = α̃ exp (iωt). In general notation we write

∂φ

∂n
= iωα̃ · n + [(∇(Ux + φ) · ∇)α̃ − (α̃ · ∇)∇(Ux + φ)] · n.
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This leads to an equation for the source strength, where we omitted the index j

again:

−2πσ(x) −
∫ ∫

S

σ (ξ)
∂

∂nx

G(x, ξ)dSξ + U2

g

∫
WL

αnσ(ξ)
∂

∂nx

G(x, ξ)dsξ

+ iω

g

∫ ∫
FS

∂

∂nx

G(x, ξ)D{φ}dSξ = 4πV (x) for x ∈ S. (3.65)

If the forward velocity U is small we can simplify the D and solve this equation it-
eratively. However an accurate numerical evaluation of the complete Green’s func-
tion is rather elaborate. Therefore we could also make use of the fact that U is
small, keeping in mind that there are two dimensionless parameters that play a role,
namely τ = ωU

g

 1 and ν = gL

U2 � 1. The source potentials and the strengths can
be evaluated as perturbation series with respect to τ ,

σ(ξ) = σ0(ξ) + τσ1(ξ ) + σ̂ (ξ ;U), (3.66)

φ(x) = φ0(x) + τφ1(x) + φ̂(x;U), (3.67)

where σ̂ and φ̂ are O(τ 2) as τ → 0. The expansion of G is less trivial. We write

G(x, ξ ;U) = −1

r
+ 1

r′ − {ψ0(x, ξ) + τψ1(x, ξ) + · · ·

+ ψ̃0(x, ξ) + ν−1ψ̃1(x, ξ) + · · · }. (3.68)

The first term between brackets corresponds to the Green’s function at zero for-
ward speed, for which there exist several fast computer codes. The second term is
the modification due to small values of the forward velocity. Computations can be
carried out by means of a modification of the existing fast code. The disadvantage
of this approach is the fact that the asymptotic expansion of the Green’s function
is only valid close to the source. At finite distance the nonuniform asymptotic be-
haviour has to be corrected. The third term between brackets is the one that describes
the Kelvin effect on the wave Green’s function. Although this term is linear in ν and
therefore tends to infinity as U goes to zero. Because it becomes highly oscillatory it
can be shown that its contribution to the potential function becomes zero. In practice
the first two terms are computed in the expansions of the potentials and the source
strengths for the excitation and the six modes of the motion. This approach can be
applied to the situation of deep water. For finite water depth the evaluation of the
Green’s function for finite velocities leads to terms that are not as easy to compute as
in the deep water case, where all the expressions needed can be expressed in deriva-
tives of the zero speed Green’s function. After all this approach of splitting of the
Green’s function is not very practical for real ship forms. At this moment there are
some codes available to compute the total Green’s function directly in an efficient
way.



Chapter 4
Second-Order Theory

For some applications it is worthwhile to consider second-order wave effects. Es-
pecially the influence of low frequency second-order forces on systems moored in
waves may cause resonant behaviour, resulting in large oscillating motions at the
resonant frequency of the moored system. To describe this phenomenon we first de-
rive the second-order waves in the case that we have a simple spectrum of waves
consisting of two monochromatic plane waves with frequencies close to each other.
Next a derivation of the second-order low frequency drift forces by means of a local
expansion and far-field expansions is given. As a classroom example we consider
the forces on a vertical wall caused by the reflection of such a wave system. This
serves as an introduction to formulation of the low frequency motion of a moored
system.

4.1 Second-Order Wave Theory

The general non-linear free surface conditions are given by (1.11) and (1.14). For
two-dimensional plane waves they become

ϕy = ηt + ϕxηx,

ϕt + 1

2
(ϕ2

x + ϕ2
y) + gη = constant

⎫⎬
⎭ at y = η(x, t). (4.1)

We consider the situation where η(x, t) and ϕ(x, y, t) are small of O(ε), where ε is
a measure for the wave height. Hence the potential function ϕ(x,η(x, t), t) and its
derivatives may be expanded in a Taylor series at y = 0. To derive a second-order
formulation for the free surface condition we need some terms up to second-order
in the small parameter η. However the x-derivative is needed in first-order only. We
expand ϕ in the following way:
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ϕ(x,η(x, t), t) = ϕ(x,0, t) + η(x, t)ϕy(x,0, t) + O(ε2),

ϕx(x, η(x, t), t) = ϕx(x,0, t) + O(ε),

ϕy(x, η(x, t), t) = ϕy(x,0, t) + η(x, t)ϕyy(x,0, t) + O(ε2),

ϕt (x, η(x, t), t) = ϕt (x,0, t) + η(x, t)ϕyt (x,0, t) + O(ε2).

(4.2)

Hence we have

−gη =
[
ϕt + ηϕyt + 1

2
(ϕ2

x + ϕ2
y)

]
y=0

+ O(ε3)

=
[
ϕt − ϕtϕyt

g
+ 1

2
(ϕ2

x + ϕ2
y)

]
y=0

+ O(ε3). (4.3)

To eliminate η in (4.1) we need its derivatives

−gηt =
[
ϕtt − ϕttϕyt

g
− ϕtϕytt

g
+ ϕxϕxt + ϕyϕyt

]
y=0

+ O(ε3),

−gηx = ϕxt |y=0 + O(ε2).

(4.4)

The free surface condition can now be written at y = 0 as

gϕy + ϕtt = ϕyyϕt − 2ϕxϕxt − ϕyϕyt + ϕttϕyt

g
+ ϕtϕytt

g
+ O(ε3). (4.5)

The potential function will be written as an asymptotic expansion with respect to
the small parameter ε,

ϕ(x, y, t) = εϕ(1)(x, y, t) + ε2ϕ(2)(x, y, t) + O(ε3). (4.6)

We insert this expansion in expression (4.6) and equate equal powers in ε equal to
zero. We then obtain conditions for ϕ(i) at y = 0,

gϕ(1)
y + ϕ

(1)
tt = 0,

gϕ(2)
y + ϕ

(2)
tt = ϕ(1)

yy ϕ
(1)
t − 2ϕ(1)

x ϕ
(1)
xt − ϕ(1)

y ϕ
(1)
yt + ϕ

(1)
tt ϕ

(1)
yt

g
+ ϕ

(1)
t ϕ

(1)
ytt

g

= −2
(
ϕ(1)

x ϕ
(1)
xt + ϕ(1)

y ϕ
(1)
yt

) + 1

g
ϕ

(1)
t

∂

∂y

(
gϕ(1)

y + ϕ
(1)
tt

)
,

(4.7)

where we used the expression for ϕ(1) to obtain the expression on the last line.
We consider an incident wave field consisting of two monochromatic plane waves

with frequencies, ω and ω + δω, close to each other. The first-order amplitude may
be written as

η(1)(x, t) = �{
a1ei(ωt−kx)

} + �{
a2ei((ω+δω)t−(k+δk)x+ϑ)

}
, (4.8)
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where we choose a1 and a2 to be real constants. For finite water depth the first-order
potential function may be written as

ϕ(1)(x, y, t) = �{ψ1(x, y, t) + ψ2(x, y, t)} = �{
} = 
 + 


2
, (4.9)

with

ψ1(x, y, t) = α1
cosh(k1(y + h))

cosh(k1h)
ei(ω1t−k1x) and

ψ2(x, y, t) = α2
cosh(k2(y + h))

cosh(k2h)
ei(ω2t−k2x+ϑ)

(4.10)

where α1 = − ig
ω1

a1 and α2 = − ig
ω2

a2 are imaginary constants. The free surface con-

dition for ϕ(2) may be written as

gϕ(2)
y + ϕ

(2)
tt = −1

2
{(
x + 
x)(
xt + 
xt ) + (
y + 
y)(
yt + 
yt )}

+ 1

4g
(
t + 
t)

∂

∂y

(
(g
y + 
tt ) + (g
y + 
tt )

)
. (4.11)

If we insert (4.9) in expression (4.10) we notice that several exponential combina-
tions play a role. We see among others if we combine ψ1 with itself that we obtain
a contribution with the double frequency, 2ωt . Here we are specially interested in
contributions with the difference frequency δω = ω1 − ω2. These terms are gener-
ated by the products of 
1 and 
2 and of 
2 and 
1. We restrict ourself to δω

contributions and consider first the terms


1x
2xt + 
2x
1xt + 
1x
2xt + 
2x
1xt

= 2k1k2δωα1α2 sin(δωt − δkx + ϑ), (4.12)

with δk = k1 − k2. We also find


1y
2yt + 
2y
1yt + 
1y
2yt + 
2y
1yt

= 2k1k2δωα1α2 tanh(k1h) tanh(k2h) sin(δωt − δkx + ϑ). (4.13)

The slowly varying part in the last term becomes, for small values of the frequency
difference δω,

1

4g
(
t + 
t)

∂

∂y

(
(g
y + 
tt ) + (g
y + 
tt )

)

≈ −1

2
ω2δωα1α2

d

dω

(
ω3

g2 sinh2(kh)

)
sin(δωt − δkx + ϑ) + O

(
(δω)2).

(4.14)
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Hence the free surface condition, at y = 0, for the bound second-order wave with
small frequency δω becomes

gϕ(2)
y + ϕ

(2)
tt = C δωα1α2 sin(δωt − δkx + ϑ), (4.15)

with

C = −k2 cosh(2kh)

cosh2(kh)
− 1

2
ω2 d

dω

(
ω3

g2 sinh2(kh)

)
. (4.16)

The solution for the low frequency wave potential becomes

ϕ(2)(x, y, t) = C δωα1α2 cosh(δk(y + h))

gδk sinh(δkh) − (δω)2 cosh(δkh)
sin(δωt − δkx + ϑ). (4.17)

We rewrite this solution as

ϕ(2)(x, y, t) = �{
C α1α2 cosh(δk(y + h))ei(δωt−δkx+ϑ)

}
, (4.18)

where

C = −iC δω

gδk sinh(δkh) − (δω)2 cosh(δkh)
. (4.19)

This represents a slowly varying second-order wave with wave velocity equal to the
group velocity cg = dω

dk
. One must realise that this wave does not obey the linear

first-order free surface condition. Hence when it is disturbed by a fixed object it
generates linear first-order waves at the frequency δω, while the refracted first-order
waves generate a bound second-order wave as well. So we have to distinguish at
least three different types of waves in this case.

4.2 Wave-Drift Forces and Moments

The constant wave drift force acting on a three-dimensional object in waves, while
a small current is present, can be computed in two different ways, while for the low
frequency wave drift force only one method remains. In both cases we are able to
perform a pressure integration along the body, while for the constant term the use
of the law of conservation of momentum leads to an expression consisting of the
far-field wave pattern only. If we take into account the effect of the current we may
write the total potential as follows:

ϕ(x, t) = Ux + φ(x;U) + φ(x;U)e−iωt

= Ux + φ(x;U) +
{

φinc(x;U) + φ(7)(x;U) +
6∑

j=1

φ(j)(x;U)αj

}
e−iωt .

(4.20)
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By means of this expression we describe the situation of diffraction of a monochro-
matic incident. The steady disturbance φ(x;U) is assumed to be small compared
with Ux. If this is not the case we also have to take care of the dependency of the
time dependent potential function on φ(x;U). If we want to compute the harmonic
potential by means of a superposition of source functions as described before we
must ignore the effect of φ(x;U). If we solve the unsteady potential in the time-
domain it can be taken into account. In the formulation for the second-order con-
stant or low frequency forces and moments we can take the effect of φ(x;U) into
account. The potential φ(7)(x;U) is the wave scattered by the incident wave field.
The potential function φ(j)(x;U) is the reaction potential due to the motion, αj , of
the floating object in one of the six degrees of freedom.

4.2.1 Constant and Low Frequency Drift Forces by Means of Local
Expansions

First we treat the second-order slowly varying drift forces. The forces acting on
the hull can be obtained by integrating the pressure along the exact wetted hull
surface S̃. The pressure on the surface is given by Bernoulli’s equation

p(x, t) = −ρ

(
∂ϕ

∂t
+ 1

2
∇ϕ · ∇ϕ + gy − 1

2
U2

)
on S̃.

The force acting on the hull is obtained by integration of the pressure over the exact
surface

F =
∫

S̃

pn dS. (4.21)

This looks like an easy operation, but it is not because the linearised potentials are
computed at the mean hull surface and the integration goes unto the free water sur-
face, while liberalisation with respect to y = 0 has taken place. Hence the expression
for the force has to be expanded to integrals over the mean hull surface S and the
unperturbed water-line. We assume that the total displacement of a point x of the
surface is given in linearised form as

ααα = X +��� × (x − xg) (4.22)

with X the translational and ��� the rotational motion of the body relative to its centre
of gravity xg . At this point several assumptions are made, some of them being more
or less questionable. The pressure is expanded in a Taylor series around the average
surface S, which can be done because the pressure is a differentiable function of x.

pS̃
= pS +ααα · ∇pS + 1

2
(ααα · ∇)2pS + O(|ααα|3). (4.23)
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A step that poses some geometrical limitations, like a vertical ship hull at the free
surface, on the applicability of this approach is the evaluation of the integral

∫
S̃

f (x)dS ≈
∫

S

f (x)dS +
∫

wl

∫ η

α2

f (x)dy dl. (4.24)

We assume the height of the waves and the motions of the hull to be small O(ε),
hence we expand all quantities with respect to ε as follows:

ϕ(x, t) = ϕ(x) + εψ(1)(x, t) + ε2ψ(2)(x, t) + O(ε3),

η(x, z, t) = η(x, z) + εη(1)(x, z, t) + ε2η(2)(x, z, t) + O(ε3),

pS = p(x) + εp(1)(x, t) + ε2p(2)(x, t) + O(ε3),

X = εX(1) + ε2X(2) + O(ε3),

��� = ε���(1) + ε2���(2) + O(ε3),

x − xg = x − xg + ε���(1) × (x − xg) + ε2���(2) × (x − xg) + O(ε3),

n = n + ε���(1) × n + ε2���(2) × n + O(ε3),

(4.25)

where the second-order terms like ψ(2)(x, t) also contain a stationary part due to the
quadratic terms of wave components with itself. The first terms in the perturbation
series are time independent, so

η = 1

2
(∇ϕ · ∇ϕ − U2)

is the stationary wave height. We consider small steady velocities, hence they are
considered to be small enough to linearise the free surface as we described. Substi-
tuting in the Taylor series for the pressure at the actual hull surface and collecting
equal powers of ε, we get

p
S̃

=p,

p
(1)

S̃
=p(1) + {X(1) +���(1) × (x − xg)} · ∇p,

p
(2)

S̃
=p(2) + {X(2) +���(2) × (x − xg) +���(1) × [���(1) × (x − xg)]} · ∇p

+ {X(1) +���(1) × (x − xg)} · ∇p(1) + 1

2
{[X(1) +���(1) × (x − xg)] · ∇}2p.

(4.26)

From Bernoulli and the perturbation series for the potentials we get for the compo-
nents of the pressure on the mean wetted surface:

p = −ρ

(
gy0 + 1

2
(∇ϕ · ∇ϕ − U2)

)
,

p(1) = −ρ

(
∇ϕ · ∇ψ(1) + ∂ψ(1)

∂t

)
,

p(2) = −ρ

(
∂ψ(2)

∂t
+ 1

2
∇ψ(1) · ∇ψ(1) + ∇ψ(2) · ∇ϕ

)
.

(4.27)
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We carry out the pressure integration along the hull and apply high frequency filter-
ing in the case of the multi frequency case and averaging in the case of one harmonic
wave to obtain the second-order low frequency or constant drift force. The second-
order force becomes

F(2) = 1

2
ρg

∫
WL

(η(1) − α
(1)
2 )2n dl +���(1) × M

d2X(1)

dt2

− ρ

∫
S

{
(ααα(1) · ∇)

(
∂ψ(1)

∂t
+ ∇ψ(1) · ∇ϕ

)
+ 1

2
∇ψ(1) · ∇ψ(1)

+ ∂ψ(2)

∂t
+ ∇ψ(2) · ∇ϕ

}
n dS. (4.28)

For the second-order moment we obtain a similar expression

M(2) = 1

2
ρg

∫
WL

(η(1) − α
(1)
2 )2(x − xg) × n dl +���(1) × M

d2���(1)

dt2

− ρ

∫
S

{
(ααα(1) · ∇)

(
∂ψ(1)

∂t
+ ∇ψ(1) · ∇ϕ

)
+ 1

2
∇ψ(1) · ∇ψ(1)

+ ∂ψ(2)

∂t
+ ∇ψ(2) · ∇ϕ

}
(x − xg) × n dS. (4.29)

The influence of the second-order potentials in both the second-order forces and
moments is considerable if one considers finite depth. Their influence on the second-
order constant drift forces is negligible as follows from the analysis based on the far-
field expansions, while in the computations of the constant second-order moments
they may not be neglected. Many available computer codes take care of these effects
in an approximate way see.

4.2.2 Constant Drift Forces by Means of Far-Field Expansions

Here we are mainly interested in the constant component of the drift force. In this
section we apply a method that leads to results that are more accurate numerically.
The direct pressure integration needs velocities obtained by differentiation of the
potentials, depending on the numerical method to obtain the source strengths. This
may lead to results that are not accurate enough for our purpose. Our choice is
not to go to higher-order panel methods in the solver, but to use the results for the
potentials and to avoid differentiation by applying the conservation of impulse for
the fluid domain. This method is the one that in the past led to the first results of the
drift forces. Here we restrict ourself to the determination of the mean drift forces.

The components of the horizontal mean drift forces, Fx and Fz, and the moment
around the vertical axis, My , may be expressed as

Fx = −
∫ ∫

S∞
[p cos θ + ρVR(VR cos θ − Vθ sin θ)]R dθ dy, (4.30)
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Fz = −
∫ ∫

S∞
[p sin θ + ρVR(VR sin θ + Vθ cos θ)]R dθ dy, (4.31)

My = −ρ

∫ ∫
S∞

VRVθR2 dθ dy, (4.32)

where p is the first-order hydrodynamic pressure, V is the fluid velocity with radial
and tangential components VR , Vθ and S∞ is a large cylindrical control surface
with radius R in the ship-fixed coordinate system. We derive from these formulas
expressions in terms of the source densities of the first-order potentials

σ = σ (7) +
6∑

j=1

σ (j)αj

where αj = αj e−iωt , j = 1(1)6 are the six modes of motion and the superscript 7
refers to the diffracted component of the source strength. However in our case, the
velocity potential has the same form as before:

ϕ(x, t) = Ux + φ(x;U) + φ(x;U)e−iωt

= Ux + φ(x;U) +
{

φinc(x;U) + φ(7)(x;U) +
6∑

j=1

φ(j)(x;U)αj

}
e−iωt

(4.33)

where the potentials φ(j)(x;U), j = 1,7 have the form (3.64) and are the potentials
due to the motions and the diffraction. We assume that the potentials and the source
strengths are expressed in terms of perturbation series (3.66), (3.67), and that the
first two terms are known at this stage.

In the far field R � 1 we neglect the influence of the stationary potential φ(x;U)

in (4.33), hence we approximate (4.33) by

ϕ(x, t) = Ux + gηa

ω0
exp {k1(β)y + i[k1(β)(x cosβ + z sinβ) − iωt]}

+ F(θ;U)eiS(θ;U)

√
1

R
exp {k1(θ)y + i[k1(θ)R − iωt]}; (4.34)

here ηa is the amplitude of the incoming wave in the direction β and the wave
number k1(β):

k1(β) = g + 2ωU cosβ − g
√

1 + 4τ cosβ

2U2 cos2 β

≈ k̃(1 − 2τ cosβ) + O(τ 2) = k0 + O(τ 2) (4.35)

where we use the notation k̃ = ω2/g. Notice that this wave number is defined in the
ship-fixed coordinate system and is different from k0 = ω2

0/g, as defined before in
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the earth-fixed coordinate system. The function F(θ)eiS(θ) results from the expan-
sion of the far-field potentials in (3.64). We obtain for large values of |x| and small
values of U ,

4πφ(j)(x;U) =
∫ ∫

S

σ (j)(ξξξ)
(x,ξξξ)dSξ − 2iω

g

∫ ∫
FS

∇φ · ∇φ(j)
(x,ξξξ)dSξ

(4.36)

where 
(x,ξξξ) is the asymptotic expansion of the Green’s function in the far field:


(x,ξξξ) ≈ 2π i

√
2

πR

exp {i[k1(θ)R − π
4 ]}

[1 + 2U
g

(ω − k1(θ)U cos θ) cos θ ]
· √k1(θ) exp {k1(θ)(y + η) − ik1(θ)(ξ cos θ + ζ sin θ)} (4.37)

with the local k1(θ) wave number defined as

k1(θ) = g + 2ωU cos θ − g
√

1 + 4τ cos θ

2U2 cos2 θ
. (4.38)

Due to the fact that the function ∇φ(ξξξ) decays rapidly as |ξξξ | → ∞, it can be shown
that the last term in (4.36) is approximated correctly with ∇φ(j) replaced by ∇φ

(j)

0 .
This leads to

F(θ;U)eiS(θ;U)

=
√

k1(θ)

2π

{
e

π i
4

1 + 2U
g

(ω − k1(θ)U cos θ) cos θ

}

·
{∫ ∫

S

(σ0(ξξξ) + τσ1(ξξξ) + · · · ) exp {k1(θ)η − ik1(θ)(ξ cos θ + ζ sin θ)}dSξ

− 2iτ
∫ ∫

FS

∇φ

U
· ∇φ

(T )
0 exp {−ik1(θ)(ξ cos θ + ζ sin θ)}dSξ

}
(4.39)

where

φ
(T )
0 = φ

(7)
0 +

6∑
j=1

φ
(j)

0 αj .

It is obvious that (4.39) can be written in the form

F(θ;U)eiS(θ;U) = (1 − 2τ cos θ)F0(θ)eiS0(θ) + τF1(θ)eiS1(θ) + O(τ 2). (4.40)

The functions Fi(θ) and Si(θ) contain the local wave number k1(θ).
The upper boundary of integration in (4.30) and (4.31) is the free surface

η̃ = 1

g
�[(iωφ(x,0, z) − Uφx(x,0, z))e−iωt ].
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It follows from the pressure term that we can write

∫ η̃

−∞
p dy = ρg

2
η̃2 − ρ

2

∫ 0

−∞
(|V|2 − U2)dy.

We find the following expression for Fx :

Fx = −ρ

4

∫ 2π

0
k̃φφ∗R cos θ dθ + ρ

2
τ

∫ 2π

0

(φφ∗

x cos θ + φφ∗
z sin θ)R dθ

+ ρ

4

∫ 2π

0

∫ 0

−∞

[(
1

R2
φθφ

∗
θ − φRφ∗

R + φyφ
∗
y

)
R cos θ

+ (φRφ∗
θ + φθφ

∗
R) sin θ

]
dθ dy (4.41)

and for Fz:

Fz = −ρ

4

∫ 2π

0
k̃φφ∗R sin θ dθ − ρ

2
τ

∫ 2π

0

(φφ∗

x sin θ − φφ∗
z cos θ)R dθ

+ ρ

4

∫ 2π

0

∫ 0

−∞

[(
1

R2
φθφ

∗
θ − φRφ∗

R + φyφ
∗
y

)
R sin θ

− (φRφ∗
θ + φθφ

∗
R) cos θ

]
dθ dy. (4.42)

In these expressions the asterisks denote the complex conjugate. The integration
with respect to y needs some extra attention due to the fact that the exponential
behaviour of the incident wave and the radiated or diffracted wave is different, due
to the dependence of the wave number on β and θ , respectively. The function φ

follows from (4.34):

φ = gηa

ω0
exp {k1(β)y + ik1(β)(x cosβ + z sinβ)}

+ F(θ;U)eiS(θ;U)

√
1

R
exp {k1(θ)y + ik1(θ)R}. (4.43)

A closer look at (4.43) and (4.41) shows that the contributions to Fx consist of
two parts. The first one, F

(1)
x , originates from those parts of the cross products that

behave like R−1/2 while the second one, F
(2)
x , originates from those square terms

in (4.41) that behave like R−1. We formally write:

Fx = F (1)
x + F (2)

x . (4.44)

After some lengthy manipulations and asymptotic expansion for large values of R

we obtain for the mean surge force F
(1)
x and the mean sway force F

(1)
z :

F (1)
x ≈ A

√
2π

k̃
F (β∗;U) cos

(
S(β∗;U) + π

4

)
cosβ + O(τ 2) (4.45)
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and

F (1)
z ≈ A

√
2π

k̃
F (β∗;U) cos

(
S(β∗;U) + π

4

)
sinβ + O(τ 2) (4.46)

where

A = −ρω2

2ω0
ηa and β∗ = β − 2τ sinβ.

The second part of the wave-drift force may be analysed in the same way. We obtain

F (2)
x ≈ −ρ

4
k̃

∫ 2π

0
F 2(θ;U){cos θ − 2τ sin2 θ}dθ + O(τ 2) (4.47)

and

F (2)
z ≈ −ρ

4
k̃

∫ 2π

0
F 2(θ;U){sin θ(1 + 2τ cos θ)}dθ + O(τ 2).

For the zero speed case this result is in accordance with the classical formula of
Maruo [9] and for the general situation with Nossen et al. [13] if we change some
signs due to the fact that our ship is sailing to the left. The formulation of the second-
order moment acting on a vessel with constant forward speed and waves can be
derived in a similar way [3].

4.3 Demonstration of Second-Order Effects, a Classroom
Example

4.3.1 Interaction of Waves with a Vertical Wall

In this section we demonstrate the influence of reflection on the second-order wave
effects in the two-dimensional case, of two plane waves acting on a vertical wall at
x = 0. The wall is free to move within restraints by means of a linear spring. This
case is chosen because it is possible to determine most of the essential parts of the
first- and second-order effects explicitly.

We continue with the complex-valued potential function. The complex incident
wave potential consists of the three components

ϕinc = α1
cosh(k1(y + h))

cosh(k1h)
ei(ω1t−k1x) + α2

cosh(k2(y + h))

cosh(k2h)
ei(ω2t−k2x+ϑ)

+ C α1α2 cosh(δk(y + h))ei(δωt−δkx+ϑ)

= ϕ
(1)
inc + ϕ

(2)
inc , (4.48)

where C is defined in (4.19).
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At first we assume the wall to be fixed in space and that at the wall the normal
velocity equals zero.

∂ϕ

∂x
= 0 at x = 0−. (4.49)

The first-order wave reflection is described by

ϕ
(1)
refl = α1

cosh(k1(y + h))

cosh(k1h)
ei(ω1t+k1x) + α2

cosh(k2(y + h))

cosh(k2h)
ei(ω2t+k2x+ϑ) (4.50)

because the reflection coefficients are equal to 1. The corresponding bound second-
order, slowly varying, wave contribution becomes

ϕ
(2)
refl = C α1α2 cosh(δk(y + h))ei(δωt+δkx+ϑ). (4.51)

This second-order, slowly varying, potential is the bound wave for the reflected
wave if we take the first-order reflected waves into account only. However in the
free surface condition for the second-order potential (4.7) quadratic terms due to
the product of the incident potential and reflected potential have to be taken into
account.

It is convenient to combine the first-order terms first and then to compute its
contribution to the total slowly varying second-order potential. Hence we consider
the second-order contribution of

ϕ(1)(x, y, t) = �(
ϕ

(1)
inc + ϕ

(1)
refl

)
= 2

∑
j=1,2

αj

cosh(kj (y + h))

cosh(kj )h
cos(kj x) cos(ωj t + ϑj ) (4.52)

where ϑ1 = 0 and ϑ2 = ϑ . The free surface condition for the second-order slowly
varying potential becomes

gϕ(2)
y + ϕ

(2)
tt ≈ 2α1α2δω sin(δωt + ϑ)

·
{
−k2 sin(k1x) sin(k2x)

+
(

k2

2
− kω

cg

− ω4

2g2

)
cos(k1x) cos(k2x)

}
, (4.53)

where we have made use of the dispersion relation for the first-order waves, to sim-
plify equation (4.53) can be rewritten in the form

gϕ(2)
y + ϕ

(2)
tt ≈ α1α2

{
−

(
1

2
k2 + kω

cg

+ ω4

2g2

)
cos(δkx)

+
(

3

2
k2 − kω

cg

− ω4

2g2

)
cos((k1 + k2)x)

}
δω sin(δωt + ϑ)

= {
C1 cos(δkx) + C2 cos((k1 + k2)x)

}
δω sin(δωt + ϑ), (4.54)
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with

C1 = −α1α2

(
1

2
k2 + kω

cg

+ ω4

2g2

)
,

C2 = α1α2

(
3

2
k2 − kω

cg

− ω4

2g2

)
.

Hence the slowly varying potential function consists of a term with slow δk varia-
tions in the x-direction and fast variations k1 + k2. The latter term is the interaction
effect of the incident and reflected waves. The solution can be obtained by means of
separation of variables:

ϕ(2)(x, y, t) =
{

C1 cos(δkx) cosh(δk(y + h))

gδk sinh(δkh) − (δω)2 cosh(δkh)

+ C2 cos((k1 + k2)x) cosh((k1 + k2)(y + h))

g(k1 + k2) sinh((k1 + k2)h)

}
δω sin(δωt + ϑ).

(4.55)

The combined bound, slowly varying, wave contributions obey the boundary con-
dition at x = 0. This is only valid in this simple case. The second part of (4.55) is
asymptotically small compared with the first part, hence we may ignore it. The final
result thus equals asymptotically the sum of (4.18) and (4.51). However, we do not
ignore the small term to determine its effect on the second-order force.

For more complex geometrical objects one also has to deal with a free second-
order contribution to fulfil the boundary condition at the body surface.

In the next section it will be shown that, if the wall is free to move, the corre-
sponding reaction potential also plays a role in the free surface condition (4.11).

4.3.2 Forces on a Fixed Wall

We use the same problem of the fixed impenetrable plate to demonstrate the way
the second-order, slowly varying, horizontal force may be calculated. The pressure
at the plate is given by (1.13)

ϕt + 1

2
(ϕ2

x + ϕ2
y) + gy + p − p0

ρ
= 0. (4.56)

The time dependent horizontal force, per unit length, acting on the wall equals

Fx(t) =
∫ η(0,t)

−h

p(0, y, t)dy := F (1)(t) + F (2)(t) + · · · , (4.57)
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where F (1)(t) is the first-order force and F (2)(t) the slowly varying force. We ignore
the other second-order terms. The first-order force equals

F (1)(t) = −ρ

∫ 0

−h

ϕ
(1)
t (0, y, t)dy = −2iρ

∑
j=1,2

αjω
3
j

gk2
j

ei(ωj t+ϑj ). (4.58)

The low frequency second-order force consists of a contribution of the second-order,
slowly varying, potential and of quadratic first-order terms. If the plate is free to
move we also have to take into account the effect of the flow field of the motion and
the effect of the local displacement of the plate. However, our plate is fixed in space.
The force due to the second-order, slowly varying, potential (4.55) becomes

F (2a)(t) = ρ

{
C1cgδω sinh(δkh)

gδk sinh(δkh) − (δω)2 cosh(δkh)
+ C2(δω)2 sinh(2kh)

4gk2 sinh(2kh)

}

· cos(δωt + ϑ). (4.59)

The second part in expression (4.59) is small O((δω)2) compared with the first term
O(1), hence we may ignore it. The part generated by the first-order potentials equals

F (2b)(t) = ρ

2

{
1

g
ϕ2

t

∣∣∣∣
y=0

−
∫ 0

−h

ϕ2
y dy

}
, (4.60)

because ϕx = 0 at x = 0. If we insert (4.52) into (4.60) we obtain for the slowly
varying part

F (2b)(t) = ρ

2
α1α2

{
ω2

g
− k2 sinh(δkh)

δk cosh2(kh)

}
cos(δωt + ϑ). (4.61)

Both terms in (4.61) are of the same order of magnitude as the first term in (4.59). In
the case of a fixed wall these two terms are the only contribution to the second-order
slowly varying force.

4.3.3 Moving Wall

If the wall is able to move the situation becomes more complicated. We restrict
ourselves to the case that the wall is free to translate in horizontal direction. We
consider the situation shown in Fig. 4.1.

Fig. 4.1 Moving wall
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The wall has a mass M and the motion is restrained by means of a linear spring
with spring constant C. Other configurations can be treated in the same way. The
motion of the wall consists of a response to the first-order force with the frequen-
cies of the incident first-order waves and second-order components. The first-order
motion will generate a reaction force in and out of phase with the motion. The force
in phase with the motion leads to the added mass, while the out of phase part gives
the wave damping. The second-order low frequency force now consist of several
terms. First of all the forces described in (4.59) and (4.61) act on the wall, but also
the effect of the ‘high’ frequency displacement of the wall gives a contribution that
can not be ignored. So first we study the high frequency first-order motion.

4.3.4 First-Order Motion of the Wall

In the case that the wall is free to translate in the horizontal direction only, the
equation of motion can be written as

M
d2x̄

dt2
+ Cx̄ = Fexc(t) + Freact(t), (4.62)

where Fexc(t) is the excitation force due to the incident waves and Freact(t) the
reaction force due to the motion. In general the time dependent reaction force can
be written as

Freact(t) = a
d2x̄

dt2
(t) +

∫ t

−∞
L (t − τ)

dx̄

dτ
(τ )dτ.

Because we consider the linear part of the problem we may consider the equation of
motion for each frequency separately. We consider incident waves with frequency ω,
hence we write x̄ = xweiωt . The excitation force equals (4.58) for a single frequency
ω and the reaction force can be rewritten as

Freact(t) = Freacte
iωt = (ω2a(ω) − iωb(ω))xweiωt . (4.63)

Analogously with the theory of ship motions we write the equation of motion as
follows

(M + a(ω))
d2x̄

dt2
+ b(ω)

dx̄

dt
+ Cx̄ = Fexc(t), (4.64)

where a(ω) is the frequency dependent added mass and b(ω) the frequency depen-
dent wave damping coefficient. If the wall is forced to move with amplitude xw ,
the boundary value problem for the two-dimensional linearised wave potential
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ϕ̄(x, y, t) = ϕ(x, y)eiωt becomes

ϕxx + ϕyy = 0,

ϕy = ω2

g
ϕ at y = 0,

ϕy = 0 at y = −h,

ϕx = iωxw at x = 0

(4.65)

furthermore we permit in the far field only wave travelling away from the wall. The
solution can be written as a sum of eigenfunctions as described before,

ϕ(x, y) =
∞∑

m=0

am cosh(km(y + h))eikmx, (4.66)

where k0 is the positive real root of the dispersion relation k sinh(kh) = ω2

g
cosh(kh)

and km = −iκm, for m = 1,2, . . . , are the negative imaginary roots of the same
relation. If we use the orthogonality relation the boundary condition at x = 0 yields

am = 4ω sinh(kmh)

km{sinh(2kmh) + 2kmh}xw. (4.67)

The first-order force on the wall due to the motion becomes

Freact = −iωρ

∫ 0

−h

ϕ(0, y)dy

= −4iω2ρ

∞∑
m=0

sinh2(kmh)

k2
m{sinh(2kmh) + 2kmh}xw. (4.68)

The added mass and wave damping becomes

a(ω) = 4ρ

∞∑
m=1

sin2(κmh)

κ2
m{sin(2κmh) + 2κmh} ,

b(ω) = 4ωρ
sinh2(k0h)

k2
0{sinh(2k0h) + 2k0h} .

(4.69)

If, for the one wave system, we combine (4.58) with (4.64) we obtain for the ampli-
tude of the motion of the wall

xw = −2iρ
αω3

gk2
0{−(M + a(ω))ω2 + ib(ω)ω + C} . (4.70)
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For the two-wave system we may write for the first-order motion

x̄(1)(t) = −2iρ
∑

j=1,2

αjω
3
j ei(ωj t+ϑj )

gk2
0j {−(M + a(ωj ))ω

2
j + ib(ωj )ωj + C} . (4.71)

If we now reconsider the free surface condition for the slowly varying potential
function (4.11), we see that the right-hand side consists of terms from the incident
and reflected wave and reaction wave. Generally these effects are hardly taken into
account in numerical codes. In this simple case we can determine this potential
analytically. The wave travelling to the left now consists of the reflected wave and
the reaction wave, so instead of (4.50) we have the following travelling wave to the
left ϕrefl + ϕreact with

ϕ
(1)
react = β1

cosh(k1(y + h))

cosh(k1h)
ei(ω1t+k1x+θ1) + β2

cosh(k2(y + h))

cosh(k2h)
ei(ω2t+k2x+θ2),

(4.72)
where k1,2 are the real roots of the dispersion relation and

β1,2eiθ1,2 = 2ω1,2 sinh(2k1,2h)

k1,2(sinh(2k1,2h) + 2k1,2h)
x1,2
w .

It can be proven that the effect of the imaginary roots of the dispersion relation on
the second-order potential becomes asymptotically small compared with the effect
of the travelling wave. Hence we ignore the effect of the evanescent wave. The
second-order potential bound to the potential in (4.72) equals expression (4.51) with
α replaced by β ,

ϕ
(2)
react = C β1β2 cosh(δk(y + h))ei(δωt+δkx+δθ). (4.73)

This wave potential does not obey the boundary condition at x = 0, hence we have to
consider a free wave ϕ(2′) at the same frequency δω. We have as boundary condition
for the free second-order slowly varying potential

ϕ(2′)
x |x=0 = −C β1β2δk cosh(δk(y + h))ei(δωt+δθ). (4.74)

Next we write

ϕ(2′)(x, y, t) = −C β1β2δkψ(x, y)ei(σ t+δθ),

where σ = δω, and obtain for ψ the boundary value problem

ψxx + ψyy = 0,

ψy − (σ )2

g
ψ = 0 at y = 0,

ψy = 0 at y = −h,

ψx = cosh(δk(y + h)) = f (y) at x = 0.

(4.75)
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It should be noticed here δk is not a solution of the linear dispersion relation

k sinh(kh) − σ 2

g
cosh(kh) = 0. The zero’s of the dispersion relation are the real

values k0 = ±k̃ and the imaginary values kj = ±iκ̃j , j = 1,2, . . . . Because the
waves are travelling in the direction of the negative x-axis we only consider the
real positive +k0 and the negative imaginary values −iκ̃j . The set of functions
cosh(kj (y + h)) form a complete orthogonal set of functions. It is easy to show
that ∫ 0

−h

cosh(ki(y + h)) cosh(kj (y + h))dy = 0 for i �= j.

Hence we write the solution as

ψ(x, y) =
∞∑

j=0

aj cosh(kj (y + h))eikj x, (4.76)

with

aj =
∫ 0
−h

f (y) cosh(kj (y + h))dy

ikj

∫ 0
−h

cosh2(kj (y + h))dy

=
2{ sinh((kj +δk)h)

kj +δk
+ sinh((kj −δk)h)

kj −δk
}

i{sinh(2kjh) + 2kjh} . (4.77)

It should be noticed that k̃ and δk are both small, thus we consider them to be
of the same order of magnitude. So, we may conclude that the travelling part is
dominant compared with the evanescent contributions. This leads to the following
approximation of the free second-order wave

ϕ(2′)(x, y, t) = −2

i
C β1β2δk

{
sinh((k̃ + δk)h)

k̃ + δk
+ sinh((k̃ − δk)h)

k̃ − δk

}

· cosh(k̃(y + h))ei(σ t+k̃x+δθ)

{sinh(2k̃h) + 2k̃h}

= C γ1γ2 cosh(k̃(y + h))ei(σ t+k̃x+δθ), (4.78)

where

γj = −2βj δk

i{sinh(2k̃h) + 2k̃h}
{

sinh((k̃ + δk)h)

k̃ + δk
+ sinh((k̃ − δk)h)

k̃ − δk

}
.

Furthermore the second-order slowly varying, free wave is of the same order of
magnitude as the bound slowly varying waves.
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4.3.5 Influence of the Motion on the Low Frequency Drift Force

If the wall is moving (4.58) contains a quadratic term as well because the potential
has to be taken at the actual position. We rewrite (4.58) as

F (1′)(t) = −ρ

∫ 0

−h

ϕ
(1)
t (x̄(t), y, t)dy ≈ F (1)(t) − ρx̄(t)

∫ 0

−h

ϕ
(1)
xt (0, y, t)dy.

(4.79)
Because in this special case ϕ

(1)
x (0, y, t) = 0 the influence of the first-order motion

on the low frequency drift force equals zero. In the case of wave interaction with a
moored object it may give a contribution of the same order of magnitude as the two
terms (4.59) and (4.61).

4.3.6 Second-Order Motion of the Wall

The contribution to the second-order force of the bound and free second-order wave
potentials due to the first-order motion of the wall equals

F (2c)(t) = −ρδω�
{

iC

(
β1β2 sinh(δkh)

δk
+ γ1γ2 sinh(k̃h)

k̃

)
ei(δωt+δθ)

}
. (4.80)

This term is of the same order of magnitude compared with F (2a)(t) and F (2b)(t)

because C δω =O(1) for small values of δω = σ . The total low frequency second-
order force acting on the wall equals

F (2)(t) = F (2a)(t) + F (2b)(t) + F (2c)(t) � �{
F

(2)
eiσ teiσ t

}
. (4.81)

The low frequency motion is described by (4.64)

(M + a(σ ))
d2x̄

dt2
+ b(σ )

dx̄

dt
+ Cx̄ = �{

F
(2)

eiσ t
}
. (4.82)

The harmonic solution of this equation becomes

x̄(t) = �
{

F
(2)

eiσ t

−(M + a(σ ))σ 2 + ib(σ )σ + C

}
. (4.83)

For a soft mass-spring system near resonance with Mσ 2 ≈ C the amplitude of mo-
tion becomes very large for small values of σ . At this point we have reached a
contradiction with our earlier made assumptions. We have to take into account the
effect of large motions in the formulation of the first-order potential function. This
in its turn influences the motion at the second-order low frequency. Hence we may
assume that the right-hand side of the equation of motion (4.82) depends on the low

frequency velocity of the object. Hence F
(2)

is a function of dx̄
dt

= U(σ t) and we
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assume that we may expand this dependency by means of a Taylor series that we
cut of after the second term as follows:

F
(2)

(U) = F
(2)

(0) + U
dF

(2)

dU
(0) + O(U2). (4.84)

Hence we have to take into account an extra damping term equal to dF
(2)

dU
(0) in

the equation of motion. This damping is called the wave drift damping. We leave
it as an open question how to compute this damping term. In general its value is
much larger than the wave damping in the equation of motion. Besides this effect
viscous damping may play a role in the value of the damping as well. This does not
alter the conclusion that the amplitude of motion for a softly anchored wall remains
significantly large.

4.3.7 Some Observations

This analysis indicates that if one considers a ship moored to a buoy it is mostly
impossible to take all the effects into account. Some effects that could be computed
in the wall case may be taken into account approximately. In general the damping
terms caused by viscous effects are sufficient to take into account, however for high
sea states the damping due to the second order motion may become relevant. One
must keep in mind that the latter is quadratic with respect to the wave height and
may become dominant in high sea states.



Chapter 5
Asymptotic Formulation

In this chapter we describe the flow past a thin ship with uniform speed. In Chap. 2
we derived the field of a steady source positioned in a uniform flow by means of
Fourier transforms. Here the steady field around a thin ship will be written as a
superposition of sources at the centre-plane of the ship. For the wave resistance the
theory results in the classical Michell integral as published in (1898) for the first
time.

The second part of this chapter is concerned with short wave diffraction by a blunt
ship at constant forward speed. The speed of the ship is considered to be small. If
the double body potential around the ship is known one can use an asymptotic short
wave theory. The method used is the so called ray method which is well known
in acoustic theory. We show some results for shapes where an expression for the
double body potential is known explicitly, i.e. a circular cylinder and a sphere. In
literature one may find some results for a ship shape.

5.1 Thin Ship Hydrodynamics, Michell Theory

We consider a symmetrical ship moving with a constant speed U in the direction of
the x̄-axis of the right-handed coordinate system x̄, ȳ, z̄ where the ȳ-axis is positive
in upward (originally in the Michell theory downward) direction. For convenience,
we shall fix the coordinate system to the ship, or in other words, we consider a
steady flow past the ship. The incoming flow has a uniform speed U in the negative
x-direction. We assume the equation of the hull to be given by z̄ = ±Bf̄ (x̄, ȳ)

where f̄ is a smooth function defined on the projection of the ship hull on the x̄, ȳ-
plane. The beam B of the ship is small compared to its length L. The perturbation
caused by the ship is described by a velocity potential ϕ̄ which satisfies a Laplace
equation together with the linearised free surface condition, obtained from (1.32)
which now reads

U 2ϕ̄x̄x̄ + gϕ̄ȳ = 0, at ȳ = 0 (5.1)
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and the boundary condition on the ship hull. This boundary condition states that
the total normal velocity relative to the ship vanishes. According to the coordinate
system used, we have an unperturbed speed −U in the x-direction and hence the
velocity is (−U + ϕ̄x̄ , ϕ̄ȳ , ϕ̄z̄). Since (±f̄x̄ ,±f̄ȳ ,−1) are direction numbers of the
normal to the ship hull, we obtain finally the condition

−Uf̄x̄ + ϕ̄x̄ f̄x̄ + ϕ̄ȳ f̄ȳ ∓ ϕ̄z̄ = 0. (5.2)

Now we introduce dimensionless coordinates x = x̄/L,y = ȳ/L, z = z̄/L and the
dimensionless potential ϕ defined by

ϕ̄ = εULφ(x, y, z),

with ε = B/L. Clearly this does not affect the Laplace equation. However, the free
surface condition (5.1) becomes

F 2ϕxx + ϕy = 0, at y = 0, (5.3)

where F = U/
√

gL is the Froude number. Furthermore, the condition (5.2) is trans-
formed in dimensionless form,

−fx + εϕxfx + εϕyfy ∓ ϕz = 0, at z = ±εf (x, y), (5.4)

by setting f̄ (x, y) = Bf (x, y). In the first-order approximation, this condition re-
duces to

ϕz = ∓fx (5.5)

on the plane z = 0. Due to the symmetry of the flow we see that outside the ship
hull ϕz = 0, for z = 0. We are thus led to the boundary value problem for ϕ defined
by the Laplace equation

ϕxxϕyy + ϕzz = 0, (5.6)

together with the conditions

ϕ finite, as y → −∞, (5.7)

ϕz =
{∓fx inside

0 outside

}
the projection of the ship hull on the plane z = 0.

There are two ways of solving this problem. The first one uses the Fourier trans-
forms; the other one is by means of a distribution of sources on the centre-plane.
In Chap. 2 we derived, for deep water, an expression for the field of a unit source
in a steady current by means of Fourier transforms (2.125), therefore we follow the
second method in this section. We use a slightly different notation for this so-called
Green’s function

G (x, y, z; x̃, ỹ, z̃) = − 1

4πr
+ 1

4πr̄
− 1

2π2

∫ ∞

0
dk

∫ π

0
dϑ

1

1 − kυ cos2 ϑ

· ek((y+ỹ)−i(x−x̃) cosϑ) cos(k(z − z̃) sinϑ). (5.8)
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The solution of the boundary value problem is written as the following distribution
of sources at the projection of the hull on the centre-plane S0 with strength σ(x̃, ỹ):

ϕ(x, y, z; x̃, ỹ, z̃) =
∫∫
S0

G (x, y, z; x̃, ỹ,0)σ (x̃, ỹ)dx̃ dỹ. (5.9)

We apply the condition on the centre-plane and make use of the symmetry of the
Green’s function and (3.17). This results in

σ(x̃, ỹ) = −2fx(x̃, ỹ). (5.10)

The resistance of the ship can be found by integrating the pressure distribution over
the hull. The pressure distribution along the hull follows from the Bernoulli equa-
tion (1.13). Since the pressure is symmetric with respect to the centre-plane, we
obtain for the component in The x-direction of the total force R,

R = 2ρU

∫∫
S0

ϕx(x, y,0)fx(x, y)dx dy. (5.11)

Working out this expression we see that the term 1/r and 1/r̄ do not give any con-
tribution to R, as they should not do according to the d’Alembert paradox which
states that the total force acting on an object located in a potential flow, without
vorticity, is equal to zero.

After rather tedious computations, the final result is

R = 4g2ρ

πU2

∫ π
2

0
sec3 ϑ[P 2(ϑ) + Q2(ϑ)]dϑ, (5.12)

where

P =
∫∫
S0

fxey sec2 ϑ

F 2
cos

(
x secϑ

F 2

)
dx dy,

Q =
∫∫
S0

fxey sec2 ϑ

F 2
sin

(
x secϑ

F 2

)
dx dy.

The results (5.12) may be put in a variety of different forms by change of variable
and order of integration. If one poses λ = secϑ , then it can be verified that

R = 4g2ρ

πU2

∫∫
S0

dx dy

∫∫
S0

dx̃ dỹfx(x, y)fx(x̃, ỹ)M

(
x − x̃

F 2
,
y − ỹ

F 2

)
, (5.13)

where

M(x,y) =
∫ ∞

1

λ2

√
λ2 − 1

eλ2y cosλx dλ.
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Expression (5.13) for R is usually called ‘Michell’s integral’ (1898). In practice
this expression gives a reasonable approximation for a limited class of ships sailing
at moderate values of the Froude number. For small values of F , for instance for
very large vessels, it overestimates the wave resistance greatly, while for blunt ships
it is not valid at all. It is generally understood nowadays that for these hulls the
complete non-linear free surface problem must be solved numerically. In the chapter
on numerical methods we shall again pay attention to the computation of the wave
resistance.

5.2 Short Wave Diffraction by a Sailing Ship

In this section we describe an asymptotic short wave theory to compute the added
resistance for a ship sailing slowly in deep water. In this approach the Froude num-
ber, defined with respect to the length of the ship, Fn = U/

√
gL is assumed to be

small as well. In this case the steady potential φs(x) can be replaced by the double
body potential φr(x). In Chap. 1 we derived a free surface condition for the wave
potential. In the coordinate system

x′ = x, y′ = y − ηr(x, z), z′ = z,

we obtain a boundary condition for the unsteady wave potential φ(x, t) that, after
omitting primes, becomes

1

g

[
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

]2

φ + ∂

∂y
φ = 0 on y = 0, (5.14)

where ηr is the free surface elevation due to φr and the horizontal velocity u =
(u,w) = ∇2φr is calculated at the undisturbed free surface. The terms in this ex-
pression must be of the same order of magnitude. This is the case if the frequency
of the waves is large, while the dimensionless parameter τ = ωU/g remains finite.
It can be shown that the neglected terms in the free surface condition are small in
this situation.

The potential function φ(x, t) obeys the Laplace equation

�φ = 0 in the fluid (5.15)

and on the ship’s hull we have ∂φ
∂n

= 0. At infinity the incoming wave field consists
of a plane wave

φinc = eik0(x cos θ+z sin θ)+k0y+iωt , (5.16)

where k0 = ω2
0/g for deep water and ω = ω0 + k0U cos θ is the relative frequency.

We consider short waves with respect to the ship length L, i.e., k0L = ω2
0L/g � 1.

However it is more convenient to choose k = ω2/g as large parameter.
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We introduce the well-known ray expansion

φ(x, t; k) = a(x, k)eikS(x)+iωt , (5.17)

where S(x) is the phase function and a(x, k) the amplitude function. The latter is
written as a regular series expansion with respect to inverse powers of ik,

a(x, k) =
N∑

j=0

aj (x)

(ik)j
+ o((ik)−N). (5.18)

We restrict ourselves to the determination of S(x) and a0(x).
Insertion of (5.17) into the Laplace equation (5.15) gives

−k2a∇3S · ∇3S + ik(2∇3a · ∇3S + a�3S) + O(1) = 0. (5.19)

The subscript 3 is used to indicate the three-dimensional ∇ and � operator. If no
subscript is used the operator acting on S or a0 is two-dimensional in the horizontal
plane. Comparing orders of magnitude in (5.19) leads to a set of equations for S and
a0 to be satisfied in the fluid region:

O(k2) : ∇3S · ∇3S = 0

O(k1) : 2∇3a0 · ∇3S + a0�3S = 0

}
in the fluid. (5.20)

Next we insert (5.17) into the free-surface condition (5.14) and obtain

−k2{(1 − u · ∇S)2 − iSy}a − ik{2u · ∇a − 2(u · ∇S)(u · ∇a)

− u · ∇(u · ∇S)a + iay} + O(1) = 0. (5.21)

Comparing orders of magnitude in (5.21) yields

O(k2) : iSy = (1 − u · ∇S)2

O(k1) : a0y = i{2u · ∇a0 − 2(u · ∇S)(u · ∇a0) − u · ∇(u · ∇S)a0}

}
at y = 0.

(5.22)
The equations for the phase function at the free surface is obtained by elimination
of Sz. Equations (5.20) and (5.22) yield the eikonal equation

(1 − u · ∇S)4 − ∇S · ∇S = 0, (5.23)

and the transport equation

{2∇S + 4(1 − u · ∇S)3u} · ∇a0 + a0MS = 0, (5.24)

where MS = �3S − 2u · ∇(u · ∇S)(1 − u∇S)2.
In order to solve the eikonal equation (5.23) we introduce the notation p =

(p, q) := (Sx, Sz), write (5.23) in the standard form F(x, z, S,p, q) = 0 and apply
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the method of characteristics. The equations for the characteristics are the Charpit-
Lagrange equations:

dx

dσ
= Fp = −4(1 − u · p)3u − 2p,

dz

dσ
= Fq = −4(1 − u · p)3w − 2q,

dp

dσ
= −(Fx + pFS) = 4(1 − u · p)3(ux · p),

dq

dσ
= −(Fz + qFS) = 4(1 − u · p)3(uz · p).

(5.25)

The solutions of these equations (5.25) are called rays as in geometrical optics. The
phase function is obtained by solving the equation

dS

dσ
= pFp + qFq = −4(1 − u · p)3 + 2p · p. (5.26)

One must realise that the rays are not perpendicular to the wave fronts S = constant.
The transport equation along the rays becomes

da0

dσ
= a0MS. (5.27)

This operator MS has the final form

MS = Sxx

{
1 − 2|∇S|u2 − S2

x

S2
x + S2

z

}
+ Sxz

{
−4|∇S|u2 − 2

SxSz

S2
x + S2

z

}

+ Szz

{
1 − 2|∇S|u2 − S2

x

S2
x + S2

z

}
− 2|∇S|∇(u · u) · ∇S. (5.28)

Before we can solve the characteristic equations together with the phase and am-
plitude function, the second derivatives in MS must be determined. To obtain
Sxx = px,Sxz = pz = qx and Szz = qz one may use numerical differentiation. On
the other hand, ordinary differential equations for those terms can be derived, as
well,

dpx

dσ
=12(1 − u · p)2(u · p)2

x − 2px · px − 4(1 − u · p)3(uxx · p + 2ux · px),

dpz

dσ
=12(1 − u · p)2(u · p)x(u · p)z − 2px · pz

− 4(1 − u · p)3(uxz · p + ux · pz + uz · px),

dqz

dσ
=12(1 − u · p)2(u · p)2

z − 2pz · pz − 4(1 − u · p)3(uzz · p + 2uz · pz).

(5.29)



5.2 Short Wave Diffraction by a Sailing Ship 85

The characteristic equations together with the equations along these characteristics
can be solved. We give initial conditions for the incident field at a distance from the
object where the ray pattern is not disturbed by the double body potential. These
ordinary differential equations are solved by RK4. At the object we take care of the
proper reflection laws generated by the Neumann boundary condition (no flux).

The mean resistance Faw is defined as the time-averaged force acting on the hull,
due to waves. The force in the x-direction is the added resistance. In general we
have

Faw = −
∫ ζ

y=−∞

∫
WL

pn dl dy. (5.30)

In the asymptotic case this leads to the expression

Faw = −1

4

∫
WL

{
(∇S(i) · ∇S(i))

1
4 a

(i)
0 + (∇S(r) · ∇S(r))

1
4 a

(r)
0

}2n dl

+ 1

4

∫
WL

{
a

(i)
0

2|∇S(i)| + a
(r)
0

2|∇S(r)|

+ 2a
(i)
0 a

(r)
0

∇S(i) · ∇S(r) + |∇S(i)||∇S(r)|
|∇S(i)| + |∇S(r)|

}
n dl. (5.31)

The superscripts for the amplitude and the phase indicate incoming and reflected
waves. In Figs. 5.1 and 5.2 we give results of the ray pattern for a circular cylinder
in deep water for θ = 0° and τ = 0.25 and τ = 0.5. In Fig. 5.3 the values of the mean

Fig. 5.1 Ray pattern for a
cylinder with τ = 0.25

Fig. 5.2 Ray pattern for a
cylinder with τ = 0.5
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Fig. 5.3 Added resistance
for (i) a circular cylinder and
(ii) a sphere

forces are given for a circular cylinder and a sphere. In Fig. 5.2 we see that in front of
the blunt bow the reflected rays form a caustic. The amplitude near this line becomes
infinite. In principal one can derive a uniformly valid asymptotic theory with finite
amplitude near this line. Computations show that the waves become shorter and the
amplitude larger near the caustic. The result of this is that the wave breaks in front
of the blunt bow, even in the case of low incident waves. This is observed in practice
as well.

One may conclude that a proper description of the velocity field near the stag-
nation point influences the wave pattern near the bow greatly and that the added
resistance increases significantly for increasing values of the velocity.



Chapter 6
Flexible Floating Platform

In this chapter we consider the two-dimensional interaction of an incident wave with
a flexible floating dock or very large floating platform (VLFP) with finite draft. The
water depth is finite. The case of a rigid dock is a classical problem. For instance
Mei and Black [10] have solved the rigid problem, by means of a variational ap-
proach. They considered a fixed bottom and fixed free surface obstacle, so they also
covered the case of small draft. After splitting the problem in a symmetric and an
antisymmetric one, the method consists of matching of eigenfunction expansions
of the velocity potential and its normal derivative at the boundaries of two regions.
In principle, their method can be extended to the flexible platform case. Recently
we derived a simpler method for both the moving rigid and the flexible dock [5].
However we considered objects with zero draft only. In this chapter we present our
approach for the case of finite, but small, draft. The draft is small compared to the
length of the platform to be sure that we may use as a model, for the elastic plate, the
thin plate theory, while the water pressure at the plate is applied at finite depth. The
method is based on a direct application of Green’s theorem, combined with an ap-
propriate choice of expansion functions for the potential in the fluid region outside
the platform and the deflection of the plate. The integral equation obtained by the
Green’s theorem is transformed into an integral-differential equation by making use
of the equation for the elastic plate deflection. One must be careful in choosing the
appropriate Green’s function. It is crucial to use a formulation of the Green’s func-
tion consisting of an integral expression only. In Sect. 9.4 we derive such a Green’s
function for the two-dimensional case. One may derive an expression as can be
found in the article of Wehausen and Laitone [19] after application of Cauchy’s
residue lemma. In the three-dimensional case one also may derive such an expres-
sion. The advantage of this version of the source function is that one may work out
the integration with respect to the space coordinate first and apply the residue lemma
afterwards. In the case of a zero draft platform this approach resulted in a disper-
sion relation in the plate region and an algebraic set of equations for the coefficients
of the deflection only. Here we derive a coupled algebraic set of equations for the
expansion coefficients of the potential in the fluid region and the deflection.
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6.1 The Finite Draft Problem

In this section we derive the general formulation for the diffraction of waves by
a flexible platform of general geometric form. The fluid is ideal, so we introduce
a velocity potential using V(x, t) = ∇�(x, t), where V(x, t) is the fluid velocity
vector. Hence �(x, t)is a solution of the Laplace equation

�� = 0 in the fluid, (6.1)

together with the linearised kinematic condition, �y = ṽt , and dynamic condition,
p/ρ = −�t − gṽ, at the mean water surface y = 0, where ṽ(x, z, t) denotes the
free surface elevation, and ρ is the density of the water. The linearised free surface
condition outside the platform, y = 0 and (x, z) ∈ F , becomes

∂2�

∂t2
+ g

∂�

∂y
= 0. (6.2)

The platform is situated at the mean free-surface y = 0, its thickness is d . The plat-
form is modelled as an elastic plate with zero thickness. The neutral axis of the plate
is at y = 0, while the water pressure distribution is applied at y = −d . Meylan et
al. [11] have considered finite thickness as well. They consider the elastic equation
for the deflection of a plate of finite thickness, however they apply the equation
of motion at y = 0. They show for large platforms a minor influence due to the
change of the elastic model. Our elastic model can easily be modified by changing
the fourth-order differential operator, but due to lack of knowledge of suitable pa-
rameters we decided not to do so. So we neglect horizontal and torsional motion. To
describe the vertical deflection ṽ(x, z, t), we apply the isotropic thin-plate theory,
which leads to an equation for ṽ of the form

m(x, z)
∂2ṽ

∂t2
= −

(
∂2

∂x2
+ ∂2

∂z2

)(
D(x, z)

(
∂2ṽ

∂x2
+ ∂2ṽ

∂z2

))
+ p|y=−d (6.3)

where m(x, z) is the piece-wise constant mass of unit area of the platform while the
piece-wise constant D(x, z) is its equivalent flexural rigidity. We differentiate (6.3)
with respect to t and use the kinematic and dynamic condition to arrive at the fol-
lowing equation for � at y = −d in the platform area (x, z) ∈ P :

{(
∂2

∂x2
+ ∂2

∂z2

)(
D(x, z)

ρg

(
∂2

∂x2
+ ∂2

∂z2

))
+ m(x, z)

ρg

∂2

∂t2
+ 1

}
∂�

∂y

+ 1

g

∂2�

∂t2
= 0. (6.4)

Due to the fact that the plate is freely floating we do not consider the hydrostatic
pressure.



6.1 The Finite Draft Problem 89

The edges of the platform are free of shear forces and moment. We assume that
the flexural rigidity is constant along the edge and its derivative normal to the edge
equals zero. Also, we assume that the radius of curvature, in the horizontal plane, of
the edge is large. Hence, the edge may be considered to be straight locally. We then
have the following boundary conditions at the edge:

∂2ṽ

∂n2
+ ν

∂2ṽ

∂s2
= 0 and

∂3ṽ

∂n3
+ (2 − ν)

∂3ṽ

∂n∂s2
= 0 (6.5)

where ν is Poisson’s ratio, n is in the normal direction, in the horizontal plane,
along the edge and s denotes the arc-length along the edge. At the bottom of the
fluid region y = −h we have

∂�

∂y
= 0. (6.6)

We assume that the velocity potential is a time-harmonic wave function, �(x, t) =
φ(x)eiωt . We introduce the following parameters:

K = ω2

g
, μ = mω2

ρg
, D = D

ρg
.

In a practical situation the total length L of the platform is a few thousand metres.
We obtain at the free surface, y = 0,

∂φ

∂z
− Kφ = 0 (6.7)

and at the plate, y = −d , for a single strip,

{
D

(
∂2

∂x2
+ ∂2

∂z2

)2

− μ + 1

}
∂φ

∂y
− Kφ = 0. (6.8)

The potential of the undisturbed incident wave is given by

φinc(x) = gη∞
iω

cosh(k0(y + h))

cosh(k0h)
exp{ik0(x cosβ + z sinβ)} (6.9)

where η∞ is the wave amplitude in the original coordinate system, ω the frequency,
while the wave number k0 is the negative real solution of the dispersion relation

k0 tanh(k0h) = K, (6.10)

for finite water depth. We restrict ourselves to the case of normal incidence, β = 0.
In [6] is shown that the extension to oblique waves can be done easily.

To obtain an integral equation for the deflection ṽ(x, z, t) = �[v(x, z)eiωt ] of the
platform, see [4, 6], it is very convenient to apply the Green’s theorem, making use
of the Green’s function, G (x;ξξξ), that fulfils boundary conditions at the seabed (6.6)
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and at the free surface (6.7). Application of Green’s theorem in the fluid domain
leads to the following expression for the potential function:

4πφ(x) = 4πφinc(x) +
∫

C
φ(ξξξ)

∂G (x,ξξξ)

∂n
dS

+
∫

P

(
φ(ξξξ)

∂G (x,ξξξ)

∂η
− ∂φ(ξξξ)

∂η
G (x;ξξξ)

)
dS. (6.11)

The first integral is along the vertical sides of the platform, where the normal ve-
locity of the fluid equals zero. The second integral is along the flat bottom. In the
two-dimensional case, (x, y)-plane, the expression for the total potential becomes

2πφ(x, y) = 2πφinc(x, y)

+
∫ 0

−d

(
φ(0, η)

∂G (x, y;0, η)

∂ξ
− φ(l, η)

∂G (x, y; l, η)

∂ξ

)
dη

+
∫ l

0

(
φ(ξ,−d)

∂G (x, y; ξ,−d)

∂η
− ∂φ(ξ,−d)

∂η
G (x, y; ξ,−d)

)
dξ.

(6.12)

We continue with the two-dimensional case.
The Green’s function G(x,y; ξ, η) for the two dimensional case can be derived

by means of a Fourier transform with respect to the x-coordinate. As is shown in
Sect. 9.4 it has the form:

G(x,y; ξ, η) =
∫ ∞

−∞
1

γ

K sinhγy + γ coshγy

K coshγ h − γ sinhγ h
coshγ (η + h)eiγ (x−ξ) dγ

for y > η (6.13)

and

G(x, z; ξ, η) =
∫ ∞

−∞
1

γ

K sinhγ η + γ coshγ η

K coshγ h − γ sinhγ h
coshγ (y + h)eiγ (x−ξ) dγ

for y < η. (6.14)

If we close the contour of integration in the complex γ -plane we obtain the complex
version of formula (13.34), as can be found in Wehausen and Laitone [19]

G(x, z; ξ, η) = −2π i
∞∑
i=0

1

ki

k2
i − K2

hk2
i − hK2 + K

coshki(y + h) cosh ki(η + h)eiki |x−ξ |,

(6.15)
where k0 and ki, i = 1, . . . ,∞ are the positive real and positive imaginary zeros of
the dispersion relation (6.10).

The advantage of this formulation for the Green’s function is that, by means of
the Green’s theorem, we can derive an algebraic set of equations for the expansion



6.2 Semi-Analytic Solution 91

coefficients by carrying out the integration with respect to the spatial variable ana-
lytically first.

It is well known that for the rigid case, Mei and Black [10], the potential can be
expanded in eigenfunctions in the regions outside and underneath the platform. In
the traditional approach, continuity of mass and velocity leads to sets of equations
at x = 0 and x = l respectively. The use of orthogonality relations then gives a
set of equations for the unknown coefficients. In the case of zero thickness it is
shown by Hermans [5] that a set of algebraic equations can be obtained for the
expansion coefficients of the deflection alone. Here we also use this approach to
obtain a coupled set of algebraic equations for the finite thickness case as well. It
is also possible to make a non-orthogonal expansion, see for instance [8], of the
potential underneath the flexible platform. In that case one can express, a posteriori,
the deflection as an expansion in exponential functions. The dispersion relations
derived by both approaches are the same, as expected.

6.2 Semi-Analytic Solution

Equation (6.12) and or the three-dimensional version (6.11), together with the con-
dition at the bottom of the plate (6.8), can be solved by means of a numerical diffrac-
tion code. However, it is interesting to see how one can solve the equations semi-
analytically for simple geometries. Here we work out the case of a strip.

We eliminate in relation (6.12) the function φ(ξ,−d) by using (6.8) and the
kinematic condition

φη(ξ,−d) = −iωv(ξ). (6.16)

Thus we obtain

2πφ(x, y) = 2πφinc(x, y) +
∫ 0

−d

(
φ(0, η)

∂G (x, y;0, η)

∂ξ

− φ(l, η)
∂G (x, y; l, η)

∂ξ

)
dη

− iω
∫ l

0

(
1

K

(
D

∂4

∂ξ4
− μ + 1

)
v(ξ)

∂G (x, y; ξ,−d)

∂η

− v(ξ)G (x, y; ξ,−d)

)
dξ. (6.17)

We assume that the deflection v(x) can be written as an expansion in exponential
functions, truncated at N + 2 terms of the form

v(x) = η∞
N+1∑
n=0

(
aneiκnx + bne−iκn(x−l)

)
. (6.18)
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The values for κn follow from a ‘dispersion’ relation, yet to be determined. If we
consider κn’s with either real negative values or, if they are complex, with positive
imaginary part, then the first part of expression (6.18) expresses modes travelling
and evanescent to the right. The second part then describes modes travelling and
evanescent to the left.

Furthermore we expand the potential function for x ≤ 0 and x ≥ l in series of
orthogonal eigen-functions, truncated at N terms

φ(x, y) = gη∞
iω

(
cosh k0(y + h)

cosh k0h
eik0x +

N−1∑
n=0

αn

coshkn(y + h)

cosh knh
e−iknx

)
for x ≤ 0

(6.19)
and

φ(x, y) = gη∞
iω

N−1∑
n=0

βn

cosh kn(y + h)

cosh knh
eikn(x−l) for x ≥ l. (6.20)

The difference in the number of expansion functions in (6.18) is due to the fact that
we have four boundary conditions at the edge of the plate (6.5). The coefficients
α0 and β0 are the reflection and transmission coefficients respectively. it should be
noticed that the potential under the platform is not expanded in a set of orthogonal
eigen-functions. By the way, such a set does not exist. Extension of the solution
along the bottom of the platform in the flow region is simply done by application
of (6.17). We have introduced 4N + 4 unknown coefficients. Next we derive an
algebraic set of equations for these coefficients.

First we take (x, y) at the bottom of the plate, this leads to the following equation:

2π

(
D

∂4

∂x4
− μ + 1

)
(x)

= −2π
K

iω
φinc(x,−d)

− K

iω

∫ 0

−d

(
φ(0, η)

∂G (x,−d;0, η)

∂ξ
− φ(l, η)

∂G (x,−d; l, η)

∂ξ

)
dη

+ lim
y↑−d

∫ l

0

((
D

∂4

∂ξ4
− μ + 1

)
v(ξ)

∂G (x, y; ξ,−d)

∂η

− Kv(ξ)G (x, y; ξ,−d)

)
dξ. (6.21)

We take the limit in the last integral after we have carried out the spatial integrations
analytically. This means that we keep the factor 2π in the left-hand side of the
equation. The commonly used factor π and principle value integral may be obtained
by taking the limit first. However, it is more convenient to avoid the principle value
integral in our approach. In the first integral on the right-hand side we insert for
the Green function the series expansion (6.15) and for the potential function the
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expansions (6.19) and (6.20), while in the second integral we use (6.14) for the
Green function and (6.18) for the deflection. In the first integral integration with
respect to η and in the last integral the integration with respect to ξ can be carried
out. Next we close the remaining contour of integration in the complex γ -plane.

If we now equalise the coefficients of eiκnx and of e−iκn(x−l), we obtain the fol-
lowing ‘dispersion’ relation for κn, the κn’s are the zero’s of

(Dκ4 − μ)K coshκd + (K2 − κ2(Dκ4 − μ + 1))
sinhκd

κ

= (Dκ4 − μ + 1)
(K coshκh − κ sinhκh)

coshκ(−d + h)
.

After some manipulations this relation can be rewritten in the form

((Dκ4 − μ − 1)κ tanhκ(h − d) − K)(K sinhκd − κ coshκd) = 0. (6.22)

For d = 0 the dispersion relation for the zero draft platform is recovered. It should
be noticed that relation (6.22) is not exactly the same as the zero draft relation with
h replaced by h− d . Hence, we ignore the zeros of the second part, which occur for
values of K sufficiently large only.

6.2.1 Semi-Infinite Platform

Let us first consider the half-plane problem. We introduce some slight physical
damping to get rid of the contributions of the upper bound in the last integral
in (6.21) and the second part of the first integral. The terms we obtain after clo-
sure of the contour in the last integral of (6.21) contain the exponential functions
eiknx . We take the coefficients of each exponential equal to zero. This leads to a set
of N algebraic equations for the coefficients an and αn. For the half-plane problem,
we obtain for i = 0, . . . ,N − 1:

N−1∑
n=0

αn

cosh knh
Ki,n −

N+1∑
n=0

an

κn − ki

(
(Dκ4

n − μ + 1) sinhki(h − d)

− K

ki

coshki(h − d)

)

= δ0
i

hk2
0 − hK2 + K

(k2
0 − K2) coshk0h)

− Ki,0

coshk0h
, (6.23)

where the coefficients Ki,n are defined as

2Ki,n = 1

ki + kn

[sinh(ki + kn)h − sinh(ki + kn)(h − d))]

+ 1

ki − kn

[sinh(ki − kn)h − sinh(ki − kn)(h − d)]. (6.24)



94 6 Flexible Floating Platform

This is a set of N equations for 2N + 2 unknown coefficients. We have two condi-
tions at the edge of the plate, so we must still obtain N . At the vertical front end of
the platform (6.17) gives the relation

2πφ(0, y) = 2πφinc(0, y) + lim
x→0

∫ 0

−d

φ(0, η)
∂G (x, y;0, η)

∂ξ
dη

− iω
∫ ∞

0

(
1

K

(
D

∂4

∂ξ4
− μ + 1

)
v(ξ)

∂G (0, y; ξ,−d)

∂η

− v(ξ)G (0, y; ξ,−d)

)
dξ. (6.25)

We insert the series expansions (6.18) and (6.19) in this equation and compare the
coefficients of coshki(y + h). For the Green function we use expression (6.15) in
both integrals.

We obtain for i = 0, . . . ,N − 1,

hk2
i − hK2 + K

(k2
i − K2) cosh kih

αi −
N−1∑
n=0

αn

coshknh
Ki,n

−
N+1∑
n=0

an

κn + ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)

= 1

cosh k0h
Ki,0. (6.26)

We give some results for the absolute value of the amplitude of the deflection for
a semi-infinite platform with a draft of two metres and water depth of ten me-
tres. In Fig. 6.1 results are shown for three values of the deep water wave length,
λ = 2π/K = 150,90,30 m respectively. As expected the amplitude increases with
increasing values of the wave length. In Fig. 6.2 we show for λ = 90 m and water
depth of ten metre the absolute value of the amplitude for several values of the draft,
d = 0,2,4,6 m. In Fig. 6.3 we show the influence of water depth on the amplitude of
deflection. We have chosen h = 100,20,10 m, d = 2 m and a fixed frequency with
λ = 90 m. The amplitude of the deflection increases for increasing water depth. To
carry out computations for the larger values of water depth one must get rid of all
hyperbolic sin and cosine functions in the formulation. This can be done by using
standard formulas for these functions and by using the dispersion relation for the
free surface water waves. By doing so one obtains very accurate results. In Fig. 6.4
we show the real part of the deflection for the same values of water depth, d = 5 m
and fixed values of the wavelength λ0 = 2π/k0 = 100 m. We also have computed
the absolute value of the amplitude of the wave elevation in front of the platform.
The result is shown in Fig. 6.5. It is clearly shown that the elevation of the wave
and the platform are discontinuous at x = 0. The amplitude of the reflected wave
α0 = 0.45657 − 0.43639i.
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Fig. 6.1 D = 107 m4,
d = 2 m, h = 10 m and
λ = 150,90,30 m (top-down)

Fig. 6.2 D = 107 m4,
d = 0,2,4,6 (top-down),
h = 10 m and λ = 90 m

Fig. 6.3 D = 107 m4,
d = 2 m, h = 100,20,10 m
(top-down) and λ = 90 m

Fig. 6.4 Real part of the
deflection for D = 107 m4,
d = 5 m, h = 100,20,10 m
(top-down) m and
λ0 = 100 m
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Fig. 6.5 Amplitude of wave
and deflection for
D = 107 m4, d = 2 m,
h = 10 m and λ = 90 m

6.2.2 Strip of Finite Length

We follow the same procedure as for the semi-infinite case. The first step is to com-
pare the coefficients of the exponential functions e±iknx in (6.21). This leads to a set
of 2N algebraic equations for the coefficients an, bn,αn and βn.

N−1∑
n=0

αn

cosh knh
Ki,n

−
N+1∑
n=0

an

κn − ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)

+
N+1∑
n=0

bn

κn + ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)
eiκnl

= δ0
i

hk2
0 − hK2 + K

(k2
0 − K2) coshk0h)

− Ki,0

coshk0h
(6.27)

and

N−1∑
n=0

βn

cosh knh
Ki,n

+
N+1∑
n=0

an

κn + ki

(
(Dκ4

n − μ + 1) sinh ki(h − d) − K

ki

coshki(h − d)

)
eiκnl

−
N+1∑
n=0

bn

κn + ki

(
(Dκ4

n − μ + 1) sinh ki(h − d) − K

ki

coshki(h − d)

)
= 0.

(6.28)

This is a set of 2N equations for 4N + 4 unknown coefficients. Next we consider
the equations at x = 0 and x = l respectively. After integration with respect to the
spatial variable one obtains a summation of cosh ki(y + h) terms. By taking the
coefficients of each coshki(y + h) function equal to zero we obtain the following
set of 2N equations for the unknown expansion coefficients.
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At x = 0 we get

hk2
i − hK2 + K

(k2
i − K2) cosh kih

αi −
N−1∑
n=0

αn − βneiki l

cosh knh
Ki,n

−
N+1∑
n=0

an

κn + ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)

× (
1 − ei(κn+ki )l

)

+
N+1∑
n=0

bn

κn − ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)

× (
eiκnl − eiki l

)

= 1

cosh k0h
Ki,0, (6.29)

and at x = l we get

hk2
i − hK2 + K

(k2
i − K2) cosh kih

βi +
N−1∑
n=0

αneiki l − βn

cosh knh
Ki,n

+
N+1∑
n=0

an

κn − ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)

× (
eiκnl − eiki l

)

−
N+1∑
n=0

bn

κn + ki

(
(Dκ4

n − μ + 1) sinhki(h − d) − K

ki

cosh ki(h − d)

)

× (
1 − ei(κn+ki )l

)

= hk2
0 − hK2 + K

(k2
0 − K2) cosh k0h

eik0l − 1

cosh k0h
Ki,0. (6.30)

Together with the four relations at the end of the strip we have 4N + 4 linear alge-
braic equations for the 4N + 4 unknown coefficients.

The set of equations as is written here is not very suitable for numerical com-
putations directly. Especially for large values of water-depth the arguments of the
hyperbolic sine and cosine functions become rather large. So one is subtracting very
large values in the computation of the coefficients. To obtain high numerical accu-
racy one must get rid of these functions. This can be done by using the dispersion
relation for the water region. In Sect. 9.5 a more suitable set of equations is given.

We show some computational results for a two-dimensional platform of width
300 m. In all cases we take a fixed value for the flexural rigidity D = 107 m4, the
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Fig. 6.6 D = 107 m4,
l = 300 m, d = 0 m,
h = 10 m and
λ/l = 0.5, . . . ,0.3,−−,0.1,−−

Fig. 6.7 D = 107 m4,
l = 300 m, d = 2 m,
h = 10 m and
λ/l = 0.5,0.3,0.1

width of the strip l = 300 m and the water depth h = 10 m. In Figs. 6.6 and 6.7 we
show for d = 0 and for d = 2 m the variation of the amplitude of deflection with
respect to the wave length. In Figs. 6.8 and 6.9 the dependence on the draft for fixed
values of the wave length is shown. The results of the first case show an increase
of the deflection for increasing values of the draft. It will be shown later that this
is due to a shift in the reflection curve. In Fig. 6.10 a result is shown for a larger
value of the flexural rigidity D = 1010 m4 and wave length λ/l = 0.5. This case is
comparable with the interaction of free-surface waves with a rigid body. One clearly
observes that the motion of the dock consists of a heave and pitch motion only.

In Figs. 6.11 and 6.13 we show for two values of the wave length the absolute
value of the amplitude of the water surface in front of and behind the strip, together
with the amplitude of the plate deflection for the zero draft case. The second case is
near the zero reflection situation. In the four metre draft case, see Figs. 6.12 and 6.14,
we see that λ/l = 0.215, or in terms of the actual wave length λ0/l = 0.178, is close
to total reflection. This is in contrast with the zero draft case in Fig. 6.13, due to the
shift in the transmission-reflection curves. For the same reason the absolute value of
the deflection increases if the draft increases in Fig. 6.8 in contrast with the result in
Fig. 6.9.

The reflection and transmission coefficients for a strip of 300 m and depth 10 m
are shown in Fig. 6.15, for zero draft and in Fig. 6.16 for a draft of 2 meteors. If we
define R = α0 and T = β0, notice no exponential function, we find that in all cases
the relations |T |2 + |R|2 = 1 and T R + T R = 0, see for instance Mei et al. [10] or
for a derivation Roseau [16], are fulfilled for at least 10 decimals. The coefficients
are presented as a function of the actual wave length, λ0/l = 2π/k0l. In Figs. 6.17
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Fig. 6.8 D = 107 m4,
l = 300 m, d = 0,−−,
2,−−,4, . . . m, h = 10 m
and λ/l = 0.3

Fig. 6.9 D = 107 m4,
l = 300 m, d = 0,−−,
2,−−,4, . . . m, h = 10 m
and λ/l = 0.5

Fig. 6.10 D = 1010 m4,
l = 300 m, d = 0,2,4 m,
h = 10 m and λ/l = 0.5

Fig. 6.11 D = 107 m4,
l = 300 m, d = 0 m,
h = 10 m and λ/l = 0.3



100 6 Flexible Floating Platform

Fig. 6.12 D = 107 m4,
l = 300 m, d = 4 m,
h = 10 m and λ/l = 0.3

Fig. 6.13 D = 107 m4,
l = 300 m, d = 0 m,
h = 10 m and λ/l = 0.215

Fig. 6.14 D = 107 m4,
l = 300 m, d = 4 m,
h = 10 m and λ/l = 0.215

Fig. 6.15 −−− Reflection
and −− transmission
coefficients for h = 10 m,
d = 0 m and l = 300 m



6.2 Semi-Analytic Solution 101

Fig. 6.16 Reflection and
transmission coefficients for
h = 10 m, d = 4 m and
l = 300 m

Fig. 6.17 Reflection and
transmission coefficients for
h = 100 m, d = 0 m and
l = 300 m

Fig. 6.18 Reflection and
transmission coefficients for
h = 100 m, d = 2 m, and
l = 300 m

Fig. 6.19 Reflection and
transmission coefficients for
h = 100 m, d = 2 m, and
l = 650 m
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Fig. 6.20 Reflection and
transmission coefficients for
h = 100 m, d = 2 m and
l = 1000 m

Fig. 6.21 Reflection and
transmission coefficients for
h = 100 m, d = 8 m, and
l = 1000 m

Fig. 6.22 Reflection and
transmission coefficients for
h = 500 m, d = 8 m and
l = 1000 m

and 6.18 these coefficients are given for a water depth of 100 metres. In all cases the
coefficient of flexural rigidity equals D = 107 m4. Figures 6.18, 6.19 and 6.20 show
the results for different sizes of the strip. In Figs. 6.21 and 6.22 the result is shown
for a strip of width l = 100 m and draft d = 8 m. It is clearly observed that for the
short waves total reflection takes place.



Chapter 7
Irregular and Non-linear Waves

The surface waves of the sea are almost always random in the sense that detailed
configuration of the surface varies in an irregular manner in both space and time.
Section 7.1 contains a brief description of the Wiener spectrum in connection with
the generalised Fourier representations for the surface waves [2, 20]. In this way
we see how one may represent the surface elevation by a superposition of harmonic
waves with amplitudes being a stochastic process.

The remaining sections in the chapter are devoted to non-linear waves. In
Sect. 7.2 we give a systematic derivation of the shallow water theory from the exact
hydrodynamical equations as the approximation of lowest order in a perturbation
procedure. Here the relevant small parameter is the ratio of the depth of water to
some characteristic length associated with the horizontal direction such as the wave
length; the water is considered shallow when this parameter is small. It is a different
kind of approximation from the previous linear theory for waves of small amplitude.
The resulting equations here are quasi-linear and are exactly analogous to the ones
in gas dynamics. Second order approximations are included in the last Sect. 7.3. In
particular, an asymptotic theory will be developed for slowly varying wave trains,
which may be considered as nearly uniform in the regions of order of magnitude
of a small number of wave lengths and periods. Some non-linear dispersive wave
phenomena will be discussed and more details can be found in [7].

7.1 Wiener Spectrum

The actual motion of the sea is by no means a harmonic motion with constant fre-
quency. In Sect. 2.1.2, we gave a representation of the sea surface η(x, t) in the form
of an integral*

η(x, t) =
∫ ∞

−∞
{
A(k)e−i(kx−ωt) + A∗(k)ei(kx−ωt)

}
dk

under the hypothesis that
∫ ∞
− ∞|A(k)|2 dk is convergent. It is, however, not ap-

propriate to suppose that the amplitudes of the high frequencies go to zero. The

A.J. Hermans, Water Waves and Ship Hydrodynamics,
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representation by a Fourier integral there breaks down and we must use a theory
developed by Wiener of which we shall give an outline below. Details can be found
in Wiener’s book [20] in the references.

For a better understanding, we begin with a trigonometric polynomial f (t) de-
fined by

f (t) =
n∑

j=1

Aj eiλj t ,

and calculate

f (t + τ)f ∗(t) =
n∑

j=1

n∑
k=1

AjA
∗
keiλj tei(λj −λk)τ .

Here A∗
k again denotes the complex conjugate of Ak . Now by taking the averaged

mean of this quantity, we obtain that

lim
T →∞

1

2T

∫ T

−T

f (t + τ)f ∗(τ )dτ =
n∑

j=1

n∑
k=1

AjA
∗
keiλj t lim

T →∞
1

2T

∫ T

−T

ei(λj −λk)τ dτ.

For λj = λk , the limit is equal to unity, but for λj �= λk , the limit vanishes. This
leads to the result

lim
T →∞

1

2T

∫ T

−T

f (t + τ)f ∗(τ )dτ =
n∑

j=1

|Aj |2eiλt .

In other words, if we put

ϕ(t) = lim
T →∞

1

2T

∫ T

−T

f (t + τ)f ∗(τ )dτ,

then ϕ(t) exists for every t , is continuous and consists of terms with the same fre-
quency as those constituting f (t) and with amplitudes equal to the square of the
amplitudes of the corresponding terms of f (t). Hence we see a way of finding a
Fourier integral representation of a function which does not vanish at infinity. One
can analyse the surface waves by means of functions of this kind in space variables
as well as in the time variable.

We next build up the Wiener theory for those complex functions f (t) of he real
variable t such that

ϕ(t) = lim
T →∞

1

2T

∫ T

−T

f (t + τ)f ∗(τ )dτ, (7.1)

exists for all t . Clearly then ϕ(0) also exists. This means that the quadratic mean of
the function exists. Moreover from the Schwartz’s inequality, it can be shown that
for all real t ,

|ϕ(t)| ≤ ϕ(0).
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Indeed, it is easy to see that

|ϕ(t)| = lim
T →∞

∣∣∣∣ 1

2T

∫ T

−T

f (t + τ)f ∗(τ )dτ

∣∣∣∣
≤

{
lim

T →∞
1

2T

∫ T +|t |

−T −|t |
|f (τ)|2 dτ lim

T →∞
1

2T

∫ T

−T

|f (τ)|2 dτ

}1/2

≤
{(

lim
T →∞

T + |t |
T

)(
lim

T →∞
1

2(T + |t |)
∫ T +|t |

−T −|t |
|f (τ)|2 dτ

)

·
(

lim
T →∞

1

2T

∫ T

−T

|f (τ)|2 dτ

)}1/2

= {
1 × ϕ(0) × ϕ(0)

}1/2 = ϕ(0).

Here we use the notation lim = lim sup for the limit superior. Recall that
limSn = A ⇐⇒ the sequence {Sn}∞n=1 is bounded above and has A as its largest
limit point.

We now try to define a reasonable Fourier transform for those functions f (t)

in (7.1). Clearly from (7.1), the standard Fourier transform for f (t),
1√
2π

∫ ∞
−∞ f (τ)e−iωτ dτ , need not exist but the limit

lim
T →∞

∫ T

−T

f (τ)eiωτ dτ

does exist. This leads us to consider the integral

∫ ∞

−∞
eiωt

it
dt,

although the integrand is singular at t = 0. Since ϕ(0) exists it follows that

1

2T

∫ T

−T

|f (t)|2 dt

is bounded in T and hence the function which is f (t)/it for |t | > 1 and 0 for t ≤ 1
belongs to L2, consequently its Fourier transform (in L2) exists and belongs to L2.
Thus we define

S(ω) = 1√
2π

l.i.m.
A→∞

[∫ −1

−A

+
∫ A

1

]
f (t)e−iωt

−it
dt + 1√

2π

∫ 1

−1

e−iωt − 1

−it
dt, (7.2)

and consider the difference S(ω + ε) − S(ω − ε) which can be reduced to

S(ω + ε) − S(ω − ε) = 1√
2π

l.i.m.
A→∞

∫ A

−A

f (t)
2 sin εt

t
e−ıωt dt. (7.3)
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Here and in the sequel we use the notation for the limit in the mean:
l.i.m.a→a0gα(ω) = g(ω) if

lim
α→α0

∫ ∞

−∞
|gα(ω) − g(ω)|2 dω = 0,

where α0 is any fixed constant including ∞. Because of our assumption for f (t)

in (7.1), clearly S(ω) in (7.2) exists and so is due to the difference S(ω + ε) −
S(ω − ε) in (7.3), which is the ordinary Fourier transform of f (t) 2 sin εt

t
. Here S(ω)

as defined by (7.2) is termed as the generalised Fourier transform of f (t).
At this stage, Wiener uses a Tauberian therem: If ϕ(t) ≥ 0 for 0 ≤ t < ∞, and

either of the limits

lim
T →∞

1

T

∫ T

0
ϕ(t)dt or lim

ε→0

2

πε

∫ ∞

0
ϕ(t)

sin2(εt)

t2
dt

exists, then the other limit exists and assumes the same value. Wiener’s proof of this
theorem is very complicated. However as a corollary, we have the result that

lim
ε→0

1

4πε

∫ ∞

−∞
|S(ω + ε) − S(ω − ε)|2 dω = lim

T →∞
1

2T

∫ T

−T

|f (t)|2 dt.

We now define Sτ (ω), which bears the same relation to f (t + τ) as S(ω) to f (t)

in (7.2). Then we have

Sτ (ω + ε) − Sτ (ω − ε) − eiτω
{
S(ω + ε) − S(ω − ε)

}

= 1√
2π

{
l.i.m.
A→∞

∫ A

−A

f (t + τ)
2 sin(εt)

t
e−iεt dt

− l.i.m.
A→∞

∫ A

−A

f (t + τ)
2 sin(εt)

t
e−iε(t−τ) dt

}
.

This can be transformed into

1√
2π

l.i.m.
A→∞

∫ A

−A

f (t)

[
2 sin(ε(t − τ))

t − τ
− 2 sin(εt)

t

]
e−iω(t−τ) dt.

Thus from the Plancherel theorem, it follows that
∫ ∞

−∞
∣∣Sτ (ω + ε) − Sτ (ω − ε) − eiωτ

{
S(ω + ε) − S(ω − ε)

}∣∣2 dω

=
∫ ∞

−∞
|f (t)|2

[
2 sin((t − τ)ε)

t − τ
− 2 sin(tε)

t

]2

dt.

Now it can be shown that∣∣∣∣2 sin((t − τ)ε)

t − τ
− 2 sin(tε)

t

∣∣∣∣ ≤ 16ε|τ |
|t | + |τ | ,
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and hence by the Tauberian theorem and the fact that if 1
2T

∫ T

−t
|f (t)|2 dt is bounded

in T , then
∫ ∞
−∞ |f (t)|2/(1 + t2)dt < ∞ and we have

∫ ∞

−∞

∣∣∣∣Sτ (ω + ε) − Sτ (ω − ε) − eiωτ

{
S(ω + ε) − S(ω − ε)

}∣∣∣∣
2

dω = O(ε2).

Then from this, Wiener derives that

ϕ(τ) = lim
ε→0

1

4πε

∫ ∞

−∞
eiωτ

∣∣S(ω + ε) − S(ω − ε)
∣∣2 dω. (7.4)

Putting

ϕε(τ ) = 1

4πε

∫ ∞

−∞
eiωτ

∣∣S(ω + ε) − S(ω − ε)
∣∣2 dω,

Wiener shows that the function

σε(ω) := 1√
2π

{
l.i.m.
A→∞

[∫ A

1
+

∫ −1

−A

]
ϕε(t)e−iωt

−it
dt +

∫ 1

−1
ϕε(t)

e−iωt − 1

−it
dt

}

is equal to

constant + 1

2ε
√

2π

∫ ∞

0
|S(ω′ + ε) − S(ω′ − ε)|2 dω′.

Or, with σ(ω) = l.i.m.ε→0σε(ω), we have

σ(ω) − σ(−ω) = 1

2ε
√

2π
l.i.m.
ε→0

∫ ω

−ω

|S(ω′ + ε) + −S(ω′ − ε)|2 dω′. (7.5)

Finally, Wiener shows that

ϕ(τ) = 1√
2π

∫ ∞

−∞
eiτω dσ(ω). (7.6)

If we let F(ω) 1√
2π

(σ (ω) − σ(−ω)), then (7.6) can be written as

ϕ(τ) =
∫ ∞

0
cos(ωτ)dF(ω). (7.7)

In this way we have introduced the spectral function F(ω) of f (t) and have estab-
lished the generalised Fourier representation. It should be noted that this concept
just follows from the assumption of the existence of the auto-correlation function
of f (t) defined by

lim
T →∞

1

2T

∫ T

−T

f (t + τ)f ∗(t)dt,
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which has been denoted by ϕ(τ) (cf. (7.1)). This auto-correlation function ϕ(τ) is
found by a summation of contributions of the different frequencies of the spectrum.
This leads to consider the function f (t) as a realisation of a stochastic process,
consisting of a superposition of different harmonic waves, the amplitudes of which
are random variables of ω.

We first remark that if f (t) is a stationary process of second order,1 with the
understanding that the process is a centred process, i.e., E{f (t)} = 0, there exists
a covariance function E{f (t + τ)f ∗(t)} which is independent of t for a stationary
process. If the process is ergodic, then this covariance function is equal to the auto-
correlation ϕ(t), i.e.,

E{f (t + τ)f ∗(t)} = lim
T →∞

1

2T

∫ T

−T

f (t + τ)f ∗(t)dt. (7.8)

This means that from the relation (7.7), we can consider the process f (t) as a su-
perposition of the stochastic process A(ω), which consists of functions of the fre-
quency ω with independent increments in such a way that E{dA(ω)dA∗(ω)} = 0,
if dω �= dω′. Thus, if we put dF(ω) = 2E{dA(ω)dA∗(ω)}, we can express f (t) as

f (t) =
∫ ∞

−∞
eiωt dA(ω). (7.9)

In the case of surface waves, we have the vector xxx = (x, y) and the representation
takes the form of a superposition of plane waves as a stochastic integral,

η(x, y, t) =
∞∫∫

−∞
ei(k·xk·xk·x−iωt) dA(kkk), (7.10)

where ω and kkk = (k1, k2) are related by the dispersion relation ω = H(kkk). The en-
ergy spectrum is given by dF = E{dA(kkk)dA∗(kkk)}. The energy spectrum depends

on both the wave number k =
√

k2
1 + k2

2 and the direction ϑ such that k1 = k cosϑ

and k1 = k sinϑ . We denote it by dF(k,ϑ).
In Sect. 3.2.4 we considered the response of a ship to this incoming wave (7.10).

We will see that for a purely sinusoidal incoming wave, the ship motion is also
purely sinusoidal in its six degrees of freedom and there exists a transfer matrix
μ = (μkμ

∗
j ) with entries μkμ

∗
j depending on ω (or k) such that αk = μkA, where

αk is defined as the amplitude of the ship’s motion in the corresponding degree of
freedom. If dA(ω) is a stochastic input function, then the αk will also be stochastic.
From the energy spectrum dF = E{dAdA∗} of the incoming wave, we can form the
covariance matrix of the motion of the ship, E{dαk dα∗j}. The diagonal elements

1A stochastic process X(t) is said to be of second order if E{X2(t)} < ∞ for all t in its domain
of definition; the covariance function X(t) is defined by E{[X(τ) − m(τ)][X(t) − m(t)]∗}, where
m(t) = E{X(t)}.
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are called the quadrature spectrum of the corresponding motions; the non-diagonal
elements form the cross spectrum. It is easy to see that

E{dαk dα∗
j } = E{μk dAμ∗

j dA∗} = μkμ
∗
jE{dAdA∗} = μkμ

∗
j dF. (7.11)

The matrix μkμ
∗
j forms the transfer matrix of the ship and is related to the αk’s by

the above expression (7.11). Most experiments determine this transfer matrix from
measurements of the ship motion with given incoming waves.

7.2 Shallow Water Theory

In this section we shall discuss the shallow water theory which gives a different
kind of approximation from the foregoing linear theory of small amplitude. Here
it is assumed that the depth of the water is sufficiently small compared with some
other characteristic length associated with the horizontal direction.

For convenience, we denote by (x̄, ȳ, z̄) and t̄ the dimensional space variables
and time variable, respectively. The disposition of the coordinate axes is taken in
the usual manner, with the x̄, z̄-plane, the undisturbed water surface and the ȳ-axis
positive upward. The free surface is given by ȳ = η̄(x̄, z̄, t̄ ) and the flat bottom is
given by ȳ = −h, h > 0 (see Fig. 7.1). The velocity components are denoted by
ū(x̄, ȳ, z̄, t̄ ), v̄(x̄, ȳ, z̄, t̄ ), w̄(x̄, ȳ, z̄, t̄ ) and the pressure is denoted by p̄(x̄, ȳ, z̄, t̄ ).
We recapitulate the basic equations and boundary conditions in terms of the Euler
variables (x̄, ȳ, z̄) and t̄ . The equations of motion in Sect. 1.1 take the form,

ūt̄ + ūūx̄ + v̄ūȳ + w̄ūz̄ = − 1

ρ
p̄x̄ ,

v̄t̄ + ūv̄x̄ + v̄v̄ȳ + w̄v̄z̄ = − 1

ρ
p̄ȳ − g,

w̄t̄ + ūw̄x̄ + v̄w̄ȳ + w̄w̄z̄ = − 1

ρ
p̄z̄.

(7.12)

The equation of continuity is

ūx̄ + v̄ȳ + w̄z̄ = 0 (7.13)

Fig. 7.1 Shallow water
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and the condition of irrotational flow yields

ūȳ − v̄x̄ = 0,

v̄z̄ − w̄ȳ = 0,

w̄x̄ − ūz̄ = 0.

(7.14)

At the free surface ȳ = η̄(x̄, z̄, t̄ ), we have the kinematic condition from (1.11),

v̄ = η̄t̄ + ūη̄x̄ + w̄η̄z̄, (7.15)

and the condition of constant pressure from (1.13),

ϕt̄ + 1

2
(ū2 + v̄2 + w̄2) + gη̄ = constant (7.16)

where ϕ is the velocity potential which exists because of condition (7.14). By as-
suming the bottom flat, we have the boundary condition

v̄ = 0, at ȳ = −h. (7.17)

We now introduce dimensionless space variables

x = x̄

L
, z = z̄

L
, y = ȳ

h
= ȳ

εL
,

where ε = h/L and L is a reference length in the x̄ and z̄ directions. Then by intro-
ducing a reference velocity U (which will be chosen later) and putting

u = ū

U
, εv = v̄

U
, w = w̄

U
,

the equation of continuity (7.13) reads

ux + vy + wz = 0, (7.18)

and the vorticity free conditions (7.14) give

uy − ε2vx = 0,

wy − ε2vz = 0,

wx − uz = 0.

(7.19)

Taking for the time scale t = t̄U/L, we have the equations of motion in the form

ut + uux + vuy + wuz = − 1

ρU2
p̄x,

ε2(vt + uvx + vvy + wvz) = − 1

ρU2
p̄y − εgL

U2
,

wt + uwx + vwy + wwz = − 1

ρU2
p̄z.

(7.20)
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We now choose U such that εgL = U2. Then the above equations become, with

 = p̄/ρU2,

ut + uux + vuy + wuz = −
x,

ε2(vt + uvx + vvy + wvz) = −
y − 1,

wt + uwx + vwy + wwz = −
z.

(7.21)

Similarly introducing the dimensionless variables φ = ϕ/UL, η = η̄/h in (7.15)
to (7.17) yields

v = ηt + uηx + wηz

φt + 1
2 (u2 + ε2v2 + w2) + η = constant

}
at y = η, (7.22)

v = 0, at y = −1. (7.23)

Apparently the relevant parameter is ε2, hence the object now is to consider solu-
tions of (7.18)–(7.20) together with (7.22)–(7.23), depending on this small parame-
ter and then develop in powers of ε2.

First we assume power series developments for u,v,w and 
:

u = u0 + ε2u1 + ε4u2 + · · · ,

v = v0 + ε2v1 + ε4v2 + · · · ,

w = w0 + ε2uw1 + ε4w2 + · · · ,


 = u0 + ε2
1 + ε4
2 + · · ·

(7.24)

and substitute them into (7.18) to (7.20). Equating to zero the coefficients of like
powers of ε2 gives the following successive system of equations:

u0x + v0y + w0z = 0, (7.25)

u0y = 0; w0y = 0; w0x − u0z = 0, (7.26)

u0t + u0u0x + v0u0y + w0u0z = −
0x,

0 = −
0y − 1,

w0t + u0w0x + v0w0y + w0w0z = −
0z.

(7.27)

Putting η = η0 + ε2η1 + ε4η2 + · · · , the free surface conditions are

v0 = η0t + u0η0x + w0η0z (7.28)

together with


0(η) = 0. (7.29)

At the bottom we have the boundary condition

v0 = 0, at y = −1, (7.30)
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and from the continuity equation (7.25) we then find

v0(η) = −
∫ η

−1
(u0x + w0z)dy,

but from (7.26), since u0 and w0 are independent of y, it follows that

v0(η) = −(u0x + w0z)(η + 1)

= −(u0x + w0z)(η0 + 1) + O(ε2). (7.31)

Also from the second equation of (7.27), 
0y = −1 and the fact that 
0(η) = 0
from (7.29), we see that to the same order of approximation


0 = η0 − y, (7.32)

which corresponds to the hydrostatic pressure distribution. Collecting results (7.31)
and (7.32), we obtain from (7.27) the equations

u0t + u0u0x + w0u0z + η0x = 0,

w0t + u0w0x + w0w0z + η0z = 0,
(7.33)

together with

η0t + u0η0x + w0η0z + (η0 + 1)(u0x + w0z) = 0,

from (7.28). Observe that the terms v0u0y and v0w0y in (7.27) vanish because of
(7.27). Hence we arrive at, in the first approximation, the following set of quasi-
linear equations for u,w and the total thickness of the water layer η:

ut + uux + wuz + ηx = 0,

wt + uwx + wwz + ηz = 0,

ηt + uηx + wηz + (η + 1)(ux + wz) = 0.

(7.34)

These are the dimensionless forms of the basic equations of shallow water theory.
In the following we shall consider two special cases of (7.34) which are of im-

portance: the steady case from (7.26) and (7.34),

wx − uz = 0,

uux + wuz + ηx = 0,

uwx + wwz + ηz = 0,

uηx + wηz + (η + 1)ux + (η + 1)wz = 0,

(7.35)

and the one-dimensional non-steady case from (7.34),

ut + uux + ηx = 0,

ηt + uηx + (η + 1)ux = 0.
(7.36)
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In the first case, from the first three equations of (7.35), we find that

∂

∂x

{
1

2
(u2 + w2) + η

}
= 0,

∂

∂z

{
1

2
(u2 + w2) + η

}
= 0,

or

η = 1

2

{
(c0 − 2) − (u2 + w2)

}
, c0 = constant. (7.37)

Substitution of (7.37) into the last equation of (7.35) gives a second-order equation
for the potential function φ:

∂

∂x

{[
c0 − (u2 + w2)

]
φx

} + ∂

∂z

{[
c0 − (u2 + w2)

]
φz

} = 0,

or [
c0 − (3u2 + w2)

]
φxx − 4uwφxz + [

c0 − (u2 + 3w2)
]
φzz = 0. (7.38)

The steady flow case is completely analogous to the steady two-dimensional gas
flow.

In the second case, the unsteady one-dimensional case, (7.36) can be solved by
the method of characteristics. We define here the characteristic directions α and β

as those for which the linear combination of the equations yields differentiation of
the functions η and u in the same direction. A linear combination of (7.36) is

λut + (λu + μ(η + 1))ux + μηt + (λ + μu)ηx = 0, (7.39)

and the differentiation of u and η are in the same direction if

λu + μ(η + 1)

λ
= λ + μu

μ
,

which gives λ = μ
√

η + 1 or λ = −μ
√

η + 1. Hence we have finally from (7.39),
putting c = √

η + 1,

cut + c(u + c)ux + ηt + (u + c)ηx = 0,

− cut − c(u − c)ux + ηt + (u − c)ηx = 0.
(7.40)

The characteristic directions are

∂

∂α
= ∂

∂t
+ (u + c)

∂

∂x
,

∂

∂β
= ∂

∂t
+ (u − c)

∂

∂x
,

(7.41)
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and (7.40) take the form

c
∂u

∂α
+ ∂η

∂α
= 0 and − c

∂u

∂β
+ ∂η

∂β
= 0

or

∂u

∂α
+ 2

√
η + 1

∂α
= 0 and − ∂u

∂β
+ 2

√
η + 1

∂β
= 0 (7.42)

by making use of c = √
η + 1. This gives the Riemann invariants

u + 2
√

η + 1 = f (β),

−u + 2
√

η + 1 = g(α).
(7.43)

An application of the above theory to the breaking of a dam can be found in Stoker’s
book [17] on water waves.

7.3 Non-linear Dispersive Waves

As we have seen in the previous section, we can solve the shallow water equations,
in the first approximation, by the method of characteristics. If these characteristics
intersect, a shock will develop. For this reason, it has an advantage to consider the
second approximation to the equations.

We shall derive the second-order approximation for the one-dimensional flow by
a method which differs slightly from the method used in the previous section, but
which is somewhat shorter.

Again, we denote the dimensional coordinates system by (x̄, ȳ), but for conve-
nience, we replace the x̄-axis on the flat bottom as shown in Fig. 7.2. The boundary
value problem for ϕ consists of the equations

ϕx̄x̄ + ϕȳȳ = 0, for

{−∞ < x̄ < ∞,

0 < ȳ < η̄(x̄, t̄),

ϕȳ = 0, at ȳ = 0,

(7.44)

Fig. 7.2 Shallow water
coordinates
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and the following conditions on the free surface ȳ = η̄(x̄, t̄). On the free surface the
kinematic condition (7.15)

η̄t̄ + ūη̄x̄ = v̄, (7.45)

holds together with the dynamic condition of constant pressure p̄, which take the
form ∂p̄/∂s = 0. Here ∂/∂s denotes differentiation in the direction of the surface
face. Since the tangent to the free surface has direction cosines (1, η̄x̄ ), this dynamic
condition on the free surface becomes

∂p̄

∂x̄
+ ∂p̄

∂ȳ
η̄x̄ = 0, (7.46)

where ∂p̄
∂x̄

and ∂p̄
∂ȳ

follow from the equations of motion, that is

ūt̄ + ūūx̄ + v̄ūȳ = − 1

ρ
p̄x̄,

v̄t̄ + ūv̄x̄ + v̄v̄ȳ = − 1

ρ
p̄ȳ − g.

(7.47)

Substitution of the above equations into (7.46) gives (cf. (1.18))

ūt̄ + ūūx̄ + v̄ūȳ + η̄x̄ (v̄t̄ + ūv̄x̄ + v̄v̄ȳ + g) = 0. (7.48)

In order to obtain the shallow water equations, we consider the complex velocity
w̄ defined by w̄ = ū − iv̄ which is an analytic function of the complex variable
x̄ + iȳ (or more precisely x̄ + iȳ and t̄ ) in the interior of the region occupied by the
fluid. We will assume this regularity continues to remain valid up to and including
the boundary of the region. Then expanding w̄ into a Taylor expansion about x̄ for
fixed t̄ , we find

ū − iv̄ = w̄(x̄) + iȳw̄′(x̄) − ȳ2

2
w̄′′(x̄) − iȳ3

6
w̄′′′(x̄) + · · · . (7.49)

(Here for simplicity, we omit the argument t̄ and henceforth in the sequel.) Since at
the flat bottom ȳ = 0, we have

v̄ = v̄x̄ = v̄x̄x̄ = v̄x̄x̄x̄ = · · · = 0, (7.50)

it follows that by differentiation of (7.49) with respect to x̄, we obtain for ȳ = 0,

w̄(x̄) = ū(x̄,0),

w̄′(x̄) = ūx̄ (x̄,0),

w̄′′(x̄) = ūx̄x̄ (x̄,0), . . . .

(7.51)
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This gives us the expansions

ū(x̄, ȳ) = ū(x̄,0) − ȳ2

2
ūx̄x̄ (x̄,0) + ȳ4

4! ūx̄x̄x̄x̄ (x̄,0) + · · · ,

v̄(x̄, ȳ) = −ȳūx̄ (x̄,0) + ȳ3

3! ūx̄x̄x̄ (x̄,0) − ȳ5

5! ūx̄x̄x̄x̄x̄ (x̄,0) + · · · .

(7.52)

We now introduce dimensionless coordinates by putting x = x̄/L, y = ȳ/h, where
h is the characteristic length of the water depth and L is the wave length in the
x̄-direction. Moreover, we put ū = Uu with U being a reference velocity. The time
t̄ is made dimensionless by introduction of a time scale T such that t = t̄/T . Putting
δ = h/L, we see that v̄ is of order δ with respect to ū. We put v̄ = δUv. Furthermore,
we refer to u(x,0, t) as

u(x,0, t) = f (x, t). (7.53)

Then from (7.52), we have the expansions

u(x, y, t) = f − δ2

2
y2fxx + δ4

4! y
4fxxxx + O(δ6),

v(x, y, t) = −yfx + δ2

3! y
2fxxx − δ4

5! y
5fxxxxx + O(δ6).

(7.54)

On the surface y = η(x, t), η = η̄/h, the kinematic condition (7.45) takes the form

h

T
ηt + Uh

L
uηx = Uδv, (7.55)

or by setting δs = L/UT for some non-negative power s, it becomes

δsηt + uηx = v. (7.56)

The constant pressure condition (7.48) is transformed into

δsut + uux + vuy + δ2ηx(δ
svt + uvx + vvy) + ηx

gLδ

U2
= 0. (7.57)

We choose U such that U2 = gLδ and substitute (7.54) for u and v into (7.56)
and (7.57). Then we obtain a set of equations for f and η:

δsηx + (f ηx + ηfx) − 1

2
δ2η2

(
ηxfxx + 1

3
ηfxxx

)

+ δ4

4! η
4
(

ηxfxxxx + 1

5
ηfxxxxx

)
+ O(δ6) = 0, (7.58)

δs

[
ft − δ2

(
η2

2
fxxt + ηηxfxt

)
+ δ4

6
η3

(
ηxfxxxt + 1

4
ηfxxxxt

)]
+ (ffx + ηx)

+ δ2η

(
ηxf

2
x − ηxffxx + 1

2
ηfxfxx − 1

2
ηffxxx

)
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+ δ4η3
[
η

4

(
1

3
fxxfxxx − 1

2
fxfxxxx + 1

6
ffxxxxx

)

+ ηx

(
1

2
f 2

xx − 2

3
fxfxxx + 1

6
ffxxxx

)]
+ O(δ6) = 0. (7.59)

We construct asymptotic solutions of this set of equations by substituting for f and
η the power series in δ2:

f = u0 + δ2u1 + δ4u2 + · · · ,

η = η0 + δ2η1 + δ4η2 + · · · .
(7.60)

There are two cases to be considered:

CASE 1: s = 0

In this case the time scale T is adapted to the reference speed U by the relation U =
/L/T . Substitution of the series (7.60) into (7.58) and (7.59) gives, after equating
to zero the coefficients of like powers of δ2, the first approximation:

η0t + u0η0x + η0u0x = 0,

u0t + u0u0x + η0x = 0,
(7.61)

which are the shallow water equations for one-dimensional flow (7.33). The second
approximation leads to the following:

η0t + η0u1x + η1u0x + η0xu1 + η1xu0 − η2
0

6

(
η0u0xxx + 3η0xu0xx

) = 0,

u1t + η1x + u0u1x + u0xu1 − 1

2
η2

0u0xxt − η2
0

2

(
u0u0xxx − u0xu0xx

)

− η0η0xu0xt − η0η0xu0u0xx + η0η0xu
2
0x = 0.

(7.62)

We consider the special case of the first approximation due to a flow with constant
velocity which we put equal to one at y = −1. In this case since (7.62) gives only
the trivial solution, we must consider an approximation somewhat different than the
ones used in (7.62). We reexamine (7.58) and (7.59) by considering the expansions

f = 1 + δ2u1 + δ4u2 + · · · ,

η = 1 + δ2η1 + δ4η2 + · · · .
(7.63)

We keep all terms up to order δ4 except those terms involving u2 and η2, and obtain

η1t + η1x + δ2(u1η1x + η1u1x) − 1

6
δ2u1xxx = 0,

u1t + u1x + η1x + δ2u1u1x − 1

2
δ2(u1xxt + u1xxx) = 0.

(7.64)
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By setting u = 1 + δ2u1 and η = 1 + δ2η1 (or equivalently, u1 = 1
δ2 (u − 1) and

η1 = 1
δ2 (η − 1)), we obtain from (7.64) a variant of the equations of Boussinesq,

ηt + ηux + uηx − 1

6
δ2uxxx = 0,

ut + uux − ηx − 1

2
δ2(uxxt + uxxx) = 0.

(7.65)

The original form of the equations of Boussinesq can be obtained by the following
transformation which is allowed in the order of approximation; we first replace u by

u = 1 + δ2
(

u1 − 1

6
δ2u1xx

)
, (7.66)

and introducing an x′-coordinate system which moves with the main flow U = 1
(x′ = x − Ut), we then put u′(x′, t) = u(x′ + Ut, t) − U , η′(x′, t) = η(x′ + Ut, t).
This leads successively to the equations, after dropping the primes,

ηt + ηux + uηx = 0,

ut + uux + ηx − 1

3
δ2uxxt = 0.

(7.67)

Equations (7.67) are known as the Boussinesq equations for the one-dimensional
shallow water waves.

CASE 2: s = 2

The first approximation now does not contain t , and we simply have

uη0x + η0u0x = 0,

uu0x + η0x = 0.
(7.68)

This is solved by u = 1 and η0 = 1, if we assume again the series expansion (7.63).
Substitution in (7.58) and (7.59) gives the second approximation, the coefficients
of δ2,

η1x + u1x = 0,

u1x + η1x = 0,
(7.69)

which shows that u1 = −η1 + X(t) for some function X(t). If we assume that the
flow is undisturbed at infinity, then this implies

u1 = −η1 + α (7.70)

for some constant α.
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Consider now the next approximation, the coefficients of δ4:

η1t + u1η1x + η1u1x − 1

6
u1xxx + u2x + η2x = 0,

u1x + u1u1x − 1

2
u1xxx + η2x + u2x = 0.

(7.71)

Subtracting the two equations in order to eliminate u2 and η2 gives

η1t − u1t + u1(η1x − u1x) + η1u1x + 1

3
u1xxx = 0. (7.72)

By using the relation (7.70), we then reduce to an equation of η1, the Korteweg-De
Vries equation:

η1t +
(

α − 3

2
η1

)
η1x − 1

6
η1xxx = 0. (7.73)

In order to find a wave solution of the Korteweg-De Vries equation (7.73), we first
change the coordinates in such a way so that the equation takes the form

ηt + (1 + εη)ηx + μηxxx = 0, (7.74)

where ε and μ are small parameters depending on α. Introducing a large parame-
ter K , we substitute

η(x, t) = U
[
KS(x, t), x, t

] + 1

K
V

[
KS(x, t), x, t

] + O

(
1

K2

)
(7.75)

into (7.74) and with the abbreviation p = KS(x, t), we obtain the approximation up
to terms of order K :

(k − ω)Up + εkUUp + (μK2)k3Uppp + 1

K
O(μK2) = 0, (7.76)

where we introduced

k = Sx(x, t), ω = −St (x, t)

as the wave number and frequency, respectively.
Now identify K2 so that μK2 = 1 and notice that S is slowly varying with x

and t . With this choice we neglect the term 1
K

O(μK2) in (7.76), since it is of lower
order. Then (7.76) is just an ordinary third-order differential equation for U as a
function of p with coefficients which vary with x and t . This gives, after integration
with respect to p,

(k − ω)U + 1

2
εkU2 + k3Upp = 1

2
α. (7.77)
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Integrating once more after multiplication with Up yields

k3U
2
p = αU + β + (ω − k)U2 − 1

3
εkU3. (7.78)

Here the constants of integration α and β are functions of x and t .
Equation (7.78) is similar to the equation for the pendulum and it can be seen

that U is a periodic function of p oscillating between the zeros of the right-hand
side of (7.78). In general, this right-hand side has three zeros but we have to select
those two zeros for which the right-hand side of (7.78) is positive between these two
zeros.

We now perform a linear substitution,

U(p,x, t) = m(x, t) + A(x, t)�(p), (7.79)

which makes the zeros of the new function � between −1 and +1. Using the fact
that �p = 0 for both � = −1 and � = +1, from (7.78) we can replace α and β by
the constants (functions of x and t ) m and A, and obtain the equation

k3�2
p = (1 − �2)

(
1

3
εAk� + εkm + (k − ω)

)
. (7.80)

The dependence of � on p can be given in implicit form as

p + γ =
√

k3

∫ �

−1

d�√
(1 − �2)( 1

3εAk� + εkm + (k − ω))

, (7.81)

with γ (x, t) as a shifting constant. The period of � can be normalised to unity by
changing the scale p so that

1

2
=

√
k3

∫ 1

−1

d�√
(1 − �2)( 1

3εAk� + εkm + (k − ω))

. (7.82)

This gives a dispersion relation between k,ω,A and m. Observe that for ε = 0, we
simply get the relation

1

2
=

√
k3

k − ω

∫ 1

−1

d�√
1 − �2

= π

√
k3

k − ω
, (7.83)

which corresponds to the dispersion relation for the linear equation for cnoidal
waves, i.e., (7.74) with ε = 0.

A second relation between k and ω is the conservation law for wave crests:

∂ω

∂x
+ ∂k

∂t
= 0. (7.84)



7.3 Non-linear Dispersive Waves 121

In order to find two more relations for k,ω,m, and A we return to the original
equations (7.74) and substitute into the equation the expression (7.79) for ηx, t , i.e.,

η(x, t) = m(x, t) + A(x, t)�(p).

Since

ηt = mt + At� − KA�pω,

ηx = mx + Ax� + KA�pk,

ηxx = mxx + Axx� + 2KAx�pk + KA�pkx + K2A�ppk2,

ηxxx = mxxx + Axxx� + 3KAxx�pk + 3KAx�pkx + KA�pkxx

+ 3K2Ax�ppk2 + 3K2A�ppkkx + K3A�pppk3,

this substitution gives the coefficients of K (recall μK2 = 1),

k3A�ppp + A�p(k − ω) + ε(m + A�)A�pk (7.85)

which vanishes as well as we will now see. Recall that � is determined by (7.80):

k3�2
p = (1 − �2)

(
1

3
εAk� + εkm + (k − ω)

)
.

By differentiating this equation with respect to p, we then obtain, with some reduc-
tion, the equation

k3�pp = 1

6
εAk − �(εkm + (k − ω)) − 1

2
εAk�2. (7.86)

Differentiating it once more, we arrive at the equation

k3�ppp = (εkm + (k − ω))�p − Akε��p, (7.87)

which shows that, as we expected, the coefficient of K1 (cf. (7.85)) vanishes.
We expect the solution to be valid for a large number of periods (order K). This

requires that the coefficient of k0 shall not grow after many periods. The coefficient
of K0,

mt + At� + mx + Ax� + (m + A�)(mx + Ax�) + 3(Axk
2 + Akkx)�pp, (7.88)

will be integrated over one period and the integral is put to zero. This gives

mt + At

∫ 1

0
�dp + mx + Ax

∫ 1

0
�dp + εm

(
mx + Ax

∫ 1

0
�dp

)

+ εAmx

∫ 1

0
�dp + εAAx

∫ 1

0
�2 dp

+ 3(Axk
2 + AKKx)(�p(1) − �p(0)) = 0. (7.89)



122 7 Irregular and Non-linear Waves

Note that the last term equals zero because of the periodicity of �p . By setting

γn = ∫ 1
0 �n dp, we see that (7.88) can be written in the form

(m+Aγ1)t + (m+Aγ1)x +ε(m+Aγ1)x(m+Aγ1)+εAAx(γ2 −γ 2
1 ) = 0. (7.90)

Apparently the term m + Aγ1 is the mean height of the wave over a period in p,
since the period of p is 1. Thus, if we let h = m+Aγ1 be the mean wave height, we
obtain the relation

∂h

∂t
+ ∂

∂x

(
h + 1

2
εh2

)
+ 1

2
ε(γ2 − γ 2

1 )
∂A2

∂x
= 0. (7.91)

The remaining relation can be found by a similar procedure. Multiplying (7.74) by
η and substituting (7.79) for η into the equation, we find the coefficient of K ,

A(m + A�)(k − ω)�p + ε(m + A�)2Ak�p + A�ppp(m + A�)k3, (7.92)

which is evidently zero from (7.87). The coefficient of K0 is

(m + A�)(mt + At� + mx + Ax�) + ε(m + A�)2(mx + Ax�)

+ 3(m + A�)(Axk
2 + Akkx)�pp.

Integrating this over one period gives the equation

m(mt + mx) + m(At + Ax)γ1 + (mt + mx)Aγ1 + A(At + Ax)γ2

+ εm2mx + ε(2mmxAγ1 + m2Axγ1) + εA2Axγ3 + 2εmAAxγ2

+ εA2mxγ2 + 3(mAxk
2 + mAkkx)(�p(1) − �p(0))

+ 3A(Axk
2 + Akkx)

∫ 1

0
��pp dp = 0. (7.93)

Note that from (7.86) we have

k3
∫ 1

0
��pp dp = 1

6
εAkγ1 − (εkm + (k − ω))γ2 − 1

2
εAkγ3.

Hence, with h = m+Aγ1, the mean wave height, we obtain from (7.93) the relation

h(ht + hx) + A(At + Ax)(γ2 − γ 2
1 ) + εh2hx + 2εmAAx(γ2 − γ 2

1 )

+ εA2mx(γ2 − γ 2
1 ) + εA2Ax(γ3 − γ 3

1 )

+ 3A(Axk
2 + Akkx)

k3

[
1

6
εAkγ1 − (εkm + (k − ω))γ2 − 1

2
εAkγ3

]
= 0, (7.94)

where use has been made of the periodicity of �p .
In this way we obtain (7.82) and a set of first-order differential equations

(i.e. (7.84), (7.91) and (7.87)) for k,ω,m and A. In the general case these equations
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are rather difficult to solve. Hence we are led to consider the approximate expansion
of solutions for small ε. First we make some remarks. For ε = 0 the original equa-
tion (7.74) is linear and we have dispersion relation (7.83), which is independent of
A and h; hence the dependence of ω on A and h is a non-linear effect; moreover,
since we have γ1 = γ3 = 0, we shall have trivial solutions from (7.91) and (7.94), if
we put ε equal to zero. In order to take these facts into account, we introduce, instead
of m, the quantity m1 such that h = εm1 +Aγ1 is the mean wave height. Neglecting
the terms of order ε2, from (7.91) and (7.94) we then arrive at the following:

∂h

∂t
+ ∂h

∂x
+ 1

2
εγ2

∂A2

∂x
= 0,

∂A2

∂t
+ ∂

∂x
[(1 − 12π2k2)A2] = 0,

(7.95)

together with the dispersion relation (7.83) which can be written as

ω0 = k − 4π2k3. (7.96)

Here we write ω0 instead of ω in order to emphasise the relation corresponding to
the linear problem. The second equation of (7.95) is obtained making use of (7.96);
we observe that ω′

0(k) = 1 − 12π2k2. Finally, we introduce the second-order func-
tions H0(x, t) and E(x, t) by means of

H0 = εh, E = ε2A2,

in terms of which (7.95) may be written in the form

∂H0

∂t
+ ∂

∂x

{
H0 + γ2

2
E

}
= 0,

∂E

∂t
+ ∂

∂x

{
ω′

0(k)E
} = 0.

(7.97)

The first one of the above equations may be considered as an average form of the
equation of conservation of mass; the second one expresses the conservation of av-
erage energy of the wave train with a linear group velocity ω′

0(k) = 1 − 12π2k3. It
is possible to derive from the dispersion relation (7.82) an asymptotic expansion of
ω in terms of k,H0 and E for small ε. The latter together with (7.84) and (7.97) can
be utilised for determining ω as well as k,H0 and E approximately.





Chapter 8
Shallow Water Ship Hydrodynamics

In this chapter we consider slender ships in shallow water; we discuss three related
topics. We are, among others, interested in the influence of the bottom on the vertical
motion of the ship. It turns out that a ship in shallow water experiences a certain
sinkage and trim due to the bottom effect. This is of importance if one wishes to
determine the required depth of harbours in such a way that a ship may enter safely.
It is also of importance to know the wall effects for ships travelling in a shallow
channel. Here we wish to know sinkage and trim but also the force and moment due
to the interaction of the walls of the channel. The third topic we shall consider is the
interaction among ships.

The topics have been investigated by E.O. Tuck [18], R.F. Beck [1] and R.W. Ye-
ung [22, 23]. The first two are steady flow problems, while the third one is unsteady
due to the difference in forward speed of the two ships. The method we use to solve
these problems is related to the well-known method of matched asymptotic expan-
sions. To obtain insight into this method, we apply it to the unsteady flow around a
two-dimensional airfoil, where the introduction of the inner expansion is not com-
monly done. The incoming flow is in principle nearly parallel to the airfoil while
the fluid domain is extended toward infinity. Thereafter, we treat the case of a cross-
current flow around a slender body wedged between two parallel plates. The notion
blockage will be introduced in this way. After the preliminary investigations, we
shall pay attention to the three problems mentioned above.

8.1 Thin Airfoil Theory

We consider the two-dimensional thin airfoil moving with a constant velocity U i in
an incompressible medium, see Fig. 8.1. With regard to a system of reference, fixed
to the airfoil, the x-axis extending along the surface(approximately), the resulting
motion of the fluid can be separated into the unperturbed flow with velocity U in the
direction of the positive x-axis and a perturbation flow v = (u, v) which originates
from the airfoil. The governing equations (1.2) and (1.2) are

ux + vy + wz = 0, (8.1)
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Fig. 8.1 Two-dimensional
profile

ut + (U + u)ux + vuy = − 1

ρ
px,

vt + (U + u)vx + vvy = − 1

ρ
py,

(8.2)

where p and ρ are pressure and density of the fluid. Because |v| = √
u2 + v2 � U ,

we may linearise the equation of motion (8.2), so that

ut + Uux = − 1

ρ
px,

vt + Uvx = − 1

ρ
py.

(8.3)

We now eliminate p from these two equations and introduce the vorticity vector

γγγ := −
(

∂v

∂x
− ∂u

∂y

)
k = γ k,

where k is the unit vector in the direction normal to the x, y-plane. This leads to the
equation for the scalar function γ = γ (x, y, t):

γt + Uγx = 0, (8.4)

from which we see that γ must have the form

γ = γ (x − Ut, y) (8.5)

i.e., the vorticity is in linearised approximation carried along the undisturbed flow,
in general along the stream lines. In the region where γ = 0, the velocity field has a
potential �̃, such that

ṽ = grad �̃ = ∇�̃,

and if the total field is given by

�̃ = Ux + ϕ,

clearly then the velocity potential ϕ satisfies the two-dimensional Laplace equation

ϕxx + ϕyy = 0. (8.6)
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Moreover, the pressure p and the potential ϕ are related by the linear Bernoulli
equation

ϕt + Uϕx = −p

ρ
+ m(t), (8.7)

where m(t) is an arbitrary function of t .
To formulate the boundary value problem, we now consider a thin airfoil with

the upper and lower surface given by

y = f (x, t) ± g(x, t),

where the camber function f (x, t) = εF (x, t) and the thickness function g(x, t) =
εG(x, t). Here ε is the small slenderness parameter. We denote the boundary of the
airfoil by S. Then, the boundary value problem is defined by (8.6) in the exterior
region to the airfoil together with the boundary condition (cf. (1.9))

∂ϕ

∂n
= − ∂

∂n
(Ux),

or

∂ϕ

∂y
= ε

{
(F ± G)t +

(
∂ϕ

∂x
+ U

)
(F ± G)x

}
, on S, (8.8)

and the condition at infinity is

∇ϕ → 000, as |x| → ∞, (8.9)

First we consider the field in the vicinity of the airfoil where y = O(ε). This can be
done by a proper coordinate stretching of the coordinate

y = εY.

In this inner region, we denote the potential by ϕi , the inner potential while outside
the region by ϕo, the outer potential. We assume that ϕi has a regular expansion in ε

ϕi ∼
∞∑

k=1

εkϕi
k(x,Y, t). (8.10)

In terms of the stretched variable Y , the Laplace equation (8.6) in the near field
becomes

ϕi
YY + ε2ϕi

xx = 0

into which by substituting (8.8), and equating like powers of ε, we obtain

ϕi
kYY =

{
0, k = 1,2,

−(ϕi
k−2)xx, k = 3,4, . . . .

(8.11)
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The boundary condition (8.8) on the surface Y = F ± G becomes

εϕi
1Y + ε2ϕi

2Y + · · · = ε2{(Ft + UFx) ± (Gt + UGx)
} + · · · . (8.12)

Hence from (8.11) and (8.12) it is easy to see that, for y ≶ 0,

ϕi
1(x,Y, t) = A±

1 (x, t),

ϕi
2(x,Y, t) = A±

2 (x, t) + {
(Ft + UFx) ± (Gt + UGx)

}
Y,

(8.13)

where A±
k are unknowns. To determine A±

k we now use the matching principle in
singular perturbation theory. We first write y = εY . This leads to

ϕi(x, y, t, ε) = ε
[
A±

1 (x, t)+{
(Ft +UFx)±(Gt +UGX)

}
y
]+ε2A±

2 (x, t), (8.14)

which is supposed to be matched with the outer solution ϕo in the common region
where both inner and outer solution are valid.

The outer potential ϕo has a regular perturbation in ε of the form

ϕo ∼
∞∑

k=1

εkϕo
k (x, y, t). (8.15)

One term of the outer potential in terms of inner variables then reads

ϕo(x, y, t, ε) = εϕo
1(x, εY, t) = εϕo

1(x,0, t) + ε2Yϕo
1y(x,0, t) + · · · . (8.16)

The matching condition now requires that one term of (8.14) equals two terms
of (8.16) which yields

ϕo
1(x,±0, t) = A±

1 (x, t),

ϕo
y1(x,±0, t) = (Ft + UFx) ± (Gt + UGx), on L ,

(8.17)

where L is the projection of the airfoil on the x-axis. This last relation is well
known in linearised airfoil theory. Hence A±

1 is completely determined if one has
ϕo

1 .
We notice that the pressure is continuous on the x-axis outside L and has jump

discontinuities along L because of the potential jump [ϕ](x, t) := ϕ(x,+0, t) −
ϕ(x,−0, t). The fact that the pressure jump [p] = 0 outside L leads to

[ϕ]t + U [ϕ]x = 0,

for the potential jump [ϕ] which implies that [ϕ] must be a function of the variable
x − Ut , say

[ϕ](x, t) = f (x − Ut). (8.18)
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This means that [ϕ] propagates along lines y = 0. In front of the airfoil, for x = −∞
we have [ϕ] = 0. In the wake behind the foil the value of [ϕ] differs from zero. If at
the trailing edge xT , [ϕ] is known to be

[ϕ] = h(xT , t),

then we have from (8.18):

[ϕ](x, t) = h

(
xT , t − x − xT

U

)
. (8.19)

Only if [ϕ] is specified in the wake, then the boundary value problem for the poten-
tial ϕo may be stated properly as we will see.

The formulation of the boundary condition (8.15) suggests a splitting of the outer
potential in an even and an odd part,

ϕo(x, y, t) = φe + φo, (8.20)

where

φe(x, y, t) = φe(x,−y, t), and

φo(x, y, t) = −φo(x,−y, t),

from which we obtain odd and even derivatives, respectively:

∂φe

∂y
(x, y, t) = −∂φe

∂y
(x,−y, t),

∂φo

∂y
(x, y, t) = ∂φo

∂y
(x,−y, t).

(8.21)

We now consider, for y ≥ 0,

ϕo(x, y, t) = φe(x, y, t) + φo(x, y, t),

ϕo(x,−y, t) = φe(x, y, t) − φo(x, y, t).
(8.22)

The matching condition (8.17) implies

∂φe

∂y
=

(
∂

∂t
+ U

∂

∂x

)
G

∂φo

∂y
=

(
∂

∂t
+ U

∂

∂x

)
F

⎫⎪⎪⎬
⎪⎪⎭

at y = 0. (8.23)

Across the x-axis outside F , φe is continuous but φo can be discontinuous with

φo(x,+0, t) = −φo(x,−0, t). (8.24)

The discontinuity in the wake for the velocity potential ϕo gives a condition for the
odd part φo. Hence the boundary value problem for ϕo splits up in two problems, one
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pertaining to the thickness distribution for the function φe , the other one pertaining
to the camber distribution for the function φo.

To solve the boundary value problems for φe and φo it is convenient to use the fact
that both functions are solutions of the two-dimensional Laplace equation. Hence
the use of the analysis of complex functions in the z = x + iy plane is desirable. In
particular, we introduce

χ(z, t) = φ + iψ,

with ψ being the stream function and φ the potential function. Here χ is an analytic
function in the z-plane except on a part of the x-axis. Because of the structure of the
boundary conditions on the x-axis, it is convenient to consider the complex velocity

W(z, t) := dχ

dz
= u − iv. (8.25)

The even part We determine a function We which is analytic in the complex
z-plane except on the part L of the x-axis. We take the leading edge at x = −1 and
the trailing edge at x = −1. On the segment −1 ≤ x ≤ 1, y = 0, we have the relation

W+
e − W−

e = −2i

(
∂

∂t
+ U

∂

∂x

)
G,

where W± denotes W(x ± i0, t), while for |x| > 1, y = 0,

W+
e − W−

e = 0.

The solution We(z, t) can be represented in the form

We(z, t) = − 1

π

∫ 1

−1

( ∂
∂t

+ U ∂
∂ξ

)G

ξ − z
dξ, (8.26)

because the function We(z, t) has to go to zero at infinity.
The velocity potential can be derived from (8.26). We notice that

χe(z, t) = 1

π

∫ 1

−1

[(
∂

∂t
+ U

∂

∂ξ

)
G

]
log(ξ − z)dξ, (8.27)

from which follows that

φe(x, y, z) = 
χe(z, t) = 1

2π

∫ 1

−1
σ(ξ, t) log

(√
(x − ξ)2 + y2

)
dξ. (8.28)

Here

σ(ξ, t) = 2

(
∂

∂t
+ U

∂

∂ξ

)
G(ξ, t),

is the source distribution.
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The odd part Next we determine a function Wo(z, t) which is analytic in the
complex z-plane except on L and W of the x-axis, where W is the downstream
part of the axis (the wake). For x < −1, y = 0 we have W+

o (z, t) − W−
o (z, t) = 0

because the velocity is continuous. For −1 ≤ x ≤ 1, y = 0 we have

W+
o + W−

o = −2i

(
∂

∂t
+ U

∂

∂x

)
F,

while for x > 1,

W+
o − W−

o = [φox] = u+ − u−,

which follows from (8.19).
To find Wo(z, t), we use the theory of singular integral equations (see Sect. 9.3),

and represent Wo(z, t) by the Cauchy integral

Wo(z, t) = − 1

2π i

∫
L +W

γ (ξ, t)

ξ − z
dξ, (8.29)

where γ (ξ, t) is a real valued function which is equivalent to a vortex distribution
to be determined. By applying the Plemelj formulae to (8.29) we obtain:

W+
o (ξ0, t) − W−

o (ξ0, t) = −γ (ξ0, t),

W+
o (ξ0, t) − W+

o (ξ0, t) = − 1

π i
−
∫

L +W

γ (ξ, t)

ξ − ξ0
dξ,

(8.30)

where we use −∫ to denote the principal value of the integral. From this it follows
that

γ (ξ0, t) = −[u](ξ0, t), for ξ0 > −1,

and for ξ0 > 1, we know that (8.5) holds,

γ (ξ0, t) = γ (ξ0 − Ut). (8.31)

If we consider the situation at t = 0 when the total circulation equals zero, then we
know that the total circulation remains zero. Hence we have∫ ∞

−1
γ (ξ, t)dξ =

∫
L

γ (ξ, t)dξ +
∫

W
γ (ξ, t)dξ = �(t) +

∫ ∞

1
γ (ξ, t)dξ = 0,

(8.32)
where �(t) is the circulation around the foil.

If we differentiate (8.32) with respect to t and use (8.31), we obtain

d�

dt
= −Uγ (1, t). (8.33)

If we start with a steady motion at t = 0, the vortex strength in the wake can be cal-
culated easily by a step by step integration because of the relations (8.33) and (8.31).
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To assure that (8.30) has a unique solution for the unknown γ (ξ, t), we furthermore
require the Kutta condition which requires finite velocity at the trailing edge, which
means that the pressure jump along the x-axis is a continuous function. Therefore
we require

γ (1 + 0, t) = γ (1 − 0, t). (8.34)

From (8.30) it follows for |x| < 1 that we have to solve a singular integral equation

W+
o + W−

o = −2iv(x, t) = − 1

π i
−
∫ +1

−1

γ (ξ, t)

ξ − x
dξ − 1

π i

∫ ∞

1

γ (ξ, t)

ξ − x
dξ, (8.35)

where we consider γ (ξ, t) to be known for ξ > 1. Hence the integral equation be-
comes

1

π i
−
∫ +1

−1

γ (ξ, t)

ξ − x
dξ = λ(x, t). (8.36)

Here λ(x, t) is defined by

−iλ(x, t) := 2v(x, t) + 1

π

∫ ∞

1

γ (ξ − Ut)

ξ − x
dξ

which can be computed stepwise.
By introducing

�(z, t) = 1

2π i

∫ 1

−1

γ (ξ, t)

ξ − z
dξ, (8.37)

the integral equation (8.36) can be solved by using the Plemelj formulas. We deter-
mine �(z, t) such that

�+(x, t) + �−(x, t) = λ(x, t), |x| < 1, (8.38)

and � is analytic elsewhere. Clearly then

γ (x, t) = �+(x, t) − �−(x, t), |x| < 1. (8.39)

Observe that (8.38) is of the form (9.27) in the Sect. 9.3 with G(s) = 1.
For the special case when λ = 0 in (8.38), it can easily be found that

�0(z, t) = 1√
1 − z2

,

is a solution of (8.38), where the branch cut is chosen between −1 < x < 1. From
this particular solution �0, it follows that the solution of (8.38) admits the represen-
tation (see (9.28))

�(z, t) = �0(z, t)

2π i

{∫ +1

−1

λ(ξ, t)

�+
0 (ξ, t)

1

ξ − z
dξ + P(z, t)

}
, (8.40)
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where P(z, t) is an entire function of z. Consequently, by using the definition of �0,
the vortex strength becomes

γ (x, t) = 1

π i
√

1 − x2

{
−
∫ +1

−1

λ(ξ, t)

ξ − x

√
1 − ξ2 dξ + P(x, t)

}
(8.41)

where

λ(ξ, t) = i

{
2v(ξ, t) + 1

π

∫ ∞

1

γ (s − Ut)

s − ξ
ds,

}

and

v(ξ, t) =
(

∂

∂t
+ U

∂

∂x

)
F(ξ, t).

Because of the behaviour of the field at infinity, P(x, t) has to be a constant with
respect to x, P(t). If we integrate (8.41) with respect to x along L we find

P(t) = i�(t) = i
∫ +1

−1
γ (x, t)dx. (8.42)

If we start from the situation where the flow is symmetric as in the case of
passing ships which we shall treat later on, the vortex distribution can be cal-
culated. In that case vo(x, t) = 0 in (8.35) for t < 0 and vo(x, t) is given for
t ≥ 0 and by means of the time step procedure γ (x, t) can be determined uniquely
from (8.5), (8.33), (8.34), (8.41)and (8.42). If the problem is not given as an initial
value problem, then a more general procedure has to be followed.

We may now compute the lift force and moment acting on the airfoil. From
Bernoulli’s equation (8.7), we obtain the lift force as

LLL = ρ

∫ +1

−1

{
∂

∂t
[φo]+U

∂

∂x
[φo]

}
dx = −ρ

∫ +1

−1

{
∂

∂t

∫ x

γ ds +Uγ

}
dx, (8.43)

and the moment about x = 0 becomes

MMM = ρ

∫ +1

−1

{
∂

∂t
[φo] + U

∂

∂x
[φo]

}
x dx = −ρ

∫ +1

−1

{
∂

∂t

∫ x

γ ds + Uγ

}
x dx.

(8.44)
Once γ (x, t) is known along the foil, LLL and MMM may be computed easily.

8.2 Slender Body Theory

We now consider the situation where a slender body is placed between two parallel
walls with a distance a (see Fig. 8.2). The uniform flow is given by U = (0,V ,0)

as |x| → ∞ with constant V . In particular, we assume that a = O(ε), where ε is
the slenderness parameter ε = B/L,L the length and B the width of the slender
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Fig. 8.2 Body between parallel walls

Fig. 8.3 The inner field

body. The region where both y and z are small will be called the inner region, see
Fig. 8.3, while the region where y = O(1) is called the outer region. As in Sect. 8.1,
we may stretch the coordinates to formulate the inner problem, which becomes a
two-dimensional problem. This leads to the following boundary value problem for
the first order approximation of the potential ϕi in the inner region (written in the
original coordinates y, z):

ϕi
yy + ϕi

zz = 0, −a

2
≤ z ≤ a

2
,−∞ < y < ∞,

∂ϕi

∂n
= 0, on the boundary of the slender body S,

ϕi → V0(x)(y ∓ C(x)), as y → ±∞,

(8.45)

where V0(x) will be determined from the matching condition later. Here C(x) is
referred to as the blockage constant. To illustrate the significance of C(x), we con-
sider the special case when a cascade of dipoles with orientation in the y-direction is
superimposed on the current V0, and these dipoles are situated at y = 0, z = na with
integer n. The strength of the dipoles is chosen in such a way that the flow due to
one dipole in a flow V0 describes the flow around a circular cylinder with radius ρ1.
Hence the cascade flow is the flow between two parallel walls at z = a/2 around a
cylinder whose shape differs slightly from a circle.
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The potential ϕi becomes

ϕi(y, z) = V0(x)

{
y +

∞∑
n=−∞

ρ2
1y

y2 + (z − na)2

}
.

For large values of |y| and |z| < a/2, we see that

ϕi(y, z) = V0(x)

(
y + S

a

)
, (8.46)

where S = πρ2
1 the surface area. and the blockage constant C = S/a. In general,

a relation between the surface area S, the virtual mass myy and the blockage coeffi-
cient C can be derived such that

myy = −ρS + 2ρaC. (8.47)

In particular, for a flat plate of length l, perpendicular to the flow between two
parallel walls, myy becomes

myy = − 2

π
ρa2 log

(
cos

πl

2a

)
= 2ρaC,

since S = 0 in (8.47). Hence for most shapes the blockage coefficient may be calcu-
lated and we consider it known.

The potential in the outer region is obtained by a formal stretching of the
z-coordinate. It turns out that to first and second approximation ϕo has to be a func-
tion of x and y only, and is a solution of the two-dimensional Laplace equation

ϕxx + ϕyy = 0,

the boundary conditions are

ϕ ∼ Vy, as y → ∞,

and

∂ϕo

∂y
= V0(x), for − 1 < x < 1 and y = 0.

By introducing the complex velocity function f (ζ ) = u− iv where ζ = x + iy, these
conditions simplify as

f (x ± i0) = −iV0(x), for|x| < 1,

f (ζ ) = −iV |ζ | → ∞,

and f (ζ ) is analytic in the complex ζ -plane such that

f +(x) + f −(x) = −2iV0(x), for |x| < 1. (8.48)
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The flow around the endpoints may be singular, which leads to the choice of the
solution of (8.48) for V0 = 0,

f0(ζ ) = (1 − ζ 2)−1/2, (8.49)

and the solution of (8.48)

f (ζ ) = −f0(ζ )

π

∫ 1

−1

V0(ξ)

f +
0 (ξ)

1

ξ − ζ
dξ + f0(ζ )P (ζ ), (8.50)

where, to fulfil the condition at infinity, P(ζ ) has to be of the form

P(ζ ) = V ζ + P(0).

We now match the velocity in the x-direction of the outer and inner potentials and
obtain from (8.49)

u(x,±0) = ∓ 1

π
√

1 − x2
−
∫ +1

−1

V0(ξ)
√

1 − ξ2

ξ − x
dξ ∓ V x + P(0)√

1 − x2
= ± d

dx
(V0C),

(8.51)

where P(0) and V0(x) remain to be determined. To do so we integrate (8.51) with
respect to x from −1 to x:

V0(x)C(x) − V0(−1)C(−1)

= − 1

π

∫ +1

−1
V0(ξ)K(x, ξ)dξ + V

√
1 − x2 − P(0)

(
π

2
+ arcsinx

)
, (8.52)

where K(x, ξ) is a symmetric kernel of the form

K(x, ξ) = −
∫ x

−1

√
1 − ξ2

√
1 − s2

ds

ξ − s
= 1

2
log

[
1 − ξx + √

1 − ξ2
√

1 − x2

1 − ξx − √
1 − ξ2

√
1 − x2

]
. (8.53)

For a slender body with rounded endpoints where C(±1) = 0 it follows that
P(0) = 0. If the cross flow problem is combined with a lateral flow, a Kutta condi-
tion may be imposed at x = 1. In this case it can be shown that

P(0) = −V ± 1

π

∫ +1

−1
V0(ξ)

√
1 + ξ

1 − ξ
dξ. (8.54)

With P(0) determined, (8.52) is a Fredholm integral equation of the second kind for
the unknown V0(x). For large values of C(x), we can find an approximate solution
of (8.52) in the form

V0(x)C(x) = V
√

1 − x2, (8.55)

in the case P(0) = 0, while

V0(x)C(x) = V

[√
1 − x2 + π

2
+ arcsinx

]
(8.56)
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in the latter case, where the lift force and moment may be calculated. We find, as is
derived in [12],

LLL = 2ρaV0(1)C(1),

and

MMM = 2ρaV0(1)C(1) − ρV∀∀∀ − 2ρa

∫ +1

−1
V0(x)C(x)dx,

where ∀∀∀ = ∫ +1
−1 S dx is the volume of the body; for more details see [12].

8.3 Free Surface Effects

In the preceding sections, we dealt with flow problems in an infinite fluid medium.
In this section, we derive equations for shallow water ship problems where a free
surface plays an important role. We consider the steady flow around a slender ship
and assume that the angle of attack of the undisturbed flow is small. This situation
occurs quite often near shallow water harbour entrances or a ship manoeuvring in
shallow water where the variations in the course of the ship are with such a time
scale that the flow may be considered to be stationary for each time interval. To be
more specific, we choose the coordinate system fixed to the ship, the positive x-axis
is directed in the direction of the projection of the incoming flow and the incoming
flow makes an angle α with the x-axis. In contrast with the preceding chapters it is
convenient to choose the positive z-axis upwards. In Fig. 8.4, B∗ denotes the width
of the ship, T ∗ the draft of the ship and L the length of the ship. The depth of the
water is denoted by h∗. We assume that the velocity of the uniform flow is given
by U = (U,V ∗,0) where U and V ∗ are constants. The equation for the ship hull is
given by

y = ±f (x, z) = ±εF (x, z)

where ε is defined by ε = B∗/L. The other dimensions are chosen such that
h∗/L,T ∗/L and V ∗/U = O(ε), as ε → 0. Furthermore, the Froude number defined

Fig. 8.4 Ship in shallow
water
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with the depth as characteristic length is denoted by

F 2
h∗ = |U|2

gh∗ = O(1) as ε → 0,

and the Froude number with respect to the length L is given by

FL = |U√
gL

= O(ε1/2).

First we consider the outer region at a finite distance from the ship where

x, y = O(1) and z = O(ε).

Denoting the unperturbed potential by ϕo
0 , ϕo

0 = Ux + V ∗y, and the perturbed po-
tential by ϕo, we have

u = ∇(ϕo
0 + ϕo) =: ∇�o,

�ϕo = 0.
(8.57)

At the flat bottom z = −h∗, we have

∂ϕo

∂z
= 0. (8.58)

At the free surface z = ζ(x, y), we have the kinematic condition

ϕo
z − ϕo

xζx − ϕo
yζy = Uζx + V ∗ζy (8.59)

and the dynamic condition

−gζ = Uϕo
x + V ∗ϕo

y + 1

2
(ϕo2

x + ϕo2
y + ϕo2

z ). (8.60)

Introducing the stretched variable Z := z/ε, we seek ϕo(x, y,Z, ε) as a regular
perturbation series in the form:

ϕo(x, y,Z, ε) = εϕ1(x, y,Z) + ε2ϕ2(x, y,Z) + · · · .

From the Laplace equation which becomes now in terms of Z,

ϕo
ZZ = −ε2(ϕo

xx + ϕo
yy) =: −ε2�2ϕ

o,

we find for ϕi ,

ϕiZZ =
{

0, i = 1,2,

−�2ϕi−2, i = 3,4, . . . ,
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from which it follows that

ϕ1 = ψ1(x, y),

ϕ2 = ψ2(x, y),

ϕ3 = ψ3(x, y) − 1

2
(Z + h)2�2ψ1(x, y),

(8.61)

with h = h∗/ε. The ψi can be determined in the following way.
We begin with the dynamic free surface condition (8.60). This leads to the rela-

tion

−gζ = εUψ1x + ε2(Uψ2x + V ψ1y + ψ2
1x + ψ2

1y) + O(ε3), (8.62)

with V = V ∗/ε. Then (8.62) together with the fact that F 2
h∗ = O(1) implies that one

may consider ζ in the form

ζ = ε2ζ2 + ε3ζ3 + · · · ,

and obtain from (8.62) by equating like powers in ε,

ζ2 = − U

εg
ψ1x = − �

U
ψ1x,

ζ2 = − �

U2

{
Uψ2x + V ψ1y + 1

2
(ψ2

1x + ψ2
1y)

}
,

(8.63)

where � is of O(1) and defined by U2/g = ε�. Now it follows from the kinematic
condition (8.59) together with (8.61) and (8.63) that

−ε2h�2ψ1 − ε3(ζ2�2ψ1 + h�2ψ2) + O(ε4)

= ε2Uζ2x + ε3(Uζ3x + V ζ2y + ζ2xψ1x + ζ2yψ1y) + O(ε4).

Consequently, we obtain

�2ψ1 = −U

h
ζ2x,

�2ψ2 = −ζ2

h
�2ψ1 − 1

h
{Uζ3x + V ζ2y + ζ2xψ1x + ζ2yψ1y}.

(8.64)

Eliminating ζ2 and ζ3 from (8.64) and (8.63) yields:

(1 − F 2
h∗)ψ1xx + ψ1yy = 0, and

(1 − F 2
h∗)ψ2xx + ψ2yy = �2(x, y),

(8.65)

where �2(x, y) is a function of ζ2 and ψ1 only. Equation (8.65) is the linearised
shallow water equation which is a partial differential equation of mixed type de-
pending on the value of Fh∗ . We confine only to the elliptic case where Fh∗ < 1.
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Boundary conditions for ψ1 follow from the matching procedure at y = 0 with the
inner solution.

We now turn to the solution of (8.65) and write

ψ1(x, y) = ψe
1(x, y) + ψo

1 (x, y),

where ψe
1 is an even function of y and ψo

1 is odd in y. The even part may be written
as a source distribution

ψe
1(x, y) = 1

2π

√
1 − F 2

h∗

∫ ∞

−∞
σ(ξ) log{(x − ξ)2 + (1 − F 2

h∗)y2}1/2 dξ (8.66)

and the odd part may be written as a vortex distribution

ψo
1 (x, y) = 1

2π

√
1 − F 2

h∗

∫ ∞

−∞
γ (ξ) arctan

(y

√
1 − F 2

h∗

x − ξ

)
dξ. (8.67)

Because of the proposed matching at y = 0, we must make a series expansion for
small values of y for both ψe

1 and ψo
1 . We find the Taylor expansion series expansion

ψe
1(x, y) ≈ ψe

1(x,0) + |y|σ(x)

2
− 1

2
y2(1 − F 2

h∗)ψe
1xx(x,0) + · · · , (8.68)

where

ψe
1(x,0) = 1

2π

√
1 − F 2

h∗

∫ ∞

−∞
σ(ξ) log |x − ξ |dξ.

For the odd part, we find

ψo
1 (x, y) ≈ sgn(y)�(x) + y

2π
−
∫ ∞

−∞
γ (ξ)

x − ξ
dξ + O(y2), (8.69)

where �(x) = − 1
2

∫ x

−∞ γ (ξ)dξ = − 1
2

∫ ∞
−∞ γ (ξ)H(x−ξ)dξ with H(x−ξ ) denoting

the Heaviside step function.
Now we are in a position to consider the expansion of the total outer field �o =

ϕo
0 + ϕo for small values of y, where ϕo

0 and ϕo are the unperturbed and perturbed
potentials as in (8.57). Collecting the results (8.57), (8.61), (8.68) and (8.69), we
finally arrive at the expansion:

�o ≈ Ux + εψe
1(x,0) ± �(x)

+ y

(
V ∗ + ε

2π
−
∫ ∞

−∞
γ (ξ)dξ

x − ξ

)
± y

εσ(x)

2
+ O(y2)

=: Ux + ϕe
1(x) ± [ϕo

1 ](x)

+ yV o(x) ± y[V e](x) + O(y2), for y ≷ 0, (8.70)
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with ϕe
1, [ϕo

1 ],V o and [V e] defined accordingly. It should be emphasised that the
densities σ and γ in the above formulation remain to be determined. For this pur-
pose, we have to consider the problem in the inner region.

In the inner region we have

x = O(1), y = O(ε) and z = O(ε).

Hence we introduce the stretched variables Y = y/ε and Z = z/ε, in terms of which
the Laplace equations now become

ε2�i
xx + �i

YY + �i
ZZ = 0,

where we have adapted the notion �i for the inner potential �i = �i(x,Y,Z, ε).
We assume that �i admits a regular expansion in the form

�i(x,Y,Z, ε) = �0(x,Y,Z) + ε�1(x,Y,Z) + O(ε2), (8.71)

and substituting it into the Laplace equation, we obtain

�̃2�i =
{

0, i = 1,2,

−�i−1xx i = 3,4, . . . ,

where �̃2 := ∂2/∂Y 2 + ∂2/∂Z2. The free surface conditions (8.59) and (8.60) yield
for the first approximations

�0Z = 0, �1Z = 0, at Z = 0.

Again we split up the inner potential �i into �ie and �io, the even and the odd part
of �i . The even potential relates to the thickness problem; since the even part of the
unperturbed flow equals Ux, we take �e

0 = Ux. Furthermore, �ie has to fulfil the
boundary condition on the ship hull, i.e.,

∂�ie

∂n
= 0, on y = ±f (x, z) = ±εF (x,Z). (8.72)

We now define N∗ to be the projection of the normal n on the plane x = constant
(see Fig. 8.5).

From (8.71) for y > 0, we have

�e
xfx + �e

zfz − �e
y = 0.

Fig. 8.5 Local configuration
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We also have

∂�ie

∂N∗ = �ie
y − �ie

z fz√
1 + f 2

z

,

from which it follows that

∂�ie

∂N∗ = �ie
x fx√

1 + f 2
z

. (8.73)

Inserting (8.71) into (8.73) and defining the normal N in terms of the stretched
coordinates Y,Z, ∂

∂N∗ = 1
ε

∂
∂N

, we then find with f = εF that

∂�e
1

∂N
= 0,

∂�e
1

∂N
= UFx√

1 + Fz

=: VN.

Therefore, �e
1 and �e

2 take the forms

�e
1 = g1(x),

�e
2 = g2(x) + �∗

2(x,Y,Z).
(8.74)

This inner solution has to be matched with the outer one. Therefore �∗
2 must be

known for large values of Y and there is no need to solve the equation for �∗
2 . For

this purpose, we assume �∗
2 has the asymptotic behaviour

�∗
2 ∼ V |Y |, as Y → ∞,

where V may be calculated simply by conservation of mass. We proceed as follows.
As indicated in Fig. 8.6, the apparent flux out of the ship is given by

∫
VN dl = US′(x),

where S′ is the derivative of the surface area of the stretched cross section. Hence

V = U

2h
S′(x), for |x| < L/2.

Fig. 8.6 Cross flow
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Fig. 8.7 Local flow around
the double body

We now match the even part of the inner and outer solution (8.68), (8.74), and find

σ(x) = U

h
S′(x) (8.75)

and

g1(x) = ψe
1 (x,0) = U

2πh

√
1 − F 2

h∗

∫ L/2

−L/2
S′(ξ) log |x − ξ |dξ. (8.76)

The odd part of the solution relates to the cross flow V o(x)y given by (8.70). The
inner problem we have to consider is the same as in Sect. 8.2, if we reflect the
physical domain with respect to y = 0 (see Fig. 8.7).

In this figure, C(x) is the known blockage function or coefficient as introduced
in (8.45) and V (x) is to be determined by the matching procedure below. The far-
field behaviour of the inner solution can be matched with the local behaviour of the
outer solution. We obtain, from (8.70),

[�o
1](x) = V (x)C(x), and

V o(x) = V (x).

Consequently, we have

−ε

2

∫ ∞

−∞
γ (ξ)H(x − ξ)dξ = V (x)C(x) (8.77)

and

V ∗ + ε

2π
−
∫ ∞

−∞
γ (ξ)

x − ξ
dξ = V (x), (8.78)

from which it follows that γ (ξ) has to be a solution of the following singular integral
equation:

ε

2π
−
∫ ∞

−∞

{
1

x − ξ
+ π

H(x − ξ)

C(x)

}
γ (ξ)dξ = −V ∗ := −εV . (8.79)

We can easily obtain an integral equation for V (x), because differentiation of (8.77)
with respect to x leads to

εγ (x) = −2(V C)′.



144 8 Shallow Water Ship Hydrodynamics

Since in this section we consider the case of the steady motion, it follows that
γ (x) = 0, for |x| > L/2.

We shall show that (8.79) can be transposed into a Fredholm integral equation of
the second kind, which can be solved numerically.

Consider

1

π i
−
∫ L/2

−L/2

γ (ξ)

x − ξ
dξ = 2iV + 1

C(x)

∫ x

−L/2
γ (ξ)dξ := iFγ (x). (8.80)

We now use the theory of Hilbert transforms (see Sect. 9.3) again and consider

1

π i
−
∫ L/2

−L/2

γ (ξ)

x − ξ
dξ = iFγ (x).

We apply the Kutta condition at x = L/2 to obtain

γ (x) = 1

π

√
x − L/2

x + L/2
−
∫ L/2

−L/2

√
ζ + L/2

ζ − L/2

Fγ (ζ )

x − ζ
dζ. (8.81)

Equation (8.81) now is a Fredholm integral equation of the second kind for γ (x). It
can be shown that the kernel is square integrable and hence the equation has a unique
solution. This unique solution can be found numerically. In particular, if C(x) � 1,
one can define a sequence {γi} by the iteration procedure

γi(x) = 1

π

√
x − L/2

x + L/2
−
∫ L/2

−L/2

√
ζ + L/2

ζ − L/2

1

x − ζ

[
2V + 1

C(ζ )

∫ ζ

−L/2
γi−1(ξ)dξ

]
dζ.

(8.82)

This sequence can be used to approximate the exact solution.
In the case of total blockage C(x) = ∞ we have obtained the same result as in the

2-D airfoil theory for steady flow. Equation (8.82) with C = ∞ is identical to (8.41)
if P(x) is determined so that the Kutta condition γ (L/2) = 0 is fulfilled. It will be
clear that the theory of this section may be extended to non-steady flow problems in
a similar way as in Sect. 8.1. We then have to use the same conditions to obtain a
unique vortex distribution.

To obtain the heave force and pitch moment we shall integrate the local pressure
distribution along the hull. The local field up to first order in ε is described by

�i ≈ Ux + εψe
1(x,0) ± �(x) (8.83)

and for the determination of the heave and pitch, we may disregard the term ±�(x).
We use Bernoulli’s equation and find that the even part of the first-order pressure
along the ship is given by

pe ∼ −ρUεψe
1x(x,0). (8.84)
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The heave force becomes

F3 = −ρUε

∫ L/2

−L/2
ψe

1xB(x)dx, (8.85)

and the pitch moment

F5 = −ρUε

∫ L/2

−L/2
ψe

1xB(x)x dx, (8.86)

where B(x) is the beam of the ship at the location x.
The sway force and yaw moment can be calculated similarly. From (8.83), the

contribution from the odd part ±ε�(x) leads to

po(x) ∼ ±ρUε�x(x).

Hence the sway force (lift) is given by

F2 = −ρUhε

∫ L/2

−L/2
γ (x)dx. (8.87)

The yaw moment now becomes

F6 = −ρUhε

∫ L/2

−L/2
γ (x)x dx. (8.88)

The sway force and yaw moment may also be calculated by means of the Blasius
formulas. In that case, we write the outer potential as the real part of the complex
potential

χ(z) = �(z) + i�(z), where z = x + iy.

The forces acting on the ship are then

F1 − iF2 = iρ

2

∮
C

(
dW

dz

)2

dz, (8.89)

and the moment

F6 = −

{

ρ

2

∮
C

z

(
dW

dz

)2

dz

}
, (8.90)

where C is a closed contour around the object. In our case we considered

W(z) = (U + iV ∗)z + source dist. + vortex dist.,

and if we equate the contributions of the residues, it follows that F1 = 0 while F2
and F6 have the forms as given by (8.87) and (8.88), respectively. However we
would like to mention that this derivation only holds for steady flow fields.
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Fig. 8.8 Reflection of
singularities

8.4 Ships in a Channel

In this section we will show how we can apply the theory developed in the previous
section to the situation of a ship in a channel. Since most of the analysis we consid-
ered here is exactly the same as before, we omit the details. We consider the case
that the side walls of the channel are in the outer region. The outer field may be con-
sidered as a superposition of sources and vortices. First we shall give a derivation of
the potential due to a source of unit strength situated between two parallel walls.

We introduce the complex variable

x = x + iβy, with β =
√

1 − F 2
h ,

where Fh is the Froude number with respect to the depth h of the channel. Through-
out the section the side walls of the channel are at y = a and y = −b. The total
width of the channel is denoted by w as is shown in Fig. 8.8.

We consider a source with unit strength located at the origin. The field due to this
source may be obtained by means of reflection to the walls. In this case, the complex
potential denoted by χ(z) has the form

χ(z) = � + i�

= 1

2π
log z + 1

2π

∞∑
n=1

log(z − 2βinw) + 1

2π

∞∑
n=1

log(z + 2βinw)

+ 1

2π
log(z − 2βia) + 1

2π

∞∑
n=1

log(z − 2βi(nw + a))

+ 1

2π

∞∑
n=1

log(z + 2βi(nw − a)). (8.91)
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We now consider the first three terms in (8.91) and write

χ1 = 1

2π
log z + 1

2π

∞∑
n=1

log(z − 2βinw) + 1

2π

∞∑
n=1

log(z + 2βinw)

= 1

2π
log

[
z

∞∏
n=1

(
1 − z2

(2iβnw)2

)
· constant

]
.

The function

z

∞∏
n=1

(
1 − z2

(2iβnw)2

)

is an entire function with simple zeros at z = ±2inw. The lemma of Weierstrass
allows us to write

z

∞∏
n=1

(
1 − z2

(2iβnw)2

)
= 2iβw

π
sin

zπ

2iβw
= 2βw

π
sinh

zπ

2βw
.

Hence up to an additive constant we can simplify χ1 so that

χ1 = 1

2π
log[sinh k0z],

with k0 = π
2βw

, z = x + iβy and β =
√

1 − F 2
h . The remaining three terms in (8.91)

lead to a similar result, and the complete potential due to a unit source at z = ζ

becomes

Gs(z; ζ ) = 1

2π

{
log[sinh(k0(z − ζ ))] + log[sinh(k0(z − ζ ) − iα)]} (8.92)

with α = πa
w

. The complex potential due to a unit vortex at the point z = ζ becomes

Gv(z; ζ ) = − i

2π

{
log[sinh(k0(z − ζ ))] − log[sinh(k0(z − ζ ) − iα)]}. (8.93)

The perturbation potential in the outer region (see (8.57)) can now be written as a
distribution of sources and vortices along the axis of the ship:

ϕo(x, y) = 

∫ L/2

−L/2

[
σ(ξ)Gs(z; ξ) + γ (ξ)Gv(z; ξ)

]
dξ, (8.94)

where ξ is the coordinate along the axis of the ship. Here again σ and γ are the
unknown densities as in (8.66) and (8.67). They will be determined by the match-
ing conditions from the inner potential �i as in Sect. 8.3. To do so we introduce,
for convenience, the (s, t) coordinates fixed to the ship and let (U,V ) be the com-
ponents of the uniform flow U with respect to the coordinates (s, t), as shown in
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Fig. 8.9 Outer coordinates
fixed to ship

Fig. 8.9. Furthermore we assume the angle of attack to be small and expand (8.94)
for small t .

This leads after some lengthy calculations to

ϕi(s, t) ∼ Us + V t + ϕ1(s) ± [ϕ1](s) + t (V (s) ± [V ](s)), (8.95)

where

ϕ1(s) = 1

2π

∫ L/2

−L/2
dξ

(
σ(ξ)

{
log[sinh(k0(s − ξ))]

+ 1

2
log[sinh(k0(s − ξ) + sin2 α)]

}

+ γ (ξ) arctan

[
cosh(k0(s − ξ)) sinα

sinh(k0(s − ξ)) cosα

])
,

[ϕ1] = −1

2

∫ L/2

−L/2
γ (ξ)H(s − ξ)dξ,

V (s) = 1

4w

∫ L/2

−L/2
dξ

{ −σ(ξ) sin 2α

cosh(2k0(s − ξ)) − cos 2α

+ γ (ξ)
cosh(k0(s − ξ))(1 − cos 2α)

cosh(2k0(s − ξ)) − cos 2α

}
,

[V (s)] = β
σ(s)

2
,

and H(s − ξ) is the Heaviside step function (cf. (8.70).
By following the arguments used in the previous section, the solution in the inner

region can be written in the form

ϕi ∼ Us + F1(s) ± US′(s)
2h

t + V1(s)[t ± C(s)], (8.96)

where F1 and V1 are to be determined. Here S is the surface area and C the blockage
coefficient as before. This expression must be equal to (8.95) which leads to
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(a) ϕ1(s) = F1(s),

(b) [ϕ1](s) = V1(s)C(s),

(c) V + V (s) = V1(s),

(d) [V ](s) = US ′(s)
h

.

The last condition gives us the source strength in (8.94),

σ(s) = US′(s)
h

.

It remains now to determine γ (ξ) from the other relations. Conditions (b) and (c)
imply

−
∫ L/2

−L/2
γ (ξ)

{
1 − cos 2α

cosh(2k0(s − ξ)) − cos 2α
coth(k0(s − ξ)) + 2w

C(s)
H(s − ξ)

}
dξ

= − πU

whβ2
sin 2α

∫ L/2

−L/2

S(ξ) sinh(2k0(s − ξ))

[cosh(2k0(s − ξ)) − cos 2α]2
dξ − 4wV := f (s).

This is an integral equation of the Cauchy type, therefore we write it in the following
standard form (see Sect. 9.3):

1

π i

∫ L/2

−L/2

γ (ξ)

s − ξ
dξ = Fγ (s), (8.97)

where

Fγ (s) := k0

π i
f (s) − 2wk0

π iC(s)

∫ s

−L/2
γ (ξ)dξ

− 1

π i

∫ L/2

−L/2
γ (ξ)

A(s, ξ)k0(s − ξ) cosh(k0(s − ξ)) − 1

s − ξ
dξ

with

A(s, ξ) := 1 − cos 2α

cosh(k0(s − ξ) − cos 2α
.

From (8.97) we obtain a Fredholm integral equation of the second kind. The unique
solution which obeys the Kutta condition at s = L/2 takes the form

γ (s) = 1

π i

√
s − L/2

s + L/2
−
∫ L/2

−L/2

√
ζ + L/2

ζ − L/2

Fγ (ζ )

s − ζ
dζ.
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Fig. 8.10 (a) first-order, (b)
2nd-order source term, (c)
2nd-order source-vortex term,
(d) 2nd-order vortex term.
See Beck [1]

By a similar argument as in Sect. 8.3, the sway force and yaw moment can be cal-
culated:

F2 = −ρUh

∫ L/2

−L/2
γ (ξ)dξ

+ ρU

2wβ2

∫ L/2

−L/2

∫ L/2

−L/2
S′(ξ)γ (ζ )

sinh(2k0(ξ − ζ ))

cosh(2k0(ξ − ζ )) − cos 2α
dξ dζ

+ ρU2

4wβ3h
sin 2α

∫ L/2

−L/2

∫ L/2

−L/2
S′(ξ)S′(ζ )

1

cosh(2k0(ξ − ζ )) − cos 2α
dξ dζ

+ ρh

4wβ
sin 2α

∫ L/2

−L/2

∫ L/2

−L/2
γ (ξ)γ (ζ )

1

cosh(2k0(ξ − ζ )) − cos 2α
dξ dζ,

F6 = −ρUh

∫ L/2

−L/2
ξγ (ξ)dξ − ρU

2wβ2

∫ L/2

−L/2

∫ L/2

−L/2
S′(ξ)γ (ζ )

·
{

(ξ − ζ ) sin2 α coth(k0(ξ − ζ )) − ζ sinh(2k0(ξ − ζ ))

cosh(2k0(ξ − ζ )) − cos 2α

}
dξ dζ

+ ρU2

8wβ3h
sin 2α

∫ L/2

−L/2

∫ L/2

−L/2
S′(ξ)S′(ζ )

ξ + ζ

cosh(2k0(ξ − ζ )) − cos 2α
dξ dζ

+ ρh

8wβ
sin 2α

∫ L/2

−L/2

∫ L/2

−L/2
γ (ξ)γ (ζ )

ξ + ζ

cosh(2k0(ξ − ζ )) − cos 2α
dξ dζ.

To illustrate the idea, an example of calculations, carried out by Beck [1], based on
these formulas is given in Fig. 8.10. It turns out that the interaction terms between
source and vortex distribution of the reflected points lead to large contributions in
the sway force. These terms are asymptotically of lower order. However, due to
summation, they become numerically of the same order of magnitude.
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Fig. 8.11 Passing ships

8.5 Interaction of Ships

To conclude this chapter, we now consider the interaction of ships in shallow water.
To simplify the presentation, we describe the situation as indicated in Fig. 8.11.
In particular we assume that the lateral distance sp = O(1) as ε → 0, where ε is
the slenderness parameter. As in Fig. 8.11, ship 1 travels at speed U1 while the
speed of the second ship is U2. We consider a speed range for both ships such that
F 2

h = U2/gh = O(ε). Hence, the outer potentials of both ships satisfy the Laplace
equation with respect to a fixed coordinate system:

ϕo
xx + ϕo

yy = 0.

The outer solution may be considered as a source distribution along the centre
line of the ships together with a vortex distribution along the centre line and the
wakes of the ships. The source and vortex strengths are time dependent. We have

ϕo(x, y, t) =
2∑

j=1

{
1

4π

∫ a+
j (t)

a−
j (t)

σj (ξ, t) log

[
(x − ξ)2 +

(
y − (−1)j

sp

2

)2]
dξ

+ 1

2π

∫ a+
j (t)

−∞
γj (ξ, t) arctan

[
y − (−1)j

sp
2

x − ξ

]
dξ

}
. (8.98)

We know that in the wake the vortices are transported along the stream line with the
local velocity as in (8.5). This means

∂γj

∂t
(x, t) = 0. (8.99)

Furthermore, it follows from Kelvin’s theorem that

d�j

dt
= −Ujγj (a

−
j (t)), (8.100)
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where �j is the total circulation around the ship. To obtain uniqueness we require
the Kutta condition:

lim
xj →a−

j −0
γj = lim

xj →a−
j +0

γj (8.101)

holds for all t . Now we consider the field near ship 1 where (8.98) may be expanded
in a Taylor series with respect to the ship coordinates (x1, y1):

ϕo(x1, y1, t) = ϕ1(x1,±0, t) ± [ϕ1](x, t) + V21(x1)y ± σ1(x1, t)

2
|y1|

+ y1

2π
−
∫ a+

1

−∞
γ1

x − ξ
dξ + O(y2

1), for a−
1 ≤ x1 ≤ a+

1 , (8.102)

where

ϕ1(x,±0, t) = 1

2π

∫ a+
1 (t)

a−
1 (t)

σ1(ξ, t) log |x1 − ξ |dξ

+ 1

4π

∫ a+
2 (t)

a−
2 (t)

σ2(ξ, t) log[(x2 − ξ)2 + s2
p]dξ

+ 1

2π

∫ a+
2 (t)

−∞
γ2(ξ, t) arctan

(
sp

x2 − ξ

)
dξ,

[ϕ1](x1, t) = 1

2

∫ a+
1 (t)

x1

γ1(ξ, t)dξ,

(8.103)

and the induced normal velocity

V21(x1, t) = − 1

2π

∫ a+
2 (t)

a−
2 (t)

σ2(ξ, t)
sp

(x2 − ξ)2 + s2
p

dξ

+ 1

2π

∫ a+
2 (t)

−∞
γ2(ξ, t)

x2 − ξ

(x2 − ξ)2 + s2
p

dξ. (8.104)

The solution in the inner region near ship 1 or 2 now again has an outer expansion

ϕi
j (xj , yj , zj , t) = −UjS

′
j (xj )

4h
|yj | + V ∗

j (xj , t)[yj ± Cj (xj )] + fj (xj , t).
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Fig. 8.12 −−−− experiments, − − −− and · · · · · · computations

Matching the inner and the outer solution of ship 1 now leads to

σ1(x1, t) = −U1S
′
1(x1)

2h
,

V ∗
1 (x1, t) = V21(x1, t) + 1

2π
−
∫ a+

1

−∞
γ1(ξ, t)

x1 − ξ
dξ,

f1(x1, t) = ϕ1(x1,±0, t),

V ∗
1 (x1, t)C1(x1, t) = 1

2

∫ a+
1

x1

γ1(ξ, t)dξ.

(8.105)

We obtain an integral equation for γ1(ξ, t) similar to (8.70):

1

2π

∫ a+
1

−∞

[
γ1(ξ, t)

x1 − ξ
− πγ1(ξ, t)

C1(x1)
H(ξ − x1)

]
dξ = −V21(x1, t), for a−

1 ≤ x1 ≤ a+
1 .

(8.106)
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In a similar way we find near ship 2,

1

2π

∫ a+
2

−∞

[
γ2(ξ, t)

x2 − ξ
− πγ2(ξ, t)

C2(x2)
H(ξ − x2)

]
dξ = −V12(x2, t),

for a−
2 ≤ x2 ≤ a+

2 . (8.107)

Equations (8.106) and (8.107) are coupled singular integral equations for γ1 and γ2.
To solve these equations, we may use a procedure with constant time step �t . We
start at a point t = 0 where no interaction takes place. This means that γj = 0 in
the wake. We then start by taking V21 and V12 as the induced velocities due to the
source distributions only. The integral equations may then be reduced to Fredholm
equations with square integrable kernel (see Sect. 8.3) and can be solved numer-
ically. The next time step gives us a constant vortex distribution along a wake of
length �tUj and the procedure can be repeated successively.

The sway force and yawing moment can be calculated by means of (8.43)
and (8.44). An example of computations by Yeung [23] and experiments of Re-
mery are shown in Fig. 8.12. The computations are done by means of two different
approximations of the solution of the integral equations.



Chapter 9
Appendices: Mathematical Methods

In this chapter we present the derivations of some mathematical tools used in this
book. No proofs of validity are given. We have used the method of stationary phase
and the method of characteristics singular integral equations, for instance. Here we
give a short introduction to these methods. We also give the derivation of a two-
dimensional Green’s function and a simplification of a set of algebraic equations
used in Chap. 6.

9.1 The Method of Stationary Phase

This method dates back to Lord Kelvin, who developed it in particular for the case
which is considered here. Suppose we have to evaluate an integral of the form

I =
∫ β

α

eiωf (x)g(x)dx,

where f (x) and g(x) are differentiable real functions and ω is a large parameter.
Integrating by parts, we find, if f ′(x) �= 0 in the interval α ≤ x ≤ β ,

I = 1

iω

∫ β

α

g(x)

f ′(x)
d
(
eiωf (x)

)

= 1

iω

[
g(x)

f ′(x)

(
eiωf (x)

)]β

α

− 1

iω

∫ β

α

eiωf (x) d

dx

(
g(x)

f ′(x)

)
dx.

Repeating this procedure as many times as differentiations permit, we have a series
in inverse powers of ω, which gives an asymptotic expansion for I . Obviously, this
method breaks down if a point γ in the interval α ≤ x ≤ β,f ′(γ ) = 0. The point γ

is usually referred to as the stationary point. For this case the method of stationary
phase is developed.
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Without loss of generality, let us consider an integral of the form

J (0, x0) =
∫ x0

0
eiωf (x)g(x)dx, x0 > 0, (9.1)

where x = 0 is the only stationary point of f . Here f and g have as many deriva-
tives as we need, and again ω is a large parameter. At the origin f (x) now has an
expansion

f (x) = f (0) + 1

2!x
2f ′′(0) + 1

3!f
′′′(0) + · · · .

We assume that f ′′(0) > 0; if f ′′(0) < 0 the argument has to be slightly changed.
We introduce a new variable z defined by

z = f (x) − f (0),

and consider x as a function of z. From the fact that f ′(0) = 0, we see that x admits
an expansion of the form

x = z1/2

√
2

f ′′(0)
{1 + C1

√
z + C2(

√
z)2 + · · · }.

In terms of the new variable z, the integral J takes the form

eiωf (0)

∫ f (x0)−f (0)

0
eiωz

(
g(x)

dx

dz

)
dz. (9.2)

Now if g(x) dx
dz

is expanded into powers of
√

z, we obtain

g(x)
dx

dz
= g(0)√

2f ′′(0)
z−1/2{1 + α1

√
z + α2(

√
z)2 + · · · }, (9.3)

which shows that we have to evaluate integrals of the form

Kn(a) :=
∫ a

0
eiωzz(n−1)/2 dz, a = f (x0) = f (0). (9.4)

For real values of ω and a we cannot extend the upper limit to infinity. We calcu-
late the integral Kn(a) in the complex z-plane. Along a contour consisting of two
vertical lines, joined by the interval 0 ≤ z ≤ a, we see that

Kn(a) +
∫ a+i∞

a

eiωzz(n−1)/2 dz =
∫ i∞

0
eiωzz(n−1)/2 dz (9.5)

by means of Cauchy’s theorem. In the last integral in (9.5) we put ωz = iλ and
transform it into

(
i

ω

)(n+1)/2( i

ω

)(n+1)/2

λ(n−1)/2 dλ =
(

i

ω

)(n+1)/2

�

(
n + 1

2

)
. (9.6)
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The second integral in (9.5) is transferred into

(
i

ω

)
a(n−1)/2eiωa

(
i

ω

)(n+1)/2(
1 + iλ

aω

)(n−1)/2

dλ

by the substitution of ωz = ωa + iλ. Expanding (1 + iλ
aω

)(n−1)/2 into power series
in λ/ω,

1 + (n − 1)

2

(
i

aω

)
λ + (n − 1)(n − 3)

22 · 2!
(

i

aω

)2

λ2

+ (n − 1)(n − 3)(n − 5)

23 · 3!
(

i

aω

)3

λ3 + · · · ,

we then obtain that

(
i

ω

)
a(n−1)/2eiωa

∫ ∞

0
e−λ

(
1 + iλ

aω

)(n−1)/2

dλ

=
(

i

ω

)
a(n−1)/2eiωa

{
1 + (n − 1)

2

(
i

aω

)
�(2)

+ (n − 1)(n − 3)

22 · 2!
(

i

aω

)2

�(3) + · · ·
}

=
(

i

ω

)
a(n−1)/2eiωa

{
1 + (n − 1)

2

(
i

aω

)
+ (n − 1)(n − 3)

22

(
i

aω

)2

+ · · ·
}
,

(9.7)

by making use of the formula �(n+ 1) = ∫ ∞
0 e−λλn dλ = n! for integers n. Collect-

ing results (9.5), (9.6), and (9.7) we have from (9.4),

Kn(a) =
(

i

ω

)(n+1)/2

�

(
n + 1

2

)

−
(

i

ω

)
a(n−1)/2eiωa

{
1 + (n − 1)

2

(
i

aω

)
+ (n − 1)(n − 3)

22

(
i

aω

)2

+ · · ·
}

=
(

i

ω

)(n+1)/2

�

(
n + 1

2

)
− eiωa

(
i

ω

)

·
{(

1 +
(

i

ω

)
d

da
+

(
i

ω

)2 d2

da2
+ · · ·

)
a(n−1)/2

}
. (9.8)
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From (9.2), (9.7), and (9.8), it follows that the first order term of the asymptotic
expansion (n = 0) of J in (9.1) takes the form

J (0, x0) = eiωf (0) g(0)√
2f ′′(0)

K0(a) = eiωf (0)g(0)

ω1/2

√
π i

2f ′′(0)

− ieiωf (x0)

ω

{(
1 +

(
i

ω

)
d

da
+

(
i

ω

)2 d2

da2
+ · · ·

)
g(0)√
2f ′′(0)

a−1/2
}
,

or

J (0, x0) = eiωf (0)g(0)

ω1/2

√
π i

2f ′′(0)
− ieiωf (x0)

ω

(
g(x)

dx

dz

)
z=a

+ · · · , (9.9)

from (9.3) with α1 being equal to zero. The first term being of order ω−1/2 is due to
the stationary point and the following term, which has the forms resulting from the
integration by parts, is due to the end point of integration.

If we extend the interval from z = a to z = β , we obtain

eiωf (0)

∫ β

a

eiωz

(
g(x)

dx

dz

)
dz

= eiωf (0)

[
eiωz

iω

(
g(x)

dx

dz

)]β

a

− eiωf (0)

iω

∫ β

a

eiωz d

dz

(
g(x)

dx

dz

)
dz, (9.10)

the contribution from the interval where f ′ is not equal to zero. Adding the two
integrals from (9.9) and (9.10), we have

J (0, β) = eiωf (0)g(0)

ω1/2

√
π i

2f ′′(0)
− ieiωf (β)

ω

(
g(x)

dx

dz

)
z=β

+ O(1/ω), (9.11)

where the term of O(1/ω) is due to K1. Hence, for large ω, the stationary point gives
the largest contribution (order ω−1/2) while the contribution from the end points is
of lower order ω−1. Similarly, it is easy to see that

J (α,0) = eiωf (0)g(0)

ω1/2

√
π i

2f ′′(0)
+ ieiωf (α)

ω

(
g(x)

dx

dz

)
z=α

+ O(1/ω). (9.12)

From (9.11) and (9.12), we see that if x = γ is the only stationary point in the
interval α ≤ x ≤ β , then

J (α,β) = eiωf (γ )g(γ )

ω1/2

√
2π i

f ′′(γ )
+ O(1/ω). (9.13)
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9.2 The Method of Characteristics

The equation

F(x, y,u,ux,uy) = 0, (9.14)

defines a relation between the function u = u(x, y) and its derivatives ux and uy . In
order to define the function u as a solution of this equation, a set of subsidiary condi-
tions must be prescribed. A fundamental problem for (9.14) is the Cauchy problem
which consists of finding an integral surface u(x, y) of (9.14) passing through a
prescribed curve C in the 3-dimensional space given by

x = x(λ), y = y(λ), u = u(λ), (9.15)

where x, y,u are smooth functions of the parameter λ.
Consider first the case that (9.14) is a quasi-linear equation, i.e.,

F = Aux + Buy + C = 0, (9.16)

where A,B and C are functions of x, y and u. If the Cauchy problem has a unique
solution, the derivatives ux and uy along the curve C become functions of the pa-
rameter λ and must be determined uniquely by the conditions

Aux + Buy + C = 0, and

ux

dx

dλ
+ uy

dy

dλ
− du

dλ
= 0.

This is possible only if 1
A

dx
dλ

�= 1
B

dy
dλ

. If however,

dx
dλ

A
=

dy
dλ

B
= −

du
dλ

C
, (9.17)

the system admits a one-parameter family of solutions, i.e., the solution to the
Cauchy problem (if it exists) is not unique. The curves that satisfy (9.17) are called
the characteristic curves of the differential equation (9.16). Through a characteristic
curve, several solutions of (9.16) may pass; they can, in many cases, be considered
as lines of propagation of small disturbances (discontinuities in the derivatives of u).
It is easily shown that the Cauchy problem for a nowhere characteristic curve C can
be solved by constructing the solutions to the characteristic equations at each point
of the curve and by considering the surface, u = u(x, y), which is obtained in this
way.

For a non-linear partial differential equation (9.14), the definition of a character-
istic curve is more complicated. At a fixed point P = (x, y,u) (9.14) determines a
relation between ux and uy , i.e., it determines a one-parameter family of possible
tangent planes to the integral surfaces, the solution of (9.14). The envelope of these
planes form a cone with vertex at P , which is known as a Monge cone.
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Consider again a curve C such as defined by (9.15). Then at a point on C, equa-
tion (9.14) and the compatibility condition

ux

dx

dλ
+ uy

dy

dλ
= du

dλ
, (9.18)

define a number of possible tangent planes. If we assume that F is not factorable,
we cannot have dependence; hence the first order derivatives ux and uy are always
determined. The characteristic curves are obtained by considering a breakdown of
the determination of the second-order derivatives. Differentiating (9.18) with respect
to λ yields

uxx

(
dx

dλ

)2

+ 2uxy

(
dx

dλ

)(
dy

dλ

)
+ uyy

(
dy

dλ

)2

= d2u

dλ2
− ux

d2x

dλ2
− uy

d2y

dλ2
, (9.19)

and differentiating (9.14) with respect to x and y yields

uxxFp + uxyFq + Fup + Fx = 0;
uxyFp + uyyFq + Fuq + Fy = 0,

(9.20)

with p = ux and q = uy . As shown before, p and q can be uniquely determined as
functions of λ. Thus it follows from differentiation that

dp

dλ
= uxx

dx

dλ
+ uxy

dy

dλ
;

dq

dλ
= uxy

dx

dλ
+ uyy

dy

dλ
.

(9.21)

Equations (9.20) and (9.21) give a set of four equations for the three unknowns,
uxx,uxy and uyy . The augmented matrix

A =

⎛
⎜⎜⎜⎜⎝

Fp Fq 0 pFu + Fx

0 Fp Fq qFu + Fy

dx
dλ

dy
dλ

0 − dp
dλ

0 dx
dλ

dy
dλ

− dq
dλ

⎞
⎟⎟⎟⎟⎠

will have rank generally equal to 3. If it has a rank equal to 2, then the curve C

defined by (9.15) is a characteristic. In this case all the 3 × 3 submatrices of A are
singular. This leads to the Charpit-Lagrange equations

dx

Fp

= dy

Fq

= du

pFp + qFq

= −dp

Fx + pFu

= −dq

Fy + qFu

, (9.22)

for the quantities x, y,u,p and q along the characteristic. Equations (9.22) are also
known as the characteristic equations for the differential equation (9.14). Here again
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for a non-characteristic curve, the Cauchy problem is solved by constructing a sur-
face, which is described by the characteristics issued from the points of the curve.
(Note that the initial values of p and q at the point are determined!)

9.3 Singular Integral Equations

Let L be a segment of a closed smooth contour C in the complex z-plane. Let
S+ and S− denote, respectively, the regions inside and outside the contour C (see
Fig. 9.1). Consider the integral along L ,

H(z) = 1

2π i

∫
L

h(s)

s − z
ds, (9.23)

where h(s) is a given Hölder continuous function (complex) along L such that

|h(s2) − h(s1)| ≤ A|s2 − s1|μ, for s1, s2 on L ,

with positive constants A and μ.
Let s0 be a fixed point on L , then we have for z ∈ S+,

lim
z→s0

H(z) = 1

2π i
−
∫

L

h(s)

s − s0
ds + 1

2π i

∫
C +

h(s)

s − s0
ds,

where −∫ denotes the principle value, and C + is a semicircle in S− with radius ρ.
The integral along C + can be worked out by means of a Taylor series expansion of
h(s) at the point s0. We have

1

2π i

∫
C +

h(s)

s − s0
ds = 1

2π i

∫
C +

{
h(s0)

s − s0
+ h′(s0) + · · ·

}
ds.

By introducing s − s0 = ρeiϑ , the integral can be rewritten as

H+(s0) = 1

2
h(s0) + 1

2π i
−
∫

L

h(s)

s − s0
ds, (9.24)

Fig. 9.1 Contour of
integration
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and if we approach the contour from the other side,

H−(s0) = −1

2
h(s0) + 1

2π i
−
∫

L

h(s)

s − s0
ds (9.25)

if we let ρ → 0. These are the well-known Plemelj formulas from which we see that

H+(s0) − H−(s0) =h(s0),

H+(s0) + H−(s0) = 1

π i
−
∫

L

h(s)

s − s0
ds.

(9.26)

Considering now the relation

H+(s) = G(s)H−(s) + g(s), on L , (9.27)

where G and g are given functions on L . We are interested here in the determina-
tion of H(z) as an analytic continuation of the functions H+ and H− on L . This
is the so-called Hilbert problem. This can be done easily by introducing a function
χ(z) which obeys the homogeneous relation

G(s) = χ+(s)

χ−(s)
, on L ,

from which it follows that

H+(s)

χ+(s)
− H−(s)

χ−(s)
= g(s)

χ+(s)
.

Thus, if

H(z) = χ(z)

2π i

{∫
L

g(s)

χ+(s)(s − z)
ds + P(z)

}
, (9.28)

then H(z) is the corresponding analytic continuation for any arbitrary analytic func-
tion P(z).

9.4 The Two-Dimensional Green’s Function

Here we derive the two-dimensional version of the function of Green G (x, y; ξ, η)

as used in this paper. This ‘source’ function is a solution of

Gxx + Gyy = 2πδ(x − ξ, y − η), (9.29)

with boundary conditions

KG − Gy = 0 at y = 0, (9.30)
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Gy = 0 at y = −h. (9.31)

We introduce the Fourier transform of G ,

G̃ (y;η) = 1

2π

∫ ∞

−∞
G (x, y; ξ, η)e−iγ x dx. (9.32)

This transformed Green’s function satisfies the conditions

G̃yy − γ 2G̃ = 0 for y �= η,

KG̃ − G̃y = 0 at y = 0,

G̃y = 0 at y = −h,

lim
ε→0

(G̃ (η + ε;η) − G̃ (η − ε;η)) = 0,

lim
ε→0

(G̃y(η + ε;η) − G̃y(η − ε;η)) = e−iγ ξ .

(9.33)

The solution of this equations is

G̃ (y;η) = 1

γ

K sinhγy + γ coshγy

K coshγ h − γ sinhγ h
coshγ (η + h)e−iγ ξ for y > η, (9.34)

G̃ (y;η) = 1

γ

K sinhγ η + γ coshγ η

K coshγ h − γ sinhγ h
coshγ (y + h)e−iγ ξ for y < η. (9.35)

Then we transform back to the x-variable. This results in (6.13) and (6.14). The
contour of integration passes above or underneath the singularities on the real axis.
The choice of this contour is determined by the radiation condition. For x > ξ the
waves travel in the positive x-direction, while for x < ξ the waves travel in the
negative x-direction. Therefore the contour passes the negative real pole above and
the positive real pole below. Closure of the contour in the complex γ -plane leads to
(6.15).

9.5 Simplification of the Set of Algebraic Equations

To obtain accurate solutions of the set of equations (6.26)–(6.28) one must get rid of
the terms that consist of subtraction of large numbers. To achieve this goal we use
the dispersion relation (6.10), γ tanh(γ h) = K . Making use of the relation

cosh(γ h)2 − sinh(γ h)2 = 1

one obtains for the zeros γ = ki for i = 0,1, . . . ,

cosh(kih) = (−1)iki√
k2
i − K2

and sinh(kih) = (−1)iK√
k2
i − K2

.
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We also use

coshγ (h − d) = coshγ h coshγ d − sinhγ h sinhγ d,

sinhγ (h − d) = sinhγ h coshγ d − coshγ h sinhγ d.

One can see that for large values depth k0 is very close to K and the accuracy is
improved if one divides out the large term analytically. The results in Fig. 6.21 can
not be obtained without this simplification.
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Kutta condition, 132, 136, 144, 149

L
Laplace equation, 2, 20
Lift force, 133
Lord Kelvin, 155

M
Matching principle, 128
Michell

integral, 82
theory, 79

Modified Bessel function, 24
Monge cone, 159
Moving object,

rotation, 50
translation, 50

Moving pressure point, 27

N
Near field, 127
Neumann problem, 44, 48
Newton, equation of motion, 51
Non-linear dispersive waves, 114

O
Outer

potential, 128
solution, 128

P
Phase

function, 28, 83
velocity, 11

Plancherel theorem, 106
Plemelj formula, 131, 132, 162
Poisson’s ratio, 89
Polar coordinates, 21, 25
Potential jump, 128
Pressure jump, 128, 132
Principal value, 131

R
Radiation condition, 20, 22
Rational fractions, 22
Ray method, 34, 83
Reflection coefficient, 98
Regular perturbation, 128
Regular series expansion, 83

S
Schwartz’s inequality, 104
Shallow water theory, 109
Shear force and moment, 89
Shock, 114
Singular integral equation, 131, 161
Singular perturbation theory, 128
Singular point, 46
Singularity

distribution of, 20
oscillating, 38
time dependent, 54

Sommerfeld radiation condition, 44
Source distribution, 45, 49, 130
Stationary

phase, 11, 28, 155
points, 28, 155

Stochastic process, 108
Stretched variable, 127, 138, 141

T
Tauber theorem, 106
Thin airfoil theory, 125
Thin elastic plate, 87
Transmission coefficient, 98
Transport equation, 83

V
Very large floating platform (VLFP), 87
Vortex strength, 131
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W
Wake discontinuity, 129
Wave

crest conservation, 120
damping matrix, 52
frequency, 12
front, 30, 31

length, 98
number, 12

Waves
acoustic, 41
cnoidal, 120
linear water-, 11
plane water-, 11
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